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Preface
The	first	time	I	taught	CS2	-	Data	Structures	and	Algorithms	at	the	University	of
Colorado,	the	available	course	textbooks	that	I	found	were	either	advanced	programming
books	that	obscured	the	details	on	the	data	structures	concepts	or	theory	books	that	lacked
sufficient	details	on	implementations.	Over	the	course	of	the	semester,	I	wrote	copious
notes	to	fill	the	gaps	in	our	selected	course	textbook	and	provided	them	to	my	students.	By
the	end	of	the	semester,	I	had	a	draft	of	a	data	structures	book	that	was	exactly	the	book
for	which	I	had	been	searching.	I	decided	to	publish	the	material	as	a	self-published	e-
book	so	that	it	would	be	available	as	inexpensively	as	possible	for	anyone	who	was
interested.

	

The	intended	audience	for	this	book	is	second-semester	computer	science	undergraduates.
The	focus	is	on	fundamental	concepts	of	data	structures	and	algorithms	and	providing	the
necessary	detail	for	students	to	implement	the	data	structures	presented.	The	content
included	herein	is	what	I	was	able	to	cover	in	a	one-semester	course.

	

This	book	sets	itself	apart	from	other	data	structures	books	in	the	following	ways:

	

•	The	data	structures	are	presented	in	pictures.	There	are	pictures	of	arrays,	linked	lists,
graphs,	trees,	and	hash	tables	that	help	students	visualize	the	algorithms	on	these
structures.	General	feedback	from	my	students	was	that	they	really	appreciated	the
pictures	I	drew	in	class,	and	I	have	included	all	of	them	here.

	

•	There	are	step-by-step	descriptions	of	how	algorithms	work.		These	descriptions
illustrate	the	state	of	the	data	structure	at	key	lines	in	an	algorithm’s	execution.

	

•	The	algorithms	are	presented	in	a	language	that	I	call	“pseudocode	with	C++
tendencies.”	In	other	words,	there	is	enough	detail	in	the	pseudocode	for	students	to
convert	it	to	C++.	In	many	cases,	basic	C++	is	also	provided.

	

I	am	utilizing	this	book	in	my	current	courses,	and	hope	that	you	as	a	student	or	instructor
will	find	this	book	useful.		Good	luck,	and	happy	programming.

	

Rhonda	Hoenigman,	PhD

University	of	Colorado,	Boulder

2015
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Introduction
This	book	is	intended	for	computer	science	students	who	understand	the	basics	of
programming	and	are	ready	to	launch	into	a	discovery	of	data	structures,	which	are
fundamental	to	an	appreciation	of	the	field	of	computer	science.	Typically,	these	are
students	with	a	semester	of	programming	experience,	and	are	in	a	second	semester	data
structures	course.		To	understand	the	material	presented	herein,	the	reader	should	have	an
understanding	of	C++	or	another	object-oriented	language,	such	as	Java.

	

The	emphasis	in	this	book	is	on	presenting	fundamental	data	structures	and	the	algorithms
used	to	access	information	stored	in	these	structures.	Many	of	the	data	structures	are	also
presented	in	the	context	of	an	abstract	data	type	(ADT),	which	is	the	implementation
mechanism	commonly	used	in	an	object-oriented	language.	Algorithms	are	presented	as
part	of	an	ADT.	Pseudo-code	is	used	throughout	the	book,	for	both	the	algorithms	as	well
as	the	ADT	definitions.



What	is	a	data	structure?
A	data	structure	is	a	specialized	format	for	organizing	related	information.	Depending	on
the	type	of	information,	one	data	structure	could	provide	a	better	arrangement	for	storing
the	data	than	another	data	structure,	where	“better”	refers	to	the	ability	to	access	and
manipulate	the	data	efficiently.		Basic	data	structures	are	itemized	below,	with	a	brief
description	of	each:

	

•	Arrays:	Fixed-length	linear	sequence	of	similar	elements,	where	each	individual
element	can	be	accessed	by	its	index.

•	Lists:	Linear	sequence	of	similar	elements	that	can	expand	and	contract	as	needed.	

•	Trees:	Collection	of	elements	with	a	hierarchical	structure.

•	Maps:	Collection	of	elements	that	are	accessed	through	one	property	of	the	element,
known	as	a	key.

•	Records:	Composite	data	type	that	is	composed	of	other	data	elements,	called	fields	or
members.

	

This	list	of	data	structures	is	by	no	means	exhaustive,	nor	is	each	data	structure
independent	of	the	other	structures	on	the	list.	For	example,	maps	are	generally	composed
of	records,	and	an	array	is	commonly	used	to	implement	a	map.	Modifying	the	behavior
of	the	basic	data	structure	can	also	create	new	data	structures.	For	example,	an	array	or
list	where	elements	can	only	be	added	and	removed	at	the	last	position	is	called	a	stack.



What	is	an	Abstract	Data	Type?
An	Abstract	Data	Type	(ADT)	is	a	collection	of	data	elements	and	the	allowable
operations	on	those	elements.	In	an	ADT,	the	operations	are	encapsulated;	the	user	only
has	information	about	the	inputs,	outputs,	and	an	explanation	of	the	actions.	The	specific
details	of	the	operations	are	hidden.	The	data	elements	in	an	ADT	are	stored	in	a	data
structure.	The	algorithms	to	access	and	manipulate	that	data	structure	are	implemented	as
methods	in	the	ADT.



Algorithms	and	pseudocode
When	presenting	the	details	of	how	specific	algorithms	perform,	a	book	must	balance
providing	enough	detail	to	convey	the	nuances	of	the	algorithm	with	getting	mired	in	the
syntax	of	a	particular	programming	language.	For	these	reasons,	algorithms	are	often
presented	in	pseudocode	in	this	and	other	books.		Pseudocode	is	a	simplified	description
of	the	algorithm	generated	from	real	code	that	is	intended	to	be	more	readable	than	real
computer	code	while	still	providing	the	detail	necessary	to	understand	the	complexity	of	a
specific	algorithm.	Just	as	with	real	code,	it	can	take	practice	to	read	and	understand
pseudocode,	and	part	of	this	understanding	comes	from	an	awareness	of	the	pseudocode
conventions	used	in	a	particular	presentation.		Pseudocode	conventions	used	herein	are
described	below.

Pseudocode	conventions
The	algorithms	in	this	book	are	presented	in	a	language	that	I	will	call	“pseudocode	with
C++	tendencies”.	The	pseudocode	presented	herein	may	appear	informal	when	compared
to	pseudocode	in	other	data	structures	and	algorithms	books	because	it	preserves	more	of
the	C++	language	than	typical	pseudocode.

	

•	Expressions	are	presented	using	=	and	==	to	represent	assignment	and	equivalence,
respectively,	just	as	in	real	code.

•	For	loops	include	only	an	initial	condition	and	an	end	state:	for	x	=	0	to	A.end,	where
A.end	is	the	last	index	in	the	array.

•	Indentation	is	used	to	specify	which	lines	are	included	in	an	execution	block.

•	Data	types	are	removed	from	variable	definitions	and	return	values.

•	The	words	“and”	and	“or”	replace	&&	and	||	in	conditionals.

	

The	following	snippets	show	the	real	code	and	the	pseudocode	for	an	algorithm	that
returns	the	index	in	an	array	for	a	specified	search	value.

	

Real	code

int	findItem(int[	]	A,	int	v,	int	length)

1.				int	index	=	-1;

2.				for(int	x	=	0;	x	<	length;	x++)	{

3.								if(A[x]	==	v)

4.												return	x;

5.				}

6.				return	index;



	

Pseudocode

findItem(A,	v)

1.				index	=	-1

2.				for	x=0	to	A.end

3.								if(A[x]	==	v)

4.												return	x

5.				return	index

	

In	the	function	definition,	the	real	code	includes	the	return	type	of	the	function	as	well	as
the	types	of	the	function	parameters.	The	real	code	also	includes	an	additional	parameter,
length,	which	is	the	size	of	the	array.	In	the	pseudocode,	A.end	is	used	for	the	last	index	in
the	array	to	convey	that	the	for	loop	will	execute	for	each	element	in	A.



Roadmap
The	next	chapter	in	this	book	presents	an	introduction	to	algorithms	and	why	they	are
essential	in	any	computer-science	education.	Computer	memory	is	presented	in	Chapter	2
to	provide	the	foundation	for	understanding	how	data	structures	are	allocated	and
destroyed	dynamically.	Chapter	3	presents	the	concept	of	arrays	and	the	algorithms
necessary	for	array	manipulation.	Chapter	4	includes	an	introduction	to	sorting	algorithms
and	the	fundamentally	different	approaches	to	sorting,	and	how	these	approaches	present
tradeoffs	in	their	implementation	and	behavior.	The	other	chapters	in	the	book	cover	the
following	data	structures	and	ADTs:	arrays,	linked	lists,	stacks,	queues,	trees,	and	binary
search	trees,	red-black	trees,	graphs,	and	hash	tables.	Linked	lists	are	presented	in	Chapter
5.	Stacks	and	queues	are	presented	in	Chapters	6	and	7,	respectively.	The	discussion	of
trees,	including	binary	search	trees	and	red-black	trees	and	recursive	algorithms	for
traversing	trees,	is	covered	in	Chapters	8	-	11.	Finally,	graphs	are	in	Chapter	12	and	hash
tables	are	in	Chapter	13.			

	



1									Algorithms
In	any	computer	program,	there	is	a	specific	set	of	instructions	that	tells	the	computer
what	to	do.	This	set	of	instructions	is	similar	to	a	recipe	in	that	there	is	an	objective	to
accomplish	(problem	to	solve),	and	a	set	of	steps	in	a	specified	order	to	accomplish	the
objective.	These	instructions	are	also	known	as	an	algorithm:	a	defined	set	of	steps	that	are
followed	to	solve	a	problem.

	

As	an	example,	an	algorithm	that	puts	the	following	sequence	of	numbers	in	ascending
order

	

<54,	34,	23,	45,	56,	90>

	

would	produce	an	output	of

	

<23,	34,	45,	54,	56,	90>.

	

Some	algorithms	are	simple,	such	as	an	equation	that	adds	two	numbers.	Other	algorithms,
such	as	a	pattern-matching	algorithm	that	compares	two	gene	sequences,	are	very
complex;	it	is	these	more	complex	algorithms	that	computer	scientists	generally	care
about.	The	primary	concerns	with	algorithms	are	how	are	they	specified	and	how	they
scale.	On	a	small	data	set,	an	algorithm	might	work	fine	and	produce	the	expected	output
in	a	reasonable	amount	of	time.	However,	on	a	large	data	set,	the	algorithm	might	break
down	and	take	an	intractable	amount	of	time	to	produce	a	result.	Understanding	how	an
algorithm	is	going	scale	with	the	size	of	the	input	is	the	primary	evaluation	of	whether	an
algorithm	is	“good.”



1.1						Specifying	an	algorithm
Algorithms	generally	have	a	set	of	inputs,	and	then	transform	these	inputs	in	some	way	to
produce	an	output.	The	specifications	for	an	algorithm	are	documented	by	pre-	and	post-
conditions,	which	inform	anyone	using	the	algorithm	what	to	expect.

1.1.1						Pre-condition
The	pre-conditions	for	an	algorithm	are	the	conditions	that	must	be	true	prior	to	the
algorithm’s	execution	in	order	for	it	to	work	as	defined.	Pre-conditions	can	include	the
inputs	to	the	algorithm	and	the	restrictions	on	the	types	and	range	of	values	on	those
inputs.	Pre-conditions	can	also	include	other	dependencies,	such	as	other	algorithms	that
need	to	execute	first.

1.1.2						Post-condition
The	post-conditions	for	an	algorithm	are	the	expected	changes,	or	the	return	value,	after
the	algorithm	executes.	For	example,	a	function	to	calculate	the	factorial	of	a	particular
number	could	look	like:

	

factorial(n)

	

The	pre-condition	on	factorial(n)	is	that	n	is	an	integer	greater	than	0.	The	function	is	not
expected	to	work	correctly	for	values	of	n	that	do	not	meet	the	conditions.	The	post-
condition	is	the	function	returns	the	factorial	of	n.



1.2						Evaluating	an	algorithm
Given	a	problem	to	solve,	such	as	sorting	a	sequence	of	numbers,	it	is	important	to
evaluate	whether	one	algorithm	is	better	than	another	algorithm	in	terms	of	correctness,
efficiency,	and	resource	use.

1.2.1						Correctness
First	and	foremost,	the	algorithm	needs	to	produce	a	correct	solution;	it	does	not	matter
how	efficient	the	algorithm	is,	if	it	produces	an	incorrect	answer.	For	example,	if	a	sorting
algorithm	intended	to	sort	integers	from	highest	to	lowest	produces	a	solution	such	as

	

A	=	<90,	54,	23,	34,	45,	56>

	

then	any	other	method	of	evaluation	is	irrelevant.

1.2.2						Cost
Given	that	an	algorithm	is	correct,	it	can	be	evaluated	by	its	cost,	where	cost	is	generally
evaluated	as	the	memory	usage	and	runtime	of	the	algorithm.	It	is	difficult	to	evaluate	an
algorithm’s	runtime	empirically	as	doing	so	would	involve	running	the	algorithm	for	a
representative	set	of	inputs	and	measuring	the	results,	which	could	be	affected	by	the
hardware	platform	and	the	software	implementation.	Instead	of	an	empirical	evaluation,
the	cost	is	calculated	theoretically	by	evaluating	the	number	of	lines	of	code	that	execute.
Each	line	has	a	cost	of	1	to	simplify	the	cost	calculation.	A	count	of	the	lines	of	code
provides	a	high-level	estimate	of	the	algorithm’s	runtime	that	will	be	roughly	proportional
to	the	actual	runtime.

	

An	example	of	an	algorithm	specification	that	can	be	used	to	calculate	the	cost	is	shown	in
Algorithm	1.1.	The	specification	shows	the	name	and	parameters	of	the	algorithm,	the	pre-
and	post-conditions,	and	the	algorithm	itself	with	line	numbers.

	
Algorithm	1.1.	findItem(A,	v)

Returns	the	index	of	the	value	v	in	the	array	A.

	

Pre-condition

A	is	an	array.

v	is	the	same	type	as	the	elements	in	A.

	

Post-condition

Returns	the	last	index	x	where	A[x]	=	v.



	

Algorithm

findItem(A,	v)

1.				index	=	-1

2.				for	x=0	to	A.end

3.								if	A[x]	==	v

4.												index	=	x

5.				return	index

	

Example	1:	Calculate	the	cost	of	findItem(A,v)	for	various	inputs	of	A	and	v.

