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Preface

The first time I taught CS2 - Data Structures and Algorithms at the University of
Colorado, the available course textbooks that I found were either advanced programming
books that obscured the details on the data structures concepts or theory books that lacked
sufficient details on implementations. Over the course of the semester, I wrote copious
notes to fill the gaps in our selected course textbook and provided them to my students. By
the end of the semester, I had a draft of a data structures book that was exactly the book
for which I had been searching. I decided to publish the material as a self-published e-
book so that it would be available as inexpensively as possible for anyone who was
interested.

The intended audience for this book is second-semester computer science undergraduates.
The focus is on fundamental concepts of data structures and algorithms and providing the
necessary detail for students to implement the data structures presented. The content
included herein is what I was able to cover in a one-semester course.

This book sets itself apart from other data structures books in the following ways:

» The data structures are presented in pictures. There are pictures of arrays, linked lists,
graphs, trees, and hash tables that help students visualize the algorithms on these
structures. General feedback from my students was that they really appreciated the
pictures I drew in class, and I have included all of them here.

* There are step-by-step descriptions of how algorithms work. These descriptions
illustrate the state of the data structure at key lines in an algorithm’s execution.

* The algorithms are presented in a language that I call “pseudocode with C++
tendencies.” In other words, there is enough detail in the pseudocode for students to
convert it to C++. In many cases, basic C++ is also provided.

I am utilizing this book in my current courses, and hope that you as a student or instructor
will find this book useful. Good luck, and happy programming.

Rhonda Hoenigman, PhD
University of Colorado, Boulder
2015
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Introduction

This book is intended for computer science students who understand the basics of
programming and are ready to launch into a discovery of data structures, which are
fundamental to an appreciation of the field of computer science. Typically, these are
students with a semester of programming experience, and are in a second semester data
structures course. To understand the material presented herein, the reader should have an
understanding of C++ or another object-oriented language, such as Java.

The emphasis in this book is on presenting fundamental data structures and the algorithms
used to access information stored in these structures. Many of the data structures are also
presented in the context of an abstract data type (ADT), which is the implementation
mechanism commonly used in an object-oriented language. Algorithms are presented as
part of an ADT. Pseudo-code is used throughout the book, for both the algorithms as well
as the ADT definitions.



What is a data structure?

A data structure is a specialized format for organizing related information. Depending on
the type of information, one data structure could provide a better arrangement for storing
the data than another data structure, where “better” refers to the ability to access and
manipulate the data efficiently. Basic data structures are itemized below, with a brief
description of each:

* Arrays: Fixed-length linear sequence of similar elements, where each individual
element can be accessed by its index.

* Lists: Linear sequence of similar elements that can expand and contract as needed.
* Trees: Collection of elements with a hierarchical structure.

» Maps: Collection of elements that are accessed through one property of the element,
known as a key.

* Records: Composite data type that is composed of other data elements, called fields or
members.

This list of data structures is by no means exhaustive, nor is each data structure
independent of the other structures on the list. For example, maps are generally composed
of records, and an array is commonly used to implement a map. Modifying the behavior
of the basic data structure can also create new data structures. For example, an array or
list where elements can only be added and removed at the last position is called a stack.



What is an Abstract Data Type?

An Abstract Data Type (ADT) is a collection of data elements and the allowable
operations on those elements. In an ADT, the operations are encapsulated; the user only
has information about the inputs, outputs, and an explanation of the actions. The specific
details of the operations are hidden. The data elements in an ADT are stored in a data
structure. The algorithms to access and manipulate that data structure are implemented as
methods in the ADT.



Algorithms and pseudocode

When presenting the details of how specific algorithms perform, a book must balance
providing enough detail to convey the nuances of the algorithm with getting mired in the
syntax of a particular programming language. For these reasons, algorithms are often
presented in pseudocode in this and other books. Pseudocode is a simplified description
of the algorithm generated from real code that is intended to be more readable than real
computer code while still providing the detail necessary to understand the complexity of a
specific algorithm. Just as with real code, it can take practice to read and understand
pseudocode, and part of this understanding comes from an awareness of the pseudocode
conventions used in a particular presentation. Pseudocode conventions used herein are
described below.

Pseudocode conventions

The algorithms in this book are presented in a language that I will call “pseudocode with
C++ tendencies”. The pseudocode presented herein may appear informal when compared
to pseudocode in other data structures and algorithms books because it preserves more of
the C++ language than typical pseudocode.

» Expressions are presented using = and == to represent assignment and equivalence,
respectively, just as in real code.

* For loops include only an initial condition and an end state: for x = 0 to A.end, where
A.end is the last index in the array.

* Indentation is used to specify which lines are included in an execution block.
* Data types are removed from variable definitions and return values.

* The words “and” and “or” replace && and || in conditionals.

The following snippets show the real code and the pseudocode for an algorithm that
returns the index in an array for a specified search value.

Real code

int findItem(int[ ] A, int v, int length)
1. intindex = -1;
2. for(int x = 0; x < length; x++) {
3 if(A[x] == V)
4. return Xx;
5 }

6

return index;



Pseudocode
findItem(A, v)

1. index =-1

2. for x=0to A.end
3 if(A[x] ==v)
4, return X

5. return index

In the function definition, the real code includes the return type of the function as well as
the types of the function parameters. The real code also includes an additional parameter,
length, which is the size of the array. In the pseudocode, A.end is used for the last index in
the array to convey that the for loop will execute for each element in A.



Roadmap

The next chapter in this book presents an introduction to algorithms and why they are
essential in any computer-science education. Computer memory is presented in Chapter 2
to provide the foundation for understanding how data structures are allocated and
destroyed dynamically. Chapter 3 presents the concept of arrays and the algorithms
necessary for array manipulation. Chapter 4 includes an introduction to sorting algorithms
and the fundamentally different approaches to sorting, and how these approaches present
tradeoffs in their implementation and behavior. The other chapters in the book cover the
following data structures and ADTs: arrays, linked lists, stacks, queues, trees, and binary
search trees, red-black trees, graphs, and hash tables. Linked lists are presented in Chapter
5. Stacks and queues are presented in Chapters 6 and 7, respectively. The discussion of
trees, including binary search trees and red-black trees and recursive algorithms for
traversing trees, is covered in Chapters 8 - 11. Finally, graphs are in Chapter 12 and hash
tables are in Chapter 13.



1 Algorithms

In any computer program, there is a specific set of instructions that tells the computer
what to do. This set of instructions is similar to a recipe in that there is an objective to
accomplish (problem to solve), and a set of steps in a specified order to accomplish the
objective. These instructions are also known as an algorithm: a defined set of steps that are
followed to solve a problem.

As an example, an algorithm that puts the following sequence of numbers in ascending
order

<54, 34, 23, 45, 56, 90>
would produce an output of
<23, 34, 45, 54, 56, 90>.

Some algorithms are simple, such as an equation that adds two numbers. Other algorithms,
such as a pattern-matching algorithm that compares two gene sequences, are very
complex; it is these more complex algorithms that computer scientists generally care
about. The primary concerns with algorithms are how are they specified and how they
scale. On a small data set, an algorithm might work fine and produce the expected output
in a reasonable amount of time. However, on a large data set, the algorithm might break
down and take an intractable amount of time to produce a result. Understanding how an
algorithm is going scale with the size of the input is the primary evaluation of whether an
algorithm is “good.”



1.1 Specifying an algorithm

Algorithms generally have a set of inputs, and then transform these inputs in some way to
produce an output. The specifications for an algorithm are documented by pre- and post-
conditions, which inform anyone using the algorithm what to expect.

1.1.1 Pre-condition

The pre-conditions for an algorithm are the conditions that must be true prior to the
algorithm’s execution in order for it to work as defined. Pre-conditions can include the
inputs to the algorithm and the restrictions on the types and range of values on those
inputs. Pre-conditions can also include other dependencies, such as other algorithms that
need to execute first.

1.1.2 Post-condition

The post-conditions for an algorithm are the expected changes, or the return value, after
the algorithm executes. For example, a function to calculate the factorial of a particular
number could look like:

factorial(n)

The pre-condition on factorial(n) is that n is an integer greater than 0. The function is not
expected to work correctly for values of n that do not meet the conditions. The post-
condition is the function returns the factorial of n.



1.2 Evaluating an algorithm

Given a problem to solve, such as sorting a sequence of numbers, it is important to
evaluate whether one algorithm is better than another algorithm in terms of correctness,
efficiency, and resource use.

1.2.1 Correctness

First and foremost, the algorithm needs to produce a correct solution; it does not matter
how efficient the algorithm is, if it produces an incorrect answer. For example, if a sorting
algorithm intended to sort integers from highest to lowest produces a solution such as

A =<90, 54, 23, 34, 45, 56>

then any other method of evaluation is irrelevant.

1.2.2 Cost

Given that an algorithm is correct, it can be evaluated by its cost, where cost is generally
evaluated as the memory usage and runtime of the algorithm. It is difficult to evaluate an
algorithm’s runtime empirically as doing so would involve running the algorithm for a
representative set of inputs and measuring the results, which could be affected by the
hardware platform and the software implementation. Instead of an empirical evaluation,
the cost is calculated theoretically by evaluating the number of lines of code that execute.
Each line has a cost of 1 to simplify the cost calculation. A count of the lines of code
provides a high-level estimate of the algorithm’s runtime that will be roughly proportional
to the actual runtime.

An example of an algorithm specification that can be used to calculate the cost is shown in
Algorithm 1.1. The specification shows the name and parameters of the algorithm, the pre-
and post-conditions, and the algorithm itself with line numbers.

Algorithm 1.1. findItem(A, v)

Returns the index of the value v in the array A.

Pre-condition
A is an array.

v is the same type as the elements in A.

Post-condition

Returns the last index x where A[x] = v.



Algorithm
findItem(A, v)

1. index =-1

2. forx=0to A.end
3 if A[x]==v
4, index = x

5. return index

Example 1: Calculate the cost of findItem(A,v) for various inputs of A and v.

Example 1.1
A =<45,34,32,34>
findItem(A, 34)

Line number: Times executed
Line1:1
Line 2: 5
Line 3: 4
Line 4: 2
Line 5: 1

In this call to findItem(), Line 1 executes one time. There are four elements in the array,
and Line 2 executes once for each array element and once for the final evaluation of the
for loop to check if A.end has been reached. Each line in the for loop can execute up to
four times. Line 3 executes four times and line 4 executes twice, once for each time that
34 is found in the array. Line 5 executes one time. The total cost is 13.

Example 1.2
A=<45,34,32,34>

findItem(A, 25)

Line number: Times executed



Line 1: 1
Line 2: 5
Line 3: 4
Line 4: 0
Line 5: 1

The cost difference between this call to findItem() and the previous example is in the
number of times that the search value exists in the array. There are no instances of 25, so
Line 4 never executes and the cost is reduced to 11.

Example 1.3
A =<45, 34, 32, 34, 56, 23, 12 >
findItem(A, 34)

Line number: Times executed
Line 1: 1
Line 2: 8
Line 3: 7
Line 4: 2
Line 5: 1

The difference between this call to findItem() and the previous example that searched for
the 34 is the size of the array A. This array has 7 elements instead of 4, which increases the
cost. The for loop executes 7 times. There are two instances of 34 in the array, which
results in Line 4 executing two times. Lines 1 and 5 still execute one time each. The total
cost is 19.

Example 1.4
A =<45, 45, 45, 45, 45, 45, 45 >
findItem(A, 45)

Line number: Times executed
Line 1: 1
Line 2: 8



Line 3: 7
Line 4: 7
Line 5: 1

In this example, every element in the array is the value being searched for. The result is
that Line 4 will execute 7 times. All other costs are the same as those in the previous
example with 7 elements. This scenario represents the worst-case cost for this algorithm;
all lines in the algorithm execute the maximum number of times. The total cost is 23.

In all of these examples, the for loop is the biggest contributor to the cost of the algorithm,
and the number of iterations of the for loop is determined by the size of the array A.
Regardless of the contents of the array, the algorithm always loops through the entire
array, and returns the last index of the search value.

In the next example, Algorithm 1.2 includes an exit when the search value is found. The
for loop is still the biggest contributor to the algorithm cost, but the cost and the result of
the algorithm both change for the specified input values.

Algorithm 1.2. findItemAndExit(A, v)

Returns the first index of the value v in the array A.

Pre-condition
A is an array.

v is the same type as the elements of A.

Post-condition

Returns the first index x where A[x] = v.

Algorithm
findltemAndExit(A, v)
1. index =-1

2. fori=0 to A.end
3 if A[li]==v

4. return index
5

return index



Example 2: Calculate the cost of findItemAndExit(A, v) for various inputs of A and
V.

Example 2.1
A =<45,34,32,34>
findltemAndExit(A, 34)

Line number: Times executed
Line 1: 1
Line 2: 2
Line 3: 2
Line 4: 1
Line 5: 0

In this example, the element is found in the array in the second position. Line 1 executes
one time. Lines 2 and 3 both execute two times. On the second execution of Line 3, the
conditional is true and Line 4 executes and the algorithm exits. Line 5 never executes. The
total cost is 6.

Example 2.2
A =<45,34,32,34 >
findltemAndExit(A, 25)

Line number: Times executed
Line 1: 1
Line 2: 5
Line 3: 4
Line 4: 0
Line 5: 1

In this example, the search value is not found in the array. There are 4 iterations of the for
loop, one for each element in the array, plus one additional evaluation of the for loop
conditional. Line 3 executes 4 times and Line 4 executes zero times. Line 5 executes one



time and the algorithm exits. The total cost is 11.

Example 2.3
A =<45, 34, 32, 34, 56, 23, 12 >
findltemAndExit(A, 34)

Line number: Times executed
Line 1: 1
Line 2: 2
Line 3: 2
Line 4: 1
Line 5: 0

In this example, the search value is found in the array and the array size is larger than in
the previous examples for this algorithm. The algorithm exits as soon as the value is
found, so there are still only two iterations of the for loop and both Lines 2 and 3 execute
two times. Line 4 executes one time and Line 5 never executes. The total cost is 6.

Example 2.4
A =<45,45, 45, 45, 45, 45, 45 >
findItem(A, 45)

Line number: Times executed
Line 1: 1
Line 2: 1
Line 3: 1
Line 4: 1
Line 5: 0

In this example, the value being searched for is the first element in the array. This scenario
is the configuration with the minimum cost for this algorithm. There is only one iteration
of the for loop. Line 4 executes one time and line 5 never executes. The total cost is 4.

The worst-case cost scenario is different for the findItem() (Algorithm 1.1) and



findItemAndEXxit() (Algorithm 1.2) algorithms. For findItem(), the worst-case cost happens
when every element in the array is the value being searched for. For findItemAndEXxit(), the
worst-case cost happens when the value is not found in the array. However, common to
both algorithms is that the for loop, which is set by the size of the input array, is the
biggest contributor to the cost of the algorithm. As the size of the array grows, the for loop
requires more iterations to traverse the entire array and the worst-case cost increases.



1.3 Algorithm Analysis

Evaluating how algorithms perform is called algorithm analysis. How the runtime of an
algorithm scales with the size of the input can be described by a mathematical function.
Presented here are common mathematical functions with behavior that is often observed in
algorithm performance. In these examples, n is the input to the function and the value of n
is the size of the data being evaluated in an algorithm.

1.3.1 The Constant Function

A constant function is defined as:
f(n)=c

where c is a fixed constant such as ¢ = 5, ¢ = 1, or ¢ = 5'°. The variable n is the size of the
data that needs to be evaluated. With a constant function, the output of the function is not
dependent on the value or size of the input n, the output will always be the same
regardless of n.

Constant function examples

* Variable assignment, such as a = 5

* Inserting an element to the front of a linked list
* Inserting an element to the end of an array

 Accessing an element in a hash table

1.3.2 The Logarithmic Function

The logarithmic function is defined as:
f(n) = log,n

where b is the base of the logarithm. In computer science, log,n is so ubiquitous that the 2
is often left off and log,n is written as log n.

Logarithmic function examples
» The minimum height of a binary search tree

* Searching for an element in a binary search tree with a height of log n

1.3.3 The Linear Function



The linear function is defined as:

f(n)=n

The output of this linear function example is the value of n itself. A function that includes
a constant, such as f(n) = 2n or f(n) = n + 2, also qualifies as a linear function.

Linear function examples
* Traversing the elements in a linked list
* Traversing the elements of a one-dimensional array

« Shifting the elements in a one-dimensional array

1.3.4 The N-Log-N Function

The n-log-n function is defined as:

f(n) = nlog(n)

In an n-log-n function, the log(n) calculation is repeated n times.

N-Log-N function examples
* n searches on a binary search tree with a height of log n

* The merge sort algorithm

1.3.5 The Quadratic Function

The quadratic function is defined as:

f(n) = n?

Quadratic function examples
* Traversing a 2D matrix with n rows and n columns
* Algorithms with two for loops, where one for loop nested in the other for loop

* The bubble sort algorithm
1.3.6 The Cubic Function

The cubic function is defined as:



f(n) = n?

Cubic function example

* Algorithms with three nested for loops

1.3.7 The Exponential Function

The exponential function is defined as:

f(n) =b"

where b is a positive constant called the base. In computer science, the most common base
is 2, which means that an algorithm can be described on the order of

f(n) = 2"

Exponential function example

» Iterating through all possible combinations of binary data. For example, if given a binary
string of 8 bits, there will be 28 combinations of those bits.



1.4 Growth-rate comparisons

The functions presented all have different asymptotic behavior, which is the behavior as
the input n goes to infinity. In algorithm analysis, it is the asymptotic behavior that is of
primary concern. Comparing the growth behavior of individual functions shows why one
algorithm might be desirable over another algorithm with different asymptotic behavior.
The functions described were presented in order of their growth rates slowest to fastest,
with the constant function having a growth rate of zero and the exponential function
growing the fastest.

In Figure 1, the growth rates for a constant, linear, and log(n) function are shown. On the
x-axis, the parameter n is the size of the input data. For example, for an input size of 5 and
40, the linear function has an output of 5 and 40, respectively. The constant functions have
the same behavior regardless of the values of n. The log(n) function has the slowest
growth rate of the three, and the linear function has the fastest growth rate.

Constant, linear, and log function examples

4’&_
c=10
c=30
35+ f{n)=n
F{n} =log (n)
30
=
E,D.
=

Figure 1. Comparison of growth rates for a constant, linear, and log(n) function for input size n. The linear
function grows faster than the log function.



Log, nlog(n), and linear function examples
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Figure 2. Comparison of growth rates for log(n), nlog(n), and linear functions for a given input size n. The nlog(n)
function grows the fastest of the three functions.

The examples in Figure 2 show that, while the linear function grows more quickly than the
log(n) function, an algorithm with nlog(n) behavior will have a longer runtime than either

the linear or log(n) functions for large values of n. However, even the nlog(n) function
doesn’t grow as fast as the quadratic function shown in Figure 3.

Linear, quadratic, and nlog(n) function examples

1600~
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f(n)
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Figure 3. Comparison of growth rates for linear, quadratic, and nlog(n) functions. The x-axis is the input size of
the data. The quadratic function is clearly the fastest growing of the three functions.



Even after only 40 data points, which is a small input, the quadratic function clearly is
growing much more quickly than the linear or nlog(n) functions. However, none of the
functions presented can compare to the growth of the exponential function, as shown in
Figure 4. Any algorithm with exponential behavior will likely have very poor performance
for large input sizes.

Quadratic and exponential function examples
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Figure 4. Comparison of growth rates for quadratic and exponential functions for a given input size n.
Exponential growth rate typically equals very bad performance for large n.



1.5 Algorithmic Complexity

Counting how many times lines are executed in an algorithm provides an estimate for the
runtime. The actual cost varies by computer and programming language. A faster
computer will have a lower cost, and functionality can be 1 line of code in 1 language and
10 lines of code in another. Ultimately, the most important considerations for runtime are
what contributes the most to its runtime and how the algorithm scales as the size of the
input grows. For example, in the findItem() algorithm, the significant contributor to the
runtime was the for loop. When the size of the array is small, e.g. 10, there are 10
iterations of the loop and three constant operations; the constants contribute significantly
to the cost. However, as the array size grows, the constants become less significant. If the
array size is 10,000, then 10,000 + 3 is not that different than 10,000.

1.5.1 Asymptotic Analysis

Suppose an algorithm for processing financial data takes 10,000 milliseconds to download
the data from the Internet, and then 10 milliseconds to process each transaction (stocks
bought and sold). Processing n transactions takes (10,000 + 10 n) milliseconds.

Even though 10,000 > 10, the “10 n” term will be more important if the number of
transactions is very large. After 1000 transactions, the quantities will be equal. The values
10,000 and 10 are coefficients that will change with a faster computer or Internet
connection, or use a different language or compiler. Analyzing the algorithm requires a
means for expressing the theoretical speed of an algorithm that is independent of the
environment in which the algorithm is implemented. This analysis is accomplished by
ignoring the constant factors.

1.5.2 Big-Oh Notation

Big-Oh notation provides the upper bound on how quickly two functions grow as the input
size n -> infinity.

Let n be the size of a program’s (algorithm’s) input. (The input is any data type: bits,
numbers, words, or strings.).

Let T(n) be a function that represents the algorithm’s precise running time in milliseconds,
given an input of size n. This includes the specific instructions and the actual runtime of
each instruction.

Let f(n) be a simple mathematical growth function, such as f(n) = n, a function that grows
at a rate of n. The most common growth functions were given in the previous section.

The growth rate of T(n) can be expressed by relating it to another growth function. If T(n)



grows no faster than f(n), then:

T(n) is in O(f(n))

or

T(n) is in O(n)

if and only if

T(n) <= cf(n)

whenever n is big, for some large constant c.

The terms “big” and “large” are not very specific. The value of n needs to be big enough
to make T(n) fit under c f(n) curve. The value of c needs to be large enough to make T(n)
fit under the c f(n) curve.

Example 3: For the function T(n) = 10,000 + 10n, choose c to be large enough to
make T(n) fit underneath cf(n).

Using ¢ = 20, the graph in Figure 5 shows the asymptotic behavior of the algorithm.
Above a certain value of n, the size of the data is a bigger contributor to runtime than the
startup cost and 20*n grows faster than 10,000*10n.

When considering asymptotic behavior, multiplying by a positive constant does not
change the result. A different constant can change where function values cross, i.e. where
the cost of calculations dependent on input size outweighs any initialization costs. If N is
the value where the function values cross, then in the financial data example with c=20
and N = 1000. If there are only a few transactions, then the 10,000 millisecond startup
might not be worth it and a less-efficient algorithm with lower startup costs could be a
better choice. However, with many, many transactions, the startup cost becomes less of a
contributor to the overall cost.
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Figure 5. Growth of two functions for a given input n showing where the algorithm with faster growth rate
becomes more costly than a function with slower growth but higher initial cost.

Big-oh notation provides a theoretical upper bound on an algorithm’s growth rate. This
theoretical upper bound is also referred to as the complexity of the algorithm.

The complexity can be calculated from the cost by applying the following rules:

* If T(n) includes multiple terms, keep the term with the largest growth rate, and discard
the others.

* Any constants in T(n) can be omitted.

Example 4: Calculate the complexity of T(n) = 5n° + 3n’ + n + 5.

* The term 5n° has the largest growth rate and will dominate the other terms as n grows
sufficiently large. The 3n? and n terms can be discarded.

* 5n° has a constant of 5 that can be omitted, leaving n’.

* T(n) = 5n° + 3n? +n+5 is in O(n°).

Example 5: Calculate the complexity of the findItem() algorithm (Algorithm 1.1) if
its cost is T(n) = 3n + 3.

In the findItem() algorithm, n is the array size.
* The dominant term is 3n; remove the constant 3.

* Drop the constant 3.



* T(n) is in O(n).



2 Computer memory

The bit is the smallest unit of information stored in a computer. Each bit can be in one of
two possible states: 0 or 1, representing off or on or true or false. Individual bits are
grouped together into groups of 8 to create bytes, and the byte is how numbers are actually
stored. (Everything is stored as a number, even strings) The value of the byte is
determined from the state of the bits.

Each position in the byte represents a value. Figure 1 shows an example of one byte where
the left-most position has a decimal value of 128 and the right-most position has a decimal
value of 1. The bottom row in the figure shows the power of 2 equivalent for the decimal
value. If the bit at a position is set to 1, then that decimal value is included in calculating
the byte value.

128 ) 64 | 32 | 16 | 8 4 2 1

(2 |22 |2 |22 [2 | 22| 2 | 2°

Figure 1. Example byte where the left-most bit position represents a value of 128 and the left-most bit position
represents a value of 1.

An example of how to calculate the byte value from the bit pattern is shown in Figure 2.

12| 64 | 3216 | 8 | 4] 2| 1
o Jolol1]l1]o0o]1]0
ot | ¢ |25 2| 22| 22|21 ]|2°

Figure 2. In this byte, the positions for 2, 8, and 16 are set, which makes the value of the byte 26.

The positions for the 2, 8, and 16 have a 1, which makes the value for this byte:

2+8+16=26.

The value can also be calculated from the powers of 2:

21+ 23+24=26



2.1 Binary and hexadecimal representation

The bit string of Os and 1s, such as 00011010, is a binary digit, and the conversion to 26 is
a binary to decimal conversion. But, addresses and values are generally reported as
hexadecimal, which is base 16, instead of base 10. To convert from decimal to
hexadecimal, the hexadecimal digits 0 — F represent the decimal values 0 — 15.

Digits 0 — 9 in decimal and hexadecimal are the same. However, digits 10 — 15 are A—F
in hex.

Hex = Decimal

A=10
B=11
C=12
D=13
E=14

F=15



2.2 Maximum value of a byte

The maximum value of one byte is determined by setting all bit positions to 1, as shown in
Figure 3. The sum of all bit positions in the byte is:

128 +64+32+16+8+4+2+1=255.

128 1 64 | 32 | 16 ] 4 2 1
1 1 1 1 1 1 1 1

(27 |22 | 22 |22 [ 22 | 22 | 2@ | 2°

Figure 3. The maximum value for one byte is calculated by summing the values for all bit positions in the byte.

The same approach is used to calculate the maximum value of the first four bits in the
byte, as shown in Figure 4. The sum of the first four bits is:

8+4+2+1=15.

128 | 64 | 32 | 16 | 8 4 2 |11
0 0 0 0 1 1 1 1

a2l 2*2

Figure 4. The maximum value of the first four bits in the byte is the sum of the first four bit poesitions.



2.3 Converting to hexadecimal

It’s not a coincidence that 15 is also the maximum hex value of F, since F = 15. To
represent a byte’s value in hex, split the byte into two groups of four bits, called nibbles,
and calculate the hex value for each nibble. Figure 5 shows the multiple representations of
a byte. The first row in the image is the decimal value. The second row is the decimal
value for a byte divided into two nibbles. The third row shows whether the bit for that
position is set, and the fourth row is the power of two equivalent for the decimal value.
The fifth row in the image is the hex value for the nibble.

128]6a |32]16] 8] a4 | 2 |1

" ENENENENENERK
(27 |28 [22 |22 [ 2 [ 22 [ 27 | 2°
F F

Figure 5. The maximum byte value of 255 in decimal is the same as FF in hex.



2.4 Multiple bytes of information

More than one byte is needed to represent numbers larger than 255. For example, a
number such as 1000 can be stored in two bytes, where there are 16 bits of information.
Each bit in those two bytes represents a power of 2. In the second byte, the powers of 2 are
between 22 and 2'>. An example of a two-byte value is shown in Figure 6.

32768

16384

4096

2048

1024

312

256

128

64 | 32

1

1

1

1

1

1

1

1

111

—

215

214

212

211

210

2&

23

2?

2% | 2°

Figure 6. In two bytes of data, the maximum bit value is 32,768.

The same process for determining the value of one byte is used to determine the value of
two bytes. Sum up the values of the bit positions set to 1. In Figure 7, there is an example
of this calculation for two bytes. The value of those two bytes is calculated as:

32768 + 8192 + 2048 + 1024 + 128 + 32 + 8 + 2 = 44202

32768 16384 | 8192 4096 | 2048 | 1024 | 512 | 256 | 128 | 64 | 32 | 16 | 8
1 0 1 0 1 [ 1 0 0 1 01|01 0|10

215- 211 213 212 211 21'] 29 23 2? 25 25 2!1- 23 22 21 2{!

Figure 7. An example of a two-byte data type. Sum up the values for all bit positions set to 1 to get the value
stored in the two bytes.

2.4.1 Representing multiple bytes in hexadecimal

With multiple bytes of information, it is much easier to represent the value in hex than it is
to calculate the decimal value. The computer only sees 0 and 1, so the representation here
is just for the benefit of human readability. Divide the bytes into groups of four bits and
calculate the hex value for each group of four bits.

Example 1: Calculate the decimal and hexadecimal values for the two-byte data type
shown in Figure 8.

The decimal value is calculated by summing up the values for each of the bit positions set
to 1, which is:

32768 + 8192 + 2048 + 1024 + 128 + 32 + 8 + 2 = 44202.

The hexadecimal value is calculated by dividing the two bytes into four groups of four
bits, where each of the four bits has a value of 8, 4, 2, or 1. Sum up the total of each of the



four bits and assign a value between 0-F to the group of bits. The hexadecimal value is
ACAA:

8+2=A
8+4=C
8+2=A
8+2=A

32768 | 16384 | 8192 | 4096 | 2048 | 1024 512 | 256 | 128 |64 | 32 |16 | &8 | 4 | 2 1
B 4 2 1 8 4 2 1 8 4 |2 |1 g 142 1
1 0 1 0 1 1 0] |1 |0|1]0]41]0]1 O
275 21 213 [ o™ 2Tl 210 F [ 27 [ 27 |28 (25| 2° [ 2° | 22 | 2¢ 2°
A c A A

Figure 8. Example showing how to calculate the hexadecimal value from the bit positions for two bytes of
information.



2.5 Maximum value of n bytes

The maximum value of 2 bytes is the sum of all positions, 65535. This value can also be
determined for n bytes of data by subtracting 1 from the next power of two. The maximum
bit value is 2 in two bytes. Therefore, the next bit value, if there were one, would be 2'°.
The maximum value of two bytes is 2! — 1. In one byte of data, the maximum value is
255, which is 28 — 1. The leftmost position in one byte represents 27. The first position
(right-most) in the second byte is 28. The general formula for n bytes is 20™® - 1.



2.6 Variables and types

Variables are storage locations in memory. When we declare a variable, such as
int x;

a label called x is affiliated with a location in memory, which stores a value. The
programmer who declares x doesn’t need to know where in memory the data is stored; any
reference to the data is handled by referencing x.

Each location in memory has an address where one byte of information can be stored. The
amount of memory assigned to a variable depends on the type of that variable, which also
determines the range of values that can be associated with the variable. Some common
data types and their sizes are:

int: 4 bytes
char: 1 byte
float: 4 bytes
long: 8 bytes
double: 8 bytes

The bytes for a particular variable of a type listed above are stored in contiguous one-byte
locations. For example, the value 0XxACAA from Figure 8 would be stored in two
contiguous bytes of memory. Assume the first byte is stored in a fictional memory location
OxFF01. Because the value is two bytes, it also occupies 0xFF02. Figure 9 shows a visual
representation of memory addresses and how a value could be stored. The Ox in front of
the address and value is to designate that it is a hexadecimal value.

Address Value
0xFF06
O0xFFO05
0xFF04
OxFF03
0xFF02 AC
0xFFO01 AA
0xFFO00

Figure 9. Memory addresses and two bytes of data stored in two contiguous bytes of memory.

When a variable is associated with a location in memory, referencing that variable pulls all
bytes associated with it. For example, consider the memory layout and variable
assignments shown in Figure 10. The variable X is assigned to location OxFFO01 and uses



four bytes of memory, and the variable Y is assigned to location O0xFFO05 and also uses four
bytes of memory. When either of these variables is referred to in code, all bytes associated
with the variable are read and the value is reconstructed from those bytes. For the X
variable, the value is obtained by converting the binary sequence 1111101000010
1 0 1. For the Y variable, the value is obtained by converting the binary sequence 100 1 0
10100100001.

