5. e 2
\(-'.“ . r_a- WL
\ I N

A GUIDE TO SQL

Eighth Edition

This page intentionally left blank

A GUIDE TO SQL

Eighth Edition

Philip J. Pratt
Grand Valley State University

Mary Z. Last
University of Mary Hardin-Baylor

~% COURSE TECHNOLOGY
L 4

| CENGAGE Learning

Australia « Brazil « Japan « Korea Mexico « Singapore « Spain « United Kingdom « United States

-
(4
1

‘O
»

COURSE TECHNOLOGY

CENGAGE Learning

A Guide to SQL, Eighth Edition
Philip J. Pratt, Mary Z. Last

Vice President, Publisher: Jack Calhoun
Editor-in-Chief: Alex von Rosenberg

Senior Acquisitions Editor: Charles
McCormick, Jr.

Product Manager: Kate Hennessy
Development Editor: Jessica Evans
Editorial Assistant: Bryn Lathrop
Marketing Director: Brian Joyner
Marketing Manager: Bryant Chrzan

Marketing Communications Manager:
Libby Shipp

Marketing Coordinator: Suellen Ruttkay
Content Project Manager: Matt Hutchinson

Art Director: Stacy Jenkins Shirley,
Marissa Falco

Cover Designer: Joseph Sherman
Cover Image: Getty Images/Taxi/Chris Bell

Manufacturing Coordinator: Denise Powers

Printed in Canada
12345671211100908

© 2009 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright
hereon may be reproduced, transmitted, stored, or used in any form or by
any means graphic, electronic, or mechanical, including but not limited to
photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,
submit all requests online at www.cengage.com/permissions
Further permission questions can be emailed to
permissionrequest@cengage.com

ISBN-13: 978-0-324-59768-4
ISBN-10: 0-324-59768-1

Course Technology
25 Thomson Place
Boston, MA, 02210
USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil and Japan. Locate your office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

For your lifelong learning solutions, visit www.cengage.com

Purchase any of our products at your local college store or at our preferred
online store www.ichapters.com

Some of the product names and company names used in this book have
been used for identification purposes only and may be trademarks or regis-
tered trademarks of their respective manufacturers and sellers.

Micosoft and the Office logo are either registered trademarks or trade-
marks of Microsoft Corporation in the United States and/or other countries.
Course Technology, a part of Cengage Learning, is an independent entity
from the Microsoft Corporation, and not affiliated with Microsoft in any
manner.

www.cengage.com/permissions
www.cengage.com
www.ichapters.com

TABLE OF CONTENTS

Preface viii

Chapter 1 Introduction to Premiere Products, Henry Books, and Alexamara
Marina Group

1
What Is a Database? 2
The Premiere Products Database 2
The Henry Books Database 8

The Alexamara Marina Group Database 15
Chapter Summary 20
Key Terms 20
Exercises 20
Chapter 2 Database Design Fundamentals 23
Database Concepts 24
Relational Databases 24
Entities, Attributes, and Relationships 26
Functional Dependence 29
Primary Keys 31
Database Design 34
Design Method 34
Database Design Requirements 35
Database Design Process Example 36
Normalization 41
First Normal Form 41
Second Normal Form 43
Third Normal Form 47
Diagrams for Database Design 52
Chapter Summary 56
Key Terms 57
Review Questions 57
Exercises 58
Chapter 3 Creating Tables 61
Creating and Running SQL Commands 62
Starting the Oracle Database Express Edition 62
Entering Commands 65
Creating a Table 66
Correcting Errors in SQL Commands 69
Dropping a Table 70
Using Data Types 71
Using Nulls 72
Adding Rows to a Table 72
The INSERT Command 73
Inserting a Row that Contains Nulls 75
Viewing Table Data 75

Correcting Errors in a Table 78

Saving SQL Commands 80

Creating the Remaining Database Tables 82
Describing a Table 87
Chapter Summary 89
Key Terms 89
Review Questions 89
Exercises 90
Chapter 4 Single-Table Queries 97
Constructing Simple Queries 98
Retrieving Certain Columns and All Rows 98
Retrieving All Columns and All Rows 100
Using a WHERE Clause 100
Using Compound Conditions 103
Using the BETWEEN Operator 106
Using Computed Columns 107
Using the LIKE Operator 110
Using the IN Operator 111
Sorting 112
Using the ORDER BY Clause 112
Additional Sorting Options 113
Using Functions 114
Using the COUNT Function 114
Using the SUM Function 115
Using the AVG, MAX, and MIN Functions 116
Using the DISTINCT Operator 117
Nesting Queries 120
Subqueries 121
Grouping 123
Using the GROUP BY Clause 123
Using a HAVING Clause 125
HAVING vs. WHERE 125
Nulls 128
Summary of SQL Clauses, Functions, and Operators 128
Chapter Summary 130
Key Terms 130
Review Questions 131
Exercises 132
Chapter 5 Multiple-Table Queries 135
Querying Multiple Tables 135
Joining Two Tables 136
Comparing joins, IN, and EXISTS 139
Using the IN Operator 140
Using the EXISTS Operator 141
Using a Subquery Within a Subquery 142

A Comprehensive Example 144
Using an Alias 146
Joining a Table to Itself 147
Using a Self-Join on a Primary Key Column 148
Joining Several Tables 150
Set Operations 152
ALL and ANY 157
Special Operations 160

Inner Join 160

Outer Join 161

Product 163
Chapter Summary 165
Key Terms 166
Review Questions 166
Exercises 167

Chapter 6 Updating Data 171
Creating a New Table from an Existing Table 172
Changing Existing Data in a Table 173
Adding New Rows to an Existing Table 176
Commit and Rollback 177
Transactions 178
Changing and Deleting Existing Rows 178

Executing a Rollback 180
Changing a Value in a Columnto Null 181
Changing a Table’s Structure 182

Making Complex Changes 188
Dropping a Table 189
Chapter Summary 190
Key Terms 190
Review Questions 190
Exercises 191

Chapter 7 Database Administration 195
Creating and Using Views 196
Using a View to Update Data 203

Updating Row-and-Column Subset Views 203

Updating Views Involving Joins 205

Updating Views Involving Statistics 208
Dropping a View 208
Security 209
Indexes 212

Creating an Index 215

Dropping an Index 217

Creating Unique Indexes 217
System Catalog 218
Integrity Constraints in SQL 221
Chapter Summary 226
Key Terms 226
Review Questions 227
Exercises 228

Chapter 8 SQL Functions and Procedures 233
Using SQL in a Programming Environment 234
Using Functions 235

Character Functions 235

Number Functions 236

Working with Dates 237
Concatenating Columns 240
Stored Procedures 242

Retrieving a Single Row and Column 242
Error Handling 245
Using Update Procedures 247

vii

viii

Changing Data with a Procedure
Deleting Data with a Procedure
Selecting Multiple Rows with a Procedure
Using a Cursor
Opening a Cursor
Fetching Rows from a Cursor
Closing a Cursor
Writing a Complete Procedure Using a Cursor
Using More Complex Cursors
Advantages of Cursors
Using T-SQL in SQL Server
Retrieving a Single Row and Column
Changing Data with a Stored Procedure
Deleting Data with a Stored Procedure
Using a Cursor
Using More Complex Cursors
Using SQL in Microsoft Access
Deleting Data with Visual Basic
Running the Code
Updating Data with Visual Basic
Inserting Data with Visual Basic
Finding Multiple Rows with Visual Basic
Using a Trigger
Chapter Summary
Key Terms
Review Questions
Exercises

Appendix A SQL Reference

Aliases

ALTER TABLE

Column or Expression List (SELECT Clause)
Computed Columns
The DISTINCT Operator
Functions

COMMIT

Conditions
Simple Conditions
Compound Conditions
BETWEEN Conditions
LIKE Conditions
IN Conditions
EXISTS Conditions
ALL and ANY

CREATE INDEX

CREATE TABLE

CREATE VIEW

Data Types

DELETE Rows

DESCRIBE

DROP INDEX

DROP TABLE

DROP VIEW

GRANT

INSERT INTO (Query)

247
248
249
249
250
251
252
252
254
255
256
256
256
257
257
258
259
259
260
261
262
262
264
267
268
268
269

273
273
273
274
274
274
275
275
275
275
276
276
276
276
277
277
277
278
279
279
280
281
281
281
282
282
282

INSERT INTO (Values)

Integrity

REVOKE

ROLLBACK

SELECT

Subqueries

UNION, INTERSECT, and MINUS
UPDATE

Appendix B How Do I Reference

APPENDIX C Answers to Odd-Numbered Review Questions
Chapter 1—Introduction to Premiere Products, Henry Books, and Alexamara Marina
Group
Chapter 2—Database Design Fundamentals
Chapter 3—Creating Tables
Chapter 4—Single-Table Queries
Chapter 5—Multiple-Table Queries
Chapter 6—Updating Data
Chapter 7—Database Administration
Chapter 8—SQL Functions and Procedures

Index

283
283
284
284
285
286
286
287

289

293

293
293
295
295
295
296
296
297

299

This page intentionally left blank

PREFACE

Structured Query Language (or SQL, which is pronounced “se-quel,” or “ess-cue-ell”) is a popular
computer language that is used by diverse groups such as home computer users, owners of small
businesses, end users in large organizations, and programmers. Although this text uses the SQL
implementation in the Oracle Database 10g Express Edition as a vehicle for teaching SQL, its
chapter material, examples, and exercises can be completed using any SQL implementation.

A Guide to SQL, Eighth Edition is written for a wide range of teaching levels, from students
taking introductory computer science classes to those students in advanced information systems
classes. This text can be used for a standalone course on SQL or in conjunction with a database
concepts text where students are required to learn SQL.

The chapters in this text should be covered in order. Students should complete the end-of-
chapter exercises and the examples within the chapters for maximum learning. Because the con-
tent of Chapter 8 assumes that the reader has had instruction or experience in at least one
programming language, the instructor should determine whether students will understand its
concepts. Students without a programming background will have difficulty understanding the
topic of embedded SQL. Instructors can easily omit Chapter 8 from the text in situations where
students are not comfortable with programming examples.

The Eighth Edition builds on the success of previous editions by presenting basic SQL com-
mands in the context of a business that uses SQL to manage orders, parts, customers, and sales
reps. Like in previous editions, this edition uses Oracle as the vehicle to present SQL commands.
Like the last edition, this edition addresses SQL in Access™ by showing the Access versions of
the same commands when they differ from the Oracle versions. This new edition also shows SQL
Server commands when they differ from the Oracle versions. Differences for Access and SQL
Server users are featured in “User” notes, which make it easy for students to identify differences
for the SQL implementation they are using. Students can download the Oracle 10g Database
Express Edition from the Oracle Web site for free and use it to complete this text without having
to purchase or install the full Oracle program.

The Eighth Edition includes an entire chapter on database design, showing students how to
create an appropriate design that satisfies a given set of requirements, and includes coverage of
the important topics of stored procedures and triggers. The text also contains updated exercises
for the Premiere Products, Henry Books, and Alexamara Marina Group cases.

DISTINGUISHING FEATURES

Use of Examples

Each chapter contains multiple examples that use SQL to solve a problem. Following each
example, students will read about the commands that are used to solve the stated problem, and
then they will see the SQL commands used to arrive at the solution. For most students, learning
through examples is the most effective way to master material. For this reason, instructors should
encourage students to read the chapters at the computer and input the commands shown in the
figures.

Xii

Case Studies

A running case study—Premiere Products—is presented in all of the examples within the
chapters and in the first set of exercises at the end of each chapter. Although the database
is small in order to be manageable, the examples and exercises for the Premiere Products
database simulate what a real business can accomplish using SQL commands. Using the
same case study as examples within the chapter and in the end-of-chapter exercises
ensures a high level of continuity to reinforce learning.

A second case study—the Henry Books database—is used in a second set of exercises
at the end of each chapter. A third case study—the Alexamara Marina Group database—is
used in a third set of exercises at the end of each chapter. The second and third case stud-
ies give students a chance to venture out “on their own” without the direct guidance of
examples from the text.

Question and Answer Sections

A special type of exercise, called a Q&A, is used throughout the book. These exercises
force students to consider special issues and understand important questions before con-
tinuing with their study. The answer to each Q&A appears after the question. Students are
encouraged to formulate their own answers before reading the ones provided in the text to
ensure that they understand new material before proceeding.

“User” Notes for Access™ and SQL Server Users

When an SQL command has a different use or format in Access or SQL Server, it appears
in a User note. When you encounter a User note for the SQL implementation you are
using, be sure to read its contents. You might also review the User notes for other SQL
implementations so you are aware of the differences that occur from one implementation
of SQL to another.

Review Material

A Summary and Key Terms list appear at the end of each chapter, followed by Review
Questions that test students’ recall of the important points in the chapter and occasionally
test their ability to apply what they have learned. The answers to the odd-numbered
Review Questions are provided in Appendix C. Each chapter also contains exercises
related to the Premiere Products, Henry Books, and Alexamara Marina Group databases.

Appendices

Three appendices appear at the end of this text. Appendix A is an SQL reference that
describes the purpose and syntax for the major SQL commands featured in the text. Students
can use Appendix A to identify how and when to use important commands quickly. The SQL
reference appendix contains references to specific pages in the text where the command is
discussed to make it easy for students to find additional information when they need to refer
back to the section in the book where the topic is covered.

Appendix B includes a “How Do I” reference, which lets students cross-reference the
appropriate section in Appendix A by searching for the answer to a question. Appendix C
includes answers to the odd-numbered Review Questions.

Relationship to Concepts of Database Management, Sixth Edition

For database courses featuring SQL, this SQL text can be bundled with Concepts of
Database Management, Sixth Edition by Pratt and Adamski (Course Technology). The
data and pedagogy between the two texts is consistent, and the instructor’s manuals for
both books include feedback and suggestions for using the texts together.

Instructor Support

The Eighth Edition includes a package of proven supplements for instructors and students.
The Instructor’s Resources offer a detailed electronic Instructor’s Manual, figure files,
Microsoft® PowerPoint® presentations, and the ExamView® Test Bank. The Instructor’s
Manual includes suggestions and strategies for using this text, as well as answers to Review
Questions and solutions to the end-of-chapter exercises. Figure files allow instructors to
create their own presentations using figures appearing in the text. Instructors can also take
advantage of lecture presentations provided on PowerPoint slides; these presentations fol-
low each chapter’s coverage precisely, include chapter figures, and can be customized.
ExamView is a powerful objective-based test generator that enables instructors to create
paper, LAN, or Web-based tests from test banks designed specifically for this Course Tech-
nology text. Users can utilize the ultra-efficient QuickTest Wizard to create tests in less
than five minutes by taking advantage of Course Technology’s question banks, or can cus-
tomize their own exams from scratch.

The Instructor’s Resources include copies of the databases for the Premiere Products,
Henry Books, and Alexamara Marina Group cases in Microsoft Access 2007 and 2003 for-
mats and script files to create the tables and data in these databases in Oracle and SQL
Server. These files are provided so instructors have the choice of assigning exercises in
which students create the databases used in this text and load them with data, or they can
provide the starting Access databases or Oracle or SQL Server script files to students to
automate and simplify these tasks.

ORGANIZATION OF THE TEXT

The text contains eight chapters and three appendices, which are described in the follow-
ing sections.

Chapter 1: Introduction to Premiere Products, Henry Books, and
Alexamara Marina Group

Chapter 1 introduces the three database cases that are used throughout the text: Premiere
Products, Henry Books, and Alexamara Marina Group. Many Q&A exercises are provided
throughout the chapter to ensure that students understand how to manipulate the data-
base on paper before they begin working in SQL.

Chapter 2: Database Design Fundamentals

Chapter 2 covers important concepts and terminology associated with relational databases,
functional dependence, and primary keys, followed by a method for designing a database to
satisfy a given set of requirements. It also illustrates the normalization process for finding
and correcting a variety of potential problems in database designs. Finally, it shows how to
represent database designs graphically using entity-relationship diagrams.

Preface

xiii

Xiv

Chapter 3: Creating Tables

In Chapter 3, students begin using a DBMS by creating and running SQL commands to cre-
ate tables, use data types, and add rows to tables. Chapter 3 also discusses the role of and
use of nulls.

Chapter 4. Single-Table Queries

Chapter 4 is the first of two chapters on using SQL commands to query a database. The

queries in Chapter 4 all involve single tables. Included in this chapter are discussions of
simple and compound conditions; computed columns; the SQL. BETWEEN, LIKE, and IN
operators; using SQL aggregate functions; nesting queries; grouping data; and retrieving

columns with null values.

Chapter 5: Multiple-Table Queries

Chapter 5 completes the discussion of querying a database by demonstrating queries that
join more than one table. Included in this chapter are discussions of the SQL IN and
EXISTS operators, nested subqueries, using aliases, joining a table to itself, SQL set opera-
tions, and the use of the ALL and ANY operators. The chapter also includes coverage of
various types of joins.

Chapter 6: Updating Data

In Chapter 6, students learn how to use the SQL. COMMIT, ROLLBACK, UPDATE, INSERT,
and DELETE commands to update table data. Students also learn how to create a new
table from an existing table and how to change the structure of a table. The chapter also
includes coverage of transactions, including both their purpose and implementation.

Chapter 7: Database Administration

Chapter 7 covers the database administration features of SQL, including the use of views;
granting and revoking database privileges to users; creating, dropping, and using an index;
using and obtaining information from the system catalog; and using integrity constraints to
control data entry.

Chapter 8: SQL Functions and Procedures

Chapter 8 begins with a discussion of some important SQL functions that act on single
rows. Students will also learn how to use PL/SQL and T-SQL to cover the process of
embedding SQL commands in another language. Included in this chapter are discussions of
using embedded SQL to insert new rows and change and delete existing rows. Also
included is a discussion of how to retrieve single rows using embedded SQL commands
and how to use cursors to retrieve multiple rows. Chapter 8 also includes a section show-
ing some techniques for using SQL in Visual Basic (Access). The chapter concludes with a
discussion of triggers.

Appendix A: SQL Reference

Appendix A includes a command reference for all the major SQL clauses and operators
that are featured in the chapters. Students can use Appendix A as a quick resource when
constructing commands. Each command includes a short description, a table that shows

the required and optional clauses and operators, and an example and its results. It also
contains a reference to the pages in the text where the command is covered.

Appendix B: How Do | Reference

Appendix B provides students with an opportunity to ask a question, such as “How do I
delete rows?”, and to identify the appropriate section in Appendix A to use to find the
answer. Appendix B is extremely valuable when students know what task they want to
accomplish but can’t remember the exact SQL command they need.

Appendix C: Answers to Odd-Numbered Review Questions

Answers to the odd-numbered Review Questions in each chapter appear in this appendix
so students can make sure that they are completing the Review Questions correctly.

GENERAL NOTES TO THE STUDENT

You can download the databases used in this text from www.cengage.com. The Access
data files for this book include three Access 2003 databases (Premiere Products.mdb,
Henry Books.mdb, and Alexamara Marina Group.mdb), which you can open in Access
2000, 2002, or 2003; and three Access 2007 databases (Premiere Products.acedb, Henry
Books.acedb, and Alexamara Marina Group.acedb), which you can open in Access 2007.

The data files also include script files for Oracle and SQL Server that you can use to
create or drop the Premiere Products, Henry Books, and Alexamara Marina Group
databases.

The script files saved in the Oracle folder have the following functions:

Oracle-Alexamara.sql: Creates all the tables in the Alexamara Marina Group database and
adds all the data. Run this script file to create the Alexamara Marina Group database. (Note:
This script file assumes you have not previously created any of the tables in the database. If
you have created any of the tables, you should run the Oracle-DropAlexamara.sql script prior
to running the Oracle-Alexamara.sql script.)

Oracle-Henry.sql: Creates all the tables in the Henry Books database and adds all the
data. Run this script file to create the Henry Books database. (Note: This script file
assumes you have not previously created any of the tables in the database. If you have cre-
ated any of the tables, you should run the Oracle-Droplenry.sql script prior to running the
Oracle-Henry.sql script.)

Oracle-Premiere.sql: Creates all the tables in the Premiere Products database and adds
all the data. Run this script file to create the Premiere Products database. (Note: This
script file assumes you have not previously created any of the tables in the database. If you
have created any of the tables, you should run the Oracle-DropPremiere.sql script prior to
running the Oracle-Premiere.sql script.)

Oracle-DropAlexamara.sql: Drops (deletes) all the tables and data in the Alexamara
Marina Group database.

Oracle-DropHenry.sql: Drops (deletes) all the tables and data in the Henry Books
database.

Preface

XV

www.cengage.com

Xvi

Oracle-DropPremiere.sql: Drops (deletes) all the tables and data in the Premiere
Products database.

The script files saved in the SQL Server folder have the following functions:

SQLServer-Alexamara.sql: Creates all the tables in the Alexamara Marina Group data-
base and adds all the data. Run this script file to create the Alexamara Marina Group
database. (Note: This script file assumes you have not previously created any of the tables
in the database. If you have created any of the tables, you should run the
SQLServer-DropAlexamara.sql script prior to running the SQLServer-Alexamara.sql script.)

SQLServer-Henry.sql: Creates all the tables in the Henry Books database and adds all
the data. Run this script file to create the Henry Books database. (Note: This script file
assumes you have not previously created any of the tables in the database. If you have cre-
ated any of the tables, you should run the SQLServer-DropHenry.sql script prior to running
the SQLServer-Henry.sql script.)

SQLServer-Premiere.sql: Creates all the tables in the Premiere Products database and
adds all the data. Run this script file to create the Premiere Products database. (Note: This
script file assumes you have not previously created any of the tables in the database. If you
have created any of the tables, you should run the SQLServer-DropPremiere.sql script
prior to running the SQLServer-Premiere.sql script.)

SQLServer-DropAlexamara.sql: Drops (deletes) all the tables and data in the
Alexamara Marina Group database.

SQLServer-DropHenry.sql: Drops (deletes) all the tables and data in the Henry Books
database.

SQLServer-DropPremiere.sql: Drops (deletes) all the tables and data in the Premiere
Products database.

For details on running script files in Oracle or SQL Server, check with your instructor.
You can also refer to Chapter 3 in the text for information about creating and using scripts.

For information about downloading the Oracle Database 10g Express Edition software,
please visit the Oracle Web site. For information about SQL Server 2005, please visit the
Microsoft Web site. Information about Microsoft Access is also available at the Microsoft
Web site.

Embedded Questions

In many places, you'll find Q&A sections to ensure that you understand some crucial
material before you proceed. In some cases, the questions are designed to give you the
chance to consider some special concept in advance of its actual presentation. In all cases,
the answer to each question appears immediately after the question. You can simply read
the question and its answer, but you will benefit from taking time to determine the answer
to the question before checking your answer against the one given in the text.

End-of-Chapter Material

The end-of-chapter material consists of a Summary, a Key Terms list, Review Questions,
and exercises for the Premiere Products, Henry Books, and Alexamara Marina Group
databases. The Summary briefly describes the material covered in the chapter. The Review
Questions require you to recall and apply the important material in the chapter. The
answers to the odd-numbered Review Questions appear in Appendix C so you can check

your progress. The Premiere Products, Henry Books, and Alexamara Marina Group exer-
cises test your knowledge of the chapter material; your instructor will assign one or more
of these exercises for you to complete.

ACKNOWLEDGMENTS

We would like to acknowledge several individuals for their contributions in the preparation of
this text. We appreciate the efforts of the following individuals who reviewed the manuscript
and made many helpful suggestions: Vickee Stedham, St. Petersburg College; Bill Kloepfer,
Golden Gate University; Georgia Brown, Northern Illinois University; Gary Savard, Champlain
College; Stephen Cerovski, Coleman College; Ricardo Herrera, Vanier College and Concordia
University; Eugenia Fernandez, Indiana University-Purdue University Indianapolis; Danny
Yakimchuk, University College of Cape Breton; Paul Leidig, Grand Valley State University;
Misty Vermaat, Purdue University Calumet; Lorna Bowen St. George, Old Dominion
University; and George Federman, Santa Barbara Community College.

The efforts of the following members of the staff at Course Technology have been
invaluable and have made this text possible: Charles McCormick, Senior Acquisitions
Editor; Kate Hennessy, Product Manager; Matt Hutchinson, Content Project Manager;
Marisa Taylor, Project Manager; and GreenPen Quality Assurance testers.

We have once again had the great pleasure to work with an absolutely amazing
Developmental Editor, Jessica Evans, on several books. Thanks for all your efforts, Jess.
You're the best! We've said it before, but it is just as true as ever!

Preface

XVii

This page intentionally left blank

CHAPTER

INTRODUCTION TO

PREMIERE PRODUCTS,
HENRY BOOKS, AND
ALEXAMARA MARINA

GROUP

LEARNING OBJ

Objectives

Introduce Premiere Produ
basis for many of the exa
Introduce Henry Books, a
that runs throughout the t
Introduce Alexamara Mari
as an additional case thal

INTRODUCTION

In this chapter, you will examine the database requirements of Premiere Products, a company that will be

used in the examples throughout the text. Then you will examine the database requirements for Henry

Books and Alexamara Marina Group, whose databases are featured in the exercises that appear at the

end of each chapter.

WHAT IS A DATABASE?

Throughout this text, you will work with databases for three organizations: Premiere
Products, Henry Books, and Alexamara Marina Group. A database is a structure that con-
tains different categories of information and the relationships between these categories.
The Premiere Products database, for example, contains information about categories such
as sales representatives (sales reps), customers, orders, and parts. The Henry Books data-
base contains information about categories such as books, publishers, authors, and
branches. The Alexamara Marina Group database contains information about categories
such as marinas, slips and the boats in them, service categories, and service requests.

Each database also contains relationships between categories. For example, the
Premiere Products database contains information that relates sales reps to the customers
they represent and customers to the orders they have placed. The Henry Books data-
base contains information that relates publishers to the books they publish and authors to
the books they have written. The Alexamara Marina Group database contains informa-
tion that relates the boats in the slips at the marina to the owners of the boats.

As you work through the chapters in this text, you will learn more about these data-
bases and how to view and update the information they contain. As you read each chap-
ter, you will see examples from the Premiere Products database. At the end of each chapter,
your instructor might assign the exercises for the Premiere Products, Henry Books, or
Alexamara Marina Group databases.

THE PREMIERE PRODUCTS DATABASE

The management of Premiere Products, a distributor of appliances, housewares, and
sporting goods, has determined that the company’s recent growth no longer makes it fea-
sible to maintain customer, order, and inventory data using its manual systems. With the
data stored in a database, management will be able to ensure that the data is current and
more accurate than in the present manual systems. In addition, managers will be able to
obtain answers to their questions concerning the data in the database easily and quickly,
with the option of producing a variety of useful reports.

Management has determined that Premiere Products must maintain the following infor-
mation about its sales reps, customers, and parts inventory in the new database:

e The number, last name, first name, address, total commission, and commis-
sion rate for each sales rep

e The customer number, name, address, current balance, and credit limit for each
customer, as well as the number of the sales rep who represents the customer

e The part number, description, number of units on hand, item class, number
of the warehouse where the item is stored, and unit price for each part in
inventory

Premiere Products also must store information about orders. Figure 1-1 shows a
sample order.

Chapter 1

Heading

Order lines

PREMIERE

) 6§ 0

ORDER: 21617 DATE:10/23/2010
PRODUCTS
D>
CUSTOMER: 608 SALES REP: 65
Johnson’s Department Store Juan Perez
372 Oxford
Sheldon FL 33553
\
PART PART NUMBER
NUMBER DESCRIPTION ORDERED ERICH L5
BVO06 Home Gym 2 794.95 1589.90
CD52 Microwave Oven 4 600.00
+<(_Body

Extensions

’{ ORDERTOTAL >> 2189.90

FIGURE 1-1 Sample order

The sample order shown in Figure 1-1 has three sections:

The heading (top) of the order contains the company name; the order num-
ber and date; the customer’s number, name, and address; and the sales rep’s
number and name.

The body of the order contains one or more order lines, sometimes called line
items. Each order line contains a part number, a part description, the num-
ber of units of the part ordered, and the quoted price for the part. Each order
line also contains a total, usually called an extension, which is the result of
multiplying the number ordered by the quoted price.

Finally, the footing (bottom) of the order contains the order total.

Premiere Products also must store the following items in the database for each custom-

er’s order:

For each order, the database must store the order number, the date the order
was placed, and the number of the customer that placed the order. The cus-
tomer’s name and address and the number of the sales rep who represents the
customer are stored with the customer information. The name of the sales rep
is stored with the sales rep information.

For each order, the database must store the order number, the part number,
the number of units ordered, and the quoted price for each order line. The part
description is stored with the information about parts. The result of multiply-
ing the number of units ordered by the quoted price is not stored because
the database can calculate it when needed.

The overall order total is not stored. Instead, the database calculates the total
whenever an order is printed or displayed on the screen.

Figure 1-2 shows sample data for Premiere Products.

Introduction to Premiere Products, Henry Books, and Alexamara Marina Group

Chapter 1

REP

REP_ LAST_ FIRST_ STREET CITY STATE ZIP COMMISSION RATE

NUM NAME NAME

20 Kaiser | Valerie [624 Randall |Grove FL 33321 $20,542.50 |0.05

35 Hull Richard [532 Jackson |Sheldon [FL 33553 $39,216.00 |0.07

65 Perez |Juan 1626 Taylor |Fillmore |FL 33336 $23,487.00 |0.05

CUSTOMER

CUSTOMER_ CUSTOMER_ STREET CITY STATE ZIP BALANCE CREDIT_

NUM NAME LIMIT

148 Al's Appliance | 2837 Fillmore |FL 33336 | $6,550.00| $7,500.00 |20
and Sport Greenway

282 Brookings 3827 Devon | Grove FL 33321 $431.50 | $10,000.00 | 35
Direct

356 Ferguson’s 382 Wildwood | Northfield | FL 33146 | $5,785.00| $7,500.00 | 65

408 The 1828 Raven Crystal FL 33503 | $5,285.25| $5,000.00 |35
Everything
Shop

462 Bargains 3829 Central |Grove FL 33321 | $3,412.00 [$10,000.00 | 65
Galore

524 Kline’s 838 Ridgeland |Fillmore |FL 33336 [$12,762.00 | $15,000.00 | 20

608 Johnson’s 372 Oxford Sheldon |FL 33553 | $2,106.00 | $10,000.00 | 65
Department
Store

687 Lee’s Sport 282 Evergreen | Altonville [FL 32543 | $2,851.00| $5,000.00 |35
and Appliance

725 Deerfield’s 282 Columbia [Sheldon |FL 33553 $248.00 | $7,500.00 |35
Four Seasons

842 All Season 28 Lakeview [Grove FL 33321 | $8,221.00| $7,500.00 |20

FIGURE 1-2 Sample data for Premiere Products

ORDERS ORDER_LINE

5

NUM DATE NUM

21608 AT94 11 $21.95
21608 10/20/2010 | 148 21610 DR93 1 $495.00
21610 10/20/2010 [356 21610 DW11 1 $399.99
21613 10/21/2010 | 408 21613 KLG2 4 $329.95
21614 10/21/2010 | 282 21614 KT03 5 $595.00
21617 10/23/2010 | 608 51617 BV06 5 $794.95
21619 10/23/2010 | 148 21617 D32 4 $150.00
21623 10/23/2010 [608 21619 DRO3 1 $495.00

21623 KV29 2 $1,290.00

PART

AT94 Iron 50 | HW 3 $24.95
BV0O6 Home Gym 45 SG 2 $794.95
CD52 Microwave Oven 32| AP 1 $165.00
DL71 Cordless Drill 21| HW 3 $129.95
DR93 Gas Range 8| AP 2 $495.00
DW11 Washer 12| AP 3 $399.99
FD21 Stand Mixer 22| HW 3 $159.95
KL62 Dryer 12| AP 1 $349.95
KTO03 Dishwasher 8| AP 3 $595.00
Kv29 Treadmill 9|SG 2 $1,390.00

FIGURE 1-2 Sample data for Premiere Products (continued)

In the REP table, you see that there are three sales reps, whose numbers are 20, 35,
and 65. The name of sales rep 20 is Valerie Kaiser. Her street address is 624 Randall. She
lives in Grove, Florida, and her zip code is 33321. Her total commission is $20,542.50, and
her commission rate is five percent (0.05).

In the CUSTOMER table, 10 Premiere Products customers are identified with the num-
bers 148, 282, 356, 408, 462, 524, 608, 687, 725, and 842. The name of customer num-
ber 148 is Al's Appliance and Sport. This customer’s address is 2837 Greenway in Fillmore,
Florida, with a zip code of 33336. The customer’s current balance is $6,550.00, and its
credit limit is $7,500.00. The number 20 in the REP_NUM column indicates that Al’s
Appliance and Sport is represented by sales rep 20 (Valerie Kaiser).

Skipping to the table named PART, you see that there are 10 parts, whose part num-
bers are AT94, BV06, CD52, DL71, DR93, DW11, FD21, KL62, KT03, and KV29. Part AT94
is an iron, and the company has 50 units of this part on hand. Irons are in item class HW
(housewares) and are stored in warchouse 3. The price of an iron is $24.95. Other item
classes are AP (appliances) and SG (sporting goods).

Introduction to Premiere Products, Henry Books, and Alexamara Marina Group

Chapter 1

Moving back to the table named ORDERS, you see that there are seven orders, which are
identified with the numbers 21608, 21610, 21613, 21614, 21617, 21619, and 21623. Order
number 21608 was placed on October 20, 2010, by customer 148 (Al's Appliance and Sport).

——— 3

In some database systems, the word order has a special purpose. Having a table named ORDER could
cause problems in such systems. For this reason, Premiere Products uses the table name ORDERS
instead of ORDER.

The table named ORDER_LINE might seem strange at first glance. Why do you need a sepa-
rate table for the order lines? Could they be included in the ORDERS table? The answer is
technically yes. You could structure the table named ORDERS as shown in Figure 1-3. Notice
that this table contains the same orders as shown in Figure 1-2, with the same dates and cus-
tomer numbers. In addition, each table row in Figure 1-3 contains all the order lines for a given
order. Examining the fifth row, for example, you see that order 21617 has two order lines. One
of these order lines is for two BV06 parts at 8794.95 each, and the other order line is for four
CDS52 parts at $150.00 each.

ORDERS

ORDER_NUM ORDER_DATE CUSTOMER_NUM PART_NUM NUM_ORDERED QUOTED_PRICE
21608 10/20/2010 148 AT94 11 $21.95
21610 10/20/2010 356 DR93 1 $495.00

DW11 1 $399.99
21613 10/21/2010 408 KL62 4 $329.95
21614 10/21/2010 282 KT03 2 $595.00
21617 10/23/2010 608 BV06 2 $794.95

CD52 4 $150.00
21619 10/23/2010 148 DR93 1 $495.00
21623 10/23/2010 608 KV29 2 $1,290.00

FIGURE 1-3 Alternative ORDERS table structure

Question: How is the information from Figure 1-2 represented in Figure 1-3?

Answer: Examine the ORDER_LINE table shown in Figure 1-2 and note the sixth and sev-
enth rows. The sixth row indicates that there is an order line on order 21617 for two BV06
parts at $794.95 each. The seventh row indicates that there is an order line on order
21617 for four CD52 parts at $150.00 each. Thus, the information that you find in
Figure 1-3 is represented in Figure 1-2 in two separate rows rather than in one row.

It might seem inefficient to use two rows to store information that could be repre-
sented in one row. There is a problem, however, with the arrangement shown in Figure

1-3—the table is more complicated. In Figure 1-2, there is a single entry at each location
in the table. In Figure 1-3, some of the individual positions within the table contain mul-
tiple entries, making it difficult to track the information between columns. In the row for
order number 21617, for example, it is crucial to know that the BV06 corresponds to the

2 in the NUM_ORDERED column (not the 4) and that it corresponds to the $794.95 in the
QUOTED_PRICE column (not the $150.00). In addition, a more complex table raises prac-
tical issues, such as:

e How much room do you allow for these multiple entries?

e What happens when an order has more order lines than you have allowed
room for?

e For a given part, how do you determine which orders contain order lines for
that part?

Although none of these problems is unsolvable, they do add a level of complexity that
is not present in the arrangement shown in Figure 1-2. In Figure 1-2, there are no mul-
tiple entries to worry about, it does not matter how many order lines exist for any order, and
finding every order that contains an order line for a given part is easy (just look for all order
lines with the given part number in the PART_NUM column). In general, this simpler
structure is preferable, and that is why order lines appear in a separate table.

To test your understanding of the Premiere Products data, use Figure 1-2 to answer the
following questions.

Question: What are the numbers of the customers represented by Valerie Kaiser?
Answer: 148, 524, and 842. (Look up the REP_NUM value of Valerie Kaiser in the REP table
and obtain the number 20. Then find all customers in the CUSTOMER table that have the
number 20 in the REP_NUM column.)

Question: What is the name of the customer that placed order 21610, and what is the name
of the rep who represents this customer?

Answer: Ferguson’s is the customer; Juan Perez is the sales rep. (Look up the
CUSTOMER_NUM value in the ORDERS table for order number 21610 and obtain the num-
ber 356. Then find the customer in the CUSTOMER table with the CUSTOMER_NUM value
of 356. Using the REP_NUM value, which is 65, find the name of the rep in the REP table.)

Introduction to Premiere Products, Henry Books, and Alexamara Marina Group

Chapter 1

Question: List all parts that appear in order 21610. For each part, give the description,
number ordered, and quoted price.

Answer: Part number: DR93; part description: Gas Range; number ordered: 1; and quoted
price: $495.00. Also, part number: DW11; part description: Washer; number ordered: 1,
and quoted price: $399.99. (Look up each ORDER_LINE table row in which the order num-
ber is 21610. Each of these rows contains a part number, the number ordered, and the
quoted price. Use the part number to look up the corresponding part description in the
PART table.)

Question: Why is the QUOTED_PRICE column part of the ORDER_LINE table? Can’t you
just use the part number and look up the price in the PART table?

Answer: If the QUOTED_PRICE column did not appear in the ORDER_LINE table, you
would need to obtain the price for a part on an order line by looking up the price in the
PART table. Although this approach is reasonable, it prevents Premiere Products from
charging different prices to different customers for the same part. Because Premiere
Products wants the flexibility to quote and charge different prices to different customers,
the QUOTED_PRICE column is included in the ORDER_LINE table. If you examine the
ORDER_LINE table, you will see cases in which the quoted price matches the actual price
in the PART table and cases in which it differs. For example, in order number 21608, Al’s
Appliance and Sport bought 11 irons, and Premiere Products charged only $21.95 per
iron, rather than the regular price of $24.95.

THE HENRY BOOKS DATABASE

Ray Henry is the owner of a bookstore chain named Henry Books. Like the management
of Premiere Products, Ray has decided to store his data in a database. He wants to achieve
the same benefits; that is, he wants to ensure that his data is current and accurate. In addi-
tion, he wants to be able to ask questions concerning the data and to obtain answers to
these questions easily and quickly.

In running his chain of bookstores, Ray gathers and organizes information about
branches, publishers, authors, and books. Figure 1-4 shows sample branch and publisher
data for Henry Books. Each branch has a number that uniquely identifies the branch. In
addition, Ray tracks the branch’s name, location, and number of employees. Each pub-
lisher has a code that uniquely identifies the publisher. In addition, Ray tracks the pub-
lisher’s name and city.

BRANCH

BRANCH_NUM BRANCH_NAME BRANCH_LOCATION NUM_EMPLOYEES

1 [Henry Downtown |16 Riverview 10
2 | Henry On The Hill | 1289 Bedford 6
3 | Henry Brentwood | Brentwood Mall 15
4 |Henry Eastshore | Eastshore Mall 9
PUBLISHER

AH Arkham House Sauk City WI

AP Arcade Publishing New York

BA Basic Books Boulder CO

BP Berkley Publishing Boston

BY Back Bay Books New York

CT Course Technology Boston

FA Fawcett Books New York

FS Farrar Straus and Giroux New York

HC HarperCollins Publishers New York

JP Jove Publications New York

JT Jeremy P. Tarcher Los Angeles

LB Lb Books New York

MP McPherson and Co. Kingston

PE Penguin USA New York

PL Plume New York

PU Putnam Publishing Group New York

RH Random House New York

SB Schoken Books New York

SC Scribner New York

SS Simon and Schuster New York

ST Scholastic Trade New York

TA Taunton Press Newtown CT

TB Tor Books New York

TH Thames and Hudson New York

TO Touchstone Books Westport CT

VB Vintage Books New York

WN W.W. Norton New York

Wwp Westview Press Boulder CO

FIGURE 1-4 Sample branch and publisher data for Henry Books

Figure 1-5 shows sample author data for Henry Books. Each author has a number that
uniquely identifies the author. In addition, Ray records each author’s last and first names.

Introduction to Premiere Products, Henry Books, and Alexamara Marina Group

AUTHOR

10
1 | Morrison Toni
2 | Solotaroft Paul
3 | Vintage Vernor
4 | Francis Dick
5 | Straub Peter
6 | King Stephen
7 | Pratt Philip
8 | Chase Truddi
9 | Collins Bradley
10 | Heller Joseph
11 | Wills Gary
12 | Hofstadter Douglas R.
13 | Lee Harper
14 | Ambrose Stephen E.
15 | Rowling J.K.
16 | Salinger J.D.
17 | Heaney Seamus
18 | Camus Albert
19 | Collins, Jr. Bradley
20 | Steinbeck John
21 | Castelman Riva
22 | Owen Barbara
23 | O'Rourke Randy
24 | Kidder Tracy
25 | Schleining Lon

FIGURE 1-5 Sample author data for Henry Books

Figure 1-6 shows sample book data for Henry Books. Each book has a code that uniquely
identifies the book. For each book, Ray also tracks the title, publisher, book type, price, and
whether the book is a paperback.

Chapter 1

BOOK

148
BOOK_CODE TITLE PUBLISHER_ TYPE PRICE PAPERBACK
CODE

0180 A Deepness in the Sky TB SFI $7.19|Y
0189 Magic Terror FA HOR | $7.99|Y
0200 The Stranger VB FIC $8.00 (Y
0378 Venice SS ART |$24.50 N
079X Second Wind PU MYS | $24.95|N
0808 The Edge JP MYS | $6.99|Y
1351 Dreamcatcher: A Nvel SC HOR | $19.60 | N
1382 Treasure Chests TA ART |$24.46|N
138X Beloved PL FIC |$12.95|Y
2226 Harry Potter and the Prisoner ST SFI | $13.96|N

of Azkaban
2281 Van Gogh and Gauguin WP ART | $21.00|N
2766 Of Mice and Men PE FIC $6.95(Y
2908 Electric Light FS POE | $14.00|N
3350 Group: Six People in Search of a | BP PSY |[$10.40(Y

Life
3743 Nine Stories LB FIC $5.99(Y
3906 The Soul of a New Machine BY SCI | $11.16|Y
5163 Travels with Charley PE TRA | $795(Y
5790 Catch-22 SC FIC |$12.00|Y
6128 Jazz PL FIC |$12.95|Y
6328 Band of Brothers TO HIS $9.60 Y
669X A Guide to SQL CT CMP | $37.95|Y
6908 Franny and Zooey LB FIC $5.99|Y
7405 East of Eden PE FIC |$12.95|Y
7443 Harry Potter and the Goblet of | ST SFI | $18.16|N

Fire
7559 The Fall VB FIC $8.00(Y
8092 Godel, Escher, Bach BA PHI |$14.00|Y
8720 When Rabbit Howls JP PSY $6.29(Y
9611 Black House RH HOR | $18.81|N
9627 Song of Solomon PL FIC |$14.00|Y
9701 The Grapes of Wrath PE FIC |$13.00|Y
9882 Slay Ride JP MYS $6.99(Y
9883 The Catcher in the Rye LB FIC $5.99(Y
9931 To Kill a Mockingbird HC FIC | $18.00|N

FIGURE 1-6 Sample book data for Henry Books

Introduction to Premiere Products, Henry Books, and Alexamara Marina Group

12

Chapter 1

To check your understanding of the relationship between publishers and books, answer
the following questions.

Question: Who published Jagz? Which books did Jove Publications publish?

Answer: Plume published Jagz. In the row in the BOOK table for Jazz (see Figure 1-6),
find the publisher code PL. Examining the PUBLISHER table (see Figure 1-4), you see that
PL is the code assigned to Plume. Jove Publications published The Edge, When Rabbit
Howls, and Slay Ride. To find the books published by Jove Publications, find its code (JP)
in the PUBLISHER table. Next, find all records in the BOOK table for which the pub-
lisher code is JP.

The table named WROTE, as shown in Figure 1-7, relates books to the authors who wrote
them. The SEQUENCE column indicates the order in which the authors of a particular book
are listed on the cover. The table named INVENTORY in the same figure is used to indicate the
number of copies of a particular book that are currently on hand at a particular branch of
Henry Books. The first row, for example, indicates that there are two copies of the book with
the code 0180 at branch 1.

WROTE INVENTORY
0180 3 1 0180 1 2
0189 5 1 0189 2 2
0200 18 1 0200 1 1
0378 11 1 0200 2 3
079X 4 1 0378 3 2
0808 4 1 079X 2 1
1351 6 1 079X 3 2
1382 23 2 079X 4 3
1382 25 1 0808 2 1
138X 1 1 1351 2 4
2226 15 1 1351 3 2
2281 9 2 1382 2 1
2281 19 1 138X 2 3
2766 20 1 2226 1 3
2908 17 1 2226 3 2
3350 2 1 2226 4 1
3743 16 1 2281 4 3

FIGURE 1-7 Sample data that relates books to authors and books to branches for Henry Books

WROTE INVENTORY 13

BOOK_CODE AUTHOR_NUM SEQUENCE BOOK_CODE BRANCH_NUM ON_HAND

3906 24 1 2766 3 2
5163 20 1 2908 1 3
5790 10 1 2908 4 1
6128 1 1 3350 1 2
6328 14 1 3743 2 1
669X 7 1 3906 2 1
6908 16 1 3906 3 2
7405 20 1 5163 1 1
7443 15 1 5790 4 2
7559 18 1 6128 2 4
8092 12 1 6128 3 3
8720 8 1 6328 2 2
9611 2 669X 1 1
9611 6 1 6908 2 2
9627 1 1 7405 3 2
9701 20 1 7443 4 1
9882 4 1 7559 2 2
9883 16 1 8092 3 1
9931 13 1 8720 1 3
9611 1 2
9627 3 5
9627 4 2
9701 1 2
9701 2 1
9701 3 3
9701 4 2
9882 3 3
9883 2 3
9883 4 2
9931 1 2

FIGURE 1-7 Sample data that relates books to authors and books to branches for Henry Books
(continued)

To check your understanding of the relationship between authors and books, answer
the following questions.

Introduction to Premiere Products, Henry Books, and Alexamara Marina Group

14

Chapter 1

Q&A

Question: Who wrote Black House? (Make sure to list the authors in the correct order.)
Which books did Toni Morrison write?

Answer: Stephen King and Peter Straub wrote Black House. First examine the BOOK table
(see Figure 1-6) to find the book code for Black House (9611). Next, look for all rows in
the WROTE table in which the book code is 9611. There are two such rows. In one row, the
author number is 5, and in the other, it is 6. Then, look in the AUTHOR table to find the
authors who have been assigned the numbers 5 and 6. The answers are Peter Straub (5)
and Stephen King (6). The sequence number for author number 5 is 2, and the sequence
number for author number 6 is 1. Thus, listing the authors in the proper order results in
Stephen King and Peter Straub.

Toni Morrison wrote Beloved, Jass, and Song of Solomon. To find the books written
by Toni Morrison, look up her author number (1) in the AUTHOR table. Then look for all
rows in the WROTE table for which the author number is 1. There are three such rows. The
corresponding book codes are 138X, 6128, and 9627. Looking up these codes in the BOOK
table, you find that Toni Morrison wrote Beloved, Jass, and Song of Solomon.

Q&A

Question: A customer in branch 1 wants to purchase The Soul of a New Machine. Is this
book currently in stock at branch 1?

Answer: No. Looking up the code for The Soul of a Neww Machine in the BOOK table, you
find it is 3906. To find out how many copies are in stock at branch 1, look for a row in the
INVENTORY table with 3906 in the BOOK_CODE column and 1 in the BRANCH_NUM
column. Because there is no such row, branch 1 doesn’t have any copies of The Soul of a
New Machine.

Q&A

Question: You would like to obtain a copy of The Soul of a Neww Machine for this customer.
Which other branches currently have this book in stock, and how many copies does each
branch have?

Answer: Branch 2 has one copy, and branch 3 has two copies. You already know that the
code for The Soul of a New Machine is 3906. (If you did not know the book code, you
would look it up in the BOOK table.) To find out which branches currently have copies,
look for rows in the INVENTORY table with 3906 in the BOOK_CODE column. There
are two such rows. The first row indicates that branch 2 currently has one copy. The sec-
ond row indicates that branch 3 currently has two copies.

THE ALEXAMARA MARINA GROUP
DATABASE

15

Alexamara Marina Group offers in-water boat storage to owners by providing boat slips that
owners can rent on an annual basis. Alexamara owns two marinas: Alexamara East and
Alexamara Central. Each marina has several boat slips available. Alexamara also provides
a variety of boat repair and maintenance services to the boat owners who rent the slips.
Alexamara stores the data it needs to manage its operations in a relational database con-
taining the tables described in the following section.

Alexamara stores information about its two marinas in the MARINA table shown in
Figure 1-8. A marina number uniquely identifies each marina. The table also includes the
marina name, street address, city, state, and zip code.

MARINA
MARINA_NUM NAME ADDRESS CITY STATE ZIP
1 Alexamara East 108 2nd Ave. | Brinman FL 32273
2 Alexamara Central | 283 Branston | W. Brinman | FL | 32274

FIGURE 1-8 Sample marina data for Alexamara Marina Group

Alexamara stores information about the boat owners to whom it rents slips in the
OWNER table shown in Figure 1-9. An owner number that consists of two uppercase let-
ters followed by a two-digit number uniquely identifies each owner. For each owner, the
table also includes the last name, first name, address, city, state, and zip code.

OWNER

OWNER_ LAST_ FIRST_NAME ADDRESS

NUM NAME

AD57 Adney Bruce and Jean | 208 Citrus Bowton FL 31313
ANT75 Anderson | Bill 18 Wilcox Glander Bay | FL 31044
BL72 Blake Mary 2672 Commodore | Bowton FL 31313
EL25 Elend Sandy and Bill |462 Riverside Rivard FL 31062
FES2 Feenstra | Daniel 7822 Coventry Kaleva FL 32521
JU92 Juarez Maria 8922 Oak Rivard FL 31062
KE22 Kelly Alyssa 5271 Waters Bowton FL 31313
NO27 Norton | Peter 2811 Lakewood | Lewiston FL 32765
SM72 Smeltz Becky and Dave [922 Garland Glander Bay | FL 31044
TR72 Trent Ashton 922 Crest Bay Shores |FL 30992

FIGURE 1-9 Sample owner data for Alexamara Marina Group

Each marina contains slips that are identified by slip numbers. Marina 1 (Alexamara
East) has two sections (A and B) and slips are numbered within each section. Thus, slip

Introduction to Premiere Products, Henry Books, and Alexamara Marina Group

16

Chapter 1

numbers at marina 1 consist of the letter A or B followed by a number (for example, A3 or
B2). At marina 2 (Alexamara Central), a number (1, 2, 3) identifies each slip.

Information about the slips in the marinas is contained in the MARINA_SLIP table
shown in Figure 1-10. Each row in the table contains a slip ID that identifies the particu-
lar slip. The table also contains the marina number and slip number, the length of the
slip (in feet), the annual rental fee, the name of the boat currently occupying the slip, the
type of boat, and the boat owner’s number.

MARINA_SLIP
SLIP_ID MARINA_ SLIP_ LENGTH RENTAL_ BOAT_TYPE OWNER_
NUM NUM FEE IN[O1Y]
1|1 Al 401 $3,800.00 | Anderson II | Sprite 4000 | AN75
201 A2 40| $3,800.00 | Our Toy Ray 4025 EL25
3|1 A3 40 $3,600.00 | Escape Sprite 4000 | KE22
41 B1 30| $2,400.00 | Gypsy Dolphin 28 |JU92
501 B2 30| $2,600.00 | Anderson IIT | Sprite 3000 | AN75
6|2 1 25($1,800.00 | Bravo Dolphin 25 | AD57
712 2 25|$1,800.00 | Chinook Dolphin 22 | FES2
82 3 251$2,000.00 | Listy Dolphin 25 | SM72
9(2 4 301 $2,500.00 | Mermaid Dolphin 28 |BL72
10(2 5 40| $4,200.00 | Axxon II Dolphin 40 |NO27
11(2 6 40| $4,200.00 | Karvel Ray 4025 TR72

FIGURE 1-10 Sample data about slips at Alexamara Marina Group

Alexamara provides boat maintenance service for owners at its two marinas. The types
of service provided are stored in the SERVICE_CATEGORY table shown in Figure 1-11. A
category number uniquely identifies each service that Alexamara performs. The table
also contains a description of the category.

SERVICE_CATEGORY

CATEGORY_NUM CATEGORY_DESCRIPTION

Routine engine maintenance

Engine repair

1
2
3| Air conditioning
4

Electrical systems

Fiberglass repair

Canvas installation

S
6
7 | Canvas repair
8

Electronic systems (radar, GPS, autopilots, etc.)

FIGURE 1-11 Sample data about service categories at Alexamara Marina Group

Information about the services requested by owners is stored in the SERVICE_REQUEST
table shown in Figure 1-12. Each row in the table contains a service ID that identifies each
service request. The slip ID identifies the location (marina number and slip number) of the
boat to be serviced. For example, the slip ID on the second row is 5. As indicated in the
MARINA_SLIP table in Figure 1-10, the slip ID 5 identifies the boat in marina 1 and slip
number B2.

The SERVICE_REQUEST table also contains the category number of the service to be
performed, plus a description of the specific service to be performed, and a description of
the current status of the service. It also contains the estimated number of hours required
to complete the service. For completed jobs, the table contains the actual number of hours
it took to complete the service. If another appointment is required to complete addi-
tional service, the appointment date appears in the NEXT_SERVICE_DATE column.

1%

Introduction to Premiere Products, Henry Books, and Alexamara Marina Group

18

Chapter 1

SERVICE_REQUEST

SERVICE_ SLIP_ CATEGORY_

DESCRIPTION

STATUS

EST_ SPENT_

HOURS

HOURS

NEXT_
SERVICE_
DATE

1 1 3 | Air conditioner Technician has 4 2| 7/12/2010
periodically stops | verified the
with code problem. Air
indicating low conditioning
coolant level. specialist has
Diagnose and been called.
repair.
2 5 4 | Fuse on port Open 2 0| 7/12/2010
motor blown on
two occasions.
Diagnose and
repair.
3 4 1 | Oil change and Service call has 1 0| 7/16/2010
general routine been scheduled.
maintenance
(check fliud
levels, clean sea
strainers, etc.).
4 1 2| Engine oil level Open 2 0| 7/13/2010
has been dropping
drastically.
Diagnose and
repair.
5 3 5 | Open pockets at Technician has 4 2| 7/13/2010
base of two completed the
stantions. initial filling of
the open
pockets. Will
complete the job
after the initial fill
has had
sufficient time to
dry.
6 11 4 | Electric-flush Open 3 0
system
periodically stops
functioning.
Diagnose and
repair.
7 6 2 [Engine Open 2 0| 7/13/2010
overheating. Loss
of coolant.
Diagnose and
repair.
8 6 2 | Heat exchanger Technician has 4 1| 7/17/2010
not operating determined that
correctly. the exchanger is
faulty. New
exchanger has
been ordered.
9 7 6 | Canvas severely Open 8 0| 7/16/2010
damaged in
windstorm. Order
and install new
canvas.
10 2 8 | Install new GPS Scheduled 7 0| 7/17/2010
and chart plotter.

FIGURE 1-12 Sample data about service requests at Alexamara Marina Group

SERVICE_REQUEST

SERVICE_ SLIP_ CATEGORY_ DESCRIPTION STATUS EST_ SPENT_ NEXT_
HOURS HOURS SERVICE_
DATE
11 2 Air conditioning Technician not 1 1
unit shuts down able to replicate
with HHH showing | the problem. Air
on the control conditioning unit
panel. ran fine through
multiple tests.
Owner to notify
technician if the
problem recurs.
12 4 Both speed and Technician has 2 0| 7/16/2010
depth readings on |scheduled
data unit are appointment
significantly less with owner to
than the owner attempt to verify
thinks they should | the problem.
be.
13 8 Customer Technician 5 2| 7/12/2010
describes engine suspects
as making a problem with
clattering sound. either propeller
or shaft and has
scheduled the
boat to be pulled
from the water
for further
investigation.
14 7 Owner accident Technician has 6 0| 7/13/2010
caused damage to scheduled
forward portion of | repair.
port side.
15 11 Canvas leaks Overlap has 8 3| 7/17/2010

FIGURE 1-12 Sample data about service requests at Alexamara Marina Group (continued)

The Alexamara Marina Group exercises at the end of this chapter will give you a chance

around zippers in
heavy rain. Install
overlap around
zippers to prevent
leaks.

been created.
Installation has
been scheduled.

to check your understanding of the data in this database.

il

Introduction to Premiere Products, Henry Books, and Alexamara Marina Group

20

Chapter 1

Chapter Summary

e Premiere Products is an organization whose information requirements include sales

reps, customers, parts, orders, and order lines.

e Henry Books is an organization whose information requirements include branches, pub-

lishers, authors, books, inventory, and author sequences.

e Alexamara Marina Group is an organization whose information requirements include

marinas, owners, slips, service categories, and service requests.

Key Terms

database

Exercises

Premiere Products

Answer each of the following questions using the Premiere Products data shown in Figure 1-2.
No computer work is required.

1.
2.

© N o g &

10.

List the names of all customers that have a credit limit of $7,500 or less.
List the order numbers for orders placed by customer number 608 on 10/23/2010.

List the part number, part description, and on-hand value for each part in item class SG.
(Hint: On-hand value is the result of multiplying the number of units on hand by the price.)

List the part number and part description of all parts that are in item class HW.

How many customers have a balance that exceeds their credit limit?

What is the part number, description, and price of the least expensive part in the database?
For each order, list the order number, order date, customer number, and customer name.

For each order placed on October 21, 2010, list the order number, customer number, and
customer name.

List the sales rep number and name for every sales rep who represents at least one cus-
tomer with a credit limit of $10,000.

For each order placed on October 21, 2010, list the order number, part number, part descrip-
tion, and item class for each part ordered.

Henry Books

Answer each of the following questions using the Henry Books data shown in Figures 1-4 through
1-7. No computer work is required.

1.

© g & 0D

List the name of each publisher that is located in New York.

List the name of each branch that has at least nine employees.

List the book code and title of each book that has the type FIC.

List the book code and title of each book that has the type FIC and that is in paperback.
List the book code and title of each book that has the type FIC or whose publisher code is SC.
List the book code and title of each book that has the type MYS and a price of less than $20.

7. Customers who are part of a special program get a 10 percent discount off regular book
prices. For the first five books in the BOOK table, list the book code, title, and discounted
price. (Use the PRICE column to calculate the discounted price.)

721l

Find the name of each publisher containing the word and.
List the book code and title of each book that has the type FIC, MYS, or ART.
10. How many books have the type SFI?
11. Calculate the average price for books that have the type ART.
12. For each book published by Penguin USA, list the book code and title.
13. List the book code, book title, and units on hand for each book in branch number 3.

Alexamara Marina Group

Answer each of the following questions using the Alexamara Marina Group data shown in
Figures 1-8 through 1-12. No computer work is required.

1. List the owner number, last name, and first name of every boat owner.
2. List the last name and first name of every owner located in Bowton.

3. List the marina number and slip number for every slip whose length is equal to or less than
30 feet.

List the marina number and slip number for every boat with the type Dolphin 28.

List the slip number for every boat with the type Dolphin 28 that is located in marina 1.
List the boat name for each boat located in a slip whose length is between 25 and 30 feet.
List the slip number for every slip in marina 1 whose annual rental fee is less than $3,000.

© N o g &

Labor is billed at the rate of $60 per hour. List the slip ID, category number, estimated hours,
and estimated labor cost for every service request. To obtain the estimated labor cost, mul-
tiply the estimated hours by 60. Use the column name ESTIMATED_COST for the esti-
mated labor cost.

9. List the marina number and slip number for all slips containing a boat with the type Sprite
4000, Sprite 3000, or Ray 4025.

10. How many Dolphin 25 boats are stored at both marinas?

11. For every boat, list the marina number, slip number, boat name, owner number, owner’s first
name, and owner’s last name.

12. For every service request for routine engine maintenance, list the slip ID, the description,
and the status.

13. For every service request for routine engine maintenance, list the slip ID, marina number,
slip number, estimated hours, spent hours, owner number, and owner’s last name.

Introduction to Premiere Products, Henry Books, and Alexamara Marina Group

This page intentionally left blank

CHAPTER

DATABASE DESIGN
FUNDAMENTALS

LEARNIN

Objectives

Understand tl
Understand

Understand fi
functionally d

Understand t
Design a dat
Convert an u
Convert table
Convert table

Create an en
database

INTRODUCTION

In Chapter 1, you reviewed the tables and columns in the Premiere Products, Henry Books, and

Alexamara Marina Group databases that you will use to complete the rest of this text. The process of

determining the particular tables and columns that will comprise a database is known as database

design. In this chapter, you will learn a method for designing a database to satisfy a set of requirements.

In the process, you will learn how to identify the tables and columns in the database. You also will learn

how to identify the relationships between the tables.

24

Chapter 2

This chapter begins by examining some important concepts related to databases. It also presents
the design method using the set of requirements that Premiere Products identified to produce the
appropriate database design. The chapter then examines the process of normalization, in which you
identify and fix potential problems in database designs. Finally, you will learn a way of visually

representing the design of a database.

DATABASE CONCEPTS

Before learning how to design a database, you need to be familiar with some important
database concepts related to relational databases, which are the types of databases you
examined in Chapter 1 and that you will use throughout the rest of this text. The terms
entity, attribute, and relationship are important to understand when designing a database;
the concepts of functional dependence and primary keys are critical when learning about
the database design process.

Relational Databases

A relational database is a collection of tables like the ones you examined for Premiere
Products in Chapter 1 and that also appear in Figure 2-1. Formally, these tables are called
relations, and this is how this type of database gets its name.

REP

REP_ LAST_ FIRST_ STREET CITY STATE ZIP COMMISSION RATE

NUM NAME NAME
25

20 Kaiser | Valerie |[624 Randall |Grove FL 33321 $20,542.50 0.05
35 Hull Richard |532 Jackson |Sheldon |FL SRS $39,216.00 0.07

65 Perez |Juan 1626 Taylor | Fillmore |FL 33336 $23,487.00 | 0.05
CUSTOMER
CUSTOMER_ CUSTOMER_ STREET CITY STATE ZIP BALANCE CREDIT_ REP_
NUM NAME LIMIT NUM
148 Al's Appliance | 2837 Fillmore |FL 33336 | $6,550.00($7,500.00 |20
and Sport Greenway
282 Brookings 3827 Devon | Grove FL 33321 $431.50($10,000.00 | 35
Direct
356 Ferguson’s 382 Wildwood | Northfield | FL 33146 | $5,785.00($7,500.00 [65
408 The 1828 Raven |Crystal FL 33503 | $5,285.25| $5,000.00 |35
Everything
Shop
462 Bargains 3829 Central |Grove FL 33321 | $3,412.00 | $10,000.00 | 65
Galore
524 Kline’s 838 Ridgeland | Fillmore |FL 33336 |$12,762.00 | $15,000.00 | 20
608 Johnson’s 372 Oxford Sheldon | FL 33553 | $2,106.00 | $10,000.00 | 65
Department
Store
687 Lee’s Sport 282 Evergreen | Altonville |FL 32543 | $2,851.00| $5,000.00 |35
and Appliance
725 Deerfield’s 282 Columbia |Sheldon |FL 33553 $248.00| $7,500.00 |35
Four Seasons
842 All Season 28 Lakeview |Grove FL 33321 | $8,221.00| $7,500.00 |20
ORDERS ORDER_LINE
NUM DATE NUM
21608 AT94 11 $21.95
21608 10/20/2010 | 148 51610 DR93 1 $495.00
2Lold HUBVED| & 21610 DW11 1 $399.99
21613 10/21/2010 [408 51613 KL62 4 $329.95
21614 10/21/2010 [282 51614 KT03 5 $595.00
21617 10/23/2010 | 608 1617 BVO6 5 $794.95
2o RSO 1L 21617 CD52 4 $150.00
21623 10/23/2010 | 608 51619 DRO3 1 $495.00
21623 Kv29 2 $1,290.00
PART
PART_NUM DESCRIPTION ON_HAND CLASS WAREHOUSE PRICE
AT94 Iron 50| OW 3 $24.95
BV06 Home Gym 45| SG 2 $794.95
CD52 Microwave Oven 32| AP 1 $165.00
DL71 Cordless Drill 21| OwW 3 $129.95
DR93 Gas Range S| AP 2 $495.00
DW11 Washer 12| AP & $399.99
FD21 Stand Mixer 22| W 3 $159.95
KL62 Dryer 12| AP 1 $349.95
KT03 Dishwasher 8| AP) $595.00
Kv29 Treadmill 9SG 2 $1,390.00

FIGURE 2-1 Sample data for Premiere Products

Database Design Fundamentals

26

Chapter 2

NOTE — |

The names of columns and tables in this text follow a common naming convention in which column names use
uppercase letters and replace spaces between words with underscores (_). For example, Premiere Products
uses the column named LAST_NAME to store last names and the column named CREDIT_LIMIT to store
credit limits.

Entities, Attributes, and Relationships

There are some terms and concepts that are very important for you to know when work-
ing in the database environment. The terms entity, attribute, and relationship are funda-
mental when discussing databases. An entity is like a noun; it is a person, place, thing, or
event. The entities of interest to Premiere Products, for example, are such things as cus-
tomers, orders, and sales reps. The entities that are of interest to a school include stu-
dents, faculty, and classes; a real estate agency is interested in clients, houses, and agents;
and a used car dealer is interested in vehicles, customers, and manufacturers.

An attribute is a property of an entity. The term is used here exactly as it is used in
everyday English. For the entity person, for example, the list of attributes might include
such things as eye color and height. For Premiere Products, the attributes of interest for
the entity customer are such things as name, address, city, and so on. For the entity
Jfaculty at a school, the attributes would be such things as faculty number, name, office num-
ber, phone, and so on. For the entity vehicle at a car dealership, the attributes are such
things as the vehicle identification number, model, color, year, and so on.

Arelationship is the association between entities. There is an association between cus-
tomers and sales reps, for example, at Premiere Products. A sales rep is associated with all
of his or her customers, and a customer is associated with his or her sales rep. Techni-
cally, you say that a sales rep is related to all of his or her customers, and a customer is
related to his or her sales rep.

The relationship between sales reps and customers is an example of a one-to-many
relationship because one sales rep is associated with many customers, but each cus-
tomer is associated with only one sales rep. (In this type of relationship, the word many
is used in a way that is different from everyday English; it might not always mean a large
number. In this context, for example, the term many means that a sales rep might be asso-
ciated with any number of customers. That is, one sales rep can be associated with zero,
one, or more customers.)

How does a relational database handle entities, attributes of entities, and relation-
ships between entities? Entities and attributes are fairly simple. Each entity has its own
table. In the Premiere Products database, there is one table for sales reps, one table for
customers, and so on. The attributes of an entity become the columns in the table. In the
table for sales reps, for example, there is a column for the sales rep number, a column for
the sales rep’s first name, and so on.

What about relationships? At Premiere Products, there is a one-to-many relationship
between sales reps and customers (each sales rep is related to the many customers that
he or she represents, and each customer is related to the one sales rep who represents the
customer). How is this relationship implemented in a relational database?

