
Advanced MS-DOS Programming

--

Advanced MS-DOS Programming

The Microsoft(R) Guide for Assembly Language and C Programmers

By Ray Duncan

--

 PUBLISHED BY
 Microsoft Press
 A Division of Microsoft Corporation
 16011 NE 36th Way, Box 97017, Redmond, Washington 98073-9717
 Copyright (C) 1986, 1988 by Ray Duncan
 Published 1986. Second edition 1988.
 All rights reserved. No part of the contents of this book may be
 reproduced or transmitted in any form or by any means without the written
 permission of the publisher.
 Library of Congress Cataloging in Publication Data

 Duncan, Ray, 1952-
 Advanced MS-DOS programming.
 Rev. ed. of: Advanced MS-DOS. (C)1986.
 Includes index.
 1. MS-DOS (Computer operating system) 2. Assembler language
 (Computer program language) 3. C (Computer program language)
 I. Duncan, Ray, 1952- Advanced MS-DOS. II. Title.
 QA76.76.063D858 1988 005.4'46 88-1251
 ISBN 1-55615-157-8
 Printed and bound in the United States of America.

 1 2 3 4 5 6 7 8 9 FGFG 3 2 1 0 9 8

 Distributed to the book trade in the United States by Harper & Row.

 Distributed to the book trade in Canada by General Publishing Company,
 Ltd.

 Penguin Books Ltd., Harmondworth, Middlesex, England
 Penguin Books Australia Ltd., Ringwood, Victoria, Australia
 Penguin Books N.Z. Ltd., 182-190 Wairu Road, Auckland 10, New Zealand

 British Cataloging in Publication Data available

 IBM(R), PC/AT(R), and PS/2(R) are registered trademarks of International
 Business Machines Corporation. CodeView(R), Microsoft(R), MS-DOS(R), and
 XENIX(R) are registered trademarks and InPort TM is a trademark of
 Microsoft Corporation.

 --
 Technical Editor: Mike Halvorson Production Editor: Mary Ann Jones
 --

 Dedication

 For Carolyn

--
Contents

 Road Map to Figures and Tables

 Acknowledgments

 Introduction

 SECTION 1 PROGRAMMING FOR MS-DOS

 Chapter 1 Genealogy of MS-DOS

 Chapter 2 MS-DOS in Operation

 Chapter 3 Structure of MS-DOS Application Programs

 Chapter 4 MS-DOS Programming Tools

 Chapter 5 Keyboard and Mouse Input

 Chapter 6 Video Display

 Chapter 7 Printer and Serial Port

 Chapter 8 File Management

 Chapter 9 Volumes and Directories

 Chapter 10 Disk Internals

 Chapter 11 Memory Management

 Chapter 12 The EXEC Function

 Chapter 13 Interrupt Handlers

 Chapter 14 Installable Device Drivers

 Chapter 15 Filters

 Chapter 16 Compatibility and Portability

 SECTION 2 MS-DOS FUNCTIONS REFERENCE

 SECTION 3 IBM ROM BIOS AND MOUSE FUNCTIONS REFERENCE

 SECTION 4 LOTUS/INTEL/MICROSOFT EMS FUNCTIONS REFERENCE

 Index

--
Road Map to Figures and Tables

 MS-DOS versions and release dates

 MS-DOS memory map

 Structure of program segment prefix (PSP)

 Structure of .EXE load module

 Register conditions at program entry

 Segments, groups, and classes

 Macro Assembler switches

 C Compiler switches

 Linker switches

 MAKE switches

 ANSI escape sequences

 Video attributes

 Structure of normal file control block (FCB)

 Structure of extended file control block

 MS-DOS error codes

 Structure of boot sector

 Structure of directory entry

 Structure of fixed-disk master block

 LIM EMS error codes

 Intel 80x86 internal interrupts (faults)

 Intel 80x86, MS-DOS, and ROM BIOS interrupts

 Device-driver attribute word

 Device-driver command codes

 Structure of BIOS parameter block (BPB)

 Media descriptor byte

--
Acknowledgments

 My renewed thanks to the outstanding editors and production staff at
 Microsoft Press, who make beautiful books happen, and to the talented
 Microsoft developers, who create great programs to write books about.
 Special thanks to Mike Halvorson, Jeff Hinsch, Mary Ann Jones, Claudette
 Moore, Dori Shattuck, and Mark Zbikowski; if this book has anything unique
 to offer, these people deserve most of the credit.

--
Introduction

 Advanced MS-DOS Programming is written for the experienced C or
 assembly-language programmer. It provides all the information you need to
 write robust, high-performance applications under the MS-DOS operating
 system. Because I believe that working, well-documented programs are
 unbeatable learning tools, I have included detailed programming examples
 throughout--including complete utility programs that you can adapt to your
 own needs.

 This book is both a tutorial and a reference and is divided into four
 sections, so that you can find information more easily. Section 1
 discusses MS-DOS capabilities and services by functional group in the
 context of common programming issues, such as user input, control of the
 display, memory management, and file handling. Special classes of
 programs, such as interrupt handlers, device drivers, and filters, have
 their own chapters.

 Section 2 provides a complete reference guide to MS-DOS function calls,
 organized so that you can see the calling sequence, results, and version
 dependencies of each function at a glance. I have also included notes,
 where relevant, about quirks and special uses of functions as well as
 cross-references to related functions. An assembly-language example is
 included for each entry in Section 2.

 Sections 3 and 4 are references to IBM ROM BIOS, Microsoft Mouse driver,
 and Lotus/Intel/Microsoft Expanded Memory Specification functions. The
 entries in these two sections have the same form as in Section 2, except
 that individual programming examples have been omitted.

 The programs in this book were written with the marvelous Brief editor
 from Solution Systems and assembled or compiled with Microsoft Macro
 Assembler version 5.1 and Microsoft C Compiler version 5.1. They have been
 tested under MS-DOS versions 2.1, 3.1, 3.3, and 4.0 on an 8088-based IBM
 PC, an 80286-based IBM PC/AT, and an 80386-based IBM PS/2 Model 80. As far
 as I am aware, they do not contain any software or hardware dependencies
 that will prevent them from running properly on any IBM PC-compatible
 machine running MS-DOS version 2.0 or later.

Changes from the First Edition

 Readers who are familiar with the first edition will find many changes in
 the second edition, but the general structure of the book remains the
 same. Most of the material comparing MS-DOS to CP/M and UNIX/XENIX has
 been removed; although these comparisons were helpful a few years ago,
 MS-DOS has become its own universe and deserves to be considered on its

 own terms.

 The previously monolithic chapter on character devices has been broken
 into three more manageable chapters focusing on the keyboard and mouse,
 the display, and the serial port and printer. Hardware-dependent video
 techniques have been de-emphasized; although this topic is more important
 than ever, it has grown so complex that it requires a book of its own. A
 new chapter discusses compatibility and portability of MS-DOS applications
 and also contains a brief introduction to Microsoft OS/2, the new
 multitasking, protected-mode operating system.

 A road map to vital figures and tables has been added, following the Table
 of Contents, to help you quickly locate the layouts of the program segment
 prefix, file control block, and the like.

 The reference sections at the back of the book have been extensively
 updated and enlarged and are now complete through MS-DOS version 4.0, the
 IBM PS/2 Model 80 ROM BIOS and the VGA video adapter, the Microsoft Mouse
 driver version 6.0, and the Lotus/Intel/Microsoft Expanded Memory
 Specification version 4.0.

 In the two years since Advanced MS-DOS Programming was first published,
 hundreds of readers have been kind enough to send me their comments, and I
 have tried to incorporate many of their suggestions in this new edition.
 As before, please feel free to contact me via MCI Mail (user name LMI),
 CompuServe (user ID 72406,1577), or BIX (user name rduncan).

 Ray Duncan Los Angeles, California September 1988

--
SECTION 1 PROGRAMMING FOR MS-DOS
--

--
Chapter 1 Genealogy of MS-DOS

 In only seven years, MS-DOS has evolved from a simple program loader into
 a sophisticated, stable operating system for personal computers that are
 based on the Intel 8086 family of microprocessors (Figure 1-1). MS-DOS
 supports networking, graphical user interfaces, and storage devices of
 every description; it serves as the platform for thousands of application
 programs; and it has over 10 million licensed users--dwarfing the combined
 user bases of all of its competitors.

 The progenitor of MS-DOS was an operating system called 86-DOS, which was
 written by Tim Paterson for Seattle Computer Products in mid-1980. At that
 time, Digital Research's CP/M-80 was the operating system most commonly
 used on microcomputers based on the Intel 8080 and Zilog Z-80
 microprocessors, and a wide range of application software (word
 processors, database managers, and so forth) was available for use with
 CP/M-80.

 To ease the process of porting 8-bit CP/M-80 applications into the new
 16-bit environment, 86-DOS was originally designed to mimic CP/M-80 in
 both available functions and style of operation. Consequently, the

 structures of 86-DOS's file control blocks, program segment prefixes, and
 executable files were nearly identical to those of CP/M-80. Existing
 CP/M-80 programs could be converted mechanically (by processing their
 source-code files through a special translator program) and, after
 conversion, would run under 86-DOS either immediately or with very little
 hand editing.

 Because 86-DOS was marketed as a proprietary operating system for Seattle
 Computer Products' line of S-100 bus, 8086-based microcomputers, it made
 very little impact on the microcomputer world in general. Other vendors of
 8086-based microcomputers were understandably reluctant to adopt a
 competitor's operating system and continued to wait impatiently for the
 release of Digital Research's CP/M-86.

 In October 1980, IBM approached the major microcomputer-software houses in
 search of an operating system for the new line of personal computers it
 was designing. Microsoft had no operating system of its own to offer
 (other than a stand-alone version of Microsoft BASIC) but paid a fee to
 Seattle Computer Products for the right to sell Paterson's 86-DOS. (At
 that time, Seattle Computer Products received a license to use and sell
 Microsoft's languages and all 8086 versions of Microsoft's operating
 system.) In July 1981, Microsoft purchased all rights to 86-DOS, made
 substantial alterations to it, and renamed it MS-DOS. When the first IBM
 PC was released in the fall of 1981, IBM offered MS-DOS (referred to as
 PC-DOS 1.0) as its primary operating system.

 IBM also selected Digital Research's CP/M-86 and Softech's P-system as
 alternative operating systems for the PC. However, they were both very
 slow to appear at IBM PC dealers and suffered the additional disadvantages
 of higher prices and lack of available programming languages. IBM threw
 its considerable weight behind PC-DOS by releasing all the IBM-logo PC
 application software and development tools to run under it. Consequently,
 most third-party software developers targeted their products for PC-DOS
 from the start, and CP/M-86 and P-system never became significant factors
 in the IBM PC-compatible market.

 In spite of some superficial similarities to its ancestor CP/M-80, MS-DOS
 version 1.0 contained a number of improvements over CP/M-80, including the
 following:

 o An improved disk-directory structure that included information about a
 file's attributes (such as whether it was a system or a hidden file),
 its exact size in bytes, and the date that the file was created or last
 modified

 o A superior disk-space allocation and management method, allowing
 extremely fast sequential or random record access and program loading

 o An expanded set of operating-system services, including
 hardware-independent function calls to set or read the date and time, a
 filename parser, multiple-block record I/O, and variable record sizes

 o An AUTOEXEC.BAT batch file to perform a user-defined series of commands
 when the system was started or reset

 IBM was the only major computer manufacturer (sometimes referred to as
 OEM, for original equipment manufacturer) to ship MS-DOS version 1.0 (as
 PC-DOS 1.0) with its products. MS-DOS version 1.25 (equivalent to IBM
 PC-DOS 1.1) was released in June 1982 to fix a number of bugs and also to

 support double-sided disks and improved hardware independence in the DOS
 kernel. This version was shipped by several vendors besides IBM, including
 Texas Instruments, COMPAQ, and Columbia, who all entered the personal
 computer market early. Due to rapid decreases in the prices of RAM and
 fixed disks, MS-DOS version 1 is no longer in common use.

 MS-DOS version 2.0 (equivalent to PC-DOS 2.0) was first released in March
 1983. It was, in retrospect, a new operating system (though great care was
 taken to maintain compatibility with MS-DOS version 1). It contained many
 significant innovations and enhanced features, including those listed on
 the following page.

 o Support for both larger-capacity floppy disks and hard disks

 o Many UNIX/XENIX-like features, including a hierarchical file structure,
 file handles, I/O redirection, pipes, and filters

 o Background printing (print spooling)

 o Volume labels, plus additional file attributes

 o Installable device drivers

 o A user-customizable system-configuration file that controlled the
 loading of additional device drivers, the number of system disk
 buffers, and so forth

 o Maintenance of environment blocks that could be used to pass
 information between programs

 o An optional ANSI display driver that allowed programs to position the
 cursor and control display characteristics in a hardware-independent
 manner

 o Support for the dynamic allocation, modification, and release of memory
 by application programs

 o Support for customized user command interpreters (shells)

 o System tables to assist application software in modifying its currency,
 time, and date formats (known as international support)

 MS-DOS version 2.11 was subsequently released to improve international
 support (table-driven currency symbols, date formats, decimal-point
 symbols, currency separators, and so forth), to add support for 16-bit
 Kanji characters throughout, and to fix a few minor bugs. Version 2.11
 rapidly became the base version shipped for 8086/8088-based personal
 computers by every major OEM, including Hewlett-Packard, Wang, Digital
 Equipment Corporation, Texas Instruments, COMPAQ, and Tandy.

 MS-DOS version 2.25, released in October 1985, was distributed in the Far
 East but was never shipped by OEMs in the United States and Europe. In
 this version, the international support for Japanese and Korean character
 sets was extended even further, additional bugs were repaired, and many of
 the system utilities were made compatible with MS-DOS version 3.0.

 MS-DOS version 3.0 was introduced by IBM in August 1984 with the release
 of the 80286-based PC/AT machines. It represented another major rewrite of
 the entire operating system and included the important new features listed

 on the following page.

 o Direct control of the print spooler by application software

 o Further expansion of international support for currency formats

 o Extended error reporting, including a code that suggests a recovery
 strategy to the application program

 o Support for file and record locking and sharing

 o Support for larger fixed disks

 MS-DOS version 3.1, which was released in November 1984, added support for
 the sharing of files and printers across a network. Beginning with version
 3.1, a new operating-system module called the redirector intercepts an
 application program's requests for I/O and filters out the requests that
 are directed to network devices, passing these requests to another machine
 for processing.

 Since version 3.1, the changes to MS-DOS have been evolutionary rather
 than revolutionary. Version 3.2, which appeared in 1986, generalized the
 definition of device drivers so that new media types (such as 3.5-inch
 floppy disks) could be supported more easily. Version 3.3 was released in
 1987, concurrently with the new IBM line of PS/2 personal computers, and
 drastically expanded MS-DOS's multilanguage support for keyboard mappings,
 printer character sets, and display fonts. Version 4.0, delivered in 1988,
 was enhanced with a visual shell as well as support for very large file
 systems.

 While MS-DOS has been evolving, Microsoft has also put intense efforts
 into the areas of user interfaces and multitasking operating systems.
 Microsoft Windows, first shipped in 1985, provides a multitasking,
 graphical user "desktop" for MS-DOS systems. Windows has won widespread
 support among developers of complex graphics applications such as desktop
 publishing and computer-aided design because it allows their programs to
 take full advantage of whatever output devices are available without
 introducing any hardware dependence.

 Microsoft Operating System/2 (MS OS/2), released in 1987, represents a new
 standard for application developers: a protected-mode, multitasking,
 virtual-memory system specifically designed for applications requiring
 high-performance graphics, networking, and interprocess communications.
 Although MS OS/2 is a new product and is not a derivative of MS-DOS, its
 user interface and file system are compatible with MS-DOS and Microsoft
 Windows, and it offers the ability to run one real-mode (MS-DOS)
 application alongside MS OS/2 protected-mode applications. This
 compatibility allows users to move between the MS-DOS and OS/2
 environments with a minimum of difficulty.

 +-------------+
 | MS-DOS 1.0 | 1981: First operating system on IBM PC
 | PC-DOS 1.0 |
 +------+------+
 |
 +------+------+
 | MS-DOS 1.25 | Double-sided disk support and bug fixes added:
 | PC-DOS 1.1 | widely distributed by OEMs other than IBM
 +------+------+

 |
 +------+------+ 1983: Introduced with IBM PC/XT;
 | MS-DOS 2.0 | support for UNIX/XENIX-like hierarchical
 | PC-DOS 2.0 | file structure and hard disks added
 +------+------+
 +--------------------------------------+
 +------+------+ +------+------+
 | MS-DOS 2.01 | 2.0 with international | PC-DOS 2.1 | Introduced with PCjr;
 +------+------+ support +-------------+ 2.0 with bug fixes
 |
 +------+------+
 | MS-DOS 2.11 | 2.01 with bug fixes
 +------+------+
 +--------------------------------------+
 +------+------+ 1984: Introduced with +------+------+ 1985: Far East OEMs;
 | MS-DOS 3.0 | PC/AT; support for | MS-DOS 2.25 | support for extended
 | PC-DOS 3.0 | 1.2 MB floppy disk, +-------------+ character sets
 +------+------+ larger hard disk added
 |
 +------+------+
 | MS-DOS 3.1 | Support for Microsoft +-------------+ 1985: Graphical
 | PC-DOS 3.1 | Networks added | Windows | user interface
 +------+------+ | 1.0 | for MS-DOS
 | +------+------+
 +------+------+ |
 | MS-DOS 3.2 | 1986: Support for 3.5- |
 | PC-DOS 3.2 | inch disks added |
 +------+------+ |
 | +------+------+ 1987: Compatibility
 +------+------+ 1987: Introduced with | Windows | with OS/2
 | MS-DOS 3.3 | IBM PS/2; generalized | 2.0 | Presentation Manager
 | PC-DOS 3.3 | code-page (font) +-------------+
 +------+------+ support
 |
 +------+------+ 1988: Support for
 | MS-DOS 4.0 | logical volumes larger
 | PC-DOS 4.0 | than 32 MB; visual shell
 +-------------+

 Figure 1-1. The evolution of MS-DOS.

 What does the future hold for MS-DOS? Only the long-range planning teams
 at Microsoft and IBM know for sure. But it seems safe to assume that
 MS-DOS, with its relatively small memory requirements, adaptability to
 diverse hardware configurations, and enormous base of users, will remain
 important to programmers and software publishers for years to come.

--
Chapter 2 MS-DOS in Operation

 It is unlikely that you will ever be called upon to configure the MS-DOS
 software for a new model of computer. Still, an acquaintance with the
 general structure of MS-DOS can often be very helpful in understanding the
 behavior of the system as a whole. In this chapter, we will discuss how
 MS-DOS is organized and how it is loaded into memory when the computer is
 turned on.

The Structure of MS-DOS

 MS-DOS is partitioned into several layers that serve to isolate the kernel
 logic of the operating system, and the user's perception of the system,
 from the hardware it is running on. These layers are

 o The BIOS (Basic Input/Output System)

 o The DOS kernel

 o The command processor (shell)

 We'll discuss the functions of each of these layers separately.

The BIOS Module

 The BIOS is specific to the individual computer system and is provided by
 the manufacturer of the system. It contains the default resident
 hardware-dependent drivers for the following devices:

 o Console display and keyboard (CON)

 o Line printer (PRN)

 o Auxiliary device (AUX)

 o Date and time (CLOCK$)

 o Boot disk device (block device)

 The MS-DOS kernel communicates with these device drivers through I/O
 request packets; the drivers then translate these requests into the proper
 commands for the various hardware controllers. In many MS-DOS systems,
 including the IBM PC, the most primitive parts of the hardware drivers are
 located in read-only memory (ROM) so that they can be used by stand-alone
 applications, diagnostics, and the system startup program.

 The terms resident and installable are used to distinguish between the
 drivers built into the BIOS and the drivers installed during system
 initialization by DEVICE commands in the CONFIG.SYS file. (Installable
 drivers will be discussed in more detail later in this chapter and in
 Chapter 14.)

 The BIOS is read into random-access memory (RAM) during system
 initialization as part of a file named IO.SYS. (In PC-DOS, the file is
 called IBMBIO.COM.) This file is marked with the special attributes hidden
 and system.

The DOS Kernel

 The DOS kernel implements MS-DOS as it is seen by application programs.
 The kernel is a proprietary program supplied by Microsoft Corporation and
 provides a collection of hardware-independent services called system
 functions. These functions include the following:

 o File and record management

 o Memory management

 o Character-device input/output

 o Spawning of other programs

 o Access to the real-time clock

 Programs can access system functions by loading registers with
 function-specific parameters and then transferring to the operating system
 by means of a software interrupt.

 The DOS kernel is read into memory during system initialization from the
 MSDOS.SYS file on the boot disk. (The file is called IBMDOS.COM in
 PC-DOS.) This file is marked with the attributes hidden and system.

The Command Processor

 The command processor, or shell, is the user's interface to the operating
 system. It is responsible for parsing and carrying out user commands,
 including the loading and execution of other programs from a disk or other
 mass-storage device.

 The default shell that is provided with MS-DOS is found in a file called
 COMMAND.COM. Although COMMAND.COM prompts and responses constitute the
 ordinary user's complete perception of MS-DOS, it is important to realize
 that COMMAND.COM is not the operating system, but simply a special class
 of program running under the control of MS-DOS.

 COMMAND.COM can be replaced with a shell of the programmer's own design by
 simply adding a SHELL directive to the system-configuration file
 (CONFIG.SYS) on the system startup disk. The product COMMAND-PLUS from ESP
 Systems is an example of such an alternative shell.

 More about COMMAND.COM

 The default MS-DOS shell, COMMAND.COM, is divided into three parts:

 o A resident portion

 o An initialization section

 o A transient module

 The resident portion is loaded in lower memory, above the DOS kernel and
 its buffers and tables. It contains the routines to process Ctrl-C and
 Ctrl-Break, critical errors, and the termination (final exit) of other
 transient programs. This part of COMMAND.COM issues error messages and is
 responsible for the familiar prompt

 Abort, Retry, Ignore?

 The resident portion also contains the code required to reload the
 transient portion of COMMAND.COM when necessary.

 The initialization section of COMMAND.COM is loaded above the resident
 portion when the system is started. It processes the AUTOEXEC.BAT batch
 file (the user's list of commands to execute at system startup), if one is
 present, and is then discarded.

 The transient portion of COMMAND.COM is loaded at the high end of memory,
 and its memory can also be used for other purposes by application
 programs. The transient module issues the user prompt, reads the commands
 from the keyboard or batch file, and causes them to be executed. When an
 application program terminates, the resident portion of COMMAND.COM does a
 checksum of the transient module to determine whether it has been
 destroyed and fetches a fresh copy from the disk if necessary.

 The user commands that are accepted by COMMAND.COM fall into three
 categories:

 o Internal commands

 o External commands

 o Batch files

 Internal commands, sometimes called intrinsic commands, are those carried
 out by code embedded in COMMAND.COM itself. Commands in this category
 include COPY, REN(AME), DIR(ECTORY), and DEL(ETE). The routines for the
 internal commands are included in the transient part of COMMAND.COM.

 External commands, sometimes called extrinsic commands or transient
 programs, are the names of programs stored in disk files. Before these
 programs can be executed, they must be loaded from the disk into the
 transient program area (TPA) of memory. (See "How MS-DOS Is Loaded" in
 this chapter.) Familiar examples of external commands are CHKDSK, BACKUP,
 and RESTORE. As soon as an external command has completed its work, it is
 discarded from memory; hence, it must be reloaded from disk each time it
 is invoked.

 Batch files are text files that contain lists of other intrinsic,
 extrinsic, or batch commands. These files are processed by a special
 interpreter that is built into the transient portion of COMMAND.COM. The
 interpreter reads the batch file one line at a time and carries out each
 of the specified operations in order.

 In order to interpret a user's command, COMMAND.COM first looks to see if
 the user typed the name of a built-in (intrinsic) command that it can
 carry out directly. If not, it searches for an external command
 (executable program file) or batch file by the same name. The search is
 carried out first in the current directory of the current disk drive and
 then in each of the directories specified in the most recent PATH command.
 In each directory inspected, COMMAND.COM first tries to find a file with
 the extension .COM, then .EXE, and finally .BAT. If the search fails for
 all three file types in all of the possible locations, COMMAND.COM
 displays the familiar message

 Bad command or file name

 If a .COM file or a .EXE file is found, COMMAND.COM uses the MS-DOS EXEC
 function to load and execute it. The EXEC function builds a special data
 structure called a program segment prefix (PSP) above the resident portion
 of COMMAND.COM in the transient program area. The PSP contains various
 linkages and pointers needed by the application program. Next, the EXEC
 function loads the program itself, just above the PSP, and performs any
 relocation that may be necessary. Finally, it sets up the registers
 appropriately and transfers control to the entry point for the program.
 (Both the PSP and the EXEC function will be discussed in more detail in

 Chapters 3 and 12.) When the transient program has finished its job, it
 calls a special MS-DOS termination function that releases the transient
 program's memory and returns control to the program that caused the
 transient program to be loaded (COMMAND.COM, in this case).

 A transient program has nearly complete control of the system's resources
 while it is executing. The only other tasks that are accomplished are
 those performed by interrupt handlers (such as the keyboard input driver
 and the real-time clock) and operations that the transient program
 requests from the operating system. MS-DOS does not support sharing of the
 central processor among several tasks executing concurrently, nor can it
 wrest control away from a program when it crashes or executes for too
 long. Such capabilities are the province of MS OS/2, which is a
 protected-mode system with preemptive multitasking (time-slicing).

How MS-DOS Is Loaded

 When the system is started or reset, program execution begins at address
 0FFFF0H. This is a feature of the 8086/8088 family of microprocessors and
 has nothing to do with MS-DOS. Systems based on these processors are
 designed so that address 0FFFF0H lies within an area of ROM and contains a
 jump machine instruction to transfer control to system test code and the
 ROM bootstrap routine (Figure 2-1).

 The ROM bootstrap routine reads the disk bootstrap routine from the first
 sector of the system startup disk (the boot sector) into memory at some
 arbitrary address and then transfers control to it (Figure 2-2). (The
 boot sector also contains a table of information about the disk format.)

 The disk bootstrap routine checks to see if the disk contains a copy of
 MS-DOS. It does this by reading the first sector of the root directory and
 determining whether the first two files are IO.SYS and MSDOS.SYS (or
 IBMBIO.COM and IBMDOS.COM), in that order. If these files are not present,
 the user is prompted to change disks and strike any key to try again.

 +---+
 | ROM bootstrap routine |
 +---+
 | |
 +---+ Top of RAM
 | |
 | |
 +----------------------+ |
 +--------------------+ +------------------------+
 | +--------------------------+
 | |
 | |
 | |
 00400H +---+
 | Interrupt vectors |
 00000H +---+

 Figure 2-1. A typical 8086/8088-based computer system immediately after
 system startup or reset. Execution begins at location 0FFFF0H, which
 contains a jump instruction that directs program control to the ROM
 bootstrap routine.

 +---+

 | ROM bootstrap routine |
 +---+
 | |
 +---+ Top of RAM
 | |
 +---+
 | Disk bootstrap routine |
 +---+ Arbitrary
 | | load location
 | |
 +----------------------+ |
 +--------------------+ +------------------------+
 | +--------------------------+
 | |
 | |
 00400H +---+
 | Interrupt vectors |
 00000H +---+

 Figure 2-2. The ROM bootstrap routine loads the disk bootstrap routine
 into memory from the first sector of the system startup disk and then
 transfers control to it.

 If the two system files are found, the disk bootstrap reads them into
 memory and transfers control to the initial entry point of IO.SYS (Figure
 2-3). (In some implementations, the disk bootstrap reads only IO.SYS into
 memory, and IO.SYS in turn loads the MSDOS.SYS file.)

 The IO.SYS file that is loaded from the disk actually consists of two
 separate modules. The first is the BIOS, which contains the linked set of
 resident device drivers for the console, auxiliary port, printer, block,
 and clock devices, plus some hardware-specific initialization code that is
 run only at system startup. The second module, SYSINIT, is supplied by
 Microsoft and linked into the IO.SYS file, along with the BIOS, by the
 computer manufacturer.

 SYSINIT is called by the manufacturer's BIOS initialization code. It
 determines the amount of contiguous memory present in the system and then
 relocates itself to high memory. Then it moves the DOS kernel, MSDOS.SYS,
 from its original load location to its final memory location, overlaying
 the original SYSINIT code and any other expendable initialization code
 that was contained in the IO.SYS file (Figure 2-4).

 Next, SYSINIT calls the initialization code in MSDOS.SYS. The DOS kernel
 initializes its internal tables and work areas, sets up the interrupt
 vectors 20H through 2FH, and traces through the linked list of resident
 device drivers, calling the initialization function for each. (See Chapter
 14.)

 +---+
 | ROM bootstrap routine |
 +---+
 | |
 +---+ Top of RAM
 | |
 +---+
 | Disk bootstrap routine |
 +---+
 | |

 +----------------------+ |
 +--------------------+ +------------------------+
 | +--------------------------+
 | |
 +---+
 | DOS kernel (from MSDOS.SYS) |
 +---+ In temporary
 | SYSINIT (from IO.SYS) | location
 +---+
 | BIOS (from IO.SYS) |
 +---+
 | |
 00400H +---+
 | Interrupt vectors |
 00000H +---+

 Figure 2-3. The disk bootstrap reads the file IO.SYS into memory. This
 file contains the MS-DOS BIOS (resident device drivers) and the SYSINIT
 module. Either the disk bootstrap or the BIOS (depending upon the
 manufacturer's implementation) then reads the DOS kernel into memory from
 the MSDOS.SYS file.

 These driver functions determine the equipment status, perform any
 necessary hardware initialization, and set up the vectors for any external
 hardware interrupts the drivers will service.

 As part of the initialization sequence, the DOS kernel examines the
 disk-parameter blocks returned by the resident block-device drivers,
 determines the largest sector size that will be used in the system, builds
 some drive-parameter blocks, and allocates a disk sector buffer. Control
 then returns to SYSINIT.

 When the DOS kernel has been initialized and all resident device drivers
 are available, SYSINIT can call on the normal MS-DOS file services to open
 the CONFIG.SYS file. This optional file can contain a variety of commands
 that enable the user to customize the MS-DOS environment. For instance,
 the user can specify additional hardware device drivers, the number of
 disk buffers, the maximum number of files that can be open at one time,
 and the filename of the command processor (shell).

 If it is found, the entire CONFIG.SYS file is loaded into memory for
 processing. All lowercase characters are converted to uppercase, and the
 file is interpreted one line at a time to process the commands. Memory is
 allocated for the disk buffer cache and the internal file control blocks
 used by the handle file and record system functions. (See Chapter 8.) Any
 device drivers indicated in the CONFIG.SYS file are sequentially loaded
 into memory, initialized by calls to their init modules, and linked into
 the device-driver list. The init function of each driver tells SYSINIT how
 much memory to reserve for that driver.

 +---+
 | ROM bootstrap routine |
 +---+
 | |
 +---+ Top of RAM
 | SYSINIT module |
 +---+
 | |
 +----------------------+ |

 +--------------------+ +------------------------+
 | +--------------------------+
 | |
 +---+
 | Installable drivers |
 +---+
 | File control blocks |
 +---+
 | Disk buffer cache |
 +---+
 | DOS kernel |
 +---+ In final
 | BIOS | location
 +---+
 | |
 +---+
 00400H +---+
 | Interrupt vectors |
 00000H +---+

 Figure 2-4. SYSINIT moves itself to high memory and relocates the DOS
 kernel, MSDOS.SYS, downward to its final address. The MS-DOS disk buffer
 cache and file control block areas are allocated, and then the installable
 device drivers specified in the CONFIG.SYS file are loaded and linked into
 the system.

 After all installable device drivers have been loaded, SYSINIT closes all
 file handles and reopens the console (CON), printer (PRN), and auxiliary
 (AUX) devices as the standard input, standard output, standard error,
 standard list, and standard auxiliary devices. This allows a
 user-installed character-device driver to override the BIOS's resident
 drivers for the standard devices.

 Finally, SYSINIT calls the MS-DOS EXEC function to load the command
 interpreter, or shell. (The default shell is COMMAND.COM, but another
 shell can be substituted by means of the CONFIG.SYS file.) Once the shell
 is loaded, it displays a prompt and waits for the user to enter a command.
 MS-DOS is now ready for business, and the SYSINIT module is discarded
 (Figure 2-5).

 +---+
 | ROM bootstrap routine |
 +---+
 | |
 +---+ Top of RAM
 | Transient part of COMMAND.COM |
 +---+
 +----------------------+ |
 +--------------------+ +------------------------+
 | +--------------------------+
 | Transient program area |
 +---+
 | Resident part of COMMAND.COM |
 +---+
 | Installable drivers |
 +---+
 | File control blocks |
 +---+
 | Disk buffer cache |

 +---+
 | DOS kernel |
 +---+
 | BIOS |
 +---+
 | |
 00400H +---+
 | Interrupt vectors |
 00000H +---+

 Figure 2-5. The final result of the MS-DOS startup process for a typical
 system. The resident portion of COMMAND.COM lies in low memory, above the
 DOS kernel. The transient portion containing the batch-file interpreter
 and intrinsic commands is placed in high memory, where it can be overlaid
 by extrinsic commands and application programs running in the transient
 program area.

--
Chapter 3 Structure of MS-DOS Application Programs

 Programs that run under MS-DOS come in two basic flavors: .COM programs,
 which have a maximum size of approximately 64 KB, and .EXE programs, which
 can be as large as available memory. In Intel 8086 parlance, .COM programs
 fit the tiny model, in which all segment registers contain the same value;
 that is, the code and data are mixed together. In contrast, .EXE programs
 fit the small, medium, or large model, in which the segment registers
 contain different values; that is, the code, data, and stack reside in
 separate segments. .EXE programs can have multiple code and data segments,
 which are respectively addressed by long calls and by manipulation of the
 data segment (DS) register.

 A .COM-type program resides on the disk as an absolute memory image, in a
 file with the extension .COM. The file does not have a header or any other
 internal identifying information. A .EXE program, on the other hand,
 resides on the disk in a special type of file with a unique header, a
 relocation map, a checksum, and other information that is (or can be) used
 by MS-DOS.

 Both .COM and .EXE programs are brought into memory for execution by the
 same mechanism: the EXEC function, which constitutes the MS-DOS loader.
 EXEC can be called with the filename of a program to be loaded by
 COMMAND.COM (the normal MS-DOS command interpreter), by other shells or
 user interfaces, or by another program that was previously loaded by EXEC.
 If there is sufficient free memory in the transient program area, EXEC
 allocates a block of memory to hold the new program, builds the program
 segment prefix (PSP) at its base, and then reads the program into memory
 immediately above the PSP. Finally, EXEC sets up the segment registers and
 the stack and transfers control to the program.

 When it is invoked, EXEC can be given the addresses of additional
 information, such as a command tail, file control blocks, and an
 environment block; if supplied, this information will be passed on to the
 new program. (The exact procedure for using the EXEC function in your own
 programs is discussed, with examples, in Chapter 12.)

 .COM and .EXE programs are often referred to as transient programs. A
 transient program "owns" the memory block it has been allocated and has

 nearly total control of the system's resources while it is executing. When
 the program terminates, either because it is aborted by the operating
 system or because it has completed its work and systematically performed a
 final exit back to MS-DOS, the memory block is then freed (hence the term
 transient) and can be used by the next program in line to be loaded.

The Program Segment Prefix

 A thorough understanding of the program segment prefix is vital to
 successful programming under MS-DOS. It is a reserved area, 256 bytes
 long, that is set up by MS-DOS at the base of the memory block allocated
 to a transient program. The PSP contains some linkages to MS-DOS that can
 be used by the transient program, some information MS-DOS saves for its
 own purposes, and some information MS-DOS passes to the transient
 program--to be used or not, as the program requires (Figure 3-1).

 Offset
 0000H +--+
 | Int 20H |
 0002H +--+
 | Segment, end of allocation block |
 0004H +--+
 | Reserved |
 0005H +--+
 | Long call to MS-DOS function dispatcher |
 000AH +--+
 | Previous contents of termination handler |
 | interrupt vector (Int 22H) |
 000EH +--+
 | Previous contents of Ctrl-C interrupt vector (Int 23H) |
 0012H +--+
 | Previous contents of critical-error handler |
 | interrupt vector (Int 24H) |
 0016H +--+
 | Reserved |
 002CH +--+
 | Segment address of environment block |
 002EH +--+
 | Reserved |
 005CH +--+
 | Default file control block #1 |
 006CH +--+
 | Default file control block #2 |
 | (overlaid if FCB #1 opened) |
 008OH +--+
 +--------------------------+ |
 +------------------------+ +-----------------------------+
 | +-------------------------------+
 | Command tail and default disk transfer area (buffer) |
 OOFFH +--+

 Figure 3-1. The structure of the program segment prefix.

 In the first versions of MS-DOS, the PSP was designed to be compatible
 with a control area that was built beneath transient programs under
 Digital Research's venerable CP/M operating system, so that programs could
 be ported to MS-DOS without extensive logical changes. Although MS-DOS has
 evolved considerably since those early days, the structure of the PSP is

 still recognizably similar to its CP/M equivalent. For example, offset
 0000H in the PSP contains a linkage to the MS-DOS process-termination
 handler, which cleans up after the program has finished its job and
 performs a final exit. Similarly, offset 0005H in the PSP contains a
 linkage to the MS-DOS function dispatcher, which performs disk operations,
 console input/output, and other such services at the request of the
 transient program. Thus, calls to PSP:0000 and PSP:0005 have the same
 effect as CALL 0000 and CALL 0005 under CP/M. (These linkages are not the
 "approved" means of obtaining these services, however.)

 The word at offset 0002H in the PSP contains the segment address of the
 top of the transient program's allocated memory block. The program can use
 this value to determine whether it should request more memory to do its
 job or whether it has extra memory that it can release for use by other
 processes.

 Offsets 000AH through 0015H in the PSP contain the previous contents of
 the interrupt vectors for the termination, Ctrl-C, and critical-error
 handlers. If the transient program alters these vectors for its own
 purposes, MS-DOS restores the original values saved in the PSP when the
 program terminates.

 The word at PSP offset 002CH holds the segment address of the environment
 block, which contains a series of ASCIIZ strings (sequences of ASCII
 characters terminated by a null, or zero, byte). The environment block is
 inherited from the program that called the EXEC function to load the
 currently executing program. It contains such information as the current
 search path used by COMMAND.COM to find executable programs, the location
 on the disk of COMMAND.COM itself, and the format of the user prompt used
 by COMMAND.COM.

 The command tail--the remainder of the command line that invoked the
 transient program, after the program's name--is copied into the PSP
 starting at offset 0081H. The length of the command tail, not including
 the return character at its end, is placed in the byte at offset 0080H.
 Redirection or piping parameters and their associated filenames do not
 appear in the portion of the command line (the command tail) that is
 passed to the transient program, because redirection is transparent to
 applications.

 To provide compatibility with CP/M, MS-DOS parses the first two parameters
 in the command tail into two default file control blocks (FCBs) at
 PSP:005CH and PSP:006CH, under the assumption that they may be filenames.
 However, if the parameters are filenames that include a path
 specification, only the drive code will be valid in these default FCBs,
 because FCB-type file- and record-access functions do not support
 hierarchical file structures. Although the default FCBs were an aid in
 earlier years, when compatibility with CP/M was more of a concern, they
 are essentially useless in modern MS-DOS application programs that must
 provide full path support. (File control blocks are discussed in detail in
 Chapter 8 and hierarchical file structures are discussed in Chapter 9.)

 The 128-byte area from 0080H through 00FFH in the PSP also serves as the
 default disk transfer area (DTA), which is set by MS-DOS before passing
 control to the transient program. If the program does not explicitly
 change the DTA, any file read or write operations requested with the FCB
 group of function calls automatically use this area as a data buffer. This
 is rarely useful and is another facet of MS-DOS's handling of the PSP that
 is present only for compatibility with CP/M.

 --
 WARNING
 Programs must not alter any part of the PSP below offset 005CH.
 --

Introduction to .COM Programs

 Programs of the .COM persuasion are stored in disk files that hold an
 absolute image of the machine instructions to be executed. Because the
 files contain no relocation information, they are more compact, and are
 loaded for execution slightly faster, than equivalent .EXE files. Note
 that MS-DOS does not attempt to ascertain whether a .COM file actually
 contains executable code (there is no signature or checksum, as in the
 case of a .EXE file); it simply brings any file with the .COM extension
 into memory and jumps to it.

 Because .COM programs are loaded immediately above the program segment
 prefix and do not have a header that can specify another entry point, they
 must always have an origin of 0100H, which is the length of the PSP.
 Location 0100H must contain an executable instruction. The maximum length
 of a .COM program is 65,536 bytes, minus the length of the PSP (256 bytes)
 and a mandatory word of stack (2 bytes).

 When control is transferred to the .COM program from MS-DOS, all of the
 segment registers point to the PSP (Figure 3-2). The stack pointer
 register contains 0FFFEH if memory allows; otherwise, it is set as high as
 possible in memory minus 2 bytes. (MS-DOS pushes a zero word on the stack
 before entry.)

 SS:SP +--+
 | |
 | Stack grows downward from top of segment |
 | | |
 | + |
 | | |
 | | |
 | Program code and data |
 | |
 CS:0100H +--+
 | Program segment prefix |
 CS:0000H +--+
 DS:0000H
 ES:0000H
 SS:0000H

 Figure 3-2. A memory image of a typical .COM-type program after loading.
 The contents of the .COM file are brought into memory just above the
 program segment prefix. Program, code, and data are mixed together in the
 same segment, and all segment registers contain the same value.

 Although the size of an executable .COM file can't exceed 64 KB, the
 current versions of MS-DOS allocate all of the transient program area to
 .COM programs when they are loaded. Because many such programs date from
 the early days of MS-DOS and are not necessarily "well-behaved" in their
 approach to memory management, the operating system simply makes the
 worst-case assumption and gives .COM programs everything that is
 available. If a .COM program wants to use the EXEC function to invoke

 another process, it must first shrink down its memory allocation to the
 minimum memory it needs in order to continue, taking care to protect its
 stack. (This is discussed in more detail in Chapter 12.)

 When a .COM program finishes executing, it can return control to MS-DOS by
 several means. The preferred method is Int 21H Function 4CH, which allows
 the program to pass a return code back to the program, shell, or batch
 file that invoked it. However, if the program is running under MS-DOS
 version 1, it must exit by means of Int 20H, Int 21H Function 0, or a
 NEAR RETURN. (Because a word of zero was pushed onto the stack at entry, a
 NEAR RETURN causes a transfer to PSP:0000, which contains an Int 20H
 instruction.)

 A .COM-type application can be linked together from many separate object
 modules. All of the modules must use the same code-segment name and class
 name, and the module with the entry point at offset 0100H within the
 segment must be linked first. In addition, all of the procedures within a
 .COM program should have the NEAR attribute, because all executable code
 resides in one segment.

 When linking a .COM program, the linker will display the message

 Warning: no stack segment

 This message can be ignored. The linker output is a .EXE file, which must
 be converted into a .COM file with the MS-DOS EXE2BIN utility before
 execution. You can then delete the .EXE file. (An example of this process
 is provided in Chapter 4.)

An Example .COM Program

 The HELLO.COM program listed in Figure 3-3 demonstrates the structure of
 a simple assembly-language program that is destined to become a .COM file.
 (You may find it helpful to compare this listing with the HELLO.EXE
 program later in this chapter.) Because this program is so short and
 simple, a relatively high proportion of the source code is actually
 assembler directives that do not result in any executable code.

 The NAME statement simply provides a module name for use during the
 linkage process. This aids understanding of the map that the linker
 produces. In MASM versions 5.0 and later, the module name is always the
 same as the filename, and the NAME statement is ignored.

 The PAGE command, when used with two operands, as in line 2, defines the
 length and width of the page. These default respectively to 66 lines and
 80 characters. If you use the PAGE command without any operands, a
 formfeed is sent to the printer and a heading is printed. In larger
 programs, use the PAGE command liberally to place each of your subroutines
 on separate pages for easy reading.

 The TITLE command, in line 3, specifies the text string (limited to 60
 characters) that is to be printed at the upper left corner of each page.
 The TITLE command is optional and cannot be used more than once in each
 assembly-language source file.

 --
 1: name hello
 2: page 55,132
 3: title HELLO.COM--print hello on terminal

 4:
 5: ;
 6: ; HELLO.COM: demonstrates various components
 7: ; of a functional .COM-type assembly-
 8: ; language program, and an MS-DOS
 9: ; function call.
 10: ;
 11: ; Ray Duncan, May 1988
 12: ;
 13:
 14: stdin equ 0 ; standard input handle
 15: stdout equ 1 ; standard output handle
 16: stderr equ 2 ; standard error handle
 17:
 18: cr equ 0dh ; ASCII carriage return
 19: lf equ 0ah ; ASCII linefeed
 20:
 21:
 22: _TEXT segment word public 'CODE'
 23:
 24: org 100h ; .COM files always have
 25: ; an origin of 100h
 26:
 27: assume cs:_TEXT,ds:_TEXT,es:_TEXT,ss:_TEXT
 28:
 29: print proc near ; entry point from MS-DOS
 30:
 31: mov ah,40h ; function 40h = write
 32: mov bx,stdout ; handle for standard output
 33: mov cx,msg_len ; length of message
 34: mov dx,offset msg ; address of message
 35: int 21h ; transfer to MS-DOS
 36:
 37: mov ax,4c00h ; exit, return code = 0
 38: int 21h ; transfer to MS-DOS
 39:
 40: print endp
 41:
 42:
 43: msg db cr,lf ; message to display
 44: db 'Hello World!',cr,lf
 45:
 46: msg_len equ $-msg ; length of message
 47:
 48:
 49: _TEXT ends
 50:
 51: end print ; defines entry point
 --

 Figure 3-3. The HELLO.COM program listing.

 Dropping down past a few comments and EQU statements, we come to a
 declaration of a code segment that begins in line 22 with a SEGMENT
 command and ends in line 49 with an ENDS command. The label in the
 leftmost field of line 22 gives the code segment the name _TEXT. The
 operand fields at the right end of the line give the segment the
 attributes WORD, PUBLIC, and `CODE'. (You might find it helpful to read
 the Microsoft Macro Assembler manual for detailed explanations of each

 possible segment attribute.)

 Because this program is going to be converted into a .COM file, all of its
 executable code and data areas must lie within one code segment. The
 program must also have its origin at offset 0100H (immediately above the
 program segment prefix), which is taken care of by the ORG statement
 in line 24.

 Following the ORG instruction, we encounter an ASSUME statement on line
 27. The concept of ASSUME often baffles new assembly-language programmers.
 In a way, ASSUME doesn't "do" anything; it simply tells the assembler
 which segment registers you are going to use to point to the various
 segments of your program, so that the assembler can provide segment
 overrides when they are necessary. It's important to notice that the
 ASSUME statement doesn't take care of loading the segment registers with
 the proper values; it merely notifies the assembler of your intent to do
 that within the program. (Remember that, in the case of a .COM program,
 MS-DOS initializes all the segment registers before entry to point to the
 PSP.)

 Within the code segment, we come to another type of block declaration that
 begins with the PROC command on line 29 and closes with ENDP on line 40.
 These two instructions declare the beginning and end of a procedure, a
 block of executable code that performs a single distinct function. The
 label in the leftmost field of the PROC statement (in this case, print)
 gives the procedure a name. The operand field gives it an attribute. If
 the procedure carries the NEAR attribute, only other code in the same
 segment can call it, whereas if it carries the FAR attribute, code located
 anywhere in the CPU's memory-addressing space can call it. In .COM
 programs, all procedures carry the NEAR attribute.

 For the purposes of this example program, I have kept the print procedure
 ridiculously simple. It calls MS-DOS Int 21H Function 40H to send the
 message Hello World! to the video screen, and calls Int 21H Function 4CH
 to terminate the program.

 The END statement in line 51 tells the assembler that it has reached the
 end of the source file and also specifies the entry point for the program.
 If the entry point is not a label located at offset 0100H, the .EXE file
 resulting from the assembly and linkage of this source program cannot be
 converted into a .COM file.

Introduction to .EXE Programs

 We have just discussed a program that was written in such a way that it
 could be assembled into a .COM file. Such a program is simple in
 structure, so a programmer who needs to put together this kind of quick
 utility can concentrate on the program logic and do a minimum amount of
 worrying about control of the assembler. However, .COM-type programs have
 some definite disadvantages, and so most serious assembly-language efforts
 for MS-DOS are written to be converted into .EXE files.

 Although .COM programs are effectively restricted to a total size of 64 KB
 for machine code, data, and stack combined, .EXE programs can be
 practically unlimited in size (up to the limit of the computer's available
 memory). .EXE programs also place the code, data, and stack in separate
 parts of the file. Although the normal MS-DOS program loader does not take
 advantage of this feature of .EXE files, the ability to load different

 parts of large programs into several separate memory fragments, as well as
 the opportunity to designate a "pure" code portion of your program that
 can be shared by several tasks, is very significant in multitasking
 environments such as Microsoft Windows.

 The MS-DOS loader always brings a .EXE program into memory immediately
 above the program segment prefix, although the order of the code, data,
 and stack segments may vary (Figure 3-4). The .EXE file has a header, or
 block of control information, with a characteristic format (Figures 3-5
 and 3-6). The size of this header varies according to the number of
 program instructions that need to be relocated at load time, but it is
 always a multiple of 512 bytes.

 Before MS-DOS transfers control to the program, the initial values of the
 code segment (CS) register and instruction pointer (IP) register are
 calculated from the entry-point information in the .EXE file header and
 the program's load address. This information derives from an END statement
 in the source code for one of the program's modules. The data segment (DS)
 and extra segment (ES) registers are made to point to the PSP so that the
 program can access the environment-block pointer, command tail, and other
 useful information contained there.

 SS:SP +--+
 | |
 | Stack segment: |
 | stack grows downward from top of segment |
 | | |
 | + |
 SS:0000H +--+
 | Data segment |
 +--+
 | Program code |
 CS:0000H +--+
 | Program segment prefix |
 DS:0000H +--+
 ES:0000H

 Figure 3-4. A memory image of a typical .EXE-type program immediately
 after loading. The contents of the .EXE file are relocated and brought
 into memory above the program segment prefix. Code, data, and stack reside
 in separate segments and need not be in the order shown here. The entry
 point can be anywhere in the code segment and is specified by the END
 statement in the main module of the program. When the program receives
 control, the DS (data segment) and ES (extra segment) registers point to
 the program segment prefix; the program usually saves this value and then
 resets the DS and ES registers to point to its data area.

 The initial contents of the stack segment (SS) and stack pointer (SP)
 registers come from the header. This information derives from the
 declaration of a segment with the attribute STACK somewhere in the
 program's source code. The memory space allocated for the stack may be
 initialized or uninitialized, depending on the stack-segment definition;
 many programmers like to initialize the stack memory with a recognizable
 data pattern so that they can inspect memory dumps and determine how much
 stack space is actually used by the program.

 When a .EXE program finishes processing, it should return control to
 MS-DOS through Int 21H Function 4CH. Other methods are available, but
 they offer no advantages and are considerably less convenient (because

 they usually require the CS register to point to the PSP).

 Byte
 offset
 0000H +--+
 | First of .EXE file signature (4DH) |
 0001H +--+
 | Second part of .EXE file signature (5AH) |
 0002H +--+
 | Length of file MOD 512 |
 0004H +--+
 | Size of file in 512-byte pages, including header |
 0006H +--+
 | Number of relocation-table items |
 0008H +--+
 | Size of header in paragraphs (16-byte units) |
 000AH +--+
 | Minimum number of paragraphs needed above program |
 000CH +--+
 | Maximum number of paragraphs desired above program |
 000EH +--+
 | Segment displacement of stack module |
 0010H +--+
 | Contents of SP register at entry |
 0012H +--+
 | Word checksum |
 0014H +--+
 | Contents of IP register at entry |
 0016H +--+
 | Segment displacement of code module |
 0018H +--+
 | Offset of first relocation item in file |
 001AH +--+
 | Overlay number (0 for resident part of program) |
 001BH +--+
 | Variable reserved space |
 +--+
 | Relocation table |
 +--+
 | Variable reserved space |
 +--+
 | Program and data segments |
 +--+
 | Stack segment |
 +--+

 Figure 3-5. The format of a .EXE load module.

 The input to the linker for a .EXE-type program can be many separate
 object modules. Each module can use a unique code-segment name, and the
 procedures can carry either the NEAR or the FAR attribute, depending on
 naming conventions and the size of the executable code. The programmer
 must take care that the modules linked together contain only one segment
 with the STACK attribute and only one entry point defined with an END
 assembler directive. The output from the linker is a file with a .EXE
 extension. This file can be executed immediately.

 --
 C>DUMP HELLO.EXE

 0 1 2 3 4 5 6 7 8 9 A B C D E F
 0000 4D 5A 28 00 02 00 01 00 20 00 09 00 FF FF 03 00 MZ(.....
 0010 80 00 20 05 00 00 00 00 1E 00 00 00 01 00 01 00
 0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 .
 .
 .
 0200 B8 01 00 8E D8 B4 40 BB 01 00 B9 10 00 90 BA 08 @.........
 0210 00 CD 21 B8 00 4C CD 21 0D 0A 48 65 6C 6C 6F 20 ..!..L.!..Hello
 0220 57 6F 72 6C 64 21 0D 0A World!..
 --

 Figure 3-6. A hex dump of the HELLO.EXE program, demonstrating the
 contents of a simple .EXE load module. Note the following interesting
 values: the .EXE signature in bytes 0000H and 0001H, the number of
 relocation-table items in bytes 0006H and 0007H, the minimum extra memory
 allocation (MIN_ALLOC) in bytes 000AH and 000BH, the maximum extra memory
 allocation (MAX_ALLOC) in bytes 000CH and 000DH, and the initial IP
 (instruction pointer) register value in bytes 0014H and 0015H. See also
 Figure 3-5.

An Example .EXE Program

 The HELLO.EXE program in Figure 3-7 demonstrates the fundamental
 structure of an assembly-language program that is destined to become a
 .EXE file. At minimum, it should have a module name, a code segment, a
 stack segment, and a primary procedure that receives control of the
 computer from MS-DOS after the program is loaded. The HELLO.EXE program
 also contains a data segment to provide a more complete example.

 The NAME, TITLE, and PAGE directives were covered in the HELLO.COM example
 program and are used in the same manner here, so we'll move to the first
 new item of interest. After a few comments and EQU statements, we come to
 a declaration of a code segment that begins on line 21 with a SEGMENT
 command and ends on line 41 with an ENDS command. As in the HELLO.COM
 example program, the label in the leftmost field of the line gives the
 code segment the name _TEXT. The operand fields at the right end of the
 line give the attributes WORD, PUBLIC, and `CODE'.

 Following the code-segment instruction, we find an ASSUME statement on
 line 23. Notice that, unlike the equivalent statement in the HELLO.COM
 program, the ASSUME statement in this program specifies several different
 segment names. Again, remember that this statement has no direct effect on
 the contents of the segment registers but affects only the operation of
 the assembler itself.

 --
 1: name hello
 2: page 55,132
 3: title HELLO.EXE--print Hello on terminal
 4: ;
 5: ; HELLO.EXE: demonstrates various components
 6: ; of a functional .EXE-type assembly-
 7: ; language program, use of segments,
 8: ; and an MS-DOS function call.
 9: ;

 10: ; Ray Duncan, May 1988
 11: ;
 12:
 13: stdin equ 0 ; standard input handle
 14: stdout equ 1 ; standard output handle
 15: stderr equ 2 ; standard error handle
 16:
 17: cr equ 0dh ; ASCII carriage return
 18: lf equ 0ah ; ASCII linefeed
 19:
 20:
 21: _TEXT segment word public 'CODE'
 22:
 23: assume cs:_TEXT,ds:_DATA,ss:STACK
 24:
 25: print proc far ; entry point from MS-DOS
 26:
 27: mov ax,_DATA ; make our data segment
 28: mov ds,ax ; addressable...
 29:
 30: mov ah,40h ; function 40h = write
 31: mov bx,stdout ; standard output handle
 32: mov cx,msg_len ; length of message
 33: mov dx,offset msg ; address of message
 34: int 21h ; transfer to MS-DOS
 35:
 36: mov ax,4c00h ; exit, return code = 0
 37: int 21h ; transfer to MS-DOS
 38:
 39: print endp
 40:
 41: _TEXT ends
 42:
 43:
 44: _DATA segment word public 'DATA'
 45:
 46: msg db cr,lf ; message to display
 47: db 'Hello World!',cr,lf
 48:
 49: msg_len equ $-msg ; length of message
 50:
 51: _DATA ends
 52:
 53:
 54: STACK segment para stack `STACK'
 55:
 56: db 128 dup (?)
 57:
 58: STACK ends
 59:
 60: end print ; defines entry point
 --

 Figure 3-7. The HELLO.EXE program listing.

 Within the code segment, the main print procedure is declared by the PROC
 command on line 25 and closed with ENDP on line 39. Because the procedure
 resides in a .EXE file, we have given it the FAR attribute as an example,
 but the attribute is really irrelevant because the program is so small and

 the procedure is not called by anything else in the same program.

 The print procedure first initializes the DS register, as indicated in the
 earlier ASSUME statement, loading it with a value that causes it to point
 to the base of the data area. (MS-DOS automatically sets up the CS and SS
 registers.) Next, the procedure uses MS-DOS Int 21H Function 40H to
 display the message Hello World! on the screen, just as in the HELLO.COM
 program. Finally, the procedure exits back to MS-DOS with an Int 21H
 Function 4CH on lines 36 and 37, passing a return code of zero (which by
 convention means a success).

 Lines 44 through 51 declare a data segment named _DATA, which contains the
 variables and constants the program will use. If the various modules of a
 program contain multiple data segments with the same name, the linker will
 collect them and place them in the same physical memory segment.

 Lines 54 through 58 establish a stack segment; PUSH and POP instructions
 will access this area of scratch memory. Before MS-DOS transfers control
 to a .EXE program, it sets up the SS and SP registers according to the
 declared size and location of the stack segment. Be sure to allow enough
 room for the maximum stack depth that can occur at runtime, plus a safe
 number of extra words for registers pushed onto the stack during an MS-DOS
 service call. If the stack overflows, it may damage your other code and
 data segments and cause your program to behave strangely or even to crash
 altogether!

 The END statement on line 60 winds up our brief HELLO.EXE program, telling
 the assembler that it has reached the end of the source file and providing
 the label of the program's point of entry from MS-DOS.

 The differences between .COM and .EXE programs are summarized in Figure
 3-8.

 .COM program .EXE program
 --
 Maximum size 65,536 bytes minus 256 No limit
 bytes for PSP and 2 bytes
 for stack

 Entry point PSP:0100H Defined by END statement

 AL at entry 00H if default FCB #1 has Same
 valid drive, 0FFH if
 invalid drive

 AH at entry 00H if default FCB #2 has Same
 valid drive, 0FFH if
 invalid drive

 CS at entry PSP Segment containing module
 with entry point

 IP at entry 0100H Offset of entry point within
 its segment

 DS at entry PSP PSP

 ES at entry PSP PSP

 SS at entry PSP Segment with STACK attribute

 SP at entry 0FFFEH or top word in Size of segment defined with
 available memory, STACK attribute
 whichever is lower

 Stack at entry Zero word Initialized or uninitialized

 Stack size 65,536 bytes minus 256 Defined in segment with
 bytes for PSP and size of STACK attribute
 executable code and data

 Subroutine calls Usually NEAR NEAR or FAR

 Exit method Int 21H Function 4CH Int 21H Function 4CH
 preferred, NEAR RET if preferred
 MS-DOS version 1

 Size of file Exact size of program Size of program plus header
 (multiple of 512 bytes)
 --

 Figure 3-8. Summary of the differences between .COM and .EXE programs,
 including their entry conditions.

More About Assembly-Language Programs

 Now that we've looked at working examples of .COM and .EXE
 assembly-language programs, let's backtrack and discuss their elements a
 little more formally. The following discussion is based on the Microsoft
 Macro Assembler, hereafter referred to as MASM. If you are familiar with
 MASM and are an experienced assembly-language programmer, you may want to
 skip this section.

 MASM programs can be thought of as having three structural levels:

 o The module level

 o The segment level

 o The procedure level

 Modules are simply chunks of source code that can be independently
 maintained and assembled. Segments are physical groupings of like items
 (machine code or data) within a program and a corresponding segregation of
 dissimilar items. Procedures are functional subdivisions of an executable
 program--routines that carry out a particular task.

Program Modules

 Under MS-DOS, the module-level structure consists of files containing the
 source code for individual routines. Each source file is translated by the
 assembler into a relocatable object module. An object module can reside
 alone in an individual file or with many other object modules in an
 object-module library of frequently used or related routines. The
 Microsoft Object Linker (LINK) combines object-module files, often with

 additional object modules extracted from libraries, into an executable
 program file.

 Using modules and object-module libraries reduces the size of your
 application source files (and vastly increases your productivity), because
 these files need not contain the source code for routines they have in
 common with other programs. This technique also allows you to maintain the
 routines more easily, because you need to alter only one copy of their
 source code stored in one place, instead of many copies stored in
 different applications. When you improve (or fix) one of these routines,
 you can simply reassemble it, put its object module back into the library,
 relink all of the programs that use the routine, and voilga: instant
 upgrade.

Program Segments

 The term segments refers to two discrete programming concepts: physical
 segments and logical segments.

 Physical segments are 64 KB blocks of memory. The Intel 8086/8088 and
 80286 microprocessors have four segment registers, which are essentially
 used as pointers to these blocks. (The 80386 has six segment registers,
 which are a superset of those found on the 8086/8088 and 80286.) Each
 segment register can point to the bottom of a different 64 KB area of
 memory. Thus, a program can address any location in memory by appropriate
 manipulation of the segment registers, but the maximum amount of memory
 that it can address simultaneously is 256 KB.

 As we discussed earlier in the chapter, .COM programs assume that all four
 segment registers always point to the same place--the bottom of the
 program. Thus, they are limited to a maximum size of 64 KB. .EXE programs,
 on the other hand, can address many different physical segments and can
 reset the segment registers to point to each segment as it is needed.
 Consequently, the only practical limit on the size of a .EXE program is
 the amount of available memory. The example programs throughout the
 remainder of this book focus on .EXE programs.

 Logical segments are the program components. A minimum of three logical
 segments must be declared in any .EXE program: a code segment, a data
 segment, and a stack segment. Programs with more than 64 KB of code or
 data have more than one code or data segment. The routines or data that
 are used most frequently are put into the primary code and data segments
 for speed, and routines or data that are used less frequently are put into
 secondary code and data segments.

 Segments are declared with the SEGMENT and ENDS directives in the
 following form:

 name SEGMENT attributes
 .
 .
 .
 name ENDS

 The attributes of a segment include its align type (BYTE, WORD, or PARA),
 combine type (PUBLIC, PRIVATE, COMMON, or STACK), and class type. The
 segment attributes are used by the linker when it is combining logical
 segments to create the physical segments of an executable program. Most of
 the time, you can get by just fine using a small selection of attributes

 in a rather stereotypical way. However, if you want to use the full range
 of attributes, you might want to read the detailed explanation in the MASM
 manual.

 Programs are classified into one memory model or another based on the
 number of their code and data segments. The most commonly used memory
 model for assembly-language programs is the small model, which has one
 code and one data segment, but you can also use the medium, compact, and
 large models (Figure 3-9). (Two additional models exist with which we
 will not be concerning ourselves further: the tiny model, which consists
 of intermixed code and data in a single segment-- for example, a .COM file
 under MS-DOS; and the huge model, which is supported by the Microsoft C
 Optimizing Compiler and which allows use of data structures larger than 64
 KB.)

 Model Code segments Data segments
 --
 Small One One
 Medium Multiple One
 Compact One Multiple
 Large Multiple Multiple
 --

 Figure 3-9. Memory models commonly used in assembly-language and C
 programs.

 For each memory model, Microsoft has established certain segment and class
 names that are used by all its high-level-language compilers (Figure
 3-10). Because segment names are arbitrary, you may as well adopt the
 Microsoft conventions. Their use will make it easier for you to integrate
 your assembly-language routines into programs written in languages such as
 C, or to use routines from high-level-language libraries in your
 assembly-language programs.

 Another important Microsoft high-level-language convention is to use the
 GROUP directive to name the near data segment (the segment the program
 expects to address with offsets from the DS register) and the stack
 segment as members of DGROUP (the automatic data group), a special name
 recognized by the linker and also by the program loaders in Microsoft
 Windows and Microsoft OS/2. The GROUP directive causes logical segments
 with different names to be combined into a single physical segment so that
 they can be addressed using the same segment base address. In C programs,
 DGROUP also contains the local heap, which is used by the C runtime
 library for dynamic allocation of small amounts of memory.

 Memory Segment Align Combine Class Group
 model name type type type
 --
 Small _TEXT WORD PUBLIC CODE
 _DATA WORD PUBLIC DATA DGROUP
 STACK PARA STACK STACK DGROUP

 Medium module_TEXT WORD PUBLIC CODE
 . WORD PUBLIC DATA DGROUP
 .
 .
 _DATA
 STACK PARA STACK STACK DGROUP

 Compact _TEXT WORD PUBLIC CODE
 data PARA PRIVATE FAR_DATA
 . WORD PUBLIC DATA DGROUP
 .
 .
 _DATA
 STACK PARA STACK STACK DGROUP

 Large module_TEXT WORD PUBLIC CODE
 .
 .
 .
 data PARA PRIVATE FAR_DATA
 .
 .
 .
 _DATA WORD PUBLIC DATA DGROUP
 STACK PARA STACK STACK DGROUP
 --

 Figure 3-10. Segments, groups, and classes for the standard memory models
 as used with assembly-language programs. The Microsoft C Optimizing
 Compiler and other high-level-language compilers use a superset of these
 segments and classes.

 For pure assembly-language programs that will run under MS-DOS, you can
 ignore DGROUP. However, if you plan to integrate assembly-language
 routines and programs written in high-level languages, you'll want to
 follow the Microsoft DGROUP convention. For example, if you are planning
 to link routines from a C library into an assembly-language program, you
 should include the line

 DGROUP group _DATA,STACK

 near the beginning of the program.

 The final Microsoft convention of interest in creating .EXE programs is
 segment order. The high-level compilers assume that code segments always
 come first, followed by far data segments, followed by the near data
 segment, with the stack and heap last. This order won't concern you much
 until you begin integrating assembly-language code with routines from
 high-level-language libraries, but it is easiest to learn to use the
 convention right from the start.

Program Procedures

 The procedure level of program structure is partly real and partly
 conceptual. Procedures are basically just a fancy guise for subroutines.

 Procedures within a program are declared with the PROC and ENDP directives
 in the following form:

 name PROC attribute
 .
 .
 .
 RET

 name ENDP

 The attribute carried by a PROC declaration, which is either NEAR or FAR,
 tells the assembler what type of call you expect to use to enter the
 procedure--that is, whether the procedure will be called from other
 routines in the same segment or from routines in other segments. When the
 assembler encounters a RET instruction within the procedure, it uses the
 attribute information to generate the correct opcode for either a near
 (intra-segment) or far (inter-segment) return.

 Each program should have a main procedure that receives control from
 MS-DOS. You specify the entry point for the program by including the name
 of the main procedure in the END statement in one of the program's source
 files. The main procedure's attribute (NEAR or FAR) is really not too
 important, because the program returns control to MS-DOS with a function
 call rather than a RET instruction. However, by convention, most
 programmers assign the main procedure the FAR attribute anyway.

 You should break the remainder of the program into procedures in an
 orderly way, with each procedure performing a well-defined single
 function, returning its results to its caller, and avoiding actions that
 have global effects within the program. Ideally procedures invoke each
 other only by CALL instructions, have only one entry point and one exit
 point, and always exit by means of a RET instruction, never by jumping to
 some other location within the program.

 For ease of understanding and maintenance, a procedure should not exceed
 one page (about 60 lines); if it is longer than a page, it is probably too
 complex and you should delegate some of its function to one or more
 subsidiary procedures. You should preface the source code for each
 procedure with a detailed comment that states the procedure's calling
 sequence, results returned, registers affected, and any data items
 accessed or modified. The effort invested in making your procedures
 compact, clean, flexible, and well-documented will be repaid many times
 over when you reuse the procedures in other programs.

--
Chapter 4 MS-DOS Programming Tools

 Preparing a new program to run under MS-DOS is an iterative process with
 four basic steps:

 o Use of a text editor to create or modify an ASCII source-code file

 o Use of an assembler or high-level-language compiler (such as the
 Microsoft Macro Assembler or the Microsoft C Optimizing Compiler) to
 translate the source file into relocatable object code

 o Use of a linker to transform the relocatable object code into an
 executable MS-DOS load module

 o Use of a debugger to methodically test and debug the program

 Additional utilities the MS-DOS software developer may find necessary or
 helpful include the following:

 o LIB, which creates and maintains object-module libraries

 o CREF, which generates a cross-reference listing

 o EXE2BIN, which converts .EXE files to .COM files

 o MAKE, which compares dates of files and carries out operations based on
 the result of the comparison

 This chapter gives an operational overview of the Microsoft programming
 tools for MS-DOS, including the assembler, the C compiler, the linker, and
 the librarian. In general, the information provided here also applies to
 the IBM programming tools for MS-DOS, which are really the Microsoft
 products with minor variations and different version numbers. Even if your
 preferred programming language is not C or assembly language, you will
 need at least a passing familiarity with these tools because all of the
 examples in the IBM and Microsoft DOS reference manuals are written in one
 of these languages.

 The survey in this chapter, together with the example programs and
 reference section elsewhere in the book, should provide the experienced
 programmer with sufficient information to immediately begin writing useful
 programs. Readers who do not have a background in C, assembly language, or
 the Intel 80x86 microprocessor architecture should refer to the tutorial
 and reference works listed at the end of this chapter.

File Types

 The MS-DOS programming tools can create and process many different file
 types. The following extensions are used by convention for these files:

 Extension File type
 --
 .ASM Assembly-language source file

 .C C source file

 .COM MS-DOS executable load module that does not require relocation
 at runtime

 .CRF Cross-reference information file produced by the assembler for
 processing by CREF.EXE

 .DEF Module-definition file describing a program's segment behavior
 (MS OS/2 and Microsoft Windows programs only; not relevant to
 normal MS-DOS applications)

 .EXE MS-DOS executable load module that requires relocation at
 runtime

 .H C header file containing C source code for constants, macros,
 and functions; merged into another C program with the #include
 directive

 .INC Include file for assembly-language programs, typically
 containing macros and/or equates for systemwide values such as
 error codes

 .LIB Object-module library file made up of one or more .OBJ files;
 indexed and manipulated by LIB.EXE

 .LST Program listing, produced by the assembler, that includes
 memory locations, machine code, the original program text, and
 error messages

 .MAP Listing of symbols and their locations within a load module;
 produced by the linker

 .OBJ Relocatable-object-code file produced by an assembler or
 compiler

 .REF Cross-reference listing produced by CREF.EXE from the
 information in a .CRF file
 --

The Microsoft Macro Assembler

 The Microsoft Macro Assembler (MASM) is distributed as the file MASM.EXE.
 When beginning a program translation, MASM needs the following
 information:

 o The name of the file containing the source program

 o The filename for the object program to be created

 o The destination of the program listing

 o The filename for the information that is later processed by the
 cross-reference utility (CREF.EXE)

 You can invoke MASM in two ways. If you enter the name of the assembler
 alone, it prompts you for the names of each of the various input and
 output files. The assembler supplies reasonable defaults for all the
 responses except the source filename, as shown in the following example:

 C>MASM <Enter>

 Microsoft (R) Macro Assembler Version 5.10
 Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.

 Source filename [.ASM]: HELLO <Enter>
 Object filename [HELLO.OBJ]: <Enter>
 Source listing [NUL.LST]: <Enter>
 Cross-reference [NUL.CRF]: <Enter>

 49006 Bytes symbol space free

 0 Warning Errors
 0 Severe Errors

 C>

 You can use a logical device name (such as PRN or COM1) at any of the MASM
 prompts to send that output of the assembler to a character device rather
 than a file. Note that the default for the listing and cross-reference

 files is the NUL device--that is, no file is created. If you end any
 response with a semicolon, MASM assumes that the remaining responses are
 all to be the default.

 A more efficient way to use MASM is to supply all parameters in the
 command line, as follows:

 MASM [options] source,[object],[listing],[crossref]

 For example, the following command lines are equivalent to the preceding
 interactive session:

 C>MASM HELLO,,NUL,NUL <Enter>

 or

 C>MASM HELLO; <Enter>

 These commands use the file HELLO.ASM as the source, generate the
 object-code file HELLO.OBJ, and send the listing and cross-reference files
 to the bit bucket.

 MASM accepts several optional switches in the command line, to control
 code generation and output files. Figure 4-1 lists the switches accepted
 by MASM version 5.1. As shown in the following example, you can put
 frequently used options in a MASM environment variable, where they will be
 found automatically by the assembler:

 C>SET MASM=/T /Zi <Enter>

 The switches in the environment variable will be overridden by any that
 you enter in the command line.

 In other versions of the Microsoft Macro Assembler, additional or fewer
 switches may be available. For exact instructions, see the manual for the
 version of MASM that you are using.

 Switch Meaning
 --
 /A Arrange segments in alphabetic order.
 /Bn Set size of source-file buffer (in KB).
 /C Force creation of a cross-reference (.CRF) file.
 /D Produce listing on both passes (to find phase errors).
 /Dsymbol Define symbol as a null text string (symbol can be referenced
 by conditional assembly directives in file).
 /E Assemble for 80x87 numeric coprocessor emulator using IEEE
 real-number format.
 /Ipath Set search path for include files.
 /L Force creation of a program-listing file.
 /LA Force listing of all generated code.
 /ML Preserve case sensitivity in all names (uppercase names
 distinct from their lowercase equivalents).
 /MX Preserve lowercase in external names only (names defined with
 PUBLIC or EXTRN directives).
 /MU Convert all lowercase names to uppercase.
 /N Suppress generation of tables of macros, structures, records,
 segments, groups, and symbols at the end of the listing.
 /P Check for impure code in 80286/80386 protected mode.

 /S Arrange segments in order of occurrence (default).
 /T "Terse" mode; suppress all messages unless errors are
 encountered during the assembly.
 /V "Verbose" mode; report number of lines and symbols at end of
 assembly.
 /Wn Set error display (warning) level; n=0-2.
 /X Force listing of false conditionals.
 /Z Display source lines containing errors on the screen.
 /Zd Include line-number information in .OBJ file.
 /Zi Include line-number and symbol information in .OBJ file.
 --

 Figure 4-1. Microsoft Macro Assembler version 5.1 switches.

 MASM allows you to override the default extensions on any file--a feature
 that can be rather dangerous. For example, if in the preceding example you
 had responded to the Object filename prompt with HELLO.ASM, the assembler
 would have accepted the entry without comment and destroyed your source
 file. This is not too likely to happen in the interactive command mode,
 but you must be very careful with file extensions when MASM is used in a
 batch file.

The Microsoft C Optimizing Compiler

 The Microsoft C Optimizing Compiler consists of three executable files--
 C1.EXE, C2.EXE, and C3.EXE--that implement the C preprocessor, language
 translator, code generator, and code optimizer. An additional control
 program, CL.EXE, executes the three compiler files in order, passing each
 the necessary information about filenames and compilation options.

 Before using the C compiler and the linker, you need to set up four
 environment variables:

 Variable Action
 --
 PATH=path Specifies the location of the three executable C
 compiler files (C1, C2, and C3) if they are not
 in the current directory; used by CL.EXE.

 INCLUDE=path Specifies the location of #include files (default
 extension .H) that are not found in the current
 directory.

 LIB=path Specifies the location(s) for object-code
 libraries that are not found in the current
 directory.

 TMP=path Specifies the location for temporary working
 files created by the C compiler and linker.
 --

 CL.EXE does not support an interactive mode or response files. You always
 invoke it with a command line of the following form:

 CL [options] file [file ...]

 You may list any number of files--if a file has a .C extension, it will be

 compiled into a relocatable-object-module (.OBJ) file. Ordinarily, if the
 compiler encounters no errors, it automatically passes all resulting .OBJ
 files and any additional .OBJ files specified in the command line to the
 linker, along with the names of the appropriate runtime libraries.

 The C compiler has many optional switches controlling its memory models,
 output files, code generation, and code optimization. These are summarized
 in Figure 4-2. The C compiler's arcane switch syntax is derived largely
 from UNIX/XENIX, so don't expect it to make any sense.

 Switch Meaning
 --
 /Ax Select memory model:
 C = compact model
 H = huge model
 L = large model
 M = medium model
 S = small model (default)
 /c Compile only; do not invoke linker.
 /C Do not strip comments.
 /D<name>[=text] Define macro.
 /E Send preprocessor output to standard output.
 /EP Send preprocessor output to standard output
 without line numbers.
 /F<n> Set stack size (in hexadecimal bytes).
 /Fa [filename] Generate assembly listing.
 /Fc [filename] Generate mixed source/object listing.
 /Fe [filename] Force executable filename.
 /Fl [filename] Generate object listing.
 /Fm [filename] Generate map file.
 /Fo [filename] Force object-module filename.
 /FPx Select floating-point control:
 a = calls with alternate math library
 c = calls with emulator library
 c87 = calls with 8087 library
 i = in-line with emulator (default)
 i87 = in-line with 8087
 /Fs [filename] Generate source listing.
 /Gx Select code generation:
 0 = 8086 instructions (default)
 1 = 186 instructions
 2 = 286 instructions
 c = Pascal style function calls
 s = no stack checking
 t[n] = data size threshold
 /H<n> Specify external name length.
 /I<path> Specify additional #include path.
 /J Specify default char type as unsigned.
 /link [options] Pass switches and library names to linker.
 /Ox Select optimization:
 a = ignore aliasing
 d = disable optimizations
 i = enable intrinsic functions
 l = enable loop optimizations
 n = disable "unsafe" optimizations
 p = enable precision optimizations
 r = disable in-line return
 s = optimize for space

 /Ox t = optimize for speed (default)
 w = ignore aliasing except across function
 calls
 x = enable maximum optimization (equivalent to
 /Oailt /Gs)
 /P Send preprocessor output to file.
 /Sx Select source-listing control:
 l<columns> = set line width
 p<lines> = set page length
 s<string> = set subtitle string
 t<string> = set title string
 /Tc<file> Compile file without .C extension.
 /u Remove all predefined macros.
 /U<name> Remove specified predefined macro.
 /V<string> Set version string.
 /W<n> Set warning level (0-3).
 /X Ignore "standard places" for include files.
 /Zx Select miscellaneous compilation control:
 a = disable extensions
 c = make Pascal functions case-insensitive
 d = include line-number information
 e = enable extensions (default)
 g = generate declarations
 i = include symbolic debugging information
 l = remove default library info
 p<n> = pack structures on n-byte boundary
 s = check syntax only
 --

 Figure 4-2. Microsoft C Optimizing Compiler version 5.1 switches.

The Microsoft Object Linker

 The object module produced by MASM from a source file is in a form that
 contains relocation information and may also contain unresolved references
 to external locations or subroutines. It is written in a common format
 that is also produced by the various high-level compilers (such as FORTRAN
 and C) that run under MS-DOS. The computer cannot execute object modules
 without further processing.

 The Microsoft Object Linker (LINK), distributed as the file LINK.EXE,
 accepts one or more of these object modules, resolves external references,
 includes any necessary routines from designated libraries, performs any
 necessary offset relocations, and writes a file that can be loaded and
 executed by MS-DOS. The output of LINK is always in .EXE load-module
 format. (See Chapter 3.)

 As with MASM, you can give LINK its parameters interactively or by
 entering all the required information in a single command line. If you
 enter the name of the linker alone, the following type of dialog ensues:

 C>LINK <Enter>

 Microsoft (R) Overlay Linker Version 3.61
 Copyright (C) Microsoft Corp 1983-1987. All rights reserved.

 Object Modules [.OBJ]: HELLO <Enter>

 Run File [HELLO.EXE]: <Enter>
 List File [NUL.MAP]: HELLO <Enter>
 Libraries [.LIB]: <Enter>

 C>

 If you are using LINK version 4.0 or later, the linker also asks for the
 name of a module-definition (.DEF) file. Simply press the Enter key in
 response to such a prompt. Module-definition files are used when building
 Microsoft Windows or MS OS/2 "new .EXE" executable files but are not
 relevant in normal MS-DOS applications.

 The input file for this example was HELLO.OBJ; the output files were
 HELLO.EXE (the executable program) and HELLO.MAP (the load map produced by
 the linker after all references and addresses were resolved). Figure 4-3
 shows the load map.

 --
 Start Stop Length Name Class
 00000H 00017H 00018H _TEXT CODE
 00018H 00027H 00010H _DATA DATA
 00030H 000AFH 00080H STACK STACK
 000B0H 000BBH 0000CH $$TYPES DEBTYP
 000C0H 000D6H 00017H $$SYMBOLS DEBSYM

 Address Publics by Name

 Address Publics by Value

 Program entry point at 0000:0000
 --

 Figure 4-3. Map produced by the Microsoft Object Linker (LINK) during the
 generation of the HELLO.EXE program from Chapter 3. The program contains
 one CODE, one DATA, and one STACK segment. The first instruction to be
 executed lies in the first byte of the CODE segment. The $$TYPES and
 $$SYMBOLS segments contain information for the CodeView debugger and are
 not part of the program; these segments are ignored by the normal MS-DOS
 loader.

 You can obtain the same result more quickly by entering all parameters in
 the command line, in the following form:

 LINK options objectfile, [exefile], [mapfile], [libraries]

 Thus, the command-line equivalent to the preceding interactive session is

 C>LINK HELLO,HELLO,HELLO,, <Enter>

 or

 C>LINK HELLO,,HELLO; <Enter>

 If you enter a semicolon as the last character in the command line, LINK
 assumes the default values for all further parameters.

 A third method of commanding LINK is with a response file. A response file
 contains lines of text that correspond to the responses you would give the
 linker interactively. You specify the name of the response file in the

 command line with a leading @ character, as follows:

 LINK @filename

 You can also enter the name of a response file at any prompt. If the
 response file is not complete, LINK will prompt you for the missing
 information.

 When entering linker commands, you can specify multiple object files with
 the + operator or with spaces, as in the following example:

 C>LINK HELLO+VMODE+DOSINT,MYPROG,,GRAPHICS; <Enter>

 This command would link the files HELLO.OBJ, VMODE.OBJ, and DOSINT.OBJ,
 searching the library file GRAPHICS.LIB to resolve any references to
 symbols not defined in the specified object files, and would produce a
 file named MYPROG.EXE. LINK uses the current drive and directory when they
 are not explicitly included in a filename; it will not automatically use
 the same drive and directory you specified for a previous file in the same
 command line.

 By using the + operator or space characters in the libraries field, you
 can specify up to 32 library files to be searched. Each high-level-
 language compiler provides default libraries that are searched
 automatically during the linkage process if the linker can find them
 (unless they are explicitly excluded with the /NOD switch). LINK looks for
 libraries first in the current directory of the default disk drive, then
 along any paths that were provided in the command line, and finally along
 the path(s) specified by the LIB variable if it is present in the
 environment.

 LINK accepts several optional switches as part of the command line or at
 the end of any interactive prompt. Figure 4-4 lists these switches. The
 number of switches available and their actions vary among different
 versions of LINK. See your Microsoft Object Linker instruction manual for
 detailed information about your particular version.

 Switch Full form Meaning
 --
 /A:n /ALIGNMENT:n Set segment sector alignment factor.
 N must be a power of 2 (default =
 512). Not related to logical-segment
 alignment (BYTE, WORD, PARA, PAGE,
 and so forth). Relevant to segmented
 executable files (Microsoft Windows
 and MS OS/2) only.

 /B /BATCH Suppress linker prompt if a library
 cannot be found in the current
 directory or in the locations
 specified by the LIB environment
 variable.

 /CO /CODEVIEW Include symbolic debugging
 information in the .EXE file for use
 by CodeView.

 /CP /CPARMAXALLOC Set the field in the .EXE file header

 controlling the amount of memory
 allocated to the program in addition
 to the memory required for the
 program's code, stack, and
 initialized data.

 /DO /DOSSEG Use standard Microsoft segment naming
 and ordering conventions.

 /DS /DSALLOCATE Load data at high end of the data
 segment. Relevant to real-mode
 programs only.

 /E /EXEPACK Pack executable file by removing
 sequences of repeated bytes and
 optimizing relocation table.

 /F /FARCALLTRANSLATION Optimize far calls to labels within
 the same physical segment for speed
 by replacing them with near calls and
 NOPs.

 /HE /HELP Display information about available
 options.

 /HI /HIGH Load program as high in memory as
 possible.

 /I /INFORMATION Display information about progress of
 linking, including pass numbers and
 the names of object files being
 linked.

 /INC /INCREMENTAL Force production of .SYM and .ILK
 files for subsequent use by ILINK
 (incremental linker). May not be used
 with /EXEPACK. Relevant to segmented
 executable files (Microsoft Windows
 and MS OS/2) only.

 /LI /LINENUMBERS Write address of the first
 instruction that corresponds to each
 source-code line to the map file. Has
 no effect if the compiler does not
 include line-number information in
 the object module. Force creation of
 a map file.

 /M[:n] /MAP[:n] Force creation of a .MAP file listing
 all public symbols, sorted by name
 and by location. The optional value n
 is the maximum number of symbols that
 can be sorted (default = 2048); when
 n is supplied, the alphabetically
 sorted list is omitted.

 /NOD /NODEFAULTLIBRARYSEARCH Skip search of any default compiler
 libraries specified in the .OBJ file.

 /NOE /NOEXTENDEDDICTSEARCH Ignore extended library dictionary
 (if it is present). The extended
 dictionary ordinarily provides the
 linker with information about
 inter-module dependencies, to speed
 up linking.

 /NOF /NOFARCALLTRANSLATION Disable optimization of far calls to
 labels within the same segment.

 /NOG /NOGROUPASSOCIATION Ignore group associations when
 assigning addresses to data and code
 items.

 /NOI /NOIGNORECASE Do not ignore case in names during
 linking.

 /NON /NONULLSDOSSEG Arrange segments as for /DOSSEG but
 do not insert 16 null bytes at start
 of _TEXT segment.

 /NOP /NOPACKCODE Do not pack contiguous logical code
 segments into a single physical
 segment.

 /O:n /OVERLAYINTERRUPT:n Use interrupt number n with the
 overlay manager supplied with some
 Microsoft high-level languages.

 /PAC[:n] /PACKCODE[:n] Pack contiguous logical code segments
 into a single physical code segment.
 The optional value n is the maximum
 size for each packed physical code
 segment (default = 65,536 bytes).
 Segments in different groups are not
 packed.

 /PADC:n /PADCODE:n Add n filler bytes to end of each
 code module so that a larger module
 can be inserted later with ILINK.
 Relevant to segmented executable
 files (Windows and MS OS/2) only.

 /PADD:n /PADDATA:n Add n filler bytes to end of each
 data module so that a larger module
 can be inserted later with ILINK.
 Relevant to segmented executable
 files (Microsoft Windows and MS OS/2)
 only.

 /PAU /PAUSE Pause during linking, allowing a
 change of disks before .EXE file is
 written.

 /SE:n /SEGMENTS:n Set maximum number of segments in
 linked program (default = 128).

 /ST:n /STACK:n Set stack size of program in bytes;
 ignore stack segment size

 declarations within object modules
 and definition file.

 /W /WARNFIXUP Display warning messages for offsets
 relative to a segment base that is
 not the same as the group base.
 Relevant to segmented executable
 files (Microsoft Windows and MS OS/2)
 only.
 --

 Figure 4-4. Switches accepted by the Microsoft Object Linker (LINK)
 version 5.0. Earlier versions use a subset of these switches. Note that
 any abbreviation for a switch is acceptable as long as it is sufficient to
 specify the switch uniquely.

The EXE2BIN Utility

 The EXE2BIN utility (EXE2BIN.EXE) transforms a .EXE file created by LINK
 into an executable .COM file, if the program meets the following
 prerequisites:

 o It cannot contain more than one declared segment and cannot
 define a stack.

 o It must be less than 64 KB in length.

 o It must have an origin at 0100H.

 o The first location in the file must be specified as the entry point
 in the source code's END directive.

 Although .COM files are somewhat more compact than .EXE files, you should
 avoid using them. Programs that use separate segments for code, data, and
 stack are much easier to port to protected-mode environments such as MS
 OS/2; in addition, .COM files do not support the symbolic debugging
 information used by CodeView.

 Another use for the EXE2BIN utility is to convert an installable device
 driver--after it is assembled and linked into a .EXE file--into a
 memory-image .BIN or .SYS file with an origin of zero. This conversion is
 required in MS-DOS version 2, which cannot load device drivers as .EXE
 files. The process of writing an installable device driver is discussed in
 more detail in Chapter 14.

 Unlike most of the other programming utilities, EXE2BIN does not have an
 interactive mode. It always takes its source and destination filenames,
 separated by spaces, from the MS-DOS command line, as follows:

 EXE2BIN sourcefile [destinationfile]

 If you do not supply the source-file extension, it defaults to .EXE; the
 destination-file extension defaults to .BIN. If you do not specify a name
 for the destination file, EXE2BIN gives it the same name as the source
 file, with a .BIN extension.

 For example, to convert the file HELLO.EXE into HELLO.COM, you would use

 the following command line:

 C>EXE2BIN HELLO.EXE HELLO.COM <Enter>

 The EXE2BIN program also has other capabilities, such as pure binary
 conversion with segment fixup for creating program images to be placed in
 ROM; but because these features are rarely used during MS-DOS application
 development, they will not be discussed here.

The CREF Utility

 The CREF cross-reference utility CREF.EXE processes a .CRF file produced
 by MASM, creating an ASCII text file with the default extension .REF. The
 file contains a cross-reference listing of all symbols declared in the
 program and the line numbers in which they are referenced. (See Figure
 4-5.) Such a listing is very useful when debugging large
 assembly-language programs with many interdependent procedures and
 variables.

 CREF may be supplied with its parameters interactively or in a single
 command line. If you enter the utility name alone, CREF prompts you for
 the input and output filenames, as shown in the following example:

 C>CREF <Enter>

 Microsoft (R) Cross-Reference Utility Version 5.10
 Copyright (C) Microsoft Corp 1981-1985, 1987. All rights reserved.

 Cross-reference [.CRF]: HELLO <Enter>
 Listing [HELLO.REF]:

 15 Symbols

 C>

 --
 Microsoft Cross-Reference Version 5.10 Thu May 26 11:09:34 1988
 HELLO.EXE --- print Hello on terminal

 Symbol Cross-Reference (# definition, + modification)Cref-1

 @CPU 1#
 @VERSION 1#

 CODE 21
 CR 17# 46 47

 DATA 44

 LF 18# 46 47

 MSG. 33 46#
 MSG_LEN. 32 49#

 PRINT. 25# 39 60

 STACK. 23 54# 54 58
 STDERR 15#

 STDIN. 13#
 STDOUT 14# 31

 _DATA. 23 27 44# 51
 _TEXT. 21# 23 41

 15 Symbols
 --

 Figure 4-5. Cross-reference listing HELLO.REF produced by the CREF
 utility from the file HELLO.CRF, for the HELLO.EXE program example from
 Chapter 3. The symbols declared in the program are listed on the left in
 alphabetic order. To the right of each symbol is a list of all the lines
 where that symbol is referenced. The number with a # sign after it denotes
 the line where the symbol is declared. Numbers followed by a + sign
 indicate that the symbol is modified at the specified line. The line
 numbers given in the cross-reference listing correspond to the line
 numbers generated by the assembler in the program-listing (.LST) file, not
 to any physical line count in the original source file.

 The parameters may also be entered in the command line in the following
 form:

 CREF CRF_file, listing_file

 For example, the command-line equivalent to the preceding interactive
 session is:

 C>CREF HELLO,HELLO <Enter>

 If CREF cannot find the specified .CRF file, it displays an error message.
 Otherwise, it leaves the cross-reference listing in the specified file on
 the disk. You can send the file to the printer with the COPY command, in
 the following form:

 COPY listing_file PRN:

 You can also send the cross-reference listing directly to a character
 device as it is generated by responding to the Listing prompt with the
 name of the device.

The Microsoft Library Manager

 Although the object modules that are produced by MASM or by high-level-
 language compilers can be linked directly into executable load modules,
 they can also be collected into special files called object-module
 libraries. The modules in a library are indexed by name and by the public
 symbols they contain, so that they can be extracted by the linker to
 satisfy external references in a program.

 The Microsoft Library Manager (LIB) is distributed as the file LIB.EXE.
 LIB creates and maintains program libraries, adding, updating, and
 deleting object files as necessary. LIB can also check a library file for
 internal consistency or print a table of its contents (Figure 4-6).

 LIB follows the command conventions of most other Microsoft programming
 tools. You must supply it with the name of a library file to work on, one
 or more operations to perform, the name of a listing file or device, and

 (optionally) the name of the output library. If you do not specify a name
 for the output library, LIB gives it the same name as the input library
 and changes the extension of the input library to .BAK.

 The LIB operations are simply the names of object files, with a prefix
 character that specifies the action to be taken:

 Prefix Meaning
 --
 - Delete an object module from the library.
 * Extract a module and place it in a separate .OBJ file.
 + Add an object module or the entire contents of another library
 to the library.
 --

 You can combine command prefixes. For example, -+ replaces a module, and
 *- extracts a module into a new file and then deletes it from the library.

 --
 _abort............abort _abs..............abs
 _access...........access _asctime..........asctime
 _atof.............atof _atoi.............atoi
 _atol.............atol _bdos.............bdos
 _brk..............brk _brkctl...........brkctl
 _bsearch..........bsearch _calloc...........calloc
 _cgets............cgets _chdir............dir
 _chmod............chmod _chsize...........chsize
 .
 .
 .
 _exit Offset: 00000010H Code and data size: 44H
 __exit

 _filbuf Offset: 00000160H Code and data size: BBH
 __filbuf

 _file Offset: 00000300H Code and data size: CAH
 __iob __iob2 __lastiob
 .
 .
 .
 --

 Figure 4-6. Extract from the table-of-contents listing produced by the
 Microsoft Library Manager (LIB) for the Microsoft C library SLIBC.LIB. The
 first part of the listing is an alphabetic list of all public names
 declared in all of the modules in the library. Each name is associated
 with the object module to which it belongs. The second part of the listing
 is an alphabetic list of the object-module names in the library, each
 followed by its offset within the library file and the actual size of the
 module in bytes. The entry for each module is followed by a summary of the
 public names that are declared within it.

 When you invoke LIB with its name alone, it requests the other information
 it needs interactively, as shown in the following example:

 C>LIB <Enter>

 Microsoft (R) Library Manager Version 3.08

 Copyright (C) Microsoft Corp 1983-1987. All rights reserved.

 Library name: SLIBC <Enter>
 Operations: +VIDEO <Enter>
 List file: SLIBC.LST <Enter>
 Output library: SLIBC2 <Enter>

 C>

 In this example, LIB added the object module VIDEO.OBJ to the library
 SLIBC.LIB, wrote a library table of contents into the file SLIBC.LST, and
 named the resulting new library SLIBC2.LIB.

 The Library Manager can also be run with a command line of the following
 form:

 LIB library [commands],[list],[newlibrary]

 For example, the following command line is equivalent to the preceding
 interactive session:

 C>LIB SLIBC +VIDEO,SLIBC.LST,SLIBC2; <Enter>

 As with the other Microsoft utilities, a semicolon at the end of the
 command line causes LIB to use the default responses for any parameters
 that are omitted.

 Like LINK, LIB can also accept its commands from a response file. The
 contents of the file are lines of text that correspond exactly to the
 responses you would give LIB interactively. You specify the name of the
 response file in the command line with a leading @ character, as follows:

 LIB @filename

 LIB has only three switches: /I (/IGNORECASE), /N (/NOIGNORECASE), and
 /PAGESIZE:number. The /IGNORECASE switch is the default. The /NOIGNORECASE
 switch causes LIB to regard as distinct any symbols that differ only in
 the case of their component letters. You should place the /PAGESIZE
 switch, which defines the size of a unit of allocation space for a given
 library, immediately after the library filename. The library page size is
 in bytes and must be a power of 2 between 16 and 32,768 (16, 32, 64, and
 so forth); the default is 16 bytes. Because the index to a library is
 always a fixed number of pages, setting a larger page size allows you to
 store more object modules in that library; on the other hand, it will
 result in more wasted space within the file.

The MAKE Utility

 The MAKE utility (MAKE.EXE) compares dates of files and carries out
 commands based on the result of that comparison. Because of this single,
 rather basic capability, MAKE can be used to maintain complex programs
 built from many modules. The dates of source, object, and executable files
 are simply compared in a logical sequence; the assembler, compiler,
 linker, and other programming tools are invoked as appropriate.

 The MAKE utility processes a plain ASCII text file called, as you might
 expect, a make file. You start the utility with a command-line entry in
 the following form:

 MAKE makefile [options]

 By convention, a make file has the same name as the executable file that
 is being maintained, but without an extension. The available MAKE switches
 are listed in Figure 4-7.

 A simple make file contains one or more dependency statements separated by
 blank lines. Each dependency statement can be followed by a list of MS-DOS
 commands, in the following form:

 targetfile : sourcefile ...

 command

 command

 .

 .

 .

 If the date and time of any source file are later than those of the target
 file, the accompanying list of commands is carried out. You may use
 comment lines, which begin with a # character, freely in a make file. MAKE
 can also process inference rules and macro definitions. For further
 details on these advanced capabilities, see the Microsoft or IBM
 documentation.

 Switch Meaning
 --
 /D Display last modification date of each file as it is processed.
 /I Ignore exit (return) codes returned by commands and programs
 executed as a result of dependency statements.
 /N Display commands that would be executed as a result of
 dependency statements but do not execute those commands.
 /S Do not display commands as they are executed.
 /X Direct error messages from MAKE, or any program that MAKE runs,
 <filename> to the specified file. If filename is a hyphen (-), direct
 error messages to the standard output.
 --

 Figure 4-7. Switches for the MAKE utility.

A Complete Example

 Let's put together everything we've learned about using the MS-DOS
 programming tools so far. Figure 4-8 shows a sketch of the overall
 process of building an executable program.

 Assume that we have the source code for the HELLO.EXE program from Chapter
 3 in the file HELLO.ASM. To assemble the source program into the
 relocatable object module HELLO.OBJ with symbolic debugging information
 included, also producing a program listing in the file HELLO.LST and a
 cross-reference data file HELLO.CRF, we would enter

 C>MASM /C /L /Zi /T HELLO; <Enter>

 To convert the cross-reference raw-data file HELLO.CRF into a
 cross-reference listing in the file HELLO.REF, we would enter

 C>CREF HELLO,HELLO <Enter>

 +---------------+ +---------------+
MASM		C or other
source-code		HLL source-
file		code file
 +---+-----------+ +---+-----------+
 | +---------------------+ Compiler
 +---+-------+---+
 | Relocatable |
 | object-module +----+
 | file (.OBJ) | |
 +---+-----------+ |
 | LIB |
 +---+-----------+ | +---------------+
 | Object-module | + LINK | Executable |
 | libraries +-------------+ program |
 | (.LIB) | | | (.EXE) |
 +---------------+ | +---+-----------+
 | | EXE2BIN
 +---------------+ | +---+-----------+
HLL			Executable
runtime +------+	program		
libraries		(.COM)	
 +---------------+ +---------------+

 Figure 4-8. Creation of an MS-DOS application program, from source code
 to executable file.

 To convert the relocatable object file HELLO.OBJ into the executable file
 HELLO.EXE, creating a load map in the file HELLO.MAP and appending
 symbolic debugging information to the executable file, we would enter

 C>LINK /MAP /CODEVIEW HELLO; <Enter>

 We could also automate the entire process just described by creating a
 make file named HELLO (with no extension) and including the following
 instructions:

 hello.obj : hello.asm
 masm /C /L /Zi /T hello;
 cref hello,hello

 hello.exe : hello.obj
 link /MAP /CODEVIEW hello;

 Then, when we have made some change to HELLO.ASM and want to rebuild the
 executable HELLO.EXE file, we need only enter

 C>MAKE HELLO <Enter>

Programming Resources and References

 The literature on IBM PC-compatible personal computers, the Intel 80x86

 microprocessor family, and assembly-language and C programming is vast.
 The list below contains a selection of those books that I have found to be
 useful and reliable. The list should not be construed as an endorsement by
 Microsoft Corporation.

MASM Tutorials

 Assembly Language Primer for the IBM PC and XT, by Robert Lafore. New
 American Library, New York, NY, 1984. ISBN 0-452-25711-5.

 8086/8088/80286 Assembly Language, by Leo Scanlon. Brady Books, Simon and
 Schuster, New York, NY, 1988. ISBN 0-13-246919-7.

C Tutorials

 Microsoft C Programming for the IBM, by Robert Lafore. Howard K. Sams &
 Co., Indianapolis, IN, 1987. ISBN 0-672-22515-8.

 Proficient C, by Augie Hansen. Microsoft Press, Redmond, WA, 1987. ISBN
 1-55615-007-5.

Intel 80x86 Microprocessor References

 iAPX 88 Book. Intel Corporation, Literature Department SV3-3, 3065 Bowers
 Ave., Santa Clara, CA 95051. Order no. 210200.

 iAPX 286 Programmer's Reference Manual. Intel Corporation, Literature
 Department SV3-3, 3065 Bowers Ave., Santa Clara, CA 95051. Order no.
 210498.

 iAPX 386 Programmer's Reference Manual. Intel Corporation, Literature
 Department SV3-3, 3065 Bowers Ave., Santa Clara, CA 95051. Order no.
 230985.

PC, PC/AT, and PS/2 Architecture

 The IBM Personal Computer from the Inside Out (Revised Edition), by Murray
 Sargent and Richard L. Shoemaker. Addison-Wesley Publishing Company,
 Reading, MA, 1986. ISBN 0-201-06918-0.

 Programmer's Guide to PC & PS/2 Video Systems, by Richard Wilton.
 Microsoft Press, Redmond, WA, 1987. ISBN 1-55615-103-9.

 Personal Computer Technical Reference. IBM Corporation, IBM Technical
 Directory, P. O. Box 2009, Racine, WI 53404. Part no. 6322507.

 Personal Computer AT Technical Reference. IBM Corporation, IBM Technical
 Directory, P. O. Box 2009, Racine, WI 53404. Part no. 6280070.

 Options and Adapters Technical Reference. IBM Corporation, IBM Technical
 Directory, P. O. Box 2009, Racine, WI 53404. Part no. 6322509.

 Personal System/2 Model 30 Technical Reference. IBM Corporation, IBM
 Technical Directory, P. O. Box 2009, Racine, WI 53404. Part no. 68X2201.

 Personal System/2 Model 50/60 Technical Reference. IBM Corporation, IBM
 Technical Directory, P. O. Box 2009, Racine, WI 53404. Part no. 68X2224.

 Personal System/2 Model 80 Technical Reference. IBM Corporation, IBM

 Technical Directory, P. O. Box 2009, Racine, WI 53404. Part no. 68X2256.

--
Chapter 5 Keyboard and Mouse Input

 The fundamental means of user input under MS-DOS is the keyboard. This
 follows naturally from the MS-DOS command-line interface, whose lineage
 can be traced directly to minicomputer operating systems with Teletype
 consoles. During the first few years of MS-DOS's existence, when
 8088/8086-based machines were the norm, nearly every popular application
 program used key-driven menus and text-mode displays.

 However, as high-resolution graphics adapters (and 80286/80386-based
 machines with enough power to drive them) have become less expensive,
 programs that support windows and a graphical user interface have steadily
 grown more popular. Such programs typically rely on a pointing device such
 as a mouse, stylus, joystick, or light pen to let the user navigate in a
 "point-and-shoot" manner, reducing keyboard entry to a minimum. As a
 result, support for pointing devices has become an important consideration
 for all software developers.

Keyboard Input Methods

 Applications running under MS-DOS on IBM PC-compatible machines can use
 several methods to obtain keyboard input:

 o MS-DOS handle-oriented functions

 o MS-DOS traditional character functions

 o IBM ROM BIOS keyboard-driver functions

 These methods offer different degrees of flexibility, portability, and
 hardware independence.

 The handle, or stream-oriented, functions are philosophically derived from
 UNIX/XENIX and were first introduced in MS-DOS version 2.0. A program uses
 these functions by supplying a handle, or token, for the desired device,
 plus the address and length of a buffer.

 When a program begins executing, MS-DOS supplies it with predefined
 handles for certain commonly used character devices, including the
 keyboard:

 Handle Device name Opened to
 --
 0 Standard input (stdin) CON
 1 Standard output (stdout) CON
 2 Standard error (stderr) CON
 3 Standard auxiliary (stdaux) AUX
 4 Standard printer (stdprn) PRN
 --

 These handles can be used for read and write operations without further
 preliminaries. A program can also obtain a handle for a character device
 by explicitly opening the device for input or output using its logical

 name (as though it were a file). The handle functions support I/O
 redirection, allowing a program to take its input from another device or
 file instead of the keyboard, for example. Redirection is discussed in
 detail in Chapter 15.

 The traditional character-input functions are a superset of the character
 I/O functions that were present in CP/M. Originally included in MS-DOS
 simply to facilitate the porting of existing applications from CP/M, they
 are still widely used. In MS-DOS versions 2.0 and later, most of the
 traditional functions also support I/O redirection (although not as well
 as the handle functions do).

 Use of the IBM ROM BIOS keyboard functions presupposes that the program is
 running on an IBM PC-compatible machine. The ROM BIOS keyboard driver
 operates at a much more primitive level than the MS-DOS functions and
 allows a program to circumvent I/O redirection or MS-DOS's special
 handling of certain control characters. Programs that use the ROM BIOS
 keyboard driver are inherently less portable than those that use the
 MS-DOS functions and may interfere with the proper operation of other
 programs; many of the popular terminate-and-stay-resident (TSR) utilities
 fall into this category.

Keyboard Input with Handles

 The principal MS-DOS function for keyboard input using handles is Int 21H
 Function 3FH (Read File or Device). The parameters for this function are
 a handle, the segment and offset of a buffer, and the length of the
 buffer. (For a more detailed explanation of this function, see Section
 II of this book, "MS-DOS Functions Reference.")

 As an example, let's use the predefined standard input handle (0) and Int
 21H Function 3FH to read a line from the keyboard:

 --
 buffer db 80 dup (?) ; keyboard input buffer
 .
 .
 .
 mov ah,3fh ; function 3fh = read file or device
 mov bx,0 ; handle for standard input
 mov cx,80 ; maximum bytes to read
 mov dx,seg buffer ; DS:DX = buffer address
 mov ds,dx
 mov dx,offset buffer
 int 21h ; transfer to MS-DOS
 jc error ; jump if error detected
 .
 .
 .
 --

 When control returns from Int 21H Function 3FH, the carry flag is clear if
 the function was successful, and AX contains the number of characters
 read. If there was an error, the carry flag is set and AX contains an
 error code; however, this should never occur when reading the keyboard.

 The standard input is redirectable, so the code just shown is not a
 foolproof way of obtaining input from the keyboard. Depending upon whether
 a redirection parameter was included in the command line by the user,

 program input might be coming from the keyboard, a file, another character
 device, or even the bit bucket (NUL device). To bypass redirection and be
 absolutely certain where your input is coming from, you can ignore the
 predefined standard input handle and open the console as though it were a
 file, using the handle obtained from that open operation to perform your
 keyboard input, as in the following example:

 --
 buffer db 80 dup (?) ; keyboard input buffer
 fname db 'CON',0 ; keyboard device name
 handle dw 0 ; keyboard device handle
 .
 .
 .
 mov ah,3dh ; function 3dh = open
 mov al,0 ; mode = read
 mov dx,seg fname ; DS:DX = device name
 mov ds,dx
 mov dx,offset fname
 int 21h ; transfer to MS-DOS
 jc error ; jump if open failed
 mov handle,ax ; save handle for CON
 .
 .
 .
 mov ah,3fh ; function 3fh = read file or device
 mov bx,handle ; BX = handle for CON
 mov cx,80 ; maximum bytes to read
 mov dx,offset buffer ; DS:DX = buffer address
 int 21h ; transfer to MS-DOS
 jc error ; jump if error detected
 .
 .
 .
 --

 When a programmer uses Int 21H Function 3FH to read from the keyboard, the
 exact result depends on whether MS-DOS regards the handle to be in ASCII
 mode or binary mode (sometimes known as cooked mode and raw mode). ASCII
 mode is the default, although binary mode can be selected with Int 21H
 Function 44H (IOCTL) when necessary.

 In ASCII mode, MS-DOS initially places characters obtained from the
 keyboard in a 128-byte internal buffer, and the user can edit the input
 with the Backspace key and the special function keys. MS-DOS automatically
 echoes the characters to the standard output, expanding tab characters to
 spaces (although they are left as the ASCII code 09H in the buffer). The
 Ctrl-C, Ctrl-S, and Ctrl-P key combinations receive special handling, and
 the Enter key is translated to a carriage return-linefeed pair. When the
 user presses Enter or Ctrl-Z, MS-DOS copies the requested number of
 characters (or the actual number of characters entered, if less than the
 number requested) out of the internal buffer into the calling program's
 buffer.

 In binary mode, MS-DOS never echoes input characters. It passes the
 Ctrl-C, Ctrl-S, Ctrl-P, and Ctrl-Z key combinations and the Enter key
 through to the application unchanged, and Int 21H Function 3FH does not
 return control to the application until the exact number of characters
 requested has been received.

 Ctrl-C checking is discussed in more detail at the end of this chapter.
 For now, simply note that the application programmer can substitute a
 custom handler for the default MS-DOS Ctrl-C handler and thereby avoid
 having the application program lose control of the machine when the user
 enters a Ctrl-C or Ctrl-Break.

Keyboard Input with Traditional Calls

 The MS-DOS traditional keyboard functions offer a variety of character and
 line-oriented services with or without echo and Ctrl-C detection. These
 functions are summarized on the following page.

 Int 21H Function Action Ctrl-C checking
 --
 01H Keyboard input with echo Yes
 06H Direct console I/O No
 07H Keyboard input without echo No
 08H Keyboard input without echo Yes
 0AH Buffered keyboard input Yes
 0BH Input-status check Yes
 0CH Input-buffer reset and input Varies
 --

 In MS-DOS versions 2.0 and later, redirection of the standard input
 affects all these functions. In other words, they act as though they were
 special cases of an Int 21H Function 3FH call using the predefined
 standard input handle (0).

 The character-input functions (01H, 06H, 07H, and 08H) all return a
 character in the AL register. For example, the following sequence waits
 until a key is pressed and then returns it in AL:

 --
 mov ah,1 ; function 01h = read keyboard
 int 21h ; transfer to MS-DOS
 --

 The character-input functions differ in whether the input is echoed to the
 screen and whether they are sensitive to Ctrl-C interrupts. Although
 MS-DOS provides no pure keyboard-status function that is immune to Ctrl-C,
 a program can read keyboard status (somewhat circuitously) without
 interference by using Int 21H Function 06H. Extended keys, such as the
 IBM PC keyboard's special function keys, require two calls to a
 character-input function.

 As an alternative to single-character input, a program can use
 buffered-line input (Int 21H Function 0AH) to obtain an entire line from
 the keyboard in one operation. MS-DOS builds up buffered lines in an
 internal buffer and does not pass them to the calling program until the
 user presses the Enter key. While the line is being entered, all the usual
 editing keys are active and are handled by the MS-DOS keyboard driver. You
 use Int 21H Function 0AH as follows:

 --
 buff db 81 ; maximum length of input
 db 0 ; actual length (from MS-DOS)
 db 81 dup (0) ; receives keyboard input
 .

 .
 .
 mov ah,0ah ; function 0ah = read buffered line
 mov dx,seg buff ; DS:DX = buffer address
 mov ds,dx
 mov dx,offset buff
 int 21h ; transfer to MS-DOS
 .
 .
 .
 --

 Int 21H Function 0AH differs from Int 21H Function 3FH in several
 important ways. First, the maximum length is passed in the first byte of
 the buffer, rather than in the CX register. Second, the actual length is
 returned in the second byte of the structure, rather than in the AX
 register. Finally, when the user has entered one less than the specified
 maximum number of characters, MS-DOS ignores all subsequent characters and
 sounds a warning beep until the Enter key is pressed.

 For detailed information about each of the traditional keyboard-input
 functions, see Section II of this book, "MS-DOS Functions Reference."

Keyboard Input with ROM BIOS Functions

 Programmers writing applications for IBM PC compatibles can bypass the
 MS-DOS keyboard functions and choose from two hardware-dependent
 techniques for keyboard input.

 The first method is to call the ROM BIOS keyboard driver using Int 16H.
 For example, the following sequence reads a single character from the
 keyboard input buffer and returns it in the AL register:

 --
 mov ah,0 ; function 0=read keyboard
 int 16h ; transfer to ROM BIOS
 --

 Int 16H Function 00H also returns the keyboard scan code in the AH
 register, allowing the program to detect key codes that are not ordinarily
 returned by MS-DOS. Other Int 16H services return the keyboard status
 (that is, whether a character is waiting) or the keyboard shift state
 (from the ROM BIOS data area 0000:0417H). For a more detailed explanation
 of ROM BIOS keyboard functions, see Section III of this book, "IBM ROM
 BIOS and Mouse Functions Reference."

 You should consider carefully before building ROM BIOS dependence into an
 application. Although this technique allows you to bypass any I/O
 redirection that may be in effect, ways exist to do this without
 introducing dependence on the ROM BIOS. And there are real disadvantages
 to calling the ROM BIOS keyboard driver:

 o It always bypasses I/O redirection, which sometimes may not be
 desirable.

 o It is dependent on IBM PC compatibility and does not work correctly,
 unchanged, on some older machines such as the Hewlett-Packard
 TouchScreen or the Wang Professional Computer.

 o It may introduce complicated interactions with TSR utilities.

 The other and more hardware-dependent method of keyboard input on an IBM
 PC is to write a new handler for ROM BIOS Int 09H and service the keyboard
 controller's interrupts directly. This involves translation of scan codes
 to ASCII characters and maintenance of the type-ahead buffer. In ordinary
 PC applications, there is no reason to take over keyboard I/O at this
 level; therefore, I will not discuss this method further here. If you are
 curious about the techniques that would be required, the best reference is
 the listing for the ROM BIOS Int 09H handler in the IBM PC or PC/AT
 technical reference manual.

Ctrl-C and Ctrl-Break Handlers

 In the discussion of keyboard input with the MS-DOS handle and traditional
 functions, I made some passing references to the fact that Ctrl-C entries
 can interfere with the expected behavior of those functions. Let's look at
 this subject in more detail now.

 During most character I/O operations, MS-DOS checks for a Ctrl-C (ASCII
 code 03H) waiting at the keyboard and executes an Int 23H if one is
 detected. If the system break flag is on, MS-DOS also checks for a Ctrl-C
 entry during certain other operations (such as file reads and writes).
 Ordinarily, the Int 23H vector points to a routine that simply terminates
 the currently active process and returns control to the parent process--
 usually the MS-DOS command interpreter.

 In other words, if your program is executing and you enter a Ctrl-C,
 accidentally or intentionally, MS-DOS simply aborts the program. Any files
 the program has opened using file control blocks will not be closed
 properly, any interrupt vectors it has altered may not be restored
 correctly, and if it is performing any direct I/O operations (for example,
 if it contains an interrupt driver for the serial port), all kinds of
 unexpected events may occur.

 Although you can use a number of partially effective methods to defeat
 Ctrl-C checking, such as performing keyboard input with Int 21H Functions
 06H and 07H, placing all character devices into binary mode, or turning
 off the system break flag with Int 21H Function 33H, none of these is
 completely foolproof. The simplest and most elegant way to defeat Ctrl-C
 checking is simply to substitute your own Int 23H handler, which can take
 some action appropriate to your program. When the program terminates,
 MS-DOS automatically restores the previous contents of the Int 23H vector
 from information saved in the program segment prefix. The following
 example shows how to install your own Ctrl-C handler (which in this case
 does nothing at all):

 --
 push ds ; save data segment
 ; set int 23h vector...
 mov ax,2523h ; function 25h = set interrupt
 ; int 23h = vector for
 ; Ctrl-C handler
 mov dx,seg handler ; DS:DX = handler address
 mov ds,dx
 mov dx,offset handler
 int 21h ; transfer to MS-DOS

 pop ds ; restore data segment
 .
 .
 .
 handler: ; a Ctrl-C handler
 iret ; that does nothing
 --

 The first part of the code (which alters the contents of the Int 23H
 vector) would be executed in the initialization part of the application.
 The handler receives control whenever MS-DOS detects a Ctrl-C at the
 keyboard. (Because this handler consists only of an interrupt return, the
 Ctrl-C will remain in the keyboard input stream and will be passed to the
 application when it requests a character from the keyboard, appearing on
 the screen as ^C.)

 When an Int 23H handler is called, MS-DOS is in a stable state. Thus, the
 handler can call any MS-DOS function. It can also reset the segment
 registers and the stack pointer and transfer control to some other point
 in the application without ever returning control to MS-DOS with an IRET.

 On IBM PC compatibles, an additional interrupt handler must be taken into
 consideration. Whenever the ROM BIOS keyboard driver detects the key
 combination Ctrl-Break, it calls a handler whose address is stored in the
 vector for Int 1BH. The default ROM BIOS Int 1BH handler does nothing.
 MS-DOS alters the Int 1BH vector to point to its own handler, which sets a
 flag and returns; the net effect is to remap the Ctrl-Break into a Ctrl-C
 that is forced ahead of any other characters waiting in the keyboard
 buffer.

 Taking over the Int 1BH vector in an application is somewhat tricky but
 extremely useful. Because the keyboard is interrupt driven, a press of
 Ctrl-Break lets the application regain control under almost any
 circumstance--often, even if the program has crashed or is in an endless
 loop.

 You cannot, in general, use the same handler for Int 1BH that you use for
 Int 23H. The Int 1BH handler is more limited in what it can do, because it
 has been called as a result of a hardware interrupt and MS-DOS may have
 been executing a critical section of code at the time the interrupt was
 serviced. Thus, all registers except CS:IP are in an unknown state; they
 may have to be saved and then modified before your interrupt handler can
 execute. Similarly, the depth of the stack in use when the Int 1BH handler
 is called is unknown, and if the handler is to perform stack-intensive
 operations, it may have to save the stack segment and the stack pointer
 and switch to a new stack that is known to have sufficient depth.

 In normal application programs, you should probably avoid retaining
 control in an Int 1BH handler, rather than performing an IRET. Because of
 subtle differences among non-IBM ROM BIOSes, it is difficult to predict
 the state of the keyboard controller and the 8259 Programmable Interrupt
 Controller (PIC) when the Int 1BH handler begins executing. Also, MS-DOS
 itself may not be in a stable state at the point of interrupt, a situation
 that can manifest itself in unexpected critical errors during subsequent
 I/O operations. Finally, MS-DOS versions 3.2 and later allocate a stack
 from an internal pool for use by the Int 09H handler. If the Int 1BH
 handler never returns, the Int 09H handler never returns either, and
 repeated entries of Ctrl-Break will eventually exhaust the stack pool,
 halting the system.