Address Value Variable
O0xFFFF

OxFFFE

0xFFFD

OxFFFC

0xFFFB 0xFF ptrX
OxFFFA 0x01

0xFF04 OxFF

0xFFO03 0x0A

O0xFF02 0x01 X
0xFF01 0x05

0xFFO00

Figure 10. Variables are associated with a memory location and include all bytes needed to store the correct value
for that variable.



2.7 Pointers

In C++, there are variables that store the memory address of other variables. These
variables are called pointers.

A regular integer variable called X is declared as:

int X;

A pointer variable called ptrX that points to the address of X is declared as:

int *ptrX = &X;

The value of the variable that ptrX points to is retrieved using *ptrX:

cout<<*ptrX<<endl;

Important Notation:

* In a variable declaration, the * signifies that the variable being declared is a pointer
variable.

 The * is also a dereference operator to retrieve the value of the variable to which the
pointer points.

* The & notation means “address of.”

The relationship between *ptrX and X in memory is shown in Figure 11. The variable X is
stored at 0xFFO1 and uses four bytes. The variable ptrX is stored at 0OxFFFA and holds the
address of X.



Address Value Variable
0xFFFF
0xFFFE
0xFFFD
0xFFFC ptrx
0xFFFB 0xFF
OxFFFA 0x01

0xFF04 OxFF
0xFFO03 0x0A X
0xFF02 0x01

0xFFO1 0x05
0xFFO00

Figure 11. The variable X is stored at 0xFF01 and uses four bytes. The variable ptrX is stored at 0xFFFA and
holds the address of X.

When declaring a pointer variable, the variable must have a type because it specifies how
much memory is associated with the address stored in the pointer.

In the example,

int x;

int *ptrX = &x;

both variables are integers. Creating a pointer variable of one data type that points to a
variable with a different data type would generate an error. For example,

int x;

double *ptrX = &x;

would generate an error because different amount of memory are associated with each
variable. The value of a variable is calculated from all of the bytes associated with that
variable. If the pointer variable is reading four bytes, and the variable it points to is storing
eight bytes, then there is an inconsistency in the amount of memory for each variable and
potentially the value of the variable.



2.8 Declaring pointer variables

Example 1: Create a variable called intX with a value of 5. Print its value and its
address.

int intX = 5;
To retrieve the address, use the address of operator &.

cout<<”Value of intX: “<<intX<<endl;

cout<<”Address of intX: “<<&intX<<endl;
These cout statements will display:

Value of intX: 5
Address of intX: Ox<address>

where <address> is a large hexadecimal number that is the address of intX.

Example 2: Create a variable called intB that has a value of 50 and a pointer called
ptrB that points to the address of intB.

int intB = 50;
int *ptrB = &intB,;

Example 2.1: Print the address of intB and the address that to which ptrB points.

cout<<”Address of intB: ”<<&intB<<endl;

cout<<”Address pointed to by ptrB: “<<ptrB<<endl;

These cout statements will both display the same hexadecimal address.



Example 2.2: Print the value of intB and the value of the variable to which ptrB
points.

To retrieve the value of the variable that ptrB points to, include the dereference operator *,
which can be read as “the value of the variable whose address is stored in” ptrB.

cout<<”Value of variable pointed to by ptrB: “<<*ptrB<<endl;

cout<<”Value of intB: “<<intB<<endl,

The output of these cout statements is:

Value of variable pointed to by ptrB: 50
Value of intB: 50

Example 2.3: Add 10 to intB and print the value of intB and *ptrB.
intB = intB + 10;

cout<<”Now the value of *ptrB is “<<*ptrB<<endl;

cout<<”The value of intB is “<<intB<<endl;

Changing the value of either intB or *ptrB changes the value for both variables since they
are both accessing the same memory location. The output of these cout statements is:

Now the value of *ptrB is 60
The value of intB is 60



3 Arrays

An array is a data structure used to store a collection of data, where each element in the
collection is the same type and size. All array elements are stored in a contiguous block of
computer memory. Arrays are often used to store data collected over time, and the index in
the array establishes the order in the data.

An array data type is available in most programming languages and is also the underlying
data structure for interfaces, such as Vectors, in higher-level languages. There are also
common operations involving arrays in complicated algorithms for searching and sorting
on large data sets. Having a solid grasp of arrays, both their strengths and limitations, will
make it easier to understand these complicated algorithms.

Arrays are fast and simple to implement. Array elements are stored in contiguous memory,
which makes them faster to access than if they were distributed in memory. Arrays are
also easy to implement. Only one line of code is required to declare an array and
individual elements can be accessed in one line of code using their index.

Arrays also have their limitations; primarily, they have a fixed size. At the time that an
array is declared, a fixed amount of memory needs to be associated with the variable, and
for applications where the array fills up or the size is not known at runtime, this limitation
is often addressed with expensive array doubling algorithms.



3.1 Creating an array

Declaring an array is syntactically similar to declaring a scalar variable. The only
difference is that the size of the array needs to be specified. For example, declare an array
of 10 integers as follows:

int x[10];

The array variable x can be visualized as a sequence of 10 boxes, as shown in Figure 1,
where each box can store an array element. Individual elements in the array are accessed
using the index of the element. For example, x[0] accesses the first element in the array
and x[9] accesses the last element in the array. The statement

inty = x[5];
creates a variable y and sets it’s value to the value of x[5]. The statement
x[5] =y;

sets the value of x[5] to the value of variable y.

x[0] x[11 x[2] x[3] x[4] x[5] x[6] x[71 x[8] x[9]

Figure 1. Visualization of an array of 10 integer elements. Each element can be accessed using the index of the
element.

Arrays can be of any type, including the built-in types, such as integers and doubles, as
well as user-created types using classes and structs. Arrays can also have one or more
dimensions.

//an array of 10 doubles
double x[10];

//an array of 5 integers

int x[5];



//an array of 20 strings

string x[20];

//a 2D array of integers that is 5 rows and 10 columns
int x[5][10];

//an array of 10 WeatherData, where WeatherData defined by a struct
struct WeatherData{
double temperature
double humidity
double windVelocity
%
WeatherData wd[10];

Example 1: Set the value of the elements in array x to the index of the element.

Updating x to store its index as its value is most-efficiently accomplished by looping
through x and setting the loop iterator as the value for each array element.

fori=0 to x.end

x[i] =i

This algorithm writes the value of i to x[i] and generates the array shown in Figure 2.

0 1 2 3 4 I 5 6 7 8 I 9
x[0] x[11 x[2] x[3] x[4] x[3] x[6] x[7] x[8] x[9]

Figure 2. Array generated by algorithm in Example 1. The index i is written to x[i].



3.2 Array Operations

3.2.1 Searching an array

To search for a specified value in an array, iterate through the array using the array index
until the value is found. The searchArray() algorithm in Algorithm 3.1 takes the array and
the value to search for as arguments and returns the index in the array where the value is
found.

Algorithm 3.1. searchArray(A, v)

Returns the index of the value v in the array A.

Pre-condition
A is an array.

v is a valid search value that is the same type as the elements in A.

Post-condition

Returns the index x where A[x] = v.

Algorithm
searchArray(A, v)
found = false
index = -1
x=0
while(!found and x <= A.end)
if A[x]==v
found = true
index = x

else

A B R R R R R B

X++

—_
@)

. return index

Complexity of search operation
1D array: O(n)



2D array: O(n?)

where n is the size of the array.

3.2.2 Adding an element to an array

To add an element to an array, the elements that are currently in the array need to be
shifted out of the way to make room for the new element. The insertArrayElement()
algorithm shown in Algorithm 3.2 takes the array, the value to insert and the position
where it should be inserted, and the number of active elements in the array as arguments.
The algorithm updates the array to include the new element.

Algorithm 3.2. insertArrayElement(A, v, index, numElements)

Adds the element v to the array A at the index position.

Pre-condition

A is an array.

v is the same type as the elements in A.

index is a valid integer less than the size of A, 0 <= index <= A.end.
numElements is the number of occupied indices in A, where

0 <= numElements <= A.end.

Post-condition
Array A is updated such that Afindex] = v.

numElements is increased by 1.

Algorithm

insertArrayElement(A, v, index, numElements)
1. for x = numElements-1 to index

2. A[x+1] = A[x]

3. Alindex] =v

Using the number of elements currently in the array instead of the size of the array reduces
the number of computations when the array isn’t full because unpopulated locations are
ignored. The insertArrayElement() algorithm assumes there is space available in the array.
If the array is full, the element in the last position in the array will be overwritten.



Example 2: Add a 5 to the array in Figure 3 at x[4].

For this example, the number of elements is 7 and the index is 4. The for loop will work
backwards through the array, starting at the last populated element, x[6], and shifting each
element up to and including x[4]. The elements x[4], x[5], and x[6] will be shifted by 1 to
open a space at x[4]. The state of the array after the for loop is shown in Figure 4. Notice
that the value of x[4] hasn’t changed in the for loop. On Line 3 of the
insertArrayElement() algorithm, x[4] will be overwritten with the new value to generate
the final array, which is shown in Figure 5.

10 3 2 13 14 5 6
x[0] x(1 x[2] x[3]1 x[4] x[5] x[6] x[7] x[8] x[9]

Figure 3. Initial state of array x for Example 2. A 5 needs to be added to the array at x[4] and all elements after
x[4] need to be shifted out of the way to open a space.

10 3 2 13 14 14 5 6
x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] x[9]

Figure 4. State of array x at the end of the for loop. The same value is stored at x[4] and x[5].

10 3 2 13 5 14 5 6
x[0] x[11 x[2] x[3] x[4] x[5] x[6] x[7]1 x[8] x[9]

Figure 5. Final state of array x after 5 inserted at x[4]. The number of elements in the array has increased by 1.
Complexity of adding an element to an array

O(n), where n is the size of the array.

3.2.3 Copying an array

The copyArray() algorithm shown here (Algorithm 3.3) writes the contents of one array
into another array, and preserves the order of the data. The algorithm assumes that the
array being copied to is at least as big as the array being copied from.

Algorithm 3.3. copyArray(A, B)

Copies the elements of array A to the corresponding indices in array B.

Pre-conditions



A and B are arrays of the same type.

The size of B is at least as big as the size of A.

Post-conditions

The elements of B in the positions B[O ... A.end] are the same as the elements of A in the
corresponding positions.

Algorithm
copyArray(A, B)

1. forx=0to A.end
2. B[x] = A[x]

Array copy complexity
1D array: O(n)
2D array: O(n?)

where n is the size of the array.

3.2.4 Deleting an element from an array

An element can be removed from an array by shifting the elements in the array to
overwrite the element to delete. The deleteArrayElement() algorithm in Algorithm 3.4
takes the array, index of the element to delete, and the number of elements in the array as
arguments and shifts the elements to the left to overwrite the index position. The shift left
is the opposite direction of the shift to insert an element into an array.

Algorithm 3.4. deleteArrayElement(A, index, numElements)

Deletes the element in array A at the index position and decreases the number of elements
in the array by 1.

Pre-conditions

A is an array.

index is a valid integer, 0 <= index <= A.end.
numkElements is a valid integer, where

0 <= numElements <= A.end.



Post-conditions
The value at Alindex] is overwritten.

numElements is decreased by 1.

Algorithm

deleteArrayElement(A, index, numElements)
1. for x = index to numElements - 2

2. Alx] = A[x+1]

3. numElements = numElements - 1

Example 3: Delete the 14 in the array in Figure 6 at x[4].

In this example, the number of elements is 7 and the index is 4. The for loop in the
deleteArrayElement() algorithm will shift x[5] and x[6] to x[4] and x[5], respectively.

The state of the array at the end of the for loop is shown in Figure 7. On Line 3 of the
algorithm, the number of elements in the array is decremented by 1 to reflect that an
element was removed. The value of x[6] remains unchanged, but won’t be accessed as
long as numElements contains the correct number of “active” array elements.

10 3 2 13 14 5 6
x[0] x(1 x[2] x[3]1 x[4] x[5] x[6] x[7] x[8] x[9]

Figure 6. Array x for Example 3. The 14 at x[4] needs to be removed from the array using Algorithm 3.4.

10 3 2 13 5 6 6
x[0] x[1 x[2] x[3] x[4] x[3]1 x[6] x[7] x[8] x[9]

Figure 7. State of array x after x[4] is removed. There is still at 6 at x[6] but it won’t be accessed because
numElements will restrict the for loop to evaluate x[0 ... 5] only.

Complexity of deleting an array element
O(n)



3.3 Arrays in memory

When an array is declared, the name of the array is a pointer to the first element in the
array in memory. For example, given an array

int x[10];
the command
cout<<x<<endl,;

will display the address of x[0]. Referencing (x+1) returns the address of x[1], (x+2)
returns the address of x[2], and so on. The data type of the array elements determines how
much memory is associated with each element, and how much the address changes with
each +1. In an array of integers, an array element occupies four bytes in memory.
Therefore, adding +1 increases the address by four bytes. In an array of doubles, each
element occupies 8 bytes, and incrementing by 1 increases the address by 8 bytes. An
example for an array of 10 integers is shown in Figure 8. A theoretical address (generated
from a real address by removing the first eight hex digits) is shown for each element.

0 1 2 3 4 5 6 i 8 9

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] x[9]
0x7c30 O0xTc34 OxTc38 OxTcic Ox7cdld OxTcd4d O0xTcd48 OxTcdc OxTcS0 0OxTch4

Figure 8. Example addresses for each element in an array of 10 integers. The address of each element increases by
four over the address of the previous element in the array.



3.4 Dynamic memory allocation

When memory is statically allocated for a variable, that memory is reserved until the
variable goes out of scope. If more memory is allocated than what is needed, then the
memory is wasted. If not enough memory is allocated, a variable such as an array, will fill
up and not be able to store all of the data.

To resolve the issues presented by static variable allocation, memory can be allocated
dynamically and adjusted as the program is running.



3.5 Stack and heap memory

There are two areas of memory where variables are stored, they are the call stack and the
heap.

3.5.1 The Stack

Local variables are stored on the stack. For example, an array declared statically inside a
function would be placed on the stack. The stack has limited space available, and is
carefully managed by the processor to free memory when it is no longer needed.

3.5.2 The Heap

The heap is a pool of free memory that is much larger than the stack and used for storing
variables that are created dynamically during runtime. Variables created using pointers are
created on the heap.

Unlike the stack where memory is managed by the processor, the developer has to handle
memory management of the heap. Variables allocated on the heap have to also be
explicitly de-allocated.

Features of the heap

* Allocated memory stays allocated until it is specifically de-allocated (Beware of memory
leaks).

* Dynamically allocated memory must be accessed through a pointer.

* Allocate large arrays, structures, and objects on the heap.

Allocating variables dynamically

To dynamically allocate a variable, use the new keyword in C++. Free the memory using
the delete keyword.

//a dynamically allocated array of 10 doubles
double *x = new double[10];

//a dynamically allocated array of 5 integers

int *x = new int[5];

//a dynamically allocated array of 20 strings

string *x = new string[20];



/*A 2D array of integers that is 5 rows and 10 columns can be created using an array of
pointers, where each pointer points to the first element in an array.

*/
int rows = 5;
int columns = 10;

int **x = new int*[rows];

for(int y = 0; y < rows; y++)

x[y] = new int[columns];

//a dynamically allocated array of 10 WeatherData

struct WeatherData{
double temperature;
double humidity;
double windVelocity;
%
WeatherData *wd = new WeatherData[10];

Variables created dynamically need to be deleted when they are no longer needed. The
memory allocated to local variables created dynamically will not be freed when the
variable goes out of scope. To free the memory use the delete keyword.

//Free a 1D array
delete[ ] x;
delete[ ] wd;

//Free a 2D array

for(int y = 0; y <rows; y++)
delete[ ] x[y];

delete[ ] x;

3.5.3 Array doubling



Array doubling is an algorithm used to increase the size of an array when an array is full,
but additional space is needed to store more data. The algorithm, shown in Algorithm 3.5,
generates a new array dynamically that is twice the size of the current array, then copies
the values from the current array into the first half of the new array.

Algorithm 3.5. doubleArray(A)

Creates a new array that is twice the length as the array A, copies the elements of A into
the new array, and returns the new array.

Pre-conditions

A is an array.

Post-conditions

Returns an array that is the same type and twice the length as A.

Algorithm
doubleArray(A)

1. B.length = A.length * 2
2. forx=0to A.end

3. B[x] = A[X]

4. return B

Note: By declaring a new array and returning that array from the algorithm, there is a
memory leak in the code if the memory assigned to A is not freed after doubleArray() is
called.

Array doubling complexity
O(n)



3.6 Array Questions

1. Write a C++ function to double the size of an array an arbitrary number of times, and
populate the second half of the array with values that are 2x the values in the first half of
the array.

The function takes three arguments - the initial 1D array, its size, and the number of times
to double it. The function should return the new array. The expected function prototype is:

int *ArrayDynamicAllocation(int array[], int size, int number);
For the following inputs:

int arr[2] ={0, 1};

int arraySize = 2;

int numberOfDoublings = 3;

the expected output is an array that contains:

<0,1,0,2,0,2,0,4,0,2,0,4,0,4,0,8 >.

2. Write a C++ function that finds all instances of a specified value in an array and
removes them. Each time an element is removed, the array should be shifted to fill the

gap.

3. Write a C++ function to copy all elements of an array to a new array, except for a
specified value. For example, copy all elements except the 5 from an array A to array B.

4. Write a C++ function to remove an element from an array and shift the array to fill the
empty spot. The function takes three arguments - the input array, size of array, and the
value to be removed from the array. The expected function prototype is:

void arrayShift(int arr[],int length,int value);



For the following inputs:

int inputArray[5] = {10, 20, 30, 40, 50};
int length = 5;

int value = 30;

the expected result is an array that contains:

< 10, 20, 40, 50 >.

5. Write a C++ function to find the second largest element in an array. The function takes
two arguments - the input array and the size of the array, and returns the second largest
element. The prototype for the expected function is:

int secondLargest(int arr[],int size);

For the following inputs:

int inputArray[4] = {1, 2, 3, 4};
int length = 4;

the expected return value from the function is 3.

6. Write a C++ function that finds the most common repeating element in an array. The
function takes two arguments - the input array and the size of the array, and returns the
most common element. The prototype for the expected function is:

int commonRepeatingElement(int arr[],int length);

For the following inputs:

int inputArray[13] = {5, 5,5, 3,3, 1, 1, 3, 3, 3, 1, 3, 3};
int length = 13;



the expected return value from the function is 3.



4 Sorting algorithms

A sorting algorithm is an algorithm that puts the elements in a collection in a specified
order. These algorithms use different strategies, which affects the runtime and memory
requirements of the algorithm.



4.1 Bubble sort

One of the simplest, but unfortunately slowest, sorting algorithms to implement is bubble
sort, shown in Algorithm 4.1. In the bubble sort algorithm, individual elements “bubble”
to their correct location through a series of individual swaps for elements out of order.

Algorithm 4.1. bubbleSort(A)

The input array A is sorted in ascending order.

Pre-conditions

A is an array.

Post-conditions

A is in ascending order.

Algorithm

bubbleSort(A){

1. fori=0toA.end-1

2 forj=0to A.end-i-1
3 if (array[j] > A[j+1])
4. swap = A[j]

5 Alj] = A[j+1]

6 A[j+1] = swap

Starting from the beginning of the array, the first two elements are compared and swapped
if they are out of order. Next, the second and third elements are compared and swapped if
they are out of order. These comparisons and swaps go through an entire pass of the array,
and then restart again from the first element in the array. Bubble sort is an in-place
algorithm, which means that elements are moved around within the array without
significant additional memory requirements.

Example 1: Given the array shown in Figure 1, show the state of the array after each
iteration of a for loop in the bubbleSort() algorithm.



10 40 13 20 8

Figure 1. Initial state of array A for the bubble sort algorithm (Algorithm 4.1).
First iteration of outer for loop, i = 0
First iteration of the inner for loop, j = 0

* Line 3: compare the values of A[0] and A[1], which are 10 and 40, respectively. The
conditional is false, so Lines 4 - 6 are skipped and there are no changes to the array.

Second iteration of the inner for loop, j = 1

* Line 3: compare the values of A[1] and A[2], which are 40 and 13. The conditional is
true.

* Lines 4 - 6: the values of A[1] and A[2] are swapped, moving 13 into A[1] and 40 into
A[2]. The new state of the array A is shown in Figure 2.

10 13 40 20 8

Figure 2. State of the array after A[1] and A[2] swapped in the first iteration of the outer for loop.
Third iteration of the inner for loop, j = 2

* Line 3: compare the values of A[2] and A[3], which are 40 and 20. The conditional is
true, so swap that values of A[2] and A[3]. This operation moves the 20 to A[2] and
moves the 40 to A[3]. The new state of the array is shown in Figure 3.

10 13 20 40 8

Figure 3. State of the array after A[2] and A[3] are swapped in the first iteration of the outer for loop.
Fourth iteration of inner loop, j = 3

* Line 3: compare the values of A[3] and A[4], which are 40 and 8. The conditional is
true, so swap the values of A[3] and A[4]. The 40 moves to A[4] and the 8 moves to A[3].
This is the last iteration of the inner for loop, and the maximum value in the array should
now be in the last array position. The new state of the array is shown in Figure 4.



10 13 20 B 40

Figure 4. State of the array after the last iteration of the inner for loop when i = 0. The maximum value in the
array is now in the last array position.

Second iteration of the outer for loop, i = 1
First iteration of the inner for loop, j = 0

* Line 3: compare the values at A[0] and A[1], which are 10 and 13. The conditional is
false, so Lines 4 - 6 are skipped and there is no change to the array.

Second iteration of the inner for loop, j = 1

* Line 3: compare the values at A[1] and A[2], which are 13 and 20. The conditional is
false, so Lines 4 - 6 are skipped and there is no change to the array.

Third iteration of the inner for loop, j = 2

* Line 3: compare the values at A[2] and A[3], which are 20 and 8. The conditional is
true. Swap the values of A[2] and A[3], which moves the 8 to A[2] and the 20 to A[3].
This is the last iteration of the inner for loop when i = 1. The new state of the array is

shown in Figure 5.

10 13 8 20 40

Figure 5. State of the array after A[2] and A[3] are swapped. The second highest value in the array is now in the
A[3] position.

Third iteration of the outer for loop, i =2
First iteration of the inner for loop, j = 0

* Line 3: compare the values of A[0] and A[1], which are 10 and 13. The condition is
false, so Lines 4 - 6 are skipped and there is no change to the array.

Second iteration of the inner for loop, j = 1

* Line 3: compare the values of A[1] and A[2], which are 13 and 8. The conditional is
true. Swap the values of A[1] and A[2], which moves 8 to A[1] and 13 to A[2]. The new



state of the array is shown in Figure 6.

10 8 13 20 40

Figure 6. State of the array A after A[1] and A[2] are swapped. The elements A[2 ... 4] are now in the correct
positions.

Forth iteration of the outer for loop, i =3
First iteration of the inner for loop, j =0

* Line 3: compare the values of A[0] and A[1], which are 10 and 8. The conditional is
true. Swap the values of A[0] and A[1], which moves 8 to A[0] and 10 to A[1]. The array
is now in its final sorted state, shown in Figure 7.

Figure 7. Final state of the array after applying the bubble sort algorithm. All elements in the array are now
sorted in ascending order.

Complexity of Bubble Sort:
Big-Oh is O(n?)

The initial array configuration that generates the greatest number of swaps in bubble sort
is reverse sorted order. In this configuration, every element will be swapped every time it
is evaluated.



4.2 Insertion Sort

In the insertion sort algorithm, shown in Algorithm 4.2, elements are moved to their
correct location in the array one at a time, similar to how a person might sort a hand of
cards. The element to be sorted is removed from the arrayj, its correct location is identified
and array elements are shifted out of the way to make room for the element, and the
element is then added back to the array in the correct location.

Algorithm 4.2. insertionSort(A)

The input array A is sorted in ascending order.

Pre-conditions

A is an array.

Post-conditions

The array A is in ascending order.

Algorithm

insertionSort(A)

1. fori=1toA.end

2 index = AJi]

3. j=i

4. while(j > 0 and A[j - 1] > index)
5 Aljl=Al[j - 1]

6 j=j-1

7 A[j] = index

Example 2: For the array shown in Figure 8, show the state of the array after each
loop iteration in the insertionSort() algorithm.

Figure 8. Initial state of the array A for Example 2 using the insertion sort algorithm.



First iteration of the for loop, i = 1
* Line 2: store A[1] in index, which sets index = 4.
*Line 3:setj=1i=1.

* Line 4: the while loop conditional checks the value of j and compares A[0] to index.
Both conditions are true.

 Line 5: the value of A[0] is written to A[1], which overwrites the 4 with the 5.
* Line 6: j is decremented and now j = 0.

* Line 7: A[0] is updated with the value of index, which is 4.

The new state of the array is shown in Figure 9.

Figure 9. The state of the array A after the first two elements, A[0] and A[1], are swapped.
Second iteration of the for loop, i = 2

* Line 2: store A[2] in index, which sets index = 7.
*Line3:setj=1i=_2.

* Line 4: the while loop conditional checks the value of j and compares A[1] to index.
Index is greater than A[1], which fails the second condition.

* Lines 5 and 6 are skipped.

* Line 7: A[2] is set to 7, which is its current value and there are no changes to the array.

Third iteration of the for loop, i = 3
* Line 2: store A[3] in index, which sets index = 2.
*Line 3:setj =i =3.

* Line 4: the while loop conditional checks the value of j and compares A[2] to 2. Both
conditions evaluate to true.

* Line 5: A[3] is overwritten with A[2]. The state of the array after Line 5 is shown in
Figure 10.



Figure 10. State of array A after Line 5 executes and A[2] overwrites A[3]. The values of A[2] and A[3] are now
the same.

* Line 6: j is decremented and now j = 2.

* The algorithm moves to Line 4 to evaluate the while loop conditions. A[1] is compared
to index, which is still 2, and j > 0. Both conditions are true.

* Line 5: A[2] is overwritten with A[1]. The state of the array after Line 5 is shown in
Figure 11.

Figure 11. State of array A after Line 5 executes and A[1] overwrites A[2]. The values of A[1] and A[2] are now
the same.

* Line 6: j is decremented and now j = 1.

* The algorithm moves to Line 4 to evaluate the while loop conditions. A[0] is compared
to index, which is still 2, and j > 0. Both conditions are true.

* Line 5: A[1] is overwritten with A[0], which writes a 4 to A[1]. The new state of the
array after Line 5 is shown in Figure 12.

Figure 12. State of the array A after A[0] overwrites A[1]. The values of A[0] and A[1] are now the same.
* Line 6: j is decremented again and now j = 0.

* Line 4: the while loop conditions are evaluated. The first condition fails, since j is not
greater than 0, and the while loop exits.

* Line 7: index is written to A[0], which puts a 2 at that location. The new state of the
array after Line 7 is shown in Figure 13.



Figure 13. State of the array A after the first four elements in the array are sorted.
Fourth iteration of the for loop, i = 4
* Line 2: store A[4] in index, which sets index = 6.

* Line 4: evaluate the while loop conditions. A[3] is compared to index, which is 6, and j
> (. Both conditions are true.

* Line 5: A[3] overwrites A[4], which places the 7 at A[4]. The new state of the array after
Line 5 is shown in Figure 14.

Figure 14. State of array A after A[3] overwrites A[4].

* The algorithm moves to Line 4 to evaluate the while loop conditions. The second
condition fails because A[2] is less than index, which is 6. The while loop exits.

* Line 7: index overwrites A[2], which puts a 6 at A[2]. The new state of the array after
Line 7 is shown in Figure 15.

Figure 15. State of the array A after the first five elements are sorted using insertion sort.
Fifth iteration of the for loop,i =5

 Line 2: store A[5] as index, which sets index = 1
*Line3:setj=i=5

* Line 4: compare index to A[4] in the while loop condition. Both conditions for the while
loop are true.

* Line 5: A[4] overwrites A[5], which puts a 7 at A[5] and overwrites the 1.
* Line 6: decrement the value of j, which sets j = 4.

* The algorithm returns to Line 4 and compares A[3] to index in the while loop conditions.



Both conditions are true.
* Line 5: A[3] overwrites A[4], which writes a 6 to A[4].

* Repeat the process of decrementing j and comparing index to A[j-1]. Write A[j-1] to A[j]
as long as A[j-1] is greater than index. In this example, the 5, 4, and 2 are all moved. After
the while loop exits, the 1 is written to A[0]. The new state of the array is shown in Figure
16.

Figure 16. State of the array A after fifth iteration of for loop. The first six elements in the array are sorted. The
only remaining element to sort is the 3 at A[6].

Sixth iteration of for loop, i =6

The only element in the array left to sort is the 3 at A[6].

* Store the 3 in index.

» Compare index to the values of A[5] ... A[0] in the array.

» Shift array elements from A[j-1] to A[j] that are greater than index.

* Place index at A[2], which writes a 3 to A[2]. The final state of the array, now
completely sorted, is shown in Figure 17.

Figure 17. Final state of array A sorted using the insertion sort algorithm.
Complexity of Insertion Sort
Big-Oh is O(n?)



4.3 Quicksort

Quicksort uses an algorithmic approach called divide and conquer. The array to sort is
divided into smaller and smaller sub-arrays that are sorted and then recombined. Dividing
the array into smaller arrays reduces the number of iterations over the entire array that
need to be performed, which speeds up the sorting process.

The sorting approach that quicksort uses is similar to the idea behind putting items into
two piles, one pile with values greater than a specified value and one pile with values less
than a specified value. Once those piles are created, each pile is then divided into two
more piles using a middle value as the partitioning criteria. This process repeats with
smaller and smaller piles until all items are in sorted order.

The difference the scenario just described and how quicksort works is that quicksort
doesn’t use any additional memory for creating separate piles. Array elements that are on
the wrong side of a partitioning value are swapped with another out-of-place element.

There are three steps to the quicksort algorithm:

1. Divide: Pick an element in the array, called the pivot, which will be used to partition the
array. A value in the middle of the array is often selected as the pivot.

2. Partition: Divide the array into two sub-arrays: values less than or equal to the pivot
are left of the pivot, and values greater than the pivot are right of the pivot. Divide the
array by swapping values that are on the wrong side of the pivot.

3. Conquer: Recursively apply the Divide and Partition steps to sort the sub-arrays, and
from these sorted sub-arrays, build a sorted array.

The quicksort algorithm is shown in Algorithm 4.3.

Algorithm 4.3. quickSort(A, left, right)

Recursively sorts the array A in ascending order.

Pre-conditions
A is an array.

left and right are valid integers that index array A.

Post-conditions

The array A is sorted in ascending order



Algorithm
quickSort(A, left, right)

1. i=left

2. j=right

3. pivot = A[(left + right) / 2]
4.  while(i <=})

5. while(A[i] < pivot)
6 i=i+1

7 while(A[j] > pivot)
8 j=j-1

9 if(i <=j)

10. tmp = Ali]

11. Ali] = Alj]

12. A[j] = tmp

13. i=i+1

14. j=j-1

15. if (left <j)

16. quickSort(A, left, j)
17. if (i <right)

18. quickSort(A, i, right)

Example 3: For the array shown in Figure 18, show the state of the array after each
outer while loop iteration in the quickSort algorithm.

Figure 18. Initial state of array A for sorting using the quickSort algorithm.

* Lines 1-3: the values for left, right, and pivot are initialized. Left and right store the
lowest and highest index in the array, which are 0 and 6 respectively. Pivot is the value at
A[3], which is 2.



First iteration of the outer while loop, i =0,j =6

* Line 5: the while loop condition that compares A[0] to pivot is false. There are no
changes to i.

* Line 7: the while loop condition that compares A[6] to pivot is true. The value of j is
decremented on Line 8, which sets j = 5. The while loop condition is evaluated again and
is false. The values for i, j, and pivot on Line 9 of the algorithm are shown in Figure 19.

i pivot i
5 4 T 2 6 1 3
0 1 2 3 4 & 6

Figure 19. State of array A and the values for i, j, and pivot.

* Lines 10-12: the values at A[0] and A[5] are swapped, which puts 1 at A[0] and 5 at
A[5].