Consider Figure 2-1 again. If you want to determine the name of the sales rep who repre-
sents Brookings Direct (customer number 282), you would locate the row for Brookings Direct

in the CUSTOMER table and determine that the value for REP_NUM is 35. Then you would
look for the row in the REP table on which the REP_NUM is 35. The one rep with REP_NUM 35
is Richard Hull, who represents Brookings Direct. 27

On the other hand, if you want to determine the names of all the customers of the rep
named Valerie Kaiser, you would locate the row for Valerie Kaiser in the REP table and
determine that the value in the REP_NUM column is 20. Then you would look for all the
rows in the CUSTOMER table on which the REP_NUM is 20. After identifying Valerie
Kaiser’s rep number, you find that the many customers she represents are numbered 148
(Al's Appliance and Sport), 524 (Kline’s), and 842 (All Season).

You implement these relationships by having common columns in two or more tables.
The REP_NUM column in the REP table and the REP_NUM column in the CUSTOMER table
are used to implement the relationship between sales reps and customers. Given a sales
rep, you can use these columns to determine all the customers that he or she represents;
given a customer, you can use these columns to find the sales rep who represents the
customer.

In this context, a relation is essentially a two-dimensional table. If you consider the
tables shown in Figure 2-1, however, you can see that certain restrictions are placed on
relations. Each column has a unique name, and entries within each column should
“match” this column name. For example, if the column name is CREDIT_LIMIT, all entries
in that column must be credit limits. Also, each row should be unique—when two rows are
identical, the second row does not provide any new information. For maximum flexibil-
ity, the order of the columns and rows should be immaterial. Finally, the table’s design
should be as simple as possible by restricting each position to a single entry and by pre-
venting multiple entries (also called repeating groups) in an individual location in the
table. Figure 2-2 shows a table design that includes repeating groups.

ORDERS

ORDER_ _ PART_ NUM_ QUOTED_

DATE NUM ORDERED PRICE

21608 10/20/2010 | 148 AT94 11 $21.95
21610 10/20/2010 | 356 DR93 1 $495.00
DW11 1 $399.99

21613 10/21/2010 | 408 KL62 4 $329.95
21614 10/21/2010 | 282 KTO03 2 $595.00
21617 10/23/2010 | 608 BV06 2 $12.95
CD52 4 $150.00

21619 10/23/2010 | 148 DR93 1 $495.00
21623 10/23/2010 | 608 KV29 2 $325.99

FIGURE 2-2 Table with repeating groups

Figure 2-3 shows a better way to represent the same information shown in Figure 2-2.
In Figure 2-3, every position in the table contains a single value.

Database Design Fundamentals

28

Chapter 2

ORDERS

ORDER_ CUSTOMER_ PART_ NUM_ QUOTED_

DATE NUM NUM ORDERED PRICE
21608 | 10/20/2010 | 148 AT94 11| $21.95
21610 | 10/20/2010 |356 DR93 1| $495.00
21610 | 10/20/2010 |356 DW11 1| $399.99
21613 | 10/21/2010 | 408 KL62 4| $329.95
21614 | 10/21/2010 |282 KT03 2| $595.00
21617 | 10/23/2010 | 608 BV06 2| $1295
21617 | 10/23/2010 | 608 CD52 4| $150.00
21619 | 10/23/2010 | 148 DR93 1| $495.00
21623 | 10/23/2010 | 608 KV29 2| $325.99

FIGURE 2-3 ORDERS data without repeating groups

When you remove the repeating groups from Figure 2-2, all of the rows in Figure 2-3
are single-valued. This structure is formally called a relation. A relation is a two-
dimensional table in which the entries in the table are single-valued (each location in the
table contains a single entry), each column has a distinct name, all values in the col-
umn match this name, the order of the rows and columns is immaterial, and each row con-
tains unique values. A relational database is a collection of relations.

———

Rows in a table (relation) are also called records or tuples. Columns in a table (relation) are also called
fields or attributes. This text uses the terms tables, columns, and rows unless the more formal terms of rela-
tion, attributes, and tuples are necessary for clarity.

There is a commonly accepted shorthand representation to show the tables and col-
umns in a relational database: for each table, you write the name of the table and then
within parentheses list all of the columns in the table. In this representation, each table
appears on its own line. Using this method, you represent the Premiere Products data-
base as follows:

REP (REP_NUM LAST NAME, FIRST_NAMVE, STREET,
Cl TY, STATE, ZIP, COW SSION, RATE)
CUSTOVER (CUSTOVER NUM CUSTOMVER NAME, STREET,
CITY, STATE, ZIP, BALANCE, CREDIT LIMT,
REP_NUM)

ORDERS (ORDER_NUM ORDER DATE, CUSTOMVER NUM)

ORDER LI NE (ORDER NUM PART NUM NUM ORDERED,
QUOTED_PRI CE)

PART (PART_NUM DESCRI PTION, ON_HAND, CLASS,
WAREHOUSE, PRI CE)

Notice that some tables contain columns with duplicate names. For example, the
REP_NUM column appears in both the REP table and the CUSTOMER table. Suppose a situa-
tion existed wherein someone (or the DBMS) might confuse the two columns. For example, 29
if you write REP_NUM, it is not clear which REP_NUM column you want to use. You need a
mechanism for indicating the REP_NUM column to which you are referring. One common
approach to solving this problem is to write both the table name and the column name, sepa-
rated by a period. Thus, you would reference the REP_NUM column in the CUSTOMER table
as CUSTOMER.REP_NUM, and the REP_NUM column in the REP table as REP.REP_NUM. Tech-
nically, when you reference columns in this format, you say that you qualify the names. It

is always acceptable to qualify column names, even when there is no potential for
confusion. If confusion might arise, however, it is essential to qualify column names.

FUNCTIONAL DEPENDENCE

The concept of functional dependence is crucial to understanding the rest of the material in
this chapter. Functional dependence is a formal name for what is basically a simple idea. To
illustrate functional dependence, suppose the REP table for Premiere Products is structured
as shown in Figure 2-4. The only difference between the REP table shown in Figure 2-4 and the
one shown in Figure 2-1 is the addition of an extra column named PAY_CLASS.

REP
LAST_ FIRST_ STREET STATE ZIP COMMISSION PAY_ RATE
NAME NAME
20 Kaiser | Valerie | 624 Randall | Grove |FL 33321 $20,542.50 | 1 0.05
35 Hull Richard | 532 Jackson | Sheldon | FL 33553 $39,216.00 | 2 0.07
65 Perez | Juan 1626 Taylor | Fillmore | FL 33336 $23,487.00 | 1 0.05

FIGURE 2-4 REP table with a PAY_CLASS column

Suppose one of the policies at Premiere Products is that all sales reps in any given pay class
earn their commissions at the same rate. To describe this situation, you could say that a sales
rep’s pay class determines his or her commission rate. Alternatively, you could say that a
sales rep’s commission rate depends on his or her pay class. This phrasing uses the words
determines and depends on in the same way that you describe functional dependency. If you
wanted to be formal, you would precede either expression with the word functionally. For
example, you might say, “A sales rep’s pay class_functionally determines his or her commis-
sion rate,” and “A sales rep’s commission rate functionally depends on his or her pay class.”
You can also define functional dependency by saying that when you know a sales rep’s pay class,
you can determine his or her commission rate.

In a relational database, column B is functionally dependent on another column (or
a collection of columns), A, if at any point in time a value for A determines a single value
for B. You can think of this as follows: when you are given a value for A, do you know that

Database Design Fundamentals

30

Chapter 2

you can find a single value for B? If so, B is functionally dependent on A (often written as
A — B). If B is functionally dependent on A, you also can say that A functionally
determines B.

At Premiere Products, is the LAST_NAME column in the REP table functionally depen-
dent on the REP_NUM column? Yes, it is. If you are given a value for REP_NUM, such as
20, there is a single LAST_NAME, Kaiser, associated with it. This is represented as:

REP_NUM — LAST NAME

Question: In the CUSTOMER table, is CUSTOMER_NAME functionally dependent on
REP_NUM?

Answer: No. Given the REP_NUM 20, for example, you would not be able to find a single
customer name, because 20 appears on more than one row in the table.

Question: In the ORDER_LINE table, is NUM_ORDERED functionally dependent on
ORDER_NUM?

Answer: No. An ORDER_NUM might be associated with several items in an order, so hav-
ing just an ORDER_NUM does not provide enough information.

Question: Is NUM_ORDERED functionally dependent on PART_NUM?
Answer: No. Again, just as with ORDER_NUM, a PART_NUM might be associated with sev-
eral items in an order, so PART_NUM does not provide enough information.

Question: On which columns in the ORDER_LINE table is NUM_ORDERED functionally
dependent?

Answer: To determine a value for NUM_ORDERED, you need both an order number and
a part number. In other words, NUM_ORDERED is functionally dependent on the com-
bination (formally called the concatenation) of ORDER_NUM and PART_NUM. That is,
given an order number and a part number, you can find a single value for
NUM_ORDERED.

At this point, a question naturally arises: how do you determine functional

dependencies? Can you determine them by looking at sample data, for example? The

answer is no. ehil
Consider the REP table in Figure 2-5, in which last names are unique. It is very tempting

to say that LAST_NAME functionally determines STREET, CITY, STATE, and ZIP (or equiva-

lently that STREET, CITY, STATE, and ZIP are all functionally dependent on LAST_NAME).

After all, given the last name of a rep, you can find the single address.

REP

REP_ LAST_ FIRST_ STREET CITY STATE ZIP COMMISSION RATE

NUM NAME NAME

20 Kaiser | Valerie | 624 Randall | Grove FL 33321 $20,542.50 | 0.05

35 Hull Richard | 532 Jackson | Sheldon | FL AIHEI $39,216.00 | 0.07

65 Perez |Juan 1626 Taylor | Fillmore | FL 33336 $23,487.00 | 0.05

FIGURE 2-5 REP table

What happens when rep 85, whose last name is also Kaiser, is added to the database?
You then have the situation illustrated in Figure 2-6. Because there are now two reps with
the last name of Kaiser, you can no longer find a single address using a rep’s last name—you
were misled by the original data. The only way to determine functional dependencies is to
examine the user’s policies. This process can involve discussions with users, an exami-
nation of user documentation, and so on. For example, if managers at Premiere Products
have a policy never to hire two reps with the same last name, then LAST_NAME would
indeed determine the other columns. Without such a policy, however, LAST_NAME would
not determine the other columns.

REP

REP_ LAST_ FIRST_ STREET CITY STATE ZIP COMMISSION RATE
NUM NAME NAME

20 Kaiser | Valerie | 624 Randall | Grove FL 33321 $20,542.50 | 0.05

35 Hull Richard | 532 Jackson | Sheldon | FL SES58) $39,216.00 | 0.07

65 Perez |Juan 1626 Taylor | Fillmore | FL 33336 $23,487.00 | 0.05

85 Kaiser | William | 172 Bahia Norton | FL 39281 $0.00| 0.05

FIGURE 2-6 REP table with two reps named Kaiser

PRIMARY KEYS

Another important database design concept is the primary key. In the simplest terms, the
primary key is the unique identifier for a table. For example, the REP_NUM column is
the unique identifier for the REP table. Given a rep number in the table, such as 20, there

Database Design Fundamentals

32

Chapter 2

will only be one row on which that rep number occurs. Thus, the rep number 20 uniquely
identifies a row (in this case, the first row, and the rep named Valerie Kaiser).

In this text, the definition of primary key needs to be more precise than a unique iden-
tifier for a table. Specifically, column A (or a collection of columns) is the primary key for
a table if:

Property 1. All columns in the table are functionally dependent on A.
Property 2. No subcollection of the columns in A (assuming A is a collection of columns
and not just a single column) also has property 1.

Question: Is the CLASS column the primary key for the PART table?

Answer: No, because the other columns are not functionally dependent on CLASS. Given
the class HW, for example, you cannot determine a part number, description, or any-
thing else, because there are several rows on which the class is HW.

Question: Is the CUSTOMER_NUM column the primary key for the CUSTOMER table?
Answer: Yes, because Premiere Products assigns unique customer numbers. A specific
customer number cannot appear on more than one row. Thus, all columns in the
CUSTOMER table are functionally dependent on CUSTOMER_NUM.

Question: Is the ORDER_NUM column the primary key for the ORDER_LINE table?
Answer: No, because it does not functionally determine either NUM_ORDERED or
QUOTED_PRICE.

Question: Is the combination of the ORDER_NUM and PART_NUM columns the primary
key for the ORDER_LINE table?

Answer: Yes, because you can determine all columns by this combination of columns, and,
further, neither the ORDER_NUM nor the PART_NUM alone has this property.

Question: Is the combination of the PART_NUM and DESCRIPTION columns the pri-
mary key for the PART table?

Answer: No. Although it is true that you can determine all columns in the PART table by
this combination, PART_NUM alone also has this property.

You can indicate a table’s primary key with a shorthand representation of a database
by underlining the column or collection of columns that comprise the primary key. The
complete shorthand representation for the Premiere Products database is:

REP (REP_NUM LAST NAVE, FI RST_NAME, STREET,
CITY, STATE, ZIP, COMM SSION, RATE)
CUSTOMER (CUSTOMER NUM CUSTOMER NAME, STREET,
CI TY, STATE, ZIP, BALANCE, CREDIT LIMT,
REP_NUM)

ORDERS (ORDER NUM ORDER DATE, CUSTOVER NUM)

ORDER LI NE (ORDER NUM PART NUM NUM ORDERED,
QUOTED_PRI CE)

PART (PART_NUM DESCRI PTI ON, ON HAND, CLASS,
WAREHOUSE, PRI CE)

NOTE —————————————

Sometimes you might identify one or more columns that you can use as a table’s primary key. For example,
if the Premiere Products database also included an EMPLOYEE table that contains employee numbers
and Social Security numbers, either the employee number or the Social Security number could serve as the
table’s primary key. In this case, both columns are referred to as candidate keys. Like a primary key, a
candidate key is a column or collection of columns on which all columns in the table are functionally
dependent—the definition for primary key really defines candidate key as well. From all the candidate
keys, you would choose one to be the primary key.

—

According to the definition of a candidate key, a Social Security number is a legitimate primary key. Many
databases, such as those that store data about students at a college or university or those that store data
about employees at a company, store a person’s Social Security number as a primary key. However, many
institutions and organizations are moving away from using Social Security numbers as primary keys
because of privacy issues. Instead of using Social Security numbers, many institutions and organiza-
tions use unique student numbers or employee numbers as primary keys.

33

Database Design Fundamentals

34

Chapter 2

NOTE — |

Some institutions prefer to assign values to use as primary keys for items such as customer numbers, part
numbers, and student numbers. Others simply let the computer generate the values. In this case, the DBMS
simply assigns the next available value. For example, if the database has already assigned customer num-
bers 1000 through 1436, it assigns the next new customer added to the database the customer num-
ber 1437.

DATABASE DESIGN

This section presents a specific method you can follow to design a database when given a
set of requirements that the database must support. The determination of the require-
ments is part of the process known as systems analysis. A systems analyst interviews users,
examines existing and proposed documents, and examines organizational policies to deter-
mine exactly the type of data needs the database must support. This text does not cover
this analysis. Rather, it focuses on how to take the set of requirements that this process pro-
duces and determine the appropriate database design.

After presenting the database design method, this section presents a sample set of
requirements and illustrates the design method by designing a database to satisfy these
requirements.

Design Method

To design a database for a set of requirements, complete the following steps:

1. Read the requirements, identify the entities (objects) involved, and name the
entities. For example, when the design involves departments and employees,
you might use the entity names DEPARTMENT and EMPLOYEE. When the
design involves customers and sales reps, you might use the entity names
CUSTOMER and REP.

2. Identify the unique identifiers for the entities you identified in Step 1. For
example, when one of the entities is PART, determine what information is
required to uniquely identify each individual part. In other words, what infor-
mation does the organization use to distinguish one part from another? For
a PART entity, the unique identifier for each part might be a PART_NUM,; for
a CUSTOMER entity, the unique identifier might be a CUSTOMER_NUM.
When no unique identifier is available from the data you know about the entity,
you need to create one. For example, you might use a unique number to iden-
tify parts when no part numbers exist.

3. Identify the attributes for all the entities. These attributes become the col-
umns in the tables. It is possible for two or more entities to contain the same
attributes. At Premiere Products, for example, reps and customers both have
addresses, cities, states, and zip codes. To clarify this duplication of attributes,
follow the name of the attribute with the corresponding entity in parentheses.
Thus, ADDRESS (CUSTOMER) is a customer address and ADDRESS (REP)
is a sales rep address.

4. Identify the functional dependencies that exist among the attributes. Ask your-
self the following question: if you know a unique value for an attribute, do you also

know the unique values for other attributes? For example, when you have the
three attributes REP_NUM, LAST_NAME, and FIRST_NAME and you know a
unique value for REP_NUM, do you also know a unique value for LAST NAME
and FIRST_NAME? If so, then LAST_NAME and FIRST_NAME are functionally
dependent on REP_NUM (REP_NUM — LAST_NAME, FIRST_NAME).

5. Use the functional dependencies to identify the tables by placing each attribute
with the attribute or minimum combination of attributes on which it is func-
tionally dependent. The attribute or attributes for an entity on which all other
attributes are dependent will be the primary key of the table. The remaining
attributes will be the other columns in the table. Once you have deter-
mined all the columns in the table, you can give the table an appropriate name.
Usually the name will be the same as the name you identified for the entity
in Step 1.

6. Identify any relationships between tables. In some cases, you might be able
to determine the relationships directly from the requirements. It might be
clear, for example, that one rep is related to many customers and that each cus-
tomer is related to exactly one rep. When it is not, look for matching col-
umns in the tables you created. For example, if both the REP table and the
CUSTOMER table contain a REP_NUM column and the values in these col-
umns must match, you know that reps and customers are related. The fact that
the REP_NUM column is the primary key in the REP table tells you that the
REP table is the “one” part of the relationship and the CUSTOMER table is the
“many” part of the relationship.

In the next section, you will apply this process to produce the design for the Pre-
miere Products database using the collection of requirements that this database must
support.

Database Design Requirements

The analyst has interviewed users and examined documents at Premiere Products and has
determined that the database must support the following requirements:

1. For a sales rep, store the sales rep’s number, last name, first name, street
address, city, state, zip code, total commission, and commission rate.

2. For a customer, store the customer’s number, name, street address, city, state,
zip code, balance, and credit limit. In addition, store the number, last name,
and first name of the sales rep who represents this customer. The analyst has
also determined that a sales rep can represent many customers, but a cus-
tomer must have exactly one sales rep (in other words, a sales rep must rep-
resent a customer; a customer cannot be represented by zero or more than
one sales reps).

3. For a part, store the part’s number, description, units on hand, item class, the
number of the warehouse in which the part is located, and the price. All units
of a particular part are stored in the same warehouse.

4. For an order, store the order number, order date, the number and name of the
customer that placed the order, and the number of the sales rep who repre-
sents that customer.

35

Database Design Fundamentals

36

Chapter 2

5. For each line item within an order, store the part number and description, the
number ordered, and the quoted price. The analyst also obtained the follow-
ing information concerning orders:

a. There is only one customer per order.

b. On a given order, there is at most one line item for a given part. For
example, part DR93 cannot appear on several lines within the same order.

c. The quoted price might differ from the actual price when the sales rep dis-
counts a certain part on a specific order.

Database Design Process Example

The following steps apply the design process to the requirements for Premiere Products to
produce the appropriate database design:

Step 1: There appear to be four entities: reps, customers, parts, and orders. The names
assigned to these entities are REP, CUSTOMER, PART, and ORDERS, respectively.

Step 2: From the collection of entities, review the data and determine the unique iden-
tifier for each entity. For the REP, CUSTOMER, PART, and ORDERS entities, the unique
identifiers are the rep number, customer number, part number, and order number,
respectively. These unique identifiers are named REP_NUM, CUSTOMER_NUM,
PART_NUM, and ORDER_NUM, respectively.

Step 3: The attributes mentioned in the first requirement all refer to sales reps. The spe-
cific attributes mentioned in the requirement are the sales rep’s number, name, street
address, city, state, zip code, total commission, and commission rate. Assigning appropri-
ate names to these attributes produces the following list:

REP_NUM
LAST NAMVE
FI RST_NAMVE
STREET
aTy

STATE

ZIP

COWM SSI ON
RATE

The attributes mentioned in the second requirement refer to customers. The specific
attributes are the customer’s number, name, street address, city, state, zip code, bal-
ance, and credit limit. The requirement also mentions the number, first name, and last
name of the sales rep who represents this customer. Assigning appropriate names to
these attributes produces the following list:

CUSTOVER _NUM
CUSTOVER_NAME
STREET

aTy

STATE

ZIP

BALANCE

CREDIT LIMT
REP_NUM
LAST_NAME

FI RST_NAME

There are attributes named STREET, CITY, STATE, and ZIP for sales reps as well as
attributes named STREET, CITY, STATE, and ZIP for customers. To distinguish these
attributes in the final collection, follow the name of the attribute by the name of the cor- 37
responding entity. For example, the street for a sales rep is STREET (REP) and the street
for a customer is STREET (CUSTOMER).
The attributes mentioned in the third requirement refer to parts. The specific attributes
are the part’s number, description, units on hand, item class, the number of the ware-
house in which the part is located, and the price. Assigning appropriate names to these
attributes produces the following list:

PART_NUM
DESCRI PTI ON
ON_HAND
CLASS
WAREHOUSE
PRI CE

The attributes mentioned in the fourth requirement refer to orders. The specific
attributes include the order number, order date, number and name of the customer that
placed the order, and number of the sales rep who represents the customer. Assigning
appropriate names to these attributes produces the following list:

ORDER_NUM
ORDER_DATE
CUSTOVER_NUM
CUSTOMVER_NANE
REP_NUM

The specific attributes associated with the statement in the requirements concerning
line items are the order number (to determine the order to which the line item corre-
sponds), part number, description, number ordered, and quoted price. If the quoted price
must be the same as the price, you could simply call it PRICE. According to require-
ment 5S¢, however, the quoted price might differ from the price, so you must add the quoted
price to the list. Assigning appropriate names to these attributes produces the following list:

ORDER_NUM
PART _NUM
DESCRI PTI ON
NUM_ORDERED
QUOTED_PRI CE

The complete list grouped by entity is as follows:

REP

REP_NUM
LAST NAVE

FI RST_NAME
STREET (REP)
Cl TY (REP)
STATE (REP)
ZI P (REP)
COWM SSI ON
RATE

Database Design Fundamentals

38

Chapter 2

CUSTOVER
CUSTOVER_NUM
CUSTOVER_NAMNE
STREET (CUSTOMVER)
CI TY (CUSTOMVER)
STATE (CUSTOVER)
ZI P (CUSTOMER)
BALANCE

CREDIT LIMT
REP_NUM
LAST_NANE

FI RST_NAMVE

PART
PART_NUM
DESCRI PTI ON
ON_HAND
CLASS
WAREHOUSE
PRI CE

ORDER
ORDER_NUM
ORDER_DATE
CUSTOVER_NUM
CUSTOMVER_NANE
REP_NUM

For line itenms within an order
ORDER_NUM

PART_NUM

DESCRI PTI ON

NUM_ORDERED

QUOCTED_PRI CE

Step 4: The fact that the unique identifier for sales reps is the rep number gives the fol-
lowing functional dependencies:

REP_NUM — LAST_NAME, FIRST_NAME, STREET (REP), CITY (REP),
STATE (REP), ZIP (REP), COVM SSI ON, RATE

This notation indicates that the LAST_NAME, FIRST_NAME, STREET (REP), CITY
(REP), STATE (REP), ZIP (REP), COMMISSION, and RATE are all functionally dependent
on REP_NUM.

The fact that the unique identifier for customers is the customer number gives the fol-
lowing functional dependencies:

CUSTOMER _NUM —» CUSTOMER NAME, STREET (CUSTOVER),

CITY (CUSTOVER), STATE (CUSTOVER), ZIP (CUSTOMER),
BALANCE, CREDI T LIMT, REP NUM LAST NAVE, FI RST_NAME

Question: Do you really need to include the last name and first name of a sales rep in the
list of attributes determined by the customer number?

Answer: There is no need to include them in this list, because they both can be deter-
mined from the sales rep number and are already included in the list of attributes deter-
mined by REP_NUM.

Thus, the functional dependencies for the CUSTOMER entity are as follows:

CUSTOMVER NUM —» CUSTOVER NAVE, STREET (CUSTOMER),
Cl TY (CUSTOMVER), STATE (CUSTOMER), ZIP (CUSTOMER),
BALANCE, CREDIT_LIM T, REP_NUM

The fact that the unique identifier for parts is the part number gives the following func-
tional dependencies:

PART_NUM — DESCRI PTI ON, ON_HAND, CLASS, WAREHOUSE, PRI CE

The fact that the unique identifier for orders is the order number gives the following
functional dependencies:

ORDER NUM — ORDER DATE, CUSTOVER NUM CUSTOMVER NAME,
REP_NUM

Question: Do you really need to include the name of a customer and the number of the cus-
tomer’s rep in the list of attributes determined by the order number?

Answer: There is no need to include the customer name and the rep number in this list,
because you can determine them from the customer number and they are already
included in the list of attributes determined by CUSTOMER_NUM.

The functional dependencies for the ORDERS entity are as follows:
ORDER_NUM — ORDER_DATE, CUSTOVER NUM

The final attributes to be examined are those associated with the line items within the
order: PART_NUM, DESCRIPTION, NUM_ORDERED, and QUOTED_PRICE.

39

Database Design Fundamentals

40

Chapter 2

Question: Why aren’t NUM_ORDERED and QUOTED_PRICE included in the list of
attributes determined by the order number?

Answer: To uniquely identify a particular value for NUM_ORDERED or QUOTED_PRICE,
ORDER_NUM alone is not sufficient. It requires the combination of ORDER_NUM and
PART_NUM.

The following shorthand representation indicates that the combination of ORDER_NUM
and PART_NUM functionally determines NUM_ORDERED and QUOTED_PRICE:

ORDER NUM PART_NUM — NUM ORDERED, QUOTED PRI CE

Question: Does DESCRIPTION need to be included in this list?
Answer: No, because DESCRIPTION can be determined by the PART_NUMBER alone, and
it already appears in the list of attributes dependent on the PART_NUM.

The complete list of functional dependencies is as follows:

REP_NUM —> LAST_NAME, FIRST_NAME, STREET (REP), CITY (REP),
STATE (REP), ZI P(REP), COWM SSI ON, RATE

CUSTOMER_NUM —» CUSTOVER NAVE, STREET (CUSTOMER),
Cl TY (CUSTOMER), STATE (CUSTOMER), ZI P (CUSTOMER),
BALANCE, CREDIT_LIM T, REP_NUM

PART_NUM — DESCRI PTI ON, ON _HAND, CLASS, WAREHOUSE, PRI CE

ORDER_NUM —> ORDER DATE, CUSTOMER NUM

ORDER_NUM PART_NUM — NUM ORDERED, QUOTED_PRI CE

Step 5: Using the functional dependencies, you can create tables with the attribute(s)
to the left of the arrow being the primary key and the items to the right of the arrow being
the other columns. For relations corresponding to those entities identified in Step 1, you can
use the name you already determined. Because you did not identify any entity that had a
unique identifier that was the combination of ORDER_NUM and PART_NUM, you need
to assign a name to the table whose primary key consists of these two columns. Because
this table represents the individual lines within an order, the name ORDER_LINE is a good
choice. The final collection of tables is as follows:

REP (REP_NUM LAST NAME, FIRST_NAMVE, STREET,
CITY, STATE, ZIP, COW SSION, RATE)
CUSTOVER (CUSTOVER NUM CUSTOMER NAME, STREET,
CI TY, STATE, ZIP, BALANCE, CREDIT LIMT,
REP_NUM)

PART (PART_NUM DESCRI PTION, ON HAND, CLASS,
WAREHOUSE, PRI CE)

ORDERS (ORDER NUM ORDER DATE, CUSTOMER NUM)

ORDER_LI NE (ORDER_NUM PART NUM NUM ORDERED,
QUOTED_PRI CE)

Step 6: Examining the tables and identifying common columns gives the following list
of relationships between the tables:

e The CUSTOMER and REP tables are related using the REP_NUM columns.
Because the REP_NUM column is the primary key for the REP table, this indi-
cates a one-to-many relationship between REP and CUSTOMER (one rep to
many customers).

e The ORDERS and CUSTOMER tables are related using the CUSTOMER_NUM
columns. Because the CUSTOMER_NUM column is the primary key for the
CUSTOMER table, this indicates a one-to-many relationship between
CUSTOMER and ORDERS (one customer to many orders).

e The ORDER_LINE and ORDERS tables are related using the ORDER_NUM
columns. Because the ORDER_NUM column is the primary key for the
ORDERS table, this indicates a one-to-many relationship between ORDERS
and ORDER_LINE (one order to many order lines).

e The ORDER_LINE and PART tables are related using the PART_NUM columns.
Because the PART_NUM column is the primary key for the PART table, this
indicates a one-to-many relationship between PART and ORDER_LINE (one
part to many order lines).

NORMALIZATION

After creating the database design, you must analyze it to make sure it is free of potential
problems. To do so, you follow a process called normalization, in which you identify the
existence of potential problems, such as data duplication and redundancy, and implement
ways to correct these problems.

The goal of normalization is to convert unnormalized relations (tables that satisfy the
definition of a relation except that they might contain repeating groups) into various types
of normal forms. A table in a particular normal form possesses a certain desirable col-
lection of properties. Although there are several normal forms, the most common are first
normal form, second normal form, and third normal form. Normalization is a process in
which a table that is in first normal form is better than a table that is not in first normal form,
a table that is in second normal form is better than one that is in first normal form, and
so on. The goal of this process is to allow you to take a table or collection of tables and pro-
duce a new collection of tables that represents the same information but is free of
problems.

First Normal Form

According to the definition of a relation, a relation (table) cannot contain a repeating group
in which multiple entries exist on a single row. However, in the database design process,
you might create a table that has all the other properties of a relation, but contains a repeat-
ing group. Removing repeating groups is the starting point when converting an unnormal-
ized collection of data into a table that is in first normal form. A table (relation) is in first
normal form (INF) when it does not contain a repeating group.

41

Database Design Fundamentals

42

Chapter 2

For example, in the design process you might create the following ORDERS table, in
which there is a repeating group consisting of PART_NUM and NUM_ORDERED. The nota-
tion for this table is as follows:

ORDERS (ORDER_NUM ORDER DATE, (PART_NUM NUM ORDERED))

This notation describes a table named ORDERS that consists of a primary key,
ORDER_NUM, and a column named ORDER_DATE. The inner parentheses indicate a repeat-
ing group that contains two columns, PART_NUM and NUM_ORDERED. This table contains
one row per order with values in the PART_NUM and NUM_ORDERED columns for each order
with the number ORDER_NUM and placed on ORDER_DATE. Figure 2-7 shows a single order
with multiple combinations of a part number and a corresponding number of units ordered.

ORDERS
ORDER_ ORDER_ PART_ NUM_
NUM DATE NUM ORDERED
21608 [10/20/2010 | AT94 11
21610 |10/20/2010 | DR93 1
DW11 1
21613 [10/21/2010 | KL62 4
21614 |10/21/2010 | KT03 2
21617 |10/23/2010 | BV06 2
CD52 4
21619 |10/23/2010 | DR93 1
21623 |10/23/2010 | KV29 2

FIGURE 2-7 Unnormalized order data

To convert the table to first normal form, you remove the repeating group as follows:

ORDERS (ORDER_NUM ORDER _DATE, PART_NUM NUM ORDERED)

Figure 2-8 shows the table in first normal form.

ORDERS -
ORDER_ ORDER_ PART_ NUM_
NUM DATE NUM ORDERED
21608 10/20/2010 | AT94 11
21610 10/20/2010 | DR93 1
21610 10/20/2010 | DW11 1
21613 10/21/2010 | KL62 4
21614 10/21/2010 | KT03 2
21617 10/23/2010 | BVO6 2
21617 10/23/2010 | CD52 4
21619 10/23/2010 | DR93 1
21623 10/23/2010 | KV29 2

FIGURE 2-8 Order data converted to first normal form

In Figure 2-7, the second row indicates that part DR93 and part DW11 are both included
in order 21610. In Figure 2-8, this information is represented by two rows, the second and
third. The primary key for the unnormalized ORDERS table was the ORDER_NUM col-
umn alone. The primary key for the normalized table is now the combination of the
ORDER_NUM and PART_NUM columns.

When you convert an unnormalized table to a table in first normal form, the primary
key of the table in first normal form is usually the primary key of the unnormalized table
concatenated with the key for the repeating group, which is the column in the repeating
group that distinguishes one occurrence of the repeating group from another within a
given row in the table. In the ORDERS table, PART_NUM was the key to the repeating group
and ORDER_NUM was the primary key for the table. When converting the unnormalized
data to first normal form, the primary key becomes the concatenation of the ORDER_NUM
and PART_NUM columns.

Second Normal Form
The following ORDERS table is in first normal form, because it does not contain a repeat-
ing group:

ORDERS (ORDER_NUM ORDER DATE, PART_NUM DESCRI PTI ON,
NUM_ORDERED, QUOTED_PRI CE)

The table contains the following functional dependencies:

ORDER_NUM —> ORDER DATE
PART_NUM — DESCRI PTI ON
ORDER NUM PART_NUM — NUM ORDERED, QUOTED PRI CE

Database Design Fundamentals

44

Chapter 2

This notation indicates that ORDER_NUM alone determines ORDER_DATE, and
PART_NUM alone determines DESCRIPTION, but it requires both an ORDER_NUM and a
PART_NUM to determine either NUM_ORDERED or QUOTED_PRICE. Consider the
sample of this table shown in Figure 2-9.

ORDERS
ORDER_ ORDER_ PART_ DESCRIPTION NUM_ QUOTED._
NUM DATE NUM ORDERED PRICE
21608 10/20/2010 | AT94 | Iron 11 $21.95
21610 10/20/2010 | DR93 | Gas Range 1 $495.00
21610 10/20/2010 | DW11 | Washer 1 $399.99
21613 10/21/2010 | KL62 | Dryer 4 $329.95
21614 10/21/2010 | KT03 | Dishwasher 2 $595.00
21617 10/23/2010 | BVO6 | Home Gym 2 $12.95
21617 10/23/2010 | CD52 | Microwave Oven 4 $150.00
21619 10/23/2010 | DR93 | Gas Range 1 $495.00
21623 10/23/2010 | KV29 | Treadmill 2 $325.99

FIGURE 2-9 Sample ORDERS table

Although the ORDERS table is in first normal form (because it contains no repeating
groups), problems exist within the table that require you to restructure it.

The description of a specific part, DR93 for example, occurs twice in the table. This
duplication (formally called redundancy) causes several problems. It is certainly wasteful
of space, but that is not nearly as serious as some of the other problems. These other prob-
lems are called update anomalies and they fall into four categories:

1. Updates: If you need to change to the description of part DR93, you must
change it twice—once in each row on which part DR93 appears. Updating the
part description more than once makes the update process much more cum-
bersome and time consuming.

2. Inconsistent data: There is nothing about the design that prohibits part DR93
from having two different descriptions in the database. In fact, if part DR93
occurs on 20 rows in the table, it is possible for this part to have 20 different
descriptions in the database.

3. Additions: When you try to add a new part and its description to the database,
you will face a real problem. Because the primary key for the ORDERS table con-
sists of both an ORDER_NUM and a PART_NUM, you need values for both of these
columns to add a new row to the table. If you add a part to the table that does
not yet have any orders, what do you use for an ORDER_NUM? The only solu-
tion is to create a dummy ORDER_NUM and then replace

it with a real ORDER_NUM once an order for this part is actually received. Cer-
tainly this is not an acceptable solution.

4. Deletions: If you delete order 21608 from the database and it is the only order
that contains part AT94, deleting the order also deletes all information about
part AT94. For example, you would no longer know that part AT94 is an iron.

These problems occur because you have a column, DESCRIPTION, that is dependent
on only a portion of the primary key, PART_NUM, and not on the complete primary key.
This situation leads to the definition of second normal form. Second normal form repre-
sents an improvement over first normal form because it eliminates update anomalies in
these situations. A table (relation) is in second normal form (2NF) when it is in first
normal form and no nonkey column (that is, a column that is not part of the primary key)
is dependent on only a portion of the primary key.

——————

When the primary key of a table contains only a single column, the table is automatically in second nor-
mal form.

You can identify the fundamental problem with the ORDERS table: it is not in second
normal form. Although it is important to identify the problem, what you really need is a
method to correct it; you want to be able to convert tables to second normal form. First, take
each subset of the set of columns that make up the primary key, and begin a new table with
this subset as its primary key. For the ORDERS table, the new design is:

(ORDER_NUM

(PART_NUM
(ORDER_NUM PART_NUM

Next, place each of the other columns with the appropriate primary key; that is, place
each one with the minimal collection of columns on which it depends. For the ORDERS
table, add the new columns as follows:

(ORDER_NUM ORDER_DATE)

(PART_NUM DESCRI PTI ON)
(ORDER_NUM PART_NUM NUM ORDERED, QUOTED_PRI CE)

Each of these new tables is given a descriptive name based on the meaning and con-
tents of the table, such as ORDERS, PART, and ORDER_LINE. Figure 2-10 shows samples of
these tables.

45

Database Design Fundamentals

46

Chapter 2

ORDERS
ORDER_ ORDER_ PART_ DESCRIPTION NUM_ QUOTED_
NUM DATE NUM ORDERED PRICE
21608 10/20/2010 | AT94 | Iron 11 $21.95
21610 10/20/2010 | DR93 | Gas Range 1 $495.00
21610 10/20/2010 | DW11 | Washer 1 $399.99
21613 10/21/2010 | KL62 | Dryer 4 $329.95
21614 10/21/2010 | KT03 | Dishwasher 2 $595.00
21617 10/23/2010 | BVO6 | Home Gym 2 $12.95
21617 10/23/2010 | CDS2 | Microwave Oven 4 $150.00
21619 10/23/2010 | DR93 | Gas Range 1 $495.00
21623 10/23/2010 | KV29 | Treadmill 2 $325.99
v v
ORDERS PART ORDER_LINE
ORDER_ ORDER_ PART_ DESCRIPTION ORDER_ PART_ NUM_ QUOTED_
NUM DATE NUM NUM NUM ORDERED PRICE
21608 10/20/2010 AT94 Iron 21608 AT94 11 $21.95
21610 10/20/2010 BV06 Home Gym 21610 DR93 1 $495.00
21613 10/21/2010 CD52 | Microwave Oven 21610 DW11 1 $399.99
21614 10/21/2010 DL71 Cordless Drill 21613 KL62 4 $329.95
21617 10/23/2010 DR93 | Gas Range 21614 KT03 2 $595.00
21619 10/23/2010 DW11 | Washer 21617 BV06 2 $12.95
21623 10/23/2010 FD21 Stand Mixer 21617 CD52 4 $150.00
KL62 Dryer 21619 DR93 1 $495.00
KT03 Dishwasher 21623 KV29 2 $325.99
KVv29 Treadmill

FIGURE 2-10 ORDERS table converted to second normal form

In Figure 2-10, converting the original ORDERS table to a new ORDERS table, a PART
table, and an ORDER_LINE table eliminates the update anomalies. A description appears
only once for each part, so you do not have the redundancy that existed in the original 47
table design. Changing the description of part DR93 from Gas Range to Deluxe Range, for
example, is now a simple process involving a single change. Because the description for a
part occurs in a single place, it is not possible to have multiple descriptions for a single part
in the database at the same time.

To add a new part and its description, you create a new row in the PART table, regard-
less of whether that part has pending or actual orders. Also, deleting order 21608 does not
delete part number AT94 from the database because it still exists in the PART table.
Finally, you have not lost any information by converting the ORDERS table to second nor-
mal form. You can reconstruct the data in the original table from the data in the new tables.

Third Normal Form

Problems can still exist with tables that are in second normal form. For example, suppose
that you create the following CUSTOMER table:

CUSTOVER (CUSTOMER NUM CUSTOMVER NAMVE, BALANCE, CREDIT LIMT,
REP_NUM LAST NAME, FIRST NAME)

This table has the following functional dependencies:

CUSTOVER NUM —» CUSTOVER NAME, BALANCE, CREDIT LIMT,
REP_NUM LAST NAME, FI RST_NAVE
REP_NUM —> LAST_NAVE, FI RST_NAVE

CUSTOMER_NUM determines all the other columns. In addition, REP_NUM deter-
mines LAST_NAME and FIRST_NAME.

When a table’s primary key is a single column, the table is automatically in second nor-
mal form. (If the table were not in second normal form, some column would be depen-
dent on only a portion of the primary key, which is impossible when the primary key is just
one column.) Thus, the CUSTOMER table is in second normal form.

Although this table is in second normal form, Figure 2-11 shows that it still possesses
update problems similar to those identified for the ORDERS table shown in Figure 2-9. In
Figure 2-11, the sales rep name occurs many times in the table.

Database Design Fundamentals

48

Chapter 2

CUSTOMER

CUSTOMER_ CUSTOMER_NAME BALANCE CREDIT_ REP_ FIRST_
NUM LIMIT NUM NAME
148 Al's Appliance and Sport $6,550.00 | $7,500.00 20 | Kaiser | Valerie
282 Brookings Direct $431.50 | $10,000.00 35| Hull | Richard
356 Ferguson’s $5,785.00| $7,500.00 65 | Perez |Juan
408 The Everything Shop $5,285.25| $5,000.00 35 |Hull | Richard
462 Bargains Galore $3,412.00 | $10,000.00 65 | Perez |Juan
524 Kline’s $12,762.00 | $15,000.00 20 | Kaiser | Valerie
608 Johnson’s Department Store| $2,106.00 | $10,000.00 65 | Perez |Juan
687 Lee’s Sport and Appliance $2,851.00 | $5,000.00 35 [Hull | Richard
725 Deerfield’s Four Seasons $248.00| $7,500.00 35 [Hull | Richard
842 All Season $8,221.00| $7,500.00 20 | Kaiser | Valerie

FIGURE 2-11 Sample CUSTOMER table

The redundancy of including a sales rep number and name in the CUSTOMER table
results in the same set of problems that existed for the ORDERS table. In addition to the
problem of wasted space, you have the following update anomalies:

1. Updates: Changing the sales rep name requires changes to multiple rows in
the table.

2. Inconsistent data: The design does not prohibit multiple iterations of sales rep
names in the database. For example, a sales rep might represent 20 custom-
ers and his name might be entered 20 different ways in the table.

3. Additions: To add sales rep 87 (Emily Daniels) to the database, she must rep-
resent at least one customer. If Emily does not yet represent any customers,
you either cannot record the fact that her name is Emily Daniels or you must
create a fictitious customer for her to represent until she represents an actual
customer. Neither of these solutions is desirable.

4. Deletions: If you delete all the customers of sales rep 35 from the database,
you will also lose all information about sales rep 35.

These update anomalies are due to the fact that REP_NUM determines LAST_NAME
and FIRST_NAME, but REP_NUM is not the primary key. As a result, the same REP_NUM
and consequently the same LAST_NAME and FIRST_NAME can appear on many
different rows.

You have seen that tables in second normal form represent an improvement over tables
in first normal form, but to eliminate problems with tables in second normal form, you
need an even better strategy for creating tables. Third normal form provides that strategy.

Before looking at third normal form, however, you need to become familiar with the spe-
cial name that is given to any column that determines another column (like REP_NUM in the
CUSTOMER table). Any column (or collection of columns) that determines another col- 49
umn is called a determinant. A table’s primary key is a determinant. In fact, by defini-
tion, any candidate key is a determinant. (Remember that a candidate key is a column or
collection of columns that could function as the primary key.) In Figure 2-11, REP_NUM is
a determinant, but it is not a candidate key, and that is the problem.

A table is in third normal form (3NF) when it is in second normal form and the only
determinants it contains are candidate keys.

———————————————

This text’s definition of third normal form is not the original definition. This more recent definition, which
is preferable to the original, is often referred to as Boyce-Codd normal form (BCNF) when it is impor-
tant to make a distinction between this definition and the original definition. This text does not make such
a distinction but will take this to be the definition of third normal form.

Now you have identified the problem with the CUSTOMER table: it is not in third nor-
mal form. There are several steps for converting tables to third normal form.

First, for each determinant that is not a candidate key, remove from the table the col-
umns that depend on this determinant (but do not remove the determinant). Next, cre-
ate a new table containing all the columns from the original table that depend on this
determinant. Finally, make the determinant the primary key of this new table.

In the CUSTOMER table, for example, remove LAST_NAME and FIRST_NAME because
they depend on the determinant REP_NUM, which is not a candidate key. A new table is
formed, consisting of REP_NUM as the primary key, and the columns LAST_NAME and
FIRST_NAME, as follows:

CUSTOMER (CUSTOMER NUM CUSTOMER NAME, BALANCE,
CREDIT_LIM T, REP_NUM

and

REP (REP_NUM LAST NAVE, FI RST_NAME)

Figure 2-12 shows the original CUSTOMER table and the tables created when convert-
ing the original table to third normal form.

Database Design Fundamentals

CUSTOMER

CUSTOMER_ CUSTOMER_NAME BALANCE CREDIT_ REP_ LAST_ FIRST_
50 NUM LIMIT NUM NAME NAME
148 Al's Appliance and Sport $6,550.00 | $7,500.00 20 | Kaiser | Valerie
282 Brookings Direct $431.50 | $10,000.00 35 | Hull Richard
356 Ferguson’s $5,785.00 | $7,500.00 65 | Perez | Juan
408 The Everything Shop $5,285.25 | $5,000.00 35 | Hull Richard
462 Bargains Galore $3,412.00 | $10,000.00 65 | Perez | Juan
524 Kline’s $12,762.00 | $15,000.00 20 | Kaiser | Valerie
608 Johnson’s Department Store | $2,106.00 | $10,000.00 65 | Perez | Juan
687 Lee’s Sport and Appliance $2,851.00 | $5,000.00 35 | Hull Richard
725 Deerfield’s Four Seasons $248.00 | $7,500.00 35 | Hull Richard
842 All Season $8,221.00 | $7,500.00 20 | Kaiser | Valerie
v
CUSTOMER
CUSTOMER_ CUSTOMER_NAME BALANCE CREDIT_LIMIT REP_NUM
NUM
148 Al's Appliance and Sport $6,550.00 $7,500.00 | 20
282 Brookings Direct $431.50 $10,000.00 | 35
356 Ferguson’s $5,785.00 $7,500.00 | 65
408 The Everything Shop $5,285.25 $5,000.00 | 35
462 Bargains Galore $3,412.00 $10,000.00 | 65
524 Kline’s $12,762.00 $15,000.00 | 20
608 Johnson’s Department Store | $2,106.00 $10,000.00 | 65
687 Lee’s Sport and Appliance $2,851.00 $5,000.00 | 35
725 Deerfield’s Four Seasons $248.00 $7,500.00 | 35
842 All Season $8,221.00 $7,500.00 | 20
A 4
REP
20 Kaiser Valerie
85! Hull Richard
65 Perez Juan

FIGURE 2-12 CUSTOMER table converted to third normal form

Chapter 2

Has this new design for the CUSTOMER table corrected all of the previously identi-
fied problems? A sales rep’s name appears only once, thus avoiding redundancy and sim-
plifying the process of changing a sales rep’s name. This design prohibits a sales rep from
having different names in the database. To add a new sales rep to the database, you add a
row to the REP table; it is not necessary for a new rep to represent a customer. Finally,
deleting all customers of a given sales rep will not remove the sales rep’s record from the REP
table, retaining the sales rep’s name in the database. You can reconstruct all the data in the
original table from the data in the new collection of tables. All previously mentioned
problems have indeed been solved.

Question: Convert the following table to third normal form. In this table, STUDENT_NUM
determines STUDENT_NAME, NUM_CREDITS, ADVISOR_NUM, and ADVISOR_NAME.
ADVISOR_NUM determines ADVISOR_NAME. COURSE_NUM determines DESCRIPTION.
The combination of a STUDENT_NUM and a COURSE_NUM determines GRADE.

STUDENT (STUDENT_NUM STUDENT_NAME, NUM CREDI TS,
ADVI SOR_NUM ADVI SOR_NAME, (COURSE_NUM DESCRI PTI ON,

GRADE))
Answer: Complete the following steps:
Step 1. Remove the repeating group to convert the table to first normal form, as
follows:
STUDENT (STUDENT_NUM STUDENT_NAME, NUM CREDI TS,
ADVI SOR_NUM ADVI SOR_NAME, COURSE_NUM DESCRI PTI ON,
GRADE)
The STUDENT table is now in first normal form because it has no repeating groups.
It is not, however, in second normal form because STUDENT_NAME is dependent only on
STUDENT_NUM, which is only a portion of the primary key.
Step 2. Convert the STUDENT table to second normal form. First, for each subset of
the primary key, start a table with that subset as its key yielding the following:
(STUDENT_NUM
(COURSE_NUM
(STUDENT_NUM COURSE_NUM
Next, place the rest of the columns with the smallest collection of columns on which
they depend, as follows:
(STUDENT _NUM STUDENT_NAME, NUM CREDI TS, ADVI SOR_NUM
ADVI SOR_NANE)
(COURSE_NUM DESCRI PTI ON)
(STUDENT_NUM COURSE_NUM GRADE)
Finally, assign names to each of the new tables:
STUDENT (STUDENT_NUM STUDENT_NAME, NUM CREDI TS,
ADVI SOR_NUM_ADVI SOR_NAME)
COURSE (COURSE_NUM DESCRI PTI ON)
STUDENT_COURSE (STUDENT _NUM COURSE_NUM GRADE)
These tables are all now in second normal form, and the COURSE and
STUDENT_COURSE tables are also in third normal form. The STUDENT table is not in
third normal form, however, because it contains a determinant (ADVISOR_NUM) that is

not a candidate key.

continued

Database Design Fundamentals

Step 3: Convert the STUDENT table to third normal form by removing the column
52 that depends on the determinant ADVISOR_NUM and placing it in a separate table, as
follows:

(STUDENT NUM STUDENT NAME, NUM CREDI TS, ADVI SOR_NUM)

(ADVI SOR_NUM ADVI SOR_NANE)

Step 4: Name the tables and put the entire collection together, as follows:
STUDENT (STUDENT_NUM STUDENT_NAME, NUM CREDI TS,
ADVI SOR_NUM)

ADVI SOR (ADVI SOR_ NUM ADVI SOR_NAVE)

COURSE (COURSE_NUM DESCRI PTI ON)

STUDENT_COURSE (STUDENT_NUM COURSE_NUM GRADE)

DIAGRAMS FOR DATABASE DESIGN

For many people, an illustration of a database’s structure is quite useful. A popular type of
illustration used to represent the structure of a database is the entity-relationship (E-R)
diagram. In an E-R diagram, a rectangle represents an entity (table). One-to-many relation-
ships between entities are drawn as lines between the corresponding rectangles.

Several different styles of E-R diagrams are used to diagram a database design. In the
version shown in Figure 2-13, an arrowhead indicates the “many” side of the relation-
ship between tables. In the relationship between the REP and CUSTOMER tables, for
example, the arrow points from the REP table to the CUSTOMER table, indicating that
one sales rep is related to many customers. The ORDER_LINE table has two one-to-many
relationships, as indicated by the line from the ORDERS table to the ORDER_LINE table
and the line from the PART table to the ORDER_LINE table.

Rectangle
REP represents an
tit
ey Arrow represents
a one-to-many
relationship
CUSTOMER
Arrowhead points
to the “many” part of
the relationship
ORDERS ORDER_LINE PART

FIGURE 2-13 E-R diagram for the Premiere Products database with rectangles and arrows

Chapter 2

NOTE — |

In this style of E-R diagram, you can put the rectangles in any position to represent the entities and
relationships. The important thing is that the arrows connect the appropriate rectangles. 53

Another style of E-R diagram is to represent the “many” side of a relationship between
tables with a crow’s foot, as shown in Figure 2-14.

REP
Crow's foot
represents the “many”
part of the relationship
CUSTOMER
ORDERS ORDER_LINE PART

FIGURE 2-14 E-R diagram for the Premiere Products database with a crow’s foot

The E-R diagram shown in Figure 2-15 represents the original style of E-R diagrams. In
this style, relationships are indicated in diamonds that describe the relationship. The relation-
ship between the REP and CUSTOMER tables, for example, is named REPRESENTS, reflect-
ing the fact that a sales rep represents a customer. The relationship between the CUSTOMER
and ORDERS table is named PLACED, reflecting the fact that customers place orders. The
relationship between the ORDERS and ORDER_LINE tables is named CONTAINS, reflecting
the fact that an order contains order lines. The relationship between the PART and
ORDER_LINE tables is named IS_ON, reflecting the fact that a given part is on many orders.
In this style of E-R diagram, the number 1 indicates the “one” side of the relationship and the
letter “n” represents the “many” side of the relationship.

Database Design Fundamentals

REP

54 “"One" part of

a relationship
Diamond represents
REPRESENTS and describes a

relationship

N “Many” part of
a relationship
CUSTOMER
1
PLACED
n
1 n n 1
ORDERS ORDER_LINE PART

FIGURE 2-15 E-R diagram for the Premiere Products database with named relationships

Chapter 2

Chapter Summary

An entity is a person, place, thing, or event. An attribute is a property of an entity. A rela-
tionship is an association between entities.

A relation is a two-dimensional table in which the entries in the table contain only single
values, each column has a distinct name, all values in a column match this name, the
order of the rows and columns is immaterial, and each row contains unique values. A rela-
tional database is a collection of relations.

Column B is functionally dependent on another column, A (or possibly a collection of col-
umns), when a value for A determines a single value for B at any one time.

Column A (or a collection of columns) is the primary key for a relation (table), R, if all col-
umns in R are functionally dependent on A and no subcollection of the columns in A (assum-
ing A is a collection of columns and not just a single column) also has property 1.

To design a database to satisfy a particular set of requirements, first read through the
requirements and identify the entities (objects) involved. Give names to the entities and
identify the unique identifiers for these entities. Next, identify the attributes for all the
entities and the functional dependencies that exist among the attributes, and then use the
functional dependencies to identify the tables and columns. Finally, identify any relation-
ships between tables by looking at matching columns.

A table (relation) is in first normal form (1NF) when it does not contain a repeating group.
To convert an unnormalized table to first normal form, remove the repeating group and
expand the primary key to include the original primary key along with the key to the
repeating group.

Atable (relation) is in second normal form (2NF) when it is in first normal form and no non-
key column (that is, a column that is not part of the primary key) is dependent on only
a portion of the primary key. To convert a table in first normal form to a collection of tables
in second normal form, take each subset of the set of columns that make up the pri-
mary key, and begin a new table with this subset as its primary key. Next, place each of
the other columns with the appropriate primary key; that is, place each one with the mini-
mal collection of columns on which it depends. Finally, give each of these new tables

a name that is descriptive of the meaning and contents of the table.

A table is in third normal form (3NF) when it is in second normal form and the only deter-
minants (columns on which at least one other column depends) it contains are candi-
date keys (columns that could function as the primary key). To convert a table in second
normal form to a collection of tables in third normal form, first, for each determinant that
is not a candidate key, remove from the table the columns that depend on this deter-
minant (but don’t remove the determinant). Next, create a new table containing all the col-
umns from the original table that depend on this determinant. Finally, make the
determinant the primary key of this new table.

An entity-relationship (E-R) diagram is an illustration that represents the design of a
database. There are several common styles of illustrating database design that use
shapes to represent entities and connectors to illustrate the relationships between those
entities.

55

Database Design Fundamentals

56

Chapter 2

Key Terms

attribute

Boyce-Codd normal form (BCNF)
candidate key

concatenation

database design

determinant

entity

entity-relationship (E-R) diagram
field

first normal form (1NF)
functionally dependent
functionally determine

nonkey column

normal form

normalization

Review Questions

one-to-many relationship
primary key

qualify

record

redundancy

relation

relational database
relationship

repeating group

second normal form (2NF)
third normal form (3NF)
tuple

unnormalized relation
update anomaly

What is an entity?

What is an attribute?

What is a repeating group?
What is a relation?

What is a relationship? What is a one-to-many relationship?

10.

11.

Noo gk w Db P

What is a relational database?

Describe the shorthand representation of the structure of a relational database. Illustrate
this technique by representing the database for Henry Books as shown in Figures 1-4
through 1-7 in Chapter 1.

How do you qualify the name of a field, and when do you need to do this?
What does it mean for a column to be functionally dependent on another column?

What is a primary key? What is the primary key for each of the tables in the Henry Books
database shown in Chapter 1?

A database at a college must support the following requirements:
a. For a department, store its number and name.

b. For an advisor, store his or her number, last name, first name, and the department num-
ber to which the advisor is assigned.

For a course, store its code and description (for example, MTH110, Algebra).

For a student, store his or her number, first name, and last name. For each course the
student takes, store the course code, the course description, and the grade earned.

Also, store the number and name of the student’s advisor. Assume that an advisor might
advise any number of students but that each student has just one advisor.

Design the database for the preceding set of requirements. Use your own experience as
a student to determine any functional dependencies. List the tables, columns, and
relationships. In addition, represent your design with an E-R diagram.

S

12. Define first normal form.

13. Define second normal form. What types of problems might you encounter using tables that
are not in second normal form?

14. Define third normal form. What types of problems might you encounter using tables that are
not in third normal form?

15. Using the functional dependencies you determined in Question 11, convert the following
table to an equivalent collection of tables that are in third normal form.

STUDENT (STUDENT NUM STUDENT LAST NAME, STUDENT FI RST_NAME,
ADVI SOR_ NUM ADVI SOR_LAST_NAMVE, ADVI SOR FI RST_NAME,
(COURSE_CODE, DESCRI PTI ON, GRADE))

Exercises

Premiere Products

Answer each of the following questions using the Premiere Products data shown in Figure 2-1.
No computer work is required.

1. Indicate the changes (using the shorthand representation) that you would need to make to
the original Premiere Products database design (see Figure 2-1) to support the following
requirements. A customer is not necessarily represented by a single sales rep, but can be
represented by several sales reps. When a customer places an order, the sales rep who
gets the commission on the order must be in the collection of sales reps who represent the
customer.

2. Indicate the changes (using the shorthand representation) that you would need to make to
the original Premiere Products database design to support the following requirements. There
is no relationship between customers and sales reps. When a customer places an order,
any sales rep can process the order. On the order, you need to identify both the customer
placing the order and the sales rep responsible for the order. Draw an E-R diagram for the
new design.

3. Indicate the changes (using the shorthand representation) that you would need to make to
the original Premiere Products database design in the event that the original Requirement
3 is changed as follows. For a part, store the part's number, description, item class, and
price. In addition, for each warehouse in which the part is located, store the number of the
warehouse, the description of the warehouse, and the number of units of the part stored in
the warehouse. Draw an E-R diagram for the new design.

Database Design Fundamentals

58

Using your knowledge of Premiere Products, determine the functional dependencies that
exist in the following table. After determining the functional dependencies, convert this table
to an equivalent collection of tables that are in third normal form.

PART (PART NUM DESCRI PTION, ON HAND, CLASS, WAREHOUSE,
PRI CE, (ORDER NUM ORDER DATE, CUSTOMER NUM
CUSTOVER NAME, NUM ORDERED, QUOTED PRI CE))

Henry Books

Answer each of the following questions using the Henry Books data shown in Figures 1-4 through
1-7 in Chapter 1. No computer work is required.

1.

Ray Henry is considering expanding the activities at his book stores to include movies. He
has some ideas for how he wants to do this and he needs you to help with database design
activities to address these ideas. In particular, he would like you to design a database for
him. He is interested in movies and wants to store information about movies, stars, and direc-
tors in a database. He needs to be able to satisfy the following requirements:

a. For each director, list his or her number, name, the year he or she was born, and the
year of death if he or she is deceased.

b. For each movie, list its number, title, the year the movie was made, and its type.

c. For each movie, list its number, title, the number and name of its director, the critics’ rat-
ing, the MPAA rating, the number of awards for which the movie was nominated, and
the number of awards the movie won.

d. For each movie star, list his or her number, name, birthplace, the year he or she was
born, and the year of death if he or she is deceased.

e. Foreach movie, list its number and title, along with the number and name of all the stars
who appear in it.

f. For each movie star, list his or her number and name, along with the number and name
of all the movies in which he or she stars.

List the tables, columns, and relationships. In addition, represent your design with an E-R
diagram.

Determine the functional dependencies that exist in the following table, and then convert
this table to an equivalent collection of tables that are in third normal form.

BOOK (BOOK_CODE, TITLE, TYPE, PRICE (AUTHOR NUM
AUTHOR LAST, AUTHOR FI RST))

Determine the functional dependencies that exist in the following table, and then convert
this table to an equivalent collection of tables that are in third normal form.

BOOK (BOOK_CODE, TITLE, TYPE, PRICE, PUB_CODE,
PUBLI SHER_NAME, CI TY)

Alexamara Marina Group

Answer each of the following questions using the Alexamara Marina Group data shown in
Figures 1-8 through 1-12 in Chapter 1. No computer work is required.

1.

Chapter 2

Design a database that can satisfy the following requirements:
a. For each marina, list the number, name, address, city, state, and zip code.

b. For each boat owner, list the number, last name, first name, address, city, state, and
zip code.

c. For each marina, list all the slips in the marina. For each slip, list the length of the slip,
annual rental fee, name and type of the boat occupying the slip, and boat owner’s num-
ber, last name, and first name.

d. For each possible service category, list the category number and description. In addi-
tion, for each service request in a category, list the marina number and slip number for
the boat receiving the service, estimated hours for the service, hours already spent on
the service, and next date that is scheduled for the particular service.

e. For each service request, list the marina number, slip number, category description,
description of the particular service, and a description of the current status of the
service.

List the tables, columns, and relationships. In addition, represent your design with an E-R
diagram.

Determine the functional dependencies that exist in the following table, and then convert
this table to an equivalent collection of tables that are in third normal form.

MARI NA (MARINA NUM NAVE, (SLIP_NUM LENGTH, RENTAL_FEE,
BOAT_NAME))

Determine the functional dependencies that exist in the following table, and then convert
this table to an equivalent collection of tables that are in third normal form.

MARINA SLIP (SLIP ID, MARI NA NUM SLIP_NUM LENGTH, RENTAL_ FEE,
BOAT NAME, BOAT TYPE, OANER NUM LAST_NAME,
FI RST_NANE)

Database Design Fundamentals

This page intentionally left blank

CHAPTER

CREATING TABLES

LEARNI

Objectives
e Create an
e Create tabl
e |dentify an
e Understan
e Add rows t
e View table
e Correct err
e Save SQL
e Describe a

INTRODUCTION

You already might be an experienced user of a database management system (DBMS). You might find a
DBMS at your school’s library, at a site on the Internet, or in any other place where you retrieve data using
a computer. In this chapter, you will begin your study of Structured Query Language (SQL), which is one

of the most popular and widely used languages for retrieving and manipulating database data.

In the mid-1970s, SQL was developed as the data manipulation language for IBM’s prototype
relational model DBMS, System R, under the name SEQUEL at IBM’'s San Jose research facilities. In
1980, the language was renamed SQL (but still pronounced “sequel” although the equally popular
pronunciation of “S-Q-L" [“ess-cue-ell”] is used in this text) to avoid confusion with an unrelated hardware

product named SEQUEL. Most DBMSs use a version of SQL as their data manipulation language.

62

Chapter 3

In this chapter, you will learn the basics of working in SQL. You will learn how to create tables and
assign data types to columns. You also will learn about a special type of value, called a null value, and
learn how to manage these values in tables. You will learn how to insert data into your tables after you

create them. Finally, you will learn how to describe a table’s layout using SQL.

CREATING AND RUNNING SQL COMMANDS

You accomplish tasks in SQL by creating and running commands. In order to do so, you
need to use a DBMS that supports SQL. This text uses Oracle as the DBMS in which to cre-
ate and run the commands. The text also indicates differences you will find if you are using
Microsoft Access or Microsoft SQL Server 2005. (If you are using MySQL, contact
Cengage Learning for the latest edition of A Guide to MySQL, by Pratt and Last.)
Although the version of Oracle used in this text is the Oracle Database 10g Express
Edition, the commands used in this text will work the same in any other version of Oracle.
You use the Oracle Database Express Edition by downloading it from the Oracle Web site,
installing it, and then starting it using the Microsoft Internet Explorer Web browser.

Starting the Oracle Database Express Edition

After installing the Oracle Database Express Edition, you start it by clicking the Start but-
ton, pointing to All Programs, clicking Oracle Database 10g Express Edition, and then
clicking Go To Database Home Page. Internet Explorer will start and load the home page,
which requests your username and password. (Ask your instructor which username and
password to use, or use the one you specified when you installed the software. If a differ-
ent Web browser starts, ask your instructor for help. Other Web browsers might not fully
support the examples used in this text.) After entering this information, click the Login
button. Figure 3-1 shows the Oracle Database Express Edition home page. You click the
icons on the home page to access the various tools. In this text, you will use the SQL tool.
The other tools let you administer a database, work with database objects, and run differ-
ent database utilities. (These features are beyond the scope of this book.)

Currently
logged on as SYSTEM
user (administrator)

Help button
|cons - 63
ORACLE Ditabase Express Edition fOI’ availab|e - :
tools : .
= Logout button e

I ST

Aabmirsisdrativn Objuct Brwarsis S0l itilitie:

Links
to additional
resources

Usage monitor

FIGURE 3-1 Oracle Database Express Edition home page

NOTE ———— 3

The figure shows that the SYSTEM (administrator) user is currently logged on. Your instructor might assign
you another username to use as your login, in which case, this name will appear on your screen.

There are two ways to use the tools in the Oracle Database Express Edition. You can click
the arrow for the icon to display a menu and then select an option from the menu. Figure 3-2
shows the result of clicking the arrow for the SQL icon and then pointing to the SQL Scripts
option on the SQL menu. A submenu of commands for working with SQL scripts appears. To
create a script using this approach, for example, you would click the arrow, point to SQL
Scripts, and then click Create. (You will learn more about scripts later in this chapter.)

Creating Tables

L

Chapter 3

ORACLE" Database Express Edition

SQL
User: STSTEM icon arrow
Home
Administration Object Browser soL ies
saL Sl Cm-unands : r :
Scripts option | S0l Scripts SOL Seripts
Giery Builder M Create
. Upload
SQL Scripts i
submenu Bl
Export
Import

FIGURE 3-2 SQL Scripts submenu

You also can click the icon to display the options as icons instead of as submenus. For
example, when you click the SQL icon on the home page, you will see the SQL page shown
in Figure 3-3. Clicking an arrow on an icon displays a submenu. The figure shows the
results of clicking the arrow for the SQL Scripts icon, which displays the SQL Secripts
submenu. To create a script using this approach, click the SQL icon on the home page,
click the arrow for the SQL Seripts icon, and then click Create. The approach you choose

is a matter of personal preference.

Uzer S%STEM

Home = S0L

ORACLE’ Database Express Edition

SQL

Scripts_aﬂ—

SQL Scripts
submenu

™| v
M,
"N
N
S0L Commands S0L Seripts ﬁlder

Create
Uplaad
Migwy
Expott
Import

FIGURE 3-3 SQL Scripts submenu on the SQL page

Entering Commands

You enter commands on the SQL Commands page. To access the SQL Commands page,
click the arrow for the SQL icon, and then point to SQL. Commands as shown in Figure 3-4.

ORACLE’ Database Express Edition
SQL

User: SYSTEM icon arrow
‘ = _'. I .
Administration Object Browser i N
@ | SGL Commands » SOL Commands
| S0l Scripts l Erter Command

Giuery Builder

Home

SQL
Commands
submenu

FIGURE 3-4 Starting a new SQL command

After clicking the Enter Command option on the SQL Commands submenu, you will
see the SQL. Commands page shown in Figure 3-5. You enter the command in the upper por-
tion of this page, called the SQL editor pane, and then click the Run button to execute the
command and display its results in the lower portion of the page, called the Results pane.

ORACLE" Database Express Edition G o ?
v Breadcrumbs Heme Logout Help
LUsar SVSTEMQ

Home > SOL > SOL Commands

[Autacammit Display

SQL
editor
pane

Results Explain Describe Saved SOL History

Enter SAL staternent ar PL/SOL command and click Run to see the results

FIGURE 3-5 SQL Commands page

=

Creating Tables

66

Chapter 3

After clicking the Run button, the results will appear in the Results pane. Notice the
Home> SQL> SQL Commands reference at the top of the SQL editor pane. This refer-
ence is called a breadcrumb. You can click the pages in the breaderumb to move back one
or more pages. For example, to return to the home page, click Home in the breaderumb.