 Because Int 1BH is a ROM BIOS interrupt and not an MS-DOS interrupt,
 MS-DOS does not restore the previous contents of the Int 1BH vector when a
 program exits. If your program modifies this vector, it must save the
 original value and restore it before terminating. Otherwise, the vector
 will be left pointing to some random area in the next program that runs,
 and the next time the user presses Ctrl-Break a system crash is the best
 you can hope for.

Ctrl-C and Ctrl-Break Handlers and High-Level Languages

 Capturing the Ctrl-C and Ctrl-Break interrupts is straightforward when you
 are programming in assembly language. The process is only slightly more
 difficult with high-level languages, as long as you have enough
 information about the language's calling conventions that you can link in
 a small assembly-language routine as part of the program.

 The BREAK.ASM listing in Figure 5-1 contains source code for a Ctrl-Break
 handler that can be linked with small-model Microsoft C programs running
 on an IBM PC compatible. The short C program in Figure 5-2 demonstrates
 use of the handler. (This code should be readily portable to other C
 compilers.)

 --
 page 55,132
 title Ctrl-C & Ctrl-Break Handlers
 name break

 ;
 ; Ctrl-C and Ctrl-Break handler for Microsoft C
 ; programs running on IBM PC compatibles
 ;
 ; by Ray Duncan
 ;
 ; Assemble with: C>MASM /Mx BREAK;
 ;
 ; This module allows C programs to retain control
 ; when the user enters a Ctrl-Break or Ctrl-C.
 ; It uses Microsoft C parameter-passing conventions
 ; and assumes the C small memory model.
 ;
 ; The procedure _capture is called to install
 ; a new handler for the Ctrl-C and Ctrl-Break
 ; interrupts (1bh and 23h). _capture is passed
 ; the address of a static variable, which will be
 ; set to true by the handler whenever a Ctrl-C
 ; or Ctrl-Break is detected. The C syntax is:
 ;
 ; static int flag;
 ; capture(&flag);
 ;
 ; The procedure _release is called by the C program
 ; to restore the original Ctrl-Break and Ctrl-C
 ; handler. The C syntax is:
 ; release();
 ;
 ; The procedure ctrlbrk is the actual interrupt
 ; handler. It receives control when a software
 ; int 1bh is executed by the ROM BIOS or int 23h

 ; is executed by MS-DOS. It simply sets the C
 ; program's variable to true (1) and returns.
 ;

 args equ 4 ; stack offset of arguments,
 ; C small memory model

 cr equ 0dh ; ASCII carriage return
 lf equ 0ah ; ASCII linefeed

 _TEXT segment word public 'CODE'

 assume cs:_TEXT

 public _capture
 _capture proc near ; take over Ctrl-Break
 ; and Ctrl-C interrupt vectors

 push bp ; set up stack frame
 mov bp,sp

 push ds ; save registers
 push di
 push si

 ; save address of
 ; calling program's "flag"
 mov ax,word ptr [bp+args]
 mov word ptr cs:flag,ax
 mov word ptr cs:flag+2,ds

 ; save address of original
 mov ax,3523h ; int 23h handler
 int 21h
 mov word ptr cs:int23,bx
 mov word ptr cs:int23+2,es
 mov ax,351bh ; save address of original
 int 21h ; int 1bh handler
 mov word ptr cs:int1b,bx
 mov word ptr cs:int1b+2,es
 push cs ; set DS:DX = address
 pop ds ; of new handler
 mov dx,offset _TEXT:ctrlbrk

 mov ax,02523h ; set int 23h vector
 int 21h

 mov ax,0251bh ; set int 1bh vector
 int 21h

 pop si ; restore registers
 pop di
 pop ds

 pop bp ; discard stack frame
 ret ; and return to caller

 _capture endp

 public _release
 _release proc near ; restore original Ctrl-C
 ; and Ctrl-Break handlers

 push bp ; save registers
 push ds
 push di
 push si

 lds dx,cs:int1b ; get address of previous
 ; int 1bh handler

 mov ax,251bh ; set int 1bh vector
 int 21h

 lds dx,cs:int23 ; get address of previous
 ; int 23h handler

 mov ax,2523h ; set int 23h vector
 int 21h

 pop si ; restore registers
 pop di ; and return to caller
 pop ds
 pop bp
 ret
 release endp

 ctrlbrk proc far ; Ctrl-C and Ctrl-Break
 ; interrupt handler

 push bx ; save registers
 push ds

 lds bx,cs:flag ; get address of C program's
 ; "flag variable"

 ; and set the flag "true"
 mov word ptr ds:[bx],1

 pop ds ; restore registers
 pop bx

 iret ; return from handler

 ctrlbrk endp

 flag dd 0 ; far pointer to caller's
 ; Ctrl-Break or Ctrl-C flag

 int23 dd 0 ; address of original
 ; Ctrl-C handler

 int1b dd 0 ; address of original
 ; Ctrl-Break handler

 _TEXT ends

 end
 --

 Figure 5-1. BREAK.ASM: A Ctrl-C and Ctrl-Break interrupt handler that can
 be linked with Microsoft C programs.

 --
 /*
 TRYBREAK.C

 Demo of BREAK.ASM Ctrl-Break and Ctrl-C
 interrupt handler, by Ray Duncan

 To create the executable file TRYBREAK.EXE, enter:

 MASM /Mx BREAK;
 CL TRYBREAK.C BREAK.OBJ
 */

 #include <stdio.h>

 main(int argc, char *argv[])
 {
 int hit = 0; /* flag for key press */
 int c = 0; /* character from keyboard */
 static int flag = 0; /* true if Ctrl-Break
 or Ctrl-C detected */

 puts("\n*** TRYBREAK.C running ***\n");
 puts("Press Ctrl-C or Ctrl-Break to test handler,");
 puts("Press the Esc key to exit TRYBREAK.\n");

 capture(&flag); /* install new Ctrl-C and
 Ctrl-Break handler and
 pass address of flag */

 puts("TRYBREAK has captured interrupt vectors.\n");

 while(1)
 {
 hit = kbhit(); /* check for key press */
 /* (MS-DOS sees Ctrl-C
 when keyboard polled) */

 if(flag != 0) /* if flag is true, an */
 { /* interrupt has occurred */
 puts("\nControl-Break detected.\n");
 flag = 0; /* reset interrupt flag */
 }
 if(hit != 0) /* if any key waiting */
 {
 c = getch(); /* read key, exit if Esc */
 if((c & 0x7f) == 0x1b) break;
 putch(c); /* otherwise display it */
 }
 }
 release(); /* restore original Ctrl-C
 and Ctrl-Break handlers */

 puts("\n\nTRYBREAK has released interrupt vectors.");
 }
 --

 Figure 5-2. TRYBREAK.C: A simple Microsoft C program that demonstrates
 use of the interrupt handler BREAK.ASM from Figure 5-1.

 In the example handler, the procedure named capture is called with the
 address of an integer variable within the C program. It saves the address
 of the variable, points the Int 1BH and Int 23H vectors to its own
 interrupt handler, and then returns.

 When MS-DOS detects a Ctrl-C or Ctrl-Break, the interrupt handler sets the
 integer variable within the C program to true (1) and returns. The C
 program can then poll this variable at its leisure. Of course, to detect
 more than one Ctrl-C, the program must reset the variable to zero again.

 The procedure named release simply restores the Int 1BH and Int 23H
 vectors to their original values, thereby disabling the interrupt handler.
 Although it is not strictly necessary for release to do anything about Int
 23H, this action does give the C program the option of restoring the
 default handler for Int 23H without terminating.

Pointing Devices

 Device drivers for pointing devices are supplied by the hardware
 manufacturer and are loaded with a DEVICE statement in the CONFIG.SYS
 file. Although the hardware characteristics of the available pointing
 devices differ greatly, nearly all of their drivers present the same
 software interface to application programs: the Int 33H protocol used by
 the Microsoft Mouse driver. Version 6 of the Microsoft Mouse driver (which
 was current as this was written) offers the following functions:

 Function Meaning
 --
 00H Reset mouse and get status.
 01H Show mouse pointer.
 02H Hide mouse pointer.
 03H Get button status and pointer position.
 04H Set pointer position.
 05H Get button-press information.
 06H Get button-release information.
 07H Set horizontal limits for pointer.
 08H Set vertical limits for pointer.
 09H Set graphics pointer type.
 0AH Set text pointer type.
 0BH Read mouse-motion counters.
 0CH Install interrupt handler for mouse events.
 0DH Turn on light pen emulation.
 0EH Turn off light pen emulation.
 0FH Set mickeys to pixel ratio.
 10H Set pointer exclusion area.
 13H Set double-speed threshold.
 14H Swap mouse-event interrupt routines.
 15H Get buffer size for mouse-driver state.
 16H Save mouse-driver state.

 17H Restore mouse-driver state.
 18H Install alternate handler for mouse events.
 19H Get address of alternate handler.
 1AH Set mouse sensitivity.
 1BH Get mouse sensitivity.
 1CH Set mouse interrupt rate.
 1DH Select display page for pointer.
 1EH Get display page for pointer.
 1FH Disable mouse driver.
 20H Enable mouse driver.
 21H Reset mouse driver.
 22H Set language for mouse-driver messages.
 23H Get language number.
 24H Get driver version, mouse type, and IRQ number.
 --

 Although this list of mouse functions may appear intimidating, the average
 application will only need a few of them.

 A program first calls Int 33H Function 00H to initialize the mouse driver
 for the current display mode and to check its status. At this point, the
 mouse is "alive" and the application can obtain its state and position;
 however, the pointer does not become visible until the process calls Int
 33H Function 01H.

 The program can then call Int 33H Functions 03H, 05H, and 06H to
 monitor the mouse position and the status of the mouse buttons.
 Alternatively, the program can register an interrupt handler for mouse
 events, using Int 33H Function 0CH. This latter technique eliminates the
 need to poll the mouse driver; the driver will notify the program by
 calling the interrupt handler whenever the mouse is moved or a button is
 pressed or released.

 When the application is finished with the mouse, it can call Int 33H
 Function 02H to hide the mouse pointer. If the program has registered an
 interrupt handler for mouse events, it should disable further calls to the
 handler by resetting the mouse driver again with Int 33H Function 00H.

 For a complete description of the mouse-driver functions, see Section
 III of this book, "IBM ROM BIOS and Mouse Functions Reference." Figure
 5-3 shows a small demonstration program that polls the mouse continually,
 to display its position and status.

 --
 /*
 Simple Demo of Int 33H Mouse Driver
 (C) 1988 Ray Duncan

 Compile with: CL MOUDEMO.C
 */

 #include <stdio.h>
 #include <dos.h>

 union REGS regs;

 void cls(void); /* function prototypes */
 void gotoxy(int, int);

 main(int argc, char *argv[])
 {
 int x,y,buttons; /* some scratch variables */
 /* for the mouse state */

 regs.x.ax = 0; /* reset mouse driver */
 int86(0x33, ®s, ®s); /* and check status */

 if(regs.x.ax == 0) /* exit if no mouse */
 { printf("\nMouse not available\n");
 exit(1);
 }

 cls(); /* clear the screen */
 gotoxy(45,0); /* and show help info */
 puts("Press Both Mouse Buttons To Exit");

 regs.x.ax = 1; /* display mouse cursor */
 int86(0x33, ®s, ®s);

 do {
 regs.x.ax = 3; /* get mouse position */
 int86(0x33, ®s, ®s); /* and button status */
 buttons = regs.x.bx & 3;
 x = regs.x.cx;
 y = regs.x.dx;
 gotoxy(0,0); /* display mouse position */
 printf("X = %3d Y = %3d", x, y);

 } while(buttons != 3); /* exit if both buttons down */

 regs.x.ax = 2; /* hide mouse cursor */
 int86(0x33, ®s, ®s);

 cls(); /* display message and exit */
 gotoxy(0,0);
 puts("Have a Mice Day!");
 }

 /*
 Clear the screen
 */
 void cls(void)
 {
 regs.x.ax = 0x0600; /* ROM BIOS video driver */
 regs.h.bh = 7; /* int 10h function 06h */
 regs.x.cx = 0; /* initializes a window */
 regs.h.dh = 24;
 regs.h.dl = 79;
 int86(0x10, ®s, ®s);
 }

 /*
 Position cursor to (x,y)
 */
 void gotoxy(int x, int y)
 {
 regs.h.dl = x; /* ROM BIOS video driver */

 regs.h.dh = y; /* int 10h function 02h */
 regs.h.bh = 0; /* positions the cursor */
 regs.h.ah = 2;
 int86(0x10, ®s, ®s);
 }
 --

 Figure 5-3. MOUDEMO.C: A simple Microsoft C program that polls the mouse
 and continually displays the coordinates of the mouse pointer in the upper
 left corner of the screen. The program uses the ROM BIOS video driver,
 which is discussed in Chapter 6, to clear the screen and position the
 text cursor.

--
Chapter 6 Video Display

 The visual presentation of an application program is one of its most
 important elements. Users frequently base their conclusions about a
 program's performance and "polish" on the speed and attractiveness of its
 displays. Therefore, a feel for the computer system's display facilities
 and capabilities at all levels, from MS-DOS down to the bare hardware, is
 important to you as a programmer.

Video Display Adapters

 The video display adapters found in IBM PC-compatible computers have a
 hybrid interface to the central processor. The overall display
 characteristics, such as vertical and horizontal resolution, background
 color, and palette, are controlled by values written to I/O ports whose
 addresses are hardwired on the adapter, whereas the appearance of each
 individual character or graphics pixel on the display is controlled by a
 specific location within an area of memory called the regen buffer or
 refresh buffer. Both the CPU and the video controller access this memory;
 the software updates the display by simply writing character codes or bit
 patterns directly into the regen buffer. (This is called memory-mapped
 I/O.)

 The following adapters are in common use as this book is being written:

 o Monochrome/Printer Display Adapter (MDA). Introduced with the original
 IBM PC in 1981, this adapter supports 80-by-25 text display on a green
 (monochrome) screen and has no graphics capabilities at all.

 o Color/Graphics Adapter (CGA). Also introduced by IBM in 1981, this
 adapter supports 40-by-25 and 80-by-25 text modes and 320-by-200,
 4-color or 640-by-200, 2-color graphics (all-points-addressable, or
 APA) modes on composite or digital RGB monitors.

 o Enhanced Graphics Adapter (EGA). Introduced by IBM in 1985 and upwardly
 compatible from the CGA, this adapter adds support for 640-by-350,
 16-color graphics modes on digital RGB monitors. It also supports an
 MDA-compatible text mode.

 o Multi-Color Graphics Array (MCGA). Introduced by IBM in 1987 with the
 Personal System/2 (PS/2) models 25 and 30, this adapter is partially
 compatible with the CGA and EGA and supports 640-by-480, 2-color or

 320-by-200, 256-color graphics on analog RGB monitors.

 o Video Graphics Array (VGA). Introduced by IBM in 1987 with the PS/2
 models 50, 60, and 80, this adapter is upwardly compatible from the EGA
 and supports 640-by-480, 16-color or 320-by-200, 256-color graphics on
 analog RGB monitors. It also supports an MDA-compatible text mode.

 o Hercules Graphics Card, Graphics CardPlus, and InColor Cards. These are
 upwardly compatible from the MDA for text display but offer graphics
 capabilities that are incompatible with all of the IBM adapters.

 The locations of the regen buffers for the various IBM PC-compatible
 adapters are shown in Figure 6-1.

 +---+
 | ROM BIOS |
 FE000H +---+
 | System ROM, Stand-alone BASIC, etc. |
 F4000H +---+
 | Reserved for BIOS extensions |
 | (hard-disk controller, etc.) |
 C0000H +---+
 | Reserved |
 BC000H +---+
 | 16 KB regen buffer for CGA, EGA, MCGA, and VGA |
 | in text modes and 200-line graphics modes |
 B8000H +---+
 | Reserved |
 B1000H +---+
 | 4 KB Monochrome Adapter regen buffer |
 B0000H +---+
 | Regen buffer area for EGA, MCGA, and VGA |
 | in 350-line or 480-line graphics modes |
 A0000H +---+
 | Transient part of COMMAND.COM |
 +---+
 | Transient program area |
 varies +---+
 | MS-DOS and its buffers, |
 | tables, and device drivers |
 00400H +---+
 | Interrupt vectors |
 00000H +---+

 Figure 6-1. Memory diagram of an IBM PC-compatible personal computer,
 showing the locations of the regen buffers for various adapters.

Support Considerations

 MS-DOS offers several functions to transfer text to the display. Version 1
 supported only Teletype-like output capabilities; version 2 added an
 optional ANSI console driver to allow the programmer to clear the screen,
 position the cursor, and select colors and attributes with standard escape
 sequences embedded in the output. Programs that use only the MS-DOS
 functions will operate properly on any computer system that runs MS-DOS,
 regardless of the level of IBM hardware compatibility.

 On IBM PC-compatible machines, the ROM BIOS contains a video driver that

 programs can invoke directly, bypassing MS-DOS. The ROM BIOS functions
 allow a program to write text or individual pixels to the screen or to
 select display modes, video pages, palette, and foreground and background
 colors. These functions are relatively efficient (compared with the MS-DOS
 functions, at least), although the graphics support is primitive.

 Unfortunately, the display functions of both MS-DOS and the ROM BIOS were
 designed around the model of a cursor-addressable terminal and therefore
 do not fully exploit the capabilities of the memory-mapped, high-bandwidth
 display adapters used on IBM PC-compatible machines. As a result, nearly
 every popular interactive application with full-screen displays or
 graphics capability ignores both MS-DOS and the ROM BIOS and writes
 directly to the video controller's registers and regen buffer.

 Programs that control the hardware directly are sometimes called
 "ill-behaved," because they are performing operations that are normally
 reserved for operating-system device drivers. These programs are a severe
 management problem in multitasking real-mode environments such as DesqView
 and Microsoft Windows, and they are the main reason why such environments
 are not used more widely. It could be argued, however, that the blame for
 such problematic behavior lies not with the application programs but with
 the failure of MS-DOS and the ROM BIOS--even six years after the first
 appearance of the IBM PC--to provide display functions of adequate range
 and power.

MS-DOS Display Functions

 Under MS-DOS versions 2.0 and later, the preferred method for sending text
 to the display is to use handle-based Int 21H Function 40H (Write File or
 Device). When an application program receives control, MS-DOS has already
 assigned it handles for the standard output (1) and standard error (2)
 devices, and these handles can be used immediately. For example, the
 sequence at the top of the following page writes the message hello to the
 display using the standard output handle.

 --
 msg db 'hello' ; message to display
 msg_len equ $-msg ; length of message
 .
 .
 .
 mov ah,40h ; function 40h = write file or device
 mov bx,1 ; BX = standard output handle
 mov cx,msg_len ; CX = message length
 mov dx,seg msg ; DS:DX = address of message
 mov ds,dx
 mov dx,offset msg
 int 21h ; transfer to MS-DOS
 jc error ; jump if error detected
 .
 .
 .
 --

 If there is no error, the function returns the carry flag cleared and the
 number of characters actually transferred in register AX. Unless a Ctrl-Z
 is embedded in the text or the standard output is redirected to a disk
 file and the disk is full, this number should equal the number of

 characters requested.

 As in the case of keyboard input, the user's ability to specify
 command-line redirection parameters that are invisible to the application
 means that if you use the predefined standard output handle, you can't
 always be sure where your output is going. However, to ensure that your
 output actually goes to the display, you can use the predefined standard
 error handle, which is always opened to the CON (logical console) device
 and is not redirectable.

 As an alternative to the standard output and standard error handles, you
 can bypass any output redirection and open a separate channel to CON,
 using the handle obtained from that open operation for character output.
 For example, the following code opens the console display for output and
 then writes the string hello to it:

 --
 fname db 'CON',0 ; name of CON device
 handle dw 0 ; handle for CON device
 msg db 'hello' ; message to display
 msg_len equ $-msg ; length of message
 .
 .
 .
 mov ax,3d02h ; AH = function 3dh = open
 ; AL = mode = read/write
 mov dx,seg fname ; DS:DX = device name
 mov ds,dx
 mov dx,offset fname
 int 21h ; transfer to MS-DOS
 jc error ; jump if open failed
 mov handle,ax ; save handle for CON
 .
 .
 .
 mov ah,40h ; function 40h = write
 mov cx,msg_len ; CX = message length
 mov dx,seg msg ; DS:DX = address of message
 mov ds,dx
 mov dx,offset msg
 mov bx,handle ; BX = CON device handle
 int 21h ; transfer to MS-DOS
 jc error ; jump if error detected
 .
 .
 .
 --

 As with the keyboard input functions, MS-DOS also supports traditional
 display functions that are upwardly compatible from the corresponding CP/M
 output calls:

 o Int 21H Function 02H sends the character in the DL register to the
 standard output device. It is sensitive to Ctrl-C interrupts, and it
 handles carriage returns, linefeeds, bell codes, and backspaces
 appropriately.

 o Int 21H Function 06H transfers the character in the DL register to the
 standard output device, but it is not sensitive to Ctrl-C interrupts.

 You must take care when using this function, because it can also be
 used for input and for status requests.

 o Int 21H Function 09H sends a string to the standard output device. The
 string is terminated by the $ character.

 With MS-DOS version 2 or later, these three traditional functions are
 converted internally to handle-based writes to the standard output and
 thus are susceptible to output redirection.

 The sequence at the top of the following page sounds a warning beep by
 sending an ASCII bell code (07H) to the display driver using the
 traditional character-output call Int 21H Function 02H.

 --
 .
 .
 .
 mov dl,7 ; 07h = ASCII bell code
 mov ah,2 ; function 02h = display character
 int 21h ; transfer to MS-DOS
 .
 .
 .
 --

 The following sequence uses the traditional string-output call Int 21H
 Function 09H to display a string:

 --
 msg db 'hello$'
 .
 .
 .
 mov dx,seg msg ; DS:DX = message address
 mov ds,dx
 mov dx,offset msg
 mov ah,9 ; function 09h = write string
 int 21h ; transfer to MS-DOS
 .
 .
 .
 --

 Note that MS-DOS detects the $ character as a terminator and does not
 display it on the screen.

Screen Control with MS-DOS Functions

 With version 2.0 or later, if MS-DOS loads the optional device driver
 ANSI.SYS in response to a DEVICE directive in the CONFIG.SYS file,
 programs can clear the screen, control the cursor position, and select
 foreground and background colors by embedding escape sequences in the text
 output. Escape sequences are so called because they begin with an escape
 character (1BH), which alerts the driver to intercept and interpret the
 subsequent characters in the sequence. When the ANSI driver is not loaded,
 MS-DOS simply passes the escape sequence to the display like any other
 text, usually resulting in a chaotic screen.

 The escape sequences that can be used with the ANSI driver for screen
 control are a subset of those defined in the ANSI 3.64-1979 Standard.
 These standard sequences are summarized in Figure 6-2. Note that case is
 significant for the last character in an escape sequence and that numbers
 must always be represented as ASCII digit strings, not as their binary
 values. (A separate set of escape sequences supported by ANSI.SYS, but not
 compatible with the ANSI standard, may be used for reprogramming and
 remapping the keyboard.)

 Escape sequence Meaning
 --
 Esc[2J Clear screen; place cursor in upper left corner (home
 position).
 Esc[K Clear from cursor to end of line.
 Esc[row;colH Position cursor. (Row is the y coordinate in the range
 1-25 and col is the x coordinate in the range 1-80 for
 80-by-25 text display modes.) Escape sequences
 terminated with the letter f instead of H have the same
 effect.
 Esc[nA Move cursor up n rows.
 Esc[nB Move cursor down n rows.
 Esc[nC Move cursor right n columns.
 Esc[nD Move cursor left n columns.
 Esc[s Save current cursor position.
 Esc[u Restore cursor to saved position.
 Esc[6n Return current cursor position on the standard input
 handle in the format Esc[row;colR.
 Esc[nm Select character attributes:
 0 = no special attributes
 1 = high intensity
 2 = low intensity
 3 = italic
 4 = underline
 5 = blink
 6 = rapid blink
 7 = reverse video
 8 = concealed text (no display)
 30 = foreground black
 31 = foreground red
 32 = foreground green
 33 = foreground yellow
 34 = foreground blue
 35 = foreground magenta
 36 = foreground cyan
 37 = foreground white
 40 = background black
 41 = background red
 42 = background green
 43 = background yellow
 44 = background blue
 45 = background magenta
 46 = background cyan
 47 = background white
 Esc[=nh Select display mode:
 0 = 40-by-25, 16-color text (color burst off)
 1 = 40-by-25, 16-color text
 2 = 80-by-25, 16-color text (color burst off)
 3 = 80-by-25, 16-color text

 4 = 320-by-200, 4-color graphics
 5 = 320-by-200, 4-color graphics (color burst off)
 6 = 620-by-200, 2-color graphics
 14 = 640-by-200, 16-color graphics (EGA and VGA,
 MS-DOS 4.0)
 15 = 640-by-350, 2-color graphics (EGA and VGA,
 MS-DOS 4.0)
 16 = 640-by-350, 16-color graphics (EGA and VGA,
 MS-DOS 4.0)
 17 = 640-by-480, 2-color graphics (MCGA and VGA,
 MS-DOS 4.0)
 18 = 640-by-480, 16-color graphics (VGA, MS-DOS 4.0)
 19 = 320-by-200, 256-color graphics (MCGA and VGA,
 MS-DOS 4.0)
 Escape sequences terminated with l instead of h have
 the same effect.
 Esc[=7h Enable line wrap.
 Esc[=7l Disable line wrap.
 --

 Figure 6-2. The ANSI escape sequences supported by the MS-DOS ANSI.SYS
 driver. Programs running under MS-DOS 2.0 or later may use these
 functions, if ANSI.SYS is loaded, to control the appearance of the display
 in a hardware-independent manner. The symbol Esc indicates an ASCII escape
 code--a character with the value 1BH. Note that cursor positions in ANSI
 escape sequences are one-based, unlike the cursor coordinates used by the
 IBM ROM BIOS, which are zero-based. Numbers embedded in an escape sequence
 must always be represented as a string of ASCII digits, not as their
 binary values.

Binary Output Mode

 Under MS-DOS version 2 or later, you can substantially increase display
 speeds for well-behaved application programs without sacrificing hardware
 independence by selecting binary (raw) mode for the standard output. In
 binary mode, MS-DOS does not check between each character it transfers to
 the output device for a Ctrl-C waiting at the keyboard, nor does it filter
 the output string for certain characters such as Ctrl-Z.

 Bit 5 in the device information word associated with a device handle
 controls binary mode. Programs access the device information word by using
 Subfunctions 00H and 01H of the MS-DOS IOCTL function (I/O Control, Int
 21H Function 44H). For example, the sequence on the following page places
 the standard output handle into binary mode.

 --
 ; get device information...
 mov bx,1 ; standard output handle
 mov ax,4400h ; function 44h subfunction 00h
 int 21h ; transfer to MS-DOS

 mov dh,0 ; set upper byte of DX = 0
 or dl,20h ; set binary mode bit in DL

 ; write device information...
 ; (BX still has handle)
 mov ax,4401h ; function 44h subfunction 01h
 int 21h ; transfer to MS-DOS

 --

 Note that if a program changes the mode of any of the standard handles, it
 should restore those handles to ASCII (cooked) mode before it exits.
 Otherwise, subsequent application programs may behave in unexpected ways.
 For more detailed information on the IOCTL function, see Section II of
 this book, "MS-DOS Functions Reference."

The ROM BIOS Display Functions

 You can somewhat improve the display performance of programs that are
 intended for use only on IBM PC-compatible machines by using the ROM BIOS
 video driver instead of the MS-DOS output functions. Accessed by means of
 Int 10H, the ROM BIOS driver supports the following functions for all of
 the currently available IBM display adapters:

 Function Action
 --
 Display mode control
 00H Set display mode.
 0FH Get display mode.

 Cursor control
 01H Set cursor size.
 02H Set cursor position.
 03H Get cursor position and size.

 Writing to the display
 09H Write character and attribute at cursor.
 0AH Write character-only at cursor.
 0EH Write character in teletype mode.

 Reading from the display
 08H Read character and attribute at cursor.

 Graphics support
 0CH Write pixel.
 0DH Read pixel.

 Scroll or clear display
 06H Scroll up or initialize window.
 07H Scroll down or initialize window.

 Miscellaneous
 04H Read light pen.
 05H Select display page.
 0BH Select palette/set border color.
 --

 Additional ROM BIOS functions are available on the EGA, MCGA, VGA, and
 PCjr to support the enhanced features of these adapters, such as
 programmable palettes and character sets (fonts). Some of the functions
 are valid only in certain display modes.

 Each display mode is characterized by the number of colors it can display,
 its vertical resolution, its horizontal resolution, and whether it

 supports text or graphics memory mapping. The ROM BIOS identifies it with
 a unique number. Section III of this book, "IBM ROM BIOS and Mouse
 Functions Reference," documents all of the ROM BIOS Int 10H functions and
 display modes.

 As you can see from the preceding list, the ROM BIOS offers several
 desirable capabilities that are not available from MS-DOS, including
 initialization or scrolling of selected screen windows, modification of
 the cursor shape, and reading back the character being displayed at an
 arbitrary screen location. These functions can be used to isolate your
 program from the hardware on any IBM PC-compatible adapter. However, the
 ROM BIOS functions do not suffice for the needs of a high-performance,
 interactive, full-screen program such as a word processor. They do not
 support the rapid display of character strings at an arbitrary screen
 position, and they do not implement graphics operations at the level
 normally required by applications (for example, bit-block transfers and
 rapid drawing of lines, circles, and filled polygons). And, of course,
 they are of no use whatsoever in non-IBM display modes such as the
 monochrome graphics mode of the Hercules Graphics Card.

 Let's look at a simple example of a call to the ROM BIOS video driver. The
 following sequence writes the string hello to the screen:

 --
 msg db 'hello'
 msg_len equ $-msg
 .
 .
 .
 mov si,seg msg ; DS:SI = message address
 mov ds,si
 mov si,offset msg
 mov cx,msg_len ; CX = message length
 cld
 next: lodsb ; get AL = next character
 push si ; save message pointer
 mov ah,0eh ; int 10h function 0eh = write
 ; character in teletype mode
 mov bh,0 ; assume video page 0
 mov bl,color ; (use in graphics modes only)
 int 10h ; transfer to ROM BIOS
 pop si ; restore message pointer
 loop next ; loop until message done
 .
 .
 .
 --

 (Note that the SI and DI registers are not necessarily preserved across a
 call to a ROM BIOS video function.)

Memory-mapped Display Techniques

 Display performance is best when an application program takes over
 complete control of the video adapter and the refresh buffer. Because the
 display is memory-mapped, the speed at which characters can be put on the
 screen is limited only by the CPU's ability to copy bytes from one
 location in memory to another. The trade-off for this performance is that

 such programs are highly sensitive to hardware compatibility and do not
 always function properly on "clones" or even on new models of IBM video
 adapters.

Text Mode

 Direct programming of the IBM PC-compatible video adapters in their text
 display modes (sometimes also called alphanumeric display modes) is
 straightforward. The character set is the same for all, and the cursor
 home position--(x,y) = (0,0)--is defined to be the upper left corner of
 the screen (Figure 6-3). The MDA uses 4 KB of memory starting at segment
 B000H as a regen buffer, and the various adapters with both text and
 graphics capabilities (CGA, EGA, MCGA, and VGA) use 16 KB of memory
 starting at segment B800H. (See Figure 6-1.) In the latter case, the 16
 KB is divided into "pages" that can be independently updated and
 displayed.

 (0,0)+---------------------------------+(79,0)
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 (0,24)+---------------------------------+(79,24)

 Figure 6-3. Cursor addressing for 80-by-25 text display modes (IBM ROM
 BIOS modes 2, 3, and 7).

 Each character-display position is allotted 2 bytes in the regen buffer.
 The first byte (even address) contains the ASCII code of the character,
 which is translated by a special hardware character generator into a
 dot-matrix pattern for the screen. The second byte (odd address) is the
 attribute byte. Several bit fields in this byte control such features as
 blinking, intensity (highlighting), and reverse video, depending on the
 adapter type and display mode (Figures 6-4 and 6-5). Figure 6-6 shows a
 hex and ASCII dump of part of the video map for the MDA.

 Display Background Foreground
 --
 No display (black) 000 000
 No display (white)
VGA only
 111 111
 Underline 000 001
 Normal video 000 111
 Reverse video 111 000
 --

 Figure 6-4. Attribute byte for 80-by-25 monochrome text display mode on
 the MDA, Hercules cards, EGA, and VGA (IBM ROM BIOS mode 7).

 Value Color
 --
 0 Black
 1 Blue
 2 Green
 3 Cyan

 4 Red
 5 Magenta
 6 Brown
 7 White
 8 Gray
 9 Light blue
 10 Light green
 11 Light cyan
 12 Light red
 13 Light magenta
 14 Yellow
 15 Intense white
 --

 Figure 6-5. Attribute byte for the 40-by-25 and 80-by-25 text display
 modes on the CGA, EGA, MCGA, and VGA (IBM ROM BIOS modes 0-3). The table
 of color values assumes default palette programming and that the B or I
 bit controls intensity.

 --
 B000:0000 3e 07 73 07 65 07 6c 07 65 07 63 07 74 07 20 07
 B000:0010 74 07 65 07 6d 07 70 07 20 07 20 07 20 07 20 07
 B000:0020 20 07 20 07 20 07 20 07 20 07 20 07 20 07 20 07
 B000:0030 20 07 20 07 20 07 20 07 20 07 20 07 20 07 20 07
 B000:0040 20 07 20 07 20 07 20 07 20 07 20 07 20 07 20 07
 B000:0050 20 07 20 07 20 07 20 07 20 07 20 07 20 07 20 07
 B000:0060 20 07 20 07 20 07 20 07 20 07 20 07 20 07 20 07
 B000:0070 20 07 20 07 20 07 20 07 20 07 20 07 20 07 20 07
 B000:0080 20 07 20 07 20 07 20 07 20 07 20 07 20 07 20 07
 B000:0090 20 07 20 07 20 07 20 07 20 07 20 07 20 07 20 07
 --

 Figure 6-6. Example dump of the first 160 bytes of the MDA's regen
 buffer. These bytes correspond to the first visible line on the screen.
 Note that ASCII character codes are stored in even bytes and their
 respective character attributes in odd bytes; all the characters in this
 example line have the attribute normal video.

 You can calculate the memory offset of any character on the display as the
 line number (y coordinate) times 80 characters per line times 2 bytes per
 character, plus the column number (x coordinate) times 2 bytes per
 character, plus (for the text/graphics adapters) the page number times the
 size of the page (4 KB per page in 80-by-25 modes; 2 KB per page in
 40-by-25 modes). In short, the formula for the offset of the
 character-attribute pair for a given screen position (x,y) in 80-by-25
 text modes is

 offset = ((y * 50H + x) * 2) + (page * 1000H)

 In 40-by-25 text modes, the formula is

 offset = ((y * 50H + x) * 2) + (page * 0800H)

 Of course, the segment register being used to address the video buffer
 must be set appropriately, depending on the type of display adapter.

 As a simple example, assume that the character to be displayed is in the
 AL register, the desired attribute byte for the character is in the AH
 register, the x coordinate (column) is in the BX register, and the y

 coordinate (row) is in the CX register. The following code stores the
 character and attribute byte into the MDA's video refresh buffer at the
 proper location:

 --
 push ax ; save char and attribute
 mov ax,160
 mul cx ; DX:AX = Y * 160
 shl bx,1 ; multiply X by 2
 add bx,ax ; BX = (Y*160) + (X*2)
 mov ax,0b000h ; ES = segment of monochrome
 mov es,ax ; adapter refresh buffer
 pop ax ; restore char and attribute
 mov es:[bx],ax ; write them to video buffer
 --

 More frequently, we wish to move entire strings into the refresh buffer,
 starting at a given coordinate. In the next example, assume that the DS:SI
 registers point to the source string, the ES:DI registers point to the
 starting position in the video buffer (calculated as shown in the previous
 example), the AH register contains the attribute byte to be assigned to
 every character in the string, and the CX register contains the length of
 the string. The following code moves the entire string into the refresh
 buffer:

 --
 xfer: lodsb ; fetch next character
 stosw ; store char + attribute
 loop xfer ; until all chars moved
 --

 Of course, the video drivers written for actual application programs must
 take into account many additional factors, such as checking for special
 control codes (linefeeds, carriage returns, tabs), line wrap, and
 scrolling.

 Programs that write characters directly to the CGA regen buffer in text
 modes must deal with an additional complicating factor--they must examine
 the video controller's status port and access the refresh buffer only
 during the horizontal retrace or vertical retrace intervals. (A retrace
 interval is the period when the electron beam that illuminates the screen
 phosphors is being repositioned to the start of a new scan line.)
 Otherwise, the contention for memory between the CPU and the video
 controller is manifest as unsightly "snow" on the display. (If you are
 writing programs for any of the other IBM PC-compatible video adapters,
 such as the MDA, EGA, MCGA, or VGA, you can ignore the retrace intervals;
 snow is not a problem with these video controllers.)

 A program can detect the occurrence of a retrace interval by monitoring
 certain bits in the video controller's status register. For example,
 assume that the offset for the desired character position has been
 calculated as in the preceding example and placed in the BX register, the
 segment for the CGA's refresh buffer is in the ES register, and an ASCII
 character code to be displayed is in the CL register. The following code
 waits for the beginning of a new horizontal retrace interval and then
 writes the character into the buffer:

 --
 mov dx,03dah ; DX = video controller's

 ; status port address
 cli ; disable interrupts

 ; if retrace is already
 ; in progress, wait for
 ; it to end...
 wait1: in al,dx ; read status port
 and al,1 ; check if retrace bit on
 jnz wait1 ; yes, wait

 ; wait for new retrace
 ; interval to start...
 wait2: in al,dx ; read status port
 and al,1 ; retrace bit on yet?
 jz wait2 ; jump if not yet on

 mov es:[bx],cl ; write character to
 ; the regen buffer
 sti ; enable interrupts again
 --

 The first wait loop "synchronizes" the code to the beginning of a
 horizontal retrace interval. If only the second wait loop were used (that
 is, if a character were written when a retrace interval was already in
 progress), the write would occasionally begin so close to the end of a
 horizontal retrace "window" that it would partially miss the retrace,
 resulting in scattered snow at the left edge of the display. Notice that
 the code also disables interrupts during accesses to the video buffer, so
 that service of a hardware interrupt won't disrupt the synchronization
 process.

 Because of the retrace-interval constraints just outlined, the rate at
 which you can update the CGA in text modes is severely limited when the
 updating is done one character at a time. You can obtain better results by
 calculating all the relevant addresses and setting up the appropriate
 registers, disabling the video controller by writing to register 3D8H,
 moving the entire string to the buffer with a REP MOVSW operation, and
 then reenabling the video controller. If the string is of reasonable
 length, the user won't even notice a flicker in the display. Of course,
 this procedure introduces additional hardware dependence into your code
 because it requires much greater knowledge of the 6845 controller.
 Luckily, snow is not a problem in CGA graphics modes.

Graphics Mode

 Graphics-mode memory-mapped programming for IBM PC-compatible adapters is
 considerably more complicated than text-mode programming. Each bit or
 group of bits in the regen buffer corresponds to an addressable point, or
 pixel, on the screen. The mapping of bits to pixels differs for each of
 the available graphics modes, with their differences in resolution and
 number of supported colors. The newer adapters (EGA, MCGA, and VGA) also
 use the concept of bit planes, where bits of a pixel are segregated into
 multiple banks of memory mapped at the same address; you must manipulate
 these bit planes by a combination of memory-mapped I/O and port
 addressing.

 IBM-video-systems graphics programming is a subject large enough for a
 book of its own, but we can use the 640-by-200, 2-color graphics display
 mode of the CGA (which is also supported by all subsequent IBM

 text/graphics adapters) to illustrate a few of the techniques involved.
 This mode is simple to deal with because each pixel is represented by a
 single bit. The pixels are assigned (x,y) coordinates in the range (0,0)
 through (639,199), where x is the horizontal displacement, y is the
 vertical displacement, and the home position (0,0) is the upper left
 corner of the display. (See Figure 6-7.)

 (0,0)+---------------------------------+(639,0)
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 (0,199)+---------------------------------+(639,199)

 Figure 6-7. Point addressing for 640-by-200, 2-color graphics modes on
 the CGA, EGA, MCGA, and VGA (IBM ROM BIOS mode 6).

 Each successive group of 80 bytes (640 bits) represents one horizontal
 scan line. Within each byte, the bits map one-for-one onto pixels, with
 the most significant bit corresponding to the leftmost displayed pixel of
 a set of eight pixels and the least significant bit corresponding to the
 rightmost displayed pixel of the set. The memory map is set up so that all
 the even y coordinates are scanned as a set and all the odd y coordinates
 are scanned as a set; this mapping is referred to as the memory interlace.

 To find the regen buffer offset for a particular (x,y) coordinate, you
 would use the following formula:

 offset = ((y AND 1) * 2000H) + (y/2 * 50H) + (x/8)

 The assembly-language implementation of this formula is as follows:

 --
 ; assume AX = Y, BX = X
 shr bx,1 ; divide X by 8
 shr bx,1
 shr bx,1
 push ax ; save copy of Y
 shr ax,1 ; find (Y/2) * 50h
 mov cx,50h ; with product in DX:AX
 mul cx
 add bx,ax ; add product to X/8
 pop ax ; add (Y AND 1) * 2000h
 and ax,1
 jz label1
 add bx,2000h
 label1: ; now BX = offset into
 ; video buffer
 --

 After calculating the correct byte address, you can use the following
 formula to calculate the bit position for a given pixel coordinate:

 bit = 7 - (x MOD 8)

 where bit 7 is the most significant bit and bit 0 is the least significant

 bit. It is easiest to build an 8-byte table, or array of bit masks, and
 use the operation X AND 7 to extract the appropriate entry from the table:

 (X AND 7) Bit mask (X AND 7) Bit mask
 --
 0 80H 4 08H
 1 40H 5 04H
 2 20H 6 02H
 3 10H 7 01H
 --

 The assembly-language implementation of this second calculation is as
 follows:

 --
 table db 80h ; X AND 7 = offset 0
 db 40h ; X AND 7 = offset 1
 db 20h ; X AND 7 = offset 2
 db 10h ; X AND 7 = offset 3
 db 08h ; X AND 7 = offset 4
 db 04h ; X AND 7 = offset 5
 db 02h ; X AND 7 = offset 6
 db 01h ; X AND 7 = offset 7
 .
 .
 .
 ; assume BX = X coordinate
 and bx,7 ; isolate 0-7 offset
 mov al,[bx+table]
 ; now AL = mask from table
 .
 .
 .
 --

 The program can then use the mask, together with the byte offset
 previously calculated, to set or clear the appropriate bit in the video
 controller's regen buffer.

--
Chapter 7 Printer and Serial Port

 MS-DOS supports printers, plotters, modems, and other hard-copy output or
 communication devices with device drivers for parallel ports and serial
 ports. Parallel ports are so named because they transfer a byte--8 bits--
 in parallel to the destination device over eight separate physical paths
 (plus additional status and handshaking signals). The serial port, on the
 other hand, communicates with the CPU with bytes but sends data to or
 receives data from its destination device serially--a bit at a time--over
 a single physical connection.

 Parallel ports are typically used for high-speed output devices, such as
 line printers, over relatively short distances (less than 50 feet). They
 are rarely used for devices that require two-way communication with the
 computer. Serial ports are used for lower-speed devices, such as modems
 and terminals, that require two-way communication (although some printers
 also have serial interfaces). A serial port can drive its device reliably

 over much greater distances (up to 1000 feet) over as few as three wires--
 transmit, receive, and ground.

 The most commonly used type of serial interface follows a standard called
 RS-232. This standard specifies a 25-wire interface with certain
 electrical characteristics, the use of various handshaking signals, and a
 standard DB-25 connector. Other serial-interface standards exist--for
 example, the RS-422, which is capable of considerably higher speeds than
 the RS-232-- but these are rarely used in personal computers (except for
 the Apple Macintosh) at this time.

 MS-DOS has built-in device drivers for three parallel adapters, and for
 two serial adapters on the PC or PC/AT and three serial adapters on the
 PS/2. The logical names for these devices are LPT1, LPT2, LPT3, COM1,
 COM2, and COM3. The standard printer (PRN) and standard auxiliary (AUX)
 devices are normally aliased to LPT1 and COM1, but you can redirect PRN to
 one of the serial ports with the MS-DOS MODE command.

 As with keyboard and video display I/O, you can manage printer and
 serial-port I/O at several levels that offer different degrees of
 flexibility and hardware independence:

 o MS-DOS handle-oriented functions

 o MS-DOS traditional character functions

 o IBM ROM BIOS driver functions

 In the case of the serial port, direct control of the hardware by
 application programs is also common. I will discuss each of these I/O
 methods briefly, with examples, in the following pages.

Printer Output

 The preferred method of printer output is to use the handle write function
 (Int 21H Function 40H) with the predefined standard printer handle (4).
 For example, you could write the string hello to the printer as follows:

 --
 msg db 'hello' ; message for printer
 msg_len equ $-msg ; length of message
 .
 .
 .
 mov ah,40h ; function 40h = write file or device
 mov bx,4 ; BX = standard printer handle
 mov cx,msg_len ; CX = length of string
 mov dx,seg msg ; DS:DX = string address
 mov ds,dx
 mov dx,offset msg
 int 21h ; transfer to MS-DOS
 jc error ; jump if error
 .
 .
 .
 --

 If there is no error, the function returns the carry flag cleared and the

 number of characters actually transferred to the list device in register
 AX. Under normal circumstances, this number should always be the same as
 the length requested and the carry flag indicating an error should never
 be set. However, the output will terminate early if your data contains an
 end-of-file mark (Ctrl-Z).

 You can write independently to several list devices (for example, LPT1,
 LPT2) by issuing a specific open request (Int 21H Function 3DH) for each
 device and using the handles returned to access the printers individually
 with Int 21H Function 40H. You have already seen this general approach in
 Chapters 5 and 6.

 An alternative method of printer output is to use the traditional Int 21H
 Function 05H, which transfers the character in the DL register to the
 printer. (This function is sensitive to Ctrl-C interrupts.) For example,
 the assembly-language code sequence at the top of the following page would
 write the the string hello to the line printer.

 --
 msg db 'hello' ; message for printer
 msg_len equ $-msg ; length of message
 .
 .
 .
 mov bx,seg msg ; DS:BX = string address
 mov ds,bx
 mov bx,offset msg
 mov cx,msg_len ; CX = string length

 next: mov dl,[bx] ; get next character
 mov ah,5 ; function 05h = printer output
 int 21h ; transfer to MS-DOS
 inc bx ; bump string pointer
 loop next ; loop until string done
 .
 .
 .
 --

 Programs that run on IBM PC-compatible machines can obtain improved
 printer throughput by bypassing MS-DOS and calling the ROM BIOS printer
 driver directly by means of Int 17H. Section III of this book, "IBM ROM
 BIOS and Mouse Functions Reference," documents the Int 17H functions in
 detail. Use of the ROM BIOS functions also allows your program to test
 whether the printer is off line or out of paper, a capability that MS-DOS
 does not offer.

 For example, the following sequence of instructions calls the ROM BIOS
 printer driver to send the string hello to the line printer:

 --
 msg db 'hello' ; message for printer
 msg_len equ $-msg ; length of message
 .
 .
 .
 mov bx,seg msg ; DS:BX = string address
 mov ds,bx
 mov bx,offset msg

 mov cx,msg_len ; CX = string length
 mov dx,0 ; DX = printer number

 next: mov al,[bx] ; AL = character to print
 mov ah,0 ; function 00h = printer output
 int 17h ; transfer to ROM BIOS
 inc bx ; bump string pointer
 loop next ; loop until string done
 .
 .
 .
 --

 Note that the printer numbers used by the ROM BIOS are zero-based, whereas
 the printer numbers in MS-DOS logical-device names are one-based. For
 example, ROM BIOS printer 0 corresponds to LPT1.

 Finally, the most hardware-dependent technique of printer output is to
 access the printer controller directly. Considering the functionality
 already provided in MS-DOS and the IBM ROM BIOS, as well as the speeds of
 the devices involved, I cannot see any justification for using direct
 hardware control in this case. The disadvantage of introducing such
 extreme hardware dependence for such a low-speed device would far outweigh
 any small performance gains that might be obtained.

The Serial Port

 MS-DOS support for serial ports (often referred to as the auxiliary device
 in MS-DOS manuals) is weak compared with its keyboard, video-display, and
 printer support. This is one area where the application programmer is
 justified in making programs hardware dependent to extract adequate
 performance.

 Programs that restrict themselves to MS-DOS functions to ensure
 portability can use the handle read and write functions (Int 21H Functions
 3FH and 40H), with the predefined standard auxiliary handle (3) to
 access the serial port. For example, the following code writes the string
 hello to the serial port that is currently defined as the AUX device:

 --
 msg db 'hello' ; message for serial port
 msg_len equ $-msg ; length of message
 .
 .
 .
 mov ah,40h ; function 40h = write file or device
 mov bx,3 ; BX = standard aux handle
 mov cx,msg_len ; CX = string length
 mov dx,seg msg ; DS:DX = string address
 mov ds,dx
 mov dx,offset msg
 int 21h ; transfer to MS-DOS
 jc error ; jump if error
 .
 .
 .
 --

 The standard auxiliary handle gives access to only the first serial port
 (COM1). If you want to read or write COM2 and COM3 using the handle calls,
 you must issue an open request (Int 21H Function 3DH) for the desired
 serial port and use the handle returned by that function with Int 21H
 Functions 3FH and 40H.

 Some versions of MS-DOS have a bug in character-device handling that
 manifests itself as follows: If you issue a read request with Int 21H
 Function 3FH for the exact number of characters that are waiting in the
 driver's buffer, the length returned in the AX register is the number of
 characters transferred minus one. You can circumvent this problem by
 always requesting more characters than you expect to receive or by placing
 the device handle into binary mode using Int 21H Function 44H.

 MS-DOS also supports two traditional functions for serial-port I/O. Int
 21H Function 03H inputs a character from COM1 and returns it in the AL
 register; Int 21H Function 04H transmits the character in the DL register
 to COM1. Like the other traditional calls, these two are direct
 descendants of the CP/M auxiliary-device functions.

 For example, the following code sends the string hello to COM1 using the
 traditional Int 21H Function 04H:

 --
 msg db 'hello' ; message for serial port
 msg_len equ $-msg ; length of message
 .
 .
 .
 mov bx,seg msg ; DS:BX = string address
 mov ds,bx
 mov bx,offset msg
 mov cx,msg_len ; CX = length of string
 mov dl,[bx] ; get next character
 mov ah,4 ; function 04h = aux output
 int 21h ; transfer to MS-DOS
 inc bx ; bump pointer to string
 loop next ; loop until string done
 .
 .
 .
 --

 MS-DOS translates the traditional auxiliary-device functions into calls on
 the same device driver used by the handle calls. Therefore, it is
 generally preferable to use the handle functions in the first place,
 because they allow very long strings to be read or written in one
 operation, they give access to serial ports other than COM1, and they are
 symmetrical with the handle video-display, keyboard, printer, and file I/O
 methods described elsewhere in this book.

 Although the handle or traditional serial-port functions allow you to
 write programs that are portable to any machine running MS-DOS, they have
 a number of disadvantages:

 o The built-in MS-DOS serial-port driver is slow and is not interrupt
 driven.

 o MS-DOS serial-port I/O is not buffered.

 o
Determinin ��
��
��

rs no standardized function to configure the serial port�������������������
 from within a program.

 For programs that are going to run on the IBM PC or compatibles, a more
 flexible technique for serial-port I/O is to call the IBM ROM BIOS
 serial-port driver by means of Int 14H. You can use this driver to
 initialize the serial port to a desired configuration and baud rate,
 examine the status of the controller, and read or write characters.
 Section III of this book, "IBM ROM BIOS and Mouse Functions Reference,"
 documents the functions available from the ROM BIOS serial-port driver.

 For example, the following sequence sends the character X to the first
 serial port (COM1):

 --
 .
 .
 .
 mov ah,1 ; function 01h = send character
 mov al,'X' ; AL = character to transmit
 mov dx,0 ; DX = serial-port number
 int 14h ; transfer to ROM BIOS
 and ah,80h ; did transmit fail?
 jnz error ; jump if transmit error
 .
 .
 .
 --

 As with the ROM BIOS printer driver, the serial-port numbers used by the
 ROM BIOS are zero-based, whereas the serial-port numbers in MS-DOS
 logical-device names are one-based. In this example, serial port 0
 corresponds to COM1.

 Unfortunately, like the MS-DOS auxiliary-device driver, the ROM BIOS
 serial-port driver is not interrupt driven. Although it will support
 higher transfer speeds than the MS-DOS functions, at rates greater than
 2400 baud it may still lose characters. Consequently, most programmers
 writing high-performance applications that use a serial port (such as
 telecommunications programs) take complete control of the serial-port
 controller and provide their own interrupt driver. The built-in functions
 provided by MS-DOS, and by the ROM BIOS in the case of the IBM PC, are
 simply not adequate.

 Writing such programs requires a good understanding of the hardware. In
 the case of the IBM PC, the chips to study are the INS8250 Asynchronous
 Communications Controller and the Intel 8259A Programmable Interrupt
 Controller. The IBM technical reference documentation for these chips is a
 bit disorganized, but most of the necessary information is there if you
 look for it.

The TALK Program

 The simple terminal-emulator program TALK.ASM (Figure 7-1) is an example
 of a useful program that performs screen, keyboard, and serial-port I/O.
 This program recapitulates all of the topics discussed in Chapters 5
 through 7. TALK uses the IBM PC's ROM BIOS video driver to put characters
 on the screen, to clear the display, and to position the cursor; it uses
 the MS-DOS character-input calls to read the keyboard; and it contains its
 own interrupt driver for the serial-port controller.

 --
 name talk
 page 55,132
 .lfcond ; List false conditionals too
 title TALK--Simple terminal emulator

 ;
 ; TALK.ASM--Simple IBM PC terminal emulator
 ;
 ; Copyright (c) 1988 Ray Duncan
 ;
 ; To assemble and link this program into TALK.EXE:
 ;
 ; C>MASM TALK;
 ; C>LINK TALK;
 ;

 stdin equ 0 ; standard input handle
 stdout equ 1 ; standard output handle
 stderr equ 2 ; standard error handle

 cr equ 0dh ; ASCII carriage return
 lf equ 0ah ; ASCII linefeed
 bsp equ 08h ; ASCII backspace
 escape equ 1bh ; ASCII escape code

 dattr equ 07h ; display attribute to use
 ; while in emulation mode

 bufsiz equ 4096 ; size of serial-port buffer

 echo equ 0 ; 0 = full-duplex, -1 = half-duplex
 equ -1
 false equ 0

 com1 equ true ; use COM1 if nonzero
 com2 equ not com1 ; use COM2 if nonzero

 pic_mask equ 21h ; 8259 interrupt mask port
 pic_eoi equ 20h ; 8259 EOI port

 if com1
 com_data equ 03f8h ; port assignments for COM1
 com_ier equ 03f9h
 com_mcr equ 03fch
 com_sts equ 03fdh
 com_int equ 0ch ; COM1 interrupt number
 int_mask equ 10h ; IRQ4 mask for 8259
 endif

 if com2

 com_data equ 02f8h ; port assignments for COM2
 com_ier equ 02f9h
 com_mcr equ 02fch
 com_sts equ 02fdh
 com_int equ 0bh ; COM2 interrupt number
 int_mask equ 08h ; IRQ3 mask for 8259
 endif

 _TEXT segment word public 'CODE'

 assume cs:_TEXT,ds:_DATA,es:_DATA,ss:STACK

 talk proc far ; entry point from MS-DOS

 mov ax,_DATA ; make data segment addressable
 mov ds,ax
 mov es,ax
 ; initialize display for
 ; terminal emulator mode...

 mov ah,15 ; get display width and
 int 10h ; current display mode
 dec ah ; save display width for use
 mov columns,ah ; by the screen-clear routine

 cmp al,7 ; enforce text display mode
 je talk2 ; mode 7 ok, proceed
 cmp al,3
 jbe talk2 ; modes 0-3 ok, proceed

 mov dx,offset msg1
 mov cx,msg1_len
 jmp talk6 ; print error message and exit

 talk2: mov bh,dattr ; clear screen and home cursor
 call cls

 call asc_enb ; capture serial-port interrupt
 ; vector and enable interrupts

 mov dx,offset msg2 ; display message
 mov cx,msg2_len ; 'terminal emulator running'
 mov bx,stdout ; BX = standard output handle
 mov ah,40h ; function 40h = write file or device
 int 21h ; transfer to MS-DOS

 talk3: call pc_stat ; keyboard character waiting?
 jz talk4 ; nothing waiting, jump

 call pc_in ; read keyboard character

 cmp al,0 ; is it a function key?
 jne talk32 ; not function key, jump

 call pc_in ; function key, discard 2nd
 ; character of sequence
 jmp talk5 ; then terminate program

 talk32: ; keyboard character received

 if echo
 push ax ; if half-duplex, echo
 call pc_out ; character to PC display
 pop ax
 endif

 call com_out ; write char to serial port

 talk4: call com_stat ; serial-port character waiting?
 jz talk3 ; nothing waiting, jump

 call com_in ; read serial-port character

 cmp al,20h ; is it control code?
 jae talk45 ; jump if not
 call ctrl_code ; control code, process it

 jmp talk3 ; check keyboard again

 talk45: ; noncontrol char received,
 call pc_out ; write it to PC display

 jmp talk4 ; see if any more waiting

 talk5: ; function key detected,
 ; prepare to terminate...

 mov bh,07h ; clear screen and home cursor
 call cls

 mov dx,offset msg3 ; display farewell message
 mov cx,msg3_len

 talk6: push dx ; save message address
 push cx ; and message length

 call asc_dsb ; disable serial-port interrupts
 ; and release interrupt vector

 pop cx ; restore message length
 pop dx ; and address

 mov bx,stdout ; handle for standard output
 mov ah,40h ; function 40h = write device
 int 21h ; transfer to MS-DOS

 mov ax,4c00h ; terminate program with
 int 21h ; return code = 0

 talk endp

 com_stat proc near ; check asynch status; returns
 ; Z = false if character ready
 ; Z = true if nothing waiting
 push ax
 mov ax,asc_in ; compare ring buffer pointers
 cmp ax,asc_out
 pop ax
 ret ; return to caller

 stat endp

 com_in proc near ; get character from serial-
 ; port buffer; returns
 ; new character in AL

 push bx ; save register BX

 com_in1: ; if no char waiting, wait
 mov bx,asc_out ; until one is received
 cmp bx,asc_in
 je com_in1 ; jump, nothing waiting

 mov al,[bx+asc_buf] ; character is ready,
 ; extract it from buffer

 inc bx ; update buffer pointer
 cmp bx,bufsiz
 jne com_in2
 xor bx,bx ; reset pointer if wrapped
 com_in2:
 mov asc_out,bx ; store updated pointer
 pop bx ; restore register BX
 ret ; and return to caller

 com_in endp

 com_out proc near ; write character in AL
 ; to serial port

 push dx ; save register DX
 push ax ; save character to send
 mov dx,com_sts ; DX = status port address

 com_out1: ; check if transmit buffer
 in al,dx ; is empty (TBE bit = set)
 and al,20h
 jz com_out1 ; no, must wait

 pop ax ; get character to send
 mov dx,com_data ; DX = data port address
 out dx,al ; transmit the character
 pop dx ; restore register DX
 ret ; and return to caller

 com_out endp
 pc_stat proc near ; read keyboard status; returns
 ; Z = false if character ready
 ; Z = true if nothing waiting
 ; register DX destroyed

 mov al,in_flag ; if character already
 or al,al ; waiting, return status
 jnz pc_stat1

 mov ah,6 ; otherwise call MS-DOS to
 mov dl,0ffh ; determine keyboard status
 int 21h

 jz pc_stat1 ; jump if no key ready

 mov in_char,al ; got key, save it for
 mov in_flag,0ffh ; "pc_in" routine

 pc_stat1: ; return to caller with
 ret ; Z flag set appropriately

 pc_stat endp

 pc_in proc near ; read keyboard character,
 ; return it in AL
 ; DX may be destroyed

 mov al,in_flag ; key already waiting?
 or al,al
 jnz pc_in1 ; yes, return it to caller

 call pc_stat ; try to read a character
 jmp pc_in

 pc_in1: mov in_flag,0 ; clear char-waiting flag
 mov al,in_char ; and return AL = character
 ret

 pc_in endp

 pc_out proc near ; write character in AL
 ; to the PC's display

 mov ah,0eh ; ROM BIOS function 0eh =
 ; "teletype output"
 push bx ; save register BX
 xor bx,bx ; assume page 0
 int 10h ; transfer to ROM BIOS
 pop bx ; restore register BX
 ret ; and return to caller

 pc_out endp

 cls proc near ; clear display using
 ; char attribute in BH
 ; registers AX, CX,
 ; and DX destroyed

 mov dl,columns ; set DL,DH = X,Y of
 mov dh,24 ; lower right corner
 mov cx,0 ; set CL,CH = X,Y of
 ; upper left corner
 mov ax,600h ; ROM BIOS function 06h =
 ; "scroll or initialize
 ; window"
 int 10h ; transfer to ROM BIOS
 call home ; set cursor at (0,0)
 ret ; and return to caller

 cls endp

 clreol proc near ; clear from cursor to end
 ; of line using attribute
 ; in BH, registers AX, CX,
 ; and DX destroyed

 call getxy ; get current cursor position
 mov cx,dx ; current position = "upper
 ; left corner" of window;
 mov dl,columns ; "lower right corner" X is
 ; max columns, Y is same
 ; as upper left corner
 mov ax,600h ; ROM BIOS function 06h =
 ; "scroll or initialize
 ; window"
 int 10h ; transfer to ROM BIOS
 ret ; return to caller

 clreol endp
 home proc near ; put cursor at home position

 mov dx,0 ; set (X,Y) = (0,0)
 call gotoxy ; position the cursor
 ret ; return to caller

 home endp

 gotoxy proc near ; position the cursor
 ; call with DL = X, DH = Y

 push bx ; save registers
 push ax

 mov bh,0 ; assume page 0
 mov ah,2 ; ROM BIOS function 02h =
 ; set cursor position
 int 10h ; transfer to ROM BIOS

 pop ax ; restore registers
 pop bx
 ret ; and return to caller

 gotoxy endp

 getxy proc near ; get cursor position,
 ; returns DL = X, DH = Y

 push ax ; save registers
 push bx
 push cx

 mov ah,3 ; ROM BIOS function 03h =
 ; get cursor position
 mov bh,0 ; assume page 0
 int 10h ; transfer to ROM BIOS

 pop cx ; restore registers
 pop bx
 pop ax

 ret ; and return to caller

 getxy endp
 ctrl_code proc near ; process control code
 ; call with AL = char

 cmp al,cr ; if carriage return
 je ctrl8 ; just send it

 cmp al,lf ; if linefeed
 je ctrl8 ; just send it

 cmp al,bsp ; if backspace
 je ctrl8 ; just send it

 cmp al,26 ; is it cls control code?
 jne ctrl7 ; no, jump

 mov bh,dattr ; cls control code, clear
 call cls ; screen and home cursor

 jmp ctrl9

 ctrl7:
 cmp al,escape ; is it Escape character?
 jne ctrl9 ; no, throw it away

 call esc_seq ; yes, emulate CRT terminal
 jmp ctrl9

 ctrl8: call pc_out ; send CR, LF, or backspace
 ; to the display

 ctrl9: ret ; return to caller

 ctrl_code endp

 esc_seq proc near ; decode Televideo 950 escape
 ; sequence for screen control

 call com_in ; get next character
 cmp al,84 ; is it clear to end of line?
 jne esc_seq1 ; no, jump

 mov bh,dattr ; yes, clear to end of line
 call clreol
 jmp esc_seq2 ; then exit
 esc_seq1:
 cmp al,61 ; is it cursor positioning?
 jne esc_seq2 ; no jump

 call com_in ; yes, get Y parameter
 sub al,33 ; and remove offset
 mov dh,al

 call com_in ; get X parameter
 sub al,33 ; and remove offset
 mov dl,al

 call gotoxy ; position the cursor

 esc_seq2: ; return to caller
 ret

 esc_seq endp

 asc_enb proc near ; capture serial-port interrupt
 ; vector and enable interrupt

 ; save address of previous
 ; interrupt handler...
 mov ax,3500h+com_int ; function 35h = get vector
 int 21h ; transfer to MS-DOS
 mov word ptr oldvec+2,es
 mov word ptr oldvec,bx

 ; now install our handler...
 push ds ; save our data segment
 mov ax,cs ; set DS:DX = address
 mov ds,ax ; of our interrupt handler
 mov dx,offset asc_int
 mov ax,2500h+com_int ; function 25h = set vector
 int 21h ; transfer to MS-DOS
 pop ds ; restore data segment

 mov dx,com_mcr ; set modem-control register
 mov al,0bh ; DTR and OUT2 bits
 out dx,al

 mov dx,com_ier ; set interrupt-enable
 mov al,1 ; register on serial-
 out dx,al ; port controller
 in al,pic_mask ; read current 8259 mask
 and al,not int_mask ; set mask for COM port
 out pic_mask,al ; write new 8259 mask

 ret ; back to caller

 asc_enb endp

 asc_dsb proc near ; disable interrupt and
 ; release interrupt vector

 in al,pic_mask ; read current 8259 mask
 or al,int_mask ; reset mask for COM port
 out pic_mask,al ; write new 8259 mask

 push ds ; save our data segment
 lds dx,oldvec ; load address of
 ; previous interrupt handler
 mov ax,2500h+com_int ; function 25h = set vector
 int 21h ; transfer to MS-DOS
 pop ds ; restore data segment

 ret ; back to caller

 asc_dsb endp

 asc_int proc far ; interrupt service routine
 ; for serial port

 sti ; turn interrupts back on

 push ax ; save registers
 push bx
 push dx
 push ds

 mov ax,_DATA ; make our data segment
 mov ds,ax ; addressable

 cli ; clear interrupts for
 ; pointer manipulation

 mov dx,com_data ; DX = data port address
 in al,dx ; read this character
 mov bx,asc_in ; get buffer pointer
 mov [asc_buf+bx],al ; store this character
 inc bx ; bump pointer
 cmp bx,bufsiz ; time for wrap?
 jne asc_int1 ; no, jump
 xor bx,bx ; yes, reset pointer

 asc_int1: ; store updated pointer
 mov asc_in,bx

 sti ; turn interrupts back on

 mov al,20h ; send EOI to 8259
 out pic_eoi,al

 pop ds ; restore all registers
 pop dx
 pop bx
 pop ax

 iret ; return from interrupt

 asc_int endp

 _TEXT ends

 _DATA segment word public 'DATA'

 in_char db 0 ; PC keyboard input char
 in_flag db 0 ; <>0 if char waiting

 columns db 0 ; highest numbered column in
 ; current display mode (39 or 79)

 msg1 db cr,lf
 db 'Display must be text mode.'
 db cr,lf

 msg1_len equ $-msg1

 msg2 db 'Terminal emulator running...'
 db cr,lf
 msg2_len equ $-msg2

 msg3 db 'Exit from terminal emulator.'
 db cr,lf
 msg3_len equ $-msg3
 oldvec dd 0 ; original contents of serial-
 ; port interrupt vector

 asc_in dw 0 ; input pointer to ring buffer
 asc_out dw 0 ; output pointer to ring buffer

 asc_buf db bufsiz dup (?) ; communications buffer

 _DATA ends

 STACK segment para stack 'STACK'

 db 128 dup (?)

 STACK ends

 end talk ; defines entry point
 --

 Figure 7-1. TALK.ASM: A simple terminal-emulator program for IBM
 PC-compatible computers. This program demonstrates use of the MS-DOS and
 ROM BIOS video and keyboard functions and direct control of the
 serial-communications adapter.

 The TALK program illustrates the methods that an application should use to
 take over and service interrupts from the serial port without running
 afoul of MS-DOS conventions.

 The program begins with some equates and conditional assembly statements
 that configure the program for half- or full-duplex and for the desired
 serial port (COM1 or COM2). At entry from MS-DOS, the main routine of the
 program--the procedure named talk--checks the status of the serial port,
 initializes the display, and calls the asc_enb routine to take over the
 serial-port interrupt vector and enable interrupts. The talk procedure
 then enters a loop that reads the keyboard and sends the characters out
 the serial port and then reads the serial port and puts the characters on
 the display--in other words, it causes the PC to emulate a simple CRT
 terminal.

 The TALK program intercepts and handles control codes (carriage return,
 linefeed, and so forth) appropriately. It detects escape sequences and
 handles them as a subset of the Televideo 950 terminal capabilities. (You
 can easily modify the program to emulate any other cursor-addressable
 terminal.) When one of the PC's special function keys is pressed, the
 program disables serial-port interrupts, releases the serial-port
 interrupt vector, and exits back to MS-DOS.

 There are several TALK program procedures that are worth your attention
 because they can easily be incorporated into other programs. These are

 listed in the table on the following page.

 Procedure Action
 --
 asc_enb Takes over the serial-port interrupt vector and enables
 interrupts by writing to the modem-control register of
 the INS8250 and the interrupt-mask register of the
 8259A.

 asc_dsb Restores the original state of the serial-port
 interrupt vector and disables interrupts by writing to
 the interrupt-mask register of the 8259A.

 asc_int Services serial-port interrupts, placing received
 characters into a ring buffer.

 com_stat Tests whether characters from the serial port are
 waiting in the ring buffer.

 com_in Removes characters from the interrupt handler's ring
 buffer and increments the buffer pointers
 appropriately.

 com_out Sends one character to the serial port.

 cls Calls the ROM BIOS video driver to clear the screen.

 clreol Calls the ROM BIOS video driver to clear from the
 current cursor position to the end of the line.

 home Places the cursor in the upper left corner of the
 screen.

 gotoxy Positions the cursor at the desired position on the
 display.

 getxy Obtains the current cursor position.

 pc_out Sends one character to the PC's display.

 pc_stat Gets status for the PC's keyboard.

 pc_in Returns a character from the PC's keyboard.
 --

--
Chapter 8 File Management

 The dual heritage of MS-DOS--CP/M and UNIX/XENIX--is perhaps most clearly
 demonstrated in its file-management services. In general, MS-DOS provides
 at least two distinct operating-system calls for each major file or record
 operation. This chapter breaks this overlapping battery of functions into
 two groups and explains the usage, advantages, and disadvantages of each.

 I will refer to the set of file and record functions that are compatible
 with CP/M as FCB functions. These functions rely on a data structure
 called a file control block (hence, FCB) to maintain certain bookkeeping
 information about open files. This structure resides in the application
 program's memory space. The FCB functions allow the programmer to create,
 open, close, and delete files and to read or write records of any size at
 any record position within such files. These functions do not support the
 hierarchical (treelike) file structure that was first introduced in MS-DOS
 version 2.0, so they can be used only to access files in the current
 subdirectory for a given disk drive.

 I will refer to the set of file and record functions that provide
 compatibility with UNIX/XENIX as the handle functions. These functions
 allow the programmer to open or create files by passing MS-DOS a
 null-terminated string that describes the file's location in the
 hierarchical file structure (the drive and path), the file's name, and its
 extension. If the open or create operation is successful, MS-DOS returns a
 16-bit token, or handle, that is saved by the application program and used
 to specify the file in subsequent operations.

 When you use the handle functions, the operating system maintains the data
 structures that contain bookkeeping information about the file inside its
 own memory space, and these structures are not accessible to the
 application program. The handle functions fully support the hierarchical
 file structure, allowing the programmer to create, open, close, and delete
 files in any subdirectory on any disk drive and to read or write records
 of any size at any byte offset within such files.

 Although we are discussing the FCB functions first in this chapter for
 historical reasons, new MS-DOS applications should always be written using
 the more powerful handle functions. Use of the FCB functions in new
 programs should be avoided, unless compatibility with MS-DOS version 1.0
 is needed.

Using the FCB Functions

 Understanding the structure of the file control block is the key to
 success with the FCB family of file and record functions. An FCB is a
 37-byte data structure allocated within the application program's memory
 space; it is divided into many fields (Figure 8-1). Typically, the
 program initializes an FCB with a drive code, a filename, and an extension
 (conveniently accomplished with the parse-filename service, Int 21H
 Function 29H) and then passes the address of the FCB to MS-DOS to open or
 create the file. If the file is successfully opened or created, MS-DOS
 fills in certain fields of the FCB with information from the file's entry
 in the disk directory. This information includes the file's exact size in
 bytes and the date and time the file was created or last updated. MS-DOS
 also places certain other information within a reserved area of the FCB;
 however, this area is used by the operating system for its own purposes
 and varies among different versions of MS-DOS. Application programs should
 never modify the reserved area.

 For compatibility with CP/M, MS-DOS automatically sets the record-size
 field of the FCB to 128 bytes. If the program does not want to use this
 default record size, it must place the desired size (in bytes) into the
 record-size field after the open or create operation. Subsequently, when
 the program needs to read or write records from the file, it must pass the
 address of the FCB to MS-DOS; MS-DOS, in turn, keeps the FCB updated with

 information about the current position of the file pointer and the size of
 the file. Data is always read to or written from the current disk transfer
 area (DTA), whose address is set with Int 21H Function 1AH. If the
 application program wants to perform random record access, it must set the
 record number into the FCB before issuing each function call; when
 sequential record access is being used, MS-DOS maintains the FCB and no
 special intervention is needed from the application.

 Byte offset
 00H +---+
 | Drive identification | Note 1
 01H +---+
 | Filename (8 characters) | Note 2
 09H +---+
 | Extension (3 characters) | Note 2
 0CH +---+
 | Current block number | Note 9
 0EH +---+
 | Record size | Note 10
 10H +---+
 | File size (4 bytes) | Notes 3, 6
 14H +---+
 | Date created/updated | Note 7
 16H +---+
 | Time created/updated | Note 8
 18H +---+
 | Reserved |
 20H +---+
 | Current-record number | Note 9
 21H +---+
 | Relative-record number (4 bytes) | Note 5
 +---+

 Figure 8-1. Normal file control block. Total length is 37 bytes (25H
 bytes). See notes on pages 133-34.

 In general, MS-DOS functions that use FCBs accept the full address of the
 FCB in the DS:DX register and pass back a return code in the AL register
 (Figure 8-2). For file-management calls (open, close, create, and
 delete), this return code is zero if the function was successful and 0FFH
 (255) if the function failed. For the FCB-type record read and write
 functions, the success code returned in the AL register is again zero, but
 there are several failure codes. Under MS-DOS version 3.0 or later, more
 detailed error reporting can be obtained by calling Int 21H Function 59H
 (Get Extended Error Information) after a failed FCB function call.

 When a program is loaded under MS-DOS, the operating system sets up two
 FCBs in the program segment prefix, at offsets 005CH and 006CH. These are
 often referred to as the default FCBs, and they are included to provide
 upward compatibility from CP/M. MS-DOS parses the first two parameters in
 the command line that invokes the program (excluding any redirection
 directives) into the default FCBs, under the assumption that they may be
 file specifications. The application must determine whether they really
 are filenames or not. In addition, because the default FCBs overlap and
 are not in a particularly convenient location (especially for .EXE
 programs), they usually must be copied elsewhere in order to be used
 safely. (See Chapter 3.)

 --

 ; filename was previously
 ; parsed into "my_fcb"
 mov dx,seg my_fcb ; DS:DX = address of
 mov ds,dx ; file control block
 mov dx,offset my_fcb
 mov ah,0fh ; function 0fh = open
 int 21h
 or al,al ; was open successful?
 jnz error ; no, jump to error routine
 .
 .
 .
 my_fcb db 37 dup (0) ; file control block
 --

 Figure 8-2. A typical FCB file operation. This sequence of code attempts
 to open the file whose name was previously parsed into the FCB named
 my_fcb.

 Note that the structures of FCBs under CP/M and MS-DOS are not identical.
 However, the differences lie chiefly in the reserved areas of the FCBs
 (which should not be manipulated by application programs in any case), so
 well-behaved CP/M applications should be relatively easy to port into
 MS-DOS. It seems, however, that few such applications exist. Many of the
 tricks that were played by clever CP/M programmers to increase performance
 or circumvent the limitations of that operating system can cause severe
 problems under MS-DOS, particularly in networking environments. At any
 rate, much better performance can be achieved by thoroughly rewriting the
 CP/M applications to take advantage of the superior capabilities of
 MS-DOS.

 You can use a special FCB variant called an extended file control block to
 create or access files with special attributes (such as hidden or
 read-only files), volume labels, and subdirectories. An extended FCB has a
 7-byte header followed by the 37-byte structure of a normal FCB (Figure
 8-3). The first byte contains 0FFH, which could never be a legal drive
 code and thus indicates to MS-DOS that an extended FCB is being used. The
 next 5 bytes are reserved and are unused in current versions of MS-DOS.
 The seventh byte contains the attribute of the special file type that is
 being accessed. (Attribute bytes are discussed in more detail in Chapter
 9.) Any MS-DOS function that uses a normal FCB can also use an extended
 FCB.

 The FCB file- and record-management functions may be gathered into the
 following broad classifications:

 Byte
 offset
 00H +---+
 | 0FFH | Note 11
 01H +---+
 | Reserved (5 bytes, must be zero) |
 06H +---+
 | Attribute byte | Note 12
 07H +---+
 | Drive identification | Note 1
 08H +---+
 | Filename (8 characters) | Note 2
 10H +---+

 | Extension (3 characters) | Note 2
 13H +---+
 | Current-block number | Note 9
 15H +---+
 | Record size | Note 10
 17H +---+
 | File size (4 bytes) | Notes 3, 6
 1BH +---+
 | Date created/updated | Note 7
 1DH +---+
 | Time created/updated | Note 8
 1FH +---+
 | Reserved |
 27H +---+
 | Current-record number | Note 9
 28H +---+
 | Relative-record number (4 bytes) | Note 5
 +---+

 Figure 8-3. Extended file control block. Total length is 44 bytes (2CH
 bytes). See notes on pages 133-34.

 Function Action
 --
 Common FCB file operations
 0FH Open file.
 10H Close file.
 16H Create file.

 Common FCB record operations
 14H Perform sequential read.
 15H Perform sequential write.
 21H Perform random read.
 22H Perform random write.
 27H Perform random block read.
 28H Perform random block write.

 Other vital FCB operations
 1AH Set disk transfer address.
 29H Parse filename.

 Less commonly used FCB file operations
 13H Delete file.
 17H Rename file.

 Less commonly used FCB record operations
 23H Obtain file size.
 24H Set relative-record number.
 --

 Several of these functions have special properties. For example, Int 21H
 Functions 27H (Random Block Read) and 28H (Random Block Write) allow
 reading and writing of multiple records of any size and also update the
 random-record field automatically (unlike Int 21H Functions 21H and
 22H). Int 21H Function 28H can truncate a file to any desired size, and
 Int 21H Function 17H used with an extended FCB can alter a volume label
 or rename a subdirectory.

 Section 2 of this book, "MS-DOS Functions Reference," gives detailed
 specifications for each of the FCB file and record functions, along with
 assembly-language examples. It is also instructive to compare the
 preceding groups with the corresponding groups of handle-type functions
 listed on pages 140-41.

 --
 Notes for Figures 8-1 and 8-3
 1. The drive identification is a binary number: 00=default drive,
 01=drive A:, 02=drive B:, and so on. If the application program
 supplies the drive code as zero (default drive), MS-DOS fills in the
 code for the actual current disk drive after a successful open or
 create call.

 2. File and extension names must be left justified and padded with
 blanks.

 3. The file size, date, time, and reserved fields should not be
 modified by applications.

 4. All word fields are stored with the least significant byte at the
 lower address.

 5. The relative-record field is treated as 4 bytes if the record size
 is less than 64 bytes; otherwise, only the first 3 bytes of this
 field are used.

 6. The file-size field is in the same format as in the directory, with
 the less significant word at the lower address.

 7. The date field is mapped as in the directory. Viewed as a 16-bit
 word (as it would appear in a register), the field is broken down as
 follows:

 F E D C B A 9 8 7 6 5 4 3 2 1 0
 +---------------------+---------------------+---------------------+
 | Year | Month | Day |
 +---------------------+---------------------+---------------------+

 Bits Contents
 --
 00H-04H Day (1-31)
 05H-08H Month (1-12)
 09H-0FH Year, relative to 1980
 --

 8. The time field is mapped as in the directory. Viewed as a 16-bit
 word (as it would appear in a register), the field is broken down as
 follows:

 F E D C B A 9 8 7 6 5 4 3 2 1 0
 +-------------------+-----------------------+---------------------+
 | Hours | Minutes | 2-second increments |
 +-------------------+-----------------------+---------------------+

 Bits Contents
 --
 00H-04H 2-second increments (0-29)

 05H-0AH Minutes (0-59)
 0BH-0FH Hours (0-23)
 --

 9. The current-block and current-record numbers are used together on
 sequential reads and writes. This simulates the behavior of CP/M.

 10. The Int 21H open (0FH) and create (16H) functions set the
 record-size field to 128 bytes, to provide compatibility with CP/M.
 If you use another record size, you must fill it in after the open
 or create operation.

 11. An 0FFH (255) in the first byte of the structure signifies that it
 is an extended file control block. You can use extended FCBs with
 any of the functions that accept an ordinary FCB. (See also note
 12.)

 12. The attribute byte in an extended FCB allows access to files with
 the special characteristics hidden, system, or read-only. You can
 also use extended FCBs to read volume labels and the contents of
 special subdirectory files.

 --

FCB File-Access Skeleton

 The following is a typical program sequence to access a file using the
 FCB, or traditional, functions (Figure 8-4):

 1. Zero out the prospective FCB.

 2. Obtain the filename from the user, from the default FCBs, or from the
 command tail in the PSP.

 3. If the filename was not obtained from one of the default FCBs, parse
 the filename into the new FCB using Int 21H Function 29H.

 4. Open the file (Int 21H Function 0FH) or, if writing new data only,
 create the file or truncate any existing file of the same name to zero
 length (Int 21H Function 16H).

 5. Set the record-size field in the FCB, unless you are using the default
 record size. Recall that it is important to do this after a successful
 open or create operation. (See Figure 8-5.)

 6. Set the relative-record field in the FCB if you are performing random
 record I/O.

 7. Set the disk transfer area address using Int 21H Function 1AH, unless
 the buffer address has not been changed since the last call to this
 function. If the application never performs a set DTA, the DTA address
 defaults to offset 0080H in the PSP.

 8. Request the needed read- or write-record operation (Int 21H Function
 14H-Sequential Read, 15H-Sequential Write, 21H-Random Read,
 22H-Random Write, 27H-Random Block Read, 28H-Random Block Write).

 9. If the program is not finished processing the file, go to step 6;
 otherwise, close the file (Int 21H Function 10H). If the file was

 used for reading only, you can skip the close operation under early
 versions of MS-DOS. However, this shortcut can cause problems under
 MS-DOS versions 3.0 and later, especially when the files are being
 accessed across a network.

 --
 recsize equ 1024 ; file record size
 .
 .
 .
 mov ah,29h ; parse input filename
 mov al,1 ; skip leading blanks
 mov si,offset fname1 ; address of filename
 mov di,offset fcb1 ; address of FCB
 int 21h
 or al,al ; jump if name
 jnz name_err ; was bad
 .
 .
 .
 mov ah,29h ; parse output filename
 mov al,1 ; skip leading blanks
 mov si,offset fname2 ; address of filename
 mov di,offset fcb2 ; address of FCB
 int 21h
 or al,al ; jump if name
 jnz name_err ; was bad
 .
 .
 .
 mov ah,0fh ; open input file
 mov dx,offset fcb1
 int 21h
 or al,al ; open successful?
 jnz no_file ; no, jump
 .
 .
 .
 mov ah,16h ; create and open
 mov dx,offset fcb2 ; output file
 int 21h
 or al,al ; create successful?
 jnz disk_full ; no, jump
 .
 .
 . ; set record sizes
 mov word ptr fcb1+0eh,recsize
 mov word ptr fcb2+0eh,recsize
 .
 .
 .
 mov ah,1ah ; set disk transfer
 mov dx,offset buffer ; address for reads
 int 21h ; and writes
 .
 next: . ; process next record
 .
 mov ah,14h ; sequential read from
 mov dx,offset fcb1 ; input file

 int 21h
 cmp al,01 ; check for end of file
 je file_end ; jump if end of file
 cmp al,03
 je file_end ; jump if end of file
 or al,al ; other read fault?
 jnz bad_read ; jump if bad read
 .
 .
 .
 mov ah,15h ; sequential write to
 mov dx,offset fcb2 ; output file
 int 21h
 or al,al ; write successful?
 jnz bad_write ; jump if write failed
 .
 .
 .
 jmp next ; process next record
 .
 file_end: . ; reached end of input
 .
 mov ah,10h ; close input file
 mov dx,offset fcb1
 int 21h
 .
 .
 .
 mov ah,10h ; close output file
 mov dx,offset fcb2
 int 21h
 .
 .
 .
 mov ax,4c00h ; exit with return
 int 21h ; code of zero
 .
 .
 .
 fname1 db 'OLDFILE.DAT',0 ; name of input file
 fname2 db 'NEWFILE.DAT',0 ; name of output file
 fcb1 db 37 dup (0) ; FCB for input file
 fcb2 db 37 dup (0) ; FCB for output file
 buffer db recsize dup (?) ; buffer for file I/O
 --

 Figure 8-4. Skeleton of an assembly-language program that performs file
 and record I/O using the FCB family of functions.

 Byte Offset FCB before open FCB contents FCB after open
 +--------------------+--------------------+--------------------+
 00H | 00 | Drive | 03 |
 +--------------------+--------------------+--------------------+
 01H | 4D | | 4D |
 02H | 59 | | 59 |
 03H | 46 | | 46 |
 04H | 49 | Filename | 49 |
 05H | 4C | | 4C |
 06H | 45 | | 45 |

 07H | 20 | | 20 |
 08H | 20 | | 20 |
 +--------------------+--------------------+--------------------+
 09H | 44 | | 44 |
 0AH | 41 | Extension | 41 |
 0BH | 54 | | 54 |
 +--------------------+--------------------+--------------------+
 0CH | 00 | | 00 |
 0DH | 00 | Current block | 00 |
 +--------------------+--------------------+--------------------+
 0EH | 00 | | 80 |
 0FH | 00 | Record size | 00 |
 +--------------------+--------------------+--------------------+
 10H | 00 | | 80 |
 11H | 00 | | 3D |
 12H | 00 | File size | 00 |
 13H | 00 | | 00 |
 +--------------------+--------------------+--------------------+
 14H | 00 | | 43 |
 15H | 00 | File date | 0B |
 +--------------------+--------------------+--------------------+
 16H | 00 | | A1 |
 17H | 00 | File time | 52 |
 +--------------------+--------------------+--------------------+
 18H | 00 | | 03 |
 19H | 00 | | 02 |
 1AH | 00 | | 42 |
 1BH | 00 | | 73 |
 1CH | 00 | Reserved | 00 |
 1DH | 00 | | 01 |
 1EH | 00 | | 35 |
 1FH | 00 | | 0F |
 +--------------------+--------------------+--------------------+
 20H | 00 | Current record | 00 |
 +--------------------+--------------------+--------------------+
 21H | 00 | | 00 |
 22H | 00 | Relative-record | 00 |
 23H | 00 | number | 00 |
 24H | 00 | | 00 |
 +--------------------+--------------------+--------------------+

 Figure 8-5. A typical file control block before and after a successful
 open call (Int 21H Function 0FH).

Points to Remember

 Here is a summary of the pros and cons of using the FCB-related file and
 record functions in your programs.

 Advantages:

 o Under MS-DOS versions 1 and 2, the number of files that can be open
 concurrently when using FCBs is unlimited. (This is not true under
 MS-DOS versions 3.0 and later, especially if networking software is
 running.)

 o File-access methods using FCBs are familiar to programmers with a CP/M
 background, and well-behaved CP/M applications require little change in
 logical flow to run under MS-DOS.

 o MS-DOS supplies the size, time, and date for a file to its FCB after
 the file is opened. The calling program can inspect this information.

 Disadvantages:

 o FCBs take up room in the application program's memory space.

 o FCBs offer no support for the hierarchical file structure (no access to
 files outside the current directory).

 o FCBs provide no support for file locking/sharing or record locking in
 networking environments.

 o In addition to the read or write call itself, file reads or writes
 using FCBs require manipulation of the FCB to set record size and
 record number, plus a previous call to a separate MS-DOS function to
 set the DTA address.

 o Random record I/O using FCBs for a file containing variable-length
 records is very clumsy and inconvenient.

 o You must use extended FCBs, which are incompatible with CP/M anyway, to
 access or create files with special attributes such as hidden,
 read-only, or system.

 o The FCB file functions have poor error reporting. This situation has
 been improved somewhat in MS-DOS version 3 because a program can call
 the added Int 21H Function 59H (Get Extended Error Information) after
 a failed FCB function to obtain additional information.

 o Microsoft discourages use of FCBs. FCBs will make your program more
 difficult to port to MS OS/2 later because MS OS/2 does not support
 FCBs in protected mode at all.

Using the Handle Functions

 The handle file- and record-management functions access files in a fashion
 similar to that used under the UNIX/XENIX operating system. Files are
 designated by an ASCIIZ string (an ASCII character string terminated by a
 null, or zero, byte) that can contain a drive designator, path, filename,
 and extension. For example, the file specification

 C:\SYSTEM\COMMAND.COM

 would appear in memory as the following sequence of bytes:

 43 3A 5C 53 59 53 54 45 4D 5C 43 4F 4D 4D 41 4E 44 2E 43 4F 4D 00

 When a program wishes to open or create a file, it passes the address of
 the ASCIIZ string specifying the file to MS-DOS in the DS:DX registers
 (Figure 8-6). If the operation is successful, MS-DOS returns a 16-bit
 handle to the program in the AX register. The program must save this
 handle for further reference.

 --
 mov ah,3dh ; function 3dh = open
 mov al,2 ; mode 2 = read/write

 mov dx,seg filename ; address of ASCIIZ
 mov ds,dx ; file specification
 mov dx,offset filename
 int 21h ; request open from DOS
 jc error ; jump if open failed
 mov handle,ax ; save file handle
 .
 .
 .
 filename db 'C:\MYDIR\MYFILE.DAT',0 ; filename
 handle dw 0 ; file handle
 --

 Figure 8-6. A typical handle file operation. This sequence of code
 attempts to open the file designated in the ASCIIZ string whose address is
 passed to MS-DOS in the DS:DX registers.

 When the program requests subsequent operations on the file, it usually
 places the handle in the BX register before the call to MS-DOS. All the
 handle functions return with the CPU's carry flag cleared if the operation
 was successful, or set if the operation failed; in the latter case, the AX
 register contains a code describing the failure.

 MS-DOS restricts the number of handles that can be active at any one
 time--that is, the number of files and devices that can be open
 concurrently when using the handle family of functions--in two different
 ways:

 o The maximum number of concurrently open files in the system, for all
 active processes combined, is specified by the entry

 FILES=nn

 in the CONFIG.SYS file. This entry determines the number of entries
 to be allocated in the system file table; under MS-DOS version 3, the
 default value is 8 and the maximum is 255. After MS-DOS is booted and
 running, you cannot expand this table to increase the total number of
 files that can be open. You must use an editor to modify the CONFIG.SYS
 file and then restart the system.

 o The maximum number of concurrently open files for a single process is
 20, assuming that sufficient entries are also available in the system
 file table. When a program is loaded, MS-DOS preassigns 5 of its
 potential 20 handles to the standard devices. Each time the process
 issues an open or create call, MS-DOS assigns a handle from the
 process's private allocation of 20, until all the handles are used up
 or the system file table is full. In MS-DOS versions 3.3 and later, you
 can expand the per-process limit of 20 handles with a call to Int 21H
 Function 67H (Set Handle Count).

 The handle file- and record-management calls may be gathered into the
 following broad classifications for study:

 Function Action
 --
 Common handle file operations
 3CH Create file (requires ASCIIZ string).
 3DH Open file (requires ASCIIZ string).

 3EH Close file.

 Common handle record operations
 42H Set file pointer (also used to find file size).
 3FH Read file.
 40H Write file.

 Less commonly used handle operations
 41H Delete file.
 43H Get or modify file attributes.
 44H IOCTL (I/O Control).
 45H Duplicate handle.
 46H Redirect handle.
 56H Rename file.
 57H Get or set file date and time.
 5AH Create temporary file (versions 3.0 and later).
 5BH Create file (fails if file already exists;
 versions 3.0 and later).
 5CH Lock or unlock file region (versions 3.0 and
 later).
 67H Set handle count (versions 3.3 and later).
 68H Commit file (versions 3.3 and later).
 6CH Extended open file (version 4).
 --

 Compare the groups of handle-type functions in the preceding table with
 the groups of FCB functions outlined earlier, noting the degree of
 functional overlap. Section 2 of this book, "MS-DOS Functions Reference,"
 gives detailed specifications for each of the handle functions, along with
 assembly-language examples.

Handle File-Access Skeleton

 The following is a typical program sequence to access a file using the
 handle family of functions (Figure 8-7):

 1. Get the filename from the user by means of the buffered input service
 (Int 21H Function 0AH) or from the command tail supplied by MS-DOS in
 the PSP.

 2. Put a zero at the end of the file specification in order to create an
 ASCIIZ string.

 3. Open the file using Int 21H Function 3DH and mode 2 (read/write
 access), or create the file using Int 21H Function 3CH. (Be sure to
 set the CX register to zero, so that you don't accidentally make a
 file with special attributes.) Save the handle that is returned.

 4. Set the file pointer using Int 21H Function 42H. You may set the
 file-pointer position relative to one of three different locations:
 the start of the file, the current pointer position, or the end of the
 file. If you are performing sequential record I/O, you can usually
 skip this step because MS-DOS will maintain the file pointer for you
 automatically.

 5. Read from the file (Int 21H Function 3FH) or write to the file (Int
 21H Function 40H). Both of these functions require that the BX
 register contain the file's handle, the CX register contain the length

 of the record, and the DS:DX registers point to the data being
 transferred. Both return the actual number of bytes transferred in the
 AX register.

 In a read operation, if the number of bytes read is less than the
 number requested, the end of the file has been reached. In a write
 operation, if the number of bytes written is less than the number
 requested, the disk containing the file is full. Neither of these
 conditions is returned as an error code; that is, the carry flag is
 not set.

 6. If the program is not finished processing the file, go to step 4;
 otherwise, close the file (Int 21H Function 3EH). Any normal exit
 from the program will also close all active handles.

 --
 recsize equ 1024 ; file record size
 .
 .
 .
 mov ah,3dh ; open input file
 mov al,0 ; mode = read only
 mov dx,offset fname1 ; name of input file
 int 21h
 jc no_file ; jump if no file
 mov handle1,ax ; save token for file
 .
 .
 .
 mov ah,3ch ; create output file
 mov cx,0 ; attribute = normal
 mov dx,offset fname2 ; name of output file
 int 21h
 jc disk_full ; jump if create fails
 mov handle2,ax ; save token for file
 .
 next: . ; process next record
 .
 mov ah,3fh ; sequential read from
 mov bx,handle1 ; input file
 mov cx,recsize
 mov dx,offset buffer
 int 21h
 jc bad_read ; jump if read error
 or ax,ax ; check bytes transferred
 jz file_end ; jump if end of file
 .
 .
 .
 mov ah,40h ; sequential write to
 mov bx,handle2 ; output file
 mov cx,recsize
 mov dx,offset buffer
 int 21h
 jc bad_write ; jump if write error
 cmp ax,recsize ; whole record written?
 jne disk_full ; jump if disk is full
 .
 .

 .
 jmp next ; process next record
 .
 file_end: . ; reached end of input
 .
 mov ah,3eh ; close input file
 mov bx,handle1
 int 21h
 .
 .
 .
 mov ah,3eh ; close output file
 mov bx,handle2
 int 21h
 .
 .
 .
 mov ax,4c00h ; exit with return
 int 21h ; code of zero
 .
 .
 .
 fname1 db 'OLDFILE.DAT',0 ; name of input file
 fname2 db 'NEWFILE.DAT',0 ; name of output file
 handle1 dw 0 ; token for input file
 handle2 dw 0 ; token for output file
 buffer db recsize dup (?) ; buffer for file I/O
 --

 Figure 8-7. Skeleton of an assembly-language program that performs
 sequential processing on an input file and writes the results to an output
 file using the handle file and record functions. This code assumes that
 the DS and ES registers have already been set to point to the segment
 containing the buffers and filenames.

Points to Remember

 Here is a summary of the pros and cons of using the handle file and record
 operations in your program. Compare this list with the one given earlier
 in the chapter for the FCB family of functions.

 Advantages:

 o The handle calls provide direct support for I/O redirection and pipes
 with the standard input and output devices in a manner functionally
 similar to that used by UNIX/XENIX.

 o The handle functions provide direct support for directories (the
 hierarchical file structure) and special file attributes.

 o The handle calls support file sharing/locking and record locking in
 networking environments.

 o Using the handle functions, the programmer can open channels to
 character devices and treat them as files.

 o The handle calls make the use of random record access extremely easy.
 The current file pointer can be moved to any byte offset relative to
 the start of the file, the end of the file, or the current pointer

 position. Records of any length, up to an entire segment (65,535
 bytes), can be read to any memory address in one operation.

 o The handle functions have relatively good error reporting in MS-DOS
 version 2, and error reporting has been enhanced even further in MS-DOS
 versions 3.0 and later.

 o Microsoft strongly encourages use of the handle family of functions in
 order to provide upward compatibility with MS OS/2.

 Disadvantages:

 o There is a limit per program of 20 concurrently open files and devices
 using handles in MS-DOS versions 2.0 through 3.2.

 o Minor gaps still exist in the implementation of the handle functions.
 For example, you must still use extended FCBs to change volume labels
 and to access the contents of the special files that implement
 directories.

MS-DOS Error Codes

 When one of the handle file functions fails with the carry flag set, or
 when a program calls Int 21H Function 59H (Get Extended Error
 Information) following a failed FCB function or other system service, one
 of the following error codes may be returned:

 Value Meaning
 --
 MS-DOS version 2 error codes
 01H Function number invalid
 02H File not found
 03H Path not found
 04H Too many open files
 05H Access denied
 06H Handle invalid
 07H Memory control blocks destroyed
 08H Insufficient memory
 09H Memory block address invalid
 0AH (10) Environment invalid
 0BH (11) Format invalid
 0CH (12) Access code invalid
 0DH (13) Data invalid
 0EH (14) Unknown unit
 0FH (15) Disk drive invalid
 10H (16) Attempted to remove current directory
 11H (17) Not same device
 12H (18) No more files

 Mappings to critical-error codes
 13H (19) Write-protected disk
 14H (20) Unknown unit
 15H (21) Drive not ready
 16H (22) Unknown command
 17H (23) Data error (CRC)
 18H (24) Bad request-structure length
 19H (25) Seek error

 1AH (26) Unknown media type
 1BH (27) Sector not found
 1CH (28) Printer out of paper
 1DH (29) Write fault
 1EH (30) Read fault
 1FH (31) General failure

 MS-DOS version 3 and later extended error codes
 20H (32) Sharing violation
 21H (33) File-lock violation
 22H (34) Disk change invalid
 23H (35) FCB unavailable
 24H (36) Sharing buffer exceeded
 25H-31H (37-49) Reserved
 32H (50) Unsupported network request
 33H (51) Remote machine not listening
 34H (52) Duplicate name on network
 35H (53) Network name not found
 36H (54) Network busy
 37H (55) Device no longer exists on network
 38H (56) NetBIOS command limit exceeded
 39H (57) Error in network adapter hardware
 3AH (58) Incorrect response from network
 3BH (59) Unexpected network error
 3CH (60) Remote adapter incompatible
 3DH (61) Print queue full
 3EH (62) Not enough room for print file
 3FH (63) Print file was deleted
 40H (64) Network name deleted
 41H (65) Network access denied
 42H (66) Incorrect network device type
 43H (67) Network name not found
 44H (68) Network name limit exceeded
 45H (69) NetBIOS session limit exceeded
 46H (70) Temporary pause
 47H (71) Network request not accepted
 48H (72) Print or disk redirection paused
 49H-4FH (73-79) Reserved
 50H (80) File already exists
 51H (81) Reserved
 52H (82) Cannot make directory
 53H (83) Fail on Int 24H (critical error)
 54H (84) Too many redirections
 55H (85) Duplicate redirection
 56H (86) Invalid password
 57H (87) Invalid parameter
 58H (88) Net write fault
 --

 Under MS-DOS versions 3.0 and later, you can also use Int 21H Function
 59H to obtain other information about the error, such as the error locus
 and the recommended recovery action.

Critical-Error Handlers

 In Chapter 5, we discussed how an application program can take over the
 Ctrl-C handler vector (Int 23H) and replace the MS-DOS default handler, to
 avoid losing control of the computer when the user enters a Ctrl-C or

 Ctrl-Break at the keyboard. Similarly, MS-DOS provides a
 critical-error-handler vector (Int 24H) that defines the routine to be
 called when unrecoverable hardware faults occur. The default MS-DOS
 critical-error handler is the routine that displays a message describing
 the error type and the cue

 Abort, Retry, Ignore?

 This message appears after such actions as the following:

 o Attempting to open a file on a disk drive that doesn't contain a floppy
 disk or whose door isn't closed

 o Trying to read a disk sector that contains a CRC error

 o Trying to print when the printer is off line

 The unpleasant thing about MS-DOS's default critical-error handler is, of
 course, that if the user enters an A for Abort, the application that is
 currently executing is terminated abruptly and never has a chance to clean
 up and make a graceful exit. Intermediate files may be left on the disk,
 files that have been extended using FCBs are not properly closed so that
 the directory is updated, interrupt vectors may be left pointing into the
 transient program area, and so forth.

 To write a truly bombproof MS-DOS application, you must take over the
 critical-error-handler vector and point it to your own routine, so that
 your program intercepts all catastrophic hardware errors and handles them
 appropriately. You can use MS-DOS Int 21H Function 25H to alter the Int
 24H vector in a well-behaved manner. When your application exits, MS-DOS
 will automatically restore the previous contents of the Int 24H vector
 from information saved in the program segment prefix.

 MS-DOS calls the critical-error handler for two general classes of
 errors-- disk-related and non-disk-related--and passes different
 information to the handler in the registers for each of these classes.

 For disk-related errors, MS-DOS sets the registers as shown on the
 following page. (Bits 3-5 of the AH register are relevant only in MS-DOS
 versions 3.1 and later.)

 Register Bit(s) Significance
 --
 AH 7 0, to signify disk error
 6 Reserved
 5 0 = ignore response not allowed
 1 = ignore response allowed
 4 0 = retry response not allowed
 1 = retry response allowed
 3 0 = fail response not allowed
 1 = fail response allowed
 1-2 Area where disk error occurred
 00 = MS-DOS area
 01 = file allocation table
 10 = root directory
 11 = files area
 0 0 = read operation
 1 = write operation

 AL 0-7 Drive code (0 = A, 1 = B, and so
 forth)
 DI 0-7 Driver error code
 8-15 Not used
 BP:SI Segment:offset of device-driver
 header
 --

 For non-disk-related errors, the interrupt was generated either as the
 result of a character-device error or because a corrupted memory image of
 the file allocation table was detected. In this case, MS-DOS sets the
 registers as follows:

 Register Bit(s) Significance
 --
 AH 7 1, to signify a non-disk error
 DI 0-7 Driver error code
 8-15 Not used
 BP:SI Segment:offset of device-driver
 header
 --

 To determine whether the critical error was caused by a character device,
 use the address in the BP:SI registers to examine the device attribute
 word at offset 0004H in the presumed device-driver header. If bit 15 is
 set, then the error was indeed caused by a character device, and the
 program can inspect the name field of the driver's header to determine the
 device.

 At entry to a critical-error handler, MS-DOS has already disabled
 interrupts and set up the stack as shown in Figure 8-8. A critical-error
 handler cannot use any MS-DOS services except Int 21H Functions 01H
 through 0CH (Traditional Character I/O), Int 21H Function 30H (Get MS-DOS
 Version), and Int 21H Function 59H (Get Extended Error Information).
 These functions use a special stack so that the context of the original
 function (which generated the critical error) will not be lost.

 +-------+-+
 | Flags | |
 +-------+ | Flags and CS:IP pushed
 | CS | +- on stack by original
 +-------+ | Int 21H call
 | IP | |
 +-------+-+-SS:SP on entry to
 | ES | | Int 21H handler
 +-------+ |
 | DS | |
 +-------+ |
 | BP | |
 +-------+ |
 | DI | |
 +-------+ +- Registers at point of
 | SI | | original Int 21H call
 +-------+ |
 | DX | |
 +-------+ |
 | CX | |
 +-------+ |

 | BX | |
 +-------+ |
 | AX | |
 +-------+-+
 | Flags | |
 +-------+ |
 | CS | +- Return address for
 +-------+ | Int 24H handler
 | IP | |
 +-----|-+-+
 +----- SS:SP on entry to
 Int 24H handler

 Figure 8-8. The stack at entry to a critical-error handler.

 The critical-error handler should return to MS-DOS by executing an IRET,
 passing one of the following action codes in the AL register:

 Code Meaning
 --
 0 Ignore the error (MS-DOS acts as though the original
 function call had succeeded).
 1 Retry the operation.
 2 Terminate the process that encountered the error.
 3 Fail the function (an error code is returned to the
 requesting process). Versions 3.1 and later only.
 --

 The critical-error handler should preserve all other registers and must
 not modify the device-driver header pointed to by BP:SI. A skeleton
 example of a critical-error handler is shown in Figure 8-9.

 --
 ; prompt message used by
 ; critical-error handler
 prompt db cr,lf,'Critical Error Occurred: '
 db 'Abort, Retry, Ignore, Fail? $'

 keys db 'aArRiIfF' ; possible user response keys
 keys_len equ $-keys ; (both cases of each allowed)

 codes db 2,2,1,1,0,0,3,3 ; codes returned to MS-DOS kernel
 ; for corresponding response keys

 ;
 ; This code is executed during program's initialization
 ; to install the new critical-error handler.
 ;
 .
 .
 .
 push ds ; save our data segment

 mov dx,seg int24 ; DS:DX = handler address
 mov ds,dx
 mov dx,offset int24
 mov ax,2524h ; function 25h = set vector
 int 21h ; transfer to MS-DOS

 pop ds ; restore data segment
 .
 .
 .
 ;
 ; This is the replacement critical-error handler. It
 ; prompts the user for Abort, Retry, Ignore, or Fail, and
 ; returns the appropriate code to the MS-DOS kernel.
 ;

 int24 proc far ; entered from MS-DOS kernel

 push bx ; save registers
 push cx
 push dx
 push si
 push di
 push bp
 push ds
 push es
 int24a: mov ax,seg prompt ; display prompt for user
 mov ds,ax ; using function 9 (print string
 mov es,ax ; terminated by $ character)
 mov dx,offset prompt
 mov ah,9
 int 21h

 mov ah,1 ; get user's response
 int 21h ; function 1 = read one character

 mov di,offset keys ; look up code for response key
 mov cx,keys_len
 cld
 repne scasb
 jnz int24a ; prompt again if bad response

 ; set AL = action code for MS-DOS
 ; according to key that was entered:
 ; 0 = ignore, 1 = retry, 2 = abort,
 ; 3 = fail
 mov al,[di+keys_len-1]

 pop es ; restore registers
 pop ds
 pop bp
 pop di
 pop si
 pop dx
 pop cx
 pop bx
 iret ; exit critical-error handler

 int24 endp
 --

 Figure 8-9. A skeleton example of a replacement critical-error handler.

Example Programs: DUMP.ASM and DUMP.C

 The programs DUMP.ASM (Figure 8-10) and DUMP.C (Figure 8-11) are
 parallel examples of the use of the handle file and record functions. The
 assembly-language version, in particular, illustrates features of a
 well-behaved MS-DOS utility:

 o The program checks the version of MS-DOS to ensure that all the
 functions it is going to use are really available.

 o The program parses the drive, path, and filename from the command tail
 in the program segment prefix.

 o The program uses buffered I/O for speed.

 o The program sends error messages to the standard error device.

 o The program sends normal program output to the standard output device,
 so that the dump output appears by default on the system console but
 can be redirected to other character devices (such as the line printer)
 or to a file.

 The same features are incorporated into the C version of the program, but
 some of them are taken care of behind the scenes by the C runtime library.

 --
 name dump
 page 55,132
 title DUMP--display file contents

 ;
 ; DUMP--Display contents of file in hex and ASCII
 ;
 ; Build: C>MASM DUMP;
 ; C>LINK DUMP;
 ;
 ; Usage: C>DUMP unit:\path\filename.exe [>device]
 ;
 ; Copyright (C) 1988 Ray Duncan
 ;

 cr equ 0dh ; ASCII carriage return
 lf equ 0ah ; ASCII line feed
 tab equ 09h ; ASCII tab code
 blank equ 20h ; ASCII space code

 cmd equ 80h ; buffer for command tail

 blksize equ 16 ; input file record size

 stdin equ 0 ; standard input handle
 stdout equ 1 ; standard output handle
 stderr equ 2 ; standard error handle
 _TEXT segment word public 'CODE'

 assume cs:_TEXT,ds:_DATA,es:_DATA,ss:STACK

 dump proc far ; entry point from MS-DOS

 push ds ; save DS:0000 for final

 xor ax,ax ; return to MS-DOS, in case
 push ax ; function 4ch can't be used

 mov ax,_DATA ; make our data segment
 mov ds,ax ; addressable via DS register

 ; check MS-DOS version
 mov ax,3000h ; function 30h = get version
 int 21h ; transfer to MS-DOS
 cmp al,2 ; major version 2 or later?
 jae dump1 ; yes, proceed

 ; if MS-DOS 1.x, display
 ; error message and exit
 mov dx,offset msg3 ; DS:DX = message address
 mov ah,9 ; function 9 = print string
 int 21h ; transfer to MS-DOS
 ret ; then exit the old way

 dump1: ; check if filename present
 mov bx,offset cmd ; ES:BX = command tail
 call argc ; count command arguments
 cmp ax,2 ; are there 2 arguments?
 je dump2 ; yes, proceed

 ; missing filename, display
 ; error message and exit
 mov dx,offset msg2 ; DS:DX = message address
 mov cx,msg2_len ; CX = message length
 jmp dump9 ; go display it

 dump2: ; get address of filename
 mov ax,1 ; AX = argument number
 ; ES:BX still = command tail
 call argv ; returns ES:BX = address,
 ; and AX = length

 mov di,offset fname ; copy filename to buffer
 mov cx,ax ; CX = length
 dump3: mov al,es:[bx] ; copy one byte
 mov [di],al
 inc bx ; bump string pointers
 inc di
 loop dump3 ; loop until string done
 mov byte ptr [di],0 ; add terminal null byte

 mov ax,ds ; make our data segment
 mov es,ax ; addressable by ES too
 ; now open the file
 mov ax,3d00h ; function 3dh = open file
 ; mode 0 = read only
 mov dx,offset fname ; DS:DX = filename
 int 21h ; transfer to MS-DOS
 jnc dump4 ; jump, open successful

 ; open failed, display
 ; error message and exit
 mov dx,offset msg1 ; DS:DX = message address
 mov cx,msg1_len ; CX = message length

 jmp dump9 ; go display it

 dump4: mov fhandle,ax ; save file handle

 dump5: ; read block of file data
 mov bx,fhandle ; BX = file handle
 mov cx,blksize ; CX = record length
 mov dx,offset fbuff ; DS:DX = buffer
 mov ah,3fh ; function 3fh = read
 int 21h ; transfer to MS-DOS

 mov flen,ax ; save actual length
 cmp ax,0 ; end of file reached?
 jne dump6 ; no, proceed

 cmp word ptr fptr,0 ; was this the first read?
 jne dump8 ; no, exit normally

 ; display empty file
 ; message and exit
 mov dx,offset msg4 ; DS:DX = message address
 mov cx,msg4_len ; CX = length
 jmp dump9 ; go display it
 dump6: ; display heading at
 ; each 128-byte boundary
 test fptr,07fh ; time for a heading?
 jnz dump7 ; no, proceed

 ; display a heading
 mov dx,offset hdg ; DS:DX = heading address
 mov cx,hdg_len ; CX = heading length
 mov bx,stdout ; BX = standard output
 mov ah,40h ; function 40h = write
 int 21h ; transfer to MS-DOS

 dump7: call conv ; convert binary record
 ; to formatted ASCII

 ; display formatted output
 mov dx,offset fout ; DX:DX = output address
 mov cx,fout_len ; CX = output length
 mov bx,stdout ; BX = standard output
 mov ah,40h ; function 40h = write
 int 21h ; transfer to MS-DOS
 jmp dump5 ; go get another record

 dump8: ; close input file
 mov bx,fhandle ; BX = file handle
 mov ah,3eh ; function 3eh = close
 int 21h ; transfer to MS-DOS

 mov ax,4c00h ; function 4ch = terminate,
 ; return code = 0
 int 21h ; transfer to MS-DOS

 dump9: ; display message on
 ; standard error device
 ; DS:DX = message address
 ; CX = message length

 mov bx,stderr ; standard error handle
 mov ah,40h ; function 40h = write
 int 21h ; transfer to MS-DOS

 mov ax,4c01h ; function 4ch = terminate,
 ; return code = 1
 int 21h ; transfer to MS-DOS

 dump endp
 conv proc near ; convert block of data
 ; from input file

 mov di,offset fout ; clear output format
 mov cx,fout_len-2 ; area to blanks
 mov al,blank
 rep stosb

 mov di,offset fout ; convert file offset
 mov ax,fptr ; to ASCII for output
 call w2a

 mov bx,0 ; init buffer pointer

 conv1: mov al,[fbuff+bx] ; fetch byte from buffer
 mov di,offset foutb ; point to output area

 ; format ASCII part...
 ; store '.' as default
 mov byte ptr [di+bx],'.'

 cmp al,blank ; in range 20h-7eh?
 jb conv2 ; jump, not alphanumeric

 cmp al,7eh ; in range 20h-7eh?
 ja conv2 ; jump, not alphanumeric

 mov [di+bx],al ; store ASCII character

 conv2: ; format hex part...
 mov di,offset fouta ; point to output area
 add di,bx ; base addr + (offset*3)
 add di,bx
 add di,bx
 call b2a ; convert byte to hex

 inc bx ; advance through record
 cmp bx,flen ; entire record converted?
 jne conv1 ; no, get another byte

 ; update file pointer
 add word ptr fptr,blksize

 ret

 conv endp
 w2a proc near ; convert word to hex ASCII
 ; call with AX = value
 ; DI = addr for string
 ; returns AX, DI, CX destroyed

 push ax ; save copy of value
 mov al,ah
 call b2a ; convert upper byte

 pop ax ; get back copy
 call b2a ; convert lower byte
 ret

 w2a endp

 b2a proc near ; convert byte to hex ASCII
 ; call with AL = binary value
 ; DI = addr for string
 ; returns AX, DI, CX modified

 sub ah,ah ; clear upper byte
 mov cl,16
 div cl ; divide byte by 16
 call ascii ; quotient becomes the first
 stosb ; ASCII character
 mov al,ah
 call ascii ; remainder becomes the
 stosb ; second ASCII character
 ret

 b2a endp

 ascii proc near ; convert value 0-0fh in AL
 ; into "hex ASCII" character

 add al,'0' ; offset to range 0-9
 cmp al,'9' ; is it > 9?
 jle ascii2 ; no, jump
 add al,'A'-'9'-1 ; offset to range A-F,

 ascii2: ret ; return AL = ASCII char

 ascii endp

 argc proc near ; count command-line arguments
 ; call with ES:BX = command line
 ; returns AX = argument count
 push bx ; save original BX and CX
 push cx ; for later
 mov ax,1 ; force count >= 1

 argc1: mov cx,-1 ; set flag = outside argument

 argc2: inc bx ; point to next character
 cmp byte ptr es:[bx],cr
 je argc3 ; exit if carriage return
 cmp byte ptr es:[bx],blank
 je argc1 ; outside argument if ASCII blank
 cmp byte ptr es:[bx],tab
 je argc1 ; outside argument if ASCII tab

 ; otherwise not blank or tab,
 jcxz argc2 ; jump if already inside argument

 inc ax ; else found argument, count it
 not cx ; set flag = inside argument
 jmp argc2 ; and look at next character

 argc3: pop cx ; restore original BX and CX
 pop bx
 ret ; return AX = argument count

 argc endp

 argv proc near ; get address & length of
 ; command line argument
 ; call with ES:BX = command line
 ; AX = argument #
 ; returns ES:BX = address
 ; AX = length

 push cx ; save original CX and DI
 push di

 or ax,ax ; is it argument 0?
 jz argv8 ; yes, jump to get program name

 xor ah,ah ; initialize argument counter

 argv1: mov cx,-1 ; set flag = outside argument
 argv2: inc bx ; point to next character
 cmp byte ptr es:[bx],cr
 je argv7 ; exit if carriage return
 cmp byte ptr es:[bx],blank
 je argv1 ; outside argument if ASCII blank
 cmp byte ptr es:[bx],tab
 je argv1 ; outside argument if ASCII tab

 ; if not blank or tab...
 jcxz argv2 ; jump if already inside argument

 inc ah ; else count arguments found
 cmp ah,al ; is this the one we're looking for?
 je argv4 ; yes, go find its length
 not cx ; no, set flag = inside argument
 jmp argv2 ; and look at next character

 argv4: ; found desired argument, now
 ; determine its length...
 mov ax,bx ; save param starting address

 argv5: inc bx ; point to next character
 cmp byte ptr es:[bx],cr
 je argv6 ; found end if carriage return
 cmp byte ptr es:[bx],blank
 je argv6 ; found end if ASCII blank
 cmp byte ptr es:[bx],tab
 jne argv5 ; found end if ASCII tab

 argv6: xchg bx,ax ; set ES:BX = argument address
 sub ax,bx ; and AX = argument length
 jmp argvx ; return to caller

 argv7: xor ax,ax ; set AX = 0, argument not found
 jmp argvx ; return to caller

 argv8: ; special handling for argv = 0
 mov ax,3000h ; check if DOS 3.0 or later
 int 21h ; (force AL = 0 in case DOS 1)
 cmp al,3
 jb argv7 ; DOS 1 or 2, return null param
 mov es,es:[2ch] ; get environment segment from PSP
 xor di,di ; find the program name by
 xor al,al ; first skipping over all the
 mov cx,-1 ; environment variables...
 cld
 argv9: repne scasb ; scan for double null (can't use
 scasb ; SCASW since might be odd addr)
 jne argv9 ; loop if it was a single null
 add di,2 ; skip count word in environment
 mov bx,di ; save program name address
 mov cx,-1 ; now find its length...
 repne scasb ; scan for another null byte
 not cx ; convert CX to length
 dec cx
 mov ax,cx ; return length in AX

 argvx: ; common exit point
 pop di ; restore original CX and DI
 pop cx
 ret ; return to caller

 argv endp

 _TEXT ends

 _DATA segment word public 'DATA'

 fname db 64 dup (0) ; buffer for input filespec

 fhandle dw 0 ; token from PCDOS for input file

 flen dw 0 ; actual length read

 fptr dw 0 ; relative address in file

 fbuff db blksize dup (?) ; data from input file

 fout db 'nnnn' ; formatted output area
 db blank,blank
 fouta db 16 dup ('nn',blank)
 db blank
 foutb db 16 dup (blank),cr,lf
 fout_len equ $-fout

 hdg db cr,lf ; heading for each 128 bytes
 db 7 dup (blank) ; of formatted output
 db '0 1 2 3 4 5 6 7 '
 db '8 9 A B C D E F',cr,lf
 hdg_len equ $-hdg
 msg1 db cr,lf

 db 'dump: file not found'
 db cr,lf
 msg1_len equ $-msg1

 msg2 db cr,lf
 db 'dump: missing file name'
 db cr,lf
 msg2_len equ $-msg2

 msg3 db cr,lf
 db 'dump: wrong MS-DOS version'
 db cr,lf,'$'

 msg4 db cr,lf
 db 'dump: empty file'
 db cr,lf
 msg4_len equ $-msg4

 _DATA ends

 STACK segment para stack 'STACK'

 db 64 dup (?)