* Lines 13-14: the value of i is incremented and the value of j is decremented. The state of
the array and the algorithm after Line 14 is shown in Figure 20.

i pivot i
1 4 7 2 6 5 3
0 1 2 3 4 L 6

Figure 20. State of the array after A[0] and A[5] are swapped and i and j are updated.

Second iteration of outer while loop,i=1,j=4

* Line 5: the while loop condition that compares A[1] to pivot is false. There are no
changes to i.

* Line 7: the while loop condition that compares A[4] to pivot is true. The value of j is
decremented, and j and the pivot index are now the same, as shown in Figure 21. The
while loop condition is evaluated again and is false.

i pivot
1 4 i 2 6 5 3
0 1 2 3 4 5 6

Figure 21. The value of j and the pivot are the same.



* Lines 10-12: the values of A[1] and A[3] are swapped, which puts 2 at A[1] and 4 at
A[3]. The 2 is the pivot value, which means that this swap also moves the pivot.

* Lines 13-14: the values of i and j are updated. The new state of algorithm and the array
is shown in Figure 22.

pivot i
1 2 i 4 6 5 3
0 1 2 3 4 5 6

Figure 22. State of the array A after A[1] and A[3] swapped. This swap moves the pivot to A[1].
Third iteration of the outer while loop, i =2,j=2

* Line 5: the while loop condition that compares A[2] to pivot is false. The value of i is
unchanged.

* Line 7: the while loop condition that compares A[2] to pivot is true. The value of j is
decremented. On the next evaluation of the while loop condition, the evaluation is false.
The current state of the algorithm on Line 9 is shown in Figure 23.

pivot i
1 2 i 4 6 5 3
0 1 2 3 4 5 6

Figure 23. State of the array A after the variable j decremented past the variable i. This is the state of the array
when it is passed in as a parameter to the recursive calls of quickSort().

* Line 4: the condition for entering the while loop again is false and the loop exits.

Outside the while loop

* Line 15: if the condition is true it means that j has not been decremented all the way to
the left edge of the array; there are array elements between the left-most element and j.
The condition is true, since left = 0 and j = 1.

* Line 16: call quickSort( ) on array A[O ... 1].
* Line 18: call quickSort( ) on array A[2 ... 6].

Recursive call to quickSort( ) on A[0 ... 1]
The two elements to sort on this call to quickSort( ), A[0] and A[1], are already sorted.



There won’t be any changes to these array elements, but the steps that will execute on this
call are as follows:

* Lines 1-3: the algorithm is initialized, setting the values i = 0, j = 1, and pivot = A[0],
which is 1.

* Line 5: the while loop condition is false and i is unchanged.

* Line 7: the while loop condition is true, which decrements j to j = 0. The condition is
evaluated a second time and is false.

* Lines 10-12: the values of A[i] and A[j] are swapped, which has no effect on the array
since they are the same value.

* Line 13: i is incremented, which sets i = 1 = right.
* Line 14: j is decremented, which sets j = -1.

* Both conditionals on Lines 15 and 17 will be false because i = right and j < left. There
are no additional calls to quickSort( ).

Recursive call to quickSort() on A[2 ... 6]

* Lines 1-3: the algorithm is initialized, setting i = 2, j = 6, pivot = A[4], which is 6. The
initial state of the algorithm and the array A is shown in Figure 24.

i pivot j
7 4 6 S 3
2 2 4 5 6

Figure 24. State of the array A and the algorithm parameters for the recursive call to quickSort() on the section of
the array from the pivot value to the end of the array. The pivot is A[4], iis 2 and j is 6.

First iteration of outer while loop,i=2,j=6
* Lines 10-12: the values A[2] and A[6] are swapped, which puts 3 at A[2] and 7 at A[6].

* Lines 13-14: i is incremented and j is decremented, which sets i = 3 and j = 5. The new
state of the array is shown in Figure 25.

i pivot j
3 4 6 S 7
2 3 4 5 6

Figure 25. State of the array after A[2] and A[6] swapped and i and j updated.

Second iteration of outer while loop,i=3,j=5



* Line 5: compare A[3] to the pivot in the while loop condition. The condition is true;
increment i to 4. The while loop condition is false on the next evaluation, since A[i] is also
the pivot value.

* Line 7: compare A[5] to the pivot in the while loop condition. The condition is false and
j is unchanged.

* Lines 10-12: swap A[4] and A[5], which puts 5 at A[4] and 6 at A[5].

* Lines 13-14: increment i and decrement j. The state of the array at the end of this
iteration of the while loop is shown in Figure 26.

pivot
j i
3 4 5 6 7
2 3 4 5 6

Figure 26. State of the array A at the end of the second iteration of the while loop, after A[4] and A[5] have been
swapped.

Outside the while loop
* Line 16: call quickSort( ) on array A[2 ... 4].
* Line 18: call quickSort(' ) on array A[5 ... 6].

Recursive call to quickSort() on A[2 ... 4]

The values of A[2], A[3], and A[4] are already sorted, as shown in Figure 27, and the
array will not change on this call to the algorithm.

i pivot i
3 4 5
2 3 4

Figure 27. Array elements A[2 ... 4] to sort in a recursive call to the quick sort algorithm. These elements are
already sorted, no additional calls to quickSort() are needed.

Recursive call to quickSort() on A[5 ... 6]

There is also a recursive call to quickSort( ) on A[5 ... 6], which is also already sorted, as
shown in Figure 28.



Figure 28. Array elements A[5 ... 6] to sort in a recursive call to quickSort(). These elements are already sorted,
no additional calls to quickSort() are needed.

When the quickSort( ) algorithm returns from these recursive calls, the array is sorted.

Complexity of Quicksort
Big-Oh is O(n?)

The choice of the pivot matters to the performance of this algorithm. The worst-case
behavior is observed with a bad pivot selection. The average performance is O(n log n).



4.4 Merge Sort

Merge sort is another divide-and-conquer algorithm that has faster worst-case behavior
than any of the sorting algorithms discussed so far. Merge sort operates by sorting small
sub-arrays first, and then merges these small sub-arrays into larger and larger sub-arrays.
The last merge builds the final, sorted array.

There are two steps to the merge sort algorithm
1. Divide: Divide the array of n items into n sub-arrays with 1 item each.

2. Conquer: Recursively recombine the sub-arrays into sorted sub-arrays. Combine the
sorted sub-arrays to create the final sorted array.

4.4.1 Merging arrays

The merge sort algorithm uses a process of merging two arrays that are each individually
sorted, but need to be combined in such a way that the new array is also sorted. For
example, Figure 29 shows two sorted arrays, array A and array B, that need to be
combined.

array A
2 5 7 12
1] 1 2 3
array B
1 6 9 10
0 1 2 3

Figure 29. Example of two sorted arrays, array A and array B, which need to be merged together to create one
sorted array.

Appending array B to the end of array A would generate the new array shown in Figure
30, which is clearly not sorted.

Figure 30. Array generated by appending array B to the end of array A. (Both arrays shown in Figure 29.) The



array clearly is not sorted.

Another option for merging the arrays, which also won’t work, is to weave the arrays
together by selecting an element from one array, and then selecting an element from the
other array, until all elements from both arrays have been added to the new array. For
example, using the arrays A and B, select first from A, then B, then A, then B, and so on
until all items have been merged together. Figure 31 shows the new arrays that would be
generated by selecting A then B or by selecting B then A. Neither array is correctly sorted.

2 1 5 6 [ 9 iz 10
0 1 2 3 4 5 & 7
1 2 5 6 7 9 iz 10
0 1 2 3 4 5 G 7

Figure 31. Resulting arrays of merging A and B by weaving together one element at a time from each array. The
top array is the result of selecting an element from A and then an element from B. The bottom array is the result
of selecting an element from B and then an element from A. Neither array is correctly sorted.

The algorithm to correctly merge two arrays includes the following steps:
» Compare the first elements in each array and add the lowest value to a new array.

* Use an index on the original arrays to control which elements have been added to the
new array. Increment the index when an element has been added from that array. For
example, if A[0] is added to the array, then increment index to 1 so that A[1] will be the
element evaluated next.

* Repeatedly compare the minimum values in each array that haven’t been added to the
new array and select the minimum of the two values. Increment the index each time a
value is selected from an array.

Example 4: Merge the two arrays shown in Figure 32 into one sorted array.



array A

2 5 7 12

1] 1 2 3
array B

1 6 9 10

0 1 2 3

Figure 32. Arrays to merge in Example 4. Arrays A and B need to be combined into one sorted array.
Steps:

1. Compare A[0] and B[0], which are 2 and 1. The 1 is lowest, so add it to the new array C
at C[0]. Increment the B index to 1.

2. Compare A[0] and B[1], which are 2 and 6. Add the 2 to the new array C at
C[1]. Increment the A index to 1.

3. Compare A[1] and B[1], which are 5 and 6. Add the 5 to C at C[2]. Increment the A
index to 2.

4. Compare A[2] and B[1], which are 7 and 6. Add the 6 to C at C[3]. Increment the B
index to 2.

5. Compare A[2] and B[2], which are 7 and 9. Add the 7 to C at C[4]. Increment the A
index to 3.

6. Compare A[3] and B[2], which are 12 and 9. Add the 9 to C at C[5]. Increment the B
index to 3.

7. Compare A[3] and B[3], which are 12 and 10. Add the 10 to C at C[6]. The B index
does not need to be incremented because the end of the array has been reached.

8. Add A[3], which is 12 to C at C[7].

4.4.2 Merging arrays with merge sort

Merge sort works by repeatedly sorting small sections of the array and then merging them
together into a larger sorted section of the array.

Example 5: Sort the array shown in Figure 33 using merge sort.



Figure 33. Example array that will be used to demonstrate the merge sort algorithm for Example 5.

Divide the array into seven sub-arrays each with one element, as shown in Figure 34. The
one-element size is the smallest unit possible for an array, and guarantees that any two
elements merged correctly will be a sorted two-element sub-array.

Figure 34. The first step in the merge sort algorithm is to divide the array into the smallest possible units, which is
n sub-arrays each with one element.

Merge the adjacent one-element sub-arrays into sorted pairs using the merging process
previously described. With an odd number of sub-arrays, there will be one sub-array after
the merge that only has item. The result of the merging is shown in Figure 35.

Figure 35. The result of merging the n, one-element sub-arrays by combining adjacent elements into sorted pairs.

Merge the adjacent two-element sub-arrays into sorted sub-arrays of three or four elements
each. The result of this merge is shown in Figure 36.

Figure 36. Combine adjacent, two-element sub-arrays into sorted, four-element sub-arrays. Each of the two sub-
arrays is sorted with respect to the other elements in the subarray.

The next merge will produce the final sorted array. Merge the four-element sub-arrays to
get one, seven element array that will be correctly sorted.

Figure 37. The final sorted array that is produced from merging the three- and four-element sub-arrays.



Complexity of merge sort
Big-Oh is O(n log n)



5 Linked lists

One of the limitations of arrays is that they have a fixed size. Allocating memory to store
additional data once the array is full is generally handled with an array-doubling
algorithm, which can be computationally expensive. Array doubling also allocates too
much memory if only one or two additional elements need to be added.

A list is a data structure that allows for individual elements to be added and removed as
needed. In a typical list implementation, called a linked list, memory is allocated for
individual elements, and then pointers link those individual elements together.



5.1 Singly and doubly linked lists

There are two types of linked lists, singly linked and doubly linked lists. In a singly linked
list, each element, which is also called a node, contains the data stored in the node and a
pointer to the next node in the list (shown in Figure 1).

Figure 1. Singly linked list with four elements, called nodes. In this example, each node has an integer key value
and a pointer to the next node in the list.

In the Figure 1 example, the node data is the integer key. The first node has a key value of
9, the second node has a key value of 5, the third node has a key value of 6, and the fourth
node has a key value of 12. The next pointer for the final node in the list is set to NULL,
which is shown by the slanted line.

In a doubly linked list, each node in the list contains the node data, a pointer to the next
node in the list, and a pointer to the previous node in the list. A graphical example of a
doubly linked list is shown in Figure 2. In this example, each node has three properties: an
integer key, a pointer to the next node in the list, and a pointer to the previous node in the
list. For the first node in the list, the previous pointer is set to NULL, and for the last node
in the list, the next pointer is set to NULL. Nodes in a linked list can also be much more
complex than these simple examples. Nodes could, for example, be built from a class that
defines an object such as an Automobile or a Bicycle.

N 9 R 5 . " 6 . " 12 N

Figure 2. Doubly linked list with four nodes. Each node has an integer key value, a pointer to the previous node,
and a pointer to the next node in the list.

One difference between storing data in a linked list or in an array is that the linked
requires the additional pointers to the neighboring nodes. Storing the same data from
Figures 1 and 2 in an array would require a four-element integer array, such as the one
shown in Figure 3.

9 5 | & | 12
x[0] x[1] x[2] x[3]

Figure 3. Array example showing how the data in the linked list in Figures 1 and 2 would be stored in an array.

5.1.1 Head and tail nodes



The node at the beginning of the list is called the head of the list. When implementing a
linked list, a separate pointer should be stored to this node as it is the only entrance to the
list. The last node in the list is called the tail of the list. In some implementations, a pointer
to the tail of the list is also stored.



5.2 The linked-list ADT

In a linked-list ADT, shown in ADT 5.1, the data is stored in a linked list that is accessed
through the head of the list. The head and tail of the list are stored as private variables,
and there are public methods to initialize the list, add and delete nodes, traverse the list,
and search the list.

ADT 5.1. Linked List
LinkedList:
1. private:
2 head
3 tail
4. public:
5. Init()
6 insertNode(previousValue, value)
7 search(value)
8 traverse()
9 deleteNode(value)
10. deleteList()

5.2.1 C++ implementation of a node

All variables stored in memory have a memory location that can be accessed using a
pointer variable. A linked list node can be implemented in C++ using a class or a struct
and the next and previous pointers in the node reference another instance of the node.

The example code in Code 5.1 shows simple node definitions using a struct. The
singleNode for a singly linked list includes an integer key and a singleNode next pointer.
The doubleNode implementation for a doubly linked list includes a next doubleNode
pointer and a previous doubleNode pointer.

Code 5.1. singleNode and doubleNode definitions
//mnode implementation for singly linked list
struct singleNode{
int key;

singleNode *next;






5.3 Building a singly linked list in C++

The Linked List ADT defines an interface for the operations on a linked list. It can also be
helpful to step through how a list is created independent of how the ADT is structured.
The next example steps through creating a linked list with three nodes using the
singleNode definition given in Code 5.1.

Example 1: Build a linked list with three nodes with key values of 5, 6, and 7.

Steps:

1. Using the node definition given above, create a new node dynamically:
singleNode *x = new singleNode;

2. Set the values for the key and next of x. The key value for the first node is 5. The next
value is initialized to NULL because there are no other nodes in the list.

x->key = 5;
x->next = NULL;

To store this node as the head of the linked list, create an additional pointer head to point
to x.

singleNode *head = x;

The linked list now has one node (Figure 4).

5 |NuLL

Figure 4. Singly linked list with one node that includes an integer key with a value of 5 and a pointer to the next
node in the list. The next pointer is set to NULL because there are no other nodes in the list to point to.

3. Create another node dynamically.

singleNode *n1 = new singleNode;



4. Set the values for the key and next of n1. The next pointer is initialized to NULL
because this node is added to the end of the list.

nl->key = 6;
nl->next = NULL;

At this point, two nodes have been created, but there is no connection between them,
illustrated in Figure 5. Both nodes have a next pointer that points to NULL.

5 |NuLL 6 |NuULL

Figure 5. Two nodes have been created in memory for a singly linked list, but there isn’t yet a link between them
because the next pointer for both nodes is NULL.

5. Set the x.next pointer to connect the two nodes.

x->next = nl;

The address of n1 is now stored in x->next, which establishes the link between the two
nodes, as shown in Figure 6.

5 nl [—= 6 |NULL

Figure 6. Singly linked list with two nodes. The next pointer of the first node is set to the address of the second
node.

The arrow between the nodes in Figure 6 doesn’t have any meaning in the code, but it
does illustrate the possible movement direction. The node x contains a pointer to nl1,
which can be thought of as x knows about n1, and therefore, it’s possible to traverse from
x to n1. But, n1 doesn’t contain an arrow to x in the image, and in the code, n1 doesn’t
contain a pointer to x. Without a pointer that connects nl to x, n1 doesn’t know about x;
it’s not possible to go from n1 to x.

6. Create another node dynamically and connect it to n1.
//create a new node

singleNode *n2 = new singleNode;

n2->key = 7;



n2->next = NULL;

//lupdate the next pointer of n1 to point to the new node

nl->next = n2;

The final linked list with three nodes is shown in Figure 7.

5 nl —m» & n2 —m 7 |NULL

head

Figure 7. Singly linked list with three nodes. The key values for the three nodes are 5, 6, and 7. Each node also
contains a pointer to the next node in the list, except the last node, which points to NULL. The first node is also
stored as the head of the list.



5.4 Building a doubly linked list

The only difference between building a singly linked list and a doubly linked list is the
additional previous pointer on each node in a doubly linked list.

Steps:

1. Create a new node dynamically:
doubleNode *n0 = new doubleNode;

2. Set the values for the key, next, and previous of n0. In this example, the key = 0, and
both next and previous are initialized to NULL.

n0->key = 5;
n0->next = NULL;

n0->previous = NULL;

The linked list now has one node (Figure 8).

NULL| O [NULL

Figure 8. Doubly linked list with one node. The node has a next and a previous pointer to point to neighboring
nodes in both directions in the list.

3. Create another node dynamically, and set the values for the key, next, and previous of
ni.

doubleNode *n1 = new doubleNode;
nl->key = 1;

nl->next = NULL;

nl->previous = NULL,;

4. Connect the nodes by setting the next and previous pointers for both nodes (Figure 9).

n0->next = nl;



nl->previous = n0;

NULL| O | nl1 ™ no |1 [NULL

nd nl

Figure 9. Doubly linked list with two nodes. Setting the next and previous pointers for both nodes establishes the
connection between them in both directions.

Just as with a singly linked list, the arrows between the nodes in this image don’t have any
meaning in the code, they just show the possible directions of movement between the
nodes. Both nodes contain pointers to each other, indicating that n1 is reachable from n0
and vice versa. This is the difference between a singly and a doubly linked list, the list can
be traversed both forwards and backwards.

5. Create another node dynamically and connect it to n1. The final linked list with three
nodes is shown in Figure 10.

//create a new node

doubleNode *n2 = new doubleNode;
n2->key = 2;

n2->next = NULL;

n2->previous = nl;

//lupdate n1 to point to the new node

nl->next = n2;

NULL| O | nl ndt (1| n2 ™ n1 |2 [NULL

nod nl n2

Figure 10. Doubly linked list with three nodes. The previous pointer for the first node in the list and the next
pointer for the last node in the list are set to NULL, which signifies the beginning and the ending of the list.



5.5 Traversing a linked list

Unlike an array, where the individual elements are accessed through their index, linked list
nodes are accessed through the pointers stored in the list. For example, using the linked
list displayed in Figure 10, the command

singleNode *tmp = n0->next;
is equivalent to
singleNode *tmp = nl;

Neither of these commands allocates memory for a node, but rather, they create a pointer
variable that points to an existing node in memory. To traverse a linked list, create a
temporary variable that points to the head of the list, and then update the temporary
variable to point to the next node in the list until the temporary variable points to NULL,
which indicates that the end of the list has been reached. The algorithm to traverse a singly
linked list is shown in Algorithm 5.1.

Algorithm 5.1. traverse()

Traverse a linked list from the head node to the last node in the list.

Pre-conditions

The head node is defined in the linked list ADT or included as an argument to the
algorithm.

Post-conditions

Values of the nodes in the list are displayed.

Algorithm

traverse()

1. tmp = head

2. while(tmp != NULL)
3. print tmp.key
4

tmp = tmp.next



Example 2: Call traverse() on the linked list in Figure 11.

Steps in the traverse() algorithm:

Evaluate the head node

* Line 1: the variable tmp points to the address of head, which is the first node in the list.
This configuration is shown in Figure 11.

5 nl —m» & n2 — 7 |[NULL

head nl n2
tmp

Figure 11. The variable tmp points to the first node in the linked list, which is also called the head of the list.

The properties of head can be accessed through tmp, which means that

tmp.next

will access the same data as

head.next.

* Line 3: the statement

print tmp.key

will display the key value for the first node in the list, which is 5.

* Line 4: tmp is updated to point to the next node in the list.

tmp = tmp.next

This step accesses the address of n1 and sets tmp to point to that address. The tmp pointer
now points to the second node in the list, as shown in Figure 12.



5 nl —m» & n2 — 7 |[NULL

head nl n2
tmp

Figure 12. The tmp variable now points to the second node in the linked list.

Evaluate the second node

* Line 2: check if tmp is NULL, and since it’s pointing to n1, it is not NULL.
* Line 3: tmp.key displays the key value for n1, which is 6.

* Line 4: tmp = tmp.next changes tmp pointer to point to n2. The tmp pointer now points
to the third node in the list, as shown in Figure 13.

5 nl —m» & n2 — 7 |[NULL

head nl n2
tmp

Figure 13. The tmp variable now points to the third node in the linked list, which is also the end of the list.

Evaluate the third node
* Line 2: the check if tmp is NULL is still false, since tmp is pointing to nZ2.
* Line 3: the command tmp.key will display the key value for n2, which is 7.

* Line 4: tmp = tmp.next changes the tmp pointer to point to NULL. On the next
evaluation of the conditional on Line 2, the conditional will be false and the loop will exit.



5.6 Searching a singly linked list

To search a linked list for a specified key, start at the head of the list and traverse the list
until the key is found. The search() algorithm, shown in Algorithm 5.2, takes the search
value as a parameter and returns a pointer to the node where the search value is found.
This algorithm is similar to the traverse() algorithm (Algorithm 5.1) with additional steps
to check if the value is found.

Algorithm 5.2. search(value)

Traverse the linked list and return the node where the key matches the search value.

Pre-condition

value is the same type as the key property.

Post-condition

Returns the node that contains the value and NULL if the value does not exist in the list.

Algorithm

search(value)

1. tmp = head

2. returnNode = NULL

3. found = false

4. while(!found and tmp != NULL)
5. if (x.key == value)

6. found = true

7. returnNode = x
8. else

9. X = X.next

10. return returnNode



5.7 Inserting a node into a singly linked list

When inserting a node to a linked list, there are three cases to consider:
* Inserting a node at the head of the list
* Inserting a node in the middle of the list

* Inserting a node at the end of the list

In each case, the pointers in the nodes surrounding the new node need to be updated in a
specified order for the operation to be successful.

Algorithm 5.3. insertNode(leftValue, value)

Insert a new node into the linked list after the node with a key value of leftValue.

Pre-conditions
leftvalue is a valid key value for a node in the list, or NULL.

value is a valid key value

Post-conditions

The new node has been added to the list after the leftValue node.

Note: This algorithm is for a singly linked list. To insert into a doubly linked list,
additional steps are needed to handle the previous pointer for each node. When the new
node is the head node, node.previous = NULL. Otherwise, node.previous = left.

Algorithm
insertNode(leftValue, value)
1. left = search(leftValue)

2. node.key = value

3. node.next = left.next

4. if left == NULL //head node

5. node.next = head

6 head = node

7. else if left.next == NULL //tail node
8 left.next = node

9

node = tail



10. else //middle node
11. node.next = left.next

12. left.next = node

5.7.1 Inserting a new head node

Example 3: Insert a node at the head of the list in Figure 14 with a key value of 1.

5 nl —m» & n2 — 7 |[NULL

head nl n2

Figure 14. Linked list for Example 3, insert a new node at the head of the list.

In this example, the steps in the insertNode() algorithm are outlined, as well as the
corresponding C++ commands to implement the algorithm.

Steps:

* Line 1: Find the node in the list where node.key = leftValue using the search() algorithm.
For a new head of the list, leftValue will be NULL.

node *left = search(leftValue);

* Line 2-3: Allocate memory for the new node and set its key and next properties (Figure
15).

singleNode *n0 = new node;
n0->key = 1;

n0->next = left->next;

1 |NULL L nl w6 n2 » 7 |MULL

no head nl n2

Figure 15. The new node has been created, called n0, but hasn’t yet been linked to the list. The next pointer for
the new node is still NULL.

* Line 5: Update the next property of the new node to point to the current head of the list
(Figure 16).

n0->next = head;



1 |head » 5 nl » 6 n2 » T |MULL

ho head nl n

Figure 16. Connect the new node to the list by setting its next pointer to point to the head node.

* Line 6: Update the head pointer to point to the new node (Figure 17).

head = n0;
head
1 nesxt » B nl » 6 n2 = T |NULL
head head-»next nl n2

Figure 17. The new node becomes the new head node, and the previous head node is now head.next.

5.7.2 Inserting a new middle node

Example 4: Insert a node with a key value of 10 after the node with a key value of 2
in the linked list in Figure 18. The new linked list after the insert operation is shown
in Figure 19.

5 nl L n2 T n3 o 2 n4 e 8 |MULL

Figure 18. Linked list for Example 4 before a new node is inserted to the list.

5 nl = 6 n2 - T n3 o 2 ns o 10 | nd 8 (NuLL

head nl n2 n3 ns nd

Figure 19. Linked list for Example 4 after the new node is inserted into the list.
Steps:

* Line 1: Search for the node with key = 2 using the search() algorithm. Figure 20 shows
the results of the search() call.

singleNode *left = search(2);

5 | nl —w & n2 —w 7 n3 —mw 2 nd |—m 8 |NULL

head nl n2 n3 nd
left



Figure 20. The node that will precede the new node is labeled as left. It was identified by calling the search()
algorithm.

* Lines 2-3: Allocate memory for the new node and set its key and next properties. There
are now two nodes pointing to n4 as their next node (Figure 21).

singleNode *n5 = new node;
n5->key = 10;

n5->next = left->next;

head nl n2 n3 na
left

8 |NULL

Figure 21. The new node has been created, called n5, and its next pointer points to the same node as left’s next
pointer.

* Line 12: Update the next pointer for left to point to the new node (Figure 22).

left->next = n5;

5 [ m = 6 | n2 = T | n3 = 2 | n5 o 10 | nd 8 |NULL

head nl n2 n3 ns nd

Figure 22. Final linked list after the new node is inserted and the pointers are updated.

5.7.3 Inserting a new tail node

Example 5: Insert a new node at the end of the linked list in Figure 23 with a key
value of 10.

5 nl L n2 T n3 o 2 n4 e 8 |MULL

Figure 23. Linked list for Example 5, insert a new tail node at the end of the list with a key value of 10.

Steps:



* Line 1: Search for node with key = 8.

singleNode *left = search(8);

(Note: without knowing the key value of the last node, the end of the list could also be
accessed using the tail pointer.)

* Lines 2-3: Allocate memory for the new node and assign it values of key = 5 and next =
NULL.

node *n5 = new node;

n5->key = 10;

n5->next = NULL;

* Line 8: Change the next pointer of the left node to point to the new node.

tail->next = nb5;

* Line 9: Update the new node to be the tail. The final linked list is shown in Figure 24.

tail = n5;
5 nl —» 6 n2 —-l i nd |—m 2 nd 8 ns = 10 |NULL
head ni n2 n3 T nd nG

left

Figure 24. Linked list after new node inserted at the tail position.

5.7.4 Inserting a node into a doubly linked list

The only difference between inserting a node into a singly linked list and a doubly linked
list is that the previous pointer for a node needs to be set on a doubly linked list.

Example 6: Insert a node with a key value of 3 into the doubly linked list in Figure 25
after the node with a key value of 1.



NULL| O | nl ndt (1| n2 ™ n1 |2 [NULL

nod nl n2

Figure 25. Doubly linked list for Example 6. Insert a new node with a key value of 3 after the node with the key
value of 1.

Steps:

* Line 1: Find the previous node in the list using the search() algorithm. The node is
labeled left in Figure 26.

doubleNode *left = search(1);

NULL| O | nl nd (1| n2 ™ n1 |2 [NULL

nod nl n2

Figure 26. Doubly linked list with left node identified. The new node will be inserted after the left node.

* Lines 2-3: Allocate memory for the new node and assign it a key, next, and previous
pointer. The state of the list after these steps is shown in Figure 27.

node *n3 = new node;
n3->key = 3;
n3->next = left->next;

n3->previous = left;

n3

NULL| O | n1 nl (1| n2 ™ n1 |2 [NuULL

no nl n2
left

Figure 27. State of the doubly linked list with the new node inserted. The pointers have not been completely
updated. There are multiple nodes with the same previous and next pointers.

« Update the previous pointer for left.next to point to the new node as its previous node
(Figure 28).



left->next->previous = n3;

n3

NULL| O | n1 nl (1| n2 ™ n3 |2 [NULL

no nl n2

Figure 28. The previous pointer for n2 has been updated to point to the new node n3 instead of n1.

* Line 8: Update the next pointer for the left node to point to the new node (Figure 29).

left->next = n3;

LN

—
NULL| 0 | nl1 nd | 1] n2 n3 | 2 |NULL
no nl n2

left

Figure 29. The next pointer for left has been updated to point to the new node n3. The linked list is now in its final
state with the new node inserted and all pointers updated.

Example 7: Insert a node with a key value of 10 to the head of a doubly linked list.

Steps:

* Lines 2-3: Create the new node and set its key, next, and previous properties.
node *n0 = new node;

n0->key = 1;

n0->next = head;

n0->previous = NULL;

« Update the previous pointer for the current head node to point to the new node.

head->previous = n0;



* Line 6: Update the head pointer to point to the new node.

head = n0;

5.7.5 Common pitfall when inserting a new node

When inserting a node into a linked list, it’s important to update the next pointers in the
correct order or a portion of the linked list can be lost. For example, consider this situation
where memory has been allocated for the new node n5, but the next pointer to include it in
the list hasn’t yet been set (Figure 30).

5 nl = 6 n2 - T n3 o 2 nd o B HULL] 10 |(NULL

head nl n2 n3 nd ns
left

Figure 30. In this linked list, the memory for a new node has been allocated, but none of the pointers in the list
have been updated to link in the new node.

If the left.next pointer is updated first to point to n5 instead of n4, then n4 will be
disconnected from the list, as shown in Figure 31. The next pointer for n4 is still NULL,
and since it’s a singly linked list, there’s no connection back to left from n4.

5 nl - 6 n2 ™~ n3 - 2 ns » 10 |NULL

head nl n2 n3 ns

left a8 NULL]
nd

Figure 31. Example of how a section of the list can be lost if the pointers are not updated in the correct order. The
node n4 is disconnected from the list if the left.next value is set before the n5.next value.

However, if the n5.next pointer is set first, then the left.next pointer can be updated to
point to the new node and the list remains intact.



5.8 Deleting a node from a singly linked link

To delete a node from a linked list, update the pointers to bypass the node, and then free
the memory associated with the node. Just as with the insert operations, the order of the
steps is important to ensure that sections of the list are not lost and there are no memory
leaks. There are three cases to consider when deleting a node from a linked list:

* Deleting the node at the head of the list.
* Deleting a node in the middle node of the list.

* Deleting the node at the tail of the list.

Algorithm 5.4 describes the delete operation. The algorithm takes the value of the node to
delete and then searches for that value in the list. If the value is found, the node is deleted.

Algorithm 5.4. delete(value)

Delete the node with the specified value.

Pre-conditions
head and tail pointers are set in the linked list.

value is a valid search parameter.

Post-conditions

Node where the key equals the value has been deleted from the list.

Algorithm
delete(value)
if (head.key == value)
tmp = head.next
head = head.next

delete tmp

left = head
tmp = head.next
while tmp != NULL

1
2
3
4
5. else //middle or tail
6
7
8
9 if tmp.key == value



10. left.next = tmp.next

11. if tmp == tail

12. left.next = NULL
13. tail = left

14. delete tmp

15. break

16. left = tmp

17. tmp = tmp.next

5.8.1 Delete the head node in a singly linked list
Example 8: Delete the node at the head of the list in Figure 32 using Algorithm 5.4.

This example shows the lines in the delete() algorithm that execute to delete the head of
the list, as well as the corresponding C++ code to implement the algorithm.