CREATING A TABLE

Before you begin adding data to a table, you must describe the layout of the table to the DBMS.

Describe the layout of the REP table to the DBMS.

You use the CREATE TABLE command to describe the layout of a table. The word
TABLE is followed by the name of the table to be created and then by the names and data
types of the columns that the table contains. The data type indicates the type of data that
the column can contain (for example, characters, numbers, or dates) as well as the maxi-
mum number of characters or digits that the column can store.

The restrictions placed on table and column names are as follows:

1. The names cannot exceed 30 characters.

2. The names must start with a letter.

3. The names can contain letters, numbers, and underscores (_).
4. The names cannot contain spaces.

The SQL command that creates the REP table is shown in Figure 3-6.

* CREATE TABLE REP)
(REP_NUM CHAR(2) PRIMARY KEY,
LAST NAME CHAR(15),
FIRST NAME CHAR(15),
STREET CHAR(15),

CITY CHAR(15),

STATE CHAR(2),

ZIP CHAR(5),

COMMISSION DECIMAL(7,2),
RATE DECIMAL(3,2))j<—

Creates a table
named REP

Command continues
over several lines

Semicolon indicates
end of command

FIGURE 3-6 CREATE TABLE command for the REP table

This CREATE TABLE command, which uses the data definition features of SQL,
describes a table named REP. The table contains nine columns: REP_NUM, LAST_NAME,
FIRST_NAME, STREET, CITY, STATE, ZIP, COMMISSION, and RATE. The REP_NUM col-
umn can store two characters and is the table’s primary key. The LAST_NAME column can
store 15 characters, and the STATE column can store two characters. The COMMISSION
column can store only numbers, and those numbers are limited to seven digits, includ-
ing two decimal places. Similarly, the RATE column can store three numbers, including two

decimal places. You can think of the SQL command shown in Figure 3-6 as creating an
empty table with column headings for each column name.

In SQL, commands are free format; that is, no rule says that a particular word must
begin in a particular position on the line. For example, you could have written the CREATE
TABLE command shown in Figure 3-6 as follows:

CREATE TABLE REP (REP_NUM CHAR(2) PRI MARY KEY, LAST NAVE
CHAR(15), FIRST_NAVE CHAR(15), STREET CHAR(15), CITY
CHAR(15), STATE CHAR(2), ZIP CHAR(5), COWM SSI ON

DECI MAL(7, 2), RATE DECI MAL(3,2));

67

The manner in which the CREATE TABLE command shown in Figure 3-6 was written
makes the command more readable. This text will strive for such readability when writ-
ing SQL commands.

———— 3

SQL is not case sensitive; you can type commands using uppercase or lowercase letters. There is one excep-
tion to this rule, however. When you are inserting character values into a table, you must use the correct case.

To create the REP table in Oracle, click in the SQL editor pane, type the CREATE
TABLE command shown in Figure 3-7, and then click the Run button on the right side of
the SQL editor pane to execute the command and create the table. Figure 3-7 also shows
the message that appears in the Results pane after running the command, which indi-
cates that the table was created.

Home > SQL = SQL Commands

[l Autocommit Display | 10 v

CREATE TAELE REF 1
(REF_NUN CHAR(Z) PRIMARY KEY,
LLST NAME CHAR[15),

FIRST NAME CHAR[15),
STREET CHAR(15), CREATE

CITY CHRR{15),
STATE CHAR(Z),

ZIF CHAR(S),
COMMISSION DECIMAL(7,2),
RATE DECIMAL(3,Z) |: J

Results Explain Describe Saved SOL History

Message
indicates successful
table creation

Table created.

FIGURE 3-7 Running the CREATE TABLE command for the REP table

Creating Tables

ACCESS USER NOTE

QueryTools | Premiere Products @ Databasd

External Data [ratabase Tools ' Design ||

aD Union % Ze= Inzert Rows
e O Pass-Through — ?‘ Delete Rows
Make Append Update Crosstab Delete Show
Tahle ﬁData Definition Tahle -J\ Builder
Query Type Que

CREATE TABLE REP

{REP_MUM CHAR(Z) PRIMARY KEY,
LAST_NAME CHAR(LS),
FIRST_MAME CHAR(1S),

STREET CHAR(1S), CREATE
CITY CHAR(1S), TABLE command
STATE CHAR{Z),

7P CHAR(S),
COMMISSION CURREMCY,
RATE MUMEER J:

Chapter 3

SQL SERVER USER NOTE

Microsoft SQL Server 2005 is a DBMS designed for use in client-server applications. You can run Microsoft
SQL Server 2005 from your own computer through a set of client database tools called SQL Server
Management Studio. Management Studio includes a Query Editor window that you can use to run SQL
commands. If you are using Management Studio and connecting to a database on your local computer, accept
the default values for Server Type, Server Name, and Authentication, and then click the Connect button in the
Connect to Server dialog box. When Management Studio appears, double-click Databases, open the data-
base on which you want to run SQL commands, and click the New Query button on the toolbar. Type the SQL
command in the Query Editor window that opens, and then click the Execute button on the toolbar to execute
the command. The command shown in Figure 3-9 creates the REP table and displays a message in the
Messages pane to indicate that the command completed successfully.

69

s0L Server Management Studic

File Edit View Query Project Tools Window Community Help
Onenoey | BEBDSHS BEABESI.

43 137 | Premiers = 1 Execute B &
)
CREATE
TABLE command

CIMAL(7,2),

(3,2)):)

(B2

3 Messages Message
indicates successful

table creation

Command (s) completed successfully.

FIGURE 3-9 Using Microsoft SQL Server 2005 to create a table

Correcting Errors in SQL Commands

Suppose that you executed the REP table using the CREATE TABLE command shown in
Figure 3-10, which contains several mistakes. Instead of displaying a message that the table
was created successfully, Oracle displays an error message about a problem that it encountered.
In reviewing the command, you see that CHAR is misspelled on line 4, line 5 is missing a
comma, the CITY column was omitted, and line 7 should be deleted. If you run an SQL com-
mand and Oracle displays an error, you can use the mouse and the arrow keys on the key-
board to position the insertion point in the correct position so you can correct these errors
using the same techniques that you might use in a word processor. For example, you can use
the pointer to select the word CHR on line 4 and type CHAR. Then you can use the pointer to
move the insertion point to the end of line 5 so you can type the missing comma, and then
press Enter to insert the missing information to create the CITY column. You can use the
pointer to select the contents of line 7 and then press Delete to remove it. After making these
changes, you can click the Run button to execute the command again. If the command con-
tains additional errors, you'll see an error message again. If the command is correct, you'll
see the message that the table was created.

Creating Tables

70

Chapter 3

Home > SOL >

CHR

FlAutocommit Display | 10 v

should be CHAR
{REP_NUM CHAR (2] PRIMARY KEY,
LAST NANE CHYR[15],

FIRST NAME CHR[1S],
STREET CHAR(15)
STATE CHAR(Z]T

¥XY CHAR(10],
ZIP CHAR(S),
COMMISSION DECIMAL(7,Z2),

RATE DECIMAL(3,2) 1:

CREATE TLBLE%REP

XXX
column should not be
included

Error message

ORA-00907: missing right parenthesiz

Results Explain Describe Sawved SOL History

FIGURE 3-10 CREATE TABLE command with errors

Dropping a Table

After creating a table, you might notice that you added a column that you do not need or
that you assigned the wrong data type or size to a column. Another way of correcting
errors in a table is to delete (drop) the table and start over. For example, suppose you wrote
a CREATE TABLE command that contained a column named LST instead of LAST or
defined a column as CHAR(S) instead of CHAR(15). Suppose you do not discover the error
and you execute the command, creating a table with these problems. In this case, you can
delete the entire table using the DROP TABLE command and then re-create the table
using the correct CREATE TABLE command.

To drop a table, execute the DROP TABLE command, followed by the name of the table
you want to delete and a semicolon. To delete the REP table, for example, you would enter
the following command and then click the Run button:

DROP TABLE REP;

Dropping a table also deletes any data that you entered into the table. It is a good idea
to check your CREATE TABLE commands carefully before executing them and to cor-
rect any problems before adding data. Later in this text, you will learn how to change a
table’s structure without having to delete the entire table.

Question: How can I correct a mistake that I made when I created a table?

Answer: Later in the text, you will see how to alter a table to make any necessary
corrections. For now, the easiest way is to drop the table using the DROP TABLE com-
mand and then to execute the correct CREATE TABLE command.

USING DATA TYPES

For each column in a table, you must specify the data type to use to store the type of data
that the column will contain. Figure 3-11 describes some common data types used in
databases.

Data type Description

CHAR(n) Stores a character string n characters long. You use the CHAR data type for col-
umns that contain letters and special characters and for columns containing
numbers that will not be used in any calculations. Because neither sales rep
numbers nor customer numbers will be used in any calculations, for example,
the REP_NUM and CUSTOMER_NUM columns are both assigned the CHAR
data type.

7a

VARCHAR(n) An alternative to CHAR that stores a character string up to n characters long.
Unlike CHAR, only the actual character string is stored. If a character string
20 characters long is stored in a CHAR(30) column, for example, it will
occupy 30 characters (20 characters plus 10 blank spaces). If it is stored in a
VARCHAR(30) column, it will only occupy 20 spaces. In general, tables that
use VARCHAR instead of CHAR occupy less space, but the DBMS does not pro-
cess them as rapidly during queries and updates. However, both are legitimate
choices. This text uses CHAR, but VARCHAR would work equally well.

DATE Stores date data. The specific format in which dates are stored varies from
one SQL implementation to another. In Oracle, dates are enclosed in single quo-
tation marks and have the format DD-MON-YYYY (for example, '15-OCT-2010'
is October 15, 2010). In Access, dates are enclosed in number signs and are
entered using the format MM/DD/YYYY (for example, #10/15/2010# is October
15, 2010). In SQL Server, use the DATETIME data type to store dates.

DECIMAL(p,q) Stores a decimal number p digits long with g of these digits being decimal
places to the right of the decimal point. For example, the data type
DECIMAL(S,2) represents a number with three places to the left and two
places to the right of the decimal (for example, 100.00). You can use the con-
tents of DECIMAL columns in calculations. You also can use the NUMBER
(p,q) data type in both Oracle and SQL Server to store a decimal number.
Access does not support the DECIMAL data type; use the CURRENCY or
NUMBER data type instead.

INT Stores integers, which are numbers without a decimal part. The valid range is
-2147483648 to 2147483647. You can use the contents of INT columns in
calculations. If you follow the word INT with AUTO_INCREMENT, you create
a column for which SQL will automatically generate a new sequence number
each time you add a new row. This would be the appropriate choice, for
example, when you want the DBMS to generate a value for a primary key.

SMALLINT Stores integers, but uses less space than the INT data type. The valid range is
-32768 to 32767. SMALLINT is a better choice than INT when you are certain
that the column will store numbers within the indicated range. You can use
the contents of SMALLINT columns in calculations.

FIGURE 3-11 Commonly used data types

Creating Tables

72

Chapter 3

USING NULLS

Occasionally, when you enter a new row into a table or modify an existing row, the values
for one or more columns are unknown or unavailable. For example, you can add a cus-
tomer’s name and address to a table even though the customer does not have an assigned
sales rep or an established credit limit. In other cases, some values might never be
known—perhaps there is a customer that does not have a sales rep. In SQL, you handle this
situation by using a special value to represent cases in which an actual value is unknown,
unavailable, or not applicable. This special value is called a null data value, or simply a
null. When creating a table, you can specify whether to allow nulls in the individual
columns.

Question: Should a user be allowed to enter null values for the primary key?

Answer: No. The primary key is supposed to uniquely identify a given row, and this would
be impossible if nulls were allowed. For example, if you stored two customer records with-
out values in the primary key column, you would have no way to tell them apart.

In SQL, you use the NOT NULL clause in a CREATE TABLE command to indicate col-
umns that cannot contain null values. The default is to allow nulls; columns for which you
do not specify NOT NULL can accept null values.

For example, suppose that the LAST_NAME and FIRST_NAME columns in the REP
table cannot accept null values, but all other columns in the REP table can. The following
CREATE TABLE command accomplishes this goal:

CREATE TABLE REP
(REP_NUM CHAR(2) PRI MARY KEY,
LAST_NAVE CHAR(15) NOT NULL,
FI RST_NAMVE CHAR(15) NOT NULL,
STREET CHAR(15),

Cl TY CHAR(15),

STATE CHAR(2),

ZI P CHAR(5),

COWVM SSI ON' DECI MAL(7, 2),

RATE DECI MAL(3,2));

If you created the REP table with this CREATE TABLE command, the DBMS would reject
any attempt to store a null value in either the LAST_NAME or FIRST_NAME column. The sys-
tem would accept an attempt to store a null value in the STREET column, however, because

the STREET column can accept null values. Because the primary key column cannot accept
null values, you do not need to specify the REP_NUM column as NOT NULL.

ADDING ROWS TO A TABLE

After you have created a table in a database, you can load data into the table by using the
INSERT command.

The INSERT Command

The INSERT command adds rows to a table. You type INSERT INTO followed by the name
of the table into which you are adding data. Then you type the word VALUES followed by
the specific values to be inserted in parentheses. When adding rows to character col-
umns, make sure you enclose the values in single quotation marks (for example, 'Kaiser').
You also must enter the values in the appropriate case, because character data is stored
exactly as you enter it.

73

NOTE e

You must enclose values in single quotation marks for any column whose type is character (CHAR), even
when the data contains numbers. Because the ZIP column in the REP table has a CHAR data type, for
example, you must enclose zip codes in single quotation marks, even though they are numbers.

If you need to enter an apostrophe (single quotation mark) into a column, you type two single quotation

marks. For example, to enter the name O’Toole in the LAST_NAME column, you would type 'O"Toole' as
the value in the INSERT command.

Add sales rep 20 to the REP table.

The command for this example is shown in Figure 3-12. Note that the character strings
('20','Kaiser','Valerie', and so on) are enclosed in single quotation marks. When you execute
the command, the record is added to the REP table.

Home > SQL > Character

values enclosed in single
quotation marks

[“] Autocommit Display | 10 v

INSERT INTO REP
VALLUES

{'20','Kaiser', 'Valerie','624 Randall','Grove','FL','33321',20542.50,0.05):

Results Explain Describe Saved SOL History
One row
was inserted

FIGURE 3-12 INSERT command for the first record in the REP table

1 row(s) inserted.

NOTE — |

Make sure that you type the values in the same case as those shown in the figures to avoid problems later
when retrieving data from the database.

Creating Tables

74

Chapter 3

Add sales reps 35 and 65 to the REP table.

You could enter and execute new INSERT commands to add the new rows to the table.
However, an easier and faster way to add these new rows to the table is to use the mouse

and the keyboard to modify the previous INSERT command and execute it to add the
record for the second sales rep, as shown in Figure 3-13.

Home > SQL =

[l Autocommit Display | 10 v

INZERT INTD REP
VALLUES

('353',"Hull','Richard','53Z Jackson','3Sheldon','FL','335533',39216.00,0.07);

Results Explain Describe Saved SOL History

1 row(s) inserted.

FIGURE 3-13 INSERT command to add the second row to the REP table

You can modify and execute the INSERT command again for the third sales rep, as
shown in Figure 3-14, to add the third row to the table.

Home = S0L =

[“] Autocarmit Display | 10 v

INISERT INTO REP
WVALUES

('65','Pereg','Juan','1l6i6 Taylor','Fillmore','FL','33336',283487.00,0.05);

Results Explain Describe Saved SQOL History

1 rowis) inserted.

FIGURE 3-14

INSERT command to add the third row to the REP table

Inserting a Row that Contains Nulls

To enter a null value into a table, you use a special form of the INSERT command in which

you identify the names of the columns that will accept non-null values, and then list only

these non-null values after the VALUES command, as shown in Example 4. 75

Add sales rep 85 to the REP table. Her name is Tina Webb. All columns except REP_NUM,
LAST_NAME, and FIRST_NAME are null.

In this case, you do not enter a value of null; you enter only the non-null values. To
do so, you must indicate precisely which values you are entering by listing the correspond-
ing columns as shown in Figure 3-15. The command shown in Figure 3-15 indicates that
you are entering data in only the REP_NUM, LAST_NAME, and FIRST_NAME columns and
that you are not entering values in any other columns; the other columns will contain null
values.

Only values
for the listed columns
will be inserted

Home = SQL >

“lAutocarrmit Display | 10 ~

INSERT INTG REP (REP_NUM, LAST NAME, FIRST NAME]
VLLUES
{'B5','Wekh', Tina'l:

Results Explain Describe Saved SOL History

1 rowis) inserted.

FIGURE 3-15 Inserting a row in the REP table that contains null values

VIEWING TABLE DATA

To view the data in a table, you use the SELECT command, which is described in more
detail in Chapters 4 and 5.

Display all the rows and columns in the REP table.

Creating Tables

You can use a simple version of the SELECT command to display all the rows and col-
umns in a table by typing the word SELECT, followed by an asterisk, followed by the word
FROM and the name of the table containing the data you want to view. Just as with other

- B SQL commands, the command ends with a semicolon. In Oracle, you type the command

shown in Figure 3-16, and then click the Run button to display the results.

Home > SOL > SOL Commands

[l Autacommit Display |10 h

SELECT * / Command to
FROM REP: display all rows and >
J \ all columns

Results Explain Describe Saved SOL History

REP_HUM LAST_HAME FIRST_HAME STREET CITY STATE ZIP COMMISSION RATE
20 Kaizer alerie 524 Randall Grove FL 33321 205425 s
£S5 Hull Richard 532 Jackson Sheldon FL 33553 39216 o7
ES Perez Juan 1626 Taylar Fillmare FL FI336 23487 ns
a3 ek Tina - -
4 rows returned in 0.66 seconds CEY Export

FIGURE 3-16 Using a SELECT command to view table data

Chapter 3

ACCESS USER NOTE

%‘ *' A % x' D Union gﬂi Insert Rows
- * » o Pass-Through % ? Delete Rows|
Make Append Update Crosstab Delete Show

I Table w7, Data Definition || Tape ::-;\Builder

i | 3321 $30,542.50
22lackson sheldon FL 33553 439,316.00
(1626 Taylor Fillmore FL (33336 $23,487.00

Creating Tables

SQL SERVER USER NOTE

78 File Edit View Query Project Toole ‘Window Community Help
Atenoey |3 BB HID SHSBEREF,
20 757 | Premiere * | ¥ Execute O a2 | AL BT iy | 83 88
. /Yi)'UR-SDQi[iSEM.QLQueer'.sql.*' -""Summary' |
SELECT *#
RO REDS SELECT command

FIGURE 3-19 Using a SELECT command to view table data in SQL Server

To run the query, click the Execute button. SQL Server will display the query results in the Results pane,
as shown in Figure 3-20. If the data does not fit on the screen, you can adjust the columns to best fit the
data they contain by dragging the right edge of each column heading to make it narrower or wider.
A Results ||_L§ Messages
REP_NUM | LAST_NAME | FIRST_NAME | STREET C

Y STA.. | ZIP COMMISSION | RATE

1 Kaiser Valerie 624 Randall Grove FL 33321 2054250 0.05
2 35 Hull Richard 532 Jackson Sheldon FL 33553 39216.00 0.07
3 65 Perez Juan 1626 Taylor Filmore FL 33336 23487.00 0.05

FIGURE 3-20 Query results in SQL Server

CORRECTING ERRORS IN A TABLE

After executing a SELECT command to view a table’s data, you might find that you need
to change the value in a column. You can use the UPDATE command shown in Figure 3-21
to change a value in a table. The UPDATE command shown in Figure 3-21 changes the last
name in the row on which the sales rep number is 85 to Perry.

Home > SQL > S0L Commands

[“] Autocommit Display A

New value
UFDATE REF : _
3ET LAST NAME = 'Perry' Change only affects
WHERE REP_NUM = '85': L the row(s) on which the rep

number is 85

Results Explain Descrihe Sawved SOL History

Message
indicates the number of
updated rows

1 rowis) updated.

FIGURE 3-21 Using an UPDATE command to change a value

Chapter 3

The SELECT command shown in Figure 3-22 displays the results of the UPDATE com-

mand shown in Figure 3-21, in which the last name for rep number 85 is Perry.

Home = SOL > SOL Commands

Autocammit Display

SELECT *
FROM REF:

Results Explain Describe Saved SOL History

REP_HUM LAST_HAME FIRST_HAME STREET CITY STATE ZIP COMMISSION RATE
20 Kaizer Walerie 524 Randall Grove FL I 203423 03
35 Hull Richard 532 Jackson Sheldon FL 33553 39216 or
=] Perez Juan 1626 Taylor Fillmare FL 33336 23487 05
g5 Perry Tina -
4 rowes returned in 0.05 seconds CSY Export

FIGURE 3-22 Last name changed for sales rep number 85

When you need to delete a row from a table, you can use the DELETE command.

The DELETE command shown in Figure 3-23 deletes any row on which the sales rep

number is 85.

Home > S0L > S0L Commands

[¥] Autacommit Display | 10 v

DELETE
FROM REF Only row(s) on
WHERE REP NUM = '85'; which the rep number is

85 will be deleted
Results Explain Descrihe %Saved S0OL History

Jtatement processed.

0.27 seconds

FIGURE 3-23 Using a DELETE command to delete a row

Creating Tables

80

Chapter 3

The SELECT command shown in Figure 3-24 displays the updated data.

Home > SQL >

[“] Autocommit Display | 10 v

SELECT +
FROM REF:

Results Explain Describe Sawved SQOL History

REP_HUM LAST_HAME FIRST_HAME STREET CITY STATE ZIP COMMISSION RATE
20 Kaizer Walerie 624 Randall Grove FL 33 203542 5 05
5 Hull Richard 532 Jackson Sheldon FL 33553 39216 a7
ES Perez Juan 1626 Taylor Fillnaore FL 33336 23487 5

3 rowes returned in 009 seconds 5 Expor

FIGURE 3-24 Sales rep number 85 deleted from REP table

Question: How do I correct errors in my data?

Answer: The method you use to correct an error depends on the type of error you need
to correct. If you added a row that should not be in the table, use a DELETE command to
remove it. If you forgot to add a row, you can use an INSERT command to add it. If you
added a row that contains incorrect data, you can use an UPDATE command to make the
necessary corrections. Alternatively, you could use a DELETE command to remove the
row containing the error and then use an INSERT command to insert the correct row.

SAVING SQL COMMANDS

Oracle lets you save a command so you can use it again without retyping it. In many
DBMSs, you save commands in a script file, or simply a script, which is a text file with the
.sql filename extension. When you use Oracle to create a script, Oracle stores the script
in a special location called the script repository. If you want to save a script on the local
file system, such as on a hard drive or USB drive, you can do so by downloading the script.
When you need to use a script that is stored on the local file system, but is not currently
stored in Oracle, you can upload the script so you can use it in Oracle. The following steps
describe how to create and use scripts in the Oracle Database Express Edition. If you are
using a different version of Oracle or another DBMS, use Help or consult the system docu-
mentation to determine how to accomplish the same tasks.
To create a script:

1. Load the Oracle Database Express Edition home page and log in.

2. Click the SQL icon arrow, point to SQL Scripts, and then click Create. The
Seript Editor page opens.

3. In the Script Name text box, type a name for the script.

4. (lick in the text box on the page to activate it, and then type the command
or commands to save in the script. When necessary, click the Run button to
execute the commands saved in the script.

5. When you are finished, click the Save button. You return to the SQL Scripts

. . 81
page and the script you created appears as an icon on the page.

To view, edit, or run an existing script:

1. Load the Oracle Database Express Edition home page and log in.

2. (Click the SQL icon arrow, point to SQL Scripts, and then click View.

3. Click the icon for the desired script. The script appears on the Script Editor
page. You can use this page to view the content of the script or to make changes
to it by editing the commands it contains. If you edit a script, click the Save
button to save your changes.

4. To run a script, click the Run button. The Run Script page loads and asks you
to confirm running the script. Click the Run button on the Run Script page.
The Manage Script Results page opens and displays the script name and an icon
in the View Results column. To see the results of the command stored in the
script, click the icon in the View Results column.

When you are finished using a script or no longer need to store it, you can delete it.
To delete a script:

1. TFollow the previous instructions to view the script.
2. Click the Delete button on the Script Editor page.
3. Click the OK button to confirm the deletion.

To download a script from the script repository so you can save it as a file:

1. Follow the previous instructions to view the script.

2. Click the Download button. The File Download dialog box opens.

3. In the dialog box, click the Save button, and then save the file to the desired
location.

4. Click the Close button to close the Download complete dialog box.

To upload a script to the script repository:

1. Load the Oracle Database Express Edition home page and log in.

2. Click the SQL icon arrow, point to SQL Scripts, and then click Upload. The
Upload Script page opens.

3. Click the Browse button. The Choose file dialog box opens. Navigate to and select
the script file to upload. Click the Open button. (If you want to upload the script
with a different filename, type the new name in the Script Name text box.)

4. On the Upload Script page, click the Upload button. An icon for the script
appears on the SQL Scripts page.

Creating Tables

82

Chapter 3

ACCESS USER NOTE

Access does not use script files, but you can save an SQL command as a query object in the database.
Open the database, create the query in SQL view, click the Save button on the Quick Access toolbar (or
on the menu bar), and then save the query with the desired object name. To run the query without first
viewing the SQL command, right-click the query in the Navigation Pane (or in the Database window), and
then click Open on the shortcut menu. The query results will appear in Datasheet view. If you want to view
the SQL command before running the query, right-click the query in the Navigation Pane, and then click
Design View on the shortcut menu. To run the SQL command, click the Run button.

SQL SERVER USER NOTE

SQL Server can store scripts in any folder on your local system. All scripts created in SQL Server are text
files with the .sqgl extension. To create a script file in SQL Server:
1. Load SQL Server Management Studio, and then click the Connect button in the Connect to
Server dialog box.
2. Open the appropriate database, and then click the New Query button.
3. Type the command or commands to save in the script. When necessary, click the Execute but-
ton to execute the commands saved in the script.
4. When you are finished, click the Save button, navigate to the location in which to save the script,
and then enter a name for the script.

To view, edit, or run an existing script:

1. Load SQL Server Management Studio, and then click the Connect button in the Connect to
Server dialog box.

2. Open the appropriate database, and then click the New Query button.

3. Click the Open File button on the toolbar.

4. Navigate to the folder containing the script file, select the script file, and then click the Open but-
ton in the Open File dialog box. (If the Connect to Database Engine dialog box opens, click the
Connect button.) The script appears in the Query Editor window. You can view the contents of
the script to make changes to it by editing the commands. If you edit a script, click the Save
button to save your changes.

5. To run a script, click the Execute button.

CREATING THE REMAINING DATABASE
TABLES

To create the remaining tables in the Premiere Products database, you need to execute the
appropriate CREATE TABLE and INSERT commands. You should save these commands
as scripts so you can re-create your database, if necessary, by running the scripts.

—]

Your instructor might give you the script files to use to create the tables in the Premiere Products, Henry
Books, and Alexamara Marina Group databases and to insert data into them.

Figure 3-25 shows the CREATE TABLE command for the CUSTOMER table. Notice that
the CUSTOMER_NAME column is specified as NOT NULL. Additionally, the
CUSTOMER_NUM column is the table’s primary key, indicating that the CUSTOMER_NUM
column is the unique identifier of rows in the table. With this column designated as the pri-

83
mary key, the DBMS will reject any attempt to store a customer number that already

exists in the table.

CUSTOMER_NUM
is the primary key

CREATE TABLE CUSTOMER
(CUSTOMER_NUM CHAR(3) PRIMARY KEY$
CUSTOMER_NAME CHAR(35) NOT NULL,<—
STREET CHAR(15),

CITY CHAR(15),

STATE CHAR(2),

7IP CHAR(5),

BALANCE DECIMAL(S,2),
CREDIT LIMIT DECIMAL(S,2),
REP_NUM CHAR(2));

CUSTOMER_NAME
cannot be null

Semicolon indicates
end of command

FIGURE 3-25 CREATE TABLE command for the CUSTOMER table

After creating the CUSTOMER table, you can create another script file containing the
INSERT commands to add the customer rows to the table. When a script file contains more than
one command, each command must end with a semicolon. Figure 3-26 shows the INSERT
commands to add rows to the CUSTOMER table. As noted previously, to enter an apostrophe
(single quotation mark) in the value for a field, type two single quotation marks, as illus-
trated in the name in the first INSERT command (Al's Appliance and Sport) in Figure 3-26.

Creating Tables

Type two single
quotation marks to insert an
apostrophe in a value

INSERT INTO CUSTOMER T
VALUES

('148','Al''s Appliance and Sport','2837 Greenway', 'Fillmore','FL','33336',6550.00,7500.00,'20");
INSERT INTO CUSTOMER

VALUES

('282','Brookings Direct','3827 Devon', 'Grove','FL',6'33321',431.50,10000.00,'35"');
INSERT INTO CUSTOMER

VALUES

('356','Ferguson''s','382 Wildwood', 'Northfield','FL','33146',5785.00,7500.00,'65"'); «——
INSERT INTO CUSTOMER

VALUES

('408','The Everything Shop','1828 Raven', 'Crystal','FL','33503',5285.25,5000.00,'35"'); «———|
INSERT INTO CUSTOMER

VALUES

('462','Bargains Galore','3829 Central','Grove','FL',6'33321',3412.00,10000.00,'65"); «————
INSERT INTO CUSTOMER

VALUES

('524','Kline''s','838 Ridgeland','Fillmore','FL','33336',12762.00,15000.00,'20"');
INSERT INTO CUSTOMER

VALUES

('608','Johnson''s Department Store','372 Oxford', 'Sheldon','FL','33553',2106.00,10000.00,'65");
INSERT INTO CUSTOMER

VALUES

('687','Lee''s Sport and Appliance','282 Evergreen', 'Altonville','FL','32543',2851.00,5000.00,'35");
INSERT INTO CUSTOMER

VALUES

('725','Deerfield''s Four Seasons','282 Columbia','Sheldon','FL','33553',248.00,7500.00,'35");
INSERT INTO CUSTOMER

VALUES

('842','All Season','28 Lakeview', 'Grove','FL',b'33321',8221.00,7500.00,'20");

84

Data for
second row

Each command
ends with a
semicolon

FIGURE 3-26 INSERT commands for the CUSTOMER table

Figures 3-27 through 3-32 show the scripts for the CREATE TABLE and INSERT com-
mands for creating and inserting data into the ORDERS, PART, and ORDER_LINE tables
in the Premiere Products database. Figure 3-27 contains the CREATE TABLE command for
the ORDERS table.

CREATE TABLE ORDERS
(ORDER_NUM CHAR(5) PRIMARY KEY A
ORDER_DATE DATE,

CUSTOMER_NUM CHAR(3));

ORDER_NUM
is the primary key

FIGURE 3-27 CREATE TABLE command for the ORDERS table

Figure 3-28 contains the INSERT commands to load data into the ORDERS table. Notice
the way that dates are entered.

Chapter 3

INSERT INTO ORDERS
VALUES
('21608','20-0CT-2010"','148");
INSERT INTO ORDERS

VALUES
('21610','20-0CT-2010",'356");
INSERT INTO ORDERS

VALUES
('21613','21-0CT-2010",'408");
INSERT INTO ORDERS

VALUES
('21614','21-0CT-2010",'282");
INSERT INTO ORDERS

VALUES
('21617','23-0CT-2010",'608");
INSERT INTO ORDERS

VALUES
('21619','23-0CT-2010",'148");
INSERT INTO ORDERS

VALUES
('21623','23-0CT-2010"','608");

Format used
to enter a date

85

in Oracle

FIGURE 3-28 INSERT commands for the ORDERS table

Figure 3-29 contains the CREATE TABLE command for the PART table.

CREATE TABLE PART
(PART_NUM CHAR(4) PRIMARY KEY 4
DESCRIPTION CHAR(15),

ON_HAND DECIMAL(4,0),

CLASS CHAR(2),

WAREHOUSE CHAR(1),

PRICE DECIMAL(6,2));

PART_NUM
is the primary key

FIGURE 3-29 CREATE TABLE command for the PART table

Creating Tables

Figure 3-30 contains the INSERT commands to load data into the PART table.

INSERT INTO PART

86 VALUES

('AT94','Iron',50,'HW','3',24.95);

INSERT INTO PART

VALUES

('BV06', 'Home Gym',45,'SG','2',794.95);
INSERT INTO PART

VALUES

('CD52', 'Microwave Oven',32,'AP','1',165.00);
INSERT INTO PART

VALUES

('DL71','Cordless Drill',21,'HW',6'3',129.95);
INSERT INTO PART

VALUES

('DR93', 'Gas Range',8,'AP','2',495.00);
INSERT INTO PART

VALUES

('DW11', 'Washer',12,'AP','3"',399.99);
INSERT INTO PART

VALUES

('FD21','Stand Mixer',22,'HW','3',159.95);
INSERT INTO PART

VALUES
('KL62','Dryer',12,'AP','1"',349.95);
INSERT INTO PART

VALUES

('KT03', 'Dishwasher',8,'AP','3',595.00);
INSERT INTO PART

VALUES
('KvV29','Treadmill',9,'SG','2',1390.00);

FIGURE 3-30 INSERT commands for the PART table

Figure 3-31 contains the CREATE TABLE command for the ORDER_LINE table. Notice
the way that the primary key is defined when it consists of more than one column.

CREATE TABLE ORDER_LINE

(ORDER_NUM CHAR(5),

PART NUM CHAR(4),

NUM_ORDERED DECIMAL(3,0),
QUOTED_PRICE DECIMAL(6,2),

PRIMARY KEY (ORDER NUM, PART_NUM));q

Primary key must be
entered in this format when

it consists of more than

one column

The combination
ORDER_NUM and PART_NUM
is the primary key

FIGURE 3-31 CREATE TABLE command for the ORDER_LINE table

Figure 3-32 contains the INSERT commands to load data into the ORDER_LINE table.

Chapter 3

INSERT INTO ORDER_LINE
VALUES
('21608','AT94',11,21.95);
INSERT INTO ORDER_LINE
VALUES 87
('21610','DR93',1,495.00);
INSERT INTO ORDER_LINE
VALUES
('21610','DW11',1,399.99);
INSERT INTO ORDER_LINE
VALUES
('21613','KL62',4,329.95);
INSERT INTO ORDER_LINE
VALUES
('21614','KT03',2,595.00);
INSERT INTO ORDER_LINE
VALUES
('21617','BV06',2,794.95);
INSERT INTO ORDER_LINE
VALUES
('21617','CD52',4,150.00);
INSERT INTO ORDER_LINE
VALUES
('21619','DR93"',1,495.00);
INSERT INTO ORDER_LINE
VALUES

(121623, 'KvV29',2,1290.00);

FIGURE 3-32 INSERT commands for the ORDER_LINE table

DESCRIBING A TABLE

The CREATE TABLE command defines a table’s structure by listing its columns, data types,
and column lengths. The CREATE TABLE command also indicates which columns can-
not accept nulls. When you work with a table, you might not have access to the CREATE
TABLE command that was used to create it. For example, another programmer might
have created the table, or perhaps you created the table several months ago but did not save
the command. You might want to examine the table’s structure to see the details about the
columns in the table. Each DBMS provides a method to examine a table’s structure.

Describe the REP table.

In Oracle, you can use the DESCRIBE command to list all the columns in a table and
their properties. Figure 3-33 shows the DESCRIBE command for the REP table. The result
indicates the name of each column in the table, along with its data type and length. A
value of 1 in the Primary Key column indicates the table’s primary key column. A check
mark in the Nullable column indicates a column that can accept null values. (The Preci-
sion, Scale, Default, and Comment columns in the results are beyond the scope of this
discussion.)

Creating Tables

88

Chapter 3

DESCRIBE
LTSS /command and table\
name
[“] Autacommit Display |10 4 _/
DESCRIBE REP:

Results Explain Describe Saved SOL History

A check mark
indicates a column can
accept null values

Object Type TABLEObject REP

Table Column Data Type Length Precision Scale Primary Key Hullable Default Comment
REF REP_RLIR Char 2 - - 1 -

LAST MAME — Char 15 v

FIRST MAME — Char 15 v

STREET Char 15 v

CITY Char 15 v

STATE Char 2 v

ZIP Char 5 v

COMMIZSION Mumber - 7 2 v

RATE Mumber = 3 2 v

1-9

FIGURE 3-33 DESCRIBE command for the REP table

ACCESS USER NOTE ===

In Access, you use the Documenter tool to describe the tables (and other objects) in a database. To start
the Documenter in Access 2003, open the database, click Tools on the menu bar, point to Analyze, and
then click Documenter. To start the Documenter in Access 2007, click the Database Tools tab on the Rib-
bon, and then click the Database Documenter button in the Analyze group. In the Documenter dialog box,
click the Tables tab, select the tables that you want to describe by putting a check mark in the check box
next to their names, and then click the OK button. The Object Definition window opens and displays a report
containing the requested documentation. You can customize the Documenter to control the amount of
detail included in the report.

SQL SERVER USER NOTE

In SQL Server, you execute the sp_columns command to list all the columns in a table. The following com-
mand will list all the columns in the REP table:

Exec sp_col uims REP

The result will indicate the name of each column in the REP table, along with its data type and length. A
value of 1 in the Nullable column indicates a column that can accept null values. (The remaining col-
umns that appear in the results are beyond the scope of this discussion.)

Chapter Summary

Use the CREATE TABLE command to create a table by typing the table name and then
listing within a single set of parentheses the columns in the table.

Use the DROP TABLE command to delete a table and all its data from the database.
Some commonly used data types in are INT, SMALLINT, DECIMAL, CHAR, VARCHAR,

and DATE. Microsoft Access does not support DECIMAL. SQL Server uses DATETIME
instead of DATE.

A null data value (or null) is a special value that is used when the actual value for a col-
umn is unknown, unavailable, or not applicable.

Use the NOT NULL clause in a CREATE TABLE command to identify columns that can-
not accept null values.

89

Use the INSERT command to insert rows into a table.

Use the SELECT command to view the data in a table.

Use the UPDATE command to change the value in a column.
Use the DELETE command to delete a row from a table.

You can save SQL commands in a script file in Oracle and SQL Server. In Microsoft
Access, you save the commands as a query object in the database.

You can use the DESCRIBE command in Oracle to display a table’s structure and layout.
In Access, you use the Documenter tool to produce a report of a table’s structure and
layout. In SQL Server, execute the sp_columns command to display the structure and lay-
out of a table.

Key Terms

breadcrumb null

CREATE TABLE null data value

data type script

DELETE script file

DESCRIBE script repository

DROP TABLE SELECT

INSERT Structured Query Language (SQL)
NOT NULL UPDATE

Review Questions

1. How do you create a table using SQL?

2. How do you delete a table using SQL?

3. What are the common data types used to define columns using SQL?

Creating Tables

90

Chapter 3

=

Identify the best data type to use to store the following data in Oracle, in SQL Server, and
in Access:

a. The month, day, and year that an employee was hired
b. An employee’s Social Security number

c. The department in which an employee works

d. An employee’s hourly pay rate

5. Wirite a paragraph that explains the difference between the CHAR data type and the
VARCHAR data type. Use your Web browser and your favorite search engine to find
examples of when to use VARCHAR and when to use CHAR. Be sure to cite the URL(s) that
provided the examples as references at the end of your document.

What is a null value? How do you use SQL to identify columns that cannot accept null values?
Which SQL command do you use to add a row to a table?
Which SQL command do you use to view the data in a table?

© ® N o

Which SQL command do you use to change the value in a column in a table?
10. Which SQL command do you use to delete rows from a table?

11. How do you display the columns in a table and their characteristics in Oracle?

Exercises

To print a copy of your commands and results using Oracle, use the browser’s Print command
on the File menu or click the Print button on the browser’s toolbar.

To print a copy of your commands and results using Access, use the instructions provided
in the chapter to save your commands as query objects. To print a command, start Word or another
word processor and create a new document. Select the SQL command in Access, copy it to the
Clipboard, and then paste it into the document. To copy and paste a command’s results, right-
click the datasheet selector (the box in the upper-left corner of the datasheet) to select the entire
datasheet, copy it to the Clipboard, and then paste it into the document.

To print a copy of your commands and results using SQL Server, start Word or another word
processor and create a new document. Select the SQL command in SQL Server, copy it to the
Clipboard, and then paste it into the document. To copy and paste a command’s results, right-
click the datasheet selector (the box in the upper-left corner of the datasheet) to select the entire
datasheet, copy it to the Clipboard, and then paste it into the document.

Premiere Products
Use SQL to complete the following exercises.

1. Create a table named SALES_REP. The table has the same structure as the REP table
shown in Figure 3-6 except the LAST_NAME column should use the VARCHAR data type
and the COMMISSION and RATE columns should use the NUMBER data type. Execute
the command to describe the layout and characteristics of the SALES_REP table.

2. Add the following row to the SALES_REP table: rep number: 25, last name: Lim; first name:
Louis; street: 535 Vincent; city: Grove; state: FL; zip code: 33321; commission: 0.00; and rate:
0.05. Display the contents of the SALES_REP table.

3. Delete the SALES_REP table. 91

Run the script file for the Premiere database to create the five tables and add records to the
tables. Be sure to select the file for the particular DBMS that you are using (Oracle, SQL
Server, or Access). (Note: If you do not have the files for this text, ask your instructor for
assistance.)

5. Confirm that you have created the tables correctly by describing each table and compar-
ing the results to Figures 3-6, 3-25, 3-27, 3-29, and 3-31.

6. Confirm that you have added all data correctly by viewing the data in each table and com-
paring the results to Figure 2-1 in Chapter 2.

Henry Books
Use SQL to complete the following exercises.

1. Create atable named SALES BRANCH. The table has the same structure as the BRANCH
table shown in Figure 3-34 except the BRANCH_LOCATION column should use the
VARCHAR data type and the BRANCH_NUM and NUM_EMPLOYEES columns should use
the NUMBER data type. Execute the command to describe the layout and characteristics
of the SALES_BRANCH table.

2. Add the following row to the SALES_BRANCH table: branch number: 5; branch name: Henry
Town Plaza; branch location: 165 Plaza; and number of employees: 3. Display the con-
tents of the SALES_BRANCH table.

3. Delete the SALES BRANCH table.

Run the script file for the Henry Books database to create the six tables and add records
to the tables. Be sure to select the file for the particular DBMS that you are using (Oracle,
SQL Server, or Access). (Note: If you do not have the files for this text, ask your instruc-

tor for assistance.)

5. Confirm that you have created the tables correctly by describing each table and compar-
ing the results to Figure 3-34.

6. Confirm that you have added all data correctly by viewing the data in each table and com-
paring the results to Figures 1-4 through 1-7 in Chapter 1.

Creating Tables

92

Chapter 3

BRANCH

Column Type Length Decimal Nulls Description
places allowed?
BRANCH_NUM DECIMAL 2 0 No Branch number
(primary key)
BRANCH_NAME CHAR 50 Branch name
BRANCH_LOCATION | CHAR 50 Branch location
NUM_EMPLOYEES DECIMAL 2 0 Number of employees
PUBLISHER
Column Type Length Decimal Nulls Description
places allowed?
PUBLISHER_CODE CHAR 3 No Publisher code
(primary key)
PUBLISHER_NAME CHAR 25 Publisher name
CITY CHAR 20 Publisher city
AUTHOR
Column Type Length Decimal Nulls Description
places allowed?
AUTHOR_NUM DECIMAL 2 0 No Author number
(primary key)
AUTHOR_LAST CHAR 12 Author last name
AUTHOR_FIRST CHAR 10 Author first name
BOOK
Decimal Nulls Description
places allowed?
BOOK_CODE CHAR 4 No Book code
(primary key)
TITLE CHAR 40 Book title
PUBLISHER_CODE CHAR 3 Publisher code
TYPE CHAR 3 Book type
PRICE DECIMAL 4 2 Book price
PAPERBACK CHAR 1 Paperback (Y, N)

FIGURE 3-34 Table layouts for the Henry Books database

WROTE

Column Type Length Decimal Nulls Description
places allowed?
BOOK_CODE CHAR 4 No Book code 93
(primary key)
AUTHOR_NUM DECIMAL 2 0 No Author number
(primary key)
SEQUENCE DECIMAL 1 0 Sequence number
INVENTORY
Column Type Length Decimal Nulls Description
places allowed?
BOOK_CODE CHAR 4 No Book code
(primary key)
BRANCH_NUM DECIMAL 2 0 No Branch number
(primary key)
ON_HAND DECIMAL 2 0 Units on hand

FIGURE 3-34 Table layouts for the Henry Books database (continued)

Creating Tables

94

Chapter 3

Alexamara Marina Group

Use SQL to complete the following exercises.

1.

Create a table named BOAT_SLIP. The table has the same structure as the MARINA_SLIP
table shown in Figure 3-35 except the SLIP_ID, LENGTH, and RENTAL_FEE columns
should use the NUMBER data type. Execute the command to describe the layout and char-
acteristics of the BOAT_SLIP table.

Add the following record to the BOAT_SLIP table: slip ID: 12; marina number: 2; slip number:
7; length: 25; rental fee: 1800; boat name: Bavant; boat type: Ray 25; and owner number:
FL13. Display the contents of the BOAT _SLIP table.

Delete the BOAT_SLIP table.
Run the script file for the Alexamara Marina Group database to create the five tables and
add records to the tables. Be sure to select the file for the particular DBMS that you are using

(Oracle, SQL Server, or Access). (Note: If you do not have the files for this text, ask your
instructor for assistance.)

Confirm that you have created the tables correctly by describing each table and compar-
ing the results to Figure 3-35.

Confirm that you have added all data correctly by viewing the data in each table and com-
paring the results to Figures 1-8 through 1-12 in Chapter 1.

MARINA

Column Type Length Decimal Nulls Description
places allowed?
MARINA_NUM CHAR 4 No Marina number 95
(primary key)
NAME CHAR 20 Marina name
ADDRESS CHAR 15 Marina street address
CITY CHAR 15 Marina city
STATE CHAR 2 Marina state
ZIP CHAR 5 Marina zip code
OWNER
Column Type Length Decimal Nulls Description
places allowed?
OWNER_NUM CHAR 4 No Owner number
(primary key)
LAST_NAME CHAR 50 Owner last name
FIRST_NAME CHAR 20 Owner first name
ADDRESS CHAR 15 Owner street address
CITY CHAR 15 Owner city
STATE CHAR 2 Owner state
Z1P CHAR 5 Owner zip code
MARINA_SLIP
Column Type Length Decimal Nulls Description
places allowed?
SLIP_ID DECIMAL 4 0 No Slip ID (primary key)
MARINA_NUM CHAR 4 Marina number
SLIP_NUM CHAR 4 Slip number in
the marina
LENGTH DECIMAL 4 0 Length of slip (in feet)
RENTAL_FEE DECIMAL 8 2 Annual rental

fee for the slip

BOAT_NAME CHAR 50 Name of boat
currently in the slip

BOAT_TYPE CHAR 50 Type of boat
currently in the slip

OWNER_NUM CHAR 4 Number of boat
owner renting the slip

FIGURE 3-35 Table layouts for the Alexamara Marina Group database

Creating Tables

96

Chapter 3

SERVICE_CATEGORY

Column Length Decimal Nulls Description
places allowed?
CATEGORY_NUM DECIMAL 4 0 No Category number
(primary key)
CATEGORY_ CHAR 255 Category
DESCRIPTION description
SERVICE_REQUEST
Column Type Length Decimal Nulls Description
places allowed?
SERVICE_ID DECIMAL 4 0 No Service ID
(primary key)
SLIP_ID DECIMAL 4 0 Slip ID of the boat
for which service
is requested
CATEGORY_NUM DECIMAL 4 0 Category number of
the requested service
DESCRIPTION CHAR 255 Description of
specific service
requested for boat
STATUS CHAR 255 Description of status
of service request
EST_HOURS DECIMAL 4 2 Estimated number of
hours required to
complete the service
SPENT_HOURS DECIMAL 4 2 Hours already spent
on the service
NEXT_SERVICE_DATE | DATE Next scheduled date
for work on this
service (or null if no
next service date is
specified)

FIGURE 3-35 Table layouts for the Alexamara Marina Group database (continued)

CHAPTER

SINGLE-TABLE QUERIES

LEARN

Objectives

Retrieve
Use sim
Use the
Use co!
Sort dat;
Sort dat;
Use agg
Use sub
Group d
Select i
Retrieve

INTRODUCTION

In this chapter, you will learn about the SQL SELECT command that is used to retrieve data in a database. You

will examine ways to sort data and use SQL functions to count rows and calculate totals. You also will learn how

to nest SELECT commands by placing one SELECT command inside another. Finally, you will learn how to

group rows that have matching values in some column.

98

Chapter 4

CONSTRUCTING SIMPLE QUERIES

One of the most important features of a DBMS is its ability to answer a wide variety of
questions concerning the data in a database. When you need to find data that answers a spe-
cific question, you use a query. A query is a question represented in a way that the DBMS
can understand.

In SQL, you use the SELECT command to query a database. The basic form of the
SELECT command is SELECT-FROM-WHERE. After you type the word SELECT, you list the
columns that you want to include in the query results. This portion of the command is
called the SELECT clause. Next, you type the word FROM followed by the name of the table
that contains the data you need to query. This portion of the command is called the FROM
clause. Finally, after the word WHERE, you list any conditions (restrictions) that apply
to the data you want to retrieve. This optional portion of the command is called the WHERE
clause. For example, when you need to retrieve the rows for only those customers with
credit limits of $7,500, include a condition in the WHERE clause specifying that the value
in the CREDIT_LIMIT column must be §7,500 (CREDIT_LIMIT = 7500).

There are no special formatting rules in SQL. In this text, the FROM clause and the
WHERE clause (when it is used) appear on separate lines only to make the commands more
readable and understandable.

Retrieving Certain Columns and All Rows

You can write a command to retrieve specified columns and all rows from a table, as illus-
trated in Example 1.

List the number, name, and balance for all customers.

Because you need to list all customers, you do not need to include a WHERE clause;
you do not need to put any restrictions on the data to retrieve. You simply list the col-
umns to be included (CUSTOMER_NUM, CUSTOMER_NAME, and BALANCE) in the
SELECT clause and the name of the table (CUSTOMER) in the FROM clause. Type a semi-
colon to indicate the end of the command, and then click the Run button to display the
results. The query and its results appear in Figure 4-1.

ORACLE’ Database Express Edition
Display

list box

B Display |10 %)

SELECT CUSTOMER NUM, CUSTOMER MAME, BALANCE
FROM CUSTOMER; €

Resuls Cxplain Describe Saved SOL History {

CUSTOMER MUM CUSTOMER_NAME HALANCE
18 Als Apphsrcs s Sporl 8850
il o 3

88

Leas Spdit snd Apphancs s

(eerticki's Four Seasona 248

Al Fenron a2
10 rows returred i 0.01 seconds Y Expt

Az
524
L Kiwwr's Depalmerd Slore 2106
Lo
15
42

o _the CUSTOMER table)

Fergson's 5785

T Everylhing Stog 520525
Oﬂwm i iz
Hane's 12762

Columns to include i

[
wquery resuly |
Data will come from 99

FIGURE 4-1 SELECT command to select certain columns from the CUSTOMER table

In the Oracle Database Express Editi

on, the number in the Display list box indicates the maximum num-

ber of rows that Oracle will display in the query results. The default value is 10. To change the value, either
click the arrow and select a new value from the list or type a new value in the box. Figure 4-1 shows the
Display list box after the user changed it to display 100 rows. When you run a query whose results will
include more rows than the number in the Display list box, Oracle will display a message indicating this
fact. If this situation occurs, increase the number in the Display list box, and then click the Run button again

to display the complete query results.

If you are using Access or SQL Server to run the SQL commands shown in this text, your query results will dif-
fer slightly from the results shown in the figures. In Access, the BALANCE field has the CURRENCY data type
and Access will display values in this column with two decimal places and a dollar sign. In SQL Server, val-
ues in the BALANCE field will be displayed with two decimal places and DATE field values might be dis-

played with a time value. Although your
what you see in the figures.

output might be formatted differently, the data should be the same as

Single-Table Queries

100

Chapter 4

Retrieving All Columns and All Rows

You can use the same type of command illustrated in Example 1 to retrieve all columns and
all rows from a table. As Example 2 illustrates, however, you can use a shortcut to accom-
plish this task.

List the complete PART table.

Instead of including every column in the SELECT clause, you can use an asterisk (*)
to indicate that you want to include all columns. The result lists all columns in the order
in which you described them to the DBMS when you created the table. If you want the col-
umns listed in a different order, type the column names in the order in which you want
them to appear in the query results. In this case, assuming that the default order is appro-
priate, you can use the query shown in Figure 4-2 to display the complete PART table.

SELECT *
columns will be included

Results Explain Describe Saved SOL History
pr—
PART_HUM DESCRIPTIOH OH_HAHD CLASS WAREHOUSE PRICE
ATI4 Iran 50 Hf & 2485
BYv06 Home Gym 45 SG 2 794.95
cha2 Microvwave Oven 32 AP 1 165
DL7 Cordless Drill 21 s s 129.95
DR33 Gas Range g AP 2 435
(AN Wazher 12 AP 3 39598
FD21 Stand Mixer 22 HF 3 139.95
KLEZ2 Ciryer 12 AP 1 349.95
KTO3 Dishwrasher g AP & 595
K29 Treacimill 9 SG 2 1380

10 rows returned in 0.04 seconds CEW Export

FIGURE 4-2 SELECT command to select all columns from the PART table

Using a WHERE Clause

When you need to retrieve rows that satisfy some condition, you include a WHERE clause
in the SELECT command, as shown in Example 3.

What is the name of the customer with customer number 1487

You can use a WHERE clause to restrict the query results to customer number 148, as
shown in Figure 4-3. Because CUSTOMER_NUM is a character column, the value 148 is
enclosed in single quotation marks. In addition, because the CUSTOMER_NUM column is
the primary key of the CUSTOMER table, there can be only one customer whose num-
ber matches the number in the WHERE clause.

SELECT CUSTOHMEE MNAME
FRON CUITOMER

WHERE CUSTOMER NUM = '148';: < Value is enclosed in single
quotation marks because
Results Explain Describe Saved SOL History CUSTOMER_NUM

is a character column

CUSTOMER_HAME

Al's Applisnce and Sport

1 rows returned in 0.05 seconds CSY Export

FIGURE 4-3 SELECT command to find the name of customer number 148

The condition in the preceding WHERE clause is called a simple condition. A simple
condition has the form column name, comparison operator, and then either another col-
umn name or a value. Figure 4-4 lists the comparison operators that you can use in SQL.
Notice that there are two versions of the “not equal to” operator: < > and !=.

Comparison operator Description

= Equal to

< Less than

> Greater than

<= Less than or equal to
>= Greater than or equal to
<> Not equal to

I= Not equal to

FIGURE 4-4 Comparison operators used in SQL commands

101

Single-Table Queries

102

Chapter 4

Find the number and name of each customer located in the city of Grove.

The only difference between this example and the previous one is that in Example 3,
there could not be more than one row in the answer because the condition involved the
table’s primary key. In Example 4, the condition involves a column that is not the table’s pri-
mary key. Because there is more than one customer located in the city of Grove, the results
can and do contain more than one row, as shown in Figure 4-5.

SELECT CUITOMER NUM, CUITOMER NAME

FROM CUSTOMER
WHERE CITY = 'Grove': @

Results Explain Describe Saved SOL History

CUSTOMER_HUM CUSTOMER_HAME
282 Brookings Direct
462 Bargzins Galore
a42 All Seazon
3 rows returned in 0.07 seconds C2Y Export

FIGURE 4-5 SELECT command to find all customers located in Grove

Find the number, name, balance, and credit limit for all customers with balances that
exceed their credit limits.

A simple condition can also compare the values stored in two columns. In Figure 4-6,
the WHERE clause includes a comparison operator that selects only those rows in which
the balance is greater than the credit limit.

SELECT CUSTOMER NUM, CUSTOMER NAME, EBALANCE, CREDIT LINIT
FROM CUSTOMER
WHERE BALANCE > CREDIT_LIMIT;

Results Explain Describe Saved SOL History

CUSTOMER_HUM CUSTOMER_HAME BALAHCE CREDIT_LIMIT

408 The Everything Shop 528525 5000
542 Al Seszon 8221 7500
2 rowes returned in 0.03 seconds CSY Export

FIGURE 4-6 SELECT command to find all customers with balances that exceed their credit limits

Using Compound Conditions

The conditions you have seen so far are called simple conditions. The following examples
require compound conditions. You form a compound condition by connecting two or
more simple conditions with the AND, OR, and NOT operators. When the AND operator
connects simple conditions, all the simple conditions must be true in order for the com-
pound condition to be true. When the OR operator connects the simple conditions, the com-
pound condition will be true whenever any one of the simple conditions is true. Preceding
a condition by the NOT operator reverses the truth of the original condition. For
example, if the original condition is true, the new condition will be false; if the original con-
dition is false, the new one will be true.

List the descriptions of all parts that are located in warehouse 3 and for which there are
more than 25 units on hand.

In Example 6, you need to retrieve those parts that meet both conditions—the ware-
house number is equal to 3 and the number of units on hand is greater than 25. To find the
answer, you form a compound condition using the AND operator, as shown in Figure 4-7.
The query examines the data in the PART table and lists the parts that are located in
warehouse 3 and for which there are more than 25 units on hand. When a WHERE clause
uses the AND operator to connect simple conditions, it also is called an AND condition.

103

Single-Table Queries

104

Chapter 4

S3ELECT DESCRIPTICHN
FEOM PART

= 191
WHERE WAREHOUSE 3 AND condition
AND ON_HAWD > Z5;

Results Explain Describe Saved SQOL History

DESCRIPTION

Iran

1 rowes returned in 0.01 seconds CSY Export

FIGURE 4-7 SELECT command with an AND condition on separate lines

For readability, each of the simple conditions in the query shown in Figure 4-7 appears
on a separate line. Some people prefer to put the conditions on the same line with paren-
theses around each simple condition, as shown in Figure 4-8. These two methods accom-
plish the same thing. In this text, simple conditions will appear on separate lines and
without parentheses.

SELECT DE3CRIFTION
FEOM PART
WHERE (WAREHOUSE = '3') ANWND (ON_HAND = 25):

Results Explain Describe Sawved SOL History

S
DESCRIPTIOH
Iron
1 rowes returmned in 0.01 seconds CE% Export

FIGURE 4-8 SELECT command with an AND condition on a single line

List the descriptions of all parts that are located in warehouse 3 or for which there are more
than 25 units on hand.

In Example 7, you need to retrieve descriptions for those parts for which the ware-
house number is equal to 3, or the number of units on hand is greater than 25, or both. To
do this, you form a compound condition using the OR operator, as shown in Figure 4-9.
When a WHERE clause uses the OR operator to connect simple conditions, it also is called
an OR condition.

SELECT DESCRIPTICH
FROM PART

WHERE WAREHCOUTIE = '3! L.
OR condition
R ON_HAND > 25;

Results Explain Describe Saved SOL History 105

DESCRIPTIOH

Iron

Home Gym

Microvweave Oven

Cordless Drill
Wigsher
Stand hixer
Dizhrwvasher
7 rows returned in 0.60 seconds C=Y Export

FIGURE 4-9 SELECT command with an OR condition

EXAMPLE 8

List the descriptions of all parts that are not in warehouse 3.

For Example 8, you could use a simple condition and the “not equal to” operator
(WHERE WAREHOUSE < > '3"). As an alternative, you could use the EQUAL operator (=)
in the condition and precede the entire condition with the NOT operator, as shown in Fig-

ure 4-10. When a WHERE clause uses the NOT operator to connect simple conditions, it also
is called a NOT condition.

JELECT DESCRIPTICN
FEOM PART

WHERE NOT (WAREHCUSE = '3'); NOT condition

Results Explain Describe Saved SOL History

DESCRIPTIOH

Home Gym

dicrowawe Oven

Gas Range
Dryer
Treacimill
S rows returned in 0.01 seconds CSY Export

FIGURE 4-10 SELECT command with a NOT condition

Single-Table Queries

You do not need to enclose the condition WAREHOUSE = '3' in parentheses, but doing
so makes the command more readable.

Using the BETWEEN Operator

106

Example 9 requires a compound condition to determine the answer.

List the number, name, and balance of all customers with balances greater than or equal
to $2,000 and less than or equal to $5,000.

You can use a WHERE clause and
the data.

the AND operator, as shown in Figure 4-11, to retrieve

FRON CUSTOMER
WHERE BALANCE == 2000
AND BALANCE <= 5000;

SELECT CUITOMER _NUM, CUSTCOMER NAME, BALANCE

Results Explain Descrihe Saved SQL History

—
CUSTOMER_HUM CUSTOMER_HAME BALAHNCE
452 Bargains Galore 3412
B05 Johnzon's Department Stare 2106
=t:r) Lee's Sport and Appliance 2891
3 rows returned in 0.20 seconds SV Export

FIGURE 4-11 SELECT command with an AND condition for a single column

In SQL, numbers included in queries are entered without extra symbols, such as dollar signs and commas.

An alternative to this approach uses the BETWEEN operator, as shown in Figure 4-12.

The BETWEEN operator lets you spec

Chapter 4

ify a range of values in a condition.

SELECT CU3STOMER _NUM, CUSTOMER NAME, BALANCE
FRON CUSTOMER
WHERE EALAWNCE EETWEEN 2000 AND 5000:;

Results Explain Describe Saved SOL History

CUSTOMER_HUM CUSTOMER_HAME BALAHCE
462 Bargaing Galore 3412
BOS Johnzon's Department Store 2106
a7 Lee's Sport and Appliance 2851
3 rows returned in 0.00 seconds CEY Export

FIGURE 4-12 SELECT command with the BETWEEN operator

The BETWEEN operator is inclusive, meaning that the query selects a value equal to
either value in the condition and in the range of the values. In the clause BETWEEN 2000
and 5000, for example, values of 2,000 through 5,000 would make the condition true. You
can use the BETWEEN operator in Oracle, SQL Server, and Access.

The BETWEEN operator is not an essential feature of SQL; you have just seen that you
can obtain the same result without it. Using the BETWEEN operator, however, does make
certain SELECT commands simpler to construct.

Using Computed Columns

You can perform computations using SQL queries. A computed column does not exist in
the database but can be computed using data in the existing columns. Computations can
involve any arithmetic operator shown in Figure 4-13.

Arithmetic operator Description

+ Addition

- Subtraction
Multiplication

/ Division

FIGURE 4-13 Arithmetic operators

Find the number, name, and available credit (the credit limit minus the balance) for each
customer.

107

Single-Table Queries

108

Chapter 4

There is no column in the Premiere Products database that stores a customer’s available
credit, but you can compute the available credit using the CREDIT_LIMIT and BALANCE
columns. To compute the available credit, you use the expression CREDIT_LIMIT -
BALANCE, as shown in Figure 4-14.

SELECT CUSTOMER NUM, CUSTOMER NAME, (CREDIT LIMIT - BALANCE)
— — - =)
FEOM CUSTOMEER; T
Computation
Results Explain Describe Saved S0OL History
—
CUSTOMER_HUM CUSTOMER_HAME (CREDIT_LIMIT-BALAHCE})
148 Al's Aopliance and Sport 950
282 Brookings Direct 9568.5
356 Ferguszon's 1715
405 The Everything Shogp -285.25
462 Bargains Gelore B588 Computed
column results
524 Kline's 2238
B05 Johnson's Department Store 7594
=tr) Lee's Sport and Appliance 21489
725 Deerfield's Four Seasons 7252
542 All Seazon -T2
10 rows returned in 0.00 seconds CEY Export

FIGURE 4-14 SELECT command with a computed column

The parentheses around the calculation (CREDIT_LIMIT - BALANCE) are not essen-
tial but improve readability.

You also can assign a name to a computed column by following the computation with
the word AS and the desired name. The command shown in Figure 4-15, for example,
assigns the name AVAILABLE_CREDIT to the computed column.

SELECT CUSTOMER_NUM, CUSTOMER NAME, (CREDIT LIMIT - BALANCE) A5 AVAILABLE CREDIT
FROM CUSTOMER:

Results Explain Describe Saved SOL History

—
CUSTOMER_HUM CUSTOMER_HAME AVAILABLE _CREDIT < CompUted
column name

148 Al's Appliance and Sport 950

282 Brookings Direct 95658 .5

356 Ferguson's 1715

408 The Everything Shop -285.25

462 Bargains Galore 6588

524 Hline's 2238

G058 Johnson's Department Store 7534

87 Lee's Sport and Appliance 2149

725 Deerfield's Four Seasons T252

542 Al Season -2
10 rowws returned in 0.00 seconds CEY Export

FIGURE 4-15 SELECT command with a named computed column

NOTE — |

You can use names containing spaces following the word AS. In many SQL implementations, including
Oracle, you do so by enclosing the name in quotation marks (for example, AS "AVAILABLE CREDIT").
Other SQL implementations require you to enclose the name in other special characters. For example, in
Access you would enclose the name in square brackets (AS [AVAILABLE CREDIT]). In SQL Server, you
can use either quotation marks or square brackets.

Find the number, name, and available credit for each customer with at least $5,000 of avail-
able credit.

You also can use computed columns in comparisons, as shown in Figure 4-16.

109

Single-Table Queries

110

Chapter 4

SELECT CUSTOMER_NUM, CUSTOMER _NAME, (CREDIT LIMIT - BALANCE) AS AVAILAELE CREDIT
FRCOM CUSTOMER
WHERE (CREDIT_ LIMIT - BALANCE) == 5000:

Results Explain Describe Saved SQOL History

CUSTOMER_HUM CUSTOMER_HAME AVAILABLE_CREDIT
282 Brookings Direct 9568 .5
452 Bargains Galore ESEE
EOS Johnzon's Department Store 7894
725 Deerfield's Four Seazons 7252
4 rowes returned in 0.02 seconds CEY Export

FIGURE 4-16 SELECT command with a computation in the condition

Using the LIKE Operator

In most cases, the conditions in WHERE clauses involve exact matches, such as retrieving
rows for each customer located in the city of Grove. In some cases, however, exact matches
do not work. For example, you might know that the desired value contains only a cer-
tain collection of characters. In such cases, you use the LIKE operator with a wildcard sym-
bol, as shown in Example 12. Rather than testing for equality, the LIKE operator uses one
or more wildecard characters to test for a pattern match.

List the number, name, and complete address of each customer located on a street that
contains the letters “Central.”

All you know is that the addresses you want contain a certain collection of characters
(“Central”) somewhere in the STREET column, but you do not know where. In SQL for Oracle
and for SQL Server, the percent sign (%) is used as a wildcard to represent any collection of
characters. As shown in Figure 4-17, the condition LIKE '%Central%' retrieves information for
each customer whose street contains some collection of characters, followed by the letters
“Central,” followed potentially by some additional characters. Note that this query also would
retrieve information for a customer whose address is “123 Centralia” because “Centralia” also
contains the letters “Central.”

SELECT CUSTOMER NUM, CUSTOMER MNAME, STREET, CITY, STATE,
FRON CUSTOMER
WHERE 3STREET LIEKE ':zCentral%':

ZIP

Wildcard
symbols used
in condition

Results Explain Describe Saved SQL History

CUSTOMER_HUM CUSTOMER_HAME STREET CITY STATE ZIP

Street

462 Bargaing Galore 3829 Certral Grove FL 33321 .
A contains
1 rows returned in 0.01 seconds CSY Export 1 “Central”

FIGURE 4-17 SELECT command with a LIKE operator and wildcards

Another wildeard symbol in SQL is the underscore (_), which represents any individual
character. For example, "T_m" represents the letter “T” followed by any single character, fol-
lowed by the letter “m,” and would retrieve rows that include the words Tim, Tom, or T3m.