 STACK ends

 end dump
 --

 Figure 8-10. The assembly-language version: DUMP.ASM.

 --
 /*
 DUMP.C Displays the binary contents of a file in
 hex and ASCII on the standard output device.

 Compile: C>CL DUMP.C

 Usage: C>DUMP unit:path\filename.ext

 Copyright (C) 1988 Ray Duncan
 */

 #include <stdio.h>
 #include <io.h>
 #include <fcntl.h>
 #define REC_SIZE 16 /* input file record size */

 main(int argc, char *argv[])
 {
 int fd; /* input file handle */
 int status = 0; /* status from file read */
 long fileptr = 0L; /* current file byte offset */
 char filebuf[REC_SIZE]; /* data from file */

 if(argc != 2) /* abort if missing filename */
 { fprintf(stderr,"\ndump: wrong number of parameters\n");
 exit(1);
 }

 /* open file in binary mode,
 abort if open fails */
 if((fd = open(argv[1],O_RDONLY | O_BINARY)) == -1)
 { fprintf(stderr, "\ndump: can't find file %s \n", argv[1]);
 exit(1);
 }

 /* read and dump records
 until end of file */
 while((status = read(fd,filebuf,REC_SIZE)) != 0)
 { dump_rec(filebuf, fileptr, status);
 fileptr += REC_SIZE;
 }

 close(fd); /* close input file */
 exit(0); /* return success code */
 }

 /*
 Display record (16 bytes) in hex and ASCII on standard output
 */

 dump_rec(char *filebuf, long fileptr, int length)
 {
 int i; /* index to current record */

 if(fileptr % 128 == 0) /* display heading if needed */
 printf("\n\n 0 1 2 3 4 5 6 7 8 9 A B C D E F");

 printf("\n%04lX ",fileptr); /* display file offset */

 /* display hex equivalent of
 each byte from file */
 for(i = 0; i < length; i++)
 printf(" %02X", (unsigned char) filebuf[i]);

 if(length != 16) /* spaces if partial record */
 for (i=0; i<(16-length); i++) printf(" ");

 /* display ASCII equivalent of
 each byte from file */
 printf(" ");
 for(i = 0; i < length; i++)
 { if(filebuf[i] < 32 || filebuf[i] > 126) putchar('.');
 else putchar(filebuf[i]);
 }
 }
 --

 Figure 8-11. The C version: DUMP.C.

 The assembly-language version of the DUMP program contains a number of
 subroutines that you may find useful in your own programming efforts.
 These include the following:

 Subroutine Action
 --
 argc Returns the number of command-line arguments.

 argv Returns the address and length of a particular command-line
 argument.
 w2a Converts a binary word (16 bits) into hex ASCII for output.
 b2a Converts a binary byte (8 bits) into hex ASCII for output.
 ascii Converts 4 bits into a single hex ASCII character.
 --

 It is interesting to compare these two equivalent programs. The C program
 contains only 77 lines, whereas the assembly-language program has 436
 lines. Clearly, the C source code is less complex and easier to maintain.
 On the other hand, if size and efficiency are important, the DUMP.EXE file
 generated by the C compiler is 8563 bytes, whereas the assembly-language
 DUMP.EXE file is only 1294 bytes and runs twice as fast as the C program.

--
Chapter 9 Volumes and Directories

 Each file in an MS-DOS system is uniquely identified by its name and its
 location. The location, in turn, has two components: the logical drive
 that contains the file and the directory on that drive where the filename
 can be found.

 Logical drives are specified by a single letter followed by a colon (for
 example, A:). The number of logical drives in a system is not necessarily
 the same as the number of physical drives; for example, it is common for
 large fixed-disk drives to be divided into two or more logical drives. The
 key aspect of a logical drive is that it contains a self-sufficient file
 system; that is, it contains one or more directories, zero or more
 complete files, and all the information needed to locate the files and
 directories and to determine which disk space is free and which is already
 in use.

 Directories are simply lists or catalogs. Each entry in a directory
 consists of the name, size, starting location, attributes, and last
 modification date and time of a file or another directory that the disk
 contains. The detailed information about the location of every block of
 data assigned to a file or directory is in a separate control area on the
 disk called the file allocation table (FAT). (See Chapter 10 for a
 detailed discussion of the internal format of directories and the FAT.)

 Every disk potentially has two distinct kinds of directories: the root
 directory and all other directories. The root directory is always present
 and has a maximum number of entries, determined when the disk is
 formatted; this number cannot be changed. The subdirectories of the root
 directory, which may or may not be present on a given disk, can be nested
 to any level and can grow to any size (Figure 9-1). This is the
 hierarchical, or tree, directory structure referred to in earlier
 chapters. Every directory has a name, except for the root directory, which
 is designated by a single backslash (\) character.

 MS-DOS keeps track of a "current drive" for the system and uses this drive
 when a file specification does not include an explicit drive code.
 Similarly, MS-DOS maintains a "current directory" for each logical drive.
 You can select any particular directory on a drive by naming in order--
 either from the root directory or relative to the current directory--the
 directories that lead to its location in the tree structure. Such a list
 of directories, separated by backslash delimiters, is called a path. When

 a complete path from the root directory is prefixed by a logical drive
 code and followed by a filename and extension, the resulting string is a
 fully qualified filename and unambiguously specifies a file.

 +------------+
 | Drive |
 | identifier |
 +-----+------+
 |
 +-------+--------+
 | Root directory |
 | (volume label) |
 +-+--+--+---+--+-+
 +-------------------+ | | | +-------------------+
 | +-----------+ | +-----------+ |
 +----+---+ +----+------+ +---+----+ +------+----+ +---+----+
 | File A | | Directory | | File B | | Directory | | File C |
 +--------+ +-+-------+-+ +--------+ +-+---------+ +-+------+
 | | | |
 | | | |
 +-----+ | | |
 | | | |
 +----+------+ +--+-----+ +-----+--+ +---+----+
 | Directory | | File D | | File E | | File F |
 +-----------+ +--------+ +--------+ +--------+

 Figure 9-1. An MS-DOS file-system structure.

Drive and Directory Control

 You can examine, select, create, and delete disk directories interactively
 with the DIR, CHDIR (CD), MKDIR (MD), and RMDIR (RD) commands. You can
 select a new current drive by entering the letter of the desired drive,
 followed by a colon. MS-DOS provides the following Int 21H functions to
 give application programs similar control over drives and directories:

 Function Action
 --
 0EH Select current drive.
 19H Get current drive.
 39H Create directory.
 3AH Remove directory.
 3BH Select current directory.
 47H Get current directory.
 --

 The two functions that deal with disk drives accept or return a binary
 drive code--0 represents drive A, 1 represents drive B, and so on. This
 differs from most other MS-DOS functions, which use 0 to indicate the
 current drive, 1 for drive A, and so on.

 The first three directory functions in the preceding list require an
 ASCIIZ string that describes the path to the desired directory. As with
 the handle-based file open and create functions, the address of the ASCIIZ
 string is passed in the DS:DX registers. On return, the carry flag is
 clear if the function succeeds or set if the function failed, with an
 error code in the AX register. The directory functions can fail for a
 variety of reasons, but the most common cause of an error is that some

 element of the indicated path does not exist.

 The last function in the preceding list, Int 21H Function 47H, allows you
 to obtain an ASCIIZ path for the current directory on the specified or
 default drive. MS-DOS supplies the path string without the drive
 identifier or a leading backslash. Int 21H Function 47H is most commonly
 used with Int 21H Function 19H to build fully qualified filenames. Such
 filenames are desirable because they remain valid if the user changes the
 current drive or directory.

 Section 2 of this book, "MS-DOS Functions Reference," gives detailed
 information on the drive and directory control functions.

Searching Directories

 When you request an open operation on a file, you are implicitly
 performing a search of a directory. MS-DOS examines each entry of the
 directory to find a match for the filename you have given as an argument;
 if the file is found, MS-DOS copies certain information from the directory
 into a data structure that it can use to control subsequent read or write
 operations to the file. Thus, if you wish to test for the existence of a
 specific file, you need only perform an open operation and observe whether
 it is successful. (If it is, you should, of course, perform a subsequent
 close operation to avoid needless expenditure of handles.)

 Sometimes you may need to perform more elaborate searches of a disk
 directory. Perhaps you wish to find all the files with a certain
 extension, a file with a particular attribute, or the names of the
 subdirectories of a certain directory. Although the locations of a disk's
 directories and the specifics of the entries that are found in them are of
 necessity hardware dependent (for example, interpretation of the field
 describing the starting location of a file depends upon the physical disk
 format), MS-DOS does provide functions that will allow examination of a
 disk directory in a hardware-independent fashion.

 In order to search a disk directory successfully, you must understand two
 types of MS-DOS search services. The first type is the "search for first"
 function, which accepts a file specification--possibly including wildcard
 characters--and looks for the first matching file in the directory of
 interest. If it finds a match, the function fills a buffer owned by the
 requesting program with information about the file; if it does not find a
 match, it returns an error flag.

 A program can call the second type of search service, called "search for
 next," only after a successful "search for first." If the file
 specification that was originally passed to "search for first" included
 wildcard characters and at least one matching file was present, the
 program can call "search for next" as many times as necessary to find all
 additional matching files. Like "search for first," "search for next"
 returns information about the matched files in a buffer designated by the
 requesting program. When it can find no more matching files, "search for
 next" returns an error flag.

 As with nearly every other operation, MS-DOS provides two parallel sets of
 directory-searching services:

 Action FCB function Handle function
 --
 Search for first 11H 4EH

 Search for next 12H 4FH
 --

 The FCB directory functions allow searches to match a filename and
 extension, both possibly containing wildcard characters, within the
 current directory for the specified or current drive. The handle directory
 functions, on the other hand, allow a program to perform searches within
 any directory on any drive, regardless of the current directory.

 Searches that use normal FCBs find only normal files. Searches that use
 extended FCBs, or the handle-type functions, can be qualified with file
 attributes. The attribute bits relevant to searches are as follows:

 Bit Significance
 --
 0 Read-only file
 1 Hidden file
 2 System file
 3 Volume label
 4 Directory
 5 Archive needed (set when file modified)
 --

 The remaining bits of a search function's attribute parameter should be
 zero. When any of the preceding attribute bits are set, the search
 function returns all normal files plus any files with the specified
 attributes, except in the case of the volume-label attribute bit, which
 receives special treatment as described later in this chapter. Note that
 by setting bit 4 you can include directories in a search, exactly as
 though they were files.

 Both the FCB and handle directory-searching functions require that the
 disk transfer area address be set (with Int 21H Function 1AH), before the
 call to "search for first," to point to a working buffer for use by
 MS-DOS. The DTA address should not be changed between calls to "search for
 first" and "search for next." When it finds a matching file, MS-DOS places
 the information about the file in the buffer and then inspects the buffer
 on the next "search for next" call, to determine where to resume the
 search. The format of the data returned in the buffer is different for the
 FCB and handle functions, so read the detailed descriptions in Section 2
 of this book, "MS-DOS Functions Reference," before attempting to interpret
 the buffer contents.

 Figures 9-2 and 9-3 provide equivalent examples of searches for all
 files in a given directory that have the .ASM extension, one example using
 the FCB directory functions (Int 21H Functions 11H and 12H) and the
 other using the handle functions (Int 21H Functions 4EH and 4FH). (Both
 programs use the handle write function with the standard output handle to
 display the matched filenames, to avoid introducing tangential differences
 in the listings.)

 --
 start: ; set DTA address for buffer
 ; used by search functions
 mov dx,seg buff ; DS:DX = buffer address
 mov ds,dx
 mov dx,offset buff
 mov ah,1ah ; function 1ah = search for first
 int 21h ; transfer to MS-DOS

 ; search for first match...
 mov dx,offset fcb ; DS:DX = FCB address
 mov ah,11h ; function 11h = search for first
 int 21h ; transfer to MS-DOS
 or al,al ; any matches at all?
 jnz exit ; no, quit

 disp: ; go to a new line...
 mov dx,offset crlf ; DS:DX = CR-LF string
 mov cx,2 ; CX = string length
 mov bx,1 ; BX = standard output handle
 mov ah,40h ; function 40h = write
 int 21h ; transfer to MS-DOS

 ; display matching file
 mov dx,offset buff+1 ; DS:DX = filename
 mov cx,11 ; CX = length
 mov bx,1 ; BX = standard output handle
 mov ah,40h ; function 40h = write
 int 21h ; transfer to MS-DOS

 ; search for next match...
 mov dx,offset fcb ; DS:DX = FCB address
 mov ah,12h ; function 12h = search for next
 int 21h ; transfer to MS-DOS
 or al,al ; any more matches?
 jz disp ; yes, go show filename

 exit: ; final exit point
 mov ax,4c00h ; function 4ch = terminate,
 ; return code = 0
 int 21h ; transfer to MS-DOS

 .
 .
 .

 crlf db 0dh,0ah ; ASCII carriage return-
 ; linefeed string

 fcb db 0 ; drive = current
 db 8 dup ('?') ; filename = wildcard
 db 'ASM' ; extension = ASM
 db 25 dup (0) ; remainder of FCB = zero

 buff db 64 dup (0) ; receives search results
 --

 Figure 9-2. Example of an FCB-type directory search using Int 21H
 Functions 11H and 12H. This routine displays the names of all files in
 the current directory that have the .ASM extension.

 --
 start: ; set DTA address for buffer
 ; used by search functions
 mov dx,seg buff ; DS:DX = buffer address
 mov ds,dx
 mov dx,offset buff
 mov ah,1ah ; function 1ah = search for first

 int 21h ; transfer to MS-DOS

 ; search for first match...
 mov dx,offset fname ; DS:DX = wildcard filename
 mov cx,0 ; CX = normal file attribute
 mov ah,4eh ; function 4eh = search for first
 int 21h ; transfer to MS-DOS
 jc exit ; quit if no matches at all

 disp: ; go to a new line...
 mov dx,offset crlf ; DS:DX = CR-LF string
 mov cx,2 ; CX = string length
 mov bx,1 ; BX = standard output handle
 mov ah,40h ; function 40h = write
 int 21h ; transfer to MS-DOS
 ; find length of filename...
 mov cx,0 ; CX will be char count
 ; DS:SI = start of name
 mov si,offset buff+30

 disp1: lodsb ; get next character
 or al,al ; is it null character?
 jz disp2 ; yes, found end of string
 inc cx ; else count characters
 jmp disp1 ; and get another

 disp2: ; display matching file...
 ; CX already contains length
 ; DS:DX = filename
 mov dx,offset buff+30
 mov bx,1 ; BX = standard output handle
 mov ah,40h ; function 40h = write
 int 21h ; transfer to MS-DOS
 ; find next matching file...
 mov ah,4fh ; function 4fh = search for next
 int 21h ; transfer to MS-DOS
 jnc disp ; jump if another match found

 exit: ; final exit point
 mov ax,4c00h ; function 4ch = terminate,
 ; return code = 0
 int 21h ; transfer to MS-DOS

 .
 .
 .

 crlf db 0dh,0ah ; ASCII carriage return-
 ; linefeed string

 fname db '*.ASM',0 ; ASCIIZ filename to
 ; be matched

 buff db 64 dup (0) ; receives search results
 --

 Figure 9-3. Example of a handle-type directory search using Int 21H
 Functions 4EH and 4FH. This routine also displays the names of all files
 in the current directory that have a .ASM extension.

Moving Files

 The rename file function that was added in MS-DOS version 2.0, Int 21H
 Function 56H, has the little-advertised capability to move a file from
 one directory to another. The function has two ASCIIZ parameters: the
 "old" and "new" names for the file. If the old and new paths differ,
 MS-DOS moves the file; if the filename or extension components differ,
 MS-DOS renames the file. MS-DOS can carry out both of these actions in the
 same function call.

 Of course, the old and new directories must be on the same drive, because
 the file's actual data is not moved at all; only the information that
 describes the file is removed from one directory and placed in another
 directory. Function 56H fails if the two ASCIIZ strings include different
 logical-drive codes, if the file is read-only, or if a file with the same
 name and location as the "new" filename already exists.

 The FCB-based rename file service, Int 21H Function 17H, works only on
 the current directory and cannot be used to move files.

Volume Labels

 Support for volume labels was first added to MS-DOS in version 2.0. A
 volume label is an optional name of from 1 to 11 characters that the user
 assigns to a disk during a FORMAT operation. You can display a volume
 label with the DIR, TREE, CHKDSK, or VOL command. Beginning with MS-DOS
 version 3.0, you can use the LABEL command to add, display, or alter the
 label after formatting. In MS-DOS version 4, the FORMAT program also
 assigns a semi-random 32-bit binary ID to each disk it formats; you can
 display this value, but you cannot change it.

 The distinction between volumes and drives is important. A volume label is
 associated with a specific storage medium. A drive identifier (such as A)
 is associated with a physical device that a storage medium can be mounted
 on. In the case of fixed-disk drives, the medium associated with a drive
 identifier does not change (hence the name). In the case of floppy disks
 or other removable media, the disk accessed with a given drive identifier
 might have any volume label or none at all.

 Hence, volume labels do not take the place of the logical-drive identifier
 and cannot be used as part of a pathname to identify a file. In fact, in
 MS-DOS version 2, the system does not use volume labels internally at all.
 In MS-DOS versions 3.0 and later, a disk driver can use volume labels to
 detect whether the user has replaced a disk while a file is open; this use
 is optional, however, and is not implemented in all systems.

 MS-DOS volume labels are implemented as a special type of entry in a
 disk's root directory. The entry contains a time-and-date stamp and has an
 attribute value of 8 (i.e., bit 3 set). Except for the attribute, a volume
 label is identical to the directory entry for a file that was created but
 never had any data written into it, and you can manipulate volume labels
 with Int 21H functions much as you manipulate files. However, a volume
 label receives special handling at several levels:

 o When you create a volume label after a disk is formatted, MS-DOS always
 places it in the root directory, regardless of the current directory.

 o A disk can contain only one volume label; attempts to create additional
 volume labels (even with different names) will fail.

 o MS-DOS always carries out searches for volume labels in the root
 directory, regardless of the current directory, and does not also
 return all normal files.

 In MS-DOS version 2, support for volume labels is not completely
 integrated into the handle file functions, and you must use extended FCBs
 instead to manipulate volume labels. For example, the code in Figure 9-4
 searches for the volume label in the root directory of the current drive.
 You can also change volume labels with extended FCBs and the rename file
 function (Int 21H Function 17H), but you should not attempt to remove an
 existing volume label with Int 21H Function 13H under MS-DOS version 2,
 because this operation can damage the disk's FAT in an unpredictable
 manner.

 In MS-DOS versions 3.0 and later, you can create a volume label in the
 expected manner, using Int 21H Function 3CH and an attribute of 8, and
 you can use the handle-type "search for first" function (4EH) to obtain
 an existing volume label for a logical drive (Figure 9-5). However, you
 still must use extended FCBs to change a volume label.

 --
 buff db 64 dup (?) ; receives search results

 xfcb db 0ffh ; flag signifying extended FCB
 db 5 dup (0) ; reserved
 db 8 ; volume attribute byte
 db 0 ; drive code (0 = current)
 db 11 dup ('?') ; wildcard filename and extension
 db 25 dup (0) ; remainder of FCB (not used)
 .
 .
 .
 ; set DTA address for buffer
 ; used by search functions
 mov dx,seg buff ; DS:DX = buffer address
 mov ds,dx
 mov dx,offset buff
 mov ah,1ah ; function 1ah = set DTA
 int 21h ; transfer to MS-DOS

 ; now search for label...
 ; DS:DX = extended FCB
 mov dx,offset xfcb
 mov ah,11h ; function 11h = search for first
 int 21h ; transfer to MS-DOS
 cmp al,0ffh ; search successful?
 je no_label ; jump if no volume label
 .
 .
 .
 --

 Figure 9-4. A volume-label search under MS-DOS version 2, using an
 extended file control block. If the search is successful, the volume label
 is returned in buff, formatted in the filename and extension fields of an
 extended FCB.

 --
 buff db 64 dup (?) ; receives search results

 wildcd db '*.*',0 ; wildcard ASCIIZ filename
 .
 .
 .
 ; set DTA address for buffer
 ; used by search functions
 mov dx,seg buff ; DS:DX = buffer address
 mov ds,dx
 mov dx,offset buff
 mov ah,1ah ; function 1ah = set DTA
 int 21h ; transfer to MS-DOS

 ; now search for label...
 ; DS:DX = ASCIIZ string
 mov dx,offset wildcd
 mov cx,8 ; CX = volume attribute
 mov ah,4eh ; function 4eh = search for first
 int 21h ; transfer to MS-DOS
 jc no_label ; jump if no volume label
 .
 .
 .
 --

 Figure 9-5. A volume-label search under MS-DOS version 3, using the
 handle-type file functions. If the search is successful (carry flag
 returned clear), the volume name is placed at location buff+1EH in the
 form of an ASCIIZ string.

--
Chapter 10 Disk Internals

 MS-DOS disks are organized according to a rather rigid scheme that is
 easily understood and therefore easily manipulated. Although you will
 probably never need to access the special control areas of a disk
 directly, an understanding of their internal structure leads to a better
 understanding of the behavior and performance of MS-DOS as a whole.

 From the application programmer's viewpoint, MS-DOS presents disk devices
 as logical volumes that are associated with a drive code (A, B, C, and so
 on) and that have a volume name (optional), a root directory, and from
 zero to many additional directories and files. MS-DOS shields the
 programmer from the physical characteristics of the medium by providing a
 battery of disk services through Int 21H. Using these services, the
 programmer can create, open, read, write, close, and delete files in a
 uniform way, regardless of the disk drive's size, speed, number of
 read/write heads, number of tracks, and so forth.

 Requests from an application program for file operations actually go
 through two levels of translation before resulting in the physical
 transfer of data between the disk device and random-access memory:

 1. Beneath the surface, MS-DOS views each logical volume, whether it is

 an entire physical unit such as a floppy disk or only a part of a
 fixed disk, as a continuous sequence of logical sectors, starting at
 sector 0. (A logical disk volume can also be implemented on other
 types of storage. For example, RAM disks map a disk structure onto an
 area of random-access memory.) MS-DOS translates an application
 program's Int 21H file-management requests into requests for transfers
 of logical sectors, using the information found in the volume's
 directories and allocation tables. (For those rare situations where it
 is appropriate, programs can also access logical sectors directly with
 Int 25H and Int 26H.)

 2. MS-DOS then passes the requests for logical sectors to the disk
 device's driver, which maps them onto actual physical addresses (head,
 track, and sector). Disk drivers are extremely hardware dependent and
 are always written in assembly language for maximum speed. In most
 versions of MS-DOS, a driver for IBM-compatible floppy- and fixed-disk
 drives is built into the MS-DOS BIOS module (IO.SYS) and is always
 loaded during system initialization; you can install additional
 drivers for non-IBM-compatible disk devices by including the
 appropriate DEVICE directives in the CONFIG.SYS file.

 Each MS-DOS logical volume is divided into several fixed-size control
 areas and a files area (Figure 10-1). The size of each control area
 depends on several factors--the size of the volume and the version of
 FORMAT used to initialize the volume, for example--but all of the
 information needed to interpret the structure of a particular logical
 volume can be found on the volume itself in the boot sector.

 +---+
 | Boot sector |
 | Reserved area |
 +---+
 | File allocation table #1 |
 +---+
 | Possible additional copies of FAT |
 +---+
 | Root directory |
 +---+
 | |
 | Files area |
 | |
 +---+

 Figure 10-1. Map of a typical MS-DOS logical volume. The boot sector
 (logical sector 0) contains the OEM identification, BIOS parameter block
 (BPB), and disk bootstrap. The remaining sectors are divided among an
 optional reserved area, one or more copies of the file allocation table,
 the root directory, and the files area.

The Boot Sector

 Logical sector 0, known as the boot sector, contains all of the critical
 information regarding the disk medium's characteristics (Figure 10-2).
 The first byte in the sector is always an 80x86 jump instruction--either a
 normal intrasegment JMP (opcode 0E9H) followed by a 16-bit displacement or
 a "short" JMP (opcode 0EBH) followed by an 8-bit displacement and then by
 an NOP (opcode 90H). If neither of these two JMP opcodes is present, the
 disk has not been formatted or was not formatted for use with MS-DOS. (Of

 course, the presence of the JMP opcode does not in itself ensure that the
 disk has an MS-DOS format.)

 Following the initial JMP instruction is an 8-byte field that is reserved
 by Microsoft for OEM identification. The disk-formatting program, which is
 specialized for each brand of computer, disk controller, and medium, fills
 in this area with the name of the computer manufacturer and the
 manufacturer's internal MS-DOS version number.

 00H +---+
 | E9 XX XX or EB XX 90 |
 03H +---+
 | OEM name and version |
 | (8 bytes) |
 OBH +---+-+
 | Bytes per sector (2 bytes) | |
 ODH +---+ |
 | Sectors per allocation unit (1 byte) | |
 0EH +---+ |
 | Reserved sectors, starting at 0 (2 bytes) | |
 10H +---+ |
 | Number of FATs (1 byte) | B
 11H +---+ P
 | Number of root-directory entries (2 bytes) | B
 13H +---+ |
 | Total sectors in logical volume (2 bytes) | |
 15H +---+ | MS-DOS
 | Media descriptor byte | | version 2.0
 16H +---+ |
 | Number of sectors per FAT (2 bytes) | |
 18H +---+-+
 | Sectors per track (2 bytes) | |
 1AH +---+ |
 | Number of heads (2 bytes) | | MS-DOS
 1CH +---+ | version 3.0
 | Number of hidden sectors (4 bytes) |-+
 20H +---+ | MS-DOS
 | Total sectors in logical volume | | version 4.0
 | (MS-DOS 4.0 and volume size >32 MB) | |
 24H +---+-+
 | Physical drive number | |
 25H +---+ |
 | Reserved | |
 26H +---+ |
 | Extended boot signature record (29H) | | Additional
 27H +---+ | MS-DOS 4.0
 | 32-bit binary volume ID | | information
 2BH +---+ |
 | Volume label (11 bytes) | |
 36H +---+ |
 | Reserved (8 bytes) | |
 3EH +---+-+
 | Bootstrap |
 +---+

 Figure 10-2. Map of the boot sector of an MS-DOS disk. Note the JMP at
 offset 0, the OEM identification field, the MS-DOS version 2 compatible
 BIOS parameter block (bytes 0BH-17H), the three additional WORD fields for
 MS-DOS version 3, the double-word number-of-sectors field and 32-bit

 binary volume ID for MS-DOS version 4.0, and the bootstrap code.

 The third major component of the boot sector is the BIOS parameter block
 (BPB) in bytes 0BH through 17H. (Additional fields are present in MS-DOS
 versions 3.0 and later.) This data structure describes the physical disk
 characteristics and allows the device driver to calculate the proper
 physical disk address for a given logical-sector number; it also contains
 information that is used by MS-DOS and various system utilities to
 calculate the address and size of each of the disk control areas (file
 allocation tables and root directory).

 The final element of the boot sector is the disk bootstrap routine. The
 disk bootstrap is usually read into memory by the ROM bootstrap, which is
 executed automatically when the computer is turned on. The ROM bootstrap
 is usually just smart enough to home the head of the disk drive (move it
 to track 0), read the first physical sector into RAM at a predetermined
 location, and jump to it. The disk bootstrap is more sophisticated. It
 calculates the physical disk address of the beginning of the files area,
 reads the files containing the operating system into memory, and transfers
 control to the BIOS module at location 0070:0000H. (See Chapter 2.)

 Figures 10-3 and 10-4 show a partial hex dump and disassembly of a
 PC-DOS 3.3 floppy-disk boot sector.

 --
 0 1 2 3 4 5 6 7 8 9 A B C D E F
 0000 EB 34 90 49 42 4D 20 20 33 2E 33 00 02 02 01 00 .4.IBM 3.3.....
 0010 02 70 00 D0 02 FD 02 00 09 00 02 00 00 00 00 00 .p..............
 0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 12
 0030 00 00 00 00 01 00 FA 33 C0 8E D0 BC 00 7C 16 07 3.....|..
 .
 .
 .
 01C0 0D 0A 44 69 73 6B 20 42 6F 6F 74 20 66 61 69 6C ..Disk Boot fail
 01D0 75 72 65 0D 0A 00 49 42 4D 42 49 4F 20 20 43 4F ure...IBMBIO CO
 01E0 4D 49 42 4D 44 4F 53 20 20 43 4F 4D 00 00 00 00 MIBMDOS COM....
 01F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 55 AA U.
 --

 Figure 10-3. Partial hex dump of the boot sector (track 0, head 0, sector
 1) of a PC-DOS version 3.3 floppy disk. This sector contains the OEM
 identification, a copy of the BIOS parameter block describing the medium,
 and the bootstrap routine that reads the BIOS into memory and transfers
 control to it. See also Figures 10-2 and 10-4.

 --
 jmp $+54 ; jump to bootstrap
 nop

 db 'IBM 3.3' ; OEM identification

 ; BIOS parameter block
 dw 512 ; bytes per sector
 db 2 ; sectors per cluster
 dw 1 ; reserved sectors
 db 2 ; number of FATs
 dw 112 ; root directory entries
 dw 720 ; total sectors
 db 0fdh ; media descriptor byte

 dw 2 ; sectors per FAT

 dw 9 ; sectors per track
 dw 2 ; number of heads
 dd 0 ; hidden sectors
 .
 .
 .
 --

 Figure 10-4. Partial disassembly of the boot sector shown in Figure
 10-3.

The Reserved Area

 The boot sector is actually part of a reserved area that can span from one
 to several sectors. The reserved-sectors word in the BPB, at offset 0EH in
 the boot sector, describes the size of this area. Remember that the number
 in the BPB field includes the boot sector itself, so if the value is 1 (as
 it is on IBM PC floppy disks), the length of the reserved area is actually
 0 sectors.

The File Allocation Table

 When a file is created or extended, MS-DOS assigns it groups of disk
 sectors from the files area in powers of 2. These are known as allocation
 units or clusters. The number of sectors per cluster for a given medium is
 defined in the BPB and can be found at offset 0DH in the disk's boot
 sector. Below are some example cluster sizes:

 Disk type Power of 2 Sectors/cluster
 --
 5.25" 180 KB floppy disk 0 1
 5.25" 360 KB floppy disk 1 2
 PC/AT fixed disk 2 4
 PC/XT fixed disk 3 8
 --

 The file allocation table (FAT) is divided into fields that correspond
 directly to the assignable clusters on the disk. These fields are 12 bits
 in MS-DOS versions 1 and 2 and may be either 12 bits or 16 bits in
 versions 3.0 and later, depending on the size of the medium (12 bits if
 the disk contains fewer than 4087 clusters, 16 bits otherwise).

 The first two fields in the FAT are always reserved. On IBM-compatible
 media, the first 8 bits of the first reserved FAT entry contain a copy of
 the media descriptor byte, which is also found in the BPB in the boot
 sector. The second, third, and (if applicable) fourth bytes, which
 constitute the remainder of the first two reserved FAT fields, always
 contain 0FFH. The currently defined IBM-format media descriptor bytes are
 as follows:

 MS-DOS version
 where first
 Descriptor Medium supported
 --
 0F0H 3.5" floppy disk, 2-sided, 18-sector 3.3

 0F8H Fixed disk 2.0
 0F9H 5.25" floppy disk, 2-sided, 15-sector 3.0
 3.5" floppy disk, 2-sided, 9-sector 3.2
 0FCH 5.25" floppy disk, 1-sided, 9-sector 2.0
 0FDH 5.25" floppy disk, 2-sided, 9-sector 2.0
 8" floppy disk, 1-sided, single-density
 0FEH 5.25" floppy disk, 1-sided, 8-sector 1.0
 8" floppy disk, 1-sided, single-density
 8" floppy disk, 2-sided, double-density
 0FFH 5.25" floppy disk, 2-sided, 8-sector 1.1
 --

 The remainder of the FAT entries describe the use of their corresponding
 disk clusters. The contents of the FAT fields are interpreted as follows:

 Value Meaning
 --
 (0)000H Cluster available
 (F)FF0-(F)FF6H Reserved cluster
 (F)FF7H Bad cluster, if not part of chain
 (F)FF8-(F)FFFH Last cluster of file
 (X)XXX Next cluster in file
 --

 Each file's entry in a directory contains the number of the first cluster
 assigned to that file, which is used as an entry point into the FAT. From
 the entry point on, each FAT slot contains the cluster number of the next
 cluster in the file, until a last-cluster mark is encountered.

 At the computer manufacturer's option, MS-DOS can maintain two or more
 identical copies of the FAT on each volume. MS-DOS updates all copies
 simultaneously whenever files are extended or the directory is modified.
 If access to a sector in a FAT fails due to a read error, MS-DOS tries the
 other copies until a successful disk read is obtained or all copies are
 exhausted. Thus, if one copy of the FAT becomes unreadable due to wear or
 a software accident, the other copies may still make it possible to
 salvage the files on the disk. As part of its procedure for checking the
 integrity of a disk, the CHKDSK program compares the multiple copies
 (usually two) of the FAT to make sure they are all readable and
 consistent.

The Root Directory

 Following the file allocation tables is an area known in MS-DOS versions
 2.0 and later as the root directory. (Under MS-DOS version 1, it was the
 only directory on the disk.) The root directory contains 32-byte entries
 that describe files, other directories, and the optional volume label
 (Figure 10-5). An entry beginning with the byte value E5H is available
 for reuse; it represents a file or directory that has been erased. An
 entry beginning with a null (zero) byte is the logical end-of-directory;
 that entry and all subsequent entries have never been used.

 00H +------------------------------+
 | Filename | Note 1
 08H +------------------------------+
 | Extension |
 0BH +------------------------------+
 | File attribute | Note 2

 0CH +------------------------------+
 | Reserved |
 16H +------------------------------+
 | Time created or last updated | Note 3
 18H +------------------------------+
 | Date created or last updated | Note 4
 1AH +------------------------------+
 | Starting cluster |
 1CH +------------------------------+
 | File size, 4 bytes | Note 5
 20H +------------------------------+

 Figure 10-5. Format of a single entry in a disk directory. Total length
 is 32 bytes (20H bytes).

 --
 Notes for Figure 10-5
 1. The first byte of the filename field of a directory entry may
 contain the following special information:

 Value Meaning
 --
 00H Directory entry has never been used; end of occupied
 portion of directory.
 05H First character of filename is actually E5H.
 2EH Entry is an alias for the current or parent directory.
 If the next byte is also 2EH, the cluster field
 contains the cluster number of the parent directory
 (zero if the parent directory is the root directory).
 E5H File has been erased.
 --

 2. The attribute byte of the directory entry is mapped as follows:

 Bit Meaning
 --
 0 Read-only; attempts to open file for write or to
 delete file will fail.
 1 Hidden file; excluded from normal searches.
 2 System file; excluded from normal searches.
 3 Volume label; can exist only in root directory.
 4 Directory; excluded from normal searches.
 5 Archive bit; set whenever file is modified.
 6 Reserved.
 7 Reserved.
 --

 3. The time field is encoded as follows:

 Bits Contents
 --
 00H-04H Binary number of 2-second increments (0-29,
 corresponding to 0-58 seconds)
 05H-0AH Binary number of minutes (0-59)
 0BH-0FH Binary number of hours (0-23)
 --

 4. The date field is encoded as follows:

 Bits Contents
 --
 00H-04H Day of month (1-31)
 05H-08H Month (1-12)
 09H-0FH Year (relative to 1980)
 --

 5. The file-size field is interpreted as a 4-byte integer, with the
 low-order 2 bytes of the number stored first.

 --

 The root directory has a number of special properties. Its size and
 position are fixed and are determined by the FORMAT program when a disk is
 initialized. This information can be obtained from the boot sector's BPB.
 If the disk is bootable, the first two entries in the root directory
 always describe the files containing the MS-DOS BIOS and the MS-DOS
 kernel. The disk bootstrap routine uses these entries to bring the
 operating system into memory and start it up.

 Figure 10-6 shows a partial hex dump of the first sector of the root
 directory on a bootable PC-DOS 3.3 floppy disk.

 --
 0 1 2 3 4 5 6 7 8 9 A B C D E F
 0000 49 42 4D 42 49 4F 20 20 43 4F 4D 27 00 00 00 00 IBMBIO COM'....
 0010 00 00 00 00 00 00 00 60 72 0E 02 00 54 56 00 00 'r...TV..
 0020 49 42 4D 44 4F 53 20 20 43 4F 4D 27 00 00 00 00 IBMDOS COM'....
 0030 00 00 00 00 00 00 00 60 71 0E 18 00 CF 75 00 00 'q....u..
 0040 43 4F 4D 4D 41 4E 44 20 43 4F 4D 20 00 00 00 00 COMMAND COM
 0050 00 00 00 00 00 00 00 60 71 0E 36 00 DB 62 00 00 'q.6..b..
 0060 42 4F 4F 54 44 49 53 4B 20 20 20 28 00 00 00 00 BOOTDISK (....
 0070 00 00 00 00 00 00 A1 00 21 00 00 00 00 00 00 00 !.......
 0080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 .
 .
 .
 --

 Figure 10-6. Partial hex dump of the first sector of the root directory
 for a PC-DOS 3.3 disk containing the three system files and a volume
 label.

The Files Area

 The remainder of the volume after the root directory is known as the files
 area. MS-DOS views the sectors in this area as a pool of clusters, each
 containing one or more logical sectors, depending on the disk format. Each
 cluster has a corresponding entry in the FAT that describes its current
 use: available, reserved, assigned to a file, or unusable (because of
 defects in the medium). Because the first two fields of the FAT are
 reserved, the first cluster in the files area is assigned the number 2.

 When a file is extended under versions 1 and 2, MS-DOS searches the FAT
 from the beginning until it finds a free cluster (designated by a zero FAT
 field); it then changes that FAT field to a last-cluster mark and updates
 the previous last cluster of the file's chain to point to the new last

 cluster. Under versions 3.0 and later, however, MS-DOS searches the FAT
 from the most recently allocated cluster; this reduces file fragmentation
 and improves overall access times.

 Directories other than the root directory are simply a special type of
 file. Their storage is allocated from the files area, and their contents
 are 32-byte entries--in the same format as those used in the root
 directory--that describe files or other directories. Directory entries
 that describe other directories contain an attribute byte with bit 4 set,
 zero in the file-length field, and the date and time that the directory
 was created (Figure 10-7). The first cluster field points, of course, to
 the first cluster in the files area that belongs to the directory. (The
 directory's other clusters can be found only by tracing through the FAT.)

 All directories except the root directory contain two special directory
 entries with the names . and ... MS-DOS puts these entries in place when
 it creates a directory, and they cannot be deleted. The . entry is an
 alias for the current directory; its cluster field points to the cluster
 in which it is found. The .. entry is an alias for the directory's parent
 (the directory immediately above it in the tree structure); its cluster
 field points to the first cluster of the parent directory. If the parent
 is the root directory, the cluster field of the .. entry contains zero
 (Figure 10-8).

 --
 .
 .
 .
 0080 4D 59 44 49 52 20 20 20 20 20 20 10 00 00 00 00 MYDIR
 0090 00 00 00 00 00 00 87 9A 9B 0A 2A 00 00 00 00 00 *.....
 .
 .
 .
 --

 Figure 10-7. Extract from the root directory of an MS-DOS disk, showing
 the entry for a subdirectory named MYDIR. Bit 4 in the attribute byte is
 set, the cluster field points to the first cluster of the subdirectory
 file, the date and time stamps are valid, but the file length is zero.

 --
 0 1 2 3 4 5 6 7 8 9 A B C D E F
 0000 2E 20 20 20 20 20 20 20 20 20 20 10 00 00 00 00
 0010 00 00 00 00 00 00 87 9A 9B 0A 2A 00 00 00 00 00 *.....
 0020 2E 2E 20 20 20 20 20 20 20 20 20 10 00 00 00 00
 0030 00 00 00 00 00 00 87 9A 9B 0A 00 00 00 00 00 00
 0040 4D 59 46 49 4C 45 20 20 44 41 54 20 00 00 00 00 MYFILE DAT
 0050 00 00 00 00 00 00 98 9A 9B 0A 2B 00 15 00 00 00 +.....
 0060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 .
 .
 .
 --

 Figure 10-8. Hex dump of the first block of the directory MYDIR. Note the
 . and .. entries. This directory contains exactly one file, MYFILE.DAT.

Interpreting the File Allocation Table

 Now that we understand how the disk is structured, let's see how we can
 use this knowledge to find a FAT position from a cluster number.

 If the FAT has 12-bit entries, use the following procedure:

 1. Use the directory entry to find the starting cluster of the file in
 question.

 2. Multiply the cluster number by 1.5.

 3. Use the integral part of the product as the offset into the FAT and
 move the word at that offset into a register. Remember that a FAT
 position can span a physical disk-sector boundary.

 4. If the product is a whole number, AND the register with 0FFFH.

 5. Otherwise, "logical shift" the register right 4 bits.

 6. If the result is a value from 0FF8H through 0FFFH, the file has no
 more clusters. Otherwise, the result is the number of the next cluster
 in the file.

 On disks with at least 4087 clusters formatted under MS-DOS version 3.0 or
 later, the FAT entries use 16 bits, and the extraction of a cluster number
 from the table is much simpler:

 1. Use the directory entry to find the starting cluster of the file in
 question.

 2. Multiply the cluster number by 2.

 3. Use the product as the offset into the FAT and move the word at that
 offset into a register.

 4. If the result is a value from 0FFF8H through 0FFFFH, the file has no
 more clusters. Otherwise, the result is the number of the next cluster
 in the file.

 To convert cluster numbers to logical sectors, subtract 2, multiply the
 result by the number of sectors per cluster, and add the logical-sector
 number of the beginning of the data area (this can be calculated from the
 information in the BPB).

 As an example, let's work out the disk location of the file IBMBIO.COM,
 which is the first entry in the directory shown in Figure 10-6. First, we
 need some information from the BPB, which is in the boot sector of the
 medium. (See Figures 10-3 and 10-4.) The BPB tells us that there are

 o 512 bytes per sector

 o 2 sectors per cluster

 o 2 sectors per FAT

 o 2 FATs

 o 112 entries in the root directory

 From the BPB information, we can calculate the starting logical-sector
 number of each of the disk's control areas and the files area by
 constructing a table, as follows:

 Length Sector
 Area (sectors) numbers
 --
 Boot sector 1 00H
 2 FATs * 2 sectors/FAT 4 01H-04H
 112 directory entries 7 05H-0BH
 *32 bytes/entry
 /512 bytes/sector
 Total sectors occupied by bootstrap, FATs, and 12
 root directory
 --

 Therefore, the first sector of the files area is 12 (0CH).

 The word at offset 01AH in the directory entry for IBMBIO.COM gives us the
 starting cluster number for that file: cluster 2. To find the
 logical-sector number of the first block in the file, we can follow the
 procedure given earlier:

 1. Cluster number - 2 = 2 - 2 = 0.

 2. Multiply by sectors per cluster = 0 * 2 = 0.

 3. Add logical-sector number of start of the files area = 0 + 0CH = 0CH.

 So the calculated sector number of the beginning of the file IBMBIO.COM is
 0CH, which is exactly what we expect knowing that the FORMAT program
 always places the system files in contiguous sectors at the beginning of
 the data area.

 Now let's trace IBMBIO.COM's chain through the file allocation table
 (Figures 10-9 and 10-10). This will be a little tedious, but a detailed
 understanding of the process is crucial. In an actual program, we would
 first read the boot sector using Int 25H, then calculate the address of
 the FAT from the contents of the BPB, and finally read the FAT into
 memory, again using Int 25H.

 From IBMBIO.COM's directory entry, we already know that the first cluster
 in the file is cluster 2. To examine that cluster's entry in the FAT, we
 multiply the cluster number by 1.5, which gives 0003H as the FAT offset,
 and fetch the word at that offset (which contains 4003H). Because the
 product of the cluster and 1.5 is a whole number, we AND the word from the
 FAT with 0FFFH, yielding the number 3, which is the number of the second
 cluster assigned to the file.

 --
 0 1 2 3 4 5 6 7 8 9 A B C D E F
 0000 FD FF FF 03 40 00 05 60 00 07 80 00 09 A0 00 0B @..'........
 0010 C0 00 0D E0 00 0F 00 01 11 20 01 13 40 01 15 60 @..'
 0020 01 17 F0 FF 19 A0 01 1B C0 01 1D E0 01 1F 00 02
 0030 21 20 02 23 40 02 25 60 02 27 80 02 29 A0 02 2B ! .#@.%'.'..)..+
 .
 .
 .

 --

 Figure 10-9. Hex dump of the first block of the file allocation table
 (track 0, head 0, sector 2) for the PC-DOS 3.3 disk whose root directory
 is shown in Figure 10-6. Notice that the first byte of the FAT contains
 the media descriptor byte for a 5.25-inch, 2-sided, 9-sector floppy disk.

 --
 getfat proc near ; extracts the FAT field
 ; for a given cluster
 ; call AX = cluster #
 ; DS:BX = addr of FAT
 ; returns AX = FAT field
 ; other registers unchanged

 push bx ; save affected registers
 push cx
 mov cx,ax
 shl ax,1 ; cluster * 2
 add ax,cx ; cluster * 3
 test ax,1
 pushf ; save remainder in Z flag
 shr ax,1 ; cluster * 1.5
 add bx,ax
 mov ax,[bx]
 popf ; was cluster * 1.5 whole number?
 jnz getfat1 ; no, jump
 and ax,0fffh ; yes, isolate bottom 12 bits
 jmp getfat2
 getfat1: mov cx,4 ; shift word right 4 bits
 shr ax,cx
 getfat2: pop cx ; restore registers and exit
 pop bx
 ret
 getfat endp
 --

 Figure 10-10. Assembly-language procedure to access the file allocation
 table (assumes 12-bit FAT fields). Given a cluster number, the procedure
 returns the contents of that cluster's FAT entry in the AX register. This
 simple example ignores the fact that FAT entries can span sector
 boundaries.

 To examine cluster 3's entry in the FAT, we multiply 3 by 1.5, which gives
 4.5, and fetch the word at offset 0004H (which contains 0040H). Because
 the product of 3 and 1.5 is not a whole number, we shift the word right
 4 bits, yielding the number 4, which is the number of the third cluster
 assigned to IBMBIO.COM.

 In this manner, we can follow the chain through the FAT until we come to a
 cluster (number 23, in this case) whose FAT entry contains the value
 0FFFH, which is an end-of-file marker in FATs with 12-bit entries.

 We have now established that the file IBMBIO.COM contains clusters 2
 through 23 (02H-17H), from which we can calculate that logical sectors 0CH
 through 38H are assigned to the file. Of course, the last cluster may be
 only partially filled with actual data; the portion of the last cluster
 used is the remainder of the file's size in bytes (found in the directory
 entry) divided by the bytes per cluster.

Fixed-Disk Partitions

 Fixed disks have another layer of organization beyond the logical volume
 structure already discussed: partitions. The FDISK utility divides a fixed
 disk into one or more partitions consisting of an integral number of
 cylinders. Each partition can contain an independent file system and, for
 that matter, its own copy of an operating system.

 The first physical sector on a fixed disk (track 0, head 0, sector 1)
 contains the master boot record, which is laid out as follows:

 Bytes Contents
 --
 000-1BDH Reserved
 1BE-1CDH Partition #1 descriptor
 1CE-1DDH Partition #2 descriptor
 1DE-1EDH Partition #3 descriptor
 1EE-1FDH Partition #4 descriptor
 1FE-1FFH Signature word (AA55H)
 --

 The partition descriptors in the master boot record define the size,
 location, and type of each partition, as follows:

 Byte(s) Contents
 --
 00H Active flag (0 = not bootable, 80H = bootable)
 01H Starting head
 02H-03H Starting cylinder/sector
 04H Partition type
 00H not used
 01H FAT file system, 12-bit FAT entries
 04H FAT file system, 16-bit FAT entries
 05H extended partition
 06H "huge partition" (MS-DOS versions 4.0 and later)
 05H Ending head
 06H-07H Ending cylinder/sector
 08H-0BH Starting sector for partition, relative to beginning of
 disk
 0CH-0FH Partition length in sectorsThe active flag, which
 indicates that the partition is bootable, can be set on
 only one partition at a time.
 --

 MS-DOS treats partition types 1, 4, and 6 as normal logical volumes and
 assigns them their own drive identifiers during the system boot process.
 Partition type 5 can contain multiple logical volumes and has a special
 extended boot record that describes each volume. The FORMAT utility
 initializes MS-DOS fixed-disk partitions, creating the file system within
 the partition (boot record, file allocation table, root directory, and
 files area) and optionally placing a bootable copy of the operating system
 in the file system.

 Figure 10-11 contains a partial hex dump of a master block from a fixed
 disk formatted under PC-DOS version 3.3. This dump illustrates the
 partition descriptors for a normal partition with a 16-bit FAT and an
 extended partition.

 --
 0000 .
 .
 .
 0180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 01A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 01B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 80 01
 01C0 01 00 04 04 D1 02 11 00 00 00 EE FF 00 00 00 00
 01D0 C1 04 05 04 D1 FD 54 00 01 00 02 53 00 00 00 00
 01E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 01F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 55 AA
 --

 Figure 10-11. A partial hex dump of a master block from a fixed disk
 formatted under PC-DOS version 3.3. This disk contains two partitions. The
 first partition has a 16-bit FAT and is marked "active" to indicate that
 it contains a bootable copy of PC-DOS. The second partition is an
 "extended" partition. The third and fourth partition entries are not used
 in this example.

--
Chapter 11 Memory Management

 Current versions of MS-DOS can manage as much as 1 megabyte of contiguous
 random-access memory. On IBM PCs and compatibles, the memory occupied by
 MS-DOS and other programs starts at address 0000H and may reach as high as
 address 09FFFFH; this 640 KB area of RAM is sometimes referred to as
 conventional memory. Memory above this address is reserved for ROM
 hardware drivers, video refresh buffers, and the like. Computers that are
 not IBM compatible may use other memory layouts.

 The RAM area under the control of MS-DOS is divided into two major
 sections:

 o The operating-system area

 o The transient-program area

 The operating-system area starts at address 0000H--that is, it occupies
 the lowest portion of RAM. It holds the interrupt vector table, the
 operating system proper and its tables and buffers, any additional
 installable drivers specified in the CONFIG.SYS file, and the resident
 part of the COMMAND.COM command interpreter. The amount of memory occupied
 by the operating-system area varies with the version of MS-DOS used, the
 number of disk buffers, the size of installed device drivers, and so
 forth.

 The transient-program area (TPA), sometimes called the memory arena, is
 the remainder of memory above the operating-system area. The memory arena
 is dynamically allocated in blocks called arena entries. Each arena entry
 has a special control structure called an arena header, and all of the
 arena headers are chained together. Three MS-DOS Int 21H functions allow
 programs to allocate, resize, and release blocks of memory from the TPA:

 Function Action

 --
 48H Allocate memory block.
 49H Release memory block.
 4AH Resize memory block.
 --

 MS-DOS itself uses these functions when loading a program from disk at the
 request of COMMAND.COM or another program. The EXEC function, which is the
 MS-DOS program loader, calls Int 21H Function 48H to allocate a memory
 block for the loaded program's environment and another for the program
 itself and its program segment prefix. It then reads the program from the
 disk into the assigned memory area. When the program terminates, MS-DOS
 calls Int 21H Function 49H to release all memory owned by the program.

 Transient programs can also employ the MS-DOS memory-management functions
 to dynamically manage the memory available in the TPA. Proper use of these
 functions is one of the most important criteria of whether a program is
 well behaved under MS-DOS. Well-behaved programs are most likely to be
 portable to future versions of the operating system and least likely to
 cause interference with other processes under multitasking user interfaces
 such as Microsoft Windows.

Using the Memory-Allocation Functions

 The memory-allocation functions have two common uses:

 o To shrink a program's initial memory allocation so that there is enough
 room to load and execute another program under its control.

 o To dynamically allocate additional memory required by the program and
 to release the same memory when it is no longer needed.

Shrinking the Initial Memory Allocation

 Although many MS-DOS application programs simply assume they own all
 memory, this assumption is a relic of MS-DOS version 1 (and CP/M), which
 could support only one active process at a time. Well-behaved MS-DOS
 programs take pains to modify only memory that they actually own and to
 release any memory that they don't need.

 Unfortunately, under current versions of MS-DOS, the amount of memory that
 a program will own is not easily predicted in advance. It turns out that
 the amount of memory allocated to a program when it is first loaded
 depends upon two factors:

 o The type of file the program is loaded from

 o The amount of memory available in the TPA

 MS-DOS always allocates all of the largest available memory block in the
 TPA to programs loaded from .COM (memory-image) files. Because .COM
 programs contain no file header that can pass segment and memory-use
 information to MS-DOS, MS-DOS simply assumes the worst case and gives such
 a program everything. MS-DOS will load the program as long as there is an
 available memory block as large as the size of the file plus 256 bytes for
 the PSP and 2 bytes for the stack. The .COM program, when it receives
 control, must determine whether enough memory is available to carry out
 its functions.

 MS-DOS uses more complicated rules to allocate memory to programs loaded
 from .EXE files. First, of course, a memory block large enough to hold the
 declared code, data, and stack segments must be available in the TPA. In
 addition, the linker sets two fields in a .EXE file's header to inform
 MS-DOS about the program's memory requirements. The first field,
 MIN_ALLOC, defines the minimum number of paragraphs required by the
 program, in addition to those for the code, data, and stack segments. The
 second, MAX_ALLOC, defines the maximum number of paragraphs of additional
 memory the program would use if they were available.

 When loading a .EXE file, MS-DOS first attempts to allocate the number of
 paragraphs in MAX_ALLOC plus the number of paragraphs required by the
 program itself. If that much memory is not available, MS-DOS assigns all
 of the largest available block to the program, provided that this is at
 least the amount specified by MIN_ALLOC plus the size of the program
 image. If that condition is not satisfied, the program cannot be executed.

 After a .COM or .EXE program is loaded and running, it can use Int 21H
 Function 4AH (Resize Memory Block) to release all the memory it does not
 immediately need. This is conveniently done right after the program
 receives control from MS-DOS, by calling the resize function with the
 segment of the program's PSP in the ES register and the number of
 paragraphs that the program requires to run in the BX register (Figure
 11-1).

 --
 .
 .
 .
 org 100h

 main proc near ; entry point from MS-DOS
 ; DS, ES = PSP address

 mov sp,offset stk ; COM program must move
 ; stack to safe area

 ; release extra memory...
 mov ah,4ah ; function 4Ah =
 ; resize memory block
 ; BX = paragraphs to keep
 mov bx,(offset stk - offset main + 10FH) / 16
 int 21h ; transfer to MS-DOS
 jc error ; jump if resize failed
 .
 .
 .
 main endp

 .
 .
 .

 dw 64 dup (?) ; new stack area
 stk equ $; new base of stack

 end main ; defines entry point
 --

 Figure 11-1. An example of a .COM program releasing excess memory after
 it receives control from MS-DOS. Int 21H Function 4AH is called with ES
 pointing to the program's PSP and BX containing the number of paragraphs
 that the program needs to execute. In this case, the new size for the
 program's memory block is calculated as the program image size plus the
 size of the PSP (256 bytes), rounded up to the next paragraph. .EXE
 programs use similar code.

Dynamic Allocation of Additional Memory

 When a well-behaved program needs additional memory space--for an I/O
 buffer or an array of intermediate results, for example--it can call Int
 21H Function 48H (Allocate Memory Block) with the desired number of
 paragraphs. If a sufficiently large block of unallocated memory is
 available, MS-DOS returns the segment address of the base of the assigned
 area and clears the carry flag (0), indicating that the function was
 successful.

 If no unallocated block of sufficient size is available, MS-DOS sets the
 carry flag (1), returns an error code in the AX register, and returns the
 size (in paragraphs) of the largest block available in the BX register
 (Figure 11-2). In this case, no memory has yet been allocated. The
 program can use the value returned in the BX register to determine whether
 it can continue in a "degraded" fashion, with less memory. If it can, it
 must call Int 21H Function 48H again to allocate the smaller memory
 block.

 When the MS-DOS memory manager is searching the chain of arena headers to
 satisfy a memory-allocation request, it can use one of the following
 strategies:

 o First fit: Use the arena entry at the lowest address that is large
 enough to satisfy the request.

 o Best fit: Use the smallest arena entry that will satisfy the request,
 regardless of its location.

 o Last fit: Use the arena entry at the highest address that is large
 enough to satisfy the request.

 --
 .
 .
 .
 mov ah,48h ; function 48h = allocate mem block
 mov bx,0800h ; 800h paragraphs = 32 KB
 int 21h ; transfer to MS-DOS
 jc error ; jump if allocation failed
 mov buff_seg,ax ; save segment of allocated block
 .
 .
 .
 mov es,buff_seg ; ES:DI = address of block
 xor di,di
 mov cx,08000h ; store 32,768 bytes
 mov al,0ffh ; fill buffer with -1s
 cld
 rep stosb ; now perform fast fill

 .
 .
 .
 mov cx,08000h ; length to write, bytes
 mov bx,handle ; handle for prev opened file
 push ds ; save our data segment
 mov ds,buff_seg ; let DS:DX = buffer address
 mov dx,0
 mov ah,40h ; function 40h = write
 int 21h ; transfer to MS-DOS
 pop ds ; restore our data segment
 jc error ; jump if write failed
 .
 .
 .
 mov es,buff_seg ; ES = seg of prev allocated block
 mov ah,49h ; function 49h = release mem block
 int 21h ; transfer to MS-DOS
 jc error ; jump if release failed
 .
 error: .
 .
 handle dw 0 ; file handle
 buff_seg dw 0 ; segment of allocated block
 .
 .
 .
 --

 Figure 11-2. Example of dynamic memory allocation. The program requests a
 32 KB memory block from MS-DOS, fills it with -1s, writes it to disk, and
 then releases it.

 If the arena entry selected is larger than the size requested, MS-DOS
 divides it into two parts: one block of the size requested, which is
 assigned to the program that called Int 21H Function 48H, and an unowned
 block containing the remaining memory.

 The default MS-DOS allocation strategy is first fit. However, under MS-DOS
 versions 3.0 and later, an application program can change the strategy
 with Int 21H Function 58H.

 When a program is through with an allocated memory block, it should use
 Int 21H Function 49H to release the block. If it does not, MS-DOS will
 automatically release all memory allocations for the program when it
 terminates.

Arena Headers

 Microsoft has not officially documented the internal structure of arena
 headers for the outside world at present. This is probably to deter
 programmers from trying to manipulate their memory allocations directly
 instead of through the MS-DOS functions provided for that purpose.

 Arena headers have identical structures in MS-DOS versions 2 and 3. They
 are 16 bytes (one paragraph) and are located immediately before the memory
 area that they control (Figure 11-3). An arena header contains the
 following information:

 o A byte signifying whether the header is a member or the last entry in
 the entire chain of such headers

 o A word indicating whether the area it controls is available or whether
 it already belongs to a program (if the latter, the word points to the
 program's PSP)

 o A word indicating the size (in paragraphs) of the controlled memory
 area (arena entry)

 MS-DOS inspects the chain of arena headers whenever the program requests a
 memory-block allocation, modification, or release function, or when a
 program is EXEC'd or terminated. If any of the blocks appear to be
 corrupted or if the chain is broken, MS-DOS displays the dreaded message

 Memory allocation error

 and halts the system.

 In the example illustrated in Figure 11-3, COMMAND.COM originally loaded
 PROGRAM1.COM into the TPA and, because it was a .COM file, COMMAND.COM
 allocated it all of the TPA, controlled by arena header #1. PROGRAM1.COM
 then used Int 21H Function 4AH (Resize Memory Block) to shrink its memory
 allocation to the amount it actually needed to run and loaded and executed
 PROGRAM2.EXE with the EXEC function (Int 21H Function 4BH). The EXEC
 function obtained a suitable amount of memory, controlled by arena header
 #2, and loaded PROGRAM2.EXE into it. PROGRAM2.EXE, in turn, needed some
 additional memory to store some intermediate results, so it called Int 21H
 Function 48H (Allocate Memory Block) to obtain the area controlled by
 arena header #3. The highest arena header (#4) controls all of the
 remaining TPA that has not been allocated to any program.

 +---+ Top of RAM
 | Unowned RAM controlled by header #4 | controlled by MS-DOS
 +---+
 | Arena header #4 |
 +---+
 | Memory area controlled by header #3; additional |
 | storage dynamically allocated by PROGRAM2.EXE |
 +---+
 | Arena header #3 |
 +---+
 | Memory area controlled by header #2, |
 | containing PROGRAM2.EXE |
 +---+
 | Arena header #2 |
 +---+
 | Memory area controlled by header #1, |
 | containing PROGRAM1.COM |
 +---+
 | Arena header #1 |
 +---+ Bottom of transient-
 program area

 Figure 11-3. An example diagram of MS-DOS arena headers and the
 transient-program area. The environment blocks and their associated
 headers have been omitted from this figure to increase its clarity.

Lotus/Intel/Microsoft Expanded Memory

 When the IBM Personal Computer and MS-DOS were first released, the 640 KB
 limit that IBM placed on the amount of RAM that could be directly managed
 by MS-DOS seemed almost unimaginably huge. But as MS-DOS has grown in both
 size and capabilities and the popular applications have become more
 powerful, that 640 KB has begun to seem a bit crowded. Although personal
 computers based on the 80286 and 80386 have the potential to manage up to
 16 megabytes of RAM under operating systems such as MS OS/2 and XENIX,
 this is little comfort to the millions of users of 8086/8088-based
 computers and MS-DOS.

 At the spring COMDEX in 1985, Lotus Development Corporation and Intel
 Corporation jointly announced the Expanded Memory Specification 3.0 (EMS),
 which was designed to head off rapid obsolescence of the older PCs because
 of limited memory. Shortly afterward, Microsoft announced that it would
 support the EMS and would enhance Microsoft Windows to use the memory made
 available by EMS hardware and software. EMS versions 3.2 and 4.0, released
 in fall 1985 and summer 1987, expanded support for multitasking operating
 systems.

 The LIM EMS (as it is usually known) has been an enormous success. EMS
 memory boards are available from scores of manufacturers, and "EMS-aware"
 software--especially spreadsheets, disk caches, and terminate-and-stay-
 resident utilities--has become the rule rather than the exception.

What Is Expanded Memory?

 The Lotus/Intel/Microsoft Expanded Memory Specification is a functional
 definition of a bank-switched memory-expansion subsystem. It consists of
 hardware expansion modules and a resident driver program specific to those
 modules. In EMS versions 3.0 and 3.2, the expanded memory is made
 available to application software as 16 KB pages mapped into a contiguous
 64 KB area called the page frame, somewhere above the main memory area
 used by MS-DOS/PC-DOS (0-640 KB). The exact location of the page frame is
 user configurable, so it need not conflict with other hardware options. In
 EMS version 4.0, the pages may be mapped anywhere in memory and can have
 sizes other than 16 KB.

 The EMS provides a uniform means for applications to access as much as 8
 megabytes of memory (32 megabytes in EMS 4.0). The supporting software,
 which is called the Expanded Memory Manager (EMM), provides a
 hardware-independent interface between application software and the
 expanded memory board(s). The EMM is supplied in the form of an
 installable device driver that you link into the MS-DOS/PC-DOS system by
 adding a line to the CONFIG.SYS file on the system boot disk.

 Internally, the Expanded Memory Manager consists of two major portions,
 which may be referred to as the driver and the manager. The driver portion
 mimics some of the actions of a genuine installable device driver, in that
 it includes initialization and output status functions and a valid device
 header. The second, and major, portion of the EMM is the true interface
 between application software and the expanded-memory hardware. Several
 classes of services are provided:

 o Verification of functionality of hardware and software modules

 o Allocation of expanded-memory pages

 o Mapping of logical pages into the physical page frame

 o Deallocation of expanded-memory pages

 o Support for multitasking operating systems

 Application programs communicate with the EMM directly, by means of
 software Int 67H. MS-DOS versions 3.3 and earlier take no part in (and in
 fact are completely oblivious to) any expanded-memory manipulations that
 may occur. MS-DOS version 4.0 and Microsoft Windows, on the other hand,
 are "EMS-aware" and can use the EMS memory when it is available.

 Expanded memory should not be confused with extended memory. Extended
 memory is the term used by IBM to refer to the memory at physical
 addresses above 1 megabyte that can be accessed by an 80286 or 80386 CPU
 in protected mode. Current versions of MS-DOS run the 80286 and 80386 in
 real mode (8086-emulation mode), and extended memory is therefore not
 directly accessible.

Checking for Expanded Memory

 An application program can use either of two methods to test for the
 existence of the Expanded Memory Manager:

 o Issue an open request (Int 21H Function 3DH) using the guaranteed
 device name of the EMM driver: EMMXXXX0. If the open function succeeds,
 either the driver is present or a file with the same name
 coincidentally exists on the default disk drive. To rule out the
 latter, the application can use IOCTL (Int 21H Function 44H)
 subfunctions 00H and 07H to ensure that EMM is present. In either case,
 the application should then use Int 21H Function 3EH to close the
 handle that was obtained from the open function, so that the handle can
 be reused for another file or device.

 o Use the address that is found in the Int 67H vector to inspect the
 device header of the presumed EMM. Interrupt handlers and device
 drivers must use this method. If the EMM is present, the name field at
 offset 0AH of the device header contains the string EMMXXXX0. This
 approach is nearly foolproof and avoids the relatively high overhead of
 an MS-DOS open function. However, it is somewhat less well behaved
 because it involves inspection of memory that does not belong to the
 application.

 These two methods of testing for the existence of the Expanded Memory
 Manager are illustrated in Figures 11-4 and 11-5.

 --
 .
 .
 .
 ; attempt to "open" EMM...
 mov dx,seg emm_name ; DS:DX = address of name
 mov ds,dx ; of Expanded Memory Manager
 mov dx,offset emm_name
 mov ax,3d00h ; function 3dh, mode = 00h
 ; = open, read only
 int 21h ; transfer to MS-DOS
 jc error ; jump if open failed

 ; open succeeded, be sure
 ; it was not a file...
 mov bx,ax ; BX = handle from open
 mov ax,4400h ; function 44h subfunction 00h
 ; = IOCTL get device information
 int 21h ; transfer to MS-DOS
 jc error ; jump if IOCTL call failed
 and dx,80h ; bit 7 = 1 if character device
 jz error ; jump if it was a file

 ; EMM is present, be sure
 ; it is available...
 ; (BX still contains handle)
 mov ax,4407h ; function 44h subfunction 07h
 ; = IOCTL get output status
 int 21h ; transfer to MS-DOS
 jc error ; jump if IOCTL call failed
 or al,al ; test device status
 jz error ; if AL = 0 EMM is not available
 ; now close handle ...
 ; (BX still contains handle)
 mov ah,3eh ; function 3eh = close
 int 21h ; transfer to MS-DOS
 jc error ; jump if close failed
 .
 .
 .
 emm_name db 'EMMXXXX0',0 ; guaranteed device name for
 ; Expanded Memory Manager
 --

 Figure 11-4. Testing for the Expanded Memory Manager by means of the
 MS-DOS open and IOCTL functions.

 --
 emm_int equ 67h ; Expanded Memory Manager
 ; software interrupt
 .
 .
 .
 ; first fetch contents of
 ; EMM interrupt vector...
 mov al,emm_int ; AL = EMM int number
 mov ah,35h ; function 35h = get vector
 int 21h ; transfer to MS-DOS
 ; now ES:BX = handler address

 ; assume ES:0000 points
 ; to base of the EMM...
 mov di,10 ; ES:DI = address of name
 ; field in device header
 ; DS:SI = EMM driver name
 mov si,seg emm_name
 mov ds,si
 mov si,offset emm_name
 mov cx,8 ; length of name field
 cld
 repz cmpsb ; compare names...

 jnz error ; jump if driver absent
 .
 .
 .

 emm_name db 'EMMXXXX0' ; guaranteed device name for
 ; Expanded Memory Manager
 --

 Figure 11-5. Testing for the Expanded Memory Manager by inspection of the
 name field in the driver's device header.

Using Expanded Memory

 After establishing that the memory-manager software is present, the
 application program communicates with it directly by means of the "user
 interrupt" 67H, bypassing MS-DOS/PC-DOS. The calling sequence for the EMM
 is as follows:

 --
 mov ah,function ; AH determines service type
 . ; load other registers with
 . ; values specific to the
 . ; requested service
 int 67h
 --

 In general, AH contains the EMM function number, AL holds the subfunction
 number (if any), BX holds a number of pages (if applicable), and DX
 contains an EMM handle. Registers DS:SI and ES:DI are used to pass the
 addresses of arrays or buffers. Section 4 of this book,
 "Lotus/Intel/Microsoft EMS Functions Reference," details each of the
 expanded memory functions.

 Upon return from an EMM function, the AH register contains zero if the
 function was successful; otherwise, it contains an error code with the
 most significant bit set (Figures 11-6 and 11-7). Other values are
 typically returned in the AL and BX registers or in a user-specified
 buffer.

 Error code Meaning
 --
 00H Function successful.

 80H Internal error in Expanded Memory Manager software
 (could be caused by corrupted memory image of driver).

 81H Malfunction in expanded-memory hardware.

 82H Memory manager busy.

 83H Invalid handle.

 84H Function requested by application not defined.

 85H No more handles available.

 86H Error in save or restore of mapping context.

 87H Allocation request specified more logical pages than
 physically available in system; no pages allocated.

 88H Allocation request specified more logical pages than
 currently available in system (request does not exceed
 physical pages that exist, but some are already
 allocated to other handles); no pages allocated.

 Zero pages; cannot be allocated.

 8AH Logical page requested to be mapped located outside
 range of logical pages assigned to handle.

 8BH Illegal physical page number in mapping request (not in
 range

 0-3).

 8CH Page-mapping hardware-state save area full.

 8DH Save of mapping context failed; save area already
 contains context associated with requested handle.

 8EH Restore of mapping context failed; save area does not
 contain context for requested handle.

 8FH Subfunction parameter not defined.
 --

 Figure 11-6. Expanded Memory Manager error codes common to EMS versions
 3.0, 3.2, and 4.0. After a call to EMM, the AH register contains zero if
 the function was successful or an error code in the range 80H through 8FH
 if the function failed.

 Error code Meaning
 --
 90H Attribute type not defined.

 91H Feature not supported.

 92H Source and destination memory regions have same handle
 and overlap; requested move was performed, but part of
 source region was overwritten.

 93H Specified length for source or destination memory
 region is longer than actual allocated length.

 94H Conventional-memory region and expanded-memory region
 overlap.

 95H Specified offset is outside logical page.

 96H Region length exceeds 1 MB.

 97H Source and destination memory regions have same handle
 and overlap; exchange cannot be performed.

 98H Memory source and destination types undefined.

 99H This error code currently unused.

 9AH Alternate map or DMA register sets supported, but the
 alternate register set specified is not supported.

 9BH Alternate map or DMA register sets supported, but all
 alternate register sets currently allocated.

 9CH Alternate map or DMA register sets not supported, and
 specified alternate register set not zero.

 9DH Alternate map or DMA register sets supported, but
 alternate register set specified is either not defined
 or not allocated.

 Dedicated DMA channels not supported.

 9FH Dedicated DMA channels supported, but specified DMA
 channel not supported.

 A0H No handle found for specified name.

 A1H Handle with this name already exists.

 A2H Memory address wrap; sum of the source or destination
 region base address and length exceeds 1 MB.

 A3H Invalid pointer passed to function, or contents of
 source array corrupted.

 A4H Access to function denied by operating system.
 --

 Figure 11-7. Expanded Memory Manager error codes unique to EMS version
 4.0. Most of these errors are related to the EMS functions for use by
 operating systems and would not normally be encountered by application
 programs.

 An application program that uses expanded memory should regard that memory
 as a system resource, like a file or a device, and employ only the
 documented EMM services to allocate, access, and release expanded-memory
 pages. Such a program can use the following general strategy:

 1. Establish the presence of the Expanded Memory Manager by one of the
 two methods demonstrated in Figures 11-4 and 11-5.

 2. After the driver is known to be present, check its operational status
 with EMS Function 40H.

 3. Check the version number of EMM with EMS Function 46H, to ensure that
 all services the application will request are available.

 4. Obtain the segment of the page frame used by EMM with EMS Function

 41H.

 5. Allocate the desired number of expanded-memory pages with EMS Function
 43H. If the allocation is successful, EMM returns a handle that the
 application can use to refer to the expanded-memory pages that it
 owns. This step is exactly analogous to opening a file and using the
 handle obtained from the open function for read/write operations on
 the file.

 6. If the requested number of pages are not available, the application
 can query EMM for the actual number of pages available (EMS Function
 42H) and determine whether it can continue.

 7. After the application has successfully allocated the needed number of
 expanded-memory pages, it uses EMS Function 44H to map logical pages
 in and out of the physical page frame in order to store and retrieve
 data in expanded memory.

 8. When the program finishes using its expanded-memory pages, it must
 release them by calling EMS Function 45H. Otherwise, the pages will
 be lost to use by other programs until the system is restarted.

 Figure 11-8 shows a skeleton program that illustrates this general
 approach.

 An interrupt handler or device driver that uses EMS follows the same
 general procedure outlined in steps 1 through 8, with a few minor
 variations. It may need to acquire an EMS handle and allocate pages before
 the operating system is fully functional; in particular, you cannot assume
 that the MS-DOS Open File or Device, IOCTL, and Get Interrupt Vector
 functions are available. Thus, such a handler or driver must use a
 modified version of the "get interrupt vector" technique (Figure 11-5) to
 test for the existence of EMM, fetching the contents of the Int 67H vector
 directly.

 A device driver or interrupt handler typically owns its expanded-memory
 pages permanently (until the system is restarted) and never deallocates
 them. Such a program must also take care to save and restore EMM's
 page-mapping context (EMS Functions 47H and 48H) whenever it accesses
 expanded memory, so that use of EMS by a foreground program will not
 be disturbed.

 The EMM relies on the good behavior of application software to avoid the
 corruption of expanded memory. If several applications that use expanded
 memory are running under a multitasking manager such as Microsoft Windows
 and one or more of them does not abide strictly by EMM conventions, the
 data of some or all of the applications may be destroyed.

 --
 .
 .
 .
 mov ah,40h ; test EMM status
 int 67h
 or ah,ah
 jnz error ; jump if bad status from EMM

 mov ah,46h ; check EMM version
 int 67h

 or ah,ah
 jnz error ; jump if couldn't get version

 cmp al,030h ; make sure at least ver 3.0
 jb error ; jump if wrong EMM version
 mov ah,41h ; get page frame segment
 int 67h
 or ah,ah
 jnz error ; jump if failed to get frame
 mov page_frame,bx ; save segment of page frame

 mov ah,42h ; get number of available pages
 int 67h
 or ah,ah
 jnz error ; jump if get pages error
 mov total_pages,dx ; save total EMM pages
 mov avail_pages,bx ; save available EMM pages
 or bx,bx
 jz error ; abort if no pages available

 mov ah,43h ; try to allocate EMM pages
 mov bx,needed_pages
 int 67h ; if allocation is successful
 or ah,ah
 jnz error ; jump if allocation failed

 mov emm_handle,dx ; save handle for allocated pages

 .
 . ; now we are ready for other
 . ; processing using EMM pages
 .
 ; map in EMS memory page...
 mov bx,log_page ; BX <- EMS logical page number
 mov al,phys_page ; AL <- EMS physical page (0-3)
 mov dx,emm_handle ; EMM handle for our pages
 mov ah,44h ; function 44h = map EMS page
 int 67h
 or ah,ah
 jnz error ; jump if mapping error

 .
 .
 . ; program ready to terminate,
 ; give up allocated EMM pages...
 mov dx,emm_handle ; handle for our pages
 mov ah,45h ; EMS function 45h = release pages
 int 67h
 or ah,ah
 jnz error ; jump if release failed
 .
 .
 .
 --

 Figure 11-8. A program illustrating the general strategy for using
 expanded memory.

Extended Memory

 Extended memory is RAM storage at addresses above 1 megabyte (100000H)
 that can be accessed by an 80286 or 80386 processor running in protected
 mode. IBM PC/AT- and PS/2-compatible machines can (theoretically) have as
 much as 15 MB of extended memory installed, in addition to the usual 1 MB
 of conventional memory.

 Protected-mode operating systems such as Microsoft XENIX or MS OS/2 can
 use extended memory for execution of programs. MS-DOS, on the other hand,
 runs in real mode on an 80286 or 80386, and programs running under its
 control cannot ordinarily execute from extended memory or even address
 that memory for storage of data. However, the ROM BIOS contains two
 routines that allow real-mode programs restricted access to extended
 memory:

 ROM BIOS function Action
 --
 Int 15H Function 87H Move extended-memory block.
 Int 15H Function 88H Get extended-memory size.
 --

 These routines can be used by electronic disks (RAMdisks) and by other
 programs that want to use extended memory for fast storage and retrieval
 of information that would otherwise have to be written to a slower
 physical disk drive. Section 3 of this book, "IBM ROM BIOS and Mouse
 Functions Reference," documents both of these functions.

 You should use these ROM BIOS routines with caution. Data stored in
 extended memory is, of course, volatile; it is lost if the machine is
 turned off. The transfer of data to or from extended memory involves a
 switch from real mode to protected mode and back, which is a relatively
 slow process on 80286-based machines; in some cases it is only marginally
 faster than actually reading the data from a fixed disk. In addition,
 programs that use the ROM BIOS extended-memory functions are not
 compatible with the MS-DOS compatibility mode of MS OS/2.

 Finally, a major deficit in these ROM BIOS functions is that they do not
 make any attempt to arbitrate between two or more programs or drivers that
 are using extended memory for temporary storage. For example, if an
 application program and an installed RAMdisk driver attempt to put data in
 the same area of extended memory, no error will be returned to either
 program, but the data of one or both may be destroyed.

 Figure 11-9 shows an example of the code necessary to transfer data to
 and from extended memory.

 --
 bmdt db 30h dup (0) ; block move descriptor table

 buff1 db 80h dup ('?') ; source buffer
 buff2 db 80h dup (0) ; destination buffer

 .
 .
 .

 ; copy 'buff1' to extended-
 ; memory address 100000h

 mov dx,10h ; DX:AX = destination
 mov ax,0 ; extended-memory address
 mov bx,seg buff1 ; DS:BX = source conventional-
 mov ds,bx ; memory address
 mov bx,offset buff1
 mov cx,80h ; CX = bytes to move
 mov si,seg bmdt ; ES:SI = block move
 mov es,si ; descriptor table
 mov si,offset bmdt
 call putblk ; request transfer

 ; fill buff2 from extended-
 ; memory address 100000h
 mov dx,10h ; DX:AX = source extended-
 mov ax,0 ; memory address
 mov bx,seg buff2 ; DS:BX = destination
 mov ds,bx ; conventional-memory address
 mov bx,offset buff2
 mov cx,80h ; CX = bytes to move
 mov si,seg bmdt ; ES:SI = block move
 mov es,si ; descriptor table
 mov si,offset bmdt
 call getblk ; request transfer

 .
 .
 .
 getblk proc near ; transfer block from extended
 ; memory to real memory
 ; call with
 ; DX:AX = source linear 32-bit
 ; extended-memory address
 ; DS:BX = segment and offset
 ; destination address
 ; CX = length in bytes
 ; ES:SI = block move descriptor
 ; table
 ; returns
 ; AH = 0 if transfer OK

 mov es:[si+10h],cx ; store length into descriptors
 mov es:[si+18h],cx

 ; store access rights bytes
 mov byte ptr es:[si+15h],93h
 mov byte ptr es:[si+1dh],93h

 mov es:[si+12h],ax ; source extended-memory address
 mov es:[si+14h],dl

 ; convert destination segment
 ; and offset to linear address
 mov ax,ds ; segment * 16
 mov dx,16
 mul dx
 add ax,bx ; + offset -> linear address
 adc dx,0

 mov es:[si+1ah],ax ; store destination address
 mov es:[si+1ch],dl

 shr cx,1 ; convert length to words
 mov ah,87h ; int 15h function 87h = block move
 int 15h ; transfer to ROM BIOS

 ret ; back to caller

 getblk endp
 putblk proc near ; transfer block from real
 ; memory to extended memory
 ; call with
 ; DX:AX = dest linear 32-bit
 ; extended-memory address
 ; DS:BX = segment and offset
 ; source address
 ; CX = length in bytes
 ; ES:SI = block move descriptor
 ; table
 ; returns
 ; AH = 0 if transfer OK

 mov es:[si+10h],cx ; store length into descriptors
 mov es:[si+18h],cx

 ; store access rights bytes
 mov byte ptr es:[si+15h],93h
 mov byte ptr es:[si+1dh],93h

 mov es:[si+1ah],ax ; store destination extended-
 mov es:[si+1ch],dl ; memory address

 ; convert source segment and
 ; offset to linear address
 mov ax,ds ; segment * 16
 mov dx,16
 mul dx
 add ax,bx ; + offset -> linear address
 adc dx,0
 mov es:[si+12h],ax ; store source address
 mov es:[si+14h],dl

 shr cx,1 ; convert length to words
 mov ah,87h ; int 15h function 87h = block move
 int 15h ; transfer to ROM BIOS

 ret ; back to caller

 putblk endp
 --

 Figure 11-9. Moving blocks of data between conventional memory and
 extended memory, using the ROM BIOS extended-memory functions. For
 additional information on the format of the block move descriptor table,
 see the entry for Int 15H Function 87H in Section 3 of this book, "IBM
 ROM BIOS and Mouse Functions Reference." Note that you must specify the
 extended-memory address as a 32-bit linear address rather than as a
 segment and offset.

--
Chapter 12 The EXEC Function

 The MS-DOS EXEC function (Int 21H Function 4BH) allows a program (called
 the parent) to load any other program (called the child) from a storage
 device, execute it, and then regain control when the child program is
 finished.

 A parent program can pass information to the child in a command line, in
 default file control blocks, and by means of a set of strings called the
 environment block (discussed later in this chapter). All files or devices
 that the parent opened using the handle file-management functions are
 duplicated in the newly created child task; that is, the child inherits
 all the active handles of the parent task. Any file operations on those
 handles by the child, such as seeks or file I/O, also affect the file
 pointers associated with the parent's handles.

 MS-DOS suspends execution of the parent program until the child program
 terminates. When the child program finishes its work, it can pass an exit
 code back to the parent, indicating whether it encountered any errors. It
 can also, in turn, load other programs, and so on through many levels of
 control, until the system runs out of memory.

 The MS-DOS command interpreter, COMMAND.COM, uses the EXEC function to run
 its external commands and other application programs. Many popular
 commercial programs, such as database managers and word processors, use
 EXEC to run other programs (spelling checkers, for example) or to load a
 second copy of COMMAND.COM, thereby allowing the user to list directories
 or copy and rename files without closing all the application files and
 stopping the main work in progress. EXEC can also be used to load program
 overlay segments, although this use is uncommon.

Making Memory Available

 In order for a parent program to use the EXEC function to load a child
 program, sufficient unallocated memory must be available in the transient
 program area.

 When the parent itself was loaded, MS-DOS allocated it a variable amount
 of memory, depending upon its original file type--.COM or .EXE--and any
 other information that was available to the loader. (See Chapter 11 for
 further details.) Because the operating system has no foolproof way of
 predicting how much memory any given program will require, it generally
 allocates far more memory to a program than is really necessary.

 Therefore, a prospective parent program's first action should be to use
 Int 21H Function 4AH (Resize Memory Block) to release any excess memory
 allocation of its own to MS-DOS. In this case, the program should call Int
 21H Function 4AH with the ES register pointing to the program segment
 prefix of the program releasing memory and the BX register containing the
 number of paragraphs of memory to retain for that program. (See Figure
 11-1 for an example.)

 --
 WARNING

 A .COM program must move its stack to a safe area if it is reducing its
 memory allocation to less than 64 KB.
 --

Requesting the EXEC Function

 To load and execute a child program, the parent must execute an Int 21H
 with the registers set up as follows:

 AH = 4BH
 AL = 00H (subfunction to load child program)
 DS:DX = segment:offset of pathname for child program
 ES:BX = segment:offset of parameter block

 The parameter block, in turn, contains addresses of other information
 needed by the EXEC function.

The Program Name

 The name of the program to be run, which the calling program provides to
 the EXEC function, must be an unambiguous file specification (no wildcard
 characters) and must include an explicit .COM or .EXE extension. If the
 path and disk drive are not supplied in the program name, MS-DOS uses the
 current directory and default disk drive. (The sequential search for .COM,
 .EXE, and .BAT files in all the locations listed in the PATH variable is
 not a function of EXEC, but rather of the internal logic of COMMAND.COM.)

 You cannot EXEC a batch file directly; instead, you must EXEC a copy of
 COMMAND.COM and pass the name of the batch file in the command tail, along
 with the /C switch.

The Parameter Block

 The parameter block contains the addresses of four data objects:

 o The environment block

 o The command tail

 o Two default file control blocks

 The space reserved in the parameter block for the address of the
 environment block is only 2 bytes and holds a segment address. The
 remaining three addresses are all double-word addresses; that is, they are
 4 bytes, with the offset in the first 2 bytes and the segment address in
 the last 2 bytes.

 The Environment Block

 Each program that the EXEC function loads inherits a data structure called
 an environment block from its parent. The pointer to the segment of the
 block is at offset 002CH in the PSP. The environment block holds certain
 information used by the system's command interpreter (usually COMMAND.COM)
 and may also hold information to be used by transient programs. It has no
 effect on the operation of the operating system proper.

 If the environment-block pointer in the EXEC parameter block contains
 zero, the child program acquires a copy of the parent program's

 environment block. Alternatively, the parent program can provide a segment
 pointer to a different or expanded environment. The maximum size of the
 environment block is 32 KB, so very large chunks of information can be
 passed between programs by this mechanism.

 The environment block for any given program is static, implying that if
 more than one generation of child programs is resident in RAM, each one
 will have a distinct and separate copy of the environment block.
 Furthermore, the environment block for a program that terminates and stays
 resident is not updated by subsequent PATH and SET commands.

 You will find more details about the environment block later in this
 chapter.

 The Command Tail

 MS-DOS copies the command tail into the child program's PSP at offset
 0080H, as described in Chapter 3. The information takes the form of a
 count byte, followed by a string of ASCII characters, terminated by a
 carriage return; the carriage return is not included in the count.

 The command tail can include filenames, switches, or other parameters.
 From the child program's point of view, the command tail should provide
 the same information that would be present if the program had been run by
 a direct user command at the MS-DOS prompt. EXEC ignores any
 I/O-redirection parameters placed in the command tail; the parent program
 must provide for redirection of the standard devices before the EXEC
 call is made.

 The Default File Control Blocks

 MS-DOS copies the two default file control blocks pointed to by the EXEC
 parameter block into the child program's PSP at offsets 005CH and 006CH.
 To emulate the function of COMMAND.COM from the child program's point of
 view, the parent program should use Int 21H Function 29H (the system
 parse-filename service) to parse the first two parameters of the command
 tail into the default file control blocks before invoking the EXEC
 function.

 File control blocks are not much use under MS-DOS versions 2 and 3,
 because they do not support the hierarchical file structure, but some
 application programs do inspect them as a quick way to get at the first
 two switches or other parameters in the command tail. Chapter 8 discusses
 file control blocks in more detail.

Returning from the EXEC Function

 In MS-DOS version 2, the EXEC function destroys the contents of all
 registers except the code segment (CS) and instruction pointer (IP).
 Therefore, before making the EXEC call, the parent program must push the
 contents of any other registers that are important onto the stack and then
 save the stack segment (SS) and stack pointer (SP) registers in variables.
 Upon return from a successful EXEC call (that is, the child program has
 finished executing), the parent program should reload SS and SP from the
 variables where they were saved and then pop the other saved registers off
 the stack. In MS-DOS versions 3.0 and later, the stack and other registers
 are preserved across the EXEC call in the usual fashion.

 Finally, the parent can use Int 21H Function 4DH to obtain the
 termination type and return code of the child program.

 The EXEC function will fail under the following conditions:

 o Not enough unallocated memory is available to load and execute the
 requested program file.

 o The requested program can't be found on the disk.

 o The transient portion of COMMAND.COM in highest RAM (which contains the
 actual loader) has been destroyed and not enough free memory is
 available to reload it (PC-DOS version 2 only).

 Figure 12-1 summarizes the calling convention for function 4BH. Figure
 12-2 shows a skeleton of a typical EXEC call. This particular example
 uses the EXEC function to load and run the MS-DOS utility CHKDSK.COM. The
 SHELL.ASM program listing later in this chapter (Figure 12-5) presents a
 more complete example that includes the use of Int 21H Function 4AH to
 free unneeded memory.

 --

 Called with:

 AH = 4BH
 AL = function type
 00 = load and execute program
 03 = load overlay
 ES:BX = segment:offset of parameter block
 DS:DX = segment:offset of program specification

 Returns:

 If call succeeded

 Carry flag clear. In MS-DOS version 2, all registers except for CS:IP may
 be destroyed. In MS-DOS versions 3.0 and later, registers are preserved in
 the usual fashion.

 If call failed

 Carry flag set and AX = error code.

 Parameter block format:

 If AL = 0 (load and execute program)

 Bytes 0-1 = segment pointer, environment block
 Bytes 2-3 = offset of command-line tail
 Bytes 4-5 = segment of command-line tail
 Bytes 6-7 = offset of first file control block to be copied
 into new PSP + 5CH
 Bytes 8-9 = segment of first file control block
 Bytes 10-11 = offset of second file control block to be copied
 into new PSP + 6CH
 Bytes 12-13 = segment of second file control block

 If AL = 3 (load overlay)

 Bytes 0-1 = segment address where file will be loaded
 Bytes 2-3 = relocation factor to apply to loaded image

 --

 Figure 12-1. Calling convention for the EXEC function (Int 21H Function
 4BH).

 --
 cr egu 0dh ; ASCII carriage return
 .
 .
 .
 mov stkseg,ss ; save stack pointer
 mov stkptr,sp

 mov dx,offset pname ; DS:DX = program name
 mov bx,offset pars ; ES:BX = param block
 mov ax,4b00h ; function 4bh, subfunction 00h
 int 21h ; transfer to MS-DOS

 mov ax,_DATA ; make our data segment
 mov ds,ax ; addressable again
 mov es,ax

 cli ; (for bug in some 8088s)
 mov ss,stkseg ; restore stack pointer
 mov sp,stkptr
 sti ; (for bug in some 8088s)

 jc error ; jump if EXEC failed
 .
 .
 .

 stkseg dw 0 ; original SS contents
 stkptr dw 0 ; original SP contents

 pname db '\CHKDSK.COM',0 ; pathname of child program

 pars dw envir ; environment segment
 dd cmdline ; command line for child
 dd fcb1 ; file control block #1
 dd fcb2 ; file control block #2

 cmdline db 4,' *.*',cr ; command line for child

 fcb1 db 0 ; file control block #1
 db 11 dup ('?')
 db 25 dup (0)
 fcb2 db 0 ; file control block #2
 db 11 dup (' ')
 db 25 dup (0)

 envir segment para 'ENVIR' ; environment segment

 db 'PATH=',0 ; empty search path

 ; location of COMMAND.COM
 db 'COMSPEC=A:\COMMAND.COM',0
 db 0 ; end of environment

 envir ends
 --

 Figure 12-2. A brief example of the use of the MS-DOS EXEC call, with all
 necessary variables and command blocks. Note the protection of the
 registers for MS-DOS version 2 and the masking of interrupts during
 loading of SS:SP to circumvent a bug in some early 8088 CPUs.

More About the Environment Block

 The environment block is always paragraph aligned (starts at an address
 that is a multiple of 16 bytes) and contains a series of ASCIIZ strings.
 Each of the strings takes the following form:

 NAME=PARAMETER

 An additional zero byte (Figure 12-3) indicates the end of the entire set
 of strings. Under MS-DOS version 3, the block of environment strings and
 the extra zero byte are followed by a word count and the complete drive,
 path, filename, and extension used by EXEC to load the program.

 --
 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF
 0000 43 4F 4D 53 50 45 43 3D 43 3A 5C 43 4F 4D 4D 41 COMSPEC=C:\COMMA
 0010 4E 44 2E 43 4F 4D 00 50 52 4F 4D 50 54 3D 24 70 NDcom.PROMPT=$p
 0020 24 5F 24 64 20 20 20 24 74 24 68 24 68 24 68 24 $_$d thhh$
 0030 68 24 68 24 68 20 24 71 24 71 24 67 00 50 41 54 hhh qq$g.PAT
 0040 48 3D 43 3A 5C 53 59 53 54 45 4D 3B 43 3A 5C 41 H=C:\SYSTEM;C:\A
 0050 53 4D 3B 43 3A 5C 57 53 3B 43 3A 5C 45 54 48 45 SM;C:\WS;C:\ETHE
 0060 52 4E 45 54 3B 43 3A 5C 46 4F 52 54 48 5C 50 43 RNET;C:\FORTH\PC
 0070 33 31 3B 00 00 01 00 43 3A 5C 46 4F 52 54 48 5C 31;....C:\FORTH\
 0080 50 43 33 31 5C 46 4F 52 54 48 2E 43 4F 4D 00 20 PC31\FORTH.COM.
 --

 Figure 12-3. Dump of a typical environment block under MS-DOS version 3.
 This particular example contains the default COMSPEC parameter and two
 relatively complex PATH and PROMPT control strings that were set up by
 entries in the user's AUTOEXEC file. Note the path and file specification
 of the executing program following the double zeros at offset 0073H that
 denote the end of the environment block.

 Under normal conditions, the environment block inherited by a program will
 contain at least three strings:

 COMSPEC=variable
 PATH=variable
 PROMPT=variable

 MS-DOS places these three strings into the environment block at system
 initialization, during the interpretation of SHELL, PATH, and PROMPT
 directives in the CONFIG.SYS and AUTOEXEC.BAT files. The strings tell the
 MS-DOS command interpreter, COMMAND.COM, the location of its executable
 file (to enable it to reload the transient portion), where to search for
 executable external commands or program files, and the format of the user

 prompt.

 You can add other strings to the environment block, either interactively
 or in batch files, with the SET command. Transient programs can use these
 strings for informational purposes. For example, the Microsoft C Compiler
 looks in the environment block for INCLUDE, LIB, and TMP strings to tell
 it where to find its #include files and library files and where to build
 its temporary working files.

Example Programs: SHELL.C and SHELL.ASM

 As a practical example of use of the MS-DOS EXEC function, I have included
 a small command interpreter called SHELL, with equivalent Microsoft C
 (Figure 12-4) and Microsoft Macro Assembler (Figure 12-5) source code.
 The source code for the assembly-language version is considerably more
 complex than the code for the C version, but the names and functionality
 of the various procedures are quite parallel.

 --
 /*
 SHELL.C Simple extendable command interpreter
 for MS-DOS versions 2.0 and later

 Copyright 1988 Ray Duncan

 Compile: C>CL SHELL.C

 Usage: C>SHELL
 */
 #include <stdio.h>
 #include <process.h>
 #include <stdlib.h>
 #include <signal.h>

 /* macro to return number of
 elements in a structure */
 #define dim(x) (sizeof(x) / sizeof(x[0]))

 unsigned intrinsic(char *); /* function prototypes */
 void extrinsic(char *);
 void get_cmd(char *);
 void get_comspec(char *);
 void break_handler(void);
 void cls_cmd(void);
 void dos_cmd(void);
 void exit_cmd(void);

 struct cmd_table { /* intrinsic commands table */
 char *cmd_name;
 int (*cmd_fxn)();
 } commands[] =

 { "CLS", cls_cmd,
 "DOS", dos_cmd,
 "EXIT", exit_cmd, };

 static char com_spec[64]; /* COMMAND.COM filespec */

 main(int argc, char *argv[])
 {
 char inp_buf[80]; /* keyboard input buffer */

 get_comspec(com_spec); /* get COMMAND.COM filespec */

 /* register new handler
 for Ctrl-C interrupts */
 if(signal(SIGINT, break_handler) == (int(*)()) -1)
 {
 fputs("Can't capture Control-C Interrupt", stderr);
 exit(1);
 }

 while(1) /* main interpreter loop */
 {
 get_cmd(inp_buf); /* get a command */
 if (! intrinsic(inp_buf)) /* if it's intrinsic,
 run its subroutine */
 extrinsic(inp_buf); /* else pass to COMMAND.COM */
 }
 }

 /*
 Try to match user's command with intrinsic command
 table. If a match is found, run the associated routine
 and return true; else return false.
 */

 unsigned intrinsic(char *input_string)
 {
 int i, j; /* some scratch variables */

 /* scan off leading blanks */
 while(*input_string == '\x20') input_string++ ;

 /* search command table */
 for(i=0; i < dim(commands); i++)
 {
 j = strcmp(commands[i].cmd_name, input_string);

 if(j == 0) /* if match, run routine */
 {
 (*commands[i].cmd_fxn)();
 return(1); /* and return true */
 }
 }
 return(0); /* no match, return false */
 }

 /*
 Process an extrinsic command by passing it
 to an EXEC'd copy of COMMAND.COM.
 */

 void extrinsic(char *input_string)
 {

 int status;
 status = system(input_string); /* call EXEC function */

 if(status) /* if failed, display
 error message */
 fputs("\nEXEC of COMMAND.COM failed\n", stderr);
 }

 /*
 Issue prompt, get user's command from standard input,
 fold it to uppercase.
 */

 void get_cmd(char *buffer)
 {
 printf("\nsh: "); /* display prompt */
 gets(buffer); /* get keyboard entry */
 strupr(buffer); /* fold to uppercase */
 }

 /*
 Get the full path and file specification for COMMAND.COM
 from the COMSPEC variable in the environment.
 */

 void get_comspec(char *buffer)
 {
 strcpy(buffer, getenv("COMSPEC"));

 if(buffer[0] == NULL)
 {
 fputs("\nNo COMSPEC in environment\n", stderr);
 exit(1);
 }
 }

 /*
 This Ctrl-C handler keeps SHELL from losing control.
 It just reissues the prompt and returns.
 */
 void break_handler(void)
 {
 signal(SIGINT, break_handler); /* reset handler */
 printf("\nsh: "); /* display prompt */
 }

 /*
 These are the subroutines for the intrinsic commands.
 */

 void cls_cmd(void) /* CLS command */
 {
 printf("\033[2J"); /* ANSI escape sequence */
 } /* to clear screen */

 void dos_cmd(void) /* DOS command */
 {
 int status;
 /* run COMMAND.COM */
 status = spawnlp(P_WAIT, com_spec, com_spec, NULL);

 if (status)
 fputs("\nEXEC of COMMAND.COM failed\n",stderr);
 }

 void exit_cmd(void) /* EXIT command */
 {
 exit(0); /* terminate SHELL */
 }
 --

 Figure 12-4. SHELL.C: A table-driven command interpreter written in
 Microsoft C.

 --
 name shell
 page 55,132
 title SHELL.ASM--simple MS-DOS shell
 ;
 ; SHELL.ASM Simple extendable command interpreter
 ; for MS-DOS versions 2.0 and later
 ;
 ; Copyright 1988 by Ray Duncan
 ;
 ; Build: C>MASM SHELL;
 ; C>LINK SHELL;
 ;
 ; Usage: C>SHELL;
 ;

 stdin equ 0 ; standard input handle
 stdout equ 1 ; standard output handle
 stderr equ 2 ; standard error handle

 cr equ 0dh ; ASCII carriage return
 lf equ 0ah ; ASCII linefeed
 blank equ 20h ; ASCII blank code
 escape equ 01bh ; ASCII escape code

 _TEXT segment word public 'CODE'

 assume cs:_TEXT,ds:_DATA,ss:STACK

 shell proc far ; at entry DS = ES = PSP

 mov ax,_DATA ; make our data segment
 mov ds,ax ; addressable

 mov ax,es:[002ch] ; get environment segment
 mov env_seg,ax ; from PSP and save it

 ; release unneeded memory...
 ; ES already = PSP segment
 mov bx,100h ; BX = paragraphs needed

 mov ah,4ah ; function 4ah = resize block
 int 21h ; transfer to MS-DOS
 jnc shell1 ; jump if resize OK

 mov dx,offset msg1 ; resize failed, display
 mov cx,msg1_length ; error message and exit
 jmp shell4

 shell1: call get_comspec ; get COMMAND.COM filespec
 jnc shell2 ; jump if it was found

 mov dx,offset msg3 ; COMSPEC not found in
 mov cx,msg3_length ; environment, display error
 jmp shell4 ; message and exit
 shell2: mov dx,offset shell3 ; set Ctrl-C vector (int 23h)
 mov ax,cs ; for this program's handler
 mov ds,ax ; DS:DX = handler address
 mov ax,2523h ; function 25h = set vector
 int 21h ; transfer to MS-DOS

 mov ax,_DATA ; make our data segment
 mov ds,ax ; addressable again
 mov es,ax

 shell3: ; main interpreter loop

 call get_cmd ; get a command from user

 call intrinsic ; check if intrinsic function
 jnc shell3 ; yes, it was processed

 call extrinsic ; no, pass it to COMMAND.COM
 jmp shell3 ; then get another command

 shell4: ; come here if error detected
 ; DS:DX = message address
 ; CX = message length
 mov bx,stderr ; BX = standard error handle
 mov ah,40h ; function 40h = write
 int 21h ; transfer to MS-DOS

 mov ax,4c01h ; function 4ch = terminate with
 ; return code = 1
 int 21h ; transfer to MS-DOS

 shell endp

 intrinsic proc near ; decode user entry against
 ; the table "COMMANDS"
 ; if match, run the routine,
 ; and return carry = false
 ; if no match, carry = true
 ; return carry = true

 mov si,offset commands ; DS:SI = command table

 intr1: cmp byte ptr [si],0 ; end of table?

 je intr7 ; jump, end of table found
 mov di,offset inp_buf ; no, let DI = addr of user input

 intr2: cmp byte ptr [di],blank ; scan off any leading blanks
 jne intr3

 inc di ; found blank, go past it
 jmp intr2

 intr3: mov al,[si] ; next character from table

 or al,al ; end of string?
 jz intr4 ; jump, entire string matched

 cmp al,[di] ; compare to input character
 jnz intr6 ; jump, found mismatch

 inc si ; advance string pointers
 inc di
 jmp intr3

 intr4: cmp byte ptr [di],cr ; be sure user's entry
 je intr5 ; is the same length...
 cmp byte ptr [di],blank ; next character in entry
 jne intr6 ; must be blank or return

 intr5: call word ptr [si+1] ; run the command routine

 clc ; return carry flag = false
 ret ; as success flag

 intr6: lodsb ; look for end of this
 or al,al ; command string (null byte)
 jnz intr6 ; not end yet, loop

 add si,2 ; skip over routine address
 jmp intr1 ; try to match next command

 intr7: stc ; command not matched, exit
 ret ; with carry = true

 intrinsic endp
 extrinsic proc near ; process extrinsic command
 ; by passing it to
 ; COMMAND.COM with a
 ; " /C " command tail

 mov al,cr ; find length of command
 mov cx,cmd_tail_length ; by scanning for carriage
 mov di,offset cmd_tail+1 ; return
 cld
 repnz scasb

 mov ax,di ; calculate command-tail
 sub ax,offset cmd_tail+2 ; length without carriage
 mov cmd_tail,al ; return, and store it

 ; set command-tail address
 mov word ptr par_cmd,offset cmd_tail

 call exec ; and run COMMAND.COM
 ret

 extrinsic endp

 get_cmd proc near ; prompt user, get command

 ; display the shell prompt
 mov dx,offset prompt ; DS:DX = message address
 mov cx,prompt_length ; CX = message length
 mov bx,stdout ; BX = standard output handle
 mov ah,40h ; function 40h = write
 int 21h ; transfer to MS-DOS

 ; get entry from user
 mov dx,offset inp_buf ; DS:DX = input buffer
 mov cx,inp_buf_length ; CX = max length to read
 mov bx,stdin ; BX = standard input handle
 mov ah,3fh ; function 3fh = read
 int 21h ; transfer to MS-DOS

 mov si,offset inp_buf ; fold lowercase characters
 mov cx,inp_buf_length ; in entry to uppercase
 gcmd1: cmp byte ptr [si],'a' ; check if 'a-z'
 jb gcmd2 ; jump, not in range
 cmp byte ptr [si],'z' ; check if 'a-z'
 ja gcmd2 ; jump, not in range
 sub byte ptr [si],'a'-'A' ; convert to uppercase

 gcmd2: inc si ; advance through entry
 loop gcmd1
 ret ; back to caller

 get_cmd endp

 get_comspec proc near ; get location of COMMAND.COM
 ; from environment "COMSPEC="
 ; returns carry = false
 ; if COMSPEC found
 ; returns carry = true
 ; if no COMSPEC

 mov si,offset com_var ; DS:SI = string to match...
 call get_env ; search environment block
 jc gcsp2 ; jump if COMSPEC not found

 ; ES:DI points past "="
 mov si,offset com_spec ; DS:SI = local buffer

 gcsp1: mov al,es:[di] ; copy COMSPEC variable
 mov [si],al ; to local buffer
 inc si
 inc di
 or al,al ; null char? (turns off carry)
 jnz gcsp1 ; no, get next character

 gcsp2: ret ; back to caller

 get_comspec endp

 get_env proc near ; search environment
 ; call DS:SI = "NAME="
 ; uses contents of "ENV_SEG"
 ; returns carry = false and ES:DI
 ; pointing to parameter if found,
 ; returns carry = true if no match
 mov es,env_seg ; get environment segment
 xor di,di ; initialize env offset

 genv1: mov bx,si ; initialize pointer to name
 cmp byte ptr es:[di],0 ; end of environment?
 jne genv2 ; jump, end not found

 stc ; no match, return carry set
 ret

 genv2: mov al,[bx] ; get character from name
 or al,al ; end of name? (turns off carry)
 jz genv3 ; yes, name matched

 cmp al,es:[di] ; compare to environment
 jne genv4 ; jump if match failed

 inc bx ; advance environment
 inc di ; and name pointers
 jmp genv2

 genv3: ; match found, carry = clear,
 ret ; ES:DI = variable

 genv4: xor al,al ; scan forward in environment
 mov cx,-1 ; for zero byte
 cld
 repnz scasb
 jmp genv1 ; go compare next string

 get_env endp

 exec proc near ; call MS-DOS EXEC function
 ; to run COMMAND.COM

 mov stkseg,ss ; save stack pointer
 mov stkptr,sp

 ; now run COMMAND.COM
 mov dx,offset com_spec ; DS:DX = filename
 mov bx,offset par_blk ; ES:BX = parameter block
 mov ax,4b00h ; function 4bh = EXEC
 ; subfunction 0 =
 ; load and execute
 int 21h ; transfer to MS-DOS

 mov ax,_DATA ; make data segment

 mov ds,ax ; addressable again
 mov es,ax

 cli ; (for bug in some 8088s)
 mov ss,stkseg ; restore stack pointer
 mov sp,stkptr
 sti ; (for bug in some 8088s)

 jnc exec1 ; jump if no errors

 ; display error message
 mov dx,offset msg2 ; DS:DX = message address
 mov cx,msg2_length ; CX = message length
 mov bx,stderr ; BX = standard error handle
 mov ah,40h ; function 40h = write
 int 21h ; transfer to MS-DOS

 exec1: ret ; back to caller

 exec endp

 cls_cmd proc near ; intrinsic CLS command

 mov dx,offset cls_str ; send the ANSI escape
 mov cx,cls_str_length ; sequence to clear
 mov bx,stdout ; the screen
 mov ah,40h
 int 21h
 ret

 cls_cmd endp

 dos_cmd proc near ; intrinsic DOS command

 ; set null command tail
 mov word ptr par_cmd,offset nultail
 call exec ; and run COMMAND.COM
 ret

 dos_cmd endp
 exit_cmd proc near ; intrinsic EXIT command

 mov ax,4c00h ; call MS-DOS terminate
 int 21h ; function with
 ; return code of zero
 exit_cmd endp

 _TEXT ends

 STACK segment para stack 'STACK' ; declare stack segment

 dw 64 dup (?)

 STACK ends

 _DATA segment word public 'DATA'

 commands equ $; "intrinsic" commands table
 ; each entry is ASCIIZ string
 ; followed by the offset
 ; of the procedure to be
 ; executed for that command
 db 'CLS',0
 dw cls_cmd

 db 'DOS',0
 dw dos_cmd

 db 'EXIT',0
 dw exit_cmd

 db 0 ; end of table

 com_var db 'COMSPEC=',0 ; environment variable

 ; COMMAND.COM filespec
 com_spec db 80 dup (0) ; from environment COMSPEC=

 nultail db 0,cr ; null command tail for
 ; invoking COMMAND.COM
 ; as another shell

 cmd_tail db 0,' /C ' ; command tail for invoking
 ; COMMAND.COM as a transient
 inp_buf db 80 dup (0) ; command line from standard input

 inp_buf_length equ $-inp_buf
 cmd_tail_length equ $-cmd_tail-1

 prompt db cr,lf,'sh: ' ; SHELL's user prompt
 prompt_length equ $-prompt

 env_seg dw 0 ; segment of environment block

 msg1 db cr,lf
 db 'Unable to release memory.'
 db cr,lf
 msg1_length equ $-msg1

 msg2 db cr,lf
 db 'EXEC of COMMAND.COM failed.'
 db cr,lf
 msg2_length equ $-msg2

 msg3 db cr,lf
 db 'No COMSPEC variable in environment.'
 db cr,lf
 msg3_length equ $-msg3

 cls_str db escape,'[2J' ; ANSI escape sequence
 cls_str_length equ $-cls_str ; to clear the screen

 ; EXEC parameter block
 par_blk dw 0 ; environment segment

 par_cmd dd cmd_tail ; command line
 dd fcb1 ; file control block #1
 dd fcb2 ; file control block #2

 fcb1 db 0 ; file control block #1
 db 11 dup (' ')
 db 25 dup (0)

 fcb2 db 0 ; file control block #2
 db 11 dup (' ')
 db 25 dup (0)

 stkseg dw 0 ; original SS contents
 stkptr dw 0 ; original SP contents

 _DATA ends

 end shell
 --

 Figure 12-5. SHELL.ASM: A simple table-driven command interpreter written
 in Microsoft Macro Assembler.

 The SHELL program is table driven and can easily be extended to provide a
 powerful customized user interface for almost any application. When SHELL
 takes control of the system, it displays the prompt

 sh:

 and waits for input from the user. After the user types a line terminated
 by a carriage return, SHELL tries to match the first token in the line
 against its table of internal (intrinsic) commands. If it finds a match,
 it calls the appropriate subroutine. If it does not find a match, it calls
 the MS-DOS EXEC function and passes the user's input to COMMAND.COM with
 the /C switch, essentially using COMMAND.COM as a transient command
 processor under its own control.

 As supplied in these listings, SHELL "knows" exactly three internal
 commands:

 Command Action
 --
 CLS Uses the ANSI standard control sequence to clear the
 display screen and home the cursor.
 DOS Runs a copy of COMMAND.COM.
 EXIT Exits SHELL, returning control of the system to the
 next lower command interpreter.
 --

 You can quickly add new intrinsic commands to either the C version or the
 assembly-language version of SHELL. Simply code a procedure with the
 appropriate action and insert the name of that procedure, along with the
 text string that defines the command, into the table COMMANDS. In
 addition, you can easily prevent SHELL from passing certain "dangerous"
 commands (such as MKDIR or ERASE) to COMMAND.COM simply by putting the
 names of the commands to be screened out into the intrinsic command table
 with the address of a subroutine that prints an error message.

 To summarize, the basic flow of both versions of the SHELL program is

 as follows:

 1. The program calls MS-DOS Int 21H Function 4AH (Resize Memory Block)
 to shrink its memory allocation, so that the maximum possible space
 will be available for COMMAND.COM if it is run as an overlay. (This is
 explicit in the assembly-language version only. To keep the example
 code simple, the number of paragraphs to be reserved is coded as a
 generous literal value, rather than being figured out at runtime from
 the size and location of the various program segments.)

 2. The program searches the environment for the COMSPEC variable, which
 defines the location of an executable copy of COMMAND.COM. If it can't
 find the COMSPEC variable, it prints an error message and exits.

 3. The program puts the address of its own handler in the Ctrl-C vector
 (Int 23H) so that it won't lose control if the user enters a Ctrl-C
 or a Ctrl-Break.

 4. The program issues a prompt to the standard output device.

 5. The program reads a buffered line from the standard input device to
 get the user's command.

 6. The program matches the first blank-delimited token in the line
 against its table of intrinsic commands. If it finds a match, it
 executes the associated procedure.

 7. If the program does not find a match in the table of intrinsic
 commands, it synthesizes a command-line tail by appending the user's
 input to the /C switch and then EXECs a copy of COMMAND.COM, passing
 the address of the synthesized command tail in the EXEC parameter
 block.

 8. The program repeats steps 4 through 7 until the user enters the
 command EXIT, which is one of the intrinsic commands, and which causes
 SHELL to terminate execution.

 In its present form, SHELL allows COMMAND.COM to inherit a full copy of
 the current environment. However, in some applications it may be helpful,
 or safer, to pass a modified copy of the environment block so that the
 secondary copy of COMMAND.COM will not have access to certain information.

Using EXEC to Load Overlays

 Loading overlays with the EXEC function is much less complex than using
 EXEC to run another program. The overlay can be constructed as either a
 memory image (.COM) or relocatable (.EXE) file and need not be the same
 type as the program that loads it. The main program, called the root
 segment, must carry out the following steps to load and execute an
 overlay:

 1. Make a memory block available to receive the overlay. The program that
 calls EXEC must own the memory block for the overlay.

 2. Set up the overlay parameter block to be passed to the EXEC function.
 This block contains the segment address of the block that will receive
 the overlay, plus a segment relocation value to be applied to the
 contents of the overlay file (if it is a .EXE file). These are

 normally the same value.

 3. Call the MS-DOS EXEC function to load the overlay by issuing an Int
 21H with the registers set up as follows:

 AH = 4BH
 AL = 03H (EXEC subfunction to load overlay)
 DS:DX = segment:offset of overlay file pathname
 ES:BX = segment:offset of overlay parameter block

 Upon return from the EXEC function, the carry flag is clear if the
 overlay was found and loaded. The carry flag is set if the file could
 not be found or if some other error occurred.

 4. Execute the code within the overlay by transferring to it with a far
 call. The overlay should be designed so that either the entry point or
 a pointer to the entry point is at the beginning of the module after
 it is loaded. This technique allows you to maintain the root and
 overlay modules separately, because the root module does not contain
 any "magical" knowledge of addresses within the overlay segment.

 To prevent users from inadvertently running an overlay directly from the
 command line, you should assign overlay files an extension other than .COM
 or .EXE. It is most convenient to relate overlays to their root segment by
 assigning them the same filename but a different extension, such as .OVL
 or .OV1, .OV2, and so on.

 Figure 12-6 shows the use of EXEC to load and execute an overlay.

 --
 .
 .
 .
 ; allocate memory for overlay
 mov bx,1000h ; get 64 KB (4096 paragraphs)
 mov ah,48h ; function 48h = allocate block
 int 21h ; transfer to MS-DOS
 jc error ; jump if allocation failed

 mov pars,ax ; set load address for overlay
 mov pars+2,ax ; set relocation segment for overlay

 ; set segment of entry point
 mov word ptr entry+2,ax

 mov stkseg,ss ; save root's stack pointer
 mov stkptr,sp

 mov ax,ds ; set ES = DS
 mov es,ax

 mov dx,offset oname ; DS:DX = overlay pathname
 mov bx,offset pars ; ES:BX = parameter block
 mov ax,4b03h ; function 4bh, subfunction 03h
 int 21h ; transfer to MS-DOS

 mov ax,_DATA ; make our data segment
 mov ds,ax ; addressable again
 mov es,ax

 cli ; (for bug in some early 8088s)
 mov ss,stkseg ; restore stack pointer
 mov sp,stkptr
 sti ; (for bug in some early 8088s)

 jc error ; jump if EXEC failed

 ; otherwise EXEC succeeded...
 push ds ; save our data segment
 call dword ptr entry ; now call the overlay
 pop ds ; restore our data segment
 .
 .
 .

 oname db 'OVERLAY.OVL',0 ; pathname of overlay file

 pars dw 0 ; load address (segment) for file
 dw 0 ; relocation (segment) for file

 entry dd 0 ; entry point for overlay

 stkseg dw 0 ; save SS register
 stkptr dw 0 ; save SP register
 --

 Figure 12-6. A code skeleton for loading and executing an overlay with
 the EXEC function. The overlay file may be in either .COM or .EXE format.

--
Chapter 13 Interrupt Handlers

 Interrupts are signals that cause the computer's central processing unit
 to suspend what it is doing and transfer to a program called an interrupt
 handler. Special hardware mechanisms that are designed for maximum speed
 force the transfer. The interrupt handler determines the cause of the
 interrupt, takes the appropriate action, and then returns control to the
 original process that was suspended.

 Interrupts are typically caused by events external to the central
 processor that require immediate attention, such as the following:

 o Completion of an I/O operation

 o Detection of a hardware failure

 o "Catastrophes" (power failures, for example)

 In order to service interrupts more efficiently, most modern processors
 support multiple interrupt types, or levels. Each type usually has a
 reserved location in memory, called an interrupt vector, that specifies
 where the interrupt-handler program for that interrupt type is located.
 This design speeds processing of an interrupt because the computer can
 transfer control directly to the appropriate routine; it does not need a
 central routine that wastes precious machine cycles determining the cause
 of the interrupt. The concept of interrupt types also allows interrupts to

 be prioritized, so that if several interrupts occur simultaneously, the
 most important one can be processed first.

 CPUs that support interrupts must also have the capability to block
 interrupts while they are executing critical sections of code. Sometimes
 the CPU can block interrupt levels selectively, but more frequently the
 effect is global. While an interrupt is being serviced, the CPU masks all
 other interrupts of the same or lower priority until the active handler
 has completed its execution; similarly, it can preempt the execution of a
 handler if a different interrupt with higher priority requires service.
 Some CPUs can even draw a distinction between selectively masking
 interrupts (they are recognized, but their processing is deferred) and
 simply disabling them (the interrupt is thrown away).