	

Example	1.1

A	=	<	45,	34,	32,	34	>

findItem(A,	34)

	

Line	number:	Times	executed

Line	1:	1

Line	2:	5

Line	3:	4

Line	4:	2

Line	5:	1

	

In	this	call	to	findItem(),	Line	1	executes	one	time.	There	are	four	elements	in	the	array,
and	Line	2	executes	once	for	each	array	element	and	once	for	the	final	evaluation	of	the
for	loop	to	check	if	A.end	has	been	reached.	Each	line	in	the	for	loop	can	execute	up	to
four	times.	Line	3	executes	four	times	and	line	4	executes	twice,	once	for	each	time	that
34	is	found	in	the	array.	Line	5	executes	one	time.	The	total	cost	is	13.

	

Example	1.2

A	=	<	45,	34,	32,	34	>

findItem(A,	25)

	

Line	number:	Times	executed



Line	1:	1

Line	2:	5

Line	3:	4

Line	4:	0

Line	5:	1

	

The	cost	difference	between	this	call	to	findItem()	and	the	previous	example	is	in	the
number	of	times	that	the	search	value	exists	in	the	array.	There	are	no	instances	of	25,	so
Line	4	never	executes	and	the	cost	is	reduced	to	11.

	

Example	1.3

A	=	<	45,	34,	32,	34,	56,	23,	12	>

findItem(A,	34)

	

Line	number:	Times	executed

Line	1:	1

Line	2:	8

Line	3:	7

Line	4:	2

Line	5:	1

	

The	difference	between	this	call	to	findItem()	and	the	previous	example	that	searched	for
the	34	is	the	size	of	the	array	A.	This	array	has	7	elements	instead	of	4,	which	increases	the
cost.	The	for	loop	executes	7	times.	There	are	two	instances	of	34	in	the	array,	which
results	in	Line	4	executing	two	times.	Lines	1	and	5	still	execute	one	time	each.	The	total
cost	is	19.

	

Example	1.4

A	=	<	45,	45,	45,	45,	45,	45,	45	>

findItem(A,	45)

	

Line	number:	Times	executed

Line	1:	1

Line	2:	8



Line	3:	7

Line	4:	7

Line	5:	1

	

In	this	example,	every	element	in	the	array	is	the	value	being	searched	for.	The	result	is
that	Line	4	will	execute	7	times.	All	other	costs	are	the	same	as	those	in	the	previous
example	with	7	elements.	This	scenario	represents	the	worst-case	cost	for	this	algorithm;
all	lines	in	the	algorithm	execute	the	maximum	number	of	times.	The	total	cost	is	23.

	

In	all	of	these	examples,	the	for	loop	is	the	biggest	contributor	to	the	cost	of	the	algorithm,
and	the	number	of	iterations	of	the	for	loop	is	determined	by	the	size	of	the	array	A.
Regardless	of	the	contents	of	the	array,	the	algorithm	always	loops	through	the	entire
array,	and	returns	the	last	index	of	the	search	value.

	

In	the	next	example,	Algorithm	1.2	includes	an	exit	when	the	search	value	is	found.	The
for	loop	is	still	the	biggest	contributor	to	the	algorithm	cost,	but	the	cost	and	the	result	of
the	algorithm	both	change	for	the	specified	input	values.

	
Algorithm	1.2.	findItemAndExit(A,	v)

Returns	the	first	index	of	the	value	v	in	the	array	A.

	

Pre-condition

A	is	an	array.

v	is	the	same	type	as	the	elements	of	A.

	

Post-condition

Returns	the	first	index	x	where	A[x]	=	v.

	

Algorithm

findItemAndExit(A,	v)

1.				index	=	-1

2.				for	i=0	to	A.end

3.								if	A[i]	==	v

4.												return	index

5.				return	index



	

Example	2:	Calculate	the	cost	of	findItemAndExit(A,	v)	for	various	inputs	of	A	and
v.

	

Example	2.1

A	=	<	45,	34,	32,	34	>

findItemAndExit(A,	34)

	

Line	number:	Times	executed

Line	1:	1

Line	2:	2

Line	3:	2

Line	4:	1

Line	5:	0

	

In	this	example,	the	element	is	found	in	the	array	in	the	second	position.	Line	1	executes
one	time.	Lines	2	and	3	both	execute	two	times.	On	the	second	execution	of	Line	3,	the
conditional	is	true	and	Line	4	executes	and	the	algorithm	exits.	Line	5	never	executes.	The
total	cost	is	6.

	

Example	2.2

A	=	<	45,	34,	32,	34	>

findItemAndExit(A,	25)

	

Line	number:	Times	executed

Line	1:	1

Line	2:	5

Line	3:	4

Line	4:	0

Line	5:	1

	

In	this	example,	the	search	value	is	not	found	in	the	array.	There	are	4	iterations	of	the	for
loop,	one	for	each	element	in	the	array,	plus	one	additional	evaluation	of	the	for	loop
conditional.	Line	3	executes	4	times	and	Line	4	executes	zero	times.	Line	5	executes	one



time	and	the	algorithm	exits.	The	total	cost	is	11.

	

Example	2.3

A	=	<	45,	34,	32,	34,	56,	23,	12	>

findItemAndExit(A,	34)

	

Line	number:	Times	executed

Line	1:	1

Line	2:	2

Line	3:	2

Line	4:	1

Line	5:	0

	

In	this	example,	the	search	value	is	found	in	the	array	and	the	array	size	is	larger	than	in
the	previous	examples	for	this	algorithm.	The	algorithm	exits	as	soon	as	the	value	is
found,	so	there	are	still	only	two	iterations	of	the	for	loop	and	both	Lines	2	and	3	execute
two	times.	Line	4	executes	one	time	and	Line	5	never	executes.	The	total	cost	is	6.

	

Example	2.4

A	=	<	45,	45,	45,	45,	45,	45,	45	>

findItem(A,	45)

	

Line	number:	Times	executed

Line	1:	1

Line	2:	1

Line	3:	1

Line	4:	1

Line	5:	0

	

In	this	example,	the	value	being	searched	for	is	the	first	element	in	the	array.	This	scenario
is	the	configuration	with	the	minimum	cost	for	this	algorithm.	There	is	only	one	iteration
of	the	for	loop.	Line	4	executes	one	time	and	line	5	never	executes.	The	total	cost	is	4.

	

The	worst-case	cost	scenario	is	different	for	the	findItem()	(Algorithm	1.1)	and



findItemAndExit()	(Algorithm	1.2)	algorithms.	For	findItem(),	the	worst-case	cost	happens
when	every	element	in	the	array	is	the	value	being	searched	for.	For	findItemAndExit(),	the
worst-case	cost	happens	when	the	value	is	not	found	in	the	array.	However,	common	to
both	algorithms	is	that	the	for	loop,	which	is	set	by	the	size	of	the	input	array,	is	the
biggest	contributor	to	the	cost	of	the	algorithm.	As	the	size	of	the	array	grows,	the	for	loop
requires	more	iterations	to	traverse	the	entire	array	and	the	worst-case	cost	increases.



1.3						Algorithm	Analysis
Evaluating	how	algorithms	perform	is	called	algorithm	analysis.	How	the	runtime	of	an
algorithm	scales	with	the	size	of	the	input	can	be	described	by	a	mathematical	function.
Presented	here	are	common	mathematical	functions	with	behavior	that	is	often	observed	in
algorithm	performance.	In	these	examples,	n	is	the	input	to	the	function	and	the	value	of	n
is	the	size	of	the	data	being	evaluated	in	an	algorithm.

1.3.1						The	Constant	Function
A	constant	function	is	defined	as:

	

f(n)	=	c

	

where	c	is	a	fixed	constant	such	as	c	=	5,	c	=	1,	or	c	=	510.	The	variable	n	is	the	size	of	the
data	that	needs	to	be	evaluated.	With	a	constant	function,	the	output	of	the	function	is	not
dependent	on	the	value	or	size	of	the	input	n,	the	output	will	always	be	the	same
regardless	of	n.

	

Constant	function	examples

•	Variable	assignment,	such	as	a	=	5

•	Inserting	an	element	to	the	front	of	a	linked	list

•	Inserting	an	element	to	the	end	of	an	array

•	Accessing	an	element	in	a	hash	table

1.3.2						The	Logarithmic	Function
The	logarithmic	function	is	defined	as:

	

f(n)	=	logbn

	

where	b	is	the	base	of	the	logarithm.	In	computer	science,	log2n	is	so	ubiquitous	that	the	2
is	often	left	off	and	log2n	is	written	as	log	n.

	

Logarithmic	function	examples

•	The	minimum	height	of	a	binary	search	tree

•	Searching	for	an	element	in	a	binary	search	tree	with	a	height	of	log	n

1.3.3						The	Linear	Function



The	linear	function	is	defined	as:

	

f(n)	=	n

	

The	output	of	this	linear	function	example	is	the	value	of	n	itself.	A	function	that	includes
a	constant,	such	as	f(n)	=	2n	or	f(n)	=	n	+	2,	also	qualifies	as	a	linear	function.

	

Linear	function	examples

•	Traversing	the	elements	in	a	linked	list

•	Traversing	the	elements	of	a	one-dimensional	array

•	Shifting	the	elements	in	a	one-dimensional	array

1.3.4						The	N-Log-N	Function
The	n-log-n	function	is	defined	as:

	

f(n)	=	nlog(n)

	

In	an	n-log-n	function,	the	log(n)	calculation	is	repeated	n	times.

	

N-Log-N	function	examples

•	n	searches	on	a	binary	search	tree	with	a	height	of	log	n

•	The	merge	sort	algorithm

1.3.5						The	Quadratic	Function
The	quadratic	function	is	defined	as:

	

f(n)	=	n2

	

Quadratic	function	examples

•	Traversing	a	2D	matrix	with	n	rows	and	n	columns

•	Algorithms	with	two	for	loops,	where	one	for	loop	nested	in	the	other	for	loop

•	The	bubble	sort	algorithm

1.3.6						The	Cubic	Function
The	cubic	function	is	defined	as:



	

f(n)	=	n3

	

Cubic	function	example

•	Algorithms	with	three	nested	for	loops

1.3.7						The	Exponential	Function
The	exponential	function	is	defined	as:

	

f(n)	=	bn

	

where	b	is	a	positive	constant	called	the	base.	In	computer	science,	the	most	common	base
is	2,	which	means	that	an	algorithm	can	be	described	on	the	order	of

	

f(n)	=	2n

	

Exponential	function	example

•	Iterating	through	all	possible	combinations	of	binary	data.	For	example,	if	given	a	binary
string	of	8	bits,	there	will	be	28	combinations	of	those	bits.	



1.4						Growth-rate	comparisons
The	functions	presented	all	have	different	asymptotic	behavior,	which	is	the	behavior	as
the	input	n	goes	to	infinity.	In	algorithm	analysis,	it	is	the	asymptotic	behavior	that	is	of
primary	concern.	Comparing	the	growth	behavior	of	individual	functions	shows	why	one
algorithm	might	be	desirable	over	another	algorithm	with	different	asymptotic	behavior.
The	functions	described	were	presented	in	order	of	their	growth	rates	slowest	to	fastest,
with	the	constant	function	having	a	growth	rate	of	zero	and	the	exponential	function
growing	the	fastest.

	

In	Figure	1,	the	growth	rates	for	a	constant,	linear,	and	log(n)	function	are	shown.	On	the
x-axis,	the	parameter	n	is	the	size	of	the	input	data.	For	example,	for	an	input	size	of	5	and
40,	the	linear	function	has	an	output	of	5	and	40,	respectively.	The	constant	functions	have
the	same	behavior	regardless	of	the	values	of	n.	The	log(n)	function	has	the	slowest
growth	rate	of	the	three,	and	the	linear	function	has	the	fastest	growth	rate.

	

Figure	1.	Comparison	of	growth	rates	for	a	constant,	linear,	and	log(n)	function	for	input	size	n.	The	linear
function	grows	faster	than	the	log	function.

	



Figure	2.	Comparison	of	growth	rates	for	log(n),	nlog(n),	and	linear	functions	for	a	given	input	size	n.	The	nlog(n)
function	grows	the	fastest	of	the	three	functions.

The	examples	in	Figure	2	show	that,	while	the	linear	function	grows	more	quickly	than	the
log(n)	function,	an	algorithm	with	nlog(n)	behavior	will	have	a	longer	runtime	than	either
the	linear	or	log(n)	functions	for	large	values	of	n.	However,	even	the	nlog(n)	function
doesn’t	grow	as	fast	as	the	quadratic	function	shown	in	Figure	3.

	

Figure	3.	Comparison	of	growth	rates	for	linear,	quadratic,	and	nlog(n)	functions.	The	x-axis	is	the	input	size	of
the	data.	The	quadratic	function	is	clearly	the	fastest	growing	of	the	three	functions.



Even	after	only	40	data	points,	which	is	a	small	input,	the	quadratic	function	clearly	is
growing	much	more	quickly	than	the	linear	or	nlog(n)	functions.	However,	none	of	the
functions	presented	can	compare	to	the	growth	of	the	exponential	function,	as	shown	in
Figure	4.	Any	algorithm	with	exponential	behavior	will	likely	have	very	poor	performance
for	large	input	sizes.

	

Figure	4.	Comparison	of	growth	rates	for	quadratic	and	exponential	functions	for	a	given	input	size	n.
Exponential	growth	rate	typically	equals	very	bad	performance	for	large	n.



1.5						Algorithmic	Complexity
Counting	how	many	times	lines	are	executed	in	an	algorithm	provides	an	estimate	for	the
runtime.	The	actual	cost	varies	by	computer	and	programming	language.	A	faster
computer	will	have	a	lower	cost,	and	functionality	can	be	1	line	of	code	in	1	language	and
10	lines	of	code	in	another.	Ultimately,	the	most	important	considerations	for	runtime	are
what	contributes	the	most	to	its	runtime	and	how	the	algorithm	scales	as	the	size	of	the
input	grows.	For	example,	in	the	findItem()	algorithm,	the	significant	contributor	to	the
runtime	was	the	for	loop.	When	the	size	of	the	array	is	small,	e.g.	10,	there	are	10
iterations	of	the	loop	and	three	constant	operations;	the	constants	contribute	significantly
to	the	cost.	However,	as	the	array	size	grows,	the	constants	become	less	significant.	If	the
array	size	is	10,000,	then	10,000	+	3	is	not	that	different	than	10,000.

1.5.1						Asymptotic	Analysis
Suppose	an	algorithm	for	processing	financial	data	takes	10,000	milliseconds	to	download
the	data	from	the	Internet,	and	then	10	milliseconds	to	process	each	transaction	(stocks
bought	and	sold).	Processing	n	transactions	takes	(10,000	+	10	n)	milliseconds.	