ACCESS USER NOTE ==

Access uses different wildcard symbols. The symbol for any collection of characters is the asterisk (*), as
shown in Figure 4-18. The symbol for an individual character is the question mark (?).

SELECT CUSTOMER_NUM, CUSTOMER NAME, STREET, CITY, STATE, ZIP
FROM CUSTOMER
WHERE STREET LIKE '*Central*';

FIGURE 4-18 Access SELECT command with wildcards

———

In a large database, you should use wildcards only when absolutely necessary. Searches involving wild-
cards can be extremely slow to process.

Using the IN Operator

An IN clause, which consists of the IN operator followed by a collection of values, provides
a concise way of phrasing certain conditions, as Example 13 illustrates. You will see
another use for the IN clause in more complex examples later in this chapter.

List the number, name, and credit limit for each customer with a credit limit of $5,000,
$10,000, or $15,000.

In this query, you can use an IN clause to determine whether a credit limit is $5,000,
$10,000, or $15,000. You could obtain the same answer by using the condition WHERE

19518

Single-Table Queries

{512

Chapter 4

CREDIT_LIMIT = 5000 OR CREDIT_LIMIT = 10000 OR CREDIT_LIMIT = 15000. The
approach shown in Figure 4-19 is simpler because the IN clause contains a collection of
values: 5000, 10000, and 15000. The condition is true for those rows in which the value
in the CREDIT_LIMIT column is in this collection.

SELECT CUITOMER_NUM, CUSTCMER MNAME, CEEDIT_LIMIT
FROM CUSTOMER List of values
WHERE CREDIT LIMIT IN (5000, 10000, 15000); inthe IN
clause
Results Explain Describe Sawved SQOL History
pr—
CUSTOMER_HUM CUSTOMER_HAME CREDIT_LIMIT
282 Brookings Direct 10000
405 The Everything Shogp S000
462 Bargains Galore 10000
524 Kline's 15000
E03 Johnson's Department Store 10000
637 Lee's Sport and Appliance S000
G rows returned in 0.01 seconds CSY Export

FIGURE 4-19 SELECT command with an IN clause

SORTING

Recall that the order of rows in a table is immaterial to the DBMS. From a practical
standpoint, this means that when you query a relational database, there is no defined order
in which to display the results. Rows might be displayed in the order in which the data was
originally entered, but even this is not certain. If the order in which the data is dis-
played is important, you can specifically request that the results appear in a desired order.
In SQL, you specify the results order by using the ORDER BY clause.

Using the ORDER BY Clause

You use the ORDER BY clause to list data in a specific order, as shown in Example 14.

List the number, name, and balance of each customer. Order (sort) the output in ascend-
ing (increasing) order by balance.

The column on which to sort data is called a sort key or simply a key. In Example 14,
you need to order the output by balance, so the sort key is the BALANCE column. To sort
the output, use an ORDER BY clause followed by the sort key. If you do not specify a sort
order, the default is ascending. The query appears in Figure 4-20.

SELECT CUSTOMER_NUM, CUSTOMER MAME, BLLANCE
FROM CUITOMER
ORDER EY BALANCE: Sort key
Results Explain Describe Saved SQL History
i
] 113
CUSTOMER_HUM CUSTOMER_HAME BALANCE
725 Deerfield's Four Seasonz 245
252 Brockings Direct 431.5
BOS Johnzon's Department Store 2106
G537 Lee's Sport and Appliance 2851
Rows are sorted
462 Bargains Galore 3412 in ascending order by
405 The Everything Shaop 528525 balance
336 Ferguzon's 5785
145 Al's Appliance and Sport G550
G2 Al Seazan g2
524 Kline's 12762
7
10 rowes returned in 0.01 seconds C5Y Export

FIGURE 4-20 SELECT command to sort rows

Additional Sorting Options

Sometimes you might need to sort data using more than one key, as shown in Example 15.

List the number, name, and credit limit of each customer. Order the customers by name
within descending credit limit. (In other words, first sort the customers by credit limit in
descending order. Within each group of customers that have a common credit limit, sort
the customers by name in ascending order.)

Example 15 involves two new ideas: sorting on multiple keys—CREDIT_LIMIT and
CUSTOMER_NAME—and sorting one of the keys in descending order. When you need to
sort data on two columns, the more important column (in this case, CREDIT_LIMIT) is
called the major sort key (or the primary sort key) and the less important column (in this
case, CUSTOMER_NAME) is called the minor sort key (or the secondary sort key). To
sort on multiple keys, you list the keys in order of importance in the ORDER BY clause. To
sort in descending order, you follow the name of the sort key with the DESC operator, as
shown in Figure 4-21.

Single-Table Queries

SELECT CUSTOMER NUM, CUSTCMER, NAME, CREDIT LINIT :
FROM CUSTOMER [Major sort key
ORDER BY CREDIT_LIMIT DESC, CUSTOMER_NANE;<—

_ %] |

Results Explain Describe Saved SOL History

— Descending
d
= CUSTOMER_HUM CUSTOMER_HAME CREDIT_LIMIT oraer
524 Kline's 15000)
462 Bargains Galore 10000
282 Brookings Direct 10000
B05 Johnzon's Department Store 10000
148 (ars sppliance and Sport 7500 Rows sorted in
descending order by
Gd2 All Seazon 7500 e
credit limit
725 Deerfisld's Four Seasons 7500
356 L Ferguson's Fa00
637 Lee's Sport and &ppli 5000 .
bt bl Rows with the same
405 The Everything Shop =000 credit limit are sorted
10 rows returned in 0.01 seconds CEY Export by name

FIGURE 4-21 SELECT command to sort data using multiple sort keys

USING FUNCTIONS

SQL uses special functions, called aggregate functions, to calculate sums, averages,
counts, maximum values, and minimum values. These functions apply to groups of rows.
They could apply to all the rows in a table (for example, calculating the average balance
of all customers). They also could apply to those rows satisfying some particular condi-
tion (for example, the average balance of all customers of sales rep 20). The descrip-
tions of the aggregate functions appear in Figure 4-22.

AVG Calculates the average value in a column
COUNT Determines the number of rows in a table
MAX Determines the maximum value in a column
MIN Determines the minimum value in a column
SUM Calculates a total of the values in a column

FIGURE 4-22 SQL aggregate functions

Using the COUNT Function

The COUNT function, as illustrated in Example 16, counts the number of rows in a table.

Chapter 4

How many parts are in item class HW?

For this query, you need to determine the total number of rows in the PART table with
the value HW in the CLASS column. You could count the part numbers in the query results,
or the number of part descriptions, or the number of entries in any other column. It
doesn’t matter which column you choose because all columns should provide the same
answer. Rather than arbitrarily selecting one column, most SQL implementations let you
use the asterisk (*) to represent any column, as shown in Figure 4-23.

SELECT COUNT(*)
FROM PART COUNT function
WHERE CLASS = 'HU';% in SELECT clause

e e N e A T i o L el T P e T 2 L e s W P o6 W0 T T i = L T RS e T ErATEREEE TR g
Results Explain Describe Sawved SQOL History
r—
Number of rows in
COUNT(") the PART table on

g

which the class is HW

1 rowes returned in 0.01 seconds CEY Export

FIGURE 4-23 SELECT command to count rows

You also can count the number of rows in a query by selecting a specific column instead
of using the asterisk, as follows:

SELECT COUNT(PART_NUM)
FROM PART
WHERE CLASS = ' HW ;

Using the SUM Function

If you need to calculate the total of all customers’ balances, you can use the SUM function,
as illustrated in Example 17.

Find the total number of Premiere Products customers and the total of their balances.

When you use the SUM function, you must specify the column to total, and the col-
umn’s data type must be numeric. (How could you calculate a sum of names or addresses?)
Figure 4-24 shows the query.

115

Single-Table Queries

SELECT COUNT(*), SUM(BALANCE)
FROM CUSTOMER;

Results Explain Descrihe Saved SQL History

—
S COUHT(*} SUM(BALANCE)
10 4783173
1 rows returned in 0.01 seconds SV Export

FIGURE 4-24 SELECT command to count rows and calculate a total

Using the AVG, MAX, and MIN Functions

Using the AVG, MAX, and MIN functions is similar to using SUM, except that different sta-
tistics are calculated. AVG calculates the average value in a numeric range, MAX calcu-

lates the maximum value in a numeric range, and MIN calculates the minimum value in a
numeric range.

EXAMPLE 18

Find the sum of all balances, the average balance, the maximum balance, and the mini-
mum balance of all Premiere Products customers.

Figure 4-25 shows the query and the results.

SELECT SUM{(BALANCE), AVG(BALANCE), MAX(BALANCE), MIN|BALANCE]
FROM CUSTOMER;

Results Explain Describe Sawved SOL History

SUM(BALANCE} AVG(BALAHCE) MAX(BALAHCE} MIN(BALAHCE)

4765175 4765175 12762 248
1 rows returned in 0.01 seconds CSY Export

FIGURE 4-25 SELECT command with several functions

Chapter 4

——————

When you use the SUM, AVG, MAX, or MIN functions, SQL ignores any null value(s) in the column and
eliminates them from the computations.

Null values in numeric columns can produce strange results when statistics are computed. Suppose the

BALANCE column accepts null values, there are currently four customers in the CUSTOMER table, and

their respective balances are $100, $200, $300, and null (unknown). When you calculate the average bal- 117
ance, SQL ignores the null value and obtains a result of $200 (($100 + $200 + $300) / 3). Similarly, when

you calculate the total of the balances, SQL ignores the null value and calculates a total of $600. When

you count the number of customers in the table, however, SQL includes the row containing the null value,

and the result is 4. Thus the total of the balances ($600) divided by the number of customers (4) results

in an average balance of $150!

——————

You can use an AS clause with a function. For example, the following command computes a sum of the
BALANCE column and displays the column heading as TOTAL_BALANCE in the query results:
SELECT SUM BALANCE) AS TOTAL_BALANCE

FROM CUSTOVER;

Using the DISTINCT Operator

In some situations, the DISTINCT operator is useful when used in conjunction with the
COUNT function because it eliminates duplicate values in the query results. Examples 19
and 20 illustrate the most common uses of the DISTINCT operator.

Find the number of each customer that currently has an open order (that is, an order cur-
rently in the ORDERS table).

The command seems fairly simple. When a customer currently has an open order, there
must be at least one row in the ORDERS table on which that customer’s number appears. You
could use the query shown in Figure 4-26 to find the customer numbers with open orders.

Single-Table Queries

118

Chapter 4

SELECT CUITOMER NUHM
FEOM ORDERS:

Results Explain Describe Sawved SOL History

CUSTOMER_HUM

148

356

408

282

£03

145 Customer 608 has
two orders on file

£03

7 rowes returned in 0.04 seconds CSY Export

FIGURE 4-26 Numbers of customers with open orders

Notice that customer numbers 148 and 608 each appear more than once in the results;
this means that both customers currently have more than one open order in the ORDERS
table. Suppose you want to list each customer only once, as illustrated in Example 20.

Find the number of each customer that currently has an open order. List each customer
only once.

To ensure uniqueness, you can use the DISTINCT operator, as shown in Figure 4-27.

SELECT DISTINCT(CUSTONER NUHM)
FEOM ORDERS:

Results Explain Describe Sawved SOL History

CUSTOMER_HUM
282
148
BO03
356
403

5 rowes returned in 0.04 seconds CSY Export

FIGURE 4-27 Numbers of customers with open orders and with duplicates removed

You might wonder about the relationship between COUNT and DISTINCT, because both
involve counting rows. Example 21 identifies the differences.

119

Count the number of customers that currently have open orders.

The query shown in Figure 4-28 counts the number of customers using the

CUSTOMER_NUM column.

SELECT COUNT (CUSTCOMER NUM|
FEOM ORDERI:

Results Explain Descrihe Saved SQL History
——

COUNT(CUSTOMER_HUM)

7
1 rowes returned in 0.01 seconds 5% Export

FIGURE 4-28 Count that includes duplicate customer numbers

Question: What is wrong with the query results shown in Figure 4-28?
Answer: The answer, 7, is the result of counting the customers that have open orders mul-

tiple times—once for each separate order currently on file. The result counts each cus-
tomer number and does not eliminate duplicate customer numbers to provide an accurate

count of the number of customers.

Some SQL implementations, including Oracle and SQL Server (but not Access), allow
you to use the DISTINCT operator to calculate the correct count, as shown in Figure 4-29.

SELECT COUNT (DISTINCT (CUSTOMER NUHM) |
FRON OQORDERZ;

Results Explain Describe Saved SQL History
——

COUNT(DISTINCT(CUSTOMER_HUM}}

a
1 rows returned in 0.04 seconds CSY Export

FIGURE 4-29 Count that excludes duplicate customer numbers (using DISTINCT within COUNT)

Single-Table Queries

120

Chapter 4

NESTING QUERIES

Sometimes obtaining the results you need requires two or more steps, as shown in the next
two examples.

List the number of each part in class AP.

The command to obtain the answer is shown in Figure 4-30.

SELECT PART NUH
FEOM PART
WHERE CLAZS = 'AP':;

Results Explain Describe Sawved SQOL History

PART_HUM
Chs2
DRA3
LA 1
KLE2
KT03

5 rows returned in 0.02 seconds CEY Export

FIGURE 4-30 Selecting all parts in class AP

List the order numbers that contain an order line for a part in class AP.

Example 23 asks you to find the order numbers in the ORDER_LINE table that corre-
spond to the part numbers in the results of the query used in Example 22. After viewing
those results (CD52, DR93, DW11, KL62, and KT03), you can use the command shown in
Figure 4-31.

SELECT ORDEER_NUH

FROM CRDER_LINE

WHERE FPART NUM IM {'CD52','DRS3','DW1l','KLez','EKTO3');
D'

Results Explain Describe Saved SOL His‘tun.-" /—'\
— Results from

ORDER_HUM W
2ME10
2E10
ME13
2E14
HMET
21E18

B rows returned in 0.01 seconds CEY Export

FIGURE 4-31 Query using the results from Figure 4-30

Subqueries

It is possible to place one query inside another. The inner query is called a subquery. The
subquery is evaluated first. After the subquery has been evaluated, the outer query can use
the results of the subquery to find its results, as shown in Example 24.

Find the answer to Examples 22 and 23 in one step.

You can find the same result as in the previous two examples in a single step by using
a subquery. In Figure 4-32, the command shown in parentheses is the subquery. This sub-
query is evaluated first, producing a temporary table. The temporary table is used only to
evaluate the query—it is not available to the user or displayed—and it is deleted after the
evaluation of the query is complete. In this example, the temporary table has only a single
column (PART_NUM) and five rows (CD52, DR93, DW11, KL62, and KT03). The outer
query is evaluated next. In this case, the outer query retrieves the order number on every
row in the ORDER_LINE table for which the part number is in the results of the subquery.
Because that table contains only the part numbers in class AP, the results display the desired
list of order numbers.

121

Single-Table Queries

122

Chapter 4

SELECT ORDER NUM < -
FROM ORDER LINE operator
WHERE PART NUM TN

(FELECT PART NUHM
FEOM FPART
WHERE CLAZS = 'AP'):

Subquery to find part
numbers for parts in
class AP

Results Explain Describe Sawved SOL History

ORDER_HUM
21610
21610
21613
21614
21617
21619

6 rows returned in 0.04 seconds CSY Export

FIGURE 4-32 Using the IN operator and a subquery

Figure 4-32 shows duplicate order numbers in the results. To eliminate this duplica-
tion, you can use the DISTINCT operator as follows:

SELECT DI STI NCT(ORDER_NUM)
FROM ORDER LI NE

WHERE PART_NUM | N

(SELECT PART_NUM

FROM PART

WHERE CLASS = ' AP');

The results of this query will display each order number only once.

List the number, name, and balance for each customer whose balance exceeds the aver-
age balance of all customers.

In this case, you use a subquery to obtain the average balance. Because this sub-
query produces a single number, you can compare each customer’s balance with this num-
ber, as shown in Figure 4-33.

SELECT CUSTOMER _NUM, CUSTOMER WAME, BALANCE
FRON CUSTOMER

WHERE EALLWNCE >

(SELECT AVG (BALANCE)

FROM CUITOMER) ;

Results Explain Describe Sawved SQOL History

CUSTOMER_HUM CUSTOMER_HAME BALAHCE
145 Al's Appliance and Sport 6550
356 Ferguson's ares
405 The Everything Shop 528525
224 Kline's 12762
G542 Al Seazan 221

5 rows returned in 0.01 seconds CEY Export

FIGURE 4-33 Query using an operator and a subquery

NOTE ————

You cannot use the condition BALANCE > AVG(BALANCE) in the WHERE clause; you must use a subquery
to obtain the average balance. Then you can use the results of the subquery in a condition, as illustrated in
Figure 4-33.

GROUPING

Grouping creates groups of rows that share some common characteristic. If you group
customers by credit limit, for example, the first group contains customers with 5,000 credit
limits, the second group contains customers with 87,500 credit limits, and so on. If, on the
other hand, you group customers by sales rep number, the first group contains those cus-
tomers represented by sales rep number 20, the second group contains those customers rep-
resented by sales rep number 35, and the third group contains those customers
represented by sales rep number 65.

When you group rows, any calculations indicated in the SELECT command are per-
formed for the entire group. For example, if you group customers by rep number and the
query requests the average balance, the results include the average balance for the group
of customers represented by rep number 20, the average balance for the group repre-
sented by rep number 35, and the average balance for the group represented by rep num-
ber 65. The following examples illustrate this process.

Using the GROUP BY Clause

The GROUP BY clause lets you group data on a particular column, such as REP_NUM, and
then calculate statistics, when desired, as shown in Example 26.

123

Single-Table Queries

124

Chapter 4

For each sales rep, list the rep number and the average balance of the rep’s customers.

Because you need to group customers by rep number and then calculate the average
balance for all customers in each group, you must use the GROUP BY clause. In this case,
GROUP BY REP_NUM puts customers with the same rep number into separate groups. Any
statistics indicated in the SELECT command are calculated for each group. It is impor-
tant to note that the GROUP BY clause does not sort the data in a particular order; you
must use the ORDER BY clause to sort data. Assuming that the results should be ordered

by rep number, you can use the command shown in Figure 4-34.

SELECT REP_NUN, AVG(BALANCE)
FEON CUSTOHMER

GROUP EY REP NUM

ORDER BY REP_NUM;

Results Explain Descrihe Saved SQL History

REP_HUM AVG(BALANCE})
20 9177 BEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEET
a5 2903 9375 One row for each
group
ES 3767 BEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEET
3 rows returned in 0.01 seconds 5% Export

FIGURE 4-34 Grouping records on a column

When rows are grouped, one line of output is produced for each group. The only things

that can be displayed are statistics calculated for the group or columns whose values are
the same for all rows in a group.

Question: Is it appropriate to display the rep number in the query for Example 267
Answer: Yes, because the rep number in one row in a group must be the same as the rep
number in any other row in the group.

Question: Would it be appropriate to display a customer number in the query for
Example 26?

Answer: No, because the customer number varies on the rows in a group. (The same rep
is associated with many customers.) The DBMS would not be able to determine which
customer number to display for the group, and would display an error message if you
attempt to display a customer number.

Using a HAVING Clause

The HAVING clause is used to restrict the groups that are included, as shown in Example 27.

Repeat the previous example, but list only those reps who represent fewer than four customers.

The only difference between Examples 26 and 27 is the restriction to display only those
reps who represent fewer than four customers. This restriction does not apply to indi-
vidual rows but rather to groups. Because the WHERE clause applies only to rows, you can-
not use it to accomplish the kind of selection that is required. Fortunately, the HAVING
clause does for groups what the WHERE clause does for rows. The HAVING clause limits
the groups that are included in the results. In Figure 4-35, the row created for a group is
displayed only when the count of the number of rows in the group is less than four; in addi-
tion, all groups are ordered by rep number.

SELECT REP_NUM, AVG(BALLNCE)
FRON CUSTOMER
GROUP BY REP_NUM
HAVING COUNT(*) < 4
ORDER EY EEP_NUH:

Only groups with
fewer than four rows
are included

Results Explain Describe Sawved SQOL History

——
REP_HUM AVG(BALANCE)
20 o177 BREEARRERREARERAEAAERREREEREERREERT
65 3767 BEEEEEEE6EE65E6666565066E6666666667
2 rowes returned in 0.01 seconds CSY Export

FIGURE 4-35 Restricting the groups to include in the results

HAVING vs. WHERE

Just as you can use the WHERE clause to limit the rows that are included in a query’s result,
you can use the HAVING clause to limit the groups that are included. The following
examples illustrate the difference between these two clauses.

125

Single-Table Queries

126

Chapter 4

EXAMPLE 28

List each credit limit and the number of customers having each credit limit.

To count the number of customers that have a given credit limit, you must group the
data by credit limit, as shown in Figure 4-36.

SELECT CEEDIT LIMIT, COUNTI(¥)
FEON CUSTOMER

GROUF BY CREDIT LIMIT

ORDER BY CREDIT LIMIT:

Results Explain Describe Sawved SOL History

CREDIT_LIMIT COUHT(*)
5000 2
700 4
10000 3
15000 1
4 rows returned in 0.01 seconds SV Export

FIGURE 4-36 Counting the number of rows in each group

Repeat Example 28, but list only those credit limits held by more than one customer.

Because this condition involves a group total, the query includes a HAVING clause, as
shown in Figure 4-37.

SELECT CEEDIT LIMIT, COUNT(¥)
FEOM CUSTOMER

GROUF BY CREDIT LIMIT

HAVING COUNT(*) > 1

ORDER BY CREDIT LIMIT:

Results Explain Describe Sawved SQOL History

CREDIT_LIMIT COUHT(*)
5000 2
700 4
10000 3
3 rows returned in 0.01 seconds CEY Export

FIGURE 4-37 Displaying groups that contain more than one row

List each credit limit and the number of customers of sales rep 20 that have this limit.

The condition involves only rows, so using the WHERE clause is appropriate, as shown 127
in Figure 4-38.

SELECT CREDIT LIMIT, COUNT(*)
FROM CUSTOMER

WHERE REP NUM = 'z0O¢
GROUP BY CREDIT _LIMIT
ORDER BY CREDIT LINIT:

Only rows on which the
rep number is 20 are
included in the groups

Results Explain Describe Sawved SQOL History

CREDIT_LIMIT COUNT(*)

7500 2
15000 1
2 rowes returned in 0.01 seconds CSY Export

FIGURE 4-38 Restricting the rows to be grouped

Repeat Example 30, but list only those credit limits held by more than one customer.

Because the conditions involve rows and groups, you must use both a WHERE clause
and a HAVING clause, as shown in Figure 4-39.

SELECT CREDIT LIMIT, COUNT(¥)
FRON CUSTOMER

WHERE REP NUM = 'z0O

GROUP BY CREDIT LINIT

HAVING COUNT(*) > 1

ORDER BY CREDIT LINIT;

Results Explain Describe Sawved SQOL History

CREDIT_LIMIT COUNT(*)
7500 2

1 rowes returned in 0.01 seconds CEY Export

FIGURE 4-39 Restricting the rows and the groups

Single-Table Queries

128

Chapter 4

In Example 31, rows from the original table are evaluated only when the sales rep num-
ber is 20. These rows then are grouped by credit limit and the count is calculated. Only
groups for which the calculated count is greater than one are displayed.

NULLS

Sometimes a condition involves a column that can accept null values, as illustrated in
Example 32.

List the number and name of each customer with a null (unknown) street value.

You might expect the condition to be something like STREET = NULL. The correct for-
mat actually uses the IS NULL operator (STREET IS NULL), as shown in Figure 4-40. (To
select a customer whose street is not null, use the IS NOT NULL operator (STREET IS
NOT NULL).) In the current Premiere Products database, no customer has a null street
value; therefore, no rows are retrieved in the query results.

SELECT CUITOMER NUM, CUITCHMER NAME
FEOM CUSTOMER
WHERE STREET I3 NULL:

Results Explain Describe Sawved SQOL History

no data found

FIGURE 4-40 Selecting rows containing null values in the STREET column

SUMMARY OF SQL CLAUSES, FUNCTIONS,
AND OPERATORS

In this chapter, you learned how to create queries that retrieve data from a single table by
constructing appropriate SELECT commands. In the next chapter, you will learn how to
create queries that retrieve data from multiple tables. The queries you created in this chap-
ter used the clauses, functions, and operators shown in Figure 4-41.

Clause, function, or operator Description

AND operator Specifies that all simple conditions must be true for the
compound condition to be true

AVG function Calculates the average value in a numeric range

BETWEEN operator Specifies a range of values in a condition 1
COUNT function Counts the number of rows in a table

DESC operator Sorts the query results in descending order based on the

column name

DISTINCT operator Ensures uniqueness in the condition by eliminating
redundant values

FROM clause Indicates the table from which to retrieve the specified columns
GROUP BY clause Groups rows based on the specified column

HAVING clause Limits a condition to the groups that are included

IN clause Uses the IN operator to find a value in a group of values specified

in the condition

IS NOT NULL operator Finds rows that do not contain a null value in the
specified column

IS NULL operator Finds rows that contain a null value in the specified column
LIKE operator Indicates a pattern of characters to find in a condition

MAX function Calculates the maximum value in a numeric range

MIN function Calculates the minimum value in a numeric range

NOT operator Reverses the truth or falsity of the original condition

OR operator Specifies that the compound condition is true whenever any of

the simple conditions is true

ORDER BY clause Lists the query results in the specified order based on the
column name

SELECT clause Specifies the columns to retrieve in the query

SUM function Totals the values in a numeric range

WHERE clause Specifies any conditions for the query

FIGURE 4-41 SQL query clauses, functions, and operators

Single-Table Queries

130

Chapter 4

Chapter Summary

The basic form of the SQL SELECT command is SELECT-FROM-WHERE. Specify the
columns to be listed after the word SELECT (or type an asterisk (*) to select all col-
umns), and then specify the table name that contains these columns after the word
FROM. Optionally, you can include one or more conditions after the word WHERE.

Simple conditions are written in the following form: column name, comparison operator,
column name or value. Simple conditions can involve any of the comparison operators:
= >, >=, <, <=, <> orl=

You can form compound conditions by combining simple conditions using the AND, OR,
and NOT operators.

Use the BETWEEN operator to indicate a range of values in a condition.

Use computed columns in SQL commands by using arithmetic operators and writing the
computation in place of a column name. You can assign a name to the computed col-
umn by following the computation with the word AS and then the desired name.

To check for a value in a character column that is similar to a particular string of charac-
ters, use the LIKE operator. In Oracle and SQL Server, the percent (%) wildcard repre-
sents any collection of characters, and the underscore (_) wildcard represents any
single character. In Access, the asterisk (*) wildcard represents any collection of charac-
ters, and the question mark (?) wildcard represents any single character.

To determine whether a column contains a value in a set of values, use the IN operator.

Use an ORDER BY clause to sort data. List sort keys in order of importance. To sort in
descending order, follow the sort key with the DESC operator.

SQL processes the aggregate functions COUNT, SUM, AVG, MAX, and MIN. These cal-
culations apply to groups of rows.

To avoid duplicates in a query that uses an aggregate function, precede the column name
with the DISTINCT operator.

When one SQL query is placed inside another, it is called a subquery. The inner query
(the subquery) is evaluated first.

Use a GROUP BY clause to group data.
Use a HAVING clause to restrict the output to certain groups.

Use the IS NULL operator in a WHERE clause to find rows containing a null value in a par-
ticular column. Use the IS NOT NULL operator in a WHERE clause to find rows that do
not contain a null value.

Key Terms

aggregate function compound condition
AND computed column
AND condition COUNT

AVG DESC

BETWEEN DISTINCT

FROM clause NOT condition

GROUP BY clause OR

grouping OR condition

HAVING clause ORDER BY clause

IN clause primary sort key 131
IS NOT NULL query

IS NULL secondary sort key

key SELECT clause

LIKE simple condition

major sort key

sort key

MAX subquery

MIN SUM

minor sort key WHERE clause
NOT

Review Questions

1. Describe the basic form of the SQL SELECT command.
2. How do you form a simple condition?
3. How do you form a compound condition?
4. In SQL, what operator do you use to determine whether a value is between two other val-
ues without using an AND condition?
5. How do you use a computed column in SQL? How do you name the computed column?
6. In which clause would you use a wildcard in a condition?
7. What wildcards are available in Oracle, and what do they represent?
8. How do you determine whether a column contains one of a particular set of values with-
out using an AND condition?
9. How do you sort data?
10. How do you sort data on more than one sort key? What is the more important key called?
What is the less important key called?
11. How do you sort data in descending order?
12. What are the SQL aggregate functions?
13. How do you avoid including duplicate values in a query’s results?
14. What is a subquery?
15. How do you group data in an SQL query?
16. When grouping data in a query, how do you restrict the output to only those groups satisfy-
ing some condition?
17. How do you find rows in which a particular column contains a null value?

Single-Table Queries

132

Chapter 4

18.

Use your favorite Web browser and Web search engine to find out how to enter a date in
an SQL query in Oracle, Access, and SQL Server. Using the information you find, com-
plete the following SQL command for each of the three DBMSs (Oracle, Access, and SQL
Server) to list orders placed on October 20, 2010:

SELECT *

FROM ORDERS

VWHERE ORDER DATE =

Be sure to reference the URLs that contain the information.

Exercises

Premiere Products

Use SQL and the Premiere Products database (see Figure 1-2 in Chapter 1) to complete the fol-
lowing exercises. If directed to do so by your instructor, use the information provided with the
Chapter 3 Exercises to print your output.

1.

2
3.
4

o

10.

11.
12.
13.

14.
15.

16.

List the part number, description, and price for all parts.
List all rows and columns for the complete ORDERS table.
List the names of customers with credit limits of $10,000 or more.

List the order number for each order placed by customer number 608 on 10/23/2010. (Hint:
If you need help, use the discussion of the DATE data type in Figure 3-11 in Chapter 3.)

List the number and name of each customer represented by sales rep 35 or sales rep 65.
List the part number and part description of each part that is not in item class AP.

List the part number, description, and number of units on hand for each part that has
between 10 and 25 units on hand, including both 10 and 25. Do this two ways.

List the part number, part description, and on-hand value (units on hand * unit price) of each
partin item class SG. (On-hand value is really units on hand * cost, but there is no COST col-
umn in the PART table.) Assign the name ON_HAND_VALUE to the computed column.

List the part number, part description, and on-hand value for each part whose on-hand value
is at least $7,500. Assign the name ON_HAND_VALUE to the computed column.

Use the IN operator to list the part number and part description of each part in item class
AP or SG.

Find the number and name of each customer whose name begins with the letter “B.”
List all details about all parts. Order the output by part description.

List all details about all parts. Order the output by part number within warehouse. (That is,
order the output by warehouse and then by part number.)

How many customers have balances that are more than their credit limits?

Find the total of the balances for all customers represented by sales rep 65 with balances
that are less than their credit limits.

List the part number, part description, and on-hand value of each part whose number of units
on hand is more than the average number of units on hand for all parts. (Hint: Use a
subquery.)

17.
18.

19.

20.

21.

What is the price of the least expensive part in the database?

What is the part number, description, and price of the least expensive part in the database?
(Hint: Use a subquery.)

List the sum of the balances of all customers for each sales rep. Order and group the results

by sales rep number.
133

List the sum of the balances of all customers for each sales rep, but restrict the output to
those sales reps for which the sum is more than $10,000.

List the part number of any part with an unknown description.

Henry Books

Use SQL and the Henry Books database (Figures 1-4 through 1-7 in Chapter 1) to complete the
following exercises. If directed to do so by your instructor, use the information provided with the
Chapter 3 Exercises to print your output.

1.

© N o g bk w DN

10.

11.

12.

13.

14.
15.

16.
17.

List the book code and book title of each book.

List the complete BRANCH table.

List the name of each publisher located in Boston.

List the name of each publisher not located in New York.

List the name of each branch that has at least nine employees.

List the book code and book title of each book that has the type HOR.

List the book code and book title of each book that has the type HOR and is in paperback.

List the book code and book title of each book that has the type HOR or is published by the
publisher with the publisher code SC.

List the book code, book title, and price of each book with a price between $15 and $25.

List the book code and book title of each book that has the type MYS and a price of less
than $20.

Customers who are part of a special program get a 10 percent discount off regular book
prices. List the book code, book title, and discounted price of each book. Use
DISCOUNTED_PRICE as the name for the computed column, which should calculate 90
percent of the current price (100 percent less a 10 percent discount).

Find the name of each publisher containing the word “and.” (Hint: Be sure that your query selects
only those publishers that contain the word “and” and not those that contain the letters “and”
in the middle of a word. For example, your query should select the publisher named “Farrar
Straus and Giroux,” but should not select the publisher named “Random House.”)

List the book code and book title of each book that has the type SFI, MYS, or HOR. Use
the IN operator in your command.

Repeat Exercise 13, but also list the books in alphabetical order by title.

Repeat Exercise 13, but also include the price, and list the books in descending order by
price. Within a group of books having the same price, further order the books by title.

Display the list of book types in the database. List each book type only once.
How many books have the type SFI?

Single-Table Queries

134

Chapter 4

18.
ie).
20.

21.
22.
23.

For each type of book, list the type and the average price.
Repeat Exercise 18, but consider only paperback books.

Repeat Exercise 18, but consider only paperback books for those types for which the aver-
age price is more than $10.

What are the title(s) and price(s) of the least expensive book(s) in the database?
What is the most expensive book in the database?

How many employees does Henry Books have?

Alexamara Marina Group

Use SQL and the Alexamara Marina Group database (Figures 1-8 through 1-12 in Chapter 1) to
complete the following exercises. If directed to do so by your instructor, use the information pro-
vided with the Chapter 3 Exercises to print your output.

1.

o~ 0D

© ©® N o

10.

11.

12.

13.
14.

List the owner number, last name, and first name of every boat owner.

List the complete MARINA table (all rows and all columns).

List the last name and first name of every owner who lives in Rivard.

List the last name and first name of every owner who does not live in Rivard.

List the marina number and slip number for every slip whose length is equal to or less than
30 feet.

List the marina number and slip number for every boat with the type Ray 4025.

List the slip number for every boat with the type Ray 4025 that is located in marina 1.

List the boat name for each boat located in a slip whose length is between 25 and 30 feet.
List the slip number for every slip in marina 1 whose rental fee is less than $3,000.

Labor is billed at the rate of $60 per hour. List the slip ID, category number, estimated hours,
and estimated labor cost for every service request. To obtain the estimated labor cost, mul-
tiply the estimated hours by 60. Use the column name ESTIMATED_COST for the esti-
mated labor cost.

List the marina number and slip number for all slips containing a boat with the type Sprite
4000, Sprite 3000, or Ray 4025.

List the marina number, slip number, and boat name for all boats. Sort the results by boat
name within marina number.

How many Dolphin 28 boats are stored at both marinas?
Calculate the total rental fees Alexamara receives each year based on the length of the slip.

CHAPTER

MULTIPLE-TABLE QUERIES

LEARNIN

Objectives

Use joins to
Use the IN
Use a subq
Use an alia
Join a table
Perform set
Use the AL
Perform spe

INTRODUCTION

In this chapter, you will learn how to use SQL to retrieve data from two or more tables using one SQL

command. You will join tables together and examine how to obtain similar results using the SQL IN and

EXISTS operators. Then you will use aliases to simplify queries and join a table to itself. You also will implement

the set operations of union, intersection, and difference using SQL commands. You will examine two related

SQL operators: ALL and ANY. Finally, you will perform inner joins, outer joins, and products.

QUERYING MULTIPLE TABLES

In Chapter 4, you learned how to retrieve data from a single table. Many queries require you
to retrieve data from two or more tables. To retrieve data from multiple tables, you first
must join the tables, and then formulate a query using the same commands that you use for
single-table queries.

136

Chapter 5

—

In the following queries, your results might contain the same rows, but they might be listed in a different
order. If order is important, you can include an ORDER BY clause in the query to ensure that the results
are listed in the desired order.

Joining Two Tables

To retrieve data from more than one table, you must join the tables together by finding rows
in the two tables that have identical values in matching columns. You can join tables by
using a condition in the WHERE clause, as you will see in Example 1.

List the number and name of each customer, together with the number, last name, and
first name of the sales rep who represents the customer.

Because the customer numbers and names are in the CUSTOMER table and the sales
rep numbers and names are in the REP table, you need to include both tables in the SQL
command so you can retrieve data from both tables. To join (relate) the tables, you con-
struct the SQL command as follows:

1. In the SELECT clause, list all columns you want to display.

2. In the FROM clause, list all tables involved in the query.

3. In the WHERE clause, list the condition that restricts the data to be retrieved
to only those rows from the two tables that match; that is, restrict it to the rows
that have common values in matching columns.

As you learned in Chapter 2, it is often necessary to qualify a column name to specify
the particular column you are referencing. Qualifying column names is especially impor-
tant when joining tables because you must join tables on matching columns that fre-
quently have identical column names. To qualify a column name, precede the name of the
column with the name of the table, followed by a period. The matching columns in this
example are both named REP_NUM—there is a column in the REP table named REP_NUM
and a column in the CUSTOMER table that also is named REP_NUM. The REP_NUM col-
umn in the REP table is written as REP.REP_NUM and the REP_NUM column in the
CUSTOMER table is written as CUSTOMER.REP_NUM. The query and its results appear in
Figure 5-1.

SELECT CUSTOMEE NUM, CUSTOMEE NAME, REF.REP NUM, LAST MNAME, FIRST NAME
FRON CUITCOMER, REP
WHERE CUSTOMER.REP NUM = REP.EEP NUM:

Condition to
relate the tables

Results Explain Describe Saved SOL History

CUSTOMER_HUM CUSTOMER_HAME REP_HUM LAST_HAME FIRST_HAME
145 Al's Appliance and Sport 20 Haizer “Walerie 137
252 Brookingz Direct 35 Hull Richard
356 Ferguson's B5 Perez Juan
405 The Everything Shop Fa Hull Richard
462 Bargainzs Galore B5 Perez Juan
524 Kline's 20 Kaizer Yalerie
605 Johnzon's Depattment Store 65 Perez Juan
Ga7 Lee's Sport and Applisnce Fa Hull Richard
725 Deetfigld's Four Seasons 35 Hull Richard
42 Al Season 20 Kaizer Waletie
10 rows returned in 0.70 seconds C2Y Export

FIGURE 5-1 Joining two tables with a single SQL command

When there is potential ambiguity in listing column names, you must qualify the col-
umns involved in the query. It is permissible to qualify other columns as well, even when
there is no possible confusion. Some people prefer to qualify all column names; in this
text, however, you will qualify column names only when necessary.

Question: In the first row of output in Figure 5-1, the customer number is 148, and the cus-
tomer name is Al's Appliance and Sport. These values represent the first row of the
CUSTOMER table. Why is the sales rep number 20, the last name of the sales rep Kaiser,
and the first name Valerie?

Answer: In the CUSTOMER table, the sales rep number for customer number 148 is 20.
(This indicates that customer number 148 is related to sales rep number 20.) In the REP
table, the last name of sales rep number 20 is Kaiser and the first name is Valerie.

List the number and name of each customer whose credit limit is 7,500, together with
the number, last name, and first name of the sales rep who represents the customer.

Multiple-Table Queries

138

Chapter 5

In Example 1, you used a condition in the WHERE clause only to relate a customer with
a sales rep to join the tables. Although relating a customer with a sales rep is essential in
this example as well, you also need to restrict the output to only those customers whose
credit limits are $7,500. You can restrict the rows by using a compound condition, as
shown in Figure 5-2.

SELECT CUSTOMER_NUM, CUSTOMER _NAME, REFP.REF_NUM, LAZT NAME, FIR3T MNAME

FRECM CUSTOMER, REP A

WHERE CUSTOMER.REP NUM = REP.REP NUM Condition to
AND CREDIT LIMIT = 7500;<€—mM—— relate the tables
¥ _—

Results Explain Describe Saved SOL History < Ctoh?':l;on to
pr— restrict the rows

CUSTOMER_HUM CUSTOMER_MAME REP_HUM LAST_HAME FIRST_HAME
145 Al's Appliance and Sport 20 Haizer “Walerie
356 Ferguson's ES Ferez Juan
725 Deerfield's Four Seazans 35 Hull Richard
542 Al Seazan 20 Kaiser Waleris
4 rows returned in 0.17 seconds CEV Export

FIGURE 5-2 Restricting the rows in a join

For every part on order, list the order number, part number, part description, number of
units ordered, quoted price, and unit price.

A part is considered “on order” when there is a row in the ORDER_LINE table in which
the part appears. You can find the order number, number of units ordered, and quoted price
in the ORDER_LINE table. To find the part description and the unit price, however, you
need to look in the PART table. Then you need to find rows in the ORDER_LINE table and
rows in the PART table that match (rows containing the same part number). The query and
its results appear in Figure 5-3.

SELECT ORDER _NUM, ORDER_LINE.PART NUM, DESCRIPTICHN, NUM ORDERED, QUOTED_PRICE, PRICE
FROM ORDER_LINE, PART
WHERE ©ORDER_LINE.PART NUM = PART.PART NUM;

Results Explain Describe Saved SOL History

ORDER_HUM PART_HUM DESCRIPTIOH HUM_ORDERED QUOTED_PRICE PRICE
21605 ATS4 Iran 1 21.85 2485
21817 BY06 Home Gym 2 794 .95 794 .85
21817 CD52 Microweave Cven 4 150 163
21619 DRE3 Gas Range 1 495 493
21610 DRE3 Gas Range 1 495 495
21610 Lt 1 Washer 1 399.99 399.99
21613 KLE2 Diryer 4 32995 34985
21614 KTO3 Dishwvasher 2 293 293
21623 K28 Treadmil 2 1290 1390

9 rows returned in 0.06 seconds CEY Export

FIGURE 5-3 Joining the ORDER_LINE and PART tables

Question: Can you use PART.PART_NUM instead of ORDER_LINE.PART_NUM in the
SELECT clause?

Answer: Yes. The values for these two columns match because they must satisfy the con-
dition ORDER_LINE.PART_NUM = PART.PART_NUM.

COMPARING JOINS, IN, AND EXISTS

You join tables in SQL by including a condition in the WHERE clause to ensure that
matching columns contain equal values (for example, ORDER_LINE.PART_NUM =
PART.PART_NUM). You can obtain similar results by using either the IN operator
(described in Chapter 4) or the EXISTS operator with a subquery. The choice is a matter
of personal preference because either approach obtains the same results. The following
examples illustrate the use of each operator.

Find the description of each part included in order number 21610.

Because this query also involves retrieving data from the ORDER_LINE and PART tables
(as illustrated in Example 3), you could approach it in a similar fashion. There are two
basic differences, however, between Examples 3 and 4. First, the query in Example 4 does
not require as many columns; second, it involves only order number 21610. Having fewer
columns to retrieve means that there will be fewer columns listed in the SELECT clause. You

139

Multiple-Table Queries

can restrict the query to a single order by adding the condition ORDER_NUM = '21610' to
the WHERE clause. The query and its results appear in Figure 5-4.

SELECT DESCRIPTION
FROM ORDER_LINE, PART
WHERE CRDER LINE.PART NUM = FART.PART NUM

ANT ORDER NUM = 'Z1610';

Results Explain Describe Sawed SQL History

DESCRIPTIOH
Gas Range
Washer
2 rows returned in 0.15 seconds CEY Export

FIGURE 5-4 Restricting the rows when joining the ORDER_LINE and PART tables

Notice that the ORDER_LINE table is listed in the FROM clause, even though you do
not need to display any columns from the ORDER_LINE table. The WHERE clause con-
tains columns from the ORDER_LINE table, so it is necessary to include the table in the
FROM clause.

Using the IN Operator

Another way to retrieve data from multiple tables in a query is to use the IN operator with
a subquery. In Example 4, you first could use a subquery to find all part numbers in the
ORDER_LINE table that appear in any row on which the order number is 21610. Then you
could find the part description for any part whose part number is in this list. The query and
its results appear in Figure 5-5.

SELECT DESCRIPTION‘
FROM PLRT
WHERE PART NUM IN]

[SELECT PAET_NUH
FROM ORDER LINE
WHERE ORDER_NUM = 'Z1610'):

Outer query selects

part descriptions in
order 21610

Subquery selects part
Resulis Explain Describe Sawved SQL History —(numbers in order)
21610
DESCRIPTION
Gas Range
Washer
2 rows returned in 0.05 seconds SV Export

FIGURE 5-5 Using the IN operator instead of a join to query two tables

Chapter 5

In Figure 5-5, evaluating the subquery produces a temporary table consisting of those
part numbers (DR93 and DW11) that are present in order number 21610. Executing the
remaining portion of the query produces part descriptions for each part whose number is in
this temporary table; in this case, Gas Range (DR93) and Washer (DW11).

Using the EXISTS Operator

You also can use the EXISTS operator to retrieve data from more than one table, as shown

in Example 5. The EXISTS operator checks for the existence of rows that satisfy some
criterion.

Find the order number and order date for each order that contains part number DR93.

This query is similar to the one in Example 4, but this time the query involves the
ORDERS table and not the PART table. In this case, you can write the query in either of the

ways previously demonstrated. For example, you could use the IN operator with a sub-
query, as shown in Figure 5-6.

SELECT ORDER_NUM, ORDER DATE
FEOM ORDERS

WHERE ORDER NUM IN

[SELECT ©RDER_NUH

FROM ORDER_LINE

WHERE FART NUM = 'DRS3');

Results Explain Describe Saved SOL History

ORDER_HUM ORDER_DATE

21810 20-0CT-10
21619 23-0CT-10
2 rowes returned in 0.06 seconds CSY Export

FIGURE 5-6 Using the IN operator to select order information

Using the EXISTS operator provides another approach to solving Example 5, as shown
in Figure 5-7.

141

Multiple-Table Queries

142

Chapter 5

SELECT ORDER_NUHM, ORDER_DATE

FROM ORDERS

WHERE EXI3ZTS

[(SELECT *

FRON ORDER LINE

WHERE CRDERZ.ORDER NUM = ORDER_LINE.ORDER NUH
AND PART_NUM = 'DR393'):

Results Explain Describe Sawved SQOL History

ORDER_HUM ORDER_DATE

21810 20-0CT-10
21619 23-0CT-10
2 rowes returned in 0.01 seconds CSY Export

FIGURE 5-7 Using the EXISTS operator to select order information

The subquery in Figure 5-7 is the first one you have seen that involves a table listed
in the outer query. This type of subquery is called a correlated subquery. In this case, the
ORDERS table, which is listed in the FROM clause of the outer query, is used in the
subquery. For this reason, you need to qualify the ORDER_NUM column in the subquery
(ORDERS.ORDER_NUM). You did not need to qualify the columns in the previous que-
ries involving the IN operator.

The query shown in Figure 5-7 works as follows. For each row in the ORDERS table,
the subquery is executed using the value of ORDERS.ORDER_NUM that occurs in that row.
The inner query produces a list of all rows in the ORDER_LINE table in which
ORDER_LINE.ORDER_NUM matches this value and in which PART_NUM is equal to DR93.
You can precede a subquery with the EXISTS operator to create a condition that is true if one
or more rows are obtained when the subquery is executed; otherwise, the condition is false.

To illustrate the process, consider order numbers 21610 and 21613 in the ORDERS
table. Order number 21610 is included because a row exists in the ORDER_LINE table with
this order number and part number DR93. When the subquery is executed, there will be
at least one row in the results, which in turn makes the EXISTS condition true. Order num-
ber 21613, however, will not be included because no row exists in the ORDER_LINE table
with this order number and part number DR93. There will be no rows contained in the
results of the subquery, which in turn makes the EXISTS condition false.

Using a Subquery Within a Subquery

You can use SQL to create a nested subquery (a subquery within a subquery), as illustrated
in Example 6.

Find the order number and order date for each order that includes a part located in
warehouse 3.

One way to approach this problem is first to determine the list of part numbers in the

PART table for each part located in warehouse 3. Then you obtain a list of order num-

bers in the ORDER_LINE table with a corresponding part number in the part number list.

Finally, you retrieve those order numbers and order dates in the ORDERS table for which

the order number is in the list of order numbers obtained during the second step. The query

and its results appear in Figure 5-8.

SELECT ORDER_NUH, ORDER_DATE\
FROM ORDERZ I‘
WHERE ORDER_NUM IN

(3ELECT ORDER_NUH\

FROM ORDER LINE
WHERE FART_NUM IN
[FELECT FPART NUM
FROM PART

Innermost query
WHERE WAREHOUSE = '3']1]: is evaluated first

Outer query is
evaluated last

Intermediate query
is evaluated second

Results Explain Describe Saved SQL History
p—
ORDER_HUM ORDER_DATE
21608 20-0CT-10
21610 20-0CT-10
21614 29-0CT-10
3 rowes returned in 0.11 seconds S Export
FIGURE 5-8

Nested subqueries (a subquery within a subquery)

As you might expect, SQL evaluates the queries from the innermost query to the out-
ermost query. The query in this example is evaluated in three steps:

1.

The innermost subquery is evaluated first, producing a temporary table of part
numbers for those parts located in warehouse 3.

The next (intermediate) subquery is evaluated, producing a second tempo-
rary table with a list of order numbers. Each order number in this collection
has a row in the ORDER_LINE table for which the part number is in the tem-
porary table produced in Step 1.

The outer query is evaluated last, producing the desired list of order num-
bers and order dates. Only those orders whose numbers are in the temporary
table produced in Step 2 are included in the results.

Another approach to solving Example 6 involves joining the ORDERS, ORDER_LINE,
and PART tables. The query and its results appear in Figure 5-9.

_

Multiple-Table Queries

144

Chapter 5

SELECT ©RDERZ.ORDER NUM, ORDER DATE

FROM ORDER_LINE, ORDERS, PART

WHERE CRDER LINE.ORDER NUM = ORDERS.ORDER NUH
WD ORDER_LINE.PART NUM = PART.PART NUHN

AND WAREHCOUSE = '3';

Results Explain Describe Sawed SQL History

—
ORDER_HUM ORDER_DATE
21608 20-0¢CT-10
21610 20-2CT-10
21614 21-0CT-10
3 rows returned in 0.02 seconds CEY Export

FIGURE 5-9 Joining three tables

In this query, the following conditions join the tables:

CORDER_LI NE. ORDER_NUM = CRDERS. ORDER_NUM
ORDER_LI NE. PART_NUM = PART. PART_NUM

The condition WAREHOUSE = '3' restricts the output to only those parts located in
warehouse 3.

The query results are correct regardless of which command you use. You can use which-
ever approach you prefer.

You might wonder whether one approach is more efficient than the other. SQL performs
many built-in optimizations that analyze queries to determine the best way to satisfy them.
Given a good optimizer, it should not make much difference how you formulate the query—you
can see that using nested subqueries (Figure 5-8) produces the query in 0.11 seconds and join-
ing the tables (Figure 5-9) produces the results in 0.02 seconds. If you are using a DBMS
without an optimizer, however, the way you write a query can make a difference in the speed
at which the DBMS executes the query. When you are working with a very large database and
efficiency is a prime concern, consult the DBMS’s manual or try some timings yourself. Try run-
ning the same query both ways to see whether you notice a difference in the speed of
execution. In small databases, there should not be a significant time difference between the two
approaches.

A Comprehensive Example

The query used in Example 7 involves several of the features already presented. The query
illustrates all the major clauses that you can use in a SELECT command. It also illus-
trates the order in which these clauses must appear.

List the customer number, order number, order date, and order total for each order with
a total that exceeds $1,000. Assign the column name ORDER_TOTAL to the column that
displays order totals.

The query and its results appear in Figure 5-10.

SELECT CUSTOMER_NUM, ORDERS.ORDER_NUM, ORDER_DATE,
SUM(NUN_OEDERED + QUOTED PRICE) A3 ORDER TOTAL
FROM ORDERS, ORDER LINE

WHERE ORDERS.CRDER_NUM = CRDER_LINE.ORDER NUH
GROUP BY ORDERI.ORDER NUM, CUITOMER NUM, CRDER DATE
HAVING 3UM(NUM ORDERED * QUOTED_PRICE) > 1000
ORDER BY ORDERS.ORDER_NUH;

Name for
computed column

Results Explain Describe Saved SOL History

ri—
CUSTOMER_HUM ORDER_HUM ORDER_DATE ORDER_TOTAL
405 21613 21-0CT-10 13198
252 21614 21-0CT-10 11490
] 21617 23-0CT-10 21899
605 21623 23-0C7-10 2580
4 rows returned in 0.42 seconds CSY Export

FIGURE 5-10 Comprehensive example

In this query, the ORDERS and ORDER_LINE tables are joined by listing both tables
in the FROM clause and relating them in the WHERE clause. Selected data is sorted by order
number using the ORDER BY clause. The GROUP BY clause indicates that the data is to
be grouped by order number, customer number, and order date. For each group, the
SELECT clause displays the customer number, order number, order date, and order total
(SUM(NUM_ORDERED * QUOTED_PRICE)). In addition, the total was renamed
ORDER_TOTAL. Not all groups will be displayed, however. The HAVING clause displays
only those groups whose SUM(NUM_ORDERED * QUOTED_PRICE) is greater than $1,000.

The order number, customer number, and order date are unique for each order. Thus,
it would seem that merely grouping by order number would be sufficient. SQL requires
that both the customer number and the order date be listed in the GROUP BY clause. Recall
that a SELECT clause can include statistics calculated for only the groups or columns
whose values are identical for each row in a group. By stating that the data is to be grouped
by order number, customer number, and order date, you tell SQL that the values in these
columns must be the same for each row in a group.

145

Multiple-Table Queries

Using an Alias

When tables are listed in the FROM clause, you can give each table an alias, or an alter-
nate name, that you can use in the rest of the statement. You create an alias by typing the
name of the table, pressing the Spacebar, and then typing the name of the alias. No com-

mas or periods are necessary to separate the two names.

One reason for using an alias is simplicity. In Example 8, you assign the REP table the
146 alias R and the CUSTOMER table the alias C. By doing this, you can type R instead of REP
and C instead of CUSTOMER in the remainder of the query. The query in this example
is simple, so you might not see the full benefit of this feature. When a query is complex and

requires you to qualify the names, using aliases can simplify the process.

EXAMPLE 8

List the number, last name, and first name for each sales rep together with the number

and name for each customer the sales rep represents.

The query and its results using aliases appear in Figure 5-11.

SELECT R.REF_NUM, LAST NAME, FIRZT_NAME, C.CUSTOMEE NUM, CUZTOMER NAME
FRCOH REF R, CUITOHMEER C
WHERE R.REF NUM = C.EEP NUH:
Results Explain Describe Sawved SQOL History
—
REP_HUM LAST_HAME FIRST_HAME CUSTOMER_HUM CUSTOMER_HAME
20 Haizer Yalerie 145 Al's Anpliance and Sport
35 Hull Richard 282 Brookings Direct
B5 Perez Juan 356 Ferguson's
35 Hull Richard 405 The Everything Shap
B35 Perez Juan 462 Bargains Galore
20 Kaizer “alerie 524 kline's
B5 Perez Juan B0S Johnzon's Depattment Store
35 Hull Richard B37 Lee's Sport and Applisnce
35 Hull Richard 723 Deetfigld's Four Seasons
20 Kaizer W alerie 42 Al Seazon
10 rows returned in 0.03 seconds CEY Export

FIGURE 5-11

Using aliases in a query

Technically, it is unnecessary to qualify CUSTOMER_NUM because it is included only in the CUSTOMER

table. It is qualified in Figure 5-11 for illustration purposes only.

Chapter 5

Joining aTable to Itself

A second situation for using an alias is to join a table to itself, called a self-join, as illus-
trated in Example 9.

For each pair of customers located in the same city, display the customer number, cus-
tomer name, and city.

If you had two separate tables for customers and the query requested customers in the first
table having the same city as customers in the second table, you could use a normal join opera-
tion to find the answer. In this case, however, there is only one table (CUSTOMER) that
stores all the customer information. You can treat the CUSTOMER table as if it were two tables
in the query by creating an alias, as illustrated in Example 8. In this case, you use the follow-
ing FROM clause:

FROM CUSTOMER F, CUSTOVER S
SQL treats this clause as a query of two tables: one that has the alias F (first), and another

that has the alias S (second). The fact that both tables are really the same CUSTOMER table
is not a problem. The query and its results appear in Figure 5-12.

SELECT F.CUSTOMER_NUM, F.CUSTOMER NAME, 5.CUSTOMER NUM, 3.CUSTOMER MAME, F.CITY

FROM CUSTOMER F, CUSTOMER 3

WHERE F.CITY¥ = 5.CITY Condition to join
AND F.CUSTOMER_NUM < 5.CUSTOMER_NUM F and S tables
CRDER EY F.CUSTOMER NUM, S.CUSTOMER NUM;

Results Explain Describe Saved SQL History

CUSTOMER_HUM CUSTOMER_HAME CUSTOMER_HUM CUSTOMER_HAME CITY

148 Al's Appliance and Sport 524 Kline's Fillmore

282 Brookings Direct 462 Bargains Galore Grove

282 Brooking= Direct 542 All Sea=son Grove

462 Bargains Galore 842 Al Sesson Grove

GOS Johnzon's Department Store 725 Deerfield's Four Seazonz Sheldon
5 rows returned in 0.02 seconds CSY Export

FIGURE 5-12 Using aliases for a self-join

You are requesting a customer number and name from the F table, followed by a cus-
tomer number and name from the S table, and then the city. (Because the city in the first
table must match the city in the second table, you can select the city from either table.) The
WHERE clause contains two conditions: the cities must match, and the customer num-
ber from the first table must be less than the customer number from the second table. In
addition, the ORDER BY clause ensures that the data is sorted by the first customer

147

Multiple-Table Queries

number. For those rows with the same first customer number, the data is further sorted by
the second customer number.

Question: Why is the condition FCUSTOMER_NUM < S.CUSTOMER_NUM important in

148 the query?
Answer: If you did not include this condition, you would get the query results shown in
Figure 5-13.

SELECT F.CUSTOMER_NUM, F.CUSTOMER_NAME, 35.CUSITOMER_NUM, 3.CUSTOMER _NAME, F.CITY

FROM CUSTOMER F, CUSTOMER 3

WHERE F.CITY = 3.CITY

ORDER BY F.CUITOMER_NUHM, 5.CUSTCOMER _NUM:

Results Explain Describe Saved SQL History

—

CUSTOMER_HUM CUSTOMER_HAME CUSTOMER_HUM CUSTOMER_HAME CITY
145 Al's Appliance and Sport 148 Al's Appliance and Sport Fillmore
145 Al's Appliance and Sport 524 Hline's Fillmore
282 Birookings Direct 252 Brookings Direct Grove
232 Brookings Direct 462 Bargains Galore Grove
252 Brookings Direct 42 All Seazon Grove
356 Ferguzon's 356 Ferguszon's Morthfield
405 The Everything Shop 405 The Everything Shop Crystal
452 Bargains Galore 252 Brookings Direct Grove
452 Bargains Galore 462 Bargains Galare Grove
452 Bargains Galore 42 All Season Grove
524 Kline's 145 Al's Appliance and Sport Fillmaore
524 Kline's 524 Kling's Fillmare
EO3 Johnzon's Department Store 608 Johnzon's Department Store Sheldon
EOS Johnzon's Department Store 725 Deetfield's Four Seazans Sheldon

FIGURE 5-13 Incorrect joining of a table to itself

The first row is included because it is true that customer number 148 (Al's Appliance and
Sport) in the F table has the same city as customer number 148 (Al's Appliance and Sport)
in the S table. The second row indicates that customer number 148 (Al's Appliance and Sport)
has the same city as customer number 524 (Kline’s). The eleventh row, however, repeats the
same information because customer number 524 (Kline’s) has the same city as customer
number 148 (Al's Appliance and Sport). Of these three rows, the only row that should be
included in the query results is the second row. The second row also is the only one of the three
rows in which the first customer number (148) is less than the second customer number
(524). This is why the query requires the condition FCUSTOMER NUM <
S.CUSTOMER_NUM.

Using a Self-Join on a Primary Key Column

Figure 5-14 shows some fields from an EMPLOYEE table whose primary key is
EMPLOYEE_NUM. Another field in the table is MGR_EMPLOYEE_NUM, which represents

Chapter 5

the number of the employee’s manager, who also is an employee. If you look at the row for
employee 206 (Joan Dykstra), you will see that employee 198 (Mona Canzler) is Joan’s
manager. By looking at the row for employee 198 (Mona Canzler), you see that her man-
ager is employee 108 (Martin Holden). In the row for employee 108 (Martin Holden), the
manager number is null, indicating that he has no manager.

SELECT EMPLOYEE NUM, LAST NAME, FIRST NAME, HMGE_EMNPLOYEE NUHM
FROM EMPLOYEE:

Results Explain Describe Saved SQOL History

.
EMPLOYEE_HUM LAST_MAME FIRST_HAME MGR_EMPLOYEE_HUM

: Employee 108
108 Halden Martin

has no manager
195 Canzler Mona 108
206 Dykstra Joan 185 <—| Employee 198
255 hurray Steven 30 |— manages employee
30 Galvez Benita 108 206
366 Peterman Beth 195
391 Traynor Mstt 301
402 Brent Azhtan 301
466 Scholten Alyssa 108
551 Wittzer Maorgan 185
10 rowwes returned in 0.02 seconds S Export

FIGURE 5-14 Employee and manager data

Suppose you need to list the employee number, employee last name, and employee first
name along with the number, last name, and first name of each employee’s manager. Just
as in the previous self-join, you would list the EMPLOYEE table twice in the FROM clause
with aliases.

The command shown in Figure 5-15 uses the letter E as an alias for the employee and
the letter M as an alias for the manager. Thus E.EMPLOYEE_NUM is the employee’s num-
ber and M.EMPLOYEE_NUM is the number of the employee’s manager. In the SQL com-
mand, M.EMPLOYEE_NUM is renamed as MGR_NUM, M.LAST_NAME is renamed as
MGR_LAST, and M.FIRST_NAME is renamed as MGR_FIRST. The condition in the
WHERE clause ensures that EMGR_EMPLOYEE_NUM (the number of the employee’s man-
ager) matches M.EMPLOYEE_NUM (the employee number on the manager’s row in the
table). Employee 108 is not included in the results because Martin Holden has no man-
ager (see Figure 5-14).

_

Multiple-Table Queries

150

Chapter 5

SELECT E.EMPLOYEE NUHM, E.LAST NAME, E.FIRST NAME, M.EWMPLOYEE NUM A5 MNGR_NUHM,
M.LAST MNAME AZ MGR LAST, MN.FIR3T NAME A3 MGE FIRST

FROM EMPLOYEE E, EMPLOYEE M

WHERE E.NGE_EMPLOYEE NUM = HM.EMPLOYEE NUM

ORDER BY E.EMPLOYEE NUM:

Results Explain Describe Saved SQL History

—
EMPLOYEE_HUM LAST_HAME FIRST_HAME MGR_HUM MGR_LAST MGR_FIRST
195 Canzler fiona 108 Huolden hdartin
206 Drkstra Joan 155 Canzler Mara
255 Murray Steven 301 Galvez Benito
301 Galvez Benita 108 Holden Martin
366 Petertnan Beth 198 Canzler Manz
351 Traynar Matt 301 Galvez Benito
402 Brent Azhton 301 Galvez Benito
466 Schoften Alyssa 105 Holden hartin
5251 Wittzer Morgan 158 Canzler Maora

9 rows returned in 0.04 seconds CEY Export

FIGURE 5-15 List of employees and their managers

Joining Several Tables

It is possible to join several tables, as illustrated in Example 10. For each pair of tables you
join, you must include a condition indicating how the columns are related.

For each part on order, list the part number, number ordered, order number, order date,
customer number, and customer name, along with the last name of the sales rep who rep-
resents each customer.

A part is on order when it occurs on any row in the ORDER_LINE table. The part num-
ber, number ordered, and order number appear in the ORDER_LINE table. If these require-
ments represent the entire query, you would write the query as follows:

SELECT PART_NUM NUM ORDERED, ORDER _NUM
FROM ORDER_LI NE;

This query is not sufficient, however. You also need the order date, which is in the ORDERS
table; the customer number and name, which are in the CUSTOMER table; and the rep last
name, which is in the REP table. Thus, you need to join four tables: ORDER_LINE, ORDERS,
CUSTOMER, and REP. The procedure for joining more than two tables is essentially the same

as the one for joining two tables. The difference is that the condition in the WHERE clause will
be a compound condition. In this case, you would write the WHERE clause as follows:
WHERE ORDERS. ORDER_NUM = ORDER_LI NE. ORDER_NUM

AND CUSTOMER. CUSTOVER_NUM = ORDERS. CUSTOVER NUM
AND REP. REP_NUM = CUSTOMER. REP_NUM

The first condition relates an order to an order line with a matching order number. The
second condition relates the customer to the order with a matching customer number. The
final condition relates the rep to a customer with a matching sales rep number.

For the complete query, you list all the desired columns in the SELECT clause and
qualify any columns that appear in more than one table. In the FROM clause, you list the
tables that are involved in the query. The query and its results appear in Figure 5-16.

SELECT PART NUM, NUN CRDERED, ORDER_LINE.ORDER_WUN, ORDER_DATE, CUSTCHER.CUSTOMER NUH,
CUSTOMER_NAME, LAST NANE

FROM ORDER_LINE, ORDERS, CUSTOMER, REP Tables to include
WHERE ORDERS.ORDER_HUM = ORDER_LIME.ORDER NUM)

AND CUSTOMER.CUSTOMER_NUM = OREERS.CUSTOMER_NUM}@@ In query

AND REP.EEF NUM = CUSTOMER.REF INUN;
- - the tables

Results Explain Describe Saved SOL History

PART_HUM HUM_ORDERED ORDER_HUM ORDER_DATE <CUSTOMER_HUM CUSTOMER_HAME LAST_HAME
ATS4 M 21608 20-0CT-10 145 Al's Appliance and Sport Kaizer
DR93 il 21610 20-0CT-10 3596 Ferguson's Perez
(R i 21610 20-0CT-10 356 Ferguson's Perez
HLE2 4 21613 21-0CT-10 405 The Everything Shop Hull
KT03 2 21614 21-0CT-10 282 Brookings Direct Hull
BYw0E 2 21B617 23-0CT-10 B0& Johnson's Depattment Store Perez
CD52 4 2EB17 23-0CT-10 B0& Johnson's Department Store Perez
DR393 1 21619 23-0CT-10 145 Al's Appliance and Sport Kaizer
w29 2 21623 23-0CT-10 B0& Johnson's Departtment Store Perez
9 rows returned in 0.10 secands CEV Export

FIGURE 5-16 Joining four tables in a query

Question: Why is the PART_NUM column, which appears in the PART and ORDER_LINE
tables, not qualified in the SELECT clause?

Answer: Among the tables listed in the query, only one table contains a column named
PART_NUM, so it is not necessary to qualify the table. If the PART table also appeared in
the FROM clause, you would need to qualify PART_NUM to avoid confusion between the
PART_NUM columns in the PART and ORDER_LINE tables.

The query shown in Figure 5-16 is more complex than many of the previous ones you
have examined. You might think that SQL is not such an easy language to use after all. If

151

Multiple-Table Queries

52

Chapter 5

you take it one step at a time, however, the query in Example 10 really is not that difficult.
To construct a detailed query in a step-by-step fashion, do the following:

1.

List in the SELECT clause all the columns that you want to display. If the name
of a column appears in more than one table, precede the column name with
the table name (that is, qualify the column name).

List in the FROM clause all the tables involved in the query. Usually you include
the tables that contain the columns listed in the SELECT clause. Occasionally,
however, there might be a table that does not contain any columns used in the
SELECT clause but that does contain columns used in the WHERE clause. In
this case, you also must list the table in the FROM clause. For example, if you do
not need to list a customer number or name, but you do need to list the rep name,
you would not include any columns from the CUSTOMER table in the SELECT
clause. The CUSTOMER table still is required, however, because you must include
a column from it in the WHERE clause.

Take one pair of related tables at a time and indicate in the WHERE clause the
condition that relates the tables. Join these conditions with the AND operator.
If there are any other conditions, include them in the WHERE clause and con-
nect them to the other conditions with the AND operator. For example, if
you want to view parts present on orders placed by only those customers with
810,000 credit limits, you would add one more condition to the WHERE
clause, as shown in Figure 5-17.