 The creation of interrupt handlers has traditionally been considered one
 of the most arcane of programming tasks, suitable only for the elite cadre
 of system hackers. In reality, writing an interrupt handler is, in itself,
 straightforward. Although the exact procedure must, of course, be
 customized for the characteristics of the particular CPU and operating
 system, the guidelines on the following page are applicable to almost any
 computer system.

 A program preparing to handle interrupts must do the following:

 1. Disable interrupts, if they were previously enabled, to prevent them
 from occurring while interrupt vectors are being modified.

 2. Initialize the vector for the interrupt of interest to point to the
 program's interrupt handler.

 3. Ensure that, if interrupts were previously disabled, all other vectors
 point to some valid handler routine.

 4. Enable interrupts again.

 The interrupt handler itself must follow a simple but rigid sequence of
 steps:

 1. Save the system context (registers, flags, and anything else that the
 handler will modify and that wasn't saved automatically by the CPU).

 2. Block any interrupts that might cause interference if they were
 allowed to occur during this handler's processing. (This is often done
 automatically by the computer hardware.)

 3. Enable any interrupts that should still be allowed to occur during
 this handler's processing.

 4. Determine the cause of the interrupt.

 5. Take the appropriate action for the interrupt: receive and store data
 from the serial port, set a flag to indicate the completion of a
 disk-sector transfer, and so forth.

 6. Restore the system context.

 7. Reenable any interrupt levels that were blocked during this handler's
 execution.

 8. Resume execution of the interrupted process.

 As in writing any other program, the key to success in writing an
 interrupt handler is to program defensively and cover all the bases. The
 main reason interrupt handlers have acquired such a mystical reputation is
 that they are so difficult to debug when they contain obscure errors.
 Because interrupts can occur asynchronously--that is, because they can be
 caused by external events without regard to the state of the currently
 executing process--bugs in interrupt handlers can cause the system as a
 whole to behave quite unpredictably.

Interrupts and the Intel 80x86 Family

 The Intel 80x86 family of microprocessors supports 256 levels of
 prioritized interrupts, which can be triggered by three types of events:

 o Internal hardware interrupts

 o External hardware interrupts

 o Software interrupts

Internal Hardware Interrupts

 Internal hardware interrupts, sometimes called faults, are generated by
 certain events encountered during program execution, such as an attempt to
 divide by zero. The assignment of such events to certain interrupt numbers
 is wired into the processor and is not modifiable (Figure 13-1).

 Interrupt Vector Interrupt 8086/88 80286 80386
 level address trigger
 --
 00H 00H-03H Divide-by-zero x x x
 01H 04H-07H Single step x x x
 02H 08H-0BH Nonmaskable x x x
 interrupt (NMI)
 03H 0CH-0FH Breakpoint x x x
 04H 10H-13H Overflow x x x
 05H 14H-17H BOUND exceeded x x
 06H 18H-1BH Invalid opcode x x
 07H 1CH-1FH Processor extension x x
 not available
 08H 20H-23H Double fault x x
 09H 24H-27H Segment overrun x x
 0AH 28H-2BH Invalid task-state x x
 segment
 0BH 2CH-2FH Segment not present x x
 0CH 30H-33H Stack segment x x
 overrun
 0DH 34H-37H General protection x x
 fault
 0EH 38H-3BH Page fault x
 0FH 3CH-3FH Reserved
 10H 40H-43H Numeric coprocessor x x
 error
 11H-1FH 44H-7FH Reserved
 --

 Figure 13-1. Internal interrupts (faults) on the Intel 8086/88, 80286,
 and 80386 microprocessors.

External Hardware Interrupts

 External hardware interrupts are triggered by peripheral device
 controllers or by coprocessors such as the 8087/80287. These can be tied
 to either the CPU's nonmaskable-interrupt (NMI) pin or its
 maskable-interrupt (INTR) pin. The NMI line is usually reserved for
 interrupts caused by such catastrophic events as a memory parity error or
 a power failure.

 Instead of being wired directly to the CPU, the interrupts from external
 devices can be channeled through a device called the Intel 8259A
 Programmable Interrupt Controller (PIC). The CPU controls the PIC through
 a set of I/O ports, and the PIC, in turn, signals the CPU through the INTR
 pin. The PIC allows the interrupts from specific devices to be enabled and
 disabled, and their priorities to be adjusted, under program control.

 A single PIC can handle only eight levels of interrupts. However, PICs can
 be cascaded together in a treelike structure to handle as many levels as
 desired. For example, 80286- and 80386-based machines with a
 PC/AT-compatible architecture use two PICs wired together to obtain 16
 individually configurable levels of interrupts.

 INTR interrupts can be globally enabled and disabled with the CPU's STI
 and CLI instructions. As you would expect, these instructions have no
 effect on interrupts received on the CPU's NMI pin.

 The manufacturer of the computer system and/or the manufacturer of the
 peripheral device assigns external devices to specific 8259A PIC interrupt
 levels. These assignments are realized as physical electrical connections
 and cannot be modified by software.

Software Interrupts

 Any program can trigger software interrupts synchronously simply by
 executing an INT instruction. MS-DOS uses Interrupts 20H through 3FH to
 communicate with its modules and with application programs. (For instance,
 the MS-DOS function dispatcher is reached by executing an Int 21H.) The
 IBM PC ROM BIOS and application software use other interrupts, with either
 higher or lower numbers, for various purposes (Figure 13-2). These
 assignments are simply conventions and are not wired into the hardware in
 any way.

 Interrupt Usage Machine
 --
 00H Divide-by-zero PC, AT, PS/2
 01H Single step PC, AT, PS/2
 02H NMI PC, AT, PS/2
 03H Breakpoint PC, AT, PS/2
 04H Overflow PC, AT, PS/2
 05H ROM BIOS PrintScreen PC, AT, PS/2
 BOUND exceeded AT, PS/2
 06H Reserved PC
 Invalid opcode AT, PS/2

 07H Reserved PC
 80287/80387 not present AT, PS/2
 08H IRQ0 timer tick PC, AT, PS/2
 Double fault AT, PS/2
 09H IRQ1 keyboard PC, AT, PS/2
 80287/80387 segment overrun AT, PS/2
 0AH IRQ2 reserved PC
 IRQ2 cascade from slave 8259A PIC AT, PS/2
 Invalid task-state segment (TSS) AT, PS/2
 0BH IRQ3 serial communications (COM2) PC, AT, PS/2
 Segment not present AT, PS/2
 0CH IRQ4 serial communications (COM1) PC, AT, PS/2
 Stack segment overflow AT, PS/2
 0DH IRQ5 fixed disk PC
 IRQ5 parallel printer (LPT2) AT
 Reserved PS/2
 General protection fault AT, PS/2
 0EH IRQ6 floppy disk PC, AT, PS/2
 Page fault AT, PS/2
 0FH IRQ7 parallel printer (LPT1) PC, AT, PS/2
 10H ROM BIOS video driver PC, AT, PS/2
 Numeric coprocessor fault AT, PS/2
 11H ROM BIOS equipment check PC, AT, PS/2
 12H ROM BIOS conventional-memory size PC, AT, PS/2
 13H ROM BIOS disk driver PC, AT, PS/2
 14H ROM BIOS communications driver PC, AT, PS/2
 15H ROM BIOS cassette driver PC
 ROM BIOS I/O system extensions AT, PS/2
 16H ROM BIOS keyboard driver PC, AT, PS/2
 17H ROM BIOS printer driver PC, AT, PS/2
 18H ROM BASIC PC, AT, PS/2
 19H ROM BIOS bootstrap PC, AT, PS/2
 1AH ROM BIOS time of day AT, PS/2
 1BH ROM BIOS Ctrl-Break PC, AT, PS/2
 1CH ROM BIOS timer tick PC, AT, PS/2
 1DH ROM BIOS video parameter table PC, AT, PS/2
 1EH ROM BIOS floppy-disk parameters PC, AT, PS/2
 1FH ROM BIOS font (characters 80H-FFH) PC, AT, PS/2
 20H MS-DOS terminate process
 21H MS-DOS function dispatcher
 22H MS-DOS terminate address
 23H MS-DOS Ctrl-C handler address
 24H MS-DOS critical-error handler
 address
 25H MS-DOS absolute disk read
 26H MS-DOS absolute disk write
 27H MS-DOS terminate and stay resident
 28H MS-DOS idle interrupt
 29H MS-DOS reserved
 2AH MS-DOS network redirector
 2BH-2EH MS-DOS reserved
 2FH MS-DOS multiplex interrupt
 30H-3FH MS-DOS reserved
 40H ROM BIOS floppy-disk driver (if PC, AT, PS/2
 fixed disk installed)
 41H ROM BIOS fixed-disk parameters PC
 ROM BIOS fixed-disk parameters AT, PS/2
 (drive 0)
 42H ROM BIOS default video driver (if PC, AT, PS/2

 EGA installed)
 43H EGA, MCGA, VGA character table PC, AT, PS/2
 44H ROM BIOS font (characters 00H-7FH) PCjr
 46H ROM BIOS fixed-disk parameters AT, PS/2
 (drive 1)
 4AH ROM BIOS alarm handler AT, PS/2
 5AH Cluster adapter PC, AT
 5BH Used by cluster program PC, AT
 60H-66H User interrupts PC, AT, PS/2
 67H LIM EMS driver PC, AT, PS/2
 68H-6FH Unassigned
 70H IRQ8 CMOS real-time clock AT, PS/2
 71H IRQ9 software diverted to IRQ2 AT, PS/2
 72H IRQ10 reserved AT, PS/2
 73H IRQ11 reserved AT, PS/2
 74H IRQ12 reserved AT
 IRQ12 mouse PS/2
 75H IRQ13 numeric coprocessor AT, PS/2
 76H IRQ14 fixed-disk controller AT, PS/2
 77H IRQ15 reserved AT, PS/2
 78H-7FH Unassigned
 80H-F0H BASIC PC, AT, PS/2
 F1H-FFH Not used PC, AT, PS/2
 --

 Figure 13-2. Interrupts with special significance on the IBM PC, PC/AT,
 and PS/2 and compatible computers. Note that the IBM ROM BIOS uses several
 interrupts in the range 00H-1FH, even though they were reserved by Intel
 for CPU faults. IRQ numbers refer to Intel 8259A PIC priority levels.

The Interrupt-Vector Table

 The bottom 1024 bytes of system memory are called the interrupt-vector
 table. Each 4-byte position in the table corresponds to an interrupt type
 (0 through 0FFH) and contains the segment and offset of the interrupt
 handler for that level. Interrupts 0 through 1FH (the lowest levels) are
 used for internal hardware interrupts; MS-DOS uses Interrupts 20H through
 3FH; all the other interrupts are available for use by either external
 hardware devices or system drivers and application software.

 When an 8259A PIC or other device interrupts the CPU by means of the INTR
 pin, it must also place the interrupt type as an 8-bit number (0 through
 0FFH) on the system bus, where the CPU can find it. The CPU then
 multiplies this number by 4 to find the memory address of the interrupt
 vector to be used.

Servicing an Interrupt

 When the CPU senses an interrupt, it pushes the program status word (which
 defines the various CPU flags), the code segment (CS) register, and the
 instruction pointer (IP) onto the machine stack and disables the interrupt
 system. It then uses the 8-bit number that was jammed onto the system bus
 by the interrupting device to fetch the address of the handler from the
 vector table and resumes execution at that address.

 Usually the handler immediately reenables the interrupt system (to allow
 higher-priority interrupts to occur), saves any registers it is going to
 use, and then processes the interrupt as quickly as possible. Some

 external devices also require a special acknowledgment signal so that they
 will know the interrupt has been recognized.

 If the interrupt was funneled through an 8259A PIC, the handler must send
 a special code called end of interrupt (EOI) to the PIC through its
 control port to tell it when interrupt processing is completed. (The EOI
 has no effect on the CPU itself.) Finally, the handler executes the
 special IRET (INTERRUPT RETURN) instruction that restores the original
 state of the CPU flags, the CS register, and the instruction pointer
 (Figure 13-3).

 Whether an interrupt was triggered by an external device or forced by
 software execution of an INT instruction, there is no discernible
 difference in the system state at the time the interrupt handler receives
 control. This fact is convenient when you are writing and testing external
 interrupt handlers because you can debug them to a large extent simply by
 invoking them with software drivers.

 --
 pic_ctl equ 20h ; control port for 8259A
 ; interrupt controller
 .
 .
 .
 sti ; turn interrupts back on,
 push ax ; save registers
 push bx
 push cx
 push dx
 push si
 push di
 push bp
 push ds
 push es

 mov ax,cs ; make local data addressable
 mov ds,ax
 . ; do some stuff appropriate
 . ; for this interrupt here
 .
 mov al,20h ; send EOI to 8259A PIC
 mov dx,pic_ctl
 out dx,al

 pop es ; restore registers
 pop ds
 pop bp
 pop di
 pop si
 pop dx
 pop cx
 pop bx
 pop ax
 iret ; resume previous processing
 --

 Figure 13-3. Typical handler for hardware interrupts on the 80x86 family
 of microprocessors. In real life, the interrupt handler would need to save
 and restore only the registers that it actually modified. Also, if the

 handler made extensive use of the machine stack, it would need to save and
 restore the SS and SP registers of the interrupted process and use its own
 local stack.

Interrupt Handlers and MS-DOS

 The introduction of an interrupt handler into your program brings with it
 considerable hardware dependence. It goes without saying (but I am saying
 it again here anyway) that you should avoid such hardware dependence in
 MS-DOS applications whenever possible, to ensure that your programs will
 be portable to any machine running current versions of MS-DOS and that
 they will run properly under future versions of the operating system.

 Valid reasons do exist, however, for writing your own interrupt handler
 for use under MS-DOS:

 o To supersede the MS-DOS default handler for an internal hardware
 interrupt (such as divide-by-zero, BOUND exceeded, and so forth).

 o To supersede the MS-DOS default handler for a defined system exception,
 such as the critical-error handler or Ctrl-C handler.

 o To chain your own interrupt handler onto the default system handler for
 a hardware device, so that both the system's actions and your own will
 occur on an interrupt. (A typical example of this is the "clock-tick"
 interrupt.)

 o To service interrupts not supported by the default MS-DOS device
 drivers (such as the serial communications port, which can be used at
 much higher speeds with interrupts than with polling).

 o To provide a path of communication between a program that terminates
 and stays resident and other application software.

 MS-DOS provides the following facilities to enable you to install
 well-behaved interrupt handlers in a manner that does not interfere with
 operating-system functions or other interrupt handlers:

 Function Action
 --
 Int 21H Function 25H Set interrupt vector.
 Int 21H Function 35H Get interrupt vector.
 Int 21H Function 31H Terminate and stay resident.
 --

 These functions allow you to examine or modify the contents of the system
 interrupt-vector table and to reserve memory for the use of a handler
 without running afoul of other processes in the system or causing memory
 use conflicts. Section 2 of this book, "MS-DOS Functions Reference,"
 describes each of these functions in detail, with programming examples.

 Handlers for external hardware interrupts under MS-DOS must operate under
 some fairly severe restrictions:

 o Because the current versions of MS-DOS are not reentrant, a hardware
 interrupt handler should never call the MS-DOS functions during the
 actual interrupt processing.

 o The handler must reenable interrupts as soon as it gets control, to
 avoid crippling other devices or destroying the accuracy of the system
 clock.

 o A program should access the 8259A PIC with great care. The program
 should not access the PIC unless that program is known to be the only
 process in the system concerned with that particular interrupt level.
 And it is vital that the handler issue an end-of-interrupt code to the
 8259A PIC before performing the IRET; otherwise, the processing of
 further interrupts for that priority level or lower priority levels
 will be blocked.

 Restrictions on handlers that replace the MS-DOS default handlers for
 internal hardware interrupts or system exceptions (such as Ctrl-C or
 critical errors) are not quite so stringent, but you must still program
 the handlers with extreme care to avoid destroying system tables or
 leaving the operating system in an unstable state.

 The following are a few rules to keep in mind when you are writing an
 interrupt driver:

 o Use Int 21H Function 25H (Set Interrupt Vector) to modify the
 interrupt vector; do not write directly to the interrupt-vector table.

 o If your program is not the only process in the system that uses this
 interrupt level, chain back to the previous handler after performing
 your own processing on an interrupt.

 o If your program is not going to stay resident, fetch and save the
 current contents of the interrupt vector before modifying it and then
 restore the original contents when your program exits.

 o If your program is going to stay resident, use one of the terminate-
 and-stay-resident functions (preferably Int 21H Function 31H) to
 reserve the proper amount of memory for your handler.

 o If you are going to process hardware interrupts, keep the time that
 interrupts are disabled and the total length of the service routine to
 an absolute minimum. Remember that even after interrupts are reenabled
 with an STI instruction, interrupts of the same or lower priority
 remain blocked if the interrupt was received through the 8259A PIC.

ZERODIV, an Example Interrupt Handler

 The listing ZERODIV.ASM (Figure 13-4) illustrates some of the principles
 and guidelines on the previous pages. It is an interrupt handler for the
 divide-by-zero internal interrupt (type 0). ZERODIV is loaded as a .COM
 file (usually by a command in the system's AUTOEXEC file) but makes itself
 permanently resident in memory as long as the system is running.

 The ZERODIV program has two major portions: the initialization portion and
 the interrupt handler.

 The initialization procedure (called init in the program listing) is
 executed only once, when the ZERODIV program is executed from the MS-DOS
 level. The init procedure takes over the type 0 interrupt vector, prints a
 sign-on message, then performs a terminate-and-stay-resident exit to
 MS-DOS. This special exit reserves the memory occupied by the ZERODIV

 program, so that it is not overwritten by subsequent application programs.

 The interrupt handler (called zdiv in the program listing) receives
 control when a divide-by-zero interrupt occurs. The handler preserves all
 registers and then prints a message to the user asking whether to continue
 or to abort the program. We can use the MS-DOS console I/O functions
 within this particular interrupt handler because we can safely presume
 that the application was in control when the interrupt occurred; thus,
 there should be no chance of accidentally making overlapping calls upon
 the operating system.

 If the user enters a C to continue, the handler simply restores all the
 registers and performs an IRET (INTERRUPT RETURN) to return control to the
 application. (Of course, the results of the divide operation will be
 useless.) If the user enters Q to quit, the handler exits to MS-DOS. Int
 21H Function 4CH is particularly convenient in this case because it
 allows the program to pass a return code and at the same time is the only
 termination function that does not rely on the contents of any of the
 segment registers.

 For an example of an interrupt handler for external (communications port)
 interrupts, see the TALK terminal-emulator program in Chapter 7. You may
 also want to look again at the discussions of Ctrl-C and critical-error
 exception handlers in Chapters 5 and 8.

 --
 name zdivide
 page 55,132
 title ZERODIV--Divide-by-zero handler

 ;
 ; ZERODIV.ASM--Terminate-and-stay-resident handler
 ; for divide-by-zero interrupts
 ;
 ; Copyright 1988 Ray Duncan
 ;
 ; Build: C>MASM ZERODIV;
 ; C>LINK ZERODIV;
 ; C>EXE2BIN ZERODIV.EXE ZERODIV.COM
 ; C>DEL ZERODIV.EXE
 ;
 ; Usage: C>ZERODIV
 ;

 cr equ 0dh ; ASCII carriage return
 lf equ 0ah ; ASCII linefeed
 beep equ 07h ; ASCII bell code
 backsp equ 08h ; ASCII backspace code

 _TEXT segment word public 'CODE'

 org 100H

 assume cs:_TEXT,ds:_TEXT,es:_TEXT,ss:_TEXT

 init proc near ; entry point at load time

 ; capture vector for
 ; interrupt zero...

 mov dx,offset zdiv ; DS:DX = handler address
 mov ax,2500h ; function 25h = set vector
 ; interrupt type = 0
 int 21h ; transfer to MS-DOS

 ; print sign-on message
 mov dx,offset msg1 ; DS:DX = message address
 mov ah,9 ; function 09h = display string
 int 21h ; transfer to MS-DOS

 ; DX = paragraphs to reserve
 mov dx,((offset pgm_len+15)/16)+10h
 mov ax,3100h ; function 31h = terminate and
 ; stay resident
 int 21h ; transfer to MS-DOS

 init endp

 zdiv proc far ; this is the divide-by-
 ; zero interrupt handler

 sti ; enable interrupts

 push ax ; save registers
 push bx
 push cx
 push dx
 push si
 push di
 push bp
 push ds
 push es

 mov ax,cs ; make data addressable
 mov ds,ax

 ; display message
 ; "Continue or Quit?"
 mov dx,offset msg2 ; DS:DX = message address
 mov ah,9 ; function 09h = display string
 int 21h ; transfer to MS-DOS

 zdiv1: mov ah,1 ; function 01h = read keyboard
 int 21h ; transfer to MS-DOS

 or al,20h ; fold char to lowercase

 cmp al,'c' ; is it C or Q?
 je zdiv3 ; jump, it's a C

 cmp al,'q'
 je zdiv2 ; jump, it's a Q

 ; illegal entry, send beep
 ; and erase the character
 mov dx,offset msg3 ; DS:DX = message address
 mov ah,9 ; function 09h = display string
 int 21h ; transfer to MS-DOS

 jmp zdiv1 ; try again

 zdiv2: ; user chose "Quit"
 mov ax,4cffh ; terminate current program
 int 21h ; with return code = 255

 zdiv3: ; user chose "Continue"
 ; send CR-LF pair
 mov dx,offset msg4 ; DS:DX = message address
 mov ah,9 ; function 09h = print string
 int 21h ; transfer to MS-DOS

 ; what CPU type is this?
 xor ax,ax ; to find out, we'll put
 push ax ; zero in the CPU flags
 popf ; and see what happens
 pushf
 pop ax
 and ax,0f000h ; 8086/8088 forces
 cmp ax,0f000h ; bits 12-15 true
 je zdiv5 ; jump if 8086/8088

 ; otherwise we must adjust
 ; return address to bypass
 ; the divide instruction...
 mov bp,sp ; make stack addressable

 lds bx,[bp+18] ; get address of the
 ; faulting instruction

 mov bl,[bx+1] ; get addressing byte
 and bx,0c7h ; isolate mod & r/m fields

 cmp bl,6 ; mod 0, r/m 6 = direct
 jne zdiv4 ; not direct, jump

 add word ptr [bp+18],4
 jmp zdiv5

 zdiv4: mov cl,6 ; otherwise isolate mod
 shr bx,cl ; field and get instruction
 mov bl,cs:[bx+itab] ; size from table
 add [bp+18],bx

 zdiv5: pop es ; restore registers
 pop ds
 pop bp
 pop di
 pop si
 pop dx
 pop cx
 pop bx
 pop ax
 iret ; return from interrupt

 zdiv endp

 msg1 db cr,lf ; load-time sign-on message
 db 'Divide by Zero Interrupt '
 db 'Handler installed.'
 db cr,lf,'$'

 msg2 db cr,lf,lf ; interrupt-time message
 db 'Divide by Zero detected: '
 db cr,lf,'Continue or Quit (C/Q) ? '
 db '$'

 msg3 db beep ; used if bad entry
 db backsp,' ',backsp,'$'

 msg4 db cr,lf,'$' ; carriage return-linefeed

 ; instruction size table
 itab db 2 ; mod = 0
 db 3 ; mod = 1
 db 4 ; mod = 2
 db 2 ; mod = 3

 pgm_len equ $-init ; program length

 _TEXT ends

 end init
 --

 Figure 13-4. A simple example of an interrrupt handler for use within the
 MS-DOS environment. ZERODIV makes itself permanently resident in memory
 and handles the CPU's internal divide-by-zero interrupt.

--
Chapter 14 Installable Device Drivers

 Device drivers are the modules of an operating system that control the
 hardware. They isolate the operating-system kernel from the specific
 characteristics and idiosyncrasies of the peripheral devices interfaced to
 the central processor. Thus, the driver's relationship to the kernel is
 analogous to the operating system's relationship to application programs.

 The installable device drivers that were introduced in MS-DOS version 2
 give the user great flexibility. They allow the user to customize and
 configure the computer for a wide range of peripheral devices, with a
 minimum of troublesome interactions and without having to "patch" the
 operating system. Even the most inexperienced user can install a new
 device into a system by plugging in a card, copying a driver file to the
 boot disk, and editing the system configuration file.

 For those inclined to do their own programming, the MS-DOS installable
 device drivers are interfaced to the hardware-independent kernel through a
 simple and clearly defined scheme of function codes and data structures.
 Given adequate information about the hardware, any competent assembly-
 language programmer can expect to successfully interface even the most
 bizarre device to MS-DOS without altering the operating system in the
 slightest and without acquiring any special or proprietary knowledge about
 its innards.

 In retrospect, installable device drivers have proven to be one of the key
 usability features of MS-DOS. I feel that they have been largely
 responsible for the rapid proliferation and competitive pricing of
 high-speed mass-storage devices for MS-DOS machines, and for the growing
 confidence of the average user toward "tampering with" (upgrading) his or
 her machine.

MS-DOS Device-Driver Types

 Drivers written for MS-DOS fall into two distinct classes:

 o Block-device drivers

 o Character-device drivers

 A driver's class determines what functions it must support, how it is
 viewed by MS-DOS, and how it makes the associated physical device appear
 to behave when an application program makes a request for I/O.

Character-Device Drivers

 Character-device drivers control peripheral devices that perform input and
 output one character (or byte) at a time, such as a terminal or printer. A
 single character-device driver ordinarily supports a single hardware unit.
 Each character device has a one-to-eight-character logical name, and an
 application program can use this name to open the device for input or
 output, as though it were a file. The logical name is strictly a means of
 identification for MS-DOS and has no physical equivalent on the device.

 MS-DOS's built-in character-device drivers for the console, serial port,
 and printer are unique in that an application program can access them in
 three different ways:

 o It can open them by name (CON, AUX, PRN, etc.) for input and output,
 like any other character device.

 o It can use the special-purpose MS-DOS function calls (Int 21H Functions
 01-0CH).

 o It can use the default handles (standard input, standard output,
 standard error, standard auxiliary, and standard printer), which do not
 need to be opened to be used.

 The number of additional character-device drivers that can be installed is
 limited only by available memory and by the requirement that each driver
 have a unique logical name. If more than one driver uses the same logical
 name, the last driver to be loaded will supersede any others and will
 receive all I/O requests addressed to that logical name. This fact can
 occasionally be turned to advantage; for example, it allows the user to
 replace the system's default CON driver, which does not support cursor
 positioning or character attributes, with the more powerful ANSI.SYS
 driver.

 ASCII vs Binary Mode

 MS-DOS regards a handle associated with a character device to be in either
 ASCII (cooked) mode or binary (raw) mode. The mode affects MS-DOS's

 buffering of data for read and write requests. The driver itself is not
 aware of the mode, and the mode does not affect its operation. An
 application can select the mode of a handle with the IOCTL function (Int
 21H Function 44H).

 During ASCII-mode input, MS-DOS requests characters one at a time from the
 driver and places them into its own internal buffer, echoing each to the
 screen (if the input device is the keyboard) and checking each character
 for a Ctrl-C (03H). When the number of characters requested by the
 application program has been received, when a Ctrl-Z is detected, or when
 the Enter key is pressed (in the case of the keyboard), MS-DOS terminates
 the input and copies the data from its internal buffer into the requesting
 program's buffer. Similarly, during ASCII-mode output, MS-DOS passes the
 characters to the device driver one at a time and checks for a Ctrl-C
 pending at the keyboard between each character. When a Ctrl-C is detected,
 MS-DOS aborts the input or output operation and transfers to the routine
 whose address is stored in the Int 23H vector.

 In binary mode, MS-DOS reads or writes the exact number of bytes requested
 by the application program, without regard to any control characters such
 as Enter or Ctrl-C. MS-DOS passes the entire request through to the driver
 in a single operation, instead of breaking it into single-character reads
 or writes, and transfers the characters directly to or from the requesting
 program's buffer.

Block-Device drivers

 Block-device drivers usually control random-access mass-storage devices
 such as floppy-disk drives and fixed disks, although they can also be used
 to control non-random-access devices such as magnetic-tape drives. Block
 devices transfer data in chunks, rather than one byte at a time. The size
 of the blocks may be either fixed (disk drives) or variable (tape drives).

 A block driver can support more than one hardware unit, map a single
 physical unit onto two or more logical units, or both. Block devices do
 not have file-like logical names, as character devices do. Instead, MS-DOS
 assigns drive designators to the block-device units or logical drives in
 an alphabetic sequence: A, B, and so forth. Each logical drive contains a
 file system: boot block, file allocation table, root directory, and so
 forth. (See Chapter 10.)

 A block-device driver's position in the chain of all drivers determines
 the first letter assigned to that driver. The number of logical drive
 units that the driver supports determines the total number of letters
 assigned to it.

 Block-device drivers always read or write exactly the number of sectors
 requested (barring hardware or addressing errors) and never filter or
 otherwise manipulate the contents of the blocks being transferred.

Structure of an MS-DOS Device Driver

 A device driver consists of three major parts (Figure 14-1):

 o A device header

 o A strategy (strat) routine

 o An interrupt (intr) routine

 We'll discuss each of these in more detail as we work through this
 chapter.

 +------------------------+-------------------------+
 | | Initialization |
 | +-------------------------+
 | | Media check |
 | +-------------------------+
 | | Build BPB |
 | +-------------------------+
 | | IOCTL read and write |
 | +-------------------------+
 | | Status |
 | +-------------------------+
 | | Read |
 | +-------------------------+
 | | Write, write/verify |
 | +-------------------------+
 | Interrupt routine | Output until busy |
 | +-------------------------+
 | | Flush buffers |
 | +-------------------------+
 | | Device open |
 | +-------------------------+
 | | Device close |
 | +-------------------------+
 | | Check whether removable |
 | +-------------------------+
 | | Generic IOCTL |
 | +-------------------------+
 | | Get/Set logical device |
 | +-------------------------+
 +--+
 | Strategy routine |
 +--+
 | Device-driver header |
 +--+

 Figure 14-1. General structure of an MS-DOS installable device driver.

The Device Header

 The device header (Figure 14-2) lies at the beginning of the driver. It
 contains a link to the next driver in the chain, a set of attribute flags
 for the device (Figure 14-3), offsets to the executable strategy and
 interrupt routines for the device, and the logical-device name (if it is a
 character device such as PRN or COM1) or the number of logical units (if
 it is a block device).

 Byte offset

 00H +--+
 | Link to next driver, offset |
 02H +--+
 | Link to next driver, segment |
 04H +--+
 | Device attribute word |

 06H +--+
 | Strategy entry point, offset |
 08H +--+
 | Interrupt entry point, offset |
 0AH +--+
 | Logical name (8 bytes) if character device |
 | Number of units (1 byte) if block device, |
 | followed by 7 bytes of reserved space |
 +--+

 Figure 14-2. Device-driver header. The offsets to the strat and intr
 routines are offsets from the same segment used to point to the device
 header.

 Bit Significance
 --
 15 1 if character device, 0 if block device
 14 1 if IOCTL read and write supported
 13 for block devices:
 1 if BIOS parameter block in boot sector should be used to
 determine media characteristics, 0 if media ID byte should
 be used
 for character devices:
 1 if output until busy supported
 12 Reserved (should be 0)
 11 1 if open/close/removable media supported (MS-DOS 3.0 and
 later)
 7-10 Reserved (should be 0)
 6 1 if generic IOCTL and get/set logical drive supported
 (MS-DOS 3.2 and later)
 5 Reserved (should be 0)
 4 1 if CON driver and Int 29H fast-output function supported
 3 1 if current CLOCK$ device
 2 1 if current NUL device
 1 for block devices:
 1 if driver supports 32-bit sector addressing (MS-DOS 4.0)
 for character devices:
 1 if standard output device (stdout)
 0 1 if current standard input device (stdin)
 --

 Figure 14-3. Device attribute word in device header. In block-device
 drivers, only bits 6, 11, and 13-15 (and bit 1 in MS-DOS version 4.0) have
 significance; the remainder should always be zero.

The Strategy Routine

 MS-DOS calls the strategy routine (strat) for the device when the driver
 is first loaded and installed, and again whenever an application program
 issues an I/O request for the device. MS-DOS passes the strategy routine a
 double-word pointer to a data structure called a request header. This
 structure contains information about the type of operation to be
 performed. In current versions of MS-DOS, the strategy routine never
 actually performs any I/O operation but simply saves the pointer to the
 request header. The strat routine must not make any Int 21H function
 calls.

 The first 13 bytes of the request header are the same for all
 device-driver functions and are therefore referred to as the static
 portion of the header. The number and contents of the subsequent bytes
 vary according to the type of function being requested (Figure 14-4).
 Both MS-DOS and the driver read and write information in the request
 header.

 The request header's most important component is a command code, or
 function number, passed in its third byte to select a driver subfunction
 such as read, write, or status. Other information passed to the driver in
 the header includes unit numbers, transfer addresses, and sector or byte
 counts.

 --
 ;
 ; MS-DOS request header structure definition
 ;
 Request struc ; request header template structure

 Rlength db ? ; 0 length of request header
 Unit db ? ; 1 unit number for this request
 Command db ? ; 2 request header's command code
 Status dw ? ; 3 driver's return status word
 Reserve db 8 dup (?) ; 5 reserved area
 Media db ? ; 13 media descriptor byte
 Address dd ? ; 14 memory address for transfer
 Count dw ? ; 18 byte/sector count value
 Sector dw ? ; 20 starting sector value

 Request ends ; end of request header template
 --

 Figure 14-4. Format of request header. Only the first 13 bytes are common
 to all driver functions; the number and definition of the subsequent bytes
 vary, depending upon the function type. The structure shown here is the
 one used by the read and write subfunctions of the driver.

The Interrupt Routine

 The last and most complex part of a device driver is the interrupt routine
 (intr), which MS-DOS calls immediately after it calls the strategy
 routine. The interrupt routine implements the device driver proper; it
 performs (or calls other resident routines to perform) the actual input or
 output operations, based on the information passed in the request header.
 The strat routine may not make any Int 21H function calls, except for a
 restricted set during driver initialization.

 When an I/O function is completed, the interrupt routine uses the status
 field in the request header to inform the DOS kernel about the outcome of
 the requested I/O operation. It can use other fields in the request header
 to pass back such useful information as counts of the actual sectors or
 bytes transferred.

 The interrupt routine usually consists of the following elements:

 o A collection of subroutines to implement the various function types
 that may be requested by MS-DOS (sometimes called the command-code
 routines)

 o A centralized entry point that saves all affected registers, extracts
 the desired function code from the request header, and branches to the
 appropriate command-code routine (typically accomplished with a jump
 table)

 o A centralized exit point that stores status and error codes into the
 request header (Figures 14-5 and 14-6) and restores the previous
 contents of the affected registers

 The command-code routines that implement the various functions supported
 by an installable device driver are discussed in detail in the following
 pages.

 Bit(s) Significance
 --
 15 Error
 12-14 Reserved
 9 Busy
 8 Done
 0-7 Error code if bit 15 = 1
 --

 Figure 14-5. Values for the return status word of the request header.

 Code Meaning
 --
 0 Write-protect violation
 1 Unknown unit
 2 Drive not ready
 3 Unknown command
 4 Data error (CRC)
 5 Bad request-structure length
 6 Seek error
 7 Unknown medium
 8 Sector not found
 9 Printer out of paper
 0AH Write fault
 0BH Read fault
 0CH General failure
 0D-0EH Reserved
 0FH Invalid disk change (MS-DOS versions 3.0 and later)
 --

 Figure 14-6. Driver error codes returned in bits 0 through 7 of the
 return status word of the request header.

 Although its name suggests otherwise, the interrupt routine is never
 entered asynchronously (on an I/O completion interrupt, for example).
 Thus, the division of function between strategy and interrupt routines is
 completely artificial in the current versions of MS-DOS.

The Command-Code Routines

 A total of 20 command codes are defined for MS-DOS device drivers. The
 command codes (which are not consecutive), the names of the associated
 driver-interrupt routines, and the MS-DOS versions in which they are first
 supported are as follows:

 Command Function Character Block MS-DOS
 code driver driver version
 --
 0 Init (Initialization) X X 2.0
 1 Media Check X 2.0
 2 Build BPB X 2.0
 3 IOCTL Read X X 2.0
 4 Read X X 2.0
 5 Nondestructive Read X 2.0
 6 Input Status X 2.0
 7 Flush Input Buffers X 2.0
 8 Write X X 2.0
 9 Write with Verify X 2.0
 10 Output Status X 2.0
 11 Flush Output Buffers X 2.0
 12 IOCTL Write X X 2.0
 13 Device Open X X 3.0
 14 Device Close X X 3.0
 15 Removable Media X 3.0
 16 Output Until Busy X 3.0
 19 Generic IOCTL X X 3.2
 23 Get Logical Device X 3.2
 24 Set Logical Device X 3.2
 --

 As you can see from the preceding table, a driver's interrupt section must
 support functions 0 through 12 under all versions of MS-DOS. Drivers
 tailored for MS-DOS 3.0 and 3.1 can optionally support an additional four
 functions, and MS-DOS drivers for versions 3.2 and later can support three
 more (for a total of 20). MS-DOS inspects the bits in the attribute word
 of the device-driver header to determine which of the optional functions a
 driver supports, if any.

 Some of the functions are relevant only for character-device drivers and
 some only for block-device drivers; a few have meaning to both types. In
 any case, both driver types should have an executable routine present for
 each function, even if it does nothing except set the done flag in the
 status word of the request header.

 In the command-code descriptions that follow, RH refers to the request
 header whose address was passed to the strategy routine in ES:BX, BYTE is
 an 8-bit parameter, WORD is a 16-bit parameter, and DWORD is a far pointer
 (a 16-bit offset followed by a 16-bit segment).

Function 00H (0): Driver Initialization

 MS-DOS requests the driver's initialization function (init) only once,
 when the driver is first loaded. This function performs any necessary
 device hardware initialization, setup of interrupt vectors, and so forth.
 The initialization routine must return the address of the position where
 free memory begins after the driver code (the break address), so that
 MS-DOS knows where it can build certain control structures and then load
 the next installable driver. If this is a block-device driver, init must
 also return the number of units and the address of a BPB pointer array.

 MS-DOS uses the number of units returned by a block driver in the request
 header to assign drive identifiers. For example, if the current maximum

 drive is D and the driver being initialized supports four units, MS-DOS
 will assign it the drive letters E, F, G, and H. Although the
 device-driver header also has a field for number of units, MS-DOS does not
 inspect it.

 The BPB pointer array is an array of word offsets to BIOS parameter blocks
 (Figure 14-7). Each unit defined by the driver must have one entry in the
 array, although the entries can all point to the same BPB to conserve
 memory. During the operating-system boot sequence, MS-DOS scans all the
 BPBs defined by all the units in all the block-device drivers to determine
 the largest sector size that exists on any device in the system and uses
 this information to set its cache buffer size.

 The operating-system services that the initialization code can invoke at
 load time are very limited only Int 21H Functions 01H through 0CH and
 30H. These are just adequate to check the MS-DOS version number and
 display a driver-identification or error message.

 Many programmers position the initialization code at the end of the driver
 and return that address as the location of the first free memory, so that
 MS-DOS will reclaim the memory occupied by the initialization routine
 after the routine is finished with its work. If the initialization routine
 finds that the device is missing or defective and wants to abort the
 installation of the driver completely so that it does not occupy any
 memory, it should return number of units as zero and set the free memory
 address to CS:0000H. (A character-device driver that wants to abort its
 installation should clear bit 15 of the attribute word in the driver
 header and then set the units field and free memory address as though it
 were a block-device driver.)

 Byte(s) Contents
 --
 00-01H Bytes per sector
 02H Sectors per allocation unit (power of 2)
 03H-04H Number of reserved sectors (starting at sector 0)
 05H Number of file allocation tables
 06H-07H Maximum number of root-directory entries
 08H-09H Total number of sectors in medium
 0AH Media descriptor byte
 0BH-0CH Number of sectors occupied by a single FAT
 0DH-0EH Sectors per track (versions 3.0 and later)
 0FH-10H Number of heads (versions 3.0 and later)
 11H-12H Number of hidden sectors (versions 3.0 and later)
 13H-14H High-order word of number of hidden sectors
 (version 4.0)
 15H-18H If bytes 8-9 are zero, total number of sectors in
 medium (version 4.0)
 19H-1EH Reserved, should be zero (version 4.0)
 --

 Figure 14-7. Structure of a BIOS parameter block (BPB). Every formatted
 disk contains a copy of its BPB in the boot sector. (See Chapter 10.)

 The initialization function is called with

 --
 RH + 2 BYTE Command code = 0

 RH + 18 DWORD Pointer to character after equal sign

 on CONFIG.SYS line that loaded driver
 (this information is read-only)

 RH + 22 BYTE Drive number for first unit of this
 block driver (0 = A, 1 = B, and so
 forth) (MS-DOS version 3 only)
 --

 It returns:

 --
 RH + 3 WORD Status

 RH + 13 BYTE Number of units (block devices only)

 RH + 14 DWORD Address of first free memory above
 driver (break address)

 RH + 18 DWORD BPB pointer array (block devices
 only)
 --

Function 01H (1): Media Check

 The media-check function applies only to block devices, and in
 character-device drivers it should do nothing except set the done flag.
 This function is called when a drive-access call other than a simple file
 read or write is pending. MS-DOS passes to the function the media
 descriptor byte for the disk that it assumes is in the drive (Figure
 14-8). If feasible, the media-check routine returns a code indicating
 whether the disk has been changed since the last transfer. If the
 media-check routine can assert that the disk has not been changed, MS-DOS
 can bypass rereading the FAT before a directory access, which improves
 overall performance.

 Code Meaning
 --
 0F0H 3.5", 2-sided, 18-sector
 0F8H fixed disk
 0F9H 3.5", 2-sided, 9-sector
 0F9H 5.25", 2-sided, 15-sector
 0FCH 5.25", 1-sided, 9-sector
 0FDH 5.25", 2-sided, 9-sector
 0FEH 5.25", 1-sided, 8-sector
 0FFH 5.25", 2-sided, 8-sector
 --

 Figure 14-8. Current valid MS-DOS codes for the media descriptor byte of
 the request header, assuming bit 13 in the attribute word of the driver
 header is zero.

 MS-DOS responds to the results of the media-check function in the
 following ways:

 o If the disk has not been changed, MS-DOS proceeds with the disk access.

 o If the disk has been changed, MS-DOS invalidates all buffers associated
 with this unit, including buffers containing data waiting to be written
 (this data is simply lost), performs a BUILD BPB call, and then reads

 the disk's FAT and directory.

 o If the disk-change status is unknown, the action taken by MS-DOS
 depends upon the state of its internal buffers. If data that needs to
 be written out is present in the buffers, MS-DOS assumes no disk change
 has occurred and writes the data (taking the risk that, if the disk
 really was changed, the file structure on the new disk may be damaged).
 If the buffers are empty or have all been previously flushed to the
 disk, MS-DOS assumes that the disk was changed, and then proceeds as
 described above for the disk-changed return code.

 If bit 11 of the device-header attribute word is set (that is, the driver
 supports the optional open/close/removable-media functions), the host
 system is MS-DOS version 3.0 or later, and the function returns the
 disk-changed code (-1), the function must also return the segment and
 offset of the ASCIIZ volume label for the previous disk in the drive. (If
 the driver does not have the volume label, it can return a pointer to the
 ASCIIZ string NO NAME.) If MS-DOS determines that the disk was changed
 with unwritten data still present in its buffers, it issues a
 critical-error 0FH (invalid disk change). Application programs can trap
 this critical error and prompt the user to replace the original disk.

 The media-check function is called with

 --
 RH + 1 BYTE Unit code

 RH + 2 BYTE Command code = 1

 RH + 13 BYTE Media descriptor byte
 --

 It returns

 --
 RH + 3 WORD Status

 RH + 14 BYTE Media-change code:

 -1 if disk changed

 0 if don't know whether disk changed

 1 if disk not changed

 RH + 15 DWORD Pointer to previous volume label, if
 device attribute bit 11 = 1 and disk
 has been changed (MS-DOS versions 3.0
 and later)
 --

Function 02H (2): Build BIOS Parameter Block (BPB)

 The build BPB function applies only to block devices, and in
 character-device drivers should do nothing except set the done flag. The
 kernel uses this function to get a pointer to the valid BPB (see Figure
 14-7) for the current disk and calls it when the disk-changed code is
 returned by the media-check routine or the don't-know code is returned and
 there are no dirty buffers (buffers with changed data that have not yet

 been written to disk). Thus, a call to this function indicates that the
 disk has been legally changed.

 The build BPB function receives a pointer to a one-sector buffer in the
 request header. If bit 13 in the driver header's attribute word is zero,
 the buffer contains the first sector of the FAT (which includes the media
 identification byte) and should not be altered by the driver. If bit 13 is
 set, the driver can use the buffer as scratch space.

 The build BPB function is called with

 --
 RH + 1 BYTE Unit code

 RH + 2 BYTE Command code = 2

 RH + 13 BYTE Media descriptor byte

 RH + 14 DWORD Buffer address
 --

 It returns

 --
 RH + 3 WORD Status

 RH + 18 DWORD Pointer to new BPB
 --

 Under MS-DOS versions 3.0 and later, if bit 11 of the header's device
 attribute word is set, this routine should also read the volume label off
 the disk and save it.

Function 03H (3): I/O-Control Read

 The IOCTL read function allows the device driver to pass information
 directly to the application program. This function is called only if bit
 14 is set in the device attribute word. MS-DOS performs no error check on
 IOCTL I/O calls.

 The IOCTL read function is called with

 --
 RH + 1 BYTE Unit code (block devices)

 RH + 2 BYTE Command code = 3

 RH + 13 BYTE Media descriptor byte

 RH + 14 DWORD Transfer address

 RH + 18 WORD Byte/sector count

 RH + 20 WORD Starting sector number (block
 devices)
 --

 It returns

 --
 RH + 3 WORD Status

 RH + 18 WORD Actual bytes or sectors transferred
 --

Function 04H (4): Read

 The read function transfers data from the device into the specified memory
 buffer. If an error is encountered during the read, the function must set
 the error status and, in addition, report the number of bytes or sectors
 successfully transferred; it is not sufficient to simply report an error.

 The read function is called with

 --
 RH + 1 BYTE Unit code (block devices)

 RH + 2 BYTE Command code = 4

 RH + 13 BYTE Media descriptor byte

 RH + 14 DWORD Transfer address

 RH + 18 WORD Byte/sector count

 RH + 20 WORD Starting sector number (block
 devices)
 --

 For block-device read operations in MS-DOS version 4, if the logical unit
 is larger than 32 MB and bit 1 of the driver's attribute word is set, the
 following request structure is used instead:

 --
 RH + 1 BYTE Unit code

 RH + 2 BYTE Command code = 4

 RH + 13 BYTE Media descriptor byte

 RH + 14 DWORD Transfer address

 RH + 18 WORD Sector count

 RH + 20 WORD Contains -1 to signal use of 32-bit
 sector number

 RH + 26 DWORD 32-bit starting sector number
 --

 The read function returns

 --
 RH + 3 WORD Status

 RH + 18 WORD Actual bytes or sectors transferred

 RH + 22 DWORD Pointer to volume label if error 0FH

 is returned (MS-DOS versions 3.0 and
 later)
 --

 Under MS-DOS versions 3.0 and later, this routine can use the count of
 open files maintained by the open and close functions (0DH and 0EH) and
 the media descriptor byte to determine whether the disk has been illegally
 changed.

Function 05H (5): Nondestructive Read

 The nondestructive read function applies only to character devices, and in
 block devices it should do nothing except set the done flag. It returns
 the next character that would be obtained with a read function (command
 code 4), without removing that character from the driver's internal
 buffer. MS-DOS uses this function to check the console driver for pending
 Control-C characters during other operations.

 The nondestructive read function is called with

 --
 RH + 2 BYTE Command code = 5
 --

 It returns

 --
 RH + 3 WORD Status

 If busy bit = 0, at least one
 character is waiting

 If busy bit = 1, no characters are
 waiting

 RH + 13 BYTE Character (if busy bit = 0)
 --

Function 06H (6): Input Status

 The input-status function applies only to character devices, and in
 block-device drivers it should do nothing except set the done flag. This
 function returns the current input status for the device, allowing MS-DOS
 to test whether characters are waiting in a type-ahead buffer. If the
 character device does not have a type-ahead buffer, the input-status
 routine should always return the busy bit equal to zero, so that MS-DOS
 will not wait forever to call the read (04H) or nondestructive read (05H)
 function.

 The input-status function is called with

 --
 RH + 2 BYTE Command code = 6
 --

 It returns

 --
 RH + 3 WORD Status:

 If busy bit = 1, read request goes to
 physical device.

 If busy bit = 0, characters already
 in device buffer and read request
 returns quickly.
 --

Function 07H (7): Flush Input Buffers

 The flush-input-buffers function applies only to character devices, and in
 block-device drivers it should do nothing except set the done flag. This
 function causes any data waiting in the input buffer to be discarded.

 The flush-input-buffers function is called with

 --
 RH + 2 BYTE Command code = 7
 --

 It returns

 --
 RH + 3 WORD Status

 --

Function 08H (8): Write

 The write function transfers data from the specified memory buffer to the
 device. If an error is encountered during the write, the write function
 must set the error status and, in addition, report the number of bytes or
 sectors successfully transferred; it is not sufficient to simply report an
 error.

 The write function is called with

 --
 RH + 1 BYTE Unit code (block devices)

 RH + 2 BYTE Command code = 8

 RH + 13 BYTE Media descriptor byte

 RH + 14 DWORD Transfer address

 RH + 18 WORD Byte/sector count

 RH + 20 WORD Starting sector number (block
 devices)
 --

 For block-device write operations in MS-DOS version 4, if the logical unit
 is larger than 32 MB and bit 1 of the driver's attribute word is set, the
 following request structure is used instead:

 --
 RH + 1 BYTE Unit code

 RH + 2 BYTE Command code = 8

 RH + 13 BYTE Media descriptor byte

 RH + 14 DWORD Transfer address

 RH + 18 WORD Sector count

 RH + 20 WORD Contains -1 to signal use of 32-bit
 sector number

 RH + 26 DWORD 32-bit starting sector number
 --

 The write function returns

 --
 RH + 3 WORD Status

 RH + 18 WORD Actual bytes or sectors transferred

 RH + 22 DWORD Pointer to volume label if error 0FH
 returned (MS-DOS versions 3.0 and
 later)
 --

 Under MS-DOS versions 3.0 and later, this routine can use the reference
 count of open files maintained by the open and close functions (0DH and
 0EH) and the media descriptor byte to determine whether the disk has been
 illegally changed.

Function 09H (9): Write with Verify

 The write-with-verify function transfers data from the specified memory
 buffer to the device. If feasible, it should perform a read-after-write
 verification of the data to confirm that the data was written correctly.
 Otherwise, Function 09H is exactly like Function 08H.

Function 0AH (10): Output Status

 The output-status function applies only to character devices, and in
 block-device drivers it should do nothing except set the done flag. This
 function returns the current output status for the device.

 The output-status function is called with

 --
 RH + 2 BYTE Command code = 10 (0AH)
 --

 It returns

 --
 RH + 3 WORD Status:

 If busy bit = 1, write request waits
 for completion of current request.

 If busy bit = 0, device idle and
 write request starts immediately.
 --

Function 0BH (11): Flush Output Buffers

 The flush-output-buffers function applies only to character devices, and
 in block-device drivers it should do nothing except set the done flag.
 This function empties the output buffer, if any, and discards any pending
 output requests.

 The flush-output-buffers function is called with

 --
 RH + 2 BYTE Command code = 11 (0BH)
 --

 It returns

 --
 RH + 3 WORD Status

 --

Function 0CH (12): I/O-Control Write

 The IOCTL write function allows an application program to pass control
 information directly to the driver. This function is called only if bit 14
 is set in the device attribute word. MS-DOS performs no error check on
 IOCTL I/O calls.

 The IOCTL write function is called with

 --
 RH + 1 BYTE Unit code (block devices)

 RH + 2 BYTE Command code = 12 (0CH)

 RH + 13 BYTE Media descriptor byte

 RH + 14 DWORD Transfer address

 RH + 18 WORD Byte/sector count

 RH + 20 WORD Starting sector number (block
 devices)
 --

 It returns

 --
 RH + 3 WORD Status

 RH + 18 WORD Actual bytes or sectors transferred
 --

Function 0DH (13): Device Open

 The device-open function is supported only under MS-DOS versions 3.0 and

 later and is called only if bit 11 is set in the device attribute word of
 the device header.

 On block devices, the device-open function can be used to manage local
 buffering and to increment a reference count of the number of open files
 on the device. This capability must be used with care, however, because
 programs that access files through FCBs frequently fail to close them,
 thus invalidating the open-files count. One way to protect against this
 possibility is to reset the open-files count to zero, without flushing the
 buffers, whenever the answer to a media-change call is yes and a
 subsequent build BPB call is made to the driver.

 On character devices, the device-open function can be used to send a
 device-initialization string (which can be set into the driver by an
 application program by means of an IOCTL write function) or to deny
 simultaneous access to a character device by more than one process. Note
 that the predefined handles for the CON, AUX, and PRN devices are always
 open.

 The device-open function is called with

 --
 RH + 1 BYTE Unit code (block devices)

 RH + 2 BYTE Command code = 13 (0DH)
 --

 It returns

 --
 RH + 3 WORD Status
 --

Function 0EH (14): Device Close

 The device-close function is supported only under MS-DOS versions 3.0 and
 later and is called only if bit 11 is set in the device attribute word of
 the device header.

 On block devices, this function can be used to manage local buffering and
 to decrement a reference count of the number of open files on the device;
 when the count reaches zero, all files have been closed and the driver
 should flush buffers because the user may change disks.

 On character devices, the device-close function can be used to send a
 device-dependent post-I/O string such as a formfeed. (This string can be
 set into the driver by an application program by means of an IOCTL write
 function.) Note that the predefined handles for the CON, PRN, and AUX
 devices are never closed.

 The device-close function is called with

 --
 RH + 1 BYTE Unit code (block devices)

 RH + 2 BYTE Command code = 14 (0EH)
 --

 It returns

 --
 RH + 3 WORD Status
 --

Function 0FH (15): Removable Media

 The removable-media function is supported only under MS-DOS versions 3.0
 and later and only on block devices; in character-device drivers it should
 do nothing except set the done flag. This function is called only if bit
 11 is set in the device attribute word in the device header.

 The removable-media function is called with

 --
 RH + 1 BYTE Unit code

 RH + 2 BYTE Command code = 15 (0FH)
 --

 It returns

 --
 RH + 3 WORD Status:

 If busy bit = 1, medium nonremovable

 If busy bit = 0, medium removable
 --

Function 10H (16): Output Until Busy

 The output-until-busy function is supported only under MS-DOS versions 3.0
 and later, and only on character devices; in block-device drivers it
 should do nothing except set the done flag. This function transfers data
 from the specified memory buffer to a device, continuing to transfer bytes
 until the device is busy. It is called only if bit 13 of the device
 attribute word is set in the device header.

 This function is an optimization included specifically for the use of
 print spoolers. It is not an error for this function to return a number of
 bytes transferred that is less than the number of bytes requested.

 The output-until-busy function is called with

 --
 RH + 2 BYTE Command code = 16 (10H)

 RH + 14 DWORD Transfer address

 RH + 18 WORD Byte count
 --

 It returns

 --
 RH + 3 WORD Status

 RH + 18 WORD Actual bytes transferred

 --

Function 13H (19) Generic IOCTL

 The generic IOCTL function is supported only under MS-DOS versions 3.2 and
 later and is called only if bit 6 is set in the device attribute word of
 the device header. This function corresponds to the MS-DOS generic IOCTL
 service supplied to application programs by Int 21H Function 44H
 Subfunctions 0CH and 0DH.

 The generic IOCTL function is passed a category (major) code, a function
 (minor) code, the contents of the SI and DI registers at the point of the
 IOCTL call, and the segment and offset of a data buffer. This buffer in
 turn contains other information whose format depends on the major and
 minor IOCTL codes passed in the request header. The driver must interpret
 the major and minor codes in the request header and the contents of the
 additional buffer to determine which operation it will carry out, then set
 the done flag in the request-header status word, and return any other
 applicable information in the request header or the data buffer.

 Services that the generic IOCTL function may invoke, if the driver
 supports them, include configuration of the driver for nonstandard disk
 formats, reading and writing entire disk tracks of data, and formatting
 and verifying tracks. The generic IOCTL function has been designed to be
 open-ended, so that it can be used to easily extend the device-driver
 definition under future versions of MS-DOS.

 The generic IOCTL function is called with

 --
 RH + 1 BYTE Unit number (block devices)

 RH + 2 BYTE Command code = 19 (13H)

 RH + 13 BYTE Category (major) code

 RH + 14 BYTE Function (minor) code

 RH + 15 WORD SI register contents

 RH + 17 WORD DI register contents

 RH + 19 DWORD Address of generic IOCTL data packet
 --

 It returns

 --
 RH + 3 WORD Status
 --

Function 17H (23): Get Logical Device

 The get-logical-device function is supported only under MS-DOS versions
 3.2 and later and only on block devices; in character-device drivers it
 should do nothing except set the done bit in the status word. This
 function is called only if bit 6 is set in the device attribute word of
 the device header. It corresponds to the get-logical-device-map service
 supplied to application programs through Int 21H Function 44H Subfunction

 0EH.

 The get-logical-device function returns a code for the last drive letter
 used to reference the device; if only one drive letter is assigned to the
 device, the returned unit code should be zero. Thus, this function can be
 used to determine whether more than one drive letter is assigned to the
 same physical device.

 The get-logical-device function is called with

 --
 RH + 1 BYTE Unit code

 RH + 2 BYTE Command code = 23 (17H)
 --

 It returns

 --
 RH + 1 BYTE Last unit referenced, or zero

 RH + 3 WORD Status
 --

Function 18H (24): Set Logical Device

 The set-logical-device function is supported only under MS-DOS versions
 3.2 and later and only on block devices; in character-device drivers it
 should do nothing except set the done bit in the status word. This
 function is called only if bit 6 is set in the device attribute word of
 the device header. It corresponds to the set-logical-device-map service
 supplied to application programs by MS-DOS through Int 21H Function 44H
 Subfunction 0FH.

 The set-logical-device function informs the driver of the next
 logical-drive identifier that will be used to reference the physical
 device. The unit code passed by the MS-DOS kernel in this case is
 zero-based relative to the number of logical drives supported by this
 particular driver. For example, if the driver supports two floppy-disk
 units (A and B), only one physical floppy-disk drive exists in the system,
 and the set-logical-device function is called with a unit number of 1, the
 driver is being informed that the next read or write request from the
 kernel will be directed to drive B.

 The set-logical-device function is called with

 --
 RH + 1 BYTE Unit code

 RH + 2 BYTE Command code = 24 (18H)
 --

 It returns

 --
 RH + 3 WORD Status
 --

The Processing of a Typical I/O Request

 An application program requests an I/O operation from MS-DOS by loading
 registers with the appropriate values and executing an Int 21H. This
 results in the following sequence of actions:

 1. MS-DOS inspects its internal tables and determines which device driver
 should receive the I/O request.

 2. MS-DOS creates a request-header data packet in a reserved area of
 memory. (Disk I/O requests are transformed from file and record
 information into logical-sector requests by MS-DOS's interpretation of
 the disk directory and FAT.)

 3. MS-DOS calls the device driver's strat entry point, passing the
 address of the request header in the ES:BX registers.

 4. The device driver saves the address of the request header in a local
 variable and performs a FAR RETURN.

 5. MS-DOS calls the device driver's intr entry point.

 6. The interrupt routine saves all registers, retrieves the address of
 the request header that was saved by the strategy routine, extracts
 the function code, and branches to the appropriate command-code
 subroutine to perform the function.

 7. If a data transfer on a block device was requested, the driver's read
 or write subroutine translates the logical-sector number into a head,
 track, and physical-sector address for the requested unit and then
 performs the I/O operation. Because a multiple-sector transfer can be
 requested in a single request header, a single request by MS-DOS to
 the driver can result in multiple read or write commands to the disk
 controller.

 8. When the requested function is complete, the interrupt routine sets
 the status word and any other required information into the request
 header, restores all registers to their state at entry, and performs a
 FAR RETURN.

 9. MS-DOS translates the driver's return status into the appropriate
 return code and carry-flag status for the MS-DOS Int 21H function that
 was requested and returns control to the application program.

 Note that a single request by an application program can result in MS-DOS
 passing many request headers to the driver. For example, attempting to
 open a file in a subdirectory on a previously unaccessed disk drive might
 require the following actions:

 o Reading the disk's boot sector to get the BPB

 o Reading from one to many sectors of the root directory to find the
 entry for the subdirectory and obtain its starting-cluster number

 o Reading from one to many sectors of both the FAT and the subdirectory
 itself to find the entry for the desired file

The CLOCK Driver: A Special Case

 MS-DOS uses the CLOCK device for marking file control blocks and directory
 entries with the date and time, as well as for providing the date and time
 services to application programs. This device has a unique type of
 interaction with MS-DOS--a 6-byte sequence is read from or written to the
 driver that obtains or sets the current date and time. The sequence has
 the following format:

 +---------+---------+---------+---------+---------+---------+
0	1	2	3	4	5
Days	Days	Minutes	Hours	Seconds/	Seconds
low byte	high byte			100	
 +---------+---------+---------+---------+---------+---------+

 The value passed for days is a 16-bit integer representing the number of
 days elapsed since January 1, 1980.

 The clock driver can have any logical-device name because MS-DOS uses the
 CLOCK bit in the device attribute word of the driver's device header to
 identify the device, rather than its name. On IBM PC systems, the clock
 device has the logical-device name CLOCK$.

Writing and Installing a Device Driver

 Now that we have discussed the structure and capabilities of installable
 device drivers for the MS-DOS environment, we can discuss the mechanical
 steps of assembling and linking them.

Assembly

 Device drivers for MS-DOS always have an origin of zero but are otherwise
 assembled, linked, and converted into an executable module as though they
 were .COM files. (Although MS-DOS is also capable of loading installable
 drivers in the .EXE file format, this introduces unnecessary complexity
 into writing and debugging drivers and offers no significant advantages.
 In addition, it is not possible to use .EXE-format drivers with some IBM
 versions of MS-DOS because the .EXE loader is located in COMMAND.COM,
 which is not present when the installable device drivers are being
 loaded.) The driver should not have a declared stack segment and must, in
 general, follow the other restrictions outlined in Chapter 3 for
 memory-image (.COM) programs. A driver can be loaded anywhere, so beware
 that you do not make any assumptions in your code about the driver's
 location in physical memory. Figure 14-9 presents a skeleton example that
 you can follow as you read the next few pages.

 --
 name driver
 page 55,132
 title DRIVER.ASM Device-Driver Skeleton

 ;
 ; DRIVER.ASM MS-DOS device-driver skeleton
 ;
 ; The driver command-code routines are stubs only and have
 ; no effect but to return a nonerror "done" status.
 ;
 ; Copyright 1988 Ray Duncan
 ;

 _TEXT segment word public 'CODE'

 assume cs:_TEXT,ds:_TEXT,es:NOTHING

 org 0

 MaxCmd equ 24 ; maximum allowed command code:
 ; 12 for MS-DOS 2
 ; 16 for MS-DOS 3.0-3.1
 ; 24 for MS-DOS 3.2-3.3
 cr equ 0dh ; ASCII carriage return
 lf equ 0ah ; ASCII linefeed
 eom equ '$' ; end-of-message signal

 Header: ; device-driver header
 dd -1 ; link to next device driver
 dw 0c840h ; device attribute word
 dw Strat ; "strategy" routine entry point
 dw Intr ; "interrupt" routine entry point
 db 'SKELETON' ; logical-device name

 RHPtr dd ? ; pointer to request header, passed
 ; by MS-DOS kernel to strategy routine

 Dispatch: ; interrupt-routine command-code
 ; dispatch table:
 dw Init ; 0 = initialize driver
 dw MediaChk ; 1 = media check
 dw BuildBPB ; 2 = build BPB
 dw IoctlRd ; 3 = IOCTL read
 dw Read ; 4 = read
 dw NdRead ; 5 = nondestructive read
 dw InpStat ; 6 = input status
 dw InpFlush ; 7 = flush input buffers
 dw Write ; 8 = write
 dw WriteVfy ; 9 = write with verify
 dw OutStat ; 10 = output status
 dw OutFlush ; 11 = flush output buffers
 dw IoctlWt ; 12 = IOCTL write
 dw DevOpen ; 13 = device open (MS-DOS 3.0+)
 dw DevClose ; 14 = device close (MS-DOS 3.0+)
 dw RemMedia ; 15 = removable media (MS-DOS 3.0+)
 dw OutBusy ; 16 = output until busy (MS-DOS 3.0+)
 dw Error ; 17 = not used
 dw Error ; 18 = not used
 dw GenIOCTL ; 19 = generic IOCTL (MS-DOS 3.2+)
 dw Error ; 20 = not used
 dw Error ; 21 = not used
 dw Error ; 22 = not used
 dw GetLogDev ; 23 = get logical device (MS-DOS 3.2+)
 dw SetLogDev ; 24 = set logical device (MS-DOS 3.2+)
 Strat proc far ; device-driver strategy routine,
 ; called by MS-DOS kernel with
 ; ES:BX = address of request header

 ; save pointer to request header
 mov word ptr cs:[RHPtr],bx
 mov word ptr cs:[RHPtr+2],es

 ret ; back to MS-DOS kernel

 Strat endp

 Intr proc far ; device-driver interrupt routine,
 ; called by MS-DOS kernel immediately
 ; after call to strategy routine

 push ax ; save general registers
 push bx
 push cx
 push dx
 push ds
 push es
 push di
 push si
 push bp

 push cs ; make local data addressable
 pop ds ; by setting DS = CS

 les di,[RHPtr] ; let ES:DI = request header

 ; get BX = command code
 mov bl,es:[di+2]
 xor bh,bh
 cmp bx,MaxCmd ; make sure it's legal
 jle Intr1 ; jump, function code is ok
 call Error ; set error bit, "unknown command" code
 jmp Intr2

 Intr1: shl bx,1 ; form index to dispatch table
 ; and branch to command-code routine
 call word ptr [bx+Dispatch]

 les di,[RHPtr] ; ES:DI = addr of request header

 Intr2: or ax,0100h ; merge 'done' bit into status and
 mov es:[di+3],ax ; store status into request header

 pop bp ; restore general registers
 pop si
 pop di
 pop es
 pop ds
 pop dx
 pop cx
 pop bx
 pop ax
 ret ; back to MS-DOS kernel

 ; Command-code routines are called by the interrupt routine
 ; via the dispatch table with ES:DI pointing to the request

 ; header. Each routine should return AX = 0 if function was
 ; completed successfully or AX = (8000h + error code) if
 ; function failed.

 MediaChk proc near ; function 1 = media check

 xor ax,ax
 ret

 MediaChk endp

 BuildBPB proc near ; function 2 = build BPB

 xor ax,ax
 ret

 BuildBPB endp

 IoctlRd proc near ; function 3 = IOCTL read

 xor ax,ax
 ret

 IoctlRd endp
 Read proc near ; function 4 = read (input)

 xor ax,ax
 ret

 Read endp

 NdRead proc near ; function 5 = nondestructive read

 xor ax,ax
 ret

 NdRead endp

 InpStat proc near ; function 6 = input status

 xor ax,ax
 ret

 InpStat endp

 InpFlush proc near ; function 7 = flush input buffers

 xor ax,ax
 ret

 InpFlush endp

 Write proc near ; function 8 = write (output)

 xor ax,ax
 ret

 Write endp

 WriteVfy proc near ; function 9 = write with verify

 xor ax,ax
 ret
 endp

 OutStat proc near ; function 10 = output status

 xor ax,ax
 ret

 OutStat endp

 OutFlush proc near ; function 11 = flush output buffers

 xor ax,ax
 ret

 OutFlush endp

 IoctlWt proc near ; function 12 = IOCTL write

 xor ax,ax
 ret

 IoctlWt endp

 DevOpen proc near ; function 13 = device open

 xor ax,ax
 ret

 DevOpen endp

 DevClose proc near ; function 14 = device close

 xor ax,ax
 ret

 DevClose endp
 RemMedia proc near ; function 15 = removable media

 xor ax,ax
 ret

 RemMedia endp

 OutBusy proc near ; function 16 = output until busy

 xor ax,ax
 ret

 OutBusy endp

 GenIOCTL proc near ; function 19 = generic IOCTL

 xor ax,ax
 ret

 GenIOCTL endp

 GetLogDev proc near ; function 23 = get logical device

 xor ax,ax
 ret

 GetLogDev endp

 SetLogDev proc near ; function 24 = set logical device

 xor ax,ax
 ret

 SetLogDev endp

 Error proc near ; bad command code in request header

 mov ax,8003h ; error bit + "unknown command" code
 ret
 endp

 Init proc near ; function 0 = initialize driver

 push es ; save address of request header
 push di

 mov ax,cs ; convert load address to ASCII
 mov bx,offset Ident1
 call hexasc

 mov ah,9 ; display driver sign-on message
 mov dx,offset Ident
 int 21h

 pop di ; restore request-header address
 pop es

 ; set address of free memory
 ; above driver (break address)

 mov word ptr es:[di+14],offset Init
 mov word ptr es:[di+16],cs

 xor ax,ax ; return status
 ret

 Init endp

 hexasc proc near ; converts word to hex ASCII
 ; call with AX = value,
 ; DS:BX = address for string
 ; returns AX, BX destroyed

 push cx ; save registers
 push dx

 mov dx,4 ; initialize character counter
 mov cx,4 ; isolate next four bits
 rol ax,cl
 mov cx,ax
 and cx,0fh
 add cx,'0' ; convert to ASCII
 cmp cx,'9' ; is it 0-9?
 jbe hexasc2 ; yes, jump
 add cx,'A'-'9'-1 ; add fudge factor for A-F

 hexasc2: ; store this character
 mov [bx],cl
 inc bx ; bump string pointer

 dec dx ; count characters converted
 jnz hexasc1 ; loop, not four yet

 pop dx ; restore registers
 pop cx
 ret ; back to caller

 hexasc endp

 Ident db cr,lf,lf
 db 'Advanced MS-DOS Example Device Driver'
 db cr,lf
 db 'Device driver header at: '
 Ident1 db 'XXXX:0000'
 db cr,lf,lf,eom

 Intr endp

 _TEXT ends

 end
 --

 Figure 14-9. DRIVER.ASM: A functional skeleton from which you can
 implement your own working device driver.

 The driver's device header must be located at the beginning of the file

 (offset 0000H). Both words in the link field in the header should be set
 to -1. The attribute word must be set up correctly for the device type and
 other options. The offsets to the strategy and interrupt routines must be
 relative to the same segment base as the device header itself. If the
 driver is for a character device, the name field should be filled in
 properly with the device's logical name. The logical name can be any legal
 8-character filename, padded with spaces and without a colon. Beware of
 accidentally duplicating the names of existing character devices, unless
 you are intentionally superseding a resident driver.

 MS-DOS calls the strategy and interrupt routines for the device by means
 of an intersegment call (CALL FAR) when the driver is first loaded and
 installed and again whenever an application program issues an I/O request
 for the device. MS-DOS uses the ES:BX registers to pass the strat routine
 a double-word pointer to the request header; this address should be saved
 internally in the driver so that it is available for use during the
 subsequent call to the intr routine.

 The command-code routines for function codes 0 through 12 (0CH) must be
 present in every installable device driver, regardless of device type.
 Functions 13 (0DH) and above are optional for drivers used with MS-DOS
 versions 3.0 and later and can be handled in one of the following ways:

 o Don't implement them, and leave the associated bits in the device
 header cleared. The resulting driver will work in either version 2 or
 version 3 but does not take full advantage of the augmented
 functionality of version 3.

 o Implement them, and test the MS-DOS version during the initialization
 sequence, setting bits 6 and 11 of the device header appropriately.
 Write all command-code routines so that they test this bit and adjust
 to accommodate the host version of MS-DOS. Such a driver requires more
 work and testing but will take full advantage of both the version 2 and
 the version 3 environments.

 o Implement them, and assume that all the version 3 facilities are
 available. With this approach, the resulting driver may not work
 properly under version 2.

 Remember that device drivers must preserve the integrity of MS-DOS. The
 driver must preserve all registers, including flags (especially the
 direction flag and interrupt enable bits), and if the driver makes heavy
 use of the stack, it should switch to an internal stack of adequate depth
 (the MS-DOS stack has room for only 40 to 50 bytes when a driver is
 called).

 If you install a new CON driver, be sure to set the bits for standard
 input and standard output in the device attribute word in the device
 header.

 You'll recall that one file can contain multiple drivers. In this case,
 the device-header link field of each driver should point to the segment
 offset of the next, all using the same segment base, and the link field
 for the last driver in the file should be set to -1,-1. The initialization
 routines for all the drivers in the file should return the same break
 address.

Linking

 Use the standard MS-DOS linker to transform the .OBJ file that is output
 from the assembler into a relocatable .EXE module. Then, use the EXE2BIN
 utility (see Chapter 4) to convert the .EXE file into a memory-image
 program. The extension on the final driver file can be anything, but .BIN
 and .SYS are most commonly used in MS-DOS systems, and it is therefore
 wise to follow one of these conventions.

Installation

 After the driver is assembled, linked, and converted to a .BIN or .SYS
 file, copy it to the root directory of a bootable disk. If it is a
 character-device driver, do not use the same name for the file as you used
 for the logical device listed in the driver's header, or you will not be
 able to delete, copy, or rename the file after the driver is loaded.

 Use your favorite text editor to add the line

 DEVICE=[D:][PATH]FILENAME.EXT

 to the CONFIG.SYS file on the bootable disk. (In this line, D: is an
 optional drive designator and FILENAME.EXT is the name of the file
 containing your new device driver. You can include a path specification in
 the entry if you prefer not to put the driver file in your root
 directory.) Now restart your computer system to load the modified
 CONFIG.SYS file.

 During the MS-DOS boot sequence, the SYSINIT module (which is part of
 IO.SYS) reads and processes the CONFIG.SYS file. It loads the driver into
 memory and inspects the device header. If the driver is a character-device
 driver, SYSINIT links it into the device chain ahead of the other
 character devices; if it is a block-device driver, SYSINIT places it
 behind all previously linked block devices and the resident block devices
 (Figures 14-10, 14-11, and 14-12). It accomplishes the linkage by
 updating the link field in the device header to point to the segment and
 offset of the next driver in the chain. The link field of the last driver
 in the chain contains -1,-1.

 Next, SYSINIT calls the strat routine with a request header that contains
 a command code of zero, and then it calls the intr routine. The driver
 executes its initialization routine and returns the break address, telling
 MS-DOS how much memory to reserve for this driver. Now MS-DOS can proceed
 to the next entry in the CONFIG.SYS file.

 You cannot supersede a built-in block-device driver--you can only add
 supplemental block devices. However, you can override the default system
 driver for a character device (such as CON) with an installed driver by
 giving it the same logical-device name in the device header. When
 processing a character I/O request, MS-DOS always scans the list of
 installed drivers before it scans the list of default devices and takes
 the first match.

 NUL
 |
 +
 CON
 |
 +
 AUX
 |

 +
 PRN
 |
 +
 CLOCK
 |
 +
 Any other resident block
 or character devices

 Figure 14-10. MS-DOS device-driver chain before any installable device
 drivers have been loaded.

 NUL
 |
 +
 Installable character-
 device drivers
 |
 +
 CON
 |
 +
 AUX
 |
 +
 PRN
 |
 +
 CLOCK
 |
 +
 Any other resident block
 or character devices
 |
 +
 Installable block-
 device drivers

 Figure 14-11. MS-DOS device-driver chain after installable device drivers
 have been loaded.

 Address Attribute Strategy Interrupt Type Units Name
 routine routine
 --
 00E3:0111 8004 0FD5 0FE0 C NUL
 0070:0148 8013 008E 0099 C CON
 0070:01DD 8000 008E 009F C AUX
 0070:028E 8000 008E 00AE C PRN
 0070:0300 8008 008E 00C3 C CLOCK
 0070:03CC 0000 008E 00C9 B 02
 0070:01EF 8000 008E 009F C COM1
 0070:02A0 8000 008E 00AE C LPT1
 0070:06F0 8000 008E 00B4 C LPT2
 0070:0702 8000 008E 00BA C LPT3
 0070:0714 8000 008E 00A5 C COM2
 End of
 device chain
 --

 Figure 14-12. Example listing of device chain under MS-DOS version 2.1,
 "plain vanilla" IBM PC with no fixed disks or user device drivers.
 (C=character device, B=block device)

Debugging a Device Driver

 The most important thing to remember when testing new device drivers is to
 maintain adequate backups and a viable fallback position. Don't modify the
 CONFIG.SYS file and install the new driver on your fixed disk before it is
 proven! Be prudent--create a bootable floppy disk and put the modified
 CONFIG.SYS file and the new driver on that for debugging. When everything
 is working properly, copy the finished product to its permanent storage
 medium.

 The easiest way to test a new device driver is to write a simple
 assembly-language front-end routine that sets up a simulated request
 packet and then performs FAR CALLs to the strat and intr entry points,
 exactly as MS-DOS would. You can then link the driver and the front end
 together into a .COM or .EXE file that can be run under the control of
 CodeView or another debugger. This arrangement makes it easy to trace each
 of the command-code routines individually, to observe the results of the
 I/O, and to examine the status codes returned in the request header.

 Tracing the installed driver when it is linked into the MS-DOS system in
 the normal manner is more difficult. Breakpoints must be chosen carefully,
 to yield the maximum possible information per debugging run. Because
 current versions of MS-DOS maintain only one request header internally,
 the request header that was being used by the driver you are tracing will
 be overwritten as soon as your debugger makes an output request to display
 information. You will find it helpful to add a routine to your
 initialization subroutine that displays the driver's load address on the
 console when you boot MS-DOS; you can then use this address to inspect the
 device-driver header and set breakpoints within the body of the driver.

 Debugging a device driver can also be somewhat sticky when interrupt
 handling is involved, especially if the device uses the same
 interrupt-request priority level (IRQ level) as other peripherals in the
 system. Cautious, conservative programming is needed to avoid unexpected
 and unreproducible interactions with other device drivers and interrupt
 handlers. If possible, prove out the basic logic of the driver using
 polled I/O, rather than interrupt-driven I/O, and introduce interrupt
 handling only when you know the rest of the driver's logic to be solid.

 Typical device-driver errors or problems that can cause system crashes or
 strange system behavior include the following:

 o Failure to set the linkage address of the last driver in a file to -1

 o Overflow of the MS-DOS stack by driver-initialization code, corrupting
 the memory image of MS-DOS (can lead to unpredictable behavior during
 boot; remedy is to use a local stack)

 o Incorrect break-address reporting by the initialization routine (can
 lead to a system crash if the next driver loaded overwrites vital parts
 of the driver)

 o Improper BPBs supplied by the build BPB routine, or incorrect BPB

 pointer array supplied by the initialization routine (can lead to many
 confusing problems, ranging from out-of-memory errors to system boot
 failure)

 o Incorrect reporting of the number of bytes or sectors successfully
 transferred at the time an I/O error occurs (can manifest itself as a
 system crash after you enter R to the Abort, Retry, Ignore? prompt)

 Although the interface between the DOS kernel and the device driver is
 fairly simple, it is also quite strict. The command-code routines must
 perform exactly as they are defined, or the system will behave
 erratically. Even a very subtle discrepancy in the action of a
 command-code routine can have unexpectedly large global effects.

--
Chapter 15 Filters

 A filter is, essentially, a program that operates on a stream of
 characters. The source and destination of the character stream can be
 files, another program, or almost any character device. The transformation
 applied by the filter to the character stream can range from an operation
 as simple as character substitution to one as elaborate as generating
 splines from sets of coordinates.

 The standard MS-DOS package includes three simple filters: SORT, which
 alphabetically sorts text on a line-by-line basis; FIND, which searches a
 text stream to match a specified string; and MORE, which displays text one
 screenful at a time.

System Support for Filters

 The operation of a filter program relies on two MS-DOS features that first
 appeared in version 2.0: standard devices and redirectable I/O.

 The standard devices are represented by five handles that are originally
 established by COMMAND.COM. Each process inherits these handles from its
 immediate parent. Thus, the standard device handles are already open when
 a process acquires control of the system, and it can use them with
 Interrupt 21H Functions 3FH and 40H for read and write operations
 without further preliminaries. The default assignments of the standard
 device handles are as follows:

 Handle Name Default device
 --
 0 stdin (standard input) CON
 1 stdout (standard output) CON
 2 stderr (standard error) CON
 3 stdaux (standard auxiliary) AUX
 4 stdprn (standard printer) PRN
 --

 The CON device is assigned by default to the system's keyboard and video
 display. AUX and PRN are respectively associated by default with COM1 (the
 first physical serial port) and LPT1 (the first parallel printer port).
 You can use the MODE command to redirect LPT1 to one of the serial ports;
 the MODE command will also redirect PRN.

 When executing a program by entering its name at the COMMAND.COM prompt,
 you can redirect the standard input, the standard output, or both from
 their default device (CON) to another file, a character device, or a
 process. You do this by including one of the special characters <, >, >>,
 and | in the command line, in the form shown on the following page.

 Symbol Effect
 --
 < file Takes standard input from the specified file instead of
 the keyboard.

 < device Takes standard input from the named device instead of
 the keyboard.

 > file Sends standard output to the specified file instead of
 the display.

 >> file Appends standard output to the current contents of the
 specified file instead of sending it to the display.

 > device Sends standard output to the named device instead of
 the display.

 p1 | p2 Routes standard output of program p1 to become the
 standard input of program p2. (Output of p1 is said to
 be piped to p2.)
 --

 For example, the command

 C>SORT <MYFILE.TXT >PRN <Enter>

 causes the SORT filter to read its input from the file MYFILE.TXT, sort
 the lines alphabetically, and write the resulting text to the character
 device PRN (the logical name for the system's list device).

 The redirection requested by the <, >, >>, and | characters takes place at
 the level of COMMAND.COM and is invisible to the program it affects. Any
 other process can achieve a similar effect by redirecting the standard
 input and standard output with Int 21H Function 46H before calling the
 EXEC function (Int 21H Function 4BH) to run a child process.

 Note that if a program circumvents MS-DOS to perform its input and output,
 either by calling ROM BIOS functions or by manipulating the keyboard or
 video controller directly, redirection commands placed in the program's
 command line do not have the expected effect.

How Filters Work

 By convention, a filter program reads its text from the standard input
 device and writes the results of its operations to the standard output
 device. When it reaches the end of the input stream, the filter simply
 terminates. As a result, filters are both flexible and simple.

 Filter programs are flexible because they do not know, and do not care
 about, the source of the data they process or the destination of their
 output. Thus, any character device that has a logical name within the

 system (CON, AUX, COM1, COM2, PRN, LPT1, LPT2, LPT3, and so on), any file
 on any block device (local or network) known to the system, or any other
 program can supply a filter's input or accept its output. If necessary,
 you can concatenate several functionally simple filters with pipes to
 perform very complex operations.

 Although flexible, filters are also simple because they rely on their
 parent processes to supply standard input and standard output handles that
 have already been appropriately redirected. The parent must open or create
 any necessary files, check the validity of logical character-device names,
 and load and execute the preceding or following process in a pipe. The
 filter concerns itself only with the transformation it applies to the
 data.

Building a Filter

 Creating a new filter for MS-DOS is a straightforward process. In its
 simplest form, a filter need only use the handle-oriented read (Interrupt
 21H Function 3FH) and write (Interrupt 21H Function 40H) functions to
 get characters or lines from standard input and send them to standard
 output, performing any desired alterations on the text stream on a
 character-by-character or line-by-line basis.

 Figures 15-1 and 15-2 contain prototype character-oriented filters in
 both assembly language and C. In these examples, the translate routine,
 which is called for each character transferred from the standard input to
 the standard output, does nothing at all. As a result, both filters
 function rather like a very slow COPY command. You can quickly turn these
 primitive filters into useful programs by substituting your own translate
 routine.

 If you try out these programs, you'll notice that the C prototype filter
 runs much faster than its MASM equivalent. This is because the C runtime
 library is performing hidden blocking and deblocking of the input and
 output stream, whereas the MASM filter is doing exactly what it appears to
 be doing: making two calls to MS-DOS for each character processed. You can
 easily restore the MASM filter's expected speed advantage by adapting it
 to read and write lines instead of single characters.

 --
 name proto
 page 55,132
 title PROTO.ASM--prototype filter
 ;
 ; PROTO.ASM: prototype character-oriented filter
 ;
 ; Copyright 1988 Ray Duncan
 ;

 stdin equ 0 ; standard input handle
 stdout equ 1 ; standard output handle
 stderr equ 2 ; standard error handle

 cr equ 0dh ; ASCII carriage return
 lf equ 0ah ; ASCII linefeed

 _TEXT segment word public 'CODE'

 assume cs:_TEXT,ds:_DATA,ss:STACK

 main proc far ; entry point from MS-DOS

 mov ax,_DATA ; set DS = our data segment
 mov ds,ax

 main1: ; read char from stdin...
 mov dx,offset char ; DS:DX = buffer address
 mov cx,1 ; CX = length to read
 mov bx,stdin ; BX = standard input handle
 mov ah,3fh ; function 3fh = read
 int 21h ; transfer to MS-DOS
 jc main3 ; if error, terminate

 cmp ax,1 ; any character read?
 jne main2 ; if end of file, terminate

 call translate ; translate character

 ; write char to stdout...
 mov dx,offset char ; DS:DX = buffer address
 mov cx,1 ; CX = length to write
 mov bx,stdout ; BX = standard output handle
 mov ah,40h ; function 40h = write
 int 21h ; transfer to MS-DOS
 jc main3 ; if error, terminate
 cmp ax,1 ; was character written?
 jne main3 ; if disk full, terminate

 jmp main1 ; get another character

 main2: ; end of file reached
 mov ax,4c00h ; function 4ch = terminate
 ; return code = 0
 int 21h ; transfer to MS-DOS

 main3: ; error or disk full
 mov ax,4c01h ; function 4ch = terminate
 ; return code = 1
 int 21h ; transfer to MS-DOS

 main endp

 ;
 ; Perform any necessary translation on character
 ; from standard input stored in variable 'char'.
 ; This example simply leaves character unchanged.
 ;
 translate proc near

 ret ; does nothing

 translate endp

 _TEXT ends

 _DATA segment word public 'DATA'

 char db 0 ; storage for input character

 _DATA ends

 STACK segment para stack 'STACK'

 dw 64 dup (?)

 STACK ends

 end main ; defines program entry point
 --

 Figure 15-1. PROTO.ASM, the source code for a prototype
 character-oriented MASM filter.

 --
 /*
 PROTO.C: prototype character-oriented filter

 Copyright 1988 Ray Duncan
 */

 #include <stdio.h>

 main(int argc, char *argv[])
 {
 char ch;

 while((ch=getchar()) != EOF) /* read a character */
 {
 ch = translate(ch); /* translate it if necessary */

 putchar(ch); /* write the character */
 }
 exit(0); /* terminate at end of file */
 }

 /*
 Perform any necessary translation on character
 from input file. This example simply returns
 the same character.
 */

 int translate(char ch)
 {
 return (ch);
 }
 --

 Figure 15-2. PROTO.C, the source code for a prototype character-oriented
 C filter.

The CLEAN Filter

 As a more practical example of MS-DOS filters, let's look at a simple but
 very useful filter called CLEAN. Figures 15-3 and 15-4 show the
 assembly-language and C source code for this filter. CLEAN processes a
 text stream by stripping the high bit from all characters, expanding tabs
 to spaces, and throwing away all control codes except carriage returns,
 linefeeds, and formfeeds. Consequently, CLEAN can transform almost any
 kind of word-processed document file into a plain ASCII text file.

 --
 name clean
 page 55,132
 title CLEAN--Text-file filter
 ;
 ; CLEAN.ASM Filter to turn document files into
 ; normal text files.
 ;
 ; Copyright 1988 Ray Duncan
 ;
 ; Build: C>MASM CLEAN;
 ; C>LINK CLEAN;
 ;
 ; Usage: C>CLEAN <infile >outfile
 ;
 ; All text characters are passed through with high
 ; bit stripped off. Formfeeds, carriage returns,
 ; and linefeeds are passed through. Tabs are expanded
 ; to spaces. All other control codes are discarded.
 ;

 tab equ 09h ; ASCII tab code
 lf equ 0ah ; ASCII linefeed
 ff equ 0ch ; ASCII formfeed
 cr equ 0dh ; ASCII carriage return
 blank equ 020h ; ASCII space code
 eof equ 01ah ; Ctrl-Z end-of-file

 tabsiz equ 8 ; width of tab stop

 bufsiz equ 128 ; size of input and
 ; output buffers

 stdin equ 0000 ; standard input handle
 stdout equ 0001 ; standard output handle
 stderr equ 0002 ; standard error handle

 _TEXT segment word public 'CODE'

 assume cs:_TEXT,ds:_DATA,es:_DATA,ss:STACK

 clean proc far ; entry point from MS-DOS

 push ds ; save DS:0000 for final
 xor ax,ax ; return to MS-DOS, in case
 push ax ; function 4ch can't be used
 mov ax,_DATA ; make data segment addressable
 mov ds,ax
 mov es,ax

 mov ah,30h ; check version of MS-DOS
 int 21h
 cmp al,2 ; MS-DOS 2.0 or later?
 jae clean1 ; jump if version OK

 ; MS-DOS 1, display error
 ; message and exit...
 mov dx,offset msg1 ; DS:DX = message address
 mov ah,9 ; function 9 = display string
 int 21h ; transfer to MS-DOS
 ret ; then exit the old way

 clean1: call init ; initialize input buffer

 clean2: call getc ; get character from input
 jc clean9 ; exit if end of stream

 and al,07fh ; strip off high bit

 cmp al,blank ; is it a control char?
 jae clean4 ; no, write it

 cmp al,eof ; is it end of file?
 je clean8 ; yes, write EOF and exit

 cmp al,tab ; is it a tab?
 je clean6 ; yes, expand it to spaces

 cmp al,cr ; is it a carriage return?
 je clean3 ; yes, go process it

 cmp al,lf ; is it a linefeed?
 je clean3 ; yes, go process it

 cmp al,ff ; is it a formfeed?
 jne clean2 ; no, discard it

 clean3: mov column,0 ; if CR, LF, or FF,
 jmp clean5 ; reset column to zero

 clean4: inc column ; if non-control character,
 ; increment column counter
 clean5: call putc ; write char to stdout
 jnc clean2 ; if disk not full,
 ; get another character

 ; write failed...
 mov dx,offset msg2 ; DS:DX = error message
 mov cx,msg2_len ; CX = message length
 mov bx,stderr ; BX = standard error handle
 mov ah,40h ; function 40h = write
 int 21h ; transfer to MS-DOS

 mov ax,4c01h ; function 4ch = terminate
 ; return code = 1
 int 21h ; transfer to MS-DOS

 clean6: mov ax,column ; tab code detected
 cwd ; tabsiz - (column MOD tabsiz)

 mov cx,tabsiz ; is number of spaces needed
 idiv cx ; to move to next tab stop
 sub cx,dx

 add column,cx ; also update column counter

 clean7: push cx ; save spaces counter

 mov al,blank ; write an ASCII space
 call putc

 pop cx ; restore spaces counter
 loop clean7 ; loop until tab stop

 jmp clean2 ; get another character

 clean8: call putc ; write EOF mark

 clean9: call flush ; write last output buffer
 mov ax,4c00h ; function 4ch = terminate
 ; return code = 0
 int 21h ; transfer to MS-DOS

 clean endp

 getc proc near ; get character from stdin
 ; returns carry = 1 if
 ; end of input, else
 ; AL = char, carry = 0
 mov bx,iptr ; get input buffer pointer
 cmp bx,ilen ; end of buffer reached?
 jne getc1 ; not yet, jump

 ; more data is needed...
 mov bx,stdin ; BX = standard input handle
 mov cx,bufsiz ; CX = length to read
 mov dx,offset ibuff ; DS:DX = buffer address
 mov ah,3fh ; function 3fh = read
 int 21h ; transfer to MS-DOS
 jc getc2 ; jump if read failed

 or ax,ax ; was anything read?
 jz getc2 ; jump if end of input

 mov ilen,ax ; save length of data
 xor bx,bx ; reset buffer pointer

 getc1: mov al,[ibuff+bx] ; get character from buffer
 inc bx ; bump buffer pointer

 mov iptr,bx ; save updated pointer
 clc ; return character in AL
 ret ; and carry = 0 (clear)

 getc2: stc ; end of input stream
 ret ; return carry = 1 (set)

 getc endp

 putc proc near ; send character to stdout,
 ; returns carry = 1 if
 ; error, else carry = 0

 mov bx,optr ; store character into
 mov [obuff+bx],al ; output buffer

 inc bx ; bump buffer pointer
 cmp bx,bufsiz ; buffer full?
 jne putc1 ; no, jump

 mov bx,stdout ; BX = standard output handle
 mov cx,bufsiz ; CX = length to write
 mov dx,offset obuff ; DS:DX = buffer address
 mov ah,40h ; function 40h = write
 int 21h ; transfer to MS-DOS
 jc putc2 ; jump if write failed

 cmp ax,cx ; was write complete?
 jne putc2 ; jump if disk full

 xor bx,bx ; reset buffer pointer

 putc1: mov optr,bx ; save buffer pointer
 clc ; write successful,
 ret ; return carry = 0 (clear)

 putc2: stc ; write failed or disk full,
 ret ; return carry = 1 (set)

 putc endp

 init proc near ; initialize input buffer

 mov bx,stdin ; BX = standard input handle
 mov cx,bufsiz ; CX = length to read
 mov dx,offset ibuff ; DS:DX = buffer address
 mov ah,3fh ; function 3fh = read
 int 21h ; transfer to MS-DOS
 jc init1 ; jump if read failed
 mov ilen,ax ; save actual bytes read
 init1: ret

 init endp

 flush proc near ; flush output buffer

 mov cx,optr ; CX = bytes to write
 jcxz flush1 ; exit if buffer empty
 mov dx,offset obuff ; DS:DX = buffer address
 mov bx,stdout ; BX = standard output handle
 mov ah,40h ; function 40h = write
 int 21h ; transfer to MS-DOS
 flush1: ret

 flush endp

 _TEXT ends
 _DATA segment word public 'DATA'

 ibuff db bufsiz dup (0) ; input buffer
 obuff db bufsiz dup (0) ; output buffer

 iptr dw 0 ; ibuff pointer
 ilen dw 0 ; bytes in ibuff
 optr dw 0 ; obuff pointer

 column dw 0 ; current column counter

 msg1 db cr,lf
 db 'clean: need MS-DOS version 2 or greater.'
 db cr,lf,'$'

 msg2 db cr,lf
 db 'clean: disk is full.'
 db cr,lf
 msg2_len equ $-msg2

 _DATA ends

 STACK segment para stack 'STACK'

 dw 64 dup (?)

 STACK ends

 end clean
 --

 Figure 15-3. CLEAN.ASM, the source code for the MASM version of the CLEAN
 filter.

 --
 /*
 CLEAN.C Filter to turn document files into
 normal text files.

 Copyright 1988 Ray Duncan

 Compile: C>CL CLEAN.C

 Usage: C>CLEAN <infile >outfile

 All text characters are passed through with high bit stripped
 off. Formfeeds, carriage returns, and linefeeds are passed
 through. Tabs are expanded to spaces. All other control codes
 are discarded.
 */

 #include <stdio.h>

 #define TAB_WIDTH 8 /* width of a tab stop */

 #define TAB '\x09' /* ASCII tab character */
 #define LF '\x0A' /* ASCII linefeed */
 #define FF '\x0C' /* ASCII formfeed */
 #define CR '\x0D' /* ASCII carriage return */
 #define BLANK '\x20' /* ASCII space code */
 #define EOFMK '\x1A' /* Ctrl-Z end of file */

 main(int argc, char *argv[])
 {
 char c; /* character from stdin */
 int col = 0; /* column counter */

 while((c = getchar()) != EOF) /* read input character */
 {
 c &= 0x07F; /* strip high bit */

 switch(c) /* decode character */
 {
 case LF: /* if linefeed or */
 case CR: /* carriage return, */
 col=0; /* reset column count */

 case FF: /* if formfeed, carriage */
 wchar(c); /* return, or linefeed, */
 break; /* pass character through */

 case TAB: /* if tab, expand to spaces*/
 do wchar(BLANK);
 while((++col % TAB_WIDTH) != 0);
 break;

 default: /* discard other control */
 if(c >= BLANK) /* characters, pass text */
 { /* characters through */
 wchar(c);
 col++; /* bump column counter */
 }
 break;
 }
 }
 wchar(EOFMK); /* write end-of-file mark */
 exit(0);
 }

 /*
 Write a character to the standard output. If
 write fails, display error message and terminate.
 */

 wchar(char c)
 {
 if((putchar(c) == EOF) && (c != EOFMK))
 {
 fputs("clean: disk full",stderr);
 exit(1);
 }
 }

 --

 Figure 15-4. CLEAN.C, the source code for the C version of the CLEAN
 filter.

 When using the CLEAN filter, you must specify the source and destination
 files with redirection parameters in the command line; otherwise, CLEAN
 will simply read the keyboard and write to the display. For example, to
 filter the document file MYFILE.DOC and leave the result in the file
 MYFILE.TXT, you would enter the following command:

 C>CLEAN <MYFILE.DOC >MYFILE.TXT <Enter>

 (Note that the original file, MYFILE.DOC, is unchanged.)

 One valuable application of this filter is to rescue assembly-language
 source files. If you accidentally edit such a source file in document
 mode, the resulting file may cause the assembler to generate spurious or
 confusing error messages. CLEAN lets you turn the source file back into
 something the assembler can cope with, without losing the time you spent
 to edit it.

 Another handy application for CLEAN is to list a word-processed document
 in raw form on the printer, using a command such as

 C>CLEAN <MYFILE.DOC >PRN <Enter>

 Contrasting the C and assembly-language versions of this filter provides
 some interesting statistics. The C version contains 79 lines and compiles
 to a 5889-byte .EXE file, whereas the assembly-language version contains
 265 lines and builds an 1107-byte .EXE file. The size and execution-speed
 advantages of implementing such tools in assembly language is obvious,
 even compared with such an excellent compiler as the Microsoft C
 Optimizing Compiler. However, you must balance performance considerations
 against the time and expense required for programming, particularly when a
 program will not be used very often.

--
Chapter 16 Compatibility and Portability

 At the beginning of this book, we surveyed the history of MS-DOS and saw
 that new versions come along nearly every year, loosely coupled to the
 introduction of new models of personal computers. We then focused on each
 of the mainstream issues of MS-DOS applications programming: the user
 interface; mass storage; memory management; control of "child" processes;
 and special classes of programs, such as filters, interrupt handlers, and
 device drivers.

 It's now time to close the circle and consider two global concerns of
 MS-DOS programming: compatibility and portability. For your programs to
 remain useful in a constantly evolving software and hardware environment,
 you must design them so that they perform reliably on any reasonable
 machine configuration and exploit available system resources; in addition,
 you should be able to upgrade them easily for new versions of MS-DOS, for
 new machines, and, for that matter, for completely new environments such
 as MS OS/2.

Degrees of Compatibility

 If we look at how existing MS-DOS applications use the operating system
 and hardware, we find that we can assign them to one of four categories:

 o MS-DOS-compatible applications

 o ROM BIOS-compatible applications

 o Hardware-compatible applications

 o "Ill-behaved" applications

 MS-DOS-compatible applications use only the documented MS-DOS function
 calls and do not call the ROM BIOS or access the hardware directly. They
 use ANSI escape sequences for screen control, and their input and output
 is redirectable. An MS-DOS-compatible application will run on any machine
 that supports MS-DOS, regardless of the machine configuration. Because of
 the relatively poor performance of MS-DOS's built-in display and serial
 port drivers, few popular programs other than compilers, assemblers, and
 linkers fall into this category.

 ROM BIOS-compatible applications use the documented MS-DOS and ROM BIOS
 function calls but do not access the hardware directly. As recently as
 three years ago, this strategy might have significantly limited a
 program's potential market. Today, the availability of high-quality
 IBM-compatible ROM BIOSes from companies such as Phoenix has ensured the
 dominance of the IBM ROM BIOS standard; virtually no machines are being
 sold in which a program cannot rely as much on the ROM BIOS interface as
 it might on the MS-DOS interface. However, as we noted in Chapters 6 and
 7, the ROM BIOS display and serial drivers are still not adequate to the
 needs of high-performance interactive applications, so the popular
 programs that fall into this category are few.

 Hardware-compatible applications generally use MS-DOS functions for mass
 storage, memory management, and the like, and use a mix of MS-DOS and ROM
 BIOS function calls and direct hardware access for their user interfaces.
 The amount of hardware dependence in such programs varies widely. For
 example, some programs only write characters and attributes into the video
 controller's regen buffer and use the ROM BIOS to switch modes and
 position the cursor; others bypass the ROM BIOS video driver altogether
 and take complete control of the video adapter. As this book is written,
 the vast majority of the popular MS-DOS "productivity" applications (word
 processors, databases, telecommunications programs, and so on) can be
 placed somewhere in this category.

 "Ill-behaved" applications are those that rely on undocumented MS-DOS
 function calls or data structures, interception of MS-DOS or ROM BIOS
 interrupts, or direct access to mass storage devices (bypassing the MS-DOS
 file system). These programs tend to be extremely sensitive to their
 environment and typically must be "adjusted" in order to work with each
 new MS-DOS version or PC model. Virtually all popular terminate-
 and-stay-resident (TSR) utilities, network programs, and disk
 repair/optimization packages are in this category.

Writing Well-Behaved MS-DOS Applications

 Your choice of MS-DOS functions, ROM BIOS functions, or direct hardware

 access to solve a particular problem must always be balanced against
 performance needs; and, of course, the user is the final judge of a
 program's usefulness and reliability. Nevertheless, you can follow some
 basic guidelines, outlined below, to create well-behaved applications that
 are likely to run properly under future versions of MS-DOS and under
 multitasking program managers that run on top of MS-DOS, such as Microsoft
 Windows.

 Program structure

 Design your programs as .EXE files with separate code, data, and stack
 segments; shun the use of .COM files. Use the Microsoft conventions for
 segment names and attributes discussed in Chapter 3. Inspect the
 environment block at runtime to locate your program's overlays or data
 files; don't "hard-wire" a directory location into the program.

 Check host capabilities

 Obtain the MS-DOS version number with Int 21H Function 30H during your
 program's initialization and be sure that all of the functions your
 program requires are actually available. If you find that the host MS-DOS
 version is inadequate, be careful about which functions you call to
 display an error message and to terminate.

 Use the enhanced capabilities of MS-DOS versions 3 and 4 when your program
 is running under those versions. For example, you can specify a sharing
 mode when opening a file with Int 21H Function 3DH, you can create
 temporary or unique files with Int 21H Functions 5AH and 5BH, and you
 can obtain extended error information (including a recommended recovery
 strategy) with Int 21H Function 59H. Section 2 of this book contains
 version-dependency information for each MS-DOS function.

 Input and output

 Use the handle file functions exclusively and extend full path support
 throughout your application (being sure to allow for the maximum possible
 path length during user input of filenames). Use buffered I/O whenever
 possible. The device drivers in MS-DOS versions 2.0 and later can handle
 strings as long as 64 KB, and performance will be improved if you write
 fewer, larger records as opposed to many short ones.

 Avoid the use of FCBs, the Int 25H or Int 26H functions, or the ROM BIOS
 disk driver. If you must use FCBs, close them when you are done with them
 and don't move them around while they are open. Avoid reopening FCBs that
 are already open or reclosing FCBs that have already been closed--these
 seemingly harmless practices can cause problems when network software is
 running.

 Memory management

 During your program's initialization, release any memory that is not
 needed by the program. (This is especially important for .COM programs.)
 If your program requires extra memory for buffers or tables, allocate that
 memory dynamically when it is needed and release it as soon as it is no
 longer required. Use expanded memory, when it is available, to minimize
 your program's demands on conventional memory.

 As a general rule, don't touch any memory that is not owned by your
 program. To set or inspect interrupt vectors, use Int 21H Functions 25H

 and 35H rather than editing the interrupt vector table directly. If you
 alter the contents of interrupt vectors, save their original values and
 restore them before the program exits.

 Process management

 To isolate your program from dependencies on PSP structure and relocation
 information, use the EXEC function (Int 21H Function 4BH) when loading
 overlays or other programs. Terminate your program with Int 21H Function
 4CH, passing a zero return code if the program executes successfully and
 a nonzero code if an error is encountered. Your program's parent can then
 test this return code with Int 21H Function 4DH or, in a batch file, with
 the IF ERRORLEVEL statement.

 Exception handling

 Install Ctrl-C (Int 23H) and critical-error (Int 24H) handlers so that
 your program cannot be terminated unexpectedly by the user's entry of
 Ctrl-C or Ctrl-Break or by a hardware I/O failure. This is particularly
 important if your program uses expanded memory or installs its own
 interrupt handlers.

ROM BIOS and Hardware-Compatible Applications

 When you feel the need to introduce ROM BIOS or hardware dependence for
 performance reasons, keep it isolated to small, well-documented procedures
 that can be easily modified when the hardware changes. Use macros and
 equates to hide hardware characteristics and to avoid spreading "magic
 numbers" throughout your program.

 Check host capabilities

 If you use ROM BIOS functions in your program, you must check the machine
 model at runtime to be sure that the functions your program needs are
 actually available. There is a machine ID byte at F000:FFFEH whose value
 is interpreted as follows:

 --
 F8H PS/2 Models 70 and 80

 F9H PC Convertible

 FAH PS/2 Model 30

 FBH PC/XT (later models)

 FCH PC/AT, PC/XT-286, PS/2 Models 50 and 60

 FDH PCjr

 FEH PC/XT (early models)

 FFH PC "Classic"
 --

 In some cases, submodels can be identified; see Int 15H Function C0H on
 page 573. Section 3 of this book contains version-dependency information
 for each ROM BIOS function.

 When writing your own direct video drivers, you must determine the type
 and capabilities of the video adapter by a combination of Int 10H calls,
 reading ports, and inspection of the ROM BIOS data area at 0040:0000H and
 the memory reserved for the EGA or VGA ROM BIOS, among other things. The
 techniques required are beyond the scope of this book but are well
 explained in Programmer's Guide to PC and PS/2 Video Systems (Microsoft
 Press, 1987).

 Avoid unstable hardware

 Some areas of IBM personal computer architecture have remained remarkably
 stable from the original IBM PC, based on a 4.77 MHz 8088, to today's PS/2
 Model 80, based on a 20 MHz 80386. IBM's track record for upward
 compatibility in its video and serial communications controllers has been
 excellent; in many cases, the same hardware-dependent code that was
 written for the original IBM PC runs perfectly well on an IBM PS/2 Model
 80. Other areas of relative hardware stability are:

 o Sound control via port 61H

 o The 8253 timer chip's channels 0 and 2 (ports 40H, 42H, and 43H)

 o The game adapter at port 201H

 o Control of the interrupt system via the 8259 PIC's mask register at
 port 21H

 However, direct sound generation and manipulation of the 8253 timer or
 8259 PIC are quite likely to cause problems if your program is run under a
 multitasking program manager such as Microsoft Windows or DesqView.

 Keyboard mapping, the keyboard controller, and the floppy and fixed disk
 controllers are areas of relative hardware instability. Programs that
 bypass MS-DOS for keyboard or disk access are much less likely to function
 properly across the different PC models and are also prone to interfere
 with each other and with well-behaved applications.

OS/2 Compatibility

 MS-DOS is upwardly compatible in several respects with OS/2, Microsoft's
 multitasking protected-mode virtual memory operating system for 80286 and
 80386 computers. The OS/2 graphical user interface (the Presentation
 Manager) is nearly identical to Microsoft Windows 2.0. OS/2 versions 1.0
 and 1.1 use exactly the same disk formats as MS-DOS so that files may
 easily be moved between MS-DOS and OS/2 systems. Most important, OS/2
 includes a module called the "DOS Compatibility Environment" or "3.x Box,"
 which can run one MS-DOS application at a time alongside protected-mode
 OS/2 applications.

 The 3.x Box traps Int 21H function calls and remaps them into OS/2
 function calls, emulating an MS-DOS 3.3 environment with the file-sharing
 module (SHARE.EXE) loaded but returning a major version number of 10
 instead of 3 for Int 21H Function 30H. The 3.x Box also supports most ROM
 BIOS calls, either by emulating their function or by interlocking the
 device and then calling the original ROM BIOS routine. In addition, the
 3.x Box maintains the ROM BIOS data area, provides timer ticks to
 applications via Int 1CH, and supports certain undocumented MS-DOS
 services and data structures so that most TSR utilities can function

 properly. Nevertheless, the 3.x Box's emulation of MS-DOS is not perfect,
 and you must be aware of certain constraints on MS-DOS applications
 running under OS/2.

 The most significant restriction on an MS-DOS application is that it does
 not receive any CPU cycles when it is in the background. That is, when a
 protected-mode application has been "selected," so that the user can
 interact with it, the MS-DOS application is frozen. If the MS-DOS
 application has captured any interrupt vectors (such as the serial port or
 timer tick), these interrupts will not be serviced until the application
 is again selected and in the foreground. OS/2 must freeze MS-DOS
 applications when they are in the background because they execute in real
 mode and are thus not subject to hardware memory protection; nothing else
 ensures that they will not interfere with a protected-mode process that
 has control of the screen and keyboard.

 Use of FCBs is restricted in the 3.x Box, as it is under MS-DOS 3 or 4
 with SHARE.EXE loaded. A file cannot be opened with an FCB if any other
 process is using it. The number of FCBs that can be simultaneously opened
 is limited to 16 or to the number specified in a CONFIG.SYS FCBS=
 directive. Even when the handle file functions are used, these functions
 may fail unexpectedly due to the activity of other processes (for example,
 if a protected-mode process has already opened the file with "deny all"
 sharing mode); most MS-DOS applications are not written with file sharing
 in mind, and they do not handle such errors gracefully.

 Direct writes to a fixed disk using Int 26H or Int 13H are not allowed.
 This prevents the file system from being corrupted, because protected-mode
 applications running concurrently with the MS-DOS application may also be
 writing to the same disk. Imagine the mess if a typical MS-DOS unerase
 utility were to alter the root directory and FAT at the same time that a
 protected-mode database program was updating its file and indexes!

 MS-DOS applications that attempt to reprogram the 8259 to move the
 interrupt vector table or that modify interrupt vectors already belonging
 to an OS/2 device driver are terminated by the operating system. MS-DOS
 applications can change the 8259's interrupt-mask register, disable and
 reenable interrupts at their discretion, and read or write any I/O port.
 The obvious corollary is that an MS-DOS program running in the 3.x Box can
 crash the entire OS/2 system at any time; this is the price for allowing
 real-mode applications to run at all.

Porting MS-DOS Applications to OS/2

 The application program interface (API) provided by OS/2 to protected-mode
 programs is quite different from the familiar Int 21H interface of MS-DOS
 and the OS/2 3.x Box. However, the OS/2 API is functionally a proper
 superset of MS-DOS. This makes it easy to convert well-behaved MS-DOS
 applications to run in OS/2 protected mode, whence they can be enhanced to
 take advantage of OS/2's virtual memory, multitasking, and interprocess
 communication capabilities.

 To give you a feeling for both the nature of the OS/2 API and the
 practices that should be avoided in MS-DOS programming if portability to
 OS/2 is desired, I will outline my own strategy for converting existing
 MS-DOS assembly-language programs to OS/2. For the purposes of discussion,
 I have divided the conversion process into five steps and have assigned
 each an easily remembered buzzword:

 1. Segmentation

 2. Rationalization

 3. Encapsulation

 4. Conversion

 5. Optimization

 The first three stages can (and should) be performed and tested in the
 MS-DOS environment; only the last two require OS/2 and the protected-mode
 programming tools. As you read on, you may notice that an MS-DOS program
 that follows the compatibility guidelines presented earlier in this
 chapter requires relatively little work to make it run in protected mode.
 This is the natural benefit of working with the operating system instead
 of against it.

 Segmentation

 Most of the 80286's protected-mode capabilities revolve around a change in
 the way memory is addressed. In real mode, the 80286 essentially emulates
 an 8088/86 processor, and the value in a segment register corresponds
 directly to a physical memory address. MS-DOS runs on the 80286 in real
 mode.

 When an 80286 is running in protected mode, as it does under OS/2, an
 additional level of indirection is added to memory addressing.
Although the 80386 has additional modes and addressing capabilities,
current versions of OS/2 use the 80386 as though it were an 80286.
 A segment
 register holds a selector, which is an index to a table of descriptors. A
 descriptor defines the physical address and length of a memory segment,
 its characteristics (executable, read-only data, or read/write data) and
 access rights, and whether the segment is currently resident in RAM or has
 been swapped out to disk. Each time a program loads a segment register or
 accesses memory, the 80286 hardware checks the associated descriptor and
 the program's privilege level, generating a fault if the selector or
 memory operation is not valid. The fault acts like a hardware interrupt,
 allowing the operating system to regain control and take the appropriate
 action.

 This scheme of memory addressing in protected mode has two immediate
 consequences for application programs. The first is that application
 programs can no longer perform arithmetic on the contents of segment
 registers (because selectors are magic numbers and have no direct
 relationship to physical memory addresses) or use segment registers for
 storage of temporary values. A program must not load a segment register
 with anything but a legitimate selector provided by the OS/2 loader or
 resulting from an OS/2 memory allocation function call. The second
 consequence is that a program must strictly segregate machine code
 ("text") from data, placing them in separate segments with distinct
 selectors (because a selector that is executable is not writable, and vice
 versa).

 Accordingly, the first step in converting a program for OS/2 is to turn it
 into a .EXE-type program that uses the Microsoft segment, class, and group
 conventions described in Chapter 3. At minimum, the program must have one
 code segment and one data segment, and should declare a group--with the

 special name DGROUP--that contains the "near" data segment, stack, and
 local heap (if any). At the same time, you should remove or rewrite any
 code that performs direct manipulation of segment values.

 After restructuring and segmentation, reassemble and link your program and
 check to be sure it still works as expected under MS-DOS. Changing or
 adding segmentation often uncovers hidden addressing assumptions in the
 code, so it is best to track these problems down before making other
 substantive changes to the program.

 Rationalization

 Once you've successfully segmented your program so that it can be linked
 and executed as a .EXE file under MS-DOS, the next step is to rationalize
 your code. By rationalization I mean converting your program into a
 completely well-behaved MS-DOS application.

 First, you must ruthlessly eliminate any elements that manipulate the
 peripheral device adapters directly, alter interrupt priorities, edit the
 system interrupt-vector table, or depend on CPU speed or characteristics
 (such as timing loops). In protected mode, control of the interrupt system
 is completely reserved to the operating system and its device drivers, I/O
 ports may be read or written by an application only under very specific
 conditions, and timing loops burn up CPU cycles that can be used by other
 processes.

 As I mentioned earlier in this chapter, display routines constitute the
 most common area of hardware dependence in an MS-DOS application. Direct
 manipulation of the video adapter and its regen buffer poses obvious
 difficulties in a multitasking, protected-memory environment such as OS/2.
 For porting purposes, you must convert all routines that write text to the
 display, modify character attributes, or affect cursor shape or position
 into Int 21H Function 40H calls using ANSI escape sequences or into ROM
 BIOS Int 10H calls. Similarly, you must convert all hardware-dependent
 keyboard operations to Int 21H Function 3FH or ROM BIOS Int 16H calls.

 Once all hardware dependence has been expunged from your program, your
 next priority is to make it well-behaved in its use of system memory.
 Under MS-DOS an application is typically handed all remaining memory in
 the system to do with as it will; under OS/2 the converse is true: A
 process is initially allocated only enough memory to hold its code,
 declared data storage, and stack. You can make the MS-DOS loader behave
 like the OS/2 loader by linking your application with the /CPARMAXALLOC
 switch. Alternatively, your program can give up all extra memory during
 its initialization with Int 21H Function 4AH, as recommended earlier in
 this chapter.

 After your program completes its initialization sequence, it should
 dynamically obtain and release any additional memory it may require for
 buffers and tables with MS-DOS Int 21H Functions 48H and 49H. To ensure
 compatibility with protected mode, limit the size of any single allocated
 block to 65,536 bytes or less, even though MS-DOS allows larger blocks to
 be allocated.

 Finally, you must turn your attention to file and device handling. Replace
 any calls to FCB file functions with their handle-based equivalents,
 because OS/2 does not support FCBs in protected mode at all. Check
 pathnames for validity within the application; although MS-DOS and the 3.x
 Box silently truncate a name or extension, OS/2 refuses to open or create

 a file in protected mode if the name or extension is too long and returns
 an error instead. Replace any use of the predefined handles for the
 standard auxiliary and standard list devices with explicit opens of COM1,
 PRN, LPT1, and so on, using the resulting handle for read and write
 operations. OS/2 does not supply processes with standard handles for the
 serial communications port or printer.

 Encapsulation

 When you reach this point, with a well-behaved, segmented MS-DOS
 application in hand, the worst of a port to OS/2 is behind you. You are
 now ready to prepare your program for true conversion to protected-mode
 operation by encapsulating, in individual subroutines, every part of the
 program that is specific to the host operating system. The objective here
 is to localize the program's "knowledge" of the environment into small
 procedures that can be subsequently modified without affecting the
 remainder of the program.

 As an example of encapsulation, consider a typical call by an MS-DOS
 application to write a string to the standard output device (Figure
 16-1). In order to facilitate conversion to OS/2, you would replace every
 instance of such a write to a file or device with a call to a small
 subroutine that "hides" the mechanics of the actual operating-system
 function call, as illustrated in Figure 16-2.

 Another candidate for encapsulation, which does not necessarily involve an
 operating-system function call, is the application's code to gain access
 to command-line parameters, environment-block variables, and the name of
 the file it was loaded from. Under MS-DOS, this information is divided
 between the program segment prefix (PSP) and the environment block, as we
 saw in Chapters 3 and 12; under OS/2, there is no such thing as a PSP,
 and the program filename and command-line information are appended to the
 environment block.

 --
 stdin equ 0 ; standard input handle
 stdout equ 1 ; standard output handle
 stderr equ 2 ; standard error handle

 msg db 'This is a sample message'
 msg_len equ $-msg

 .
 .
 .
 mov dx,seg msg ; DS:DX = message address
 mov ds,dx
 mov dx,offset DGROUP:msg
 mov cx,msg_len ; CX = message length
 mov bx,stdout ; BX = handle
 mov ah,40h ; AH = function 40h write
 int 21h ; transfer to MS-DOS
 jc error ; jump if error
 cmp ax,msg_len ; all characters written?
 jne diskfull ; no, device is full
 .
 .
 .
 --

 Figure 16-1. Typical in-line code for an MS-DOS function call. This
 particular sequence writes a string to the standard output device. Since
 the standard output might be redirected to a file without the program's
 knowledge, it must also check that all of the requested characters were
 actually written; if the returned length is less than the requested
 length, this usually indicates that the standard output has been
 redirected to a disk file and that the disk is full.