	

Even	though	10,000	>	10,	the	“10	n”	term	will	be	more	important	if	the	number	of
transactions	is	very	large.	After	1000	transactions,	the	quantities	will	be	equal.	The	values
10,000	and	10	are	coefficients	that	will	change	with	a	faster	computer	or	Internet
connection,	or	use	a	different	language	or	compiler.	Analyzing	the	algorithm	requires	a
means	for	expressing	the	theoretical	speed	of	an	algorithm	that	is	independent	of	the
environment	in	which	the	algorithm	is	implemented.	This	analysis	is	accomplished	by
ignoring	the	constant	factors.

1.5.2						Big-Oh	Notation
Big-Oh	notation	provides	the	upper	bound	on	how	quickly	two	functions	grow	as	the	input
size	n	->	infinity.	

	

Let	n	be	the	size	of	a	program’s	(algorithm’s)	input.	(The	input	is	any	data	type:	bits,
numbers,	words,	or	strings.).

	

Let	T(n)	be	a	function	that	represents	the	algorithm’s	precise	running	time	in	milliseconds,
given	an	input	of	size	n.	This	includes	the	specific	instructions	and	the	actual	runtime	of
each	instruction.

	

Let	f(n)	be	a	simple	mathematical	growth	function,	such	as	f(n)	=	n,	a	function	that	grows
at	a	rate	of	n.	The	most	common	growth	functions	were	given	in	the	previous	section.

	

The	growth	rate	of	T(n)	can	be	expressed	by	relating	it	to	another	growth	function.	If	T(n)



grows	no	faster	than	f(n),	then:

	

T(n)	is	in	O(f(n))	

	

or

	

T(n)	is	in	O(n)

	

if	and	only	if

	

T(n)	<=	c	f(n)

	

whenever	n	is	big,	for	some	large	constant	c.

	

The	terms	“big”	and	“large”	are	not	very	specific.	The	value	of	n	needs	to	be	big	enough
to	make	T(n)	fit	under	c	f(n)	curve.	The	value	of	c	needs	to	be	large	enough	to	make	T(n)
fit	under	the	c	f(n)	curve.

	

Example	3:	For	the	function	T(n)	=	10,000	+	10n,	choose	c	to	be	large	enough	to
make	T(n)	fit	underneath	cf(n).

Using	c	=	20,	the	graph	in	Figure	5	shows	the	asymptotic	behavior	of	the	algorithm.
Above	a	certain	value	of	n,	the	size	of	the	data	is	a	bigger	contributor	to	runtime	than	the
startup	cost	and	20*n	grows	faster	than	10,000*10n.

	

When	considering	asymptotic	behavior,	multiplying	by	a	positive	constant	does	not
change	the	result.	A	different	constant	can	change	where	function	values	cross,	i.e.	where
the	cost	of	calculations	dependent	on	input	size	outweighs	any	initialization	costs.	If	N	is
the	value	where	the	function	values	cross,	then	in	the	financial	data	example	with	c=20
and	N	=	1000.	If	there	are	only	a	few	transactions,	then	the	10,000	millisecond	startup
might	not	be	worth	it	and	a	less-efficient	algorithm	with	lower	startup	costs	could	be	a
better	choice.	However,	with	many,	many	transactions,	the	startup	cost	becomes	less	of	a
contributor	to	the	overall	cost.

	



Figure	5.	Growth	of	two	functions	for	a	given	input	n	showing	where	the	algorithm	with	faster	growth	rate
becomes	more	costly	than	a	function	with	slower	growth	but	higher	initial	cost.

Big-oh	notation	provides	a	theoretical	upper	bound	on	an	algorithm’s	growth	rate.	This
theoretical	upper	bound	is	also	referred	to	as	the	complexity	of	the	algorithm.

	

The	complexity	can	be	calculated	from	the	cost	by	applying	the	following	rules:

•	If	T(n)	includes	multiple	terms,	keep	the	term	with	the	largest	growth	rate,	and	discard
the	others.

•	Any	constants	in	T(n)	can	be	omitted.

	

Example	4:	Calculate	the	complexity	of	T(n)	=	5n3	+	3n2	+	n	+	5.

	

•	The	term	5n3	has	the	largest	growth	rate	and	will	dominate	the	other	terms	as	n	grows
sufficiently	large.	The	3n2	and	n	terms	can	be	discarded.

	

•	5n3	has	a	constant	of	5	that	can	be	omitted,	leaving	n3.

	

•	T(n)	=	5n3	+	3n2	+n+5	is	in	O(n3).

	

Example	5:	Calculate	the	complexity	of	the	findItem()	algorithm	(Algorithm	1.1)	if
its	cost	is	T(n)	=	3n	+	3.

	

In	the	findItem()	algorithm,	n	is	the	array	size.

•	The	dominant	term	is	3n;	remove	the	constant	3.

•	Drop	the	constant	3.



•	T(n)	is	in	O(n).



2									Computer	memory
The	bit	is	the	smallest	unit	of	information	stored	in	a	computer.	Each	bit	can	be	in	one	of
two	possible	states:	0	or	1,	representing	off	or	on	or	true	or	false.	Individual	bits	are
grouped	together	into	groups	of	8	to	create	bytes,	and	the	byte	is	how	numbers	are	actually
stored.	(Everything	is	stored	as	a	number,	even	strings)	The	value	of	the	byte	is
determined	from	the	state	of	the	bits.

	

Each	position	in	the	byte	represents	a	value.	Figure	1	shows	an	example	of	one	byte	where
the	left-most	position	has	a	decimal	value	of	128	and	the	right-most	position	has	a	decimal
value	of	1.	The	bottom	row	in	the	figure	shows	the	power	of	2	equivalent	for	the	decimal
value.	If	the	bit	at	a	position	is	set	to	1,	then	that	decimal	value	is	included	in	calculating
the	byte	value.

	

Figure	1.	Example	byte	where	the	left-most	bit	position	represents	a	value	of	128	and	the	left-most	bit	position
represents	a	value	of	1.

An	example	of	how	to	calculate	the	byte	value	from	the	bit	pattern	is	shown	in	Figure	2.

Figure	2.	In	this	byte,	the	positions	for	2,	8,	and	16	are	set,	which	makes	the	value	of	the	byte	26.

The	positions	for	the	2,	8,	and	16	have	a	1,	which	makes	the	value	for	this	byte:

	

2	+	8	+	16	=	26.

	

The	value	can	also	be	calculated	from	the	powers	of	2:

	

21	+	23	+	24	=	26



2.1						Binary	and	hexadecimal	representation
The	bit	string	of	0s	and	1s,	such	as	00011010,	is	a	binary	digit,	and	the	conversion	to	26	is
a	binary	to	decimal	conversion.	But,	addresses	and	values	are	generally	reported	as
hexadecimal,	which	is	base	16,	instead	of	base	10.	To	convert	from	decimal	to
hexadecimal,	the	hexadecimal	digits	0	–	F	represent	the	decimal	values	0	–	15.

	

Digits	0	–	9	in	decimal	and	hexadecimal	are	the	same.	However,	digits	10	–	15	are	A	–	F
in	hex.

Hex	=	Decimal

A	=	10

B	=	11

C	=	12

D	=	13

E	=	14

F	=	15



2.2						Maximum	value	of	a	byte
The	maximum	value	of	one	byte	is	determined	by	setting	all	bit	positions	to	1,	as	shown	in
Figure	3.	The	sum	of	all	bit	positions	in	the	byte	is:

	

128	+	64	+	32	+	16	+	8	+	4	+	2	+	1	=	255.

	

Figure	3.	The	maximum	value	for	one	byte	is	calculated	by	summing	the	values	for	all	bit	positions	in	the	byte.

The	same	approach	is	used	to	calculate	the	maximum	value	of	the	first	four	bits	in	the
byte,	as	shown	in	Figure	4.	The	sum	of	the	first	four	bits	is:

	

8	+	4	+	2	+	1	=	15.

	

Figure	4.	The	maximum	value	of	the	first	four	bits	in	the	byte	is	the	sum	of	the	first	four	bit	positions.



2.3						Converting	to	hexadecimal
It’s	not	a	coincidence	that	15	is	also	the	maximum	hex	value	of	F,	since	F	=	15.	To
represent	a	byte’s	value	in	hex,	split	the	byte	into	two	groups	of	four	bits,	called	nibbles,
and	calculate	the	hex	value	for	each	nibble.	Figure	5	shows	the	multiple	representations	of
a	byte.	The	first	row	in	the	image	is	the	decimal	value.	The	second	row	is	the	decimal
value	for	a	byte	divided	into	two	nibbles.	The	third	row	shows	whether	the	bit	for	that
position	is	set,	and	the	fourth	row	is	the	power	of	two	equivalent	for	the	decimal	value.
The	fifth	row	in	the	image	is	the	hex	value	for	the	nibble.

Figure	5.	The	maximum	byte	value	of	255	in	decimal	is	the	same	as	FF	in	hex.



2.4						Multiple	bytes	of	information
More	than	one	byte	is	needed	to	represent	numbers	larger	than	255.	For	example,	a
number	such	as	1000	can	be	stored	in	two	bytes,	where	there	are	16	bits	of	information.
Each	bit	in	those	two	bytes	represents	a	power	of	2.	In	the	second	byte,	the	powers	of	2	are
between	28	and	215.	An	example	of	a	two-byte	value	is	shown	in	Figure	6.

	

Figure	6.	In	two	bytes	of	data,	the	maximum	bit	value	is	32,768.

The	same	process	for	determining	the	value	of	one	byte	is	used	to	determine	the	value	of
two	bytes.	Sum	up	the	values	of	the	bit	positions	set	to	1.	In	Figure	7,	there	is	an	example
of	this	calculation	for	two	bytes.	The	value	of	those	two	bytes	is	calculated	as:

	

32768	+	8192	+	2048	+	1024	+	128	+	32	+	8	+	2	=	44202

	

Figure	7.	An	example	of	a	two-byte	data	type.	Sum	up	the	values	for	all	bit	positions	set	to	1	to	get	the	value
stored	in	the	two	bytes.

2.4.1						Representing	multiple	bytes	in	hexadecimal
With	multiple	bytes	of	information,	it	is	much	easier	to	represent	the	value	in	hex	than	it	is
to	calculate	the	decimal	value.	The	computer	only	sees	0	and	1,	so	the	representation	here
is	just	for	the	benefit	of	human	readability.	Divide	the	bytes	into	groups	of	four	bits	and
calculate	the	hex	value	for	each	group	of	four	bits.

	

Example	1:	Calculate	the	decimal	and	hexadecimal	values	for	the	two-byte	data	type
shown	in	Figure	8.

	

The	decimal	value	is	calculated	by	summing	up	the	values	for	each	of	the	bit	positions	set
to	1,	which	is:

	

32768	+	8192	+	2048	+	1024	+	128	+	32	+	8	+	2	=	44202.

	

The	hexadecimal	value	is	calculated	by	dividing	the	two	bytes	into	four	groups	of	four
bits,	where	each	of	the	four	bits	has	a	value	of	8,	4,	2,	or	1.	Sum	up	the	total	of	each	of	the



four	bits	and	assign	a	value	between	0-F	to	the	group	of	bits.	The	hexadecimal	value	is
ACAA:

	

8	+	2	=	A

8	+	4	=	C

8	+	2	=	A

8	+	2	=	A

	

Figure	8.	Example	showing	how	to	calculate	the	hexadecimal	value	from	the	bit	positions	for	two	bytes	of
information.



2.5						Maximum	value	of	n	bytes
The	maximum	value	of	2	bytes	is	the	sum	of	all	positions,	65535.	This	value	can	also	be
determined	for	n	bytes	of	data	by	subtracting	1	from	the	next	power	of	two.	The	maximum
bit	value	is	215	in	two	bytes.	Therefore,	the	next	bit	value,	if	there	were	one,	would	be	216.
The	maximum	value	of	two	bytes	is	216	–	1.	In	one	byte	of	data,	the	maximum	value	is
255,	which	is	28	–	1.	The	leftmost	position	in	one	byte	represents	27.	The	first	position
(right-most)	in	the	second	byte	is	28.	The	general	formula	for	n	bytes	is	2(n*8)	-	1.



2.6						Variables	and	types
Variables	are	storage	locations	in	memory.	When	we	declare	a	variable,	such	as

	

int	x;

	

a	label	called	x	is	affiliated	with	a	location	in	memory,	which	stores	a	value.	The
programmer	who	declares	x	doesn’t	need	to	know	where	in	memory	the	data	is	stored;	any
reference	to	the	data	is	handled	by	referencing	x.

	

Each	location	in	memory	has	an	address	where	one	byte	of	information	can	be	stored.	The
amount	of	memory	assigned	to	a	variable	depends	on	the	type	of	that	variable,	which	also
determines	the	range	of	values	that	can	be	associated	with	the	variable.	Some	common
data	types	and	their	sizes	are:

	

int:	4	bytes

char:	1	byte

float:	4	bytes

long:	8	bytes

double:	8	bytes

	

The	bytes	for	a	particular	variable	of	a	type	listed	above	are	stored	in	contiguous	one-byte
locations.	For	example,	the	value	0xACAA	from	Figure	8	would	be	stored	in	two
contiguous	bytes	of	memory.	Assume	the	first	byte	is	stored	in	a	fictional	memory	location
0xFF01.	Because	the	value	is	two	bytes,	it	also	occupies	0xFF02.	Figure	9	shows	a	visual
representation	of	memory	addresses	and	how	a	value	could	be	stored.	The	0x	in	front	of
the	address	and	value	is	to	designate	that	it	is	a	hexadecimal	value.

Figure	9.	Memory	addresses	and	two	bytes	of	data	stored	in	two	contiguous	bytes	of	memory.

When	a	variable	is	associated	with	a	location	in	memory,	referencing	that	variable	pulls	all
bytes	associated	with	it.	For	example,	consider	the	memory	layout	and	variable
assignments	shown	in	Figure	10.	The	variable	X	is	assigned	to	location	0xFF01	and	uses



four	bytes	of	memory,	and	the	variable	Y	is	assigned	to	location	0xFF05	and	also	uses	four
bytes	of	memory.	When	either	of	these	variables	is	referred	to	in	code,	all	bytes	associated
with	the	variable	are	read	and	the	value	is	reconstructed	from	those	bytes.	For	the	X
variable,	the	value	is	obtained	by	converting	the	binary	sequence	1	1	1	1	1	0	1	0	0	0	0	1	0
1	0	1.	For	the	Y	variable,	the	value	is	obtained	by	converting	the	binary	sequence	1	0	0	1	0
1	0	1	0	0	1	0	0	0	0	1.

Figure	10.	Variables	are	associated	with	a	memory	location	and	include	all	bytes	needed	to	store	the	correct	value
for	that	variable.



2.7						Pointers
In	C++,	there	are	variables	that	store	the	memory	address	of	other	variables.	These
variables	are	called	pointers.