SELECT PART_NUM, NUM ORDERED, ORDER_LINE.CRDER NUM, ORDER DATE, CU3ITCHMER.CUSTOMER NUHM,
CUSTCOMER NAME, LAST NAME

FROM ORDER_LINE, ORDERS, CUSTCMER, REP

WHERE ORDERS.ORDER_NUM = ORDER_LINE.ORDER NUM

AND CUSTOMER.CUSTOMER NUM = ORDERS.CUSTOMER NUM

AND REF.REF_NUM = CUSTOMER.REF_NUM

AND CREDIT LIMIT = 10000;

Results Explain Describe Saved SOL History

PART_HUM HUM_ORDERED ORDER_HUM ORDER_DATE CUSTOMER_HUM CUSTOMER_HAME LAST_HAME
KTO3 2 21614 21-0CT-10 282 Brookings Direct Hull
Bv0E 2 ME17 23-0CT-10 (=0} Johnson's Departmert Store Perexz
52 4 21617 23-0CT-10 (=01 Johnson's Departmert Stare Perez
KA29 2 21623 23-0CT-10 605 Johnzon's Departmert Store Perez
4 rows retumned in 0.03 seconds CEY Expart
FIGURE 5-17 Restricting the rows when joining four tables

SET OPERATIONS

In SQL, you can use the set operations for taking the union, intersection, and difference
of two tables. The union of two tables uses the UNION operator to create a temporary table
containing every row that is in either the first table, the second table, or both tables. The
intersection of two tables uses the INTERSECT operator to create a temporary table
containing all rows that are in both tables. The difference of two tables uses the MINUS

operator to create a temporary table containing the set of all rows that are in the first table
but that are not in the second table.

For example, suppose that TEMP1 is a table containing the number and name of each
customer represented by sales rep 65. Further suppose that TEMP2 is a table containing
the number and name of those customers that currently have orders on file, as shown in
Figure 5-18.

TEMP1 TEMP2
356 Ferguson’s 148 Al's Appliance and Sport
462 Bargains Galore 282 Brookings Direct
608 Johnson’s Department Store 356 Ferguson’s
408 The Everything Shop
608 Johnson’s Department Store

FIGURE 5-18 Customers of rep 65 and customers with open orders

The union of TEMP1 and TEMP2 (TEMP1 UNION TEMP2) consists of the number and
name of those customers that are represented by sales rep 65 or that currently have orders
on file, or both. The intersection of these two tables (TEMP1 INTERSECT TEMP2) con-
tains those customers that are represented by sales rep 65 and that have orders on file. The
difference of these two tables (TEMP1 MINUS TEMP2) contains those customers that are
represented by sales rep 65 but that do not have orders on file. The results of these set opera-
tions are shown in Figure 5-19.

TEMP1 UNION TEMP2 TEMP1 INTERSECT TEMP2
CUSTOMER_NUM CUSTOMER_NAME CUSTOMER_NUM CUSTOMER_NAME
148 Al's Appliance and Sport 356 Ferguson’s
282 Brookings Direct 608 Johnson’s Department Store
356 Ferguson’s
462 Bargains Galore
CUSTOMER_NUM CUSTOMER_NAME
608 Johnson’s Department Store

462 Bargains Galore

FIGURE 5-19 Union, intersection, and difference of the TEMP1 and TEMP2 tables

There is a restriction on set operations. It does not make sense, for example, to talk
about the union of the CUSTOMER table and the ORDERS table because these tables do not
contain the same columns. What might rows in this union look like? The two tables in the
union must have the same structure for a union to be appropriate; the formal term is
“union compatible.” Two tables are union compatible when they have the same number
of columns and their corresponding columns have identical data types and lengths.

Multiple-Table Queries

154

Chapter 5

Note that the definition of union compatible does not state that the columns of the two
tables must be identical but rather that the columns must be of the same type. Thus, if one
column is CHAR(20), the matching column also must be CHAR(20).

List the number and name of each customer that either is represented by sales rep 65 or
that currently has orders on file, or both.

You can create a temporary table containing the number and name of each customer
that is represented by sales rep 65 by selecting the customer numbers and names from the
CUSTOMER table for which the sales rep number is 65. Then you can create another tem-
porary table containing the number and name of each customer that currently has orders
on file by joining the CUSTOMER and ORDERS tables. The two temporary tables cre-
ated by this process have the same structure; that is, they both contain the
CUSTOMER_NUM and CUSTOMER_NAME columns. Because the temporary tables are
union compatible, it is possible to take the union of these two tables. The query and its
results appear in Figure 5-20.

SELECT CUSTOMER NUM, CUSTOMER NAME
FROM CUSTOMER

- g5
WHERE REF NUM = '65 UNION
UNION !
SELECT CUSTOMER,CUSTOMER NUM, CUSTOMER NAME operator

FEOM CUSTOMER, ORDERS
WHERE CUSTCOMER.CUSTCMER NUM = ORDERI.CUITOMER NUM:

(Second query
Results Explain Describe Saved SOL History

CUSTOMER_HUM CUSTOMER_HAME
145 Al's Appliance and Sport
282 Brookings Direct
356 Ferguson's
405 The Everything Shop
462 Bargzins Galore
B0 Johnson's Department Store
6 rows returned in 0.02 seconds C2Y Export

FIGURE 5-20 Using the UNION operator

If your SQL implementation truly supports the union operation, it will remove any
duplicate rows automatically. For example, any customer that is represented by sales rep
65 and that currently has orders on file will appear only once in the results. Oracle,
Access, and SQL Server support the union operation and correctly remove duplicates.

List the number and name of each customer that is represented by sales rep 65 and that
currently has orders on file.

The only difference between this query and the one in Example 11 is that the appro-
priate operator to use is INTERSECT, as shown in Figure 5-21.

SELECT CUSTOHMER NUM, CUSTOHMER NAME

FRON CUITOMER

WHERE REP NUH = '&5'

INTERSECT

SELECT CUSTOMER.CUSTCMER NUM, CUSTCMER NAME

FROM CU3STOMEER, ORDERS

WHERE CUSTOMER.CUSTOMER NUM = ORDERS.CUSTOMER NUM;

Results Explain Describe Saved SQL History

.
CUSTOMER_HUM CUSTOMER_HAME
356 Ferguson's
605 Johnzon's Department Store:
2 rows returned in 0.01 seconds CEY Export

FIGURE 5-21 Using the INTERSECT operator

Some SQL implementations do not support the INTERSECT operator, so you need to
take a different approach. The command shown in Figure 5-22 produces the same results
as the INTERSECT operator by using the IN operator and a subquery. The command selects
the number and name of each customer that is represented by sales rep 65 and whose cus-
tomer number also appears in the collection of customer numbers in the ORDERS table.

SELECT CUSTOMER NUM, CUSTOMER NAME
FROM CUSTOMER R

ep number
WHERE REP NUH = '&5' must be 65
AND CUSTOMER NUM IN

(SELECT CUSTOMER NUM |
FROM ORDERS) ;

Customer number must

Results Explain Describe Saved SOL History be in the results of the /
S— subquery
CUSTOMER_HUM CUSTOMER_HAME Subquery to select
356 Ferguson's numbers of customers
G005 Johnson's Departmert Store with orders
2 rows retumed in 0.01 seconds CSY Export

FIGURE 5-22 Performing an intersection without using the INTERSECT operator

155

Multiple-Table Queries

156

Chapter 5

—

Oracle and SQL Server support the INTERSECT operator but Microsoft Access does not.

List the number and name of each customer that is represented by sales rep 65 but that
does not have orders currently on file.

The query uses the MINUS operator, as shown in Figure 5-23.

SELECT CUSTOMER_NUM, CUSTOMER_NAME

FREON CUSTOMER

WHERE REP NUM = 'g5!

MINTS

SELECT CUSTOMER.CUSTOMER_NUM, CUSTOMER_NAME

FEON CUITOMEE, ORDERS

WHERE CUSTOMER.CUSTCOMER NUM = ORDERS.CUSTOMER NUM:

Results Explain Describe Saved SQOL History

CUSTOMER_HUM CUSTOMER_HAME

462 Bargains Galore

1 rowes returned in 0.01 seconds Y Export

FIGURE 5-23 Using the MINUS operator

Just as with the INTERSECT operator, some SQL implementations do not support the
MINUS operator. In such cases, you need to take a different approach, such as the one
shown in Figure 5-24. This command produces the same results by selecting the number
and name of each customer that is represented by sales rep 65 and whose customer num-
ber does not appear in the collection of customer numbers in the ORDERS table.

SELECT CUITOMER NUM, CUITOMER NAME
FEOM CUSTOMER

WHERE REP_NUM = 'G&5'
AND CUITOMER NUM NOT IN
[FELECT CUITOHMER NUM
FEOM ORDERZ) :

Customer number cannot
be in the subquery results

Results Explain Describe Saved SOL History

CUSTOMER_HUM CUSTOMER_NAME

4562 Bargzins Galare

1 rowes returned in 0.05 seconds CEY Export

FIGURE 5-24 Performing a difference without using the MINUS operator

— |

Oracle supports the MINUS operator, but SQL Server and Microsoft Access do not.

ALL AND ANY

You can use the ALL and ANY operators with subqueries to produce a single column of
numbers. When you precede the subquery by the ALL operator, the condition is true only
if it satisfies all values produced by the subquery. When you precede the subquery by the
ANY operator, the condition is true only if it satisfies any value (one or more) pro-
duced by the subquery. The following examples illustrate the use of these operators.

Find the customer number, name, current balance, and rep number of each customer
whose balance exceeds the maximum balance of all customers represented by sales rep 65.

You can find the maximum balance of the customers represented by sales rep 65 in a
subquery and then find all customers whose balances are greater than this number. There
is an alternative method that is simpler, however. You can use the ALL operator, as shown
in Figure 5-25.

SELECT CUSTOMER_NUM, CUSTOMER_NAME, EBALANCE, REP NUHN
FRON CUITOMER

WHERE EALANCE > ALL
(SELECT BALANCE

FRON CUITOMER

WHERE REP NUHM = '&3'});

Results Explain Describe Saved SOL History

CUSTOMER_HUM CUSTOMER_HAME BALAHCE REP_HUM
145 Al's Sppliance and Sport B550 20
524 Hline's 12762 20
g2 Al Seazon g2 20
3 rows returned in 0.06 seconds CSY Export

FIGURE 5-25 SELECT command that uses the ALL operator

To some users, the query shown in Figure 5-25 might seem more natural than finding
the maximum balance in the subquery. For other users, the opposite might be true. You
can use whichever approach you prefer.

157

Multiple-Table Queries

158

Chapter 5

Question: How would you get the same result for Example 14 without using the ALL
operator?

Answer: You could select each customer whose balance is greater than the maximum bal-
ance of any customer of sales rep 65, as shown in Figure 5-26.

SELECT CUSTOMER_NUM, CUSTOMER_NAME, BALANCE, REP_NUN
FROM CUSTOMER

WHERE EALANCE >

{SELECT MAX (ELLANCE)

FROM CUSTOMER

WHERE REF NUN = '65');

Results Explain Describe Saved SQOL History

—
CUSTOMER_HUM CUSTOMER_HAME BALAHCE REP_HUM
148 Al's Spplisnce and Sport 6550 20
524 Kline's 12762 20
42 All Seazan g2 20
3 rowes returned in 0.02 seconds SV Euport

FIGURE 5-26 Alternative to using the ALL operator

Find the customer number, name, current balance, and rep number of each customer
whose balance is greater than the balance of at least one customer of sales rep 65.

You can find the minimum balance of the customers represented by sales rep 65 in a
subquery and then find all customers whose balance is greater than this number. To sim-
plify the process, you can use the ANY operator, as shown in Figure 5-27.

SELECT CUSTOMER_NUM, CUSTOMER_NAME, EBALANCE, REP NUHN
FRON CUITOMER

WHERE EBALAMNCE > ANY
(SELECT BALANCE

FRON CUITOMER

WHERE REP _NUHM = '&65'}):

Results Explain Describe Saved SQOL History

CUSTOMER_HUM CUSTOMER_HAME BALAHCE REP_HUM
524 Kline's 12762 20
42 All Seazon g221 20
145 Al's Appliance and Sport Ga30 20
356 Ferguson's 5785 B5
405 The Everything Shap 528525 35
452 Bargains Galore 3412 ;]
Ga7 Lee's Sport and Applisnce 28531 35
7 rows returned in 0.01 seconds CEY Export

FIGURE 5-27 SELECT command with an ANY operator

Question: How would you get the same results without using the ANY operator?
Answer: You could select each customer whose balance is greater than the minimum bal-
ance of any customer of sales rep 65, as shown in Figure 5-28.

Multiple-Table Queries

160

Chapter 5

SELECT CUSTOMER NUM, CUSTOMER MAME, BALANCE, REP HUM
FROM CUSTOMER

WHERE BALANCE >

(SELECT MIN(EALANCE)

FROM CUSTOMER

VHERE REP NUN = '65'};

Results Explain Describe Saved SOL History

pr—
CUSTOMER_HUM CUSTOMER_HAME BALAHCE REP_HUM
148 Al's Applisnce and Sport E550 20
356 Ferguson's 5785 ES
405 The Everything Shop 528525 35
462 Bargzins Galore 3412 =3
524 Hline's 12762 20
637 Lee's Spott and Appliance 2851 35
542 Al Seazan 221 20
7 rows returned in 0.01 seconds CEY Export

FIGURE 5-28 Alternative to using the ANY operator

SPECIAL OPERATIONS

You can perform special operations within SQL, such as the self-join that you already used.
Three other special operations are the inner join, the outer join, and the product.

Inner Join

A join that compares the tables in a FROM clause and lists only those rows that satisfy the
condition in the WHERE clause is called an inner join. The joins that you have per-
formed so far in this text have been inner joins. Example 16 illustrates the inner join.

Display the customer number, customer name, order number, and order date for each
order. Sort the results by customer number.

This example requires the same type of join that you have been using. The
command is:

SELECT CUSTOMER CUSTOMER NUM CUSTOVER NAME,
ORDER NUM ORDER DATE

FROM CUSTOMER, ORDERS

WHERE CUSTOVER. CUSTOMER NUM = ORDERS. CUSTOVER NUM

ORDER BY CUSTOMER CUSTOVER NUM

The previous approach should work in any SQL implementation. An update to the SQL
standard approved in 1992, called SQL-92, provides an alternative way of performing an
inner join, as demonstrated in Figure 5-29.

SELECT CUSTOMER.CUSTCMER NUM, CUSTCMER NAME, ORDER NUM, ORDER DATE

FRON CUSTOMER
INMNEE JOIN ORDEERS INNER JOIN clause
OM CUSTOMER.CUSTOMER WUM = ORDERS.CUSTOMER NUN

ORDER BY CUITOMER.CUITOMER NUN;

Results Explain Describe Saved SOL History

—
CUSTOMER_HUM CUSTOMER_HAME ORDER_HUM ORDER_DATE
145 Al's Appliance and Sport 21619 23-0CT-10
145 Al's Appliance and Sport 21605 20-0CT-10
252 Brookings Direct 21614 21-0CT-10
356 Ferguson's 21610 20-0CT-10
405 The Everything Shop 21613 21-0CT-10
GOS Johnson's Department Store 21623 23-0CT-10
G085 Johnzon's Department Store 21617 23-0CT-10

7 rows returned in 0.07 seconds CSY Export

FIGURE 5-29 Query that uses an INNER JOIN clause

In the FROM clause, list the first table, and then include an INNER JOIN clause that
includes the name of the second table. Instead of a WHERE clause, use an ON clause con-
taining the same condition that you would have included in the WHERE clause.

Outer Join

Sometimes you need to list all the rows from one of the tables in a join, regardless of whether
they match any rows in a second table. For example, you can perform the join of the
CUSTOMER and ORDERS tables in the query for Example 16, but display all
customers—even the ones without orders. This type of join is called an outer join.

There are actually three types of outer joins. In a left outer join, all rows from the table
on the left (the table listed first in the query) are included regardless of whether they match
rows from the table on the right (the table listed second in the query). Rows from the
table on the right are included only when they match. In a right outer join, all rows from
the table on the right are included regardless of whether they match rows from the table
on the left. Rows from the table on the left are included only when they match. In a full
outer join, all rows from both tables are included regardless of whether they match rows
from the other table. (The full outer join is rarely used.)

Example 17 illustrates the use of a left outer join.

161

Multiple-Table Queries

162

Chapter 5

Display the customer number, customer name, order number, and order date for all orders.
Include all customers in the results. For customers that do not have orders, omit the order
number and order date.

To include all customers, you must perform an outer join. Assuming the CUSTOMER
table is listed first, the join should be a left outer join. In SQL, you use the LEFT JOIN
clause to perform a left outer join as shown in Figure 5-30. (You would use a RIGHT JOIN

clause to perform a right outer join.)

SELECT CUITOMER.CUITOMER NUM, CUITOMER NAME, ORDER NUM, ORDEE DATE

FROM CUSTOMER

LEFT JOIN ORDERS
Ol CUSTOMER.CUSTOMER NUM = ORDERS.CUSTOMER NUM
ORDER EY CUSTOMER.CUSTOMER HUN;

Results Explain Describe Saved SOL History

CUSTOMER_HUM CUSTOMER_HAME ORDER_HUM ORDER_DATE

145 Al's Appliance and Sport 21608 20-2CT-10

148 Al's Applisnce and Sport 21619 23-0CT-10

282 Brookings Direct 21614 21-0CT-10

356 Ferguson's 21610 20-2CT-10

403 The Everything Shop 21613 21-0CT-10 .
Customers without

462 Bargains Galore - B |

matching orders are

524 Kline's - - also included
B0S Johnson's Department Store 21617 23-0CT-10
B0 Johnson's Department Store 21623 23-0CT-10
E87 Lee's Sport and Appliance - -
725 Deerfield's Four Seazans - -
42 All Seazon - -
12 rows returned in 0.01 seconds CEY Export

FIGURE 5-30 Query that uses a LEFT JOIN clause

All customers are included in the results. For customers without orders, the order num-

ber and date are blank. Technically, these blank values are null.

— |

In Oracle, there is another way to perform left and right outer joins. You write the join as you have been

doing, with one exception. You include parentheses and a plus sign in the WHERE clause after the col-

umn in the table for which only matching rows are to be included. In this example, the plus sign would fol-

low the CUSTOMER_NUM column in the ORDERS table because only orders that match customers are

to be included. Because customers that do not have orders are to be included in the results, there would

be no plus sign after the CUSTOMER_NUM column in the CUSTOMER table. The correct query is as

follows: 163

SELECT CUSTOMER. CUSTOMER NUM CUSTOVER NAME,
ORDER NUM ORDER DATE

FROM CUSTOMER, ORDERS

WHERE CUSTOVER CUSTOVER NUM = ORDERS. CUSTOVER NUM +)
ORDER BY CUSTOVER. CUSTOVER NUM

Running this query produces the same results shown in Figure 5-30.

Product

The product (formally called the Cartesian product) of two tables is the combination of
all rows in the first table and all rows in the second table.

—

The product operation is not common. You need to be aware of it, however, because it is easy to create
a product inadvertently by omitting the WHERE clause when you are attempting to join tables.

EXAMPLE 18

Form the product of the CUSTOMER and ORDERS tables. Display the customer number
and name from the CUSTOMER table, along with the order number and order date from
the ORDERS table.

Forming a product is actually very easy. You simply omit the WHERE clause, as shown
in Figure 5-31.

Multiple-Table Queries

SELECT CUITOMER.CUITOMER NUM, CUITOMER NAME, ORDER NUM, ORDEE DATE
FROM CUSTOMER, ORDERS;
No condition
= ; = Qelates the tablesy
Results Explain Describe Sawved SQOL History the FROM clause
pr—
CUSTOMER_HUM CUSTOMER_HAME ORDER_HUM ORDER_DATE
164 145 Al's Appliance and Sport 21608 20-2CT-10
252 Brookings Direct 21605 20-2CT-10
356 Ferguson's 21608 20-0CT-10
405 The Everything Shop 21608 20-0CT-10
462 Bargzins Galore 21608 20-2CT-10
524 Hline's 21605 20-0CT-10
B0 Johnson's Department Store 21608 20-0CT-10
637 Lee's Sport and Appliance 21608 20-0CT-10
T23 Deerfield's Four Seazons 21608 20-0CT-10
42 Al Seazan 21605 20-0CT-10
145 Al's Appliance and Sport 21610 20-0CT-10
2582 Brookings Direct 21610 20-0CT-10
356 Ferguson's 21610 20-2CT-10
405 The Everything Shop 21610 20-2CT-10
462 Bargzins Galare 21610 20-0CT-10

FIGURE 5-31 Query that produces a product of two tables

Question: Figure 5-31 does not show all the rows in the result. How many rows are actu-
ally included?

Answer: The CUSTOMER table has 10 rows and the ORDERS table has seven rows.
Because each of the 10 customer rows is matched with each of the seven order rows, there
are 70 (10 x 7) rows in the result.

Chapter 5

Chapter Summary

To join tables, indicate in the SELECT clause all columns to display, list in the FROM
clause all tables to join, and then include in the WHERE clause any conditions requir-
ing values in matching columns to be equal.

When referring to matching columns in different tables, you must qualify the column

names to avoid confusion. You qualify column names using the following format: table
name.column name.

165

Use the IN or EXISTS operators with an appropriate subquery as an alternate way of per-
forming a join.

A subquery can contain another subquery. The innermost subquery is executed first.

The name of a table in a FROM clause can be followed by an alias, which is an alter-
nate name for a table. You can use the alias in place of the table name throughout the
SQL command. By using two different aliases for the same table in a single SQL com-
mand, you can join a table to itself.

The UNION operator creates a union of two tables (the collection of rows that are in either
or both tables). The INTERSECT operator creates the intersection of two tables (the col-
lection of rows that are in both tables). The MINUS operator creates the difference of two
tables (the collection of rows that are in the first table but not in the second table). To
perform any of these operations, the tables involved must be union compatible. Two tables
are union compatible when they have the same number of columns and their corre-
sponding columns have identical data types and lengths.

When the ALL operator precedes a subquery, the condition is true only if it is satisfied
by all values produced by the subquery.

When the ANY operator precedes a subquery, the condition is true only if it is satisfied
by any value (one or more) produced by the subquery.

In an inner join, only matching rows from both tables are included. You can use the
INNER JOIN clause to perform an inner join.

In a left outer join, all rows from the table on the left (the table listed first in the query)
are included regardless of whether they match rows from the table on the right (the table
listed second in the query). Rows from the table on the right are included only when they
match. You can use the LEFT JOIN clause to perform a left outer join. In a right outer
join, all rows from the table on the right are included regardless of whether they match
rows from the table on the left. Rows from the table on the left are included only when
they match. You can use the RIGHT JOIN clause to perform a right outer join.

The product (Cartesian product) of two tables is the combination of all rows in the first
table and all rows in the second table. To form a product of two tables, include both tables
in the FROM clause and omit the WHERE clause.

Multiple-Table Queries

166

Chapter 5

Key Terms

alias join

ALL left outer join
ANY MINUS
Cartesian product nested subquery
correlated subquery outer join
difference product

EXISTS right outer join
full outer join self-join

inner join union
INTERSECT UNION
intersection union compatible

Review Questions

N o g bk 0w DdPRE

10.
11.

12.

13.

14.
15.

How do you join tables in SQL?

When must you qualify names in SQL commands? How do you qualify a column name?
List two operators that you can use with subqueries as an alternate way of performing joins.
What is a nested subquery? In which order does SQL evaluate nested subqueries?

What is an alias? How do you specify an alias in SQL? How do you use an alias?

How do you join a table to itself in SQL?

How do you take the union of two tables in SQL? How do you take the intersection of two
tables in SQL? How do you take the difference of two tables in SQL? Are there any restric-
tions on the tables when performing any of these operations?

What does it mean for two tables to be union compatible?

How do you use the ALL operator with a subquery?

How do you use the ANY operator with a subquery?

Which rows are included in an inner join? What clause can you use to perform an inner join
in SQL?

Which rows are included in a left outer join? What clause can you use to perform a left outer
join in SQL?

Which rows are included in a right outer join? What clause can you use to perform a right
outer join in SQL?

What is the formal name for the product of two tables? How do you form a product in SQL?

Use your favorite Web browser and Web search engine to find definitions for the terms
equi-join, natural join, and cross join. Write a short report that identifies how these terms
relate to the terms join, inner join, and Cartesian product. Be sure to reference your online
sources properly.

16.

Use your favorite Web browser and Web search engine to find information on cost-based
query optimizers. Write a short report that explains how cost-based query optimization
works, and what type(s) of queries benefit the most from cost-based query optimization. Be
sure to reference your online sources properly.

Exercises

Premiere Products

Use SQL and the Premiere Products database (see Figure 1-2 in Chapter 1) to complete the fol-
lowing exercises. If directed to do so by your instructor, use the information provided with the
Chapter 3 Exercises to print your output.

1.

10.
11.

12.

13.

14.
15.

16.

For each order, list the order number and order date along with the number and name of
the customer that placed the order.

For each order placed on October 23, 2010, list the order number along with the number
and name of the customer that placed the order.

For each order, list the order number, order date, part number, number of units ordered, and
quoted price for each order line that makes up the order.

Use the IN operator to find the number and name of each customer that placed an order
on October 23, 2010.

Repeat Exercise 4, but this time use the EXISTS operator in your answer.
Find the number and name of each customer that did not place an order on
October 23, 2010.

For each order, list the order number, order date, part number, part description, and item
class for each part that makes up the order.

Repeat Exercise 7, but this time order the rows by item class and then by order number.

Use a subquery to find the rep number, last name, and first name of each sales rep who rep-
resents at least one customer with a credit limit of $10,000. List each sales rep only once
in the results.

Repeat Exercise 9, but this time do not use a subquery.

Find the number and name of each customer that currently has an order on file for a
Gas Range.

List the part number, part description, and item class for each pair of parts that are in the
same item class. (For example, one such pair would be part AT94 and part FD21, because
the item class for both parts is HW.)

List the order number and order date for each order placed by the customer named
Johnson’s Department Store. (Hint: To enter an apostrophe (single quotation mark) within
a string of characters, type two single quotation marks.)

List the order number and order date for each order that contains an order line for an Iron.

List the order number and order date for each order that either was placed by Johnson’s
Department Store or that contains an order line for a Gas Range.

List the order number and order date for each order that was placed by Johnson’s
Department Store and that contains an order line for a Gas Range.

167

Multiple-Table Queries

168

Chapter 5

17.

18.

ie).

20.

List the order number and order date for each order that was placed by Johnson’s
Department Store but that does not contain an order line for a Gas Range.

List the part number, part description, unit price, and item class for each part that has a unit
price greater than the unit price of every part in item class AP. Use either the ALL or ANY
operator in your query. (Hint: Make sure you select the correct operator.)

If you used ALL in Exercise 18, repeat the exercise using ANY. If you used ANY, repeat the
exercise using ALL, and then run the new command. What question does this command
answer?

For each part, list the part number, description, units on hand, order number, and number
of units ordered. All parts should be included in the results. For those parts that are cur-
rently not on order, the order number and number of units ordered should be left blank. Order
the results by part number.

Henry Books

Use SQL and the Henry Books database (see Figures 1-4 through 1-7 in Chapter 1) to com-
plete the following exercises. If directed to do so by your instructor, use the information provided
with the Chapter 3 Exercises to print your output.

1.

10.
11.
12.

13.

14.

For each book, list the book code, book title, publisher code, and publisher name. Order the
results by publisher name.

For each book published by Scribner, list the book code, book title, and price.

List the book title, book code, and price of each book published by Scribner that has a book
price of at least $14.

List the book code, book title, and units on hand for each book in branch number 3.

List the book title for each book that has the type PSY and that is published by Berkley
Publishing.

Find the book title for each book written by author number 18. Use the IN operator in
your query.

Repeat Exercise 6, but this time use the EXISTS operator in your query.

Find the book code and book title for each book located in branch number 2 and written by
author 20.

List the book codes for each pair of books that have the same price. (For example, one such
pair would be book 0200 and book 7559, because the price of both books is $8.00.) The
first book code listed should be the major sort key, and the second book code should be the
minor sort key.

Find the book title, author last name, and units on hand for each book in branch number 4.
Repeat Exercise 10, but this time list only paperback books.

Find the book code and book title for each book whose price is more than $10 or that was
published in Boston.

Find the book code and book title for each book whose price is more than $10 and that was
published in Boston.

Find the book code and book title for each book whose price is more than $10 but that was
not published in Boston.

15.

16.

17.

Find the book code and book title for each book whose price is greater than the book price
of every book that has the type MYS.

Find the book code and book title for each book whose price is greater than the price of at
least one book that has the type MYS.
List the book code, book title, and units on hand for each book in branch number 2. Be sure

each book is included, regardless of whether there are any copies of the book currently on
hand in branch 2. Order the output by book code. 169

Alexamara Marina Group

Use SQL and the Alexamara Marina Group database (see Figures 1-8 through 1-12 in Chapter 1)
to complete the following exercises. If directed to do so by your instructor, use the information pro-
vided with the Chapter 3 Exercises to print your output.

1.

10.

11.

12.

13.

14.

15.

For every boat, list the marina number, slip number, boat name, owner number, owner’s first
name, and owner’s last name.

For every completed or open service request for routine engine maintenance, list the slip
ID, description, and status.

For every service request for routine engine maintenance, list the slip ID, marina number,
slip number, estimated hours, spent hours, owner number, and owner’s last name.

List the first and last names of all owners who have a boat in a 30-foot slip. Use the IN opera-
tor in your query.
Repeat Exercise 4, but this time use the EXISTS operator in your query.

List the names of any pair of boats that have the same type. For example, one pair would be
Anderson Il and Escape, because the boat type for both boats is Sprite 4000. The first name
listed should be the major sort key and the second name should be the minor sort key.

List the boat name, owner number, owner last name, and owner first name for each boat
in marina 1.

Repeat Exercise 7, but this time only list boats in 40-foot slips.
List the marina number, slip number, and boat name for boats whose owners live in
Glander Bay or whose type is Sprite 4000.

List the marina number, slip number, and boat name for boats whose owners live in
Glander Bay and whose type is Sprite 4000.

List the marina number, slip number, and boat name for boats whose owners live in
Glander Bay but whose type is not Sprite 4000.

Find the service ID and slip ID for each service request whose estimated hours is greater
than the number of estimated hours of at least one service request on which the category
number is 3.

Find the service ID and slip ID for each service request whose estimated hours is greater than
the number of estimated hours on every service request on which the category number is 3.

List the slip ID, boat name, owner number, service ID, number of estimated hours, and num-
ber of spent hours for each service request on which the category number is 2.

Repeat Exercise 14, but this time be sure each slip is included regardless of whether the
boat in the slip currently has any service requests for category 2.

Multiple-Table Queries

This page intentionally left blank

CHAPTER

UPDATING DATA

LEARNI

Objectives

Create a
Change
Add new
Delete d
Use nulls
Change tl

Use the
updates

Understal
supportin

Drop a tal

INTRODUCTION

In this chapter, you will learn how to create a new table from an existing table and make changes to the

data in a table. You will use the UPDATE command to change data in one or more rows in a table, and use

the INSERT command to add new rows. You will use the DELETE command to delete rows. You will learn

how to change the structure of a table in a variety of ways and use nulls in update operations. You will use

the COMMIT command to make changes permanent and use the ROLLBACK command to undo

changes, and understand how to use these commands in transactions. Finally, you will learn how to delete

a table and its data.

&2

Chapter 6

CREATING A NEW TABLE FROM AN
EXISTING TABLE

You can create a new table using data in an existing table, as illustrated in the following

examples.

Create a new table named LEVEL1_CUSTOMER that contains the following columns from the
CUSTOMER table: CUSTOMER_NUM, CUSTOMER_NAME, BALANCE, CREDIT_LIMIT, and
REP_NUM. The columns in the new LEVEL1_CUSTOMER table should have the same char-
acteristics as the corresponding columns in the CUSTOMER table.

You describe the new table named LEVEL1_CUSTOMER by using the CREATE TABLE

command shown in Figure 6-1.

CREATE TAELE LEVEL1 CUSTOMER

{CUSTOMER_NUM CHAR ({3} PRIM.R
CUSTOMER,_NAME CHAR(35),
EALANCE DECIMAL(,2),
CREDIT LIMIT DECIMAL(S,2],

EEF NUN CHAR(Z) j:

Table structure

Results Explain Describe Saved SOL History

Takble created.

FIGURE 6-1 Creating the LEVEL1_CUSTOMER table

ACCESS USER NOTE ===

If you are using Access to create the LEVEL1_CUSTOMER table, use the CURRENCY data type instead
of the DECIMAL data type for the BALANCE and CREDIT_LIMIT fields. (Access does not support the
DECIMAL data type.) You do not need to enter the field size and number of decimal places when using the

CURRENCY data type.

Insert into the LEVEL1_CUSTOMER table the customer number, customer name, bal-
ance, credit limit, and rep number for customers with credit limits of $7,500.

You can create a SELECT command to select the desired data from the CUSTOMER
table, just as you did in Chapter 4. By placing this SELECT command in an INSERT com-
mand, you can add the query results to a table. The INSERT command appears in
Figure 6-2; this command inserts four rows into the LEVEL1_CUSTOMER table.

INSERT INTO LEVEL1 CUSTOMER
SELECT CUITOMER NUM, CUITOMER MNAME, BALANCE, CEEDIT LIMIT, REF_NUHM

FEOM CUSTOMER

WHERE CREDIT_LIMIT = 7¥500;

Results Explain Describe Sawed SOL History

SELECT command
retrieves the data
to insert

4 row(s) inserted.

FIGURE 6-2 INSERT command to add data to the LEVEL1 _CUSTOMER table

The SELECT command shown in Figure 6-3 displays the data in the LEVEL1_CUSTOMER
table. Notice that the data comes from the new table you just created (LEVEL1_CUSTOMER),
and not from the CUSTOMER table.

SELECT *
FROM LEVEL1 CUITOMER;

Results Explain Describe Saved SOL History

CUSTOMER_HUM CUSTOMER_HAME BALAHCE CREDT_LIMIT REP_HUM
148 Al's Applisnce and Sport E550 7500 20
356 Ferguson's 5785 7500 B5
725 Deerfield's Four Seasons 245 7500 55
42 All Seasan g2 700 20
4 rowes returned in 0.15 seconds CSY Export

FIGURE 6-3 LEVEL1_CUSTOMER data

CHANGING EXISTING DATA IN A TABLE

The data stored in tables is subject to constant change; prices, addresses, commission
amounts, and other data in a database change on a regular basis. To keep data current, you
must be able to make these changes to the data in your tables. You can use the UPDATE
command to change rows for which a specific condition is true.

s

Updating Data

174

Chapter 6

Change the name of customer 842 in the LEVEL1_CUSTOMER table to “All Season Sport.”

The format for the UPDATE command is the word UPDATE, followed by the name of the
table to be updated. The next portion of the command consists of the word SET, followed by
the name of the column to be updated, an equals sign, and the new value. When necessary,
include a WHERE clause to indicate the row(s) on which the change is to occur. The UPDATE
command shown in Figure 6-4 changes the name of customer 842 to All Season Sport.

UPDATE LEVEL1 CUSTOMER
SET CUSTOMER NAME = 'All 3Jeason Sport'!
WHERE CUZTOMER MUM = '84Z2';

Results Explain Describe Saved SQOL History

1 row(s) updated.

FIGURE 6-4 UPDATE command to change the name of customer 842

The SELECT command shown in Figure 6-5 shows the data in the table after the change
has been made. It is a good idea to use a SELECT command to display the data you changed
to verify that the correct update was made.

SJELECT *
FROM LEVEL1 CUITOHEER:

Results Explain Describe Saved SQOL History

—
CUSTOMER_HUM CUSTOMER_HAME BALAHCE CREDIT_LIMIT REP_HUM
145 Al's Appliance and Sport ES50 7500 20
356 Ferguson's 5785 Fa00 E5S
723 Deerfield's Four Seasons 248 Ta00 33
G42 Al Seazon Spart 5221 700 20
4 rows returned in 0.06 seconds C2Y Export

FIGURE 6-5 LEVEL1_CUSTOMER table after update

For each customer in the LEVEL1_CUSTOMER table that is represented by sales rep 20
and also has a balance that does not exceed the credit limit, increase the customer’s
credit limit to $8,000.

The only difference between Examples 3 and 4 is that Example 4 uses a compound con-
dition to identify the row(s) to be changed. The UPDATE command appears in Figure 6-6.

UPDATE LEVEL1 CUITONER

SET CREDIT_LIMIT = 5000
WHERE REP_NUM = 'Z0'

AND BALMICE < CREDIT LIMIT:

Results Explain Describe Sawved SOL History

1 row(s) updated.

FIGURE 6-6 Using a compound condition in an update

The SELECT command shown in Figure 6-7 shows the table after the update.

SELECT *
FROM LEVEL1 CUSTOMER;

Results Explain Describe Sawved SQOL History

—
CUSTOMER_HUM CUSTOMER_HAME BALAHCE CREDIT_LIMIT REP_HUM
145 Al's Appliance and Sport G550 000 20
356 Ferguson's 5785 ¥500 E5
723 Deerfield's Four Seasons 248 7300 33
42 Al Seazan Sport g2 7300 20
4 rows returned in 0.058 seconds C2Y Export

FIGURE 6-7 Credit limit increased for customer number 148

You also can use the existing value in a column and a calculation to update a value. For
example, when you need to increase the credit limit by 10 percent instead of changing it
to a specific value, you can multiply the existing credit limit by 1.10. The following SET
clause makes this change:

SET CREDIT_LIMT = CREDIT_LIMT * 1.10

175

Updating Data

176

Chapter 6

ADDING NEW ROWS TO AN EXISTING
TABLE

In Chapter 3, you used the INSERT command to add the initial rows to the tables in the
database. You also can use the INSERT command to add additional rows to tables.

Add customer number 895 to the LEVEL1_CUSTOMER table. The name is Peter and
Margaret’s, the balance is 0, the credit limit is $8,000, and the rep number is 20.

The appropriate INSERT command is shown in Figure 6-8. Because the name “Peter
and Margaret’s” contains an apostrophe, you type two single quotation marks to create the
apostrophe.

Home > SQL > SOL Commands

Check mark removed

ﬁ»‘-‘\utocommit Display Qrom Autocommit check)

box
INSERT INTo LEVEL1 CUITOMER
VALUES

['895', 'Peter and Margarec''s', 0, 5000, '20'); 4@

Results Explain Describe Saved SOL History

1 row(s) inserted.

FIGURE 6-8 Inserting a row

The SELECT command in Figure 6-9 shows that the row was successfully added.

SJELECT *
FROM LEVEL1 CUITOMEER:

Results Explain Describe Saved SOL History

pr—

CUSTOMER_HUM CUSTOMER_HAME BALAHNCE CREDIT_LIMIT REP_HUM
145 Al's Appliance and Sport B350 S000 20

356 Ferguson's 5785 7500 E5

725 Deerfigld's Four Seasons 2438 Ta00 33

542 Al Sesson Sport gz Ta00 20

595 Peter and Margaret's u] S000 20

5 rowes returned in 0,12 seconds

FIGURE 6-9 Customer 895 added to LEVEL1 _CUSTOMER table

NOTE ———————

Your output might be sorted in a different order from what is shown in Figure 6-9. If you need to sort the
rows in a specific order, use an ORDER BY clause with the desired sort key(s).

COMMIT AND ROLLBACK

Figure 6-8 shows that the user cleared the check mark from the Autocommit check box
before running the query. Autocommit is the default transaction mode and commits (makes
permanent) each action query (INSERT, UPDATE, DELETE) as soon as the user executes
the query. Although the Autocommit transaction mode is fine for most action queries,
there are times when the user needs better control over when a transaction is committed.
This is particularly important in multi-user database applications when more than one per-
son can update the database and in applications when users are running script files that con-
tain multiple updates. When you need more control over when transactions are
committed, you should disable the Autocommit feature by clearing its check box before
executing a query.

If you do not use Autocommit, queries that include updates to table data are only tem-
porary and you can reverse (cancel) them at any time during your current work session.
Updates become permanent automatically when you exit from the DBMS. If you are not
using Autocommit during your current work session, however, you can still commit (save)
your changes immediately by executing the COMMIT command.

If you decide that you do not want to save the changes you have made during your cur-
rent work session, you can roll back (reverse) the changes by executing the ROLLBACK
command. Any updates made since you ran the most recent COMMIT command will be
reversed when you run the ROLLBACK command. If you have not run the COMMIT com-
mand, executing the ROLLBACK command will reverse all updates made during the cur-
rent work session. You should note that the ROLLBACK command reverses only changes
made to the data; it does not reverse changes made to a table’s structure. For example, if
you change the length of a character column, you cannot use the ROLLBACK command to
return the column length to its original state.

If you determine that an update was made incorrectly, you can use the ROLLBACK
command to return the data to its original state. If, on the other hand, you have verified that
the update you made is correct, you can use the COMMIT command to make the update
permanent. You do this by typing COMMIT; after running the update. However, you should
note that the COMMIT command is permanent; after executing a COMMIT command, run-
ning the ROLLBACK command cannot reverse the update.

ACCESS USER NOTE==

Access does not support the COMMIT or ROLLBACK commands.

174

Updating Data

178

Chapter 6

SQL SERVER USER NOTE

In SQL Server, the commands used to commit and roll back data are COMMIT TRANSACTION and
ROLLBACK TRANSACTION. By default, SQL Server is in Autocommit transaction mode. To turn off the
Autocommit feature, execute the following command:

SET XACT_ABORT ON

To turn the Autocommit feature back on, execute the following command:
SET XACT_ABORT OFF

TRANSACTIONS

Atransaction is a logical unit of work. You can think of a transaction as a sequence of steps
that accomplish a single task. When discussing transactions, it is essential that the entire
sequence is completed successfully.

For example, to enter an order, you must add the corresponding order to the ORDERS
table, and then add each order line in the order to the ORDER_LINE table. These mul-
tiple steps accomplish the “single” task of entering an order. Suppose you have added the
order and the first order line, but you are unable to enter the second order line for some
reason; perhaps the part on the order line does not exist. This problem would leave the order
in a partially entered state, which is unacceptable. To prevent this problem, you would
execute a rollback, thus reversing the insertion of the order and the first order line.

You can use the COMMIT and ROLLBACK commands to support transactions as
follows:

e Before beginning the updates for a transaction, commit any previous updates
by executing the COMMIT command.

e Complete the updates for the transaction. If any update cannot be com-
pleted, execute the ROLLBACK command and discontinue the updates for the
current transaction.

e If you can complete all updates successfully, execute the COMMIT command
after completing the final update.

CHANGING AND DELETING EXISTING ROWS

As you learned in Chapter 3, you use the DELETE command to remove rows from a table.
In Example 6, you will change data and then use the DELETE command to delete a cus-
tomer from the LEVEL1_CUSTOMER table. In Example 7, you will execute a rollback to
reverse the updates made in Example 6. In this case, the rollback will return the row to
its previous state and reinstate the deleted record.

In the LEVEL1_CUSTOMER table, change the name of customer 356 to “Smith Sport,”
and then delete customer 895.

To delete data from the database, use the DELETE command. The format for the
DELETE command is the word DELETE followed by the name of the table containing the
row(s) to be deleted. Next, use a WHERE clause with a condition to select the row(s) to
delete. All rows satisfying the condition will be deleted.

The first part of Example 6 requests a name change for customer 356; the command
shown in Figure 6-10 makes this change.

UFDATE LEVEL1l CUITOHNER
SET CUSTOMER MWAME = 'Smith Sport!
WHERE CUSTOMER_NUM = '356';

Results Explain Describe Sawed SQOL History

1 rowis) updated.

FIGURE 6-10 Using an UPDATE command to change the name of customer 356

The second part of Example 6 requires deleting customer 895; this command is shown
in Figure 6-11.

LDELETE FROM LEWEL1l CUITOMER
WHERE CUSTOMER NUM = 'S95';

Results Explain Describe Saved SOL History

1 rowis) deleted.

FIGURE 6-11 Using a DELETE command to delete customer 895

The command shown in Figure 6-12 displays the data in the table, verifying the change
and the deletion.

oo

Updating Data

180

Chapter 6

SELECT *
FROM LEVEL1 CUITOHEER:

Results Explain Describe Saved SQOL History

—
CUSTOMER_HUM CUSTOMER_HAME BALAHCE CREDIT_LIMIT REP_HUM
145 Al's Appliance and Spor 550 S000 20
356 Stmith Spart 5785 7500 65
723 Deerfield's Four Seasons 248 Ta00 33
G42 Al Seazon Spaort 5221 700 20
4 rows returned in 0.06 seconds CSY Export

FIGURE 6-12 Results of update and delete

Question: What happens when you run a DELETE command that does not contain a
WHERE clause?

Answer: Without a condition to specify which row(s) to delete, the query will delete all
rows from the table.

Executing a Rollback

The following example executes a rollback.

Execute a rollback and then display the data in the LEVEL1_CUSTOMER table.

To execute a rollback, execute the ROLLBACK command, as shown in Figure 6-13.

ROLLEACE:;

Results Explain Describe Saved SOL History

iy ROLLBACK command
reverses all changes

since last COMMIT

Statement processed.

FIGURE 6-13 Executing a rollback

Figure 6-14 shows a SELECT command for the LEVEL1_CUSTOMER table after execut-
ing the rollback. Notice that the name of customer 356 has changed back to Ferguson’s and

the row for customer 895 has been reinstated. All updates made prior to the previous com-
mit are still reflected in the data.

SELECT *

FROM LEVEL1 CUSTOMER: Customer name
= before update

ST 3.!'.'l‘:'\‘i':l'-.’rt'f:l'5".'3\'2.':‘."€:u'-'*'.\l'.'|F:.’-'I&%F__p/rén"u"&:ﬂ-ﬁSh'}'.if R L AR e N G R ST AR S Ll e R e e

Results Explain Describe Sawed SQL |History

CUSTOMER_HUM CUSTOMER_HAME BALAHNCE CREDIT_LIMIT REP_HUM

148 Al's Applisnce and Sport E550 000 20

355_ il _Fergusons e e 5?35 heat ?SDD RS 55 8 ot
725 DeerfiedsFowSessons 248 7500 35 N\ reinstated
g2 AISessonSpot 82 7500 2
2 395_ e e paerandm&rgarets .D. SRR SDD_D it 20 TES L N

5 rows returned in 0.07 seconds

FIGURE 6-14 Data in the LEVEL1_CUSTOMER table after executing a rollback

ACCESS USER NOTE==

If you are using Access to complete these steps, you will not be able to execute the ROLLBACK command.
Consequently, your data for the remaining examples in this chapter will differ slightly from the data shown
in the figures—customer 356 will be named Smith Sport and customer 895 will not be included.

NOTE — |

In the remaining examples in this chapter, the Autocommit feature is enabled, that is, there is a check mark
in the Autocommit check box. All updates are committed immediately without requiring any special action
on your part. In addition, it will no longer be possible to roll back updates.

CHANGING A VALUE IN A COLUMN
TO NULL

There are some special issues involved when dealing with nulls. You already have seen how
to add a row in which some of the values are null and how to select rows in which a given
column is null. You also must be able to change the value in a column in an existing row to
null, as shown in Example 8. Remember that to make this type of change, the affected col-
umn must accept nulls. If you specified NOT NULL for the column when you created the
table, then changing a value in a column to null is prohibited.

EXAMPLE 8

Change the balance of customer 725 in the LEVEL1_CUSTOMER table to null.

181

Updating Data

The command for changing a value in a column to null is exactly what it would be for
changing any other value. You simply use the value NULL as the replacement value, as
shown in Figure 6-15. Notice that the value NULL is not enclosed in single quotation marks.
If it were, the command would change the balance to the word NULL.

3ET BALANCE =

UFDATE LEWEL1l CUITOMER

NULL

WHERE CUSTCOMER NUM = '7z5';

182

Results Explain Describe Saved SOL History

Changes the

Nalue to ny

1 rowis) updated.

FIGURE 6-15 Changing a value in a column to null

Figure 6-16 shows the data in the LEVEL1_CUSTOMER table after changing the
BALANCE column value for customer 725 to null. In Oracle 108, a null value is displayed
as a hyphen, as shown in Figure 6-16.

JELECT *

FROM LEVEL1 CUITOMEE:

Results Explain Describe Saved SQOL History

CUSTOMER_HUM CUSTOMER_HAME BALAHCE CREDIT_LIMIT REP_HUM
145 Al's Appliance and Sport ES50 G000 20
356 Ferguson's 5785 7500 B5
723 Deerfield's Four Seasons Y 7300 33
542 All Seasan Sport a221 7500 20 Null value
595 Peter and Margaret's] 000 20
4 rows returned in 0.09 seconds C2Y Export

FIGURE 6-16 BALANCE column for customer 725 is null

SOL SERVER USER NOTE

In SQL Server, the word “NULL" appears in the results (without the quotation marks) when a column
contains a null value.

CHANGING A TABLE'S STRUCTURE

One of the nicest features of a relational DBMS is the ease with which you can change table
structures. In addition to adding new tables to the database and deleting tables that are
no longer required, you can add new columns to a table and change the physical charac-
teristics of existing columns. Next, you will see how to accomplish these changes.

Chapter 6

You can change a table’s structure in SQL by using the ALTER TABLE command, as
illustrated in the following examples.

Premiere Products decides to maintain a customer type for each customer in the database.
These types are R for regular customers, D for distributors, and S for special customers.
Add this information in a new column named CUSTOMER_TYPE in the
LEVEL1_CUSTOMER table.

To add a new column, use the ADD clause of the ALTER TABLE command. The for-
mat for the ALTER TABLE command is the words ALTER TABLE followed by the name of
the table to be altered and an appropriate clause. The ADD clause consists of the word ADD
followed by the name of the column to be added, followed by the characteristics of the
column. Figure 6-17 shows the appropriate ALTER TABLE command for this example.

LLTER TABLE LEVEL1 CUSTOMER
LDD CUSTOMER TYPE CHAR[1); <« Table to alter

Results Explain Describe Saved SOL History (Column to ach

Takle altered.

FIGURE 6-17 Adding a column to an existing table

The LEVEL1_CUSTOMER table now contains a column named CUSTOMER_TYPE, a
CHAR column with a length of 1. Any new rows added to the table must include values for
the new column. Effective immediately, all existing rows also contain this new column. The
data in any existing row will contain the new column the next time the row is updated. Any
time a row is selected for any reason, however, the system treats the row as though the
column is actually present. Thus, to the user, it seems as though the structure was changed
immediately.

For existing rows, you must assign some value to the CUSTOMER_TYPE column. The sim-
plest approach (from the point of view of the DBMS, not the user) is to assign the value NULL
as a CUSTOMER_TYPE in all existing rows. This process requires the CUSTOMER_TYPE
column to accept null values, and some systems actually insist on this. The default for Oracle,
Access, and SQL Server is to accept null values.

To change the values in a new column that was added using an ALTER TABLE com-
mand, follow the ALTER TABLE command with an UPDATE command like the one shown
in Figure 6-18, which sets the CUSTOMER_TYPE value for all rows to R.

183

Updating Data

184

Chapter 6

UFDATE LEWEL1 CUITOMER
3ET CUITOMER_TYFE = 'R':

Omitting the WHERE

_clause updates all rows

Results Explain Describe Sawved SQOL History

5 rowis) updated.

FIGURE 6-18 Making the same update for all rows

The SELECT command shown in Figure 6-19 verifies that the value in the

CUSTOMER_TYPE column for all rows is R.

SELECT *

FROM LEVEL1 CUSTOMER:

Results Explain Describe Saved SOL History

CUSTOMER_HUM

CUSTOMER_HAME

BALAHCE

CREDIT_LIMIT

REP_HUM

CUSTOMER_TYPE

148

Al's Applisnce and Sport

B550

000

20

R

326

Ferguson's

aveEs

7500

BS

725

Deerfigld's Four Seasons

7500

34

42

All Seazon Sport

8221

7500

20

G35

Peter and Margaret's

]

a00a

20

LI 1 R 1 R

5 rows returned in 0.18 seconds

5 Export

FIGURE 6-19 CUSTOMER_TYPE set to R for all rows

Two customers in the LEVEL1_CUSTOMER table have a type other than R. Change the
types for customers 842 and 148 to S and D, respectively.

Example 9 used an UPDATE command to assign type R to every customer. To change
individual types to something other than type R, use the UPDATE command. Figure 6-20

shows the UPDATE command to change customer 842 to customer type S.

UFDATE LEVEL1l CUITOHNER
SET CUSTOMER TYPE = '3!
WHERE CUSTOMER_NUM = 'S4z';

Results Explain Describe Saved SOL History

1 rowis) updated.

s

FIGURE 6-20 Updating customer 842 to customer type S

Figure 6-21 shows the UPDATE command to change customer 148 to customer type D.

UPDATE LEVEL1 CUITONER
SET CUSTOMER _TYPE = 'D!'
WHERE CUSTCMER NUM = '145';

Results Explain Describe Saved SOL History

1 row(s) updated.

FIGURE 6-21 Updating customer 148 to customer type D

The SELECT command shown in Figure 6-22 shows the results of these UPDATE
commands. The customer type for customer 842 is S and the type for customer 148 is D.
The type for all other customers is R.

SELECT *
FROM LEVEL1 CUSTOMER:
| _
Results Explain Describe Saved SOL History
—
|ﬁ
Al's Applisnce and Sport 6550 5000 (u]
356 Ferguson's 5785 Ta00 G5 R
725 Deetfield's Four Seazons - Fa00 35 R
G2 Al Season Sport 221 500 20 5
895 Peter and Margaret's 1] 5000 20 R
5 rows returned in 0.00 seconds CEY Expart

FIGURE 6-22 Customer types in the LEVEL1_CUSTOMER table after updates

Figure 6-23 uses the DESCRIBE command to display the structure of the
LEVEL1_CUSTOMER table, which now includes the CUSTOMER_TYPE column.

Updating Data

186

Chapter 6

DESCHIHE |.[\l‘[i‘1_(:[l.‘i'l'[]]x“: v
(DESCRIBE command) New
Resulls Explain Describe SavedSQL History K CUSTOMER_TYPE
— column B
Object Type TABLEUbject LEVEL1_CUSTOMER
Table ‘Column Data Iype Length Prec ‘Scale Primary Key ! j
LEVEL! CUSTOMER CLSTOMER hUM Char 3 - 3 1 : =
CUSTOMER NAME Chiar 35 : v
BALANCE * Nuber v -
CREDIT LIMT Nurrber . 8 2 . v
REPhiUM Char] - v -
CUSTOMER TYPE Char 1 - v
1.6

FIGURE 6-23 Structure of the LEVEL1_CUSTOMER table

ACCESS USER NOTE ==

In Access, use the Documenter tool to show the layout of a table.

SOQOL SERVER USER NOTE

In SQL Server, execute the following command to list all the columns in the LEVEL1_CUSTOMER table:
Exec sp_col ums LEVEL1_ CUSTOMER

The length of the CUSTOMER_NAME column in the LEVEL1_CUSTOMER table is too
short. Increase its length to 50 characters. In addition, change the CREDIT_LIMIT col-
umn so it cannot accept nulls.

You can change the characteristics of existing columns by using the MODIFY clause
of the ALTER TABLE command. Figure 6-24 shows the ALTER TABLE command that
changes the length of the CUSTOMER_NAME column from 35 to 50 characters.

ALTER TAELE LEWEL1 CUSTOMER
MCDIFY CUSTOMER NAME CHAR (50) :

Results Explain Describe Saved SOL History

Takble altered.

FIGURE 6-24 Changing the length of the CUSTOMER_NAME column in the
LEVEL1_CUSTOMER table

SQL SERVER USER NOTE

To change the length of the CUSTOMER_NAME column in SQL Server, use the following ALTER
COLUMN clause:

ALTER TABLE LEVEL1_ CUSTOMVER

ALTER COLUWN CUSTOVER_NAME CHAR(50);

ACCESS USER NOTEZ==

The version of the ALTER TABLE command shown in Figure 6-24 is not available in Access; to modify the 187
table’s structure, make the changes in Design view and save the table.

NOTE

You also can decrease the length of columns, but you might lose some data currently in the column. For
example, if you decrease the length of the CUSTOMER_NAME column from 35 to 20 characters, only the
first 20 characters of the current customer names will be included. Any characters from position 21 on will
be lost. Thus, you should only decrease column lengths when you are positive that you will not lose any data
stored in the column.

You can change the length of DECIMAL columns in the same manner that you change the length of CHAR
columns.

Figure 6-25 shows the ALTER TABLE command to change the CREDIT_LIMIT col-
umn so it does not accept null values.

ALTER TAELE LEWEL1l CUITOMER
MCDIFY CREDIT LIMIT MNoT NULL:

Results Explain Describe Saved SOL History

Table altered.

FIGURE 6-25 Changing the CREDIT_LIMIT column in the LEVEL1 CUSTOMER table to reject null
values

The DESCRIBE command shown in Figure 6-26 shows the revised structure of the
LEVEL1_CUSTOMER table. The length of the CUSTOMER_NAME column is 50 characters.

Updating Data

188

Chapter 6

The dash in the Nullable column for the CREDIT_LIMIT column (instead of a check mark)
indicates that the CREDIT_LIMIT column no longer accepts null values.

[n ESCRTRE LEVEL1_CTUSTONER:

No check mark indicates that

Results Cxploin Doscribe Saved SOL Hlistory (_ the CREDIT_LIMIT column will not)
Clbject Type TABLE Object LEVEL1_CUSTOMER accept null values
Table Column Data Iype Length P N Scale Primary Key . petault ¢

LEVELY CUSTOMER CUSIOMER MM Char 3 . - 1 = - =
HAL ANCE umber) V. .
CREDT LMT Number : L > . =
REP ML Char 2 v =
CUSTOMER TYPE Char 1 v

Length changed to 50

FIGURE 6-26 Revised structure of the LEVEL1 _CUSTOMER table

NOTE —

You also can use the MODIFY clause of the ALTER TABLE command to change a column that currently
rejects null values so that it accepts null values by using NULL in place of NOT NULL in the ALTER TABLE
command.

NOTE ————

If there were existing rows in the LEVEL1_CUSTOMER table in which the CREDIT_LIMIT column was
already null, the DBMS would reject the modification to the CREDIT_LIMIT column shown in Figure 6-25
and display an error message indicating that this change is not possible. In this case, you first must use an
UPDATE command to change all values that are null to some other value. Then you could alter the table’s
structure as shown in the figure.

Making Complex Changes

In some cases, you might need to change a table’s structure in ways that are either beyond the
capabilities of SQL or that are so complex that it would take longer to make the changes than
to re-create the table. Perhaps you need to eliminate multiple columns, rearrange the order
of several columns, or combine data from two tables into one. For example, if you try to change
a column with a data type of VARCHAR to CHAR, SQL still uses VARCHAR when the table con-
tains other variable-length columns. In these situations, you can use a CREATE TABLE com-
mand to describe the new table (which must use a different name than the existing table), and
then insert values from the existing table into it using the INSERT command combined with
an appropriate SELECT command.

DROPPING A TABLE

As you learned in Chapter 3, you can delete a table that is no longer needed by executing
the DROP TABLE command.

Delete the LEVEL1_CUSTOMER table because it is no longer needed in the Premiere
Products database. 189

The command to delete the table is shown in Figure 6-27.

DROP TAELE LEVEL1 CUITOMER:

Results Explain Describe Sawved SQOL History

Table dropped.

FIGURE 6-27 DROP TABLE command to delete the LEVEL1 _CUSTOMER table

When the command shown in Figure 6-27 is executed, the LEVEL1_CUSTOMER table
and all its data are permanently removed from the database.

Updating Data

Chapter Summary

190

e To create a new table from an existing table, first create the new table by using the
CREATE TABLE command. Then use an INSERT command containing a SELECT com-
mand to select the desired data to be included from the existing table.

e Use the UPDATE command to change existing data in a table.
e Use the INSERT command to add new rows to a table.
e Use the DELETE command to delete existing rows from a table.

e Use the COMMIT command to make updates permanent; use the ROLLBACK com-
mand to reverse any updates that have not been committed.

e To change all values in a column to null, use the SET clause followed by the column
name, an equal sign, and the word NULL. To change a specific value in a column to null,
use a condition to select the row.

e To add a column to a table, use the ALTER TABLE command with an ADD clause.

e To change the characteristics of a column, use the ALTER TABLE command with a
MODIFY clause.

e Use the DROP TABLE command to delete a table and all its data.

Key Terms

ADD clause MODIFY clause
ALTER TABLE roll back
Autocommit ROLLBACK
commit transaction
COMMIT UPDATE
DELETE

Review Questions

Noo g ks w Db P

e

10.

Chapter 6

Which command creates a new table?

Which command and clause adds an individual row to a table?

How do you add data from an existing table to another table?

Which command changes data in a table?

Which command removes rows from a table?

In Oracle and in SQL Server, which command makes updates permanent?

In Oracle and in SQL Server, which command reverses updates? Which updates are
reversed?

How do you use the COMMIT and ROLLBACK commands to support transactions?

What is the format of the SET clause that changes the value in a column to null in an
UPDATE command?

Which command and clause adds a column to an existing table?

11. In Oracle and in SQL Server, which command and clause changes the characteristics of
an existing column in a table?

12. Which command deletes a table and all its data?

13. Microsoft Access supports make-table queries. What is a make-table query? What SQL
statement(s) are equivalent to make-table queries?

14. Use your favorite Web browser and Web search engine to find the SQL command to delete
a column in a table. Write the SQL command in Oracle to delete the CUSTOMER_TYPE col-
umn from the LEVEL1 CUSTOMER table. Would you use the same command in SQL
Server to delete the column? If no, write the command to use in SQL Server.

Exercises

Premiere Products

Use SQL to make the following changes to the Premiere Products database (see Figure 1-2 in
Chapter 1). After each change, execute an appropriate query to show that the change was made
correctly. If directed to do so by your instructor, use the information provided with the Chapter 3
Exercises to print your output.

1. Create a NONAPPLIANCE table with the structure shown in Figure 6-28.

NONAPPLIANCE
Column Type Length Decimal Places Nulls Allowed? Description
PART_NUM CHAR 4 No Part number (primary key)
DESCRIPTION CHAR 15 Part description
ON_HAND DECIMAL 4 0 Number of units on hand
CLASS CHAR 2 Item class
PRICE DECIMAL 6 2 Unit price

FIGURE 6-28 NONAPPLIANCE table layout

2. Insert into the NONAPPLIANCE table the part number, part description, number of units on
hand, item class, and unit price from the PART table for each part that is not in item class AP.

In the NONAPPLIANCE table, change the description of part number AT94 to “Steam Iron.”

In the NONAPPLIANCE table, increase the price of each item in item class SG by three
percent. (Hint: Multiply each price by 1.03.)

5. Add the following part to the NONAPPLIANCE table: part number: TL92; description: Edge
Trimmer; number of units on hand: 11; class: HW; and price: 29.95.

6. Delete every part in the NONAPPLIANCE table for which the class is SG.
In the NONAPPLIANCE table, change the class for part FD21 to null.

8. Add a column named ON_HAND_VALUE to the NONAPPLIANCE table. The on-hand value
is a seven-digit number with two decimal places that represents the product of the number of
units on hand and the price. Then set all values of ON_HAND_VALUE to ON_HAND * PRICE.

190

Updating Data

{92

Chapter 6

9. In the NONAPPLIANCE table, increase the length of the DESCRIPTION column to
30 characters.

10. Remove the NONAPPLIANCE table from the Premiere Products database.

Henry Books

Use SQL to make the following changes to the Henry Books database (Figures 1-4 through 1-7
in Chapter 1). After each change, execute an appropriate query to show that the change was
made correctly. If directed to do so by your instructor, use the information provided with the
Chapter 3 Exercises to print your output.

1. Create a FICTION table with structure shown in Figure 6-29.

FICTION
Column Type Length Decimal Places Nulls Allowed? Description
BOOK_CODE CHAR 4 No Book code (primary key)
TITLE CHAR 40 Book title
PUBLISHER_CODE CHAR 3 Publisher code
PRICE DECIMAL 4 2 Book price

FIGURE 6-29 FICTION table layout

2. Insert into the FICTION table the book code, book title, publisher code, and price from the
BOOK table for only those books having type FIC.

3. The publisher with code LB has decreased the price of its fiction books by four percent.
Update the prices in the FICTION table accordingly.

4. Insert a new book into the FICTION table. The book code is 9946, the title is Cannery Row,
the publisher is PE, and the price is 11.95.
Delete the book in the FICTION table having the book code 9883.

The price of the book entitled To Kill a Mockingbird has been increased to an unknown
amount. Change the value in the FICTION table to reflect this change.

7. Add to the FICTION table a new character column named BEST_SELLER that is one char-
acter in length. Then set the default value for all columns to N.

8. Change the BEST_SELLER column in the FICTION table to Y for the book entitled Song
of Solomon.

9. Change the length of the TITLE column in the FICTION table to 50 characters.
10. Change the BEST_SELLER column in the FICTION table to reject nulls.
11. Delete the FICTION table from the database.

Alexamara Marina Group

Use SQL to make the following changes to the Alexamara Marina Group database (Figures 1-8
through 1-12 in Chapter 1). After each change, execute an appropriate query to show that the
change was made correctly. If directed to do so by your instructor, use the information provided
with the Chapter 3 Exercises to print your output.

1. Create a LARGE_SLIP table with the structure shown in Figure 6-30. (Hint: If you have
trouble creating the primary key, see Figure 3-31 in Chapter 3.)

LARGE_SLIP
Column Type Length Decimal Places Nulls Allowed? Description
MARINA_NUM CHAR 4 No Marina number (primary key)
SLIP_NUM CHAR 4 No Slip number in the marina (primary key)
RENTAL_FEE DECIMAL | 8 2 Annual rental fee for the slip
BOAT_NAME CHAR 50 Name of boat currently in the slip
OWNER_NUM CHAR 4 Number of boat owner renting the slip

FIGURE 6-30 LARGE_SLIP table layout

10.
11.
12.

Insert into the LARGE_SLIP table the marina number, slip number, rental fee, boat name,
and owner number for those slips whose length is 40 feet.

Alexamara has increased the rental fee of each large slip by $150. Update the rental fees
in the LARGE_SLIP table accordingly.

After increasing the rental fee of each large slip by $150 (Exercise 3), Alexamara decides
to decrease the rental fee of any slip whose fee is more than $4,000 by one percent. Update
the rental fees in the LARGE_SLIP table accordingly.

Insert a new row into the LARGE_SLIP table. The marina number is 1, the slip number is
A4, the rental fee is $3,900, the boat name is Bilmore, and the owner number is FE82.

Delete all slips in the LARGE_SLIP table for which the owner number is TR72.

The name of the boat in marina 1 and slip Al is in the process of being changed to an
unknown name. Change the name of this boat in the LARGE_SLIP table to null.

Add to the LARGE_SLIP table a new character column named CHARTER that is one char-
acter in length. (This column will indicate whether the boat is available for chartering.) Set
the value for the CHARTER column on all rows to N.

Change the CHARTER column in the LARGE_SLIP table toY for the slip containing the boat
named Our Toy.

Change the length of the BOAT_NAME column in the LARGE_SLIP table to 60 characters.
Change the RENTAL_FEE column in the LARGE_SLIP table to reject nulls.
Delete the LARGE_SLIP table from the database.

Updating Data

This page intentionally left blank

CHAPTER

DATABASE
ADMINISTRATION

LEARNIN

Objectives

Understand,
Recognize th
Use a view t
Grant and re

Understand
index

Create, use,
Understand
Use integrity

INTRODUCTION

There are some special issues involved in managing a database. This process, often called database

administration, is especially important when more than one person uses the database. In a business

organization, a person or an entire group known as the database administrator is charged with

managing the database.

In Chapter 6, you learned about one function of the database administrator: changing the structure

of a database. In this chapter, you will see how the database administrator can give each user his or her

own view of the database. You will use the GRANT and REVOKE commands to assign different database

privileges to different users. You will use indexes to improve database performance. You will learn how a

196

Chapter 7

DBMS stores information about the database structure in an object called the system catalog and how
to access that information. Finally, you will learn how to specify integrity constraints that establish rules

for the data in the database.