 --
 stdin equ 0 ; standard input handle
 stdout equ 1 ; standard output handle
 stderr equ 2 ; standard error handle

 msg db 'This is a sample message'
 msg_len equ $-msg

 .
 .
 .
 mov dx,seg msg ; DS:DX = message address
 mov ds,dx
 mov dx,offset DGROUP:msg
 mov cx,msg_len ; CX = message length
 mov bx,stdout ; BX = handle
 call write ; perform the write
 jc error ; jump if error
 cmp ax,msg_len ; all characters written?
 jne diskfull ; no, device is full
 .
 .
 .

 write proc near ; write to file or device
 ; Call with:
 ; BX = handle
 ; CX = length of data
 ; DS:DX = address of data
 ; returns:
 ; if successful, carry clear
 ; and AX = bytes written
 ; if error, carry set
 ; and AX = error code

 mov ah,40h ; function 40h = write
 int 21h ; transfer to MS-DOS
 ret ; return status in CY and AX

 write endp

 .
 .
 .
 --

 Figure 16-2. Code from Figure 16-1 after "encapsulation." The portion of
 the code that is operating-system dependent has been isolated inside a
 subroutine that is called from other points within the application.

 When you have completed the encapsulation of system services and access to
 the PSP and environment, subject your program once more to thorough
 testing under MS-DOS. This is your last chance, while you are still
 working in a familiar milieu and have access to your favorite debugging
 tools, to detect any subtle errors you may have introduced during the
 three conversion steps discussed thus far.

 Conversion

 Next, you must rewrite each system-dependent procedure you created during
 the encapsulation stage to conform to the OS/2 protected-mode API. In
 contrast to MS-DOS functions, which are actuated through software
 interrupts and pass parameters in registers, OS/2 API functions are
 requested through a far call to a named entry point. Parameters are passed
 on the stack, along with the addresses of variables within the calling
 program's data segment that will receive any results returned by the
 function. The status of an operation is returned in register AX--zero if
 the function succeeded, an error code otherwise. All other registers are
 preserved.

 Although it is not my intention here to provide a detailed introduction to
 OS/2 programming, Figure 16-3 illustrates the final form of our previous
 example, after conversion for OS/2. Note especially the addition of the
 extrn statement, the wlen variable, and the simulation of the MS-DOS
 function status. This code may not be elegant, but it serves the purpose
 of limiting the necessary changes to a very small portion of the source
 file. Some OS/2 functions (such as DosOpen) require parameters that have
 no counterpart under MS-DOS; you can usually select reasonable values for
 these extra parameters that will make their existence temporarily
 invisible to the remainder of the application.

 --
 stdin equ 0 ; standard input handle
 stdout equ 1 ; standard output handle
 stderr equ 2 ; standard error handle

 extrn DosWrite:far

 msg db 'This is a sample message'
 msg_len equ $-msg

 wlen dw ? ; receives actual number
 ; of bytes written

 .
 .
 .
 mov dx,seg msg ; DS:DX = message address
 mov ds,dx
 mov dx,offset DGROUP:msg
 mov cx,msg_len ; CX = message length
 mov bx,stdout ; BX = handle
 call write ; perform the write
 jc error ; jump if error
 cmp ax,msg_len ; all characters written?
 jne diskfull ; no, device is full
 .
 .
 .

 write proc near ; write to file or device
 ; call with:
 ; BX = handle
 ; CX = length of data
 ; DS:DX = address of data
 ; returns:
 ; if successful, carry clear
 ; and AX = bytes written
 ; if error, carry set
 ; and AX = error code

 push bx ; handle
 push ds ; address of data
 push dx
 push cx ; length of data
 push ds ; receives length written
 mov ax,offset DGROUP:wlen
 push ax
 call DosWrite ; transfer to OS/2
 or ax,ax ; did write succeed?
 jnz write1 ; jump, write failed
 mov ax,wlen ; no error, OR cleared CY
 ret ; and AX := bytes written

 write1: stc ; write error, return CY set
 ret ; and AX = error number

 write endp

 .
 .
 .
 --

 Figure 16-3. Code from Figure 16-2 after "conversion." The MS-DOS
 function call has been replaced with the equivalent OS/2 function call.
 Since the knowledge of the operating system has been hidden inside the
 subroutine by the previous encapsulation step, the surrounding program's
 requests for write operations should run unchanged. Note that the OS/2
 function had to be declared as an external name with the "far" attribute,
 and that a variable named wlen was added to the data segment of the
 application to receive the actual number of bytes written.

 Figures 16-4, 16-5, and 16-6 list the OS/2 services that are equivalent
 to selected MS-DOS and ROM BIOS Int 21H, Int 10H, and Int 16H calls.
 MS-DOS functions related to FCBs and PSPs are not included in these tables
 because OS/2 does not support either of these structures. The MS-DOS
 terminate-and-stay-resident functions are also omitted. Because OS/2 is a
 true multitasking system, a process doesn't need to terminate in order to
 stay resident while another process is running.

 MS-DOS Description OS/2 function
 --
 Int 21H Function
 0 Terminate process DosExit
 1 Character input with echo KbdCharIn
 2 Character output VioWrtTTY

 3 Auxiliary input DosRead
 4 Auxiliary output DosWrite
 5 Printer output DosWrite
 6 Direct console I/O KbdCharIn,
 VioWrtTTY
 7 Unfiltered input without echo KbdCharIn
 8 Character input without echo KbdCharIn
 9 Display string VioWrtTTY
 0AH (10) Buffered keyboard input KbdStringIn
 0BH (11) Check input status KbdPeek
 0CH (12) Reset buffer and input KbdFlushBuffer,
 KbdCharIn
 0DH (13) Disk reset DosBufReset
 0EH (14) Select disk DosSelectDisk
 19H (25) Get current disk DosQCurDisk
 1BH (27) Get default drive data DosQFSInfo
 1CH (28) Get drive data DosQFSInfo
 2AH (42) Get date DosGetDateTime
 2BH (43) Set date DosSetDateTime
 2CH (44) Get time DosGetDateTime
 2DH (45) Set time DosSetDateTime
 2EH (46) Set verify flag DosSetVerify
 30H (48) Get MS-DOS version DosGetVersion
 36H (54) Get drive allocation DosQFSInfo
 information
 38H (56) Get or set country DosGetCtryInfo
 information
 39H (57) Create directory DosMkdir
 3AH (58) Delete directory DosRmdir
 3BH (59) Set current directory DosChdir
 3CH (60) Create file DosOpen
 3DH (61) Open file DosOpen
 3EH (62) Close file DosClose
 3FH (63) Read file or device DosRead
 40H (64) Write file or device DosWrite
 41H (65) Delete file DosDelete
 42H (66) Set file pointer DosChgFilePtr
 43H (67) Get or set file attributes DosQFileMode,
 DosSetFileMode
 44H (68) I/O control (IOCTL) DosDevIOCtl
 45H (69) Duplicate handle DosDupHandle
 46H (70) Redirect handle DosDupHandle
 47H (71) Get current directory DosQCurDir
 48H (72) Allocate memory block DosAllocSeg
 49H (73) Release memory block DosFreeSeg
 4AH (74) Resize memory block DosReAllocSeg
 4BH (75) Execute program DosExecPgm
 4CH (76) Terminate process with DosExit
 return code
 4DH (77) Get return code DosCWait
 4EH (78) Find first file DosFindFirst
 4FH (79) Find next file DosFindNext
 54H (84) Get verify flag DosQVerify
 56H (86) Rename file DosMove
 57H (87) Get or set file date and time DosQFileInfo,
 DosSetFileInfo
 59H (89) Get extended error DosErrClass
 information
 5BH (91) Create new file DosOpen

 5CH (92) Lock or unlock file region DosFileLocks
 65H (101) Get extended country DosGetCtryInfo
 information
 66H (102) Get or set code page DosGetCp,
 DosSetCp
 67H (103) Set handle count DosSetMaxFH
 68H (104) Commit file DosBufReset
 6CH (108) Extended open file DosOpen
 --

 Figure 16-4. Table of selected MS-DOS function calls and their OS/2
 counterparts. Note that OS/2 functions are typically more powerful and
 flexible than the corresponding MS-DOS functions, and that this is not a
 complete list of OS/2 services.

 ROM BIOS Description OS/2 function
 --
 Int 10H Function
 0 Select display mode VioSetMode
 1 Set cursor type VioSetCurType
 2 Set cursor position VioSetCurPos
 3 Get cursor position VioGetCurPos
 6 Initialize or scroll window up VioScrollUp
 7 Initialize or scroll window down VioScrollDn
 8 Read character and attribute VioReadCellStr
 9 Write character and attribute VioWrtNCell
 0AH (10) Write character VioWrtNChar
 0EH (14) Write character in teletype mode VioWrtTTY
 0FH (15) Get display mode VioGetMode
 10H (16) Set palette, border color, etc. VioSetState
 13H (19) Write string in teletype mode VioWrtTTY
 --

 Figure 16-5. Table of ROM BIOS Int 10H video-display driver functions
 used by MS-DOS applications and their OS/2 equivalents. This is not a
 complete list of OS/2 video services.

 ROM BIOS Description OS/2 function
 --
 Int 16H Function
 0 Read keyboard character KbdCharIn
 1 Get keyboard status KbdPeek
 2 Get keyboard flags KbdGetStatus
 --

 Figure 16-6. Table of ROM BIOS Int 16H keyboard driver functions used by
 MS-DOS applications and their OS/2 equivalents. This is not a complete
 list of OS/2 keyboard services.

 Optimization

 Once your program is running in protected mode, it is time to unravel some
 of the changes made for purposes of conversion and to introduce various
 optimizations. Three obvious categories should be considered:

 1. Modifying the program's user-interface code for the more powerful OS/2
 keyboard and display API functions.

 2. Incorporating 80286-specific machine instructions where appropriate.

 3. Revamping the application to exploit the OS/2 facilities that are
 unique to protected mode. (Of course, the application benefits from
 OS/2's virtual memory capabilities automatically; it can allocate
 memory until physical memory and disk swapping space are exhausted.)

 Modifying subroutines that encapsulate user input and output to take
 advantage of the additional functionality available under OS/2 is
 straight-forward, and the resulting performance improvements can be quite
 dramatic. For example, the OS/2 video driver offers a variety of services
 that are far superior to the screen support in MS-DOS and the ROM BIOS,
 including high-speed display of strings and attributes at any screen
 position, "reading back" selected areas of the display into a buffer, and
 scrolling in all four directions.

 The 80286-specific machine instructions can be very helpful in reducing
 code size and increasing execution speed. The most useful instructions are
 the shifts and rotates by an immediate count other than one, the
 three-operand multiply where one of the operands is an immediate (literal)
 value, and the push immediate value instruction (particularly handy for
 setting up OS/2 function calls). For example, in Figure 16-3, the
 sequence

 mov ax,offset DGROUP:wlen
 push ax

 could be replaced by the single instruction

 push offset DGROUP:wlen

 Restructuring an application to take full advantage of OS/2's
 protected-mode capabilities requires close study of both the application
 and the OS/2 API, but such study can pay off with sizable benefits in
 performance, ease of maintenance, and code sharing. Often, for instance,
 different parts of an application are concerned with I/O devices of vastly
 different speeds, such as the keyboard, disk, and video display. It both
 simplifies and enhances the application to separate these elements into
 subprocesses (called threads in OS/2) that execute asynchronously,
 communicate through shared data structures, and synchronize with each
 other, when necessary, using semaphores.

 As another example, when several applications are closely related and
 contain many identical or highly similar procedures, OS/2 allows you to
 centralize those procedures in a dynamic link library. Routines in a
 dynamic link library are bound to a program at its load time (rather than
 by LINK, as in the case of traditional runtime libraries) and are shared
 by all the processes that need them. This reduces the size of each
 application .EXE file and allows more efficient use of memory. Best of
 all, dynamic link libraries drastically simplify code maintenance; the
 routines in the libraries can be debugged or improved at any time, and the
 applications that use them will automatically benefit the next time they
 are executed.

--
SECTION 2 MS-DOS FUNCTIONS REFERENCE
--

Notes to the Reader

 This section documents the services that the MS-DOS kernel provides to
 application programs via software interrupts 20H-2FH. Each MS-DOS function
 is described in the same format:

 o A heading containing the function's name, software interrupt and
 function number, and an icon indicating the MS-DOS version in which the
 function was first supported. You can assume that the function is
 available in all subsequent MS-DOS versions unless explicitly noted
 otherwise.

 o A synopsis of the actions performed by the function and the
 circumstances under which it would be used.

 o A summary of the function's arguments.

 o The results and/or error indicators returned by the function. A
 comprehensive list of error codes can be found in the entry for Int 21H
 Function 59H.

 o Notes describing special uses or dependencies of the function.

 o A skeleton example of the function's use, written in assembly language.

 Version icons used in the synopsis, arguments, results, or Notes sections
 refer to specific minor or major versions, unless they include a + sign to
 indicate a version and all subsequent versions.

 For purposes of clarity, the examples may include instructions that would
 not be necessary if the code were inserted into a working program. For
 example, most of the examples explicitly set the segment registers when
 passing the address of a filename or buffer to MS-DOS; in real
 applications, the segment registers are usually initialized once at entry
 to the program and left alone thereafter.

Int 21H Function Summary by Number

 Hex Dec Function name Vers F/H
Specifies whether file functions are FCB- or handle-related.

 --
 00H 0 Terminate Process 1.0+
 01H 1 Character Input with Echo 1.0+
 02H 2 Character Output 1.0+
 03H 3 Auxiliary Input 1.0+
 04H 4 Auxiliary Output 1.0+
 05H 5 Printer Output 1.0+
 06H 6 Direct Console I/O 1.0+
 07H 7 Unfiltered Character Input Without Echo 1.0+
 08H 8 Character Input Without Echo 1.0+
 09H 9 Display String 1.0+
 0AH 10 Buffered Keyboard Input 1.0+
 0BH 11 Check Input Status 1.0+
 0CH 12 Flush Input Buffer and Then Input 1.0+

 0DH 13 Disk Reset 1.0+
 0EH 14 Select Disk 1.0+
 0FH 15 Open File 1.0+ F
 10H 16 Close File 1.0+ F
 11H 17 Find First File 1.0+ F
 12H 18 Find Next File 1.0+ F
 13H 19 Delete File 1.0+ F
 14H 20 Sequential Read 1.0+ F
 15H 21 Sequential Write 1.0+ F
 16H 22 Create File 1.0+ F
 17H 23 Rename File 1.0+ F
 18H 24 Reserved
 19H 25 Get Current Disk 1.0+
 1AH 26 Set DTA Address 1.0+
 1BH 27 Get Default Drive Data 1.0+
 1CH 28 Get Drive Data 2.0+
 1DH 29 Reserved
 1EH 30 Reserved
 1FH 31 Reserved
 20H 32 Reserved
 21H 33 Random Read 1.0+ F
 22H 34 Random Write 1.0+ F
 23H 35 Get File Size 1.0+ F
 24H 36 Set Relative Record Number 1.0+ F
 25H 37 Set Interrupt Vector 1.0+
 26H 38 Create New PSP 1.0+
 27H 39 Random Block Read 1.0+ F
 28H 40 Random Block Write 1.0+ F
 29H 41 Parse Filename 1.0+
 2AH 42 Get Date 1.0+
 2BH 43 Set Date 1.0+
 2CH 44 Get Time 1.0+
 2DH 45 Set Time 1.0+
 2EH 46 Set Verify Flag 1.0+
 2FH 47 Get DTA Address 2.0+
 30H 48 Get MS-DOS Version Number 2.0+
 31H 49 Terminate and Stay Resident 2.0+
 32H 50 Reserved
 33H 51 Get or Set Break Flag, Get Boot Drive 2.0+
 34H 52 Reserved
 35H 53 Get Interrupt Vector 2.0+
 36H 54 Get Drive Allocation Information 2.0+
 37H 55 Reserved
 38H 56 Get or Set Country Information 2.0+
 39H 57 Create Directory 2.0+
 3AH 58 Delete Directory 2.0+
 3BH 59 Set Current Directory 2.0+
 3CH 60 Create File 2.0+ H
 3DH 61 Open File 2.0+ H
 3EH 62 Close File 2.0+ H
 3FH 63 Read File or Device 2.0+ H
 40H 64 Write File or Device 2.0+ H
 41H 65 Delete File 2.0+ H
 42H 66 Set File Pointer 2.0+ H
 43H 67 Get or Set File Attributes 2.0+
 44H 68 IOCTL (I/O Control) 2.0+
 45H 69 Duplicate Handle 2.0+
 46H 70 Redirect Handle 2.0+
 47H 71 Get Current Directory 2.0+

 48H 72 Allocate Memory Block 2.0+
 49H 73 Release Memory Block 2.0+
 4AH 74 Resize Memory Block 2.0+
 4BH 75 Execute Program (EXEC) 2.0+
 4CH 76 Terminate Process with Return Code 2.0+
 4DH 77 Get Return Code 2.0+
 4EH 78 Find First File 2.0+ H
 4FH 79 Find Next File 2.0+ H
 50H 80 Reserved
 51H 81 Reserved
 52H 82 Reserved
 53H 83 Reserved
 54H 84 Get Verify Flag 2.0+
 55H 85 Reserved
 56H 86 Rename File 2.0+
 57H 87 Get or Set File Date and Time 2.0+ H
 58H 88 Get or Set Allocation Strategy 3.0+
 59H 89 Get Extended Error Information 3.0+
 5AH 90 Create Temporary File 3.0+ H
 5BH 91 Create New File 3.0+ H
 5CH 92 Lock or Unlock File Region 3.0+ H
 5DH 93 Reserved
 5EH 94 Get Machine Name, Get or Set Printer 3.1+
 Setup
 5FH 95 Device Redirection 3.1+
 60H 96 Reserved
 61H 97 Reserved
 62H 98 Get PSP Address 3.0+
 63H 99 Get DBCS Lead Byte Table 2.25
 only
 64H 100 Reserved
 65H 101 Get Extended Country Information 3.3+
 66H 102 Get or Set Code Page 3.3+
 67H 103 Set Handle Count 3.3+
 68H 104 Commit File 3.3+ H
 69H 105 Reserved
 6AH 106 Reserved
 6BH 107 Reserved
 6CH 108 Extended Open File 4.0+ H
 --

Int 21H Function Summary by Category

 Hex Dec Function name Vers F/H
 --
 Character I/O
 01H 1 Character Input with Echo 1.0+
 02H 2 Character Output 1.0+
 03H 3 Auxiliary Input 1.0+
 04H 4 Auxiliary Output 1.0+
 05H 5 Printer Output 1.0+
 06H 6 Direct Console I/O 1.0+
 07H 7 Unfiltered Character Input Without Echo 1.0+
 08H 8 Character Input Without Echo 1.0+
 09H 9 Display String 1.0+
 0AH 10 Buffered Keyboard Input 1.0+

 0BH 11 Check Input Status 1.0+
 0CH 12 Flush Input Buffer and Then Input 1.0+

 File Operations
 0FH 15 Open File 1.0+ F
 10H 16 Close File 1.0+ F
 11H 17 Find First File 1.0+ F
 12H 18 Find Next File 1.0+ F
 13H 19 Delete File 1.0+ F
 16H 22 Create File 1.0+ F
 17H 23 Rename File 1.0+ F
 23H 35 Get File Size 1.0+ F
 29H 41 Parse Filename 1.0+ F
 3CH 60 Create File 2.0+ H
 3DH 61 Open File 2.0+ H
 3EH 62 Close File 2.0+ H
 41H 65 Delete File 2.0+ H
 43H 67 Get or Set File Attributes 2.0+
 45H 69 Duplicate Handle 2.0+
 46H 70 Redirect Handle 2.0+
 4EH 78 Find First File 2.0+ H
 4FH 79 Find Next File 2.0+ H
 56H 86 Rename File 2.0+
 57H 87 Get or Set File Date and Time 2.0+ H
 5AH 90 Create Temporary File 3.0+ H
 5BH 91 Create New File 3.0+ H
 67H 103 Set Handle Count 3.3+
 68H 104 Commit File 3.3+ H
 6CH 108 Extended Open File 4.0+ H

 Record Operations
 14H 20 Sequential Read 1.0+ F
 15H 21 Sequential Write 1.0+ F
 1AH 26 Set DTA Address 1.0+
 21H 33 Random Read 1.0+ F
 22H 34 Random Write 1.0+ F
 24H 36 Set Relative Record Number 1.0+ F
 27H 39 Random Block Read 1.0+ F
 28H 40 Random Block Write 1.0+ F
 2FH 47 Get DTA Address 2.0+
 3FH 63 Read File or Device 2.0+ H
 40H 64 Write File or Device 2.0+ H
 42H 66 Set File Pointer 2.0+ H
 5CH 92 Lock or Unlock File Region 3.0+ H

 Directory Operations
 39H 57 Create Directory 2.0+
 3AH 58 Delete Directory 2.0+
 3BH 59 Set Current Directory 2.0+
 47H 71 Get Current Directory 2.0+

 Disk Management
 0DH 13 Disk Reset 1.0+
 0EH 14 Select Disk 1.0+
 19H 25 Get Current Disk 1.0+
 1BH 27 Get Default Drive Data 1.0+
 1CH 28 Get Drive Data 2.0+
 2EH 46 Set Verify Flag 1.0+
 36H 54 Get Drive Allocation Information 2.0+

 54H 84 Get Verify Flag 2.0+

 Process Management
 00H 0 Terminate Process 1.0+
 26H 38 Create New PSP 1.0+
 31H 49 Terminate and Stay Resident 2.0+
 4BH 75 Execute Program (EXEC) 2.0+
 4CH 76 Terminate Process with Return Code 2.0+
 4DH 77 Get Return Code 2.0+
 62H 98 Get PSP Address 3.0+

 Memory Management
 48H 72 Allocate Memory Block 2.0+
 49H 73 Release Memory Block 2.0+
 4AH 74 Resize Memory Block 2.0+
 58H 88 Get or Set Allocation Strategy 3.0+

 Network Functions
 5EH 94 Get Machine Name, Get or Set Printer 3.1+
 Setup
 5FH 95 Device Redirection 3.1+

 Time and Date
 2AH 42 Get Date 1.0+
 2BH 43 Set Date 1.0+
 2CH 44 Get Time 1.0+
 2DH 45 Set Time 1.0+

 Miscellaneous System Functions
 25H 37 Set Interrupt Vector 1.0+
 30H 48 Get MS-DOS Version Number 2.0+
 33H 51 Get or Set Break Flag, Get Boot Drive 2.0+
 35H 53 Get Interrupt Vector 2.0+
 38H 56 Get or Set Country Information 2.0+
 44H 68 IOCTL (I/O Control) 2.0+
 59H 89 Get Extended Error Information 3.0+
 63H 99 Get Lead Byte Table 2.25
 only
 65H 101 Get Extended Country Information 3.3+
 66H 102 Get or Set Code Page 3.3+

 Reserved Functions
 18H 24 Reserved
 1DH 29 Reserved
 1EH 30 Reserved
 1FH 31 Reserved
 20H 32 Reserved
 32H 50 Reserved
 34H 52 Reserved
 37H 55 Reserved
 50H 80 Reserved
 51H 81 Reserved
 52H 82 Reserved
 53H 83 Reserved
 55H 85 Reserved
 5DH 93 Reserved
 60H 96 Reserved
 61H 97 Reserved
 64H 100 Reserved

 69H 105 Reserved
 6AH 106 Reserved
 6BH 107 Reserved
 --

--
Int 20H [1.0]
Terminate process
--

 Terminates the current process. This is one of several methods that a
 program can use to perform a final exit. MS-DOS then takes the following
 actions:

 o All memory belonging to the process is released.

 o File buffers are flushed and any open handles for files or devices owned
 by the process are closed.

 o The termination handler vector (Int 22H) is restored from PSP:000AH.

 o The Ctrl-C handler vector (Int 23H) is restored from PSP:000EH.

 o [2.0+] The critical-error handler vector (Int 24H) is restored from
 PSP:0012H.

 o Control is transferred to the termination handler.

 If the program is returning to COMMAND.COM, control transfers to the
 resident portion, and the transient portion is reloaded if necessary. If a
 batch file is in progress, the next line of the file is fetched and
 interpreted; otherwise, a prompt is issued for the next user command.

Call with:

 CS = segment address of program segment prefix

Returns:

 Nothing

Notes:

 o Any files that have been written to using FCBs should be closed before
 performing this exit call; otherwise, data may be lost.

 o Other methods of performing a final exit are:

 Int 21H Function 00H�

 Int 21H Function 31H�

 Int 21H Function 4CH�

 Int 27H�

 o [2.0+] Int 21H Functions 31H and 4CH are the preferred methods for

 termination, since they allow a return code to be passed to the parent
 process.

 o [3.0+] If the program is running on a network, it should remove all
 locks it has placed on file regions before terminating.

Example:

 Terminate the current program, returning control to the program's parent.

 .
 .
 .
 int 20h ; transfer to MS-DOS

--
Int 21H [1.0]
Function 00H
Terminate process
--

 Terminates the current process. This is one of several methods that a
 program can use to perform a final exit. MS-DOS then takes the following
 actions:

 o All memory belonging to the process is released.

 o File buffers are flushed and any open handles for files or devices owned
 by the process are closed.

 o The termination handler vector (Int 22H) is restored from PSP:000AH.

 o The Ctrl-C handler vector (Int 23H) is restored from PSP:000EH.

 o [2.0+] The critical-error handler vector (Int 24H) is restored from
 PSP:0012H.

 o Control is transferred to the termination handler.

 If the program is returning to COMMAND.COM, control transfers to the
 resident portion, and the transient portion is reloaded if necessary. If a
 batch file is in progress, the next line of the file is fetched and
 interpreted; otherwise, a prompt is issued for the next user command.

Call with:

 AH = 00H
 CS = segment address of program segment prefix

Returns:

 Nothing

Notes:

 o Any files that have been written to using FCBs should be closed before
 performing this exit call; otherwise, data may be lost.

 o Other methods of performing a final exit are:

 Int 20H�

 Int 21H Function 31H�

 Int 21H Function 4CH<21H4CH>�

 Int 27H�

 o [2.0+] Int 21H Functions 31H and 4CH are the preferred methods for
 termination, since they allow a return code to be passed to the parent
 process.

 o [3.0+] If the program is running on a network, it should remove all
 locks it has placed on file regions before terminating.

Example:

 Terminate the current program, returning control to the program's parent.

 .
 .
 .
 mov ah,0 ; function number
 int 21h ; transfer to MS-DOS

--
Int 21H [1.0]
Function 01H
Character input with echo
--

 [1] Inputs a character from the keyboard, then echoes it to the display.
 If no character is ready, waits until one is available.

 [2.0+] Reads a character from the standard input device and echoes it to
 the standard output device. If no character is ready, waits until one is
 available. Input can be redirected. (If input has been redirected, there
 is no way to detect EOF.)

Call with:

 AH = 01H

Returns:

 AL = 8-bit input data

Notes:

 o If the standard input is not redirected, and the character read is a
 Ctrl-C, an Int 23H is executed. If the standard input is redirected, a
 Ctrl-C is detected at the console, and BREAK is ON, an Int 23H is
 executed.

 o To read extended ASCII codes (such as the special function keys F1 to
 F10) on the IBM PC and compatibles, you must call this function twice.

 The first call returns the value 00H to signal the presence of an
 extended code.

 o See also Int 21H Functions 06H, 07H, and 08H, which provide character
 input with various combinations of echo and/or Ctrl-C sensing.

 o [2.0+] You can also read the keyboard by issuing a read (Int 21H
 Function 3FH) using the predefined handle for the standard input
 (0000H), if input has not been redirected, or a handle obtained by
 opening the logical device CON.

Example:

 Read one character from the keyboard into register AL, echo it to the
 display, and store it in the variable char.

 char db 0 ; input character
 .
 .
 .
 mov ah,1 ; function number
 int 21h ; transfer to MS-DOS
 mov char,al ; save character
 .
 .
 .

--
Int 21H [1.0]
Function 02H
Character output
--

 [1] Outputs a character to the currently active video display.

 [2.0+] Outputs a character to the standard output device. Output can be
 redirected. (If output is redirected, there is no way to detect disk
 full.)

Call with:

 AH = 02H
 DL = 8-bit data for output

Returns:

 Nothing

Notes:

 o If a Ctrl-C is detected at the keyboard after the requested character is
 output, an Int 23H is executed.

 o If the standard output has not been redirected, a backspace code (08H)
 causes the cursor to move left one position. If output has been
 redirected, the backspace code does not receive any special treatment.

 o [2.0+] You can also send strings to the display by performing a write

 (Int 21H Function 40H) using the predefined handle for the standard
 output (0001H), if output has not been redirected, or a handle obtained
 by opening the logical device CON.

Example:

 Send the character "*" to the standard output device.

 .
 .
 .
 mov ah,2 ; function number
 mov dl,'*' ; character to output
 int 21h ; transfer to MS-DOS
 .
 .
 .

--
Int 21H [1.0]
Function 03H
Auxiliary input
--

 [1] Reads a character from the first serial port.

 [2.0+] Reads a character from the standard auxiliary device. The default
 is the first serial port (COM1).

Call with:

 AH = 03H

Returns:

 AL = 8-bit input data

Notes:

 o In most MS-DOS systems, the serial device is unbuffered and is not
 interrupt-driven. If the auxiliary device sends data faster than your
 program can process it, characters may be lost.

 o At startup on the IBM PC, PC-DOS initializes the first serial port to
 2400 baud, no parity, 1 stop bit, and 8 data bits. Other implementations
 of MS-DOS may initialize the serial device differently.

 o There is no way for a user program to read the status of the auxiliary
 device or to detect I/O errors (such as lost characters) through this
 function call. On the IBM PC, more precise control can be obtained by
 calling ROM BIOS Int 14H or by driving the communications controller
 directly.

 o If a Ctrl-C is detected at the keyboard, an Int 23H is executed.

 o [2.0+] You can also input from the auxiliary device by requesting a read
 (Int 21H Function 3FH) using the predefined handle for the standard
 auxiliary device (0003H) or using a handle obtained by opening the

 logical device AUX.

Example:

 Read a character from the standard auxiliary input and store it in the
 variable char.

 char db 0 ; input character
 .
 .
 .
 mov ah,3 ; function number
 int 21h ; transfer to MS-DOS
 mov char,al ; save character
 .
 .
 .

--
Int 21H [1.0]
Function 04H
Auxiliary output
--

 [1] Outputs a character to the first serial port.

 [2.0+] Outputs a character to the standard auxiliary device. The default
 is the first serial port (COM1).

Call with:

 AH = 04H
 DL = 8-bit data for output

Returns:

 Nothing

Notes:

 o If the output device is busy, this function waits until the device is
 ready to accept a character.

 o There is no way to poll the status of the auxiliary device using this
 function. On the IBM PC, more precise control can be obtained by calling
 ROM BIOS Int 14H or by driving the communications controller directly.

 o If a Ctrl-C is detected at the keyboard, an Int 23H is executed.

 o [2.0+] You can also send strings to the auxiliary device by performing a
 write (Int 21H Function 40H) using the predefined handle for the
 standard auxiliary device (0003H) or using a handle obtained by opening
 the logical device AUX.

Example:

 Output a "*'' character to the auxiliary device.

 .
 .
 .
 mov ah,4 ; function number
 mov dl,'*' ; character to output
 int 21h ; transfer to MS-DOS
 .
 .
 .

--
Int 21H [1.0]
Function 05H
Printer output
--

 [1] Sends a character to the first list device (PRN or LPT1).

 [2.0+] Sends a character to the standard list device. The default device
 is the printer on the first parallel port (LPT1), unless explicitly
 redirected by the user with the MODE command.

Call with:

 AH = 05H
 DL = 8-bit data for output

Returns:

 Nothing

Notes:

 o If the printer is busy, this function waits until the printer is ready
 to accept the character.

 o There is no standardized way to poll the status of the printer under
 MS-DOS.

 o If a Ctrl-C is detected at the keyboard, an Int 23H is executed.

 o [2.0+] You can also send strings to the printer by performing a write
 (Int 21H Function 40H) using the predefined handle for the standard
 printer device (0004H) or using a handle obtained by opening the logical
 device PRN or LPT1.

Example:

 Output the character "*'' to the list device.

 .
 .
 .
 mov ah,5 ; function number
 mov dl,'*' ; character to output
 int 21h ; transfer to MS-DOS
 .
 .

 .

--
Int 21H [1.0]
Function 06H
Direct console I/O
--

 Used by programs that need to read and write all possible characters and
 control codes without any interference from the operating system.

 [1] Reads a character from the keyboard or writes a character to the
 display.

 [2.0+] Reads a character from the standard input device or writes a
 character to the standard output device. I/O may be redirected. (If I/O
 has been redirected, there is no way to detect EOF or disk full.)

Call with:

 AH = 06H
 DL = function requested

 00H-FEH if output request
 0FFH if input request

Returns:

 If called with DL = 00H-0FEH

 Nothing

 If called with DL = FFH and a character is ready

 Zero flag = clear
 AL = 8-bit input data

 If called with DL = FFH and no character is ready

 Zero flag = set

Notes:

 o No special action is taken upon entry of a Ctrl-C when this service is
 used.

 o To read extended ASCII codes (such as the special function keys F1 to
 F10) on the IBM PC and compatibles, you must call this function twice.
 The first call returns the value 00H to signal the presence of an
 extended code.

 o See also Int 21H Functions 01H, 07H, and 08H, which provide character
 input with various combinations of echo and/or Ctrl-C sensing, and
 Functions 02H and 09H, which may be used to write characters to the
 standard output.

 o [2.0+] You can also read the keyboard by issuing a read (Int 21H
 Function 3FH) using the predefined handle for the standard input

 (0000H), if input has not been redirected, or a handle obtained by
 opening the logical device CON.

 o [2.0+] You can also send characters to the display by issuing a write
 (Int 21H Function 40H) using the predefined handle for the standard
 output (0001H), if output has not been redirected, or a handle obtained
 by opening the logical device CON.

Examples:

 Send the character "*" to the standard output device.

 .
 .
 .
 mov ah,6 ; function number
 mov dl,'*' ; character to output
 int 21h ; transfer to MS-DOS
 .
 .
 .

 Read a character from the standard input device and save it in the
 variable char. If no character is ready, wait until one is available.

 char db 0 ; input character
 .
 .
 .
 wait: mov ah,6 ; function number
 mov dl,0ffh ; parameter for read
 int 21h ; transfer to MS-DOS
 jz wait ; wait until char ready
 mov char,al ; save the character
 .
 .
 .

--
Int 21H [1.0]
Function 07H
Unfiltered character input without echo
--

 [1] Reads a character from the keyboard without echoing it to the display.
 If no character is ready, waits until one is available.

 [2.0+] Reads a character from the standard input device without echoing it
 to the standard output device. If no character is ready, waits until one
 is available. Input may be redirected. (If input has been redirected,
 there is no way to detect EOF.)

Call with:

 AH = 07H

Returns:

 AL = 8-bit input data

Notes:

 o No special action is taken upon entry of a Ctrl-C when this function is
 used. If Ctrl-C checking is required, use Int 21H Function 08H instead.

 o To read extended ASCII codes (such as the special function keys F1 to
 F10) on the IBM PC and compatibles, you must call this function twice.
 The first call returns the value 00H to signal the presence of an
 extended code.

 o See also Int 21H Functions 01H, 06H, and 08H, which provide character
 input with various combinations of echo and/or Ctrl-C sensing.

 o [2.0+] You can also read the keyboard by issuing a read (Int 21H
 Function 3FH) using the predefined handle for the standard input
 (0000H), if input has not been redirected, or a handle obtained by
 opening the logical device CON.

Example:

 Read a character from the standard input without echoing it to the
 display, and store it in the variable char.

 char db 0 ; input character
 .
 .
 .
 mov ah,7 ; function number
 int 21h ; transfer to MS-DOS
 mov char,al ; save character
 .
 .
 .

--
Int 21H [1.0]
Function 08H
Character input without echo
--

 [1] Reads a character from the keyboard without echoing it to the display.
 If no character is ready, waits until one is available.

 [2.0+] Reads a character from the standard input device without echoing it
 to the standard output device. If no character is ready, waits until one
 is available. Input may be redirected. (If input has been redirected,
 there is no way to detect EOF.)

Call with:

 AH = 08H

Returns:

 AL = 8-bit input data

Notes:

 o If the standard input is not redirected, and the character read is a
 Ctrl-C, an Int 23H is executed. If the standard input is redirected, a
 Ctrl-C is detected at the console, and BREAK is ON, an Int 23H is
 executed. To avoid possible interruption by a Ctrl-C, use Int 21H
 Function 07H instead.

 o To read extended ASCII codes (such as the special function keys F1 to
 F10) on the IBM PC and compatibles, you must call this function twice.
 The first call returns the value 00H to signal the presence of an
 extended code.

 o See also Int 21H Functions 01H, 06H, and 07H, which provide character
 input with various combinations of echo and/or Ctrl-C sensing.

 o [2.0+] You can also read the keyboard by issuing a read (Int 21H
 Function 3FH) using the predefined handle for the standard input
 (0000H), if input has not been redirected, or a handle obtained by
 opening the logical device CON.

Example:

 Read a character from the standard input without echoing it to the
 display, allowing possible detection of Ctrl-C, and store the character in
 the variable char.

 char db 0
 .
 .
 .
 mov ah,8 ; function number
 int 21h ; transfer to MS-DOS
 mov char,al ; save character
 .
 .
 .

--
Int 21H [1.0]
Function 09H
Display string
--

 [1] Sends a string of characters to the display.

 [2.0+] Sends a string of characters to the standard output device. Output
 may be redirected. (If output has been redirected, there is no way to
 detect disk full.)

Call with:

 AH = 09H
 DS:DX = segment:offset of string

Returns:

 Nothing

Notes:

 o The string must be terminated with the character $ (24H), which is not
 transmitted. Any other ASCII codes, including control codes, can be
 embedded in the string.

 o See Int 21H Functions 02H and 06H for single-character output to the
 video display or standard output device.

 o If a Ctrl-C is detected at the keyboard, an Int 23H is executed.

 o [2.0+] You can also send strings to the display by performing a write
 (Int 21H Function 40H) using the predefined handle for the standard
 output (0001H), if it has not been redirected, or a handle obtained by
 opening the logical device CON.

Example:

 Send the string Hello World, followed by a carriage return and line feed,
 to the standard output device.

 cr equ 0dh
 lf equ 0ah

 msg db 'Hello World',cr,lf,'$'
 .
 .
 .
 mov ah,9 ; function number
 mov dx,seg msg ; address of string
 mov ds,dx
 mov dx,offset msg
 int 21h ; transfer to MS-DOS
 .
 .
 .

--
Int 21H [1.0]
Function 0AH (10)
Buffered keyboard input
--

 [1] Reads a line from the keyboard and places it in a user-designated
 buffer. The characters are echoed to the display.

 [2.0+] Reads a string of bytes from the standard input device, up to and
 including an ASCII carriage return (0DH), and places them in a
 user-designated buffer. The characters are echoed to the standard output
 device. Input may be redirected. (If input has been redirected, there is
 no way to detect EOF.)

Call with:

 AH = 0AH
 DS:DX = segment:offset of buffer

Returns:

 Nothing (data placed in buffer)

Notes:

 o The buffer used by this function has the following format:

 Byte Contents
 --
 0 maximum number of characters to read, set by program
 1 number of characters actually read (excluding carriage
 return), set
 by MS-DOS
 2+ string read from keyboard or standard input, terminated by
 a carriage return (0DH)
 --

 o If the buffer fills to one fewer than the maximum number of characters
 it can hold, subsequent input is ignored and the bell is sounded until a
 carriage return is detected.

 o This input function is buffered with type-ahead capability, and all of
 the standard keyboard editing commands are active.

 o If the standard input is not redirected, and a Ctrl-C is detected at the
 console, an Int 23H is executed. If the standard input is redirected, a
 Ctrl-C is detected at the console, and BREAK is ON, an Int 23H is
 executed.

 o See Int 21H Functions 01H, 06H, 07H, and 08H for single-character input
 from the keyboard or standard input device.

 o [2.0+] You can also read strings from the keyboard by performing a read
 (Int 21H Function 3FH) using the predefined handle for the standard
 input (0000H), if it has not been redirected, or a handle obtained by
 opening the logical device CON.

Example:

 Read a string that is a maximum of 80 characters long from the standard
 input device, placing it in the buffer named buff.

 buff db 81 ; maximum length of input
 db 0 ; actual length of input
 db 81 dup (0) ; actual input placed here
 .
 .
 .
 mov ah,0ah ; function number
 mov dx,seg buff ; input buffer address
 mov ds,dx
 mov dx,offset buff
 int 21h ; transfer to MS-DOS
 .
 .
 .

--
Int 21H [1.0]
Function 0BH (11)
Check input status
--

 [1] Checks whether a character is available from the keyboard.

 [2.0+] Checks whether a character is available from the standard input
 device. Input can be redirected.

Call with:

 AH = 0BH

Returns:

 AL = 00H if no character is available
 FFH if at least one character is available

Notes:

 o [1] If a Ctrl-C is detected, an Int 23H is executed.

 o [2.0+] If the standard input is not redirected, and a Ctrl-C is detected
 at the console, an Int 23H is executed. If the standard input is
 redirected, a Ctrl-C is detected at the console, and BREAK is ON, an Int
 23H is executed.

 o If a character is waiting, this function will continue to return a true
 flag until the character is consumed with a call to Int 21H Function
 01H, 06H, 07H, 08H, 0AH, or 3FH.

 o This function is equivalent to IOCTL Int 21H Function 44H Subfunction
 06H.

Example:

 Test whether a character is available from the standard input.

 .
 .
 .
 mov ah,0bh ; function number
 int 21h ; transfer to MS-DOS
 or al,al ; character waiting?
 jnz ready ; jump if char ready
 .
 .
 .

--
Int 21H [1.0]
Function 0CH (12)
Flush input buffer and then input
--

 [1] Clears the type-ahead buffer and then invokes one of the keyboard

 input functions.

 [2.0+] Clears the standard input buffer and then invokes one of the
 character input functions. Input can be redirected.

Call with:

 AH = 0CH
 AL = number of input function to be invoked after resetting
 buffer (must be 01H, 06H, 07H, 08H, or 0AH)

 (if AL = 0AH)

 DS:DX = segment:offset of input buffer

Returns:

 (if called with AL = 01H, 06H, 07H, or 08H)

 AL = 8-bit input data

 (if called with AL = 0AH)

 Nothing (data placed in buffer)

Notes:

 o The function exists to allow a program to defeat MS-DOS's type-ahead
 feature. It discards any characters that are waiting in MS-DOS's
 internal type-ahead buffer, forcing the specified input function to wait
 for a character (usually a keyboard entry) that is truly entered after
 the program's request.

 o The presence or absence of Ctrl-C checking during execution of this
 function depends on the function number placed in register AL.

 o A function number in AL other than 01H, 06H, 07H, 08H, or 0AH simply
 flushes the input buffer and returns control to the calling program.

Example:

 Clear the type-ahead buffer, then wait for a character to be entered,
 echoing it and then returning it in AL. Store the character in the
 variable char.

 char db 0
 .
 .
 .
 mov ah,0ch ; function number
 mov al,1 ; subfunction = input char
 int 21h ; transfer to MS-DOS
 mov char,al ; save character
 .
 .
 .

--

Int 21H [1.0]
Function 0DH (13)
Disk reset
--

 Flushes all file buffers. All data that has been logically written by user
 programs, but has been temporarily buffered within MS-DOS, is physically
 written to the disk.

Call with:

 AH = 0DH

Returns:

 Nothing

Notes:

 o This function does not update the disk directory for any files that are
 still open. If your program fails to properly close all files before the
 disk is removed, and files have changed size, the data forced out to the
 disk by this function may still be inaccessible because the directory
 entries will not be correct.

 o [3.3+] Int 21H Function 68H (Commit File) should be used in preference
 to this function, since it also updates the disk directory.

Example:

 Flush all MS-DOS internal disk buffers.

 .
 .
 .
 mov ah,0dh ; function number
 int 21h ; transfer to MS-DOS
 .
 .
 .

--
Int 21H [1.0]
Function 0EH (14)
Select disk
--

 Selects the specified drive to be the current, or default, disk drive and
 returns the total number of logical drives in the system.

Call with:

 AH = 0EH
 DL = drive code (0 = A, 1 = B, etc.)

Returns:

 AL = number of logical drives in system

Notes:

 o [1] 16 drive designators (0 through 0FH) are available.

 o [2] 63 drive designators (0 through 3FH) are available.

 o [3.0+] 26 drive designators (0 through 19H) are available.

 o To preserve upward compatibility, new applications should limit
 themselves to the drive letters A-Z (0 = A, 1 = B, etc.).

 o Logical drives means the total number of block devices: floppy disks,
 simulated disk drives (RAMdisks), and hard-disk drives. A single
 physical hard-disk drive is frequently partitioned into two or more
 logical drives.

 o [1] [2] In single-drive IBM PC-compatible systems, the value 2 is
 returned in AL, because PC-DOS supports two logical drives (A: and B:)
 on the single physical floppy-disk drive. The actual number of physical
 drives in the system can be determined with ROM BIOS Int 11H.

 o [3.0+] The value returned in AL is either 5 or the drive code
 corresponding to the LASTDRIVE entry (if any) in CONFIG.SYS, whichever
 is greater.

Example:

 Make drive B the current (default) disk drive. Save the total number of
 logical drives in the system in the variable drives.

 drives db 0
 .
 .
 .
 mov ah,0eh ; function number
 mov dl,1 ; drive 1 = B
 int 21h ; transfer to MS-DOS
 mov drives,al ; save total drives
 .
 .
 .

--
Int 21H [1.0]
Function 0FH (15)
Open file
--

 Opens a file and makes it available for subsequent read/write operations.

Call with:

 AH = 0FH
 DS:DX = segment:offset of file control block

Returns:

 If function successful (file found)

 AL = 00H

 and FCB filled in by MS-DOS as follows:

 drive field (offset 00H) = 1 for drive A, 2 for drive B, etc.
 current block field (offset 0CH) = 00H
 record size field (offset 0EH) = 0080H
 [2.0+] size field (offset 10H) = file size from directory
 [2.0+] date field (offset 14H) = date stamp from directory
 [2.0+] time field (offset 16H) = time stamp from directory

 If function unsuccessful (file not found)

 AL = 0FFH

Notes:

 o If your program is going to use a record size other than 128 bytes, it
 should set the record-size field at FCB offset 0EH after the file is
 successfully opened and before any other disk operation.

 o If random access is to be performed, the calling program must also set
 the FCB relative-record field (offset 21H) after successfully opening
 the file.

 o For format of directory time and date, see Int 21H Function 57H.

 o [2.0+] Int 21H Function 3DH, which allows full access to the
 hierarchical directory structure, should be used in preference to this
 function.

 o [3.0+] If the program is running on a network, the file is opened for
 read/write access in compatibility sharing mode.

Example:

 Attempt to open the file named QUACK.DAT on the default disk drive.

 myfcb db 0 ; drive = default
 db 'QUACK ' ; filename, 8 characters
 db 'DAT' ; extension, 3 characters
 db 25 dup (0) ; remainder of FCB
 .
 .
 .
 mov ah,0fh ; function number
 mov dx,seg myfcb ; address of FCB
 mov ds,dx
 mov dx,offset myfcb
 int 21h ; transfer to MS-DOS
 or al,al ; check status
 jnz error ; jump if open failed
 .
 .
 .

--
Int 21H [1.0]
Function 10H (16)
Close file
--

 Closes a file, flushes all MS-DOS internal disk buffers associated with
 the file to disk, and updates the disk directory if the file has been
 modified or extended.

Call with:

 AH = 10H
 DS:DX = segment:offset of file control block

Returns:

 If function successful (directory update successful)

 AL = 00H

 If function unsuccessful (file not found in directory)

 AL = FFH

Notes:

 o [1] [2] MS-DOS versions 1 and 2 do not reliably detect a floppy-disk
 change, and an error can occur if the user changes disks while a file is
 still open on that drive. In the worst case, the directory and file
 allocation table of the newly inserted disk can be damaged or destroyed.

 o [2.0+] Int 21H Function 3EH should be used in preference to this
 function.

Example:

 Close the file that was previously opened using the file control block
 named myfcb.

 myfcb db 0 ; drive = default
 db 'QUACK ' ; filename, 8 characters
 db 'DAT' ; extension, 3 characters
 db 25 dup (0) ; remainder of FCB
 .
 .
 .
 mov ah,10h ; function number
 mov dx,seg myfcb ; address of FCB
 mov ds,dx
 mov dx,offset myfcb
 int 21h ; transfer to MS-DOS
 or al,al ; check status
 jnz error ; jump if close failed
 .
 .
 .

--
Int 21H [1.0]
Function 11H (17)
Find first file
--

 Searches the current directory on the designated drive for a matching
 filename.

Call with:

 AH = 11H
 DS:DX = segment:offset of file control block

Returns:

 If function successful (matching filename found)

 AL = 00H

 and buffer at current disk transfer area (DTA) address filled in as an
 unopened normal FCB or extended FCB, depending on which type of FCB was
 input to function

 If function unsuccessful (no matching filename found)

 AL = FFH

Notes:

 o Use Int 21H Function 1AH to set the DTA to point to a buffer of
 adequate size before calling this function.

 o The wildcard character ? is allowed in the filename in all versions of
 MS-DOS. In versions 3.0 and later, the wildcard character * may also be
 used in a filename. If ? or * is used, this function returns the first
 matching filename.

 o An extended FCB must be used to search for files that have the system,
 hidden, read-only, directory, or volume-label attributes.

 o If an extended FCB is used, its attribute byte determines the type of
 search that will be performed. If the attribute byte contains 00H, only
 ordinary files are found. If the volume-label attribute bit is set, only
 volume labels will be returned (if any are present). If any other
 attribute or combination of attributes is set (such as hidden, system,
 or read-only), those files and all ordinary files will be matched.

 o [2.0+] Int 21H Function 4EH, which allows full access to the
 hierarchical directory structure, should be used in preference to this
 function.

Example:

 Search for the first file with the extension .COM in the current
 directory.

 buff db 37 dup (0) ; receives search result

 myfcb db 0 ; drive = default
 db '????????' ; wildcard filename
 db 'COM' ; extension = COM
 db 25 dup (0) ; remainder of FCB
 .
 .
 .
 ; set DTA address
 mov ah,1ah ; function number
 mov dx,seg buff ; buffer address
 mov ds,dx
 mov dx,offset buff
 int 21h ; transfer to MS-DOS

 ; search for first match
 mov ah,11h ; function number
 mov dx,seg myfcb ; address of FCB
 mov ds,dx
 mov dx,offset myfcb
 int 21h ; transfer to MS-DOS
 or al,al ; check status
 jnz error ; jump if no match
 .
 .
 .

--
Int 21H [1.0]
Function 12H (18)
Find next file
--

 Given that a previous call to Int 21H Function 11H has been successful,
 returns the next matching filename (if any).

Call with:

 AH = 12H
 DS:DX = segment:offset of file control block

Returns:

 If function successful (matching filename found)

 AL = 00H

 and buffer at current disk transfer area (DTA) address set up as an
 unopened normal FCB or extended FCB, depending on which type of FCB was
 originally input to Int 21H Function 11H

 If function unsuccessful (no more matching filenames found)

 AL = FFH

Notes:

 o This function assumes that the FCB used as input has been properly
 initialized by a previous call to Int 21H Function 11H (and possible

 subsequent calls to Int 21H Function 12H) and that the filename or
 extension being searched for contained at least one wildcard character.

 o As with Int 21H Function 11H, it is important to use Int 21H Function
 1AH to set the DTA to a buffer of adequate size before calling this
 function.

 o [2.0+] Int 21H Functions 4EH and 4FH, which allow full access to the
 hierarchical directory structure, should be used in preference to this
 function.

Example:

 Assuming a previous successful call to function 11H, search for the next
 file with the extension .COM in the current directory. If the DTA has not
 been changed since the previous search, another call to Function 1AH is
 not necessary.

 buff db 37 dup (0) ; receives search result

 my_fcb db 0 ; drive = default
 db '????????' ; wildcard filename
 db 'COM' ; extension = COM
 db 25 dup (0) ; remainder of FCB
 .
 .
 .
 ; set DTA address
 mov ah,1ah ; function number
 mov dx,seg buff ; buffer address
 mov ds,dx
 mov dx,offset buff
 int 21h ; transfer to MS-DOS

 ; search for next match
 mov ah,12h ; function number
 mov dx,seg myfcb ; address of FCB
 mov ds,dx
 mov dx,offset myfcb
 int 21h ; transfer to MS-DOS
 or al,al ; check status
 jnz error ; jump if no match
 .
 .
 .

--
Int 21H [1.0]
Function 13H (19)
Delete file
--

 Deletes all matching files from the current directory on the default or
 specified disk drive.

Call with:

 AH = 13H

 DS:DX = segment:offset of file control block

Returns:

 If function successful (file or files deleted)

 AL = 00H

 If function unsuccessful (no matching files were found, or at least one
 matching file was read-only)

 AL = FFH

Notes:

 o The wildcard character ? is allowed in the filename; if ? is present and
 there is more than one matching filename, all matching files will be
 deleted.

 o [2.0+] Int 21H Function 41H, which allows full access to the
 hierarchical directory structure, should be used in preference to this
 function.

 o [3.0+] If the program is running on a network, the user must have Create
 rights to the directory containing the file to be deleted.

Example:

 Delete the file MYFILE.DAT from the current disk drive and directory.

 myfcb db 0 ; drive = default
 db 'MYFILE ' ; filename, 8 chars
 db 'DAT' ; extension, 3 chars
 db 25 dup (0) ; remainder of FCB
 .
 .
 .
 mov ah,13h ; function number
 mov dx,seg myfcb ; address of FCB
 mov ds,dx
 mov dx,offset myfcb
 int 21h ; transfer to MS-DOS
 or al,al ; check status
 jnz error ; jump, delete failed
 .
 .
 .

--
Int 21H [1.0]
Function 14H (20)
Sequential read
--

 Reads the next sequential block of data from a file, then increments the
 file pointer appropriately.

Call with:

 AH = 14H
 DS:DX = segment:offset of previously opened file control block

Returns:

 AL = 00H if read successful
 01H if end of file
 02H if segment wrap
 03H if partial record read at end of file

Notes:

 o The record is read into memory at the current disk transfer area (DTA)
 address, specified by the most recent call to Int 21H Function 1AH. If
 the size of the record and the location of the buffer are such that a
 segment overflow or wraparound would occur, the function fails with a
 return code of 02H.

 o The number of bytes of data to be read is specified by the record-size
 field (offset 0EH) of the file control block (FCB).

 o The file location of the data that will be read is specified by the
 combination of the current block field (offset 0CH) and current record
 field (offset 20H) of the file control block (FCB). These fields are
 also automatically incremented by this function.

 o If a partial record is read at the end of file, it is padded to the
 requested record length with zeros.

 o [3.0+] If the program is running on a network, the user must have Read
 access rights to the directory containing the file to be read.

Example:

 Read 1024 bytes of data from the file specified by the previously opened
 file control block myfcb.

 myfcb db 0 ; drive = default
 db 'QUACK ' ; filename, 8 chars
 db 'DAT' ; extension, 3 chars
 db 25 dup (0) ; remainder of FCB
 .
 .
 .
 mov ah,14h ; function number
 mov dx,seg myfcb ; address of FCB
 mov ds,dx
 mov dx,offset myfcb
 ; set record size
 mov word ptr myfcb+0eH,1024
 int 21h ; transfer to MS-DOS
 or al,al ; check status
 jnz error ; jump if read failed
 .
 .
 .

--
Int 21H [1.0]
Function 15H (21)
Sequential write
--

 Writes the next sequential block of data into a file, then increments the
 file pointer appropriately.

Call with:

 AH = 15H
 DS:DX = segment:offset of previously opened file control block

Returns:

 AL = 00H if write successful
 01H if disk is full
 02H if segment wrap

Notes:

 o The record is written (logically, not necessarily physically) to the
 disk from memory at the current disk transfer area (DTA) address,
 specified by the most recent call to Int 21H Function 1AH. If the size
 of the record and the location of the buffer are such that a segment
 overflow or wraparound would occur, the function fails with a return
 code of 02H.

 o The number of bytes of data to be written is specified by the
 record-size field (offset 0EH) of the file control block (FCB).

 o The file location of the data that will be written is specified by the
 combination of the current block field (offset 0CH) and current record
 field (offset 20H) of the file control block (FCB). These fields are
 also automatically incremented by this function.

 o [3.0+] If the program is running on a network, the user must have Write
 access rights to the directory containing the file to be written.

Example:

 Write 1024 bytes of data to the file specified by the previously opened
 file control block myfcb.

 myfcb db 0 ; drive = default
 db 'QUACK ' ; filename, 8 chars
 db 'DAT' ; extension, 3 chars
 db 25 dup (0) ; remainder of FCB
 .
 .
 .
 mov ah,15h ; function number
 mov dx,seg myfcb ; address of FCB
 mov ds,dx
 mov dx,offset myfcb
 ; set record size
 mov word ptr myfcb+0eh,1024
 int 21h ; transfer to MS-DOS

 or al,al ; check status
 jnz error ; jump if write failed
 .
 .
 .

--
Int 21H [1.0]
Function 16H (22)
Create file
--

 Creates a new directory entry in the current directory or truncates any
 existing file with the same name to zero length. Opens the file for
 subsequent read/write operations.

Call with:

 AH = 16H
 DS:DX = segment:offset of unopened file control block

Returns:

 If function successful (file was created or truncated)

 AL = 00H

 and FCB filled in by MS-DOS as follows:

 drive field (offset 00H) = 1 for drive A, 2 for drive B, etc.
 current block field (offset 0CH) = 00H
 record size field (offset 0EH) = 0080H
 [2.0+] size field (offset 10H) = file size from directory
 [2.0+] date field (offset 14H) = date stamp from directory
 [2.0+] time field (offset 16H) = time stamp from directory

 If function unsuccessful (directory full)

 AL = FFH

Notes:

 o Since an existing file with the specified name is truncated to zero
 length (i.e., all data in that file is irretrievably lost), this
 function must be used with caution.

 o If this function is called with an extended file control block (FCB),
 the new file may be assigned a special attribute, such as hidden or
 system, during its creation by setting the appropriate bit in the
 extended FCB's attribute byte.

 o Since this function also opens the file, a subsequent call to Int 21H
 Function 0FH is not required.

 o For format of directory time and date, see Int 21H Function 57H.

 o [2.0+] Int 21H Functions 3CH, 5AH, 5BH, and 6CH, which provide full
 access to the hierarchical directory structure, should be used in

 preference to this function.

 o [3.0+] If the program is running on a network, the user must have Create
 rights to the directory that will contain the new file.

Example:

 Create a file in the current directory using the name in the file control
 block myfcb.

 myfcb db 0 ; drive = default
 db 'QUACK ' ; filename, 8 chars
 db 'DAT' ; extension, 3 chars
 db 25 dup (0) ; remainder of FCB
 .
 .
 .
 mov ah,16h ; function number
 mov dx,seg myfcb ; address of FCB
 mov ds,dx
 mov dx,offset myfcb
 int 21h ; transfer to MS-DOS
 or al,al ; check status
 jnz error ; jump if create failed
 .
 .
 .

--
Int 21H [1.0]
Function 17H (23)
Rename file
--

 Alters the name of all matching files in the current directory on the disk
 in the specified drive.

Call with:

 AH = 17H
 DS:DX = segment:offset of "special" file control block

Returns:

 If function successful (one or more files renamed)

 AL = 00H

 If function unsuccessful (no matching files, or new filename matched an
 existing file)

 AL = FFH

Notes:

 o The special file control block has a drive code, filename, and extension
 in the usual position (bytes 0 through 0BH) and a second filename
 starting 6 bytes after the first (offset 11H).

 o The ? wildcard character can be used in the first filename. Every file
 matching the first file specification will be renamed to match the
 second file specification.

 o If the second file specification contains any ? wildcard characters, the
 corresponding letters in the first filename are left unchanged.

 o The function terminates if the new name to be assigned to a file matches
 that of an existing file.

 o [2.0+] An extended FCB can be used with this function to rename a
 directory.

 o [2.0+] Int 21H Function 56H, which allows full access to the
 hierarchical directory structure, should be used in preference to this
 function.

Example:

 Rename the file OLDNAME.DAT to NEWNAME.DAT.

 myfcb db 0 ; drive = default
 db 'OLDNAME ' ; old file name, 8 chars
 db 'DAT' ; old extension, 3 chars
 db 6 dup (0) ; reserved area
 db 'NEWNAME ' ; new file name, 8 chars
 db 'DAT' ; new extension, 3 chars
 db 14 dup (0) ; reserved area
 .
 .
 .
 mov ah,17h ; function number
 mov dx,seg myfcb ; address of FCB
 mov ds,dx
 mov dx,offset myfcb
 int 21h ; transfer to MS-DOS
 or al,al ; check status
 jnz error ; jump if rename failed
 .
 .
 .

--
Int 21H
Function 18H (24)
Reserved
--

--
Int 21H [1.0]
Function 19H (25)
Get current disk
--

 Returns the drive code of the current, or default, disk drive.

Call with:

 AH = 19H

Returns:

 AL = drive code (0 = A, 1 = B, etc.)

Notes:

 o To set the default drive, use Int 21H Function 0EH.

 o Some other Int 21H functions use drive codes beginning at 1 (that is,
 1 = A, 2 = B, etc.) and reserve drive code zero for the default drive.

Example:

 Get the current disk drive and save the code in the variable cdrive.

 cdrive db 0 ; current drive code
 .
 .
 .
 mov ah,19h ; function number
 int 21h ; transfer to MS-DOS
 mov cdrive,al ; save drive code
 .
 .
 .

--
Int 21H [1.0]
Function 1AH (26)
Set DTA address
--

 Specifies the address of the disk transfer area (DTA) to be used for
 subsequent FCB-related function calls.

Call with:

 AH = 1AH
 DS:DX = segment:offset of disk transfer area

Returns:

 Nothing

Notes:

 o If this function is never called by the program, the DTA defaults to a
 128-byte buffer at offset 0080H in the program segment prefix.

 o In general, it is the programmer's responsibility to ensure that the
 buffer area specified is large enough for any disk operation that will
 use it. The only exception to this is that MS-DOS will detect and abort
 disk transfers that would cause a segment wrap.

 o Int 21H Function 2FH can be used to determine the current disk transfer
 address.

 o The only handle-type operations that rely on the DTA address are the
 directory search functions, Int 21H Functions 4EH and 4FH.

Example:

 Set the current disk transfer area address to the buffer labeled buff.

 buff db 128 dup (?)
 .
 .
 .
 mov ah,1ah ; function number
 mov dx,seg buff ; address of disk
 mov ds,dx ; transfer area
 mov dx,offset buff
 int 21h ; transfer to MS-DOS
 .
 .
 .

--
Int 21H [1.0]
Function 1BH (27)
Get default drive data
--

 Obtains selected information about the default disk drive and a pointer to
 the media identification byte from its file allocation table.

Call with:

 AH = 1BH

Returns:

 If function successful

 AL = sectors per cluster
 DS:BX = segment:offset of media ID byte
 CX = size of physical sector (bytes)
 DX = number of clusters for default drive

 If function unsuccessful (invalid drive or critical error)

 AL = FFH

Notes:

 o The media ID byte has the following meanings:

 0F0H 3.5-inch double-sided, 18 sectors
 or "other"
 0F8H fixed disk
 0F9H 5.25-inch double-sided, 15 sectors
 or 3.5-inch double-sided, 9 sectors

 0FCH 5.25-inch single-sided, 9 sectors
 0FDH 5.25-inch double-sided, 9 sectors
 0FEH 5.25-inch single-sided, 8 sectors
 0FFH 5.25-inch double-sided, 8 sectors

 o To obtain information about disks other than the one in the default
 drive, use Int 21H Function 1CH or 36H.

 o [1] The address returned in DS:BX points to a copy of the first sector
 of the actual FAT, with the media ID byte in the first byte.

 o [2.0+] The address returned in DS:BX points only to a copy of the media
 ID byte from the disk's FAT; the memory above that address cannot be
 assumed to contain the FAT or any other useful information. If direct
 access to the FAT is required, use Int 25H to read it into memory.

Example:

 Determine whether the current disk drive is fixed or removable.

 .
 .
 .
 mov ah,1bh ; function number
 int 21h ; transfer to MS-DOS

 ; check media ID byte
 cmp byte ptr [bx],0f8h
 je fixed ; jump if fixed disk
 jmp floppy ; else assume floppy
 .
 .
 .

--
Int 21H [2.0]
Function 1CH (28)
Get drive data
--

 Obtains allocation information about the specified disk drive and a
 pointer to the media identification byte from its file allocation table.

Call with:

 AH = 1CH
 DL = drive code (0 = default, 1 = A, etc.)

Returns:

 If function successful

 AL = sectors per cluster
 DS:BX = segment:offset of media ID byte
 CX = size of physical sector (bytes)
 DX = number of clusters for default or specified drive

 If function unsuccessful (invalid drive or critical error)

 AL = FFH

Notes:

 o The media ID byte has the following meanings:

 0F0H 3.5-inch double-sided, 18 sectors
 or "other"
 0F8H fixed disk
 0F9H 5.25-inch double-sided, 15 sectors
 or 3.5-inch double-sided, 9 sectors
 0FCH 5.25-inch single-sided, 9 sectors
 0FDH 5.25-inch double-sided, 9 sectors
 0FEH 5.25-inch single-sided, 8 sectors
 0FFH 5.25-inch double-sided, 8 sectors

 o In general, this call is identical to Int 21H Function 1BH, except for
 the ability to designate a specific disk drive. See also Int 21H
 Function 36H, which returns similar information.

 o [1] The address returned in DS:BX points to a copy of the first sector
 of the actual FAT, with the media ID byte in the first byte.

 o [2.0+] The address returned in DS:BX points only to a copy of the media
 ID byte from the disk's FAT; the memory above that address cannot be
 assumed to contain the FAT or any other useful information. If direct
 access to the FAT is required, use Int 25H to read it into memory.

Example:

 Determine whether disk drive C is fixed or removable.

 .
 .
 .
 mov ah,1ch ; function number
 mov dl,3 ; drive code 3 = C
 int 21h ; transfer to MS-DOS

 ; check media ID byte
 cmp byte ptr ds:[bx],0f8h
 je fixed ; jump if fixed disk
 jmp floppy ; else assume floppy
 .
 .
 .

--
Int 21H
Function 1DH (29)
Reserved
--

--
Int 21H
Function 1EH (30)

Reserved
--

--
Int 21H
Function 1FH (31)
Reserved
--

--
Int 21H
Function 20H (32)
Reserved
--

--
Int 21H [1.0]
Function 21H (33)
Random read
--

 Reads a selected record from a file into memory.

Call with:

 AH = 21H
 DS:DX = segment:offset of previously opened file control block

Returns:

 AL = 00H if read successful
 01H if end of file
 02H if segment wrap, read canceled
 03H if partial record read at end of file

Notes:

 o The record is read into memory at the current disk transfer area
 address, specified by the most recent call to Int 21H Function 1AH. It
 is the programmer's responsibility to ensure that this area is large
 enough for any record that will be transferred. If the size and location
 of the buffer are such that a segment overflow or wraparound would
 occur, the function fails with a return code of 02H.

 o The file location of the data to be read is determined by the
 combination of the relative-record field (offset 21H) and the
 record-size field (offset 0EH) of the FCB. The default record size is
 128 bytes.

 o The current block field (offset 0CH) and current record field (offset
 20H) are updated to agree with the relative-record field as a side
 effect of the function.

 o The relative-record field of the FCB is not incremented by this
 function; it is the responsibility of the application to update the FCB
 appropriately if it wishes to read successive records. Compare with Int

 21H Function 27H, which can read multiple records with one function
 call and automatically increments the relative-record field.

 o If a partial record is read at end of file, it is padded to the
 requested record length with zeros.

 o [3.0+] If the program is running on a network, the user must have Read
 access rights to the directory containing the file to be read.

Example:

 Open the file MYFILE.DAT, set the record length to 1024 bytes, then read
 record number 4 from the file into the buffer named buff.

 myfcb db 0 ; drive = default
 db 'MYFILE ' ; filename, 8 chars
 db 'DAT' ; extension, 3 chars
 db 25 dup (0) ; remainder of FCB

 buff db 1024 dup (?) ; receives read data
 .
 .
 .
 ; open the file
 mov ah,0fh ; function number
 mov dx,seg myfcb ; address of FCB
 mov ds,dx
 mov dx,offset myfcb
 int 21h ; transfer to MS-DOS
 or al,al ; check open status
 jnz error ; jump if no file

 ; set DTA address
 mov ah,1ah ; function number
 mov dx,offset buff ; read buffer address
 int 21h ; transfer to MS-DOS

 ; set record size
 mov word ptr myfcb+0eh,1024

 ; set record number
 mov word ptr myfcb+21h,4
 mov word ptr myfcb+23h,0

 ; read the record
 mov ah,21h ; function number
 mov dx,offset myfcb ; address of FCB
 int 21h ; transfer to MS-DOS
 or al,al ; check status
 jnz error ; jump if read failed
 .
 .
 .

--
Int 21H [1.0]
Function 22H (34)
Random write

--

 Writes data from memory into a selected record in a file.

Call with:

 AH = 22H
 DS:DX = segment:offset of previously opened file control block

Returns:

 AL = 00H if write successful
 01H if disk full
 02H if segment wrap, write canceled

Notes:

 o The record is written (logically, not necessarily physically) to the
 file from memory at the current disk transfer address, specified by the
 most recent call to Int 21H Function 1AH. If the size and location of
 the buffer are such that a segment overflow or wraparound would occur,
 the function fails with a return code of 02H.

 o The file location of the data to be written is determined by the
 combination of the relative-record field (offset 21H) and the
 record-size field (offset 0EH) of the FCB. The default record size is
 128 bytes.

 o The current block field (offset 0CH) and current record field (offset
 20H) are updated to agree with the relative-record field as a side
 effect of the function.

 o The relative-record field of the FCB is not incremented by this
 function; it is the responsibility of the application to update the FCB
 appropriately if it wishes to write successive records. Compare with Int
 21H Function 28H, which can write multiple records with one function
 call and automatically increments the relative-record field.

 o If a record is written beyond the current end of file, the space between
 the old end of file and the new record is allocated but not initialized.

 o [3.0+] If the program is running on a network, the user must have Write
 access rights to the directory containing the file to be written.

Example:

 Open the file MYFILE.DAT, set the record length to 1024 bytes, write
 record number 4 into the file from the buffer named buff, then close the
 file.

 myfcb db 0 ; drive = default
 db 'MYFILE ' ; filename, 8 chars
 db 'DAT' ; extension, 3 chars
 db 25 dup (0) ; remainder of FCB

 buff db 1024 dup (?) ; buffer for write
 .
 .
 .

 ; open the file
 mov ah,0fh ; function number
 mov dx,seg myfcb ; address of FCB
 mov ds,dx
 mov dx,offset myfcb
 int 21h ; transfer to MS-DOS
 or al,al ; check status
 jnz error ; jump if no file

 ; set DTA address
 mov dx,offset buff ; buffer address
 mov ah,1ah ; function number
 int 21h ; transfer to MS-DOS

 ; set record size
 mov word ptr myfcb+0eh,1024

 ; set record number
 mov word ptr myfcb+21h,4
 mov word ptr myfcb+23h,0

 ; write the record
 mov ah,22h ; function number
 mov dx,offset myfcb ; address of FCB
 int 21h ; transfer to MS-DOS
 or al,al ; check status
 jnz error ; jump if write failed

 ; close the file
 mov ah,10h ; function number
 mov dx,offset myfcb ; address of FCB
 int 21h ; transfer to MS-DOS
 or al,al ; check status
 jnz error ; jump if close failed
 .
 .
 .

--
Int 21H [1.0]
Function 23H (35)
Get file size
--

 Searches for a matching file in the current directory; if one is found,
 updates the FCB with the file's size in terms of number of records.

Call with:

 AH = 23H
 DS:DX = segment:offset of unopened file control block

Returns:

 If function successful (matching file found)

 AL = 00H

 and FCB relative-record field (offset 21H) set to the number of records in
 the file, rounded up if necessary to the next complete record

 If function unsuccessful (no matching file found)

 AL = FFH

Notes:

 o An appropriate value must be placed in the FCB record-size field (offset
 0EH) before calling this function. There is no default record size for
 this function. Compare with the FCB-related open and create functions
 (Int 21H Functions 0FH and 16H), which initialize the FCB for a
 default record size of 128 bytes.

 o The record-size field can be set to 1 to find the size of the file in
 bytes.

 o Because record numbers are zero based, this function can be used to
 position the FCB's file pointer to the end of file.

Example:

 Determine the size in bytes of the file MYFILE.DAT and leave the result in
 registers DX:AX.

 myfcb db 0 ; drive = default
 db 'MYFILE ' ; filename, 8 chars
 db 'DAT' ; extension, 3 chars
 db 25 dup (0) ; remainder of FCB
 .
 .
 .
 mov ah,23h ; function number
 mov dx,seg myfcb ; address of FCB
 mov ds,dx
 mov dx,offset myfcb
 ; record size = 1 byte
 mov word ptr myfcb+0eh,1
 int 21h ; transfer to MS-DOS
 or al,al ; check status
 jnz error ; jump if no file

 ; get file size in bytes
 mov ax,word ptr myfcb+21h
 mov dx,word ptr myfcb+23h
 .
 .
 .

--
Int 21H [1.0]
Function 24H (36)
Set relative record number
--

 Sets the relative-record-number field of a file control block (FCB) to
 correspond to the current file position as recorded in the opened FCB.

Call with:

 AH = 24H
 DS:DX = segment:offset of previously opened file control block

Returns:

 AL is destroyed (other registers not affected)

 FCB relative-record field (offset 21H) updated

Notes:

 o This function is used when switching from sequential to random I/O
 within a file. The contents of the relative-record field (offset 21H)
 are derived from the record size (offset 0EH), current block (offset
 0CH), and current record (offset 20H) fields of the file control block.

 o All four bytes of the FCB relative-record field (offset 21H) should be
 initialized to zero before calling this function.

Example:

 After a series of sequential record transfers have been performed using
 the file control block myfcb, obtain the current relative-record position
 in the file and leave the record number in DX.

 myfcb db 0 ; drive = default
 db 'MYFILE ' ; filename, 8 chars
 db 'DAT' ; extension, 3 chars
 db 25 dup (0) ; remainder of FCB
 .
 .
 .
 mov dx,seg myfcb ; make FCB addressable
 mov ds,dx

 ; initialize relative
 ; record field to zero
 mov word ptr myfcb+21h,0
 mov word ptr myfcb+23h,0

 ; now set record number
 mov ah,24h ; function number
 mov dx,offset myfcb ; address of FCB
 int 21h ; transfer to MS-DOS

 ; load record number in DX
 mov dx,word ptr myfcb+21h
 .
 .
 .

--
Int 21H [1.0]
Function 25H (37)
Set interrupt vector

--

 Initializes a CPU interrupt vector to point to an interrupt handling
 routine.

Call with:

 AH = 25H
 AL = interrupt number
 DS:DX = segment:offset of interrupt handling routine

Returns:

 Nothing

Notes:

 o This function should be used in preference to direct editing of the
 interrupt-vector table by well-behaved applications.

 o Before an interrupt vector is modified, its original value should be
 obtained with Int 21H Function 35H and saved, so that it can be restored
 using this function before program termination.

Example:

 Install a new interrupt handler, named zdiv, for "divide by zero" CPU
 exceptions.

 .
 .
 .
 mov ah,25h ; function number
 mov al,0 ; interrupt number
 mov dx,seg zdiv ; address of handler
 mov ds,dx
 mov dx,offset zdiv
 int 21h ; transfer to MS-DOS
 .
 .
 .
 zdiv: ; int 00h handler
 iret ; (does nothing)

--
Int 21H [1.0]
Function 26H (38)
Create new PSP
--

 Copies the program segment prefix (PSP) of the currently executing program
 to a specified segment address in free memory, then updates the new PSP to
 make it usable by another program.

Call with:

 AH = 26H
 DX = segment of new program segment prefix

Returns:

 Nothing

Notes:

 o After the executing program's PSP is copied into the new segment, the
 memory size information in the new PSP is updated appropriately and the
 current contents of the termination (Int 22H), Ctrl-C handler (Int 23H),
 and critical-error handler (Int 24H) vectors are saved starting at
 offset 0AH.

 o This function does not load another program or in itself cause one to be
 executed.

 o [2.0+] Int 21H Function 4BH (EXEC), which can be used to load and
 execute programs or overlays in either .COM or .EXE format, should be
 used in preference to this function.

Example:

 Create a new program segment prefix 64 KB above the currently executing
 program. This example assumes that the running program was loaded as a
 .COM file so that the CS register points to its PSP throughout its
 execution. If the running program was loaded as a .EXE file, the address
 of the PSP must be obtained with Int 21H Function 62H (under MS-DOS 3.0
 or later) or by saving the original contents of the DS or ES registers at
 entry.

 .
 .
 .
 mov ah,26h ; function number
 mov dx,cs ; PSP segment of
 ; this program
 add dx,1000h ; add 64 KB as
 ; paragraph address
 int 21h ; transfer to MS-DOS
 .
 .
 .

--
Int 21H [1.0]
Function 27H (39)
Random block read
--

 Reads one or more sequential records from a file into memory, starting at
 a designated file location.

Call with:

 AH = 27H
 CX = number of records to read
 DS:DX = segment:offset of previously opened file control block

Returns:

 AL = 00H if all requested records read
 01H if end of file
 02H if segment wrap
 03H if partial record read at end of file

 CX = actual number of records read

Notes:

 o The records are read into memory at the current disk transfer area
 address, specified by the most recent call to Int 21H Function 1AH. It
 is the programmer's responsibility to ensure that this area is large
 enough for the group of records that will be transferred. If the size
 and location of the buffer are such that a segment overflow or
 wraparound would occur, the function fails with a return code of 02H.

 o The file location of the data to be read is determined by the
 combination of the relative-record field (offset 21H) and the
 record-size field (offset 0EH) of the FCB. The default record size is
 128 bytes.

 o After the disk transfer is performed, the current block (offset 0CH),
 current record (offset 20H), and relative-record (offset 21H) fields of
 the FCB are updated to point to the next record in the file.

 o If a partial record is read at the end of file, the remainder of the
 record is padded with zeros.

 o Compare with Int 21H Function 21H, which transfers only one record per
 function call and does not update the FCB relative-record field.

 o [3.0+] If the program is running on a network, the user must have Read
 access rights to the directory containing the file to be read.

Example:

 Read four 1024-byte records starting at record number 8 into the buffer
 named buff, using the file control block myfcb.

 myfcb db 0 ; drive = default
 db 'MYFILE ' ; filename, 8 chars
 db 'DAT' ; extension, 3 chars
 db 25 dup (0) ; remainder of FCB

 buff db 4096 dup (?) ; buffer for data
 .
 .
 .
 ; set DTA address
 mov ah,1ah ; function number
 mov dx,seg buff ; address of buffer
 mov ds,dx
 mov dx,offset buff
 int 21h ; transfer to MS-DOS

 ; set relative-record number
 mov word ptr myfcb+21h,8

 mov word ptr myfcb+23h,0

 ; set record size
 mov word ptr myfcb+0eh,1024

 ; read the records
 mov ah,27h ; function number
 mov cx,4 ; number of records
 mov dx,offset myfcb ; address of FCB
 int 21h ; transfer to MS-DOS
 or al,al ; check status
 jnz error ; jump if read error
 .
 .
 .

--
Int 21H [1.0]
Function 28H (40)
Random block write
--

 Writes one or more sequential records from memory to a file, starting at a
 designated file location.

Call with:

 AH = 28H
 CX = number of records to write
 DS:DX = segment:offset of previously opened file control block

Returns:

 AL = 00H if all requested records written
 01H if disk full
 02H if segment wrap

 CX = actual number of records written

Notes:

 o The records are written (logically, not necessarily physically) to disk
 from memory at the current disk transfer area address, specified by the
 most recent call to Int 21H Function 1AH. If the size and location of
 the buffer are such that a segment overflow or wraparound would occur,
 the function fails with a return code of 02H.

 o The file location of the data to be written is determined by the
 combination of the relative-record field (offset 21H) and the
 record-size field (offset 0EH) of the FCB. The default record size is
 128 bytes.

 o After the disk transfer is performed, the current block (offset 0CH),
 current record (offset 20H), and relative-record (offset 21H) fields of
 the FCB are updated to point to the next record in the file.

 o If this function is called with CX = 0, no data is written to the disk
 but the file is extended or truncated to the length specified by

 combination of the record-size (offset 0EH) and the relative-record
 (offset 21H) fields of the FCB.

 o Compare with Int 21H Function 22H, which transfers only one record per
 function call and does not update the FCB relative-record field.

 o [3.0+] If the program is running on a network, the user must have Write
 access rights to the directory containing the file to be written.

Example:

 Write four 1024-byte records, starting at record number 8, to disk from
 the buffer named buff, using the file control block myfcb.

 myfcb db 0 ; drive = default
 db 'MYFILE ' ; filename, 8 chars
 db 'DAT' ; extension, 3 chars
 db 25 dup (0) ; remainder of FCB

 buff db 4096 dup (?) ; buffer for data
 .
 .
 .
 ; set DTA address
 mov ah,1ah ; function number
 mov dx,seg buff ; address of buffer
 mov ds,dx
 mov dx,offset buff
 int 21h ; transfer to MS-DOS

 ; set relative-record number
 mov word ptr myfcb+21h,8
 mov word ptr myfcb+23h,0

 ; set record size
 mov word ptr myfcb+0eh,1024

 ; write the records
 mov ah,28h ; function number
 mov cx,4 ; number of records
 mov dx,offset myfcb ; address of FCB
 int 21h ; transfer to MS-DOS
 or al,al ; check status
 jnz error ; jump if write error
 .
 .
 .

--
Int 21H [1.0]
Function 29H (41)
Parse filename
--

 Parses a text string into the various fields of a file control block
 (FCB).

Call with:

 AH = 29H
 AL = flags to control parsing

 Bit 3 = 1 if extension field in FCB will be
 modified only if an extension is
 specified in the string being parsed.
 = 0 if extension field in FCB will be
 modified regardless; if no extension is
 present in the parsed string, FCB
 extension is set to ASCII blanks.
 Bit 2 = 1 if filename field in FCB will be
 modified only if a filename is
 specified in the string being parsed.
 = 0 if filename field in FCB will be
 modified regardless; if no filename is
 present in the parsed string, FCB
 filename is set to ASCII blanks.
 Bit 1 = 1 if drive ID byte in FCB will be
 modified only if a drive was specified
 in the string being parsed.
 = 0 if the drive ID byte in FCB will be
 modified regardless; if no drive
 specifier is present in the parsed
 string, FCB drive-code field is set to
 0 (default).
 Bit 0 = 1 if leading separators will be scanned
 off (ignored).
 = 0 if leading separators will not be
 scanned off.

 DS:SI = segment:offset of string
 ES:DI = segment:offset of file control block

Returns:

 AL = 00H if no wildcard characters encountered
 01H if parsed string contained wildcard characters
 FFH if drive specifier invalid
 DS:SI = segment:offset of first character after parsed filename
 ES:DI = segment:offset of formatted unopened file control block

Notes:

 o This function regards the following as separator characters:

 [1] : . ; , = + tab space / " []
 [2.0+] : . ; , = + tab space

 o This function regards all control characters and the following as
 terminator characters:

 : . ; , = + tab space < > | / " []

 o If no valid filename is present in the string to be parsed, upon return
 ES:DI + 1 points to an ASCII blank.

 o If the * wildcard character occurs in a filename or extension, it and
 all remaining characters in the corresponding field in the FCB are set

 to ?.

 o This function (and file control blocks in general) cannot be used with
 file specifications that include a path.

Example:

 Parse the string fname into the file control block myfcb.

 fname db 'D:QUACK.DAT',0 ; filename to be parsed

 myfcb db 37 dup (0) ; becomes file control block
 .
 .
 .
 mov ah,29h ; function number
 mov al,01h ; skip leading separators
 mov si,seg fname ; address of filename
 mov ds,si
 mov si,offset fname
 mov di,seg myfcb ; address of FCB
 mov es,di
 mov di,offset myfcb
 int 21h ; transfer to MS-DOS
 cmp al,0ffh ; check status
 je error ; jump, drive invalid
 .
 .
 .

--
Int 21H [1.0]
Function 2AH (42)
Get date
--

 Obtains the system day of the month, day of the week, month, and year.

Call with:

 AH = 2AH

Returns:

 CX = year (1980 through 2099)
 DH = month (1 through 12)
 DL = day (1 through 31)

 Under MS-DOS versions 1.1 and later

 AL = day of the week (0 = Sunday, 1 = Monday, etc.)

Notes:

 o This function's register format is the same as that required for Int 21H
 Function 2BH (Set Date).

 o This function can be used together with Int 21H Function 2BH to find

 the day of the week for an arbitrary date. The current date is first
 obtained with Function 2AH and saved. The date of interest is then set
 with Function 2BH, and the day of the week for that date is obtained
 with a subsequent call to Function 2AH. Finally, the current date is
 restored with an additional call to Function 2BH, using the values
 obtained with the original Function 2AH call.

Example:

 Obtain the current date and save its components in the variables year,
 day, and month.

 year dw 0
 month db 0
 day db 0
 .
 .
 .
 mov ah,2ah ; function number
 int 21h ; transfer to MS-DOS
 mov year,cx ; save year (word)
 mov month,dh ; save month (byte)
 mov day,dl ; save day (byte)
 .
 .
 .

--
Int 21H [1.0]
Function 2BH (43)
Set date
--

 Initializes the system clock driver to a specific date. The system time is
 not affected.

Call with:

 AH = 2BH
 CX = year (1980 through 2099)
 DH = month (1 through 12)
 DL = day (1 through 31)

Returns:

 AL = 00H if date set successfully
 FFH if date not valid (ignored)

Note:

 o This function's register format is the same as that required for Int 21H
 Function 2AH (Get Date).

Example:

 Set the system date according to the contents of the variables year, day,
 and month.

 year dw 0
 month db 0
 day db 0
 .
 .
 .
 mov ah,2bh ; function number
 mov cx,year ; get year (word)
 mov dh,month ; get month (byte)
 mov dl,day ; get day (byte)
 int 21h ; transfer to MS-DOS
 or al,al ; check status
 jnz error ; jump if date invalid
 .
 .
 .

--
Int 21H [1.0]
Function 2CH (44)
Get time
--

 Obtains the time of day from the system real-time clock driver, converted
 to hours, minutes, seconds, and hundredths of seconds.

Call with:

 AH = 2CH

Returns:

 CH = hours (0 through 23)
 CL = minutes (0 through 59)
 DH = seconds (0 through 59)
 DL = hundredths of seconds (0 through 99)

Notes:

 o This function's register format is the same as that required for Int 21H
 Function 2DH (Set Time).

 o On most IBM PC-compatible systems, the real-time clock does not have a
 resolution of single hundredths of seconds. On such machines, the values
 returned by this function in register DL are discontinuous.

Example:

 Obtain the current time and save its two major components in the variables
 hours and minutes.

 hours db 0
 minutes db 0
 .
 .
 .
 mov ah,2ch ; function number
 int 21h ; transfer to MS-DOS

 mov hours,ch ; save hours (byte)
 mov minutes,cl ; save minutes (byte)
 .
 .
 .

--
Int 21H [1.0]
Function 2DH (45)
Set time
--

 Initializes the system real-time clock to a specified hour, minute,
 second, and hundredth of second. The system date is not affected.

Call with:

 AH = 2DH
 CH = hours (0 through 23)
 CL = minutes (0 through 59)
 DH = seconds (0 through 59)
 DL = hundredths of seconds (0 through 99)

Returns:

 AL = 00H if time set successfully
 FFH if time not valid (ignored)

Note:

 o This function's register format is the same as that required for Int 21H
 Function 2CH (Get Time).

Example:

 Set the system time according to the contents of the variables hours and
 minutes. Force the current seconds and hundredths of seconds to zero.

 hours db 0
 minutes db 0
 .
 .
 .
 mov ah,2dh ; function number
 mov ch,hours ; get hours (byte)
 mov cl,minutes ; get minutes (byte)
 mov dx,0 ; force seconds and
 ; hundredths to zero
 int 21h ; transfer to MS-DOS
 or al,al ; check status
 jnz error ; jump if time invalid
 .
 .
 .

--
Int 21H [1.0]

Function 2EH (46)
Set verify flag
--

 Turns off or turns on the operating-system flag for automatic
 read-after-write verification of data.

Call with:

 AH = 2EH
 AL = 00H if turning off verify flag
 01H if turning on verify flag

 DL = 00H (MS-DOS versions 1 and 2)

Returns:

 Nothing

Notes:

 o Because read-after-write verification slows disk operations, the default
 setting of the verify flag is OFF.

 o If a particular disk unit's device driver does not support
 read-after-write verification, this function has no effect.

 o The current state of the verify flag can be determined using Int 21H
 Function 54H.

 o The state of the verify flag is also controlled by the MS-DOS commands
 VERIFY OFF and VERIFY ON.

Example:

 Save the current state of the system verify flag in the variable vflag,
 then force all subsequent disk writes to be verified.

 vflag db 0 ; previous verify flag
 .
 .
 .
 ; get verify flag
 mov ah,54h ; function number
 int 21h ; transfer to MS-DOS
 mov vflag,al ; save current flag state

 ; set verify flag
 mov ah,2eh ; function number
 mov al,1 ; AL = 1 for verify on
 mov dl,0 ; DL must be zero
 int 21h ; transfer to MS-DOS
 .
 .
 .

--
Int 21H [2.0]

Function 2FH (47)
Get DTA address
--

 Obtains the current address of the disk transfer area (DTA) for FCB file
 read/write operations.

Call with:

 AH = 2FH

Returns:

 ES:BX = segment:offset of disk transfer area

Note:

 o The disk transfer area address is set with Int 21H Function 1AH. The
 default DTA is a 128-byte buffer at offset 80H in the program segment
 prefix.

Example:

 Obtain the current disk transfer area address and save it in the variable
 olddta.

 olddta dd ? ; save disk transfer address
 .
 .
 .
 mov ah,2fh ; function number
 int 21h ; transfer to MS-DOS

 ; save it as DWORD pointer
 mov word ptr olddta,bx
 mov word ptr olddta+2,es
 .
 .
 .

--
Int 21H [2.0]
Function 30H (48)
Get MS-DOS version number
--

 Returns the version number of the host MS-DOS operating system. This
 function is used by application programs to determine the capabilities of
 their environment.

Call with:

 AH = 30H
 AL = 00H

Returns:

 If running under MS-DOS version 1

 AL = 00H

 If running under MS-DOS versions 2.0 or later

 AL = major version number (MS-DOS 3.10 = 3, etc.)
 AH = minor version number (MS-DOS 3.10 = 0AH, etc.)
 BH = Original Equipment Manufacturer's (OEM's) serial number
 (OEM-dependent--usually 00H for IBM's PC-DOS, 0FFH or
 other values for MS-DOS)
 BL:CX = 24-bit user serial number (optional, OEM-dependent)

Notes:

 o Because this function was not defined under MS-DOS version 1, it should
 always be called with AL = 00H. In an MS-DOS version 1 environment, AL
 will be returned unchanged.

 o Care must be taken not to exit in an unacceptable fashion if an MS-DOS
 version 1 environment is detected. For example, Int 21H Function 4CH
 (Terminate Process with Return Code), Int 21H Function 40H (Write to
 File or Device), and the standard error handle are not available in
 MS-DOS version 1. In such cases a program should display an error
 message using Int 21H Function 09H and then terminate with Int 20H or
 Int 21H Function 00H.

Example:

 Get the MS-DOS version number, terminating the current process with an
 error message if not running under MS-DOS version 2.0 or later.

 cr equ 0dh ; ASCII carriage return
 lf equ 0ah ; ASCII line feed

 msg db cr,lf
 db 'Wrong MS-DOS version'
 db cr,lf,'$'
 .
 .
 .
 mov ax,3000h ; function number
 int 21h ; transfer to MS-DOS
 cmp al,2 ; version 2 or later?
 jae label1 ; yes, jump

 ; display error message
 mov ah,09 ; function number
 mov dx,offset msg ; message address
 int 21h ; transfer to MS-DOS

 ; terminate process
 mov ah,0 ; function number
 int 21h ; transfer to MS-DOS

 label1: .
 .
 .

--
Int 21H [2.0]
Function 31H (49)
Terminate and stay resident
--

 Terminates execution of the currently executing program, passing a return
 code to the parent process, but reserves part or all of the program's
 memory so that it will not be overlaid by the next transient program to be
 loaded. MS-DOS then takes the following actions:

 o File buffers are flushed and any open handles for files or devices owned
 by the process are closed.

 o The termination handler vector (Int 22H) is restored from PSP:000AH.

 o The Ctrl-C handler vector (Int 23H) is restored from PSP:000EH.

 o [2.0+] The critical-error handler vector (Int 24H) is restored from
 PSP:0012H.

 o Control is transferred to the termination handler.

 If the program is returning to COMMAND.COM, control transfers to the
 resident portion, and the transient portion is reloaded if necessary. If a
 batch file is in progress, the next line of the file is fetched and
 interpreted; otherwise, a prompt is issued for the next user command.

Call with:

 AH = 31H
 AL = return code
 DX = amount of memory to reserve (in paragraphs)

Returns:

 Nothing

Notes:

 o This function call is typically used to allow user-written utilities,
 drivers, or interrupt handlers to be loaded as ordinary .COM or .EXE
 programs and then remain resident. Subsequent entrance to the code is
 via a hardware or software interrupt.

 o This function attempts to set the initial memory allocation block to the
 length in paragraphs specified in register DX. If other memory blocks
 have been requested by the application using Int 21H Function 48H, they
 will not be released by this function.

 o Other methods of performing a final exit are:

 Int 20H�

 Int 21H Function 00H�

 Int 21H Function 4CH�

 Int 27H�

 o The return code may be retrieved by a parent process with Int 21H
 Function 4DH (Get Return Code). It can also be tested in a batch file
 with an IF ERRORLEVEL statement. By convention, a return code of zero
 indicates successful execution, and a nonzero return code indicates an
 error.

 o This function should not be called by .EXE programs that are loaded at
 the high end of the transient program area (that is, linked with the
 /HIGH switch) because doing so reserves the memory that is normally used
 by the transient part of COMMAND.COM. If COMMAND.COM cannot be reloaded,
 the system will fail.

 o [2.0+] This function should be used in preference to Int 27H because it
 supports return codes, allows larger amounts of memory to be reserved,
 and does not require CS to contain the segment of the program segment
 prefix.

 o [3.0+] If the program is running on a network, it should remove all
 locks it has placed on file regions before terminating.

Example:

 Exit with a return code of 1 but stay resident, reserving 16 KB of memory
 starting at the program segment prefix of the process.

 .
 .
 .
 mov ah,31h ; function number
 mov al,1 ; return code for parent
 mov dx,0400h ; paragraphs to reserve
 int 21h ; transfer to MS-DOS
 .
 .
 .

--
Int 21H
Function 32H (50)
Reserved
--

--
Int 21H [2.0]
Function 33H (51)
Get or set break flag, get boot drive
--

 Obtains or changes the status of the operating system's break flag, which
 influences Ctrl-C checking during function calls. Also returns the system
 boot drive in version 4.0.

Call with:

 If getting break flag

 AH = 33H
 AL = 00H

 If setting break flag

 AH = 33H
 AL = 01H
 DL = 00H if turning break flag OFF
 01H if turning break flag ON

 [4] If getting boot drive

 AH = 33H
 AL = 05H

Returns:

 If called with AL = 00H or 01H

 DL = 00H break flag is OFF
 01H break flag is ON

 [4] If called with AL = 05H

 DL = boot drive (1 = A, 2 = B, etc.)

Notes:

 o When the system break flag is on, the keyboard is examined for a Ctrl-C
 entry whenever any operating-system input or output is requested; if
 Ctrl-C is detected, control is transferred to the Ctrl-C handler (Int
 23H). When the break flag is off, MS-DOS only checks for a Ctrl-C entry
 when executing the traditional character I/O functions (Int 21H
 Functions 01H through 0CH).

 o The break flag is not part of the local environment of the currently
 executing program; it affects all programs. An application that alters
 the flag should first save the flag's original status, then restore the
 flag before terminating.

Example:

 Save the current state of the system break flag in the variable brkflag,
 then turn the break flag off to disable Ctrl-C checking during most MS-DOS
 function calls.

 brkflag db 0 ; save break flag
 .
 .
 .
 ; get current break flag
 mov ah,33h ; function number
 mov al,0 ; AL = 0 to get flag
 int 21h ; transfer to MS-DOS
 mov brkflag,dl ; save current flag

 ; now set break flag
 mov ah,33h ; function number
 mov al,1 ; AL = 1 to set flag

 mov dl,0 ; set break flag OFF
 int 21h ; transfer to MS-DOS
 .
 .
 .

--
Int 21H
Function 34H (52)
Reserved
--

--
Int 21H [2.0]
Function 35H (53)
Get interrupt vector
--

 Obtains the address of the current interrupt-handler routine for the
 specified machine interrupt.

Call with:

 AH = 35H
 AL = interrupt number

Returns:

 ES:BX = segment:offset of interrupt handler

Note:

 o Together with Int 21H Function 25H (Set Interrupt Vector), this
 function is used by well-behaved application programs to modify or
 inspect the machine interrupt vector table.

Example:

 Obtain the address of the current interrupt handler for hardware interrupt
 level 0 (divide by zero) and save it in the variable oldint0.

 oldint0 dd ? ; previous handler address
 .
 .
 .
 mov ah,35h ; function number
 mov al,0 ; interrupt level
 int 21h ; transfer to MS-DOS

 ; save old handler address
 mov word ptr oldint0,bx
 mov word ptr oldint0+2,es
 .
 .
 .

--
Int 21H [2.0]
Function 36H (54)
Get drive allocation information
--

 Obtains selected information about a disk drive, from which the drive's
 capacity and remaining free space can be calculated.

Call with:

 AH = 36H
 DL = drive code (0 = default, 1 = A, etc.)

Returns:

 If function successful

 AX = sectors per cluster
 BX = number of available clusters
 CX = bytes per sector
 DX = clusters per drive

 If function unsuccessful (drive invalid)

 AX = FFFFH

Notes:

 o This function regards "lost" clusters as being in use and does not
 report them as part of the number of available clusters, even though
 they are not assigned to a file.

 o Similar information is returned by Int 21H Functions 1BH and 1CH.

Example:

 Calculate the capacity of disk drive C in bytes, leaving the result in the
 variable drvsize. (This code assumes that the product of sectors/cluster *
 bytes/sector will not overflow 16 bits.)

 drvsize dd ? ; drive C size in bytes
 .
 .
 .
 mov ah,36h ; function number
 mov dl,3 ; drive C = 3
 int 21h ; transfer to MS-DOS

 mul cx ; sectors/cluster
 ; * bytes/sector
 mul dx ; * total clusters
 ; result now in DX:AX

 ; store low word
 mov word ptr drvsize,ax
 ; store high word
 mov word ptr drvsize+2,dx
 .

 .
 .

--
Int 21H
Function 37H (55)
Reserved
--

--
Int 21H [2.0]
Function 38H (56)
Get or set country information
--

 [2] Obtains internationalization information for the current country.

 [3.0+] Obtains internationalization information for the current or
 specified country or sets the current country code.

Call with:

 If getting country information (MS-DOS version 2)

 AH = 38H
 AL = 0 to get "current" country information

 DS:DX = segment:offset of buffer for returned information

 If getting country information (MS-DOS versions 3.0 and later)

 AH = 38H
 AL = 0 to get "current" country information
 1-FEH to get information for countries with code < 255
 FFH to get information for countries with code >=
 255

 BX = country code, if AL = FFH
 DS:DX = segment:offset of buffer for returned information

 If setting current country code (MS-DOS versions 3.0 and later)

 AH = 38H
 AL = 1-FEH country code for countries with code < 255
 FFH for countries with code >= 255

 BX = country code, if AL = 0FFH
 DX = FFFFH

Returns:

 If function successful

 Carry flag = clear

 and, if getting internationalization information

 BX = country code
 DS:DX = segment:offset of buffer holding internationalization
 information

 and buffer filled in as follows:

 (for PC-DOS 2.0 and 2.1)

 Byte(s) Contents
 00H-01H date format

 0 = USA m d y
 1 = Europe d m y
 2 = Japan y m d

 02H-03H ASCIIZ currency symbol
 04H-05H ASCIIZ thousands separator
 06H-07H ASCIIZ decimal separator
 08H-1FH reserved

 (for MS-DOS versions 2.0 and later, PC-DOS versions 3.0 and later)

 Byte(s) Contents
 00H-01H date format

 0 = USA m d y
 1 = d m y
 Europe
 2 = Japan y m d

 02H-06H ASCIIZ currency symbol string
 07H-08H ASCIIZ thousands separator character
 09H-0AH ASCIIZ decimal separator character
 0BH-0CH ASCIIZ date separator character
 0DH-0EH ASCIIZ time separator character
 0FH currency format

 bit 0 = 0 if currency symbol precedes value
 = 1 if currency symbol follows value
 bit 1 = 0 if no space between value and currency
 symbol
 = 1 if one space between value and
 currency symbol
 bit 2 = 0 if currency symbol and decimal are
 separate
 = 1 if currency symbol replaces decimal
 separator

 10H number of digits after decimal in currency
 11H time format

 bit 0 = 0 if 12-hour clock
 = 1 if 24-hour clock

 12H-15H case-map call address
 16H-17H ASCIIZ data-list separator
 18H-21H reserved

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o The default country code is determined by the COUNTRY= directive in
 CONFIG.SYS or by the KEYBxx keyboard driver file if one is loaded.
 Otherwise, the default country code is OEM-dependent.

 o The previous contents of register CX may be destroyed by the Get Country
 Information subfunction.

 o The case-map call address is the segment:offset of a FAR procedure that
 performs country-specific mapping on character values from 80H through
 0FFH. The procedure must be called with the character to be mapped in
 register AL. If an alternate value exists for that character, it is
 returned in AL; otherwise, AL is unchanged. In general, lowercase
 characters are mapped to their uppercase equivalents, and accented or
 otherwise modified vowels are mapped to their plain vowel equivalents.

 o [3.0+] The value in register DX is used by MS-DOS to select between the
 Set Country and Get Country Information subfunctions.

 o [3.3+] Int 21H Function 65H (Get Extended Country Information) returns
 a superset of the information supplied by this function.

Examples:

 Obtain internationalization information for the current country in the
 buffer ctrybuf.

 ctrybuf db 34 dup (0)
 .
 .
 .
 mov ah,38h ; function number
 mov al,0 ; get current country
 mov dx,seg ctrybuf ; address of buffer
 mov ds,dx ; for country information
 mov dx,offset ctrybuf
 int 21h ; transfer to MS-DOS
 jc error ; jump if function failed
 .
 .
 .

 If the program is running under PC-DOS 3.3 and the current country code is
 49 (West Germany), ctrybuf is filled in with the following information:

 dw 0001h ; date format
 db 'DM',0,0,0 ; ASCIIZ currency symbol
 db '.',0 ; ASCIIZ thousands separator
 db ',',0 ; ASCIIZ decimal separator
 db '.',0 ; ASCIIZ date separator
 db '.',0 ; ASCIIZ time separator
 db 02h ; currency format
 db 02h ; digits after decimal
 db 01h ; time format

 dd 026ah:176ch ; case-map call address
 db ';',0 ; ASCIIZ data-list separator
 db 10 dup (0) ; reserved

--
Int 21H [2.0]
Function 39H (57)
Create directory
--

 Creates a directory using the specified drive and path.

Call with:

 AH = 39H
 DS:DX = segment:offset of ASCIIZ pathname

Returns:

 If function successful

 Carry flag = clear

 If function unsuccessful

 Carry flag = set
 AX = error code

Note:

 o The function fails if:

 any element of the pathname does not exist.�

 a directory with the same name at the end of the same path already�
 exists.

 the parent directory for the new directory is the root directory and�
 is full.

 [3.0+] the program is running on a network and the user running the�
 program has insufficient access rights.

Example:

 Create a directory named MYSUB in the root directory on drive C.

 dname db 'C:\MYSUB',0
 .
 .
 .
 mov ah,39h ; function number
 mov dx,seg dname ; address of pathname
 mov ds,dx
 mov dx,offset dname
 int 21h ; transfer to MS-DOS
 jc error ; jump if create failed
 .

 .
 .

--
Int 21H [2.0]
Function 3AH (58)
Delete directory
--

 Removes a directory using the specified drive and path.

Call with:

 AH = 3AH
 DS:DX = segment:offset of ASCIIZ pathname

Returns:

 If function successful

 Carry flag = clear

 If function unsuccessful

 Carry flag = set
 AX = error code

Note:

 o The function fails if:

 any element of the pathname does not exist.�

 the specified directory is also the current directory.�

 the specified directory contains any files.�

 [3.0+] the program is running on a network and the user running the�
 program has insufficient access rights.

Example:

 Remove the directory named MYSUB in the root directory on drive C.

 dname db 'C:\MYSUB',0
 .
 .
 .
 mov ah,3ah ; function number
 mov dx,seg dname ; address of pathname
 mov ds,dx
 mov dx,offset dname
 int 21h ; transfer to MS-DOS
 jc error ; jump if delete failed
 .
 .
 .

--
Int 21H [2.0]
Function 3BH (59)
Set current directory
--

 Sets the current, or default, directory using the specified drive and
 path.

Call with:

 AH = 3BH
 DS:DX = segment:offset of ASCIIZ pathname

Returns:

 If function successful

 Carry flag = clear

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o The function fails if any element of the pathname does not exist.

 o Int 21H Function 47H can be used to obtain the name of the current
 directory before using Int 21H Function 3BH to select another, so that
 the original directory can be restored later.

Example:

 Change the current directory for drive C to the directory \MYSUB.

 dname db 'C:\MYSUB',0
 .
 .
 .
 mov ah,3bh ; function number
 mov dx,seg dname ; address of pathname
 mov ds,dx
 mov dx,offset dname
 int 21h ; transfer to MS-DOS
 jc error ; jump if bad path
 .
 .
 .

--
Int 21H [2.0]
Function 3CH (60)
Create file
--

 Given an ASCIIZ pathname, creates a new file in the designated or default
 directory on the designated or default disk drive. If the specified file
 already exists, it is truncated to zero length. In either case, the file
 is opened and a handle is returned that can be used by the program for
 subsequent access to the file.

Call with:

 AH = 3CH
 CX = file attribute (bits may be combined)

 Bit(s) Significance (if set)
 0 read-only
 1 hidden
 2 system
 3 volume label
 4 reserved (0)
 5 archive
 6-15 reserved (0)

 DS:DX = segment:offset of ASCIIZ pathname

Returns:

 If function successful

 Carry flag = clear
 AX = handle

 If function failed

 Carry flag = set
 AX = error code

Notes:

 o The function fails if:

 any element of the pathname does not exist.�

 the file is being created in the root directory and the root directory�
 is full.

 a file with the same name and the read-only attribute already exists�
 in the specified directory.

 [3.0+] the program is running on a network and the user running the�
 program has insufficient access rights.

 o A file is usually given a normal (0) attribute when it is created. The
 file's attribute can subsequently be modified with Int 21H Function
 43H.

 o [3.0+] A volume label can be created using an attribute of 0008H, if one
 does not already exist. When files are created, bit 3 of the attribute
 parameter should always be clear (0).

 o [3.0+] See the entries for Int 21H Functions 5AH and 5BH, which may
 also be used to create files.

 o [4.0+] Int 21H Function 6CH combines the services of Functions 3CH,
 3DH, and 5BH.

Example:

 Create and open, or truncate to zero length and open, the file
 C:\MYDIR\MYFILE.DAT, and save the handle for subsequent access to the
 file.

 fname db 'C:\MYDIR\MYFILE.DAT',0

 fhandle dw ?
 .
 .
 .
 mov ah,3ch ; function number
 xor cx,cx ; normal attribute
 mov dx,seg fname ; address of pathname
 mov ds,dx
 mov dx,offset fname
 int 21h ; transfer to MS-DOS
 jc error ; jump if create failed
 mov fhandle,ax ; save file handle
 .
 .
 .

--
Int 21H [2.0]
Function 3DH (61)
Open file
--

 Given an ASCIIZ pathname, opens the specified file in the designated or
 default directory on the designated or default disk drive. A handle is
 returned which can be used by the program for subsequent access to the
 file.

Call with:

 AH = 3DH
 AL = access mode

 Bit(s) Significance
 0-2 access mode
 000 = read access
 001 = write access
 010 = read/write access
 3 reserved (0)
 4-6 sharing mode (MS-DOS versions 3.0 and later)
 000 = compatibility mode
 001 = deny all
 010 = deny write
 011 = deny read
 100 = deny none
 7 inheritance flag (MS-DOS versions 3.0 and later)
 0 = child process inherits handle

 1 = child does not inherit handle

 DS:DX = segment:offset of ASCIIZ pathname

Returns:

 If function successful

 Carry flag = clear
 AX = handle

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o Any normal, system, or hidden file with a matching name will be opened
 by this function. If the file is read-only, the success of the operation
 also depends on the access code in bits 0-2 of register AL. After
 opening the file, the file read/write pointer is set to offset zero (the
 first byte of the file).

 o The function fails if:

 any element of the pathname does not exist.�

 the file is opened with an access mode of read/write and the file has�
 the read-only attribute.

 [3.0+] SHARE.EXE is loaded and the file has already been opened by one�
 or more other processes in a sharing mode that is incompatible with
 the current program's request.

 o The file's date and time stamp can be accessed after a successful open
 call with Int 21H Function 57H.

 o The file's attributes (hidden, system, read-only, or archive) can be
 obtained with Int 21H Function 43H.

 o When a file handle is inherited by a child process or is duplicated with
 Int 21H Function 45H or 46H, all sharing and access restrictions are
 also inherited.

 o [2] Only bits 0-2 of register AL are significant; the remaining bits
 should be zero for upward compatibility.

 o [3.0+] Bits 4-7 of register AL control access to the file by other
 programs. (Bits 4-6 have no effect unless SHARE.EXE is loaded.)

 o [3.0+] A file-sharing error causes a critical-error exception (Int 24H)
 with an error code of 02H. Int 21H Function 59H can be used to obtain
 information about the sharing violation.

 o [4.0+] Int 21H Function 6CH combines the services of Functions 3CH,
 3DH, and 5BH.

Example:

 Open the file C:\MYDIR\MYFILE.DAT for both reading and writing, and save
 the handle for subsequent access to the file.

 fname db 'C:\MYDIR\MYFILE.DAT',0

 fhandle dw ?
 .
 .
 .
 mov ah,3dh ; function number
 mov al,2 ; mode = read/write
 mov dx,seg fname ; address of pathname
 mov ds,dx
 mov dx,offset fname
 int 21h ; transfer to MS-DOS
 jc error ; jump if open failed
 mov fhandle,ax ; save file handle
 .
 .
 .

--
Int 21H [2.0]
Function 3EH (62)
Close file
--

 Given a handle that was obtained by a previous successful open or create
 operation, flushes all internal buffers associated with the file to disk,
 closes the file, and releases the handle for reuse. If the file was
 modified, the time and date stamp and file size are updated in the file's
 directory entry.

Call with:

 AH = 3EH
 BX = handle

Returns:

 If function successful

 Carry flag = clear

 If function unsuccessful

 Carry flag = set
 AX = error code

Note:

 o If you accidentally call this function with a zero handle, the standard
 input device is closed, and the keyboard appears to go dead. Make sure
 you always call the close function with a valid, nonzero handle.

Example:

 Close the file whose handle is saved in the variable fhandle.

 fhandle dw 0
 .
 .
 .
 mov ah,3eh ; function number
 mov bx,fhandle ; file handle
 int 21h ; transfer to MS-DOS
 jc error ; jump if close failed
 .
 .
 .

--
Int 21H [2.0]
Function 3FH (63)
Read file or device
--

 Given a valid file handle from a previous open or create operation, a
 buffer address, and a length in bytes, transfers data at the current
 file-pointer position from the file into the buffer and then updates the
 file pointer position.

Call with:

 AH = 3FH
 BX = handle
 CX = number of bytes to read
 DS:DX = segment:offset of buffer

Returns:

 If function successful

 Carry flag = clear
 AX = bytes transferred

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o If reading from a character device (such as the standard input) in
 cooked mode, at most one line of input will be read (i.e., up to a
 carriage return character or the specified length, whichever comes
 first).

 o If the carry flag is returned clear but AX = 0, then the file pointer
 was already at end of file when the program requested the read.

 o If the carry flag is returned clear but AX < CX, then a partial record
 was read at end of file or there is an error.

 o [3.0+] If the program is running on a network, the user must have Read

 access rights to the directory and file.

Example:

 Using the file handle from a previous open or create operation, read 1024
 bytes at the current file pointer into the buffer named buff.

 buff db 1024 dup (?) ; buffer for read

 fhandle dw ? ; contains file handle
 .
 .
 .
 mov ah,3fh ; function number
 mov dx,seg buff ; buffer address
 mov ds,dx
 mov dx,offset buff
 mov bx,fhandle ; file handle
 mov cx,1024 ; length to read
 int 21h ; transfer to MS-DOS
 jc error ; jump, read failed

 cmp ax,cx ; check length of read
 jl done ; jump, end of file
 .
 .
 .

--
Int 21H [2.0]
Function 40H (64)
Write file or device
--

 Given a valid file handle from a previous open or create operation, a
 buffer address, and a length in bytes, transfers data from the buffer into
 the file and then updates the file pointer position.

Call with:

 AH = 40H
 BX = handle
 CX = number of bytes to write
 DS:DX = segment:offset of buffer

Returns:

 If function successful

 Carry flag = clear
 AX = bytes transferred

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o If the carry flag is returned clear but AX < CX, then a partial record
 was written or there is an error. This can be caused by a Ctrl-Z (1AH)
 embedded in the data if the destination is a character device in cooked
 mode or by a disk full condition if the destination is a file.

 o If the function is called with CX = 0, the file is truncated or extended
 to the current file pointer position.

 o [3.0+] If the program is running on a network, the user must have Write
 access rights to the directory and file.

Example:

 Using the handle from a previous open or create operation, write 1024
 bytes to disk at the current file pointer from the buffer named buff.

 buff db 1024 dup (?) ; buffer for write

 fhandle dw ? ; contains file handle
 .
 .
 .
 mov ah,40h ; function number
 mov dx,seg buff ; buffer address
 mov ds,dx
 mov dx,offset buff
 mov bx,fhandle ; file handle
 mov cx,1024 ; length to write
 int 21h ; transfer to MS-DOS
 jc error ; jump, write failed
 cmp ax,1024 ; entire record written?
 jne error ; no, jump
 .
 .
 .

--
Int 21H [2.0]
Function 41H (65)
Delete file
--

 Deletes a file from the specified or default disk and directory.

Call with:

 AH = 41H
 DS:DX = segment:offset of ASCIIZ pathname

Returns:

 If function successful

 Carry flag = clear

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o This function deletes a file by replacing the first character of its
 filename in the directory with the character e (E5H) and marking the
 file's clusters as "free" in the disk's file allocation table. The
 actual data stored in those clusters is not overwritten.

 o Only one file at a time may be deleted with this function. Unlike the
 FCB-related Delete File function (Int 21H Function 13H), the * and ?
 wildcard characters are not allowed in the file specification.

 o The function fails if:

 any element of the pathname does not exist.�

 the designated file exists but has the read-only attribute. (Int 21H�
 Function 43H can be used to examine and modify a file's attribute
 before attempting to delete it.)

 [3.0+] the program is running on a network, and the user running the�
 program has insufficient access rights.

Example:

 Delete the file named MYFILE.DAT from the directory \MYDIR on drive C.

 fname db 'C:\MYDIR\MYFILE.DAT',0
 .
 .
 .
 mov ah,41h ; function number
 mov dx,seg fname ; filename address
 mov ds,dx
 mov dx,offset fname
 int 21h ; transfer to MS-DOS
 jc error ; jump if delete failed
 .
 .
 .

--
Int 21H [2.0]
Function 42H (66)
Set file pointer
--

 Sets the file location pointer relative to the start of file, end of file,
 or current file position.

Call with:

 AH = 42H
 AL = method code
 00H absolute offset from start of file
 01H signed offset from current file pointer

 02H signed offset from end of file
 BX = handle
 CX = most significant half of offset
 DX = least significant half of offset

Returns:

 If function successful

 Carry flag = clear
 DX = most significant half of resulting file pointer
 AX = least significant half of resulting file pointer

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o This function uses a method code and a double-precision (32-bit) value
 to set the file pointer. The next record read or written in the file
 will begin at the new file pointer location. No matter what method is
 used in the call to this function, the file pointer returned in DX:AX is
 always the resulting absolute byte offset from the start of file.

 o Method 02H may be used to find the size of the file by calling Int 21H
 Function 42H with an offset of 0 and examining the pointer location
 that is returned.

 o Using methods 01H or 02H, it is possible to set the file pointer to a
 location that is before the start of file. If this is done, no error is
 returned by this function, but an error will be encountered upon a
 subsequent attempt to read or write the file.

Examples:

 Using the file handle from a previous open or create operation, set the
 current file pointer position to 1024 bytes after the start of file.

 fhandle dw ?
 .
 .
 .
 mov ah,42h ; function number
 mov al,0 ; method = absolute
 mov bx,fhandle ; file handle
 mov cx,0 ; upper half of offset
 mov dx,1024 ; lower half of offset
 int 21h ; transfer to MS-DOS
 jc error ; jump, function failed
 .
 .
 .

 The following subroutine accepts a record number, record size, and handle
 and sets the file pointer appropriately.

 ; call this routine with BX = handle

 ; AX = record number
 ; CX = record size
 ; returns all registers unchanged
 ;
 setptr proc near
 push ax ; save record number
 push cx ; save record size
 push dx ; save whatever's in DX
 mul cx ; size * record number
 mov cx,ax ; upper part to CX
 xchg cx,dx ; lower part to DX
 mov ax,4200h ; function number & method
 int 21h ; transfer to MS-DOS
 pop dx ; restore previous DX
 pop cx ; restore record size
 pop ax ; restore record number
 ret ; back to caller
 setptr endp

--
Int 21H [2.0]
Function 43H (67)
Get or set file attributes
--

 Obtains or alters the attributes of a file (read-only, hidden, system, or
 archive) or directory.

Call with:

 AH = 43H
 AL = 00H to get attributes
 01H to set attributes

 CX = file attribute, if AL = 01H (bits can be combined)

 Bit(s) Significance (if set)
 0 read-only
 1 hidden
 2 system
 3-4 reserved (0)
 5 archive
 6-15 reserved (0)

 DS:DX = segment:offset of ASCIIZ pathname

Returns:

 If function successful

 Carry flag = clear
 CX = file attribute

 Bit(s) Significance (if set)
 0 read-only
 1 hidden
 2 system
 3 volume label

 4 directory
 5 archive
 6-15 reserved (0)

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o Bits 3 and 4 of register CX must always be clear (0) when this function
 is called; in other words, you cannot change an existing file into a
 directory or volume label. However, you can assign the "hidden"
 attribute to an existing directory with this function.

 o [3.0+] If the program is running on a network, the user must have Create
 access rights to the directory containing the file whose attribute is to
 be modified.