1 nl - 5 n2 —m & n3 —s 7 |NU LLJ
head nl n2 n3
delete

Figure 32. Linked list for Example 8, delete the first node in the list.

* Line 2: Create a pointer to point to the head.next of the list (Figure 33).

singleNode *tmp = head->next;

l | nl}|—w 5 nz2 —m & n3 —= 7 [NULL

head nl n2 n3
tmp

Figure 33. A variable tmp has been created and points to the first node in the linked list.

* Line 3: Set the head pointer to point to head.next (Figure 34).

head = head->next;



l | nl}|—w 5 nz2 —m & n3 —= 7 [NULL

tmp nl n2 n3
head

Figure 34. The head pointer is moved and now points to the second node in the linked list.

* Delete tmp to free the memory allocated to the old head node (Figure 35).

delete tmp;

5 nz2 — 6 n3 —» 7 [NULL

nl n2 n3
head

Figure 35. Free the memory associated with the tmp pointer, which removes the old head node from the list.

5.8.2 Delete a middle node in a singly linked list

Example 9: Delete the node with the key value of 5 from the linked list in Figure 36.

1 nl 6 nd | — 7 |[NULL

head n2 n3

delete

Figure 36. Linked list for Example 9, where the node with the key value of 5 needs to be deleted from the list.
Steps:

* Line 6: Create a pointer to the head of the list.

singleNode *1eft = head;

* Line 7: Create a pointer to point to head.next.

singleNode *tmp = head->next;

* Line 9: Check if the value has been found in the list. At this point in the algorithm, left



will be pointing to the node that precedes it and tmp will be the node to delete (Figure 37).

if(tmp->key == value)

1 | nl}|—» 5 n2 —» 6 n3 —a 7 |NULL

head tmp n2 n3
left left->next

Figure 37. The variable tmp points to the node to delete.

* Line 10: Update the left.next pointer to bypass tmp and point to the node after tmp
(Figure 38).

left->next = tmp->next;

1 nl » 6 n3d —m 7 |NULL

head / n2 n3
left 5 nz left-=next

tmp

Figure 38. The next pointer for left has been updated to point to the node after tmp in the list. The tmp node can
now be deleted without cutting the connection between left and the rest of the list.

* Line 14: Delete the tmp node (Figure 39).

delete tmp;

1 nl —w 6 n3 —m 7 |NULL

head n2 n3
left left->next

Figure 39. The memory associated with tmp has been freed and the node is no longer in the linked list.

5.8.3 Delete the tail node in a singly linked list

Example 10: Delete the tail node in the linked list in Figure 40.



1 nlL —m{ 5 nz2 —m 6 tail 7 |NULL

head nl n2 tail

delete

Figure 40. Linked list for Example 10, delete the tail node in the linked list.

* Lines 11-13: Handle the special case where the node to delete is the tail node. The node
left is the node that precedes the tail node (Figure 41).

1 nl | —ms 5 nZ —m 6 | tall - 7 |NULL

head nl n2 tail
left left->next

Figure 41. The left node is the node that precedes the tail node in the list.

* Lines 12-13: Update left to be the tail node and set its next pointer to NULL (Figure 42).

left->next = NULL;
tail = left;

1 nl = 5 nZ —m 6 |NULL

head nl n2
left

tail

Figure 42. Final linked list after the tail node is removed and a new tail pointer is set. The variables left and tail
now point to the same node.

* Line 14: Delete the tmp node, which is also left.next (Figure 43).

delete tmp;

head nl n2
left

Figure 43. Delete the tail first before setting the left pointer to be the new tail. This operation removes the tail
node from the list.



5.9 Complexity of linked list operations

Insert
Inserting a node at the head of the list: O(1).

Inserting a node at the end of the list: O(n), if there isn’t a tail pointer for the list, and O(1)
if there is a tail pointer.

Search

Searching for a node within a specified key value: O(n).

Delete
Delete the head of the list: O(1).
Delete the tail of the list: O(n) for singly linked list and O(1) for doubly linked list.



5.10 Linked List Exercises

Write a C++ function to find the maximum value in a singly linked list. The function takes
one argument - the head of the linked list and returns the maximum integer value in the
list. The expected function prototype is:

int LinkedListFindMax(node *head);

and the structure of the node is:

struct node

{
int value;

node *next;

b

Test case:

For the following linked list

9->3->100->1000->-3->9876

the function should return a value of 9876.



6 Stacks

A stack is a data structure that stores a collection of elements and restricts which element
can be accessed at any time. Stacks work on a last in, first out principle (LIFO): the last
element added to the stack is the first item removed from the stack, much like a stack of
cafeteria plates. Elements are added to the top of the stack, and the element on the top is
the only element that can be removed.

Example 1: Add the words of this classic Napolean Dynamite quote,

A liger it’s pretty much my favorite animal

to a stack.

Each word in the sentence occupies one position on the stack. Words are added at the top
position, which results in the stack growing upwards (Figure 1). The position of the top
moves each time a word is added to the stack.

top

animal,
favorite
my
rnuch
pretty
ir's
iger
bottom A

Lo R O S Y P 1 R

Figure 1. Contents of the stack and the position of the top of the stack after all words have been added. Words are
added at the top of the stack only, and then also removed from the top of the stack only.

Words are also removed from the top of the stack, which moves the top position.
Removing the words from the stack in Figure 1 generates the following sequence of
words:

animal. favorite my much pretty it’s liger A

Definitions:

When an element is added to a stack, it is “pushed” onto the stack.



When an element is removed from a stack, it is “popped” off the stack.



6.1 The stack ADT

The stack ADT includes a variable that tracks the top of the stack, the stack data, and
methods to manipulate the stack by adding and removing elements. Stack data is typically
stored in a data structure such as an array or a linked list. The terminology for interacting
with the stack is the same regardless of the data structure used, but the implementation
details vary. The stack ADT shown in ADT 6.1 is intentionally generic due to the
differences in an array or linked list implementation.

ADT 6.1. Stack

1. private:

2 top

3 data

4 isFull()

5. isEmpty()
6 maxSize

7. public:

8 Init()

9 push(value)

10.  pop()



6.2 Pushing and popping stack elements

6.2.1 Array implementation of a stack

In an array implementation of a stack, data elements are stored in an array and the top of
the stack refers to the index where the next element will be added. The elements, data/O0...
top-1] are the contents of the stack.

* When top = 0, the stack is empty.
* When top = maxSize, the stack is full. (maxSize is the size of the array)

* When top > maxSize, the condition is called stack overflow. Yes, it’s called stack
overflow.

6.2.2 Linked list implementation of a stack

In the linked list implementation of a stack, the data elements in the stack are nodes in a
singly linked list, where each node has a pointer to the previous node in the list. The node
at the bottom of the list has a previous pointer to NULL (Figure 2). The top of the stack is
a pointer to a node instead of an index in an array.

NULLL 1 |« 5 je— 6 pa— [

Figure 2. Example of a stack implemented with a linked list. Each node in the list has a pointer to the previous
node in the list. This stack has four elements. The top of the stack is the node with the key value of 7.

* When top = NULL, the stack is empty.

» When top = maxSize, the stack is full. (maxSize is the maximum size of the stack. This
example assumes the stack has a maximum allowable size.)

6.2.3 Push an element onto an array stack

The algorithm to push an element onto a stack implemented with an array is shown in
Algorithm 6.1.

Algorithm 6.1. push(value)

Add an element with the specified value to an array stack.

Pre-conditions
value is a valid input value.

A method, isFull() exists to check for if the stack is full.



Post-conditions

The value is added to the stack and the top index is incremented by 1.

Algorithm
push(value)

1. if(tisFull())

2. data[top] = value
3. top=top +1

In this algorithm, data is the stack data structure and value is the element to add to the
stack. The parameter top is initialized to 0 when the stack is initially created. On Line 1,
the conditional to check for a full stack calls the isFull() method in the ADT, which checks
if top = maxSize.

Example 2: Push the values 12 and 9 onto the empty stack S shown in Figure 3.

+ Start with an empty stack, S

0 1 2 3 4 5

8] |

Figure 3. Empty array-based stack. The top of the stack is S[0].

* Pushing two elements onto the stack is handled in two separate calls to push():

push(12)
push(9)

Those two calls generate the stack configuration shown in Figure 4.

0 1 2 3 4 5
5[12 9 ]
top

Figure 4. Stack contents and index of the top variable after two elements pushed onto the stack.

6.2.4 Push an element onto a linked list stack

In the push() operation on a linked list (shown in Algorithm 6.2), the input to the



algorithm is the value for the new node to push onto the stack. The variable top is a
pointer to the node at the top of the list. When the stack is empty, top = NULL.

Algorithm 6.2. push(value)

Push a node with the specified value onto a stack implemented with a linked list.

Pre-conditions

value is a valid linked list node value.

Post-conditions

The new node is the new top of the stack.

Algorithm
push(value)
1. node.key = value

2. if top == NULL

3 node.previous = NULL
4. else

5 node.previous = top

6

top = node

Example 3: Push a value of 10 onto the linked list stack shown in Figure 5.

NULLL 1 |« 5 je— 6 pa— [

Figure 5. Push a new node onto this stack with a key value of 10.

push(10)

The sequence of operations involved in pushing the element onto the stack is shown color-
coded in Figure 6.

* The initial state of the stack variables is shown in red. The top is the node with a key
value of 7. The x node is the new node, which will become the new top.

* Line 1: Create a new node with the specified key value.



* Line 5: Set the previous pointer for x to connect the node to the stack, shown with the
blue arrow.

* Line 6: Move top to point to x, shown in green.

—— 7 la 10

top X
top

Figure 6. Steps for pushing a node onto a linked list stack. The initial state of the linked list is shown in red. The
blue arrow connects the new 10 node to the existing list. The top is then reset to point to the new node.

6.2.5 Pop an element from an array stack

The algorithm to remove the top element from an array stack is shown in Algorithm 6.3.

Algorithm 6.3. pop()

Pop an element from an array stack.

Pre-conditions

None

Post-conditions

Element at the top of the stack is returned and top decremented by 1.

Algorithm

pop()

1. iftop ==

2 print(“underflow error”)
3. else

4. top=top-1
5

return data[top]

Example 4: Pop an element from the array stack shown in Figure 7.

0 1 2 3 4 5
5[12 9 ]
top




Figure 7. A pop() operation on this array stack will return a 9 and decrement the top to S[1].

pop()

This call to pop() will return a 9.
* Line 1: the value of top is checked, and the conditional is false since top = 2.
* Line 4: top is decremented and is now 1.

 Line 5: the value of S[1] is returned, which is 9.

6.2.6 Pop an element off a linked list stack

The algorithm to pop an element off a linked list stack is shown in Algorithm 6.4. In a
linked list stack implementation, the pop() operation returns a node in the list.

Algorithm 6.4. pop()

Pop an element from a linked list stack.

Pre-conditions

None

Post-conditions

Node at the top of the stack is returned and the top position moves to the previous node in
the stack.

Algorithm
pop()
if top == NULL
print(“underflow”)
else
X = top

top = top.previous

= B B B B

return x

Example 5: Pop an element from the linked list stack shown in Figure 8.



NULLL 1 |« 5 je— 6 pa— [

Figure 8. A pop() operation on this linked list will return the node with a key value of 7 and move the top to point
to the node with a key value of 6.

pop()

This call to pop() returns the node with a key value of 7. When pop() is called, the top
pointer is pointing to the node with a key value of 7 (Figure 9).

- 6 |= 7

top

Figure 9. The top of this linked list stack is the node with a key value of 7. The top node will be removed with a
pop operation.

* Line 1: The conditional fails, since top is pointing to a valid node.

* Line 4: The variable x points to the top node (Figure 10).

Figure 10. Both x and top point to the same node at the top of the stack.

* Line 5: top is moved to point to the previous node in the stack (Figure 11).

- 6 |= 7

top %

Figure 11. The top pointer is moved to point to the previous node in the list. The x pointer hasn’t changed and still
points to the top of the stack.

* Line 6: The node that x points to is returned. Once the node is processed, the memory
associated with the node should be freed so that the linked list will have one fewer nodes
and there won’t be any memory leaks (Figure 12).

- 6

top

Figure 12. The top of the linked list is the 6 node after the node that x points to is popped from the stack.



6.3 Where stacks are used - Computer program execution

During the execution of a computer program, information about currently active
subroutines is stored on a call stack. As new subroutines become active, they are added to
the stack, and as subroutines complete, they are popped off the stack. For example,
consider the simple program in Code 6.1.

Code 6.1. Call stack example.
int addNums(int a, int b){

return a + b;

}

void callAddNums(){
int ¢ = addNums(5, 6);
}

int main(){
callAddNums();
}

The program starts at the function main(), which is pushed onto the call stack (Figure 13).

top

[=TH I - R T}

main(}

Figure 13. State of the call stack after the main() function is placed on the stack.

Next, main() calls callAddNums(), which makes that subroutine active and it is pushed
onto the call stack above main() (Figure 14). The most-recently called routine is at the top
of the stack.

top

callAddMums()
miaing)

[=TR I - R T}

Figure 14. State of the call stack after main() calls callAddNums() and it is pushed onto the call stack. The most-
recently called routine is at the top of the stack.



Next, callAddNums() calls addNums(), which makes that subroutine active and it is
pushed onto the stack. At this point, all three subroutines are active because none of them
has completed execution (Figure 15).

top

addMums()
callAddMums()
miaing)

L=

Figure 15. State of the call stack after addNums() routine is pushed onto the stack. There are three active
subroutines on the stack, with the most recent one at the top of the stack.

As each of the functions completes, it is popped off the stack. First, addNums() completes
and is popped off the stack, which returns the stack to the configuration shown in Figure
14. Next, callAddNums() completes and it is popped off the stack, leaving only main() on
the stack (Figure 13). Finally, main() completes and is popped off the stack, which
completes program execution.



6.4 Complexity of stack operations

All stack operations occur at the top of the stack, which makes their complexity
independent of the size of the stack.

Push: O(1)
Pop: O(1)



7 Queues

A queue is a data structure similar to a stack in that it stores a collection of elements and
restricts which element can be accessed at any time. However, unlike a stack which works
on a LIFO principle, elements in a queue are accessed first-in-first-out (FIFO): the first
element added to the queue is the first element removed from the queue, much like the line
at the grocery store.

Example 1: Add the words of this classic Napolean Dynamite quote,
A liger it’s pretty much my favorite animal
to a queue.

Each word in the sentence occupies one position in the queue. Words are added to the
queue at the tail position, which moves each time a word is added to the queue (Figure 1).

A liger it’s pretty much my favorite animal.

tail

animal.
favorite
my
rmuch
pretty
it's
liger
head A

Lo TR S S Y 1 o R T

Figure 1. Words stored in a queue. Each word is added to the queue at the tail position and will be removed from
the queue at the head position.

Each word in the sentence occupies one position in the queue. Words are added at the tail
position and removed from the head position (Figure 1). The positions of the tail and head
move as elements are added to and removed from the queue.

Removing the words from the queue in Figure 1 generates the following sequence of
words:

A liger it’s pretty much my favorite animal.



Definitions:

When an element is added to a queue, it is “enqueued”. Elements are enqueued at the
“tail” of the queue.

When an element is removed from a queue, it is “dequeued”. Elements are dequeued from
the “head” of the queue.



7.1 The queue ADT

In the queue ADT, there are parameters for the head and tail of the queue and the queue
size, the data structure to store the queue data, and methods to enqueue and dequeue data.
Queue data is typically stored in a data structure such as an array or a linked list. The
terminology for interacting with the queue is the same regardless of the data structure
used, but the implementation details vary. A queue ADT is shown in ADT 7.1.

ADT 7.1. Queue
Queue:
private:
head
tail
data

1.

2.

3

4

5. queueSize
6 maxQueue
7 isEmpty()
8 isFull()

9. public:

10. Init()

11. enqueue(value)

12. dequeue()



7.2 Enqueue and dequeue queue elements

7.2.1 Array implementation of a queue

In an array implementation of a queue, data elements are stored in an array and the head
of the queue is the index where the next element will be removed and the tail of the queue
is the index where the next element will be added. The elements in the array are the
contents of the queue.

The simplest, but least efficient, array implementation of a queue involves shifting the
elements when the head element is dequeued.

Example 2: Dequeue an element from the queue in Figure 2 and shift the remaining
elements to fill the space.

o 1 2 3 4 5 B
A liger | it's |pretty | much | my
head tail

Figure 2. A dequeue operation on this queue removes the element at the head position. Shifting all elements over
to fill the space is a costly array shifting algorithm.

A dequeue() operation removes the element at the head position, which is an “A”. The
remaining elements are shifted to fill the space in the array (Figure 3). The position of the
head doesn’t change, but the tail shifts by one.

liger | it's |pretty | much | my

head tail

Figure 3. After the head is dequeued, the other elements in the array are shifted by one. The position of the head
doesn’t change, but the tail position shifts to the left.

Circular array queue

Shifting the elements in an array is costly - O(n) in the worst case when the array is full. A
much more efficient way to build a queue is to let the head and tail positions wrap around
back to the beginning of the array as elements are enqueued and dequeued.

7.2.2 Enqueue to an array queue

With an array queue, the enqueue() operation needs to include a check for if the queue is
full. There are multiple ways to check this, and the simplest approach is to keep a count of
the number of elements in the queue and the queue size, and only add elements when
there’s room. The Queue ADT includes variables for queueSize and maxQueue. Then



queueSize = maxQueue, the queue is full. The enqueue() algorithm is shown in Algorithm
7.1.

Algorithm 7.1. enqueue(value)

Add the specified value to the queue at the tail position.

Pre-conditions

value is a valid queue value.

Post-conditions
value has been added to the queue at the tail position, queue[tail] = value.

The tail position increases by 1.

Algorithm
enqueue(value)
1. if (lisFull())

2 data[tail] = value

3 queueSize++

4 if (tail == data.end)
5. tail =0

6 else

7 tail++

8. else

9. print(“queue full”)

7.2.3 Dequeue from an array queue

In the dequeue() operation, there is a check for if the queue is empty. If not, the element at
the head position is returned. The tail position is unchanged in the dequeue() operation.
The dequeue() algorithm is shown in Algorithm 7.2.

Algorithm 7.2. dequeue()

Remove the queue element at the head position.

Pre-conditions



None

Post-conditions
Value at data[head] returned.

head moves by one position in the array.

Algorithm

dequeue()

1. if (lisEmpty())
2 value = data[head]
3 queueSize—
4 if (head == data.end)
5. head =0
6 else

7 head++

8. else

9 print(“queue empty”)

10. return value

Example 3: Show the state of the queue, Q, for the following set of dequeue() and
enqueue() operations using the queue in Figure 4.

* dequeue()

* dequeue()

* dequeue()

* dequeue()

* enqueue(6)
* enqueue(10)
* enqueue(12)
* enqueue(2)
* enqueue(5)
* enqueue(13)
* dequeue()



* dequeue()

0 1 2 3 4 5
Q| 9 a 2 6
head tail

Figure 4. Initial state of the queue for Example 3. The head is Q[0] and the tail is Q[4].

Steps:

* The queue has four elements with the head at Q[0] and the tail at Q[4].

* dequeue() returns the value at Q[0], which is 9, and moves the head to Q[1] (Figure 5).

0 1 2 3 4 5
Q a 2 6
head tail

Figure 5. The dequeue() operation returns 9 and moves the head to Q[1]. The tail position is unchanged.

* dequeue() returns the value at Q[1], which is 4, and moves the head to Q[2] (Figure 6).

0 1 2 3 4 5
Q 2 6
head tail

Figure 6. The dequeue() operation returns 4 and moves the head to Q[2].

* dequeue() returns the value at Q[2], which is 2, and moves the head to Q[3] (Figure 7).

0 1 2 3 4 5
Q 6
head tail

Figure 7. The dequeue() operation returns a 2 and moves the head to Q[3].

* dequeue() returns the value at Q[3], which is 6, and moves the head to Q[4]. The head
and tail are now at the same position and the queue is empty (Figure 8).



tail
head

Figure 8. The dequeue() operation returns the 6. The head and tail are now both at Q[4] and the queue is empty.

* enqueue(6) adds a 6 to the queue at the tail position Q[4] and increments the tail to
Q[5]. The head is still at Q[4] (Figure 9).

0 1 2 3 4 5
Q 6
head tail

Figure 9. The enqueue(6) operation writes a 4 to the tail position Q[4] and increments the tail to Q[5]. The head is
still at Q[4].

* enqueue(10) adds a 10 to the queue at the tail position Q[5] and increments the tail.
Since the tail is pointing to the last position in the queue, it wraps around back to the
beginning. The tail is now Q[0] (Figure 10).

0 1 2 3 4 5
Q 6 10
tail head

Figure 10. The enqueue(10) operation writes a 10 to the tail position at Q[5] and increments the tail back to the
beginning of the queue at Q[0].

* enqueue(12) adds a 12 to the queue at the tail position Q[0] and moves the tail to Q[1]
(Figure 11).

0 1 2 3 4 5
Q| 12 6 10
tail head

Figure 11. The enqueue(12) operation adds a 12 to the queue at Q[0] and increments the tail to Q[1].

* enqueue(2) adds a 2 to the queue at the tail position Q[1] and moves the tail to Q[2]
(Figure 12).



tail head

Figure 12. The enqueue(2) operation writes a 2 to the queue at Q[1] and increments the tail to Q[2].

* enqueue(5) adds a 5 to the queue at the tail position Q[2] and moves the tail to Q[3]
(Figure 13).

0 1 2 3 4 5
Q| 12 2 5 6 10
tail head

Figure 13. The enqueue(5) operation writes a 5 to the queue at Q[2] and increments the tail to Q[3].

* enqueue(13) adds a 13 to the queue at the tail position Q[3] and moves the tail to Q[4].
The head and tail are now both at the same position and the queue is full (Figure 14).

head
tail

Figure 14. The enqueue(13) operation writes a 13 to the queue and increments the tail to Q[4]. The head and tail
are at the same position and the queue is full.

If another element were to be enqueued now, the value currently at Q4] would be
overwritten. For example, calling enqueue(1) would write a 1 to Q[4] and overwrite the 6
that is currently stored there. There needs to be a dequeue() operation first before any
more data can be added to the queue.

* dequeue() returns the value at Q[4], which is 6, and moves the head to Q[5] (Figure 15).

0 1 2 3 4 5
Q| 12 2 5 13 10
tail head

Figure 15. The dequeue operation returns a 6 and increments the head to Q[5].

* dequeue() returns the value at Q[5], which is 10, and increments the head. Since the
head is currently at the last position in the queue, it wraps around back to the beginning of



the queue Q[0] (Figure 16).

0 1 2 3 4 5
Q| 12 2 5 13
head tail

Figure 16. The dequeue() operation returns a 10 and moves the head to Q[0].
Features of a circular queue:

* Both the tail and the head can wrap around from the last position in the array back to the
beginning. In the previous examples, when the head or tail reached Q[5], they were reset

to Q[0].

* The condition where head = tail can mean that the queue is empty or full, which needs
to be resolved in the enqueue() and dequeue() algorithms. Calling enqueue() when the
queue is full can result in overwriting data if the algorithm doesn’t check for a full queue.
Calling dequeue() when the queue is empty can result in an unexpected return value if the
algorithm doesn’t check for an empty queue.

* The circular queue is more computationally efficient than a queue that uses array
shifting, but it is more complicated to implement.

7.2.4 Linked list implementation of a queue

In a linked list implementation of a queue, the head and tail of the queue are nodes in the
list. The size of the queue can change dynamically as elements are added and removed. In
the linked list queue shown in Figure 17, each node has a pointer to the next node in the
list. The tail node is the last node and it has a next pointer of NULL.

5 —» 6 — T tail ——m 2 |NULL

head tail

Figure 17. Queue implemented with a linked list. The head is the first node in the list. Each node has a pointer to
the next node in the list. The tail node, as the last node in the list, has a next pointer that points to NULL.

In another implementation of a linked list queue, the queue is a circular buffer where the
tail node points to the head node as the next node in the list. Figure 18 shows an example
of a circular, linked list queue.



—m 5 —» 6 ol 7 | tail —m 2 |head

head tail

Figure 18. Example of a circular queue implemented with a linked list. The next pointer for the tail node points to
the head node in the list.

7.2.5 Enqueue to a linked list queue

The algorithm to enqueue a node to a linked list queue, shown in Algorithm 7.3, takes the
value to enqueue and creates a node with that queue value. The new node is added at the
tail position.

Algorithm 7.3. enqueue(value)

Add a node to a queue implemented with a linked list.

Pre-conditions

value is a valid linked list node value.

Post-conditions
A new node with the specified key value is added to the queue.

tail points to the newly added node.

Algorithm

enqueue(value)
node.key = value
node.next = NULL
if tail = NULL

1

2

3

4. tail.next = node
5 tail = node
6. else

7 tail = node

8. head = tail

7.2.6 Dequeue from a linked list queue

The dequeue algorithm, shown in Algorithm 7.4, returns the head of a linked list queue,
and moves the head of the queue to the next position in the list.



Algorithm 7.4. dequeue()

Return the head of the linked list queue.

Pre-conditions

None

Post-conditions
Head of the queue returned.

head position moved to the previous node in the list.

Algorithm
dequeue()

if head != NULL
node = head

head = head.next

1.

2

3

4. else
5 print(“queue empty”)
6 tail = head

7. return node

Example 4: Show the state of the queue for the following set of dequeue and enqueue
operations using the linked list queue in Figure 19 using the enqueue() and dequeue()
algorithms in Algorithm 7.3 and Algorithm 7.4, respectively.

* dequeue()

* dequeue()

* dequeue()

* dequeue()

* enqueue(7)
* enqueue(10)
* enqueue(12)



] —»d 4 —— 2 —» 6 |NULL

head tail

Figure 19. Initial state of linked list queue for Example 4.
Steps:

* dequeue() returns the head node, which contains a value of 9. The head is moved to
head.next, which is the node that contains a value of 4 (Figure 20). The tail is unchanged.

4 — 2 = 6 |MNULL

head tail

Figure 20. Contents of the queue after the head node dequeued and the head moves to the node that contains a
value of 4.

* dequeue() returns the head node, which contains a value of 4. The head moves to the
next node, which contains a value of 2, and the tail is unchanged. The state of the queue
after the dequeue() operation is shown in Figure 21.

2 L 6 |NULL

head tail

Figure 21. Contents of the queue after the head node is dequeued and the head position moves to the node with a
value of 2.

* dequeue() returns the head node, and the head position moves to the next node, which is
the same as the tail node. The state of the queue after the dequeue() operation is shown in
Figure 22.

6 |NULL

tail
head

Figure 22. Contents of the linked list after the dequeue operation. The head and tail now point to the same node in
the list.

* dequeue() returns the only node in the queue and sets the head to NULL, since head.next
= NULL. Another dequeue() here would result in the message “queue empty” being
displayed, and the tail being set to NULL too.

* enqueue(7) adds a node with a value of 7 to the queue at the tail position. The tail is
NULL, which causes Lines 7-8 in the enqueue() algorithm to execute. The head and tail



are both set to the new node, as shown in Figure 23.

7 |NuLL

head
tail

Figure 23. The enqueue() operation adds a new node to the empty list. The head and tail point to the same node in

the list.

* enqueue(10) adds a node with a value of 10 to the queue at the tail position. The head
and tail now point to different nodes, as shown in Figure 24.

i ——m 10 |NULL

head tail

Figure 24. There are now two nodes in the queue after the enqueue() operation. The head and tail point to
different nodes.

* enqueue(12) adds a node with a value of 12 to the queue at the tail position. There are
now three nodes in the queue, and the tail is set to the new node (Figure 25).

7 ——» 10 12 |NULL

head tail

Figure 25. After another enqueue() operation, there are three nodes in the queue. The tail position is set to the
new node.



8 Binary Trees

Imagine a simplistic transportation network, such as the one shown in Figure 1, that starts
in Denver, and from Denver, there is a road that goes east to Chicago and a road that goes
west to Las Vegas. From Chicago, there is a road east to Boston and a road west to St.
Paul, and from Las Vegas, there is travel east to Phoenix and west to San Diego. In the
scenario just described, from each city, there are two choices for which city to visit next.

East Baoston |
Chicago
East
West st. Paul
[: Denver
Wes East Phoenix
Las Vegas
West San Dl-agul

Figure 1. Example of a binary tree that represents travel between cities. Starting from the root city, Denver, there
are two choices for which city to visit next, Chicago and Las Vegas.

Having two options (at most) for going to a next node from the current node is a feature of
a structure called a binary tree. The city network example in Figure 1 can be viewed as a
tree by putting the starting city, also known as the root, at the top of the tree, and putting
the two possible destination cities as the children. The top three nodes in the tree would
feature Denver as the root, Las Vegas as the left child, and Chicago as the right child
(Figure 2).

Parent (NULL)
Denver
| Left child | Right child |

v

Parent (Denver) [ Parent (Denver)
Las Vegas Chicago
Left child| Right child | (Left child| Right child

Figure 2. Example nodes in a binary tree with properties for the parent, key, left child, and right child. The root
of the tree is Denver, and Denver has a left child, Las Vegas, and a right child, Chicago. The parent of Las Vegas
and Chicago is Denver. The key for each node is the name of the city.



8.1 Properties of binary trees

Binary trees are similar to linked lists in that the nodes in the tree can be created
dynamically and then linked together to create a structure that can be easily modified to
support dynamic data. The next and previous pointers of a doubly linked list are replaced
with parent and left and right child pointers in binary trees to make it possible to represent
a hierarchical structure in a data set, which is one advantage that trees have over linked
lists. Trees can also be searched and modified with minimal computational effort. These
advantages mean that binary trees are extremely useful and frequently used over other data
structures.

Pointers in a doubly linked list:
* next

* previous

Pointers in a binary tree:
* parent

* left child

* right child

All nodes in the tree can be a parent or a child to other nodes (except for the root). There
are general properties that all nodes exhibit, as well as properties that nodes exhibit as
parent nodes and as the root node of the tree.

8.1.1 Parent node properties

* Each node in the tree has a parent. In Figure 2, the parent of both Las Vegas and Chicago
is Denver.

* Each node in the tree is a parent node for at most two children, a left and a right child.

8.1.2 Root node properties
* The topmost node in the tree is called the root.

* The parent of the root is NULL.
8.1.3 Node properties

* Each node in the tree has a key that identifies it. In the city example in Figure 2, the key
is the city name.

« If a node doesn’t have a left child, then its left child property is NULL.
« If a node doesn’t have a right child, then its right child property is NULL.



« If a node doesn’t have a left or a right child, then it is a leaf node.



8.2 Trees and Sub-trees

An interesting feature of any binary tree is that it is defined in terms of the smaller sub-
trees within it. This is called self-similarity and it’s computationally significant because it
means there are elegant ways to search the tree by examining smaller and smaller sub-
trees. For example, consider the binary tree T in Figure 3. The tree has a root node, which
has a left and a right child.

Figure 3. Example of a binary tree. The tree has a root, and from the root, there is a left and right sub-tree.

The tree can also be considered by identifying the left or right child of the root as the new
root of a sub-tree T”. For that new sub-tree T, that root also has a left and a right child.
This relationship is shown in Figure 4.

Figure 4. Binary tree T and a sub-tree T’. The root of T is the right child of the root of T.



The pattern continues down to the smallest sub-tree in T, which contains a root and two
children, but no additional nodes from the children (Figure 5).

Figure 5. The tree T can contain multiple nested sub-trees, each with the same basic structure as T. Each of the
sub-trees has a root with 0, 1, or 2 child nodes.



9 Binary Search Trees

A binary search tree (BST) is a special case of a binary tree where the data in the tree is
ordered. For any node in the tree, the nodes in the left sub-tree of that node all have a
value less than the node value, and the nodes in the right sub-tree of that node all have a
value greater than or equal to the node value. For example, consider the BST in Figure 1,
where the key value of each node is an integer.

Figure 1. Example of a binary search tree (BST). All nodes left of any node have a value less than that node and
all nodes right of any node have a value greater than that node.