CREATING AND USING VIEWS

Most DBMSs support the creation of views. A view is a program’s or an individual user’s
picture of the database. The existing, permanent tables in a relational database are called
base tables. A view is a derived table because the data in it comes from one or more base
tables. To the user, a view appears to be an actual table, but it is not. In many cases, a user
can examine table data using a view. Because a view usually includes less information than
the full database, its use can represent a great simplification. Views also provide a mea-
sure of security, because omitting sensitive tables or columns from a view renders them
unavailable to anyone accessing the database through the view.

To help you understand the concept of a view, suppose that Juan is interested in the
part number, part description, units on hand, and unit price of parts in item class HW. He
is not interested in any other columns in the PART table, nor is he interested in any rows
that correspond to parts in other item classes. Viewing this data would be simpler for Juan
if the other rows and columns were not even present. Although you cannot change the
structure of the PART table and omit some of its rows just for Juan, you can do the next best
thing. You can provide him with a view that consists of only the rows and columns that he
needs to access.

A view is defined by creating a defining query, which indicates the rows and col-
umns to include in the view. The SQL command (or the defining query) to create the view
for Juan is illustrated in Example 1.

Create a view named HOUSEWARES that consists of the part number, part description,
units on hand, and unit price of each part in item class HW.

To create a view, use the CREATE VIEW command, which includes the words
CREATE VIEW, followed by the name of the view, the word AS, and then a query. The
CREATE VIEW command shown in Figure 7-1 creates a view of the PART table that con-
tains only the specified columns.

CRELTE VIEW HOUSEWARES AS N fu
SELECT PART NUM, DESCRIPTION, CN_HAND, PRICE ame ot view
FROM PART

WHERE CLLSS = 'HU';

Results Explain Describe Saved SQL History

View created.

FIGURE 7-1 Creating the HOUSEWARES view 19

ACCESS USER NOTEZ®=

Access does not support the CREATE VIEW command. To create a view in Access, create a query to define
the view, and then save the query object in the database using the view's name (for example,
HOUSEWARES).

Given the current data in the Premiere Products database, the HOUSEWARES view con-
tains the data shown in Figure 7-2.

HOUSEWARES
PART_NUM DESCRIPTION ON_HAND PRICE
AT94 Iron 50| $24.95
DL71 Cordless Drill 21| $129.95
FD21 Stand Mixer 22| $159.95

FIGURE 7-2 HOUSEWARES view

The data does not actually exist in this form, nor will it ever exist in this form. It is
tempting to think that when Juan uses this view, the query is executed and produces some
sort of temporary table, named HOUSEWARES, that Juan can access, but this is not what
actually happens. Instead, the query acts as a sort of “window” into the database, as
shown in Figure 7-3. As far as Juan is concerned, the entire database is just the darker
shaded portion of the PART table. Juan can see any change that affects the darker por-
tion of the PART table, but he is totally unaware of any other changes that are made in
the database.

Database Administration

198

Chapter 7

PART
PART_NUM DESCRIPTION ON_HAND CLASS WAREHOUSE PRICE

AT94 Iron 50 | HW 3 $24.95
BV06 Home Gym 45 | SG 2 $794.95
CDh52 Microwave Oven 32 | AP 1 $165.00
DL71 Cordless Drill 21 | HW 3 $129.95
DR93 Gas Range S [AP 2 $495.00
DW11 Washer 12 | AP 3 $399.99
FD21 Stand Mixer 22 | W 3 $159.95
KL62 Dryer 12 | AP 1 $349.95
KT03 Dishwasher 8| AP 3 $595.00
KV29 Treadmill 9SG 2 $1,390.00

FIGURE 7-3 Juan’s view of the PART table

When you create a query that involves a view, the DBMS changes the query to one that
selects data from the table(s) in the database that created the view. For example, sup-
pose Juan creates the query shown in Figure 7-4.

SELECT *
FEON HOUIEWARES
WHERE oM HAND < 2Z5:

Data selected from
HOUSEWARES view

Results Explain Describe Saved SOL History

PART_HUM DESCRIPTION oOH_HAHD PRICE

DL71 Cordless Dril 21 12895
FD21 Stand Mixer 22 15895
2 rowws returned in 0.01 seconds C3Y Export

FIGURE 7-4 Using the HOUSEWARES view

The DBMS does not execute the query in this form. Instead, it merges the query Juan
entered with the query that creates the view to form the query that is actually executed.
When the DBMS merges the query that creates the view with Juan’s query to select rows for
which the ON_HAND value is less than 25, the query that the DBMS actually executes is:

SELECT PART_NUM DESCRI PTI ON, ON_HAND, PRI CE
FROM PART

WHERE CLASS = ' HW

AND ON_HAND < 25;

In the query that the DBMS executes, the FROM clause lists the PART table rather than
the HOUSEWARES view, the SELECT clause lists columns from the PART table instead of

* to select all columns from the HOUSEWARES view, and the WHERE clause contains a
compound condition to select only those parts in the HW class (as Juan sees in the

HOUSEWARES view) and only those parts with ON_HAND values of less than 25. This new
query is the one that the DBMS actually executes.

Juan, however, is unaware that this activity is taking place. To Juan, it seems that he
is really using a table named HOUSEWARES. One advantage of this approach is that
because the HOUSEWARES view never exists in its own right, any update to the PART table
is immediately available in the HOUSEWARES view. If the HOUSEWARES view were really
a table, this immediate update would not be possible.

You also can assign column names that are different from those in the base table, as
illustrated in the next example.

Create a view named HSEWRES that consists of the part number, part description, units
on hand, and unit price of all parts in item class HW. In this view, change the names of
the PART_NUM, DESCRIPTION, ON_HAND, and PRICE columns to PNUM, DSC, OH, and
PRCE, respectively.

When renaming columns, you include the new column names in parentheses following the
name of the view, as shown in Figure 7-5. In this case, anyone accessing the HSEWRES view
will refer to PART_NUM as PNUM, to DESCRIPTION as DSC, to ON_HAND as OH, and to
PRICE as PRCE.

CRELTE VIEW H3IEWRE3 (PNUM, D3C, OH, PRCE] A5
SELECT FART WNUM, DEICRIPTICN, CN HAND, PRICE
FROM PLRT

WHERE CLAZZS = 'HW';:

New names
for columns listed
in parentheses

Results Explain Describe Saved SQL History

View created.

FIGURE 7-5 Renaming columns when creating a view

If you select all columns from the HSEWRES view, the output displays the new col-
umn names, as shown in Figure 7-6.

199

Database Administration

200

Chapter 7

SELECT *
FROM H3IEWRES:

Results Explain Describe Saved SOL History

New column
PHUM DsC OH PRCE -
names
AT94 Iron a0 2485

DL7 Cordless Drill 21 12983

FD21 Stand Mixer 22 159835

3 rows returned in 0.01 seconds 3% Export

FIGURE 7-6 Data in the HSEWRES view

ACCESS USER NOTE ==

To change column names in Access, use AS clauses in the query design (for example,

SELECT PART_NUM AS PNUM, DESCRIPTION AS DSC, and so on).

The HSEWRES view is an example of a row-and-column subset view because it con-
sists of a subset of the rows and columns in some base table—in this case, in the PART table.
Because the defining query can be any valid SQL query, a view also can join two or more
tables or involve statistics. The next example illustrates a view that joins two tables.

Create a view named REP_CUST consisting of the sales rep number (named RNUM), sales
rep last name (named RLAST), sales rep first name (named RFIRST), customer number

(named CNUM), and customer name (named CNAME) for all sales reps and matching cus-
tomers in the REP and CUSTOMER tables.

The command to create this view appears in Figure 7-7

CREALTE VIEW REP CUST (BWNUM, ELAST, RFIRST, CHUM, CHNANE)

FEON REP, CUITOMER
WHERE REP.REP NUNM = CUSTCMER.REP NUH
ORDER EY EREFP.REFP NUM, CUITOMER NUN:

View joins
two tables

SELECT REF.REP NUM, LAST MNAME, FIR3T NAME, CUITOMER MNUH,

A

CUSITOMER_MAME

Results Explain Describe Saved SOL History

View created.

FIGURE 7-7 Creating the REP_CUST view

Given the current data in the Premiere Products database, the REP_CUST view con-
tains the data shown in Figure 7-8.

SELECT *
FROM REP_CUST:
Results Explain Describe Sawved SOL History
pr—
RHUM RLAST RFIRST CHUM CHAME
20 Haiser “Walerie 145 Al's Appliance and Sport
20 Kaizer Yalerie 524 kline's
20 Kaizer Yalerie 842 All Seazon
35 Hull Richard 282 Brookings Direct
a5 Hull Richard 405 The Everything Shop
55 Hull Richard BSY Lee's Spart and Appliance
35 Hull Richard 725 Deerfield's Four Seasons
ES Perez Juan 356 Ferguson's
=3 Perez Juan 462 Bargains Galore
ES Perez Juzan BOS Johnson's Department Store
10 rows returned in 0.02 seconds =Y Export

201

FIGURE 7-8 Data in the REP_CUST view

SQL SERVER USER NOTE

SQL Server does not support the ORDER BY clause in a CREATE VIEW command. When you need to
order the query results, insert an ORDER BY clause in the SELECT command when you query the view.
For example, the following SELECT command retrieves all records in the REP_CUST view ordered by rep

number and customer number:

SELECT *

FROM REP_CUST
ORDER BY RNUM CNUM

A view also can involve statistics, as illustrated in Example 4.

Create a view named CRED_CUST that consists of each credit limit (CREDIT_LIMIT) and
the number of customers having this credit limit (NUM_CUSTOMERS). Sort the credit
limits in ascending order.

The command shown in Figure 7-9 creates this view.

Database Administration

e

Chapter 7

CREATE VIEW CRED_CUST (CEEDIT LIMIT, NUM_CUITOMERS) A3
SELECT CREDIT LIMIT, <CoUNT(*)

FROM CUSTOMER

GROUP BY CEEDIT LIMIT

ORDER BY CEEDIT LIMIT;

Results Explain Describe Saved SOL History

Wiew created.

FIGURE 7-9 Creating the CRED_CUST view

The SELECT command shown in Figure 7-10 displays the current data in the Pre-
miere Products database for this view.

SELECT *
FROM CRED_ CU3T:

Results Explain Describe Sawved SQOL History

—
CREDIT_LIMIT HUM_CUSTOMERS
S000 2
7500 4
10000 3
15000 1
4 rowes returned in 0.01 seconds CSY Export

FIGURE 7-10 Data in the CRED_CUST view

The use of views provides several benefits. First, views provide data independence.
When the database structure changes (by adding columns or changing the way objects are
related, for example) in such a way that the view still can be derived from existing data,
the user can access and use the same view. If adding extra columns to tables in the data-
base is the only change, and these columns are not required by the view’s user, the defin-
ing query might not even need to be changed for the user to continue using the view. If table
relationships are changed, the defining query might be different, but because users are not
aware of the defining query, they are unaware of this difference. Users continue access-
ing the database through the same view, as though nothing has changed. For example, sup-
pose customers are assigned to territories, each territory is assigned to a single sales rep,
a sales rep can have more than one territory, and a customer is represented by the sales rep

who covers the customer’s assigned territory. To implement these changes, you might
choose to restructure the database as follows:

REP(REP_NUM LAST_NAME, FI RST_NAME, STREET, CITY,
STATE, ZI P, COWM SSI ON, RATE)

TERRI TORY(TERRI TORY_NUM DESCRI PTI ON, REP_NUM

CUSTOVER(CUSTOMER_NUM CUSTOMER_NAME, STREET, CITY,
STATE, ZI P, BALANCE, CREDIT_LIMT, TERR TORY_NUM

Assuming that the REP_CUST view created in Figure 7-7 is still required, you could
change the defining query as follows:

CREATE VI EW REP_CUST (RNUM RLAST, RFIRST, 203
CNUM CNAME) AS

SELECT REP. REP_NUM REP. LAST_NAME, REP. FI RST_NAME,
CUSTOVER_NUM CUSTOVER_NAME

FROM REP, TERRI TORY, CUSTOVER

VWHERE REP. REP_NUM = TERRI TORY. REP_NUM

AND TERRI TORY. TERRI TORY_NUM = CUSTOMER TERRI TORY_NUM

This view’s user still can retrieve the number and name of a sales rep together with the
number and name of each customer the sales rep represents. The user is unaware, how-
ever, of the new structure in the database.

The second benefit of using views is that different users can see the same data in dif-
ferent ways through their own views. In other words, you can customize the display of
data to meet each user’s needs.

The final benefit of using views is that a view can contain only those columns required
by a given user. This practice has two advantages. First, because the view usually con-
tains fewer columns than the overall database and is conceptually a single table, rather than
a collection of tables, a view greatly simplifies the user’s perception of the database. Sec-
ond, views provide a measure of security. Columns that are not included in the view are not
accessible to the view’s user. For example, omitting the BALANCE column from a view
ensures that the view’s user cannot access any customer’s balance. Likewise, rows that are
not included in the view are not accessible. A user of the HOUSEWARES view, for example,
cannot obtain any information about parts in the AP or SG classes.

USING A VIEW TO UPDATE DATA

The benefits of using views hold true only when views are used for retrieval purposes. When
updating the database, the issues involved in updating data through a view depend on the
type of view, as you will see next.

Updating Row-and-Column Subset Views

Consider the row-and-column subset view for the HOUSEWARES view. There are columns
in the underlying base table (PART) that are not present in the view. If you attempt to add
a row with the data ('BB99','PAN',50,14.95), the DBMS must determine how to enter the
data in those columns from the PART table that are not included in the HOUSEWARES view
(CLASS and WAREHOUSE). In this case, it is clear what data to enter in the CLASS
column. According to the view definition, all rows are item class HW, but it is not clear what

Database Administration

204

Chapter 7

data to enter in the WAREHOUSE column. The only possibility would be NULL. There-
fore, if every column not included in a view can accept nulls, you can add new rows using
the INSERT command. There is another problem, however. Suppose the user attempts to
add a row to the HOUSEWARES view containing the data ('BV06','Waffle Maker',5,29.95).
Because part number BVO6 already exists in the PART table, the system must reject this
attempt. Because this part is not in item class HW (and therefore is not in the
HOUSEWARES view), this rejection certainly will seem strange to the user, because there
is no such part in the user’s view.

On the other hand, updates or deletions cause no particular problem in this view. If
the description of part number FD21 changes from Stand Mixer to Pan, this change is made
in the PART table. If part number DL71 is deleted, this deletion occurs in the PART table.
One surprising change could take place, however. Suppose that the CLASS column is
included in the HOUSEWARES view and a user changes the class of part number AT94 from
HW to AP. Because this item would no longer satisfy the criterion for being included in the
HOUSEWARES view, part number AT94 would disappear from the user’s view!

Although there are problems to overcome when updating row-and-column subset views,
it seems possible to update the database through the HOUSEWARES view. This does not mean
that any row-and-column subset view is updatable, however. Consider the REP_CRED view
shown in Figure 7-11. (The DISTINCT operator is used to omit duplicate rows from the view.)

CREATE VIEW REF CRED A3

SELECT DISTINCT CREDIT LIMNIT, REP_NUH
FROM CUSTOMER

ORDER BY CEEDIT LIMIT, REF_NUHN;

Results Explain Describe Saved SQL History

Wiew created.

FIGURE 7-11 Creating the REP_CRED view

Figure 7-12 shows the data in the REP_CRED view.

SJELECT *
FROM REP_CRED:

Results Explain Describe Sawed SQOL History

—
CREDIT_LIMIT REP_HUM
5000 35
7500 20
7500 35
7500 5 205 -
10000 35
10000 E5
15000 20
7 rows returned in 0.01 seconds CSY Export

FIGURE 7-12 Data in the REP_CRED view

How would you add the row 15000,'35' to this view? In the underlying base table
(CUSTOMER), at least one customer must be added whose credit limit is $15,000 and whose
sales rep number is 35, but which customer is it? You cannot leave the other columns null
in this case, because one of them is CUSTOMER_NUM, which is the base table’s pri-
mary key. What would it mean to change the row 5000,'35' to 15000,'35'? Would it mean
changing the credit limit to $15,000 for each customer represented by sales rep num-
ber 35 that currently has a credit limit of $5,000? Would it mean changing the credit limit
of one of these customers and deleting the rest? What would it mean to delete the row
5000,'35'? Would it mean deleting all customers with credit limits of $5,000 and repre-
sented by sales rep number 35, or would it mean assigning these customers a different
sales rep or a different credit limit?

Why does the REP_CRED view involve a number of serious problems that are not
present in the HOUSEWARES view? The basic reason is that the HOUSEWARES view
includes, as one of its columns, the primary key of the underlying base table, but the
REP_CRED view does not. A row-and-column subset view that contains the primary key
of the underlying base table is updatable (subject, of course, to some of the concerns already
discussed).

Updating Views Involving Joins

In general, views that involve joins of base tables can cause problems when updating data.
Consider the relatively simple REP_CUST view, for example, described earlier (see Figures 7-7
and 7-8). The fact that some columns in the underlying base tables are not included in this
view presents some of the same problems discussed earlier. Assuming that you can overcome
these problems by using nulls, there are more serious problems when attempting to update the
database through this view. On the surface, changing the row ('35',Hull',Richard',
'282''Brookings Direct') to ('35','Baldwin','Sara','282','Brookings Direct'), might not appear to
pose any problems other than some inconsistency in the data. (In the new version of the row,

Database Administration

e

Chapter 7

the name of sales rep 35 is Sara Baldwin; whereas in the fourth row in the table, the name of
sales rep 35, the same sales rep, is Richard Hull.)

The problem is actually more serious than that—making this change is not possible.
The name of a sales rep is stored only once in the underlying REP table. Changing the name
of sales rep 35 from Richard Hull to Sara Baldwin in this one row of the view causes the
change to be made to the single row for sales rep 35 in the REP table. Because the view sim-
ply displays data from the base tables, for each row on which the sales rep number is 35,
the sales rep name is now Sara Baldwin. In other words, it appears that the same change
has been made in the other rows. In this case, this change ensures consistency in the data.
In general, however, the unexpected changes caused by an update are not desirable.

Before concluding the topic of views that involve joins, you should note that all joins
do not create the preceding problem. When two base tables have the same primary key and
the primary key is used as the join column, updating the database using the view is not a
problem. For example, suppose the actual database contains two tables (REP_DEMO and
REP_FIN) instead of one table (REP). Figure 7-13 shows the data in the REP_DEMO table.

SJELECT *
FROM EEF DENO:

Results Explain Describe Saved SOL History

pr—
REP_HUM LAST_HAME FIRST_HAME STREET CITY STATE ZIP
20 Kaizer Waletie 624 Randall Grove FL 33321
33 Hull Richard 532 Jackzon Sheldon FL 3353
B5 Perez Juan 1626 Taylor Fillmore [FL 53336
3 rows returned in 0.00 seconds C2Y Export

FIGURE 7-13 Data in the REP_DEMO table

Figure 7-14 shows the data in the REP_FIN table.

SJELECT =
FROM EEP_FIN:

Results Explain Describe Saved SOL History

—
REP_HUM COMMISSIOHN RATE
20 203423 03
E55 39216 ar
ES 23487 0s
3 rowes returned in 0.02 seconds CSY Export

FIGURE 7-14 Data in the REP_FIN table

What was once a single table in the original Premiere Products design has been divided
into two separate tables. Users who need to see the rep data in a single table can use a view
named SALES_REP that joins these two tables using the REP_NUM column. The defin-
ing query for the SALES_REP view appears in Figure 7-15.

CREATE VIEW SALES REP A3
SELECT REP_DEMO.REF NUM, LAST NAME, FIRST NAME, STREET, CITY, STATE, ZIP, COMMISSION, RATE
FROM REF_DENC, REF_FIN
WHERE REF DEMO.REF NUM = REFP FIN.REF NUHM:

IResuIls Explain Describe Saved SOL History
——

View joins REP_DEMO
and REP_FIN tables
View created.

FIGURE 7-15 Creating the SALES_REP view

The data in the SALES_REP view appears in Figure 7-16.

SELECT +
FROM SALES REF:

Results Explain Describe Saved SOL History

REP_HUM LAST_HAME FIRST_HAME STREET CITY STATE ZIP COMMISSION RATE
20 Haiser Walerie 524 Randall Grove FL eyl 203425 03
35 Hull Richard 532 Jackson Sheldon FL 33553 39216 o7
ES Perez Juan 1626 Taylor Fillmare FL 33336 23457 05
3 rows returned in 0.02 seconds C3Y Export

FIGURE 7-16 Data in the SALES_REP view

It is easy to update the SALES_REP view. To add a row, use an INSERT command to
add a row to each underlying base table. To update data in a row, make the change in the
appropriate base table. To delete a row from the view, delete the corresponding rows from
both underlying base tables.

Question: How would you add the row ('10','Peters','Jean','14 Brink','Holt','FL','46223",
107.50,0.05) to the SALES_REP view?

Answer: Use an INSERT command to add the row ('10','Peters','Jean','14
Brink','Holt','FL','46223") to the REP_DEMO table, and then use another INSERT com-
mand to add the row ('10',107.50,0.05) to the REP_FIN table.

207

Database Administration

208

Chapter 7

Question: How would you change the name of sales rep 20 to Valerie Lewis?
Answer: Use an UPDATE command to change the name in the REP_DEMO table.

Question: How would you change Valerie’s commission rate to 0.06?
Answer: Use an UPDATE command to change the rate in the REP_FIN table.

Question: How would you delete sales rep 35 from the REP table?
Answer: Use a DELETE command to delete sales rep 35 from both the REP_DEMO and
REP_FIN tables.

Updates (additions, changes, or deletions) to the SALES_REP view do not cause any
problems. The main reason that the SALES_REP view is updatable—and that other views
involving joins might not be updatable—is that this view is derived from joining two base
tables on the primary key of each table. In contrast, the REP_CUST view is created by join-
ing two tables by matching the primary key of one table with a column that is not the pri-
mary key in the other table. When neither of the join columns in a view is a primary key
column, users will encounter even more severe problems when attempting to make updates.

Updating Views Involving Statistics

A view that involves statistics calculated from one or more base tables is the most trouble-
some view when attempting to update data. Consider the CRED_CUST view, for example (see
Figure 7-10). How would you add the row 9000,3 to indicate that there are three custom-
ers that have credit limits of $9,000 each? Likewise, changing the row 5000,2 to 5000,5 means
you are adding three new customers with credit limits of 85,000 each, for a total of five
customers. Clearly these are impossible tasks; you cannot add rows to a view that includes
calculations.

DROPPING A VIEW

When a view is no longer needed, you can remove it using the DROP VIEW command.

The HSEWRES view is no longer necessary, so delete it.

The command to delete a view is DROP VIEW as shown in Figure 7-17.

DEOP VIEW H3IEWRES:

Results Explain Describe Saved SOL History

View dropped.

FIGURE 7-17 Dropping a view

ACCESS USER NOTEZ=

Access does not support the DROP VIEW command. To drop a view, delete the query object you saved
when you created the view.

SECURITY

Security is the prevention of unauthorized access to a database. Within an organization,
the database administrator determines the types of access various users need to the
database. Some users might need to retrieve and update anything in the database. Other
users might need to retrieve any data from the database but not make any changes to it. Still
other users might need to access only a portion of the database. For example, Bill might
need to retrieve and update customer data, but does not need to access data about sales
reps, orders, order lines, or parts. Valerie might need to retrieve part data and nothing
else. Sam might need to retrieve and update data on parts in the HW class, but does not need
to retrieve data in any other classes.

After the database administrator has determined the access different users of the data-
base need, the DBMS enforces these access rules by whatever security mechanism the
DBMS supports. You can use SQL to enforce two security mechanisms. You already have
seen that views furnish a certain amount of security; when users are accessing the data-
base through a view, they cannot access any data that is not included in the view. The main
mechanism for providing access to a database, however, is the GRANT command.

The basic idea of the GRANT command is that the database administrator can grant dif-
ferent types of privileges to users and then revoke them later, if necessary. These privileges
include the right to select, insert, update, and delete table data. You can grant and revoke user
privileges using the GRANT and REVOKE commands. The following examples illustrate vari-
ous uses of the GRANT command when the named users already exist in the database.

209

Database Administration

210

Chapter 7

NOTE —

Do not execute the commands in this section unless your instructor asks you to do so.

User Johnson must be able to retrieve data from the REP table.

The following GRANT command permits a user named Johnson to execute SELECT
commands for the REP table:

GRANT SELECT ON REP TO JOHNSON;

Users Smith and Brown must be able to add new parts to the PART table.

The following GRANT command permits two users named Smith and Brown to execute
INSERT commands for the PART table. Notice that a comma separates the user names:

GRANT | NSERT ON PART TO SM TH, BROVWN,

EXAMPLE 8

User Anderson must be able to change the name and street address of customers.

The following GRANT command permits a user named Anderson to execute UPDATE com-
mands involving the CUSTOMER_NAME and STREET columns in the CUSTOMER table.
Notice that the SQL command includes the column names in parentheses before the ON clause:

GRANT UPDATE (CUSTOMER NAVE, STREET) ON CUSTOMER TO
ANDERSON;

User Thompson must be able to delete order lines.

The following GRANT command permits a user named Thompson to execute DELETE
commands for the ORDER_LINE table:

GRANT DELETE ON ORDER_LI NE TO THOVPSQON,

Every user must be able to retrieve part numbers, part descriptions, and item classes.

The GRANT command to indicate that all users can retrieve data using a SELECT com-
mand includes the word PUBLIC, as follows:

GRANT SELECT (PART_NUM DESCRI PTION, CLASS) ON PART TO
PUBLI C,

User Roberts must be able to create an index on the REP table.

You will learn about indexes and their uses in the next section. The following GRANT
command permits a user named Roberts to create an index on the REP table:

GRANT | NDEX ON REP TO ROBERTS;

User Thomas must be able to change the structure of the CUSTOMER table.

The following GRANT command permits a user named Thomas to execute ALTER com-
mands for the CUSTOMER table so he can change the table’s structure:

GRANT ALTER ON CUSTOVER TO THOVAS;

User Wilson must have all privileges for the REP table.

The GRANT command to indicate that a user has all privileges includes the ALL privi-
lege, as follows:

GRANT ALL ON REP TO W LSON;

The privileges that a database administrator can grant are SELECT to retrieve data,
UPDATE to change data, DELETE to delete data, INSERT to add new data, INDEX to cre-
ate an index, and ALTER to change the table structure. The database administrator usu-
ally assigns privileges. Normally, when the database administrator grants a particular
privilege to a user, the user cannot pass that privilege along to other users. When the user
needs to be able to pass the privilege to other users, the GRANT command must include the

25

Database Administration

212

Chapter 7

WITH GRANT OPTION clause. This clause grants the indicated privilege to the user and
also permits the user to grant the same privileges (or a subset of them) to other users.

The database administrator uses the REVOKE command to revoke privileges from
users. The format of the REVOKE command is essentially the same as that of the GRANT
command, but with two differences: the word GRANT is replaced by the word REVOKE,
and the word TO is replaced by the word FROM. In addition, the clause WITH GRANT
OPTION obviously is not meaningful as part of a REVOKE command. Incidentally, the
revoke cascades, so if Johnson is granted privileges WITH GRANT OPTION and then
Johnson grants these same privileges to Smith, revoking the privileges from Johnson
revokes Smith’s privileges at the same time. Example 14 illustrates the use of the REVOKE
command.

User Johnson is no longer allowed to retrieve data from the REP table.

The following REVOKE command revokes the SELECT privilege for the REP table from
the user named Johnson:

REVOKE SELECT ON REP FROM JOHNSON;

The database administrator can also apply the GRANT and REVOKE commands to
views to restrict access to only certain rows within tables.

INDEXES

When you query a database, you are usually searching for a row (or collection of rows) that
satisfies some condition. Examining every row in a table to find the ones you need often
takes too much time to be practical, especially in tables with thousands of rows. Fortu-
nately, you can create and use an index to speed up the searching process significantly.
An index in SQL is similar to an index in a book. When you want to find a discussion of a
given topic in a book, you could scan the entire book from start to finish, looking for ref-
erences to the topic you need. More than likely, however, you would not have to resort to
this technique. If the book has a good index, you could use it to identify the pages on which
your topic is discussed.

In a DBMS, the main mechanism for increasing the efficiency with which data is retrieved
from the database is the index. Conceptually, these indexes are very much like the index
in a book. Consider Figure 7-18, for example, which shows the CUSTOMER table for
Premiere Products together with one extra column named ROW_NUMBER. This extra col-
umn gives the location of the row in the table (customer 148 is the first row in the table and
is on row 1, customer 282 is on row 2, and so on). The DBMS—not the user—automatically
assigns and uses these row numbers, and that is why you do not see them.

CUSTOMER

ROW_ CUSTOMER_ CUSTOMER_ STREET CITY STATE ZIP BALANCE CREDIT_ REP_
NUMBER NUM NAME LIMIT NUM
1 148 Al's Appliance | 2837 Fillmore | FL 33336 | $6,550.00| $7,500.00| 20
and Sport Greenway
2 282 Brookings 3827 Grove FL 33321 $431.50| $10,000.00| 35
Direct Devon
3 356 Ferguson’s 382 Northfield | FL 33146 | $5,785.00| $7,500.00| 65
Wildwood
4 408 The Everything | 1828 Crystal FL 33503 | $5,285.25($5,000.00| 35
Shop Raven
5 462 Bargains Galore | 3829 Grove FL 33321 | $3,412.00| $10,000.00| 65 213
Central
6 524 Kline’s 838 Fillmore |FL 33336 | $12,762.00| $15,000.00| 20
Ridgeland
7 608 Johnson’s 372 Sheldon | FL 33553 | $2,106.00| $10,000.00| 65
Department Oxford
Store
8 687 Lee’s Sport and | 282 Altonville | FL 32543 | $2,851.00($5,000.00| 35
Appliance Evergreen
9 725 Deerfield’s Four | 282 Sheldon | FL 33553 $248.00| $7,500.00| 35
Seasons Columbia
10 842 All Season 28 Grove FL 33321 | $8,221.00| $7,500.00 | 20
Lakeview

FIGURE 7-18 CUSTOMER table with row numbers

To access a customer’s row using its customer number, you might create and use an
index, as shown in Figure 7-19. The index has two columns: the first column contains a cus-
tomer number, and the second column contains the number of the row on which the cus-
tomer number is found. To find a customer, look up the customer’s number in the first
column in the index. The value in the second column indicates which row to retrieve from
the CUSTOMER table, then the row for the desired customer is retrieved.

CUSTOMER_NUM Index

CUSTOMER_NUM ROW_NUMBER

148 1
282
356
408
462
524
608
687
725
842

O | @ [N ||| LN

=
(=]

FIGURE 7-19 Index for the CUSTOMER table on the CUSTOMER_NUM column

Database Administration

214

Chapter 7

Because customer numbers are unique, there is only a single row number in this index.
This is not always the case, however. Suppose you need to access all customers with a spe-
cific credit limit or all customers represented by a specific sales rep. You might choose
to create and use an index on the CREDIT_LIMIT column and an index on the REP_NUM
column, as shown in Figure 7-20. In the CREDIT_LIMIT index, the first column con-
tains a credit limit and the second column contains the numbers of all rows on which that
credit limit appears. The REP_NUM index is similar, except that the first column con-
tains a sales rep number.

CREDIT_LIMIT Index REP_NUM Index
$5,000.00 | 4,8 20 1,6,10
$7,500.00 | 1,3,9,10 35 2,4,8,9

$10,000.00 |2,5,7 65 3,5,7
$15,000.00 |6

FIGURE 7-20 Indexes for the CUSTOMER table on the CREDIT_LIMIT and REP_NUM columns

Question: How would you use the index shown in Figure 7-20 to find every customer with
a $10,000 credit limit?

Answer: Look up $10,000 in the CREDIT_LIMIT index to find a collection of row numbers
(2, 5, and 7). Use these row numbers to find the corresponding rows in the CUSTOMER table
(Brookings Direct, Bargains Galore, and Johnson’s Department Store).

Question: How would you use the index shown in Figure 7-20 to find every customer rep-
resented by sales rep 357

Answer: Look up 35 in the REP_NUM index to find a collection of row numbers (2, 4, 8,
and 9). Use these row numbers to find the corresponding rows in the CUSTOMER table
(Brookings Direct, The Everything Shop, Lee’s Sport and Appliance, and Deerfield’s Four
Seasons).

The actual structure of an index is more complicated than what is shown in the figures.
Fortunately, you do not have to worry about the details of manipulating and using indexes
because the DBMS manages them for you—your only job is to determine the columns
on which to build the indexes. Typically, you can create and maintain an index for any col-
umn or combination of columns in any table. After creating an index, the DBMS uses it to
speed up data retrieval.

As you would expect, the use of any index has advantages and disadvantages. An impor-
tant advantage was already mentioned: an index makes certain types of retrieval more
efficient.

There are two disadvantages when using indexes. First, an index occupies disk space.
Using this space for an index, however, is technically unnecessary because any retrieval
that you can make using an index also can be made without the index; the index just speeds
up the retrieval. The second disadvantage is that the DBMS must update the index when-
ever corresponding data in the database is updated. Without the index, the DBMS would
not need to make these updates. The main question that you must ask when considering
whether to create a given index is this: do the benefits derived during retrieval out-
weigh the additional storage required and the extra processing involved in update
operations? In a very large database, you might find that indexes are essential to decrease
the time required to retrieve records. In a small database, however, an index might not pro-
vide any significant benefits.

You can add and drop indexes as necessary. You can create an index after the data-
base is built; it does not need to be created at the same time as the database. Likewise, when
an existing index is no longer necessary, you can drop it.

Creating an Index

Suppose some users at Premiere Products need to display customer records ordered by
balance. Other users need to access a customer’s name using the customer’s number. In
addition, some users need to produce a report in which customer records are listed by
credit limit in descending order. Within the group of customers having the same credit limit,
the customer records must be ordered by name.

Each of the previous requirements is carried out more efficiently when you create the
appropriate index. The command used to create an index is CREATE INDEX, as illus-
trated in Example 15.

EXAMPLE 15

Create an index named BALIND on the BALANCE column in the CUSTOMER table. Create
an index named REPNAME on the combination of the LAST_NAME and FIRST_NAME col-
umns in the REP table. Create an index named CREDNAME on the combination of the
CREDIT_LIMIT and CUSTOMER_NAME columns in the CUSTOMER table, with the credit
limits listed in descending order.

The CREATE INDEX command to create the index named BALIND appears in Figure 7-21.
The command lists the name of the index and the table name on which the index is to be
created. The column on which to create the index—BALANCE—is listed in parentheses.

218

Database Administration

S

Chapter 7

CREATE INDEX BALIND ON CUITOMER (EALANCE) ;

Results Explain Describe Sawved S0L History

Index created.

FIGURE 7-21 Creating the BALIND index on the BALANCE column

The CREATE INDEX command to create the index named REPNAME on the combina-
tion of the LAST_NAME and FIRST_NAME columns in the REP table appears in Figure 7-22.

CREATE INDEX REFNAME oM REF (LAZT NAME, FIR3T NAHME);

Results Explain Describe Saved SOL History

Index created.

FIGURE 7-22 Creating the REPNAME index on the LAST_NAME and FIRST_NAME columns

The CREATE INDEX command to create the index named CREDNAME on the combi-
nation of the CREDIT_LIMIT and CUSTOMER_NAME columns in the CUSTOMER table
appears in Figure 7-23. When you need to index a column in descending order, the col-
umn name is followed by the DESC operator.

HCREATE INDEX CREDNAME ON CUSTOMER (CREDIT LIMIT DEZC, CUSTOMER MNAHME] :

Results Explain Describe Sawed SOL History

Descending order

Index created.

FIGURE 7-23 Creating the CREDNAME index on the CREDIT_LIMIT and CUSTOMER_NAME
columns

When customers are listed using the CREDNAME index, the records appear in order
by descending credit limit. Within any credit limit, the customers are listed alphabeti-
cally by name.

ACCESS USER NOTEZ==

Access supports the creation of indexes in both SQL view and Design view. You can write a CREATE INDEX
command in SQL view. You can also open the table containing the column(s) on which you want to cre-
ate an index in Design view, and click the Indexes button or use the Indexed property to create the index.

Dropping an Index

The command used to drop (delete) an index is DROP INDEX, which consists of the words
DROP INDEX followed by the name of the index to drop. To delete the CREDNAME index
on the CUSTOMER table, for example, the command is:

DROP | NDEX CREDNANE;

The DROP INDEX command permanently deletes the index. CREDNAME was the index
the DBMS used when listing customer records in descending order by credit limit order and
then by customer name within credit limit. The DBMS still can list customers in this
order; however, it cannot do so as efficiently without the index.

SQL SERVER USER NOTE

The SQL Server command to drop an index requires that you qualify the index name. To delete the
CREDNAME index on the CUSTOMER table, for example, the command is:

DROP | NDEX CUSTOVER. CREDNANME;

Creating Unique Indexes

When you specify a table’s primary key, the DBMS automatically ensures that the values
entered in the primary key column(s) are unique. For example, the DBMS rejects an attempt
to add a second customer whose number is 148 in the CUSTOMER table because cus-
tomer 148 already exists. Thus, you do not need to take any special action to make sure that
values in the primary key column are unique; the DBMS does it for you.

Occasionally, a nonprimary key column might store unique values. For example, in the
REP table, the primary key is REP_NUM. If the REP table also contains a column for Social
Security numbers, the values in this column also must be unique because no two people
can have the same Social Security number. Because the Social Security number column is
not the table’s primary key, however, you need to take special action in order for the DBMS
to ensure that there are no duplicate values in this column.

To ensure the uniqueness of values in a nonprimary key column, you can create a unique
index by using the CREATE UNIQUE INDEX command. To create a unique index named
SSN on the SOC_SEC_NUM column in the REP table, for example, the command is:

CREATE UNI QUE | NDEX SSN ON REP(SOC_SEC NUM ;
This unique index has all the properties of indexes already discussed, along with one
additional property: the DBMS rejects any update that causes a duplicate value in the

SOC_SEC_NUM column. In this case, the DBMS rejects the addition of a rep whose Social
Security number is the same as that of another rep already in the database.

214

Database Administration

218

Chapter 7

SYSTEM CATALOG

Information about the tables in the database is kept in the system catalog (catalog) or
the data dictionary. This section describes the types of items kept in the catalog and the
way in which you can query it to access information about the database structure.

The DBMS automatically maintains the system catalog, which contains several tables. The
catalog tables you'll consider in this basic introduction are SYSTABLES (information about
the tables known to SQL), SYSCOLUMNS (information about the columns within these
tables), and SYSVIEWS (information about the views that have been created). Individual
SQL implementations might use different names for these tables. In Oracle, the equiva-
lent tables are named DBA_TABLES, DBA_TAB_COLUMNS, and DBA_VIEWS.

The system catalog is a relational database of its own. Consequently, you can use the
same types of queries to retrieve information that you can use to retrieve data in a rela-
tional database. You can obtain information about the tables in a relational database, the
columns they contain, and the views built on them from the system catalog. The follow-
ing examples illustrate this process.

Most Oracle users need privileges to view system catalog data, so you might not be able to execute these
commands. If you are executing the commands shown in the figures, substitute your user name for PRATT
to list objects that you own. Your results will differ from those shown in the figures.

ACCESS USER NOTE ===

In Access, use the Documenter to obtain the information discussed in this section, rather than querying
the system catalog.

SQL SERVER USER NOTE

In SQL Server, use stored procedures to obtain the information discussed in this section. To display infor-
mation about the tables and views in a database, use the sp_tables procedure. For example, the follow-
ing command displays all the tables and views in the current database:

EXEC sp_t abl es

The sp_columns stored procedure displays information about the columns in a particular table. The follow-
ing command displays the column information for the REP table:

EXEC sp_col uims REP

List the name of each table for which the owner (creator of the table) is PRATT.

The command to list the table names owned by PRATT is shown in Figure 7-24. The
WHERE clause restricts the tables to only those owned by PRATT.

SELECT TABLE NAME :
FRON DEL TABLES DBA_TABLES is
WHERE OWNEER = 'PRATT': sometimes called
SYSTABLES

—

Results Explain Describe | Sawved SOL History

TABLE_HAME
CLSTOMER
REP

Table owner must
be PRATT

249

ORDERS
PART

CRDER_LINE

5 rowes returned in 0.04 seconds CSY Export

FIGURE 7-24 Tables owned by PRATT

List the name of each view owned by PRATT.

This command is similar to the command in Example 16. Rather than TABLE_NAME,
the column to be selected is named VIEW_NAME. The command appears in Figure 7-25.

SELECT VIEW NANE -
FROM DEL_VIEWS DBA_VIEWS is
WHERE OWMER = 'PRATT': sometimes called
SYSVIEWS

Results Explain Describe Sawved SOL History

.

VIEW_HAME

HOUSEWARES

REP_CUST

CRED_CUST

REP_CRED
4 rows returned in 0.01 seconds 5% Export

FIGURE 7-25 Views owned by PRATT

Database Administration

EXAMPLE 18

For the CUSTOMER table owned by PRATT, list each column and its data type.

The command for this example appears in Figure 7-26. The columns to select are
COLUMN_NAME and DATA_TYPE.

SELECT COLUMN _MAME, DATL TYPE

220 FROM DEA_TAB_ COLUMNS
WHERE OWNER = 'PRLTT'
AWD TAELE MNAME = 'CU3ITOMER': DBA TAB COLUMNS
is sometimes called
Results Explain Describe Sawved SOL History SYSCOLUMNS

COLUMH_HAME DATA_TYPE
CUSTOMER_MUM CHAR

CUSTOMER_NAME — CHAR
STREET CHAR
oy CHAR
STATE CHAR
ZP CHAR
B ANCE MUIMBER
CREDIT_LIMIT MUMBER

REP_RLUIK CHAR

9 rows returned in 0.32 seconds 35V Export

FIGURE 7-26 Columns in the CUSTOMER table

List each table owned by PRATT that contains a column named CUSTOMER_NUM.

As shown in Figure 7-27, the COLUMN_NAME column is used in the WHERE clause
to restrict the rows to those in which the column name is CUSTOMER_NUM. (Extra tables
generated by Oracle might appear in your list, as shown in Figure 7-27.)

Chapter 7

SELECT TAELE MNAME

FROM DBEA_TAE_COLUMMNI

WHERE OWIER = 'PRATT'

IND COLUMN MNAME = 'CUSTCOMER NUM';

Results Explain Describe Sawved SOL History

TABLE_HAME

BilMF4wiC+AIRRay08aRONELGS Q==F0

BIN$CSH693 2y QHCEENGJEMHLIg==F0

CUSTOMER 2241
CORDERS
4 rows retumed in 1.71 seconds CEY Export

FIGURE 7-27 Tables owned by PRATT with CUSTOMER_NUM columns

When users create, alter, or drop tables or create or drop indexes, the DBMS updates the
system catalog automatically to reflect these changes. Users should not execute SQL que-
ries to update the catalog directly because this might produce inconsistent information. For
example, when a user deletes the CUSTOMER_NUM column in the DBA_TAB_COLUMNS
table, the DBMS would no longer have any knowledge of this column, which is the CUSTOMER
table’s primary key, yet all the rows in the CUSTOMER table would still contain a customer
number. The DBMS might now treat those customer numbers as names, because as far as the
DBMS is concerned, the column named CUSTOMER_NAME is the first column in the
CUSTOMER table.

INTEGRITY CONSTRAINTS IN SQL

An integrity constraint is a rule for the data in the database. Examples of integrity con-
straints in the Premiere Products database are as follows:

e A sales rep’s number must be unique.

e The sales rep number for a customer must match the number of a sales rep cur-
rently in the database. For example, because there is no sales rep number 11,
a customer cannot be assigned to sales rep 11.

e Item classes for parts must be AP, HW, or SG because these are the only valid
item classes.

If a user enters data in the database that violates any of these integrity constraints, the
database develops serious problems. For example, two sales reps with the same number,
a customer with a nonexistent sales rep, or a part in a nonexistent item class would com-
promise the integrity of data in the database. To manage these types of problems, SQL pro-
vides integrity support, the process of specifying and enforcing integrity constraints for a
database. SQL has clauses to support three types of integrity constraints that you can
specify within a CREATE TABLE or an ALTER TABLE command. The only difference
between these two commands is that an ALTER TABLE command is followed by the word

Database Administration

222

Chapter 7

ADD to indicate that you are adding the constraint to the list of existing constraints. To
change an integrity constraint after it has been created, just enter the new constraint, which
immediately takes the place of the original.

The types of constraints supported in SQL are primary keys, foreign keys, and legal
values. In most cases, you specify a table’s primary key when you create the table. To add
a primary key after creating a table, you can use the ADD PRIMARY KEY clause of the
ALTER TABLE command. For example, to indicate that REP_NUM is the primary key for the
REP table, the ALTER TABLE command is:

ALTER TABLE REP
ADD PRI MARY KEY (REP_NUM ;

The ADD PRIMARY KEY clause is ADD PRIMARY KEY followed by the column name
that makes up the primary key in parentheses. When the primary key contains more than
one column, use commas to separate the column names.

ACCESS USER NOTE ==

To specify a table’s primary key in Access, open the table in Design view, select the column(s) that make
up the primary key, and then click the Primary Key button on the Ribbon or the toolbar.

A foreign key is a column in one table whose values match the primary key in another
table. (One example is the CUSTOMER_NUM column in the ORDERS table. Values in this
column are required to match those of the primary key in the CUSTOMER table.)

Specify the CUSTOMER_NUM column in the ORDERS table as a foreign key that must
match the CUSTOMER table.

When a table contains a foreign key, you identify it using the ADD FOREIGN KEY clause
of the ALTER TABLE command. In this clause, you specify the column that is a foreign key
and the table it matches. The general form for assigning a foreign key is
ADD FOREIGN KEY, the column name(s) of the foreign key, the REFERENCES clause, and
then the table name that the foreign key must match, as shown in Figure 7-28.

ALTER TAELE ORDERS
ADD FOREIGN EEY ([CUSTOMER NUM) REFERENCES CUSTOMER:

A
1
Results Explain Describe | Saved SOL History Wassociw

Table altered.
FIGURE 7-28 Adding a foreign key to an existing table

ACCESS USER NOTE?=

To specify a foreign key in Access, open the Relationships window, relate the corresponding tables on the
matching column, and then select the option to enforce referential integrity.

After creating a foreign key, the DBMS rejects any update that violates the foreign key
constraint. For example, the DBMS rejects the INSERT command shown in Figure 7-29
because it attempts to add an order for which the customer number (850) does not match
any customer in the CUSTOMER table.

INIERT INTZ CRDERS
VALUES invalid customer number
('21625','23-0CT-2010', '850') ;

Results Explain Describe Sawved SOL History

223

|[IR]'|—I]2291: integrity comstraint (PRATT.SYS C004114) wriolated - parent key not found

Ji0.18 seconds

FIGURE 7-29 Violating a foreign key constraint when adding a row

The DBMS also rejects the DELETE command in Figure 7-30 because it attempts to
delete customer number 148; rows in the ORDERS table for which the customer number
is 148 would no longer match any row in the CUSTOMER table.

DELETE FROM CUSTOMER
WHERE CUSTOMER_NUM = '148'] l

Results Explain Describe Saved SOL His’lury(Command to delete a

— customer with orders

ORA-02292: integrity comstraint (PRATT.SYS C004114) wviolated - child record found

II] 05 seconds

FIGURE 7-30 Violating a foreign key constraint when deleting a row

Note that the error messages shown in Figures 7-29 and 7-30 include the words “par-
ent” and “child.” When you specify a foreign key, the table containing the foreign key is
the child, and the table referenced by the foreign key is the parent. For example, the
CUSTOMER_NUM column in the ORDERS table is a foreign key that references the
CUSTOMER table. For this foreign key, the CUSTOMER table is the parent, and the
ORDERS table is the child. The error message shown in Figure 7-29 indicates that there
is no parent for the order (there is no customer number 850). The error message shown in
Figure 7-30 indicates that there are child records (rows) for customer 148 (customer 148
has orders). The DBMS rejects both updates because they violate referential integrity.

Database Administration

224

Chapter 7

Specify the valid item classes for the PART table as AP, HW, and SG.

You use the CHECK clause of the ALTER TABLE command to ensure that only legal val-
ues satisfying a particular condition are allowed in a given column. The general form of the
CHECK clause is the word CHECK followed by a condition. If a user enters data that vio-
lates the condition, the DBMS rejects the update automatically. For example, to ensure that
the only legal values for item class are AP, HW, or SG, use one of the following versions of
the CHECK clause:

CHECK (CLASS IN (AP, 'HW, 'SG))
or
CHECK (CLASS = 'AP' OR CLASS = 'HW OR CLASS = ' SG)

The ALTER TABLE command shown in Figure 7-31 uses the first version of the CHECK
clause.

ADD CHECK (CLASS IN ['AP', 'HW', '&G') }:

"ELTER TAELE FART

X Valid classes are y
AP, HW, and SG

Results Explain Describe Sawed SOL History

Takble altered.

FIGURE 7-31 Adding an integrity constraint to an existing table

Now the DBMS will reject the update shown in Figure 7-32 because the command
attempts to change the item class to XX, which is an illegal value.

TPDATE PART
SET CLAZS = 'EX'
WHERE FART NUM = 'AT24';

class to an invalid value
——

mu—nzzsn: check constraint (PRATT.SYS C004115) violated 225

FIGURE 7-32 Update that violates an integrity constraint

Command to change a part's
Results Explain Describe Sawed SOL History _\ /

ACCESS USER NOTE?®
Access does not support the CHECK clause. To specify a validation rule in Access, open the table in Design

view, and then enter an expression in the column’s Validation Rule property to limit the values that users
can enter into the column.

Database Administration

226

Chapter 7

Chapter Summary

A view contains data that is derived from existing base tables when users attempt to
access the view.

To create a view, use the CREATE VIEW command, which includes a defining query that
describes the portion of the database included in the view. When a user retrieves data
from the view, the DBMS merges the query entered by the user with the defining query
and produces the query that the DBMS actually executes.

Views provide data independence, allow database access control, and simplify the data-
base structure for users.

You cannot update views that involve statistics and views with joins of nonprimary key
columns. Updates for these types of views must be made in the base table.

Use the DROP VIEW command to delete a view.
Use the GRANT command to give users access privileges to data in the database.
Use the REVOKE command to terminate previously granted privileges.

You can create and use an index to make data retrieval more efficient. Use the CREATE
INDEX command to create an index. Use the CREATE UNIQUE INDEX command to enforce
a rule so only unique values are allowed in a nonprimary key column.

Use the DROP INDEX command to delete an index.
The DBMS, not the user, chooses which index to use to accomplish a given task.

The DBMS maintains information about the tables, columns, indexes, and other system ele-
ments in the system catalog (catalog) or data dictionary. Information about tables is kept in
the SYSTABLES table, information about columns is kept in the SYSCOLUMNS table, and
information about views is kept in the SYSVIEWS table. In Oracle, these same tables are
named DBA_TABLES, DBA_TAB_COLUMNS, and DBA_VIEWS.

Use the SELECT command to obtain information from the system catalog. The DBMS
updates the system catalog automatically whenever changes are made to the database.
In Access, use the Documenter to obtain information about the database objects. SQL
Server uses stored procedures to obtain information from the system catalog.

Integrity constraints are rules that the data in the database must follow to ensure that
only legal values are accepted in specified columns and that primary and foreign key val-
ues match between tables. To specify a general integrity constraint, use the CHECK
clause. You usually specify primary key constraints when you create a table, but you can
specify them later using the ADD PRIMARY KEY clause. To specify a foreign key, use
the ADD FOREIGN KEY clause.

Key Terms

ADD FOREIGN KEY child

ADD PRIMARY KEY CREATE INDEX

base table CREATE UNIQUE INDEX
catalog CREATE VIEW

CHECK data dictionary

database administration parent

database administrator REFERENCES
DBA_TAB_COLUMNS REVOKE

DBA_TABLES row-and-column subset view
DBA_VIEWS security

defining query SYSCOLUMNS

DROP INDEX SYSTABLES

DROP VIEW system catalog

foreign key SYSVIEWS 227
GRANT unique index

index view

integrity constraint WITH GRANT OPTION

integrity support

Review Questions

[
= o

12.
13.
14.

15.

16.
17.
18.
19.

© ® N o g s~ Db

What is a view?

Which command creates a view?

What is a defining query?

What happens when a user retrieves data from a view?

What are three advantages of using views?

Which types of views cannot be updated?

Which command deletes a view?

Which command gives users access privileges to various portions of the database?
Which command terminates previously granted privileges?

What is the purpose of an index?

How do you create an index? How do you create a unique index? What is the difference
between an index and a unique index?

Which command deletes an index?
Does the DBMS or the user make the choice of which index to use to accomplish a given task?

Describe the information the DBMS maintains in the system catalog. What are the generic
names for three tables in the catalog and their corresponding names in Oracle?

Use your favorite Web browser and search engine to find information about a data dictionary.
Write a one-page paper that describes other types of information that can be stored in a data
dictionary. Be sure to cite the URLs that you use.

Which command do you use to obtain information from the system catalog in Oracle?
How is the system catalog updated?

What are integrity constraints?

How do you specify a general integrity constraint?

Database Administration

228

Chapter 7

20.

21.
22.

When would you usually specify primary key constraints? Can you specify them after cre-
ating a table? How?

How do you specify a foreign key in Oracle?

Use your favorite Web browser and search engine to find information about referential
integrity. Write two or three paragraphs that describe what referential integrity is and include
an example of how referential integrity is used in the Premiere Products database. Be sure
to cite the URLSs that you use.

Exercises

Premiere Products

Use SQL to make the following changes to the Premiere Products database (see Figure 1-2 in
Chapter 1). After each change, execute an appropriate query to show that the change was made
correctly. If directed to do so by your instructor, use the information provided with the Chapter 3
Exercises to print your output. For any exercises that use commands not supported by your ver-
sion of SQL, write the command to accomplish the task.

1.

Create a view named MAJOR_CUSTOMER. It consists of the customer number, name, bal-
ance, credit limit, and rep number for every customer whose credit limit is $10,000 or less.

a. Write and execute the CREATE VIEW command to create the MAJOR_CUSTOMER view.

b. Write and execute the command to retrieve the customer number and name of each
customer in the MAJOR_CUSTOMER view with a balance that exceeds the credit limit.

Write and execute the query that the DBMS actually executes.

d. Does updating the database through this view create any problems? If so, what are
they? If not, why not?

Create a view named PART_ORDER. It consists of the part number, description, price, order
number, order date, number ordered, and quoted price for all order lines currently on file.
a. Write and execute the CREATE VIEW command to create the PART_ORDER view.

b. Write and execute the command to retrieve the part number, description, order num-
ber, and quoted price for all orders in the PART_ORDER view for parts with quoted
prices that exceed $100.

Write and execute the query that the DBMS actually executes.

Does updating the database through this view create any problems? If so, what are
they? If not, why not?

Create a view named ORDER_TOTAL. It consists of the order number and order total for
each order currently on file. (The order total is the sum of the number of units ordered mul-
tiplied by the quoted price on each order line for each order.) Sort the rows by order number.
Use TOTAL_AMOUNT as the name for the order total.

a. Write and execute the CREATE VIEW command to create the ORDER_TOTAL view.

b. Write and execute the command to retrieve the order number and order total for only
those orders totaling more than $1,000.

9.
10.

c. Write and execute the query that the DBMS actually executes.

d. Does updating the database through this view create any problems? If so, what are
they? If not, why not?

Write, but do not execute, the commands to grant the following privileges:

a. User Ashton must be able to retrieve data from the PART table.

b. Users Kelly and Morgan must be able to add new orders and order lines.
c. User James must be able to change the price for all parts.

d. User Danielson must be able to delete customers.
e

All users must be able to retrieve each customer’s number, name, street, city, state, and
zZip code.

f. User Perez must be able to create an index on the ORDERS table.

g. User Washington must be able to change the structure of the PART table.

h. User Grinstead must have all privileges on the ORDERS table.

Write, but do not execute, the command to revoke all privileges from user Ashton.
Perform the following tasks:

a. Create an index named PART INDEX1 on the PART_NUM column in the
ORDER_LINE table.

b. Create an index named PART_INDEX2 on the CLASS column in the PART table.

c. Create an index named PART_INDEX3 on the CLASS and WAREHOUSE columns in
the PART table.

d. Create an index named PART_INDEX4 on the CLASS and WAREHOUSE columns in
the PART table. List item classes in descending order.

Delete the index named PART_INDEXS.

Write the commands to obtain the following information from the system catalog. Do not
execute these commands unless your instructor asks you to do so.

a. List every table that contains a column named CUSTOMER_NUM.
b. List every column in the PART table and its associated data type.
Add the ORDER_NUM column as a foreign key in the ORDER_LINE table.

Ensure that the only values entered into the CREDIT_LIMIT column are 5000, 7500, 10000,
and 15000.

Henry Books

Use SQL to make the following changes to the Henry Books database (Figures 1-4 through 1-7
in Chapter 1). After each change, execute an appropriate query to show that the change was
made correctly. If directed to do so by your instructor, use the information provided with the
Chapter 3 Exercises to print your output. For any exercises that use commands not supported by
your version of SQL, write the command to accomplish the task.

229

Database Administration

230

Chapter 7

Create a view named PLUME. It consists of the book code, title, type, and price for every
book published by the publisher whose code is PL.

a.
b.

Write and execute the CREATE VIEW command to create the PLUME view.

Write and execute the command to retrieve the book code, title, and price for every book
with a price of less than $13.

Write and execute the query that the DBMS actually executes.

Does updating the database through this view create any problems? If so, what are
they? If not, why not?

Create a view named NONPAPERBACK. It consists of the book code, title, publisher name,
and price for every book that is not available in paperback.

a.
b.

Write and execute the CREATE VIEW command to create the NONPAPERBACK view.

Write and execute the command to retrieve the book title, publisher name, and price
for every book in the NONPAPERBACK view with a price of less than $20.

Write and execute the query that the DBMS actually executes.

Does updating the database through this view create any problems? If so, what are
they? If not, why not?

Create a view named BOOK_INVENTORY. It consists of the branch number and the total
number of books on hand for each branch. Use UNITS as the name for the count of books
on hand. Group and order the rows by branch number.

a.
b.

Write and execute the CREATE VIEW command to create the BOOK_INVENTORY view.

Write and execute the command to retrieve the branch number and units for each
branch having more than 25 books on hand.

Write and execute the query that the DBMS actually executes.

Does updating the database through this view create any problems? If so, what are
they? If not, why not?

Write, but do not execute, the commands to grant the following privileges:

a.
b.

- o a o0

= &

User Rodriquez must be able to retrieve data from the BOOK table.

Users Gomez and Liston must be able to add new books and publishers to the
database.

Users Andrews and Zimmer must be able to change the price of any book.

All users must be able to retrieve the book title, book code, and book price for every book.
User Golden must be able to add and delete publishers.

User Andrews must be able to create an index for the BOOK table.

Users Andrews and Golden must be able to change the structure of the AUTHOR table.
User Golden must have all privileges on the BRANCH, BOOK, and INVENTORY tables.

Write, but do not execute, the command to revoke all privileges from user Andrews.

€,
10.

Create the following indexes:

a.
b.
&

Create an index named BOOK_INDEX1 on the TITLE column in the BOOK table.
Create an index named BOOK_INDEX2 on the TYPE column in the BOOK table.

Create an index named BOOK_INDEX3 on the CITY and PUBLISHER_NAME col-
umns in the PUBLISHER table.

Delete the index named BOOK_INDEXS.

Write the commands to obtain the following information from the system catalog. Do not
execute these commands unless your instructor asks you to do so.

a.
b.
ch

List every column in the PUBLISHER table and its associated data type.
List every table that contains a column named PUBLISHER_CODE.

List the table name, column name, and data type for the columns named BOOK_CODE,
TITLE, and PRICE. Order the results by table name within column name. (That is, col-
umn name is the major sort key and table name is the minor sort key.)

Add the PUBLISHER_CODE column as a foreign key in the BOOK table.
Ensure that the PAPERBACK column in the BOOK table can accept only values of Y or N.

Alexamara Marina Group

Use SQL to make the following changes to the Alexamara Marina Group database (Figures 1-8
through 1-12 in Chapter 1). After each change, execute an appropriate query to show that the
change was made correctly. If directed to do so by your instructor, use the information provided
with the Chapter 3 Exercises to print your output. For any exercises that use commands not sup-
ported by your version of SQL, write the command to accomplish the task.

Create a view named LARGE_SLIP. It consists of the marina number, slip number, rental
fee, boat name, and owner number for every slip whose length is 40 feet.

1.

a.
b.

Write and execute the CREATE VIEW command to create the LARGE_SLIP view.

Write and execute the command to retrieve the marina number, slip number, rental fee,
and boat name for every slip with a rental fee of $3,800 or more.

Write and execute the query that the DBMS actually executes.

Does updating the database through this view create any problems? If so, what are
they? If not, why not?

Create a view named RAY_4025. It consists of the marina number, slip number, length, rental
fee, boat name, and owner’s last name for every slip in which the boat type is Ray 4025.

a.
b.

Write and execute the CREATE VIEW command to create the RAY_4025 view.

Write and execute the command to retrieve the marina number, slip number, rental fee,
boat name, and owner’s last name for every slip in the RAY_4025 view with a rental
fee of less than $4,000.

2318

Database Administration

232

Chapter 7

10.

c. Write and execute the query that the DBMS actually executes.

d. Does updating the database through this view create any problems? If so, what are
they? If not, why not?

Create a view named SLIP_FEES. It consists of two columns: the first is the slip length, and the
second is the average fee for all slips in the MARINA_SLIP table that have that length. Use
AVERAGE_FEE as the name for the average fee. Group and order the rows by slip length.

a. Write and execute the CREATE VIEW command to create the SLIP_FEES view.

b. Write and execute the command to retrieve the slip length and average fee for each
length for which the average fee is less than $3,500.

Write and execute the query that the DBMS actually executes.

Does updating the database through this view create any problems? If so, what are
they? If not, why not?

Write, but do not execute, the commands to grant the following privileges:

User Oliver must be able to retrieve data from the MARINA_SLIP table.

Users Crandall and Perez must be able to add new owners and slips to the database.
Users Johnson and Klein must be able to change the rental fee of any slip.

All users must be able to retrieve the length, boat name, and owner number for every slip.
User Klein must be able to add and delete service categories.

User Adams must be able to create an index on the SERVICE_REQUEST table.

g. Users Adams and Klein must be able to change the structure of the MARINA_SLIP table.
h. User Klein must have all privileges on the MARINA, OWNER, and MARINA_SLIP tables.

- 0o 20 T

Write, but do not execute, the command to revoke all privileges from user Adams.
Create the following indexes:

a. Create an index named BOAT_INDEX1 on the OWNER_NUM column in the
MARINA_SLIP table.

b. Create an index named BOAT INDEX2 on the BOAT NAME column in the
MARINA_SLIP table.

c. Create an index named BOAT_INDEX3 on the LENGTH and BOAT_NAME columns
in the MARINA_SLIP table. List the lengths in descending order.

Delete the index named BOAT _INDEX3; it is no longer necessary.

Write the commands to obtain the following information from the system catalog. Do not
execute these commands unless your instructor specifically asks you to do so.

a. List every column in the MARINA_SLIP table and its associated data type.
b. List every table and view that contains a column named MARINA_NUM.
Add the OWNER_NUM column as a foreign key in the MARINA_SLIP table.

Ensure that the LENGTH column in the MARINA_SLIP table can accept only values of 25,
30, or 40.

CHAPTER

SQL FUNCTIONS AND
PROCEDURES

LEARNI

Objectives

Understa
Use the
Use the
Add a sp
Calculate
Use conc
Embed S
Retrieve

Update a
comman

Use curs
Manage

Use SQL
comman

Use trigg

INTRODUCTION

You already have used functions that apply to groups (such as SUM and AVG). In this chapter, you will

learn to use functions that apply to values in individual rows. Specifically, you will see how to use functions

with characters or text, numbers, and dates. You will learn how to concatenate values in a query. You will

embed SQL commands in PL/SQL and T-SQL procedures to retrieve rows and update data. You will

234

Chapter 8

examine the different ways to manage errors in procedures. Finally, you will learn how to create and use

cursors and triggers.

USING SQL IN A PROGRAMMING
ENVIRONMENT

SQL is a powerful nonprocedural language in which you communicate tasks to the com-
puter using simple commands. As in other nonprocedural languages, you can accomplish many
tasks using a single command. Although SQL and other nonprocedural languages are well-
equipped to store and query data, sometimes you might need to complete tasks that are beyond
the capabilities of SQL. In such cases, you need to use a procedural language.

A procedural language is one in which you must give the computer the step-by-step
process for accomplishing a task. PL/SQL, which was developed by Oracle as an exten-
sion of SQL, is an example of a procedural language. This chapter uses PL/SQL to illus-
trate how to use SQL in a programming environment by embedding SQL commands in
another language. The examples in this chapter illustrate how to use embedded SQL com-
mands to retrieve a single row, insert new rows, update and delete existing rows, and
retrieve multiple rows. In the process, you will create stored procedures that are saved and
are available for use at any time.

T-SQL, which stands for Transact-SQL, is another extension of SQL. T-SQL is the pro-
cedural language that SQL Server uses. You can perform tasks, such as retrieving a single
row, inserting new rows, and retrieving multiple rows, using T-SQL in SQL Server.
Although the language syntax is slightly different in T-SQL when compared to PL/SQL, the
functionality and the results are the same.

You cannot embed SQL commands in Access programs the way you can in PL/SQL and
T-SQL. There are ways to use the commands, however, as you'll learn later in this chapter.

—

This chapter assumes that you have some programming background and does not cover programming basics.
To understand the first part of this chapter, you should be familiar with variables, declaring variables, and cre-
ating procedural code, including IF statements and loops. To understand the Access section at the end of the
chapter, you should be familiar with Function and Sub procedures, and the process for sequentially access-
ing all records in a recordset, such as using a loop to process all the records in a table.

ACCESS USER NOTE®==

If you are using Access, you will not be able to complete the material in this chapter that deals with PL/SQL
and T-SQL procedures. Be sure to read this information so you will understand these important concepts.
You will, however, be able to complete the steps in the “Using SQL in Microsoft Access” section.

USING FUNCTIONS

You already have used aggregate functions to perform calculations based on groups of
records. For example, SUM(BALANCE) calculates the sum of the balances on all records
that satisfy the condition in the WHERE clause. When you use a GROUP BY clause, the
DBMS will calculate the sum for each record in a group.

SQL also includes functions that affect single records. Some functions affect charac-
ter data and others let you manipulate numeric data. The supported SQL functions vary
between SQL implementations. This section will illustrate some common functions. For
additional information about the functions your SQL implementation supports, consult the
program’s documentation.

Character Functions

SQL includes several functions that affect character data. Example 1 illustrates the use of
the UPPER function.

List the rep number and last name for each sales rep. Display the last name in upper-
case letters.

The UPPER function displays a value in uppercase letters; for example, the function
UPPER(LAST_NAME) displays the last name Kaiser as KAISER. (Note that the UPPER func-
tion simply displays the last name in uppercase letters; it does not change the last name
stored in the table to uppercase letters.) The item in parentheses (LAST_NAME) is called
the argument for the function. The value produced by the function is the result of dis-
playing all lowercase letters in the value stored in the LAST_NAME column in uppercase
letters. The query and its results are shown in Figure 8-1.

SELECT REP NUM, UPPER(LAZT NANE)

FROM REP; T) /Arg@

]
- —

Results Explain Describe Saved SOL History UPPER fuw

REP_HUM UPPER(LAST_HAME)

20 HAISER

a5 HULL Last names displayed
in uppercase

65 PEREZ PP

3 rows returned in 012 seconds CEY Export

FIGURE 8-1 Using the UPPER function to display character data in uppercase letters

You can use functions in WHERE clauses as well. For example, the condition
UPPER(LAST_NAME) = 'KAISER' would be true for names like Kaiser, KAISER, and KalsER,

235

SQL Functions and Procedures

236

Chapter 8

because the result of applying the UPPER function to any of these values would result in the
value KAISER.