A	regular	integer	variable	called	X	is	declared	as:

	

int	X;

	

A	pointer	variable	called	ptrX	that	points	to	the	address	of	X	is	declared	as:

	

int	*ptrX	=	&X;

	

The	value	of	the	variable	that	ptrX	points	to	is	retrieved	using	*ptrX:

	

cout<<*ptrX<<endl;

	

Important	Notation:

•	In	a	variable	declaration,	the	*	signifies	that	the	variable	being	declared	is	a	pointer
variable.

•	The	*	is	also	a	dereference	operator	to	retrieve	the	value	of	the	variable	to	which	the
pointer	points.

•	The	&	notation	means	“address	of.”

	

The	relationship	between	*ptrX	and	X	in	memory	is	shown	in	Figure	11.	The	variable	X	is
stored	at	0xFF01	and	uses	four	bytes.	The	variable	ptrX	is	stored	at	0xFFFA	and	holds	the
address	of	X.

	



Figure	11.	The	variable	X	is	stored	at	0xFF01	and	uses	four	bytes.	The	variable	ptrX	is	stored	at	0xFFFA	and
holds	the	address	of	X.

When	declaring	a	pointer	variable,	the	variable	must	have	a	type	because	it	specifies	how
much	memory	is	associated	with	the	address	stored	in	the	pointer.

	

In	the	example,

	

int	x;

int	*ptrX	=	&x;

	

both	variables	are	integers.	Creating	a	pointer	variable	of	one	data	type	that	points	to	a
variable	with	a	different	data	type	would	generate	an	error.	For	example,

	

int	x;

double	*ptrX	=	&x;

	

would	generate	an	error	because	different	amount	of	memory	are	associated	with	each
variable.	The	value	of	a	variable	is	calculated	from	all	of	the	bytes	associated	with	that
variable.	If	the	pointer	variable	is	reading	four	bytes,	and	the	variable	it	points	to	is	storing
eight	bytes,	then	there	is	an	inconsistency	in	the	amount	of	memory	for	each	variable	and
potentially	the	value	of	the	variable.		



2.8						Declaring	pointer	variables
	

Example	1:	Create	a	variable	called	intX	with	a	value	of	5.	Print	its	value	and	its
address.

	

int	intX	=	5;

	

To	retrieve	the	address,	use	the	address	of	operator	&.

	

cout<<”Value	of	intX:	“<<intX<<endl;				

cout<<”Address	of	intX:	“<<&intX<<endl;

	

These	cout	statements	will	display:

	

Value	of	intX:	5

Address	of	intX:	0x<address>

	

where	<address>	is	a	large	hexadecimal	number	that	is	the	address	of	intX.

	

Example	2:	Create	a	variable	called	intB	that	has	a	value	of	50	and	a	pointer	called
ptrB	that	points	to	the	address	of	intB.

	

int	intB	=	50;

int	*ptrB	=	&intB;

	

Example	2.1:	Print	the	address	of	intB	and	the	address	that	to	which	ptrB	points.

	

cout<<”Address	of	intB:	”<<&intB<<endl;

cout<<”Address	pointed	to	by	ptrB:	“<<ptrB<<endl;

	

These	cout	statements	will	both	display	the	same	hexadecimal	address.

	



Example	2.2:	Print	the	value	of	intB	and	the	value	of	the	variable	to	which	ptrB
points.

	

To	retrieve	the	value	of	the	variable	that	ptrB	points	to,	include	the	dereference	operator	*,
which	can	be	read	as	“the	value	of	the	variable	whose	address	is	stored	in”	ptrB.

	

cout<<”Value	of	variable	pointed	to	by	ptrB:	“<<*ptrB<<endl;

cout<<”Value	of	intB:	“<<intB<<endl;

	

The	output	of	these	cout	statements	is:

	

Value	of	variable	pointed	to	by	ptrB:	50

Value	of	intB:	50

	

Example	2.3:	Add	10	to	intB	and	print	the	value	of	intB	and	*ptrB.

	

intB	=	intB	+	10;

cout<<”Now	the	value	of	*ptrB	is	“<<*ptrB<<endl;

cout<<”The	value	of	intB	is	“<<intB<<endl;

	

Changing	the	value	of	either	intB	or	*ptrB	changes	the	value	for	both	variables	since	they
are	both	accessing	the	same	memory	location.	The	output	of	these	cout	statements	is:

	

Now	the	value	of	*ptrB	is	60

The	value	of	intB	is	60

	



3									Arrays
An	array	is	a	data	structure	used	to	store	a	collection	of	data,	where	each	element	in	the
collection	is	the	same	type	and	size.	All	array	elements	are	stored	in	a	contiguous	block	of
computer	memory.	Arrays	are	often	used	to	store	data	collected	over	time,	and	the	index	in
the	array	establishes	the	order	in	the	data.

	

An	array	data	type	is	available	in	most	programming	languages	and	is	also	the	underlying
data	structure	for	interfaces,	such	as	Vectors,	in	higher-level	languages.	There	are	also
common	operations	involving	arrays	in	complicated	algorithms	for	searching	and	sorting
on	large	data	sets.	Having	a	solid	grasp	of	arrays,	both	their	strengths	and	limitations,	will
make	it	easier	to	understand	these	complicated	algorithms.

	

Arrays	are	fast	and	simple	to	implement.	Array	elements	are	stored	in	contiguous	memory,
which	makes	them	faster	to	access	than	if	they	were	distributed	in	memory.	Arrays	are
also	easy	to	implement.	Only	one	line	of	code	is	required	to	declare	an	array	and
individual	elements	can	be	accessed	in	one	line	of	code	using	their	index.

	

Arrays	also	have	their	limitations;	primarily,	they	have	a	fixed	size.	At	the	time	that	an
array	is	declared,	a	fixed	amount	of	memory	needs	to	be	associated	with	the	variable,	and
for	applications	where	the	array	fills	up	or	the	size	is	not	known	at	runtime,	this	limitation
is	often	addressed	with	expensive	array	doubling	algorithms.



3.1						Creating	an	array
Declaring	an	array	is	syntactically	similar	to	declaring	a	scalar	variable.	The	only
difference	is	that	the	size	of	the	array	needs	to	be	specified.	For	example,	declare	an	array
of	10	integers	as	follows:

	

int	x[10];

	

The	array	variable	x	can	be	visualized	as	a	sequence	of	10	boxes,	as	shown	in	Figure	1,
where	each	box	can	store	an	array	element.	Individual	elements	in	the	array	are	accessed
using	the	index	of	the	element.	For	example,	x[0]	accesses	the	first	element	in	the	array
and	x[9]	accesses	the	last	element	in	the	array.	The	statement

	

int	y	=	x[5];

	

creates	a	variable	y	and	sets	it’s	value	to	the	value	of	x[5].	The	statement

	

x[5]	=	y;

	

sets	the	value	of	x[5]	to	the	value	of	variable	y.

	

Figure	1.	Visualization	of	an	array	of	10	integer	elements.	Each	element	can	be	accessed	using	the	index	of	the
element.

Arrays	can	be	of	any	type,	including	the	built-in	types,	such	as	integers	and	doubles,	as
well	as	user-created	types	using	classes	and	structs.	Arrays	can	also	have	one	or	more
dimensions.

	

//an	array	of	10	doubles

double	x[10];

	

//an	array	of	5	integers

int	x[5];

	



//an	array	of	20	strings

string	x[20];

	

//a	2D	array	of	integers	that	is	5	rows	and	10	columns

int	x[5][10];

	

//an	array	of	10	WeatherData,	where	WeatherData	defined	by	a	struct

struct	WeatherData{				

double	temperature				

double	humidity				

double	windVelocity

};

WeatherData	wd[10];

	

Example	1:	Set	the	value	of	the	elements	in	array	x	to	the	index	of	the	element.

	

Updating	x	to	store	its	index	as	its	value	is	most-efficiently	accomplished	by	looping
through	x	and	setting	the	loop	iterator	as	the	value	for	each	array	element.

	

for	i	=	0	to	x.end

x[i]	=	i

	

This	algorithm	writes	the	value	of	i	to	x[i]	and	generates	the	array	shown	in	Figure	2.

	

Figure	2.	Array	generated	by	algorithm	in	Example	1.	The	index	i	is	written	to	x[i].



3.2						Array	Operations
3.2.1					Searching	an	array
To	search	for	a	specified	value	in	an	array,	iterate	through	the	array	using	the	array	index
until	the	value	is	found.	The	searchArray()	algorithm	in	Algorithm	3.1	takes	the	array	and
the	value	to	search	for	as	arguments	and	returns	the	index	in	the	array	where	the	value	is
found.

	
Algorithm	3.1.	searchArray(A,	v)

Returns	the	index	of	the	value	v	in	the	array	A.

	

Pre-condition

A	is	an	array.

v	is	a	valid	search	value	that	is	the	same	type	as	the	elements	in	A.

	

Post-condition

Returns	the	index	x	where	A[x]	=	v.

	

Algorithm

searchArray(A,	v)

1.				found	=	false

2.				index	=	-1

3.				x	=	0

4.				while(!found	and	x	<=	A.end)

5.								if	A[x]	==	v

6.				found	=	true

7.												index	=	x

8.								else

9.													x++

10.		return	index

	

Complexity	of	search	operation

1D	array:	O(n)



2D	array:	O(n2)

	

where	n	is	the	size	of	the	array.

3.2.2					Adding	an	element	to	an	array
To	add	an	element	to	an	array,	the	elements	that	are	currently	in	the	array	need	to	be
shifted	out	of	the	way	to	make	room	for	the	new	element.	The	insertArrayElement()
algorithm	shown	in	Algorithm	3.2	takes	the	array,	the	value	to	insert	and	the	position
where	it	should	be	inserted,	and	the	number	of	active	elements	in	the	array	as	arguments.
The	algorithm	updates	the	array	to	include	the	new	element.

	
Algorithm	3.2.	insertArrayElement(A,	v,	index,	numElements)

Adds	the	element	v	to	the	array	A	at	the	index	position.

	

Pre-condition

A	is	an	array.

v	is	the	same	type	as	the	elements	in	A.

index	is	a	valid	integer	less	than	the	size	of	A,	0	<=	index	<=	A.end.

numElements	is	the	number	of	occupied	indices	in	A,	where

0	<=	numElements	<=	A.end.

	

Post-condition

Array	A	is	updated	such	that	A[index]	=	v.

numElements	is	increased	by	1.

	

Algorithm

insertArrayElement(A,	v,	index,	numElements)

1.			for	x	=	numElements-1	to	index

2.							A[x+1]		=	A[x]

3.			A[index]	=	v

	

Using	the	number	of	elements	currently	in	the	array	instead	of	the	size	of	the	array	reduces
the	number	of	computations	when	the	array	isn’t	full	because	unpopulated	locations	are
ignored.	The	insertArrayElement()	algorithm	assumes	there	is	space	available	in	the	array.
If	the	array	is	full,	the	element	in	the	last	position	in	the	array	will	be	overwritten.



	

Example	2:	Add	a	5	to	the	array	in	Figure	3	at	x[4].

	

For	this	example,	the	number	of	elements	is	7	and	the	index	is	4.	The	for	loop	will	work
backwards	through	the	array,	starting	at	the	last	populated	element,	x[6],	and	shifting	each
element	up	to	and	including	x[4].	The	elements	x[4],	x[5],	and	x[6]	will	be	shifted	by	1	to
open	a	space	at	x[4].	The	state	of	the	array	after	the	for	loop	is	shown	in	Figure	4.	Notice
that	the	value	of	x[4]	hasn’t	changed	in	the	for	loop.	On	Line	3	of	the
insertArrayElement()	algorithm,	x[4]	will	be	overwritten	with	the	new	value	to	generate
the	final	array,	which	is	shown	in	Figure	5.

	

Figure	3.	Initial	state	of	array	x	for	Example	2.	A	5	needs	to	be	added	to	the	array	at	x[4]	and	all	elements	after
x[4]	need	to	be	shifted	out	of	the	way	to	open	a	space.

	

Figure	4.	State	of	array	x	at	the	end	of	the	for	loop.	The	same	value	is	stored	at	x[4]	and	x[5].

	

Figure	5.	Final	state	of	array	x	after	5	inserted	at	x[4].	The	number	of	elements	in	the	array	has	increased	by	1.

Complexity	of	adding	an	element	to	an	array

O(n),	where	n	is	the	size	of	the	array.

3.2.3					Copying	an	array
The	copyArray()	algorithm	shown	here	(Algorithm	3.3)	writes	the	contents	of	one	array
into	another	array,	and	preserves	the	order	of	the	data.	The	algorithm	assumes	that	the
array	being	copied	to	is	at	least	as	big	as	the	array	being	copied	from.

	
Algorithm	3.3.	copyArray(A,	B)

Copies	the	elements	of	array	A	to	the	corresponding	indices	in	array	B.

	

Pre-conditions



A	and	B	are	arrays	of	the	same	type.

The	size	of	B	is	at	least	as	big	as	the	size	of	A.

	

Post-conditions

The	elements	of	B	in	the	positions	B[0	…	A.end]	are	the	same	as	the	elements	of	A	in	the
corresponding	positions.

	

Algorithm

copyArray(A,	B)

1.			for	x	=	0	to	A.end

2.									B[x]	=	A[x]

	

Array	copy	complexity

1D	array:	O(n)

2D	array:	O(n2)

	

where	n	is	the	size	of	the	array.

3.2.4					Deleting	an	element	from	an	array
An	element	can	be	removed	from	an	array	by	shifting	the	elements	in	the	array	to
overwrite	the	element	to	delete.	The	deleteArrayElement()	algorithm	in	Algorithm	3.4
takes	the	array,	index	of	the	element	to	delete,	and	the	number	of	elements	in	the	array	as
arguments	and	shifts	the	elements	to	the	left	to	overwrite	the	index	position.	The	shift	left
is	the	opposite	direction	of	the	shift	to	insert	an	element	into	an	array.

	
Algorithm	3.4.	deleteArrayElement(A,	index,	numElements)

Deletes	the	element	in	array	A	at	the	index	position	and	decreases	the	number	of	elements
in	the	array	by	1.

	

Pre-conditions

A	is	an	array.

index	is	a	valid	integer,	0	<=	index	<=	A.end.

numElements	is	a	valid	integer,	where

0	<=	numElements	<=	A.end.

	



Post-conditions

The	value	at	A[index]	is	overwritten.

numElements	is	decreased	by	1.

	

Algorithm

deleteArrayElement(A,	index,	numElements)

1.			for	x	=	index	to	numElements	-	2

2.									A[x]	=	A[x+1]

3.			numElements	=	numElements	-	1

	

Example	3:	Delete	the	14	in	the	array	in	Figure	6	at	x[4].