The root of the tree has a key value of 5. All nodes left of the root have a key value less
than 5 and all values to the right of the root have a key value greater than or equal to 5.
These properties hold for all other nodes in the tree. For example, all nodes to the left of
the 3 have a key value less than 3 and all nodes to the right of the 3 have a value greater
than or equal to 3, but less than 5.

A binary search tree is defined as follows:

Let x and y be nodes in a binary search tree. If y is in the left sub-tree of x, then y.key <
x.key. If y is in the right sub-tree of x, then y.key >= x.key.

Example 1: Build a binary search tree from the following integer keys:

<4,2,6,9,1,3>.

The integers are added to the tree in the order they are observed, i.e. 4 is added first and 3
is added last.

Steps:
1. Add 4 as the root.

2. Evaluate the next value in the list, 2. Since 2 < 4, go left of the root and add the 2 to the
tree as the left child of the 4.



3. Evaluate the next value in the list, 6. Since 6 > 4, go right of the root and add the 6 to
the tree as the right child of the 4. The partial tree containing the first three nodes added is
shown in Figure 2.

Figure 2. BST after the first three nodes are added. The root is 4, the left child of the root is 2 and the right child
of the root is 6.

4. Evaluate the next value in the list, 9. Since 9 > 4, go right of the root and compare the 9
to the 6. Since 9 > 6, go right of the 6 and add the 9 as right child of the 6.

5. Evaluate the next value in the list, 1. Since 1 < 4, go left of the root and compare the 1
to the 2. Since 1 < 2, go left of the 2 and add the 1 as the left child of the 2. The partial tree
containing the first five nodes is shown in Figure 3.

Figure 3. BST after the first five nodes are added to the tree.

6. Evaluate the next value in the list, 3. Since 3 < 4, go left of the root and compare the 3
to the 2. Since 3 > 2, go right of the 2 and add the 3 as the right child of the 2. The final
tree is shown in Figure 4.

Figure 4. Binary search tree built from the input sequence: < 4, 2, 6, 9, 1, 3 >. Each integer is added to the tree in
order, i.e. the 4 is added first and the 3 is added last.

Example 2: Build a binary search tree from the following string keys: < DEN, LA,
CHI, VEGAS, SD, DET, NY >.



A string is compared to another string through the ASCII values of the individual
characters in the string. A string is less than another string if it appears first alphabetically.

Steps:
1. Add DEN as the root.

2. Evaluate LA by comparing the ASCII value of D to the ASCII value of L, the first
letters in DEN and LA. L has an ASCII value of 76 and D has an ASCII value of 68,
which makes DEN < LA. Add LA as the right child of DEN.

3. Evaluate CHI by comparing the ASCII value of D to the ASCII value of C. C is less
than D. Add CHI as the left child of DEN. The BST with the first three nodes is shown in
Figure 5.

Figure 5. BST with the first three nodes added to the tree. DEN is the root of the tree. The left child of the root is
CHI and the right child of the root is LA.

4. Evaluate VEGAS by comparing the ASCII value of D to the ASCII value of V. Vis
greater than D, so go to the right child of DEN and compare VEGAS to LA. Compare the
ASCII value of V to the ASCII value of L in LA. V'is greater than L. Add VEGAS as the
right child of LA.

5. Evaluate SD by comparing the ASCII value of D in DEN to the ASCII value of S in SD.
S is greater than D, so go to the right child of DEN and compare SD to VEGAS. S is less
than V. Add SD as the left child of VEGAS. The BST with the first five nodes added is
shown in Figure 6.

VEGAS

Figure 6. BST with the first five nodes added to the tree.

6. Evaluate DET by comparing the D in DEN to the D in DET. Since they are equal,



evaluate the second letter in DEN and DET. They are also equal, so move to the third
letter and compare T and N. T is greater than N, so go to the right child of DEN and
compare DET to LA. D is less than L. Add DET as the left child of LA (Figure 7).

Figure 7. BST after DET added as the left child of LA.

7. Evaluate NY, the final key in the sequence, by comparing the ASCII value of D in DEN
to the ASCII value of N in NY. N is greater than D. Go right. Compare NY to LA by
comparing the ASCII value of N to the ASCII value of L. N is greater than L. Go to the
right child of LA and compare NY to VEGAS. The ASCII value of N is less than the
ASCII value of V; go to the left child of VEGAS and compare NY to SD. N is less than S.
Add NY as left child of SD. The final tree is shown in Figure 8.

sD

NY

Figure 8. Binary search tree built from the input sequence of cities: <DEN, LA, CHI, VEGAS, SD, DET, NY>.



9.1 Binary search tree ADT

In a binary search tree ADT, shown in ADT 9.1, the data is stored in a tree that is accessed
through the root of the tree. The root is stored as a private variable, and there are public
methods to initialize the tree, insert and delete nodes, traverse the tree, and search the tree.
A private search method is also included to support the recursive search functionality in
the tree.

ADT 9.1. Binary Search Tree
BinarySearchTree:
1. private:
2. root
3 searchRecursive(node, value)
4. public:
5. Init()
6 insert (value)
7 search(value)
8 traverse AndPrint()
9 delete(value)
10. deleteTree()

9.1.1 C++ implementation of a binary tree node

A binary tree node in C/C++ can be built with a struct, just like a node in a linked list,
where the members of the struct include the key, a pointer to the parent node, pointers to
the leftChild and rightChild nodes, and any additional data that the program needs to store
to operate successfully.

struct node{
int key
node *parent
node *leftChild
node *rightChild



9.2 Searching a BST

The BST ordering generates a structure, whereby, from any given node, a search operation
can identify a section of the tree that might contain the search value and eliminate the rest
of the tree from consideration. For example, if the search value is less than the value of a
given node, then all nodes to the right of that node don’t need to be evaluated. This
ordering prunes the search space by removing branches that won’t contain the search
value.

The BST search can be performed recursively or iteratively. In the recursive version, the
search() algorithm, shown in Algorithm 9.1, takes the value to search for as an argument
and calls another algorithm searchRecursive() (shown in Algorithm 9.2), which takes the
search value and the node to evaluate as arguments. The search returns when the value is
found, or the bottom of the tree is reached, which indicates that the value does not exist in
the tree.

Algorithm 9.1. search(value)

Returns a pointer to the node with a key that matches the search value. The search starts at
the root of the tree and calls searchRecursive() to evaluate non-root nodes.

Pre-conditions

value is a valid search parameter that is the same type as the node key.

Post-conditions

Returns pointer to the node with a key that matches the search value or NULL if the key
does not exist in the tree.

Algorithm
search(value)
if (root != NULL)
if (root.key == value)

return root

return searchRecursive(root.left, value)

1

2

3

4. else if (root.key > value)
5

6 else

7

return searchRecursive(root.right, value)



8. else
9. return NULL

Algorithm 9.2. searchRecursive(node, value)

Returns a pointer to the node with a key that matches the search value.

Pre-conditions
value is a valid search parameter that is the same type as the node key.

node is a valid node being evaluated in a BST.

Post-conditions

Returns pointer to the node with a key that matches the search value or NULL if the key
does not exist in the tree.

Algorithm
searchRecursive(node, value)
if (node!=NULL)
if (node.key == value)
return node

else if (node.key > value)

else
return searchRecursive(node.right, value)

1
2
3
4
5. return searchRecursive(node.left, value)
6
7
8. else

9

return NULL

In the recursive searchRecursive() algorithm, node is the node in the BST to evaluate and
value is the value to search for. On Lines 5 and 7 of the algorithm, searchRecursive() is
called recursively on the left or right child of node. If value is less than the node key, the
left branch is searched and if value is greater than or equal to the node key, then the right
branch is explored. If the algorithm doesn’t find the specified value in the tree, the
algorithm returns NULL.

Searching a BST does not need to be done recursively. In the non-recursive algorithm, a
while loop is used to check for when the bottom of the tree has been reached or the value



has been found. An iterative search algorithm is shown in Algorithm 9.3.

Algorithm 9.3. searchlterative(value)

Returns a pointer to the node where the key matches the search value.

Pre-conditions

value is a valid search value that is the same type as the node key.

Post-conditions

Returns a pointer to the node where the search value matches the key or NULL if the key
does not exist in the tree.

Algorithm
searchlterative(value)
node = root
while(node != NULL)
if (node.key > value)

node = node.left

node = node.right
else

1

2

3

4

5. else if(node.key < value)
6

7

8 return node

9

return NULL

In the searchlterative() algorithm, the while loop on Line 1 checks that node is not NULL,
which will be true when the tree is not empty and the bottom of the tree has not been
reached. This condition will fail when the search has reached a left or right child that is set
to NULL at the bottom of the tree. If this happens, then value doesn’t exist in the tree and
the algorithm returns NULL. Otherwise, node is updated to move through the tree by
pointing to its left or right child depending on the node key and search value.

9.2.1 Inserting a node into a BST

Inserting a node into a BST involves first, searching for the correct placement of the node,
and then, modifying the tree to add the node. The insert() algorithm is shown in Algorithm
9.4.



Algorithm 9.4. insert(value)

Inserts a node with the specified value into a BST at the appropriate position.

Pre-conditions

value is a valid node value.

Post-conditions

Memory for the node is allocated and the BST has been modified correctly to include the
new node.

Algorithm

insert(value)

1. tmp = root

2. node.key = value

3. node.parent = NULL

4. node.leftChild = NULL

5. node.rightChild = NULL
6. while(tmp != NULL)

7. parent = tmp

8. if(node.key < tmp.key)
9. tmp = tmp.leftChild
10. else

11. tmp = tmp.rightChild
12. if (parent == NULL)

13. root = node

14. else if(node.key < parent.key)

15.  parent.leftChild = node
16. node.parent = parent

17. else

18.  parent.rightChild = node
19.  node.parent = parent

In the insert() algorithm, the node is created with value as the key value and the parent,



leftChild, and rightChild pointers initialized to NULL. The while loop on Lines 6-11
identifies the correct placement for the new node by searching for a node with a NULL
pointer its left or right child. At the end of the while loop, the value of tmp will be NULL
because it will be pointing to the child. Lines 12-19 of the algorithm add the node to the
tree as either the root if the tree is empty, or the left or right child. The parent value of the
new node is also set.

Example 3: Insert a 3 into the BST shown in Figure 9.

Figure 9. Add a node with a key value of 3 to this BST for Example 3.
Steps:

1. On Line 1, set tmp to point to the root node, which points tmp to the node with the key
value of 15.

2. On Line 8, compare the 3 to the 15, and since 3 < 15, go left to evaluate the nodes in the
left sub-tree of the 15. Set tmp to the left child of the root on Line 9, which points tmp to
the 6.

3. Evaluate the while loop condition again on Line 6; tmp is not NULL, since it’s pointing
to the 6.

4. On Line 8, compare the 3 to the 6, and since 3 < 6 and go left again. The 6 doesn’t have
a left child, therefore, on Line 9, tmp is set to NULL.

5. Evaluate the while loop condition again, which fails because the value of tmp is NULL.
At this point, parent is the 6. The new node will be added as either a left or right child of
the 6.

6. On Line 12, check if the tree is empty, which is true if parent is NULL.

7. On Line 14, the conditional is true, since 3 < 6. This means that the 3 should be added
as the left child of the 6, which is accomplished by setting the 6’s leftChild property to
point to the 3 on Line 15. The parent property of the new node is updated on Line 16 to
point to the 6. The new tree is shown in Figure 10.



Figure 10. BST after the 3 is added as the left child of the 6.

9.2.2 Deleting a node from a BST

When a node is deleted from the tree, the node may need to be replaced with another node
in the tree. The replacement node needs to be selected such that the BST properties are
preserved.

There are three cases to consider when deleting a node. Exactly one of the following
conditions is true about the deleted node:

1. The node has no children.
2. The node has one child.
3. The node has two children.

Figure 11 shows a BST with examples of nodes with 0, 1, or 2 children. The nodes with
values of 3, 9, 17, and 20 have no children. The node with a value of 7 has one child, and
the nodes with values of 6, 15, and 18 have two children. The delete() algorithm that
handles all three cases is shown in Algorithm 9.5. For brevity, only the case where the
deleted node is its parent’s left child is shown.

Figure 11. BST with nodes that have no children (3, 9, 17, 20), one child (7), and two children (6, 15, 18).
Algorithm 9.5. delete(value)

Deletes the node where the value matches the node key value.

Pre-conditions



value is a valid search value whose type matches the node key type.
search() algorithm exists to identify the node to delete.

treeMinimum() algorithm exists to identify the minimum value in a sub-tree, which will be
the replacement node for a deleted node with two children. (Algorithm 9.5)

Post-conditions
Node with specified key value is deleted from the tree.

parent, left child, and right child pointers for the deleted node and neighboring nodes are
reset accordingly.

Algorithm

(Note: this is not the complete delete() algorithm. For the one- and two-children cases,
only the case where the deleted node is the left child of its parent is shown. Additional
cases are needed to handle when the deleted node is the right child.)

delete(value)

1. node = search(value)

2. if(node != root)

3 if(node.leftChild == NULL and node.rightChild == NULL) //no children

4 node.parent.leftChild = NULL

5. else if(node.leftChild != NULL and node.rightChild != NULL) //two children
6 min = treeMinimum(node.rightChild)

7 if (min == node.rightChild)

8 node.parent.leftChild = min

9

min.parent = node.parent

10. else

11. min.parent.leftChild = min.rightChild
12. min.parent = node.parent

13. min.right.parent = min.parent

14. node.parent.leftChild = min

15. min.leftChild = node.leftChild

16. min.rightChild = node.rightChild

17. node.rightChild.parent = min



18. node.leftChild.parent = min
19. else //one child

20. x = node.leftChild

21. node.parent.leftChild = x
22. x.parent = node.parent
23. else

24. //repeat cases of 0, 1, or 2 children
25.  //replacement node is the new root
26. //parent of replacement is NULL
27. delete node

Node has no children

In the tree shown in Figure 13, nodes 3, 9, 17, 20 don’t have any children. To delete a
node with no children:

* Reset the appropriate leftChild or rightChild pointer for the parent of the deleted node to
NULL.

* Free the memory to delete the node.

Example 4: Delete the 3 from the BST in Figure 11.

The 3 is the left child of the 6.

Steps:
1. Set the left child pointer for the 6 to NULL.

2. Delete the 3 node.

Node has one child

In the BST shown in Figure 13, the 7 has only one child. To delete a node with one child:
+ Update the node’s parent to point to the node’s child.

* Delete the node.

Example 5: Delete the 7 from the BST in Figure 11.



The 7 is the right child of the 6.

Steps:
1. Set the right child pointer of the 6 to point to the 9.
2. Delete the 7 node.

The node has two children

In the tree shown in Figure 13, the 6, 15, and 18 have two children. To delete a node with
two children, a node in its right sub-tree that doesn’t have a left child should replace the
deleted node, i.e. the minimum value in the right sub-tree. Figure 14 shows the right sub-
tree of the 6. The replacement for the 6 in a delete operation is the 7, since it is the first
node found that doesn’t have a left child.

Example 6: Delete the 6 from the BST in Figure 12.

Remove 6

Right subtree with no
left child

Figure 12. The right sub-tree of the 6 includes the 7 and the 9. The first node encountered that doesn’t have a left
child is the 7, which makes it the minimum value in the sub-tree and the replacement for the 6.

In this example, the replacement for the 6 is its rightChild, the 7. Reset the parent and
leftChild properties for the nodes surrounding the 6, including the 3, 7 and 15. The rest of
the right sub-tree is unmodified.

Steps:
1. The parent property of the 3 is updated to point to the 7.

2. The leftChild property of the 15 is updated to point to the 7.



3. The parent property of the 7 is updated to point to the 15.

4. Delete the 6 node. The new BST is shown in Figure 13.

Figure 13. BST after the 6 is deleted and replaced by the 7. Properties of the 15, 3, and 7 were updated to
restructure the tree and delete the 6.

In Example 6, the replacement node was the right child of the node to delete. There is
another case where the replacement node is the minimum value in the right sub-tree, but it
is not the right child of the deleted node.

Example 7: Remove the 6 from the BST in Figure 14.

right
sub-tree

Figure 14. Delete the 6 from this tree and replace it with the minimum value in its right sub-tree. The minimum
value is found by traversing left down the right sub-tree until a node without a left child is found.

Identify the replacement for the 6. The replacement is in its right sub-tree, but it not its
right child. The replacement node has to be the minimum value in the right sub-tree to
preserve the BST properties. To find the minimum, start at the right child and traverse left
until the node doesn’t have a left child. In this example, the right child is the 10, which has
a left child. The 10 can’t be the minimum in the sub-tree and therefore, is not the
replacement node. Next, evaluate the left child of the 10, which is the 8. The 8 doesn’t
have a left child, which makes it the minimum value in the sub-tree. Replace the 6 with
the 8 by updating the parent, leftChild, and rightChild properties for the surrounding
nodes of the 6 and the 8.



Steps:
1. Update the leftChild property of the 10 to point to the 9.

Line 11: min.parent.leftChild = min.leftChild

2. Update the parent property of min to point to the 15.

Line 12: min.parent = node.parent

3. Update the parent property of the 9 to point to the 10.

Line 13: min.rightChild.parent = min.parent

4. Update the leftChild property of the 15 to point to the 8.

Line 14: node.parent.leftChild = min

5. Update the leftChild property of the 8 to point to the 4.

Line 15: min.leftChild = node.leftChild

6. Update the rightChild property of the 8 to point to the 10.

Line 16: min.rightChild = node.rightChild

7. Update the parent property of the 10 to point to the 8.

Line 17: node.rightChild.parent = min

8. Update the parent property of the 4 to point to the 8.



Line 18: node.leftChild.parent = min

The final tree with the 6 removed is shown in Figure 15.

Figure 15. BST after the 6 is deleted and the tree is reordered to maintain the BST properties.

9.2.3 Find minimum or maximum value in a BST

The minimum value of a tree or sub-tree can be found by traversing left until reaching a
node whose left child is NULL. That node is the minimum value. For example, in the tree
shown in Figure 17, the minimum value in the tree is found by starting at the 15, going left
to the 8, and then left to the 4. The 4 doesn’t have a left child, which makes it the

minimum value in the tree. The algorithm to find the minimum value in a BST is shown in
Algorithm 9.6.

Algorithm 9.6. treeMinimum(node)

Returns a pointer to the node with the minimum key value in a sub-tree, where the root of
the sub-tree is node.

Pre-conditions

node is a valid node in a BST and the starting node in the search.

Post-conditions

Returns a pointer to the node with the minimum key value in a sub-tree by finding the
node whose leftChild property is NULL.

Algorithm
treeMinimum(node)
1. while (node.leftChild != NULL)



2. node = node.leftChild

3. return node

A similar approach is used to find the maximum value in a tree or sub-tree. Traverse right
in the tree until reaching a node whose rightChild property is NULL. This node will be the
maximum value in the tree. The algorithm to find the maximum value in a BST is shown
in Algorithm 9.7.

Algorithm 9.7. treeMaximum(node)

Return a pointer to the node with the maximum key value in a sub-tree, where the root of
the sub-tree is node.

Pre-conditions

node is a valid node in a BST and the starting node in the search

Post-conditions

Returns a pointer to the node with the maximum key value in a sub-tree by finding the
node whose rightChild property is NULL.

Algorithm

treeMaximum(node)

1. while (node.rightChild != NULL)
2. node = node.rightChild

3. return node

The treeMinimum() and treeMaximum() algorithms can take any node in the tree as the
starting node. For example, consider the tree T and sub-tree T” in Figure 16.



Figure 16. BST T and T’. The BST T’ is a sub-tree within the BST T.

Finding the minimum or maximum of T and T~ can produce a different result.

Example 8: Find the minimum value in T.

treeMinimum(T.root) = 1

In this call to treeMinimum(), the algorithm searches from the root of T, and finds that the
minimum value in the BST is 1. This is the minimum value for the entire tree.

Example 9: Find the minimum value in T°.

treeMinimum(T’.root) = 5

In this call to treeMinimum(), the algorithm searches from the root of T, which is the 6.
The minimum value in that sub-tree is not the minimum for the entire tree, and the
algorithm returns a 5.

Example 10: Find the maximum value for T and T".

treeMaximum(T.root) =9

treeMaximum(T".root) = 9

When treeMaximum() is called on either T or T°, the same value is returned. T’ contains



the right-most node in the tree and therefore will contain the maximum value in the entire
tree. The same would be true for the minimum value and a sub-tree that contains the left-
most node in the entire tree.

9.2.4 Find nodes within a range of values

The properties of BSTs make it possible to efficiently identify all nodes in the tree with
key values in a specified range, such as nodes with values greater than 5 and less than 12.

Example 11: Find all nodes in T in Figure 16 with a value less than 3.

Steps:

1. Starting at the root, compare 3 to the root.key value. Since 3 < 4, go left and evaluate
the nodes in the left sub-tree of the root. All nodes in the right sub-tree of the root can be
excluded from evaluation; they will have values greater than 3.

2. Evaluate the left child of the root, which is the 2. Since 2 < 3, the entire left sub-tree of
the 2 will also be less than 3. The only value in the left sub-tree is the 1.

3. The 2 doesn’t have a right sub-tree to evaluate.

The values in the tree less than 3 are < 1, 2 >.

Example 12: Find all nodes with key values less than 10 in the BST in Figure 17.

Figure 17. Find all nodes with key values less than 10 in this BST.
Steps:

1. Starting at the root, compare 10 to the root value. Since 10 < 15, go left and evaluate the
nodes in the left sub-tree of the root. The right sub-tree of the root can be excluded from



evaluation.

2. Evaluate the left child of the root, which has a value of 6, and since 6 < 10, that node

and all nodes left of it are less than 10. The list of values less than 10 currently includes <
2,3,4,6>.

3. Evaluate the right sub-tree of the 6, which will contain values between 6 and 14 by the
BST properties. The values will be greater than or equal to 6 because it’s the right sub-tree
of the 6 and and less than 15 because it’s the left sub-tree of the 15.

4. Evaluate right child of the 6, which is 7. Add 7 to the list of values less than 10, which
now includes < 2, 3, 4, 6, 7>.

5. The 7 doesn’t have a left child to evaluate.

6. Evaluate the right child of the 7, which has a value of 13. The left sub-tree of the 13 can
contain values between 7 and 12. The right sub-tree of 13 will contain values greater than
or equal to 13, which are all greater than 10.

7. Evaluate the left child of the 13, which has a value of 9. The 9 doesn’t have any
children to evaluate, which means that there are no additional node to check.

The final list of nodes in the BST with values less than 10 is <2, 3,4, 6, 7, 9 >.



9.3 BST Complexity

The runtime for the search(), insert(), and delete() algorithms on a BST depends on how
the tree is built. For example, the following sequence of integers:

<15, 8,4, 18, 10, 17, 20, 9, 11 >

generates the BST shown in Figure 18. The BST is balanced; the left and right child
positions for all nodes in the tree are occupied at all levels except the last level, and there
is only a one-level difference in the left and right sub-trees of the root.

Figure 18. Example of a balanced BST. The left and right child positions are occupied at all levels except the last
and there is only a one-level difference in the left and right sub-trees of the root.

However, a BST built from a sorted sequence of data:

<4,8,9,10, 11, 15, 17, 18, 20>

generates the BST in Figure 19.



Figure 19. Example of a BST built from sorted data. The BST is effectively a linked list and operations on this
BST will have O(n) behavior.

Definition of balanced tree

A balanced binary search tree has the minimum possible maximum height. For each node
x, the heights of the left and right sub-trees of x differ by at most 1.

In a BST, basic operations to search, insert, and delete run in O(h) time, where h is the
height of the tree. When n = h, where n is the number of nodes, then these operations are
O(n) and the BST has the same runtime properties as a linked list. When the tree is
balanced, as in Figure 18, the distance from the root to any leaf node at the bottom of the
tree, is log,(n), where n is the number of nodes in the tree. In a BST with 9 nodes, there

are 3-4 levels, and in the worst case, there would be 4 comparisons to find a node in the
tree. Calculating log,(9) ~ 3.16 shows that log(n) is a good approximation.

In contrast to the height-balanced tree in Figure 18, the unbalanced tree in Figure 19
would require n comparisons to search for a node at the bottom of the tree. Searching for
the 20, for example, would require evaluating all 9 nodes in the tree. On smaller trees, it
may not matter that much if the tree is structured like an n-node linked list, but with
thousands or millions of nodes, having a balanced tree can significantly improve the
runtime of operations on the BST. For example, consider a tree with a million nodes. If the
tree is balanced, then the height of the tree is log, (1000000) ~ 19, anything can be found

in the tree in approximately 19 comparisons. However, if the tree is unbalanced, up to
1,000,000 comparisons could be required.



10 Recursion

Recursion is the process of a function calling itself, and it is frequently used to evaluate
structures that can be defined by self-similarity, such as trees. A recursive call to a
function evaluates a smaller and smaller instance of the structure until the smallest case is
reached.

Recursion is typically used on problems where the structure of the data is also recursive,
such as a file system on a computer. The directory structure is defined recursively in terms
of smaller and smaller directory structures. At the top level, there are directories and files.
Within the directories, there are other directories and files, and within those directories
there can be other directories, and so on. Searching through the file system reveals a
repeating pattern down to a level where there are only files. In a recursive search
algorithm, if the search gets to this level and doesn’t find the specified file, then the
algorithm returns that the file is not found in the file system.



10.1 Rules for recursive algorithms

There are two rules that define the structure of any recursive algorithm. The algorithm
needs to include:

A base case. This is the smallest unit of the problem that can be defined. Once the base
case is reached, the algorithm should return without additional recursive calls.

* A set of rules that can reduce all cases down to the base case. The base case is the exit
strategy for a recursive algorithm. If the algorithm never reaches the base case, then it will
never exit.

The base case is defined by the structure of the data. In a file system, the base case is an
individual file. Traversal of a directory structure down to the base case means going down
to a level where there are only files and no additional directories. In a BST, the base case
is an individual node with no children. Smaller and smaller sub-trees can be evaluated
until a sub-tree is reached that is a single node.

Consider the following function called printNode() in Code 10.1 to traverse a binary tree
and print the key values of all nodes in the tree. The function takes a node in the tree as an
argument and then recursively visits the left and then the right children of all nodes in the
tree.

Code 10.1. printNode(node *n)

Traverse a binary tree by recursively evaluating the left and then the right children of a
node.

void printNode(node *n)

1. cout<<“key: “<<n->key>>end]l;
2. if(n->leftChild!=NULL)

3. printNode(n->leftChild);

4. if(n->rightChild!=NULL)

5. printNode(n->rightChild);

The first time printNode() is called, it is passed the root of the tree as an argument. If the

node has a left child, then printNode() is called again on Line 3 with the node.leftChild is
the argument. If the node doesn’t have a left child, the algorithm checks if the node has a
right child on Line 4, and if so, printNode() is called on node.rightChild. The printNode()
function will be called on every node in the tree until there are no more left or right



children to evaluate.

In the printNode() function, the base case occurs when the left and right children of a node
are NULL. When this condition is reached, the current instance of the function exits. The
rule that reduces a case to the base case is calling printNode() on a child node. Eventually,
the bottom of the tree will be reached.



10.2 Tree traversal algorithms

Recursion is often used in tree traversal algorithms. Just as the contents of an array can be
traversed, so can the nodes in a tree to determine the values in the tree. With any tree
traversal algorithm, the objective is to evaluate every node in the tree exactly once, and the
algorithm used determines the order in which the nodes are visited.

There are three orderings to consider for tree traversals:

* In-order - Nodes are visited in the order left child - parent - right child, which can
generate a sorted output in a binary search tree (BST).

* Pre-order - Nodes are visited in the order parent - left child - right child.
* Post-order - Nodes are visited left child - right child - parent.

10.2.1 In-order tree traversal

Consider the three-node tree shown in Figure 1.

Figure 1. BST with three nodes.

If the nodes were listed in sorted order, the output would be 2, 6, and 8. From the root of
this three-node tree, that ordering can also be expressed in terms of the tree structure as
left child, parent, right child. In a larger tree, that same left child, parent, right child
pattern would be applied to generate an ordered output for the entire tree. An in-order
traversal algorithm that prints the keys in a binary tree is shown in Algorithm 10.1.

Algorithm 10.1. printNode(node)

Traverse a binary tree by visiting nodes in the order left child - parent - right child.

Pre-conditions

node is a valid node in the tree.

Post-conditions

All key values in the tree are displayed.

Algorithm
printNode(node)



if (node.leftChild != NULL)
printNode(node.leftChild)

if (node.rightChild != NULL)

1
2
3. print(node.key)
4
5 printNode(node.rightChild)

Example 1: Traverse the BST in Figure 2 using an in-order tree traversal algorithm.

An in-order traversal needs to process the minimum value in the tree first, which is found
by traversing left until a node is found that has no left child. In this example, the minimum
value in the tree is the 3.

Figure 2. BST to evaluate using an in-order traversal. The first node that will be processed is the node with the
value 3, and the last node that will be processed is the node with the value 8.

Examining how calls to the printNode() algorithm are pushed and popped from the call
stack can make it easier to understand why the algorithm produces an in-order output.
Calls to printNode() are pushed onto the stack, and then popped off the stack when they
complete.

Steps:

1. Call printNode() from the root, which pushes it onto the call stack as printNode(7). A
visual representation of the call stack is shown in Figure 3.

top

L=J . B T -9

hottom| printNode(7)

Figure 3. Call stack after printNode(7) called on the root of the BST in Figure 2.

2. On Line 1, the conditional node.leftChild != NULL is true, and printNode() is called
again as printNode(5) on the left child of the root. The call stack is shown in Figure 4.



top

printNode(5)

L=J . B T -9

hottom| printNode(7)

Figure 4. Call stack after printNode(7) and printNode(5) called.

3. The call to printNode(5) is now the currently running version, and on Line 1,
node.leftChild !'= NULL is evaluated again for the 5. The 5 does have a left child, which is
the 4, and printNode() is called again as printNode(4) and pushed onto the call stack
(Figure 5).

top

printNode(4)
printNode(5)

L=T S T T -9

hottom| printNode(7)

Figure 5. Call stack after printNode(7), printNode(5), and printNode(4) are called.

4. The call to printNode(4) is now the currently running version, and on Line 1,
node.leftChild !'= NULL is evaluated again for the 4. The 4 does have a left child, which is
the 3, and printNode() is called again as printNode(3) and pushed onto the call stack
(Figure 6).

top 4
printNode(3)| 3
printNode(4)| 2
printNode(5)] 1

bottom| printNode(7)| 0

Figure 6. Call stack after printNode(7), printNode(5), printNode(4), and printNode(3) called.

5. The call to printNode(3) is now the currently running version. The conditional on Line
1, node.leftChild != NULL is false because the 3 doesn’t have a left child. The call to
printNode() on Line 2 is skipped.

6. On Line 3, the key value of the node is printed, which outputs a 3. This is the minimum
value in the tree and it is the first value to be printed.

7. On Line 4, the conditional node.right != NULL is false because the 3 doesn’t have a



right child. The call to printNode(3) completes and is popped off the stack (Figure 7).

top

printNode(4)
printNode(5)

L=T S T T -9

hottom| printNode(7)

Figure 7. Call stack after printNode(3) completes and is popped off the stack.

8. Program execution returns to printNode(4) at the spot where printNode(3) was called,
which is Line 2. The next line to execute is Line 3, which prints a 4. At this point, the
program has output 3, 4.

9. On Line 4, the conditional node.rightChild = NULL, is false because the 4 doesn’t
have a right child. The call to printNode() on Line 5 is skipped and printNode(4) exits and
is popped off the stack. The state of the stack is shown in Figure 8.

top

printNode(5)

L=J . B T -9

hottom| printNode(7)

Figure 8. Call stack after printNode(4) completes and is popped off the stack.

10. Program execution returns to the point in printNode(5) where printNode(4) was called,
which is on Line 2. The next line to execute is Line 3, which prints a 5. At this point in the
program, the output is 3, 4, 5.

11. On Line 4, the conditional checks if the 5 has a right child, which it does. The
algorithm is called again as printNode(6) and pushed onto the call stack (Figure 9).

4

top 3
printNode(6)] 2
printNode(5)] 1

bottom| printNode(7)| 0

Figure 9. Call stack after printNode(6) is called and pushed onto the stack.