Example:

 Change the attribute of the file D:\MYDIR\MYFILE.DAT to read-only, so that
 it cannot be accidentally modified or deleted by other application
 programs.

 rdonly equ 01h ; file attributes
 hidden equ 02h
 system equ 04h
 volume equ 08h
 subdir equ 10h
 archive equ 20h

 fname db 'D:\MYDIR\MYFILE.DAT',0
 .
 .
 .
 mov ah,43h ; function number
 mov al,01h ; subfunction = modify
 mov cx,rdonly ; read-only attribute
 mov dx,seg fname ; filename address
 mov ds,dx
 mov dx,offset fname
 int 21h ; transfer to MS-DOS
 jc error ; jump if modify failed
 .
 .
 .

--
Int 21H [2.0]
Function 44H (68)
IOCTL (I/O control)
--

 Provides a direct path of communication between an application program and
 a device driver. Allows a program to obtain hardware-dependent information
 and to request operations that are not supported by other MS-DOS function

 calls.

 The IOCTL subfunctions and the MS-DOS versions in which they first became
 available are:

 Subfunction Name MS-DOS version
 --
 00H Get Device Information 2.0
 01H Set Device Information 2.0
 02H Receive Control Data from Character 2.0
 Device Driver
 03H Send Control Data to Character Device 2.0
 Driver
 04H Receive Control Data from Block Device 2.0
 Driver
 05H Send Control Data to Block Device Driver 2.0
 06H Check Input Status 2.0
 07H Check Output Status 2.0
 08H Check If Block Device Is Removable 3.0
 09H Check If Block Device Is Remote 3.1
 0AH (10) Check If Handle Is Remote 3.1
 0BH (11) Change Sharing Retry Count 3.1
 0CH (12) Generic I/O Control for Character Devices
 CL = 45H: Set Iteration Count 3.2
 CL = 4AH: Select Code Page 3.3
 CL = 4CH: Start Code Page Preparation 3.3
 CL = 4DH: End Code Page Preparation 3.3
 CL = 5FH: Set Display Information 4.0
 CL = 65H: Get Iteration Count 3.2
 CL = 6AH: Query Selected Code Page 3.3
 CL = 6BH: Query Prepare List 3.3
 CL = 7FH: Get Display Information 4.0
 0DH (13) Generic I/O Control for Block Devices
 CL = 40H: Set Device Parameters 3.2
 CL = 41H: Write Track 3.2
 CL = 42H: Format and Verify Track 3.2
 CL = 47H: Set Access Flag 4.0
 CL = 60H: Get Device Parameters 3.2
 CL = 61H: Read Track 3.2
 CL = 62H: Verify Track 3.2
 CL = 67H: Get Access Flag 4.0
 0EH (14) Get Logical Drive Map 3.2
 0FH (15) Set Logical Drive Map 3.2
 --

 Only IOCTL Subfunctions 00H, 06H, and 07H may be used for handles
 associated with files. Subfunctions 00H-08H are not supported on network
 devices.

--
Int 21H [2.0]
Function 44H (68) Subfunction 00H
IOCTL: get device information
--

 Returns a device information word for the file or device associated with

 the specified handle.

Call with:

 AH = 44H
 AL = 00H
 BX = handle

Returns:

 If function successful

 Carry flag = clear
 DX = device information word

 For a file:

 Bit(s) Significance
 0-5 drive number (0 = A, 1 = B, etc.)
 6 0 if file has been written
 1 if file has not been written
 7 0, indicating a file
 8-15 reserved

 For a device:

 Bit(s) Significance
 0 1 if standard input
 1 1 if standard output
 2 1 if NUL device
 3 1 if clock device
 4 reserved
 5 0 if handle in ASCII mode
 1 if handle in binary mode
 6 0 if end of file on input
 7 1, indicating a device
 8-13 reserved
 14 0 if IOCTL subfunctions 02H and 03H not
 supported
 1 if IOCTL subfunctions 02H and 03H supported
 15 reserved
 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o Bits 8-15 of DX correspond to the upper 8 bits of the device-driver
 attribute word.

 o Bit 5 of the device information word for a handle associated with a
 character device signifies whether MS-DOS considers that handle to be in
 binary ("raw") mode or ASCII ("cooked") mode. In ASCII mode, MS-DOS
 filters the character stream and may take special action when the
 characters Ctrl-C, Ctrl-S, Ctrl-P, Ctrl-Z, and carriage return are
 detected. In binary mode, all characters are treated as data, and the
 exact number of characters requested is always read or written.

Example:

 See Int 21H Function 44H Subfunction 01H.

--
Int 21H [2.0]
Function 44H (68) Subfunction 01H
IOCTL: set device information
--

 Sets certain flags for a handle associated with a character device. This
 subfunction may not be used for a handle that is associated with a file.

Call with:

 AH = 44H
 AL = 01H
 BX = handle
 DX = device information word

 Bit(s) Significance
 0 1 if standard input
 1 1 if standard output
 2 1 if NUL device
 3 1 if clock device
 4 reserved (0)
 5 0 to select ASCII mode
 1 to select binary mode
 6 reserved (0)
 7 1, indicating a device
 8-15 reserved (0)

Returns:

 If function successful

 Carry flag = clear

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o If register DH does not contain 00H, control returns to the program with
 the carry flag set and error code 0001H (invalid function) in register
 AX.

 o Bit 5 of the information word for a handle associated with a character
 device signifies whether MS-DOS considers that handle to be in binary
 ("raw") or ASCII ("cooked") mode. See Notes for Int 21H Function 44H
 Subfunction 00H.

Example:

 Place the standard output handle into binary ("raw") mode. This speeds up
 output by disabling checking for Ctrl-C, Ctrl-S, and Ctrl-P between each

 character.

 .
 .
 .
 ; get device information
 mov ax,4400h ; function & subfunction
 mov bx,1 ; standard output handle
 int 21h ; transfer to MS-DOS

 mov dh,0 ; force DH = 0
 or dl,20h ; set binary mode bit

 ; set device information
 mov ax,4401h ; function & subfunction
 int 21h ; transfer to MS-DOS
 .
 .
 .

--
Int 21H [2.0]
Function 44H (68) Subfunction 02H
IOCTL: read control data from character device driver
--

 Reads control data from a character-device driver. The length and contents
 of the data are specific to each device driver and do not follow any
 standard format. This function does not necessarily result in any input
 from the physical device.

Call with:

 AH = 44H
 AL = 02H
 BX = handle
 CX = number of bytes to read
 DS:DX = segment:offset of buffer

Returns:

 If function successful

 Carry flag = clear
 AX = bytes read

 and buffer contains control data from driver

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o If supported by the driver, this subfunction can be used to obtain
 hardware-dependent status and availability information that is not
 supported by other MS-DOS function calls.

 o Character-device drivers are not required to support IOCTL Subfunction
 02H. A program can test bit 14 of the device information word returned
 by IOCTL Subfunction 00H to determine whether the driver supports this
 subfunction. If Subfunction 02H is requested and the driver does not
 have the ability to process control data, control returns to the program
 with the carry flag set and error code 0001H (invalid function) in
 register AX.

Example:

 Read a control string from the standard list driver into the buffer buff.

 stdprn equ 4 ; standard list handle
 buflen equ 64 ; length of buffer

 ctllen dw ? ; length of control string
 buff db buflen dup (0) ; receives control string
 .
 .
 .
 mov ax,4402h ; function & subfunction
 mov bx,stdprn ; standard list handle
 mov cx,buflen ; buffer length
 mov dx,seg buff ; buffer address
 mov ds,dx
 mov dx,offset buff
 int 21h ; transfer to MS-DOS
 jc error ; jump if read failed
 mov ctllen,ax ; save control string length
 .
 .
 .

--
Int 21H [2.0]
Function 44H (68) Subfunction 03H
IOCTL: write control data to character-device driver
--

 Transfers control data from an application to a character-device driver.
 The length and contents of the data are specific to each device driver and
 do not follow any standard format. This function does not necessarily
 result in any output to the physical device.

Call with:

 AH = 44H
 AL = 03H
 BX = handle
 CX = number of bytes to write
 DS:DX = segment:offset of data

Returns:

 If function successful

 Carry flag = clear

 AX = bytes transferred

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o If supported by the driver, this subfunction can be used to request
 hardware-dependent operations (such as setting baud rate for a serial
 port) that are not supported by other MS-DOS function calls.

 o Character-device drivers are not required to support IOCTL Subfunction
 03H. A program can test bit 14 of the device information word returned
 by IOCTL Subfunction 00H to determine whether the driver supports this
 subfunction. If Subfunction 03H is requested and the driver does not
 have the ability to process control data, control returns to the program
 with the carry flag set and error code 0001H (invalid function) in
 register AX.

Example:

 Write a control string from the buffer buff to the standard list device
 driver. The length of the string is assumed to be in the variable ctllen.

 stdprn equ 4 ; standard list handle
 buflen equ 64 ; length of buffer

 ctllen dw ? ; length of control data
 buff db buflen dup (?) ; contains control data
 .
 .
 .
 mov ax,4403h ; function & subfunction
 mov bx,stdprn ; standard list handle
 mov dx,seg buff ; buffer address
 mov ds,dx
 mov dx,offset buff
 mov cx,ctllen ; length of control data
 int 21h ; transfer to MS-DOS
 jc error ; jump if write failed
 .
 .
 .

--
Int 21H [2.0]
Function 44H (68) Subfunction 04H
IOCTL: read control data from block-device driver
--

 Transfers control data from a block-device driver directly into an
 application program's buffer. The length and contents of the data are
 specific to each device driver and do not follow any standard format. This
 function does not necessarily result in any input from the physical

 device.

Call with:

 AH = 44H
 AL = 04H
 BL = drive code (0 = default, 1 = A, 2 = B, etc.)
 CX = number of bytes to read
 DS:DX = segment:offset of buffer

Returns:

 If function successful

 Carry flag = clear
 AX = bytes transferred

 and buffer contains control data from device driver

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o When supported by the driver, this subfunction can be used to obtain
 hardware-dependent status and availability information that is not
 provided by other MS-DOS function calls.

 o Block-device drivers are not required to support IOCTL Subfunction 04H.
 If this subfunction is requested and the driver does not have the
 ability to process control data, control returns to the program with the
 carry flag set and error code 0001H (invalid function) in register AX.

Example:

 Read a control string from the block-device driver for drive C into the
 buffer buff.

 buflen equ 64 ; length of buffer

 ctllen dw ? ; length of control string
 buff db buflen dup (0) ; receives control string
 .
 .
 .
 mov ax,4404h ; function & subfunction
 mov bl,3 ; drive C = 3
 mov cx,buflen ; buffer length
 mov dx,seg buff ; buffer address

 mov ds,dx
 mov dx,offset buff
 int 21h ; transfer to MS-DOS
 jc error ; jump if read failed
 mov ctllen,ax ; save control string length
 .
 .

 .

--
Int 21H [2.0]
Function 44H (68) Subfunction 05H
IOCTL: write control data to block-device driver
--

 Transfers control data from an application program directly to a
 block-device driver. The length and contents of the control data are
 specific to each device driver and do not follow any standard format. This
 function does not necessarily result in any output to the physical device.

Call with:

 AH = 44H
 AL = 05H
 BL = drive code (0 = default, 1 = A, 2 = B, etc.)
 CX = number of bytes to write
 DS:DX = segment:offset of data

Returns:

 If function successful

 Carry flag = clear
 AX = bytes transferred

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o When supported by the driver, this subfunction can be used to request
 hardware-dependent operations (such as tape rewind or disk eject) that
 are not provided by other MS-DOS function calls.

 o Block-device drivers are not required to support IOCTL Subfunction 05H.
 If this subfunction is requested and the driver does not have the
 ability to process control data, control returns to the program with the
 carry flag set and error code 0001H (invalid function) in register AX.

Example:

 Write a control string from the buffer buff to the block-device driver for
 drive C. The length of the string is assumed to be in the variable ctllen.

 buflen equ 64 ; length of buffer

 ctllen dw ? ; length of control data
 buff db buflen dup (?) ; contains control data
 .
 .
 .
 mov ax,4405h ; function & subfunction
 mov bl,3 ; drive C = 3

 mov dx,seg buff ; buffer address
 mov ds,dx
 mov dx,offset buff
 mov cx,ctllen ; length of control data
 int 21h ; transfer to MS-DOS
 jc error ; jump if write failed
 .
 .
 .

--
Int 21H [2.0]
Function 44H (68) Subfunction 06H
IOCTL: check input status
--

 Returns a code indicating whether the device or file associated with a
 handle is ready for input.

Call with:

 AH = 44H
 AL = 06H
 BX = handle

Returns:

 If function successful

 Carry flag = clear

 and, for a device:

 AL = 00H if device not ready
 FFH if device ready

 or, for a file:

 AL = 00H if file pointer at EOF
 FFH if file pointer not at EOF

 If function unsuccessful

 Carry flag = set
 AX = error code

Note:

 o This function can be used to check the status of character devices, such
 as the serial port, that do not have their own "traditional" MS-DOS
 status calls.

Example:

 Check whether a character is ready from the standard auxiliary device
 (usually COM1).

 stdaux equ 3 ; standard auxiliary handle

 .
 .
 .
 mov ax,4406h ; function & subfunction
 mov bx,stdaux ; standard auxiliary handle
 int 21h ; transfer to MS-DOS
 jc error ; jump if function failed
 or al,al ; test status flag
 jnz ready ; jump if character ready
 .
 .
 .

--
Int 21H [2.0]
Function 44H (68) Subfunction 07H
IOCTL: check output status
--

 Returns a code indicating whether the device associated with a handle is
 ready for output.

Call with:

 AH = 44H
 AL = 07H
 BX = handle

Returns:

 If function successful

 Carry flag = clear

 and, for a device:

 AL = 00H if device not ready
 FFH if device ready

 or, for a file:

 AL = FFH

 If function unsuccessful

 Carry flag = set
 AX = error code

Note:

 o When used with a handle for a file, this function always returns a ready
 status, even if the disk is full or no disk is in the drive.

Example:

 Check whether the standard auxiliary device (usually COM1) can accept a
 character for output.

 stdaux equ 3 ; standard auxiliary handle
 .
 .
 .
 mov ax,4407h ; function & subfunction
 mov bx,stdaux ; standard auxiliary handle
 int 21h ; transfer to MS-DOS
 jc error ; jump if function failed
 or al,al ; test status flag
 jnz ready ; jump if not busy
 .
 .
 .

--
Int 21H [3.0]
Function 44H (68) Subfunction 08H
IOCTL: check if block device is removable
--

 Checks whether the specified block device contains a removable storage
 medium, such as a floppy disk.

Call with:

 AH = 44H
 AL = 08H
 BL = drive number (0 = default, 1 = A, 2 = B, etc.)

Returns:

 If function successful

 Carry flag = clear
 AL = 00H if medium is removable
 01H if medium is not removable

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o If a file is not found as expected on a particular drive, a program can
 use this subfunction to determine whether the user should be prompted to
 insert another disk.

 o This subfunction may not be used for a network drive.

 o Block drivers are not required to support Subfunction 08H. If this
 subfunction is requested and the block device cannot supply the
 information, control returns to the program with the carry flag set and
 error code 0001H (invalid function) in register AX.

Example:

 Check whether drive C is removable.

 .
 .
 .
 mov ax,4408h ; function & subfunction
 mov bl,3 ; drive 3 = C
 int 21h ; transfer to MS-DOS
 jc error ; jump if function failed
 and al,1 ; test type of medium
 jnz fixed ; jump if not removable
 .
 .
 .

--
Int 21H [3.1]
Function 44H (68) Subfunction 09H
IOCTL: check if block device is remote
--

 Checks whether the specified block device is local (attached to the
 computer running the program) or remote (redirected to a network server).

Call with:

 AH = 44H
 AL = 09H
 BL = drive number (0 = default, 1 = A, 2 = B, etc.)

Returns:

 If function successful

 Carry flag = clear
 DX = device attribute word
 bit 12 = 0 if drive is local
 1 if drive is remote

 If function unsuccessful

 Carry flag = set
 AX = error code

Note:

 o Use of this subfunction should be avoided. Application programs should
 not distinguish between files on local and remote devices.

Example:

 Check whether drive D is mounted on the machine running the program or is
 a network drive.

 .
 .
 .
 mov ax,4409h ; function & subfunction
 mov bl,4 ; drive 4 = D

 int 21h ; transfer to MS-DOS
 jc error ; jump if function failed
 and dx,1000h ; test local/remote bit
 jnz remote ; jump if network drive
 .
 .
 .

--
Int 21H [3.1]
Function 44H (68) Subfunction 0AH (10)
IOCTL: check if handle is remote
--

 Checks whether the specified handle refers to a file or device that is
 local (located on the PC that is running the program) or remote (located
 on a network server).

Call with:

 AH = 44H
 AL = 0AH
 BX = handle

Returns:

 If function successful

 Carry flag = clear
 DX = attribute word for file or device

 bit 15 = 0 if local

 1 if remote

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o Application programs should not ordinarily attempt to distinguish
 between files on local and remote devices.

 o If the network has not been started, control returns to the calling
 program with the carry flag set and error code 0001H (invalid function)
 in register AX.

Example:

 Check if the handle saved in the variable fhandle is associated with a
 file or device on the machine running the program or on a network server.

 fhandle dw ? ; device handle
 .
 .
 .

 mov ax,440ah ; function & subfunction
 mov bx,fhandle ; file/device handle
 int 21h ; transfer to MS-DOS
 jc error ; jump if function failed
 and dx,8000h ; test local/remote bit
 jnz remote ; jump if network handle
 .
 .
 .

--
Int 21H [3.1]
Function 44H (68) Subfunction 0BH (11)
IOCTL: change sharing retry count
--

 Sets the number of times MS-DOS retries a disk operation after a failure
 caused by a file-sharing violation before it returns an error to the
 requesting process. This subfunction is not available unless the
 file-sharing module (SHARE.EXE) is loaded.

Call with:

 AH = 44H
 AL = 0BH
 CX = delays per retry (default = 1)
 DX = number of retries (default = 3)

Returns:

 If function successful

 Carry flag = clear

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o The length of a delay is a machine-dependent value determined by the CPU
 type and clock speed. Each delay consists of the following instruction
 sequence:

 xor cx,cx
 loop $

 which executes 65,536 times before falling out of the loop.

 o The sharing retry count affects the behavior of the system as a whole
 and is not a local parameter for the process. If a program changes the
 sharing retry count, it should restore the default values before
 terminating.

Example:

 Change the number of automatic retries for a file-sharing violation to

 five.

 .
 .
 .
 mov ax,440bh ; function & subfunction
 mov cx,1 ; delays per retry
 mov dx,5 ; number of retries
 int 21h ; transfer to MS-DOS
 jc error ; jump if function failed
 .
 .
 .

--
Int 21H [3.2]
Function 44H (68) Subfunction 0CH (12)
IOCTL: generic I/O control for character devices
--

 Provides a general-purpose mechanism for communication between application
 programs and character-device drivers.

Call with:

 AH = 44H
 AL = 0CH
 BX = handle
 CH = category (major) code:
 00H = unknown
 01H = COM1, COM2, COM3, or COM4 (3.3)
 03H = CON (keyboard and display) (3.3)
 05H = LPT1, LPT2, or LPT3 (3.2)
 CL = function (minor) code:
 45H = Set Iteration Count (3.2)
 4AH = Select Code Page (3.3)
 4CH = Start Code Page Preparation (3.3)
 4DH = End Code Page Preparation (3.3)
 5FH = Set Display Information (4.0)
 65H = Get Iteration Count (3.2)
 6AH = Query Selected Code Page (3.3)
 6BH = Query Prepare List (3.3)
 7FH = Get Display Information (4.0)
 DS:DX = segment:offset of parameter block

Returns:

 If function successful

 Carry flag = clear

 and, if called with CL = 65H, 6AH, 6BH, or 7FH

 DS:DX = segment:offset of parameter block

 If function unsuccessful

 Carry flag = set

 AX = error code

Notes:

 o If the minor code is 45H (Set Iteration Count) or 65H (Get Iteration
 Count), the parameter block is simply a 2-byte buffer containing or
 receiving the iteration count for the printer. This call is valid only
 for printer drivers that support Output Until Busy, and determines the
 number of times the device driver will wait for the device to signal
 ready before returning from the output call.

 o The parameter block for minor code 4DH (End Code Page Preparation) has
 the following format:

 dw 2 ; length of following data
 dw 0 ; (reserved)

 o For MS-DOS version 3.3, the parameter block for minor codes 4AH (Select
 Code Page) and 6AH (Query Code Page) has the following format:

 dw 2 ; length of following data
 dw ? ; code page ID

 For MS-DOS version 4.0, minor codes 4AH and 6AH also set or get the
 double-byte character set (DBCS) lead byte table, and the following format
 is used:

 dw (n+2)*2+1 ; length of following data
 dw ? ; code page ID
 db start,end ; DBCS lead byte range 1
 .
 .
 .
 db start,end ; DBCS lead byte range n
 db 0,0

 o The parameter block for minor code 4CH (Start Code Page Preparation) has
 the following format:

 dw 0 ; font type
 ; bit 0 = 0 downloaded
 ; = 1 cartridge
 ; bits 1-15 = reserved (0)
 dw (n+1)*2 ; length of remainder of
 ; parameter block
 dw n ; number of code pages in
 ; the following list
 dw ? ; code page 1
 dw ? ; code page 2
 .
 .
 .
 dw ? ; code page n

 o The parameter block for minor code 6BH (Query Prepare List) has the
 following format, assuming n hardware code pages and m prepared code
 pages (n <= 12, m <= 12):

 dw (n+m+2)*2 ; length of following data

 dw n ; number of hardware code pages
 dw ? ; hardware code page 1
 dw ? ; hardware code page 2
 .
 .
 .
 dw ? ; hardware code page n
 dw m ; number of prepared code pages
 dw ? ; prepared code page 1
 dw ? ; prepared code page 2
 .
 .
 .
 dw ? ; prepared code page m

 o After a minor code 4CH (Start Code Page Preparation) call, the data
 defining the code page font is written to the driver using one or more
 calls to the IOCTL Write Control Data subfunction (Interrupt 21H,
 Function 44H, Subfunction 03H). The format of the data is device- and
 driver-specific. After the font data has been written to the driver, a
 minor code 4DH (End Code Page Preparation) call must be issued. If no
 data is written to the driver between the minor code 4CH and 4DH calls,
 the driver interprets the newly prepared code pages as hardware code
 pages.

 o A special variation of the minor code 4CH (Start Code Page Preparation)
 call, called "Refresh," is required to actually load the peripheral
 device with the prepared code pages. The refresh operation is obtained
 by requesting minor code 4CH with each code page position in the
 parameter block set to -1, followed by an immediate call for minor code
 4DH (End Code Page Preparation).

 o [4.0+] For minor codes 5FH (Set Display Information) and 7FH (Get
 Display Information), the parameter block is formatted as follows:

 db 0 ; level (0 in MS-DOS 4.0)
 db 0 ; reserved (must be 0)
 dw 14 ; length of following data
 dw ? ; control flags
 ; bit 0 = 0 intensity
 ; = 1 blink
 ; bits 1-15 = reserved (0)
 db ? ; mode type (1 = text, 2 = APA)
 db 0 ; reserved (must be 0)
 dw ? ; colors
 ; 0 = monochrome compatible
 ; 1 = 2 colors
 ; 2 = 4 colors
 ; 4 = 16 colors
 ; 8 = 256 colors
 dw ? ; pixel columns
 dw ? ; pixel rows
 dw ? ; character columns
 dw ? ; character rows

Example:

 Get the current code page for the standard list device.

 stdprn equ 4 ; standard list handle

 pars dw 2 ; length of data
 dw ? ; receives code page
 .
 .
 .
 mov ax,440ch ; function & subfunction
 mov bx,stdprn ; standard list handle
 mov ch,5 ; LPTx category
 mov cl,6ah ; query code page
 mov dx,seg pars ; parameter block address
 mov ds,dx
 mov dx,offset pars
 int 21h ; transfer to MS-DOS
 jc error ; jump if function failed
 .
 .
 .

--
Int 21H [3.2]
Function 44H Subfunction 0DH (13)
IOCTL: generic I/O control for block devices
--

 Provides a general-purpose mechanism for communication between application
 programs and block-device drivers. Allows a program to inspect or change
 device parameters for a logical drive and to read, write, format, and
 verify disk tracks in a hardware-independent manner.

Call with:

 AH = 44H
 AL = 0DH
 BL = drive code (0 = default, 1 = A, 2 = B, etc.)
 CH = category (major) code:
 08H = disk drive
 CL = function (minor) code:
 40H = Set Device Parameters
 41H = Write Track
 42H = Format and Verify Track
 47H = Set Access Flag (4.0)
 60H = Get Device Parameters
 61H = Read Track
 62H = Verify Track
 67H = Get Access Flag (4.0)
 DS:DX = segment:offset of parameter block

Returns:

 If function successful

 Carry flag = clear

 and, if called with CL = 60H or 61H

 DS:DX = segment:offset of parameter block

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o The minor code 40H (Set Device Parameters) function must be used before
 an attempt to write, read, format, or verify a track on a logical drive.
 In general, the following sequence applies to any of these operations:

 Get the current parameters (minor code 60H). Examine and save them.�

 Set the new parameters (minor code 40H).�

 Perform the task.�

 Retrieve the original parameters and restore them with minor code 40H.�

 o For minor codes 40H (Set Device Parameters) and 60H (Get Device
 Parameters), the parameter block is formatted as follows:

 Special-functions field: offset 00H, length = 1 byte

 Bit(s) Value Meaning
 0 0 device BPB field contains a new default BPB
 1 use current BPB
 1 0 use all fields in parameter block
 1 use track layout field only
 2 0 sectors in track may be different sizes (should
 always be avoided)
 1 sectors in track are all same size; sector numbers
 range from 1 to the total number of sectors in the
 track (should always be used)
 3-7 0 reserved

 Device type field: offset 01H, length 1 byte

 Value Meaning
 0 320/360 KB, 5.25-inch disk
 1 1.2 MB, 5.25-inch disk
 2 720 KB, 3.5-inch disk
 3 single-density, 8-inch disk
 4 double-density, 8-inch disk
 5 fixed disk
 6 tape drive
 7 other type of block device

 Device attributes field: offset 02H, length 1 word

 Bit(s) Value Meaning
 0 0 removable storage medium
 1 nonremovable storage medium
 1 0 door lock not supported
 1 door lock supported
 2-15 0 reserved

 Number of cylinders field: offset 04H, length 1 word

 Maximum number of cylinders supported on the block device

 Media type field: offset 06H, length 1 byte

 Value Meaning
 0 1.2 MB, 5.25-inch disk
 1 320/360 KB, 5.25-inch disk

 Device BPB field: offset 07H, length 31 bytes
 For format of the device BPB, see separate Note below.
 If bit 0 = 0 in special-functions field, this field contains the new
 default BPB for the device.
 If bit 0 = 1 in special-functions field, the BPB in this field is
 returned by the device driver in response to subsequent Build BPB
 requests.

 Track layout field: offset 26H, variable-length table

 Length Meaning
 Word number of sectors in track
 Word number of first sector in track
 Word size of first sector in track
 .
 .
 .
 Word number of last sector in track
 Word size of last sector in track

 o The device BPB field is a 31-byte data structure that describes the
 current disk and its control areas. The field is formatted as follows:

 Byte(s) Meaning
 00H-01H bytes per sector
 02H sectors per cluster (allocation unit)
 03-04H reserved sectors, beginning at sector 0
 05H number of file allocation tables (FATs)
 06H-07H maximum number of root-directory entries
 08H-09H number of sectors
 0AH media descriptor
 0BH-0CH sectors per FAT
 0DH-0EH sectors per track
 0FH-10H number of heads
 11H-14H number of hidden sectors
 15H-18H large number of sectors (if bytes 08H-09H=0)
 19H-1EH reserved

 o When minor code 40H (Set Device Parameters) is used, the number of
 cylinders should not be altered, or some or all of the volume may become
 inaccessible.

 o For minor codes 41H (Write Track) and 61H (Read Track), the parameter
 block is formatted as follows:

 Byte(s) Meaning
 00H special-functions field (must be 0)
 01H-02H head
 03H-04H cylinder
 05H-06H starting sector
 07H-08H sectors to transfer

 09H-0CH transfer buffer address

 o For minor codes 42H (Format and Verify Track) and 62H (Verify Track),
 the parameter block is formatted as follows:

 Byte(s) Meaning
 00H special-functions field

 Bit(s) Significance
 0 0 = Format/Verify track
 1 = Format status call (MS-DOS 4.0 only)
 1-7 reserved (0)
 01H-02H head
 03H-04H cylinder

 In MS-DOS 4.0, this function may be called with bit 0 of the
 special-functions field set after a minor code 40H call (Set Device
 Parameters) to determine whether the driver supports the specified
 number of tracks and sectors per track. A status is returned in the
 special-functions field which is interpreted as follows:

 Value Meaning
 0 specified number of tracks and sectors per track supported
 1 this function not supported by the ROM BIOS
 2 specified number of tracks and sectors per track not
 supported
 3 no disk in drive

 o For minor codes 47H (Set Access Flag) and 67H (Get Access Flag), the
 parameter block is formatted as follows:

 Byte Meaning
 00H special-functions field (must be 0)
 01H disk access flag

 When the disk access flag is zero, access to the medium is blocked by
 the driver. The flag is set to zero when the driver detects an
 unformatted medium or a medium with an invalid boot record. When the
 access flag is nonzero, read/write operations to the medium are allowed
 by the driver. A formatting program must clear the disk access flag with
 minor code 47H before it requests minor code 42H (Format and Verify
 Track).

Example:

 Get the device parameter block for disk drive C.

 dbpb db 128 dup (0) ; device parameter block
 .
 .
 .
 mov ax,440dh ; function & subfunction
 mov bl,3 ; drive C = 3
 mov ch,8 ; disk category
 mov cl,60h ; get device parameters
 mov dx,seg dbpb ; buffer address
 mov ds,dx
 mov dx,offset dbpb
 int 21h ; transfer to MS-DOS

 jc error ; jump if function failed
 .
 .
 .

--
Int 21H [3.2]
Function 44H (68) Subfunction 0EH (14)
IOCTL: get logical drive map
--

 Returns the logical drive code that was most recently used to access the
 specified block device.

Call with:

 AH = 44H
 AL = 0EH
 BL = drive code (0 = default, 1 = A, 2 = B, etc.)

Returns:

 If function successful

 Carry flag = clear
 AL = mapping code

 00H if only one logical drive code assigned to the
 block device
 01H-1AH logical drive code (1 = A, 2 = B, etc.) mapped
 to the block device

 If function unsuccessful

 Carry flag = set
 AX = error code

Note:

 o If a drive has not been assigned a logical mapping with Function 44H
 Subfunction 0FH, the logical and physical drive codes are the same.

Example:

 Check whether drive A has more than one logical drive code.

 .
 .
 .
 mov ax,440eh ; function & subfunction
 mov bl,1 ; drive 1 = A
 int 21h ; transfer to MS-DOS
 jc error ; jump if function failed
 or al,al ; test drive code
 jz label1 ; jump, no drive aliases
 .
 .
 .

--
Int 21H [3.2]
Function 44H (68) Subfunction 0FH (15)
IOCTL: set logical drive map
--

 Sets the next logical drive code that will be used to reference a block
 device.

Call with:

 AH = 44H
 AL = 0FH
 BL = drive code (0 = default, 1 = A, 2 = B, etc.)

Returns:

 If function successful

 Carry flag = clear
 AL = mapping code

 00H if only one logical drive code assigned to the
 block device
 01H-1AH logical drive code (1 = A, 2 = B, etc.) mapped
 to the block device

 If function unsuccessful

 Carry flag = set
 AX = error code

Note:

 o When a physical block device is aliased to more than one logical drive
 code, this function can be used to inform the driver which drive code
 will next be used to access the device.

Example:

 Notify the floppy-disk driver that the next access will be for logical
 drive B.

 .
 .
 .
 mov ax,440fh ; function & subfunction
 mov bl,2 ; drive 2 = B
 int 21h ; transfer to MS-DOS
 jc error ; jump if function failed
 .
 .
 .

--
Int 21H [2.0]

Function 45H (69)
Duplicate handle
--

 Given a handle for a currently open device or file, returns a new handle
 that refers to the same device or file at the same position.

Call with:

 AH = 45H
 BX = handle to be duplicated

Returns:

 If function successful

 Carry flag = clear
 AX = new handle

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o A seek, read, or write operation that moves the file pointer for one of
 the two handles also moves the file pointer associated with the other.

 o This function can be used to efficiently update the directory for a file
 that has changed in length, without incurring the overhead of closing
 and then reopening the file. The handle for the file is simply
 duplicated with this function and the duplicate is closed, leaving the
 original handle open for further read/write operations.

 o [3.3] See also Int 21H Function 68H (Commit File).

Example:

 Duplicate the handle stored in the variable fhandle, then close the
 duplicate. This ensures that all buffered data is physically written to
 disk and that the directory entry for the corresponding file is updated,
 but leaves the original handle open for subsequent file operations.

 fhandle dw 0 ; file handle
 .
 .
 .
 ; get duplicate handle
 mov ah,45h ; function number
 mov bx,fhandle ; original file handle
 int 21h ; transfer to MS-DOS
 jc error ; jump if dup failed
 ; now close dup'd handle
 mov bx,ax ; put handle into BX
 mov ah,3eh ; function number
 int 21h ; transfer to MS-DOS jc error
 ; jump if close failed
 .

 .
 .

--
Int 21H [2.0]
Function 46H (70)
Redirect handle
--

 Given two handles, makes the second handle refer to the same device or
 file at the same location as the first handle. The second handle is then
 said to be redirected.

Call with:

 AH = 46H
 BX = handle for file or device
 CX = handle to be redirected

Returns:

 If function successful

 Carry flag = clear

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o If the handle passed in CX already refers to an open file, that file is
 closed first.

 o A seek, read, or write operation that moves the file pointer for one of
 the two handles also moves the file pointer associated with the other.

 o This function is commonly used to redirect the standard input and output
 handles to another file or device before a child process is executed
 with Int 21H Function 4BH.

Example:

 Redirect the standard output to the list device, so that all output
 directed to the console will appear on the printer instead. Later, restore
 the original meaning of the standard output handle.

 stdin equ 0
 stdout equ 1
 stderr equ 2
 stdaux equ 3
 stdprn equ 4

 dhandle dw 0 ; duplicate handle
 .
 .
 .

 ; get dup of stdout
 mov ah,45h ; function number
 mov bx,stdout ; standard output handle
 int 21h ; transfer to MS-DOS
 jc error ; jump if dup failed
 mov dhandle,ax ; save dup'd handle
 ;
 ; redirect standard output
 ; to standard list device
 mov ah,46h ; function number
 mov bx,stdprn ; standard list handle
 mov cx,stdout ; standard output handle
 int 21h ; transfer to MS-DOS
 jc error ; jump if redirect failed
 .
 .
 .
 ; restore standard output
 ; to original meaning
 mov ah,46h ; function number
 mov bx,dhandle ; saved duplicate handle
 mov cx,stdout ; standard output handle
 int 21h ; transfer to MS-DOS
 jc error ; jump if redirect failed
 ; close duplicate handle
 ; because no longer needed
 mov ah,3eh ; function number
 mov bx,dhandle ; saved duplicate handle
 int 21h ; transfer to MS-DOS
 jc error ; jump if close failed
 .
 .
 .

--
Int 21H [2.0]
Function 47H (71)
Get current directory
--

 Obtains an ASCIIZ string that describes the path from the root to the
 current directory, and the name of that directory.

Call with:

 AH = 47H
 DL = drive code (0 = default, 1 = A, etc.)
 DS:SI = segment:offset of 64-byte buffer

Returns:

 If function successful

 Carry flag = clear

 and buffer is filled in with full pathname from root of current directory.

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o The returned path name does not include the drive identifier or a
 leading backslash (\). It is terminated with a null (00H) byte.
 Consequently, if the current directory is the root directory, the first
 byte in the buffer will contain 00H.

 o The function fails if the drive code is invalid.

 o The current directory may be set with Int 21H Function 3BH.

Example:

 Get the name of the current directory for drive C into the buffer named
 dbuff.

 dbuff db 64 dup (0) ; receives path string
 .
 .
 .
 mov ah,47h ; function number
 mov dl,03 ; drive C = 3
 mov si,seg dbuff ; buffer address
 mov ds,si
 mov si,offset dbuff
 int 21h ; transfer to MS-DOS
 jc error ; jump if error
 .
 .
 .

--
Int 21H [2.0]
Function 48H (72)
Allocate memory block
--

 Allocates a block of memory and returns a pointer to the beginning of the
 allocated area.

Call with:

 AH = 48H
 BX = number of paragraphs of memory needed

Returns:

 If function successful

 Carry flag = clear
 AX = base segment address of allocated block

 If function unsuccessful

 Carry flag = set
 AX = error code
 BX = size of largest available block (paragraphs)

Notes:

 o If the function succeeds, the base address of the newly allocated block
 is AX:0000.

 o The default allocation strategy used by MS-DOS is "first fit"; that is,
 the memory block at the lowest address that is large enough to satisfy
 the request is allocated. The allocation strategy can be altered with
 Int 21H Function 58H.

 o When a .COM program is loaded, it ordinarily already "owns" all of the
 memory in the transient program area, leaving none for dynamic
 allocation. The amount of memory initially allocated to a .EXE program
 at load time depends on the MINALLOC and MAXALLOC fields in the .EXE
 file header. See Int 21H Function 4AH.

Example:

 Request a 64 KB block of memory for use as a buffer.

 bufseg dw ? ; segment base of new block
 .
 .
 .
 mov ah,48h ; function number
 mov bx,1000h ; block size (paragraphs)
 int 21h ; transfer to MS-DOS
 jc error ; jump if allocation failed
 mov bufseg,ax ; save segment of new block
 .
 .
 .

--
Int 21H [2.0]
Function 49H (73)
Release memory block
--

 Releases a memory block and makes it available for use by other programs.

Call with:

 AH = 49H
 ES = segment of block to be released

Returns:

 If function successful

 Carry flag = clear

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o This function assumes that the memory block being released was
 previously obtained by a successful call to Int 21H Function 48H.

 o The function will fail or can cause unpredictable system errors if:

 the program releases a memory block that does not belong to it.�

 the segment address passed in register ES is not a valid base address�
 for an existing memory block.

Example:

 Release the memory block that was previously allocated in the example for
 Int 21H Function 48H (page 438).

 bufseg dw ? ; segment base of block
 .
 .
 .
 mov ah,49h ; function number
 mov es,bufseg ; base segment of block
 int 21h ; transfer to MS-DOS
 jc error ; jump if release failed
 .
 .
 .

--
Int 21H [2.0]
Function 4AH (74)
Resize memory block
--

 Dynamically shrinks or extends a memory block, according to the needs of
 an application program.

Call with:

 AH = 4AH
 BX = desired new block size in paragraphs
 ES = segment of block to be modified

Returns:

 If function successful

 Carry flag = clear

 If function unsuccessful

 Carry flag = set
 AX = error code
 BX = maximum block size available (paragraphs)

Notes:

 o This function modifies the size of a memory block that was previously
 allocated with a call to Int 21H Function 48H.

 o If the program is requesting an increase in the size of an allocated
 block, and this function fails, the maximum possible size for the
 specified block is returned in register BX. The program can use this
 value to determine whether it should terminate, or continue in a
 degraded fashion with less memory.

 o A program that uses EXEC (Int 21H Function 4BH) to load and execute a
 child program must call this function first to make memory available for
 the child, passing the address of its PSP in register ES and the amount
 of memory needed for its own code, data, and stacks in register BX.

Example:

 Resize the memory block that was allocated in the example for Int 21H
 Function 48H (page 438), shrinking it to 32 KB.

 bufseg dw ? ; segment base of block
 .
 .
 .
 mov ah,4ah ; function number
 mov bx,0800h ; new size (paragraphs)
 mov es,bufseg ; segment base of block
 int 21h ; transfer to MS-DOS
 jc error ; jump, resize failed
 .
 .
 .

--
Int 21H [2.0]
Function 4BH (75)
Execute program (EXEC)
--

 Allows an application program to run another program, regaining control
 when it is finished. Can also be used to load overlays, although this use
 is uncommon.

Call with:

 AH = 4BH
 AL = subfunction
 00H = Load and Execute Program
 03H = Load Overlay
 ES:BX = segment:offset of parameter block
 DS:DX = segment:offset of ASCIIZ program pathname

Returns:

 If function successful

 Carry flag = clear

 [2] all registers except for CS:IP may be destroyed
 [3.0+] registers are preserved in the usual fashion

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o The parameter block format for Subfunction 00H (Load and Execute
 Program) is as follows:

 Bytes Contents
 00H-01H segment pointer to environment block
 02H-03H offset of command line tail
 04H-05H segment of command line tail
 06H-07H offset of first FCB to be copied into new PSP + 5CH
 08H-09H segment of first FCB
 0AH-0BH offset of second FCB to be copied into new PSP + 6CH
 0CH-0DH segment of second FCB

 o The parameter block format for Subfunction 03H (Load Overlay) is as
 follows:

 Bytes Contents
 00H-01H segment address where overlay is to be loaded
 02H-03H relocation factor to apply to loaded image

 o The environment block must be paragraph-aligned. It consists of a
 sequence of ASCIIZ strings in the form:

 db 'COMSPEC=A:\COMMAND.COM',0

 The entire set of strings is terminated by an extra null (00H) byte.

 o The command tail format consists of a count byte, followed by an ASCII
 string, terminated by a carriage return (which is not included in the
 count). The first character in the string should be an ASCII space (20H)
 for compatibility with the command tail passed to programs by
 COMMAND.COM. For example:

 db 6,' *.DAT',0dh

 o Before a program uses Int 21H Function 4BH to run another program, it
 must release all memory it is not actually using with a call to Int 21H
 Function 4AH, passing the segment address of its own PSP and the number
 of paragraphs to retain.

 o Ordinarily, all active handles of the parent program are inherited by
 the child program, although the parent can prevent this in MS-DOS 3.0
 and later by setting the inheritance bit when the file or device is
 opened. Any redirection of the standard input and/or output in the
 parent process also affects the child process.

 o The environment block can be used to pass information to the child
 process. If the environment block pointer in the parameter block is

 zero, the child program inherits an exact copy of the parent's
 environment. In any case, the segment address of the child's environment
 is found at offset 002CH in the child's PSP.

 o After return from the EXEC function call, the termination type and
 return code of the child program may be obtained with Int 21H Function
 4DH.

Example:

 See Chapter 12.

--
Int 21H [2.0]
Function 4CH (76)
Terminate process with return code
--

 Terminates the current process, passing a return code to the parent
 process. This is one of several methods that a program can use to perform
 a final exit. MS-DOS then takes the following actions:

 o All memory belonging to the process is released.

 o File buffers are flushed and any open handles for files or devices owned
 by the process are closed.

 o The termination handler vector (Int 22H) is restored from PSP:000AH.

 o The Ctrl-C handler vector (Int 23H) is restored from PSP:000EH.

 o [2.0+] The critical-error handler vector (Int 24H) is restored from
 PSP:0012H.

 o Control is transferred to the termination handler.

 If the program is returning to COMMAND.COM, control transfers to the
 resident portion and the transient portion is reloaded if necessary. If a
 batch file is in progress, the next line of the file is fetched and
 interpreted; otherwise, a prompt is issued for the next user command.

Call with:

 AH = 4CH
 AL = return code

Returns:

 Nothing

Notes:

 o [2.0+] This is the preferred method of termination for application
 programs because it allows a return code to be passed to the parent
 program and does not rely on the contents of any segment register. Other
 methods of performing a final exit are:

 Int 20H�

 Int 21H Function 00H�

 Int 21H Function 31H�

 Int 27H�

 o Any files that have been opened using FCBs and modified by the program
 should be closed before program termination; otherwise, data may be
 lost.

 o The return code can be retrieved by the parent process with Int 21H
 Function 4DH (Get Return Code). It can also be tested in a batch file
 with an IF ERRORLEVEL statement. By convention, a return code of zero
 indicates successful execution, and a non-zero return code indicates an
 error.

 o [3.0+] If the program is running on a network, it should remove all
 locks it has placed on file regions before terminating.

Example:

 Terminate the current process, passing a return code of 1 to the parent
 process.

 .
 .
 .
 mov ah,4ch ; function number
 mov al,01h ; return code
 int 21h ; transfer to MS-DOS

--
Int 21H [2.0]
Function 4DH (77)
Get return code
--

 Used by a parent process, after the successful execution of an EXEC call
 (Int 21H Function 4BH), to obtain the return code and termination type of
 a child process.

Call with:

 AH = 4DH

Returns:

 AH = exit type
 00H if normal termination by Int 20H, Int 21H Function
 00H, or Int 21H Function 4CH
 01H if termination by user's entry of CtrlDC
 02H if termination by critical-error handler
 03H if termination by Int 21H Function 31H or Int 27H
 AL = return code passed by child process (0 if child terminated
 by Int 20H, Int 21H Function 00H, or Int 27H)

Notes:

 o This function will yield the return code of a child process only once. A
 subsequent call without an intervening EXEC (Int 21H Function 4BH) will
 not necessarily return any valid information.

 o This function does not set the carry flag to indicate an error. If no
 previous child process has been executed, the values returned in AL and
 AH are undefined.

Example:

 Get the return code and termination kind of child process that was
 previously executed with Int 21H Function 4BH (EXEC).

 retcode dw ? ; return code, termination type
 .
 .
 .
 mov ah,4dh ; function number
 int 21h ; transfer to MS-DOS
 mov retcode,ax ; save child process info
 .
 .
 .

--
Int 21H [2.0]
Function 4EH (78)
Find first file
--

 Given a file specification in the form of an ASCIIZ string, searches the
 default or specified directory on the default or specified drive for the
 first matching file.

Call with:

 AH = 4EH
 CX = search attribute (bits may be combined)

 Bit(s) Significance (if set)
 0 read-only
 1 hidden
 2 system
 3 volume label
 4 directory
 5 archive
 6-15 reserved (0)

 DS:DX = segment:offset of ASCIIZ pathname

Returns:

 If function successful (matching file found)

 Carry flag = clear

 and search results returned in current disk transfer area as follows:

 Byte(s) Description
 00H-14H reserved (0)
 15H attribute of matched file or directory
 16H-17H file time
 bits 00H-04H = 2-second increments (0-29)
 bits 05H-0AH = minutes (0-59)
 bits 0BH-0FH = hours (0-23)
 18H-19H file date
 bits 00H-04H = day (1-31)
 bits 05H-08H = month (1-12)
 bits 09H-0FH = year (relative to 1980)
 1AH-1DH file size
 1EH-2AH ASCIIZ filename and extension

 If function unsuccessful (no matching files)

 Carry flag = set
 AX = error code

Notes:

 o This function assumes that the DTA has been previously set by the
 program with Int 21H Function 1AH to point to a buffer of adequate
 size.

 o The * and ? wildcard characters are allowed in the filename. If wildcard
 characters are present, this function returns only the first matching
 filename.

 o If the attribute is 0, only ordinary files are found. If the volume
 label attribute bit is set, only volume labels will be returned (if any
 are present). Any other attribute or combination of attributes (hidden,
 system, and directory) results in those files and all normal files being
 matched.

Example:

 Find the first .COM file in the directory \MYDIR on drive C.

 fname db 'C:\MYDIR*.COM',0

 dbuff db 43 dup (0) ; receives search results
 .
 .
 .
 ; set DTA address
 mov ah,1ah ; function number
 mov dx,seg dbuff ; result buffer address
 mov ds,dx
 mov dx,offset dbuff
 int 21h ; transfer to MS-DOS

 ; search for first match
 mov ah,4eh ; function number
 mov cx,0 ; normal attribute
 mov dx,seg fname ; address of filename
 mov ds,dx
 mov dx,offset fname

 int 21h ; transfer to MS-DOS
 jc error ; jump if no match
 .
 .
 .

--
Int 21H [2.0]
Function 4FH (79)
Find next file
--

 Assuming a previous successful call to Int 21H Function 4EH, finds the
 next file in the default or specified directory on the default or
 specified drive that matches the original file specification.

Call with:

 AH = 4FH

 Assumes DTA points to working buffer used by previous successful Int 21H
 Function 4EH or 4FH.

Returns:

 If function successful (matching file found)

 Carry flag = clear

 and search results returned in current disk transfer area as described for
 Int 21H Function 4EH

 If function unsuccessful (no more matching files)

 Carry flag = set
 AX = error code

Notes:

 o Use of this call assumes that the original file specification passed to
 Int 21H Function 4EH contained one or more * or ? wildcard characters.

 o When this function is called, the current disk transfer area (DTA) must
 contain information from a previous successful call to Int 21H Function
 4EH or 4FH.

Example:

 Continuing the search operation in the example for Int 21H Function 4EH,
 find the next .COM file (if any) in the directory \MYDIR on drive C.

 fname db 'C:\MYDIR*.COM',0

 dbuff db 43 dup (0) ; receives search results
 .
 .
 .
 ; search for next match

 mov ah,4fh ; function number
 int 21h ; transfer to MS-DOS
 jc error ; jump if no more files
 .
 .
 .

--
Int 21H
Function 50H (80)
Reserved
--

--
Int 21H
Function 51H (81)
Reserved
--

--
Int 21H
Function 52H (82)
Reserved
--

--
Int 21H
Function 53H (83)
Reserved
--

--
Int 21H [2.0]
Function 54H (84)
Get verify flag
--

 Obtains the current value of the system verify (read-after-write) flag.

Call with:

 AH = 54H

Returns:

 AL = current verify flag value
 00H if verify off
 01H if verify on

Notes:

 o Because read-after-write verification slows disk operations, the default
 state of the system verify flag is OFF.

 o The state of the system verify flag can be changed through a call to Int
 21H Function 2EH or by the MS-DOS commands VERIFY ON and VERIFY OFF.

Example:

 Obtain the state of the system verify flag.

 .
 .
 .
 mov ah,54h ; function number
 int 21h ; transfer to MS-DOS
 cmp al,01h ; check verify state
 je label1 ; jump if verify on
 ; else assume verify off
 .
 .
 .

--
Int 21H
Function 55H (85)
Reserved
--

--
Int 21H [2.0]
Function 56H (86)
Rename file
--

 Renames a file and/or moves its directory entry to a different directory
 on the same disk. In MS-DOS version 3.0 and later, this function can also
 be used to rename directories.

Call with:

 AH = 56H
 DS:DX = segment:offset of current ASCIIZ pathname
 ES:DI = segment:offset of new ASCIIZ pathname

Returns:

 If function successful

 Carry flag = clear

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o The function fails if:

 any element of the pathname does not exist.�

 a file with the new pathname already exists.�

 the current pathname specification contains a different disk drive�
 than does the new pathname.

 the file is being moved to the root directory, and the root directory�
 is full.

 [3.0+] the program is running on a network and the user has�
 insufficient access rights to either the existing file or the new
 directory.

 o The * and ? wildcard characters are not allowed in either the current or
 new pathname specifications.

Example:

 Change the name of the file MYFILE.DAT in the directory \MYDIR on drive C
 to MYTEXT.DAT. At the same time, move the file to the directory \SYSTEM on
 the same drive.

 oldname db 'C:\MYDIR\MYFILE.DAT',0

 newname db 'C:\SYSTEM\MYTEXT.DAT',0
 .
 .
 .
 mov ah,56h ; function number
 mov dx,seg oldname ; old filename address
 mov ds,dx
 mov dx,offset oldname
 mov di,seg newname ; new filename address
 mov es,di
 mov di,offset newname
 int 21h ; transfer to MS-DOS
 jc error ; jump if rename failed
 .
 .
 .

--
Int 21H [2.0]
Function 57H (87)
Get or set file date and time
--

 Obtains or modifies the date and time stamp in a file's directory entry.

Call with:

 If getting date and time

 AH = 57H
 AL = 00H
 BX = handle

 If setting date and time

 AH = 57H
 AL = 01H
 BX = handle
 CX = time
 bits 00H-04H = 2-second increments (0-29)
 bits 05H-0AH = minutes (0-59)
 bits 0BH-0FH = hours (0-23)
 DX = date
 bits 00H-04H = day (1-31)
 bits 05H-08H = month (1-12)
 bits 09H-0FH = year (relative to 1980)

Returns:

 If function successful

 Carry flag = clear

 and, if called with AL = 00H

 CX = time
 DX = date

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o The file must have been previously opened or created via a successful
 call to Int 21H Function 3CH, 3DH, 5AH, 5BH, or 6CH.

 o If the 16-bit date for a file is set to zero, that file's date and time
 are not displayed on directory listings.

 o A date and time set with this function will prevail, even if the file is
 modified afterwards before the handle is closed.

Example:

 Get the date that the file MYFILE.DAT was created or last modified, and
 then decompose the packed date into its constituent parts in the variables
 month, day, and year.

 fname db 'MYFILE.DAT',0

 month dw 0
 day dw 0
 year dw 0
 .
 .
 .
 ; first open the file
 mov ah,3dh ; function number
 mov al,0 ; read-only mode
 mov dx,seg fname ; filename address
 mov ds,dx

 mov dx,offset fname
 int 21h ; transfer to MS-DOS
 jc error ; jump if open failed

 ; get file date/time
 mov bx,ax ; copy handle to BX
 mov ah,57h ; function number
 mov al,0 ; 0 = get subfunction
 int 21h ; transfer to MS-DOS
 jc error ; jump if function failed

 mov day,dx ; decompose date
 and day,01fh ; isolate day
 mov cl,5
 shr dx,cl
 mov month,dx ; isolate month
 and month,0fh
 mov cl,4
 shr dx,cl ; isolate year
 and dx,03fh ; relative to 1980
 add dx,1980 ; correct to real year
 mov year,dx ; save year

 ; now close file,
 ; handle still in BX
 mov ah,3eh ; function number
 int 21h ; transfer to MS-DOS
 jc error ; jump if close failed
 .
 .
 .

--
Int 21H [3.0]
Function 58H (88)
Get or set allocation strategy
--

 Obtains or changes the code indicating the current MS-DOS strategy for
 allocating memory blocks.

Call with:

 If getting strategy code

 AH = 58H
 AL = 00H

 If setting strategy code

 AH = 58H
 AL = 01H
 BX = desired strategy code

 00H = first fit
 01H = best fit
 02H = last fit

Returns:

 If function successful

 Carry flag = clear

 and, if called with AL = 00H

 AX = current strategy code

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o The memory allocation strategies are:

 First fit: MS-DOS searches the available memory blocks from low�
 addresses to high addresses, assigning the first one large enough to
 satisfy the block allocation request.

 Best fit: MS-DOS searches all available memory blocks and assigns the�
 smallest available block that will satisfy the request, regardless of
 its position.

 Last fit: MS-DOS searches the available memory blocks from high�
 addresses to low addresses, assigning the highest one large enough to
 satisfy the block allocation request.

 o The default MS-DOS memory allocation strategy is First Fit (code 0).

Example:

 Save the code indicating the current memory allocation strategy in the
 variable strat, then change the system's memory allocation strategy to
 "best fit."

 strat dw 0 ; previous strategy code
 .
 .
 .
 ; get current strategy
 mov ah,58h ; function number
 mov al,0 ; 0 = get strategy
 int 21h ; transfer to MS-DOS
 jc error ; jump if function failed
 mov strat,ax ; save strategy code

 ; now set new strategy
 mov ah,58h ; function number
 mov al,1 ; 1 = set strategy
 mov bx,1 ; 1 = best fit
 int 21h ; transfer to MS-DOS
 jc error ; jump if function failed
 .
 .
 .

--
Int 21H [3.0]
Function 59H (89)
Get extended error information
--

 Obtains detailed error information after a previous unsuccessful Int 21H
 function call, including the recommended remedial action.

Call with:

 AH = 59H
 BX = 00H

Returns:

 AX = extended error code

 01H function number invalid
 02H file not found
 03H path not found
 04H too many open files
 05H access denied
 06H handle invalid
 07H memory control blocks destroyed
 08H insufficient memory
 09H memory block address invalid
 0AH (10) environment invalid
 0BH (11) format invalid
 0CH (12) access code invalid
 0DH (13) data invalid
 0EH (14) unknown unit
 0FH (15) disk drive invalid
 10H (16) attempted to remove current directory
 11H (17) not same device
 12H (18) no more files
 13H (19) disk write-protected
 14H (20) unknown unit
 15H (21) drive not ready
 16H (22) unknown command
 17H (23) data error (CRC)
 18H (24) bad request structure length
 19H (25) seek error
 1AH (26) unknown media type
 1BH (27) sector not found
 1CH (28) printer out of paper
 1DH (29) write fault
 1EH (30) read fault
 1FH (31) general failure
 20H (32) sharing violation
 21H (33) lock violation
 22H (34) disk change invalid
 23H (35) FCB unavailable
 24H (36) sharing buffer exceeded
 25H-31H reserved
 32H (50) unsupported network request
 33H (51) remote machine not listening

 34H (52) duplicate name on network
 35H (53) network name not found
 36H (54) network busy
 37H (55) device no longer exists on network
 38H (56) netBIOS command limit exceeded
 39H (57) error in network adapter hardware
 3AH (58) incorrect response from network
 3BH (59) unexpected network error
 3CH (60) remote adapter incompatible
 3DH (61) print queue full
 3EH (62) not enough space for print file
 3FH (63) print file canceled
 40H (64) network name deleted
 41H (65) network access denied
 42H (66) incorrect network device type
 43H (67) network name not found
 44H (68) network name limit exceeded
 45H (69) netBIOS session limit exceeded
 46H (70) file sharing temporarily paused
 47H (71) network request not accepted
 48H (72) print or disk redirection paused
 49H-4FH reserved
 50H (80) file already exists
 51H (81) reserved
 52H (82) cannot make directory
 53H (83) fail on Int 24H (critical error)
 54H (84) too many redirections
 55H (85) duplicate redirection
 56H (86) invalid password
 57H (87) invalid parameter
 58H (88) network device fault
 59H (89) function not supported by network
 5AH (90) required system component not installed

 BH = error class

 01H if out of resource (such as storage or handles)
 02H if not error, but temporary situation (such as
 locked region in file) that can be expected to
 end
 03H if authorization problem
 04H if internal error in system software
 05H if hardware failure
 06H if system software failure not the fault of the
 active process (such as missing configuration
 files)
 07H if application program error
 08H if file or item not found
 09H if file or item of invalid type or format
 0AH (10) if file or item locked
 0BH (11) if wrong disk in drive, bad spot on disk, or
 storage medium problem
 0CH (12) if item already exists
 0DH (13) unknown error

 BL = recommended action

 01H retry reasonable number of times, then prompt
 user to select abort or ignore

 02H retry reasonable number of times with delay
 between retries, then prompt user to select
 abort or ignore
 03H get corrected information from user (typically
 caused by incorrect filename or drive
 specification)
 04H abort application with cleanup (i.e., terminate
 the program in as orderly a manner as possible:
 releasing locks, closing files, etc.)
 05H perform immediate exit without cleanup
 06H ignore error
 07H retry after user intervention to remove cause of
 error

 CH = error locus

 01H unknown
 02H block device (disk or disk emulator)
 03H network
 04H serial device
 05H memory

 and, for MS-DOS 3.0 and later,

 ES:DI = ASCIIZ volume label of disk to insert, if AX = 0022H
 (invalid disk change)

Notes:

 o This function may be called after any other Int 21H function call that
 returned an error status, in order to obtain more detailed information
 about the error type and the recommended action. If the previous Int 21H
 function call had no error, 0000H is returned in register AX. This
 function may also be called during the execution of a critical-error
 (Int 24H) handler.

 o The contents of registers CL, DX, SI, DI, BP, DS, and ES are destroyed
 by this function.

 o Note that extended error codes 13H-1FH (19-31) and 34 (22H) correspond
 exactly to the error codes 0-0CH (0-12) and 0FH (15) returned by Int
 24H.

 o You should not code your programs to recognize only specific error
 numbers if you wish to ensure upward compatibility, because new error
 codes are added in each version of MS-DOS.

Example:

 Attempt to open the file named NOSUCH.DAT using a file control block; if
 the open request fails, get the extended error code.

 myfcb db 0 ; drive = default
 db 'NOSUCH ' ; filename, 8 chars
 db 'DAT' ; extension, 3 chars
 db 25 dup (0) ; remainder of FCB
 .
 .
 .

 label1: ; open the file
 mov ah,0fh ; function number
 mov dx,seg myfcb ; address of FCB
 mov ds,dx
 mov dx,offset myfcb
 int 21h ; transfer to MS-DOS
 or al,al ; check open status
 jz success ; jump if opened OK

 ; open failed, get
 ; extended error info
 mov ah,59h ; function number
 xor bx,bx ; BX must = 0
 int 21h ; transfer to MS-DOS
 or ax,ax ; double check for error
 jz success ; jump if no error

 cmp bl,2 ; should we retry?
 jle label1 ; yes, jump
 jmp error ; no, give up
 .
 .
 .

--
Int 21H [3.0]
Function 5AH (90)
Create temporary file
--

 Creates a file with a unique name, in the current or specified directory
 on the default or specified disk drive, and returns a handle that can be
 used by the program for subsequent access to the file. The name generated
 for the file is also returned in a buffer specified by the program.

Call with:

 AH = 5AH
 CX = attribute (bits may be combined)

 Bit(s) Significance (if set)
 0 read-only
 1 hidden
 2 system
 3-4 reserved (0)
 5 archive
 6-15 reserved (0)

 DS:DX = segment:offset of ASCIIZ path

Returns:

 If function successful

 Carry flag = clear
 AX = handle
 DS:DX = segment:offset of complete ASCIIZ pathname

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o The ASCIIZ path supplied to this function should be followed by at least
 13 additional bytes of buffer space. MS-DOS adds a backslash (\) to the
 supplied path, if necessary, then appends a null-terminated filename
 that is a function of the current time.

 o Files created with this function are not automatically deleted when the
 calling program terminates.

 o The function fails if

 any element of the pathname does not exist.�

 the file is being created in the root directory, and the root�
 directory is full.

 o See also Int 21H Functions 3CH, 5BH, and 6CH, which provide
 additional facilities for creating files.

 o [3.0+] If the program is running on a network, the file is created and
 opened for read/write access in compatibility sharing mode.

Example:

 Create a temporary file with a unique name and normal attribute in
 directory \TEMP of drive C. Note that you must allow room for MS-DOS to
 append the generated filename to the supplied path. The complete file
 specification should be used to delete the temporary file before your
 program terminates.

 fname db 'C:\TEMP\' ; pathname for temp file
 db 13 dup (0) ; receives filename

 fhandle dw ? ; file handle
 .
 .
 .
 mov ah,5ah ; function number
 mov cx,0 ; normal attribute
 mov dx,seg fname ; address of pathname
 mov ds,dx
 mov dx,offset fname
 int 21h ; transfer to MS-DOS
 jc error ; jump if create failed
 mov fhandle,ax ; save file handle
 .
 .
 .

--
Int 21H [3.0]
Function 5BH (91)

Create new file
--

 Given an ASCIIZ pathname, creates a file in the designated or default
 directory on the designated or default drive, and returns a handle that
 can be used by the program for subsequent access to the file. If a file
 with the same name already exists, the function fails.

Call with:

 AH = 5BH
 CX = attribute (bits may be combined)

 Bit(s) Significance (if set)
 0 read-only
 1 hidden
 2 system
 3 volume label
 4 reserved (0)
 5 archive
 6-15 reserved (0)

 DS:DX = segment:offset of ASCIIZ pathname

Returns:

 If function successful

 Carry flag = clear
 AX = handle

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o The function fails if:

 any element of the specified path does not exist.�

 a file with the identical pathname (i.e., the same filename and�
 extension in the same location in the directory structure) already
 exists.

 the file is being created in the root directory, and the root�
 directory is full.

 [3.0+] the program is running on a network, and the user has�
 insufficient access rights to the directory that will contain the
 file.

 o The file is usually given a normal attribute (0) when it is created, and
 is opened for both read and write operations. The attribute can
 subsequently be modified with Int 21H Function 43H.

 o See also Int 21H Functions 3CH, 5AH, and 6CH, which provide
 alternative ways of creating files.

 o This function may be used to implement semaphores in a network or
 multitasking environment. If the function succeeds, the program has
 acquired the semaphore. To release the semaphore, the program simply
 deletes the file.

Example:

 Create and open a file named MYFILE.DAT in the directory \MYDIR on drive
 C; MS-DOS returns an error if a file with the same name already exists in
 that location.

 fname db 'C:\MYDIR\MYFILE.DAT',0

 fhandle dw ? ; file handle
 .
 .
 .
 mov ah,5bh ; function number
 xor cx,cx ; normal attribute
 mov dx,seg fname ; filename address
 mov ds,dx
 mov dx,offset fname
 int 21h ; transfer to MS-DOS
 jc error ; jump if create failed
 mov fhandle,ax ; save file handle
 .
 .
 .

--
Int 21H [3.0]
Function 5CH (92)
Lock or unlock file region
--

 Locks or unlocks the specified region of a file. This function is not
 available unless the file-sharing module (SHARE.EXE) is loaded.

Call with:

 AH = 5CH
 AL = 00H if locking region
 01H if unlocking region

 BX = handle
 CX = high part of region offset
 DX = low part of region offset
 SI = high part of region length
 DI = low part of region length

Returns:

 If function successful

 Carry flag = clear

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o This function is useful for file and record synchronization in a
 multitasking environment or network. Access to the file as a whole is
 controlled by the attribute and file-sharing parameters passed in open
 or create calls and by the file's attributes, which are stored in its
 directory entry.

 o The beginning location in the file to be locked or unlocked is supplied
 as a positive double precision integer, which is a byte offset into the
 file. The length of the region to be locked or unlocked is similarly
 supplied as a positive double precision integer.

 o For every call to lock a region of a file, there must be a subsequent
 unlock call with exactly the same file offset and length.

 o Locking beyond the current end of file is not an error.

 o Duplicate handles created with Int 21H Function 45H, or handles
 redirected to the file with Int 21H Function 46H, are allowed access to
 locked regions within the same process.

 o Programs that are loaded with the EXEC call (Int 21H Function 4BH)
 inherit the handles of their parent but not any active locks.

 o If a process terminates without releasing active locks on a file, the
 result is undefined. Therefore, programs using this function should
 install their own Int 23H and Int 24H handlers so that they cannot be
 terminated unexpectedly.

Example:

 Assume that a file was previously opened and that its handle was saved in
 the variable fhandle. Lock a 4096 byte region of the file, starting at
 32,768 bytes from the beginning of the file, so that it cannot be accessed
 by other programs.

 fhandle dw ? ; file handle
 .
 .
 .
 mov ah,5ch ; function number
 mov al,0 ; subfunction 0 = lock
 mov bx,fhandle ; file handle
 mov cx,0 ; upper part of offset
 mov dx,32768 ; lower part of offset
 mov si,0 ; upper part of length
 mov di,4096 ; lower part of length
 int 21h ; transfer to MS-DOS
 jc error ; jump if lock failed
 .
 .
 .

--
Int 21H
Function 5DH (93)
Reserved
--

--
Int 21H [3.1]
Function 5EH (94) Subfunction 00H
Get machine name
--

 Returns the address of an ASCIIZ (null-terminated) string identifying the
 local computer. This function call is only available when Microsoft
 Networks is running.

Call with:

 AH = 5EH
 AL = 00H
 DS:DX = segment:offset of buffer to receive string

Returns:

 If function successful

 Carry flag = clear

 CH = 00H if name not defined
 <> 00H if name defined

 CL = netBIOS name number (if CH <> 0)
 DX:DX = segment:offset of identifier (if CH <> 0)

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o The computer identifier is a 15-byte string, padded with spaces and
 terminated with a null (00H) byte.

 o The effect of this call is unpredictable if the file-sharing support
 module is not loaded.

Example:

 Get the machine name of the local computer into the buffer named mname.

 mname db 16 dup (?)
 .
 .
 .
 mov ax,5e00h ; function & subfunction
 mov dx,seg mname ; address of buffer
 mov ds,dx

 mov dx,offset mname
 int 21h ; transfer to MS-DOS
 jc error ; jump if function failed

 or ch,ch ; make sure name exists
 jz error ; jump if no name defined
 .
 .
 .

--
Int 21H [3.1]
Function 5EH (94) Subfunction 02H
Set printer setup string
--

 Specifies a string to be sent in front of all files directed to a
 particular network printer, allowing users at different network nodes to
 specify individualized operating modes on the same printer. This function
 call is only available when Microsoft Networks is running.

Call with:

 AH = 5EH
 AL = 02H
 BX = redirection list index
 CX = length of setup string
 DS:SI = segment:offset of setup string

Returns:

 If function successful

 Carry flag = clear

 If function unsuccessful

 Carry flag = set

 AX = error code

Notes:

 o The redirection list index passed in register BX is obtained with
 Function 5FH Subfunction 02H (Get Redirection List Entry).

 o See also Function 5EH Subfunction 03H, which may be used to obtain the
 existing setup string for a particular network printer.

Example:

 Initialize the setup string for the printer designated by redirection list
 index 2 so that the device is put into boldface mode before printing a
 file requested by this network node.

 setup db 01bh,045h ; selects boldface mode
 .
 .

 .
 mov ax,5e02h ; function & subfunction
 mov bx,2 ; redirection list index 2
 mov cx,2 ; length of setup string
 mov si,seg setup ; address of setup string
 mov ds,si
 mov si,offset setup
 int 21h ; transfer to MS-DOS
 jc error ; jump if function failed
 .
 .
 .

--
Int 21H [3.1]
Function 5EH (94) Subfunction 03H
Get printer setup string
--

 Obtains the printer setup string for a particular network printer. This
 function call is only available when Microsoft Networks is running.

Call with:

 AH = 5EH
 AL = 03H
 BX = redirection list index
 ES:DI = segment:offset of buffer to receive setup string

Returns:

 If function successful

 Carry flag = clear
 CX = length of printer setup string
 ES:DI = address of buffer holding setup string

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o The redirection list index passed in register BX is obtained with
 Function 5FH Subfunction 02H (Get Redirection List Entry).

 o See also Int 21H Function 5EH Subfunction 02H, which is used to specify
 a setup string for a network printer.

Example:

 Get the setup string for this network node associated with the printer
 designated by redirection list index 2.

 setup db 64 dup (?) ; receives setup string
 .
 .

 .
 mov ax,5e03h ; function & subfunction
 mov bx,2 ; redirection list index 2
 mov di,seg setup ; address of buffer
 mov es,di
 mov di,offset setup
 int 21h ; transfer to MS-DOS
 jc error ; jump if function failed
 .
 .
 .

--
Int 21H [3.1]
Function 5FH (95) Subfunction 02H
Get redirection list entry
--

 Allows inspection of the system redirection list, which associates local
 logical names with network files, directories, or printers. This function
 call is only available when Microsoft Networks is running and the
 file-sharing module (SHARE.EXE) has been loaded.

Call with:

 AH = 5FH
 AL = 02H
 BX = redirection list index
 DS:SI = segment:offset of 16-byte buffer to receive local device
 name
 ES:DI = segment:offset of 128-byte buffer to receive network name

Returns:

 If function successful

 Carry flag = clear
 BH = device status flag

 bit 0 = 0 if device valid
 = 1 if not valid

 BL = device type

 03H if printer
 04H if drive

 CX = stored parameter value
 DX = destroyed
 BP = destroyed
 DS:SI = segment:offset of ASCIIZ local device name
 ES:DI = segment:offset of ASCIIZ network name

 If function unsuccessful

 Carry flag = set
 AX = error code

Note:

 o The parameter returned in CX is a value that was previously passed to
 MS-DOS in register CX with Int 21H Function 5FH Subfunction 03H
 (Redirect Device). It represents data that is private to the
 applications which store and retrieve it and has no meaning to MS-DOS.

Example:

 Get the local and network names for the device specified by the first
 redirection list entry.

 local db 16 dup (?) ; receives local device name

 network db 128 dup (?) ; receives network name
 .
 .
 .
 mov ax,5f02h ; function & subfunction
 mov bx,0 ; redirection list entry 0
 mov si,seg local ; local name buffer addr
 mov ds,si
 mov si,offset local
 mov di,seg network ; network name buffer addr
 mov es,di
 mov di,offset network
 int 21h ; transfer to MS-DOS
 jc error ; jump if call failed

 or bh,bh ; check device status
 jnz error ; jump if device not valid
 .
 .
 .

--
Int 21H [3.1]
Function 5FH (95) Subfunction 03H
Redirect device
--

 Establishes redirection across the network by associating a local device
 name with a network name. This function call is only available when
 Microsoft Networks is running and the file-sharing module (SHARE.EXE) has
 been loaded.

Call with:

 AH = 5FH
 AL = 03H
 BL = device type

 03H if printer
 04H if drive

 CX = parameter to save for caller
 DS:SI = segment:offset of ASCIIZ local device name
 ES:DI = segment:offset of ASCIIZ network name, followed by ASCIIZ

 password

Returns:

 If function successful

 Carry flag = clear

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o The local name can be a drive designator (a letter followed by a colon,
 such as "D:"), a printer name, or a null string. Printer names must be
 one of the following: PRN, LPT1, LPT2, or LPT3. If a null string
 followed by a password is used, MS-DOS attempts to grant access to the
 network directory with the specified password.

 o The parameter passed in CX can be retrieved by later calls to Int 21H
 Function 5FH Subfunction 02H. It represents data that is private to the
 applications which store and retrieve it and has no meaning to MS-DOS.

Example:

 Redirect the local drive E to the directory \FORTH on the server named
 LMI, using the password FRED.

 locname db 'E:',0 ; local drive

 netname db '\\LMI\FORTH',0
 db 'FRED',0
 .
 .
 .
 mov ax,5f03h ; function & subfunction
 mov bl,4 ; code 4 = disk drive
 mov si,seg locname ; address of local name
 mov ds,si
 mov si,offset locname
 mov di,seg netname ; address of network name
 mov es,di
 mov di,offset netname
 int 21h ; transfer to MS-DOS
 jc error ; jump if redirect failed
 .
 .
 .

--
Int 21H [3.1]
Function 5FH (95) Subfunction 04H
Cancel device redirection
--

 Cancels a previous redirection request by removing the association of a

 local device name with a network name. This function call is only
 available when Microsoft Networks is running and the file-sharing module
 (SHARE.EXE) has been loaded.

Call with:

 AH = 5FH
 AL = 04H
 DS:SI = segment:offset of ASCIIZ local device name

Returns:

 If function successful

 Carry flag = clear

 If function unsuccessful

 Carry flag = set
 AX = error code

Note:

 o The supplied name can be a drive designator (a letter followed by a
 colon, such as "D:"), a printer name, or a string starting with two
 backslashes (\\). Printer names must be one of the following: PRN, LPT1,
 LPT2, or LPT3. If the string with two backslashes is used, the
 connection between the local machine and the network directory is
 terminated.

Example:

 Cancel the redirection of local drive E to the network server.

 locname db 'E:',0
 .
 .
 . mov ax,5f04h ; function & subfunction
 mov si,seg locname ; address of local name
 mov ds,si
 mov si,offset locname
 int 21h ; transfer to MS-DOS
 jc error ; jump if cancel failed
 .
 .
 .

--
Int 21H
Function 60H (96)
Reserved
--

--
Int 21H
Function 61H (97)
Reserved

--

--
Int 21H [3.0]
Function 62H (98)
Get PSP address
--

 Obtains the segment (paragraph) address of the program segment prefix
 (PSP) for the currently executing program.

Call with:

 AH = 62H

Returns:

 BX = segment address of program segment prefix

Notes:

 o Before a program receives control from MS-DOS, its program segment
 prefix is set up to contain certain vital information, such as:

 the segment address of the program's environment block�

 the command line originally entered by the user�

 the original contents of the terminate, Ctrl-C, and critical-error�
 handler vectors

 the top address of available RAM�

 o The segment address of the PSP is normally passed to the program in
 registers DS and ES when it initially receives control from MS-DOS. This
 function allows a program to conveniently recover the PSP address at any
 point during its execution, without having to save it at program entry.

Example:

 Get the segment base of the program segment prefix, then copy the command
 tail from the PSP into the local buffer named buff.

 ctail equ 080H ; PSP offset, command tail

 buff db 80 dup (?) ; copy of command tail
 .
 .
 .
 ; get PSP address
 mov ah,62H ; function number
 int 21h ; transfer to MS-DOS

 ; copy command tail
 mov ds,bx ; PSP segment to DS
 mov si,offset ctail ; offset of command tail
 mov di,seg buff ; local buffer address
 mov es,di

 mov di,offset buff
 mov cl,[si] ; length of command tail
 inc cl ; include count byte
 xor ch,ch
 cld
 rep movsb ; copy to local buffer
 .
 .
 .

--
Int 21H [2.25 only]
Function 63H (99)
Get DBCS lead byte table
--

 Obtains the address of the system table of legal lead byte ranges for
 double-byte character sets (DBCS), or sets or obtains the interim console
 flag. Int 21H Function 63H is available only in MS-DOS version 2.25; it
 is not supported in MS-DOS versions 3.0 and later.

Call with:

 AH = 63H
 AL = subfunction

 00H if getting address of DBCS lead byte table
 01H if setting or clearing interim console flag
 02H if obtaining value of interim console flag

 If AL = 01H

 DL = 00H if clearing interim console flag
 01H if setting interim console flag

Returns:

 If function successful

 Carry flag = clear

 and, if called with AL = 00H

 DS:SI = segment:offset of DBCS lead byte table

 or, if called with AL = 02H

 DL = value of interim console flag

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o The DBCS lead byte table consists of a variable number of two byte
 entries, terminated by two null (00H) bytes. Each pair defines the

 beginning and ending value for a range of lead bytes. The value of a
 legal lead byte is always in the range 80-0FFH.

 o Entries in the lead byte table must be in ascending order. If no legal
 lead bytes are defined in a given system, the table consists only of the
 two null bytes.

 o If the interim console flag is set, Int 21H Functions 07H (Unfiltered
 Character Input), 08H (Character Input without Echo), and 0BH
 (Keyboard Status) will support interim characters.

 o Unlike most other MS-DOS services, this function call does not
 necessarily preserve any registers except SS:SP.

 o [4.0] The address of the DBCS lead byte table can also be obtained with
 Int 21H Function 65H.

--
Int 21H
Function 64H (100)
Reserved
--

--
Int 21H [3.3]
Function 65H (101)
Get extended country information
--

 Obtains information about the specified country and/or code page.

Call with:

 AH = 65H
 AL = subfunction
 01H = Get General Internationalization Information
 02H = Get Pointer to Uppercase Table
 04H = Get Pointer to Filename Uppercase Table
 06H = Get Pointer to Collating Table
 07H = Get Pointer to Double-Byte Character Set (DBCS)
 Vector (MS-DOS versions 4.0 and later)

 BX = code page of interest (-1 = active CON device)
 CX = length of buffer to receive information (must be >= 5)
 DX = country ID (-1 = default)
 ES:DI = address of buffer to receive information

Returns:

 If function successful

 Carry flag = clear

 and requested data placed in calling program's buffer

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o The information returned by this function is a superset of the
 information returned by Int 21H Function 38H.

 o This function may fail if either the country code or the code page
 number is invalid, or if the code page does not match the country code.

 o The function fails if the specified buffer length is less than five
 bytes. If the buffer to receive the information is at least five bytes
 long but is too short for the requested information, the data is
 truncated and no error is returned.

 o The format of the data returned by Subfunction 01H is:

 Byte(s) Contents
 00H information ID code (1)
 01H-02H length of following buffer
 03H-04H country ID
 05H-06H code page number
 07H-08H date format

 0 = USA m d y
 1 = Europe d m y
 2 = Japan y m d

 09H-0DH ASCIIZ currency symbol
 0EH-0FH ASCIIZ thousands separator
 10H-11H ASCIIZ decimal separator
 12H-13H ASCIIZ date separator
 14H-15H ASCIIZ time separator
 16H currency format flags

 bit 0 =>0 if currency symbol precedes value
 =>1 if currency symbol follows value
 bit 1 =>0 if no space between value and
 currency symbol
 =>1 if one space between value and
 currency symbol
 bit 2 =>0 if currency symbol and decimal are
 separate
 =>1 if currency symbol replaces decimal
 separator

 17H number of digits after decimal in currency
 18H time format

 bit 0 = 0 if 12-hour clock
 = 1 if 24-hour clock

 19H-1CH case-map routine call address
 1DH-1EH ASCIIZ data list separator
 1FH-28H reserved

 o The format of the data returned by Subfunctions 02H, 04H, 06H, and 07H
 is:

 Byte(s) Contents
 00H information ID code (2, 4, or 6)
 01H-05H double-word pointer to table

 o The uppercase and filename uppercase tables are a maximum of 130 bytes
 long. The first two bytes contain the size of the table; the following
 bytes contain the uppercase equivalents, if any, for character codes
 80H-FFH. The main use of these tables is to map accented or otherwise
 modified vowels to their plain vowel equivalents. Text translated with
 the help of this table can be sent to devices that do not support the
 IBM graphics character set, or used to create filenames that do not
 require a special keyboard configuration for entry.

 o The collating table is a maximum of 258 bytes long. The first two bytes
 contain the table length, and the subsequent bytes contain the values to
 be used for the corresponding character codes (0-FFH) during a sort
 operation. This table maps uppercase and lowercase ASCII characters to
 the same collating codes so that sorts will be case-insensitive, and it
 maps accented vowels to their plain vowel equivalents.

 o [4.0+] Subfunction 07H returns a pointer to a variable length table of
 that defines ranges for double-byte character set (DBCS) lead bytes. The
 table is terminated by a pair of zero bytes, unless it must be truncated
 to fit in the buffer, and has the following format:

 dw length
 db start1,end1
 db start2,end2
 .
 .
 .
 db 0,0

 For example:

 dw 4
 db 81h,9fh
 db 0e0h,0fch
 db 0,0

 o In some cases a truncated translation table may be presented to the
 program by MS-DOS. Applications should always check the length at the
 beginning of the table, to make sure it contains a translation code for
 the particular character of interest.

Examples:

 Obtain the extended country information associated with the default
 country and code page 437.

 buffer db 41 dup (0) ; receives country info
 .
 .
 .
 mov ax,6501h ; function & subfunction
 mov bx,437 ; code page
 mov cx,41 ; buffer length
 mov dx,-1 ; default country

 mov di,seg buffer ; buffer address
 mov es,di
 mov di,offset buffer
 int 21h ; transfer to MS-DOS
 jc error ; jump if function failed
 .
 .
 .

 In this case, MS-DOS filled the following extended country information
 into the buffer:

 buffer db 1 ; info ID code
 dw 38 ; length of following buffer
 dw 1 ; country ID (USA)
 dw 437 ; code page number
 dw 0 ; date format
 db '$',0,0,0,0 ; currency symbol
 db ',',0 ; thousands separator
 db '.',0 ; decimal separator
 db '-',0 ; date separator
 db ':',0 ; time separator
 db 0 ; currency format flags
 db 2 ; digits in currency
 db 0 ; time format
 dd 026ah:176ch ; case map entry point
 db ',',0 ; data list separator
 db 10 dup (0) ; reserved

 Obtain the pointer to the uppercase table associated with the default
 country and code page 437.

 buffer db 5 dup (0) ; receives pointer info
 .
 .
 .
 mov ax,6502h ; function number
 mov bx,437 ; code page
 mov cx,5 ; length of buffer
 mov dx,-1 ; default country
 mov di,seg buffer ; buffer address
 mov es,di
 mov di,offset buffer
 int 21h ; transfer to MS-DOS
 jc error ; jump if function failed
 .
 .
 .

 In this case, MS-DOS filled the following values into the buffer:

 buffer db 2 ; info ID code
 dw 0204h ; offset of uppercase table
 dw 1140h ; segment of uppercase table

 and the table at 1140:0204H contains the following data:

 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF
 1140:0200 80 00 80 9A 45 41 8E 41 8F 80 45 45 EA.A..EE

 1140:0210 45 49 49 49 8E 8F 90 92 92 4F 99 4F 55 55 59 99 EIII.....O.OUUY.
 1140:0220 9A 9B 9C 9D 9E 9F 41 49 4F 55 A5 A5 A6 A7 A8 A9 AIOU......
 1140:0230 AA AB AC AD AE AF B0 B1 B2 B3 B4 B5 B6 B7 B8 B9
 1140:0240 BA BB BC BD BE BF C0 C1 C2 C3 C4 C5 C6 C7 C8 C9
 1140:0250 CA CB CC CD CE CF D0 D1 D2 D3 D4 D5 D6 D7 D8 D9
 1140:0260 DA DB DC DD DE DF E0 E1 E2 E3 E4 E5 E6 E7 E8 E9
 1140:0270 EA EB EC ED EE EF F0 F1 F2 F3 F4 F5 F6 F7 F8 F9
 1140:0280 FA FB FC FD FE FF

--
Int 21H [3.3]
Function 66H (102)
Get or set code page
--

 Obtains or selects the current code page.

Call with:

 AH = 66H
 AL = subfunction
 01H = Get Code Page
 02H = Select Code Page
 BX = code page to select, if AL = 02H

Returns:

 If function successful

 Carry flag = clear

 and, if called with AL = 01H

 BX = active code page
 DX = default code page

 If function unsuccessful

 Carry flag = set
 AX = error code

Note:

 o When the Select Code Page subfunction is used, MS-DOS gets the new code
 page from the COUNTRY.SYS file. The device must be previously prepared
 for code page switching with the appropriate DEVICE= directive in the
 CONFIG.SYS file and NLSFUNC and MODE CP PREPARE commands (placed in the
 AUTOEXEC.BAT file, usually).

Example:

 Force the active code page to be the same as the system's default code
 page, that is, restore the code page that was active when the system was
 first booted.

 .
 .
 .

 ; get current and
 ; default code page
 mov ax,6601h ; function number
 int 21h ; transfer to MS-DOS
 jc error ; jump if function failed

 ; set code page
 mov bx,dx ; active = default
 mov ax,6602h ; function number
 int 21h ; transfer to MS-DOS
 jc error ; jump if function failed
 .
 .
 .

--
Int 21H [3.3]
Function 67H (103)
Set handle count
--

 Sets the maximum number of files and devices that may be opened
 simultaneously using handles by the current process.

Call with:

 AH = 67H
 BX = number of desired handles

Returns:

 If function successful

 Carry flag = clear

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o This function call controls the size of the table that relates handle
 numbers for the current process to MS-DOS's internal, global table for
 all of the open files and devices in the system. The default table is
 located in the reserved area of the process's PSP and is large enough
 for 20 handles.

 o The function fails if the requested number of handles is greater than 20
 and there is not sufficient free memory in the system to allocate a new
 block to hold the enlarged table.

 o If the number of handles requested is larger than the available entries
 in the system's global table for file and device handles (controlled by
 the FILES entry in CONFIG.SYS), no error is returned. However, a
 subsequent attempt to open a file or device, or create a new file, will
 fail if all the entries in the system's global file table are in use,
 even if the requesting process has not used up all its own handles.

Example:

 Set the maximum handle count for the current process to thirty, so that
 the process can have as many as 30 files or devices opened simultaneously.
 (Five of the handles are already assigned to the standard devices when the
 process starts up.) Note that a FILES=30 (or greater value) entry in the
 CONFIG.SYS file would also be required for the process to successfully
 open 30 files or devices.

 .
 .
 .
 mov ah,67h ; function number
 mov bx,30 ; maximum number of handles
 int 21h ; transfer to MS-DOS
 jc error ; jump if function failed
 .
 .
 .

--
Int 21H [3.3]
Function 68H (104)
Commit file
--

 Forces all data in MS-DOS's internal buffers associated with a specified
 handle to be physically written to the device. If the handle refers to a
 file, and the file has been modified, the time and date stamp and file
 size in the file's directory entry are updated.

Call with:

 AH = 68H
 BX = handle

Returns:

 If function successful

 Carry flag = clear

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o The effect of this function is equivalent to closing and reopening a
 file, or to duplicating a handle for the file with Int 21H Function
 45H and then closing the duplicate. However, this function has the
 advantage that it will not fail due to lack of handles, and the
 application does not risk losing control of the file in multitasking or
 network environments.

 o If this function is requested for a handle associated with a character

 device, a success flag is returned, but there is no other effect.

Example:

 Assume that the file MYFILE.DAT has been previously opened and that the
 handle for that file is stored in the variable fhandle. Call the Commit
 File function to ensure that any data in MS-DOS's internal buffers
 associated with the handle is written out to disk and that the directory
 and file allocation table are up to date.

 fname db 'MYFILE.DAT',0 ; ASCIIZ filename
 fhandle dw ? ; file handle
 .
 .
 .
 mov ah,68h ; function number
 mov bx,fhandle ; file handle
 int 21h ; transfer to MS-DOS
 jc error ; jump if commit failed
 .
 .
 .

--
Int 21H
Function 69H (105)
Reserved
--

--
Int 21H
Function 6AH (106)
Reserved
--

--
Int 21H
Function 6BH (107)
Reserved
--

--
Int 21H [4.0]
Function 6CH (108)
Extended open file
--

 Given an ASCIIZ pathname, opens, creates or replaces a file in the
 designated or default directory on the designated or default disk drive.
 Returns a handle that can be used by the program for subsequent access to
 the file.

Call with:

 AH = 6CH

 AL = 00H
 BX = open mode

 Bit(s) Significance
 0-2 access type
 000 = read-only
 001 = write-only
 010 = read/write
 3 reserved (0)
 4-6 sharing mode
 000 = compatibility
 001 = deny read/write (deny all)
 010 = deny write
 011 = deny read
 100 = deny none
 7 inheritance
 0 = child process inherits handle
 1 = child does not inherit handle
 8-12 reserved (0)
 13 critical error handling
 0 = execute Int 24H
 1 = return error to process
 14 write-through
 0 = writes may be buffered and deferred
 1 = physical write at request time
 15 reserved (0)

 CX = file attribute (bits may be combined; ignored if open)

 Bit(s) Significance (if set)
 0 read-only
 1 hidden
 2 system
 3 volume label
 4 reserved (0)
 5 archive
 6-15 reserved (0)

 DX = open flag

 Bits Significance
 0-3 action if file exists
 0000 = fail
 0001 = open file
 0010 = replace file
 4-7 action if file doesn't exist
 0000 = fail
 0001 = create file
 8-15 reserved (0)

 DS:SI = segment:offset of ASCIIZ pathname

Returns:

 If function successful

 Carry flag = clear
 AX = handle
 CX = action taken

 1 = file existed and was opened
 2 = file did not exist and was created
 3 = file existed and was replaced

 If function failed

 Carry flag = set
 AX = error code

Notes:

 o The function fails if:

 any element of the pathname does not exist.�

 the file is being created in the root directory and the root directory�
 is full.

 the file is being created and a file with the same name and the�
 read-only attribute already exists in the specified directory.

 the program is running on a network and the user running the program�
 has insufficient access rights.

 o A file is usually given a normal (0) attribute when it is created. The
 file's attribute can subsequently be modified with Int 21H Function
 43H.

 o This function combines the capabilities of Int 21H Functions 3CH, 3DH,
 and 5BH. It was added to MS-DOS for compatibility with the DosOpen
 function of OS/2.

Example:

 Create the file MYFILE.DAT, if it does not already exist, in directory
 \MYDIR on drive C, and save the handle for subsequent access to the file.

 fname db 'C:\MYDIR\MYFILE.DAT',0

 fhandle dw ?
 .
 .
 .
 mov ax,6c00h ; function number
 mov bx,4042h ; read/write, deny none,
 ; write-through mode
 xor cx,cx ; normal attribute
 mov dx,0010h ; create if doesn't exist,
 ; fail if exists
 mov si,seg fname ; address of pathname
 mov ds,si
 mov si,offset fname
 int 21h ; transfer to MS-DOS
 jc error ; jump if open failed
 mov fhandle,ax ; save file handle
 .
 .
 .

--
Int 22H [1.0]
Terminate handler address
--

 The machine interrupt vector for Int 22H (memory locations 0000:0088H
 through 0000:008BH) contains the address of the routine that receives
 control when the currently executing program terminates via Int 20H, Int
 27H, or Int 21H Functions 00H, 31H, or 4CH. The address in this vector
 is also copied into offsets 0AH through 0DH of the program segment prefix
 (PSP) when a program is loaded but before it begins executing, and is
 restored from the PSP (in case it was modified by the application) as part
 of MS-DOS's termination handling.

 This interrupt should never be issued directly.

--
Int 23H [1.0]
Ctrl-C handler address
--

 The machine interrupt vector for Int 23H (memory locations 0000:008CH
 though 0000:008FH) contains the address of the routine which receives
 control when a Ctrl-C is detected during any character I/O function and,
 if the Break flag is ON, during most other MS-DOS function calls. The
 address in this vector is also copied into locations 0EH through 11H of
 the program segment prefix (PSP) when a program is loaded but before it
 begins executing, and is restored from the PSP (in case it was modified by
 the application) as part of MS-DOS's termination handling.

 This interrupt should never be issued directly.

Notes:

 o The initialization code for an application can use Int 21H Function
 25H to reset the Interrupt 23H vector to point to its own routine for
 Ctrl-C handling. In this way, the program can avoid being terminated
 unexpectedly as the result of the user's entry of a Ctrl-C or
 Ctrl-Break.

 o When a Ctrl-C is detected and the program's Int 23H handler receives
 control, all registers are set to their values at the point of the
 original function call. The handler can then do any of the following:

 Set a local flag for later inspection by the application, or take any�
 other appropriate action, and perform an IRET. All registers must be
 preserved. The MS-DOS function in progress will be restarted from
 scratch and will proceed to completion, control finally returning to
 the application in the normal manner.

 Take appropriate action and then perform a RET FAR to give control�
 back to MS-DOS. The state of the carry flag is used by MS-DOS to
 determine what action to take. If the carry flag is set, the
 application will be terminated; if the carry flag is clear, the
 application will continue in the normal manner.

 Retain control by transferring to an error-handling routine within the�

 application and then resume execution or take other appropriate
 action, never performing a RET FAR or IRET to end the
 interrupt-handling sequence. This option will cause no harm to the
 system.

 o Any MS-DOS function call may be used within the body of an Int 23H
 handler.

Example:

 See Chapter 5.

--
Int 24H [1.0]
Critical-error handler address
--

 The machine interrupt vector for Int 24H (memory locations 0000:0090H
 through 0000:0093H) contains the address of the routine that receives
 control when a critical error (usually a hardware error) is detected. This
 address is also copied into locations 12H through 15H of the program
 segment prefix (PSP) when a program is loaded but before it begins
 executing, and is restored from the PSP (in case it was modified by the
 application) as part of MS-DOS's termination handling.

 This interrupt should never be issued directly.

Notes:

 o On entry to the critical-error interrupt handler, bit 7 of register AH
 is clear (0) if the error was a disk I/O error; otherwise, it is set
 (1). BP:SI contains the address of a device-driver header from which
 additional information can be obtained. Interrupts are disabled. The
 registers will be set up for a retry operation, and an error code will
 be in the lower half of the DI register, with the upper half undefined.

 The lower byte of DI contains:

 00H write-protect error
 01H unknown unit
 02H drive not ready
 03H unknown command
 04H data error (CRC)
 05H bad request structure length
 06H seek error
 07H unknown media type
 08H sector not found
 09H printer out of paper
 0AH write fault
 0BH read fault
 0CH general failure
 0DH reserved
 0EH reserved
 0FH invalid disk change (MS-DOS version 3 only)

 Note that these are the same error codes returned by the device driver
 in the request header. Also, upon entry, the stack is set up as shown in
 Figure 8-8, page 149.

 o When a disk I/O error occurs, MS-DOS automatically retries the operation
 before issuing a critical-error Int 24H. The number of retries varies
 in different versions of MS-DOS, but is typically in the range three to
 five.

 o Int 24H handlers must preserve the SS, SP, DS, ES, BX, CX, and DX
 registers. Only Int 21H Functions 01H-0CH and 59H can be used by an
 Int 24H handler; other function calls will destroy the MS-DOS stack and
 its ability to retry or ignore an error.

 o When the Int 24H handler issues an IRET, it should return an action code
 in AL that will be interpreted by DOS as follows:

 0 ignore the error
 1 retry the operation
 2 terminate the program
 3 [3.0+] fail the function call in progress

 o If the Int 24H handler returns control directly to the application
 program rather than to MS-DOS, it must restore the program's registers,
 removing all but the last three words from the stack, and issue an IRET.
 Control returns to the instruction immediately following the function
 call that caused the error. This option leaves MS-DOS in an unstable
 state until a call to an Int 21H function higher than Function 0CH is
 made.

Example:

 See Chapter 8.

--
Int 25H [1.0]
Absolute disk read
--

 Provides a direct linkage to the MS-DOS BIOS module to read data from a
 logical disk sector into memory.

Call with:

 For access to partitions <= 32 MB

 AL = drive number (0 = A, 1 = B, etc)
 CX = number of sectors to read
 DX = starting sector number
 DS:BX = segment:offset of buffer

 For access to partitions > 32 MB (MS-DOS 4.0 and later)

 AL = drive number (0 = A, 1 = B, etc)
 CX = -1
 DS:BX = segment:offset of parameter block (see Notes)

Returns:

 If function successful

 Carry flag = clear

 If function unsuccessful

 Carry flag = set
 AX = error code (see Notes)

Notes:

 o All registers except the segment registers may be destroyed.

 o When this function returns, the CPU flags originally pushed on the stack
 by the INT 25H instruction are still on the stack. The stack must be
 cleared by a POPF or ADD SP,2 to prevent uncontrolled stack growth and
 to make accessible any other values that were pushed on the stack before
 the call to INT 25H.

 o Logical sector numbers are obtained by numbering each disk sector
 sequentially from cylinder 0, head 0, sector 1, and continuing until the
 last sector on the disk is counted. The head number is incremented
 before the track number. Logically adjacent sectors may not be
 physically adjacent, due to interleaving that occurs at the
 device-adapter level for some disk types.

 o The error code is interpreted as follows: The lower byte (AL) is the
 same error code that is returned in the lower byte of DI when an Int 24H
 is issued. The upper byte (AH) contains:

 01H if bad command
 02H if bad address mark
 04H if requested sector not found
 08H if direct memory access (DMA) failure
 10H if data error (bad CRC)
 20H if controller failed
 40H if seek operation failed
 80H if attachment failed to respond

 o [4.0+] When accessing partitions larger than 32 MB under MS-DOS version
 4, this function uses a parameter block with the following format:

 Bytes Description
 00H-03H 32-bit sector number
 04H-05H number of sectors to read
 06H-07H offset of buffer
 08H-09H segment of buffer

Example:

 Read logical sector 1 of drive A into the memory area named buff. (On most
 MS-DOS floppy disks, this sector contains the beginning of the file
 allocation table.)

 buff db 512 dup (?) ; receives data from disk
 .
 .
 .
 mov al,0 ; drive A
 mov cx,1 ; number of sectors
 mov dx,1 ; beginning sector number

 mov bx,seg buff ; buffer address
 mov ds,bx
 mov bx,offset buff
 int 25h ; request disk read
 jc error ; jump if read failed
 add sp,2 ; clear stack
 .
 .
 .

--
Int 26H [1.0]
Absolute disk write
--

 Provides a direct linkage to the MS-DOS BIOS module to write data from
 memory to a logical disk sector.

Call with:

 For access to partitions <= 32 MB

 AL = drive number (0 = A, 1 = B, etc)
 CX = number of sectors to write
 DX = starting sector number
 DS:BX = segment:offset of buffer

 For access to partitions > 32 MB (MS-DOS 4.0 and later)

 AL = drive number (0 = A, 1 = B, etc)
 CX = -1
 DS:BX = segment:offset of parameter block (see Notes)

Returns:

 If function successful

 Carry flag = clear

 If function unsuccessful

 Carry flag = set
 AX = error code (see Notes)

Notes:

 o All registers except the segment registers may be destroyed.

 o When this function returns, the CPU flags originally pushed onto the
 stack by the INT 26H instruction are still on the stack. The stack must
 be cleared by a POPF or ADD SP,2 to prevent uncontrolled stack growth
 and to make accessible any other values that were pushed on the stack
 before the call to INT 26H.

 o Logical sector numbers are obtained by numbering each disk sector
 sequentially from cylinder 0, head 0, sector 1, and continuing until the
 last sector on the disk is counted. The head number is incremented
 before the track number. Logically adjacent sectors may not be

 physically adjacent, due to interleaving that occurs at the
 device-adapter level for some disk types.

 o The error code is interpreted as follows: The lower byte (AL) is the
 same error code that is returned in the lower byte of DI when an Int
 24H is issued. The upper byte (AH) contains:

 01H if bad command
 02H if bad address mark
 03H if write-protect fault
 04H if requested sector not found
 08H if direct memory access (DMA) failure
 10H if data error (bad CRC)
 20H if controller failed
 40H if seek operation failed
 80H if attachment failed to respond

 o [4.0+] When accessing partitions larger than 32 MB under MS-DOS version
 4, this function uses a parameter block with the following format:

 Bytes Description
 00H-03H 32-bit sector number
 04H-05H number of sectors to read
 06H-07H offset of buffer
 08H-09H segment of buffer

Example:

 Write the contents of the memory area named buff into logical sector 3 of
 drive C.

 Warning: Verbatim use of the following code could damage the file system
 on your fixed disk. There is, unfortunately, no way to provide a really
 safe example of this function.

 buff db 512 dup (?) ; contains data for write
 .
 .
 .
 mov al,2 ; drive C
 mov cx,1 ; number of sectors
 mov dx,3 ; beginning sector number
 mov bx,seg buff ; buffer address
 mov ds,bx
 mov bx,offset buff
 int 26h ; request disk write
 jc error ; jump if write failed
 add sp,2 ; clear stack
 .
 .
 .

--
Int 27H [1.0]
Terminate and stay resident
--

 Terminates execution of the currently executing program, but reserves part

 or all of its memory so that it will not be overlaid by the next transient
 program to be loaded. MS-DOS then takes the following actions:

 o File buffers are flushed and any open handles for files or devices owned
 by the process are closed.

 o The termination handler vector (Int 22H) is restored from PSP:000AH.

 o The Ctrl-C handler vector (Int 23H) is restored from PSP:000EH.

 o [2.0+] The critical-error handler vector (Int 24H) is restored from
 PSP:0012H.

 o Control is transferred to the termination handler.

 If the program is returning to COMMAND.COM, control transfers to the
 resident portion and the transient portion is reloaded if necessary. If a
 batch file is in progress, the next line of the file is fetched and
 interpreted; otherwise a prompt is issued for the next user command.

Call with:

 DX = offset of the last byte plus one (relative to the program
 segment prefix)
 of program to be protected
 CS = segment of program segment prefix

Returns:

 Nothing

Notes:

 o This function call is typically used to allow user-written utilities,
 drivers, or interrupt handlers to be loaded as ordinary .COM or .EXE
 programs, then remain resident. Subsequent entrance to the code is via a
 hardware or software interrupt.

 o This function attempts to set the initial memory allocation block to the
 length in bytes specified in register DX. If other memory blocks have
 been requested by the application via Int 21H Function 48H, they will
 not be released by this function.

 o Other methods of performing a final exit are:

 Int 20H�

 Int 21H Function 00H�

 Int 21H Function 31H�

 Int 21H Function 4CH�

 o This function should not be called by .EXE programs that are loaded at
 the high end of the transient program area (i.e., linked with the /HIGH
 switch), because doing so reserves the memory normally used by the
 transient part of COMMAND.COM. If COMMAND.COM cannot be reloaded, the
 system will fail.

 o This function does not work correctly when DX contains values in the
 range 0FFF1H-0FFFFH. In this case, MS-DOS discards the high bit of the
 value in DX, resulting in the reservation of 32 KB less memory than was
 requested by the program.

 o [2.0+] Int 21H Function 31H should be used in preference to this
 function, because it supports return codes, allows larger amounts of
 memory to be reserved, and does not require CS to contain the segment of
 the program segment prefix.

 o [3.0+] If the program is running on a network, it should remove all
 locks it has placed on file regions before terminating.

Example:

 Terminate and stay resident, reserving enough memory to contain the entire
 program.

 .
 .
 .
 mov dx,offset pend ; DX = bytes to reserve
 int 27h ; terminate, stay resident
 .
 .
 .
 pend equ $; offset, end of program

 end

--
Int 28H
Reserved
--

--
Int 29H
Reserved
--

--
Int 2AH
Reserved
--

--
Int 2BH
Reserved
--

--
Int 2CH
Reserved
--

--
Int 2DH
Reserved
--

--
Int 2EH
Reserved
--

--
Int 2FH [3.0]
Multiplex interrupt
--

 Provides a general-purpose avenue of communication with another process or
 with MS-DOS extensions, such as the print spooler, ASSIGN, SHARE, and
 APPEND. The multiplex number in register AH specifies the process or
 extension being communicated with. The range 00H-BFH is reserved for
 MS-DOS; applications may use the range C0H-FFH.

--
Int 2FH [3.0]
Function 01H
Print spooler
--

 Submits a file to the print spooler, removes a file from the print
 spooler's queue of pending files, or obtains the status of the printer.
 The print spooler, which is contained in the file PRINT.COM, was first
 added to MS-DOS in version 2.0, but the application program interface to
 the spooler was not documented until MS-DOS version 3.

Call with:

 AH = 01H
 AL = subfunction
 00H = Get Installed State
 01H = Submit File to be Printed
 02H = Remove File from Print Queue
 03H = Cancel All Files in Queue
 04H = Hold Print Jobs for Status Read
 05H = Release Hold
 DS:DX = segment:offset of packet (Subfunction 01H)
 segment:offset of ASCIIZ pathname (Subfunction 02H)

Returns:

 If function successful

 Carry flag = clear

 and, if called with AL = 00H

 AL = print spooler state

 00H if not installed, ok to install
 01H if not installed, not ok to install
 FFH if installed

 or, if called with AL = 04H

 DX = error count
 DS:SI = segment:offset of print queue file list

 If function unsuccessful

 Carry flag = set
 AX = error code

Notes:

 o The packet passed to Subfunction 01H consists of five bytes. The first
 byte contains the level, which should be 00H for current versions of
 MS-DOS. The following four bytes contain the segment:offset of an ASCIIZ
 pathname, which may not include wildcard characters. If the specified
 file exists, it is added to the print queue.

 o The * and ? wildcard characters may be included in a pathname passed to
 Subfunction 02H, making it possible to delete multiple files from the
 print queue with one call.

 o The address returned by Subfunction 04H points to a list of 64-byte
 entries, each containing an ASCIIZ pathname. The first pathname in the
 list is the file currently being printed. The last entry in the list is
 a null string (a single 00H byte).

--
Int 2FH [3.2]
Function 02H
ASSIGN
--

 Returns a code indicating whether the resident portion of the ASSIGN
 utility has been loaded.

Call with:

 AH = 02H
 AL = subfunction
 00H = Get Installed State

Returns:

 If function successful

 Carry flag = clear
 AL = ASSIGN installed status

 00H if not installed, ok to install
 01H if not installed, not ok to install
 FFH if installed

 If function unsuccessful

 Carry flag = set
 AX = error code

--
Int 2FH [3.2]
Function 10H (16)
SHARE
--

 Returns a code indicating whether the SHARE.EXE file-sharing module has
 been loaded.

Call with:

 AH = 10H
 AL = subfunction
 00H = Get Installed State

Returns:

 If function successful

 Carry flag = clear
 AL = SHARE installed status

 00H if not installed, ok to install
 01H if not installed, not ok to install
 FFH if installed

 If function unsuccessful

 Carry flag = set
 AX = error code

--
Int 2FH [3.3]
Function B7H (183)
APPEND
--

 Allows an application to test whether APPEND has been installed. If APPEND
 is resident, returns the APPEND version, state, and the path used to
 search for data files.

Call with:

 AH = B7H
 AL = subfunction
 00H = Get Installed State
 02H = Get Append Version (4.0)
 04H = Get Append Path Pointer (4.0)
 06H = Get Append Function State (4.0)
 07H = Set Append Function State (4.0)
 11H = Set Return Found Name State (4.0, see Note)

 BX = APPEND state (if AL = 07H)

 Bit(s) Significance (if set)
 0 APPEND enabled
 1-12 Reserved (0)
 13 /PATH switch active
 14 /E switch active
 15 /X switch active

Returns:

 If function successful

 Carry flag = clear

 and, if called with AL = 00H

 AL = APPEND installed status

 00H if not installed, ok to install
 01H if not installed, not ok to install
 FFH if installed

 or, if called with AL = 02H (MS-DOS 4.0)

 AX = FFFFH if MS-DOS 4.0 APPEND

 or, if called with AL = 04H (MS-DOS 4.0)

 ES:DI = segment:offset of active APPEND path

 or, if called with AL = 06H (MS-DOS 4.0)

 BX = APPEND state (see above)

 If function unsuccessful

 Carry flag = set
 AX = error code

Note:

 o If the Return Found Name State is set with Subfunction 11H, the fully
 qualified filename is returned to the next application to call Int 21H
 Function 3DH, 43H, or 6CH. The name is placed at the same address as the
 ASCIIZ parameter string for the Int 21H function, so the application
 must be sure to provide a buffer of adequate size. The Return Found Name
 State is reset after APPEND processes one Int 21H function call.

--
SECTION 3 IBM ROM BIOS AND MOUSE FUNCTIONS REFERENCE
--

Notes to the Reader

 In the headers for ROM BIOS video driver (Int 10H) function calls, the

 following icons are used:

 [MDA] Monochrome Display Adapter
 [CGA] Color/Graphics Adapter
 [PCjr] PCjr system board video controller
 [EGA] Enhanced Graphics Adapter
 [MCGA] Multi-Color Graphics Array (PS/2 Models 25 & 30)
 [VGA] Video Graphics Array (PS/2 Models 50 and above)

 In the remainder of this section, the following icons are used:

 [PC] Original IBM PC, PC/XT, and PCjr, unless
 otherwise noted.
 [AT] PC/AT and PC/XT-286, unless otherwise noted.
 [PS/2] All PS/2 models (including Models 25 and 30),
 unless otherwise noted.

 ROM BIOS functions that are unique to the PC Convertible have been
 omitted.

 Some functions are supported only in very late revisions of a particular
 machine's ROM BIOS (such as Int 1AH Functions 00H and 01H on the PC/XT).
 In general, such functions are not given an icon for that machine since a
 program could not safely assume that they were available based on the
 machine ID byte(s).

Summary of ROM BIOS and Mouse Function Calls

 Int Function Subfunction Name
 --
 10H Video Driver
 10H 00H Set Video Mode
 10H 01H Set Cursor Type
 10H 02H Set Cursor Position
 10H 03H Get Cursor Position
 10H 04H Get Light Pen Position
 10H 05H Set Display Page
 10H 06H Initialize or Scroll Window Up
 10H 07H Initialize or Scroll Window Down
 10H 08H Read Character and Attribute at Cursor
 10H 09H Write Character and Attribute at Cursor
 10H 0AH (10) Write Character at Cursor
 10H 0BH (11) Set Palette, Background, or Border
 10H 0CH (12) Write Graphics Pixel
 10H 0DH (13) Read Graphics Pixel
 10H 0EH (14) Write Character in Teletype Mode
 10H 0FH (15) Get Video Mode
 10H 10H (16) 00H Set Palette Register
 10H 10H (16) 01H Set Border Color
 10H 10H (16) 02H Set Palette and Border
 10H 10H (16) 03H Toggle Blink/Intensity Bit
 10H 10H (16) 07H Get Palette Register
 10H 10H (16) 08H Get Border Color
 10H 10H (16) 09H Get Palette and Border
 10H 10H (16) 10H (16) Set Color Register
 10H 10H (16) 12H (18) Set Block of Color Registers
 10H 10H (16) 13H (19) Set Color Page State

 10H 10H (16) 15H (21) Get Color Register
 10H 10H (16) 17H (23) Get Block of Color Registers
 10H 10H (16) 1AH (26) Get Color Page State
 10H 10H (16) 1BH (27) Set Gray-Scale Values
 10H 11H (17) 00H Load User Font
 10H 11H (17) 01H Load ROM 8-by-14 Font
 10H 11H (17) 02H Load ROM 8-by-8 Font
 10H 11H (17) 03H Set Block Specifier
 10H 11H (17) 04H Load ROM 8-by-16 Font
 10H 11H (17) 10H (16) Load User Font, Reprogram Controller
 10H 11H (17) 11H (17) Load ROM 8-by-14 Font, Reprogram
 Controller
 10H 11H (17) 12H (18) Load ROM 8-by-8 Font, Reprogram
 Controller
 10H 11H (17) 14H (20) Load ROM 8-by-16 Font, Reprogram
 Controller
 10H 11H (17) 20H (32) Set Int 1FH Pointer
 10H 11H (17) 21H (33) Set Int 43H for User's Font
 10H 11H (17) 22H (34) Set Int 43H for ROM 8-by-14 Font
 10H 11H (17) 23H (35) Set Int 43H for ROM 8-by-8 Font
 10H 11H (17) 24H (36) Set Int 43H for Rom 8-by-16 Font
 10H 11H (17) 30H (48) Get Font Information
 10H 12H (18) 10H (16) Get Configuration Information
 10H 12H (18) 20H (32) Select Alternate PrintScreen
 10H 12H (18) 30H (48) Set Scan Lines
 10H 12H (18) 31H (49) Enable/Disable Palette Loading
 10H 12H (18) 32H (50) Enable/Disable Video
 10H 12H (18) 33H (51) Enable/Disable Gray-Scale Summing
 10H 12H (18) 34H (52) Enable/Disable Cursor Emulation
 10H 12H (18) 35H (53) Switch Active Display
 10H 12H (18) 36H (54) Enable/Disable Screen Refresh
 10H 13H (19) Write String in Teletype Mode
 10H 1AH (26) Get or Set Display Combination Code
 10H 1BH (27) Get Functionality/State Information
 10H 1CH (28) Save or Restore Video State
 11H Get Equipment Configuration
 12H Get Conventional Memory Size
 13H Disk Driver
 13H 00H Reset Disk System
 13H 01H Get Disk System Status
 13H 02H Read Sector
 13H 03H Write Sector
 13H 04H Verify Sector
 13H 05H Format Track
 13H 06H Format Bad Track
 13H 07H Format Drive
 13H 08H Get Drive Parameters
 13H 09H Initialize Fixed Disk Characteristics
 13H 0AH (10) Read Sector Long
 13H 0BH (11) Write Sector Long
 13H 0CH (12) Seek
 13H 0DH (13) Reset Fixed Disk System
 13H 0EH (14) Read Sector Buffer
 13H 0FH (15) Write Sector Buffer
 13H 10H (16) Get Drive Status
 13H 11H (17) Recalibrate Drive
 13H 12H (18) Controller RAM Diagnostic
 13H 13H (19) Controller Drive Diagnostic
 13H 14H (20) Controller Internal Diagnostic

 13H 15H (21) Get Disk Type
 13H 16H (22) Get Disk Change Status
 13H 17H (23) Set Disk Type
 13H 18H (24) Set Media Type for Format
 13H 19H (25) Park Heads
 13H 1AH (26) Format ESDI Drive
 14H Serial Communications Port Driver
 14H 00H Initialize Communications Port
 14H 01H Write Character to Communications Port
 14H 02H Read Character from Communications Port
 14H 03H Get Communications Port Status
 14H 04H Extended Initialize Communications Port
 14H 05H Extended Communications Port Control
 15H I/O Subsystem Extensions
 15H 00H Turn On Cassette Motor
 15H 01H Turn Off Cassette Motor
 15H 02H Read Cassette
 15H 03H Write Cassette
 15H 0FH (15) Format ESDI Drive Periodic Interrupt
 15H 21H (33) 00H Read POST Error Log
 15H 21H (33) 01H Write POST Error Log
 15H 4FH (79) Keyboard Intercept
 15H 80H (128) Device Open
 15H 81H (129) Device Close
 15H 82H (130) Process Termination
 15H 83H (131) Event Wait
 15H 84H (132) Read Joystick
 15H 85H (133) SysReq Key
 15H 86H (134) Delay
 15H 87H (135) Move Extended Memory Block
 15H 88H (136) Get Extended Memory Size
 15H 89H (137) Enter Protected Mode
 15H 90H (144) Device Wait
 15H 91H (145) Device Post
 15H C0H (192) Get System Environment
 15H C1H (193) Get Address of Extended BIOS Data Area
 15H C2H (194) 00H Enable/Disable Pointing Device
 15H C2H (194) 01H Reset Pointing Device
 15H C2H (194) 02H Set Sample Rate
 15H C2H (194) 03H Set Resolution
 15H C2H (194) 04H Get Pointing Device Type
 15H C2H (194) 05H Initialize Pointing Device Interface
 15H C2H (194) 06H Set Scaling or Get Status
 15H C2H (194) 07H Set Pointing Device Handler Address
 15H C3H (195) Set Watchdog Time-Out
 15H C4H (196) Programmable Option Select
 16H Keyboard Driver
 16H 00H Read Character from Keyboard
 16H 01H Get Keyboard Status
 16H 02H Get Keyboard Flags
 16H 03H Set Repeat Rate
 16H 04H Set Keyclick
 16H 05H Push Character and Scan Code
 16H 10H (16) Read Character from Enhanced Keyboard
 16H 11H (17) Get Enhanced Keyboard Status
 16H 12H (18) Get Enhanced Keyboard Flags
 17H Parallel Port Printer Driver
 17H 00H Write Character to Printer
 17H 01H Initialize Printer Port

 17H 02H Get Printer Status
 18H ROM BASIC
 19H Reboot System
 1AH Real-time (CMOS) Clock Driver
 1AH 00H Get Tick Count
 1AH 01H Set Tick Count
 1AH 02H Get Time
 1AH 03H Set Time
 1AH 04H Get Date
 1AH 05H Set Date
 1AH 06H Set Alarm
 1AH 07H Reset Alarm
 1AH 0AH (10) Get Day Count
 1AH 0BH (11) Set Day Count
 1AH 80H (128) Set Sound Source
 33H Microsoft Mouse Driver
 33H 00H Reset Mouse and Get Status
 33H 01H Show Mouse Pointer
 33H 02H Hide Mouse Pointer
 33H 03H Get Mouse Position and Button Status
 33H 04H Set Mouse Pointer Position
 33H 05H Get Button Press Information
 33H 06H Get Button Release Information
 33H 07H Set Horizontal Limits for Pointer
 33H 08H Set Vertical Limits for Pointer
 33H 09H Set Graphics Pointer Shape
 33H 0AH (10) Set Text Pointer Type
 33H 0BH (11) Read Mouse Motion Counters
 33H 0CH (12) Set User-defined Mouse Event Handler
 33H 0DH (13) Turn On Light Pen Emulation
 33H 0EH (14) Turn Off Light Pen Emulation
 33H 0FH (15) Set Mickeys to Pixels Ratio
 33H 10H (16) Set Mouse Pointer Exclusion Area
 33H 13H (19) Set Double Speed Threshold
 33H 14H (20) Swap User-defined Mouse Event Handlers
 33H 15H (21) Get Mouse Save State Buffer Size
 33H 16H (22) Save Mouse Driver State
 33H 17H (23) Restore Mouse Driver State
 33H 18H (24) Set Alternate Mouse Event Handler
 33H 19H (25) Get Address of Alternate Mouse Event
 Handler
 33H 1AH (26) Set Mouse Sensitivity
 33H 1BH (27) Get Mouse Sensitivity
 33H 1CH (28) Set Mouse Interrupt Rate
 33H 1DH (29) Select Pointer Page
 33H 1EH (30) Get Pointer Page
 33H 1FH (31) Disable Mouse Driver
 33H 20H (32) Enable Mouse Driver
 33H 21H (33) Reset Mouse Driver
 33H 22H (34) Set Language for Mouse Driver Messages
 33H 23H (35) Get Language Number
 33H 24H (36) Get Mouse Information
 --

--
Int 10H [MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]
Function 00H

Set video mode
--

 Selects the current video display mode. Also selects the active video
 controller, if more than one video controller is present.