In	this	example,	the	number	of	elements	is	7	and	the	index	is	4.	The	for	loop	in	the
deleteArrayElement()	algorithm	will	shift	x[5]	and	x[6]	to	x[4]	and	x[5],	respectively.

The	state	of	the	array	at	the	end	of	the	for	loop	is	shown	in	Figure	7.	On	Line	3	of	the
algorithm,	the	number	of	elements	in	the	array	is	decremented	by	1	to	reflect	that	an
element	was	removed.	The	value	of	x[6]	remains	unchanged,	but	won’t	be	accessed	as
long	as	numElements	contains	the	correct	number	of	“active”	array	elements.

	

Figure	6.	Array	x	for	Example	3.	The	14	at	x[4]	needs	to	be	removed	from	the	array	using	Algorithm	3.4.

Figure	7.	State	of	array	x	after	x[4]	is	removed.	There	is	still	at	6	at	x[6]	but	it	won’t	be	accessed	because
numElements	will	restrict	the	for	loop	to	evaluate	x[0	…	5]	only.

Complexity	of	deleting	an	array	element

O(n)



3.3						Arrays	in	memory
When	an	array	is	declared,	the	name	of	the	array	is	a	pointer	to	the	first	element	in	the
array	in	memory.	For	example,	given	an	array

	

int	x[10];

	

the	command

	

cout<<x<<endl;

	

will	display	the	address	of	x[0].	Referencing	(x+1)	returns	the	address	of	x[1],	(x+2)
returns	the	address	of	x[2],	and	so	on.	The	data	type	of	the	array	elements	determines	how
much	memory	is	associated	with	each	element,	and	how	much	the	address	changes	with
each	+1.	In	an	array	of	integers,	an	array	element	occupies	four	bytes	in	memory.
Therefore,	adding	+1	increases	the	address	by	four	bytes.	In	an	array	of	doubles,	each
element	occupies	8	bytes,	and	incrementing	by	1	increases	the	address	by	8	bytes.	An
example	for	an	array	of	10	integers	is	shown	in	Figure	8.	A	theoretical	address	(generated
from	a	real	address	by	removing	the	first	eight	hex	digits)	is	shown	for	each	element.

	

Figure	8.	Example	addresses	for	each	element	in	an	array	of	10	integers.	The	address	of	each	element	increases	by
four	over	the	address	of	the	previous	element	in	the	array.



3.4						Dynamic	memory	allocation
When	memory	is	statically	allocated	for	a	variable,	that	memory	is	reserved	until	the
variable	goes	out	of	scope.	If	more	memory	is	allocated	than	what	is	needed,	then	the
memory	is	wasted.	If	not	enough	memory	is	allocated,	a	variable	such	as	an	array,	will	fill
up	and	not	be	able	to	store	all	of	the	data.

	

To	resolve	the	issues	presented	by	static	variable	allocation,	memory	can	be	allocated
dynamically	and	adjusted	as	the	program	is	running.



3.5						Stack	and	heap	memory
There	are	two	areas	of	memory	where	variables	are	stored,	they	are	the	call	stack	and	the
heap.

3.5.1					The	Stack
Local	variables	are	stored	on	the	stack.	For	example,	an	array	declared	statically	inside	a
function	would	be	placed	on	the	stack.	The	stack	has	limited	space	available,	and	is
carefully	managed	by	the	processor	to	free	memory	when	it	is	no	longer	needed.

3.5.2					The	Heap
The	heap	is	a	pool	of	free	memory	that	is	much	larger	than	the	stack	and	used	for	storing
variables	that	are	created	dynamically	during	runtime.	Variables	created	using	pointers	are
created	on	the	heap.

	

Unlike	the	stack	where	memory	is	managed	by	the	processor,	the	developer	has	to	handle
memory	management	of	the	heap.	Variables	allocated	on	the	heap	have	to	also	be
explicitly	de-allocated.

	

Features	of	the	heap

•	Allocated	memory	stays	allocated	until	it	is	specifically	de-allocated	(Beware	of	memory
leaks).
•	Dynamically	allocated	memory	must	be	accessed	through	a	pointer.
•	Allocate	large	arrays,	structures,	and	objects	on	the	heap.

	

Allocating	variables	dynamically

To	dynamically	allocate	a	variable,	use	the	new	keyword	in	C++.	Free	the	memory	using
the	delete	keyword.

	

//a	dynamically	allocated	array	of	10	doubles

double	*x	=	new	double[10];

	

//a	dynamically	allocated	array	of	5	integers

int	*x	=	new	int[5];

	

//a	dynamically	allocated	array	of	20	strings

string	*x	=	new	string[20];



	

/*A	2D	array	of	integers	that	is	5	rows	and	10	columns	can	be	created	using	an	array	of
pointers,	where	each	pointer	points	to	the	first	element	in	an	array.

*/

int	rows	=	5;

int	columns	=	10;

int	**x	=	new	int*[rows];

	

for(int	y	=	0;	y	<	rows;	y++)

x[y]	=	new	int[columns];

	

//a	dynamically	allocated	array	of	10	WeatherData

	

struct	WeatherData{				

double	temperature;				

double	humidity;				

double	windVelocity;

};

WeatherData	*wd	=	new	WeatherData[10];

	

Variables	created	dynamically	need	to	be	deleted	when	they	are	no	longer	needed.	The
memory	allocated	to	local	variables	created	dynamically	will	not	be	freed	when	the
variable	goes	out	of	scope.	To	free	the	memory	use	the	delete	keyword.

	

//Free	a	1D	array

delete[	]	x;

delete[	]	wd;

	

//Free	a	2D	array

for(int	y	=	0;	y	<	rows;	y++)

delete[	]	x[y];

delete[	]	x;

3.5.3					Array	doubling



Array	doubling	is	an	algorithm	used	to	increase	the	size	of	an	array	when	an	array	is	full,
but	additional	space	is	needed	to	store	more	data.	The	algorithm,	shown	in	Algorithm	3.5,
generates	a	new	array	dynamically	that	is	twice	the	size	of	the	current	array,	then	copies
the	values	from	the	current	array	into	the	first	half	of	the	new	array.

	
Algorithm	3.5.	doubleArray(A)

Creates	a	new	array	that	is	twice	the	length	as	the	array	A,	copies	the	elements	of	A	into
the	new	array,	and	returns	the	new	array.

	

Pre-conditions

A	is	an	array.

	

Post-conditions

Returns	an	array	that	is	the	same	type	and	twice	the	length	as	A.

	

Algorithm

doubleArray(A)

1.			B.length	=	A.length	*	2

2.			for	x	=	0	to	A.end

3.							B[x]	=	A[x]

4.			return	B

	

Note:	By	declaring	a	new	array	and	returning	that	array	from	the	algorithm,	there	is	a
memory	leak	in	the	code	if	the	memory	assigned	to	A	is	not	freed	after	doubleArray()	is
called.

	

Array	doubling	complexity

O(n)



3.6						Array	Questions
	

1.	Write	a	C++	function	to	double	the	size	of	an	array	an	arbitrary	number	of	times,	and
populate	the	second	half	of	the	array	with	values	that	are	2x	the	values	in	the	first	half	of
the	array.	

	

The	function	takes	three	arguments	-	the	initial	1D	array,	its	size,	and	the	number	of	times
to	double	it.	The	function	should	return	the	new	array.	The	expected	function	prototype	is:

	

int	*ArrayDynamicAllocation(int	array[],	int	size,	int	number);

	

For	the	following	inputs:

	

int	arr[2]		=	{0,	1};

int	arraySize	=	2;

int	numberOfDoublings	=	3;

	

the	expected	output	is	an	array	that	contains:

	

<	0,1,0,2,0,2,0,4,0,2,0,4,0,4,0,8	>.	

	

2.	Write	a	C++	function	that	finds	all	instances	of	a	specified	value	in	an	array	and
removes	them.	Each	time	an	element	is	removed,	the	array	should	be	shifted	to	fill	the
gap.

	

3.	Write	a	C++	function	to	copy	all	elements	of	an	array	to	a	new	array,	except	for	a
specified	value.	For	example,	copy	all	elements	except	the	5	from	an	array	A	to	array	B.

	

4.	Write	a	C++	function	to	remove	an	element	from	an	array	and	shift	the	array	to	fill	the
empty	spot.	The	function	takes	three	arguments	-	the	input	array,	size	of	array,	and	the
value	to	be	removed	from	the	array.	The	expected	function	prototype	is:

	

void	arrayShift(int	arr[],int	length,int	value);

	



For	the	following	inputs:

	

int	inputArray[5]	=	{10,	20,	30,	40,	50};

int	length	=	5;

int	value	=	30;

	

the	expected	result	is	an	array	that	contains:

	

<	10,	20,	40,	50	>.

	

5.	Write	a	C++	function	to	find	the	second	largest	element	in	an	array.	The	function	takes
two	arguments	-	the	input	array	and	the	size	of	the	array,	and	returns	the	second	largest
element.	The	prototype	for	the	expected	function	is:

	

int	secondLargest(int	arr[],int	size);

	

For	the	following	inputs:

	

int	inputArray[4]	=	{1,	2,	3,	4};

int	length	=	4;

	

the	expected	return	value	from	the	function	is	3.

	

6.	Write	a	C++	function	that	finds	the	most	common	repeating	element	in	an	array.	The
function	takes	two	arguments	-	the	input	array	and	the	size	of	the	array,	and	returns	the
most	common	element.	The	prototype	for	the	expected	function	is:

	

int	commonRepeatingElement(int	arr[],int	length);

	

For	the	following	inputs:

	

int	inputArray[13]	=	{5,	5,	5,	3,	3,	1,	1,	3,	3,	3,	1,	3,	3};

int	length	=	13;



	

the	expected	return	value	from	the	function	is	3.



4									Sorting	algorithms
A	sorting	algorithm	is	an	algorithm	that	puts	the	elements	in	a	collection	in	a	specified
order.	These	algorithms	use	different	strategies,	which	affects	the	runtime	and	memory
requirements	of	the	algorithm.



4.1						Bubble	sort
One	of	the	simplest,	but	unfortunately	slowest,	sorting	algorithms	to	implement	is	bubble
sort,	shown	in	Algorithm	4.1.	In	the	bubble	sort	algorithm,	individual	elements	“bubble”
to	their	correct	location	through	a	series	of	individual	swaps	for	elements	out	of	order.

	
Algorithm	4.1.	bubbleSort(A)

The	input	array	A	is	sorted	in	ascending	order.

	

Pre-conditions

A	is	an	array.

	

Post-conditions

A	is	in	ascending	order.

	

Algorithm

bubbleSort(A){

1.				for	i	=	0	to	A.end	-	1

2.							for	j	=	0	to	A.end	-	i	-	1

3.												if	(array[j]	>	A[j+1])

4.																swap	=	A[j]

5.																A[j]	=	A[j+1]

6.																A[j+1]	=	swap

	

Starting	from	the	beginning	of	the	array,	the	first	two	elements	are	compared	and	swapped
if	they	are	out	of	order.	Next,	the	second	and	third	elements	are	compared	and	swapped	if
they	are	out	of	order.	These	comparisons	and	swaps	go	through	an	entire	pass	of	the	array,
and	then	restart	again	from	the	first	element	in	the	array.	Bubble	sort	is	an	in-place
algorithm,	which	means	that	elements	are	moved	around	within	the	array	without
significant	additional	memory	requirements.

	

Example	1:	Given	the	array	shown	in	Figure	1,	show	the	state	of	the	array	after	each
iteration	of	a	for	loop	in	the	bubbleSort()	algorithm.

	



Figure	1.	Initial	state	of	array	A	for	the	bubble	sort	algorithm	(Algorithm	4.1).

First	iteration	of	outer	for	loop,	i	=	0

First	iteration	of	the	inner	for	loop,	j	=	0

•	Line	3:	compare	the	values	of	A[0]	and	A[1],	which	are	10	and	40,	respectively.	The
conditional	is	false,	so	Lines	4	-	6	are	skipped	and	there	are	no	changes	to	the	array.

	

Second	iteration	of	the	inner	for	loop,	j	=	1

•	Line	3:	compare	the	values	of	A[1]	and	A[2],	which	are	40	and	13.	The	conditional	is
true.

•	Lines	4	-	6:	the	values	of	A[1]	and	A[2]	are	swapped,	moving	13	into	A[1]	and	40	into
A[2].	The	new	state	of	the	array	A	is	shown	in	Figure	2.

Figure	2.	State	of	the	array	after	A[1]	and	A[2]	swapped	in	the	first	iteration	of	the	outer	for	loop.

Third	iteration	of	the	inner	for	loop,	j	=	2

•	Line	3:	compare	the	values	of	A[2]	and	A[3],	which	are	40	and	20.	The	conditional	is
true,	so	swap	that	values	of	A[2]	and	A[3].	This	operation	moves	the	20	to	A[2]	and
moves	the	40	to	A[3].	The	new	state	of	the	array	is	shown	in	Figure	3.	

Figure	3.	State	of	the	array	after	A[2]	and	A[3]	are	swapped	in	the	first	iteration	of	the	outer	for	loop.

Fourth	iteration	of	inner	loop,	j	=	3

•	Line	3:	compare	the	values	of	A[3]	and	A[4],	which	are	40	and	8.	The	conditional	is
true,	so	swap	the	values	of	A[3]	and	A[4].	The	40	moves	to	A[4]	and	the	8	moves	to	A[3].
This	is	the	last	iteration	of	the	inner	for	loop,	and	the	maximum	value	in	the	array	should
now	be	in	the	last	array	position.	The	new	state	of	the	array	is	shown	in	Figure	4.



Figure	4.	State	of	the	array	after	the	last	iteration	of	the	inner	for	loop	when	i	=	0.	The	maximum	value	in	the
array	is	now	in	the	last	array	position.

Second	iteration	of	the	outer	for	loop,	i	=	1

First	iteration	of	the	inner	for	loop,	j	=	0

•	Line	3:	compare	the	values	at	A[0]	and	A[1],	which	are	10	and	13.	The	conditional	is
false,	so	Lines	4	-	6	are	skipped	and	there	is	no	change	to	the	array.

	

Second	iteration	of	the	inner	for	loop,	j	=	1

•	Line	3:	compare	the	values	at	A[1]	and	A[2],	which	are	13	and	20.	The	conditional	is
false,	so	Lines	4	-	6	are	skipped	and	there	is	no	change	to	the	array.

	

Third	iteration	of	the	inner	for	loop,	j	=	2

•	Line	3:	compare	the	values	at	A[2]	and	A[3],	which	are	20	and	8.	The	conditional	is
true.	Swap	the	values	of	A[2]	and	A[3],	which	moves	the	8	to	A[2]	and	the	20	to	A[3].
This	is	the	last	iteration	of	the	inner	for	loop	when	i	=	1.	The	new	state	of	the	array	is
shown	in	Figure	5.