12. The currently running version is now printNode(6). The 6 does not have a left child, so
the conditional on Line 1 is false. The algorithm advances to Line 3 and prints a 6. At this



point, the program output is 3, 4, 5, 6.

13. On Line 4, the conditional checks if the 6 has a right child, which it doesn’t. The call
to printNode(6) completes and is popped off the stack (Figure 10).

top

printNode(5)

L=J . B T -9

hottom| printNode(7)

Figure 10. Call stack after printNode(6) completes and is popped off the stack.

14. Program execution returns to printNode(5) at the spot where printNode(6) was called,
which is Line 5. The printNode(5) call completes and is popped off the stack (Figure 11).

top

L=J . B T -9

hottom| printNode(7)

Figure 11. Call stack after printNode(5) completes and is popped off the stack.

15. Program execution returns to the spot in printNode(7) where printNode(5) was called,
which is Line 2. The next line to execute is Line 3, which prints a 7. At this point in the
program, the output is 3, 4, 5, 6, 7.

16. On Line 4, the conditional checks if the 7 has a right child, which it does. On Line 5,
printNode() is called again as printNode(8) and pushed onto the call stack (Figure 12).

top

printNode(8)

L=J . B T -9

hottom| printNode(7)

Figure 12. Call stack after printNode(8) is called and pushed onto the stack.

17. The call to printNode(8) is now the currently running version. The 8 doesn’t have a left
or a right child, so neither of the conditionals will be true and no additional calls to
printNode() will be made. On Line 3, printNode(8) displays the value of the node. The
output of the program after printNode(8) executes is 3, 4, 5, 6, 7, 8.



18. The call to printNode(8) completes and is popped off the stack. The program returns to
printNode(7) on Line 5 where printNode(8) was called.

19. The printNode(7) function completes and is popped off the stack.

20. The stack is empty, and the tree traversal is complete. The output of the program was
3,4,5,6,7,8.
10.2.2 Pre-order tree traversal

In a pre-order tree traversal, the value of the root node is printed before the values of the
child nodes. In the recursive pre-order traversal algorithm in Algorithm 10.2, the print
statement to output the value of the node appears before additional calls to the algorithm
for each of the node’s children. Stepping through the algorithm and drawing the output
and the call stack can demonstrate the expected output for a pre-order traversal. Using the
same tree as in the in-order traversal example, the output for the pre-order traversal is 7, 5,
4, 3, 6, 8.

Algorithm 10.2. printNodePreorder(node)

Display node values in a tree using a pre-order traversal that evaluates parent - left child -
right child.

Pre-conditions

node is a valid node in the tree

Post-conditions

All key values in the tree are displayed.

Algorithm

printNodePreorder(node)

1. print(node.key)

2. if (node.leftChild != NULL)

3. printNodePreorder(node.leftChild)
4. if (node.right = NULL)

5. printNodePreorder(node.rightChild)

10.2.3 Post-order tree traversal



In a post-order tree traversal, the children are printed before the root value.

Using the post-order algorithm shown in Algorithm 10.3 and the tree from the previous
examples, the output would be 3, 4, 6, 5, 8, 7.

Algorithm 10.3. printNodePostorder(node)

Display node values in a tree using a post-order traversal that evaluates left child - right
child - parent.

Pre-conditions

node is a valid node in the tree

Post-conditions

All key values in the tree are displayed.

Algorithm

printNodePostorder(node)

1. if (node.leftChild = NULL)

2 printNodePostorder(node.leftChild)
3. if (node.rightChild != NULL)

4. printNodePostorder(node.rightChild)
5. print(node.key)



11 Tree Balancing

Binary search trees (BST) provide an efficient structure for storing and retrieving data.
When the BST is balanced with a height of O(log n), the complexity of insert, search, and
delete operations is also O(log n), where n is the number of nodes in the tree. However, in
an unbalanced tree, the complexity of these operations can be O(n) in the worst case.

Tree-balancing algorithms are applied to BSTs to ensure that, as nodes are added to the
tree, the tree remains balanced with an O(log, n) height and the complexity of operations

on the tree is also O(log,n).



11.1 Red-black trees

One common approach to tree balancing is to build the BST as a red-black tree. In the
red-black tree algorithm, each node in the BST is assigned a color, either red or black, and
the nodes in the tree are ordered such that no path from the root to a leaf can be more than
twice as long as any other path. This coloring results in red-black trees having a height of
O(log n), which guarantees a worst-case runtime of O(log n) on search, insert, and delete
operations.

11.1.1 Red-black node properties

Each node in a red-black tree has at least the following properties:
* color

* key

* left child

* right child

* parent

The only red-black property not found in a regular BST is the color, which is added to the
nodes to create the structure in the tree. The properties that the tree must exhibit in order
to be a valid red-black tree are:

Property 1: A node is either red or black.

Property 2: The root node is black.

Property 3: Every leaf (NULL) node is black.

Property 4: If a node is red, then both of its children must be black.

Property 5: For each node in the tree, all paths from that node to the leaf nodes contain
the same number of black nodes.

Another difference between a regular BST and a red-black tree is how the leaf nodes are
represented. In a red-black tree, the leaf nodes are external sentinel nodes with all of the
same properties as a regular node, but they are effectively empty nodes. The leaf nodes are
black to satisfy Property 3 of a red-black tree.

Figure 1 shows the features of a red-black tree node. The root node is black to satisfy
Property 2. The nodes are either red or black to satisfy Property 1. The sentinel nodes,
shown as the smaller boxes, are also black as required by Property 3, and Property 4
requiring children of red nodes to be black.



Figure 1. An example of a three-node red-black tree. The tree has red and black nodes, and the root of the tree is
black. The smaller boxes are the sentinel nodes, which are black.

11.1.2 Red-black tree ADT

The red-black tree ADT contains similar functionality to the BST ADT to insert and delete
nodes in the tree. Searching a red-black tree uses the same algorithm as searching a
regular BST, shown in Algorithm 9.1. The red-black tree ADT, shown in ADT 11.1,
contains public methods for the insert, delete, and search operations, as well as private
methods to support these operations.

ADT 11.1. Red-black Tree
RedBlackTree:
private:
root
leftRotate(node)
rightRotate(node)

1

2

3

4

5. insertRB(value)
6 rbBalance(node)

7. public:

8 Init()

9 redBlackInsert(value)
10. redBlackDelete(value)
11. search(value)

12. deleteTree()

11.1.3 Red-black tree balancing

When nodes are added or deleted from a red-black tree, the operation can destroy the red-
black properties of the tree. For example, deleting the 4 from the red-black tree in Figure 2
potentially creates a configuration where the 2, which is red, has a red child. This
configuration violates Property 4, which states that children of a red node must be black.
To resolve this violation, the tree can be balanced using rotation and recoloring to restore



the red-black properties. The particular balancing algorithm needed depends on the
operation and the violation.

Figure 2. In this red-black tree, a delete operation on the 4 potentially creates a configuration where the red 2
node has a red child, which violates Property 4.

11.14 Left and right rotations

Rotations are local operations on nodes that reorder the nodes in the tree in a way that
preserves the BST properties and set the tree up for recoloring to restore the red-black
properties. Rotations are used in red-black trees as well as in most other tree-balancing
algorithms.

There are two types of rotations: a left rotation and a right rotation. Figure 3 shows the
tree that results from both a left and a right rotation. These rotations are inverses of each
other: a tree rooted at x, shown in the right-side image in Figure 3, that undergoes a left
rotation produces the tree shown in the left-side image in Figure 3. Performing a right
rotation on that same tree, rooted at y, returns the tree to its original state.

right rotate

left rotate

Figure 3. Left and right rotations change the structure of the tree while still maintaining the BST properties. The
rotations are inverses of each other: a sub-tree rotated in one direction will return to its original state if it is
rotated in the other direction.

The leftRotate() algorithm (Algorithm 11.1) takes the node to rotate about as the argument
and produces the rotated tree. The algorithm uses the nullNode variable as the sentinel
node for the tree.

Algorithm 11.1. leftRotate(x)

Rotate the sub-tree about the node x in a red-black tree.



Pre-conditions
x is a valid node in a red-black tree.
nullNode defined as the empty sentinel node of the red-black tree.

root defined as the root of the red-black tree.

Post-conditions

Tree rotated about x.

Algorithm

leftRotate(x)

1. y=x.rightChild

2. x.rightChild = y.leftChild

3. if(y.leftChild !'= nullNode)
4. y.leftChild.parent = x

5. y.parent = X.parent

6. if (x.parent == nullNode)

7. root =y

8. else

9. if(x == x.parent.leftChild)
10. x.parent.leftChild = y
11. else

12. x.parent.rightChild = y
13. y.leftChild = x

14. x.parent =y

The rightRotate() algorithm, shown in Algorithm 11.2; is reversed from the left rotation by
swapping the references to the left and right children for a node and the references to the x
and y nodes.

Algorithm 11.2. rightRotate(y)

Rotate the sub-tree about the node y in a red-black tree.

Pre-conditions



y is a valid node in a red-black tree.
nullNode defined as the empty sentinel node of the red-black tree.

root defined as the root of the red-black tree.

Post-conditions

Tree rotated about y.

Algorithm
rightRotate(y)
x = y.leftChild
y.leftChild = x.rightChild
if(x.rightChild != nullNode)
x.rightChild.parent = y

1

2

3

4

5. X.parent = y.parent
6. if(y.parent == nullNode)

7 root = x

8. else if (y == (y.parent.leftChild))
9 y.parent.leftChild = x

10. else

11. y.parent.rightChild = x

12. x.rightChild =y

13. y.parent = x

Example 1: Demonstrate the left rotation on the red-black tree shown in Figure 4
using the leftRotate() algorithm in Algorithm 11.1.

Figure 4. A left rotation on the node x in the red-black tree on the left produces the tree shown on the right.



In this example, the 15 is the x and the 18 is the y in the leftRotate() algorithm. The nodes
that change in the rotation are:

* X.parent

* y.parent

» x.rightChild
» y.leftChild

The nodes that don’t change in the rotation are:
* y.rightChild
* x.leftChild

Steps:

* Line 2: changes the right child of x to point to the left child of y. Figure 5 shows that the
right child of x is now the B node.

[ 15 |x

Figure 5. The right child of the node x is the B node, which was the left child of the node y. The left child of x
hasn’t changed.

* Lines 3 and 4: x’s new right child is updated to set x as its parent (Figure 6).

x| 15

Figure 6. The parent of B is set to be the node x.

* Line 5: y’s parent is set to x’s parent. This operation effectively moves y into x’s position
in the tree. The previous parent for y was x. After this update, y’s parent is z (Figure 7).




Figure 7. Update y’s parent to move y into x’s position in the tree. The previous parent for y was x, and now y’s
parent is z. The right child of y hasn’t changed.

* Lines 6-12: update x’s parent to point to y as a child instead of x. There are separate
cases for whether x was its parent’s left or right child or the root of the tree. The left child
case is handled on Line 10, and the right child case is handled on Line 12. In this example,
x is its parent’s left child (Figure 8). After the update, y is z’s left child.

Figure 8. The node z is updated to point to y as its left child instead of x.

* Lines 13-14: the node x replaces B as y’s left child by setting y’s left child pointer to x
and x’s parent pointer to y (Figure 10). This final step completes the rotation.

Figure 9. Move x to replace B as the left child of y by setting y’s left child pointer to x and x’s parent pointer to y.
The left rotation is now complete.

11.1.5 Inserting a node into a red-black tree

Nodes are added to red-black trees in the same way they are added to a regular BST.
However, when a node is added, the operation can destroy the red-black tree properties,
which requires that there are additional steps in the algorithm to restore these properties.

There are three changes to the BST insert operation needed to support a red-black tree.

In a red-black tree:

1. Replace all instances of NULL in the BST insert() algorithm (Algorithm 9.3) with the
sentinel node nullNode. This change sets the parent of the root to nullNode and the left and
right children of a new node to nullNode.

2. Set the color of the new node to red.



3. Resolve any violation of the red-black properties using tree balancing.

If x is a node added to a red-black tree, then the initial conditions on x are:
* x.color = red

* x.leftChild =nullNode

* x.rightChild = nullNode

When a node is added to the tree, the two properties that can be violated are.
1. The root must be black.
2. The children of a red node must be black.

Both violations are possible because a new node is initially colored red. There are six
possible configurations that a red-black tree can take on when a new node is inserted into
the tree. Three configurations are symmetric to the other three depending on whether the
parent of the new node is the left or right child of its parent. Figure 10 shows an example
where the parent is the left child. In this figure, the new node is labeled x, and its parent is
the 15. The parent of the 15 is the 18.

The steps needed to rebalance the tree depend on the color of the new node’s “uncle”
node. Figure 10 also shows an example of an “uncle” node. The new node x has an
“uncle” that is x.parent.parent.rightChild. If x’s parent were a right child, then x’s “uncle”
would be x.parent.parent.leftChild.

Figure 10. The “uncle” of x is x.parent.parent.right. The color of x’s “uncle” node determines the steps needed to
rebalance the tree after inserting a node.

Case 1: The “uncle” node is red.

If the parent.parent.rightChild of the new node is red (shown as “uncle” in Figure 11),
then parent of the new node is also red, and the parent.parent of the new node is black. In
Figure 11, the new node is labeled x. It is initially colored red, and its parent and “uncle”
are also red.



Hu“:lell
; e ]
Figure 11. Case 1 example, where the “uncle” node is red. The x points to the new node. The parent of x is also
red, which violates the constraint that a red node can’t have a red child.

Steps to resolve a Case 1 violation in the tree:

1. Recolor both the parent and the “uncle” of the new node to be black, and recolor the
parent.parent of the new node to be red. This recoloring resolves the violation up to the
parent.parent level in the tree.

2. Move up two levels in the tree by setting x = x.parent.parent. Figure 12 shows the red-
black tree after the violations have been resolved. The x in Figure 12 points to the node
that would be recolored next, if additional iterations of recoloring were necessary.

3. Repeat Steps 1 and 2 until x is the root of the tree or x’s parent is black.

Figure 12. The red-black tree after nodes have been recolored to fix the violation of a red node having a red child.
Case 2: The new node is a right child and its uncle is black.

Case 3: The new node is a left child and its uncle is black.



"uncle"

Figure 13. Case 2 where the “uncle” node is black and the new node x is a right child. The violation is that a red
node has a red child.

In both Case 2 and Case 3, the “uncle” node is black. The difference in the cases is
whether the new node is a left or right child of its parent. Figure 13 shows an example of
Case 2, where x is the new node and it’s a right child of the 15.

Steps to resolve a Case 2 violation in the tree:
1. Set x = x.parent.

2. Apply the leftRotate() algorithm to x to convert a Case 2 configuration to a Case 3
configuration. Additional rebalancing can then be applied to resolve the Case 3 violation.
The result of the left rotation on the tree in Figure 13 is shown in Figure 14. The new node
is now a left child of its parent.

Figure 14. A Case 3 configuration is generated from a left rotation on x’s parent on the tree in Figure 13.
Steps to resolve a Case 3 violation in the tree:
1. Recolor x.parent and x.parent.parent.

2. Apply a right rotation about x.parent.parent on the tree in Figure 14 to get the tree in
Figure 15.



Figure 15. Red-black sub-tree after a right rotation on the tree shown in Figure 14. The tree is now balanced; all
red-black violations have been resolved.

The algorithm to insert a node into a red-black tree is shown in Algorithm 11.3. The
redBlackInsert() algorithm takes the value of the node to insert as an argument, and calls
insertRB(), shown in Algorithm 11.6 to add the node to the tree.

Algorithm 11.3. redBlackInsert(value)

Insert a node into a red-black tree and apply the appropriate tree-balancing algorithm to
restore the red-black properties.

Pre-conditions
value is a valid node key value.

insertRB() exists to create and return a pointer to the new node.

Post-conditions

New node inserted into a red-black tree with no violations of the red-black properties.

Algorithm
redBlackInsert(value)
x = insertRB(value)
while ((x !=root) and (x.parent.color == red))
if (x.parent == x.parent.parent.left)

uncle = x.parent.parent.right

1

2

3

4

5. if (uncle.color == red)

6 RBCaselLeft(x, uncle)
7 X = X.parent.parent
8 else

9

if (x == x.parent.right)



10. X = X.parent

11. leftRotate(x)

12. //Case 3 - x is now left child
13. RBCase3Left(x)

14.  else

15. //x’s parent is a right child.

16. //Exchange right and left

17. root.color = black

Algorithm 11.4. RBCaselLeft(x, uncle)

Recolors the red-black tree for the case where uncle is red and the parent of the new node
x is a left child.

Pre-conditions

x and uncle are valid nodes in a red-black tree.

Post-conditions

Color of the parent, grandparent, and uncle of the new node are changed.

Algorithm
RBCaselLeft(x, uncle)

1. x.parent.color = black
2. uncle.color = black

3. x.parent.parent.color = red

Algorithm 11.5. RBCase3Left(x)

Recolors and rotates a red-black tree for the case where the new node x is a left child and
the “uncle” node is black.

Pre-conditions

x is a valid node in a red-black tree.

Post-conditions



Color of the parent and grandparent of the new node are changed and the tree is right
rotated about the grandparent of the new node.

Algorithm

RBCase3Left(x)

1. x.parent.color = black

2. x.parent.parent.color = red

3. rightRotate(x.parent.parent)

Algorithm 11.6. insertRB(value)

Private method called from redBlacklInsert() to insert a node into a red-black tree and
return a pointer to the node.

Pre-conditions

value is a valid node key value.

Post-conditions
New node inserted into the tree.

Returns a pointer to the new node.

Algorithm
insertRB(value)
node.left = nullNode
node.right = nullNode
node.color = red

node.key = value

1

2

3

4

5. tmp =root
6. while(tmp != NULL)

7 parent = tmp

8 if(node.key < tmp.key)
9 tmp = tmp.leftChild
10. else

11 tmp = tmp.rightChild



12. if (parent == NULL)

13. root = node

14. else if(node.key < parent.key)
15.  parent.leftChild = node

16. else

17.  parent.rightChild = node

18. return node

Example 2: Add a 4 to the red-black tree shown in Figure 17 using the
redBlackInsert() algorithm in Algorithm 11.3.

Figure 16. When a 4 is added to this red-black tree, it is added as the left child of the 5. The operation will create a
violation because the red 5 will have a red child. The Case 1 rebalancing algorithm needs to be applied; the
“uncle” is the red 8 node.

The 4 is added as the left child of the 5, which creates a situation where the red 5 has a red
child and violates Property 4 that a red node can’t have a red child. The “uncle” of the new
node is the red 8, which results in a Case 1 violation: the new node is a left child with a
red “uncle”.

Steps:

1. Line 6 redBlackInsert(): call RBCaselLeft() with the new node and “uncle” node as
arguments.

2. Line 1 RBCaselLeft(): Recolor the 5 to be black.
3. Line 2 RBCasel Left(): Recolor the 8 to be black.

4. Line 3 RBCaselLeft(): Recolor the 7 to be red. The state of the tree after recoloring is
shown in Figure 17. All nodes below the 7 in the tree should now have the correct

coloring. However, the recoloring created a violation between the 2 and 7 nodes, where
the 2 has a red child.



Figure 17. Red-black tree after applying the Case 1 rules to recolor the 5, 7, and 8 nodes. Now there is a violation
between the 2 and 7, where the 2 has a red child.

5. Line 7 redBlackInsert(): After the RBCaselLeft() algorithm exits, control returns to
redBlackInsert(). Move up two levels in the tree to examine the properties of the tree
starting at the 7 and working toward the root of the tree. The x now points to the 7.

6. Line 4 redBlacklInsert(): Set the “uncle” to be the 14, shown as y in Figure 18. The tree
is now in a Case 2 configuration - x is a right child and the “uncle” is black.

Figure 18. Positions of x and “uncle” in the red-black tree-balancing algorithm. The x node is the node currently
being evaluated, and the “uncle” of x is the y node.

7. Lines 10-11 redBlackInsert(): Set x to point to x.parent, which is the 2 node. Apply the
leftRotate() algorithm to x. The resulting tree is shown in Figure 19. The 7 has moved up
one level in the tree and x is now its left child. The tree is now an example of a Case 3
configuration: x is a left child with a black “uncle”.



Figure 19. Red-black tree configuration after a left rotation about the 2. The 7 has moved up one level in the tree,
and the 2 is now its left child. The tree is an example of a Case 3 configuration: x is a left child with a black
“uncle”.

8. Line 13 redBlackInsert(): Call RBCase3Left() on the 2, which recolors the 7 to be
black and the root to be red, and generates the configuration shown in Figure 20. The red
root violates Property 2.

Figure 20. The color violations have been resolved in this tree, except for the violation that the root cannot be red.
ArightRotate() about the root can resolve this issue.

9. Line 3 RBCase3Left(): Apply the rightRotate() algorithm to x.parent.parent, which is
the 11 to generate the tree shown in Figure 21. All conditions on the red-black tree are
now satisfied.

Figure 21. The final red-black tree after the right rotation about the root. The tree now satisfies all red-black tree



constraints.

Example 3: Build a red-black tree from the following sequence

<15,11,14,2,1 >

of integers using the redBlackInsert() algorithm in Algorithm 11.3.

Call redBlackInsert() for each value in the sequence to add it to the tree. The
redBlacklInsert() algorithm calls insertRB() (Algorithm 11.6) to add the integer as a node
to the tree, and then resolves red-black violations.

Steps:

1. Line 1: Call insertRB(15) to add the 15 as the root node and color it red. On Line 17,
recolor the node to be black.

2. Line 1: Call insertRB(11) to add the 11 as the left child of 15 and color it red.

3. Line 1: Call insertRB(14) to add the 14 as the right child of the 11 and color it red. The
11 is also red, which violates the property that a red node can’t have a red child. The
current configuration of the tree is shown in Figure 22. The new node is labeled x and the
nullNode sentinel nodes are shown as the smaller black nodes. This configuration is an
example of Case 2: x is a right child and the “uncle” node, which is the right-child
nullNode of the 15, is black.

Figure 22. Red-black tree after three nodes, with values 15, 11, and 14, have been added. There is a violation of
the red-black property that a red node can’t have a red child between the 11 and the 14.

4. Line 10-11: Apply leftRotate() to x.parent to generate the tree shown in Figure 23. The
tree is now an example of Case 3: x is a left child and the “uncle” node is black.
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Figure 23. Result of a left rotation on the red-black tree in Figure 23. The node x is now a left child and the Case 3
rules can be applied.

6. Line 13: Call RBCase3Left() to recolor the x.parent and x.parent.parent nodes and
apply the rightRotate() algorithm on x.parent.parent. The state of the tree after the
recoloring is shown in Figure 24, and the result of the right rotation is shown in Figure 25.

Figure 24. Result of applying the Case 3 recoloring to x.parent and x.parent.parent in the tree in Figure 23.

’

Figure 25. Result of applying the Case 3 right rotation on the 15, which was x.parent.parent in Figure 24.

7. Line 1: Call insertRB(2) to add the 2 as the left child of the 11. This operation produces
the Case 1 configuration shown in Figure 26, where the “uncle” node, which is the 15, is
red.

v



Figure 26. Adding the 2 to the red-black tree in Figure 25 generates a Case 1 configuration where the new node
has a red “uncle”.

8. Line 6: Call RBCaselLeft() to recolor the x.parent and “uncle” nodes to be black, and
the root node to be red. On Line 17, the root node is recolored to be black. The new tree is
shown in Figure 27.

Figure 27. State of the red-black tree after Case 1 recoloring is applied and the red-black properties are restored.

9. Line 1: Call insertRB(1) to add the 1 as the left child of the 2, which creates a Case 3
violation where the 1 is a left child and the “uncle” is the nullNode right child of the 11,
which is black.

10. Line 13: Call RBCase3Left() to recolor and apply a right rotation. The colors of
x.parent and x.parent.parent are changed, which makes the 2 black and the 11 red. The
right rotation on x.parent.parent, which is the 11, produces the red-black tree shown in
Figure 28. All values have been added to the tree and all red-black violations have been
resolved.

Figure 28. The Case 3 rules were applied to the tree in Figure 27 after the 1 was added as the left child of the 2.
The 2 and the 11 were recolored, and a right rotation was applied to the 11 to produce this tree, which satisfies the
red-black properties.

11.1.6 Deleting a node in a red-black tree

The algorithm for deleting a node from a red-black tree is the same as the algorithm for
deleting a node from a regular BST, with the addition of steps to address violations
introduced to the red-black properties.

The rules for deleting a node from a red-black tree are the same as the rules for deleting a
node from a regular BST:



« If the node has no children - delete the node.
« If the node has one child - replace the node with its remaining child.

« If the node has two children - replace the node with the minimum node in its right
branch.

A violation can occur if the node’s replacement is black, which can change the number of
black nodes along a path from the root to a leaf node in the tree. In this situation, the
violations need to be resolved by rebalancing the tree.

Example 4: Delete the 10 from the red-black tree shown in Figure 29.

Figure 29. If the 10 is deleted from this red-black tree, it will be replaced with the 12. The number of black nodes
on the path from the 15 to the leaf nodes in its left branch will change and introduce a violation of the red-black
properties.

In this example, when the 10 is deleted, its position in the tree will be filled by the 12,
which is labeled as y in Figure 29. The x will move into the position held by the y. This
deletion and replacement will reduce the number of black nodes on the path and require
that the tree be rebalanced to address the violation.

The algorithm to delete a node from a red-black tree is shown in Algorithm 11.7. The
algorithm is broken down into cases for 0, 1, or 2 children and whether the node to delete
is the root of the tree. An additional algorithm to rebalance the tree after the deletion is
shown in Algorithm 11.8.

Algorithm 11.7. redBlackDelete(value)

Delete a node from a red-black tree. Calls rbBalance() to resolve red-black violations
caused by the delete operation.

Pre-conditions

value is a valid node search value.



search() exists the returns a pointer to the node to delete.
treeMinimum() exists to find the minimum-valued node in a branch in the tree.

rbBalance() exists to resolve red-black violations.

Post-conditions

The node with the specified value is deleted from the red-black tree and all red-black
violations are resolved.

Note: This algorithm only handles the case where the node to delete is the left child of its
parent. Additional steps are needed to handle the right-child case.

Algorithm
redBlackDelete(value)
1. node = search(value)

2. nodeColor = node.color

3. if(node != root)

4 if(node.leftChild == nullNode and node.rightChild == nullNode) //no children
5. node.parent.leftChild = nullNode

6 else if(node.leftChild != nullNode and node.rightChild != nullNode) //two children
7 min = treeMinimum(node.rightChild)

8 nodeColor = min.color //color of replacement

9

x = min.rightChild

10. if (min == node.rightChild)

11. node.parent.leftChild = min

12. min.parent = node.parent

13. else

14. min.parent.leftChild = min.rightChild
15. min.parent = node.parent

16. min.right.parent = min.parent

17. node.parent.leftChild = min

18. min.leftChild = node.leftChild

19. min.rightChild = node.rightChild

20. node.rightChild.parent = min



21. node.leftChild.parent = min

22. min.color = node.color //replacement gets nodes color
23. else //one child

24, x = node.leftChild

25. node.parent.leftChild = x

26. x.parent = node.parent

27. else

28. //repeat cases of 0, 1, or 2 children

29.  //replacement node is the new root

30. //parent of replacement is nullNode

31. if nodeColor == BLACK
32. RBBalance(x)
33. delete node

The rbBalance() algorithm (shown in Algorithm 11.8) to restore the red-black properties
is called on the x node, which is the replacement for the min node in the redBlackDelete()
algorithm. rbBalance() is called when the color of min, which is the minimum value in
node’s right branch, is black.

Algorithm 11.8. rbBalance(x)

Restores the red-black properties to a tree following a node deletion.

Pre-conditions

x points to the node that replaced the return value of treeMinimum() in the deletion.

Post-conditions

Red-black properties restored to the tree.

Algorithm

RBBalance(x)

1. while (x !=root and x.color == BLACK)
2. if (x == x.parent.leftChild)

3. s = x.parent.rightChild



4 if (s.color == RED) //Case 1

5 s.color = BLACK

6. x.parent.color = RED

7 leftRotate(x.parent)

8 s = x.parent.rightChild

9 if (s.leftChild.color == BLACK and s.rightChild.color == BLACK) //Case 2
10. s.color = RED

11. X = X.parent

12. else if(s.leftChild.color == RED and s.rightChild.color == BLACK) //Case 3
13. s.leftChild.color = BLACK
14. s.color = RED

15. rightRotate(s)

16. s = x.parent.rightChild

17. else

18. s.color = x.parent.color //Case 4
19. x.parent.color = BLACK

20. s.rightChild.color = BLACK

21. leftRotate(x.parent)

22. X = root

23. else

24, //x is a right child

25. //exchange left and right

26. x.color = BLACK

In the rbBalance() algorithm there are four cases that can be observed regarding the color
of the replacement node’s “sibling” node. The “sibling” node is identified on Line 3 of
rbBalance().

Case 1: Min’s replacement has a red “sibling”.

Figure 30 shows an example of a Case 1 configuration. The replacement node is labeled x
and the “sibling” node is labeled s.



Figure 30. This red-black tree is an example of a Case 1 configuration in the rbBalance() algorithm. The
replacement node, labeled X, has a red “sibling”, labeled S.

Steps for resolving a Case 1 violation:

1. Line 5-6: The color of S and its parent are switched to produce the configuration shown
in Figure 31.

Figure 31. After Lines 5-6 in rbBalance(), the color of the S node and it’s parent are swapped.

2. Line 7-8: Apply a left rotation to x.parent and re-assign S to point to the right child of
x’s parent to produce the configuration shown in Figure 32.

Figure 32. After Lines 7-8 in rbBalance(), the tree has been left rotated about x’s parent and S points to the new
right child of x’s parent.

Case 2: Both of “sibling” S’s children are black, and S is also black.

Case 2 evaluates the color of the left and right children of the “sibling” S. The Case 2
configuration can be evaluated after the Case 1 rebalancing or independent of Case 1.

Steps to resolve a Case 2 violation:

1. Line 10: Recolor S to be red.



2. Line 11: Set x to point to its parent. The new tree configuration is shown in Figure 33.

Figure 33. The Case 2 steps in rbBalance() recolor S and reset x to point to x.parent.

* Line 24: Recolor x to black, which produces the configuration shown in Figure 34.

Figure 34. After the Case 2 algorithm is executed, S (which is the 15) is red.
Case 3: The “sibling” S is black and has a red left child and a black right child.

An example of a Case 3 configuration is shown in Figure 35. The replacement for the min
node, labeled x, has a black sibling S with a red left child and a black right child.

Figure 35. Example of a Case 3 configuration. The replacement node, labeled x, has a black “sibling”, labeled S,
with a red left child and a black right child.

Steps to resolve a Case 3 violation:

1. Lines 13-14: Recolor S and its left child to generate the configuration in Figure 36.



Figure 36. Configuration of the red-black tree after S and its left child are recolored. The (x) and (y) labels show
the nodes are x and y in the right rotation, which is the next step in the algorithm.

2. Line 15: Apply a right rotation to S. The result is shown in Figure 37.

Figure 37. Red-black tree after the right rotation on S. The tree is now an example of Case 4: a black “sibling” S
with a black left child and a red right child.

The Case 3 algorithm transforms the tree into a Case 4, where the “sibling” has a black
left child and a red right child.

Case 4: Min’s replacement’s “sibling” is black and has a black left child and a red
right child.

Steps to resolve a Case 4 violation:

1. Lines 18-20: Recolor S, its parent, and its right child produce the configuration in
Figure 38.



Figure 38. Configuration of the red-black tree after recoloring S, its parent, and its right child as part of resolving
a Case 4 violation.

2. Line 21: Apply the leftRotate() algorithm to x.parent to produce the tree shown in
Figure 39.

Figure 39. Red-black tree after the left rotation at the end of the Case 4 algorithm. If the S is the root of the tree, it
will be recolored on the last line of the rbBalance() algorithm.

3. Line 22-23: Set x to the root of the tree to exit the while loop and ensure that the root of
the tree is colored black on the last line of the rbBalance() algorithm.