To display a value in lowercase letters, you can use the LOWER function. SQL Server
supports both the UPPER and LOWER function.

ACCESS USER NOTE ==

In Access, the UCASE() function displays a value in uppercase letters and the LCASE() function displays a
value in lowercase letters. For example, if the value stored in the LAST_NAME column is Kaiser,
UCASE(LAST_NAME) would result in the value KAISER and LCASE(LAST_NAME) would result in the
value kaiser.

Number Functions

SQL also includes functions that affect numeric data. The ROUND function, which rounds
values to a specified number of decimal places, is illustrated in Example 2.

List the part number and price for all parts. Round the price to the nearest whole dollar
amount.

A function can have more than one argument. The ROUND function, which rounds a
numeric value to a desired number of decimal places, has two arguments. The first argu-
ment is the value to be rounded; the second argument indicates the number of decimal
places to which to round the result. For example, ROUND(PRICE,0) will round the val-
ues in the PRICE column to zero decimal places (a whole number). If a price is 24.95, the
result will be 25. If the price is 24.25, on the other hand, the result will be 24. Figure 8-2
shows the query and results to round values in the PRICE column to zero decimal places.
The computed column ROUND(PRICE,0) is named ROUNDED_PRICE.

SELECT PART NUM, ROUND(FRICE,O) A3 ROUNDED FRICE
FROM PART; A ROUND
___ function
N FEA
Results Explain Describe Sawved SOL History
pui—
PART_HUM ROUHDED_PRICE
ATE4 25 |
B06 793
chs2 165
DL71 130
— e Pr|c§ values rour?ded to zero
decimal places in a column
R s named ROUNDED_PRICE
FC21 160
KLE2 380
KTO3 295
K29 13890 y
10 rows returmed in 0,11 seconds 5% Export

FIGURE 8-2 Using the ROUND function to round numeric values

Rather than rounding (using the ROUND function), you might need to truncate
(remove) everything to the right of the decimal point. To do so, use the FLOOR function,
which has only one argument. If a price is 24.95, for example, ROUND(PRICE,0) would
result in 25, whereas FLOOR(PRICE) would result in 24. SQL Server supports both the
ROUND and the FLOOR functions. Microsoft Access supports only the ROUND function.

Working with Dates

SQL uses functions and calculations for manipulating dates. To add a specific number of
months to a date, you can use the ADD_MONTHS function as illustrated in Example 3.

For each order, list the order number and the date that is two months after the order date.
Name this date FUTURE_DATE.

The ADD_MONTHS function has two arguments. The first argument is the date to which
you want to add a specific number of months, and the second argument is the number of
months. To add two months to the order date, for example, the expression is
ADD_MONTHS(ORDER_DATE,2) as illustrated in Figure 8-3.

231

SQL Functions and Procedures

238

Chapter 8

SELECT ©RDER_NUN, ADD MONTHS (ORDER DATE,Z) A3 FUTURE DATE

FROM ORDERS: ADD_MONTHS
function

Results Explain Describe Saved SOL History

ORDER_HUM FUTURE_DATE
21608 20-DEC10 |
2610 20-DEC-10
e ZI-DEEAT Two months added to each
21614 21-DEC-10 order date in a column named
21617 23-DEC-10 FUTURE_DATE
216189 23-DEC-10
21623 23-DEC-10 J
7 rows returned in 0.02 seconds CEY Export

FIGURE 8-3 Using the ADD_MONTHS function to add months to a date

ACCESS USER NOTE ==

To add a number of months to a date in Access, use the DATEADD() function, which has three arguments.
The first argument includes the interval of time to be added; the letter “m” indicates that months will be
added. The second argument includes the number of intervals to be added. The third argument includes
the date to be manipulated. For example, to add two months to the dates stored in the ORDER_DATE col-
umn, the appropriate function would be DATEADD("'m", 2, ORDER_DATE).

SQL SERVER USER NOTE

To add a number of months to a date in SQL Server, use the DATEADD() function, which has three
arguments. The first argument includes the interval of time to be added; the letter “m” indicates that
months will be added. The second argument includes the number of intervals to be added. The third argu-
ment includes the date to be manipulated. For example, to add two months to the dates stored in the
ORDER_DATE column, the appropriate function would be DATEADD("m", 2, ORDER_DATE).

For each order, list the order number and the date that is seven days after the order date.
Name this date FUTURE_DATE.

To add a specific number of days to a date, you do not need a function. You can add
the number of days to the order date as illustrated in Figure 8-4. (You can also subtract dates
in the same way.) This method works in Oracle, Access, and SQL Server.

SELECT ORDER_NUM, ORDER DATE+7? A3 FUTURE_DATE
FEON OQORDERS:

1

Results Explain Describe Saved SQOL History ﬁ(pression that adds seven
days to the order dates

ORDER_HUM FUTURE_DATE
21608 27.0CT40 |
21610 27-0CT-10
2ME13 28-0CT-10
Seven days added
2 HHOCIHIT to each order date
21617 30-0CT-10
21619 F0-CCT-10
2E23 S0-0CT-10 J
7 rows returned in 0.01 seconds Y Export

239

FIGURE 8-4 Adding days to dates

For each order, list the order number, today’s date, the order date, and the number of days
between the order date and today’s date. Name today’s date TODAYS_DATE and name the
number of days between the order date and today’s date DAYS_PAST.

You can use the SYSDATE function to obtain today’s date, as shown in Figure 8-5. The
command in the figure uses SYSDATE to display today’s date and also uses SYSDATE in a
computation to determine the number of days between the order date and today’s date.
The values for DAYS_PAST include decimal places. You could remove these decimal places

by using the ROUND or FLOOR functions, if desired.

SQL Functions and Procedures

240

Chapter 8

SELECT ORDER_NUM, SYSDATE A5 TODAYS DATE, ORDER DATE, Number of days
between today's date and

SYSDATE — ORDER_DATE AS DAYS PAST <—|
FRON ORDERS; the order date

Expression to calculate the
Results Explain Describe Saved SOL < number of days between tOdayl5>

—— date and the order date

ORDER_HUM TODAYS_DATE ORDER_DATE DAYS_PAST

21605 02-Mon-10 20-0CT-10 13.492291 GEEEEEEEREEEEEEEEE5555656565557 |

2610 02-Mov-10 20-0CT-10 13.492291 BEEEEEEEEEEEEEEREEEEREEEEEEEEET

21613 02-MCW-10 21-0CT-10 12 492291 EEEEEFEEEEEEEEEE556556666656657

21614 02-MoN-10 21-0CT-10 12492291 BEEEEEEEEEEEEEEEEEE0000EEEEEEET

BT 02-MoN-10 23-0CT-10 10.492291 BEEEEEEEEEEEEEEEEEE0000E6EEEE6ET

21E19 02-Mo-10 23-0CT-10 10.432291 BEEEEREEEEEEEEEEEEEEREEEEEEEEET

21623 02-MCH-10 23-0CT-10 10.492291 EEEEEEEEEEEEEEEEE56555656656657
7 rows returned in 0.00 seconds CEY Export

FIGURE 8-5 Calculating the number of days between two dates

ACCESS USER NOTE ===

In Access, use the DATE() function to obtain today’s date, rather than SYSDATE. The DATE() function has
no arguments, so you would write DATE() in place of SYSDATE.

SQL SERVER USER NOTE

In SQL Server, use the GETDATE() function to obtain today’s date, rather than SYSDATE. The
GETDATE() function has no arguments, so you would write GETDATE() in place of SYSDATE.

CONCATENATING COLUMNS

Sometimes you need to concatenate, or combine, two or more character columns into a
single expression when displaying them in a query; the process is called concatenation.
To concatenate columns, you type two vertical lines (Il) between the column names, as illus-
trated in Example 6.

List the number and name of each sales rep. Concatenate the FIRST_NAME and
LAST_NAME columns into a single value, with a space separating the first and last names.

To concatenate the FIRST_NAME and LAST_NAME columns, the expression is
FIRST_NAMEILAST_NAME. When the first name doesn’t include sufficient characters
to fill the width of the column (as determined by the number of characters specified in
the CREATE TABLE command), SQL inserts extra spaces. For example, when the

FIRST_NAME column is 12 characters wide, the first name is Mary, and the last name is
Johnson, the expression FIRST_NAMEILAST_NAME appears as Mary, followed by eight
spaces, and then Johnson. To remove the extra spaces following the first name value, you
use the RTRIM (right trim) function. When you apply this function to the value in a col-
umn, SQL displays the original value and removes any spaces inserted at the end of the
value. Figure 8-6 shows the query and output with the extra spaces removed. For sales
rep 20, for example, this command trims the first name to “Valerie,” concatenates it with
a single space, and then concatenates the last name “Kaiser.”

SELECT REF_NUM, RTEIM(FIRST MNAME]|[|' '||RTREIM(LAST NAME] i3 EEF_NANE
FEON REF: RTRIM

function

Concatenation

L T T R T A R L SRR A

Results Explain Describe Saved SOL History

N o L A TR R R T A e e

REP_HUM REP_HAME

20 Walerie Kaiserl
35 Richard Hul Concatenated
% Fichardt J ames

ES Juzn Perez

3 rows returned in 0.01 seconds Y Export

FIGURE 8-6 Concatenating two columns and using the RTRIM function

Question: Why is it necessary to insert a single space character in single quotation marks
in the query?

Answer: Without the space character, there would be no space between the first and last
names. The name of sales rep 20, for example, would be displayed as “ValerieKaiser.”

ACCESS USER NOTE==

In Access, use the & symbol to concatenate columns. It is not necessary to trim the columns because
Access will trim them automatically. The corresponding query in Access is:

SELECT REP_NUM FI RST_NAVE&' ' &L AST_NAME
FROM REP;

241

SQL Functions and Procedures

242

Chapter 8

SQL SERVER USER NOTE

In SQL Server, use the + symbol to concatenate columns. The corresponding query in SQL Server is:

SELECT REP_NUM RTRI M FI RST_NAME) +' ' +RTRI M LAST_NAME)
FROM REP;

STORED PROCEDURES

In a client/server system, the database is stored on a computer called the server and
users access the database through clients. A client is a computer that is connected to a net-
work and has access through the server to the database. Every time a user executes a
query, the DBMS must determine the best way to process the query and provide the results.
For example, the DBMS must determine which indexes are available and whether it can use
those indexes to make the processing of the query more efficient.

When you anticipate running a particular query often, you can improve overall perfor-
mance by saving the query in a file called a stored procedure. The stored procedure is
placed on the server. The DBMS compiles the stored procedure (translating it into machine
code) and creates an execution plan, which is the most efficient way of obtaining the
results. From that point on, users execute the compiled, optimized code in the stored
procedure.

Another reason for saving a query as a stored procedure, even when you are not work-
ing in a client/server system, is convenience. Rather than retyping the entire query each
time you need it, you can use the stored procedure. For example, suppose you frequently
execute a query that selects a sales rep with a given number and then displays the con-
catenation of the first name and last name of the sales rep. Instead of typing the query each
time you want to display a sales rep’s name, you can store the query in a stored procedure.
You would then only need to run the stored procedure when you want to display a sales
rep’s name.

ACCESS USER NOTE ==

Although Access does not support stored procedures, you can achieve some of the same convenience
by creating a parameter query that prompts the user for the arguments you would otherwise use in a
stored procedure.

In Oracle, you create stored procedures using a language called PL/SQL. You create and
save the procedures as script files.

Retrieving a Single Row and Column

Example 7 illustrates using a stored procedure to retrieve a single row and column from a table.

Write a PL/SQL procedure that takes a rep number as input and displays the correspond-
ing rep name.

Figure 8-7 shows a procedure to find the name of the representative whose number is
stored in the I_REP_NUM argument. Because the restriction involves the primary key, the
query will produce only one row of output. (You will see how to handle queries whose results
can contain multiple rows later in this chapter.) The command shown in Figure 8-7 is
stored in a script file and is displayed in the Secript Editor. To create the procedure, you
would run the script file. Assuming that the script file does not contain any errors, Oracle
would then create the procedure and it would be available for use.

Home > SOL > SOL Scripts > Script Editor

Script Name|DISPLAY_REP_NAME sql | (_Cancel | [Download | [Delete | [|

Procedure @
Local variables name

CREATE ©OF REPLACE PROCE_UT.TR_E .D_I_SP!R_E P_NAME (I RE PXNT.TH_ IN REP.REP NUM:TYPE)] L3
“I LAST NAME REP.LAST NAMESTYPE:
ST FIRST NAME REP.FIRST NAME: TYPE:}

BEGIN
SELECT LAST NAME, FIRST NAME
INTO I LAST NAME, I FIRST NAME
FROM REP

WHERE REP_NUNM = I REP_NUN;

Command to select
LAST_NAME and FIRST_NAME and
place them in local variables

Do -Jom U

DEMS_OUTPUT. PUT_LINE (RTRIM(I FIRST NAME)||' '||RTRIM(I_LAST NAME)):
& 5

<N END; -
" Expression to
output the rep’s name

FIGURE 8-7 Procedure to find a rep’s name given the rep’s number

NOTE —]

PL/SQL commands, like SQL commands, are free-format and can include blank lines to separate impor-
tant sections of the procedure and spaces on the lines to make the commands more readable.

The CREATE PROCEDURE command in the stored procedure causes Oracle to cre-
ate a procedure named DISP_REP_NAME. By including the optional OR REPLACE clause
in the CREATE PROCEDURE command, you can use the command to modify an exist-
ing procedure. If you omit the OR REPLACE clause, you would need to drop the proce-
dure and then re-create it in order to change the procedure later.

The first line of the command contains a single argument, _ REP_NUM. The word IN fol-
lowing the single argument name indicates that I_REP_NUM will be used for input. That

243

SQL Functions and Procedures

244

Chapter 8

is, the user must enter a value for I_REP_NUM to use the procedure. Other possibilities are
OUT, which indicates that the procedure will set a value for the argument, and INOUT,
which indicates that the user will enter a value that the procedure can later change.

Variable names in PL/SQL must start with a letter and can contain letters, dollar signs,
underscores, and number signs, but cannot exceed 30 characters. When declaring vari-
ables, you must assign the variable a data type, just as you do in the SQL. CREATE TABLE
command. You can ensure that a variable has the same data type as a particular column
in a table by using the %TYPE attribute. To do so, you include the name of the table, fol-
lowed by a period and the name of the column, and then %TYPE. When you use %TYPE,
you do not enter a data type because the variable is automatically assigned the same type
as the corresponding column. In the first line of the script file shown in Figure 8-7, assign-
ing the variable I_REP_NUM the same type as the REP_NUM column in the REP table is writ-
ten as REP.REP_NUM%TYPE.

The first line of the CREATE PROCEDURE command ends with the word AS and is fol-
lowed by the commands in the procedure. The commands on lines 2 and 3 declare the local
variables the procedure requires. In Figure 8-7, lines 2 and 3 create two variables named
I_LAST_NAME and I_FIRST_NAME. Both variables are assigned data types using %TYPE.

The procedural code, which contains the commands that specify the procedure’s func-
tion, appears between the BEGIN and END commands. In Figure 8-7, the procedural code
begins with the SQL command to select the last name and first name of the sales rep
whose number is stored in _REP_NUM. The SQL command uses the INTO clause to place
the results in the I LAST _NAME and I_FIRST_NAME variables. The next command uses
the DBMS_OUTPUT.PUT_LINE procedure to display the concatenation of the trimmed
I_FIRST_NAME and I_LAST_NAME variables. Notice that a semicolon ends each vari-
able declaration, command, and the word END. The slash (/) at the end of the procedure
appears on its own line. In some Oracle environments, the slash is optional. A good prac-
tice is to include the slash, even when it’s not necessary, so your procedure will always work
correctly.

—

DBMS_OUTPUT is a package that contains multiple procedures, including PUT_LINE. The SQL Commands
page automatically displays the output produced by DBMS_OUTPUT.

To call (or use) the procedure from the SQL Commands page, type the word BEGIN, fol-
lowed by the name of the procedure including the desired value for the argument in paren-
theses, followed by the word END, a semicolon, and a slash on a separate line. To use the
DISP_REP_NAME procedure to find the name of sales rep 20, for example, type the com-
mand shown in Figure 8-8.

Home > SQL = SOL Commands

[
[¥] Autocommit Disp||ay

BEGIN

DISP REP NAME('Z0');
END:

!

- Value for argument (sales rep number 20) >

Command to use the
DISP_REP_NAME procedure

Results Explain Describe Sawed SQL History

Procedure result

Valerie EKaiser
(name of sales rep 20)

245

Statement processed.

FIGURE 8-8 Using the DISP_REP_NAME procedure within an SQL command

ERROR HANDLING

Procedures must be able to handle conditions that can arise when accessing the database.
For example, the user enters a rep number and the DISP_REP_NAME procedure dis-
plays the corresponding rep’s name. What happens when the user enters an invalid rep
number? This situation results in the error message shown in Figure 8-9 because Oracle will
not find any last name to display.

BEEGIN
LISP_REP MAME('Z1');

END; .
/ Invalid rep number

Results Explain Describe Sawed SOL History

—
‘ ORA-01403: no data fuum:‘l<—@stem error messa@

FIGURE 8-9 System error that occurs when a user enters an invalid rep number

You can include the EXCEPTION clause shown in Figure 8-10 to handle processing an
invalid rep number. When a user enters a rep number that does not match any rep num-
ber in the REP table, the NO_DATA_FOUND condition on line 13 will be true. When the
NO_DATA_FOUND condition is true, the procedure displays the “No rep with this
number:” message followed by the invalid rep number.

SQL Functions and Procedures

246

Chapter 8

CREATE CR REPLACE PROCEDURE DISP REP _NAME (I_REP NUM IN REP.REP_NUM:TYRE] A3
I_LAST NAME REP.LAST NAMESTYPE;
I FIRST NAME REP.FIRST NAME:TYPE;

EXCEPTION clause

DBMS OUTFUT.PUT LINE(RTRIM{I FIRST NAME)||'|'|[RTRIN(I LAST NANE]);
EXCEPTICH
N VHEN NO _DATAL FOUND THEN
‘M DEMS OUTPUT.PUT LINE('No rep with this number: '||I_RBEP NUMN);

Action to take when
no data is found

FIGURE 8-10 PL/SQL procedure with error handling

N EEGIN
A SELECT LAST NANE, FIRST NANE
INTC I_LAST NAME, I_FIRST NAME
FRON REF

WHERE REF_NUM = I_REP NUMN;

Tests for
NO_DATA_FOUND
condition

END;
7 K

When you use this version of the procedure and enter an invalid rep number, you will
see the error message from the procedure (Figure 8-11) instead of the system error mes-
sage (Figure 8-9).

BEGIN
DISP REP NAME('z1'); (Invalid rep number
END;

Results Explain Describe Sawed SQL History Error message from
f— the procedure

No rep with this number: 21

Statement processed.

FIGURE 8-11 Error message that occurs when a user enters an invalid rep number

The DISP_REP_NAME procedure must handle an error that results when a user enters
an invalid rep number. There are other types of errors that procedures must handle,
depending on the processing required. For example, a user might enter a commission rate
in a procedure to find the name of the sales rep who has that commission rate. When the
user enters the rate 0.05, the procedure will display the TOO_MANY_ROWS error because
Valerie Kaiser and Juan Perez both have this same commission rate—the procedure finds
two rows instead of one. You can manage this error by writing a WHEN clause that con-
tains a TOO_MANY_ROWS condition, following the EXCEPTION clause in the procedure.
You can write both WHEN clauses in the same procedure or in separate procedures. When
adding both WHEN clauses to the same procedure, however, the EXCEPTION clause appears
only once.

USING UPDATE PROCEDURES

In Chapter 6, you learned how to use SQL commands to update data. You can use the same
commands within procedures. A procedure that updates data is called an update
procedure.

Changing Data with a Procedure

You can use an update procedure to change a row in a table, as illustrated in Example 8.

EXAMPLE 8

Change the name of the customer whose number is stored in _ CUSTOMER_NUM to the
value currently stored in I_CUSTOMER_NAME.

This procedure is similar to the procedures used in previous examples with two main
differences: it uses an UPDATE command instead of a SELECT command, and there are
two arguments, [_CUSTOMER_NUM and I_CUSTOMER_NAME. The I_CUSTOMER_NUM
argument stores the customer number to be updated and the I_ CUSTOMER_NAME argu-
ment stores the new value for the customer name. The procedure appears in Figure 8-12.

=

CREATE OR REPLACE PROCEDURE CHG CUST NAME (I CUSTOMER NUM IN CUSTOMER.CUSTOMER NUMSTYPE,
I CUSTOMER NANE IN CUSTOMER.CUSTOMNER NANE:TYFE) AS

BEGIN
UPDATE CUSTOMER @
SET CUSTOMER NAME = I CUSTOMEE NAHME

WHERE CUSTONER NUM = I CUSTOHMER NUH;

[e R [P

{f}

END;
/

[
o]

FIGURE 8-12 Using a procedure to update a row

When you run this procedure, you will need to furnish values for two arguments.
Figure 8-13 uses this procedure to change the name of customer 725 to Deerfield’s.

BEEGIN

CHG CUST MAME('725', ' Deerfield''s'):
ENDT - Argument that stores

T the new name
d] \

| —

Results Explain Describe Sawved SOL History

iy Argument that stores

the customer number

Statement processed.

FIGURE 8-13 Using a procedure to update the name of customer 725

247

SQL Functions and Procedures

Deleting Data with a Procedure

Just as you would expect, if you can use an update procedure to change a rows in a table,
you can also use one to delete a row from a table, as illustrated in Example 9.

Delete the order whose number is stored in _ ORDER_NUM from the ORDERS table, and
also delete each order line for the order whose order number is currently stored in the
variable from the ORDER_LINE table.

248 If you attempt to delete the order in the ORDERS table first, referential integrity will pre-

vent the deletion because matching rows would still exist in the ORDER_LINE table, so it is

a good idea to delete the orders from the ORDER_LINE table first. The procedure to delete an
order and its related order lines appears in Figure 8-14. This procedure contains two DELETE
commands. The first command deletes all order lines in the ORDER_LINE table on which
the order number matches the value stored in the _ORDER_NUM argument. The second com-
mand deletes the order in the ORDERS table whose order number matches the value stored
in the _ORDER_NUM argument.

CREATE CR REPLACE PROCEDURE DEL ORDER (I_ORDER NWUM IN ORDERS.ORDER NUM3TYPE) 43

BEGIN

DELETE

FROM ORDER_LINE 1
WHERE OEDER NUM = I_ORDER_NUH:J

Argument that stores the
order number to delete

DELETE
FROM ORDERS
SN WHERE OEDER NUM = I ORDER NUM;

I0Dm-1onb& W

Command to delete all rows in
the ORDER_LINE table that matches
N END ; the entered order number
3 Fs

Command to delete the row in
the ORDERS table that matches the
entered order number

FIGURE 8-14 Procedure to delete a row and related rows from multiple tables

Figure 8-15 shows the use of this procedure to delete order number 21610. Even though
there are two DELETE commands in the procedure, the user enters the order number
only once.

Chapter 8

BEGIN
DEL_ORDER{'Z1610');
END:

/

Results Explain Describe Saved S0L History

Statement processed.

FIGURE 8-15 Using the procedure to delete an order

SELECTING MULTIPLE ROWS WITH A
PROCEDURE

The procedures you have seen so far include commands that retrieve individual rows. You
can use an UPDATE or a DELETE command in PL/SQL to update or delete multiple rows.
The commands are executed and the updates or deletions occur. Then the procedure can
move on to the next task.

What happens when a SELECT command in a procedure retrieves multiple rows? For
example, suppose the SELECT command retrieves the number and name of each cus-
tomer represented by the sales rep whose number is stored in I_REP_NUM. There is a
problem—PL/SQL can process only one record at a time, but this SQL command
retrieves more than one row. Whose number and name is placed in I_CUSTOMER_NUM
and I_CUSTOMER_NAME when the command retrieves more than one customer row?
Should you make I_CUSTOMER_NUM and I_CUSTOMER_NAME arrays capable of hold-
ing multiple rows and, if so, what should be the size of these arrays? Fortunately, you can
solve this problem by using a cursor.

Using a Cursor

A cursor is a pointer to a row in the collection of rows retrieved by an SQL command. (This
is not the same cursor that you see on your computer screen.) The cursor advances one
row at a time to provide sequential, one-record-at-a-time access to the retrieved rows so
PL/SQL can process the rows. By using a cursor, PL/SQL can process the set of retrieved
rows as though they were records in a sequential file.

To use a cursor, you must first declare it, as illustrated in Example 10.

Retrieve and list the number and name of each customer represented by the sales rep
whose number is stored in the variable I REP_NUM.

249

SQL Functions and Procedures

250

Chapter 8

The first step in using a cursor is to declare the cursor and describe the associated query
in the declaration section of the procedure. In this example, assuming the cursor is named
CUSTGROUP, the command to declare the cursor is:

CURSOR CUSTGROUP | S
SELECT CUSTOMER NUM CUSTOVER NANE
FROM CUSTOVER

WHERE REP_NUM = | _REP_NUM

This command does not cause the query to be executed at this time; it only declares
a cursor named CUSTGROUP and associates the cursor with the indicated query. Using a
cursor in a procedure involves three commands: OPEN, FETCH, and CLOSE. The OPEN
command opens the cursor and causes the query to be executed, making the results avail-
able to the procedure. Executing a FETCH command advances the cursor to the next row
in the set of rows retrieved by the query and places the contents of the row in the indi-
cated variables. Finally, the CLOSE command closes a cursor and deactivates it. Data
retrieved by the execution of the query is no longer available. The cursor could be opened
again later and processing could begin again.

The OPEN, FETCH, and CLOSE commands used in processing a cursor are analogous
to the OPEN, READ, and CLOSE commands used in processing a sequential file.

Opening a Cursor

Prior to opening the cursor, there are no rows available to be fetched. In Figure 8-16, this is
indicated by the absence of data in the CUSTGROUP portion of the figure. The right side of the
figure illustrates the variables into which the data will be placed (I_CUSTOMER_NUM and
I_CUSTOMER_NAME) and the value CUSTGROUP%NOTFOUND. Once the cursor has been
opened and all the records have been fetched, the CUSTGROUP%NOTFOUND value is set

to TRUE. Procedures using the cursor can use this value to indicate when the fetching of rows
is complete.

CUSTGROUP
CUSTOMER_ CUSTOMER_NAME I_CUSTOMER_ | I_CUSTOMER NAME CUSTGROUP
NUM NUM SNOTFOUND
<—no row to FALSE
be fetched

FIGURE 8-16 Before OPEN

The OPEN command is written as follows:
OPEN CUSTGROUP;

Figure 8-17 shows the result of opening the CUSTGROUP cursor. In the figure, assume
that I_REP_NUM is set to 20 before the OPEN command is executed; there are now three
rows available to be fetched. No rows have yet been fetched, as indicated by the absence
of values in [_CUSTOMER_NUM and I_CUSTOMER_NAME. CUSTGROUP%NOTFOUND is
still FALSE. The cursor is positioned at the first row; that is, the next FETCH command
causes the contents of the first row to be placed in the indicated variables.

CUSTGROUP

CUSTOMER _ CUSTOMER_NAME I_CUSTOMER_ | I_CUSTOMER_NAME CUSTGROUP
NUM NUM SNOTFOUND
148 Al's Appliance |«— next row to FALSE
and Sport be fetched
524 Kline's
842 All Season
FIGURE 8-17 After OPEN, but before first FETCH

Fetching Rows from a Cursor

To fetch (get) the next row from a cursor, use the FETCH command. The FETCH command
is written as follows:

FETCH CUSTGROUP | NTO | _CUSTOVER_NUM | _CUSTOVER _NANE;

Note that the INTO clause is associated with the FETCH command itself and not with
the query used in the cursor definition. The execution of this query could produce mul-
tiple rows. The execution of the FETCH command produces only a single row, so it is appro-
priate that the FETCH command causes data to be placed in the indicated variables.

Figure 8-18 through Figure 8-21 show the result of four FETCH commands. The first
three fetches are successful. In each case, the data from the appropriate row in the cur-
sor is placed in the indicated variables and CUSTGROUP%NOTFOUND is still FALSE. The
fourth FETCH command is different, however, because there is no more data to fetch. In this
case, the contents of the variables are left untouched and CUSTGROUP%NOTFOUND is set

to TRUE.

CUSTGROUP
CUSTOMER _ CUSTOMER_NAME I_CUSTOMER_ | I_CUSTOMER_NAME CUSTGROUP
NUM NUM SNOTFOUND
148 Al's Appliance 148 Al's Appliance FALSE
and Sport and Sport
524 Kline's <—next row to
842 All Season be fetched
FIGURE 8-18 After first FETCH
CUSTGROUP
CUSTOMER _ CUSTOMER_NAME I_CUSTOMER_ | I_CUSTOMER_NAME CUSTGROUP
NUM NUM $NOTFOUND
148 Al's Appliance 524 Kline's FALSE
and Sport
524 Kline's
842 All Season <—next row to
be fetched
FIGURE 8-19 After second FETCH

o

SQL Functions and Procedures

-

Chapter 8

CUSTGROUP

<—next row to
be fetched

I CUSTOMER I CUSTOMER NAME CUSTGROUP
NEM B B B $NOTFOUND
842 All Season FALSE
I CUSTOMER I CUSTOMER NAME CUSTGROUP
NEM - - a SNOTFOUND
842 All Season TRUE

<«—no more
rows to be

CUSTOMER_ CUSTOMER_NAME
NUM
148 Al's Appliance
and Sport
524 Kline's
842 All Season
FIGURE 8-20 After third FETCH
CUSTGROUP
CUSTOMER_ CUSTOMER_NAME
NUM
148 Al's Appliance
and Sport
524 Kline's
842 All Season
FIGURE 8-21

fetched

After attempting a fourth FETCH (CUSTGROUP%NOTFOUND is TRUE)

Closing a Cursor
The CLOSE command is written as follows:

CLOSE CUSTGROUP;

Figure 8-22 shows the result of closing the CUSTGROUP cursor. The data is no longer

available.

CUSTGROUP

CUSTOMER_
NUM

CUSTOMER_NAME

FIGURE 8-22 After CLOSE

<«—no rows to
be fetched

Writing a Complete Procedure Using a Cursor

Figure 8-23 shows a complete procedure using a cursor. The declaration portion contains
the CUSTGROUP cursor definition. The procedural portion begins with the command to
open the CUSTGROUP cursor. The statements between the LOOP and END LOOP com-
mands create a loop that begins by fetching the next row from the cursor and placing the

results in I_CUSTOMER_NUM and I_CUSTOMER_NAME. The EXIT command tests the con-
dition CUSTGROUP%NOTFOUND. If the condition is true, the loop is terminated. If the
condition is not true, the DBMS_OUTPUT.PUT_LINE commands display the contents of
I_CUSTOMER_NUM and I_CUSTOMER_NAME.

CREATE OR REPLACE ERQCEQURE DISE_REE_QUST(I_REE_NUH IN REP.REF NUMSTYPE] LS
I_CUITOMEE NUNM CUITOMER.CUITOMEE NUN%TYFPE:
I CUSTOMEE NAME CUSTOMER.CUSTOMER NAME:XTYPE:

Cursor declaration

Command to fetch a
row from the cursor

N CURSOR CUSTGROUP I3
A SELECT CUSTOMER_NUN, CUSTOMER NAMNE
N FROM CUSTOMER

WHERE REF_NUM = I_REP NUM;

253

BEGIN

OFEN CUSTGROUF;
LOOP

FETCH CUSTGROUP INTO I CUSTOMER NUM, I CUSTCMER NAME:
EXIT WHEN CUSTGROUPXMOTFOUMND:
DEMS CQUTPUT.PUT_LINE (I CUITOMER NUM||' 'III_CUSTOHER_NAHEJ:<——1
M END LOOP:

CLOSE CUSTGROUE; Command to determine

B Command to display

the results

whether a row was
successfully fetched

FIGURE 8-23 Procedure with a cursor

Figure 8-24 shows the results of using the procedure. After the user enters 20 as the
value for the rep number, the procedure displays the number and name of each customer
of sales rep 20.

DESTH 20 entered as th ?
DISP REF CUST(20°): entered as the argumen
END: for the rep number

I

Results Explain Describe Saved SOL History

145 A4l's Appliance and Sport
524 Kline's
842 All Season

Customers of rep 20

FIGURE 8-24 Results of using the procedure

Statement processed.

SQL Functions and Procedures

Using More Complex Cursors

The query formulation that defined the cursor in Example 10 was straightforward. Any SQL
query is legitimate in a cursor definition. In fact, the more complicated the require-
ments for retrieval, the more numerous the benefits derived by the programmer who uses
embedded SQL. Consider the query in Example 11.

For each order that contains an order line for the part whose part number is stored in
I_PART_NUM, retrieve the order number, order date, customer number, name of the cus-
tomer that placed the order, and last and first names of the sales rep who represents the
customer.

254

Opening and closing the cursor is done exactly as shown in Example 10. The only dif-
ference in the FETCH command is that a different set of variables is used in the INTO
clause. Thus, the only real difference is the cursor definition. The procedure shown in
Figure 8-25 contains the appropriate cursor definition.

CRELTE OF REPLACE PROCEDURE DISP PART ORDERS (I PART NUM IN PART.PART NUMSTYPE) A3

I_ORDER NUM ORDERS.ORDER NUM3TYPE:
I_ORDER DATE ORDERS.ORDER DATESTYPE:
I_CUSTOMER NUM ORDERS.CUSTOMER NUM%TYPE;
I_REP NUM REP.REP NUM:5TYPE:

I_LAST MAME REP.LAST WAMESTYPE:

I_FIRST NAME REP.FIRST NAME%TYPE;

CURSOR ORDGROUP I3
SELECT ORDERS.ORDER_NUM, ORDER DATE, ORDERS.CUSTOMER NUM, CUSTOMER.REP NUMN,
LAST NAME, FIRST NAME

FROM ORDER LINE, ORDERS, CUSTOMER, REP

‘N HERE ORDER_LINE.ORDER_NUM = ORDERS.ORDER NUM

AND ORDERS.CUSTOMER NUM = CUSTOMER.CUSTOMER NUM

AND CUSTOMER.REP_NUM = REP.REP NUM

AND PART NUM = I_PART NUM;

N BEEGIN

OPEN ORDGROUP;

LOOP

FETCH ORDGROUP INTO I_ORDER NUM, I ORDER_DATE, I_CUSTOMER NUM, I REP NUM,
I_LAST NAME, I _FIRST NAME;

EXIT WHEN ORDGROUP%NOTFOUND;

DEMS_OUTPUT.PUT_LINE(I_ORDER_NUMj;
DEMS_OUTPUT.PUT LINE(I_ORDER_DATE];
DEMS_OUTPUT.PUT LINE (I_CUSTOMER_NUMNj;
DEMS_OUTPUT.PUT_LINE(I_LAST NAME);
DEMS_OUTPUT.PUT LINE(I_FIRST NAME);

END LOOP;
CLOSE ORDGROUP;

END;
i

FIGURE 8-25 Procedure with a cursor that involves joining multiple tables

Chapter 8

The results of using this procedure to display the results for part DR93 are shown in
Figure 8-26.

BEGIN

DISP FPART ORDERI('DR33'):
END:

!

Results Explain Describe Sawed SQL History

21610 255 -
Z0-0CT-10

356

Perez
Juan
21619
23-0CT-10
148
Kaiser
Valerie

Statewent processed.

FIGURE 8-26 Results of using the procedure to display orders containing part DR93

Advantages of Cursors

The retrieval requirements in Example 11 are substantial. Beyond coding the preceding
cursor definition, the programmer doesn’t need to worry about the mechanics of obtain-
ing the necessary data or placing it in the right order, because this happens automati-
cally when the cursor is opened. To the programmer, it seems as if a sequential file already
exists that contains the correct data, sorted in the right order. This assumption leads to
three main advantages:

1. The coding in the procedure is greatly simplified.

2. In a normal program, the programmer must determine the most efficient way
to access the data. In a program or procedure using embedded SQL, the opti-
mizer determines the best way to access the data. The programmer isn’t con-
cerned with the best way to retrieve the data. In addition, when an underlying
structure changes (for example, an additional index is created), the opti-
mizer determines the best way to execute the query with the new structure.
The program or procedure does not have to change at all.

3. When the database structure changes in such a way that the necessary infor-
mation is still obtainable using a different query, the only change required in
the program or procedure is the cursor definition. The procedural code is not
affected.

SQL Functions and Procedures

256

Chapter 8

USING T-SQL IN SQL SERVER

SQL Server uses an extended version of SQL called T-SQL (Transact-SQL). You can use
T-SQL to create stored procedures and use cursors. The reasons for creating and using
stored procedures and cursors are identical to those discussed in the PL/SQL section.
Only the command syntax is different.

Retrieving a Single Row and Column

In Example 7, you learned how to write a procedure in PL/SQL that takes a rep number
as input and displays the corresponding rep name. The following code shows how you would
create the stored procedure in T-SQL:

CREATE PROCEDURE usp_DI SP_REP_NAME
@ epnum char (2)
AS

SELECT RTRI M FI RST_NAME) +' ' +RTRI M LAST_NAME)
FROM REP
VWHERE REP_NUM = @ epnum

The CREATE PROCEDURE command in the stored procedure causes SQL Server to cre-
ate a procedure named usp_DISP_REP_NAME. The usp_ prefix identifies the procedure as a
user-stored procedure. Although using the prefix is optional, it is an easy way to differentiate
user-stored procedures from SQL Server system-stored procedures. The argument for this
procedure is @repnum. In T-SQL, you must assign a data type to parameters. All arguments
start with the at (@) sign. Arguments should have the same data type and length as the par-
ticular column in a table that they represent. In the REP table, REP_NUM was defined with a
CHAR data type and a length of 2. The CREATE PROCEDURE ends with the word AS fol-
lowed by the SELECT command that comprises the procedure.

To call the procedure, use the EXEC command and include any arguments in single
quotes. The procedure to find the name of sales rep 20 is:

EXEC usp_DI SP_REP_NAVE' 20'

The result of executing this procedure is the same as that shown in Figure 8-8.

Changing Data with a Stored Procedure

In Example 8, you learned how to write a procedure in PL/SQL that changes the name of a
customer. The following commands show how to create the stored procedure in T-SQL:

CREATE PROCEDURE usp_CHG CUST_NAME
@ust num char (3),

@ust name char (35)

AS

UPDATE CUSTOMER

SET CUSTOMER _NAME = @ust nane
WHERE CUSTOMVER NUM = @ust num

The procedure has two arguments, @custnum and @custname, and uses an UPDATE
command instead of a SELECT command. To execute a stored procedure with two argu-
ments, separate the arguments with a comma as shown in the following command:

EXEC usp_CHG CUST NAMVE' 725', ' Deerfield 's'

Deleting Data with a Stored Procedure

In Example 9, you learned how to write a procedure in PL/SQL that deletes an order number
from both the ORDER_LINE table and the ORDERS table. The following commands show
how to create the stored procedure in T-SQL:

CREATE PROCEDURE usp_DEL_ORDER
@r der num char (5)

AS

DELETE

FROM

ORDER_LI NE

WHERE ORDER_NUM = @r der num

DELETE 251
FROM ORDERS
WHERE ORDER_NUM = @r der num

Using a Cursor

Cursors serve the same purpose in T-SQL as they do in PL/SQL and work exactly the same
way. You need to declare a cursor, open a cursor, fetch rows from a cursor, and close a
cursor. The only difference is in the command syntax. The following T-SQL code per-
forms exactly the same task as that shown in Example 10:

CREATE PROCEDURE usp_DI SP_REP_CUST
@ epnum char (2)

AS

DECLARE @ust num char (3)

DECLARE @ust name char (35)

DECLARE nycursor CURSOR READ ONLY

FOR

SELECT CUSTOMER_NUM CUSTQOVER_NAME
FROM CUSTOMER

VWHERE REP_NUM = @ epnum

OPEN mycur sor

FETCH NEXT FROM nycur sor
I NTO @ustnum @ust nane

WH LE @FETCH_STATUS = 0
BEG N

PRI NT @ust num+' '+@ust nanme
FETCH NEXT FROM nycur sor
I NTO @ustnum @ust nane

END

CLOSE nycur sor
DEALLOCATE nycur sor

The procedure uses one argument, @repnum. It also uses two variables, and each vari-
able must be declared using a DECLARE statement. You also declare the cursor by giving it a

SQL Functions and Procedures

258

Chapter 8

name, describing its properties, and associating it with a SELECT statement. The cursor prop-
erty, READ_ONLY, means that the cursor is used for retrieval purposes only. The OPEN,
FETCH, and CLOSE commands perform exactly the same tasks in T-SQL as they do in PL/SQL.
The OPEN command opens the cursor and causes the query to be executed. The FETCH com-
mand advances the cursor to the next row and places the contents of the row in the indi-
cated variables. The CLOSE command closes a cursor and the DEALLOCATE command deletes
the cursor. The DEALLOCATE command is not necessary but it does enable the user to use
the same cursor name with another procedure.

The WHILE loop will repeat until the value of the system variable @@FETCH_STATUS is
not zero. The PRINT command will output the values stored in the @custnum and @custname
variables.

Using More Complex Cursors

T-SQL also can handle more complex queries. The T-SQL code for Example 11 is shown below:

CREATE PROCEDURE usp_DI SP_PART_ORDERS
@artnum char (4)

AS

DECLARE @r der num char (5)

DECLARE @r derdate datetinme

DECLARE @ust num char (3)

DECLARE @ epnum char (2)

DECLARE @ ast nane char (15)

DECLARE @i rstnane char(15)

DECLARE nycur sor CURSOR READ ONLY

FOR

SELECT ORDERS. ORDER_ NUM ORDER DATE, ORDERS. CUSTOVER NUM
CUSTOVER REP_NUM LAST NAME, FI RST_NAME

FROM ORDER LI NE, ORDERS, CUSTOMER, REP

WHERE ORDER LI NE. ORDER_NUM = ORDERS. ORDER_NUM

AND ORDERS. CUSTOMER _NUM = CUSTOVER CUSTOMER NUM

AND CUSTOVER REP_NUM = REP. REP_NUM

AND PART _NUM = @ar t num

OPEN nycur sor

FETCH NEXT FROM nycur sor
| NTO @rdernum @rderdate, @ustnum @epnum @ astnane, @irstnane

WH LE @3rETCH_STATUS = 0
BEG N

PRI NT @r der num
PRI NT @r der dat e
PRI NT @ust num
PRI NT @ ast nanme
PRINT @i rstnanme

FETCH NEXT FROM nycur sor
I NTO @rdernum @rderdate, @ustnum @epnum @ astnane, @irstnane
END

CLGSE nycursor
DEALLOCATE nycur sor

USING SQL IN MICROSOFT ACCESS

Not every programming language accepts SQL commands as readily as PL/SQL and T-SQL.
In Microsoft Access, programs are written in Visual Basic, which does not support embed-
ded SQL commands directly in the code. When the SQL command is stored in a string vari-
able, however, you can use the DoCmd.RunSQL command to run the command. The
procedure in which you place the SQL command can include arguments.

Deleting Data with Visual Basic
To delete the sales rep whose number is 20, the command is:
DELETE FROM REP WHERE REP_NUM = ' 20';
When you write this type of command, you usually don’t know in advance the spe-
cific sales rep number that you want to delete; it would be passed as an argument to the pro-

cedure containing this DELETE command. In the following example, the sales rep number
is stored in an argument named I_REP_NUM.

Delete from the REP table the sales rep whose number currently is stored in I_REP_NUM.

Statements in the procedure usually create the appropriate DELETE command, using
the value in any necessary arguments. For example, when the command is stored in the
variable named strSQL (which must be a string variable) and the rep number is stored in the
argument I_REP_NUM, the following command is appropriate:

strSQ
strSQ
strSQ

The first command sets the strSQL string variable to DELETE FROM REP WHERE
REP_NUM = '; that is, it creates everything necessary in the command up to and includ-
ing the single quotation mark preceding the rep number. The second command uses con-
catenation (&). It changes strSQL to the result of the previous value concatenated with the
value in I_REP_NUM. When I_REP_NUM contains the value 20, for example, the com-
mand would be DELETE FROM REP WHERE REP_NUM = '20. The final command sets
strSQL to the result of the value already created, concatenated with a single quotation mark
and a semicolon. The command is now complete.

" DELETE FROM REP WHERE REP NUM = ' "
strSQL & | _REP_NUM
strsQL & """

Figure 8-27 shows a completed procedure to accomplish the necessary deletion in
Access. You enter this procedure in the Microsoft Visual Basic window. In the program, the
Dim statement creates a string variable named strSQL. The next three commands set
strSQL to the appropriate SQL command. Finally, the DoCmd.RunSQL command runs the
SQL command stored in strSQL.

259

SQL Functions and Procedures

% File Edit Wiew Insert Debug Bun Tools Add-Ins Window Help

Pl -l X R e onom kB @] Ll call

I(General] j IREp[Ielete

Option Compare Database

Fublic Function Replelete (I _REP NUN) Argument (I_REP_NUM)
Dim ste30l As 3tring
Commands to
set strSQL

DoCmwd. Run3QL str3QL Runs command stored in strSQL

End Function

str3IQL = "DELETE FROM REF WHERE REF NUN = '™
Str3QL = str30L & I REP NUM
Str3QL = sStr3QL & "'

260

FIGURE 8-27 Visual Basic code to delete a sales rep

NOTE —_

If you have concerns about how you constructed the SQL command in strSQL, you can include the
Debug.Print (strSQL) command after the set of commands that construct strSQL. The Debug.Print com-
mand displays the entire command before it is executed so you can review it for accuracy. If you need to cor-
rect an error, rerun the program after making the necessary changes. If you get an error in your program,
check your SQL command carefully to make sure that you concatenated it correctly.

Running the Code

Normally, you run code like the function shown in Figure 8-27 by calling it from another
procedure or associating it with some event, such as clicking a button on a form. How-
ever, you can run it directly by using the Immediate window (click View on the menu bar,
and then click Immediate Window to open it). Normally, you would use this window only for
testing purposes, but you can use it to see the result of running the code. To run a Func-
tion procedure, such as the one shown in Figure 8-27, in the Immediate window, type a
question mark followed by the name of the procedure and a set of parentheses, as shown
in Figure 8-28. Place the values for any arguments in the parentheses. Assuming that you
wanted to delete a sales rep whose number is 50, you would include "50" inside the paren-
theses as shown in the figure.

Chapter 8

% Eile Edit Miew Insert Debug Bun Tools Add-Ins Window Help
Pl -d % a@BEA 9 n @b NFYE @

I(General} j IRepI]ele‘te

Option Compare Database

Public Function Replelete (I REP NUH)
Di str3QL As String

str3QL = "DELETE FROM REP WHERE REP NUM = '™
str3QL = str3QL & I REP_NUH
Ste3QL = str3IQL &£ "'

261
DoCmd ., Fun3QL str3QL

End Function

== I | Procedure to delete records

in Immediate window

?Repbelete ("50™)

FIGURE 8-28 Running the code in the Immediate window

After you type the command and press the Enter key, the code will run and the appropri-
ate action will occur. In this case, the command deletes the sales rep with the number 50
(assuming there is a sales rep 50).

Updating Data with Visual Basic

A procedure that updates a table using an UPDATE command is similar to the one used to delete
a sales rep. In Example 13, two arguments are required. One of them, I_LAST_NAME, con-
tains the new name for the sales rep. The other, [_REP_NUM, contains the number of the rep
whose name is to be changed.

Change the last name of the sales rep whose number is stored in I_REP_NUM to the value
currently stored in I_LAST_NAME.

This example is similar to the previous one with two important differences. First, you
need to use the UPDATE command instead of the DELETE command. Second, there are
two arguments, so there are two portions of the construction of the SQL command that
involve variables. The complete procedure is shown in Figure 8-29.

SQL Functions and Procedures

262

Chapter 8

Argument giving
number of rep whose

Public Function RepUpdate(I_LAST NAME, I_REP_NUM)

Dim strSQL As String T t

name is to be changed

strSQL = "UPDATE REP SET LAST NAME = .
StrSQL = strSQL + I_LAST NAME Argument giving
StrSQL = strSQL + "' WHERE REP_NUM = newname
strSQL = strSQL & I_REP_NUM

strsQL = strSQL & "';"

DoCmd.RunSQL strSQL

End Function

FIGURE 8-29 Code to change a rep’s last name
To run this procedure, you would enter values for both arguments as shown in Figure 8-30.

‘ ?RepUpdate ("Webb", "20") ‘

FIGURE 8-30 Running the code to change a rep’s last name

Inserting Data with Visual Basic

The process for inserting rows is similar in Access when compared to PL/SQL or T-SQL.
You create the appropriate INSERT command in the strSQL variable. There will be mul-
tiple arguments in the procedure—one for each value to be inserted.

Finding Multiple Rows with Visual Basic

Just as when embedding SQL in PL/SQL, deleting or updating multiple rows causes no
problems, because these procedures still represent a single operation, with all the work hap-
pening behind the scenes. A SELECT command that returns several rows, however, poses
serious problems for record-at-a-time languages like PL/SQL and Visual Basic. You handle
SELECT commands differently in Access than you do in PL/SQL or T-SQL. In particular,
there are no cursors in Access. Instead, you handle the results of a query just as you
might use a loop to process through the records in a table.

Retrieve and list the number and name of each customer represented by the sales rep
whose number is stored in the variable I_REP_NUM.

Figure 8-31 shows a procedure to accomplish the indicated task. The statements involv-
ing rs and cnn are a typical way of processing through a recordset, that is, through all the
records contained in a table or in the results of a query. The only difference between this
program and one to process all the records in a table is that the Open command refers to
an SQL command and not a table. (The SQL command is stored in the variable named
strSQL and is created in the same manner as shown in the previous examples.)

Public Function FindCustomers(I_REP_NUM)
Dim rs As New ADODB.Recordset
Dim cnn As ADODB.Connection
Dim strSQL As String
Set cnn = CurrentProject.Connection

263

Opens a recordset
named rs for the query
stored in strSQL

StrsQL = "SELECT CUSTOMER NAME FROM CUSTOMER WHERE REP_NUM = '"
StrSQL = strSQL & I_REP_NUM
StrSQL = strSQL & "';"

rs.Open strSQL, cnn, adOpenStatic, , adCmdText
—> Do Until rs.EOF
Debug.Print (rs!CUSTOMER_NAME)

rs.MoveNext
End of loop yT—> Loop

End Function

Loops until end of
file for recordset

Prints the customer
name for the current
record in recordset

Moves to the next
record in recordset

FIGURE 8-31 Code to find customers of a specific rep

The loop continues until reaching the end of file for the recordset, that is, until all
records have been processed. Within the loop, you can use the Debug.Print command to
print a value. In this case, the value to be printed is rs!CUSTOMER_NAME. This indi-
cates the contents of the CUSTOMER_NAME column for the record in the recordset (rs)
on which Access is currently positioned. The next command, rs.MoveNext, moves to the
next record in the recordset. The loop continues until all records in the recordset have
been processed.

Figure 8-32 shows the results of running this procedure and entering a value of "35"
as an argument. Access displays the four customers of sales rep 35.

Rep number
?FindCustomers("35")<—

Brookings Direct

The Everything Shop s
Lee's Sport and Appliance

Deerfield's Four SeasonsJ

Customers of
the sales rep

FIGURE 8-32 Running the code to find customers of a sales rep

|

When you expect an SQL query to return only one record, you use the same process but would not need
a loop.

SQL Functions and Procedures

264

Chapter 8

USING A TRIGGER

A trigger is a procedure that is executed automatically in response to an associated
database operation, such as an INSERT, UPDATE, or DELETE command. Unlike a stored
procedure, which is executed in response to a user request, a trigger is executed in
response to a command that causes the associated database operation to occur.

The examples in this section assume there is a new column named ON_ORDER in the
PART table. This column represents the number of units of a part currently on order. For
example, if there are two separate order lines for a part and the number ordered on one
order line is 3 and the number ordered on the other order line is 2, the ON_ORDER value
for that part will be 5. Adding, changing, or deleting order lines affects the value in the
ON_ORDER column for the part. To ensure that the value is updated appropriately, you can
use a trigger.

If you created the ADD_ORDER_LINE trigger shown in Figure 8-33, the SQL com-
mand in the trigger would be executed when a user adds an order line. The trigger must
update the ON_ORDER value for the corresponding part to reflect the order line. For
example, if the value in the ON_ORDER column for part CD52 is 4 and the user adds an
order line on which the part number is CD52 and the number of units ordered is 2, six units
of part CD52 will be on order. When a record is added to the ORDER_LINE table, the
ADD_ORDER_LINE trigger updates the PART table by adding the number of units ordered
on the order line to the previous value in the ON_ORDER column.

CEEATE OF REPLACE TRIGGER ADD ORDER LINE

8 AFTER INSERT ON ORDER LINE FOR EACH ROW

S8 EEGIN

M UTFDATE FART

N SET ON ORDER = ON ORDER + tNEW.NUM ORDERED ;
B END;

FIGURE 8-33 ADD_ORDER_LINE trigger

The first line indicates that the command is creating a trigger named
ADD_ORDER_LINE. The second line indicates that this trigger will be executed after an
order line is inserted and that the SQL command is to occur for each row that is added. Like
stored procedures, the SQL command is enclosed between the words BEGIN and END. In
this case, the SQL command is an UPDATE command. The command uses the NEW
qualifier, which refers to the row that is added to the ORDER_LINE table. If an order line
is added on which the part number is CD32 and the number ordered is 2, for example,
NEW.PART_NUM will be CD52 and NEW.NUM_ORDERED will be 2.

The following UPDATE_ORDER_LINE trigger shown in Figure 8-34 is executed when
a user attempts to update an order line. There are two differences between the
UPDATE_ORDER_LINE trigger and the ADD_ORDER_LINE trigger. First, the second line
of the UPDATE_ORDER_LINE trigger indicates that this trigger is executed after an UPDATE
of an order line rather than an INSERT. Second, the computation to update the
ON_ORDER column includes both NEW.NUM_ORDERED and OLD.NUM_ORDERED. As
with the ADD_ORDER_LINE trigger, NEW.NUM_ORDERED refers to the new value. In an

UPDATE command, however, there is also an old value, which is the value before the update
takes place. If an update changes the value for ON_ORDER from 1 to 3,
OLD.NUM_ORDERED is 1 and NEW.NUM_ORDERED is 3. Adding NEW.NUM_ORDERED
and subtracting OLD.NUM_ORDERED results in a net change of an increase of 2. (The net
change could also be negative, in which case the ON_ORDER value decreases.)

CREATE OR REPLACE TRIGGER UDPATE ORDER LIME

A AFTER: UPDATE ON ORDER LINE FOR EACH ROW

<M EEGIN

M UFDATE FART

MSET ON ORDER = ON ORDER + :NEW.NUN ORDERED - :0LD.NUM ORDERED:
M END:

FIGURE 8-34 UPDATE_ORDER_LINE trigger

The DELETE_ORDER_LINE trigger shown in Figure 8-35 performs a function similar
to the other two. When an order line is deleted, the ON_ORDER value for the correspond-
ing part is updated by subtracting OLD.NUM_ORDERED from the current ON_ORDER
value. (In a delete operation, there is no NEW.NUM_ORDERED.)

CREATE OR REPLACE TRIGGER DELETE ORDER LINE
8 AFTER DELETE ON ORDER LINE FOR EACH ROU

=8 BEGIIT

M UPDATE FART

=RSET ON ORDER = ON ORDER - :OLD.NUM ORDERED ;
N ETID

FIGURE 8-35 DELETE_ORDER_LINE trigger

ACCESS USER NOTEZ=

Access does not support triggers. When using a form to update table data, you can achieve some of the
same functionality by creating VBA code to be executed after the insertion, update, or deletion of records.

265

SQL Functions and Procedures

SQL SERVER USER NOTE

Chapter 8

Chapter Summary

There are functions whose results are based on the values in single records. UPPER
and LOWER are two examples of functions that act on character data. UPPER dis-
plays each lowercase letter in the argument in uppercase. LOWER displays each upper-
case letter in the argument in lowercase.

ROUND and FLOOR are two examples of functions that act on numeric data. ROUND
produces its result by rounding the value to the specified number of decimal places.
FLOOR produces its result by truncating (removing) everything to the right of the
decimal point.

Use the ADD_MONTHS function in Oracle to add a specific number of months to a date.
In Access and in SQL Server, use the DATEADD() function.

To add a specific number of days to a date, use normal addition. You can subtract one
date from another to produce the number of days between two dates.

To obtain today’s date, use the SYSDATE function in Oracle, the GETDATE() function
in SQL Server, and the DATE() function in Access.

To concatenate values in character columns in Oracle, separate the column names with
two vertical lines (|]). Use the RTRIM function to delete any extra spaces that follow the
values. In SQL Server, use the + symbol to concatenate values. In Access, use the
ampersand (&) symbol to concatenate values.

A stored procedure is a query saved in a file that users can execute later.

To create a stored procedure in PL/SQL or T-SQL, use the CREATE PROCEDURE
command.

Variables in PL/SQL procedures are declared after the word DECLARE. To assign vari-
ables the same type as a column in the database, use the %TYPE attribute.

Use the INTO clause in the SELECT command to place the results of a SELECT com-
mand in variables in Oracle.

You can use INSERT, UPDATE, and DELETE commands in PL/SQL and T-SQL proce-
dures, even when they affect more than one row.

When a SELECT command is used to retrieve more than one row in PL/SQL or T-SQL,
it must define a cursor that will select one row at a time.

Use the OPEN command to activate a cursor and execute the query in the cursor
definition.

Use the FETCH command to select the next row in PL/SQL and T-SQL.

Use the CLOSE command to deactivate a cursor. The rows initially retrieved will no longer
be available to PL/SQL or T-SQL.

To use SQL commands in Access, create the command in a string variable. To run the
command stored in the string variable, use the DoCmd.RunSQL command.

To process a collection of rows retrieved by a SELECT command in Access, use a
recordset. Create the SQL command in a string variable and use the string variable in
the command to open the recordset.

To move to the next record in a recordset in Access, use the MoveNext command.

267

SQL Functions and Procedures

e A trigger is an action that occurs automatically in response to an associated database
operation, such as an INSERT, UPDATE, or DELETE command. Like a stored proce-
dure, a trigger is stored and compiled on the server. Unlike a stored procedure, which is
executed in response to a user request, a trigger is executed in response to a com-
mand that causes the associated database operation to occur.

Key Terms

ADD_MONTHS OPEN

argument PL/SQL

call procedural code
B8 client procedural language

client/server system ROUND

CLOSE RTRIM

concatenate server

concatenation stored procedure

cursor SYSDATE

embed Transact-SQL

FETCH trigger

FLOOR T-SQL

LOWER update procedure

nonprocedural language UPPER

Review Questions

1. How do you display letters in uppercase in Oracle, Access, and SQL Server? How do you
display letters in lowercase in Oracle, Access, and SQL Server?

2. How do you round a number to a specific number of decimal places in Oracle, Access, and
SQL Server? How do you remove everything to the right of the decimal place in Oracle and
SQL Server?

3. How do you add months to a date in Oracle, Access, and SQL Server? How do you add days
to a date? How would you find the number of days between two dates?

How do you obtain today’s date in Oracle, Access, and SQL Server?

How do you concatenate values in character columns in Oracle, Access, and SQL Server?
Which function deletes extra spaces at the end of a value?

What are stored procedures? What purpose do they serve?

In which portion of a PL/SQL procedure do you embed SQL commands?

© ©® N o g B

Where do you declare variables in PL/SQL procedures?
10. In PL/SQL, how do you assign variables the same type as a column in the database?
11. How do you place the results of a SELECT command into variables in PL/SQL?

Chapter 8

12. Can you use INSERT, UPDATE, or DELETE commands that affect more than one row in
PL/SQL procedures?

13. How do you use a SELECT command that retrieves more than one row in a PL/SQL
procedure?

14. Which PL/SQL command activates a cursor?

15. Which PL/SQL command selects the next row in a cursor?

16. Which PL/SQL command deactivates a cursor?

17. How do you use SQL commands in Access?

18. How do you process a collection of rows retrieved by a SELECT command in Access?

19. How do you move to the next record in a recordset in Access?

20. What are triggers? What purpose do they serve?

21. What is the purpose of the INSERTED and DELETED tables in SQL Server?

Exercises

Premiere Products

Use the Premiere Products database (see Figure 1-2 in Chapter 1) to complete the following

exercises. If directed to do so by your instructor, use the information provided with the Chapter 3

Exercises to print your output.

1.

List the part number and description for all parts. The part descriptions should appear in
uppercase letters.

List the customer number and name for all customers located in the city of Grove. Your query

should ignore case. For example, a customer with the city Grove should be included as
should customers whose city is GROVE, grove, GrOVE, and so on.

List the customer number, name, and balance for all customers. The balance should be
rounded to the nearest dollar.

Premiere Products is running a promotion that is valid for up to 20 days after an order is
placed. List the order number, customer number, customer name, and the promotion date
for each order. The promotion date is 20 days after the order was placed.

Write PL/SQL or T-SQL procedures to accomplish the following tasks:

a. Obtain the name and credit limit of the customer whose number currently is stored in
|_CUSTOMER_NUM. Place these values in the variables |_ CUSTOMER_NAME and
|_CREDIT_LIMIT, respectively. Output the contents of |_CUSTOMER_NAME and
|_CREDIT_LIMIT.

b. Obtain the order date, customer number, and name for the order whose number cur-
rently is stored in |_ORDER_NUM. Place these values in the variables | ORDER_DATE,
|_ CUSTOMER_NUM and |_CUSTOMER_NAME, respectively. Output the contents of
|_ORDER_DATE, |_ CUSTOMER_NUM, and |_CUSTOMER_NAME.

c. Add a row to the ORDERS table.

269

SQL Functions and Procedures

270

Chapter 8

d. Change the date of the order whose number is stored in |_ORDER_NUM to the date
currently found in |_ORDER_DATE.

e. Delete the order whose number is stored in |_ORDER_NUM.

Write a PL/SQL or T-SQL procedure to retrieve and output the part number, part description,
warehouse number, and unit price of every part in the item class stored in |_CLASS.

Write Access functions to accomplish the following tasks:
a. Delete the order whose number is stored in |_ORDER_NUM.

b. Change the date of the order whose number is stored in |_ORDER_NUM to the date
currently found in |_ORDER_DATE.

c. Retrieve and output the part number, part description, warehouse number, and unit
price of every part in the item class stored in |_CLASS.

Write a stored procedure in PL/SQL or T-SQL that will change the price of a part with a given
part number. How would you use this stored procedure to change the price of part AT94 to
$26.95?

Write the code for the following triggers in PL/SQL or T-SQL following the style shown in
the text:

a. When adding a customer, add the customer’s balance times the sales rep’s commis-
sion rate to the commission for the corresponding sales rep.

b. When updating a customer, add the difference between the new balance and the old
balance multipled by the sales rep’s commission rate to the commission for the corre-
sponding sales rep.

c. When deleting a customer, subtract the balance multiplied by the sales rep’s commis-
sion rate from the commission for the corresponding sales rep.

Henry Books

Use the Henry Books database (see Figures 1-4 through 1-7 in Chapter 1) to complete the fol-
lowing exercises. If directed to do so by your instructor, use the information provided with the
Chapter 3 Exercises to print your output.

1.

List the author number, first name, and last name for all authors. The first name should
appear in lowercase letters and the last name should appear in uppercase letters.

List the publisher code and name for all publishers located in the city of New York. Your query
should ignore case. For example, a customer with the city New York should be included as
should customers whose city is NEW YORK, New york, NeW yOrK, and so on.

List the book code, title, and price for all books. The price should be rounded to the near-

est dollar.

Write PL/SQL or T-SQL procedures to accomplish the following tasks:

a. Obtain the first name and last name of the author whose number currently is stored
in |_ AUTHOR_NUM. Place these values in the variables | AUTHOR_FIRST and

|_AUTHOR_LAST. Output the contents of | AUTHOR_NUM, |_AUTHOR_FIRST, and
|_AUTHOR_LAST.

3

Obtain the book title, publisher code, and publisher name for every book whose code
currently is stored in |_BOOK_CODE. Place these values in the variables |_TITLE,
|_PUBLISHER_CODE, and |_PUBLISHER_NAME, respectively. Output the contents of
I_TITLE, |_PUBLISHER_CODE, and |_PUBLISHER_NAME.

Add a row to the AUTHOR table.

Change the last name of the author whose number is stored in I_AUTHOR_NUM to
the value currently found in I_AUTHOR_LAST.

Delete the author whose number is stored in I|_ AUTHOR_NUM.

Write a PL/SQL or T-SQL procedure to retrieve and output the book code, title, book type,
and price for every book whose publisher code is stored in |_PUBLISHER_CODE.

Write Access functions to accomplish the following tasks:
a.
b.

27

Delete the author whose number is stored in I|_ AUTHOR_NUM.

Change the last name of the author whose number is stored in _AUTHOR_NUM to
the value currently found in |_AUTHOR_LAST.

Retrieve and output the book code, title, book type, and price for every book whose pub-
lisher code is stored in |_PUBLISHER_CODE.

Write a stored procedure in PL/SQL or T-SQL that will change the price of a book with a given
book code. How would you use this stored procedure to change the price of book 0189
to $8.497

Assume the BOOK table contains a column called TOTAL_ON_HAND that represents the
total units on hand in all branches for that book. Following the style shown in the text, write
the code in PL/SQL or T-SQL for the following triggers:

a.

When inserting a row in the INVENTORY table, add the ON_HAND value to the
TOTAL_ON_HAND value for the appropriate book.

When updating a row in the INVENTORY table, add the difference between the new
ON_HAND value and the old ON_HAND value to the TOTAL_ON_HAND value for the
appropriate book.

When deleting a row in the INVENTORY table, subtract the ON_HAND value from the
TOTAL_ON_HAND value for the appropriate book.

Alexamara Marina Group

Use the Alexamara Marina Group database (see Figures 1-8 through 1-12 in Chapter 1) to com-
plete the following exercises. If directed to do so by your instructor, use the information pro-
vided with the Chapter 3 Exercises to print your output.

1.

List the owner number, first name, and last name for all owners. The first name should appear
in uppercase letters and the last name should appear in lowercase letters.

List the owner number and last name for all owners located in the city of Bowton. Your query
should ignore case. For example, a customer with the city Bowton should be included as
should customers whose city is BOWTON, BowTon, BowWtOn, and so on.

SQL Functions and Procedures

U2

Chapter 8

Alexamara is offering a discount for owners who sign up early for slips for next year. The dis-
count is 1.75 percent of the rental fee. For each slip, list the marina number, slip number,
owner number, owner’s last name, rental fee, and discount. The discount should be rounded
to the nearest dollar.

Write PL/SQL or T-SQL procedures to accomplish the following tasks:

a. Obtain the first name and last name of the owner whose number currently is stored in
I_OWNER_NUM. Place these values in the variables |_FIRST_NAME and
I_LAST_NAME. Output the contents of I_OWNER_NUM, I_FIRST_NAME, and
I_LAST_NAME.

b. Obtain the marina number, slip number, boat name, owner number, owner first name,
and owner last name for the slip whose slip ID is currently stored in |_SLIP_ID. Place
these values in the variables |_MARINA_NUM, |I_SLIP_NUM, |I_BOAT_NAME,
I_OWNER_NUM, |I_FIRST_NAME, and |_LAST_NAME, respectively. Output the con-
tents of I_SLIP_ID, _MARINA_NUM, |I_SLIP_NUM, |_BOAT_NAME,
I_OWNER_NUM, I_FIRST_NAME, and I_LAST_NAME.

Add a row to the OWNER table.

d. Change the last name of the owner whose number is stored in I|_ OWNER_NUM to the
value currently found in I_LAST_NAME.

e. Delete the owner whose number is stored in |_ OWNER_NUM.