Call with:

 AH = 00H
 AL = video mode (see Notes)

Returns:

 Nothing

Notes:

 o The video modes applicable to the various IBM machine models and video
 adapters are as follows:

 Mode Resolution Colors Text/ MDA CGA PCjr EGA MCGA VGA
 graphics
 --
 00H 40-by-25 16 text * * * * *
 color burst
 off
 01H 40-by-25 16 text * * * * *
 02H 80-by-25 16 text * * * * *
 color burst
 off
 03H 80-by-25 16 text * * * * *
 04H 320-by-200 4 graphics * * * * *
 05H 320-by-200 4 graphics * * * * *
 color burst
 off
 06H 640-by-200 2 graphics * * * * *
 07H 80-by-25 2
Monochrome monitor only.
 text * * *
 08H 160-by-200 16 graphics *
 09H 320-by-200 16 graphics *
 0AH 640-by-200 4 graphics *
 0BH reserved
 0CH reserved
 0DH 320-by-200 16 graphics * *
 0EH 640-by-200 16 graphics * *
 0FH 640-by-350 2
Monochrome monitor only.
 graphics * *
 10H 640-by-350 4 graphics *
EGA with 64 KB of RAM.

 10H 640-by-350 16 graphics *
EGA with 128 KB or more of RAM.
 *
 11H 640-by-480 2 graphics * *
 12H 640-by-480 16 graphics *
 13H 320-by-200 256 graphics * *

 --

 o The presence or absence of color burst is only significant when a
 composite monitor is being used. For RGB monitors, there is no
 functional difference between modes 00H and 01H or modes 02H and 03H. On
 the CGA, two palettes are available in mode 04H and one in mode 05H.

 o On the PC/AT, PCjr, and PS/2, if bit 7 of AL is set, the display buffer
 is not cleared when a new mode is selected. On the PC or PC/XT, this
 capability is available only when an EGA or VGA (which have their own
 ROM BIOS) is installed.

--
Int 10H [MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]
Function 01H
Set cursor type
--

 Selects the starting and ending lines for the blinking hardware cursor in
 text display modes.

Call with:

 AH = 01H
 CH bits 0-4 = starting line for cursor
 CL bits 0-4 = ending line for cursor

Returns:

 Nothing

Notes:

 o In text display modes, the video hardware causes the cursor to blink,
 and the blink cannot be disabled. In graphics modes, the hardware cursor
 is not available.

 o The default values set by the ROM BIOS are:

 Display Start End
 --
 monochrome mode 07H 11 12
 text modes 00H-03H 6 7
 --

 o On the EGA, MCGA, and VGA in text modes 00H-03H, the ROM BIOS accepts
 cursor start and end values as though the character cell were 8 by 8 and
 remaps the values as appropriate for the true character cell dimensions.
 This mapping is called cursor emulation.

 o You can turn off the cursor in several ways. On the MDA, CGA, and VGA,
 setting register CH = 20H causes the cursor to disappear. Techniques
 that involve setting illegal starting and ending lines for the current
 display mode are unreliable. An alternative is to position the cursor to
 a nondisplayable address, such as (x,y)=(0,25).

--
Int 10H [MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]
Function 02H
Set cursor position
--

 Positions the cursor on the display, using text coordinates.

Call with:

 AH = 02H
 BH = page
 DH = row (y coordinate)
 DL = column (x coordinate)

Returns:

 Nothing

Notes:

 o A separate cursor is maintained for each display page, and each can be
 set independently with this function regardless of the currently active
 page. The number of available display pages depends on the video adapter
 and current display mode. See Int 10H Function 05H.

 o Text coordinates (x,y)=(0,0) are the upper left corner of the screen.

 o The maximum value for each text coordinate depends on the video adapter
 and current display mode, as follows:

 Mode Maximum x Maximum y
 --
 00H 39 24
 01H 39 24
 02H 79 24
 03H 79 24
 04H 39 24
 05H 39 24
 06H 79 24
 07H 79 24
 08H 19 24
 09H 39 24
 0AH 79 24
 0BH reserved
 0CH reserved
 0DH 39 24
 0EH 79 24
 0FH 79 24
 10H 79 24
 11H 79 29
 12H 79 29
 13H 39 24
 --

--
Int 10H [MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]
Function 03H

Get cursor position
--

 Obtains the current position of the cursor on the display, in text
 coordinates.

Call with:

 AH = 03H
 BH = page

Returns:

 CH = starting line for cursor
 CL = ending line for cursor
 DH = row (y coordinate)
 DL = column (x coordinate)

Note:

 o A separate cursor is maintained for each display page, and each can be
 inspected independently with this function regardless of the currently
 active page. The number of available display pages depends on the video
 adapter and current display mode. See Int 10H Function 05H.

--
Int 10H [CGA] [PCjr] [EGA]
Function 04H
Get light pen position
--

 Obtains the current status and position of the light pen.

Call with:

 AH = 04H

Returns:

 AH = 00H if light pen not down/not triggered
 01H if light pen down/triggered
 BX = pixel column (graphics x coordinate)
 CH = pixel row (graphics y coordinate, modes 04H-06H)
 CX = pixel row (graphics y coordinate, modes 0DH-13H)
 DH = character row (text y coordinate)
 DL = character column (text x coordinate)

Notes:

 o The range of text and graphics coordinates returned by this function
 depends on the current display mode.

 o On the CGA, the graphics coordinates returned by this function are not
 continuous. The y coordinate is always a multiple of two; the x
 coordinate is either a multiple of four (for 320-by-200 graphics modes)
 or a multiple of eight (for 640-by-200 graphics modes).

 o Careful selection of background and foreground colors is necessary to

 obtain maximum sensitivity from the light pen across the full screen
 width.

--
Int 10H [CGA] [PCjr] [EGA] [MCGA] [VGA]
Function 05H
Set display page
--

 Selects the active display page for the video display.

Call with:

 For CGA, EGA, MCGA, VGA

 AH = 05H
 AL = page

 0-7 for modes 00H and 01H (CGA, EGA, MCGA, VGA)
 0-3 for modes 02H and 03H (CGA)
 0-7 for modes 02H and 03H (EGA, MCGA, VGA)
 0-7 for mode 07H (EGA, VGA)
 0-7 for mode 0DH (EGA, VGA)
 0-3 for mode 0EH (EGA, VGA)
 0-1 for mode 0FH (EGA, VGA)
 0-1 for mode 10H (EGA, VGA)

 For PCjr only

 AH = 05H
 AL = subfunction
 80H = read CRT/CPU page registers
 81H = set CPU page register
 82H = set CRT page register
 83H = set both CPU and CRT page registers
 BH = CRT page (Subfunctions 82H and 83H)
 BL = CPU page (Subfunctions 81H and 83H)

Returns:

 If CGA, EGA, MCGA, or VGA adapter

 Nothing

 If PCjr and if function called with AL = 80H-83H

 BH = CRT page register
 BL = CPU page register

Notes:

 o Video mode and adapter combinations not listed above support one display
 page (for example, a Monochrome Adapter in mode 7).

 o Switching between pages does not affect their contents. In addition,
 text can be written to any video page with Int 10H Functions 02H, 09H,
 and 0AH, regardless of the page currently being displayed.

 o On the PCjr, the CPU page determines the part of the physical memory
 region 00000H-1FFFFH that will be hardware mapped onto 16 KB of memory
 beginning at segment B800H. The CRT page determines the starting address
 of the physical memory used by the video controller to refresh the
 display. Smooth animation effects can be achieved by manipulation of
 these registers. Programs that write directly to the B800H segment can
 reach only the first 16 KB of the video refresh buffer. Programs
 requiring direct access to the entire 32 KB buffer in modes 09H and 0AH
 can obtain the current CRT page from the ROM BIOS variable PAGDAT at
 0040:008AH.

--
Int 10H [MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]
Function 06H
Initialize or scroll window up
--

 Initializes a specified window of the display to ASCII blank characters
 with a given attribute or scrolls up the contents of a window by a
 specified number of lines.

Call with:

 AH = 06H
 AL = number of lines to scroll (if zero, entire window is
 blanked)
 BH = attribute to be used for blanked area
 CH = y coordinate, upper left corner of window
 CL = x coordinate, upper left corner of window
 DH = y coordinate, lower right corner of window
 DL = x coordinate, lower right corner of window

Returns:

 Nothing

Notes:

 o In video modes that support multiple pages, this function affects only
 the page currently being displayed.

 o If AL contains a value other than 00H, the area within the specified
 window is scrolled up by the requested number of lines. Text that is
 scrolled beyond the top of the window is lost. The new lines that appear
 at the bottom of the window are filled with ASCII blanks carrying the
 attribute specified by register BH.

 o To scroll down the contents of a window, see Int 10H Function 07H.

--
Int 10H [MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]
Function 07H
Initialize or scroll window down
--

 Initializes a specified window of the display to ASCII blank characters
 with a given attribute, or scrolls down the contents of a window by a

 specified number of lines.

Call with:

 AH = 07H
 AL = number of lines to scroll (if zero, entire window is
 blanked)
 BH = attribute to be used for blanked area
 CH = y coordinate, upper left corner of window
 CL = x coordinate, upper left corner of window
 DH = y coordinate, lower right corner of window
 DL = x coordinate, lower right corner of window

Returns:

 Nothing

Notes:

 o In video modes that support multiple pages, this function affects only
 the page currently being displayed.

 o If AL contains a value other than 00H, the area within the specified
 window is scrolled down by the requested number of lines. Text that is
 scrolled beyond the bottom of the window is lost. The new lines that
 appear at the top of the window are filled with ASCII blanks carrying
 the attribute specified by register BH.

 o To scroll up the contents of a window, see Int 10H Function 06H.

--
Int 10H [MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]
Function 08H
Read character and attribute at cursor
--

 Obtains the ASCII character and its attribute at the current cursor
 position for the specified display page.

Call with:

 AH = 08H
 BH = page

Returns:

 AH = attribute
 AL = character

Note:

 o In video modes that support multiple pages, characters and their
 attributes may be read from any page, regardless of the page currently
 being displayed.

--
Int 10H [MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]

Function 09H
Write character and attribute at cursor
--

 Writes an ASCII character and its attribute to the display at the current
 cursor position.

Call with:

 AH = 09H
 AL = character
 BH = page
 BL = attribute (text modes) or color (graphics modes)
 CX = count of characters to write (replication factor)

Returns:

 Nothing

Notes:

 o In graphics modes, the replication factor in CX produces a valid result
 only for the current row. If more characters are written than there are
 remaining columns in the current row, the result is unpredictable.

 o All values of AL result in some sort of display; control characters,
 including bell, backspace, carriage return, and line feed, are not
 recognized as special characters and do not affect the cursor position.

 o After a character is written, the cursor must be moved explicitly with
 Int 10H Function 02H to the next position.

 o To write a character without changing the attribute at the current
 cursor position, use Int 10H Function 0AH.

 o If this function is used to write characters in graphics mode and bit 7
 of BL is set (1), the character will be exclusive-OR'd (XOR) with the
 current display contents. This feature can be used to write characters
 and then "erase" them.

 o For the CGA and PCjr in graphics modes 04H-06H, the bit patterns for
 character codes 80H-FFH are obtained from a table whose address is
 stored in the vector for Int 1FH. On the PCjr, the address of the table
 for character codes 00H-7FH is stored in the vector for Int 44H.
 Alternative character sets may be installed by loading them into memory
 and updating this vector.

 o For the EGA, MCGA, and VGA in graphics modes, the address of the
 character definition table is stored in the vector for Int 43H. See Int
 10H Function 11H.

--
Int 10H [MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]
Function 0AH (10)
Write character at cursor
--

 Writes an ASCII character to the display at the current cursor position.

 The character receives the attribute of the previous character displayed
 at the same position.

Call with:

 AH = 0AH
 AL = character
 BH = page
 BL = color (graphics modes, PCjr only)
 CX = count of characters to write (replication factor)

Returns:

 Nothing

Notes:

 o In graphics modes, the replication factor in CX produces a valid result
 only for the current row. If more characters are written than there are
 remaining columns in the current row, the result is unpredictable.

 o All values of AL result in some sort of display; control characters,
 including bell, backspace, carriage return, and line feed, are not
 recognized as special characters and do not affect the cursor position.

 o After a character is written, the cursor must be moved explicitly with
 Int 10H Function 02H to the next position.

 o To write a character and attribute at the current cursor position, use
 Int 10H Function 09H.

 o If this function is used to write characters in graphics mode and bit 7
 of BL is set (1), the character will be exclusive-OR'd (XOR) with the
 current display contents. This feature can be used to write characters
 and then "erase" them.

 o For the CGA and PCjr in graphics modes 04H-06H, the bit patterns for
 character codes 80H-FFH are obtained from a table whose address is
 stored in the vector for Int 1FH. On the PCjr, the address of the table
 for character codes 00H-7FH is stored in the vector for Int 44H.
 Alternative character sets may be installed by loading them into memory
 and updating this vector.

 o For the EGA, MCGA, and VGA in graphics modes, the address of the
 character definition table is stored in the vector for Int 43H. See Int
 10H Function 11H.

--
Int 10H [CGA] [PCjr] [EGA] [MCGA] [VGA]
Function 0BH (11)
Set palette, background, or border
--

 Selects a palette, background, or border color.

Call with:

 To set the background color and border color for graphics modes or the

 border color for text modes

 AH = 0BH
 BH = 00H
 BL = color

 To select the palette (320-by-200 4-color graphics modes)

 AH = 0BH
 BH = 01H
 BL = palette (see Notes)

Returns:

 Nothing

Notes:

 o In text modes, this function selects only the border color. The
 background color of each individual character is controlled by the upper
 4 bits of that character's attribute byte.

 o On the CGA and EGA, this function is valid for palette selection only in
 320-by-200 4-color graphics modes.

 o In 320-by-200 4-color graphics modes, if register BH = 01H, the
 following palettes may be selected:

 Palette Pixel value Color
 --
 0 0 same as background
 1 green
 2 red
 3 brown or yellow
 1 0 same as background
 1 cyan
 2 magenta
 3 white
 --

 o On the CGA in 640-by-200 2-color graphics mode, the background color
 selected with this function actually controls the display color for
 nonzero pixels; zero pixels are always displayed as black.

 o On the PCjr in 640-by-200 2-color graphics mode, if BH = 00H and bit 0
 of register BL is cleared, pixel value 1 is displayed as white; if bit 0
 is set, pixel value 1 is displayed as black.

 o See also Int 10H Function 10H, which is used for palette programming on
 the PCjr, EGA, MCGA, and VGA.

--
Int 10H [CGA] [PCjr] [EGA] [MCGA] [VGA]
Function 0CH (12)
Write graphics pixel
--

 Draws a point on the display at the specified graphics coordinates.

Call with:

 AH = 0CH
 AL = pixel value
 BH = page
 CX = column (graphics x coordinate)
 DX = row (graphics y coordinate)

Returns:

 Nothing

Notes:

 o The range of valid pixel values and (x,y) coordinates depends on the
 current video mode.

 o If bit 7 of AL is set, the new pixel value will be exclusive-OR'd (XOR)
 with the current contents of the pixel.

 o Register BH is ignored for display modes that support only one page.

--
Int 10H [CGA] [PCjr] [EGA] [MCGA] [VGA]
Function 0DH (13)
Read graphics pixel
--

 Obtains the current value of the pixel on the display at the specified
 graphics coordinates.

Call with:

 AH = 0DH
 BH = page
 CX = column (graphics x coordinate)
 DX = row (graphics y coordinate)

Returns:

 AL = pixel value

Notes:

 o The range of valid (x,y) coordinates and possible pixel values depends
 on the current video mode.

 o Register BH is ignored for display modes that support only one page.

--
Int 10H [MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]
Function 0EH (14)
Write character in teletype mode
--

 Writes an ASCII character to the display at the current cursor position,

 using the specified color (if in graphics modes), and then increments the
 cursor position appropriately.

Call with:

 AH = 0EH
 AL = character
 BH = page
 BL = foreground color (graphics modes)

Returns:

 Nothing

Notes:

 o The special ASCII codes for bell (07H), backspace (08H), carriage return
 (0DH), and line feed (0AH) are recognized, and the appropriate action is
 taken. All other characters are written to the display (even if they are
 control characters), and the cursor is moved to the next position.

 o In video modes that support multiple pages, characters can be written to
 any page, regardless of the page currently being displayed.

 o Line wrapping and scrolling are provided. If the cursor is at the end of
 a line, it is moved to the beginning of the next line. If the cursor
 reaches the end of the last line on the screen, the screen is scrolled
 up by one line and the cursor is placed at the beginning of a new blank
 line. The attribute for the entire new line is taken from the last
 character that was written on the preceding line.

 o The default MS-DOS console driver (CON) uses this function to write text
 to the screen. You cannot use this function to specify the attribute of
 a character. One method of writing a character to the screen with a
 specific attribute is to first write an ASCII blank (20H) with the
 desired attribute at the current cursor location using Int 10H Function
 09H and then write the actual character with Int 10H Function 0EH.
 This technique, although somewhat clumsy, does not require the program
 to explicitly handle line wrapping and scrolling.

 o See also Int 10H Function 13H.

--
Int 10H [MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]
Function 0FH (15)
Get video mode
--

 Obtains the current display mode of the active video controller.

Call with:

 AH = 0FH

Returns:

 AH = number of character columns on screen
 AL = display mode (see Int 10H Function 00H)

 BH = active display page

Note:

 o This function can be called to obtain the screen width before clearing
 the screen with Int 10H Functions 06H or 07H.

--
Int 10H [PCjr] [EGA] [MCGA] [VGA]
Function 10H (16) Subfunction 00H
Set palette register
--

 Sets the correspondence of a palette register to a displayable color.

Call with:

 On the PCjr, EGA, or VGA

 AH = 10H
 AL = 00H
 BH = color value
 BL = palette register (00-0FH)

 On the MCGA

 AH = 10H
 AL = 00H
 BX = 0712H

Returns:

 Nothing

Note:

 o On the MCGA, this function can only be called with BX = 0712H and
 selects a color register set with eight consistent colors.

--
Int 10H [PCjr] [EGA] [VGA]
Function 10H (16) Subfunction 01H
Set border color
--

 Controls the color of the screen border (overscan).

Call with:

 AH = 10H
 AL = 01H
 BH = color value

Returns:

 Nothing

--
Int 10H [PCjr] [EGA] [VGA]
Function 10H (16) Subfunction 02H
Set palette and border
--

 Sets all palette registers and the border color (overscan) in one
 operation.

Call with:

 AH = 10H
 AL = 02H
 ES:DX = segment:offset of color list

Returns:

 Nothing

Notes:

 o The color list is 17 bytes long. The first 16 bytes are the color values
 to be loaded into palette registers 0-15, and the last byte is stored in
 the border color register.

 o In 16-color graphics modes, the following default palette is set up:

 Pixel value Color
 --
 01H blue
 02H green
 03H cyan
 04H red
 05H magenta
 06H brown
 07H white
 08H gray
 09H light blue
 0AH light green
 0BH light cyan
 0CH light red
 0DH light magenta
 0EH yellow
 0FH intense white
 --

--
Int 10H [PCjr] [EGA] [MCGA] [VGA]
Function 10H (16) Subfunction 03H
Toggle blink/intensity bit
--

 Determines whether the most significant bit of a character attribute will
 select blinking or intensified display.

Call with:

 AH = 10H
 AL = 03H
 BL = blink/intensity toggle
 0 = enable intensity
 1 = enable blinking

Returns:

 Nothing

--
Int 10H [VGA]
Function 10H (16) Subfunction 07H
Get palette register
--

 Returns the color associated with the specified palette register.

Call with:

 AH = 10H
 AL = 07H
 BL = palette register

Returns:

 BH = color

--
Int 10H [VGA]
Function 10H (16) Subfunction 08H
Get border color
--

 Returns the current border color (overscan).

Call with:

 AH = 10H
 AL = 08H

Returns:

 BH = color

--
Int 10H [VGA]
Function 10H (16) Subfunction 09H
Get palette and border
--

 Gets the contents of all palette registers and the border color (overscan)
 in one operation.

Call with:

 AH = 10H
 AL = 09H
 ES:DX = segment:offset of 17-byte buffer

Returns:

 ES:DX = segment:offset of buffer

 and buffer contains palette values in bytes 00H-0FH and border color in
 byte 10H.

--
Int 10H [MCGA] [VGA]
Function 10H (16) Subfunction 10H (16)
Set color register
--

 Programs an individual color register with a red-green-blue (RGB)
 combination.

Call with:

 AH = 10H
 AL = 10H
 BX = color register
 CH = green value
 CL = blue value
 DH = red value

Returns:

 Nothing

Note:

 o If gray-scale summing is enabled, the weighted gray-scale value is
 calculated as described under Int 10H Function 10H Subfunction 1BH and
 is stored into all three components of the color register. See also Int
 10H Function 12H Subfunction 33H.

--
Int 10H [MCGA] [VGA]
Function 10H (16) Subfunction 12H (18)
Set block of color registers
--

 Programs a group of consecutive color registers in one operation.

Call with:

 AH = 10H
 AL = 12H
 BX = first color register
 CX = number of color registers
 ES:DX = segment:offset of color table

Returns:

 Nothing

Notes:

 o The table consists of a series of 3-byte entries, one entry per color
 register to be programmed. The bytes of an individual entry specify the
 red, green, and blue values (in that order) for the associated color
 register.

 o If gray-scale summing is enabled, the weighted gray-scale value for each
 register is calculated as described under Int 10H Function 10H
 Subfunction 1BH and is stored into all three components of the color
 register. See also Int 10H Function 12H Subfunction 33H.

--
Int 10H [VGA]
Function 10H (16) Subfunction 13H (19)
Set color page state
--

 Selects the paging mode for the color registers, or selects an individual
 page of color registers.

Call with:

 To select the paging mode

 AH = 10H
 AL = 13H
 BH = paging mode
 00H for 4 pages of 64 registers
 01H for 16 pages of 16 registers

 BL = 00H

 To select a color register page

 AH = 10H
 AL = 13H
 BH = page
 BL = 01H

Returns:

 Nothing

Note:

 o This function is not valid in mode 13H (320-by-200 256-color graphics).

--
Int 10H [MCGA] [VGA]
Function 10H (16) Subfunction 15H (21)
Get color register
--

 Returns the contents of a color register as its red, green, and blue
 components.

Call with:

 AH = 10H
 AL = 15H
 BX = color register

Returns:

 CH = green value
 CL = blue value
 DH = red value

--
Int 10H [MCGA] [VGA]
Function 10H (16) Subfunction 17H (23)
Get block of color registers
--

 Allows the red, green, and blue components associated with each of a set
 of color registers to be read in one operation.

Call with:

 AH = 10H
 AL = 17H
 BX = first color register
 CX = number of color registers
 ES:DX = segment:offset of buffer to receive color list

Returns:

 ES:DX = segment:offset of buffer and buffer contains color list

Note:

 o The color list returned in the caller's buffer consists of a series of
 3-byte entries corresponding to the color registers. Each 3-byte entry
 contains the register's red, green, and blue components in that order.

--
Int 10H [VGA]
Function 10H (16) Subfunction 1AH (26)
Get color page state
--

 Returns the color register paging mode and current color page.

Call with:

 AH = 10H
 AL = 1AH

Returns:

 BH = color page
 BL = paging mode
 00H if 4 pages of 64 registers
 01H if 16 pages of 16 registers

Note:

 o See Int 10H Function 10H Subfunction 13H, which allows selection of the
 paging mode or current color page.

--
Int 10H [MCGA] [VGA]
Function 10H (16) Subfunction 1BH (27)
Set gray-scale values
--

 Transforms the red, green, and blue values of one or more color registers
 into the gray-scale equivalents.

Call with:

 AH = 10H
 AL = 1BH
 BX = first color register
 CX = number of color registers

Returns:

 Nothing

Note:

 o For each color register, the weighted sum of its red, green, and blue
 values is calculated (30% red + 59% green + 11% blue) and written back
 into all three components of the color register. The original red,
 green, and blue values are lost.

--
Int 10H [EGA] [MCGA] [VGA]
Function 11H (17) Subfunctions 00H and 10H (16)
Load user font
--

 Loads the user's font (character definition) table into the specified
 block of character generator RAM.

Call with:

 AH = 11H
 AL = 00H or 10H (see Notes)
 BH = points (bytes per character)
 BL = block
 CX = number of characters defined by table
 DX = first character code in table
 ES:BP = segment:offset of font table

Returns:

 Nothing

Notes:

 o This function provides font selection in text (alphanumeric) display
 modes. For font selection in graphics (all-points-addressable) modes,
 see Int 10H Function 11H Subfunctions 20H-24H.

 o If AL = 10H, page 0 must be active. The points (bytes per character),
 rows, and length of the refresh buffer are recalculated. The controller
 is reprogrammed with the maximum scan line (points - 1), cursor start
 (points - 2), cursor end (points - 1), vertical display end
 ((rows*points) - 1), and underline location (points - 1, mode 7 only).

 If Subfunction 10H is called at any time other than immediately after a
 mode set, the results are unpredictable.

 o On the MCGA, a Subfunction 00H call should be followed by a Subfunction
 03H call so that the ROM BIOS will load the font into the character
 generator's internal font pages.

 o Subfunction 10H is reserved on the MCGA. If it is called, Subfunction
 00H is executed.

--
Int 10H [EGA] [VGA]
Function 11H (17) Subfunctions 01H and 11H (17)
Load ROM 8-by-14 font
--

 Loads the ROM BIOS default 8-by-14 font table into the specified block of
 character generator RAM.

Call with:

 AH = 11H
 AL = 01H or 11H (see Notes)
 BL = block

Returns:

 Nothing

Notes:

 o This function provides font selection in text (alphanumeric) display
 modes. For font selection in graphics (all-points-addressable) modes,
 see Int 10H Function 11H Subfunctions 20H-24H.

 o If AL = 11H, page 0 must be active. The points (bytes per character),
 rows, and length of the refresh buffer are recalculated. The controller
 is reprogrammed with the maximum scan line (points - 1), cursor start
 (points - 2), cursor end (points - 1), vertical display end
 ((rows*points) - 1), and underline location (points - 1, mode 7 only).

 If Subfunction 11H is called at any time other than immediately after a
 mode set, the results are unpredictable.

 o Subfunctions 01H and 11H are reserved on the MCGA. If either is called,
 Subfunction 04H is executed.

--
Int 10H [EGA] [MCGA] [VGA]
Function 11H (17) Subfunctions 02H and 12H (18)
Load ROM 8-by-8 font
--

 Loads the ROM BIOS default 8-by-8 font table into the specified block of
 character generator RAM.

Call with:

 AH = 11H
 AL = 02H or 12H (see Notes)
 BL = block

Returns:

 Nothing

Notes:

 o This function provides font selection in text (alphanumeric) display
 modes. For font selection in graphics (all-points-addressable) modes,
 see Int 10H Function 11H Subfunctions 20H-24H.

 o If AL = 12H, page 0 must be active. The points (bytes per character),
 rows, and length of the refresh buffer are recalculated. The controller
 is reprogrammed with the maximum scan line (points - 1), cursor start
 (points - 2), cursor end (points - 1), vertical display end
 ((rows*points) - 1), and underline location (points - 1, mode 7 only).

 If Subfunction 12H is called at any time other than immediately after a
 mode set, the results are unpredictable.

 o On the MCGA, a Subfunction 02H call should be followed by a Subfunction
 03H call, so that the ROM BIOS will load the font into the character
 generator's internal font pages.

 o Subfunction 12H is reserved on the MCGA. If it is called, Subfunction
 02H is executed.

--
Int 10H [EGA] [MCGA] [VGA]
Function 11H (17) Subfunction 03H
Set block specifier
--

 Determines the character blocks selected by bit 3 of character attribute
 bytes in alphanumeric (text) display modes.

Call with:

 AH = 11H

 AL = 03H
 BL = character generator block select code (see Notes)

Returns:

 Nothing

Notes:

 o On the EGA and MCGA, the bits of BL are used as follows:

 Bits Significance
 --
 0-1 character block selected by attribute bytes with bit 3 = 0
 2-3 character block selected by attribute bytes with bit 3 = 1
 4-7 not used (should be 0)
 --

 o On the VGA, the bits of BL are used as follows:

 Bits Significance
 --
 0,1,4 character block selected by attribute bytes with bit 3 = 0
 2,3,5 character block selected by attribute bytes with bit 3 = 1
 6-7 not used (should be 0)
 --

 o When using a 256-character set, both fields of BL should select the same
 character block. In such cases, character attribute bit 3 controls the
 foreground intensity. When using 512-character sets, the fields of BL
 designate the blocks holding each half of the character set, and bit 3
 of the character attribute selects the upper or lower half of the
 character set.

 o When using a 512-character set, a call to Int 10H Function 10H
 Subfunction 00H with BX = 0712H is recommended to set the color planes
 to eight consistent colors.

--
Int 10H [MCGA] [VGA]
Function 11H (17) Subfunctions 04H and 14H (20)
Load ROM 8-by-16 font
--

 Loads the ROM BIOS default 8-by-16 font table into the specified block of
 character generator RAM.

Call with:

 AH = 11H
 AL = 04H or 14H (see Notes)
 BL = block

Returns:

 Nothing

Notes:

 o This function provides font selection in text (alphanumeric) display
 modes. For font selection in graphics (all-points-addressable) modes,
 see Int 10H Function 11H Subfunctions 20H-24H.

 o If AL = 14H, page 0 must be active. The points (bytes per character),
 rows, and length of the refresh buffer are recalculated. The controller
 is reprogrammed with the maximum scan line (points - 1), cursor start
 (points - 2), cursor end (points - 1), vertical display end (rows*points
 - 1 for 350- and 400-line modes, or rows *points *2 - 1 for 200-line
 modes), and underline location (points - 1, mode 7 only).

 If Subfunction 14H is called at any time other than immediately after a
 mode set, the results are unpredictable.

 o On the MCGA, a Subfunction 04H call should be followed by a Subfunction
 03H call so that the ROM BIOS will load the font into the character
 generator's internal font pages.

 o Subfunction 14H is reserved on the MCGA. If it is called, Subfunction
 04H is executed.

--
Int 10H [EGA] [MCGA] [VGA]
Function 11H (17) Subfunction 20H (32)
Set Int 1FH font pointer
--

 Sets the Int 1FH pointer to the user's font table. This table is used for
 character codes 80H-FFH in graphics modes 04H-06H.

Call with:

 AH = 11H
 AL = 20H
 ES:BP = segment:offset of font table

Returns:

 Nothing

Notes:

 o This function provides font selection in graphics
 (all-points-addressable) display modes. For font selection in text
 (alphanumeric) modes, see Int 10H Function 11H Subfunctions 00H-14H.

 o If this subfunction is called at any time other than immediately after a
 mode set, the results are unpredictable.

--
Int 10H [EGA] [MCGA] [VGA]
Function 11H (17) Subfunction 21H (33)
Set Int 43H for user's font
--

 Sets the vector for Int 43H to point to the user's font table and updates

 the video ROM BIOS data area. The video controller is not reprogrammed.

Call with:

 AH = 11H
 AL = 21H
 BL = character rows specifier

 00H if user specified (see register DL)
 01H = 14 (0EH) rows
 02H = 25 (19H) rows
 03H = 43 (2BH) rows

 CX = points (bytes per character)
 DL = character rows per screen (if BL = 00H)
 ES:BP = segment:offset of user font table

Returns:

 Nothing

Notes:

 o This function provides font selection in graphics
 (all-points-addressable) display modes. For font selection in text
 (alphanumeric) modes, see Int 10H Function 11H Subfunctions 00H-14H.

 o If this subfunction is called at any time other than immediately after a
 mode set, the results are unpredictable.

--
Int 10H [EGA] [MCGA] [VGA]
Function 11H (17) Subfunction 22H (34)
Set Int 43H for ROM 8-by-14 font
--

 Sets the vector for Int 43H to point to the ROM BIOS default 8-by-14 font
 and updates the video ROM BIOS data area. The video controller is not
 reprogrammed.

Call with:

 AH = 11H
 AL = 22H
 BL = character rows specifier

 00H if user specified (see register DL)
 01H = 14 (0EH) rows
 02H = 25 (19H) rows
 03H = 43 (2BH) rows

 DL = character rows per screen (if BL = 00H)

Returns:

 Nothing

Notes:

 o This function provides font selection in graphics
 (all-points-addressable) display modes. For font selection in text
 (alphanumeric) modes, see Int 10H Function 11H Subfunctions 00H-14H.

 o If this subfunction is called at any time other than immediately after a
 mode set, the results are unpredictable.

 o When this subfunction is called on the MCGA, Subfunction 24H is
 substituted.

--
Int 10H [EGA] [MCGA] [VGA]
Function 11H (17) Subfunction 23H (35)
Set Int 43H for ROM 8-by-8 font
--

 Sets the vector for Int 43H to point to the ROM BIOS default 8-by-8 font
 and updates the video ROM BIOS data area. The video controller is not
 reprogrammed.

Call with:

 AH = 11H
 AL = 23H
 BL = character rows specifier

 00H if user specified (see register DL)
 01H = 14 (0EH) rows
 02H = 25 (19H) rows
 03H = 43 (2BH) rows

 DL = character rows per screen (if BL = 00H)

Returns:

 Nothing

Notes:

 o This function provides font selection in graphics
 (all-points-addressable) display modes. For font selection in text
 (alphanumeric) modes, see Int 10H Function 11H Subfunctions 00H-14H.

 o If this subfunction is called at any time other than immediately after a
 mode set, the results are unpredictable.

--
Int 10H [MCGA] [VGA]
Function 11H (17) Subfunction 24H (36)
Set Int 43H for ROM 8-by-16 font
--

 Sets the vector for Int 43H to point to the ROM BIOS default 8-by-16 font
 and updates the video ROM BIOS data area. The video controller is not
 reprogrammed.

Call with:

 AH = 11H
 AL = 24H
 BL = row specifier

 00H if user specified (see register DL)
 01H = 14 (0EH) rows
 02H = 25 (19H) rows
 03H = 43 (2BH) rows

 DL = character rows per screen (if BL = 00H)

Returns:

 Nothing

Notes:

 o This function provides font selection in graphics
 (all-points-addressable) display modes. For font selection in text
 (alphanumeric) modes, see Int 10H Function 11H Subfunctions 00H-14H.

 o If this subfunction is called at any time other than immediately after a
 mode set, the results are unpredictable.

--
Int 10H [EGA] [MCGA] [VGA]
Function 11H (17) Subfunction 30H (48)
Get font information
--

 Returns a pointer to the character definition table for a font and the
 points (bytes per character) and rows for that font.

Call with:

 AH = 11H
 AL = 30H
 BH = font code
 00H = current Int 1FH contents
 01H = current Int 43H contents
 02H = ROM 8-by-14 font (EGA, VGA only)
 03H = ROM 8-by-8 font (characters 00H-7FH)
 04H = ROM 8-by-8 font (characters 80H-FFH)
 05H = ROM alternate 9-by-14 font (EGA, VGA only)
 06H = ROM 8-by-16 font (MCGA, VGA only)
 07H = ROM alternate 9-by-16 font (VGA only)

Returns:

 CX = points (bytes per character)
 DL = rows (character rows on screen - 1)
 ES:BP = segment:offset of font table

--
Int 10H [EGA] [VGA]

Function 12H (18) Subfunction 10H (16)
Get configuration information
--

 Obtains configuration information for the active video subsystem.

Call with:

 AH = 12H
 BL = 10H

Returns:

 BH = display type

 0 if color display
 1 if monochrome display

 BL = memory installed on EGA board

 00H if 64 KB
 01H if 128 KB
 02H if 192 KB
 03H if 256 KB

 CH = feature bits (see Notes)
 CL = switch setting (see Notes)

Notes:

 o The feature bits are set from Input Status register 0 in response to an
 output on the specified Feature Control register bits:

 Feature Feature control Input status
 bit(s) output bit bit
 --
 0 0 5
 1 0 6
 2 1 5
 3 1 6
 4-7 not used
 --

 o The bits in the switch settings byte indicate the state of the EGA's
 configuration DIP switch (1 = off, 0 = on).

 Bit(s) Significance
 --
 0 configuration switch 1
 1 configuration switch 2
 2 configuration switch 3
 3 configuration switch 4
 4-7 not used
 --

--
Int 10H [EGA] [VGA]
Function 12H (18) Subfunction 20H (32)

Select alternate printscreen
--

 Selects an alternate print-screen routine for the EGA and VGA that works
 properly if the screen length is not 25 lines. The ROM BIOS default
 print-screen routine always prints 25 lines.

Call with:

 AH = 12H
 BL = 20H

Returns:

 Nothing

--
Int 10H [VGA]
Function 12H (18) Subfunction 30H (48)
Set scan lines
--

 Selects the number of scan lines for alphanumeric modes. The selected
 value takes effect the next time Int 10H Function 00H is called to select
 the display mode.

Call with:

 AH = 12H
 AL = scan line code
 00H = 200 scan lines
 01H = 350 scan lines
 02H = 400 scan lines
 BL = 30H

Returns:

 If the VGA is active

 AL = 12H

 If the VGA is not active

 AL = 00H

--
Int 10H [MCGA] [VGA]
Function 12H (18) Subfunction 31H (49)
Enable/disable default palette loading
--

 Enables or disables loading of a default palette when a video display mode
 is selected.

Call with:

 AH = 12H

 AL = 00H to enable default palette loading
 01H to disable default palette loading
 BL = 31H

Returns:

 If function supported

 AL = 12H

--
Int 10H [MCGA] [VGA]
Function 12H (18) Subfunction 32H (50)
Enable/disable video
--

 Enables or disables CPU access to the video adapter's I/O ports and video
 refresh buffer.

Call with:

 AH = 12H
 AL = 00H to enable access
 01H to disable access
 BL = 32H

Returns:

 If function supported

 AL = 12H

--
Int 10H [MCGA] [VGA]
Function 12H (18) Subfunction 33H (51)
Enable/disable gray-scale summing
--

 Enables or disables gray-scale summing for the currently active display.

Call with:

 AH = 12H
 AL = 00H to enable gray-scale summing
 01H to disable gray-scale summing
 BL = 33H

Returns:

 If function supported

 AL = 12H

Note:

 o When enabled, gray-scale summing occurs during display mode selection,
 palette programming, and color register loading.

--
Int 10H [VGA]
Function 12H (18) Subfunction 34H (52)
Enable/disable cursor emulation
--

 Enables or disables cursor emulation for the currently active display.
 When cursor emulation is enabled, the ROM BIOS automatically remaps Int
 10H Function 01H cursor starting and ending lines for the current
 character cell dimensions.

Call with:

 AH = 12H
 AL = 00H to enable cursor emulation
 01H to disable cursor emulation
 BL = 34H

Returns:

 If function supported

 AL = 12H

--
Int 10H [MCGA] [VGA]
Function 12H (18) Subfunction 35H (53)
Switch active display
--

 Allows selection of one of two video adapters in the system when memory
 usage or port addresses conflict between the two adapters.

Call with:

 AH = 12H
 AL = switching function

 00H to disable initial video adapter
 01H to enable system board video adapter
 02H to disable active video adapter
 03H to enable inactive video adapter

 BL = 35H
 ES:DX = segment:offset of 128-byte buffer (if AL = 00H, 02H, or
 03H)

Returns:

 If function supported

 AL = 12H

 and, if called with AL = 00H or 02H

 Video adapter state information saved in caller's buffer

 or, if called with AL = 03H

 Video adapter state restored from information in caller's buffer

Notes:

 o This subfunction cannot be used unless both video adapters have a
 disable capability (Int 10H Function 12H Subfunction 32H).

 o If there is no conflict between the system board video and the adapter
 board video in memory or port usage, both video controllers can be
 active simultaneously and this subfunction is not required.

--
Int 10H [VGA]
Function 12H (18) Subfunction 36H (54)
Enable/disable screen refresh
--

 Enables or disables the video refresh for the currently active display.

Call with:

 AH = 12H
 AL = 00H to enable refresh
 01H to disable refresh
 BL = 36H

Returns:

 If function supported

 AL = 12H

--
Int 10H [MDA] [CGA] [PCjr] [EGA] [MCGA] [VGA]
Function 13H (19)
Write string in teletype mode
--

 Transfers a string to the video buffer for the currently active display,
 starting at the specified position.

Call with:

 AH = 13H
 AL = write mode

 0 attribute in BL; string contains character codes
 only; and cursor position is not updated after
 write
 1 attribute in BL;
 string contains character codes only; and cursor
 position is updated after write
 2 string contains alternating character codes and
 attribute bytes; and cursor position is not

 updated after write
 3 string contains alternating character codes and
 attribute bytes; and cursor position is updated
 after write

 BH = page
 BL = attribute, if AL = 00H or 01H
 CX = length of character string
 DH = y coordinate (row)
 DL = x coordinate (column)
 ES:BP = segment:offset of string

Returns:

 Nothing

Notes:

 o This function is not available on the original IBM PC or PC/XT unless an
 EGA video adapter (which contains its own ROM BIOS) is installed.

 o This function may be thought of as an extension to Int 10H Function
 0EH. The control characters bell (07H), backspace (08H), line feed
 (0AH), and carriage return (0DH) are recognized and handled
 appropriately.

--
Int 10H [PS/2]
Function 1AH (26)
Get or set display combination code
--

 Returns a code describing the installed display adapter(s) or updates the
 ROM BIOS's variable describing the installed adapter(s).

Call with:

 AH = 1AH
 AL = subfunction
 00H = get display combination code
 01H = set display combination code
 BH = inactive display code (if AL = 01H)
 BL = active display code (if AL = 01H)

Returns:

 If function supported

 AL = 1AH

 and, if called with AL = 00H

 BH = inactive display code
 BL = active display code

Note:

 o The display codes are interpreted as follows:

 Code(s) Video subsystem type
 --
 00H no display
 01H MDA with 5151 monitor
 02H CGA with 5153 or 5154 monitor
 03H reserved
 04H EGA with 5153 or 5154 monitor
 05H EGA with 5151 monitor
 06H PGA with 5175 monitor
 07H VGA with analog monochrome monitor
 08H VGA with analog color monitor
 09H reserved
 0AH MCGA with digital color monitor
 0BH MCGA with analog monochrome monitor
 0CH MCGA with analog color monitor
 0DH-FEH reserved
 FFH unknown
 --

--
Int 10H [PS/2]
Function 1BH (27)
Get functionality/state information
--

 Obtains information about the current display mode as well as a pointer to
 a table describing the characteristics and capabilities of the video
 adapter and monitor.

Call with:

 AH = 1BH
 BX = implementation type (always 00H)
 ES:DI = segment:offset of 64-byte buffer

Returns:

 If function supported

 AL = 1BH

 and information placed in caller's buffer (see Notes)

Notes:

 o The caller's buffer is filled in with information that depends on the
 current video display mode:

 Byte(s) Contents
 --
 00H-03H pointer to functionality information (see next Note)
 04H current video mode
 05H-06H number of character columns
 07H-08H length of video refresh buffer (bytes)
 09H-0AH starting address in buffer of upper left corner of display
 0BH-1AH cursor position for video pages 0-7 as eight 2-byte entries;

 first byte of each pair is y coordinate, second byte is x
 coordinate
 1BH cursor starting line
 1CH cursor ending line
 1DH active display page
 1EH-1FH adapter base port address (3BXH monochrome, 3DXH color)
 20H current setting of register 3B8H or 3D8H
 21H current setting of register 3B9H or 3D9H
 22H number of character rows
 23H-24H character height in scan lines
 25H active display code (see Int 10H Function 1AH)
 26H inactive display code (see Int 10H Function 1AH)
 27H-28H number of displayable colors (0 for monochrome)
 29H number of display pages
 2AH number of scan lines
 00H = 200 scan lines
 01H = 350 scan lines
 02H = 400 scan lines
 03H = 480 scan lines
 04H-FFH = reserved
 2BH primary character block (see Int 10H Function 11H Subfunction
 03H)
 2CH secondary character block
 2DH miscellaneous state information

 Bit(s) Significance
 0 = 1 if all modes on all displays active
 (always 0 on MCGA)
 1 = 1 if gray-scale summing active
 2 = 1 if monochrome display attached
 3 = 1 if mode set default palette loading
 disabled
 4 = 1 if cursor emulation active (always 0 on
 MCGA)
 5 = state of I/B toggle (0 = intensity, 1 =
 blink)
 6-7 = reserved

 2EH-30H reserved
 31H video memory available
 00H = 64 KB
 01H = 128 KB
 02H = 192 KB
 03H = 256 KB
 32H save pointer state information

 Bit(s) Significance
 0 = 1 if 512-character set active
 1 = 1 if dynamic save area active
 2 = 1 if alpha font override active
 3 = 1 if graphics font override active
 4 = 1 if palette override active
 5 = 1 if display combination code (DCC)
 extension active
 6-7 = reserved

 33H-3FH reserved
 --

 o Bytes 0-3 of the caller's buffer contain a DWORD pointer (offset in
 lower word, segment in upper word) to the following information about
 the display adapter and monitor:

 Byte(s) Contents
 --
 00H video modes supported

 Bit Significance
 0 = 1 if mode 00H supported
 1 = 1 if mode 01H supported
 2 = 1 if mode 02H supported
 3 = 1 if mode 03H supported
 4 = 1 if mode 04H supported
 5 = 1 if mode 05H supported
 6 = 1 if mode 06H supported
 7 = 1 if mode 07H supported

 01H video modes supported

 Bit Significance
 0 = 1 if mode 08H supported
 1 = 1 if mode 09H supported
 2 = 1 if mode 0AH supported
 3 = 1 if mode 0BH supported
 4 = 1 if mode 0CH supported
 5 = 1 if mode 0DH supported
 6 = 1 if mode 0EH supported
 7 = 1 if mode 0FH supported

 02H video modes supported

 Bit(s) Significance
 0 = 1 if mode 10H supported
 1 = 1 if mode 11H supported
 2 = 1 if mode 12H supported
 3 = 1 if mode 13H supported
 4-7 = reserved

 03H-06H reserved
 07H scan lines available in text modes

 Bit(s) Significance
 0 = 1 if 200 scan lines
 1 = 1 if 350 scan lines
 2 = 1 if 400 scan lines
 3-7 = reserved

 08H character blocks available in text modes (see Int 10H Function
 11H)
 09H maximum number of active character blocks in text modes
 0AH miscellaneous BIOS capabilities

 Bit Significance
 0 = 1 if all modes active on all displays
 (always 0 for MCGA)
 1 = 1 if gray-scale summing available

 2 = 1 if character font loading available
 3 = 1 if mode set default palette loading
 available
 4 = 1 if cursor emulation available
 5 = 1 if EGA (64-color) palette available
 6 = 1 if color register loading available
 7 = 1 if color register paging mode select
 available

 0BH miscellaneous BIOS capabilities

 Bit(s) Significance
 0 = 1 if light pen available
 1 = 1 if save/restore video state available
 (always 0 on MCGA)
 2 = 1 if background intensity/blinking
 control available
 3 = 1 if get/set display combination code
 available
 4-7 = reserved

 0CH-0DH reserved
 0EH save area capabilities

 Bit(s) Significance
 0 = 1 if supports 512-character sets
 1 = 1 if dynamic save area available
 2 = 1 if alpha font override available
 3 = 1 if graphics font override available
 4 = 1 if palette override available
 5 = 1 if display combination code extension
 available
 6-7 = reserved

 0FH reserved
 --

--
Int 10H [PS/2]
Function 1CH (28)
Save or restore video state
--

 Saves or restores the digital-to-analog converter (DAC) state and color
 registers, ROM BIOS video driver data area, or video hardware state.

Call with:

 AH = 1CH
 AL = subfunction

 00H to get state buffer size
 01H to save state
 02H to restore state

 CX = requested states

 Bit(s) Significance (if set)
 0 save/restore video hardware state
 1 save/restore video BIOS data area
 2 save/restore video DAC state and color registers
 3-15 reserved

 ES:BX = segment:offset of buffer

Returns:

 If function supported

 AL = 1CH

 and, if called with AL = 00H

 BX = buffer block count (64 bytes per block)

 or, if called with AL = 01H

 State information placed in caller's buffer

 or, if called with AL = 02H

 Requested state restored according to contents of caller's buffer

Notes:

 o Subfunction 00H is used to determine the size of buffer that will be
 necessary to contain the specified state information. The caller must
 supply the buffer.

 o The current video state is altered during a save state operation (AL =
 01H). If the requesting program needs to continue in the same video
 state, it can follow the save state request with an immediate call to
 restore the video state.

 o This function is supported on the VGA only.

--
Int 11H [PC] [AT] [PS/2]
Get equipment configuration
--

 Obtains the equipment list code word from the ROM BIOS.

Call with:

 Nothing

Returns:

 AX = equipment list code word

 Bit(s) Significance
 0 = 1 if floppy disk drive(s) installed
 1 = 1 if math coprocessor installed
 2 = 1 if pointing device installed (PS/2)

 2-3 system board ram size (PC, see Note)

 00 = 16 KB
 01 = 32 KB
 10 = 48 KB
 11 = 64 KB

 4-5 initial video mode

 00 reserved
 01 40-by-25 color text
 10 80-by-25 color text
 11 80-by-25 monochrome

 6-7 number of floppy disk drives (if bit 0 =
 1)

 00 = 1
 01 = 2
 10 = 3
 11 = 4

 8 reserved
 9-11 number of RS-232 ports installed

 12 = 1 if game adapter installed
 13 = 1 if internal modem installed (PC and XT
 only)
 = 1 if serial printer attached (PCjr)

 14-15 number of printers installed

Note:

 o Bits 2-3 of the returned value are used only in the ROM BIOS for the
 original IBM PC with the 64 KB system board and on the PCjr.

--
Int 12H [PC] [AT] [PS/2]
Get conventional memory size
--

 Returns the amount of conventional memory available for use by MS-DOS and
 application programs.

Call with:

 Nothing

Returns:

 AX = memory size (in KB)

Notes:

 o On some early PC models, the amount of memory returned by this function
 is controlled by the settings of the dip switches on the system board

 and may not reflect all the memory that is physically present.

 o On the PC/AT, the value returned is the amount of functional memory
 found during the power-on self-test, regardless of the memory size
 configuration information stored in CMOS RAM.

 o The value returned does not reflect any extended memory (above the 1 MB
 boundary) that may be installed on 80286 or 80386 machines such as the
 PC/AT or PS/2 (Models 50 and above).

--
Int 13H [PC] [AT] [PS/2]
Function 00H
Reset disk system
--

 Resets the disk controller, recalibrates its attached drives (the
 read/write arm is moved to cylinder 0), and prepares for disk I/O.

Call with:

 AH = 00H
 DL = drive
 00H-7FH floppy disk
 80H-FFH fixed disk

Returns:

 If function successful

 Carry flag = clear
 AH = 00H

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 13H Function 01H)

Notes:

 o This function should be called after a failed floppy disk Read, Write,
 Verify, or Format request before retrying the operation.

 o If called with DL >= 80H (i.e., selecting a fixed disk drive), the
 floppy disk controller and then the fixed disk controller are reset. See
 also Int 13H Function 0DH, which allows the fixed disk controller to be
 reset without affecting the floppy disk controller.

--
Int 13H [PC] [AT] [PS/2]
Function 01H
Get disk system status
--

 Returns the status of the most recent disk operation.

Call with:

 AH = 01H
 DL = drive

 00H-7FH floppy disk
 80H-FFH fixed disk

Returns:

 AH = 00H
 AL = status of previous disk operation

 00H no error
 01H invalid command
 02H address mark not found
 03H disk write-protected (F)
 04H sector not found
 05H reset failed (H)
 06H floppy disk removed (F)
 07H bad parameter table (H)
 08H DMA overrun (F)
 09H DMA crossed 64 KB boundary
 0AH bad sector flag (H)
 0BH bad track flag (H)
 0CH media type not found (F)
 0DH invalid number of sectors on format (H)
 0EH control data address mark detected (H)
 0FH DMA arbitration level out of range (H)
 10H uncorrectable CRC
Cyclic Redundancy Check code
 or ECC
Error Checking and Correcting code
 data error
 11H ECC corrected data error (H)
 20H controller failed
 40H seek failed
 80H disk timed-out (failed to respond)
 AAH drive not ready (H)
 BBH undefined error (H)
 CCH write fault (H)
 E0H status register error (H)
 FFH sense operation failed (H)

 H = fixed disk only, F = floppy disk only

Note:

 o On fixed disks, error code 11H (ECC data error) indicates that a
 recoverable error was detected during a preceding Read Sector (Int 13H
 Function 02H) function.

--
Int 13H [PC] [AT] [PS/2]
Function 02H
Read sector
--

 Reads one or more sectors from disk into memory.

Call with:

 AH = 02H
 AL = number of sectors
 CH = cylinder
 CL = sector
 DH = head
 DL = drive

 00H-7FH floppy disk
 80H-FFH fixed disk

 ES:BX = segment:offset of buffer

Returns:

 If function successful

 Carry flag = clear
 AH = 00H
 AL = number of sectors transferred

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 13H Function 01H)

Notes:

 o On fixed disks, the upper 2 bits of the 10-bit cylinder number are
 placed in the upper 2 bits of register CL.

 o On fixed disks, error code 11H indicates that a read error occurred that
 was corrected by the ECC algorithm; in this event, register AL contains
 the burst length. The data returned is probably good, although there is
 a small chance that the data was not corrected properly. If a
 multi-sector transfer was requested, the operation was terminated after
 the sector containing the read error.

 o On floppy disk drives, an error may result from the drive motor being
 off at the time of the request. The ROM BIOS does not automatically wait
 for the drive to come up to speed before attempting the read operation.
 The requesting program should reset the floppy disk system (Int 13H
 Function 00H) and retry the operation three times before assuming that
 the error results from some other cause.

--
Int 13H [PC] [AT] [PS/2]
Function 03H
Write sector
--

 Writes one or more sectors from memory to disk.

Call with:

 AH = 03H

 AL = number of sectors
 CH = cylinder
 CL = sector
 DH = head
 DL = drive

 00H-7FH floppy disk
 80H-FFH fixed disk

 ES:BX = segment:offset of buffer

Returns:

 If function successful

 Carry flag = clear
 AH = 00H
 AL = number of sectors transferred

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 13H Function 01H)

Notes:

 o On fixed disks, the upper 2 bits of the 10-bit cylinder number are
 placed in the upper 2 bits of register CL.

 o On floppy disk drives, an error may result from the drive motor being
 off at the time of the request. The ROM BIOS does not automatically wait
 for the drive to come up to speed before attempting the write operation.
 The requesting program should reset the floppy disk system (Int 13H
 Function 00H) and retry the operation three times before assuming that
 the error results from some other cause.

--
Int 13H [PC] [AT] [PS/2]
Function 04H
Verify sector
--

 Verifies the address fields of one or more sectors. No data is transferred
 to or from memory by this operation.

Call with:

 AH = 04H
 AL = number of sectors
 CH = cylinder
 CL = sector
 DH = head
 DL = drive

 00H-7FH floppy disk
 80H-FFH fixed disk

 ES:BX = segment:offset of buffer (see Notes)

Returns:

 If function successful

 Carry flag = clear
 AH = 00H
 AL = number of sectors verified

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 13H Function 01H)

Notes:

 o On PCs, PC/XTs, and PC/ATs with ROM BIOS dated earlier than 11/15/85,
 ES:BX should point to a valid buffer.

 o On fixed disks, the upper 2 bits of the 10-bit cylinder number are
 placed in the upper 2 bits of register CL.

 o This function can be used to test whether a readable media is in a
 floppy disk drive. An error may result from the drive motor being off at
 the time of the request, because the ROM BIOS does not automatically
 wait for the drive to come up to speed before attempting the verify
 operation. The requesting program should reset the floppy disk system
 (Int 13H Function 00H) and retry the operation three times before
 assuming that a readable floppy disk is not present.

--
Int 13H [PC] [AT] [PS/2]
Function 05H
Format track
--

 Initializes disk sector and track address fields on the specified track.

Call with:

 AH = 05H
 AL = interleave (PC/XT fixed disks)
 CH = cylinder
 DH = head
 DL = drive

 00H-7FH floppy disk
 80H-FFH fixed disk
 ES:BX = segment:offset of address field list (except PC/XT fixed
 disk, see Note)

Returns:

 If function successful

 Carry flag = clear
 AH = 00H

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 13H Function 01H)

Notes:

 o On floppy disks, the address field list consists of a series of 4-byte
 entries, one entry per sector, in the following format:

 Byte(s) Contents
 0 cylinder
 1 head
 2 sector
 3 sector-size code

 00H if 128 bytes per sector
 01H if 256 bytes per sector
 02H if 512 bytes per sector (standard)
 03H if 1024 bytes per sector

 o On floppy disks, the number of sectors per track is taken from the BIOS
 floppy disk parameter table whose address is stored in the vector for
 Int 1EH.

 o When this function is used for floppy disks on the PC/AT or PS/2, it
 should be preceded by a call to Int 13H Function 17H to select the type
 of medium to be formatted.

 o On fixed disks, the upper 2 bits of the 10-bit cylinder number are
 placed in the upper 2 bits of register CL.

 o On PC/XT-286, PC/AT, and PS/2 fixed disks, ES:BX points to a 512-byte
 buffer containing byte pairs for each physical disk sector, as follows:

 Byte(s) Contents
 0 00H for good sector
 80H for bad sector
 1 sector number

 For example, to format a track with 17 sectors and an interleave of two,
 ES:BX would point to the following 34-byte array at the beginning of a
 512-byte buffer:

 db 00h,01h,00h,0ah,00h,02h,00h,0bh,00h,03h,00h,0ch
 db 00h,04h,00h,0dh,00h,05h,00h,0eh,00h,06h,00h,0fh
 db 00h,07h,00h,10h,00h,08h,00h,11h,00h,09h

--
Int 13H [PC]
Function 06H
Format bad track
--

 Initializes a track, writing disk address fields and data sectors and
 setting bad sector flags.

Call with:

 AH = 06H
 AL = interleave
 CH = cylinder
 DH = head
 DL = drive

 80H-FFH fixed disk

Returns:

 If function successful

 Carry flag = clear
 AH = 00H

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 13H Function 01H)

Notes:

 o This function is defined for PC/XT fixed disk drives only.

 o For additional information, see Notes for Int 13H Function 05H.

--
Int 13H [PC]
Function 07H
Format drive
--

 Formats the entire drive, writing disk address fields and data sectors,
 starting at the specified cylinder.

Call with:

 AH = 07H
 AL = interleave
 CH = cylinder
 DL = drive

 80H-FFH fixed disk

Returns:

 If function successful

 Carry flag = clear
 AH = 00H

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 13H Function 01H)

Notes:

 o This function is defined for PC/XT fixed disk drives only.

 o For additional information, see Notes for Int 13H Function 05H.

--
Int 13H [PC] [AT] [PS/2]
Function 08H
Get drive parameters
--

 Returns various parameters for the specified drive.

Call with:

 AH = 08H
 DL = drive

 00H-7FH floppy disk
 80H-FFH fixed disk

Returns:

 If function successful

 Carry flag = clear
 BL = drive type (PC/AT and PS/2 floppy disks)

 01H if 360 KB, 40 track, 5.25"
 02H if 1.2 MB, 80 track, 5.25"
 03H if 720 KB, 80 track, 3.5"
 04H if 1.44 MB, 80 track, 3.5"
 CH = low 8 bits of maximum cylinder number

 CL = bits 6-7 high-order 2 bits of maximum cylinder number
 bits 0-5 maximum sector number

 DH = maximum head number
 DL = number of drives
 ES:DI = segment:offset of disk drive parameter table

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 13H Function 01H)

Notes:

 o On the PC and PC/XT, this function is supported on fixed disks only.

 o The value returned in register DL reflects the true number of physical
 drives attached to the adapter for the requested drive.

--
Int 13H [PC] [AT] [PS/2]
Function 09H
Initialize fixed disk characteristics

--

 Initializes the fixed disk controller for subsequent I/O operations, using
 the values found in the ROM BIOS disk parameter block(s).

Call with:

 AH = 09H
 DL = drive

 80H-FFH fixed disk

 and, on the PC/XT
 Vector for Int 41H must point to disk parameter block

 or, on the PC/AT and PS/2
 Vector for Int 41H must point to disk parameter block for drive 0
 Vector for Int 46H must point to disk parameter block for drive 1

Returns:

 If function successful

 Carry flag = clear
 AH = 00H

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 13H Function 01H)

Notes:

 o This function is supported on fixed disks only.

 o For PC and PC/XT fixed disks, the parameter block format is as follows:

 Byte(s) Contents
 00H-01H maximum number of cylinders
 02H maximum number of heads
 03H-04H starting reduced write current cylinder
 05H-06H starting write precompensation cylinder
 07H maximum ECC burst length
 08H drive options

 Bit(s) Significance (if set)
 0-2 drive option
 3-5 reserved (0)
 6 disable ECC retries
 7 disable disk-access retries

 09H standard time-out value
 0AH time-out value for format drive
 0BH time-out value for check drive
 0CH-0FH reserved

 o For PC/AT and PS/2 fixed disks, the parameter block format is as
 follows:

 Byte(s) Contents
 00H-01H maximum number of cylinders
 02H maximum number of heads
 03H-04H reserved
 05H-06H starting write precompensation cylinder
 07H maximum ECC burst length
 08H drive options

 Bit(s) Significance (if set)
 0-2 not used
 3 more than 8 heads
 4 not used
 5 manufacturer's defect map present at
 maximum
 cylinder + 1
 6-7 nonzero (10, 01, or 11) if retries
 disabled

 09H-0BH reserved
 0CH-0DH landing zone cylinder
 0EH sectors per track
 0FH reserved

--
Int 13H [PC] [AT] [PS/2]
Function 0AH (10)
Read sector long
--

 Reads a sector or sectors from disk into memory, along with a 4-byte ECC
 code for each sector.

Call with:

 AH = 0AH
 AL = number of sectors
 CH = cylinder
 CL = sector (see Notes)
 DH = head
 DL = drive

 80H-FFH fixed disk

 ES:BX = segment:offset of buffer

Returns:

 If function successful

 Carry flag = clear
 AH = 00H
 AL = number of sectors transferred

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 13H Function 01H)

Notes:

 o This function is supported on fixed disks only.

 o The upper 2 bits of the 10-bit cylinder number are placed in the upper 2
 bits of register CL.

 o Unlike the normal Read Sector function (Int 13H Function 02H), ECC
 errors are not automatically corrected. Multisector transfers are
 terminated after any sector with a read error.

--
Int 13H [PC] [AT] [PS/2]
Function 0BH (11)
Write sector long
--

 Writes a sector or sectors from memory to disk. Each sector's worth of
 data must be followed by its 4-byte ECC code.

Call with:

 AH = 0BH
 AL = number of sectors
 CH = cylinder
 CL = sector (see Notes)
 DH = head
 DL = drive

 80H-FFH fixed disk

 ES:BX = segment:offset of buffer
Returns:

 If function successful

 Carry flag = clear
 AH = 00H
 AL = number of sectors transferred

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 13H Function 01H)

Notes:

 o This function is supported on fixed disks only.

 o The upper 2 bits of the 10-bit cylinder number are placed in the upper 2
 bits of register CL.

--
Int 13H [PC] [AT] [PS/2]
Function 0CH (12)
Seek
--

 Positions the disk read/write heads to the specified cylinder, but does
 not transfer any data.

Call with:

 AH = 0CH
 CH = lower 8 bits of cylinder
 CL = upper 2 bits of cylinder in bits 6-7
 DH = head
 DL = drive

 80H-FFH fixed disk

Returns:

 If function successful

 Carry flag = clear
 AH = 00H

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 13H Function 01H)

Notes:

 o This function is supported on fixed disks only.

 o The upper 2 bits of the 10-bit cylinder number are placed in the upper 2
 bits of register CL.

 o The Read Sector, Read Sector Long, Write Sector, and Write Sector Long
 functions include an implied seek operation and need not be preceded by
 an explicit call to this function.

--
Int 13H [PC] [AT] [PS/2]
Function 0DH (13)
Reset fixed disk system
--

 Resets the fixed disk controller, recalibrates attached drives (moves the
 read/write arm to cylinder 0), and prepares for subsequent disk I/O.

Call with:

 AH = 0DH
 DL = drive

 80H-FFH fixed disk

Returns:

 If function successful

 Carry flag = clear

 AH = 00H

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 13H Function 01H)

Note:

 o This function is supported on fixed disks only. It differs from Int 13H
 Function 00H in that the floppy disk controller is not reset.

--
Int 13H [PC]
Function 0EH (14)
Read sector buffer
--

 Transfers the contents of the fixed disk adapter's internal sector buffer
 to system memory. No data is read from the physical disk drive.

Call with:

 AH = 0EH
 ES:BX = segment:offset of buffer

Returns:

 If function successful

 Carry flag = clear

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 13H Function 01H)

Note:

 o This function is supported by the PC/XT's fixed disk adapter only. It is
 not defined for fixed disk adapters on the PC/AT or PS/2.

--
Int 13H [PC]
Function 0FH (15)
Write sector buffer
--

 Transfers data from system memory to the fixed disk adapter's internal
 sector buffer. No data is written to the physical disk drive.

Call with:

 AH = 0FH
 ES:BX = segment:offset of buffer

Returns:

 If function successful

 Carry flag = clear

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 13H Function 01H)

Notes:

 o This function is supported by the PC/XT's fixed disk adapter only. It is
 not defined for fixed disk adapters on the PC/AT or PS/2.

 o This function should be called to initialize the contents of the sector
 buffer before formatting the drive with Int 13H Function 05H.

--
Int 13H [PC] [AT] [PS/2]
Function 10H (16)
Get drive status
--

 Tests whether the specified fixed disk drive is operational and returns
 the drive's status.

Call with:

 AH = 10H
 DL = drive

 80H-FFH fixed disk

Returns:

 If function successful

 Carry flag = clear
 AH = 00H

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 13H Function 01H)

Note:

 o This function is supported on fixed disks only.

--
Int 13H [PC] [AT] [PS/2]
Function 11H (17)
Recalibrate drive
--

 Causes the fixed disk adapter to recalibrate itself for the specified

 drive, positioning the read/write arm to cylinder 0, and returns the
 drive's status.

Call with:

 AH = 11H
 DL = drive

 80H-FFH fixed disk

Returns:

 If function successful

 Carry flag = clear
 AH = 00H

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 13H Function 01H)

Note:

 o This function is supported on fixed disks only.

--
Int 13H [PC]
Function 12H (18)
Controller RAM diagnostic
--

 Causes the fixed disk adapter to carry out a built-in diagnostic test on
 its internal sector buffer, indicating whether the test was passed by the
 returned status.

Call with:

 AH = 12H

Returns:

 If function successful

 Carry flag = clear

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 13H Function 01H)

Note:

 o This function is supported on PC/XT fixed disks only.

--
Int 13H [PC]

Function 13H (19)
Controller drive diagnostic
--

 Causes the fixed disk adapter to run internal diagnostic tests of the
 attached drive, indicating whether the test was passed by the returned
 status.

Call with:

 AH = 13H

Returns:

 If function successful

 Carry flag = clear

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 13H Function 01H)

Note:

 o This function is supported on PC/XT fixed disks only.

--
Int 13H [PC] [AT] [PS/2]
Function 14H (20)
Controller internal diagnostic
--

 Causes the fixed disk adapter to carry out a built-in diagnostic
 self-test, indicating whether the test was passed by the returned status.

Call with:

 AH = 14H

Returns:

 If function successful

 Carry flag = clear
 AH = 00H

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 13H Function 01H)

Note:

 o This function is supported on fixed disks only.

--

Int 13H [AT] [PS/2]
Function 15H (21)
Get disk type
--

 Returns a code indicating the type of floppy or fixed disk referenced by
 the specified drive code.

Call with:

 AH = 15H
 DL = drive

 00H-7FH floppy disk
 80H-FFH fixed disk

Returns:

 If function successful

 Carry flag = clear
 AH = drive type code

 00H if no drive present
 01H if floppy disk drive without change-line support
 02H if floppy disk drive with change-line support
 03H if fixed disk

 and, if fixed disk (AH = 03H)

 CX:DX = number of 512-byte sectors

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 13H Function 01H)

Note:

 o This function is not supported on the PC or PC/XT.

--
Int 13H [AT] [PS/2]
Function 16H (22)
Get disk change status
--

 Returns the status of the change line, indicating whether the disk in the
 drive may have been replaced since the last disk access.

Call with:

 AH = 16H
 DL = drive
 00H-7FH floppy disk

Returns:

 If change line inactive (disk has not been changed)

 Carry flag = clear
 AH = 00H

 If change line active (disk may have been changed)

 Carry flag = set
 AH = 06H

Notes:

 o If this function returns with the carry flag set, the disk has not
 necessarily been changed; the change line can be activated by simply
 unlocking and locking the disk drive door without removing the floppy
 disk.

 o This function is not supported for floppy disks on the PC or PC/XT.

--
Int 13H [AT] [PS/2]
Function 17H (23)
Set disk type
--

 Selects a floppy disk type for the specified drive.

Call with:

 AH = 17H
 AL = floppy disk type code

 00H not used
 01H 320/360 KB floppy disk in 360 KB drive
 02H 320/360 KB floppy disk in 1.2 MB drive
 03H 1.2 MB floppy disk in 1.2 MB drive
 04H 720 KB floppy disk in 720 KB drive
 SL = drive

 00H-7FH floppy disk

Returns:

 If function successful

 Carry flag = clear
 AH = 00H

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 13H Function 01H)

Notes:

 o This function is not supported for floppy disks on the PC or PC/XT.

 o If the change line is active for the specified drive, it is reset. The

 ROM BIOS then sets the data rate for the specified drive and media type.

--
Int 13H [AT] [PS/2]
Function 18H (24)
Set media type for format
--

 Selects media characteristics for the specified drive.

Call with:

 AH = 18H
 CH = number of cylinders
 CL = sectors per track
 DL = drive

 00H-7FH floppy disk

Returns:

 If function successful

 Carry flag = clear
 AH = 00H
 ES:DI = segment:offset of disk parameter table for media type

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 13H Function 01H)

Notes:

 o A floppy disk must be present in the drive.

 o This function should be called prior to formatting a disk with Int 13H
 Function 05H so that the ROM BIOS can set the correct data rate for the
 media.

 o If the change line is active for the specified drive, it is reset.

--
Int 13H [PS/2]
Function 19H (25)
Park heads
--

 Moves the read/write arm to a track that is not used for data storage, so
 that data will not be damaged when the drive is turned off.

Call with:

 AH = 19H
 DL = drive

 80H-FFH fixed disk

Returns:

 If function successful

 Carry flag = clear
 AH = 00H

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 13H Function 01H)

Note:

 o This function is defined for PS/2 fixed disks only.

--
Int 13H [PS/2]
Function 1AH (26)
Format ESDI drive
--

 Initializes disk sector and track address fields on a drive attached to
 the ESDI Fixed Disk Drive Adapter/A.

Call with:

 AH = 1AH
 AL = relative block address (RBA) defect table count

 0 if no RBA table
 >0 if RBA table used

 CL = format modifier bits

 Bit(s) Significance (if set)
 0 ignore primary defect map
 1 ignore secondary defect map
 2 update secondary defect map (see Notes)
 3 perform extended surface analysis
 4 generate periodic interrupt (see Notes)
 5-7 reserved (must be 0)
 DL = drive

 80H-FFH fixed disk

 ES:BX = segment:offset of RBA table

Returns:

 If function successful

 Carry flag = clear
 AH = 00H

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 13H Function 01H)

Notes:

 o This operation is sometimes called a "low level format" and prepares the
 disk for physical read/write operations at the sector level. The drive
 must be subsequently partitioned with the FDISK command and then given a
 "high level format" with the FORMAT command to install a file system.

 o If bit 4 of register CL is set, Int 15H is called with AH = 0FH and AL
 = phase code after each cylinder is formatted or analyzed. The phase
 code is defined as:

 0 = reserved
 1 = surface analysis
 2 = formatting

 See also Int 15H Function 0FH.

 o If bit 2 of register CL is set, the drive's secondary defect map is
 updated to reflect errors found during surface analysis. If both bit 2
 and bit 1 are set, the secondary defect map is replaced.

 o For an extended surface analysis, the disk should first be formatted by
 calling this function with bit 3 cleared, then analyzed by calling this
 function with bit 3 set.

--
Int 14H [PC] [AT] [PS/2]
Function 00H
Initialize communications port
--

 Initializes a serial communications port to a desired baud rate, parity,
 word length, and number of stop bits.

Call with:

 AH = 00H
 AL = initialization parameter (see Notes)
 DX = communications port number (0 = COM1, 1 = COM2, etc.)

Returns:

 AH = port status

 Bit Significance (if set)
 0 receive data ready
 1 overrun error detected
 2 parity error detected
 3 framing error detected
 4 break detected
 5 transmit holding register empty
 6 transmit shift register empty
 7 timed-out

 AL = modem status

 Bit Significance (if set)
 0 change in clear-to-send status
 1 change in data-set-ready status
 2 trailing edge ring indicator
 3 change in receive line signal detect
 4 clear-to-send
 5 data-set-ready
 6 ring indicator
 7 receive line signal detect

Notes:

 o The initialization parameter byte is defined as follows:

 7 6 5 4 3 2 1 0
 Baud rate Parity Stop bits Word length
 --
 000 = 110 X0 = none 0 = 1 bit 10 = 7 bits
 001 = 150 01 = odd 1 = 2 bits 11 = 8 bits
 010 = 300 11 = even
 011 = 600
 100 = 1200
 101 = 2400
 110 = 4800
 111 = 9600
 --

 o To initialize the serial port for data rates greater than 9600 baud on
 PS/2 machines, see Int 14H Functions 04H and 05H.

--
Int 14H [PC] [AT] [PS/2]
Function 01H
Write character to communications port
--

 Writes a character to the specified serial communications port, returning
 the current status of the port.

Call with:

 AH = 01H
 AL = character
 DX = communications port number (0 = COM1, 1 = COM2, etc.)

Returns:

 If function successful

 AH bit 7 = 0
 AH bits = port status
 0-6
 Bit Significance (if set)
 0 receive data ready
 1 overrun error detected
 2 parity error detected
 3 framing error detected

 4 break detected
 5 transmit holding register empty
 6 transmit shift register empty

 AL = character (unchanged)

 If function unsuccessful (timed-out)

 AH bit 7 = 1
 AL = character (unchanged)

--
Int 14H [PC] [AT] [PS/2]
Function 02H
Read character from communications port
--

 Reads a character from the specified serial communications port, also
 returning the port's status.

Call with:

 AH = 02H
 DX = communications port number (0 = COM1, 1 = COM2, etc.)

Returns:

 If function successful

 AH bit 7 = 0
 AH bits 0-6 = status

 Bit Significance (if set)
 1 overrun error detected
 2 parity error detected
 3 framing error detected
 4 break detected

 AL = character

 If function unsuccessful (timed-out)

 AH bit 7 = 1

--
Int 14H [PC] [AT] [PS/2]
Function 03H
Get communications port status
--

 Returns the status of the specified serial communications port.

Call with:

 AH = 03H
 DX = communications port number (0 = COM1, 1 = COM2, etc.)

Returns:

 AH = port status (see Int 14H Function 00H)
 AL = modem status (see Int 14H Function 00H)

--
Int 14H [PS/2]
Function 04H
Extended initialize communications port
--

 Initializes a serial communications port to a desired baud rate, parity,
 word length, and number of stop bits. Provides a superset of Int 14H
 Function 00H capabilities for PS/2 machines.

Call with:

 AH = 04H
 AL = break flag

 00H no break
 01H break

 BH = parity

 00H none
 01H odd
 02H even
 03H stick parity odd
 04H stick parity even

 BL = stop bits

 00H 1 stop bit
 01H 2 stop bits if word length = 6-8 bits
 01H 1.5 stop bits if word length = 5 bits

 CH = word length

 00H 5 bits
 01H 6 bits
 02H 7 bits
 03H 8 bits

 CL = baud rate

 00H 110 baud
 01H 150 baud
 02H 300 baud
 03H 600 baud
 04H 1200 baud
 05H 2400 baud
 06H 4800 baud
 07H 9600 baud
 08H 19,200 baud

 DX = communications port number (0 = COM1, 1 = COM2, etc.)

Returns:

 AH = port status (see Int 14H Function 00H)
 AL = modem status (see Int 14H Function 00H)

--
Int 14H [PS/2]
Function 05H
Extended communications port control
--

 Reads or sets the modem control register (MCR) for the specified serial
 communications port.

Call with:

 AH = 05H
 AL = subfunction

 00H to read modem control register
 01H to write modem control register

 BL = modem control register contents (if AL = 01H)

 Bit(s) Significance
 0 data-terminal ready
 1 request-to-send
 2 Out1
 3 Out2
 4 loop (for testing)
 5-7 reserved

 DX = communications port number (0 = COM1, 1 = COM2, etc.)

Returns:

 If called with AL = 00H

 BL = modem control register contents (see above)

 If called with AL = 01H

 AH = port status (see Int 14H Function 00H)
 AL = modem status (see Int 14H Function 00H)

--
Int 15H [PC]
Function 00H
Turn on cassette motor
--

 Turns on the motor of the cassette tape drive.

Call with:

 AH = 00H

Returns:

 If function successful

 Carry flag = clear

 If function unsuccessful

 Carry flag = set

 AH = status

 86H if cassette not present

Note:

 o This function is available only on the PC and the PCjr. It is not
 supported on the PC/XT and all subsequent models.

--
Int 15H [PC]
Function 01H
Turn off cassette motor
--

 Turns off the motor of the cassette tape drive.

Call with:

 AH = 01H

Returns:

 If function successful

 Carry flag = clear

 If function unsuccessful

 Carry flag = set
 AH = status

 86H if cassette not present

Note:

 o This function is available only on the PC and the PCjr. It is not
 supported on the PC/XT and all subsequent models.

--
Int 15H [PC]
Function 02H
Read cassette
--

 Reads one or more 256-byte blocks of data from the cassette tape drive to
 memory.

Call with:

 AH = 02H
 CX = number of bytes to read
 ES:BX = segment:offset of buffer

Returns:

 If function successful

 Carry flag = clear
 DX = number of bytes actually read
 ES:BX = segment:offset + 1 of last byte read

 If function unsuccessful

 Carry flag = set
 AH = status

 01H if CRC error
 02H if bit signals scrambled
 04H if no data found
 80H if invalid command
 86H if cassette not present

Note:

 o This function is available only on the PC and on the PCjr. It is not
 supported on the PC/XT and all subsequent models.

--
Int 15H [PC]
Function 03H
Write cassette
--

 Writes one or more 256-byte blocks of data from memory to the cassette
 tape drive.

Call with:

 AH = 03H
 CX = number of bytes to write
 ES:BX = segment:offset of buffer

Returns:

 If function successful

 Carry flag = clear
 CX = 00H
 ES:BX = segment:offset + 1 of last byte written

 If function unsuccessful

 Carry flag = set
 AH = status

 80H if invalid command
 86H if cassette not present

Note:

 o This function is available only on the PC and on the PCjr. It is not
 supported on the PC/XT and all subsequent models.

--
Int 15H [PS/2]
Function 0FH (15)
Format ESDI drive periodic interrupt
--

 Invoked by the ROM BIOS on the ESDI Fixed Disk Drive Adapter/A during a
 format or surface analysis operation after each cylinder is completed.

Call with:

 AH = 0FH
 AL = phase code
 0 = reserved
 1 = surface analysis
 2 = formatting

Returns:

 If formatting or analysis should continue

 Carry flag = clear

 If formatting or analysis should be terminated

 Carry flag = set

Notes:

 o This function call can be captured by a program so that it will be
 notified as each cylinder is formatted or analyzed. The program can
 count interrupts for each phase to determine the current cylinder
 number.

 o The default ROM BIOS handler for this function returns with the carry
 flag set.

--
Int 15H [PS/2]
Function 21H (33) Subfunction 00H
Read POST error log
--

 Returns error information that was accumulated during the most recent
 power-on self-test (POST).

Call with:

 AH = 21H
 AL = 00H

Returns:

 If function successful

 Carry flag = clear
 AH = 00H
 BX = number of POST error codes stored
 ES:DI = segment:offset of POST error log

 If function unsuccessful

 Carry flag = set
 AH = status

 80H = invalid command
 86H = function not supported

Notes:

 o The error log consists of single-word entries. The first byte of an
 entry is the device error code, and the second is the device identifier.

 o This function is not available on the PS/2 Models 25 and 30.

--
Int 15H [PS/2]
Function 21H (33) Subfunction 01H
Write POST error log
--

 Adds an entry to the power-on self-test (POST) error log.

Call with:

 AH = 21H
 AL = 01H
 BH = device identifier
 BL = device error code

Returns:

 If function successful

 Carry flag = clear
 AH = 00H

 If function unsuccessful

 Carry flag = set
 AH = status

 01H = error list full
 80H = invalid command
 86H = function not supported

Note:

 o This function is not available on the PS/2 Models 25 and 30.

--
Int 15H [PS/2]
Function 4FH (79)
Keyboard intercept
--

 Invoked for each keystroke by the ROM BIOS's Int 09H keyboard interrupt
 handler.

Call with:

 AH = 4FH
 AL = scan code

Returns:

 If scan code consumed

 Carry flag = clear

 If scan code not consumed

 Carry flag = set
 AL = unchanged or new scan code

Notes:

 o An operating system or a resident utility can capture this function to
 filter the raw keyboard data stream. The new handler can substitute a
 new scan code, return the same scan code, or return the carry flag clear
 causing the keystroke to be discarded. The default ROM BIOS routine
 simply returns the scan code unchanged.

 o A program can call Int 15H Function C0H to determine whether the host
 machine's ROM BIOS supports this keyboard intercept.

--
Int 15H [AT] [PS/2]
Function 80H (128)
Device open
--

 Acquires ownership of a logical device for a process.

Call with:

 AH = 80H
 BX = device ID
 CX = process ID

Returns:

 If function successful

 Carry flag = clear
 AH = 00H

 If function unsuccessful

 Carry flag = set
 AH = status

Note:

 o This function call, along with Int 15H Functions 81H and 82H, defines
 a simple protocol that can be used to arbitrate usage of devices by
 multiple processes. A multitasking program manager would be expected to
 capture Int 15H and provide the appropriate service. The default BIOS
 routine for this function simply returns with the carry flag clear and
 AH = 00H.

--
Int 15H [AT] [PS/2]
Function 81H (129)
Device close
--

 Releases ownership of a logical device for a process.

Call with:

 AH = 81H
 BX = device ID
 CX = process ID

Returns:

 If function successful

 Carry flag = clear
 AH = 00H

 If function unsuccessful

 Carry flag = set
 AH = status

Note:

 o A multitasking program manager would be expected to capture Int 15H and
 provide the appropriate service. The default BIOS routine for this
 function simply returns with the carry flag clear and AH = 00H. See also
 Int 15H Functions 80H and 82H.

--
Int 15H [AT] [PS/2]
Function 82H (130)
Process termination
--

 Releases ownership of all logical devices for a process that is about to
 terminate.

Call with:

 AH = 82H
 BX = process ID

Returns:

 If function successful

 Carry flag = clear
 AH = 00H

 If function unsuccessful

 Carry flag = set
 AH = status

Note:

 o A multitasking program manager would be expected to capture Int 15H and
 provide the appropriate service. The default BIOS routine for this
 function simply returns with the carry flag clear and AH = 00H. See also
 Int 15H Functions 80H and 81H.

--
Int 15H [AT] [PS/2]
Function 83H (131)
Event wait
--

 Requests setting of a semaphore after a specified interval or cancels a
 previous request.

Call with:

 If requesting event wait

 AH = 83H
 AL = 00H
 CX:DX = microseconds
 ES:BX = segment:offset of semaphore byte

 If canceling event wait

 AH = 83H
 AL = 01H

Returns:

 If called with AL = 00H, and function successful

 Carry flag = clear

 If called with AL = 00H, and function unsuccessful (Event Wait already
 active)

 Carry flag = set

 If called with AL = 01H

 Nothing

Notes:

 o The function call returns immediately. If the function is successful,
 bit 7 of the semaphore byte is set when the specified interval has
 elapsed. The calling program is responsible for clearing the semaphore
 before requesting this function.

 o The actual duration of an event wait is always an integral multiple of
 976 microseconds. The CMOS date/clock chip interrupts are used to
 implement this function.

 o Use of this function allows programmed, hardware-independent delays at a
 finer resolution than can be obtained through use of the MS-DOS Get Time
 function (Int 21H Function 2CH, which returns time in hundredths of a
 second).

 o See also Int 15H Function 86H, which suspends the calling program for
 the specified interval in milliseconds.

 o This function is not supported on the PS/2 Models 25 and 30.

--
Int 15H [AT] [PS/2]
Function 84H (132)
Read joystick
--

 Returns the joystick switch settings and potentiometer values.

Call with:

 AH = 84H
 DX = subfunction

 00H to read switch settings
 01H to read resistive inputs

Returns:

 If function successful

 Carry flag = clear

 and, if called with DX = 00H

 AL = switch settings (bits 4-7)

 or, if called with DX = 01H

 AX = A(x) value
 BX = A(y) value

 CX = B(x) value
 DX = B(y) value

 If function unsuccessful

 Carry flag = set

Notes:

 o An error condition is returned if DX does not contain a valid
 subfunction number.

 o If no game adapter is installed, AL is returned as 00H for Subfunction
 00H (i.e., all switches open); AX, BX, CX, and DX are returned
 containing 00H for Subfunction 01H.

 o Using a 250 KOhm joystick, the potentiometer values usually lie within
 the srange 0-416 (0000-01A0H).

--
Int 15H [AT] [PS/2]
Function 85H (133)
SysReq key
--

 Invoked by the ROM BIOS keyboard driver when the SysReq key is detected.

Call with:

 AH = 85H
 AL = key status

 00H if key make (depression)
 01H if key break (release)

Returns:

 If function successful

 Carry flag = clear
 AH = 00H

 If function unsuccessful

 Carry flag = set
 AH = status

Note:

 o The ROM BIOS handler for this function call is a dummy routine that
 always returns a success status unless called with an invalid
 subfunction number in AL. A multitasking program manager would be
 expected to capture Int 15H so that it can be notified when the user
 strikes the SysReq key.

--
Int 15H [AT] [PS/2]

Function 86H (134)
Delay
--

 Suspends the calling program for a specified interval in microseconds.

Call with:

 AH = 86H
 CX:DX = microseconds to wait

Returns:

 If function successful (wait was performed)

 Carry flag = clear

 If function unsuccessful (wait was not performed)

 Carry flag = set

Notes:

 o The actual duration of the wait is always an integral multiple of 976
 microseconds.

 o Use of this function allows programmed, hardware-independent delays at a
 finer resolution than can be obtained through use of the MS-DOS Get Time
 function (Int 21H Function 2CH, which returns time in hundredths of a
 second).

 o See also Int 15H Function 83H, which triggers a semaphore after a
 specified interval but does not suspend the calling program.

--
Int 15H [AT] [PS/2]
Function 87H (135)
Move extended memory block
--

 Transfers data between conventional memory and extended memory.

Call with:

 AH = 87H
 CX = number of words to move
 ES:SI = segment:offset of Global Descriptor Table (see Notes)

Returns:

 If function successful

 Carry flag = clear
 AH = 00H

 If function unsuccessful

 Carry flag = set

 AH = status

 01H if RAM parity error
 02H if exception interrupt error
 03H if gate address line 20 failed

Notes:

 o Conventional memory lies at addresses below the 640 KB boundary, and is
 used for the execution of MS-DOS and its application programs. Extended
 memory lies at addresses above 1 MB, and can only be accessed by an
 80286 or 80386 CPU running in protected mode. As much as 15 MB of
 extended memory can be installed in an IBM PC/AT or compatible.

 o The Global Descriptor Table (GDT) used by this function must be set up
 as follows:

 Byte(s) Contents
 --
 00H-0FH reserved (should be 0)
 10H-11H segment length in bytes (2*CX - 1 or greater)
 12H-14H 24-bit source address
 15H access rights byte (always 93H)
 16H-17H reserved (should be 0)
 18H-19H segment length in bytes (2*CX - 1 or greater)
 1AH-1CH 24-bit destination address
 1DH access rights byte (always 93H)
 1EH-2FH reserved (should be 0)
 --

 The table is composed of six 8-byte descriptors to be used by the CPU in
 protected mode. The four descriptors in offsets 00H-0FH and 20H-2FH are
 filled in by the ROM BIOS before the CPU mode switch.

 o The addresses used in the descriptor table are linear (physical) 24-bit
 addresses in the range 000000H-FFFFFFH--not segments and offsets--with
 the least significant byte at the lowest address and the most
 significant byte at the highest address.

 o The block move is performed with interrupts disabled; thus, use of this
 function may interfere with the operation of communications programs,
 network drivers, or other software that relies on prompt servicing of
 hardware interrupts.

 o Programs and drivers that access extended memory with this function
 cannot be executed in the Compatibility Environment of OS/2.

 o This function is not supported on the PS/2 Models 25 and 30.

--
Int 15H [AT] [PS/2]
Function 88H (136)
Get extended memory size
--

 Returns the amount of extended memory installed in the system.

Call with:

 AH = 88H

Returns:

 AX = amount of extended memory (in KB)

Notes:

 o Extended memory is memory at addresses above 1 MB, which can only be
 accessed by an 80286 or 80386 CPU running in protected mode. Because
 MS-DOS is a real-mode operating system, extended memory can be used for
 storage of volatile data but cannot be used for execution of programs.

 o Programs and drivers that use this function cannot be executed in the
 Compatibility Environment of OS/2.

 o This function is not supported on the PS/2 Models 25 and 30.

--
Int 15H [AT] [PS/2]
Function 89H (137)
Enter protected mode
--

 Switches the CPU from real mode into protected mode.

Call with:

 AH = 89H
 BH = interrupt number for IRQ0, written to ICW2 of 8259 PIC #1
 (must be evenly divisible by 8, determines IRQ0-IRQ7)
 BL = interrupt number for IRQ8, written to ICW2 of 8259 PIC #2
 (must be evenly divisible by 8, determines IRQ8-IRQ15)
 ES:SI = segment:offset of Global Descriptor Table (GDT)

Returns:

 If function successful (CPU is in protected mode)

 Carry flag = clear
 AH = 00H
 CS = user-defined selector
 DS = user-defined selector
 ES = user-defined selector
 SS = user-defined selector

 If function unsuccessful (CPU is in real mode)

 Carry flag = set
 AH = FFH

Notes:

 o The Global Descriptor Table must contain eight descriptors set up as
 follows:

 Offset Descriptor usage

 --
 00H dummy descriptor (initialized to 0)
 08H Global Descriptor Table (GDT)
 10H Interrupt Descriptor Table (IDT)
 18H user's data segment (DS)
 20H user's extra segment (ES)
 28H user's stack segment (SS)
 30H user's code segment (CS)
 38H BIOS code segment
 --

 The user must initialize the first seven descriptors; the eighth is
 filled in by the ROM BIOS to provide addressability for its own
 execution. The calling program may modify and use the eighth descriptor
 for any purpose after return from this function call.

 o This function is not supported on the PS/2 Models 25 and 30.

--
Int 15H [AT] [PS/2]
Function 90H (144)
Device wait
--

 Invoked by the ROM BIOS fixed disk, floppy disk, printer, network, and
 keyboard drivers prior to performing a programmed wait for I/O completion.

Call with:

 AH = 90H
 AL = device type

 00H-7FH serially reusable devices
 80H-BFH reentrant devices
 C0H-FFH wait-only calls, no corresponding Post function

 ES:BX = segment:offset of request block for device types 80H-FFH

Returns:

 If no wait (driver must perform its own time-out)

 Carry flag = clear
 AH = 00H

 If wait was performed

 Carry flag = set

Notes:

 o Predefined device types are:

 00H disk (may time-out)
 01H floppy disk (may time-out)
 02H keyboard (no time-out)
 03H pointing device (PS/2, may time-out)
 80H network (no time-out)

 FCH fixed disk reset (PS/2, may time-out)
 FDH floppy disk drive motor start (may time-out)
 FEH printer (may time-out)

 o For network adapters, ES:BX points to a network control block (NCB).

 o A multitasking program manager would be expected to capture Int 15H
 Function 90H so that it can dispatch other tasks while I/O is in
 progress. The default BIOS routine for this function simply returns with
 the carry flag clear and AH = 00H.

--
Int 15H [AT] [PS/2]
Function 91H (145)
Device post
--

 Invoked by the ROM BIOS fixed disk, floppy disk, network, and keyboard
 drivers to signal that I/O is complete and/or the device is ready.

Call with:

 AH = 91H
 AL = device type

 00H-7FH serially reusable devices
 80H-BFH reentrant devices

 ES:BX = segment:offset of request block for device types 80H-BFH

Returns:

 AH = 00H

Notes:

 o Predefined device types that may use Device Post are:

 00H disk (may time-out)
 01H floppy disk (may time-out)
 02H keyboard (no time-out)
 03H pointing device (PS/2, may time-out)
 80H network (no time-out)

 o The ROM BIOS printer routine does not invoke this function because
 printer output is not interrupt driven.

 o A multitasking program manager would be expected to capture Int 15H
 Function 91H so that it can be notified when I/O is completed and
 awaken the requesting task. The default BIOS routine for this function
 simply returns with the carry flag clear and AH = 00H.

--
Int 15H [AT] [PS/2]
Function C0H (192)
Get system environment
--

 Returns a pointer to a table containing various information about the
 system configuration.

Call with:

 AH = C0H

Returns:

 ES:BX = segment:offset of configuration table (see Notes)

Notes:

 o The format of the system configuration table is as follows:

 Byte(s) Contents
 --
 00H-01H length of table in bytes
 02H system model (see following Note)
 03H system submodel (see following Note)
 04H BIOS revision level
 05H configuration flags

 Bit Significance (if set)
 0 reserved
 1 Micro Channel implemented
 2 extended BIOS data area allocated
 3 Wait for External Event is available
 4 keyboard intercept (Int 15H Function
 4FH) available
 5 real-time clock available
 6 slave 8259 present (cascaded IRQ2)
 7 DMA channel 3 used
 06H-09H reserved
 --

 o The system model and type bytes are assigned as follows:

 Machine Model byte Submodel byte
 --
 PC FFH
 PC/XT FEH
 PC/XT FBH 00H or 01H
 PCjr FDH
 PC/AT FCH 00H or 01H
 PC/XT-286 FCH 02H
 PC Convertible F9H
 PS/2 Model 30 FAH 00H
 PS/2 Model 50 FCH 04H
 PS/2 Model 60 FCH 05H
 PS/2 Model 70 F8H 04H or 09H
 PS/2 Model 80 F8H 00H or 01H
 --

--
Int 15H [PS/2]
Function C1H (193)

Get address of extended BIOS data area
--

 Returns the segment address of the base of the extended BIOS data area.

Call with:

 AH = C1H

Returns:

 If function successful

 Carry flag = clear
 ES = segment of extended BIOS data area

 If function unsuccessful

 Carry flag = set

Notes:

 o The extended BIOS data area is allocated at the high end of conventional
 memory during the POST (Power-On-Self-Test) sequence. The word at
 0040:0013H (memory size) is updated to reflect the reduced amount of
 memory available for MS-DOS and application programs. The first byte in
 the extended BIOS data area is initialized to its length in KB.

 o A program can determine whether the extended BIOS data area exists with
 Int 15H Function C0H.

--
Int 15H [PS/2]
Function C2H (194) Subfunction 00H
Enable/disable pointing device
--

 Enables or disables the system's mouse or other pointing device.

Call with:

 AH = C2H
 AL = 00H
 BH = enable/disable flag

 00H = disable
 01H = enable

Returns:

 If function successful

 Carry flag = clear
 AH = 00H

 If function unsuccessful

 Carry flag = set

 AH = status

 01H if invalid function call
 02H if invalid input
 03H if interface error
 04H if resend
 05H if no far call installed

--
Int 15H [PS/2]
Function C2H (194) Subfunction 01H
Reset pointing device
--

 Resets the system's mouse or other pointing device, setting the sample
 rate, resolution, and other characteristics to their default values.

Call with:

 AH = C2H
 AL = 01H

Returns:

 If function successful

 Carry flag = clear
 AH = 00H
 BH = device ID

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 15H Function C2H Subfunction 00H)

Notes:

 o After a reset operation, the state of the pointing device is as follows:

 disabled;�

 sample rate at 100 reports per second;�

 resolution at 4 counts per millimeter;�

 and scaling at 1 to 1.�

 The data package size is unchanged by this function.

 o The application can use the other Int 15H Function C2H subfunctions to
 initialize the pointing device to other sample rates, resolution, and
 scaling, and then enable the device with Int 15H Function C2H
 Subfunction 00H.

 o See also Int 15H Function C2H Subfunction 05H, which incidentally
 resets the pointing device in a similar manner.

--
Int 15H [PS/2]
Function C2H (194) Subfunction 02H
Set sample rate
--

 Sets the sampling rate of the system's mouse or other pointing device.

Call with:

 AH = C2H
 AL = 02H
 BH = sample rate value

 00H = 10 reports per second
 01H = 20 reports per second
 02H = 40 reports per second
 03H = 60 reports per second
 04H = 80 reports per second
 05H = 100 reports per second
 06H = 200 reports per second

Returns:

 If function successful

 Carry flag = clear
 AH = 00H

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 15H Function C2H Subfunction 00H)

Note:

 o The default sample rate is 100 reports per second after a reset
 operation (Int 15H Function C2H Subfunction 01H).

--
Int 15H [PS/2]
Function C2H (194) Subfunction 03H
Set resolution
--

 Sets the resolution of the system's mouse or other pointing device.

Call with:

 AH = C2H
 AL = 03H
 BH = resolution value

 00H = 1 count per millimeter
 01H = 2 counts per millimeter
 02H = 4 counts per millimeter
 03H = 8 counts per millimeter

Returns:

 If function successful

 Carry flag = clear
 AH = 00H

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 15H Function C2H Subfunction 00H)

Note:

 o The default resolution is 4 counts per millimeter after a reset
 operation (Int 15H Function C2H Subfunction 01H).

--
Int 15H [PS/2]
Function C2H (194) Subfunction 04H
Get pointing device type
--

 Returns the identification code for the system's mouse or other pointing
 device.

Call with:

 AH = C2H
 AL = 04H

Returns:

 If function successful

 Carry flag = clear
 AH = 00H
 BH = device ID

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 15H Function C2H Subfunction 00H)

--
Int 15H [PS/2]
Function C2H (194) Subfunction 05H
Initialize pointing device interface
--

 Sets the data package size for the system's mouse or other pointing
 device, and initializes the resolution, sampling rate, and scaling to
 their default values.

Call with:

 AH = C2H

 AL = 05H
 BH = data package size in bytes (1-8)

Returns:

 If function successful

 Carry flag = clear
 AH = 00H

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 15H Function C2H Subfunction 00H)

Note:

 o After this operation, the state of the pointing device is as follows:

 disabled;�

 sample rate at 100 reports per second;�

 resolution at 4 counts per millimeter;�

 and scaling at 1 to 1.�

--
Int 15H [PS/2]
Function C2H (194) Subfunction 06H
Set scaling or get status
--

 Returns the current status of the system's mouse or other pointing device
 or sets the device's scaling factor.

Call with:

 AH = C2H
 AL = 06H
 BH = extended command

 00H = return device status
 01H = set scaling at 1:1
 02H = set scaling at 2:1

Returns:

 If function successful

 Carry flag = clear
 AH = 00H

 and, if called with BH = 00H

 BL = status byte

 Bit Significance

 0 = 1 if right button pressed
 1 = reserved
 2 = 1 if left button pressed
 3 = reserved
 4 = 0 if 1:1 scaling
 1 if 2:1 scaling
 5 = 0 if device disabled
 1 if device enabled
 6 = 0 if stream mode
 1 if remote mode
 7 = reserved

 CL = resolution

 00H = 1 count per millimeter
 01H = 2 counts per millimeter
 02H = 4 counts per millimeter
 03H = 8 counts per millimeter

 DL = sample rate

 0AH = 10 reports per second
 14H = 20 reports per second
 28H = 40 reports per second
 3CH = 60 reports per second
 50H = 80 reports per second
 64H = 100 reports per second
 C8H = 200 reports per second

 If function unsuccessful

 Carry flag = set
 AH = status (see Int 15H Function C2H Subfunction 00H)

--
Int 15H [PS/2]
Function C2H (194) Subfunction 07H
Set pointing device handler address
--

 Notifies the ROM BIOS pointing device driver of the address for a routine
 to be called each time pointing device data is available.

Call with:

 AH = C2H
 AL = 07H
 ES:BX = segment:offset of user routine

Returns:

 If function successful

 Carry flag = clear

 If function unsuccessful

 Carry flag = set

 AH = status (see Int 15H Function C2H Subfunction 00H)

Notes:

 o The user's handler for pointing device data is entered via a far call
 with four parameters on the stack:

 SS:SP+0AH status
 SS:SP+08H x coordinate
 SS:SP+06H y coordinate
 SS:SP+04H z coordinate (always 0)

 The handler must exit via a far return without removing the parameters
 from the stack.

 o The status parameter passed to the user's handler is interpreted as
 follows:

 Bit(s) Significance (if set)
 --
 0 left button pressed
 1 right button pressed
 2-3 reserved
 4 sign of x data is negative
 5 sign of y data is negative
 6 x data has overflowed
 7 y data has overflowed
 8-15 reserved
 --

--
Int 15H [PS/2]
Function C3H (195)
Set watchdog time-out
--

 Enables or disables a watchdog timer.

Call with:

 AH = C3H
 AL = subfunction

 00H to disable watchdog time-out
 01H to enable watchdog time-out

 BX = watchdog timer counter (if AL = 01H)

Returns:

 If function successful

 Carry flag = clear

 If function unsuccessful

 Carry flag = set

Notes:

 o The watchdog timer generates an NMI interrupt.

 o This function is not available on the PS/2 Models 25 and 30.

--
Int 15H [PS/2]
Function C4H (196)
Programmable option select
--

 Returns the base Programmable Option Select register address, enables a
 slot for setup, or enables an adapter.

Call with:

 AH = C4H
 AL = subfunction

 00H to return base POS adapter register address
 01H to enable slot
 02H to enable adapter

 BL = slot number (if AL = 01H)

Returns:

 If function successful

 Carry flag = clear

 and, if called with AL = 00H

 DX = base POS adapter register address

 If function unsuccessful

 Carry flag = set

Notes:

 o This function is available only on machines using the Micro Channel
 Architecture (MCA) bus.

 o After a slot is enabled with Subfunction 01H, specific information can
 be obtained for the adapter in that slot by performing port input
 operations:

 Port Function
 100H MCA ID (low byte)
 101H MCA ID (high byte)
 102H Option Select Byte 1
 bit 0 = 1 if enabled, = 0 if disabled
 103H Option Select Byte 2
 104H Option Select Byte 3
 105H Option Select Byte 4
 bits 6-7 = channel check indicators

 106H Subaddress Extension (low byte)
 107H Subaddress Extension (high byte)

--
Int 16H [PC] [AT] [PS/2]
Function 00H
Read character from keyboard
--

 Reads a character from the keyboard, also returning the keyboard scan
 code.

Call with:

 AH = 00H

Returns:

 AH = keyboard scan code
 AL = ASCII character

--
Int 16H [PC] [AT] [PS/2]
Function 01H
Get keyboard status
--

 Determines whether a character is ready for input, returning a flag and
 also the character itself, if one is waiting.

Call with:

 AH = 01H

Returns:

 If key waiting to be input

 Zero flag = clear
 AH = keyboard scan code
 AL = character

 If no key waiting

 Zero flag = set

Note:

 o The character returned by this function when the zero flag is clear is
 not removed from the type-ahead buffer. The same character and scan code
 will be returned by the next call to Int 16H Function 00H.

--
Int 16H [PC] [AT] [PS/2]
Function 02H
Get keyboard flags

--

 Returns the ROM BIOS flags byte that describes the state of the various
 keyboard toggles and shift keys.

Call with:

 AH = 02H

Returns:

 AL = flags
 Bit Significance (if set)
 0 right Shift key is down
 1 left Shift key is down
 2 Ctrl key is down
 3 Alt key is down
 4 Scroll Lock on
 5 Num Lock on
 6 Caps Lock on
 7 Insert on

Note:

 o The keyboard flags byte is stored in the ROM BIOS data area at
 0000:0417H.

--
Int 16H [PC] [AT] [PS/2]
Function 03H
Set repeat rate
--

 Sets the ROM BIOS key repeat ("typematic") rate and delay.

Call with:

 On the PC/AT and PS/2

 AH = 03H
 AL = 05H
 BH = repeat delay (see Notes)
 BL = repeat rate (see Notes)

 On the PCjr

 AH = 03H
 AL = subfunction

 00H to restore default rate and delay
 01H to increase initial delay
 02H to decrease repeat rate by one-half
 03H to increase delay and decrease repeat rate by
 one-half
 04H to turn off keyboard repeat

Returns:

 Nothing

Notes:

 o Subfunctions 00H-04H are available on the PCjr but are not supported by
 the PC or PC/XT ROM BIOS. Subfunction 05H is available on PC/ATs with
 ROM BIOS's dated 11/15/85 and later, and on the PS/2.

 o On the PC/AT and PS/2, the value in BH controls the amount of delay
 before the first repeat key is generated. The delay is always a multiple
 of 250 milliseconds:

 Value Delay (msec.)
 00H 250
 01H 500
 02H 750
 03H 1000

 o On the PC/AT and PS/2, the value for the repeat rate in characters per
 second can be chosen from the following table:

 Value Repeat rate (characters per second)
 00H 30.0
 01H 26.7
 02H 24.0
 03H 21.8
 04H 20.0
 05H 18.5
 06H 17.1
 07H 16.0
 08H 15.0
 09H 13.3
 0AH 12.0
 0BH 10.9
 0CH 10.0
 0DH 9.2
 0EH 8.6
 0FH 8.0
 10H 7.5
 11H 6.7
 12H 6.0
 13H 5.5
 14H 5.0
 15H 4.6
 16H 4.3
 17H 4.0
 18H 3.7
 19H 3.3
 1AH 3.0
 1BH 2.7
 1CH 2.5
 1DH 2.3
 1EH 2.1
 1FH 2.0

--
Int 16H [PC]
Function 04H

Set keyclick
--

 Turns the keyboard click on or off.

Call with:

 AH = 04H
 AL = subfunction

 00H to turn off keyboard click
 01H to turn on keyboard click

Returns:

 Nothing

Note:

 o This function is supported by the PCjr BIOS only.

--
Int 16H [AT] [PS/2]
Function 05H
Push character and scan code
--

 Places a character and scan code in the keyboard type-ahead buffer.

Call with:

 AH = 05H
 CH = scan code
 CL = character

Returns:

 If function successful

 Carry flag = clear
 AL = 00H

 If function unsuccessful (type-ahead buffer is full)

 Carry flag = set
 AL = 01H

Note:

 o This function can be used by keyboard enhancers and other utilities to
 interpolate keys into the data stream seen by application programs.

--
Int 16H [AT] [PS/2]
Function 10H (16)
Read character from enhanced keyboard
--

 Reads a character and scan code from the keyboard type-ahead buffer.

Call with:

 AH = 10H

Returns:

 AH = keyboard scan code
 AL = ASCII character

Note:

 o Use this function for the enhanced keyboard instead of Int 16H Function
 00H. It allows applications to obtain the scan codes for the additional
 F11, F12, and cursor control keys.

--
Int 16H [AT] [PS/2]
Function 11H (17)
Get enhanced keyboard status
--

 Determines whether a character is ready for input, returning a flag and
 also the character itself, if one is waiting.

Call with:

 AH = 11H

Returns:

 If key waiting to be input

 Zero flag = clear
 AH = keyboard scan code
 AL = character

 If no key waiting

 Zero flag = set

Notes:

 o Use this function for the enhanced keyboard instead of Int 16H Function
 00H. It allows applications to test for the additional F11, F12, and
 cursor control keys.

 o The character returned by this function when the zero flag is clear is
 not removed from the type-ahead buffer. The same character and scan code
 will be returned by the next call to Int 16H Function 10H.

--
Int 16H [AT] [PS/2]
Function 12H (18)
Get enhanced keyboard flags

--

 Obtains the status of various enhanced keyboard special keys and keyboard
 driver states.

Call with:

 AH = 12H

Returns:

 AX = flags

 Bit Significance (if set)
 0 right Shift key is down
 1 left Shift key is down
 2 either Ctrl key is down
 3 either Alt key is down
 4 Scroll Lock toggle is on
 5 Num Lock toggle is on
 6 Caps Lock toggle is on
 7 Insert toggle is on
 8 left Ctrl key is down
 9 left Alt key is down
 10 right Ctrl key is down
 11 right Alt key is down
 12 Scroll key is down
 13 Num Lock key is down
 14 Caps Lock key is down
 15 SysReq key is down

Note:

 o Use this function for the enhanced keyboard instead of Int 16H Function
 02H.

--
Int 17H [PC] [AT] [PS/2]
Function 00H
Write character to printer
--

 Sends a character to the specified parallel printer interface port and
 returns the current status of the port.

Call with:

 AH = 00H
 AL = character
 DX = printer number (0 = LPT1, 1 = LPT2, 2 = LPT3)

Returns:

 AH = status

 Bit Significance (if set)
 0 printer timed-out
 1 unused

 2 unused
 3 I/O error
 4 printer selected
 5 out of paper
 6 printer acknowledge
 7 printer not busy

--
Int 17H [PC] [AT] [PS/2]
Function 01H
Initialize printer port
--

 Initializes the specified parallel printer interface port and returns its
 status.

Call with:

 AH = 01H
 DX = printer number (0 = LPT1, 1 = LPT2, 2 = LPT3)

Returns:

 AH = status (see Int 17H Function 00H)

--
Int 17H [PC] [AT] [PS/2]
Function 02H
Get printer status
--

 Returns the current status of the specified parallel printer interface
 port.

Call with:

 AH = 02H
 DX = printer number (0 = LPT1, 1 = LPT2, 2 = LPT3)

Returns:

 AH = status (see Int 17H Function 00H)

--
Int 18H [PC] [AT] [PS/2]
ROM BASIC
--

 Transfers control to ROM BASIC.

Call with:

 Nothing

Returns:

 Nothing

Note:

 o This function is invoked when the system is turned on or restarted if
 attempts to read a boot sector from the fixed disk or floppy disk drives
 are unsuccessful.

--
Int 19H [PC] [AT] [PS/2]
Reboot system
--

 Reboots the operating system from the floppy disk or fixed disk drive.

Call with:

 Nothing

Returns:

 Nothing

Notes:

 o The bootstrap routine reads Sector 1, Track 0 into memory at location
 0000:7C00H and transfers control to the same address. If attempts to
 read a boot sector from the floppy disk or fixed disk are unsuccessful,
 control is transferred to ROM BASIC by execution of an Int 18H.

 o If location 0000:0472H does not contain the value 1234H, a memory test
 will be performed before reading the boot sector.

--
Int 1AH [AT] [PS/2]
Function 00H
Get tick count
--

 Returns the contents of the clock tick counter.

Call with:

 AH = 00H

Returns:

 AL = rolled-over flag

 00H if midnight not passed since last read
 <>00H if midnight was passed since last read

 CX:DX = tick count (high 16 bits in CX)

Notes:

 o This function is supported by the PC/XT and PCjr ROM BIOS, but is not

 present in the ROM BIOS for the original PC.

 o The returned value is the cumulative number of clock ticks since
 midnight. There are 18.2 clock ticks per second. When the counter
 reaches 1,573,040, it is cleared to zero, and the rolled-over flag is
 set.

 o The rolled-over flag is cleared by this function call, so the flag will
 only be returned nonzero once per day.

 o Int 1AH Function 01H can be used to set the clock tick counter to an
 arbitrary 32-bit value.

--
Int 1AH [AT] [PS/2]
Function 01H
Set tick count
--

 Stores a 32-bit value in the clock tick counter.

Call with:

 AH = 01H
 CX:DX = tick count (high 16 bits in CX)

Returns:

 Nothing

Notes:

 o This function is supported by the PC/XT and PCjr ROM BIOS, but is not
 present in the ROM BIOS for the original PC.

 o Int 1AH Function 00H is used to read the value of the clock tick
 counter.

 o The rolled-over flag is cleared by this function call.

--
Int 1AH [AT] [PS/2]
Function 02H
Get time
--

 Reads the current time from the CMOS time/date chip.

Call with:

 AH = 02H

Returns:

 CH = hours in binary coded decimal (BCD)
 CL = minutes in BCD
 DH = seconds in BCD

 DL = daylight-saving-time code

 00H if standard time
 01H if daylight saving time

 and, if clock running

 Carry flag = clear

 or, if clock stopped

 Carry flag = set

--
Int 1AH [AT] [PS/2]
Function 03H
Set time
--

 Sets the time in the CMOS time/date chip.

Call with:

 AH = 03H
 CH = hours in binary coded decimal (BCD)
 CL = minutes in BCD
 DH = seconds in BCD
 DL = daylight-saving-time code

 00H if standard time
 01H if daylight saving time

Returns:

 Nothing

--
Int 1AH [AT] [PS/2]
Function 04H
Get date
--

 Reads the current date from the CMOS time/date chip.

Call with:

 AH = 04H

Returns:

 CH = century (19 or 20) in binary coded decimal (BCD)
 CL = year in BCD
 DH = month in BCD
 DL = day in BCD

 and, if clock running

 Carry flag = clear

 or, if clock stopped

 Carry flag = set

--
Int 1AH [AT] [PS/2]
Function 05H
Set date
--

 Sets the date in the CMOS time/date chip.

Call with:

 AH = 05H
 CH = century (19 or 20) in binary coded decimal (BCD)
 CL = year in BCD
 DH = month in BCD
 DL = day in BCD

Returns:

 Nothing

--
Int 1AH [AT] [PS/2]
Function 06H
Set alarm
--

 Sets an alarm in the CMOS date/time chip.

Call with:

 AH = 06H
 CH = hours in binary coded decimal (BCD)
 CL = minutes in BCD
 DH = seconds in BCD

Returns:

 If function successful

 Carry flag = clear

 If function unsuccessful (alarm already set, or clock stopped)

 Carry flag = set

Notes:

 o A side effect of this function is that the clock chip's interrupt level
 (IRQ8) is enabled.

 o Only one alarm may be active at any given time. The alarm occurs every

 24 hours at the specified time until it is reset with Int 1AH Function
 07H.

 o The program using this function must place the address of its interrupt
 handler for the alarm in the vector for Int 4AH.

--
Int 1AH [AT] [PS/2]
Function 07H
Reset alarm
--

 Cancels any pending alarm request on the CMOS date/time chip.

Call with:

 AH = 07H

Returns:

 Nothing

Note:

 o This function does not disable the clock chip's interrupt level (IRQ8).

--
Int 1AH [PS/2]
Function 0AH (10)
Get day count
--

 Returns the contents of the system's day counter.

Call with:

 AH = 0AH

Returns:

 If function successful

 Carry flag = clear
 CX = count of days since January 1, 1980

 If function unsuccessful

 Carry flag = set

--
Int 1AH [PS/2]
Function 0BH (11)
Set day count
--

 Stores an arbitrary value in the system's day counter.

Call with:

 AH = 0BH
 CX = count of days since January 1, 1980

Returns:

 If function successful

 Carry flag = clear

 If function unsuccessful

 Carry flag = set

--
Int 1AH [PC]
Function 80H (128)
Set sound source
--

 Sets up the source for tones that will appear on the PCjr's "Audio Out" or
 RF modulator.

Call with:

 AH = 80H
 AL = sound source

 00H if 8253 programmable timer, channel 2
 01H if cassette input
 02H if "Audio In" line on I/O channel
 03H if sound generator chip

Returns:

 Nothing

Note:

 o This function is supported on the PCjr only.

--
Int 33H
Microsoft Mouse driver
--

 The Microsoft Mouse driver makes its functions available to application
 programs via Int 33H. These functions have become a de facto standard for
 pointer device drivers of all varieties. Unlike the other function calls
 described in this section, the Microsoft Mouse driver is not part of the
 ROM BIOS but is loaded by a DEVICE= directive in the CONFIG.SYS file. All
 mouse-function information applies to the Microsoft Mouse driver version
 6. Earlier versions of the driver may not support all of these functions.

--
Int 33H
Function 00H
Reset mouse and get status
--

 Initializes the mouse driver and returns the driver status. If the mouse
 pointer was previously visible, it is removed from the screen, and any
 previously installed user handlers for mouse events are disabled.

Call with:

 AX = 0000H

Returns:

 If mouse support is available

 AX = FFFFH
 BX = number of mouse buttons

 If mouse support is not available

 AX = 0000H

Note:

 o After a call to this function, the mouse driver is initialized to the
 following state:

 Mouse pointer at screen center (see Int 33H Functions 03H and 04H)�

 Display page for mouse pointer set to zero (see Int 33H Functions�
 1DH and 1EH)

 Mouse pointer hidden (see Int 33H Functions 01H, 02H, and 10H)�

 Mouse pointer set to default arrow shape in graphics modes, or reverse�
 block in text modes (see Int 33H Functions 09H and 0AH)

 User mouse event handler disabled (see Int 33H Functions 0CH and�
 14H)

 Light pen emulation enabled (see Int 33H Functions 0DH and 0EH)�

 Horizontal mickeys to pixels ratio at 8 to 8, vertical ratio at 16 to�
 8 (see Int 33H Function 0FH)

 Double speed threshold set to 64 mickeys/second (see Int 33H Function�
 19H)

 Minimum and maximum horizontal and vertical pointer position limits�
 set to include the entire screen in the current display mode (see Int
 33H Functions 07H and 08H)

--
Int 33H
Function 01H

Show mouse pointer
--

 Displays the mouse pointer, and cancels any mouse pointer exclusion area
 previously defined with Int 33H Function 10H.

Call with:

 AX = 0001H

Returns:

 Nothing

Note:

 o A counter is maintained which is decremented by calls to Int 33H
 Function 02H (Hide Mouse Pointer) and incremented (if nonzero) by this
 function. When the counter is zero or becomes zero, the mouse pointer is
 displayed. When the mouse driver is reset with Int 33H Function 00H,
 the counter is forced to -1.

--
Int 33H
Function 02H
Hide mouse pointer
--

 Removes the mouse pointer from the display. The driver continues to track
 the mouse position.