12 Graphs

The map of Boulder, Colorado in Figure 1 shows the city in the area around the University
of Colorado. There are roads, bike trails (shown in dark green), and some of the major
landmarks, all of which are common features on most maps. But, for someone interested
only in the bike paths in the city, the map might contain too much information.
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Figure 1. Map of the roads and bike paths around University of Coloradoe in Boulder, Colorado. The bike paths
are shown in dark green and the roads are shown in gray.

Graphs provide a structure for representing connections between people, places, or things
that captures the essence of the connections. A person wanting to navigate Boulder by bike
path might want to know if there is a path between locations A and B the distance of that
path, and if the path goes through other locations along the way.



12.1 Adjacency Matrix

An adjacency matrix is a structure for representing direct connections between entities in
a graph, such as locations. In a 2D matrix, these entities are listed on both the horizontal
and vertical axis. If there is a direct connection between two entities, it means they are
adjacent and there is a 1 at that location in the matrix. If there isn’t a direct connection,
they are not adjacent and there is a 0 at that location in the matrix.

Example 1: Generate an adjacency matrix for five locations in Boulder - campus,
downtown, the dorms, mountaineering store, and the mall - showing which locations
are directly connected by bike path.

Steps:

1. Generate a blank 2D matrix that lists the locations on both axes. The vertical axis is the
starting location and the horizontal axis is the destination (Figure 2).

campus | downtown dorms | mountalneering mall

campus
downtown
dorms

mou ntalnaarlng
mall

Figure 2. Empty adjacency matrix with the starting location on the vertical axis and the destination on the
horizontal axis.

2. Add a 1 to the matrix if two locations have a bike path between them and add a 0 to the
matrix if they don’t. (Note: The bike paths are shown in dark green on the map, but the
map doesn’t show all locations). For this example, assume that the bike paths generate the
adjacency matrix in Figure 3.

campus | downtown dorms | mountaineering mall
campus 1 1 1 0 1
downtown 1 1 0 0 1
dorms 1 0 1 1 1
mountaineering i ] 1 1 0
mall 1 1 1 0 1

Figure 3. Adjacency matrix showing the locations connected by a bike path in the Boulder map. The 1 means
there is a path directly between the locations and the 0 means there isn’t a path between the locations.

* The first row in the matrix represents the scenario of starting at the campus and going
directly to another location, without going through any other locations. There is a path
from campus to downtown, the dorms, and the mall. There isn’t a path from campus to the
mountaineering store, which doesn’t mean that there’s no way to go from campus to the
mountaineering store. It only means that any path between those two locations has to go
through at least one other location.



* The second row in the matrix shows a starting location of downtown. There are paths
from downtown to campus and the mall. There isn’t a path from downtown to the dorms
or the mountaineering store.

* The third row in the matrix shows a starting location of the dorms, and there is a path
from the dorms to campus, the mountaineering store, and the mall.

* The fourth row in the matrix shows a starting location of the mountaineering store. There
is only one adjacent location to the mountaineering store and that is the dorms.

* The fifth row in the matrix shows a starting location of the mall. There is a path from the
mall to every location except the mountaineering store.

* The values on the matrix diagonal represent the condition of staying in the current
location, e.g. going from campus to campus. In this example, it is assumed that this is
possible, and therefore, these values are all 1.

This adjacency matrix is symmetrical, which means that the path going from campus to
downtown is the same as the path going from downtown to campus.



12.2 Graph Representation

The information in an adjacency matrix can be represented as a graph, where a graph
structure is defined as G = (V, E); graph G has a set of V vertices connected by a set of E
edges. If the adjacency matrix has a 1 in a cell, then the graph has an edge between those
two vertices.

Consider the graph G in Figure 4.
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Figure 4. Graph G, with edges <e,, ... e, > and vertices < vy, ... v} >.

The edges E in the graph are labeled
<e,e,...e >,
and the vertices V in the graph are labeled

<V, Vo, ool V>,

where n is the number of edges and k is the number of vertices. All of the vertices and
edges make up the graph G:

G={<v,V,...v,><e,e,...e >}

The graph for the adjacency matrix in Figure 3 is shown in Figure 5.
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Figure 5. Graph constructed from the adjacency matrix shown in Figure 3. An edge between two vertices means
there is a connection in both directions with the same properties, e.g. the edge between campus and downtown is
the same as the edge between downtown and campus.

For locations that don’t have an edge between them, there is a 0 in the adjacency matrix.
The circle at each vertex is the self-loop showing that there is a direct edge back to

the current location. Neither the placement of the vertices in the graph, nor the length of
the edges has any meaning relative to the original map. This graph only captures the
connections between vertices.



12.3 Adjacency-list Representation

Another method for storing graph data is to use an adjacency list instead of an adjacency
matrix. In this approach, the vertices in the graph are stored in an array, and each vertex in
the array contains a pointer to a list of its adjacent vertices. For example, an array of
vertices for the Boulder locations would each contain a list of the vertices that the vertex
connects to, as shown in the adjacency list in Figure 6. This list contains the same data
shown in the adjacency matrix in Figure 3 and the graph in Figure 5. The campus vertex
has four adjacent vertices - campus, downtown, the dorms, and the mall. In the adjacency
list, there are four elements, one for each of these adjacent vertices.

mountaineering
campus downtown dorms i mall
mountaineering
campus downtown dorms shore mall
downtown campus mw“;;'::-"“g dorms dowmnmtown

|

:

dorms

mall

campus

mall

!

dorms

CAMpUSs

Figure 6. Adjacency list for the adjacency matrix in Figure 3. The vertices in the graph are stored in an array.
Each vertex in the array stores a pointer to a list of vertices that it is adjacent to in the graph.




12.4 Directed and Undirected Graphs
124.1 Undirected Graph

The graph shown in Figure 5 is an example of an undirected graph. The edge between two
vertices exists in both directions. For example, the edge connecting campus and
downtown means there is an edge between campus and downtown and downtown and
campus.

12.4.2 Directed Graph

In a directed graph, the edges between two vertices have a direction associated with them,
and the edge may be different, or not exist, in one direction. To illustrate, assume a few of
the bike paths on the Boulder map are one way, e.g there is a path from campus to
downtown, but not the other direction. An adjacency matrix or an adjacency list can
capture the information in a directed graph. A 1 in the matrix represents an edge in a
direction, and a O represents no edge in a direction. The adjacency matrix won’t be
symmetrical, as it is with an undirected graph, if there are edges that only go in one
direction.

Example 2: Generate the adjacency matrix and graph if there are three, one-way
bike paths in Boulder. All other paths are the same as in Example 1.

The three one-way paths are:
campus to downtown
dorms to mall

mall to campus

The adjacency matrix needs to reflect that there are no longer edges for:
downtown to campus
mall to dorms

campus to mall

by having a 0 in the matrix for those edges. The new adjacency matrix is shown in Figure
7. For each of the edges that no longer exist in the graph, there is a 0 in the matrix.

campus | downtown dorms__| mountaineering mall
campus 1 1 1 0 0
downtown 0 1 0 0 1
dorms 1 0 1 1 1
mou ntaineering 0 0 1 1 0
mall 1 1 0 0 1




Figure 7. Adjacency matrix for Example 2 with three, one-way directed edges. There is an edge between campus
and downtown, but not downtown and campus. There is also not an edge between the mall and the dorms or
campus and the mall.

To draw a directed graph, add arrows to the edges between the vertices to indicate the
direction of the edge. The directed graph for the adjacency matrix in Figure 6 is shown in
Figure 8. For edges that go in both directions, there is an arrow at both ends of the edge.
Directed graphs can also be drawn with separate edges for each direction. For the edge
between campus and the dorms, there would be two edges drawn, each with the arrow in
the opposite direction.

downtown O
C campus 29th St. Mallo

O wome ™)

Figure 8. Example of a directed graph where an arrow shows the direction of the edge. For edges that go in both
directions between two vertices, there is an arrow on both ends of the edge.



12.5 Weighted Graphs

In the examples so far, the edges represent a connection between two places, but do not
contain any other information, such as the distance between the places. In a weighted
graph, the edge has a weight that provides information about the connection, such as the
distance, the cost of travel between vertices, or the flow of goods between two vertices.
Using a weighted graph, questions such as, “What is the shortest distance between all
vertices?” or “What is the cheapest path between two or more cities?” can be answered.

The approximate distances (according to Google Maps) between the locations on the
Boulder map are shown in the adjacency matrix in Figure 9.

campus | downtown dorms | mountaineering mall
campus 0 1.6 1.3 -1 1.2
downtown 1.6 0 -1 -1 1.9
dorms 1.3 -1 0 1.3 1.5
mﬂuntaineering -1 -1 1.3 0 -1
mall 1.2 1.9 1.5 -1 0

Figure 9. Distances between adjacent locations, according to Google Maps. These numbers are the edge weights in
the graph. A weight of -1 means there is not an edge between those vertices.

There are a few changes to the adjacency matrix to represent the information in a directed
graph. The matrix now includes a 0 for self-loops, such as campus to campus, because the
distance between the place and itself is 0. For vertices that don’t have a connecting edge,
such as downtown to the dorms, there is a -1 in the matrix. The weights in the adjacency
matrix are used to generate the weighted graph in Figure 10.

Using the edge weights, the final distance between any two places can be calculated. For
example, to go from campus to the mall, by way of dorms, the distance is 1.3 + 1.5 = 2.8
miles. It’s 1.3 miles from campus to the dorms and then 1.5 from the dorms to the mall.

downtown
16 1.9
campus 1.2 mall
13 15
dorms mountaineering

1.3 store

Figure 10. Weighted graph generated from the adjacency matrix in Figure 9. The edges with a weight of 0 are
removed.



12.6 Graph ADT

In the graph ADT, the vertices in the graph are stored as a private variable. There are
public methods to initialize the graph, insert and delete edges and vertices, print the graph,
and search the graph. The edges are stored in an adjacency list for each vertex in the
vertices variable, and therefore, don’t need to be represented separately as private
variables in the graph ADT. A suggested set of minimum functionality is shown in ADT
12.1.

ADT 12.1. Graph

1. private:

2 vertices

3. public:

4 Init()

5. insertVertex(value)
6 insertEdge(startValue, endValue, weight)
7 deleteVertex(value)

8 deleteEdge(startValue, endValue)

9 printGraph()

10. search(value)



12.7 Implementing a Graph class in C++

12.7.1 Vectors

C++ has a container data type called a vector in the Standard Template Library that
behaves like a linked list and an array. Elements in a vector can be indexed like elements
in an array, and they can be added and removed one at a time like elements in a linked list
without the developer having to explicitly handle expensive operations such as array
shifting and doubling.

This graph implementation uses vectors instead of an array or a linked list to simplify the
memory management of the graph.

To declare a vector variable:
vector<type> variable;

where <type> is the data type, such as int, double, or a user-defined type, and variable is
the name of the vector variable.

12.7.2 Creating graph vertices and edges

In code, the graph can be represented in a Graph class:

class Graph{
private:
//vertices and edges definition goes here
public:

//methods for accessing the graph go here

Each vertex in the graph is defined by a struct with two members: a key that serves as the
key value for the vertex, and a vector adjacent to store the adjacency list for the vertex.

A vertex is defined as:

struct vertex{



std::string key;

std::vector<adjVertex> adjacent;

The adjVertex data type is also defined by a struct with two members: contains a pointer
to the adjacent vertex v, and an integer weight that stores the edge weight between the two
vertices.

struct adjVertex{
vertex *v;
int weight;

b

An empty vector of vertex can be created using the statement:

std::vector <vertex> vertices;

The adjVertex struct only stores the destination vertex in v because the origin vertex is
stored in the vertices vector. In this design, each vertex in the graph has a vector of
adjacent vertices that contains the vertex at the other end of the edge. The number of
adjacent vertices can vary for each vertex in vertices. The size of the adjacent vector is
also dynamic for each vertex.

A visual representation of the setup is shown in Figure 11.

vertices[0] vertices[1] vertices[2]

l l l

vertices[0].adjacent]0] vertices[1].adjacent[0] vertices[2].adjacent]0]

vertices[0].adjacent[1] vertices[1].adjacent[1] vertices[2].adjacent[1]

warticesil]ad) 2] vertice.-i[:l].la.djmrrllk] verti:u{i].;\djmm[n]

Figure 11. A visual representation of the vertices vector and the adjacent vector for each vertex. The vertices
vector contains all of the vertices in the graph. The adjacent vector is the adjacency list for each vertex.



In Figure 11, vertices[0] has only 3 adjacent vertices. For vertices[1] and vertices[2],
there are k and n adjacent vertices, respectively. This diagram illustrates that each
vertices[i] can have a different number of adjacent vertices stored in its adjacent vector.

12.7.3 Insert vertex

Adding vertices to the graph is handled through a public method that takes the vertex key
value as an argument. The insertVertex() algorithm is shown in Algorithm 12.1. A vertex
with the specified key value is added to the vertices variable. Memory for the vertex is
allocated when it is added to vertices.

Algorithm 12.1. insertVertex(value)

Add a vertex with the specified value to a graph.

Pre-conditions
value is a valid key value of the same type as the key parameter in vertex.

vertices is an array of graph vertices.

Post-conditions

Vertex added to vertices if it doesn’t already exist.

Algorithm
insertVertex(value)
1. found = false

2. for x = 0 to vertices.end

3 if(vertices[x].key == value)
4 found = true

5. break

6. if(found == false)

7 vertex.key = value

8

vertices.add(vertex)

The insertVertex() algorithm is shown in C++ in Code 12.1, which uses a vector to store
the vertices. In the insertVertex() method, a bool called found controls the search of the
vertices vector. If the key already exists in the vector, set found to true and break out of the
loop. If the key isn’t found in vertices, it is added to vertices using the vector push_back()
method.



Code 12.1. insertVertex(string value)
void Graph::insertVertex(string value){
1. bool found = false;
2. for(inti=0; i < vertices.size(); i++){
3. if(vertices[i].key == value){
4 found = true;
5 cout<<vertices[i].key<<” found.”<<end]l;
6. break;
7 }
8. }
9. if(found == false){
10. vertex v;
11.  v.key = value;
12.  vertices.push_back(v);
13. }
14. }

The insertVertex() method can be called as follows:

Graph g;

g.insertVertex(“Boulder”);

to create an instance of Graph, called g, and add a vertex with the key “Boulder”.

12.7.4 Insert edge

After vertices have been added to the graph, edges can be added to connect them. The
insertEdge() algorithm, shown in Algorithm 12.2, takes the two key values of the vertices
to connect and the weight of the edge between them, and adds an element to the adjacent
list for the source vertex. The insertEdge() algorithm first checks that the two key
parameters, v1 and v2, exist in vertices. If they are in vertices, then the adjacent vector for
the source vertex v1 is updated to include the new edge with a weight and a pointer to the
destination vertex vZ2.

Algorithm 12.2. insertEdge(v1, v2, weight)



Add an edge between vertices v1 and v2 with the specified weight.

Pre-conditions

vl and v2 exist in the graph and there isn’t an existing edge from v1 to v2.

Post-conditions

Entry added to the adjacency list for vl connecting it to v2 with the specified weight.

Algorithm
insertEdge(v1, v2, weight)
for x = 0 to vertices.end
if(vertices[x].key == v1)

for y = 0 to vertices.end

1

2

3

4. if(vertices[y].key == v2 and x !=y)
6 adjacent.vertex = vertices[y]

7 adjacent.weight = weight

8

vertices[x].adjacent.add(adjacent)

The insertEdge() algorithm is shown in C++ in Code 12.2, which uses a vector to store the
adjacency list of vertices. If both vertices are found in vertices, then the adjacent vector is
updated to add an edge using the vector push_back() method.

Code 12.2. insertEdge(string v1, string v2, int weight)
void Graph::insertEdge(string v1, string v2, int weight){
for(int x = 0; x < vertices.size(); x++){
if(vertices[x].key == v1){
for(int y = 0; y < vertices.size(); y++){

if(vertices[y].key == v2 && x != y){

av.v = &vertices[y];
av.weight = weight;

1.

2

3

4

5. adjVertex av;
6

7

8 vertices[x].adjacent.push_back(av);
9



10. }
11.  }
12. }
13.}

* On Lines 1-2 of Code 12.2, the vertices vector is checked for a key value that matches
v1, and if it is found, then on Lines 3-4, the vertices vector is checked again for v2.

* On Lines 5-8, the destination vertex vertices[y] is added to the adjacency list for the
source vertex v1. The adjVertex struct stores a pointer to the vertex, which is why the
address of vertices[y] is used on Line 6.

The insertEdge() method adds an edge in one direction only. In an undirected graph, the
method would need to be called twice with the source and destination vertices swapped to
add the edge between two vertices in both directions. For example, to add an undirected
edge between Boulder and Denver,

g.insertEdge(“Boulder”, “Denver”, 30);
g.insertEdge(“Denver”, “Boulder®, 30);

calls insertEdge() the first time with Boulder as the source and Denver as the destination
and calls insertEdge() the second time with Denver as the source and Boulder as the
destination.

12.7.5 Printing the graph

Printing the graph vertices and adjacent vertices is a simple way to verify that the graph is
set up as expected. To print the graph, traverse the vertices variable, and print all elements
of the adjacent variable for each vertex. Two loops are needed, one for the elements in
vertices, and one for the elements of adjacent for each vertex in vertices. An algorithm to
print the graph is shown in Algorithm 12.3 and the C++ code for the algorithm is shown in
Code 12.3.

Algorithm 12.3. printGraph()

Display the vertices and the adjacent vertices for each vertex in the graph.

Pre-conditions

None



Post-conditions

vertices and adjacent vertices displayed.

Algorithm

printGraph()

1. for x =0 to vertices.end

2 print(vertices[x].key)

3. for y = 0 to vertices[x].adjacent.end
4

print(vertices[x].adjacent[y].vertex.key)

Code 12.3. printGraph()

void Graph::printGraph(){

1. for(int x = 0; x < vertices.size(); x++){

2 cout<<vertices[x].key<<“—>;

3 for(int y = 0; y < vertices[x].adjacent.size(); y++){
4 cout<<vertices[x].adjacent[y].v->key<<“***>;
5. }

6 cout<<endl;

7.}

8.}

* On Line 3 of Code 12.3, vertices[x].adjacent.size() gets the size of the adjacency list,
stored as the vector adjacent, for vertices[x].

* On Line 4, the key of the vertex stored in the adjacency list is printed. The v->key
notation is needed because v is a pointer to an existing element in vertices, and v->key
dereferences the pointer and gets the key value of that vertices element.

12.7.6 Searching a graph

The search() algorithm in Algorithm 12.4 takes the key value to search for as a parameter
and traverses vertices for a vertex that contains that value as its key. The algorithm returns
the vertex where the value is found.

Algorithm 12.4. search(value)



Returns the vertex with a key value that matches the search value.

Pre-conditions

value is a valid search parameter with the same type as the key in vertices

Post-conditions

Returns the vertex in vertices where vertex.key = value. Returns NULL if the value isn’t
found.

Algorithm

search(value)

1. for x =0 to vertices.end

2 if vertices[x].key == value
3. return vertices[x]

4. return NULL



12.8 Graph traversal algorithms

Graph traversal algorithms reveal features of the information stored in the graph by
visiting the vertices in a specified order. The appropriate traversal algorithm to use
depends on the question that needs to be answered about the graph.

Some questions to answer about graphs include the following:

* Does a vertex with a specified value exist in a graph?
* How many adjacent vertices does a particular vertex have?
* Is there a path between two vertices?

* What is the shortest path between two vertices?

12.8.1 Traversing graph edges

Each edge in a graph can be thought of as a step between two vertices in the graph.
Counting the number of steps between two vertices is the same as counting the number of
edges between the vertices. Vertices that are one step from another vertex are the adjacent
vertices; they are connected directly by an edge. The vertices that are two steps away are
the vertices that can be reached by traversing two edges, which requires going through an
intermediate vertex. Vertices that are three steps apart are separated by two intermediate
vertices, and so on.

Example 5: Using the graph in Figure 12, determine which vertices are one, two, and
three steps from vertex A?

[A]

Figure 12. Graph for Example 5. Determine which vertices are 1, 2, and 3 steps from vertex A.

In this example, the adjacent vertices to A are B and E. The vertices that are two steps
from A are C and F, which can be reached by going A-B-C, A-E-C, or A-B-F. The vertex
that is three steps from A is D, which can be reached by going A-B-C-D or A-E-C-D.

Another approach to visualizing graph traversals is to view the graph is as a tree rooted at



the starting vertex. In this approach, A is the root of the tree, and the vertices adjacent to A
are its children. The vertices two steps from A are its children’s children, and so on. Figure
13 shows the graph in Figure 12 represented as a tree. The vertices B and E are A’s
children. From vertex B, there is an edge back to vertex A and an edge to vertices C and F.
Edges are only shown once in this tree, which is why the edges back to a previous vertex
are not represented. From the vertex E, there is only one option, vertex C, and from there,
there is also just one connecting vertex, which is vertex D.

Figure 13. The graph in Figure 12 represented as a tree rooted at vertex A. The children of each vertex in the tree
are the adjacent vertices to that vertex in the graph. For example, B and E are adjacent to A.

12.8.2 Breadth-first search

Redrawing the graph as a tree can make it easier to visualize the order that vertices are
traversed with a particular search algorithm. For example, in the tree in Figure 13, vertices
could be examined going across one level in the tree before the vertices at deeper levels in
the tree are evaluated. In this case, the children of the root, which are vertices B and E,
would be evaluated before either of B or E’s children, vertices C and F, are evaluated.

Evaluating the vertices at the same level of a graph before evaluating nodes at deeper
levels is a breadth-first evaluation. A search algorithm that evaluates nodes in a breadth-
first ordering is called a breadth-first search. Figure 14 shows the order that nodes are
evaluated in a breadth-first evaluation. The number assigned to the node is the evaluation
order, e.g. the root is evaluated first, followed by the root’s children going from left to
right or right to left.




Figure 14. Search order for the breadth-first search algorithm. Nodes are evaluated across one level in the tree
before moving to deeper levels in the tree.

The root in this tree is the starting vertex in a graph. The children of the root, which are all
vertices adjacent to the root vertex in a graph, are evaluated next. Then, the children’s
children, which are all vertices two steps from the root in a graph, are evaluated. Each
level in the tree is the same as one edge in a graph. For example, the node assigned the
number 14 in the tree would be four edges away from the node assigned the number 1 in
the tree if the two nodes were in a graph.

In a breadth-first search of the graph, the objective is to find a value in the graph using the
breadth-first evaluation order just described. Each vertex is visited exactly once. The
search ordering is often controlled using a queue to store the vertices. When a vertex is
visited, its children are added to the queue. When a vertex is dequeued and evaluated, its
children are enqueued. This process continues until there are no vertices left to evaluate
and the queue is empty.

The breadthFirstTraversal() algorithm in Algorithm 12.5 evaluates an entire graph using a
breadth-first ordering. The vertex struct includes an additional member, called visited, that
tracks if the vertex has been evaluated. Only vertices where visited = false are added to the
queue.

struct vertex{
std::string key;
std::vector<adjVertex> adjacent;

bool visited;

Algorithm 12.5. breadthFirstTraversal(value)

Print the key values of the vertices in the graph in a breadth-first order, starting at the
vertex where vertex.key = value.

Pre-conditions
value is a valid key value for a vertex in the graph.
search() algorithm exists to find the vertex where vertex.key = value.

visited property initialized to false for all vertices

Post-conditions



The vertices in the graph are displayed in breadth-first order from the starting vertex.

Algorithm
breadthFirstTraversal(value)
vertex = search(value)
vertex.visited = true
queue.enqueue(vertex)
while(!queue.isEmpty())

n = queue.dequeue()

for x = 0 to n.adjacent.end

if('n.adjacent[x].visited)

n.adjacent[x].visited = true

B R R R R R R

print(n.adjacent[x].v.key)

—_
=

queue.enqueue(n.adjacent[x].v)

Example 6: Using the graph in Figure 15, show the order that vertices are enqueued
and dequeued in the breadthFirstTraversal() algorithm, starting from vertex A.

Figure 15. Show the order that the vertices in this graph are enqueued and dequeued in the
breadthFirstTraversal() algorithm, starting from vertex A.

Steps:
1. Line 1: the visited property for the starting vertex A is set to true.

2. Line 2: the starting vertex A is added to the queue, and then dequeued on Line 4 for
evaluation.

3. Lines 5-6: the loop checks the vertices adjacent to A, which are B and F, for whether
they have already been visited. The visited property for both vertices is false.

4. Line 7: the adjacent vertices B and F are marked as visited.



5. Line 9: vertex B is added to the queue, and then vertex F is added to the queue the next
time through the loop.

6. Back to Line 3, the while conditional checks if the queue is empty. It isn’t, since B and
F were just added.

7. Line 4: vertex B is dequeued. The vertices adjacent to B, which are A and G, are
checked for whether they have been visited. Only the G has not been visited.

8. Line 9: the vertex G is added to the queue.

9. Back to Line 3, the while conditional checks if the queue is empty. It isn’t, since it
contains the F and G.

10. Line 4: vertex F is dequeued. The vertices adjacent to F are A, E, and H. The E and H
have not been visited.

11. Line 9: the vertices E and H are added to the queue; one vertex is added each time
through the loop.

12. Back to Line 3, the queue still isn’t empty, since it contains the G, E, and H.

13. Line 4: the vertex G is dequeued, All of G’s adjacent vertices have been visited, so
there is nothing to enqueue.

14. Back to Line 3, the queue still isn’t empty, since it contains the E and H.

15. Line 4: the vertex E is dequeued. All of E’s adjacent vertices have been visited, so
there is nothing to enqueue.

16. Back to Line 3, the queue still isn’t empty, since it contains the H.

17. Line 4: the vertex H is dequeued. All of H’s adjacent vertices have been visited, so
there is nothing left to enqueue.

18. The vertex H was the last vertex in the queue. On Line 3, the conditional is false and
the breadthFirstTraversal() routine exits.

The evaluation order of the graph vertices in Figure 15, viewed as a tree, is shown in
Figure 16. The vertex A is evaluated first, followed by B, F, G, E, and H in that order.

Figure 16. The evaluation order of the graph vertices in Figure 15 using the breadthFirstTraversal() algorithm.
The vertex A is evaluated first, followed by B, F, G, E, and H.

12.8.3 Shortest distance in an unweighted graph

The breadthFirstTraversal() algorithm traverses the graph, but it doesn’t provide



information about the graph, such as the distance between any two vertices or whether a
value exists in the graph. The algorithm can be modified to search for a specified vertex,
and calculate the number of edges traversed to that vertex from the starting vertex. A
distance parameter is added to the vertex struct to store the number of edges. Each time a
vertex is enqueued, meaning that an edge was traversed to reach the vertex, its distance is
incremented by 1.

struct vertex{
std::string key;
std::vector<adjVertex> adjacent;
bool visited;

int distance;

In the breadthFirstSearch() algorithm in Algorithm 12.6, the arguments to the routine are
the value of the starting vertex and the value to search for are arguments to the algorithm.
A search() algorithm (Algorithm 12.4) is needed to support breadthFirstSearch().

Algorithm 12.6. breadthFirstSearch(startValue, searchValue)

Calculates the distance between the startValue and searchValue vertices, and returns the
searchValue vertex.

Pre-conditions

startValue and searchValue are valid search parameters with a type that matches the key
value of the vertices in the graph.

search() takes startValue as a parameter and returns the vertex in the graph with that key
value.

visited initialized to false for all vertices in the graph.
Post-conditions

Returns the vertex with a key that matches the searchValue. Included in the vertex is the
shortest distance back to the startValue vertex.

Returns NULL if the value isn’t found.

Algorithm
breadthFirstSearch(startValue, searchValue)

1. vertex = search(startValue)



2. vertex.visited = true

3. vertex.distance =0

4. queue.enqueue(vertex)

5. while(!queue.isEmpty())

6. n = queue.dequeue()

7. for x = 0 to n.adjacent.end

8. if('n.adjacent[x].v.visited)

9. n.adjacent[x].v.distance = n.distance + 1
10. if(n.adjacent[x].v.key == searchValue)
11. return n.adjacent[y].v

12. else

13. n.adjacent[x].v.visited = true

14. queue.enqueue(n.adjacent[x].v)

15. return NULL

The breadthFirstSearch() algorithm will return the vertex if it’s found and NULL if it’s
not. Stored in the vertex is the distance back to the starting vertex.

Example 7: What is the shortest distance between vertices A and G in the graph in
Figure 17?

Figure 17. Find the shortest path in this graph between vertex A and the other vertices in the graph. The ID of the
vertex is shown next to its key value.

The primary difference in the breadthFirstTraversal() and breadthFirstSearch()
algorithms is the distance calculation.



Steps:

1. Line 1: starting vertex identified using search().

2. Lines 2-3: distance to starting vertex initialized to 0 and vertex marked visited.
3. Line 4: starting vertex A enqueued.

4. Line 6: the starting vertex A is dequeued.

5. Lines 7-9: the vertices adjacent to A, which are B and F, are added to the queue. The
distance for each of them is the (distance to A) + 1, so they both have a distance of 1.

6. Line 6: vertex B is dequeued. The only vertex adjacent to B that hasn’t been visited is
G, which is also the value being searched for.

7. Line 9: the distance to G is the (distance to B) + 1, which makes the distance 2.

8. Line 10: the conditional checks if G is the value being searched for, and since it is, the
vertex is returned on Line 11.

12.8.4 Breadth-first shortest path

The distance between two vertices in an unweighted graph is the number of edges
traversed to go from one vertex to the other vertex. The path between two vertices is the
list of the vertices visited on the path between two vertices. In Example 7, the shortest
distance between A and G is 2, and the shortest path is A-B-G. To find the path,
information about the vertices visited needs to be stored along with the distance.

There are two options commonly used for storing path information.

1. Create an array to store the index of the parent vertex, and then trace back through the
array to re-create the path.

2. Store a pointer to the parent vertex in each vertex, and follow the pointers back to the
root vertex to re-create the path.

The breadthFirstSearch() algorithm can be easily modified to store path information using
an array that stores the parent index. The vertex struct is modified to assign each vertex an
integer ID that will serve as its array index.

struct vertex{

1. std::string key;

2. std::vector<adjVertex> adjacent;
3. bool visited;
4. int distance;
5. int ID;



A breadthFirstSearch() algorithm that finds the shortest path from a starting vertex to all
other vertices in the graph is shown in Algorithm 12.7.

Algorithm 12.7. breadthFirstSearch(startValue)

Find the path and the distance from the starting vertex to all other vertices in the graph.

Pre-conditions

previous array exists that is same size as the number of vertices in the graph. All previous
values initialized to -1.

startValue is valid vertex key value.

search() algorithm exists to identify starting vertex in the graph.

Post-conditions

previous populated with parent ID for all vertices on the path from the starting vertex.

Algorithm

breadthFirstSearch(startValue)
vertex = search(startValue)
vertex.visited = true
vertex.distance = (

queue = new queue()

1

2

3

4

5. queue.enqueue(vertex)
6. while(!q.isEmpty())

7 n = queue.dequeue()

8 for x = 0 to v.adjacent.end
9

if('n.adjacent[x].v.visited)

10. n.adjacent[x].v.distance = n.distance + 1
11. previous|[v.adjacent[x].v.ID] = n.ID

12. n.adjacent[x].v.visited = true

13. queue.enqueue(n.adjacent[x].v)

Example 8: Find the shortest path between vertices A and the other vertices in the



graph in Figure 17 using Algorithm 12.7.

Each of the vertices in Figure 17 has been assigned an integer index, which is stored in the
ID property of the vertex. For example, vertex A has an ID of 0; and vertex B has an ID of
1.

Steps:

1. Create an array previous of length n, where n is the number of vertices in the graph.

int previous[n];

2. Initialize all values in the previous array to -1 to produce the previous array shown in
Figure 18.

-1 L
-1 4
-1 3
-1 2
-1 1
-1 0

Figure 18. The shortest path algorithm uses an array called previous. Initially, all values in previous are -1. The
size of previous is the same size as the number of vertices in the graph.