	

Figure	5.	State	of	the	array	after	A[2]	and	A[3]	are	swapped.	The	second	highest	value	in	the	array	is	now	in	the
A[3]	position.

Third	iteration	of	the	outer	for	loop,	i	=	2

First	iteration	of	the	inner	for	loop,	j	=	0

•	Line	3:	compare	the	values	of	A[0]	and	A[1],	which	are	10	and	13.	The	condition	is
false,	so	Lines	4	-	6	are	skipped	and	there	is	no	change	to	the	array.

	

Second	iteration	of	the	inner	for	loop,	j	=	1

•	Line	3:	compare	the	values	of	A[1]	and	A[2],	which	are	13	and	8.	The	conditional	is
true.	Swap	the	values	of	A[1]	and	A[2],	which	moves	8	to	A[1]	and	13	to	A[2].	The	new



state	of	the	array	is	shown	in	Figure	6.

	

Figure	6.	State	of	the	array	A	after	A[1]	and	A[2]	are	swapped.	The	elements	A[2	…	4]	are	now	in	the	correct
positions.

Forth	iteration	of	the	outer	for	loop,	i	=	3

First	iteration	of	the	inner	for	loop,	j	=	0

•	Line	3:	compare	the	values	of	A[0]	and	A[1],	which	are	10	and	8.	The	conditional	is
true.	Swap	the	values	of	A[0]	and	A[1],	which	moves	8	to	A[0]	and	10	to	A[1].	The	array
is	now	in	its	final	sorted	state,	shown	in	Figure	7.

Figure	7.	Final	state	of	the	array	after	applying	the	bubble	sort	algorithm.	All	elements	in	the	array	are	now
sorted	in	ascending	order.

Complexity	of	Bubble	Sort:

Big-Oh	is	O(n2)

	

The	initial	array	configuration	that	generates	the	greatest	number	of	swaps	in	bubble	sort
is	reverse	sorted	order.	In	this	configuration,	every	element	will	be	swapped	every	time	it
is	evaluated.



4.2						Insertion	Sort
In	the	insertion	sort	algorithm,	shown	in	Algorithm	4.2,	elements	are	moved	to	their
correct	location	in	the	array	one	at	a	time,	similar	to	how	a	person	might	sort	a	hand	of
cards.	The	element	to	be	sorted	is	removed	from	the	array,	its	correct	location	is	identified
and	array	elements	are	shifted	out	of	the	way	to	make	room	for	the	element,	and	the
element	is	then	added	back	to	the	array	in	the	correct	location.		

	
Algorithm	4.2.	insertionSort(A)

The	input	array	A	is	sorted	in	ascending	order.

	

Pre-conditions

A	is	an	array.

	

Post-conditions

The	array	A	is	in	ascending	order.

	

Algorithm

insertionSort(A)

1.					for	i	=	1	to	A.end

2.									index	=	A[i]

3.									j	=	i

4.								while(j	>	0	and	A[j	-	1]	>	index)

5.														A[j]	=	A[j	-	1]

6.														j	=	j	-	1

7.									A[j]	=	index

	

Example	2:	For	the	array	shown	in	Figure	8,	show	the	state	of	the	array	after	each
loop	iteration	in	the	insertionSort()	algorithm.

Figure	8.	Initial	state	of	the	array	A	for	Example	2	using	the	insertion	sort	algorithm.



First	iteration	of	the	for	loop,	i	=	1

•	Line	2:	store	A[1]	in	index,	which	sets	index	=	4.

•	Line	3:	set	j	=	i	=	1.

•	Line	4:	the	while	loop	conditional	checks	the	value	of	j	and	compares	A[0]	to	index.
Both	conditions	are	true.

•	Line	5:	the	value	of	A[0]	is	written	to	A[1],	which	overwrites	the	4	with	the	5.

•	Line	6:	j	is	decremented	and	now	j	=	0.

•	Line	7:	A[0]	is	updated	with	the	value	of	index,	which	is	4.

	

The	new	state	of	the	array	is	shown	in	Figure	9.

Figure	9.	The	state	of	the	array	A	after	the	first	two	elements,	A[0]	and	A[1],	are	swapped.

Second	iteration	of	the	for	loop,	i	=	2

•	Line	2:	store	A[2]	in	index,	which	sets	index	=	7.

•	Line	3:	set	j	=	i	=	2.

•	Line	4:	the	while	loop	conditional	checks	the	value	of	j	and	compares	A[1]	to	index.
Index	is	greater	than	A[1],	which	fails	the	second	condition.

•	Lines	5	and	6	are	skipped.

•	Line	7:	A[2]	is	set	to	7,	which	is	its	current	value	and	there	are	no	changes	to	the	array.

	

Third	iteration	of	the	for	loop,	i	=	3

•	Line	2:	store	A[3]	in	index,	which	sets	index	=	2.

•	Line	3:	set	j	=	i	=	3.

•	Line	4:	the	while	loop	conditional	checks	the	value	of	j	and	compares	A[2]	to	2.	Both
conditions	evaluate	to	true.

•	Line	5:	A[3]	is	overwritten	with	A[2].	The	state	of	the	array	after	Line	5	is	shown	in
Figure	10.



Figure	10.	State	of	array	A	after	Line	5	executes	and	A[2]	overwrites	A[3].	The	values	of	A[2]	and	A[3]	are	now
the	same.

•	Line	6:	j	is	decremented	and	now	j	=	2.

•	The	algorithm	moves	to	Line	4	to	evaluate	the	while	loop	conditions.	A[1]	is	compared
to	index,	which	is	still	2,	and	j	>	0.	Both	conditions	are	true.

•	Line	5:	A[2]	is	overwritten	with	A[1].	The	state	of	the	array	after	Line	5	is	shown	in
Figure	11.

Figure	11.	State	of	array	A	after	Line	5	executes	and	A[1]	overwrites	A[2].	The	values	of	A[1]	and	A[2]	are	now
the	same.

•	Line	6:	j	is	decremented	and	now	j	=	1.

•	The	algorithm	moves	to	Line	4	to	evaluate	the	while	loop	conditions.	A[0]	is	compared
to	index,	which	is	still	2,	and	j	>	0.	Both	conditions	are	true.

•	Line	5:	A[1]	is	overwritten	with	A[0],	which	writes	a	4	to	A[1].	The	new	state	of	the
array	after	Line	5	is	shown	in	Figure	12.

Figure	12.	State	of	the	array	A	after	A[0]	overwrites	A[1].	The	values	of	A[0]	and	A[1]	are	now	the	same.

•	Line	6:	j	is	decremented	again	and	now	j	=	0.

•	Line	4:	the	while	loop	conditions	are	evaluated.	The	first	condition	fails,	since	j	is	not
greater	than	0,	and	the	while	loop	exits.

•	Line	7:	index	is	written	to	A[0],	which	puts	a	2	at	that	location.	The	new	state	of	the
array	after	Line	7	is	shown	in	Figure	13.



Figure	13.	State	of	the	array	A	after	the	first	four	elements	in	the	array	are	sorted.

Fourth	iteration	of	the	for	loop,	i	=	4

•	Line	2:	store	A[4]	in	index,	which	sets	index	=	6.

•	Line	4:	evaluate	the	while	loop	conditions.	A[3]	is	compared	to	index,	which	is	6,	and	j
>	0.	Both	conditions	are	true.

•	Line	5:	A[3]	overwrites	A[4],	which	places	the	7	at	A[4].	The	new	state	of	the	array	after
Line	5	is	shown	in	Figure	14.

Figure	14.	State	of	array	A	after	A[3]	overwrites	A[4].

•	The	algorithm	moves	to	Line	4	to	evaluate	the	while	loop	conditions.	The	second
condition	fails	because	A[2]	is	less	than	index,	which	is	6.	The	while	loop	exits.

•	Line	7:	index	overwrites	A[2],	which	puts	a	6	at	A[2].	The	new	state	of	the	array	after
Line	7	is	shown	in	Figure	15.

Figure	15.	State	of	the	array	A	after	the	first	five	elements	are	sorted	using	insertion	sort.

Fifth	iteration	of	the	for	loop,	i	=	5

•	Line	2:	store	A[5]	as	index,	which	sets	index	=	1

•	Line	3:	set	j	=i	=	5

•	Line	4:	compare	index	to	A[4]	in	the	while	loop	condition.	Both	conditions	for	the	while
loop	are	true.

•	Line	5:	A[4]	overwrites	A[5],	which	puts	a	7	at	A[5]	and	overwrites	the	1.

•	Line	6:	decrement	the	value	of	j,	which	sets	j	=	4.

•	The	algorithm	returns	to	Line	4	and	compares	A[3]	to	index	in	the	while	loop	conditions.



Both	conditions	are	true.

•	Line	5:	A[3]	overwrites	A[4],	which	writes	a	6	to	A[4].

•	Repeat	the	process	of	decrementing	j	and	comparing	index	to	A[j-1].	Write	A[j-1]	to	A[j]
as	long	as	A[j-1]	is	greater	than	index.	In	this	example,	the	5,	4,	and	2	are	all	moved.	After
the	while	loop	exits,	the	1	is	written	to	A[0].	The	new	state	of	the	array	is	shown	in	Figure
16.

Figure	16.	State	of	the	array	A	after	fifth	iteration	of	for	loop.	The	first	six	elements	in	the	array	are	sorted.	The
only	remaining	element	to	sort	is	the	3	at	A[6].

Sixth	iteration	of	for	loop,	i	=	6

The	only	element	in	the	array	left	to	sort	is	the	3	at	A[6].

•	Store	the	3	in	index.

•	Compare	index	to	the	values	of	A[5]	…	A[0]	in	the	array.

•	Shift	array	elements	from	A[j-1]	to	A[j]	that	are	greater	than	index.

•	Place	index	at	A[2],	which	writes	a	3	to	A[2].	The	final	state	of	the	array,	now
completely	sorted,	is	shown	in	Figure	17.

Figure	17.	Final	state	of	array	A	sorted	using	the	insertion	sort	algorithm.

Complexity	of	Insertion	Sort

Big-Oh	is	O(n2)



4.3						Quicksort
Quicksort	uses	an	algorithmic	approach	called	divide	and	conquer.	The	array	to	sort	is
divided	into	smaller	and	smaller	sub-arrays	that	are	sorted	and	then	recombined.	Dividing
the	array	into	smaller	arrays	reduces	the	number	of	iterations	over	the	entire	array	that
need	to	be	performed,	which	speeds	up	the	sorting	process.

	

The	sorting	approach	that	quicksort	uses	is	similar	to	the	idea	behind	putting	items	into
two	piles,	one	pile	with	values	greater	than	a	specified	value	and	one	pile	with	values	less
than	a	specified	value.	Once	those	piles	are	created,	each	pile	is	then	divided	into	two
more	piles	using	a	middle	value	as	the	partitioning	criteria.	This	process	repeats	with
smaller	and	smaller	piles	until	all	items	are	in	sorted	order.	

	

The	difference	the	scenario	just	described	and	how	quicksort	works	is	that	quicksort
doesn’t	use	any	additional	memory	for	creating	separate	piles.	Array	elements	that	are	on
the	wrong	side	of	a	partitioning	value	are	swapped	with	another	out-of-place	element.

	

There	are	three	steps	to	the	quicksort	algorithm:

1.	Divide:	Pick	an	element	in	the	array,	called	the	pivot,	which	will	be	used	to	partition	the
array.	A	value	in	the	middle	of	the	array	is	often	selected	as	the	pivot.

2.	Partition:	Divide	the	array	into	two	sub-arrays:	values	less	than	or	equal	to	the	pivot
are	left	of	the	pivot,	and	values	greater	than	the	pivot	are	right	of	the	pivot.	Divide	the
array	by	swapping	values	that	are	on	the	wrong	side	of	the	pivot.

3.	Conquer:	Recursively	apply	the	Divide	and	Partition	steps	to	sort	the	sub-arrays,	and
from	these	sorted	sub-arrays,	build	a	sorted	array.	

	

The	quicksort	algorithm	is	shown	in	Algorithm	4.3.

	
Algorithm	4.3.	quickSort(A,	left,	right)

Recursively	sorts	the	array	A	in	ascending	order.

	

Pre-conditions

A	is	an	array.

left	and	right	are	valid	integers	that	index	array	A.

	

Post-conditions

The	array	A	is	sorted	in	ascending	order



	

Algorithm

quickSort(A,	left,	right)

1.						i	=	left

2.					j	=	right

3.					pivot	=	A[(left	+	right)	/	2]

4.						while(i	<=	j)	

5.										while(A[i]	<	pivot)

6.															i	=	i	+	1

7.										while(A[j]	>	pivot)

8.															j	=	j	-	1

9.										if(i	<=	j)

10.													tmp	=	A[i]

11.													A[i]	=	A[j]

12.													A[j]	=	tmp

13.													i	=	i	+	1

14.													j	=	j	-	1

15.				if	(left	<	j)

16.								quickSort(A,	left,	j)

17.				if	(i	<	right)

18.								quickSort(A,	i,	right)

	

Example	3:		For	the	array	shown	in	Figure	18,	show	the	state	of	the	array	after	each
outer	while	loop	iteration	in	the	quickSort	algorithm.

Figure	18.	Initial	state	of	array	A	for	sorting	using	the	quickSort	algorithm.

•	Lines	1-3:	the	values	for	left,	right,	and	pivot	are	initialized.	Left	and	right	store	the
lowest	and	highest	index	in	the	array,	which	are	0	and	6	respectively.	Pivot	is	the	value	at
A[3],	which	is	2.

	



First	iteration	of	the	outer	while	loop,	i	=	0,	j	=	6

•	Line	5:	the	while	loop	condition	that	compares	A[0]	to	pivot	is	false.	There	are	no
changes	to	i.

•	Line	7:	the	while	loop	condition	that	compares	A[6]	to	pivot	is	true.	The	value	of	j	is
decremented	on	Line	8,	which	sets	j	=	5.	The	while	loop	condition	is	evaluated	again	and
is	false.	The	values	for	i,	j,	and	pivot	on	Line	9	of	the	algorithm	are	shown	in	Figure	19.

Figure	19.	State	of	array	A	and	the	values	for	i,	j,	and	pivot.

•	Lines	10-12:	the	values	at	A[0]	and	A[5]	are	swapped,	which	puts	1	at	A[0]	and	5	at
A[5].

•	Lines	13-14:	the	value	of	i	is	incremented	and	the	value	of	j	is	decremented.	The	state	of
the	array	and	the	algorithm	after	Line	14	is	shown	in	Figure	20.