Write a PL/SQL or T-SQL procedure to retrieve and output the marina number, slip nhumber,

rental fee, boat name, and owner number for every slip whose length is equal to the length stored

in |_LENGTH.

Write Access functions to accomplish the following tasks:

a. Delete the owner whose number is stored in |_ OWNER_NUM.

b. Change the last name of the owner whose number is stored in |_OWNER_NUM to the
value currently found in I_LAST_NAME.

c. Retrieve and output the marina number, slip number, rental fee, boat name, and owner
number for every slip whose length is equal to the length stored in |_LENGTH.

Write a stored procedure in PL/SQL or T-SQL that will change the rental fee of a slip with

a given slip ID and marina number. How would you use this stored procedure to change the

rental fee for the boat with the slip ID 3 in marina 1 to $3,700?

Assume the OWNER table contains a column called TOTAL_RENTAL that represents the

total rental fee for all slips rented by that owner. Write the code in PL/SQL or T-SQL for the fol-

lowing triggers following the style shown in the text:

a. When inserting a row in the MARINA_SLIP table, add the rental fee to the total rental
for the appropriate owner.

b. When updating a row in the MARINA_SLIP table, add the difference between the new
rental fee and the old rental fee to the total rental for the appropriate owner.

c. When deleting a row in the MARINA_SLIP table, subtract the rental fee from the total
rental for the appropriate owner.

APPENDIX

SQL REFERENCE

INTRODUCTION

You can use this appendix to obtain details concerning important components and syntax of the SQL
language. Items are arranged alphabetically. Each item contains a description, a reference to where the
item is covered in the text, and, when appropriate, both an example and a description of the query results.
Some SQL commands also include a description of the clauses associated with them. For each clause,

there is a brief description and an indication of whether the clause is required or optional.

ALIASES (PAGES 146-148)

You can specify an alias (alternative name) for each table in a query. You can use the alias
in the rest of the command by following the name of the table with a space and the alias name.

The following command creates an alias named R for the REP table and an alias named
C for the CUSTOMER table:

SELECT R REP_NUM R LAST_NAME, R FI RST_NAME,
C. CUSTOVER_NUM C. CUSTOVER_NAME

FROM REP R, CUSTOMER C

VWHERE R REP_NUM = C. REP_NUM

ALTER TABLE (PAGES 182-183)

Use the ALTER TABLE command to change a table’s structure. As shown in Figure A-1, you type
the ALTER TABLE command, followed by the table name, and then the alteration to perform.

Clause Description Required?
ALTER TABLE table name Indicates name of table to be altered. Yes
alteration | Indicates type of alteration to be performed. | Yes

FIGURE A-1 ALTER TABLE command

274

Appendix A

The following command alters the CUSTOMER table by adding a new CUSTOMER_TYPE
column:

ALTER TABLE CUSTOVER
ADD CUSTOVER TYPE CHAR(1):

The following command changes the CITY column in the CUSTOMER table so that it
cannot accept nulls:

ALTER TABLE CUSTOVER
MODI FY CI TY NOT NULL;

Note: In Access, you usually make these changes to a table in Design view rather than
using ALTER TABLE.

Note: In SQL Server, you must use the ALTER COLUMN clause and completely define
the column as follows:

ALTER TABLE CUSTOMER
ALTER COLUWN CI TY CHAR(15) NOT NULL

COLUMN OR EXPRESSION LIST (SELECT
CLAUSE) (PAGES 98-100)

To select columns, use the SELECT clause followed by the list of columns, separated by
commas.

The following SELECT clause selects the CUSTOMER_NUM, CUSTOMER_NAME, and
BALANCE columns:

SELECT CUSTOVER _NUM CUSTOMVER _NAME, BALANCE

Use an asterisk in a SELECT clause to select all columns in a table. The following
SELECT clause selects all columns:

SELECT *

Computed Columns (Pages 107-110)

You can use a computation in place of a column by typing the computation. For readabil-
ity, you can type the computation in parentheses, although it is not necessary to do so.

The following SELECT clause selects the CUSTOMER_NUM and CUSTOMER_NAME
columns as well as the results of subtracting the BALANCE column from the CREDIT_LIMIT
column:

SELECT CUSTOMER NUM CUSTOMVER NAME, (CREDIT_LIMT - BALANCE)

The DISTINCT Operator (Pages 117-119)

To avoid selecting duplicate values in a command, use the DISTINCT operator. When you
omit the DISTINCT operator from the command and the same value appears on mul-
tiple rows in the table, that value will appear on multiple rows in the query results.

The following query selects all customer numbers from the ORDERS table, but lists
each customer number only once in the results:

SELECT DI STI NCT(CUSTOVER_NUM
FROM ORDERS;

Functions (Pages 114-117)

You can use functions in a SELECT clause. The most commonly used functions are AVG

(to calculate an average), COUNT (to count the number of rows), MAX (to determine the

maximum value), MIN (to determine the minimum value), and SUM (to calculate a total).
The following SELECT clause calculates the average balance:

SELECT AVG(BALANCE)

215

COMMIT (PAGES 177-178)

Use the COMMIT command to make permanent any updates made since the last
command. If no previous COMMIT command has been executed, the COMMIT command
will make all the updates during the current work session permanent immediately. All
updates become permanent automatically when you exit SQL. Figure A-2 describes the
COMMIT command.

Clause Description Required?

COMMIT Indicates that a COMMIT is to be performed. Yes

FIGURE A-2 COMMIT command

The following command makes all updates since the most recent COMMIT command
permanent:

COW T,

Note: In SQL Server, the following command makes all updates since the most recent
COMMIT command:

COWM T TRANSACTI ON

Note: Access does not support the COMMIT command.

CONDITIONS (PAGES 100-106)

A condition is an expression that can be evaluated as either true or false. When you use a
condition in a WHERE clause, the results of the query contain those rows for which the con-
dition is true. You can create simple conditions and compound conditions using the
BETWEEN, LIKE, IN, EXISTS, ALL, and ANY operators, as described in the following sections.

Simple Conditions (Pages 100-103)

A simple condition has the form column name, comparison operator, and then either another
column name or a value. The available comparison operators are = (equal to), < (less than),
> (greater than), <= (less than or equal to), >= (greater than or equal to), and < > (not equal to).

The following WHERE clause uses a condition to select rows where the balance is
greater than the credit limit:

WHERE BALANCE > CREDIT LIMT

SQL Reference

276

Appendix A

Compound Conditions (Pages 103-106)

Compound conditions are formed by connecting two or more simple conditions using the
AND, OR, and NOT operators. When simple conditions are connected by the AND opera-
tor, all of the simple conditions must be true in order for the compound condition to be true.
When simple conditions are connected by the OR operator, the compound condition will
be true whenever any one of the simple conditions is true. Preceding a condition by the NOT
operator reverses the truth of the original condition.

The following WHERE clause is true if the warehouse number is equal to 3 or the units
on hand is greater than 100, or both:

WHERE (WAREHOUSE = '3') OR (ON_HAND > 100)

The following WHERE clause is true if the warehouse number is equal to 3 and the units
on hand is greater than 100:
WHERE (WAREHOUSE = ' 3') AND (ON_HAND > 100)

The following WHERE clause is true if the warehouse number is not equal to 3:

WHERE NOT (WAREHOUSE = ' 3'")

BETWEEN Conditions (Pages 106-107)

You can use the BETWEEN operator to determine if a value is within a range of values. The
following WHERE clause is true if the balance is between 2,000 and 5,000:

VHERE BALANCE BETWEEN 2000 AND 5000

LIKE Conditions (Pages 110-111)

LIKE conditions use wildcards to select rows. Use the percent (%) wildcard to represent any
collection of characters. The condition LIKE '%Central%' will be true for data consisting of
any character or characters, followed by the letters “Central,” followed by any other
character or characters. Another wildcard symbol is the underscore (_), which represents
any individual character. For example, “T_m” represents the letter “T,” followed by any
single character, followed by the letter “m,” and would be true for a collection of charac-
ters such as Tim, Tom, or T3m.

The following WHERE clause is true if the value in the STREET column is Central, Cen-
tralia, or any other value that contains “Central”:

VWHERE STREET LI KE ' %Central %

Note: Access uses different wildcard symbols. The symbol for any collection of charac-
ters is the asterisk (*). The symbol for an individual character is the question mark (?).

IN Conditions (Pages 111-112, 140-141)

You can use IN to determine whether a value is in some specific collection of values. The
following WHERE clause is true if the credit limit is 5,000, 10,000, or 15,000:

WHERE CREDI T_LIM T IN (5000, 10000, 15000)

The following WHERE clause is true if the part number is in the collection of part num-

bers associated with order number 21610: &

WHERE PART_NUM | N

(SELECT PART_NUM

FROM ORDER_LI NE

WHERE ORDER NUM = ' 21610')

EXISTS Conditions (Pages 141-142)

You can use EXISTS to determine whether the results of a subquery contain at least one
row. The following WHERE clause is true if the results of the subquery contain at least one
row, that is, there is at least one order line with the desired order number and on which
the part number is DR93:

WHERE EXI STS

(SELECT *

FROM ORDER LI NE

WHERE ORDERS. ORDER_NUM = ORDER LI NE. ORDER NUM
AND PART_NUM = ' DR93')

ALL and ANY (Pages 157-160)

You can use ALL or ANY with subqueries. If you precede the subquery by ALL, the condi-
tion is true only if it is satisfied for all values produced by the subquery. If you precede the
subquery by ANY, the condition is true if it is satisfied for any value (one or more) pro-
duced by the subquery.

The following WHERE clause is true if the balance is greater than every balance con-
tained in the results of the subquery:

WHERE BALANCE > ALL
(SELECT BALANCE

FROM CUSTOVER

WHERE REP_NUM = ' 65')

The following WHERE clause is true if the balance is greater than at least one balance
contained in the results of the subquery:
WHERE BALANCE > ANY
(SELECT BALANCE

FROM CUSTOVER
WHERE REP_NUM = ' 65')

CREATE INDEX (PAGES 215-217)

Use the CREATE INDEX command to create an index for a table. Figure A-3 describes the
CREATE INDEX command.

SQL Reference

278 Clause Description Required?

CREATE INDEX index name | Indicates the name of the index. Yes
ON table name Indicates the table for which the index is to be created. Yes
column list Indicates the column or columns on which the index is to be based. | Yes

FIGURE A-3 CREATE INDEX command

The following CREATE INDEX command creates an index named REPNAME for the
REP table on the combination of the LAST_NAME and FIRST_NAME columns:

CREATE | NDEX REPNAME ON REP(LAST_NAME, FI RST_NAME);

CREATE TABLE (PAGES 66-69)

Use the CREATE TABLE command to define the structure of a new table. Figure A-4
describes the CREATE TABLE command.

Clause Description Required?
CREATE TABLE table name Indicates the name of the table to be created. Yes

(column and data type list) Indicates the columns that comprise the table along with Yes

their corresponding data types (see Data Types section).

FIGURE A-4 CREATE TABLE command

The following CREATE TABLE command creates the REP table and its associated col-
umns and data types. REP_NUM is the table’s primary key.

CREATE TABLE REP
(REP_NUM CHAR(2) PRI MARY KEY,
LAST_NANME CHAR(15),

FI RST_NAMVE CHAR(15),

STREET CHAR(15),

Cl TY CHAR(15),

STATE CHAR(2),

ZI P CHAR(5),

COVM SSI ON DECI MAL(7, 2),

RATE DECI MAL(3,2));

Appendix A

Note: Access does not support the DECIMAL data type. Use the CURRENCY data type
for fields that will contain currency values; use the NUMBER data type for all other numeric
fields. In Access, use the following command to create the REP table:

CREATE TABLE REP
(REP_NUM CHAR(2) PRI MARY KEY,
LAST_NAVE CHAR(15),

FI RST_NAME CHAR(15),

STREET CHAR(15),

Cl TY CHAR(15),

STATE CHAR(2),

ZI P CHAR(5),

COVM SSI ON' CURRENCY,

RATE NUMVBER) ;

CREATE VIEW (PAGES 196-197)

Use the CREATE VIEW command to create a view. Figure A-5 describes the CREATE VIEW
command.

Clause Description Required?
CREATE VIEW view name AS Indicates the name of the view to be created. Yes
query Indicates the defining query for the view. Yes

FIGURE A-5 CREATE VIEW command

The following CREATE VIEW command creates a view named HOUSEWARES, which
consists of the part number, part description, units on hand, and unit price for all rows in
the PART table on which the item class is HW:

CREATE VI EW HOUSEWARES AS

SELECT PART_NUM PART_DESCRI PTI ON, ON_HAND, PRI CE
FROM PART

VWHERE CLASS = ' HW ;

DATA TYPES (PAGE 71)

Figure A-6 describes the data types that you can use in a CREATE TABLE command.

219

SQL Reference

280

Appendix A

Data Type Description

CHAR(n) Stores a character string n characters long. You use the CHAR type for columns that
contain letters and special characters and for columns containing numbers that will not
be used in any calculations. Because neither sales rep numbers nor customer numbers
will be used in any calculations, for example, the REP_NUM and CUSTOMER_NUM
columns are both assigned theCHAR data type.

VARCHAR(n) An alternative to CHAR that stores a character string up to n characters long. Unlike
CHAR, only the actual character string is stored. If a character string 20 characters long
is stored in a CHAR(30) column, for example, it will occupy 30 characters (20 characters
plus 10 blank spaces). If it is stored in a VARCHAR(30) column, it will only occupy 20
spaces. In general, tables that use VARCHAR instead of CHAR occupy less space, but the
DBMS does not process them as rapidly during queries and updates. However, both are
legitimate choices. This text uses CHAR, but VARCHAR would work equally well.

DATE Stores date data. The specific format in which dates are stored varies from one SQL
implementation to another. In Oracle, dates are enclosed in single quotation marks and
have the form DD-MON-YYYY (for example,'15-OCT-2010" is October 15, 2010). In
Access, dates are enclosed in number signs and are entered using the format
MM/DD/YYYY (for example, #10/15/2010# is October 15, 2010). In SQL Server, use the
DATETIME data type to store dates.

DECIMAL(p,q) Stores a decimal number p digits long with g of these digits being decimal places to the
right of the decimal point. For example, the data type DECIMAL(S,2) represents a number
with three places to the left and two places to the right of the decimal (for example,
100.00). You can use the contents of DECIMAL columns in calculations. You also can use
the NUMBER(p,q) data type in both Oracle and SQL Server to store a decimal number.
Access does not support the DECIMAL data type; use the CURRENCY or NUMBER data
type instead.

INT Stores integers, which are numbers without a decimal part. The valid range is
-2147483648 to 2147483647. You can use the contents of INT columns in calculations.
If you follow the word INT with AUTO_INCREMENT, you create a column for which
SQL will automatically generate a new sequence number each time you add a new
row. This would be the appropriate choice, for example, when you want the DBMS to
generate a value for a primary key.

SMALLINT Stores integers, but uses less space than the INT data type. The valid range is -32768 to
32767. SMALLINT is a better choice than INT when you are certain that the column will
store numbers within the indicated range. You can use the contents of SMALLINT
columns in calculations.

FIGURE A-6 Data types

DELETE ROWS (PAGES 79, 178-180)

Use the DELETE command to delete one or more rows from a table. Figure A-7 describes
the DELETE command.

Description Required?

DELETE table name Indicates the table from which the row or rows Yes
are to be deleted.

WHERE condition Indicates a condition. Those rows for which the No (If you omit the WHERE
condition is true will be retrieved and deleted. clause, all rows will be deleted.)

FIGURE A-7 DELETE command

The following DELETE command deletes any row from the LEVEL1_CUSTOMER table
on which the customer number is 842:

DELETE LEVEL1_CUSTOMVER
VWHERE CUSTOVER _NUM = ' 842",

DESCRIBE (PAGES 87-88)

In Oracle, you can use the DESCRIBE command to list all the columns in a table and their
properties. The following command describes the REP table:

DESCRI BE REP;

Note: In Access, use the Documenter to describe the tables and other objects in a
database.

Note: In SQL Server, execute the sp_columns command to list all the columns in a table.
The following command will list all the columns in the REP table:

Exec sp_colums REP

DROP INDEX (PAGE 217)

Use the DROP INDEX command to delete an index, as shown in Figure A-8.

Clause Description Required?

DROP INDEX index name Indicates the name of the index to be dropped. Yes

FIGURE A-8 DROP INDEX command

The following DROP INDEX command deletes the index named CREDNAME:
DROP | NDEX CREDNANE;

Note: In SQL Server, you must qualify the index name as follows:

DROP | NDEX CUSTOVER. CREDNAME

DROP TABLE (PAGES 70, 189)

Use the DROP TABLE command to delete a table, as shown in Figure A-9.

Clause Description Required?

DROP TABLE table name Indicates name of the table to be dropped. Yes

FIGURE A-9 DROP TABLE command

The following DROP TABLE command deletes the table named LEVEL1_CUSTOMER:
DROP TABLE LEVEL1_CUSTOMER,

281

SQL Reference

282

Appendix A

DROP VIEW (PAGES 208-209)

Use the DROP VIEW command to delete a view, as shown in Figure A-10.

Clause Description Required?

DROP VIEW wiew name Indicates the name of the view to be dropped. Yes
FIGURE A-10 DROP VIEW command

The following DROP VIEW command deletes the view named HSEWRES:
DROP VI EW HSEWRES;

GRANT (PAGES 209-212)

Use the GRANT command to grant privileges to a user. Figure A-11 describes the GRANT
command.

Clause Description Required?
GRANT privilege Indicates the type of privilege(s) to be granted. Yes
ON database object Indicates the database object(s) to which the privilege(s) pertain. Yes
TO user name Indicates the user(s) to whom the privilege(s) are to be granted.
To grant the privilege(s) to all users, use the TO PUBLIC clause. Yes

FIGURE A-11 GRANT command

The following GRANT command grants the user named Johnson the privilege of select-
ing rows from the REP table:

GRANT SELECT
ON REP
TO Johnson;

INSERT INTO (QUERY) (PAGES 172-173)

Use the INSERT INTO command with a query to insert the rows retrieved by a query into
a table. As shown in Figure A-12, you must indicate the name of the table into which the
row(s) will be inserted and the query whose results will be inserted into the named table.

Clause Description Required?

INSERT INTO table name Indicates the name of the table into which the row(s) will be inserted. | Yes

query Indicates the query whose results will be inserted into the table. Yes

FIGURE A-12 INSERT INTO (query) command

The following INSERT INTO command inserts rows selected by a query into the
LEVEL1_CUSTOMER table:

I NSERT | NTO LEVEL1_CUSTOVER

SELECT CUSTOMER _NUM CUSTOMER NAME, BALANCE,
CREDI T_LIM T, REP_NUM

FROM CUSTOVER

VWHERE CREDI T_LIM T = 7500;

INSERT INTO (VALUES) (PAGES 72-75)

Use the INSERT INTO command and the VALUES clause to insert a row into a table by
specifying the values for each of the columns. As shown in Figure A-13, you must indi-
cate the table into which to insert the values, and then list the values to insert in
parentheses.

Description Required?
INSERT INTO table name | Indicates the name of the table into which the row will be inserted. Yes
VALUES (values list) Indicates the values for each of the columns on the new row. Yes

FIGURE A-13 INSERT INTO (values) command

The following INSERT INTO command inserts the values shown in parentheses as a
new row in the REP table:

I NSERT | NTO REP
VALUES
('20","Kaiser',"Valerie','624 Randall',' Grove','FL','33321",20542. 50, 0. 05);

INTEGRITY (PAGES 221-225)

You can use the ALTER TABLE command with an appropriate ADD CHECK,
ADD PRIMARY KEY, or ADD FOREIGN KEY clause to specify integrity. Figure A-14 describes
the ALTER TABLE command for specifying integrity.

Description Required?
ALTER TABLE table name Indicates the table for which integrity is being specified. Yes
integrity clause ADD CHECK, ADD PRIMARY KEY, or ADD FOREIGN KEY Yes

FIGURE A-14 Integrity options

The following ALTER TABLE command changes the PART table so that the only legal
values for the CLASS column are AP, HW, and SG:

ALTER TABLE PART
ADD CHECK (CLASS IN ('AP','HW,'SG));

283

SQL Reference

284

Appendix A

The following ALTER TABLE command changes the REP table so that the REP_NUM
column is the table’s primary key:

ALTER TABLE REP
ADD PRI MARY KEY(REP_NUM) ;

The following ALTER TABLE command changes the CUSTOMER table so that the
REP_NUM column in the CUSTOMER table is a foreign key referencing the primary key of
the REP table:

ALTER TABLE CUSTOVER
ADD FOREI GN KEY(REP_NUM REFERENCES REP;

REVOKE (PAGES 209-212)

Use the REVOKE command to revoke privileges from a user. Figure A-15 describes the
REVOKE command.

Clause Description Required?
REVOKE privilege Indicates the type of privilege(s) to be revoked. Yes
ON database object Indicates the database object(s) to which the privilege pertains. Yes
FROM user name Indicates the user name(s) from whom the privilege(s) are to be revoked. Yes

FIGURE A-15 REVOKE command

The following REVOKE command revokes the SELECT privilege for the REP table from
the user named Johnson:

REVOKE SELECT
ON REP
FROM Johnson;

ROLLBACK (PAGES 177-178)

Use the ROLLBACK command to reverse (undo) all updates since the execution of the
previous COMMIT command. If no COMMIT command has been executed, the command
will undo all changes made during the current work session. Figure A-16 describes the
ROLLBACK command.

Clause Description Required?

ROLLBACK Indicates that a rollback is to be performed. Yes

FIGURE A-16 ROLLBACK command

The following command reverses all updates made since the time of the last COMMIT
command:

ROLLBACK;

Note: In SQL Server, the following command reverses all updates made since the time
of the last COMMIT command:

ROLLBACK TRANSACTI ON

Note: Access does not support the ROLLBACK command.

SELECT (PAGES 75-78,

98-127)

285

Use the SELECT command to retrieve data from a table or from multiple tables. Figure A-17
describes the SELECT command.

Clause Description Required?
SELECT column or expression list Indicates the column(s) and/or expression(s) Yes

to be retrieved.
FROM table list Indicates the table(s) required for the query. Yes

WHERE condition Indicates one or more conditions. Only the No (If you omit the
rows for which the condition(s) are true will WHERE clause, all
be retrieved. rows will be retrieved.)
GROUP BY column list Indicates column(s) on which rows are to be No (If you omit the

grouped.

GROUP BY clause, no
grouping will occur.)

HAVING condition involving groups

Indicates a condition for groups. Only groups
for which the condition is true will be
included in query results. Use the HAVING
clause only if the query output is grouped.

No (If you omit the
HAVING clause, all
groups will be included.)

ORDER BY column or expression list

Indicates column(s) on which the query
output is to be sorted.

FIGURE A-17 SELECT command

No (If you omit the
ORDER BY clause, no
sorting will occur.)

The following SELECT command joins the ORDERS and ORDER_LINE tables. The
command selects the customer number, order number, order date, and the sum of the prod-
uct of the number ordered and unit price, renamed as ORDER_TOTAL. Records are
grouped by order number, customer number, and order date. Only groups on which the
order total is greater than 1,000 are included. Groups are ordered by order number.

SELECT CUSTOMER NUM ORDERS. ORDER_NUM ORDER DATE,
SUM NUM_ORDERED * QUOTED PRI CE) AS ORDER TOTAL

FROM ORDERS, ORDER LI NE

VWHERE ORDERS. ORDER_NUM = ORDER_LI NE. ORDER_NUM
GROUP BY ORDERS. ORDER_NUM CUSTOVER _NUM ORDER DATE
HAVI NG SUM NUM_ORDERED * QUOTED PRI CE) > 1000

ORDER BY ORDERS. ORDER_NUM

SQL Reference

286

Appendix A

SUBQUERIES (PAGES 120-123, 142-144)

You can use one query within another. The inner query is called a subquery and it is
evaluated first. The outer query is evaluated next. The following command contains a sub-
query that produces a list of part numbers included in order number 21610:

SELECT PART_DESCRI PTI ON
FROM PART

WHERE PART_NUM | N

(SELECT PART_NUM

FROM ORDER LI NE

WHERE ORDER NUM = ' 21610') ;

UNION, INTERSECT, AND MINUS (PAGES
152-157)

Connecting two SELECT commands with the UNION operator produces all the rows that
would be in the results of the first query, the second query, or both queries. Connecting two
SELECT commands with the INTERSECT operator produces all the rows that would be in
the results of both queries. Connecting two SELECT commands with the MINUS opera-
tor produces all the rows that would be in the results of the first query, but not in the results
of the second query. Figure A-18 describes the UNION, INTERSECT, and MINUS operators.

Operator Description

UNION Produces all the rows that would be in the results of the first query, the second query,
or both queries.

INTERSECT Produces all the rows that would be in the results of both queries.

MINUS Produces all the rows that would be in the results of the first query but not in the
results of the second query.

FIGURE A-18 UNION, INTERSECT, and MINUS operators

Note: Access and SQL Server support the UNION operation. SQL Server supports the
INTERSECT command while Access does not. Neither SQL Server nor Microsoft Access
support the MINUS operator.

The following query displays the customer number and customer name of all custom-
ers that are represented by sales rep 65, or that have orders, or both:

SELECT CUSTOMER _NUM CUSTOVER_NAME

FROM CUSTQOVER

VWHERE REP_NUM = ' 65'

UNI ON

SELECT CUSTOMVER. CUSTOVER _NUM CUSTOVER_NAME

FROM CUSTOVER, ORDERS

VWHERE CUSTOMER. CUSTOVER_NUM = ORDERS. CUSTOVER_NUM

The following query displays the customer number and customer name of all custom-
ers that are represented by sales rep 65 and that have orders:

SELECT CUSTOMER_NUM CUSTOVER_NAME

FROM CUSTOVER

VWHERE REP_NUM = ' 65'

| NTERSECT

SELECT CUSTOMER. CUSTOVER_NUM CUSTOVER_NAME

FROM CUSTOVER, ORDERS

VWHERE CUSTOVER. CUSTOVER_NUM = CRDERS. CUSTOVER_NUM

The following query displays the customer number and customer name of all custom-
ers that are represented by sales rep 65 but that do not have orders:

SELECT CUSTOMER _NUM CUSTOVER NAME

FROM CUSTOVER

VWHERE REP_NUM = ' 65'

M NUS

SELECT CUSTOMER. CUSTOVER_NUM CUSTOVER_NAME

FROM CUSTOVER, ORDERS

VWHERE CUSTOMER. CUSTOMVER _NUM = CORDERS. CUSTOVER_NUM

UPDATE (PAGES 78-80, 173-175)

Use the UPDATE command to change the contents of one or more rows in a table. Figure A-19
describes the UPDATE command.

Clause Description Required?

UPDATE table name Indicates the table whose contents will be changed. | Yes

SET column = expression | Indicates the column to be changed, along with an Yes
expression that provides the new value.

WHERE condition Indicates a condition. The change will occur only No (If you omit the WIHERE
on those rows for which the condition is true. clause, all rows will be updated.)

FIGURE A-19 UPDATE command

The following UPDATE command changes the customer name on the row in
LEVEL1_CUSTOMER on which the customer number is 842 to All Season Sport:

UPDATE LEVEL1_CUSTOVER
SET CUSTOVER_NAME = 'All Season Sport'
WHERE CUSTOMER_NUM = ' 842';

287

SQL Reference

This page intentionally left blank

APPENDIX

HOW DO | REFERENCE

This appendix answers frequently asked questions about how to accomplish a variety of tasks using SQL.

Use the second column to locate the correct section in Appendix A that answers your question.

290

Appendix B

How Do | Review the Named Section(s) in Appendix A

Add columns to an existing table?

ALTER TABLE

Add rows?

INSERT INTO (Values)

Calculate a statistic (sum, average,
maximum, minimum, or count)?

1. SELECT
2. Column or Expression List (SELECT Clause)
(Use the appropriate function in the query.)

Change rows?

UPDATE

Create a data type for a column?

1. Data Types
2. CREATE TABLE

Create a table? CREATE TABLE
Create a view? CREATE VIEW
Create an index? CREATE INDEX
Describe a table’s layout? DESCRIBE
Delete a table? DROP TABLE
Delete a view? DROP VIEW
Delete an index? DROP INDEX

Delete rows?

DELETE Rows

Drop a table? DROP TABLE
Drop a view? DROP VIEW
Drop an index? DROP INDEX
Grant a privilege? GRANT
Group data in a query? SELECT

(Use a GROUP BY clause.)

Insert rows?

INSERT INTO (Values)

Insert rows using a query?

INSERT INTO (Query)

Join tables?

Conditions
(Include a WHERE clause to relate the tables.)

Make updates permanent?

COMMIT

Order query results?

SELECT
(Use the ORDER BY clause.)

Prohibit nulls?

1. CREATE TABLE

2. ALTER TABLE

(Include the NOT NULL clause in a

CREATE TABLE or ALTER TABLE command.)

Remove a privilege?

REVOKE

Remove rows?

DELETE Rows

Retrieve all columns?

FIGURE B-1 How Do | reference

1. SELECT
2. Column or Expression List (SELECT Clause)
(Type *in the SELECT clause.)

How Do | Review the Named Section(s) in Appendix A

Retrieve all rows? SELECT
(Omit the WIHERE clause.) 2918
Retrieve only certain columns? 1. SELECT

2. Column or Expression List (SELECT Clause)
(Type the list of columns in the SELECT clause.)

Revoke a privilege? REVOKE

Select all columns? 1. SELECT
2. Column or Expression List (SELECT Clause)
(Type *in the SELECT clause.)

Select all rows? SELECT
(Omit the WHERE clause.)

Select only certain columns? 1. SELECT
2. Column or Expression List (SELECT Clause)
(Type the list of columns in the SELECT clause.)

Select only certain rows? 1. SELECT
2. Conditions
(Use a WHERE clause.)

Sort query results? SELECT
(Use an ORDER BY clause.)

Specify a foreign key? Integrity
(Use the ADD FOREIGN KEY clause in an ALTER TABLE command.)

Specify a primary key? Integrity

(Use the ADD PRIMARY KEY clause in an ALTER TABLE command.)
Specify a privilege? GRANT
Specify integrity? Integrity

(Use an ADD CHECK, ADD PRIMARY KEY, and/or ADD FOREIGN KEY
clause in an ALTER TABLE command.)

Specify legal values? Integrity
(Use an ADD CHECK clause in an ALTER TABLE command.)

Undo updates? ROLLBACK
Update rows? UPDATE
Use a calculated field? 1. SELECT

2. Column or Expression List (SELECT Clause)
(Enter a calculation in the query.)

Use a compound condition? 1. SELECT
2. Conditions
(Use simple conditions connected by AND, OR, or NOT in a WHERE clause.)

Use a compound condition Conditions
in a query?

FIGURE B-1 How Do | reference (continued)

How Do | Reference

How Do | Review the Named Section(s) in Appendix A

Use a condition in a query? 1. SELECT
2. Conditions
(Use a WHERE clause.)

292

Use a subquery? Subqueries

Use a wildcard? 1. SELECT
2. Conditions
(Use LIKE and a wildcard in a WHERE clause.)

Use an alias? Aliases
(Enter an alias after the name of each table in the FROM clause.)

Use set operations (union, UNION, INTERSECT, and MINUS
intersection, difference)? (Connect two SELECT commands with UNION, INTERSECT, or MINUS.)

FIGURE B-1 How Do | reference (continued)

Appendix B

APPENDIX

ANSWERS TO
ODD-NUMBERED
REVIEW QUESTIONS

CHAPTER 1—INTRODUCTION TO PREMIERE
PRODUCTS, HENRY BOOKS, AND
ALEXAMARA MARINA GROUP

Due to the nature of the material in Chapter 1, there are no Review Questions.

CHAPTER 2—DATABASE DESIGN
FUNDAMENTALS

1. An entity is a person, place, thing, or event.

3. A relationship is an association between tables (entities). A one-to-many rela-
tionship between two tables is a relationship in which each row in the first table
can be associated with many rows in the second table, but each row in the sec-
ond table is associated with only one row in the first table.

5. A relation is a two-dimensional table in which the entries in the table are single-
valued (each location in the table contains a single entry), each column has a dis-
tinct name (or attribute name), all values in a column match this name, the order
of the rows and columns is immaterial, and each row contains unique values.

7. For each table, you write the name of the table and then within parentheses list
all of the columns in the table. Underline the primary keys.

BRANCH (BRANCH _NUM BRANCH_NANME, BRANCH_LOCATI ON,
NUM_EVMPLOYEES)

PUBLI SHER (PUBLI SHER CODE, PUBLI SHER_NAME, ClITY)

AUTHOR (AUTHOR NUM_AUTHOR LAST, AUTHOR FI RST)

BOOK (BOOK_CODE, TITLE, PUBLI SHER CODE, TYPE, PRI CE,
PAPERBACK)

WROTE (BOOK_CODE, AUTHOR NUM SEQUENCE)

| N\VENTORY (BOOK_CCDE, BRANCH_NUM ON_HAND)

9. A column (attribute), B, is functionally dependent on another column (or a col-
lection of columns), A, if at any point in time a value for A determines a single
value for B.

11. Functional dependencies:

DEPARTMENT _NUM —» DEPARTMENT _NAVE
ADVI SOR_NUM > ADVI SOR_LAST_NAME, ADVI SOR_FI RST_NAME,
DEPARTVENT _NUM
294 COURSE_CODE —» DESCRI PTI ON
STUDENT _NUM —» STUDENT _LAST NAME, STUDENT_FI RST_NAME,
ADVI SOR_NUM
STUDENT_NUM COURSE_CCODE —» GRADE

Relations:

DEPARTMENT (DEPARTMENT NUM DEPARTNVENT NANE)

ADVI SOR (ADVI SOR NUM _ADVI SOR_LAST NAME, ADVI SOR FI RST_NAME,
DEPARTVENT_NUM)

COURSE (COURSE_CCODE, DESCRI PTI ON)

STUDENT (STUDENT_NUM STUDENT LAST NAMVE, STUDENT FI RST_NAMNE,
ADVI SOR_NUM)

STUDENT _COURSE (STUDENT NUM COURSE CODE, GRADE)

Entity-relationship diagram: (Note: Your rectangles can be in different positions
as long as they are connected by the same arrows.)

DEPARTMENT

ADVISOR

STUDENT STUDENT_COURSE COURSE

FIGURE C-1

13. A table (relation) is in second normal form when it is in first normal form and
no nonkey column is dependent on only a portion of the primary key. When
a table is not in second normal form, the table contains redundancy, which
leads to a variety of update anomalies. A change in a value can require not just
one change, but several. There is the possibility of inconsistent data. Adding
additional data to the database might not be possible without creating artifi-
cial values for part of the key. Finally, deletions of certain items can result in
inadvertently deleting crucial information from the database.

15.
STUDENT (STUDENT_NUM STUDENT_LAST_NAME, STUDENT_FI RST_NANME,

ADVI SOR_NUM

ADVI SOR (ADVI SOR_NUM ADVI SOR_LAST_NAME, ADVI SOR_FI RST_NANME)

COURSE (COURSE_CODE, DESCRI PTI ON)
STUDENT_COURSE (STUDENT_NUM COURSE_CODE, GRADE)

Appendix C

CHAPTER 3—CREATING TABLES

1. Use the CREATE TABLE command to create a table by typing the table name
and then listing within a single set of parentheses the columns in the table. 205
CHAR, VARCHAR, DATE, DECIMAL, INT, SMALLINT

Answers will vary. Answers should mention that the difference between CHAR
and VARCIAR is that CHAR is fixed length, while VARCHAR is variable length.
This means that CHAR is always the same size and takes up the same amount
of bytes, while VARCHAR varies. VARCHAR is a good choice when you are
storing email addresses and comments that can vary in size.

Use the INSERT command.

Use the UPDATE command.

11. Use the DESCRIBE command.

o

o~

CHAPTER 4—SINGLE-TABLE QUERIES

1. The basic form of the SELECT command is SELECT-FROM-WHERE. Specify
the columns to be listed after the word SELECT (or type * to select all col-
umns), and then specify the table name that contains these columns after the
word FROM. Optionally, you can include condition(s) after the word WHERE.

3. You can form a compound condition by combining simple conditions and using
the operators AND, OR, or NOT.

5. Use arithmetic operators and write the computation in place of a column name.
You can assign a name to the computation by following the computation with
the word AS and then the desired name.

7. In Oracle, the percent (%) wildcard represents any collection of characters. The
underscore (_) wildcard represents any single character.
9. Use an ORDER BY clause.

11. To sort data in descending order, follow the sort key with the DESC operator.

13. To avoid duplicates, precede the column name with the DISTINCT operator.

15. Use a GROUP BY clause.

17. Use the IS NULL operator in the WHERE clause.

CHAPTER 5—MULTIPLE-TABLE QUERIES

1. Indicate in the SELECT clause all columns to display, list in the FROM clause

all tables to join, and then include in the WHERE clause any conditions requir-

ing values in matching columns to be equal.

IN and EXISTS

An alias is an alternate name for a table. To specify an alias in SQL, follow the

name of the table with the name of the alias. You use the alias just like a table

name throughout the SQL command.

7. Use the UNION, INTERSECT, and MINUS operators to create a union, intersec-
tion, and difference of two tables. To perform any of these operations, the tables
must be union compatible.

o

Answers to Odd-Numbered Review Questions

11.

296

13.

15.

When the ALL operator precedes a subquery, the condition is true only if it sat-
isfies all values produced by the subquery.

In an inner join, only matching rows from both tables are included. You can
use the INNER JOIN clause to perform an inner join.

In a right outer join, all rows from the table on the right will be included regard-
less of whether they match rows from the table on the left. Rows from the table
on the left will be included only if they match. You can use the RIGHT JOIN
clause to perform a right outer join.

Answers will vary. Answers should note that an equi-join is similar to an inner
join except that both matching columns appear in the results. A natural join
is the same as the inner join discussed in Chapter 5. A cross join is the same as
a Cartesian product.

CHAPTER 6—UPDATING DATA

N =

11.

13.

CREATE TABLE

Use the INSERT command with a SELECT clause.

DELETE

In Oracle, use the ROLLBACK command. In SQL Server, use the ROLLBACK
TRANSACTION command. Any updates made since the most recent COMMIT
command (or COMMIT TRANSACTION command in SQL Server) are reversed.
The clause is SET followed by the column name, followed by an equals sign
(=) and the word NULL.

In Oracle, use the ALTER TABLE command with a MODIFY clause. In
SQL Server, use the ALTER TABLE command with an ALTER COLUMN clause.
Use a make-table query to create a table from another table. The equivalent
SQL commands to the Access make-table query are CREATE TABLE, SELECT,
and INSERT.

CHAPTER 7—DATABASE ADMINISTRATION

Appendix C

A view contains data that is derived from existing base tables when users
attempt to access the view.

A defining query is the portion of the CREATE VIEW command that describes
the data to include in a view.

Views provide data independence, allow database access control, and sim-
plify the database structure for users.

DROP VIEW

REVOKE

Use the CREATE INDEX command to create an index. Use the CREATE
UNIQUE INDEX command to create a unique index. A unique index allows only
unique values in the column (or columns) on which the index is created.

The DBMS

Answers will vary. Answers should note that a data dictionary is a catalog that
stores data about the entities, attributes, relationships, programs, and other

17.

19.
21.

objects in a database. Some items found in a data dictionary include syn-
onyms for attributes, detailed descriptions of each table and attribute in the
database, referential integrity constraints, and database schema definitions.
The DBMS updates the system catalog automatically when users make change
to the database, such as creating, altering, or dropping tables or creating or
dropping indexes.

Use the CHECK clause of the ALTER TABLE command.

Use the ADD FOREIGN KEY clause of the ALTER TABLE command.

297

CHAPTER 8—SQL FUNCTIONS AND
PROCEDURES

9]

Use the UPPER function to display letters in uppercase in Oracle and SQL
Server. In Access, use the UCASE() function. Use the LOWER function to dis-
play letters in lowercase in Oracle and SQL Server. In Access, use the
LCASE() function.

To add months to a date, use the ADD_MONTHS function (Oracle), or the
DATEADD() function (Access and SQL Server). To add days to a date, add the
desired number of days to a date. To find the number of days between two
dates, subtract the earlier date from the later date.

In Oracle, separate the column names with two vertical lines (Il) in the SELECT
clause. In SQL Server, separate the column names with the + symbol. In
Access, separate the column names with the & symbol.

A stored procedure is a file that is stored on a server and contains commands
that can be used repeatedly. Stored procedures eliminate the need for users
to retype a query each time it is needed.

In PL/SQL procedures, you declare variables first before any procedural code.
Use the INTO clause to place the results of a SELECT statement in variables.
When retrieving multiple rows with a SELECT statement, use a cursor.
FETCH

To use SQL commands in Access, create the command in a string variable. To
run the command stored in the string variable, use the DoCmd.RunSQL
command.

To move to the next record in an Access recordset, use the MoveNext command.
The INSERTED and DELETED tables are temporary system tables created by SQL
Server. The INSERTED table contains the most recent (updated) values in a record
and the DELETED table contains the previous (before update) value.

Answers to Odd-Numbered Review Questions

This page intentionally left blank

INDEX

@repnum, 257-258

Access (Microsoft), 187

ALTER TABLE command, 187
and PL/SQL programs, 234
changing column names in, 200
character functions in, 236
concatenating columns in, 241
creating indexes in, 217
creating views in, 197

data types in, 172, 279
Documenter, 281

Documenter tool, 86, 186, 218
parameter queries in, 242
query results display in, 99
rollbacks in, 180-181

running SQL commands, 68
saving SQL commands, 82
SELECT command, 77
specifying foreign keys in, 223
specifying primary keys in, 222
using SQL in, 259, 263
validation rules in, 224
wildeards in, 111, 276

working with dates in, 238, 240

access control, 209

security and, 209, 212

ADD clause, 183
ADD FOREIGN KEY clause, 222

ADD PRIMARY KEY clause, 222
adding, 207
rows, 207
additions, 44
to tables, 44-45, 48
ADD_MONTHS function, 237
aggregate functions, 114
Alexamara Marina Group (example), 169
exercises, 169
Alexamara Marina Group database
(example), 231-232
exercises, 59-60, 94, 134, 192-193,
271-272
introduction to, 2, 15, 19
sample data, 15, 19
aliases, 273
for self-joins, 147
using, 146
ALL operator, 157, 159, 277
ALTER COLUMN clause, 187
ALTER TABLE command, 182, 188,
273-274
ADD PRIMARY KEY clause, 222
CHECK clause, 224
integrity constraints with, 221-222
specifying integrity with, 283-284
AND condition, 103
AND operator, 103, 276
ANY operator, 157, 159, 277
arguments, 235

arithmetic operators, 107

300

Index

AS clause, 108, 117
asterisk (*), 100, 111
attributes, 26
database, 26, 28
identifying, 34
Autocommit, 177, 181
AVG function, 116, 275

i B

base tables, 196

joins of, updating views of, 205, 208
BETWEEN operator, 106-107, 276
Boyce-Codd normal form (BCNF), 49

breadcrumbs, 66

i C

calling, 244

stored procedures, 244
candidate keys, 33, 48-49
Cartesian products, 163-164
categories, 2

relationships between, 2
changing, 247

rows, 247
CHAR data type, 71
character functions, 235-236
CHECK clause, 224
child table, 223
client, 242
client/server systems, 242
CLOSE command, 249, 252, 257-258
column names, 26

conventions for, 26
qualifying, 29, 136-137

columns, 183
adding, 183
changing values to null, 181-182
computed, 107, 110, 274
concatenating, 240, 242
decreasing length of, 187
determinant, 48-49
in databases, 28
listing, 88, 281
nokey, 45
renaming, when creating views, 199-200
retrieving, 98, 100
retrieving single, 242, 244, 256
selecting, 274
using self-joins on primary key, 148, 150
commands, 95-96
reversing, 284-285
COMMIT command, 171, 177-178, 275
comparison operators, 101
compound conditions, 103, 106, 276
in updates, 175
computations, 107, 110
computed columns, 107, 110, 274
concatenation, 30
of columns, 240, 242
conditions, 275, 277
ALL, 277
AND, 103
ANY, 277
BETWEEN, 276
compound, 103, 106, 276
EXISTS, 277
IN, 276
LIKE, 276
NOT, 105-106
nulls in, 128

OR, 104
simple, 101-102, 104, 275
correlated subqueries, 142
COUNT function, 114-115, 117, 275
CREATE INDEX command, 215, 217, 277
CREATE PROCEDURE command,
243-244, 256

CREATE TABLE command, 66, 69, 72, 82,

86, 188, 278-279
integrity constraints with, 221-222
table structure and, 87-88
with errors, 69-70

CREATE UNIQUE INDEX command, 217

CREATE VIEW command, 196, 201

creating, 215
indexes, 215, 217
stored procedures, 242, 244

CURRENCY data type, 68, 172, 279

cursors, 255
advantages of, 255
closing, 252
complete procedure using, 252-253
complex, 254-255, 258-259
fetching rows from, 251-252
opening, 250
using, 249-250, 257-258

D n

data, 173
changing, in table, 173, 175
changing, with stored procedure,

247, 256

customizing display of, 203
deleting, with procedure, 248, 257
deleting, with Visual Basic, 259-260
grouping, 123, 128

301

inconsistent, 44, 48
inserting, with Visual Basic, 262
sorting, 112, 114
updating, using views, 203, 208
updating, with Visual Basic, 261-262
data dictionary, 218
data types, 66, 279
assigning to variables, 244
using, 71
database administration, 196
creating and using views, 196, 203
indexes and, 212, 217
integrity constraints and, 221, 225
introduction to, 195-196
security and, 209, 212
system catalog and, 218, 221
updating data using views, 203, 208
database administrator, 195
database design, 52
diagrams for, 52, 55
introduction to, 23
method for, 34-35
process example, 36, 41
relations and, 26, 29
requirements, 35-36
databases, 24
concepts of, 24, 29
defined, 2
Datasheet view, 68
DATE data type, 71
DATE() function, 240
DATEADD() function, 238
dates, 237
working with, 237, 240
DBA_TABLES, 218
DBA_TAB_COLUMNS, 218
DBA_VIEWS, 218

DBMS_OUTPUT, 244
Index

302

Index

DEALLOCATE command, 257-258
Debug.Print command, 260
DECIMAL data type, 68, 71, 172, 279
DECLARE statement, 257-258
defining query, 196, 199
DELETE command, 171, 178, 181, 208,
248-249, 259-260, 280

deleting, 259

data with Visual Basic, 259-260

data, with procedure, 248, 257

indexes, 281

rows, 178, 181, 280

tables, 281

views, 282
deletions, 45

from database, 45, 48
DESC operator, 113
DESCRIBE command, 87, 187-188, 281
determinant, 48-49
diagrams, 52

entity-relationship (E-R), 52, 55
DISTINCT operator, 117, 119, 204, 274
DoCmd.RunSQL command, 259
Documenter, 281
Documenter tool, 86, 186, 218
DROP INDEX command, 217, 281
DROP TABLE command, 70, 189, 281
DROP VIEW command, 208-209, 282
dropping, 217

indexes, 217

views, 208-209

i E

entities, 26, 34
entity-relationship (E-R) diagrams, 52, 55

error handling, 245

with stored procedures, 245-246
EXCEPTION clause, 245-246
EXEC command, 256
EXISTS operator, 277

and joins, 141-142

i F

FETCH command, 249, 251-252, 254,
257-258
fields, 28
in databases, 28
first normal form (1NF), 41, 43
FLOOR function, 237
foreign keys, 222-223
FROM clause, 98
and joins, 151
full outer joins, 161
functional dependence, 29, 31, 34
functions, 275
aggregate, 114
AS clause with, 117
AVG function, 116
character, 235-236
COUNT function, 114-115, 117
introduction to, 233-234
MAX function, 116
MIN function, 116
number, 236-237
SUM function, 115-116
using, 114, 119, 235, 240

i G

GETDATE() function, 240
GRANT command, 209, 212, 282

GROUP BY clause, 123, 125, 145
grouping data, 123
in databases, 123, 128

H T

HAVING clause, 125, 128
Henry Books database (example), 229, 231
exercises, 59, 91, 133-134, 168-169, 192,
270-271
introduction to, 2, 8, 14
sample data, 8, 13

Immediate window, 260-261
IN clause, 111-112
IN operator, 111-112, 276
and joins, 139, 141
using, 140-141
inconsistent data, 44, 48
indexes, 215
creating, 215, 217, 277
deleting, 281
described, 212, 215
dropping, 217
unique, 217
inner joins, 160-161
INSERT command, 72, 75, 82, 86, 171, 188,
203-204, 207, 262
adding rows using, 176-177
in CUSTOMER table, 173
INSERT INTO (query) command, 282
INSERT INTO (values) command, 283
inserting, 283
inserting, 262
data, with Visual Basic, 262

303

INT data type, 71

integrity, 283-284

integrity constraints, 221, 225

integrity support, 221-222

INTERSECT operator, 152, 155-156,
286-287

IS NOT NULL operator, 128

IS NULL operator, 128

V.

joining, 143
multiple tables, 143-144, 150, 152
two tables, 136, 142
joins, 160
inner, 160-161
outer, 161, 163
self-joins, 147, 149
updating views involving, 205, 208

K T

key, 112-113

L .

LCASE function, 236
left outer joins, 161
LIKE conditions, 276
LIKE operator, 110-111
LOWER function, 236

M T

major sort key, 113
MAX function, 116, 275
MIN function, 116, 275

Index

304

Index

minor sort key, 113

MINUS operator, 152, 156-157, 286-287
MODIFY clause, 186, 188

multiple-table queries, 135, 169

i N

names, 108
assigning, to computed columns, 108
naming conventions, 26
nested subqueries, 142, 144
nesting, 120
queries, 120, 123
nokey column, 45
nonprocedural languages, 234, 272
normal forms, 41
normalization, 41, 52
Boyce-Codd normal form (BCNF), 49
first normal form (INF), 41, 43
goal of, 41
second normal form (2NF), 43, 47
third normal form (3NF), 47, 52
NOT condition, 105-106
NOT NULL clause, 72
NOT operator, 103, 276
null data value, 72
null values, 128
in conditions, 128
in SUM, AVG, MAX, MIN functions, 117
nulls, 183
changing values to, 181-182, 187-188
inserting rows with, 75
using, 72
NUMBER data type, 68
number functions, 236-237
numbers, 106

in queries, 106

i o

one-to-many relationships, 26
OPEN command, 249-250, 257-258
operations, 163
product, 163-164
set, 152, 157
special, 160, 164
optimization, 144
OR condition, 104
OR operator, 103, 276
Oracle, 163
outer joins in, 163
system catalog and, 218
Oracle Database Express Edition, 99
query results display in, 99
starting, 62, 64
order, 6
ORDER BY clause, 112, 114, 136, 201
ORDERS table, 6-7
outer joins, 161, 163

i P

parameter queries, 242
parent table, 223
percent (%) wildcard, 276
percent sign (%), 110
PL/SQL, 234
creating stored procedures, 242, 244
cursors in, 249, 255
error handling in, 245-246
stored procedures in, 245, 255
PL/SQL commands, 243
Premier Products database (example), 228
exercises, 228-229
integrity constraints in, 221-222

Premiere Products database (example), 36
design process for, 36, 41
E-R diagram of, 52, 55
exercises, 58-59, 90-91, 132-133,
167-168, 191-192, 269-270
introduction to, 2, 8
sample data, 3, 6, 25
sample order, 2-3
table structure, 6-7
primary key columns, 148
using self-joins on, 148, 150
primary keys, 222
adding, 222
in databases, 31, 34
normal forms and, 45, 47
shorthand representation of, 33
with joins, 208
primary sort key, 113
privileges, 282
granting to users, 282
revoking, 284
user, 209, 212
procedural code, 244
procedural languages, 234
procedures, 272
products, 163-164

Q |

queries, 144
comprehensive example, 144-145
constructing simple, 98, 112
defined, 98
defining, 196
multiple-table, 135, 169
nesting, 120, 123

parameter, 242

305

saving as stored procedures, 242, 244
subqueries, 121, 123
using aliases in, 146

using SELECT command, 98, 112
question mark (?), 111

R i

records, 28
in databases, 28

redundancy, 44

relational databases, 24
concepts of, 24, 29
functional dependence in, 29, 31, 34
introduction to, 24, 26
normalization of, 41, 52
shorthand for, 28-29

relations, 27
in databases, 27-28
unnormalized, 41

relationships, 26
in databases, 26, 28
one-to-many, 26

repeating groups, 27-28

review questions, 227
database administration, 227-228
multiple-table queries, 166-167
single-table queries, 131-132
SQL, 89-90
updating data, 190-191

REVOKE command, 211-212, 284

right outer joins, 161

ROLLBACK command, 171, 177-178,

180-181, 284-285

rollbacks, 180
executing, 180-181

ROUND function, 236-237

Index

306

Index

row-and-column subset views, 203
updating, 203, 205

rows, 176
adding, 176-177, 207
changing, with update procedure, 247
counting, 114-115
cursors with, 249, 255
deleting, 178, 181, 280
deleting, with procedure, 248
grouping, 123, 128
in databases, 28
inserting, 72, 75, 282-283
restricting, in join, 138-140
retrieving, 98, 100
retrieving single, 242, 244, 256
selecting multiple, 249, 255, 262-263
updating, 178, 181, 274

RTRIM function, 240-241

I S

script files, 242-243
seript repository, 80
scripts, 63-64, 80, 82
second normal form (2NF), 43, 47
secondary sort key, 113
security, 209
access control and, 209, 212
provided by views, 203
SELECT clause, 98
ALL operator with, 157, 159
and joins, 145, 151-152
ANY operator with, 158
SELECT command, 75, 78, 285
counting rows using, 114-115
described, 98

for column and row retrieval, 98, 100

introduction to, 97
retrieving multiple rows using, 249,
262-263
sorting data with, 112-113
WHERE clause in, 100, 103
with compound conditions, 103, 106
with computed columns, 107, 110
with GROUP BY clause, 123, 125
with IN clause, 111-112
with LIKE operator, 110-111
self-joins, 148
incorrect, 148
on primary key column, 148, 150
using, 147-148
SEQUEL, 61
server, 242
set operations, 152, 157
SET SERVEROUTPUT ON command, 244
simple conditions, 101-102, 104, 275
slash (/), 244
SMALLINT data type, 71
Social Security numbers, 33
as primary key, 33
sort key, 112-113
sorting, 112, 114
sp_columns stored procedure, 88
sp_tables procedure, 218
specific functions, 272
SQL, 221
integrity constraints in, 221, 225
SQL (Structured Query Language), 234
extensions, 234
functions, 235, 240
introduction to, 61-62
scripts, 63-64
using in Access, 259, 263

using in programming environment, 234

SQL commands, 95-96
comparison operators in, 101
correcting errors in, 69-70
creating and running, 62, 66
embedding, in another language, 234
entering, 65-66
in Access, 68
saving, 80, 82
storing in string variable, 259-260
triggers with, 259, 263
SQL Scripts option, 63-64
SQL Server, 187
ALTER COLUMN clause, 187
COMMIT and ROLLBACK
commands, 178
concatenating columns in, 242
listing columns in, 186
nulls in, 182
ordering query results in, 201
query results display in, 99
stored procedures, 218
triggers in, 266
using T-SQL in, 256, 259
working with dates in, 238, 240
SQL Server (Microsoft), 69
scripts, 82
SELECT command, 78
sp_columns, 88
SQL Server Management Studio, 69
statistics, 208
updating views involving, 208
stored procedures, 218
calling, 244
described, 242
error handling, 245-246
for selecting multiple rows, 249, 255
illustration of, 242, 244
in T-SQL, 256, 259

307

in Visual Basic, 259, 263

triggers, 264, 267

update procedures, 247-248, 256

using cursors in, 249, 255
subqueries, 121, 123, 286

ALL and ANY operators with, 157, 159

correlated, 142

nested, 142, 144
SUM (BALANCE) function, 235
SUM function, 115-116, 275
SYSCOLUMNS, 218
SYSDATE function, 239
SYSTABLES, 218
system catalog, 218, 221
SYSVIEWS, 218

T-SQL, 272

Table Design view, 68

tables, 72
adding rows, 72, 75
adding rows to, 176-177
aliases for, 146
base, 196
changing data in existing, 173, 175
changing structure of, 182, 188
changing values to null in, 181-182
correcting errors in, 78, 80
creating, 66, 69, 82, 86, 278-279
creating new from existing, 172-173
data types, 71
deleting, 281
deleting rows from, 178, 181, 248
describing, 87-88
difference of, 152, 156-157
dropping, 70, 189

Index

308

Index

foreign keys for, 222-223
intersection of, 152, 155-156
joining multiple, 143-144
joining several, 150, 152
joining two, 136, 142
naming conventions, 26
normalization of, 41, 52
primary keys of, 31, 34
product of two, 163-164
querying multiple, 135, 169
redundancy in, 44
relations in, 26, 29
repeating groups in, 27
self-joins, 147, 149
system catalog and, 218, 221
union compatible, 153
union of, 152-153, 155
updating rows in, 178, 181
viewing data, 75, 78

third normal form (3NF), 47, 52

Transact-SQL (T-SQL), 234
cursors in, 257, 259
retrieving single row and column, 256
stored procedures in, 256, 259
using in SQL Server, 256, 259

transactions, 178

triggers, 264, 267

tuples, 28

I u

UCASE function, 236

underscore (_), 111

underscore (_) wildecard, 276

UNION operator, 152-153, 155, 286-287
union-compatible tables, 153

unique indexes, 217

unnormalized relations, 41
update anomalies, 44, 48
UPDATE command, 78, 80, 171, 173, 175,
179, 181, 183-184, 188, 208, 247, 249,
260-261, 274
update procedures, 247-248, 256
updates, 177
committing, 177-178
reversing, 284-285
roll backs, 177-178
to tables, 44, 48
updating, 203
data, using views, 203, 208
data, with Visual Basic, 260-261
rows, 178, 181
table data, 173, 175
table structure, 182, 188
UPPER function, 235-236
user access, 209, 212
user privileges, 282
granting, 282
revoking, 284

s v

VALUES command, 75
VARCIIAR data type, 71
variable names, 244

in PL/SQL, 244
variables, 244

assigning data type to, 244
views, 202

benefits of, 202-203

creating, 279

creating and using, 196, 203

deleting, 282

dropping, 208-209

involving joins, 205, 208
involving statistics, 208
row-and-column subset views, 203, 205
updating data using, 203, 208

Visual Basic, 259
deleting data with, 259-260
finding multiple rows with, 262-263
inserting data with, 262
running code in, 260-261
updating data with, 260-261

309

w .

WHERE clause, 136
and joins, 136, 138-139, 150-151
described, 98
using, 100, 103
vs. HAVING clause, 125, 128
wildeards, 110-111, 276
WITH GRANT OPTION clause, 211-212

Index

	Front Cover
	Title Page
	Copyright
	Table of Contents
	Preface
	Chapter 1 Introduction to Premiere Products, Henry Books, and Alexamara Marina Group
	What Is a Database?
	The Premiere Products Database
	The Henry Books Database
	The Alexamara Marina Group Database
	Chapter Summary
	Key Terms
	Exercises

	Chapter 2 Database Design Fundamentals
	Database Concepts
	Relational Databases
	Entities, Attributes, and Relationships

	Functional Dependence
	Primary Keys
	Database Design
	Design Method
	Database Design Requirements
	Database Design Process Example

	Normalization
	First Normal Form
	Second Normal Form
	Third Normal Form

	Diagrams for Database Design
	Chapter Summary
	Key Terms
	Review Questions
	Exercises

	Chapter 3 Creating Tables
	Creating and Running SQL Commands
	Starting the Oracle Database Express Edition
	Entering Commands

	Creating a Table
	Correcting Errors in SQL Commands
	Dropping a Table

	Using Data Types
	Using Nulls
	Adding Rows to a Table
	The INSERT Command
	Inserting a Row that Contains Nulls

	Viewing Table Data
	Correcting Errors in a Table
	Saving SQL Commands
	Creating the Remaining Database Tables
	Describing a Table
	Chapter Summary
	Key Terms
	Review Questions
	Exercises

	Chapter 4 Single-Table Queries
	Constructing Simple Queries
	Retrieving Certain Columns and All Rows
	Retrieving All Columns and All Rows
	Using a WHERE Clause
	Using Compound Conditions
	Using the BETWEEN Operator
	Using Computed Columns
	Using the LIKE Operator
	Using the IN Operator

	Sorting
	Using the ORDER BY Clause
	Additional Sorting Options

	Using Functions
	Using the COUNT Function
	Using the SUM Function
	Using the AVG, MAX, and MIN Functions
	Using the DISTINCT Operator

	Nesting Queries
	Subqueries

	Grouping
	Using the GROUP BY Clause
	Using a HAVING Clause
	HAVING vs. WHERE

	Nulls
	Summary of SQL Clauses, Functions, and Operators
	Chapter Summary
	Key Terms
	Review Questions
	Exercises

	Chapter 5 Multiple-Table Queries
	Querying Multiple Tables
	Joining Two Tables

	Comparing joins, IN, and EXISTS
	Using the IN Operator
	Using the EXISTS Operator
	Using a Subquery Within a Subquery
	A Comprehensive Example
	Using an Alias
	Joining a Table to Itself
	Using a Self-Join on a Primary Key Column
	Joining Several Tables

	Set Operations
	ALL and ANY
	Special Operations
	Inner Join
	Outer Join
	Product

	Chapter Summary
	Key Terms
	Review Questions
	Exercises

	Chapter 6 Updating Data
	Creating a New Table from an Existing Table
	Changing Existing Data in a Table
	Adding New Rows to an Existing Table
	Commit and Rollback
	Transactions
	Changing and Deleting Existing Rows
	Executing a Rollback

	Changing a Value in a Columnto Null
	Changing a Table's Structure
	Making Complex Changes

	Dropping a Table
	Chapter Summary
	Key Terms
	Review Questions
	Exercises

	Chapter 7 Database Administration
	Creating and Using Views
	Using a View to Update Data
	Updating Row-and-Column Subset Views
	Updating Views Involving Joins
	Updating Views Involving Statistics

	Dropping a View
	Security
	Indexes
	Creating an Index
	Dropping an Index
	Creating Unique Indexes

	System Catalog
	Integrity Constraints in SQL
	Chapter Summary
	Key Terms
	Review Questions
	Exercises

	Chapter 8 SQL Functions and Procedures
	Using SQL in a Programming Environment
	Using Functions
	Character Functions
	Number Functions
	Working with Dates

	Concatenating Columns
	Stored Procedures
	Retrieving a Single Row and Column

	Error Handling
	Using Update Procedures
	Changing Data with a Procedure
	Deleting Data with a Procedure

	Selecting Multiple Rows with a Procedure
	Using a Cursor
	Opening a Cursor
	Fetching Rows from a Cursor
	Closing a Cursor
	Writing a Complete Procedure Using a Cursor
	Using More Complex Cursors
	Advantages of Cursors

	Using T-SQL in SQL Server
	Retrieving a Single Row and Column
	Changing Data with a Stored Procedure
	Deleting Data with a Stored Procedure
	Using a Cursor
	Using More Complex Cursors

	Using SQL in Microsoft Access
	Deleting Data with Visual Basic
	Running the Code
	Updating Data with Visual Basic
	Inserting Data with Visual Basic
	Finding Multiple Rows with Visual Basic

	Using a Trigger
	Chapter Summary
	Key Terms
	Review Questions
	Exercises

	Appendix A: SQL Reference
	Aliases
	ALTER TABLE
	Column or Expression List (SELECT Clause)
	Computed Columns
	The DISTINCT Operator
	Functions

	COMMIT
	Conditions
	Simple Conditions
	Compound Conditions
	BETWEEN Conditions
	LIKE Conditions
	IN Conditions
	EXISTS Conditions
	ALL and ANY

	CREATE INDEX
	CREATE TABLE
	CREATE VIEW
	Data Types
	DELETE Rows
	DESCRIBE
	DROP INDEX
	DROP TABLE
	DROP VIEW
	GRANT
	INSERT INTO (Query)
	INSERT INTO (Values)
	Integrity
	REVOKE
	ROLLBACK
	SELECT
	Subqueries
	UNION, INTERSECT, and MINUS
	UPDATE

	Appendix B: How Do I Reference
	APPENDIX C: Answers to Odd-Numbered Review Questions
	Chapter 1—Introduction to Premiere Products, Henry Books, and Alexamara Marina Group
	Chapter 2—Database Design Fundamentals
	Chapter 3—Creating Tables
	Chapter 4—Single-Table Queries
	Chapter 5—Multiple-Table Queries
	Chapter 6—Updating Data
	Chapter 7—Database Administration
	Chapter 8—SQL Functions and Procedures

	Index

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: extend bottom edge by 144.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20100807190441
 626.4000
 Blank
 396.0000

 Wide
 1
 0
 No
 305
 199
 None
 Right
 0.0144
 0.0000

 Both
 135
 AllDoc
 154

 CurrentAVDoc

 Bigger
 144.0000
 Bottom

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 42
 328
 327
 328

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: extend top edge by 144.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20100807190441
 626.4000
 Blank
 396.0000

 Wide
 1
 0
 No
 305
 199
 None
 Right
 0.0144
 0.0000

 Both
 135
 AllDoc
 154

 CurrentAVDoc

 Bigger
 144.0000
 Top

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 42
 328
 327
 328

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: extend left edge by 144.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20100807190441
 626.4000
 Blank
 396.0000

 Wide
 1
 0
 No
 305
 199
 None
 Right
 0.0144
 0.0000

 Both
 135
 AllDoc
 154

 CurrentAVDoc

 Bigger
 144.0000
 Left

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 42
 328
 327
 328

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: extend right edge by 144.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20100807190441
 626.4000
 Blank
 396.0000

 Wide
 1
 0
 No
 305
 199
 None
 Right
 0.0144
 0.0000

 Both
 135
 AllDoc
 154

 CurrentAVDoc

 Bigger
 144.0000
 Right

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 42
 328
 327
 328

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut top edge by 144.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20100807190441
 626.4000
 Blank
 396.0000

 Wide
 1
 0
 No
 305
 199
 None
 Right
 0.0144
 0.0000

 Both
 135
 AllDoc
 154

 CurrentAVDoc

 Smaller
 144.0000
 Top

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 27
 328
 327
 328

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 144.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20100807190441
 626.4000
 Blank
 396.0000

 Wide
 1
 0
 No
 305
 199
 None
 Right
 0.0144
 0.0000

 Both
 135
 AllDoc
 154

 CurrentAVDoc

 Smaller
 144.0000
 Bottom

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 27
 328
 327
 328

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 144.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20100807190441
 626.4000
 Blank
 396.0000

 Wide
 1
 0
 No
 305
 199
 None
 Right
 0.0144
 0.0000

 Both
 135
 AllDoc
 154

 CurrentAVDoc

 Smaller
 144.0000
 Left

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 27
 328
 327
 328

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 144.00 points
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20100807190441
 626.4000
 Blank
 396.0000

 Wide
 1
 0
 No
 305
 199
 None
 Right
 0.0144
 0.0000

 Both
 135
 AllDoc
 154

 CurrentAVDoc

 Smaller
 144.0000
 Right

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 27
 328
 327
 328

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 7 to page 18
 Trim: none
 Shift: move up by 1.44 points
 Normalise (advanced option): 'original'

 32

 D:20100807190441
 626.4000
 Blank
 396.0000

 Wide
 1
 0
 No
 305
 199
 Fixed
 Up
 1.4400
 0.0000

 Both
 7
 SubDoc
 18

 CurrentAVDoc

 None
 0.7200
 Right

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 17
 328
 17
 12

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 73 to page 79
 Trim: fix size 7.380 x 9.250 inches / 187.5 x 234.9 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20100809125729
 666.0000
 Blank
 531.3600

 Tall
 1
 0
 No
 305
 199

 None
 Up
 1.4400
 0.0000

 Both
 73
 SubDoc
 79

 CurrentAVDoc

 Uniform
 0.7200
 Right

 QITE_QuiteImposing2
 Quite Imposing 2.9b
 Quite Imposing 2
 1

 72
 328
 78
 7

 1

 HistoryList_V1
 QI2base