Call with:

 AX = 0002H

Returns:

 Nothing

Note:

 o A counter is maintained which is decremented by calls to this function
 and incremented (if nonzero) by Int 33H Function 01H (Show Mouse
 Pointer). When the counter is zero, the mouse pointer is displayed. When
 the mouse driver is reset with Int 33H Function 00H, the counter is
 forced to -1.

--
Int 33H
Function 03H
Get mouse position and button status
--

 Returns the current mouse button status and pointer position.

Call with:

 AX = 0003H

Returns:

 BX = mouse button status

 Bit(s) Significance (if set)
 0 left button is down
 1 right button is down
 2 center button is down
 3-15 reserved (0)

 CX = horizontal (X) coordinate
 DX = vertical (Y) coordinate

Note:

 o Coordinates are returned in pixels regardless of the current display
 mode. Position (x,y) = (0,0) is the upper left corner of the screen.

--
Int 33H
Function 04H
Set mouse pointer position
--

 Sets the position of the mouse pointer. The pointer is displayed at the
 new position unless it has been hidden with Int 33H Function 02H, or the
 new position lies within an exclusion area defined with Int 33H Function
 10H.

Call with:

 AX = 0004H
 CX = horizontal (X) coordinate
 DX = vertical (Y) coordinate

Returns:

 Nothing

Notes:

 o Coordinates are specified in pixels regardless of the current display
 mode. Position (x,y) = (0,0) is the upper left corner of the screen.

 o The position is adjusted if necessary to lie within the horizontal and
 vertical limits specified with a previous call to Int 33H Functions
 07H and 08H.

--
Int 33H
Function 05H
Get button press information
--

 Returns the current status of all mouse buttons, and the number of presses

 and position of the last press for a specified mouse button since the last
 call to this function for that button. The press counter for the button is
 reset to zero.

Call with:

 AX = 0005H
 BX = button identifier

 0 = left button
 1 = right button
 2 = center button

Returns:

 AX = button status

 Bit(s) Significance (if set)
 0 left button is down
 1 right button is down
 2 center button is down
 3-15 reserved (0)

 BX = button press counter
 CX = horizontal (X) coordinate of last button press
 DX = vertical (Y) coordinate of last button press

--
Int 33H
Function 06H
Get button release information
--

 Returns the current status of all mouse buttons, and the number of
 releases and position of the last release for a specified mouse button
 since the last call to this function for that button. The release counter
 for the button is reset to zero.

Call with:

 AX = 0006H
 BX = button identifier

 0 = left button
 1 = right button
 2 = center button

Returns:

 AX = button status

 Bit(s) Significance (if set)
 0 left button is down
 1 right button is down
 2 center button is down
 3-15 reserved (0)

 BX = button release counter

 CX = horizontal (X) coordinate of last button release
 DX = vertical (Y) coordinate of last button release

--
Int 33H
Function 07H
Set horizontal limits for pointer
--

 Limits the mouse pointer display area by assigning minimum and maximum
 horizontal (X) coordinates for the mouse pointer.

Call with:

 AX = 0007H
 CX = minimum horizontal (X) coordinate
 DX = maximum horizontal (X) coordinate

Returns:

 Nothing

Notes:

 o If the minimum value is greater than the maximum value, the two values
 are swapped.

 o The mouse pointer will be moved if necessary so that it lies within the
 specified horizontal coordinates.

 o See also Int 33H Function 10H, which defines an exclusion area for the
 mouse pointer.

--
Int 33H
Function 08H
Set vertical limits for pointer
--

 Limits the mouse pointer display area by assigning minimum and maximum
 vertical (Y) coordinates for the mouse pointer.

Call with:

 AX = 0008H
 CX = minimum vertical (Y) coordinate
 DX = maximum vertical (Y) coordinate

Returns:

 Nothing

Notes:

 o If the minimum value is greater than the maximum value, the two values
 are swapped.

 o The mouse pointer will be moved if necessary so that it lies within the
 specified vertical coordinates.

 o See also Int 33H Function 10H, which defines an exclusion area for the
 mouse pointer.

--
Int 33H
Function 09H
Set graphics pointer shape
--

 Defines the shape, color, and hot spot of the mouse pointer in graphics
 modes.

Call with:

 AX = 0009H
 BX = hot spot offset from left
 CX = hot spot offset from top
 ES:DX = segment:offset of pointer image buffer

Returns:

 Nothing

Notes:

 o The pointer image buffer is 64 bytes long. The first 32 bytes contain a
 bit mask which is ANDed with the screen image, and the second 32 bytes
 contain a bit mask which is XORed with the screen image.

 o The hot spot is relative to the upper left corner of the pointer image,
 and each pixel offset must be in the range -16 through 16. In display
 modes 4 and 5, the horizontal offset must be an even number.

--
Int 33H
Function 0AH (10)
Set text pointer type
--

 Defines the shape and attributes of the mouse pointer in text modes.

Call with:

 AX = 000AH
 BX = pointer type

 0 = software cursor
 1 = hardware cursor

 CX = AND mask value (if BX = 0) or
 starting line for cursor (if BX = 1)
 DX = XOR mask value (if BX = 0) or
 ending line for cursor (if BX = 1)

Returns:

 Nothing

Notes:

 o If the software text cursor is selected (BX = 0), the masks in CX and DX
 are mapped as follows:

 Bit(s) Significance
 --
 0-7 character code
 8-10 foreground color
 11 intensity
 12-14 background color
 15 blink
 --

 For example, the following values would yield a software mouse cursor
 that inverts the foreground and background colors:

 AX = 000AH
 BX = 0000H
 CX = 77FFH
 DX = 7700H

 o When the hardware text cursor is selected (BX = 1), the values in CX and
 DX are the starting and ending scan lines for the blinking cursor
 generated by the video adapter. The maximum scan line which may be used
 depends on the type of adapter and the current display mode.

--
Int 33H
Function 0BH (11)
Read mouse motion counters
--

 Returns the net mouse displacement since the last call to this function.
 The returned value is in mickeys; a positive number indicates travel to
 the right or downwards, a negative number indicates travel to the left or
 upwards. One mickey represents approximately 1/200 of an inch of mouse
 movement.

Call with:

 AX = 000BH

Returns:

 CX = horizontal (X) mickey count
 DX = vertical (Y) mickey count

--
Int 33H
Function 0CH (12)
Set user-defined mouse event handler
--

 Sets the address and event mask for an application program's mouse event
 handler. The handler is called by the mouse driver whenever the specified
 mouse events occur.

Call with:

 AX = 000CH
 CX = event mask

 Bit(s) Significance (if set)
 0 mouse movement
 1 left button pressed
 2 left button released
 3 right button pressed
 4 right button released
 5 center button pressed
 6 center button released
 7-15 reserved (0)

 ES:DX = segment:offset of handler

Returns:

 Nothing

Notes:

 o The user-defined event handler is entered from the mouse driver by a far
 call with registers set up as follows:

 AX mouse event flags (see event mask)
 BX button state

 Bit(s) Significance (if set)
 0 left button is down
 1 right button is down
 2 center button is down
 3-15 reserved (0)

 CX horizontal (X) pointer coordinate
 DX vertical (Y) pointer coordinate
 SI last raw vertical mickey count
 DI last raw horizontal mickey count
 DS mouse driver data segment

 o If an event does not generate a call to the user-defined handler because
 its bit is not set in the event mask, it is still reported in the event
 flags during calls to the handler for events which are enabled.

 o Calls to the handler are disabled with Int 33H Function 00H or by
 calling this function with an event mask of zero.

 o See also Int 33H Functions 14H and 18H.

--
Int 33H
Function 0DH (13)

Turn on light pen emulation
--

 Enables light pen emulation by the mouse driver for IBM BASIC. A "pen
 down" condition is created by pressing the left and right mouse buttons
 simultaneously.

Call with:

 AX = 000DH

Returns:

 Nothing

--
Int 33H
Function 0EH (14)
Turn off light pen emulation
--

 Disables light pen emulation by the mouse driver for IBM BASIC.

Call with:

 AX = 000EH

Returns:

 Nothing

--
Int 33H
Function 0FH (15)
Set mickeys to pixels ratio
--

 Sets the number of mickeys per 8 pixels for horizontal and vertical mouse
 motion. One mickey represents approximately 1/200 of an inch of mouse
 travel.

Call with:

 AX = 000FH
 CX = horizontal mickeys (1-32,767, default = 8)
 DX = vertical mickeys (1-32,767, default = 16)

Returns:

 Nothing

--
Int 33H
Function 10H (16)
Set mouse pointer exclusion area
--

 Defines an exclusion area for the mouse pointer. When the mouse pointer
 lies within the specified area, it is not displayed.

Call with:

 AX = 0010H
 CX = upper left X coordinate
 DX = upper left Y coordinate
 SI = lower right X coordinate
 DI = lower right Y coordinate

Returns:

 Nothing

Note:

 o The exclusion area is replaced by another call to this function or
 cancelled by Int 33H Functions 00H or 01H.

--
Int 33H
Function 13H (19)
Set double speed threshold
--

 Sets the threshold speed for doubling pointer motion on the screen. The
 default threshold speed is 64 mickeys/second.

Call with:

 AX = 0013H
 DX = threshold speed in mickeys/second

Returns:

 Nothing

Note:

 o Doubling of pointer motion can be effectively disabled by setting the
 threshold to a very large value (such as 10,000).

--
Int 33H
Function 14H (20)
Swap user-defined mouse event handlers
--

 Sets the address and event mask for an application program's mouse event
 handler and returns the address and event mask for the previous handler.
 The newly installed handler is called by the mouse driver whenever the
 specified mouse events occur.

Call with:

 AX = 0014H
 CX = event mask

 Bit(s) Significance (if set)
 0 mouse movement
 1 left button pressed
 2 left button released
 3 right button pressed
 4 right button released
 5 center button pressed
 6 center button released
 7-15 reserved (0)

 ES:DX = segment:offset of event handler

Returns:

 CX = previous event mask
 ES:DX = segment:offset of previous handler

Notes:

 o The Notes for Int 33H Function 0CH describe the information passed to
 the user-defined event handler. See also Int 33H Function 18H.

 o Calls to the event handler are disabled with Int 33H Function 00H or by
 setting an event mask of zero.

--
Int 33H
Function 15H (21)
Get mouse save state buffer size
--

 Gets the size of the buffer required to store the current state of the
 mouse driver.

Call with:

 AX = 0015H

Returns:

 BX = buffer size (bytes)

Note:

 o See also Int 33H Functions 16H and 17H.

--
Int 33H
Function 16H (22)
Save mouse driver state
--

 Saves the mouse driver state in a user buffer. The minimum size for the
 buffer must be determined by a previous call to Int 33H Function 15H.

Call with:

 AX = 0016H
 ES:DX = segment:offset of buffer

Returns:

 Nothing

Note:

 o Call this function before executing a child program with Int 21H
 Function 4BH (EXEC), in case the child also uses the mouse. After the
 EXEC call, restore the previous mouse driver state with Int 33H Function
 17H.

--
Int 33H
Function 17H (23)
Restore mouse driver state
--

 Restores the mouse driver state from a user buffer.

Call with:

 AX = 0017H
 ES:DX = segment:offset of buffer

Returns:

 Nothing

Note:

 o The mouse driver state must have been previously saved into the same
 buffer with Int 33H Function 16H. The format of the data in the buffer
 is undocumented and subject to change.

--
Int 33H
Function 18H (24)
Set alternate mouse event handler
--

 Sets the address and event mask for a an application program mouse event
 handler. As many as three handlers with distinct event masks can be
 registered with this function. When an event occurs that matches one of
 the masks, the corresponding handler is called by the mouse driver.

Call with:

 AX = 0018H
 CX = event mask

 Bit(s) Significance (if set)

 0 mouse movement
 1 left button pressed
 2 left button released
 3 right button pressed
 4 right button released
 5 Shift key pressed during button press or release
 6 Ctrl key pressed during button press or release
 7 Alt key pressed during button press or release
 8-15 reserved (0)

 ES:DX = segment:offset of handler

Returns:

 If function successful

 AX = 0018H

 If function unsuccessful

 AX = FFFFH

Notes:

 o When this function is called, at least one of the bits 5, 6, and 7 must
 be set in register CX.

 o The user-defined event handler is entered from the mouse driver by a far
 call with registers set up as follows:

 AX mouse event flags (see event mask)
 BX button state

 Bit(s) Significance (if set)
 0 left button is down
 1 right button is down
 2 center button is down
 3-15 reserved (0)

 CX horizontal (X) pointer coordinate
 DX vertical (Y) pointer coordinate
 SI last raw vertical mickey count
 DI last raw horizontal mickey count
 DS mouse driver data segment

 o If an event does not generate a call to the user-defined handler because
 its bit is not set in the event mask, it can still be reported in the
 event flags during calls to the handler for events that are enabled.

 o Calls to the handler are disabled with Int 33H Function 00H.

 o See also Int 33H Functions 0CH and 14H.

--
Int 33H
Function 19H (25)
Get address of alternate mouse event handler
--

 Returns the address for the mouse event handler matching the specified
 event mask.

Call with:

 AX = 0019H
 CX = event mask (see Int 33H Function 18H)

Returns:

 If function successful

 CX = event mask
 ES:DX = segment:offset of alternate event handler

 If function unsuccessful (no handler installed or event mask does not
 match any installed handler)

 CX = 0000H

Note:

 o Int 33H Function 18H allows as many as three event handlers with
 distinct event masks to be installed. This function can be called to
 search for a handler that matches a specific event, so that it can be
 replaced or disabled.

--
Int 33H
Function 1AH (26)
Set mouse sensitivity
--

 Sets the number of mickeys per 8 pixels for horizontal and vertical mouse
 motion and the threshold speed for doubling pointer motion on the screen.
 One mickey represents approximately 1/200 of an inch of mouse travel.

Call with:

 AX = 001AH
 BX = horizontal mickeys (1-32,767, default = 8)
 CX = vertical mickeys (1-32,767, default = 16)
 DX = double speed threshold in mickeys/second (default = 64)

Returns:

 Nothing

Note:

 o See also Int 33H Functions 0FH and 13H, which allow the mickeys to
 pixels ratio and threshold speed to be set separately, and Int 33H
 Function 1BH, which returns the current sensitivity values.

--
Int 33H

Function 1BH (27)
Get mouse sensitivity
--

 Returns the current mickeys to pixels ratios for vertical and horizontal
 screen movement and the threshold speed for doubling of pointer motion.

Call with:

 AX = 001BH

Returns:

 BX = horizontal mickeys (1-32,767, default = 8)
 CX = vertical mickeys (1-32,767, default = 16)
 DX = double speed threshold in mickeys/second (default = 64)

Note:

 o See also Int 33H Functions 0FH, 13H, and 1AH.

--
Int 33H
Function 1CH (28)
Set mouse interrupt rate
--

 Sets the rate at which the mouse driver polls the status of the mouse.
 Faster rates provide better resolution in graphics mode but may degrade
 the performance of application programs.

Call with:

 AX = 001CH
 BX = interrupt rate flags

 Bit(s) Significance
 0 no interrupts allowed
 1 30 interrupts/second
 2 50 interrupts/second
 3 100 interrupts/second
 4 200 interrupts/second
 5-15 reserved (0)

Returns:

 Nothing

Notes:

 o This function is applicable for the InPort Mouse only.

 o If more than one bit is set in register BX, the lowest order bit
 prevails.

--
Int 33H

Function 1DH (29)
Select pointer page
--

 Selects the display page for the mouse pointer.

Call with:

 AX = 001DH
 BX = page

Returns:

 Nothing

Note:

 o The valid page numbers depend on the current display mode. See Int 10H
 Function 05H.

--
Int 33H
Function 1EH (30)
Get pointer page
--

 Returns the current display page for the mouse pointer.

Call with:

 AX = 001EH

Returns:

 BX = page

--
Int 33H
Function 1FH (31)
Disable mouse driver
--

 Disables the mouse driver and returns the address of the previous Int 33H
 handler.

Call with:

 AX = 001FH

Returns:

 If function successful

 AX = 001FH
 ES:BX = segment:offset of previous Int 33H handler

 If function unsuccessful

 AX = FFFFH

Notes:

 o When this function is called, the mouse driver releases any interrupt
 vectors it has captured other than Int 33H (which may include Int 10H,
 Int 71H, and/or Int 74H). The application program can complete the
 process of logically removing the mouse driver by restoring the original
 contents of the Int 33H vector with Int 21H Function 25H, using the
 address returned by this function in ES:BX.

 o See also Int 33H Function 20H.

--
Int 33H
Function 20H (32)
Enable mouse driver
--

 Enables the mouse driver and the servicing of mouse interrupts.

Call with:

 AX = 0020H

Returns:

 Nothing

Note:

 o See also Int 33H Function 1FH.

--
Int 33H
Function 21H (33)
Reset mouse driver
--

 Resets the mouse driver and returns driver status. If the mouse pointer
 was previously visible, it is removed from the screen, and any previously
 installed user handlers for mouse events are disabled.

Call with:

 AX = 0021H

Returns:

 If mouse support is available

 AX = FFFFH
 BX = number of mouse buttons

 If mouse support is not available

 AX = 0021H

Note:

 o This function differs from Int 33H Function 00H in that there is no
 initialization of the mouse hardware.

--
Int 33H
Function 22H (34)
Set language for mouse driver messages
--

 Selects the language that will be used by the mouse driver for prompts and
 error messages.

Call with:

 AX = 0022H
 BX = language number

 0 = English
 1 = French
 2 = Dutch
 3 = German
 4 = Swedish
 5 = Finnish
 6 = Spanish
 7 = Portuguese
 8 = Italian

Returns:

 Nothing

Note:

 o This function is only available in international versions of the
 Microsoft Mouse driver.

--
Int 33H
Function 23H (35)
Get language number
--

 Returns the number of the language that is used by the mouse driver for
 prompts and error messages.

Call with:

 AX = 0023H

Returns:

 BX = language number (see Int 33H Function 22H)

Note:

 o This function is only available in international versions of the
 Microsoft Mouse driver.

--
Int 33H
Function 24H (36)
Get mouse information
--

 Returns the mouse driver version number, mouse type, and the IRQ number of
 the interrupt used by the mouse adapter.

Call with:

 AX = 0024H

Returns:

 BH = major version number (6 for version 6.10, etc.)
 BL = minor version number (0AH for version 6.10, etc.)
 CH = mouse type

 1 = bus mouse
 2 = serial mouse
 3 = InPort mouse
 4 = PS/2 mouse
 5 = HP mouse

 CL = IRQ number

 0 = PS/2
 2, 3, 4, 5, or 7 = IRQ number

--
SECTION 4 LOTUS/INTEL/MICROSOFT EMS FUNCTIONS REFERENCE
--

Notes to the Reader

 The Lotus/Intel/Microsoft Expanded Memory Specification (EMS) defines a
 hardware/software subsystem, compatible with 80x86-based microcomputers
 running MS-DOS, that allows applications to access as much as 32 MB of
 bank-switched random-access memory. The software component, called the
 Expanded Memory Manager (EMM), is installed during system initialization
 by a DEVICE= directive in the CONFIG.SYS file in the root directory on the
 boot disk.

 After ensuring that the EMM is present (see Chapter 11), an application
 program communicates directly with the EMM using software interrupt 67H. A
 particular EMM function is selected by the value in register AH and a
 success or error status is returned in register AH (error codes are listed
 on pages 207-209). Other parameters and results are passed or returned in
 registers or buffers.

 An icon in each function heading indicates the EMS version in which that
 function was first supported. You can assume that the function is
 available in all subsequent EMS versions unless explicitly noted
 otherwise.

 Version icons used in the synopsis, parameters, results, or Notes section
 refer to specific minor or major EMS versions, unless they include a +
 sign to indicate a version and all subsequent versions.

 The material in this section has been verified against the Expanded Memory
 Specification version 4.0, dated October 1987, Intel part number
 300275-005. This document can be obtained from Intel Corporation, 5200
 N.E. Elam Young Parkway, Hillsboro, OR 97124.

Summary of EMM Functions

 Function Subfunction Description
 --
 40H (64) Get Status
 41H (65) Get Page Frame Address
 42H (66) Get Number of Pages
 43H (67) Allocate Handle and Pages
 44H (68) Map Expanded Memory Page
 45H (69) Release Handle and Expanded Memory
 46H (70) Get Version
 47H (71) Save Page Map
 48H (72) Restore Page Map
 49H (73) Reserved
 4AH (74) Reserved
 4BH (75) Get Handle Count
 4CH (76) Get Handle Pages
 4DH (77) Get Pages for All Handles
 4EH (78) 00H Save Page Map
 4EH (78) 01H Restore Page Map
 4EH (78) 02H Save and Restore Page Map
 4EH (78) 03H Get Size of Page Map Information
 4FH (79) 00H Save Partial Page Map
 4FH (79) 01H Restore Partial Page Map
 4FH (79) 02H Get Size of Partial Page Map Information
 50H (80) 00H Map Multiple Pages by Number
 50H (80) 01H Map Multiple Pages by Address
 51H (81) Reallocate Pages for Handle
 52H (82) 00H Get Handle Attribute
 52H (82) 01H Set Handle Attribute
 52H (82) 02H Get Attribute Capability
 53H (83) 00H Get Handle Name
 53H (83) 01H Set Handle Name
 54H (84) 00H Get All Handle Names
 54H (84) 01H Search for Handle Name
 54H (84) 02H Get Total Handles
 55H (85) 00H Map Pages by Number and Jump
 55H (85) 01H Map Pages by Address and Jump
 56H (86) 00H Map Pages by Number and Call
 56H (86) 01H Map Pages by Address and Call
 56H (86) 02H Get Space for Map Page and Call
 57H (87) 00H Move Memory Region

 57H (87) 01H Exchange Memory Regions
 58H (88) 00H Get Addresses of Mappable Pages
 58H (88) 01H Get Number of Mappable Pages
 59H (89) 00H Get Hardware Configuration
 59H (89) 01H Get Number of Raw Pages
 5AH (90) 00H Allocate Handle and Standard Pages
 5AH (90) 01H Allocate Handle and Raw Pages
 5BH (91) 00H Get Alternate Map Registers
 5BH (91) 01H Set Alternate Map Registers
 5BH (91) 02H Get Size of Alternate Map Register Save Area
 5BH (91) 03H Allocate Alternate Map Register Set
 5BH (91) 04H Deallocate Alternate Map Register Set
 5BH (91) 05H Allocate DMA Register Set
 5BH (91) 06H Enable DMA on Alternate Map Register Set
 5BH (91) 07H Disable DMA on Alternate Map Register Set
 5BH (91) 08H Deallocate DMA Register Set
 5CH (92) Prepare Expanded Memory Manager for Warm Boot
 5DH (93) 00H Enable EMM Operating-System Functions
 5DH (93) 01H Disable EMM Operating-System Functions
 5DH (93) 02H Release Access Key
 --

--
Int 67H [EMS 3.0]
Function 40H (64)
Get status
--

 Returns a status code indicating whether the expanded memory software and
 hardware are present and functional.

Call with:

 AH = 40H

Returns:

 If function successful

 AH = 00H

 If function unsuccessful

 AH = error code

Note:

 o This call should be used only after an application has established that
 the Expanded Memory Manager is in fact present, using one of the
 techniques described in Chapter 11.

--
Int 67H [EMS 3.0]
Function 41H (65)
Get page frame address
--

 Returns the segment address of the page frame used by the Expanded Memory
 Manager.

Call with:

 AH = 41H

Returns:

 If function successful

 AH = 00H
 BX = segment base of page frame

 If function unsuccessful

 AH = error code

Notes:

 o The page frame is divided into four 16 KB pages, which are used to map
 logical expanded memory pages into the physical memory space of the CPU.

 o The application need not have already acquired an EMM handle to use this
 function.

 o [EMS 4.0] Mapping of expanded memory pages is not necessarily limited to
 the 64 KB page frame. See also Int 67H Function 58H Subfunction 00H.

--
Int 67H [EMS 3.0]
Function 42H (66)
Get number of pages
--

 Obtains the total number of logical expanded memory pages present in the
 system and the number of pages that are not already allocated.

Call with:

 AH = 42H

Returns:

 If function successful

 AH = 00H
 BX = unallocated pages
 DX = total pages

 If function unsuccessful

 AH = error code

Notes:

 o The application need not have already acquired an EMM handle to use this

 function.

 o [EMS 4.0] See also Int 67H Function 59H Subfunction 01H.

--
Int 67H [EMS 3.0]
Function 43H (67)
Allocate handle and pages
--

 Obtains an EMM handle and allocates logical pages of expanded memory to be
 controlled by that handle.

Call with:

 AH = 43H
 BX = number of pages to allocate (must be nonzero)

Returns:

 If function successful

 AH = 00H
 DX = EMM handle

 If function unsuccessful

 AH = error code

Notes:

 o This is the equivalent of a file open function for the expanded memory
 manager. The handle that is returned is analogous to a file handle and
 owns a certain number of expanded memory pages. The handle must be used
 with every subsequent request to map memory and must be released by a
 close operation before the application terminates.

 o This function may fail because there are no handles left to allocate or
 because there is an insufficient number of expanded memory pages to
 satisfy the request. In the latter case, Int 67H Function 42H can be
 used to determine the actual number of pages available.

 o [EMS 4.0] Int 67H Function 51H can be called to change the number of
 pages allocated to an EMM handle.

 o [EMS 4.0] The pages allocated by this function are always 16 KB for
 compatibility with earlier versions of EMS. See also Int 67H Function
 5AH Subfunctions 00H and 01H.

 o [EMS 4.0] Handle 0000H is always available for use by the operating
 system, and a prior call to this function is not required. The operating
 system must call Int 67H Function 51H to assign the desired number of
 pages to its reserved handle.

--
Int 67H [EMS 3.0]
Function 44H (68)

Map expanded memory page
--

 Maps one of the logical pages of expanded memory assigned to a handle onto
 a physical memory page that can be accessed by the CPU.

Call with:

 AH = 44H
 AL = physical page
 BX = logical page
 DX = EMM handle

Returns:

 If function successful

 AH = 00H

 If function unsuccessful

 AH = error code

Notes:

 o The logical page number is in the range {0...n-1}, where n is the number
 of pages allocated or reallocated to the handle by a previous call to
 Int 67H Function 43H, 51H, or 5AH. Logical pages allocated by Int 67H
 Function 43H or Function 5AH Subfunction 00H are always 16 KB long;
 logical pages allocated by Int 67H Function 5AH Subfunction 01H are
 referred to as raw pages and are not necessarily 16 KB.

 o [EMS 3] The physical page is in the range 0-3 and lies within the EMM
 page frame, whose base address is obtained from Int 67H Function 41H.

 o [EMS 4.0] A list of the available physical pages and their addresses may
 be obtained from Int 67H Function 58H Subfunction 00H.

 o [EMS 4.0] If this function is called with BX = -1, the specified
 physical page is unmapped (made inaccessible for reading or writing).

--
Int 67H [EMS 3.0]
Function 45H (69)
Release handle and expanded memory
--

 Deallocates the expanded memory pages assigned to a handle and then
 releases the handle.

Call with:

 AH = 45H
 DX = EMM handle

Returns:

 If function successful

 AH = 00H

 If function unsuccessful

 AH = error code

Notes:

 o If this function is not called before a program terminates, the EMS
 pages it owned remain unavailable until the system is restarted.
 Programs that use EMS should install their own Ctrl-C handlers and
 critical-error handlers (Ints 23H and 24H) so that they cannot be
 terminated unexpectedly.

 o [EMS 4.0] When a handle is released, its name is set to all ASCII nulls.

--
Int 67H [EMS 3.0]
Function 46H (70)
Get version
--

 Returns the EMS version supported by the expanded memory manager.

Call with:

 AH = 46H

Returns:

 If function successful

 AH = 00H
 AL = version number

 If function unsuccessful

 AH = error code

Notes:

 o The version number is returned in binary code decimal (BCD) format, with
 the integer portion in the upper 4 bits of AL and the fractional portion
 in the lower 4 bits. For example, under an EMM that supports EMS version
 3.2, AL is returned as the value 32H.

 o Applications should always check the EMM version number to ensure that
 all of the EMM functions they require are available.

--
Int 67H [EMS 3.0]
Function 47H (71)
Save page map
--

 Saves the contents of the page-mapping registers on the expanded memory

 hardware, associating those contents with a particular EMM handle.

Call with:

 AH = 47H
 DX = EMM handle

Returns:

 If function successful

 AH = 00H

 If function unsuccessful

 AH = error code

Notes:

 o This function is used by interrupt handlers or device drivers that must
 access expanded memory. The EMM handle supplied to this function is the
 handle that was assigned to the handler or driver during its own
 initialization sequence, not to the program that was interrupted.

 o The mapping context is restored by a subsequent call to Int 67H Function
 48H.

 o [EMS 4.0] This function saves only the mapping state for the 64 KB page
 frame defined in EMS 3. Programs that are written to take advantage of
 the additional capabilities of EMS 4.0 should use Int 67H Function 4EH
 or 4FH in preference to this function.

--
Int 67H [EMS 3.0]
Function 48H (72)
Restore page map
--

 Restores the contents of the page-mapping registers on the expanded memory
 hardware to the values associated with the specified handle by a previous
 call to Int 67H Function 47H.

Call with:

 AH = 48H
 DX = EMM handle

Returns:

 If function successful

 AH = 00H

 If function unsuccessful

 AH = error code

Notes:

 o This function is used by interrupt handlers or device drivers that must
 access expanded memory. The EMM handle supplied to this function is the
 handle that was assigned to the handler or driver during its own
 initialization sequence, not to the program that was interrupted.

 o [EMS 4.0] This function restores only the mapping state for the 64 KB
 page frame defined in EMS 3. Programs that are written to take advantage
 of the additional capabilities of EMS 4.0 should use Int 67H Function
 4EH or 4FH in preference to this function.

--
Int 67H [EMS 3.0]
Function 49H (73)
Reserved
--

 This function was defined in EMS version 3.0 but is not documented for
 later EMS versions, so it should be avoided in application programs.

--
Int 67H [EMS 3.0]
Function 4AH (74)
Reserved
--

 This function was defined in EMS version 3.0 but is not documented for
 later EMS versions, so it should be avoided in application programs.

--
Int 67H [EMS 3.0]
Function 4BH (75)
Get handle count
--

 Returns the number of active expanded memory handles.

Call with:

 AH = 4BH

Returns:

 If function successful

 AH = 00H
 BX = number of active EMM handles

 If function unsuccessful

 AH = error code

Notes:

 o If the returned number of EMM handles is zero, the expanded memory
 manager is idle, and none of the expanded memory is in use.

 o The value returned by this function is not necessarily the same as the
 number of programs using expanded memory because one program may own
 multiple EMM handles.

 o The number of active EMM handles never exceeds 255.

--
Int 67H [EMS 3.0]
Function 4CH (76)
Get handle pages
--

 Returns the number of expanded memory pages allocated to a specific EMM
 handle.

Call with:

 AH = 4CH
 DX = EMM handle

Returns:

 If function successful

 AH = 00H
 BX = number of EMM pages

 If function unsuccessful

 AH = error code

Notes:

 o [EMS 3] The total number of pages allocated to a handle never exceeds
 512. A handle never has zero pages allocated to it.

 o [EMS 4.0] The total number of pages allocated to a handle never exceeds
 2048. A handle may have zero pages of expanded memory.

--
Int 67H [EMS 3.0]
Function 4DH (77)
Get pages for all handles
--

 Returns an array that contains all the active handles and the number of
 expanded memory pages associated with each handle.

Call with:

 AH = 4DH
 ES:DI = segment:offset of buffer (see Notes)

Returns:

 If function successful

 AH = 00H
 BX = number of active EMM handles

 and buffer filled in as described in Notes

 If function unsuccessful

 AH = error code

Notes:

 o The buffer is filled in with a series of DWORD (32-bit) entries, one per
 active EMM handle. The first word of an entry contains the handle, and
 the second word contains the number of pages allocated to that handle.

 o The maximum number of active handles is 256 (including the operating
 system handle 0), so a buffer size of 1024 bytes is adequate in all
 cases.

--
Int 67H [EMS 3.2]
Function 4EH (78) Subfunction 00H
Save page map
--

 Saves the current page-mapping state of the expanded memory hardware in
 the specified buffer.

Call with:

 AH = 4EH
 AL = 00H
 ES:DI = segment:offset of buffer (see Notes)

Returns:

 If function successful

 AH = 00H

 and buffer filled in with mapping information (see Notes)

 If function unsuccessful

 AH = error code

Notes:

 o The buffer receives the information necessary to restore the state of
 the mapping registers using Int 67H Function 4EH Subfunction 01H. The
 format of the information may vary.

 o The size of the buffer required by this function can be determined with
 Int 67H Function 4EH Subfunction 03H.

 o Unlike Int 67H Function 47H, this function does not require a handle.

--
Int 67H [EMS 3.2]
Function 4EH (78) Subfunction 01H
Restore page map
--

 Restores the page-mapping state of the expanded memory hardware using the
 information in the specified buffer.

Call with:

 AH = 4EH
 AL = 01H
 DS:SI = segment:offset of buffer (see Notes)

Returns:

 If function successful

 AH = 00H

 If function unsuccessful

 AH = error code

Notes:

 o The buffer contains information necessary to restore the state of the
 mapping registers from a previous call to Int 67H Function 4EH
 Subfunction 00H or 02H. The format of the information may vary.

 o Unlike Int 67H Function 48H, this function does not require a handle.

--
Int 67H [EMS 3.2]
Function 4EH (78) Subfunction 02H
Save and restore page map
--

 Saves the current page-mapping state of the expanded memory hardware in a
 buffer and then sets the mapping state using the information in another
 buffer.

Call with:

 AH = 4EH
 AL = 02H
 DS:SI = segment:offset of buffer containing mapping information
 (see Notes)
 ES:DI = segment:offset of buffer to receive mapping information
 (see Notes)

Returns:

 If function successful

 AH = 00H

 and buffer pointed to by ES:DI filled in with mapping information (see
 Notes)

 If function unsuccessful

 AH = error code

Notes:

 o The buffer addressed by DS:SI contains information necessary to restore
 the state of the mapping registers from a previous call to Int 67H
 Function 4EH Subfunction 00H or 02H. The format of the information may
 vary.

 o The sizes of the buffers required by this function can be determined
 with Int 67H Function 4EH Subfunction 03H.

 o Unlike Int 67H Functions 47H and 48H, this function does not require a
 handle.

--
Int 67H [EMS 3.2]
Function 4EH (78) Subfunction 03H
Get size of page map information
--

 Returns the size of the buffer that is required to receive page-mapping
 information using Int 67H Function 4EH Subfunctions 00H and 02H.

Call with:

 AH = 4EH
 AL = 03H

Returns:

 If function successful

 AH = 00H
 AL = size of buffer (bytes)

 If function unsuccessful

 AH = error code

--
Int 67H [EMS 4.0]
Function 4FH (79) Subfunction 00H
Save partial page map
--

 Saves the state of a subset of the expanded memory page-mapping registers
 in the specified buffer.

Call with:

 AH = 4FH
 AL = 00H
 DS:SI = segment:offset of map list (see Notes)
 ES:DI = segment:offset of buffer to receive mapping state (see
 Notes)

Returns:

 If function successful

 AH = 00H

 and buffer filled in with mapping information (see Notes)

 If function unsuccessful

 AH = error code

Notes:

 o The map list contains the number of mappable segments in the first word,
 followed by the segment addresses of the mappable memory regions (one
 segment per word).

 o To determine the size of the buffer required for the mapping state, use
 Int 67H Function 4FH Subfunction 02H.

--
Int 67H [EMS 4.0]
Function 4FH (79) Subfunction 01H
Restore partial page map
--

 Restores the state of a subset of the expanded memory page-mapping
 registers.

Call with:

 AH = 4FH
 AL = 01H
 DS:SI = segment:offset of buffer (see Note)

Returns:

 If function successful

 AH = 00H

 If function unsuccessful

 AH = error code

Note:

 o The buffer contains mapping information and must have been prepared by a
 previous call to Int 67H Function 4FH Subfunction 00H.

--
Int 67H [EMS 4.0]
Function 4FH (79) Subfunction 02H
Get size of partial page map information
--

 Returns the size of the buffer which will be required to receive partial
 page-mapping information using Int 67H Function 4FH Subfunction 00H.

Call with:

 AH = 4FH
 AL = 02H
 BX = number of pages

Returns:

 If function successful

 AH = 00H
 AL = size of array (bytes)

 If function unsuccessful

 AH = error code

--
Int 67H [EMS 4.0]
Function 50H (80) Subfunction 00H
Map multiple pages by number
--

 Maps one or more of the logical expanded memory pages assigned to a handle
 onto physical memory pages that can be accessed by the CPU. Physical pages
 are referenced by their numbers.

Call with:

 AH = 50H
 AL = 00H
 CX = number of pages to map
 DX = EMM handle
 DS:SI = segment:offset of buffer (see Note)

Returns:

 If function successful

 AH = 00H

 If function unsuccessful

 AH = error code

Note:

 o The buffer contains a series of DWORD (32-bit) entries that control the
 pages to be mapped. The first word of each entry contains the logical

 expanded memory page number, and the second word contains the physical
 page number to which it should be mapped. If the logical page is -1, the
 physical page is unmapped (made inaccessible for reading or writing).

--
Int 67H [EMS 4.0]
Function 50H (80) Subfunction 01H
Map multiple pages by address
--

 Maps one or more of the logical expanded memory pages assigned to a handle
 onto physical memory pages that can be accessed by the CPU. Physical pages
 are referenced by their segment addresses.

Call with:

 AH = 50H
 AL = 01H
 CX = number of pages to map
 DX = EMM handle
 DS:SI = segment:offset of buffer (see Notes)

Returns:

 If function successful

 AH = 00H

 If function unsuccessful

 AH = error code

Notes:

 o The buffer contains a series of DWORD (32-bit) entries that control the
 pages to be mapped. The first word of each entry contains the logical
 page number, and the second word contains the physical page segment
 address to which it should be mapped. If the logical page is -1, the
 physical page is unmapped (made inaccessible for reading or writing).

 o The mappable segment addresses may be obtained by calling Int 67H
 Function 58H Subfunction 00H.

--
Int 67H [EMS 4.0]
Function 51H (81)
Reallocate pages for handle
--

 Modifies the number of expanded memory pages allocated to an EMM handle.

Call with:

 AH = 51H
 BX = new number of pages
 DX = EMM handle

Returns:

 If function successful

 AH = 00H
 BX = logical pages owned by EMM handle

 If function unsuccessful

 AH = error code

Note:

 o If the requested number of pages is zero, the handle is still active,
 and pages can be reallocated to the handle at a later time; also, the
 handle must still be released with Int 67H Function 45H before the
 application terminates.

--
Int 67H [EMS 4.0]
Function 52H (82) Subfunction 00H
Get handle attribute
--

 Returns the attribute (volatile or nonvolatile) associated with the
 specified handle. A nonvolatile memory handle and the contents of the
 expanded memory pages that are allocated to it are maintained across a
 warm boot operation (system restart using Ctrl-Alt-Del).

Call with:

 AH = 52H
 AL = 00H
 DX = EMM handle

Returns:

 If function successful

 AH = 00H
 AL = attribute

 0 = volatile
 1 = nonvolatile

 If function unsuccessful

 AH = error code

--
Int 67H [EMS 4.0]
Function 52H (82) Subfunction 01H
Set handle attribute
--

 Sets the attribute (volatile or nonvolatile) associated with the specified
 handle. A nonvolatile memory handle and the contents of the expanded

 memory pages that are allocated to it are maintained across a warm boot
 operation (system restart using Ctrl-Alt-Del).

Call with:

 AH = 52H
 AL = 01H
 BL = attribute

 0 = volatile
 1 = nonvolatile

 DX = EMM handle

Returns:

 If function successful

 AH = 00H

 If function unsuccessful

 AH = error code

Note:

 o If the expanded memory hardware cannot support nonvolatile pages, this
 function returns an error.

--
Int 67H [EMS 4.0]
Function 52H (82) Subfunction 02H
Get attribute capability
--

 Returns a code indicating whether the Expanded Memory Manager and hardware
 can support the nonvolatile attribute for EMM handles.

Call with:

 AH = 52H
 AL = 02H

Returns:

 If function successful

 AH = 00H
 AL = attribute capability
 0 = only volatile handles supported
 1 = volatile and nonvolatile handles supported

 If function unsuccessful

 AH = error code

--

Int 67H [EMS 4.0]
Function 53H (83) Subfunction 00H
Get handle name
--

 Returns the 8-character name assigned to a handle.

Call with:

 AH = 53H
 AL = 00H
 DX = EMM handle
 ES:DI = segment:offset of 8-byte buffer

Returns:

 If function successful

 AH = 00H

 and name for handle in specified buffer

 If function unsuccessful

 AH = error code

Note:

 o A handle's name is initialized to 8 zero bytes when it is allocated or
 deallocated. Another name may be assigned to an active handle with Int
 67H Function 53H Subfunction 01H. The bytes in a handle name need not
 be ASCII characters.

--
Int 67H [EMS 4.0]
Function 53H (83) Subfunction 01H
Set handle name
--

 Assigns a name to an EMM handle.

Call with:

 AH = 53H
 AL = 01H
 DX = EMM handle
 DS:SI = segment:offset of 8-byte name

Returns:

 If function successful

 AH = 00H

 If function unsuccessful

 AH = error code

Notes:

 o The bytes in a handle name need not be ASCII characters, but the
 sequence of 8 zero bytes is reserved for no name (the default after a
 handle is allocated or deallocated). A handle name should be padded with
 zero bytes, if necessary, to a length of 8 bytes.

 o A handle may be renamed at any time.

 o All handle names are initialized to 8 zero bytes when the system is
 turned on. The name of a nonvolatile handle is preserved across a warm
 boot. (See Int 67H Function 52H Subfunctions 00H and 02H.)

--
Int 67H [EMS 4.0]
Function 54H (84) Subfunction 00H
Get all handle names
--

 Returns the names for all active handles.

Call with:

 AH = 54H
 AL = 00H
 ES:DI = segment:offset of buffer (see Notes)

Returns:

 If function successful

 AH = 00H
 AL = number of active handles

 and buffer filled in with handle-name information (see Notes)

 If function unsuccessful

 AH = error code

Notes:

 o The function fills the buffer with a series of 10-byte entries. The
 first 2 bytes of each entry contain an EMM handle, and the next 8 bytes
 contain the name associated with the handle. Handles that have never
 been assigned a name have 8 bytes of 0 as a name.

 o Because there is a maximum of 255 active handles, the buffer need not be
 longer than 2550 bytes.

--
Int 67H [EMS 4.0]
Function 54H (84) Subfunction 01H
Search for handle name
--

 Returns the EMM handle associated with the specified name.

Call with:

 AH = 54H
 AL = 01H
 DS:SI = segment:offset of 8-byte handle name

Returns:

 If function successful

 AH = 00H
 DX = EMM handle

 If function unsuccessful

 AH = error code

--
Int 67H [EMS 4.0]
Function 54H (84) Subfunction 02H
Get total handles
--

 Returns the total number of handles that are supported by the Expanded
 Memory Manager, including the operating-system handle (0).

Call with:

 AH = 54H
 AL = 02H

Returns:

 If function successful

 AH = 00H
 BX = number of handles

 If function unsuccessful

 AH = error code

--
Int 67H [EMS 4.0]
Function 55H (85) Subfunctions 00H and 01H
Map pages and jump
--

 Alters the expanded memory mapping context and transfers control to the
 specified address.

Call with:

 AH = 55H
 AL = subfunction

 0 = map using physical page numbers
 1 = map using physical page segments

 DX = EMM handle
 DS:SI = segment:offset of buffer (see Notes)

Returns:

 If function successful

 AH = 00H

 If function unsuccessful

 AH = error code

Notes:

 o The buffer contains map-and-jump entries in the following format:

 Offset Length Description
 --
 00H 4 far pointer to jump target
 04H 1 number of pages to map before jump
 05H 4 far pointer to map list (see below)
 --

 The map list in turn consists of DWORD (32-bit) entries, one per page.
 The first word of each entry contains the logical page number, and the
 second word contains the physical page number or segment (depending on
 the value in register AL) to which it should be mapped.

 o A request to map zero pages and jump is not considered an error; the
 effect is a simple far jump.

--
Int 67H [EMS 4.0]
Function 56H (86) Subfunctions 00H and 01H
Map pages and call
--

 Alters the expanded memory mapping context and performs a far call to the
 specified address. When the destination routine executes a far return, the
 EMM again alters the page-mapping context as instructed and then returns
 control to the original caller.

Call with:

 AH = 56H
 AL = subfunction

 0 = map using physical page numbers
 1 = map using physical page segments

 DX = EMM handle
 DS:SI = segment:offset of buffer (see Notes)

Returns:

 If function successful

 AH = 00H

 If function unsuccessful

 AH = error code

Notes:

 o The format of the buffer containing map and call information is:

 Offset Length Description
 --
 00H 4 far pointer to call target
 04H 1 number of pages to map before call
 05H 4 far pointer to list of pages to map before
 call (see below)
 09H 1 number of pages to map before return
 0AH 4 far pointer to list of pages to map before
 return (see below)
 0EH 8 reserved (0)
 --

 Both map lists have the same format and consist of a series of
 double-word entries, one per page. The first word of each entry contains
 the logical page number, and the second word contains the physical page
 number or segment (depending on the value in register AL) to which it
 should be mapped.

 o A request to map zero pages and call is not an error; the effect is a
 simple far call.

 o This function uses extra stack space to save information about the
 mapping context; the amount of stack space required can be determined by
 calling Int 67H Function 56H Subfunction 02H.

--
Int 67H [EMS 4.0]
Function 56H (86) Subfunction 02H
Get stack space for map page and call
--

 Returns the number of bytes of stack space required by Int 67H Function
 56H Subfunction 00H or 01H.

Call with:

 AH = 56H
 AL = 02H

Returns:

 If function successful

 AH = 00H
 BX = stack space required (bytes)

 If function unsuccessful

 AH = error code

--
Int 67H [EMS 4.0]
Function 57H (87) Subfunction 00H
Move memory region
--

 Copies a memory region from any location in conventional or expanded
 memory to any other location without disturbing the current expanded
 memory mapping context.

Call with:

 AH = 57H
 AL = 00H
 DS:SI = segment:offset of buffer (see Notes)

Returns:

 If function successful

 AH = 00H

 If function unsuccessful

 AH = error code

Notes:

 o The format of the buffer controlling the move operation is:

 Offset Length Description
 --
 00H 4 region length in bytes
 04H 1 source memory type (0 = conventional, 1 =
 expanded)
 05H 2 source memory handle
 07H 2 source memory offset
 09H 2 source memory segment or physical page
 number
 0BH 1 destination memory type (0 = conventional,
 1 = expanded)
 0CH 2 destination memory handle
 0EH 2 destination memory offset
 10H 2 destination memory segment or physical page
 number
 --

 o A length of zero bytes is not an error. The maximum length of a move is
 1 MB. If the length exceeds a single expanded memory page, consecutive
 expanded memory pages (as many as are required) supply or receive the
 data.

 o If the source and destination addresses overlap, the move will be

 performed in such a way that the destination receives an intact copy of
 the original data, and a nonzero status is returned.

--
Int 67H [EMS 4.0]
Function 57H (87) Subfunction 01H
Exchange memory regions
--

 Exchanges any two memory regions in conventional or expanded memory
 without disturbing the current expanded memory mapping context.

Call with:

 AH = 57H
 AL = 01H
 DS:SI = segment:offset of buffer (see Notes)

Returns:

 If function successful

 AH = 00H

 If function unsuccessful

 AH = error code

Notes:

 o The format of the buffer controlling the exchange operation is the same
 as for Int 67H Function 57H Subfunction 00H.

 o An exchange of zero bytes is not an error. The maximum length of an
 exchange is 1 MB. If the length exceeds a single expanded memory page,
 consecutive expanded memory pages (as many as are required) supply or
 receive the data.

 o If the source and destination addresses overlap, the exchange is not
 performed and an error is returned.

--
Int 67H [EMS 4.0]
Function 58H (88) Subfunction 00H
Get addresses of mappable pages
--

 Returns the segment base address and physical page number for each
 mappable page in the system.

Call with:

 AH = 58H
 AL = 00H
 ES:DI = segment:offset of buffer (see Notes)

Returns:

 If function successful

 AH = 00H
 CX = number of entries in mappable physical page array

 and page number/address information in buffer (see Notes)

 If function unsuccessful

 AH = error code

Notes:

 o Upon return from the function, the buffer contains a series of
 double-word entries, one per mappable page. The first word of an entry
 contains the page's segment base address, and the second contains its
 physical page number. The entries are sorted in order of ascending
 segment addresses.

 o The size of the buffer required can be calculated with the information
 returned by Int 67H Function 58H Subfunction 01H.

--
Int 67H [EMS 4.0]
Function 58H (88) Subfunction 01H
Get number of mappable pages
--

 Returns the number of mappable physical pages.

Call with:

 AH = 58H
 AL = 01H

Returns:

 If function successful

 AH = 00H
 CX = number of mappable physical pages

 If function unsuccessful

 AH = error code

Note:

 o The information returned by this function can be used to calculate the
 size of the buffer that will be needed by Int 67H Function 58H
 Subfunction 00H.

--
Int 67H [EMS 4.0]
Function 59H (89) Subfunction 00H
Get hardware configuration

--

 Returns information about the configuration of the expanded memory
 hardware.

Call with:

 AH = 59H
 AL = 00H
 ES:DI = segment:offset of buffer (see Notes)

Returns:

 If function successful

 AH = 00H

 and hardware configuration information in buffer.

 If function unsuccessful

 AH = error code

Notes:

 o Upon return from the function, the buffer has been filled in with
 hardware configuration information in the following format:

 Offset Length Description
 --
 00H 2 size of raw expanded memory pages (in
 paragraphs)
 02H 2 number of alternate register sets
 04H 2 size of mapping-context save area (in
 bytes)
 06H 2 number of register sets that can be
 assigned to DMA channels
 08H 2 DMA operation type (0 = DMA may be used
 with alternate register sets; 1 = only one
 DMA register set available)
 --

 o The size returned for the mapping-context save area is the same as the
 size returned by Int 67H Function 4EH Subfunction 03H.

 o This function is intended for use by operating systems only and can be
 disabled by the operating system at any time.

--
Int 67H [EMS 4.0]
Function 59H (89) Subfunction 01H
Get number of raw pages
--

 Obtains the total number of raw expanded memory pages present in the
 system and the number of raw pages that are not already allocated. Raw
 memory pages may have a size other than 16 KB.

Call with:

 AH = 59H
 AL = 01H

Returns:

 If function successful

 AH = 00H
 BX = unallocated raw pages
 DX = total raw pages

 If function unsuccessful

 AH = error code

Note:

 o If the Expanded Memory Manager supports only pages of standard size, the
 values returned by this function are the same as those returned by Int
 67H Function 42H.

--
Int 67H [EMS 4.0]
Function 5AH (90) Subfunction 00H
Allocate handle and standard pages
--

 Allocates an EMM handle and associates standard (16 KB) expanded memory
 pages with that handle.

Call with:

 AH = 5AH
 AL = 00H
 BX = number of standard pages to allocate

Returns:

 If function successful

 AH = 00H
 DX = EMM handle

 If function unsuccessful

 AH = error code

Note:

 o Unlike Int 67H Function 43H, allocating zero pages with this function
 is not an error.

--
Int 67H [EMS 4.0]
Function 5AH (90) Subfunction 01H

Allocate handle and raw pages
--

 Allocates a raw EMM handle and associates raw expanded memory pages with
 that handle.

Call with:

 AH = 5AH
 AL = 01H
 BX = number of raw pages to allocate

Returns:

 If function successful

 AH = 00H
 DX = handle for raw EMM pages

 If function unsuccessful

 AH = error code

Notes:

 o Raw memory pages may have a size other than 16 KB.

 o Allocation of zero pages is not an error.

--
Int 67H [EMS 4.0]
Function 5BH (91) Subfunction 00H
Get alternate map registers
--

 Returns the number of the active alternate register set or, if no
 alternate set is active, saves the state of the mapping registers into a
 buffer and returns its address.

Call with:

 AH = 5BH
 AL = 00H

Returns:

 If function successful and alternate map register set active

 AH = 00H
 BL = current active alternate map register set

 If function successful and alternate map register set not active

 AH = 00H
 BL = 00H
 ES:DI = segment:offset of alternate map register save area
 (if BL = 0)

 If function unsuccessful

 AH = error code

Notes:

 o The address of the save area must have been specified in a previous call
 to Int 67H Function 5BH Subfunction 01H, and the save area must have
 been initialized by a previous call to Int 67H Function 4EH Subfunction
 00H. If there was no previous call to Int 67H Function 5BH Subfunction
 01H, the address returned is zero, and the registers are not saved.

 o This function is intended for use by operating systems only and can be
 disabled by the operating system at any time.

--
Int 67H [EMS 4.0]
Function 5BH (91) Subfunction 01H
Set alternate map registers
--

 Selects an alternate map register set or (if alternate sets are not
 supported) restores the mapping context from the specified buffer.

Call with:

 AH = 5BH
 AL = 01H
 BL = alternate register set number or 00H
 ES:DI = segment:offset of map register context restore area
 (if BL = 0)

Returns:

 If function successful

 AH = 00H

 If function unsuccessful

 AH = error code

Notes:

 o The buffer address specified in this call is returned by subsequent
 calls to Int 67H Function 5BH Subfunction 00H with BL = 00H.

 o The save area must have been initialized by a previous call to Int 67H
 Function 4EH Subfunction 00H.

 o This function is intended for use by operating systems only and can be
 disabled by the operating system at any time.

--
Int 67H [EMS 4.0]
Function 5BH (91) Subfunction 02H
Get size of alternate map register save area

--

 Returns the amount of storage needed by Int 67H Function 5BH Subfunctions
 00H and 01H.

Call with:

 AH = 5BH
 AL = 02H

Returns:

 If function successful

 AH = 00H
 DX = size of buffer (bytes)

 If function unsuccessful

 AH = error code

Note:

 o This function is intended for use by operating systems only and can be
 disabled by the operating system at any time.

--
Int 67H [EMS 4.0]
Function 5BH (91) Subfunction 03H
Allocate alternate map register set
--

 Allocates an alternate map register set for use with Int 67H Function 5BH
 Subfunctions 00H and 01H. The contents of the currently active map
 registers are copied into the newly allocated alternate map registers in
 order to provide an initial context when they are selected.

Call with:

 AH = 5BH
 AL = 03H

Returns:

 If function successful

 AH = 00H
 BL = alternate map register set number or zero, if no alternate
 sets are available

 If function unsuccessful

 AH = error code

Note:

 o This function is intended for use by operating systems only and can be
 disabled by the operating system at any time.

--
Int 67H [EMS 4.0]
Function 5BH (91) Subfunction 04H
Deallocate alternate map register set
--

 Releases an alternate map register set that was previously allocated with
 Int 67H Function 5BH Subfunction 03H.

Call with:

 AH = 5BH
 AL = 04H
 BL = alternate register set number

Returns:

 If function successful

 AH = 00H

 If function unsuccessful

 AH = error code

Notes:

 o The current alternate map register set cannot be deallocated.

 o This function is intended for use by operating systems only and can be
 disabled by the operating system at any time.

--
Int 67H [EMS 4.0]
Function 5BH (91) Subfunction 05H
Allocate DMA register set
--

 Allocates a DMA register set.

Call with:

 AH = 5BH
 AL = 05H

Returns:

 If function successful

 AH = 00H
 BL = DMA register set number (0 = none available)

 If function unsuccessful

 AH = error code

Note:

 o This function is intended for use by operating systems only and can be
 disabled by the operating system at any time.

--
Int 67H [EMS 4.0]
Function 5BH (91) Subfunction 06H
Enable DMA on alternate map register set
--

 Associates a DMA channel with an alternate map register set.

Call with:

 AH = 5BH
 AL = 06H
 BL = alternate map register set
 DL = DMA channel number

Returns:

 If function successful

 AH = 00H

 If function unsuccessful

 AH = error code

Notes:

 o If a DMA channel is not assigned to a specific register set, DMA for
 that channel will be mapped through the current register set.

 o If zero is specified as the alternate map register set, no special
 action is taken on DMA accesses for the specified DMA channel.

 o This function is intended for use by operating systems only and can be
 disabled by the operating system at any time.

--
Int 67H [EMS 4.0]
Function 5BH (91) Subfunction 07H
Disable DMA on alternate map register set
--

 Disables DMA accesses for all DMA channels associated with a specific
 alternate map register set.

Call with:

 AH = 5BH
 AL = 07H
 BL = alternate register set number

Returns:

 If function successful

 AH = 00H

 If function unsuccessful

 AH = error code

Note:

 o This function is intended for use by operating systems only and can be
 disabled by the operating system at any time.

--
Int 67H [EMS 4.0]
Function 5BH (91) Subfunction 08H
Deallocate DMA register set
--

 Deallocates a DMA register set that was previously allocated with Int 67H
 Function 5BH Subfunction 05H.

Call with:

 AH = 5BH
 AL = 08H
 BL = DMA register set number

Returns:

 If function successful

 AH = 00H

 If function unsuccessful

 AH = error code

Note:

 o This function is intended for use by operating systems only and can be
 disabled by the operating system at any time.

--
Int 67H [EMS 4.0]
Function 5CH (92)
Prepare Expanded Memory Manager for warm boot
--

 Prepares the expanded memory hardware for an impending warm boot. This
 function affects the current mapping context, the alternate register set
 in use, and any other expanded memory hardware dependencies that would
 ordinarily be initialized at system boot time.

Call with:

 AH = 5CH

Returns:

 If function successful

 AH = 00H

 If function unsuccessful

 AH = error code

Note:

 o If an application maps expanded memory at addresses below 640 KB, the
 application must trap all possible conditions that might lead to a warm
 boot, so that this function can be called first.

--
Int 67H [EMS 4.0]
Function 5DH (93) Subfunction 00H
Enable EMM operating-system functions
--

 Enables the operating-system-specific EMM functions (Int 67H Functions
 59H, 5BH, and 5DH) for calls by any program or device driver. (This is
 the default condition.)

Call with:

 AH = 5DH
 AL = 00H
 BX:CX = access key (if not first call to function)

Returns:

 If function successful

 AH = 00H
 BX:CX = access key (if first call to function)

 If function unsuccessful

 AH = error code

Notes:

 o An access key is returned in registers BX and CX on the first call to
 Int 67H Function 5DH Subfunction 00H or 01H. The access key is
 required for all subsequent calls to either function.

 o This function is intended for use by operating systems only.

--
Int 67H [EMS 4.0]
Function 5DH (93) Subfunction 01H
Disable EMM operating-system functions

--

 Disables the operating-system-specific EMM functions (Int 67H Functions
 59H, 5BH, and 5DH) for calls by application programs and device
 drivers, reserving the use of these functions for the operating system.

Call with:

 AH = 5DH
 AL = 01H
 BX:CX = access key (if not first call to function)

Returns:

 If function successful

 AH = 00H
 BX:CX = access key (if first call to function)

 If function unsuccessful

 AH = error code

Notes:

 o An access key is returned in registers BX and CX on the first call to
 Int 67H Function 5DH Subfunction 00H or 01H. The access key is
 required for all subsequent calls to either function.

 o This function is intended for use by operating systems only.

--
Int 67H [EMS 4.0]
Function 5DH (93) Subfunction 02H
Release access key
--

 Releases the access key obtained by a previous call to Int 67H Function
 5DH Subfunction 00H or 01H.

Call with:

 AH = 5DH
 AL = 02H
 BX:CX = access key

Returns:

 If function successful

 AH = 00H

 If function unsuccessful

 AH = error code

Notes:

 o With respect to the operating-system-specific expanded memory functions,
 the EMM is returned to the state it had when the system was initialized.
 A new access key is returned by the next call to Int 67H Function 5DH
 Subfunction 00H or 01H.

 o This function is intended for use by operating systems only and can be
 disabled by the operating system at any time.

--
Index

 References to tables and illustrations are in italics.

Special Characters

| 298-99
. 187
.. 187-88
; 60
< 298-99
> 298-99
>> 298-99
@ 60

A
Absolute disk read 482-84
Absolute disk write 484-85
adapters, video display 86-87
alarm
 reset 592
 set 591-92
align type 38
Allocate alternate map register set (EMS) 641
Allocate DMA register set (EMS) 642
Allocate handle and pages (EMS) 617-18
Allocate handle and raw pages (EMS) 639
Allocate handle and standard pages (EMS) 638-39
Allocate memory block 438-39
ANSI.SYS device driver, screen control 91
 escape sequences used with 92-93
APPEND 490-91
application program interface (API) 320
application programs. See MS-DOS application programs, porting to OS/2;
 MS-DOS application programs, structure of; MS-DOS application programs,
 writing compatible
arena entries 196
arena headers 196, 201
 diagram example 202
ASCII escape code 92-93
ASCII mode 69
 character-device drivers in 261-62
ASCII text files 56
ASCIIZ strings 24, 139, 168
.ASM files 45. See also assembly-language programs
assembly-language programs 37-42
 to access file allocation table 191

 BREAK.ASM 75-78
 CLEAN.ASM 304-9
 DRIVER.ASM 283-91
 DUMP.ASM 152-61
 HELLO.COM example 27-30, 33-36
 program modules 37
 program procedures 41-42
 program segments 38-41
 PROTO.ASM 301-2
 SHELL.ASM program 229-38
 TALK.ASM 113-26
 ZERODIV.ASM 254, 255-58
ASSIGN 489
ASSUME statement 29, 33
attribute byte
 color text display 98
 monochrome text display 97
attribute word, device 264
Auxiliary device (AUX) 12, 106, 298. See also serial port
Auxiliary input 344-45
Auxiliary output 345-46

B
background, set 508-9
BACKUP command 15
.BAT (batch) files 15
Batch files 15
binary mode 69
 character-device drivers in 261-62
 output 93-94
BIOS module 12-13, 17
 get address of extended, 574
BIOS parameter block (BPB) 181, 189
 build 272
 structure 269
bit planes 101
blink/intensity bit, toggle 513
block-device drivers 260, 262
 check for remoteness 423-24
 check removability of 422-23
 generic I/O control of 429-32
 read control data from 418-19
 write control data to 419-20
Boot disk device (block device) 12
boot drive, get 392-93
boot sector, disk 179-82
 map of 180
 partial disassembly of 182
 partial hex dump 181
bootstrap routine 16, 17
border
 get color 514
 get palette and 514
 set 508-9
 set color 512
BREAK.ASM program 75-78
break flag, get or set 392-93
Buffered keyboard input 351-52
Build BIOS Parameter Block (function 02H) 272

C
CALL instructions 41
Cancel device redirection 467-68
cassette motor
 read 561
 turn off 560-61
 turn on 560
 write 562
.C files 45. See also C language
Change sharing retry count 425-26
character blocks, set specifier 520
character-device drivers 260, 261-62
 ASCII vs binary mode 261-62
 generic I/O control 426-29
 read control data from 415-16
 write control data to 416-17
character input/output. See also keyboard input; mouse, input; pointing
 device, input; printer output; serial port
 Int 21H 44H IOCTL (I/O control) 411-43
 Int 21H functions, summary 337-38 (table)
 processing typical I/O request 281-82
Character input with echo 343
Character input without echo 349-50
Character output 344
CHDIR (CD) command 167
Check if block device is remote 423-24
Check if block device is removable 422-23
Check if handle is remote 424-25
Check input status 353, 420-21
Check output status 421-22
child programs 218
CHKDSK command 15, 174, 222
C language
 CLEAN.C 309-11
 compiler (see C Optimizing Compiler)
 DUMP.C program 151, 161-63
 linking Ctrl-C and Ctrl-Break handlers to programs in 75-80
 MOUDEMO.C 82-83
 polling mouse and displaying mouse coordinates 82-83
 PROTO.C 303
 SHELL.C 225-29
 TRYBREAK 78-79
 tutorials 63
class type 38
CLEAN filter 303-11
 assembly source code 304-9
 C source code 309-11
clock, set tick count 589-90
CLOCK driver 282
Close file 357-58, 404-5
code page, get or set 474-75
code segment 38
code segment (CS) register 30
Color/Graphics Adapter (CGA) 86, 98, 102
color page state
 get 517
 set 515-16
color register(s)

 get 516
 get block of 516-17
 set 514-15
 set block of 515
COM1, COM2, COM3 devices 106, 110-12, 298
combine type 38
command code routines, device-driver 267-81
 function 00H, Driver initialization 268-69
 function 01H, Media Check 270-71
 function 02H, Build BIOS Parameter Block (BPB) 272
 function 03H, I/O-Control Read 272-73
 function 04H, Read 273
 function 05H, Nondestructive Read 274
 function 06H, Input Status 274
 function 07H, Flush Input Buffers 274-75
 function 08H, Write 275
 function 09H, Write with Verify 276
 function 0AH, Output Status 276
 function 0BH, Flush Output Buffers 276
 function 0CH, I/O-Control Write 276-77
 function 0DH, Device Open 277
 function 0EH, Device Close 277-78
 function 0FH, Removable Media 278
 function 10H, Output Until Busy 278-79
 function 13H, Generic IOCTL 279-80
 function 17H, Get Logical Device 280
 function 18H, Set Logical Device 280-81
 names of, and MS-DOS version support 267-68 (table)
COMMAND.COM file 14-16
 load 20
 replacing 13
 use of EXEC function 218
COMMAND.COM PLUS 13
command processor (shell) 13. See also COMMAND.COM file
commands, types of, accepted by COMMAND.COM 14-15
command tail 24, 220-21
Commit file 476-77
compatibility and portability 313-31
 degrees of compatibility 314-18
 MS-DOS applications 315-17
 ROM BIOS and hardware-compatible applications 317-18
 OS/2 compatibility 318-31
.COM program file(s) 15, 22, 25-30, 45
 assembly-language program transformed into 27-30
 vs .EXE files 22, 36 (table)
 memory allocation for 197-98
 memory image of a typical 26
CONFIG.SYS file 12
 installing device driver 293
 opening 18-19
configuration
 get equipment 535-36
 get information 525
 get system environment 573-74
console, direct input/output 347-48. See also video display
Console display and keyboard (CON) 12, 298-99
control data
 read, from block-device driver 418-19
 read, from character-device driver 415-16

 write, to block-device driver 419-20
 write, to character-device driver 416-17
Controller drive diagnostic 551
Controller internal diagnostic 551
Controller RAM diagnostic 550
cooked mode 69
C Optimizing Compiler 44, 48-50
 environmental variables 48
 version 5.1 switches 49-50
COPY command 14, 58
Country information
 get extended 470-74
 get or set 395-98
CP/M operating system 4, 5
 FCB compatibility with 129, 130-31
 program segment prefix compatibility with 24, 25
Create directory 398-99
Create file 364-65, 401-2
Create new file 458-59
Create new PSP 378-79
Create temporary file 457-58
CREF utility 44, 56-58
 cross-reference listing for HELLO.REF 57
.CRF files 45, 56
Critical-error handler address 481-82
critical-error handlers 24, 145, 147-51
 address 481-82
 skeleton program example 150-51
 stack at entry to 148, 149
cross-reference listing. See CREF utility
Ctrl-Break and Ctrl-C handlers 72-80
 compatibility issues 317
 Ctrl-C handler address 480-81
 high-level languages and 75-80
cursor
 addressing 97
 enable/disable emulation 528
 get position 502-3
 read character and attribute at 506
 set position 501-2
 set type 501
 write character and attribute at 506-7
 write character at 507-8

D
data segment 38
data segment (DS) register 31, 35
Date and time device (CLOCK$) 12
day count
 get 592-93
 set 593
Deallocate alternate map register set (EMS) 642
Deallocate DMA register set (EMS) 644
.DEF files 45
Delay 568-69
DEL(ETE) command 14
Delete directory 399
Delete file 361-62, 40, sug>8
dependency statements 61

descriptors, memory segment 321
device
 cancel redirection 467-68
 close 565
 get device information 412-13
 open 564-65
 post 572-73
 read file or 405-6
 redirect 466-67
 set device information 414-15
 wait 571
 write file or 406-7
Device Close (command code function 0EH) 277-78
Device close (MS-DOS function) 565
DEVICE commands 12
device drivers, installable 12-13, 259-96
 CLOCK driver 282
 command-code routines 267-81
 debugging 295-96
 chain before/after driver installation 294
 chain listing 295
 device attribute word 264
 error codes 267
 MS-DOS type 260-63
 processing of typical input/output requests 281-82
 structure of MS-DOS 263-67
 device header 263-64
 interrupt routine 26-67
 strategy routine 265
 writing and installing 282-95
 assembly 283-92
 installation 293-95
 linking 293
device drivers, resident 12-13
Device Open (command-code function 0DH) 277
Device open (MS-DOS function) 564-65
Device post 572-73
Device wait 571-72
Digital Research 4
DIR command 14, 167, 174
Direct console I/O 347-48
directory 166, 167-73
 create 398-99
 delete 399
 format of a single entry in a disk 184, 185
 functions controlling 167-68 get current 437-38
 hierarchical (tree) structure 166, 167
 moving files 173
 root 184-86
 searching 168-73
 set current 400
directory operations, Int 21H functions summary 339
Disable DMA on alternate map register set (EMS) 643-44
Disable EMM operating system functions (EMS) 645-46
Disable mouse driver 608-9
disk(s) 177-94. See also drive, logical; ESDI Fixed Disk Drive Adapter
 absolute read 482-84
 absolute write 484-85
 boot sector 179-82

 controller drive diagnostic 551
 controller internal diagnostic 551
 controller RAM diagnostic 550
 file allocation table 182-84
 interpreting the 188-92
 files area 186-88
 fixed-disk partitions 192-94
 format 543
 format bad track 542
 format track 541-42
 get change status 552-53
 get current 367
 get default drive data 368-69
 get drive allocation information 394-95
 get drive data 370
 get drive parameters 543-44
 get drive status 549
 get type 552
 initialize fixed disk characteristics 544-45
 map of typical logical volume 179
 park heads 554-55
 read sector 538-39
 read sector buffer 548
 read sector long 545-46
 recalibrate 550
 reserved area 182
 reset 354-55
 reset fixed disk system 548
 root directory 184-86, 187
 seek 547
 select 355-56
 set media type 554
 set type 553
 set verify flag 387-88
 verify sector 540
 write sector 539-40
 write sector buffer 549
 write sector long 546-47
disk bootstrap routine 16
 memory location of 17
disk management, Int 21H functions summary 339
disk-related errors 147, 148 (table)
Disk reset 354-55
disk system
 get status 537-38
 reset 536-37
disk transfer area (DTA) 25, 130
 get 388-89
 set 368
display page, set 503-4
Display string 350-51
DOS kernel 12, 18
 memory location of 19
double-byte character sets (DBCS), get lead byte table 469-70
drive, logical 166, 16,-73. See also disk(s)
 get map 433
 set map 434
 vs volume 174
driver. See device drivers, installable; device drivers, resident

DRIVER.ASM program 283-91
Driver Initialization (function 00H) 268-69
DUMP.ASM program 151, 152-61
 subroutines 163
DUMP.C program 151, 161-63
Duplicate handle 435
dynamic link library 331
dynamic memory allocation 199, 200, 201

E
echo
 character input with 343
 character input without 349-50
 unfiltered character input without 348-49
EMS. See Expanded Memory Specification (EMS)
Enable/disable cursor emulation 528
Enable/disable default palette loading 526-27
Enable/disable gray-scale summing 527
Enable/disable pointing device 574-75
Enable/disable screen refresh 529
Enable/disable video 527
Enable DMA on alternate map register set (EMS) 643
Enable EMM operating system functions (EMS) 645
Enable mouse driver 609
encapsulation of subroutines 323, 324-25
end of interrupt (EOI) 250
ENDP command 35, 41
ENDS command 29, 38
END statement 30-31, 36, 41
Enhanced Graphics Adapter (EGA) 86, 97, 98, 102
Enter protected mode 570-71
environment block 24, 220, 224-25
 dump of a typical 224
 three strings contained in 225
EQU statement 33
error codes, device driver 267
error codes, MS-DOS 145-51
 critical 145, 147-51
 expanded memory 207-9
error information, get/set 453-56
escape sequences, ANSI 92-93
ESDI Fixed Disk Drive Adapter (EP>
 format drive 555
 format periodic interrupt 562-63
Event wait 566-67
Exchange memory regions (EMS) 635-36
EXE2BIN utility 44, 55-56
EXEC function 15, 217-42. See also Int 21H Function 4BH
 calling convention 222
 compatibility in MS-DOS applications 317
 environment block 220, 224-25
 example programs SHELL.C and SHELL.ASM 225-40
 basic flow of both 239-40
 internal commands in 239
 example use of 223-24
 loading overlays with 240, 241-42
 making memory availinug for 218-19
 reference 441-42
 requesting 219-21

 returning from 221-24
.EXE (executable) program file(s) 15, 22, 30-36, 45
 assembly language program transformed into 33-36
 vs .COM files 22, 36 (table)
 converting, to .COM files (see EXE2BIN utility)
 header 30
 load module contents 33 load module format 32
 memory allocation for 198
 memory image of 31
 use for compatible MS-DOS applications 315
Expanded Memory Manager (EMM) 203-4
 checking for 204, 205-6
 enable/disable system functions 645-46
 error codes 207-9
Expanded Memory Specification (EMS) 201-11
 checking for expanded memory 204-6
 expanded memory defined 203-4
 functions reference (see Section IV)
 summary 614-15
 use of expanded memory 20,-11
 skeleton program illustrating 210-11
Extended communications port control 559-60
extended file control block 131
 volume-label search using 175
Extended initialize communications port 558-59
extended memory 204, 212-15
 moving blocks of data between conventional memory and 213-15
Extended open file 478-80
external (extrinsic) commands 15
external hardware interrupts 247
extra segment (ES) register 31

F
FAR attribute 35
 vs NEAR 29
faults (internal hardware interrupts) 246, 321
file(s)
 area, in disks 186-88
 close 357-58, 404
 commit 476-77
 create 364-65, 401-2
 create new 458-59
 create temporary 457-58
 delete 361-62, 407-8
 extended open 478-80
 find first 358-59, 445-46
 find next 360-61, 446-47
 get file size 375-76
 get/set date and time 450-51
 lock/unlock file region 460-61
 logical drive 166
 moving 123
 name and location 166
 open 356-57, 402-4
 read 405-6
 rename 366, 449-50
 types 45
 write 406-7
file-access skeleton program

 using FCB functions 134, 135-37
 using handle functions 141, 142-43
file allocation table (FAT) 16, 182-84
 assembly program to access 191
 contents 183
 interpreting 188-92
 media descriptor bytes 183
file attributes, get or set 410-11
file control blocks (FCBs) 25, 128
 default 130, 221
 directory searching with 169, 170-71
 extended 131, 133-34, 175
 file management with FCB functions 129-39
 advantages/disadvantages 138-39
 file-access skeleton program 134-38
 functions listed 132
 vs handle functions 128
 normal 129, 133-34
 before/after open call (Int 21H Function 0FH) 137
 restricted use 316, 319
 typical operation of 130
file management 127-63
 example programs DUMP.ASM and DUMP.C 151-63
 FCB functions 128, 129-39
 handle functions 128, 139-44
 MS-DOS error codes 145-51
filename
 fully qualified 16
 parse 382-83
 requesting EXEC function 219
file operations, Int 21H functions summary 338
file pointer, set 408-9
file system 166
 structure 167
filters 297-311
 building 300-303
 CLEAN filter 303-11
 operation of 299-300
 prototype 301-3
 system support for 298-99
Find first file 358-59, 445-46
Find next file 360-61, 44-47
fixed-disk partitions 192-94
font functions 518-24
Format bad track 542
Format drive 543
Format ESDI drive 555-56
Format ESDI drive periodic interrupt 562-63
Format track 541-42
Flush input buffer and then input 353-54
Flush Input Buffers (function 07H) 274-75
Flush Output Buffers (function 0BH) 276

G
Generic I/O control for block devices 429-32
Generic I/O control for character devices 426-29
Generic IOCTL (function 13H) 279-80
Get addresses of mappable pages (EMS) 636
Get address of alternate mouse event handler 606

Get address of extended BIOS data area 574
Get all handle names (EMS) 631
Get alternate map registers (EMS) 639-40
Get attribute capability (EMS) 630
Get block of color registers 516-17
Get border color 514
Get button press information 596
Get button release information 597
Get color page state 517
Get color register 516
Get communications port status 558
Get configuration information 525
Get conventional memory size 536
Get current directory 437-38
Get current disk 367
Get cursor position 502-3
Get date 384-85, 591
Get day count 592
Get DBCS lead byte table 469-70
Get default drive data 368-69
Get device inform~on 412-13
Get disk change status 552-53
Get disk system status 537-38
Get disk type 552
Get drive allocation information 394-95
Get drive data 370-71
Get drive parameters 543-44
Get drive status 549
Get DTA address 388-89
Get enhanced keyboard flags 586-87
Get equipment configuration 535-36
Get extended country information 470-74
Get extended error information 453-56
Get extended memory size 570
Get file size 375-76
Get font information 524
Get functionality/state information 531-34
Get handle attribute (EMS) 629
Get handle count (EMS) 621-22
Get handle name (EMS) 630
Get handle pages (EMS) 622
Get hardware configuration (EMS) 637-38
Get interrupt vector 393-94
Get keyboard flags 582
Get keyboard status 582
Get language number 610
Get light pen position 503
Get Logical Device (command-code function) 280
Get logical drive map 433
Get machine name 461-62
Get mouse information 611
Get mouse position and button status 595
Get mouse save state buffer size 603
Get mouse sensitivity 607
Get MS-DOS version number 389-90
Get number of mappable pages (EMS) 637
Get number of pages (EMS) 617
Get number of raw pages (EMS) 638
Get or set allocation strategy 452-53

Get or set break flag, get boot drive 392-93
Get or set code page 474-75
Get or set country information 395-98
Get or set display combination code 530-31
Get or set file Attributes 410-11
Get or set file date and time 450-51
Get page frame address (EMS) 616
Get pages for all handles (EMS) 623
Get palette and border 514
Get palette register 513
Get pointer page 608
Get pointing device type 577
Get printer setup string 463-64
Get printer status 588
Get PSP address 468-69
Get redirection list entry 464-65
Get return code 444-45
Get size of alternate map register save area (EMS) 641
Get size of page map information (EMS) 625
Get size of partial page map information (EMS) 626-27
Get stack space for map page and call (EMS) 634
Get status (EMS) 616
Get system environment 573-74
Get tick count 589
Get time 386, 590
Get total handles (EMS) 632
Get verify flag 448
Get version (EMS) 619
Get video mode 511
Graphics CardPlus 87
graphics mode memory-mapped programming 101-3
gray-scale
 enable/disable summing 527
 get values 517
GROUP directive 39

H
handle functions
 check if handle is remote 424-25
 directory searching 169-70, 172-73
 DUMP.ASM program 151, 152-62
 DUMP.C program 151, 161-63
 duplicate handle 435
 file/record management with 139-44
 advantages/disadvantages 144
 vs FCB functions 128
 file access skeleton program 141-43
 functions listed 140-41
 typical operation 139
 keyboard input 62, 67-69
 redirect handle 436-37
 set handle count 475-76
 use for compatible MS-DOS applications 316
 volume-label search using176
hardware-compatible applications 314-15, 317-18
header(EP>
 device 263, 264, 269
 .EXE program files 30
Hercules Graphics Card 87, 97, 98

HELLO.COM program 27, 28-29, 30
 hex dump of 33
 map produced by Object Linker during generation of 51
HELLO.EXE program 33, 34-35, 36
HELLO.REF program, cross-reference listing 57
.H files 45
Hide mouse pointer 595

I
IBMBIO.COM file 16
 disk location 189-92
IBM Corporation, role in MS-DOS development 4-5
IBMDOS.COM file 13, 16
IBM PC 64
 PC/AT 64
 PS/2 64
 regen buffers in memory for various adapters 87
"ill-behaved" applications 315
.INC files 45
In-Color Card 87
Initialize communications port 556-57
Initialize fixed disk characteristics 544-45
Initialize or scroll window down 505-6
Initialize or scroll window up 505
Initialize pointing device interface 577-78
Initialize printer port 587-88
input. See character input/output; keyboard input; mouse, input; pointing
 device, input; serial port
input buffer, flush 353-54
Input/Output (I/O)-Control Read (function 03H) 272-73
Input/Output (I/O)-Control Write (function 0CH) 276-77
input/output (I/O) redirection 67, 298-99
input status, check 353, 420
Input Status (command-code function 06H) 274
INS8250 Asynchronous Communications Controller 112
installable device drivers 12-13
Int 10H, ROM BIOS video driver
 Function 00H, Set video mode 94, 500
 Function 01H, Set cursor type 94, 501
 Function 02H, Set cursor position 94, 501
 Function 03H, Get cursor position 94, 502
 Function 04H, Get light pen position 95, 503
 Function 05H, Set display page 95, 503
 Function 06H, Initialize or scroll window up 95, 505
 Function 07H, Initialize or scroll window down 95, 505
 Function 08H, Read character and attribute at cursor 95, 506
 Function 09H, Write character and attribute at cursor 94, 506
 Function 0AH, Write character at cursor 94, 507
 Function 0BH, Set palette, background, or border 95, 508
 Function 0CH, Write graphics pixel 95, 509
 Function 0DH, Read graphics pixel 95, 510
 Function 0EH, Write character in teletype mode 94, 510
 Function 0FH, Get video mode 94, 511
 Function 10H palette functions
 Subfunction 00H, Set palette register 511
 Subfunction 01H, Set border color 512
 Subfunction 02H, Set palette and border 512-13
 Subfunction 03H, Toggle blink/intensity bit 513
 Subfunction 07H, Get palette register 513

 Subfunction 08H, Get border color 514
 Subfunction 09H, Get palette and border 514
 Subfunction 10H, Set color register 514
 Subfunction 12H, Set block of color registers 515
 Subfunction 13H, Set color page state 515-16
 Subfunction 15H, Get color register 516
 Subfunction 17H, Get block of color registers 516
 Subfunction 1AH, Get color page state 517
 Subfunction 1BH, Set gray-scale values 517
 Function 11H, font functions
 Subfunctions 00H and 10H, Load user font 518
 Subfunctions 01H and 11H, Load ROM 8-by-14 font 518
 Subfunctions 02H and 12H, Load ROM 8-by-8 font 519
 Subfunction 03H, Set block specifier 520
 Subfunctions 04H and 14H, Load ROM 8-by-16 font 520
 Subfunction 20H, Set Int 1FH font pointer 521
 Subfunction 21H, Set Int 43H for user's font 522
 Subfunction 22H, Set Int 43H for ROM 8-by-14 font 522
 Subfunction 23H, Set Int 43H for ROM 8-by-8 font 523
 Subfunction 24H, Set Int 43H for ROM 8-by-16 font 523
 Subfunction 30H, Get font information 524
 Function 12H
 Subfunction 10H, Get configuration information 525
 Subfunction 20H, Select alternate printscreen 526
 Subfunction 30H, Set scan lines 526
 Subfunction 31H, Enable/disable default palette loading 526-27
 Subfunction 32H, Enable/disable video 527
 Subfunction 33H, Enable/disable gray-scale summing 527
 Subfunction 34H, Enable/disable cursor emulation 528
 Subfunction 35H, Switch active display 528
 Subfunction 36H, Enable/disable screen refresh 529
 Function 13H, Write string in teletype mode 529
 Function 1AH, Get or set display combination code 530
 Function 1BH, Get functionality/state information 531
 Function 1CH, Save or restore video state 534
Int 11H, Get equipment configuration 535
Int 12H, Get conventional memory size 536
Int 13H, ROM BIOS disk driver 319
 Function 00H, Reset disk system 536
 Function 01H, Get disk system status 537
 Function 02H, Read sector 538
 Function 03H, Write sector 539
 Function 04H, Verify sector 540
 Function 05H, Format track 541
 Function 06H, Format bad track 542
 Function 07H, Format drive 543
 Function 08H, Get drive parameters 543
 Function 09H, Initialize fixed disk characteristics 544
 Function 0AH, Read sector long 545
 Function 0BH, Write sector long 546
 Function 0CH, Seek 547
 Function 0DH, Reset fixed disk system 548
 Function 0EH, Read sector buffer 548
 Function 0FH, Write sector buffer 549
 Function 10H, Get drive status 549
 Function 11H, Recalibrate drive 550
 Function 12H, Controller RAM diagnostic 550
 Function 13H, Controller drive diagnostic 551
 Function 14H, Controller internal diagnostic 551

 Function 15H, Get disk type 552
 Function 16H, Get disk change status 552
 Function 17H, Set disk type 553
 Function 18H, Set media type for format 554
 Function 19H, Park heads 554
 Function 1AH, Format ESDI drive 555
Int 14H, ROM BIOS Serial communications port driver 111
 Function 00H, Initialize communications port 556
 Function 01H, Write character to communications port 557
 Function 02H, Read character from communications port 558
 Function 03H, Get communications port status 558
 Function 04H, Extended initialize communications port 558
 Function 05H, Extended communications port control 559
Int 15H, ROM BIOS I/O Subsystem Extensions
 Function 00H, Turn on cassette motor 560
 Function 01H, Turn off cassette motor 560
 Function 02H, Read cassette 561
 Function 03H, Write cassette 562
 Function 0FH, Format ESDI drive periodic interrupt 562
 Function 21H
 Subfunction 00H, Read POST error log 563
 Subfunction 01H, Write POST error log 563
 Function 4FH, Keyboard intercept 564
 Function 80H, Device open 564
 Function 81H, Device close 565
 Function 82H, Process termination 566
 Function 83H, Event wait 566
 Function 84H, Read joystick 567
 Function 85H, SysReq key 568
 Function 86H, Delay 568
 Function 87H, Move extended memory block 569
 Function 88H, Get extended memory size 570
 Function 89H, Enter protected mode 570
 Function 90H, Device wait 571
 Function 91H, Device post 572
 Function C0H, Get system environment 317, 573
 Function C1H, Get address of extended BIOS data area 574
 Function C2H
 Subfunction 00H, Enable/disable pointing device 574
 Subfunction 01H, Reset pointing device 575
 Subfunction 02H, Set sample rate 576
 Subfunction 03H, Set resolution 576
 Subfunction 04H, Get pointing device type 577
 Subfunction 05H, Initialize pointing device interface 577
 Subfunction 06H, Set scaling or get status 578
 Subfunction 07H, Set pointing device handler address 579
 Function C3H, Set watchdog time-out 580
 Function C4H, Programmable option select 580
Int 16H, ROM BIOS keyboard driver 322
 Function 00H, Read character from keyboard 581
 Function 01H, Get keyboard status 582
 Function 02H, Get keyboard flags 582
 Function 03H, Set repeat rate 583
 Function 04H, Set keyclick 584
 Function 05H, Push character and scan code 585
 Function 10H, Read character from enhanced keyboard 585
 Function 11H, Get enhanced keyboard status 586
 Function 12H, Get enhanced keyboard flags 586
Int 17H, ROM BIOS Parallel port printer driver 108-19

 Function 00H, Write character to printer 587
 Function 01H, Initialize printer port 587
 Function 02H, Get printer status 588
Int 18H, ROM BASIC 588
Int 19H, ROM BIOS Reboot system 588
Int 1AH, Real-time (CMOS) Clock Driver
 Function 00H, Get tick count 589
 Function 01H, Set tick count 589
 Function 02H, Get time 590
 Function 03H, Set time 590
 Function 04H, Get date 591
 Function 05H, Set date 591
 Function 06H, Set alarm 591
 Function 07H, Reset alarm 592
 Function 0AH, Get day count 592
 Function 0BH, Set day count 593
 Function 80H, Set sound source 593
Int 20H, Terminate process 341
Int 21H, MS-DOS system functions
 function execution in a typical I/O request 281-82
 function summary by category 337-40 (table)
 function summary by number 335-37 (table)
 Function 00H, Terminate process 342
 Function 01H, Character input with echo 70, 148, 343
 Function 02H, Character output 90, 344
 Function 03H, Auxiliary input 110, 344-45
 Function 04H, Auxiliary output 110, 345-46
 Function 05H, Printer output 107, 346-47
 Function 06H, Direct console I/O 70, 73, 90, 347-48
 Function 07H, Unfiltered character input without echo 70, 73, 348-49
 Function 08H, Character input without echo 70, 349-50
 Function 09H, Display string 90, 350-51
 Function 0AH, Buffered keyboard input 70-71, 351-52
 Function 0BH, Check input status 70, 353
 Function 0CH, Flush input buffer and then input 70, 353-54
 Function 0DH, Disk reset 354-55
 Function 0EH, Select disk 167, 355-56
 Function 0FH, Open file 132, 137, 356-57
 Function 10H, Close file 132, 357-58
 Function 11H, Find first file 358-59
 Function 12H, Find next file 360-61
 Function 13H, Delete file 132, 361-62
 Function 14H, Sequential read 132, 362-63
 Function 15H, Sequential write 132, 363-64
 Function 16H, Create file 132, 364-65
 Function 17H, Rename file 132, 173, 366-67
 Function 18H, Reserved 367
 Function 19H, Get current disk 167, 168, 367
 Function 1AH, Set DTA address 130, 132, 368
 Function 1BH, Get default drive data 368-69
 Function 1CH, Get drive data 370
 Function 1DH, Reserved 371
 Function 1EH, Reserved 371
 Function 1FH, Reserved 371
 Function 20H, Reserved 371
 Function 21H, Random read 132, 372-73
 Function 22H, Random write 132, 373-75
 Function 23H, Get file size 132, 375-76
 Function 24H, Set relative record number 132, 376

 Function 25H, Set interrupt vector 147, 252, 253, 316, 377-78
 Function 26H, Create new PSP 378-79
 Function 27H, Random block read 132, 379-80
 Function 28H, Random block write 132, 381-82
 Function 29H, Parse filename 129, 132, 382
 Function 2AH, Get date 384-85
 Function 2BH, Set date 385
 Function 2CH, Get time 386
 Function 2DH, Set time 386-87
 Function 2EH, Set verify flag 387-88
 Function 2FH, Get DTA address 388-89
 Function 30H, Get MS-DOS version number 148, 319, 389
 Function 31H, Terminate and stay resident 252, 253, 390-91
 Function 32H, Reserved 392
 Function 33H, Get or set break flag, get boot drive 392-93
 Function 34H, Reserved 393
 Function 35H, Get interrupt vector 252, 316, 393-94
 Function 36H, Get drive allocation information 394-95
 Function 37H, Reserved 395
 Function 38H, Get or set country information 395-98
 Function 39H, Create directory 167, 398-99
 Function 3AH, Delete directory 167, 399
 Function 3BH, Set current directory 167, 400
 Function 3CH, Create file 140, 401-2
 Function 3DH, Open file 107, 110, 140, 204, 402-4
 Function 3EH, Close file 140, 204, 404
 Function 3FH, Read file or device 67, 69, 71, 109, 110, 141, 298,
 300, 322, 405-6
 Function 40H, Write file or device 35, 88, 107, 109, 110, 141,
 298, 300, 322, 406-7
 Function 41H, Delete file 141, 407-8
 Function 42H, Set file pointer 141, 408-9
 Function 43H, Get or set file attributes 141, 410-11
 Function 44H, IOCTL (I/O control) 69, 93-94, 111, 204, 205, 411-34
 Subfunction 00H, IOCTL: get device information 412-13
 Subfunction 01H, IOCTL: set device information 414-15
 Subfunction 02H, IOCTL: read control data from character device driver
 415-16
 Subfunction 03H, IOCTL: write control data to character device driver
 416-17
 Subfunction 04H, IOCTL: read control data from block device driver
 418-19
 Subfunction 05H, IOCTL: write control data to block device driver
 419-20
 Subfunction 06H, IOCTL: check input status 420-21
 Subfunction 07H, IOCTL: check output status 421-22
 Subfunction 08H, IOCTL: check if block device is removable 422-23
 Subfunction 09H, IOCTL: check if block device is remote 423-24
 Subfunction 0AH, IOCTL: check if handle is remote 424-25
 Subfunction 0BH, IOCTL: change sharing retry count 425-26
 Subfunction 0CH, IOCTL: generic I/O control for character devices
 426-29
 Subfunction 0DH, IOCTL: generic I/O control for block devices 429-32
 Subfunction 0EH, IOCTL: get logical drive map 433
 Subfunction 0FH, IOCTL: set logical drive map 434
 Function 45H, Duplicate handle 141, 435
 Function 46H, Redirect handle 141, 299, 436-37
 Function 47H, Get current directory 167, 168, 437-38
 Function 48H, Allocate memory block 196, 202, 323, 438-39

 Function 49H, Release memory block 196, 323, 439-40
 Function 4AH, Resize memory block 196, 198, 202, 219, 239, 322,
 440-41
 Function 4BH, Execute program (EXEC) 202, 299, 441-42 (see also EXEC
 function)
 Function 4CH, Terminate process with return code 26, 31, 35, 317,
 443-44
 Function 4DH, Get return code 221, 444-45
 Function 4EH, Find first file 445-46
 Function 4FH, Find next file 446-47
 Function 50H, Reserved 447
 Function 51H, Reserved 447
 Function 52H, Reserved 447
 Function 53H, Reserved 448
 Function 54H, Get verify flag 448
 Function 55H, Reserved 448
 Function 56H, Rename file 141, 173, 449-50
 Function 57H, Get or set file date and time 141, 450-51
 Function 58H, Get or set allocation strategy 452-53
 Function 59H, Get extended error information 130, 145, 148, 453-56
 Function 5AH, Create temporary file 141, 457-58
 Function 5BH, Create new file 141, 458-59
 Function 5CH, Lock or unlock file region 141, 460-61
 Function 5DH, Reserved 461
 Function 5EH, Machine name and printer setup
 Subfunction 00H, Get machine name 461-62
 Subfunction 02H, Set printer setup string 462-63
 Subfunction 03H, Get printer setup string 463-64
 Function 5FH, Device redirection
 Subfunction 02H, Get redirection list entry 464-65
 Subfunction 03H, Redirect device 466-67
 Subfunction 04H, Cancel device redirection 467-68
 Function 60H, Reserved 468
 Function 61H, Reserved 468
 Function 62H, Get PSP address 468-69
 Function 63H, Get DBCS lead byte table 469-70
 Function 64H, Reserved 470
 Function 65H, Get extended country information 470-74
 Function 66H, Get or set code page 474-75
 Function 67H, Set handle count 141, 475-76
 Function 68H, Commit file 141, 476-77
 Function 69H, Reserved 477
 Function 6AH, Reserved 477
 Function 6BH, Reserved 477
 Function 6CH, Extended open file 141, 478-80
Int 22H, Terminate handler address 480
Int 23H, Ctrl-C handler address 317, 480-81
Int 24H, Critical-error handler address 147, 317, 481-82
Int 25H, Absolute disk read 482-84
Int 26H, Absolute disk write 319, 484-85
Int 27H, Terminate and stay resident 486-87
Int 28H, Reserved 487
Int 29H, Reserved 487
Int 2AH, Reserved 487
Int 2BH, Reserved 487
Int 2CH, Reserved 487
Int 2DH, Reserved 488
Int 2EH, Reserved 488
Int 2FH, Multiplex interrupt 488

 Function 01H, Print spooler 488-89
 Function 02H, ASSIGN 489
 Function 10H, SHARE 490
 Function B7H, APPEND 490-91
Int 33H, Microsoft Mouse driver 593
 Function 00H, Reset mouse and get status 80, 594
 Function 01H, Show mouse pointer 80, 594
 Function 02H, Hide mouse pointer 80, 595
 Function 03H, Get mouse position and button status 80, 595
 Function 04H, Set mouse pointer position 80, 596
 Function 05H, Get button press information 80, 596
 Function 06H, Get button release information 80, 597
 Function 07H, Set horizontal limits for pointer 80, 597
 Function 08H, Set vertical limits for pointer 80, 598
 Function 09H, Set graphics pointer shape 80, 598
 Function 0AH, Set text pointer type 80, 599
 Function 0BH, Read mouse motion counters 80, 599
 Function 0CH, Set user-defined mouse event handler 80, 600
 Function 0DH, Turn on light pen emulation 80, 601
 Function 0EH, Turn off light pen emulation 80, 601
 Function 0FH, Set mickeys to pixels ratio 80, 601
 Function 10H, Set mouse pointer exclusion area 80, 602
 Function 13H, Set double speed threshold 81, 602
 Function 14H, Swap user-defined mouse event handlers 81, 603
 Function 15H, Get mouse save state buffer size 81, 603
 Function 16H, Save mouse driver state 81, 604
 Function 17H, Restore mouse driver state 81, 604
 Function 18H, Set alternate mouse event handler 81, 604
 Function 19H, Get address of alternate mouse event handler 81, 606
 Function 1AH, Set mouse sensitivity 81, 606
 Function 1BH, Get mouse sensitivity 81, 607
 Function 1CH, Set mouse interrupt rate 81, 607
 Function 1DH, Select pointer page 81, 608
 Function 1EH, Get pointer page 81, 608
 Function 1FH, Disable mouse driver 81, 608
 Function 20H, Enable mouse driver 81, 609
 Function 21H, Reset mouse driver 81, 609
 Function 22H, Set language for mouse driver messages 81, 610
 Function 23H, Get language number 81, 610
 Function 24H, Get mouse information 81, 611
Int 67H, Expanded Memory Manager functions 204, 205, 207
 Function 40H, Get status 616
 Function 41H, Get page frame address 616
 Function 42H, Get number of pages 617
 Function 43H, Allocate handle and pages 617
 Function 44H, Map expanded memory page 618
 Function 45H, Release handle and expanded memory 619
 Function 46H, Get version 619
 Function 47H, Save page map 620
 Function 48H, Restore page map 620
 Function 49H, Reserved 621
 Function 4AH, Reserved 621
 Function 4BH, Get handle count 621
 Function 4CH, Get handle pages 622
 Function 4DH, Get pages for all handles 623
 Function 4EH
 Subfunction 00H, Save page map 623
 Subfunction 01H, Restore page map 624
 Subfunction 02H, Save and restore page map 624

 Subfunction 03H, Get size of page map information 625
 Function 4FH
 Subfunction 00H, Save partial page map 625
 Subfunction 01H, Restore partial page map 626
 Subfunction 02H, Get size of partial page map information 626
 Function 50H
 Subfunction 00H, Map multiple pages by number 627
 Subfunction 01H, Map multiple pages by address 627
 Function 51H, Reallocate pages for handle 628
 Function 52H
 Subfunction 00H, Get handle attribute 629
 Subfunction 01H, Set handle attribute 629
 Subfunction 02H, Get attribute capability 630
 Function 53H
 Subfunction 00H, Get handle name 630
 Subfunction 01H, Set handle name 631
 Function 54H
 Subfunction 00H, Get all handle names 631
 Subfunction 01H, Search for handle name 632
 Subfunction 02H, Get total handles 632
 Function 55H
 Subfunctions 00H and 01H, Map pages and jump 633
 Function 56H
 Subfunctions 00H and 01H, Map pages and call 633
 Subfunction 02H, Get stack space for map page and call 634
 Function 57H
 Subfunction 00H, Move memory region 635
 Subfunction 01H, Exchange memory regions 635
 Function 58H
 Subfunction 00H, Get addresses of mappable pages 636
 Subfunction 01H, Get number of mappable pages 637
 Function 59H
 Subfunction 00H, Get hardware configuration 637
 Subfunction 01H, Get number of raw pages 638
 Function 5AH
 Subfunction 00H, Allocate handle and standard pages 638
 Subfunction 01H, Allocate handle and raw pages 639
 Function 5BH
 Subfunction 00H, Get alternate map registers 639
 Subfunction 01H, Set alternate map registers 640
 Subfunction 02H, Get size of alternate map register save area 641
 Subfunction 03H, Allocate alternate map register set 641
 Subfunction 04H, Deallocate alternate map register set 642
 Subfunction 05H, Allocate DMA register set
 Subfunction 06H, Enable DMA on alternate map register set 643
 Subfunction 07H, Disable DMA on alternate map register set 643
 Subfunction 08H, Deallocate DMA register set 644
 Function 5CH, Prepare expanded memory manager for warm boot 644
 Function 5DH
 Subfunction 00H, Enable EMM operating system functions 645
 Subfunction 01H, Disable EMM operating system functions 645
 Subfunction 02H, Release access key 646
Intel 80x86 microprocessor family 4, 8, 38, 64, 203
 interrupts and 246-51
Intel 8259A Programmable Interrupt Controller 112, 320
internal hardware interrupts 246
internal (intrinsic) commands 14
interrupt(s) 13, 244-45. See also Int 10H through Int 67H
 external hardware 247

 internal hardware 246
 servicing 250-51
 software 247-49
 types 244
interrupt handlers 16
 example (ZERODIV.ASM) 254-58
 MS-DOS and 252-53
 servicing 250, 251
 tasks 245
 typical 251
interrupt (intr) routine, device-driver 266-67, 293. See also command code
 routines
interrupt vector 17, 244
 get 393-94
 set 377-78
interrupt vector table 250
IOCTL (I/O control). See Int 21H, Function 44H
IO.SYS file 16, 17
 memory location of 18

J
Japanese character set 6
joystick, read 567

K
kernel. See DOS kernel
keyboard
 get enhanced flags 586-87
 get enhanced status 586
 get flags 582
 get status 582
 input with/without echo 70
 intercept 564
 key repeat rate and delay 583-84
 push character and scan code in buffer 585
 read character from 581
 read character from enhanced 585
 set keyclick 584
keyboard input 65-72
 buffered 351-52
 Ctrl-C and Ctrl-Break handlers 72-80, 317
 with handles 66, 67-69
 read character from keyboard 581
 with ROM BIOS functions 71-72
 with traditional calls 69-71
Keyboard input with echo 70
Keyboard input without echo 70
Keyboard intercept 564
Korean character set 6

L
.LIB files 44, 45, 58. See also Library Manager (LIB)
Library Manager (LIB) 44, 58-60
 operations prefix characters 58
 table-of-contents listing for SLIBC.LIB 59
light pen
 get position 503
 turn off emulation 601
 turn on emulation 601

line printer (PRN) 12, 106, 298
LINK. See Object Linker (LINK)
Load ROM 8-by-8 font 519
Load ROM 8-by-14 font 518-19
Load ROM 8-by-16 font 520-21
Load user font 518
Lock or unlock file region 460-61
Lotus/Intel/Microsoft Expanded Memory (LIM EMS). See Expanded Memory
 Specification (EMS)
LPT1, LPT2, LPT3 devices 106, 298
.LST files 45

M
machine name, get 461-62
Macro Assembler (MASM) 44, 45-47
 command line mode 46
 interactive mode 46
 levels
 modules 37
 procedures 41-42
 segments 38-41
 tutorials 63
 version 5.1 switches 47
make files 61
MAKE utility 60-61
 switches for 61
Map expanded memory page (EMS) 618
.MAP files 45
Map multiple pages by address (EMS) 627-28
Map multiple pages by number (EMS) 627
Map pages and call (EMS) 633-34
MASM. See Macro Assembler (MASM)
master boot record 192
Media Check (function 01H) 270-71
memory
 allocation
 dynamic, of additional 199-201
 shrinking 197-99
 conventional 196
 moving blocks of data between extended memory and 213-15
 expanded (see Expanded Memory Specification (EMS))
 image of .COM file 26
 image of .EXE file 31
 location of disk bootstrap program in 17
 location of IO.SYS in 18
 location of ROM bootstrap routine in 16
 location of SYSINIT, DOS kernel, MSDOS.SYS in 19
 making available, for EXEC function 218-19
 map after startup 20
 RAM 196
memory areas, 196. See also arena entries; arena headers; transient program
 area (TPA)
memory block
 allocate 438-39
 get/set allocation strategy 452-53
 move extended 569-60
 release 439-40
 resize 440-41
memory interlace 203

memory management 195-215
 arena headers 201-2
 expanded memory 203-11
 using 207-11
 extended memory 212-15
 Int 21H functions summary 339
 MS-DOS applications compatibility and 316
 using memory-allocation functions 197-202
memory-mapped input/output 86, 96-103
 graphics mode 101-3
 text mode 96-101
memory models 39
 segments, groups, classes for 40
memory segment 321-22
memory size
 get conventional 536
 get extended 570
mickeys, set to pixel ratio 601
Microsoft Mouse driver 593-611
miscellaneous system functions, Int 21H functions summary 340
MKDIR (MD) command 167
Monochrome/Printer Display Adapter (MDA) 86, 97, 98
 example dump, regen buffer 98
MOUDEMO.C program 82-83
mouse. See also pointing device
 disable driver 608-9
 driver 593
 enable driver 609
 get address of alternate event handler 606
 get button press information 596
 get button release information 597
 get information 611
 get language number 610
 get mouse save state buffer size 603-4
 get position and button status 595
 get sensitivity 607
 hide pointer 595
 input 80-83
 read motion counters 599-600
 reset and get status 594
 reset driver 609
 save driver state 604
 set alternate event handler 604-5
 set double speed threshold 602
 set graphics pointer shape 598
 set interrupt rate 607
 set language for driver messages 610
 set pointer exclusion area 602
 set pointer horizontal limits 597-98
 set pointer page 608
 set pointer position 596
 set pointer vertical limits 598
 set sensitivity 606
 set text pointer type 599
 set user-defined event handler 600-601
 show pointer 594-95
 summary of function calls 494-99
 swap user-defined event handlers 603
Move extended memory block 569-70

Move memory region (EMS) 635
MS-DOS. See also Operating System/2 (OS/2)
 genealogy 3-9
 interrupt handlers and 252-53
 loading 16-20
 programming tools (see programming tools)
 structure 12-16
MS-DOS application programs, porting to OS/2 318-31
 conversion 326-30
 encapsulation 323, 324-25
 MS-DOS function calls and OS/2 counterparts 328-29
 optimization 330-31
 rationalization 322-23
 ROM BIOS functions and OS/2 equivalents used in MS-DOS applications 330
 segmentation 321-22
MS-DOS application programs, structure of 21-42
 assembly-language programs 27-30, 37-42
 .COM programs introduced 25-30
 creation of 62-63
 .EXE programs introduced 30-36
 program procedures 41-42
 program segment prefix 23-25
MS-DOS application programs, writing compatible 314, 315-17
 check host capabilities 316
 exception handling 317
 input and output 316
 memory management 316
 process management 317
 program structure 315
MS-DOS error codes 145-51
MS-DOS functions 334
 conversion of, to OS/2 function calls 326-27
 display functions 88-94
 binary output mode 93-94
 screen control 91-93
 EXEC (see EXEC function)
 file control block (FCB) 129-39
 handle 139-44
 memory management/allocation 196, 197-202
 OS/2 equivalents to 328-29
 printer output 107-9
 reference (see Section II)
 serial port 109-12
 typical in-line code for call to 324
MSDOS.SYS file 13, 16
 memory location of 19
MS-DOS versions
 1.0 4-5, 138
 1.25 5
 2.00 5-6, 174
 error codes 145
 volume-label search under 175
 2.11, 2.25 6
 3.0 6-7, 138, 174
 error codes 145-46
 volume-label search under 176
 3.1, 3.2, 3.3, 4.0 7
 get number 389-90
 support for select command code routines by 267-68 (table)

Multi-Color Graphics Array (MCGA) 86, 102
Multiplex interrupt 488

N
NAME statement 27, 33
NEAR attribute 27
 vs FAR 29
NEAR RETURN 27
network functions, Int 21H functions summary 339
Nondestructive Read (function 05H) 274
non-disk-related errors 147, 148 (table)

O
Object Linker (LINK) 37, 44, 50-55
 map produced by, of HELLO.EXE program 51
 switches accepted by 53-55
object modules 37
 libraries (see Library Manager (LIB))
 linking .COM files from 27, 37. See also Object Linker (LINK)
.OBJ files 45
Open file 356-57, 402-4
Operating System/2 (OS/2) 7
 code optimization 330-31
 compatibility issues 318-20
 function calls equivalent to MS-DOS function calls 328-29
 function calls equivalent to ROM BIOS function calls 330
 porting MS-DOS applications to OS/2 320-31
ORG instruction 29
output. See character input/output; printer output; serial port
output status, check 421-22
Output Status (command-code function 0AH) 276
Output Until Busy (function 10H) 278-79
overlays, loading with EXEC 240, 241-42

P
PAGE command 27, 33
page frame 203
palette
 enable/disable default 526-27
 get border and 514
 get register 513
 set 508-9
 set border and 512-13
 set register 511-12
parallel ports 106
parameter block, requesting EXEC function 220-21
parent programs 218
Park heads 554-55
Parse filename 382-84
partitions, fixed-disk 192-94
Paterson, Tim 4
path 166
PC-DOS
 version 1.0 4
 version 1.1 5
 version 2.0 5-6
 version 3.0 193-94
piping parameters 24
pixel 101

 formula to calculate bit position for 102-3
 read graphics 510
 set mickeys to pixel ratio 601-2
 write graphics 509
pointing device
 enable/disable 574-75
 get device type 577
 get scaling or get status 578-79
 initialize interface 577-78
 input 80-83
 reset 575
 set handler address 579-80
 set resolution 576-77
 set sample rate 576
POP instruction 35
portability. See compatibility and portability
POST (power-on self-test)
 read error log 563
 write error log 563-64
Prepare expanded memory manager for warm boot (EMS) 644-45
Presentation Manager, OS/2 318
printer 106, 107-9. See also line printer (PRN); standard printer (stdprn)
 get setup strings 463-64
 get status 588
 initialize port 587
 write character to 587
printer output 106, 107-9, 346-47. See also TALK.ASM program
printer setup string
 get 463-64
 set 462-63
printscreen, select alternate 526
Print spooler 488-89
PRN device 12, 106, 298-99
PROC command 29, 35, 41
procedure, declaring beginning/end of 29
process management
 for compatibility in MS-DOS applications 317
 Int 21H functions summary 339
 terminate process 566
Process termination 566
Programmable Interrupt Controller (PIC) 247
Programmable option select 580-81
programming tools 43-64
 C Optimizing compiler 48-50
 CREF utility 56-58
 example using 62-63
 EXE2BIN utility 55-56
 file types 45
 Library Manager 58-60
 MAKE utility 60-61
 MASM 45-47 (see also Macro Assembler (MASM))
 Object Linker 50-55 (see also Object Linker (LINK))
 resources and references 63-64
program modules, assembly-language 37
program procedures 41-42
program segment prefix (PSP) 15, 23-25
 create new 378-79
 get address 468-69
 structure of 23

program segments, assembly-language 38-41
protected mode, enter 570-71
PROTO.ASM program 301-2
PROTO.C program 303
P-system operating system 5
Push character and scan code 585
PUSH instruction 35

R
Random block read 379-80
Random block write 381-82
Random read 372-73
Random write 373-75
rationalizing code 322-23
raw mode 69
Read (function 04H) 273
Read cassette 561
Read character and attribute at cursor 506
Read character from communications port 558
Read character from enhanced keyboard 585
Read character from keyboard 581
Read control data from block-device driver 418-19
Read control data from character device driver 415-16
Read file or device 405-6
Read graphics pixel 510
Read joystick 567
Read mouse motion counters 599-600
Read POST error log 563
Read sector 538-39
Read sector buffer 548
Read sector long 545-46
Reallocate pages for handle (EMS) 628
Reboot system 588-89
Recalibrate drive 550
record(s)
 set relative number 376-77
 using FCB functions 129-39
 using handle functions 139-44
record operations, Int 21H functions summary 338-39
Redirect device 466-67
Redirect handle 436-37
redirection, input/output 24, 67, 298-99
 cancel 467-68
redirection list entry, get 464-65
.REF files 45, 56
refresh buffer 86
regen buffer 86
 example dump of MDA adapter 98
 formula to determine offset 102
 memory diagram showing location of 87
Release access key (EMS) 646
Release handle and expanded memory (EMS) 619
Release memory block 439-40
Removable Media (function 0FH) 278
REN(AME) command 14
Rename file 366-67, 449-50
request header format 265
 command codes for (see command code routines, device-driver)
reserved area, disk 182

reserved functions
 EMS 621
 Int 21H functions summary 340
Reset alarm 592
Reset disk system 536-37
Reset fixed disk system 548
Reset mouse and get status 594
Reset mouse driver 609
Reset pointing device 575
resident device drivers 12
Resize memory block 440-41
RESTORE command 15
Restore mouse driver state 604
Restore page map (EMS) 620-21, 624
Restore partial page map (EMS) 626
RET instruction 41
retrace interval 100
return code
 get 444
 terminate process with 443-44
RMDIR (RD) command 167
ROM 8-by-8 font
 load 519
 set Int 43H for 523
ROM 8-by-14 font
 load 518-19
 set Int 43H for 522-23
ROM 8-by-16 font
 load 520-21
 set Int 43H for 523-24
ROM BASIC 588
ROM BIOS
 display functions 94-96, 330
 interrupts of special importance to 247, 248-49
 keyboard functions 67
 input with 71-72
ROM BIOS compatibility 314-16, 317-18
 avoid unstable hardware 318
 check host capabilities 317-18
 functions of, and OS/2 equivalents 330
ROM BIOS function calls. See also Section III
 summary 494-99
ROM bootstrap routine 16
root directory 166, 184-86, 187
 partial hex dump 186
RS-232 serial-interface standard 106
RS-422 serial-interface standard 106

S
Save and restore page map (EMS) 624-25
Save mouse driver state 604
Save or restore video state 534-35
Save page map (EMS) 620, 623
Save partial page map (EMS) 625-26
scan lines, set 526
screen control with MS-DOS functions 91-93
screen refresh, enable/disable 529
Search for handle name (EMS) 632
Seattle Computer Products 4

Seek 547
SEGMENT command 29, 33, 38
segment register 321
Select alternate printscreen 526
Select disk 355-56
selector 321
Select pointer page 608
Sequential read 362-63
Sequential write 363-64
serial port 106, 109-12. See also TALK.ASM program
 extended initialize port 558-59
 extended port control 559-60
 get status 558
 initialize 556-57
 read character from 558
 write character to 557
Set alarm 591-92
Set alternate map registers (EMS) 640
Set alternate mouse event handler 604-5
Set block of color registers 515
Set block specifier 520
Set border color 512
Set color page state 515-16
Set color register 514-15
Set current directory 400
Set cursor position 501-2
Set cursor type 501
Set date 385, 591
Set day count 593
Set device information 414-15
Set disk type 553
Set display page 503-4
Set double speed threshold 602
Set DTA address 368
Set file pointer 408-9
Set graphics pointer shape 598
Set gray-scale values 517
Set handle attribute (EMS) 629
Set handle count 475-76
Set handle name (EMS) 631
Set horizontal limits for pointer 597-98
Set Int 1FH font pointer 521
Set Int 43H for ROM 8-by-8 font 523
Set Int 43H for ROM 8-by-14 font 522-23
Set Int 43H for ROM 8-by-16 font 523-24
Set Int 43H for user's font 522
Set interrupt vector 377-78
Set keyclick 584
Set language for mouse driver messages 610
Set Logical Device (function 18H) 280-81
Set logical drive map 434
Set media type for format 554
Set mickeys to pixels ratio 601
Set mouse interrupt rate 607
Set mouse pointer exclusion area 602
Set mouse pointer position 596
Set mouse sensitivity 606
Set palette and border 512-13
Set palette, background, or border 508-9

Set palette register 511-12
Set pointing device handler address 579-80
Set printer setup string 462-63
Set relative record number 376-77
Set repeat rate 583-84
Set resolution 576-77
Set sample rate 576
Set scaling or get status 578-79
Set scan lines 526
Set sound source 593
Set text pointer type 599
Set tick count 589-90
Set time 386-87, 590
Set user-defined mouse event handler 600-601
Set verify flag 387-88
Set vertical limits for pointer 598
Set video mode 500-501
Set watchdog time-out 580
SHARE 490
shell. See COMMAND.COM file; command processor (shell)
SHELL.ASM program 229-38
SHELL.C program 225-29
Show mouse pointer 594-95
SLIBC.LIB, table-of-contents listing for 59
Softech company 5
software interrupts, 247-49
sound source, set 593
STACK attribute 31
stack pointer (SP) register 25-26, 31, 35
stack segment 38
stack segment (SS) register 31, 35
standard auxiliary device (stdaux) 20, 323
 default device 298
 handle 66
standard error device (stderr) 20
 default device 298
 handle 66
standard input device (stdin) 20
 default device 298
 handle 66, 67
standard list device 20, 323
standard output device (stdout) 20
 default device 298
 handle 66
standard printer (stdprn)
 default device 298
 handle 66
strategy (strat) routine, device-driver 265, 293
string(s)
 display 350-51
Swap user-defined mouse event handlers 603
Switch active display 528-29
switches
 C Optimizing compiler 49-50
 Library Manager 60
 Macro Assembler 47
 Make utility 61
 Object Linker 53-55
SYSINIT module 17, 18, 20

 installing device drivers 293
 memory location of 19
SysReq key 568
system file table 140-41

T
TALK.ASM program 113-26
teletype mode
 write character in 510-11
 write string in 529-30
terminal-emulator program. See TALK.ASM program
Terminate and stay resident 390-91, 486-87
Terminate handler address 480
Terminate process 341, 342
Terminate process with return code 443-44
text-mode memory-mapped programming 96-101
threads 331
time and date
 day count 592, 593
 get date 384-85, 591
 get time 386, 590
 set date 385, 591
 set time 386-87, 590
TITLE command 27, 33
Toggle blink/intensity bit 513
transient program 15, 22. See also .COM program file(s);
 .EXE (executable) program file(s)
transient program area (TPA) 15, 196. See also arena entries; arena
 headers
TREE command 174
TRYBREAK.C program 78-79
Turn off cassette motor 560-61
Turn on cassette motor 560
Turn off light pen emulation 601
Turn on light pen emulation 601

U
Unfiltered character input without echo 348-49
UNIX/XENIX operating system 66, 128, 139
user font
 load 518
 set Int 1FH pointer 521
 set Int 43H for 522

V
verify flag, get 448
Verify sector 540
video display 85-103
 adapters 86-87
 enable/disable 527
 get functionality/state information 531-34
 get or set combination code 530-31
 memory-mapped techniques 96-103
 graphics mode 101-3
 text mode 96-101
 MS-DOS display functions 88-94
 binary output mode 93-94
 screen control with 91-93
 ROM BIOS display functions 94-96

 save or restore video state 534-35
 support considerations 88
 switch active display 528-29
Video Graphics Array (VGA) 86, 97, 98, 102
video mode
 get 511
 set 500-501
VOL command 174
volume labels 174-76
 search, using extended file control block 175

W
watchdog time-out, set 580
window
 initialize or scroll down 505-6
 initialize or scroll up 505
Windows 7, 318
Write (function 08H) 275
Write cassette 562
Write character and attribute at cursor 506-7
Write character at cursor 507-8
Write character in teletype mode 510-11
Write character to communications port 557
Write character to printer 587
Write control data to block-device driver 419-20
Write control data to character-device driver 416-17
Write File or Device 406-7
Write graphics pixel 509
Write POST error log 563-64
Write screen in teletype mode 529-30
Write sector 539
Write sector buffer 549
Write sector long 546-47
Write with Verify (function 09H) 276

Z
ZERODIV.ASM program 254, 255-58
Zilog Z-80 microprocessor 4