Figure	20.	State	of	the	array	after	A[0]	and	A[5]	are	swapped	and	i	and	j	are	updated.

Second	iteration	of	outer	while	loop,	i	=	1,	j	=	4

•	Line	5:	the	while	loop	condition	that	compares	A[1]	to	pivot	is	false.	There	are	no
changes	to	i.

•	Line	7:	the	while	loop	condition	that	compares	A[4]	to	pivot	is	true.	The	value	of	j	is
decremented,	and	j	and	the	pivot	index	are	now	the	same,	as	shown	in	Figure	21.	The
while	loop	condition	is	evaluated	again	and	is	false.

Figure	21.	The	value	of	j	and	the	pivot	are	the	same.



•	Lines	10-12:	the	values	of	A[1]	and	A[3]	are	swapped,	which	puts	2	at	A[1]	and	4	at
A[3].	The	2	is	the	pivot	value,	which	means	that	this	swap	also	moves	the	pivot.

•	Lines	13-14:	the	values	of	i	and	j	are	updated.	The	new	state	of	algorithm	and	the	array
is	shown	in	Figure	22.

Figure	22.	State	of	the	array	A	after	A[1]	and	A[3]	swapped.	This	swap	moves	the	pivot	to	A[1].

Third	iteration	of	the	outer	while	loop,	i	=	2,	j	=	2

•	Line	5:	the	while	loop	condition	that	compares	A[2]	to	pivot	is	false.	The	value	of	i	is
unchanged.

•	Line	7:	the	while	loop	condition	that	compares	A[2]	to	pivot	is	true.	The	value	of	j	is
decremented.	On	the	next	evaluation	of	the	while	loop	condition,	the	evaluation	is	false.
The	current	state	of	the	algorithm	on	Line	9	is	shown	in	Figure	23.

Figure	23.	State	of	the	array	A	after	the	variable	j	decremented	past	the	variable	i.	This	is	the	state	of	the	array
when	it	is	passed	in	as	a	parameter	to	the	recursive	calls	of	quickSort().

•	Line	4:	the	condition	for	entering	the	while	loop	again	is	false	and	the	loop	exits.

	

Outside	the	while	loop

•	Line	15:	if	the	condition	is	true	it	means	that	j	has	not	been	decremented	all	the	way	to
the	left	edge	of	the	array;	there	are	array	elements	between	the	left-most	element	and	j.
The	condition	is	true,	since	left	=	0	and	j	=	1.

•	Line	16:	call	quickSort(	)	on	array	A[0	…	1].

•	Line	18:	call	quickSort(	)	on	array	A[2	…	6].

	

Recursive	call	to	quickSort(	)	on	A[0	…	1]

The	two	elements	to	sort	on	this	call	to	quickSort(	),	A[0]	and	A[1],	are	already	sorted.



There	won’t	be	any	changes	to	these	array	elements,	but	the	steps	that	will	execute	on	this
call	are	as	follows:

•	Lines	1-3:	the	algorithm	is	initialized,	setting	the	values	i	=	0,	j	=	1,	and	pivot	=	A[0],
which	is	1.

•	Line	5:	the	while	loop	condition	is	false	and	i	is	unchanged.

•	Line	7:	the	while	loop	condition	is	true,	which	decrements	j	to	j	=	0.	The	condition	is
evaluated	a	second	time	and	is	false.

•	Lines	10-12:	the	values	of	A[i]	and	A[j]	are	swapped,	which	has	no	effect	on	the	array
since	they	are	the	same	value.

•	Line	13:	i	is	incremented,	which	sets	i	=	1	=	right.

•	Line	14:	j	is	decremented,	which	sets	j	=	-1.

•	Both	conditionals	on	Lines	15	and	17	will	be	false	because	i	=	right	and	j	<	left.	There
are	no	additional	calls	to	quickSort(	).

	

Recursive	call	to	quickSort()	on	A[2	…	6]

•	Lines	1-3:	the	algorithm	is	initialized,	setting	i	=	2,	j	=	6,	pivot	=	A[4],	which	is	6.	The
initial	state	of	the	algorithm	and	the	array	A	is	shown	in	Figure	24.

Figure	24.	State	of	the	array	A	and	the	algorithm	parameters	for	the	recursive	call	to	quickSort()	on	the	section	of
the	array	from	the	pivot	value	to	the	end	of	the	array.	The	pivot	is	A[4],	i	is	2	and	j	is	6.

First	iteration	of	outer	while	loop,	i	=	2,	j	=	6

•	Lines	10-12:	the	values	A[2]	and	A[6]	are	swapped,	which	puts	3	at	A[2]	and	7	at	A[6].

•	Lines	13-14:	i	is	incremented	and	j	is	decremented,	which	sets	i	=	3	and	j	=	5.	The	new
state	of	the	array	is	shown	in	Figure	25.

Figure	25.	State	of	the	array	after	A[2]	and	A[6]	swapped	and	i	and	j	updated.

Second	iteration	of	outer	while	loop,	i	=	3,	j	=	5



•	Line	5:	compare	A[3]	to	the	pivot	in	the	while	loop	condition.	The	condition	is	true;
increment	i	to	4.	The	while	loop	condition	is	false	on	the	next	evaluation,	since	A[i]	is	also
the	pivot	value.

•	Line	7:	compare	A[5]	to	the	pivot	in	the	while	loop	condition.	The	condition	is	false	and
j	is	unchanged.

•	Lines	10-12:	swap	A[4]	and	A[5],	which	puts	5	at	A[4]	and	6	at	A[5].

•	Lines	13-14:	increment	i	and	decrement	j.	The	state	of	the	array	at	the	end	of	this
iteration	of	the	while	loop	is	shown	in	Figure	26.

Figure	26.	State	of	the	array	A	at	the	end	of	the	second	iteration	of	the	while	loop,	after	A[4]	and	A[5]	have	been
swapped.

Outside	the	while	loop

•	Line	16:	call	quickSort(	)	on	array	A[2	…	4].

•	Line	18:	call	quickSort(	)	on	array	A[5	…	6].

	

Recursive	call	to	quickSort()	on	A[2	…	4]

The	values	of	A[2],	A[3],	and	A[4]	are	already	sorted,	as	shown	in	Figure	27,	and	the
array	will	not	change	on	this	call	to	the	algorithm.

Figure	27.	Array	elements	A[2	…	4]	to	sort	in	a	recursive	call	to	the	quick	sort	algorithm.	These	elements	are
already	sorted,	no	additional	calls	to	quickSort()	are	needed.

Recursive	call	to	quickSort()	on	A[5	…	6]

There	is	also	a	recursive	call	to	quickSort(	)	on	A[5	…	6],	which	is	also	already	sorted,	as
shown	in	Figure	28.



Figure	28.	Array	elements	A[5	…	6]	to	sort	in	a	recursive	call	to	quickSort().	These	elements	are	already	sorted,
no	additional	calls	to	quickSort()	are	needed.

When	the	quickSort(	)	algorithm	returns	from	these	recursive	calls,	the	array	is	sorted.

	

Complexity	of	Quicksort

Big-Oh	is	O(n2)

	

The	choice	of	the	pivot	matters	to	the	performance	of	this	algorithm.	The	worst-case
behavior	is	observed	with	a	bad	pivot	selection.	The	average	performance	is	O(n	log	n).



4.4						Merge	Sort
Merge	sort	is	another	divide-and-conquer	algorithm	that	has	faster	worst-case	behavior
than	any	of	the	sorting	algorithms	discussed	so	far.	Merge	sort	operates	by	sorting	small
sub-arrays	first,	and	then	merges	these	small	sub-arrays	into	larger	and	larger	sub-arrays.
The	last	merge	builds	the	final,	sorted	array.

	

There	are	two	steps	to	the	merge	sort	algorithm

1.	Divide:	Divide	the	array	of	n	items	into	n	sub-arrays	with	1	item	each.

2.	Conquer:	Recursively	recombine	the	sub-arrays	into	sorted	sub-arrays.	Combine	the
sorted	sub-arrays	to	create	the	final	sorted	array.

4.4.1					Merging	arrays
The	merge	sort	algorithm	uses	a	process	of	merging	two	arrays	that	are	each	individually
sorted,	but	need	to	be	combined	in	such	a	way	that	the	new	array	is	also	sorted.	For
example,	Figure	29	shows	two	sorted	arrays,	array	A	and	array	B,	that	need	to	be
combined.

	

Figure	29.	Example	of	two	sorted	arrays,	array	A	and	array	B,	which	need	to	be	merged	together	to	create	one
sorted	array.

Appending	array	B	to	the	end	of	array	A	would	generate	the	new	array	shown	in	Figure
30,	which	is	clearly	not	sorted.

Figure	30.	Array	generated	by	appending	array	B	to	the	end	of	array	A.	(Both	arrays	shown	in	Figure	29.)	The



array	clearly	is	not	sorted.

Another	option	for	merging	the	arrays,	which	also	won’t	work,	is	to	weave	the	arrays
together	by	selecting	an	element	from	one	array,	and	then	selecting	an	element	from	the
other	array,	until	all	elements	from	both	arrays	have	been	added	to	the	new	array.	For
example,	using	the	arrays	A	and	B,	select	first	from	A,	then	B,	then	A,	then	B,	and	so	on
until	all	items	have	been	merged	together.	Figure	31	shows	the	new	arrays	that	would	be
generated	by	selecting	A	then	B	or	by	selecting	B	then	A.	Neither	array	is	correctly	sorted.

Figure	31.	Resulting	arrays	of	merging	A	and	B	by	weaving	together	one	element	at	a	time	from	each	array.	The
top	array	is	the	result	of	selecting	an	element	from	A	and	then	an	element	from	B.	The	bottom	array	is	the	result
of	selecting	an	element	from	B	and	then	an	element	from	A.	Neither	array	is	correctly	sorted.

The	algorithm	to	correctly	merge	two	arrays	includes	the	following	steps:

•	Compare	the	first	elements	in	each	array	and	add	the	lowest	value	to	a	new	array.

•	Use	an	index	on	the	original	arrays	to	control	which	elements	have	been	added	to	the
new	array.	Increment	the	index	when	an	element	has	been	added	from	that	array.	For
example,	if	A[0]	is	added	to	the	array,	then	increment	index	to	1	so	that	A[1]	will	be	the
element	evaluated	next.

•	Repeatedly	compare	the	minimum	values	in	each	array	that	haven’t	been	added	to	the
new	array	and	select	the	minimum	of	the	two	values.	Increment	the	index	each	time	a
value	is	selected	from	an	array.

	

Example	4:	Merge	the	two	arrays	shown	in	Figure	32	into	one	sorted	array.



Figure	32.	Arrays	to	merge	in	Example	4.	Arrays	A	and	B	need	to	be	combined	into	one	sorted	array.

Steps:

1.	Compare	A[0]	and	B[0],	which	are	2	and	1.	The	1	is	lowest,	so	add	it	to	the	new	array	C
at	C[0].	Increment	the	B	index	to	1.

2.	Compare	A[0]	and	B[1],	which	are	2	and	6.	Add	the	2	to	the	new	array	C	at
C[1].	Increment	the	A	index	to	1.

3.	Compare	A[1]	and	B[1],	which	are	5	and	6.	Add	the	5	to	C	at	C[2].	Increment	the	A
index	to	2.

4.	Compare	A[2]	and	B[1],	which	are	7	and	6.	Add	the	6	to	C	at	C[3].	Increment	the	B
index	to	2.

5.	Compare	A[2]	and	B[2],	which	are	7	and	9.	Add	the	7	to	C	at	C[4].	Increment	the	A
index	to	3.

6.	Compare	A[3]	and	B[2],	which	are	12	and	9.	Add	the	9	to	C	at	C[5].	Increment	the	B
index	to	3.

7.	Compare	A[3]	and	B[3],	which	are	12	and	10.	Add	the	10	to	C	at	C[6].	The	B	index
does	not	need	to	be	incremented	because	the	end	of	the	array	has	been	reached.

8.	Add	A[3],	which	is	12	to	C	at	C[7].

4.4.2					Merging	arrays	with	merge	sort
Merge	sort	works	by	repeatedly	sorting	small	sections	of	the	array	and	then	merging	them
together	into	a	larger	sorted	section	of	the	array.

	

Example	5:	Sort	the	array	shown	in	Figure	33	using	merge	sort.



Figure	33.	Example	array	that	will	be	used	to	demonstrate	the	merge	sort	algorithm	for	Example	5.

Divide	the	array	into	seven	sub-arrays	each	with	one	element,	as	shown	in	Figure	34.	The
one-element	size	is	the	smallest	unit	possible	for	an	array,	and	guarantees	that	any	two
elements	merged	correctly	will	be	a	sorted	two-element	sub-array.

Figure	34.	The	first	step	in	the	merge	sort	algorithm	is	to	divide	the	array	into	the	smallest	possible	units,	which	is
n	sub-arrays	each	with	one	element.

Merge	the	adjacent	one-element	sub-arrays	into	sorted	pairs	using	the	merging	process
previously	described.	With	an	odd	number	of	sub-arrays,	there	will	be	one	sub-array	after
the	merge	that	only	has	item.	The	result	of	the	merging	is	shown	in	Figure	35.

Figure	35.	The	result	of	merging	the	n,	one-element	sub-arrays	by	combining	adjacent	elements	into	sorted	pairs.

Merge	the	adjacent	two-element	sub-arrays	into	sorted	sub-arrays	of	three	or	four	elements
each.	The	result	of	this	merge	is	shown	in	Figure	36.

Figure	36.	Combine	adjacent,	two-element	sub-arrays	into	sorted,	four-element	sub-arrays.	Each	of	the	two	sub-
arrays	is	sorted	with	respect	to	the	other	elements	in	the	subarray.

The	next	merge	will	produce	the	final	sorted	array.	Merge	the	four-element	sub-arrays	to
get	one,	seven	element	array	that	will	be	correctly	sorted.

Figure	37.	The	final	sorted	array	that	is	produced	from	merging	the	three-	and	four-element	sub-arrays.



Complexity	of	merge	sort

Big-Oh	is	O(n	log	n)

	



5									Linked	lists
One	of	the	limitations	of	arrays	is	that	they	have	a	fixed	size.	Allocating	memory	to	store
additional	data	once	the	array	is	full	is	generally	handled	with	an	array-doubling
algorithm,	which	can	be	computationally	expensive.	Array	doubling	also	allocates	too
much	memory	if	only	one	or	two	additional	elements	need	to	be	added.

	

A	list	is	a	data	structure	that	allows	for	individual	elements	to	be	added	and	removed	as
needed.	In	a	typical	list	implementation,	called	a	linked	list,	memory	is	allocated	for
individual	elements,	and	then	pointers	link	those	individual	elements	together.