3. Line 7: vertex A is dequeued (enqueued on Line 5) and its adjacent vertices are
evaluated and enqueued on Lines 8-13.

4. Line 11: the previous[ID] value for each of vertex A’ adjacent vertices is set to the ID
of A, which is 0. The ID for vertex B is 1 and the ID for vertex F is 4, which sets the
values for previous[1] and previous[4] to 0. The state of the previous array is shown in
Figure 19.

-1 L
0 4
-1 3
-1 2
0 1
-1 0

Figure 19. The previous values for vertex A’s adjacent vertices are updated to include the index of A. The vertex



A has an ID of 0, therefore, a 0 is written to positions 1 and 4, the IDs of A’s adjacent vertices B and F.

5. Line 7: dequeue the vertex B and evaluate and enqueue it’s unvisited adjacent vertices
on Lines 8-13. The only unvisited vertex is G, which has an index of 2. Set previous[2] =
1 to show that B is G s parent. The ID of vertex B is 1. The updated previous array is
shown in Figure 20.

-1 5
0 4
-1 3

2
0 1
-1 0

Figure 20. State of the previous array after vertex G’s parent is added to the array. G has an index of 2 and G’s
parent has an index of 1, therefore, a 1 is stored in previous[2].

6. Line 7: dequeue the vertex F, which has an ID of 4. The unvisited adjacent vertices to F
are the E and H.

7. Line 11: set the previous array for the E and H vertices. The ID of E is 3 and the ID of
H is 5. The values for previous[3] and previous[5] are set to 4. The final previous array is
shown in Figure 21.
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Figure 21. The final previous array after all vertices evaluated. The array can be used to re-create the path from
any vertex back to vertex A.

Once the previous array has been generated, it can be used to re-create the path back to the
starting vertex from any vertex in the graph. To re-create the path from the vertex G back
to the vertex A:

Steps:

1. Start at the ID of G in the previous array, which is 2, and examine previous[2] to get the
parent ID of G, which is 1. The vertex with an ID of 1 is B, which means that the path to G
goes through B.

2. Go to previous[1] to get the parent ID of B, which is 0. The vertex with an ID of 0 is A.



3. Go to previous[0] to get the parent ID of A, which is -1. The -1 signifies that A is the
starting vertex and doesn’t have a parent.

The shortest path from A to G goes through the vertices A-B-G.

12.8.5 Depth-first search

Another ordering for searching the vertices in a graph, called depth-first search (DFS),
evaluates the vertices along one path before evaluating other paths. DFS is used in the
tree-traversal algorithms for binary trees (shown in Algorithm 10.1, 10.2, and 10.3) that
print the nodes in the tree. Those algorithms recursively traversed all the way to the leaf
nodes in the tree, following the left or right branch, before evaluating any of the other
branches in the tree. For the graph in Figure 22, a DFS that starts at vertex A and selects
the next adjacent vertex alphabetically, would evaluate vertices in the order A-B-C-D
backing up and selecting a different path to evaluate vertices E and F. This ordering
differs from a breadth-first search, which would evaluate vertices B and E before
evaluating vertices C and D. Also, unlike breadth-first search, which would find the
shortest path between two vertices in an unweighted graph if a path exists, depth-first
search would find a path, but not necessarily the shortest path.

)

Figure 22. To find a path from A to D in this unweighted graph using depth-first search, B, C, and D would be
evaluated before E.

The evaluation order of vertices in a graph is shown in the tree in Figure 23. The child
nodes in the tree are the adjacent vertices in a graph. For example, a search that starts at
vertex A in Figure 22 would place A as the root of a tree. Vertex B is the left-child of Ain a
tree and vertex C is the left-child of B in the tree. These are the first three nodes evaluated
in a DFS.



Figure 23. Evaluation order in a depth-first search. Nodes at deeper levels in the tree are evaluated before nodes
at the same level in the tree.

Once the bottom of the left branch in a tree is reached, which is equivalent to following a
path in a graph until there are no unvisited, adjacent vertices on that path to evaluate, DFS
will evaluate all nodes in the right branch. In a graph, following a different branch means
selecting a different vertex at the last decision point. In the graph in Figure 22, after the
path A-B-C-D is evaluated, the algorithm would return to vertex C and select vertex E to
evaluate the path A-B-C-E.

DFS can be implemented using a recursive or a non-recursive algorithm. Examples of
both algorithms are shown in Algorithm 12.8 and Algorithm 12.9, respectively. Both
algorithms take the key value of the starting vertex as an argument and employee a
search() algorithm (Algorithm 12.4) to find the starting vertex in the graph and traverse
the graph in a depth-first ordering from that vertex. Non-recursive implementations of
DFS typically use a stack data structure to store the vertices as they are visited. The stack
generates an ordering where the most-recently visited vertices are popped off the stack and
processed before vertices that were encountered at higher levels in the tree are processed.

Algorithm 12.8. depthFirstSearch(value)

Print the key values in the graph using a depth-first traversal of the vertices.

Pre-conditions
value is a valid vertex key value for the root of the search tree.

search() algorithm exists to identify the vertex in the graph where vertex.key = value

Post-conditions

key values displayed in a depth-first order from the starting vertex.



Algorithm
DFS(vertex)
vertex.visited = true
for x = 0 to vertex.adjacent.end
if('vertex.adjacent[x].v.visited)

1.
2.
3
4. vertex.adjacent[x].v.distance = vertex.distance + 1
5 print(vertex.adjacent[x].v.key)

6

DFS(vertex.adjacent[x].v)

depthFirstSearch(value)
vertex = search(value)
vertex.visited = true
vertex.distance = 0

for x = 0 to vertex.adjacent.end

1

2

3

4

5. if(!vertex.adjacent[x].v.visited)
6 vertex.adjacent[x].v.distance = vertex.distance + 1
7 print(vertex.adjacent[x].v.key)

8

DFS(vertex.adjacent[x].v)

Algorithm 12.9. depthFirstSearchNonRecursive(value)

Print the key values in a graph using a non-recursive depth-first search.

Pre-conditions
value is a valid vertex key value for the root of the search tree.

search() algorithm exists to identify the vertex in the graph where vertex.key = value.

Post-conditions

key values in the graph displayed in a depth-first order from the starting vertex.

Algorithm
depthFirstSearchNonRecursive(value)

1. vertex = search(value)
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vertex.visited = true
vertex.distance = 0
stack.push(vertex)
while(!stack.isEmpty())
ve = stack.pop()
print(v.key)
for x = 0 to ve.adjacent.end
if('ve.adjacent[x].v.visited)
ve.adjacent[x].v.visited = true
ve.adjacent[x].v.distance = ve.distance + 1

stack.push(ve.adjacent[x].v)



12.9Dijkstra’s algorithm

The breadth-first algorithm found the shortest distance in an unweighted graph, where the
shortest distance is the path that traverses the fewest number of edges.

In a weighted graph, the path with the shortest distance between two vertices is the path
with the lowest cumulative edge weight, which makes the calculation a bit more
complicated than in an unweighted graph. The path with the lowest weight won’t
necessarily be the path that traverses the fewest number of edges.

Figure 24. In this weighted graph, there are multiple paths between vertices A and G, each with a different cost.
The path with the lowest cost is the one with the lowest total weight for the edges traversed.

In the weighted graph in Figure 24, there are multiple paths between vertices A and G.
One path traverses A-B-G with a weight of 350. Another path traverses A-F-E-G with a
weight of 100. There is also a path that traverses A-F-H-E-G with a weight of 130. The
shortest path in this weighted graph is the one with a weight of 100: A-F-E-G, even though
it traverses more edges than the A-B-G path.

The shortest distance in weighted graph, where the edge weights are strictly positive, can
be found using Dijkstra’s algorithm, which is a greedy algorithm that chooses the lowest
cumulative weight to any adjacent vertex that hasn’t yet been solved. The shortest path
overall is found from these individual lowest weight decisions.

Example 9: Find the shortest path in the graph in Figure 25 between the Start and
End vertices.



Figure 25. Find the shortest path between the Start and End vertices in this weighted graph.

The vertex struct is modified to included a solved parameter that serves a similar purpose
to the visited property in the breadthFirstSearch() and depthFirstSearch() algorithms. The
struct is also modified to store the parent vertex.

struct vertex{
std::string key;
std::vector<adjVertex> adjacent;
bool solved;

1

2

3

4. int distance;
5. vertex *parent;
b

Steps:
1. Mark the Start vertex as solved, and set the distance to Start as 0.

2. Find the unsolved (unvisited) vertices adjacent to Start and calculate the distance to
those vertices as the distance to Start + the edge weight connecting the vertex to Start. The
unsolved vertices adjacent to Start are A, B, and C (shown in blue in Figure 26). The
distance to A is 2, to B is 10, and to C is 3.
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Figure 26. From the Start vertex, identify the unsolved vertices adjacent to Start and calculate the distance to
each vertex. Those vertices are A, B, and C.

3. Select the vertex with the shortest distance and mark it as solved. Update the vertex to
show its distance to Start. In this example, the shortest distance is to vertex A. The A is
now solved, with a distance of 2 (shown in green in Figure 27), and a parent of Start. The
vertex won’t be solved again through another path.

D Solved vertex
D Lnsolvad vertex

Figure 27. The vertex closest to Start is A with a distance of 2. The vertex A is now marked solved with its parent
as Start and won’t be solved again through another path.

4. Repeat the process of selecting all unsolved vertices adjacent to all solved vertices, and
calculate the distance to those unsolved vertices. The solved vertices are Start and A, and
the unsolved vertices adjacent to Start and A are B with a shortest distance of 4 going
through A, C with a distance of 3, F with a distance of 7, and G with a distance of 12
(Figure 28).



10 2+10=12
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Figure 28. The vertices Start and A are both solved. The unsolved adjacent vertices to Start and A are B, C, F, and
G.

5. The distance of 3 to vertex C is the shortest. Mark C as solved and its parent is Start.
The solved vertices are shown in Figure 29.

D Solved vertex
D Lnsolvad vertex

Figure 29. The vertices Start, A, and C are now solved.

6. Select all unsolved vertices adjacent to all solved vertices and calculate their distances.
The unsolved vertices adjacent to Start, A, and C are B with a shortest distance of 4, F
with a distance of 7, E with a distance of 7, and G with a distance of 12 (Figure 30).
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Figure 30. The solved vertices are Start, A, and C. The vertices adjacent to the solved vertices are B, E, F, and G.

7. The shortest path is to B through A with a distance of 4. Mark vertex B as solved with a
distance of 4 (Figure 31). The parent of B is A.

D Solved vertex
D Lnsolvad vertex

Figure 31. The vertices Start, A, B, and C are now solved. There are no unsolved vertices adjacent to the Start
vertex.

8. Select all unsolved vertices adjacent to all solved vertices and calculate their distances
to the Start vertex. All vertices adjacent to Start have been marked as solved. The
unsolved adjacent vertices to A, B, and C are D with a distance of 8, E with a shortest
distance of 7, F with a distance of 7, and G with a distance of 12 (Figure 32).



D Solved vertex
D Lnsolvad vertex

Figure 32. The solved vertices are Start, A, B, and C. The unsolved vertices adjacent to the solved vertices are D,
E, F, and G.

9. There is a tie between E and F. Choose E using an alphabetical tie-breaker, and mark E
as solved with a distance of 7 to the Start vertex (Figure 33). The parent of E is C.

D Solved vertex
D Lnsolvad vertex

Figure 33. The vertex E is marked solved with a distance of 7. The solved vertices are Start, A, B, C, and E.

10. Calculate the distance to all unsolved vertices adjacent to solved vertices. The shortest
distance is to F with a distance of 7 (Figure 34).
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Figure 34. The solved vertices are Start, A, B, C, and E. The unsolved vertices are D, F, G, and End. The shortest
distance is to F with a cost of 7.

11. Mark F as solved with a distance of 7 back to Start. The parent of F is vertex A.

12. Calculate the distance to unsolved vertices from all solved vertices. The solved
vertices are Start, A, B, C, E, and F. The unsolved vertices are D with a shortest distance
of 8, G with a shortest distance of 9, and End with a distance of 14 (Figure 35).
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Figure 35. The vertex F is now solved. The unsolved vertices are D, G, and End with costs of 8, 9, and 14
respectively.

13. The shortest distance is to D with a distance of 8. Mark vertex D as solved. The parent
of D is vertex B. The remaining unsolved vertices are G with a shortest distance of 9 and
End with a shortest distance of 13 (Figure 36).
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Figure 36. The only unsolved vertices are G with a shortest distance of 9 and End with a shortest distance of 13.

14. Mark G as solved with a distance of 9. The parent of G is vertex F. The only
remaining unsolved vertex is End, which now has a shortest distance of 12 following a
path that goes through G (Figure 37).

D Solved vertex
D Lnsolvad vertex

Figure 37. The vertex G is marked as solved with a distance of 9. The only unsolved vertex is End with a distance
of 12.

15. Mark End as solved (Figure 38). The parent of End is the vertex G. The shortest
distance from Start to End is 12 following the path: Start-A-F-G-End.
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Figure 38. The shortest distance from Start to End is 12 following the path Start-A-F-G-End.

12.9.1 Implementing Dijkstra’s algorithm

Dijkstra’s algorithm uses a breadth-first search to identify the unsolved vertices at each
step. The algorithm builds a list of solved vertices, where each vertex in the list includes
the distance back to the root vertex and a pointer to its parent vertex. The algorithm is
shown in Algorithm 12.10.

Algorithm 12.10. Dijkstra(start, end)

Find the shortest path between the start and end vertices in a graph.

Pre-conditions
start and end are valid key values
search() algorithm finds the start and end vertex in the graph

INT_MAX contains maximum system integer value

Post-conditions

Shortest path between start and end found and stored in the graph vertices.

Algorithm

Dijkstra(start, end)

1. startV = search(start)
2. endV = search(end)

3. startV.solved = true



startV.distance = 0
solved = {startV} //list of solved vertices
while ('endV.solved)
minDistance = INT MAX
solvedV = NULL
for x = 0 to solved.end
s = solved[x]
for y = 0 to s.adjacent.end
if(!s.adjacent[y].v.solved)
dist = s.distance + s.adjacent[y].v.distance
if(dist < minDistance)
solvedV = s.adjacent[y].v
minDistance = dist
parent = s
solvedV.distance = minDistance
solvedV.parent = parent
solvedV.solved = true
solved.add(solvedV)



13 Hash tables

A hash table, also known as a hash map, is a data structure that stores data using a
parameter in the data, called a key, to map the data to an index in an array. The data is also
called a record, and the array where records are stored is called a hash table.

There are two necessary components to a hash table: the array where the records are stored
and a hash function that generates the mapping to an array index.

For example, imagine the hash table is used to store records of movies. Each movie record
contains the Title, Ranking, and Year of the movie. The movie could be defined with a
struct as follows:

struct movie{
string Title;
int Ranking;

int Year;

Figure 1 shows the process of how individual movie records are stored in a hash table.
Each movie is a record that contains the properties of the movie. The key for the record,
which in this case is the title, is input to a hash function, shown in Figure 1 as h(Title). The
hash function uses the ASCII characters in the title, generates a unique integer value for
that title. That integer value is the index in the hash table array where the movie record is
then stored. For example, if the hash function returned a value of 2, then the movie would
be stored at index = 2 in the hash table array.

Movie Record

: hash table
Title
Ranking h{Title) j—m movie
Year h{()} outputs 0 1 2 3 m-1

an integer
9 h(Title) output is index in
hash table array

Figure 1. Process showing how individual movie records are stored in a hash table. The movie Title is the input to
a hash function, which outputs an integer that serves as the index for the movie in an array.



13.1 Hash functions

Hash functions convert the key into an integer index to store the record in the hash table.
One of the simplest hash functions converts a string to an integer by summing the ASCII
values of all letters in the string and then modding the sum by the array size. The mod
operation ensures that the integer is within the bounds of the array. The algorithm for this
hash function is shown in Algorithm 13.1. The algorithm takes the key and the size of the
hash table as arguments and returns the index where the record is to be stored in the hash
table.

Algorithm 13.1. hashSum(key, tableSize)

Calculates the index in a hash table for a record with a specified key value.

Pre-conditions
key is a string or character array.

tableSize is the size of the array.

Post-conditions

Returns integer index, where 0<= index <= tableSize.

Algorithm

hashSum(key, tableSize)

1. sum=0

2. forx =1 to key.end

3 sum =sum + key[x]
4. sum = sum % tableSize
5

return sum

Example 1: Calculate the hash value of Shawshank Redemption if the size of the hash
table is 50 using Algorithm 13.1?

* Lines 2-3: The ASCII values for the letters in Shawshank Redemption are summed and
stored in the variable sum. The ASCII values for each letter are shown in Figure 2. The
sum of the ASCII values is 2015.



Character ASCII Character ASCII Character ASCII
value value value
S 83 n 110 m 109
h 104 k 107 P 112
a 97 < space > 32 t 116
W 119 R 82 i 105
5 115 e 101 [+] 111
h 104 d 100 n 110
a a7 e 101

Figure 2. ASCII values for the characters in “Shawshank Redemption”.

* Line 4: The sum is modded by the tableSize, which is 50, to scale the sum to a value
between 0 and tableSize. The result: 2015 % 50 = 15. Shawshank Redemption is stored at
index 15 in the hash table.



13.2 Using a hash function in C++

An example of how the hashSum() algorithm is used in a hash table is shown below in
C++. An array of a specified size is created to store the hash table elements. In this
example, they are movies that are defined by the movie struct.

» Create an array to store 50 movie objects:

movie hashTable[50];

* Create an instance of movie:

movie m;

* Set the Title property of the movie to “Shawshank Redemption”:
m.Title = “Shawshank Redemption”;

* Use the movie title as the argument to hashSum(), which returns the index in the hash
table where the title will be stored:

int index = hashSum(m.Title, 50);
 Use the index to store the movie:
hashTable[index] = m;

* To retrieve a record from a hash table, perform the steps in reverse. Calculate the hash
value for the key, and then retrieve the information at that index in the hash table.

int index = hashSum(“Shawshank Redemption”, 50);

movie m = hashTable[index];



13.3 Collisions

If every key always mapped to a unique index in a hash table, then hash tables would be
used for everything. There would be no reason to store data in any other data structure
because hash tables would be the faster than any other data structure available. However,
in any large data set, the reality is that multiple records often have the same hash value,
and therefore, need to be stored in the same index in a hash table. When this happens, it’s
called a collision, which is when two or more keys hash to the same index.

Formally, given a hash function h, a collision occurs when:

h(k,) = h(k,), k, != k,, where k, and k, are keys.

Consider the strings:

Go Cat Go.

and

Go Dog, Go

The sum of the ASCII characters in Go Cat Go. is

71+ 111+ 32+ 67 +97+ 116+ 32+ 71 + 111 + 46 = 754.

The sum of the ASCII characters in Go Dog, Go is

71+111+32+68+ 111 +103 +44 + 32+ 71 + 111 = 754.

Using the hashSum() algorithm as the hash function, these two strings will hash to the
same index in the hash table and produce a collision. To store multiple elements at the
same location in a hash table, an additional data structure, such as a linked list, needs to be
added to the hash table.



13.4Hash functions

In the real world, collisions happen, a lot. The challenge of designing a good hash table is
in designing a hash function that limits the frequency of collision. The hash-function
design needs to consider both the size of the hash table as well as the hash function that
maps keys to indices. A table size that is too small for the number of records that need to
be stored will result in collisions and inefficiency. A hash table that is too big will result in
wasted space in memory.

13.4.1 Perfect hash functions

A perfect hash function assigns all records to a location in the hash table without collisions
or wasted space.

Example 2: Store 100 phone numbers, with unique values between 3034841000 and
3034841099 in a hash table of size 100.

The values for the phone numbers are:
3034841000

3034841001
3034841002

3034841099

A hash function that just mods the phone number by the hash table size of 100:

phoneNumber % 100

will return the last two digits in the number:

3034841000



3034841050

3034841099

Those last two digits can be used as the hash table index for each phone number and the
numbers will all be stored in a unique location with no collisions.

13.4.2 Imperfect hash functions

With an imperfect hash function, multiple keys can be assigned to the same index and
result in collisions.

Example 3: Store 100 phone numbers, with unique values between 3034841000 and
3034841099 in a hash table of size 10.

The values for the phone numbers are the same as in the previous example:

3034841000
3034841001

3034841099

A hash function that mods the phone number by 10:

phoneNumber % 10

will return the last digit in the phone number:

3034841000
3034841001



3034841050

3034841099

If the last digit is used as the index in the hash table, then only indices 0 - 9 in the hash
table will be used, and the indices 10 - 49 will be empty. The 10 used indices are only 10%
of the table; the other 90% will be wasted. To store all 100 values in 10% of the table
requires that 10 phone numbers be assigned to each used index.

Considerable effort goes into improving the performance of hash tables by designing new
hash functions or finding the appropriate hash function for the type of data that needs to be
stored. Many of these approaches involve complicated bit shifting and masking operations
that are beyond the scope of this book. The hash functions shown here are meant as an
introduction to how a few simple hash functions perform, the challenges of designing a
hash function, and how heuristics are used for choosing a good hash table size.

In designing a hash function, it’s important to recognize how the function will operate on a
particular set of data. Consider the following cases that use the hashSum() algorithm
previously presented.

Example 4: Calculate the range of hash values for strings of 10 uppercase letters for
various table sizes.

The ASCII values in a string of 10 A‘s will sum to 650 (the ASCII value of A is 65). The
ASCII values in a string of 10 Z‘s will sum to 900. All other strings of 10 capital letters
will have a sum between 650 and 900, which means that there is a maximum range of 250.
For a table size of 1000, only 25% of the table will ever be used. Increasing the table size
to accommodate additional data won’t reduce collisions because the hash function doesn’t
distribute records evenly throughout the table.

Example 5: Calculate the range of hash values for strings of 10 uppercase and
lowercase letters for various table sizes.

The ASCII values in a string of 10 A’s will sum to 650 and a string of 10 lowercase z‘s
will sum to 1220. All other strings of 10 capital or lowercase letters will sum to between



650 and 1220, which means there is a maximum range of 570. If the table size is 1000, the
hashSum() algorithm will return values between 0 and 570. Only 57% of the table will
ever be used. Just as with Example 4 using 10 capital letters, increasing the table size
won’t reduce collisions because the hash function is not distributing records evenly
throughout the table.

13.4.3 Multiplication method

Another category of hash functions uses multiplication as part of the function. A simple
multiplication method includes the following steps:

1. Given a key k (k is a string), generate the sum of the ASCII values for the characters in
k.

2. Multiply k by a constant A, where 0 < A < 1.
2. Store the fractional part of KA.
3. Multiply fractional part of kA by a constant, m, and take the floor of the result.

The value of m is generally selected to be a power of 2, and A = 13/32. Empirical studies
have shown these values for m and A to work reasonably well.

Example 6: Use the multiplication method to calculate the hash value of a string of 10
uppercase A’s, let m = 1024 and A = 13/32.

The sum of the ASCII values of 10 A’s is 650.

kA = (650 * (13/32)) = 264.0625

The fractional part is .0625.

0.0625m = 0.0625 * 1024 = 64

Since there is no decimal component of 64, that is the hash value.

Example 7: Use the multiplication method to calculate the hash value of a string of 10
lowercase z’s, let m = 1024 and A = 13/32.

The sum of the ASCII values of 10 z’s is 1220.



KA = (1220 * (13/32) = 495.625

The fractional part is .625.

0.625m = 0.625 * 1024 = 640

Since there is no decimal component of 640, that is the hash value.



13.5 Collision resolution by chaining

There’s no such thing as a perfect hash function for real data, which means that collisions
happen. One common method for handling collisions is to use an algorithm called
chaining, where the hash table is set up as an array of pointers that serve as the head of a
linked list for a particular array index. An example of a hash table that stores movie
records using chaining is shown in Figure 3. The hash table T has a size of 7. The entries
T[0... 3] are unused. The entries T[4 ... 6] contain pointers to the head of a linked list,
where each node in the list is a movie record. For example, both Casablanca and The
Godfather have a hash value of 5 using the hashSum() algorithm in Algorithm 12.1 with a
table size of 7. They are both included as nodes in a linked list at T[5] in alphabetical
order.

T
0

1

2

3

4 i The Us. Susp.

5 S Casablanca ..—__p The Godfather
6 — e ::::;:;::::. — Whiplash

Figure 3. Example of a hash table that uses collision resolution by chaining. Each element in the table is a pointer
to a linked list that stores the records that have the same hash value.

13.5.1 Creating a hash table with chaining

When the hash table is created, all locations in the table are initialized to NULL, or empty
movie records, and will serve as sentinels to the head of a linked list. When an element is

added to the hash table, the NULL entry is updated to point to the head of a linked list. In

C++, vectors can also be used in place of a linked list.

Example 8: Add Shawshank Redemption to an empty hash table that uses chaining.
The movie title is the key, the hash table size is 7, and the hash function is the
hashSum() algorithm.

The hashSum() algorithm returns a value of 6. Since the table is empty, the movie



Shawshank Redemption is the first entry in a doubly linked list at index 6 (Figure 4).

Shawshank
6 —™ Redemption

Figure 4. Hash table with chaining after the movie Shawshank Redemption is added at index 6.

The next and previous pointers of the Shawshank Redemption movie node are set to
NULL.

Example 9: Add the following movies to the hash table in Figure 4 using the
hashSum() algorithm.

The Godfather

The Usual Suspects
Casablanca
Whiplash

The return value of hashSum(“The Godfather”) is 1237 % 7 = 5.

The return value of hashSum(“The Usual Suspects”) is 1733 % 7 = 4.
The return value of hashSum(“Casablanca”) is 985 % 7 = 5.

The return value of hashSum(“Whiplash™) is 832 % 7 = 6.

When these four movies are added to the hash table, there is a collision at index 5 with
The Godfather and Casablanca, and a collision at index 6 with Shawshank Redemption



and Whiplash.

The order that the movies are stored in the hash table is shown in Figure 5. The next and
previous pointers in the doubly linked list connect the movie nodes and make it easier to
add new movie nodes sorted alphabetically. As an example, the movie Casablanca at T[5]
has a previous pointer of NULL, and a next pointer to the movie node The Godfather. The
Godfather’s previous pointer points to the Casablanca node, and its next pointer points to
NULL.

T
0

1

2

3

4 i The Us. Susp.

5 S Casablanca ..—__p The Godfather
6 — e ::::;:;::::. — Whiplash

Figure 5. Hash table with chaining after Shawshank Redemption, The Usual Suspects, Casablanca, The
Godfather, and Whiplash are added to the table.



13.6 The hash table ADT

The functionality for a hash table ADT that uses a linked list to implement collision
resolution with chaining is shown in ADT 13.1. The size of the hash table and the hash
table array are private variables in the ADT. The public methods to insert, search, and
delete take the key value as an argument. The insert() method adds the record to the hash
table chain in alphabetical order. The search() method returns a pointer to the record if it
is found and NULL if it is not found. The delete() method searches the hash table for the
value, resets the pointers in the chain to bypass the record, and then frees the memory for
that node. In this implementation, the hashTable stores empty records that serve as
sentinel nodes to a linked list for each index.

ADT 13.1. Hash Table
HashTable:

1. private:

2 tableSize

3 hashTable

4. public:

5. Init()

6 insert(value)
7 search(value)
8 delete(value)
9 deleteTable()

13.6.1 Searching for a record

The search() algorithm, shown in Algorithm 13.2, first calculates the hash value for the
search key to determine the index in the hashTable array where the record should be
stored. On Line 2, the algorithm checks if the hashTable array is NULL at that index. If it
is NULL, then the key value is not in the hash table and the algorithm returns NULL on
Line 9. If hashTable[index] is not NULL, then the key could exist in the linked list chain
for that index. Lines 4 - 8 traverse the chain checking for records where the key matches
the search key.

Algorithm 13.2. search(value)

Search for a node in the hash table with the specified key value and return a pointer to the
node.

Pre-conditions
Unused indices in the hash table are set to NULL.

value is a valid key search value for the hash table.



Post-conditions

Returns a pointer to the node in the hash table chain where node.key = value.

Algorithm

search(value)

1. index = hashSum(value,tableSize)

2.  if (hashTable[index].next != NULL)
3 tmp = hashTable[index].next

4. while(tmp != NULL)

5 if (tmp->key == value)

6 return tmp

7 else

8. tmp = tmp.next

9. return NULL

13.6.2 Inserting a record

The algorithm to insert a record into a hash table, shown in Algorithm 13.3, calculates the
hash value of the new record from its key, which is an argument to the algorithm. On
Lines 2 -3, the key and next properties of the new record are set. Line 4 checks if there are
already entries in the hash table for that hash value. If there are no entries, the new record
is added as the first element at that location on Lines 5 - 6. If there are entries, Lines 9 - 13
check if the record is already in the hash table. Lines 15 - 16 traverse the chain for the
position where the new record will be in alphabetical order. On Lines 17 - 19, the pointers
for the existing records are updated to include the new record.

Algorithm 13.3. insert(value)

Insert a record into a hash table.

Pre-conditions
Unused indices in the hash table are set to NULL.

value is a valid hash table key value.

Post-conditions

Record inserted into the hash table at the correct location, as specified by the hash
function.



Algorithm

insert(value)

1. index = hashSum(value,tableSize)

2. hashElement.key = value

3. hashElement.next = NULL

4. if (hashTable[index].next == NULL)

5. hashElement.previous = hashTable[index]
6 hashTable[index].next = hashElement
7. else

8 tmp = hashTable[index].next

9 while(tmp != NULL)

10. if(tmp.key == value)

11. print(“duplicate™)

12. return

13. tmp = tmp.next

14. tmp = hashTable[index].next

15. while(tmp.next != NULL && tmp.title > tmp.next.title)
16. tmp = tmp.next

17. hashElement.next = tmp

18. hashElement.previous = tmp.previous
19. tmp.previous.next = hashElement
13.6.3 Deleting a record

The steps to delete a record from a hash table, shown in Algorithm 13.4, follow the same
pattern initially as the steps to insert and search for a record. The index for the element to
delete is identified on Line 1 with a call to the hash function. Once the key value is found
in the hash table chain, on Line 5, the next and previous pointers for the surrounding nodes
in the chain are updated on Lines 6 - 8. One Line 9, the node is deleted, which frees the
memory.

Algorithm 13.4. delete(value)

Delete a record from a hash table.

Pre-conditions
Unused indices in the hash table are NULL.

value is a valid search key for a record in the hash table.



Post-conditions
Node with the specified key value deleted from the chain and the memory freed.

Pointers in the linked list updated to bypass the deleted node.

Algorithm
delete (value)
index = hashSum(name,tableSize)
if (hashTable[index].next != NULL)
tmp = hashTable[index].next
while(tmp != NULL)

1

2

3

4

5. if(tmp.key == value)
6 tmp.previous.next = tmp.next

7 if(tmp.next = NULL)

8 tmp.next.previous = tmp.previous
9 delete tmp

10. break



13.7 Complexity of hash tables

The average performance of searching and inserting records in a hash table is O(1); it’s
constant and doesn’t depend on the size of the hash table or the number of records to store.

The worst-case performance of hash-table operations occurs when all keys hash to the
same location. The n records in the hash table would generate a linked-list of n elements,
and the worst-case behavior would be the same as that of a linked list: O(n).

13.7.1 Selecting hash table size
There are a few things to consider when selecting the size of the hash table.
1. How many records need to be stored?

2. What is an acceptable number of evaluations in an unsuccessful search?

There is a heuristic (educated guess) for selecting the size of the hash table. Choose a
prime number closest to number of records / acceptable evaluations. For example, if there
are 1000 records, and 3 evaluations of a linked list is acceptable, then 1000/3 = 333. The
closest prime number to 333 is 331, which would be the table size.

13.7.2 Hash table load factor

The size of the hash table influences the load factor of the table, and in turn, the
performance of the hash table. The load factor is calculated as n/N, where n is the number
of keys stored and N is the size of the hash table. If the load factor stays below 1, and the
hash function produces a minimal number of collisions, then performance of the hash
table will be good. Searching and inserting will be O(1) operations. If, however, n > N and
the load factor is too large, then the number of collisions will increase and more operations
will be needed to find records stored in the table. Performance will no longer be constant,
but rather, closer to O(n).
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