5.1						Singly	and	doubly	linked	lists
There	are	two	types	of	linked	lists,	singly	linked	and	doubly	linked	lists.	In	a	singly	linked
list,	each	element,	which	is	also	called	a	node,	contains	the	data	stored	in	the	node	and	a
pointer	to	the	next	node	in	the	list	(shown	in	Figure	1).

	

Figure	1.	Singly	linked	list	with	four	elements,	called	nodes.	In	this	example,	each	node	has	an	integer	key	value
and	a	pointer	to	the	next	node	in	the	list.

In	the	Figure	1	example,	the	node	data	is	the	integer	key.	The	first	node	has	a	key	value	of
9,	the	second	node	has	a	key	value	of	5,	the	third	node	has	a	key	value	of	6,	and	the	fourth
node	has	a	key	value	of	12.	The	next	pointer	for	the	final	node	in	the	list	is	set	to	NULL,
which	is	shown	by	the	slanted	line.

	

In	a	doubly	linked	list,	each	node	in	the	list	contains	the	node	data,	a	pointer	to	the	next
node	in	the	list,	and	a	pointer	to	the	previous	node	in	the	list.	A	graphical	example	of	a
doubly	linked	list	is	shown	in	Figure	2.	In	this	example,	each	node	has	three	properties:	an
integer	key,	a	pointer	to	the	next	node	in	the	list,	and	a	pointer	to	the	previous	node	in	the
list.	For	the	first	node	in	the	list,	the	previous	pointer	is	set	to	NULL,	and	for	the	last	node
in	the	list,	the	next	pointer	is	set	to	NULL.	Nodes	in	a	linked	list	can	also	be	much	more
complex	than	these	simple	examples.	Nodes	could,	for	example,	be	built	from	a	class	that
defines	an	object	such	as	an	Automobile	or	a	Bicycle.

Figure	2.	Doubly	linked	list	with	four	nodes.	Each	node	has	an	integer	key	value,	a	pointer	to	the	previous	node,
and	a	pointer	to	the	next	node	in	the	list.

One	difference	between	storing	data	in	a	linked	list	or	in	an	array	is	that	the	linked
requires	the	additional	pointers	to	the	neighboring	nodes.	Storing	the	same	data	from
Figures	1	and	2	in	an	array	would	require	a	four-element	integer	array,	such	as	the	one
shown	in	Figure	3.

	

Figure	3.	Array	example	showing	how	the	data	in	the	linked	list	in	Figures	1	and	2	would	be	stored	in	an	array.

5.1.1					Head	and	tail	nodes



The	node	at	the	beginning	of	the	list	is	called	the	head	of	the	list.	When	implementing	a
linked	list,	a	separate	pointer	should	be	stored	to	this	node	as	it	is	the	only	entrance	to	the
list.	The	last	node	in	the	list	is	called	the	tail	of	the	list.	In	some	implementations,	a	pointer
to	the	tail	of	the	list	is	also	stored.



5.2						The	linked-list	ADT
In	a	linked-list	ADT,	shown	in	ADT	5.1,	the	data	is	stored	in	a	linked	list	that	is	accessed
through	the	head	of	the	list.	The	head	and	tail	of	the	list	are	stored	as	private	variables,
and	there	are	public	methods	to	initialize	the	list,	add	and	delete	nodes,	traverse	the	list,
and	search	the	list.

	
ADT	5.1.	Linked	List

LinkedList:

1.					private:

2.										head

3.										tail

4.					public:

5.										Init()

6.										insertNode(previousValue,	value)

7.										search(value)

8.										traverse()

9.										deleteNode(value)

10.								deleteList()

	

5.2.1					C++	implementation	of	a	node
All	variables	stored	in	memory	have	a	memory	location	that	can	be	accessed	using	a
pointer	variable.	A	linked	list	node	can	be	implemented	in	C++	using	a	class	or	a	struct
and	the	next	and	previous	pointers	in	the	node	reference	another	instance	of	the	node.

	

The	example	code	in	Code	5.1	shows	simple	node	definitions	using	a	struct.	The
singleNode	for	a	singly	linked	list	includes	an	integer	key	and	a	singleNode	next	pointer.
The	doubleNode	implementation	for	a	doubly	linked	list	includes	a	next	doubleNode
pointer	and	a	previous	doubleNode	pointer.

	
Code	5.1.	singleNode	and	doubleNode	definitions

//node	implementation	for	singly	linked	list

struct	singleNode{

int	key;

singleNode	*next;



}

	

//node	implementation	for	doubly	linked	list

struct	doubleNode{

int	key;

doubleNode	*next;

doubleNode	*previous;

}



5.3						Building	a	singly	linked	list	in	C++
The	Linked	List	ADT	defines	an	interface	for	the	operations	on	a	linked	list.	It	can	also	be
helpful	to	step	through	how	a	list	is	created	independent	of	how	the	ADT	is	structured.
The	next	example	steps	through	creating	a	linked	list	with	three	nodes	using	the
singleNode	definition	given	in	Code	5.1.

	

Example	1:	Build	a	linked	list	with	three	nodes	with	key	values	of	5,	6,	and	7.

	

Steps:

1.	Using	the	node	definition	given	above,	create	a	new	node	dynamically:

	

singleNode	*x	=	new	singleNode;

	

2.	Set	the	values	for	the	key	and	next	of	x.	The	key	value	for	the	first	node	is	5.	The	next
value	is	initialized	to	NULL	because	there	are	no	other	nodes	in	the	list.

	

x->key	=	5;

x->next	=	NULL;

	

To	store	this	node	as	the	head	of	the	linked	list,	create	an	additional	pointer	head	to	point
to	x.

	

singleNode	*head	=	x;

	

The	linked	list	now	has	one	node	(Figure	4).

Figure	4.	Singly	linked	list	with	one	node	that	includes	an	integer	key	with	a	value	of	5	and	a	pointer	to	the	next
node	in	the	list.	The	next	pointer	is	set	to	NULL	because	there	are	no	other	nodes	in	the	list	to	point	to.

3.	Create	another	node	dynamically.

	

singleNode	*n1	=	new	singleNode;

	



4.	Set	the	values	for	the	key	and	next	of	n1.	The	next	pointer	is	initialized	to	NULL
because	this	node	is	added	to	the	end	of	the	list.

	

n1->key	=	6;

n1->next	=	NULL;

	

At	this	point,	two	nodes	have	been	created,	but	there	is	no	connection	between	them,
illustrated	in	Figure	5.	Both	nodes	have	a	next	pointer	that	points	to	NULL.

Figure	5.	Two	nodes	have	been	created	in	memory	for	a	singly	linked	list,	but	there	isn’t	yet	a	link	between	them
because	the	next	pointer	for	both	nodes	is	NULL.

5.	Set	the	x.next	pointer	to	connect	the	two	nodes.

	

x->next	=	n1;

	

The	address	of	n1	is	now	stored	in	x->next,	which	establishes	the	link	between	the	two
nodes,	as	shown	in	Figure	6.

Figure	6.	Singly	linked	list	with	two	nodes.	The	next	pointer	of	the	first	node	is	set	to	the	address	of	the	second
node.

The	arrow	between	the	nodes	in	Figure	6	doesn’t	have	any	meaning	in	the	code,	but	it
does	illustrate	the	possible	movement	direction.	The	node	x	contains	a	pointer	to	n1,
which	can	be	thought	of	as	x	knows	about	n1,	and	therefore,	it’s	possible	to	traverse	from
x	to	n1.	But,	n1	doesn’t	contain	an	arrow	to	x	in	the	image,	and	in	the	code,	n1	doesn’t
contain	a	pointer	to	x.	Without	a	pointer	that	connects	n1	to	x,	n1	doesn’t	know	about	x;
it’s	not	possible	to	go	from	n1	to	x.

	

6.	Create	another	node	dynamically	and	connect	it	to	n1.

	

//create	a	new	node

singleNode	*n2	=	new	singleNode;

n2->key	=	7;



n2->next	=	NULL;

	

//update	the	next	pointer	of	n1	to	point	to	the	new	node

n1->next	=	n2;

	

The	final	linked	list	with	three	nodes	is	shown	in	Figure	7.

Figure	7.	Singly	linked	list	with	three	nodes.	The	key	values	for	the	three	nodes	are	5,	6,	and	7.	Each	node	also
contains	a	pointer	to	the	next	node	in	the	list,	except	the	last	node,	which	points	to	NULL.	The	first	node	is	also
stored	as	the	head	of	the	list.



5.4						Building	a	doubly	linked	list
The	only	difference	between	building	a	singly	linked	list	and	a	doubly	linked	list	is	the
additional	previous	pointer	on	each	node	in	a	doubly	linked	list.

	

Steps:

1.	Create	a	new	node	dynamically:

	

doubleNode	*n0	=	new	doubleNode;

	

2.	Set	the	values	for	the	key,	next,	and	previous	of	n0.	In	this	example,	the	key	=	0,	and
both	next	and	previous	are	initialized	to	NULL.

	

n0->key	=	5;

n0->next	=	NULL;

n0->previous	=	NULL;

	

The	linked	list	now	has	one	node	(Figure	8).

Figure	8.	Doubly	linked	list	with	one	node.	The	node	has	a	next	and	a	previous	pointer	to	point	to	neighboring
nodes	in	both	directions	in	the	list.

3.	Create	another	node	dynamically,	and	set	the	values	for	the	key,	next,	and	previous	of
n1.

	

doubleNode	*n1	=	new	doubleNode;

n1->key	=	1;

n1->next	=	NULL;

n1->previous	=	NULL;

	

4.	Connect	the	nodes	by	setting	the	next	and	previous	pointers	for	both	nodes	(Figure	9).

	

n0->next	=	n1;



n1->previous	=	n0;

Figure	9.	Doubly	linked	list	with	two	nodes.	Setting	the	next	and	previous	pointers	for	both	nodes	establishes	the
connection	between	them	in	both	directions.

Just	as	with	a	singly	linked	list,	the	arrows	between	the	nodes	in	this	image	don’t	have	any
meaning	in	the	code,	they	just	show	the	possible	directions	of	movement	between	the
nodes.	Both	nodes	contain	pointers	to	each	other,	indicating	that	n1	is	reachable	from	n0
and	vice	versa.	This	is	the	difference	between	a	singly	and	a	doubly	linked	list,	the	list	can
be	traversed	both	forwards	and	backwards.

	

5.	Create	another	node	dynamically	and	connect	it	to	n1.	The	final	linked	list	with	three
nodes	is	shown	in	Figure	10.

	

//create	a	new	node

doubleNode	*n2	=	new	doubleNode;

n2->key	=	2;

n2->next	=	NULL;

n2->previous	=	n1;

	

//update	n1	to	point	to	the	new	node

n1->next	=	n2;

Figure	10.	Doubly	linked	list	with	three	nodes.	The	previous	pointer	for	the	first	node	in	the	list	and	the	next
pointer	for	the	last	node	in	the	list	are	set	to	NULL,	which	signifies	the	beginning	and	the	ending	of	the	list.



5.5						Traversing	a	linked	list
Unlike	an	array,	where	the	individual	elements	are	accessed	through	their	index,	linked	list
nodes	are	accessed	through	the	pointers	stored	in	the	list.	For	example,	using	the	linked
list	displayed	in	Figure	10,	the	command

	

singleNode	*tmp	=	n0->next;

	

is	equivalent	to

	

singleNode	*tmp	=	n1;

	

Neither	of	these	commands	allocates	memory	for	a	node,	but	rather,	they	create	a	pointer
variable	that	points	to	an	existing	node	in	memory.	To	traverse	a	linked	list,	create	a
temporary	variable	that	points	to	the	head	of	the	list,	and	then	update	the	temporary
variable	to	point	to	the	next	node	in	the	list	until	the	temporary	variable	points	to	NULL,
which	indicates	that	the	end	of	the	list	has	been	reached.	The	algorithm	to	traverse	a	singly
linked	list	is	shown	in	Algorithm	5.1.
Algorithm	5.1.	traverse()

Traverse	a	linked	list	from	the	head	node	to	the	last	node	in	the	list.

	

Pre-conditions

The	head	node	is	defined	in	the	linked	list	ADT	or	included	as	an	argument	to	the
algorithm.

	

Post-conditions

Values	of	the	nodes	in	the	list	are	displayed.

	

Algorithm

traverse()

1.			tmp	=	head

2.			while(tmp	!=	NULL)

3.								print	tmp.key

4.								tmp	=	tmp.next

	



Example	2:	Call	traverse()	on	the	linked	list	in	Figure	11.

	

Steps	in	the	traverse()	algorithm:

	

Evaluate	the	head	node

•	Line	1:	the	variable	tmp	points	to	the	address	of	head,	which	is	the	first	node	in	the	list.
This	configuration	is	shown	in	Figure	11.

	

Figure	11.	The	variable	tmp	points	to	the	first	node	in	the	linked	list,	which	is	also	called	the	head	of	the	list.

The	properties	of	head	can	be	accessed	through	tmp,	which	means	that

	

tmp.next

	

will	access	the	same	data	as

	

head.next.

	

•	Line	3:	the	statement

	

print	tmp.key

	

will	display	the	key	value	for	the	first	node	in	the	list,	which	is	5.

	

•	Line	4:	tmp	is	updated	to	point	to	the	next	node	in	the	list.

	

tmp	=	tmp.next

	

This	step	accesses	the	address	of	n1	and	sets	tmp	to	point	to	that	address.	The	tmp	pointer
now	points	to	the	second	node	in	the	list,	as	shown	in	Figure	12.



	

Figure	12.	The	tmp	variable	now	points	to	the	second	node	in	the	linked	list.

Evaluate	the	second	node

•	Line	2:	check	if	tmp	is	NULL,	and	since	it’s	pointing	to	n1,	it	is	not	NULL.

•	Line	3:	tmp.key	displays	the	key	value	for	n1,	which	is	6.

•	Line	4:	tmp	=	tmp.next	changes	tmp	pointer	to	point	to	n2.	The	tmp	pointer	now	points
to	the	third	node	in	the	list,	as	shown	in	Figure	13.

	

Figure	13.	The	tmp	variable	now	points	to	the	third	node	in	the	linked	list,	which	is	also	the	end	of	the	list.

Evaluate	the	third	node

•	Line	2:	the	check	if	tmp	is	NULL	is	still	false,	since	tmp	is	pointing	to	n2.

•	Line	3:	the	command	tmp.key	will	display	the	key	value	for	n2,	which	is	7.

•	Line	4:	tmp	=	tmp.next	changes	the	tmp	pointer	to	point	to	NULL.	On	the	next
evaluation	of	the	conditional	on	Line	2,	the	conditional	will	be	false	and	the	loop	will	exit.



5.6						Searching	a	singly	linked	list
To	search	a	linked	list	for	a	specified	key,	start	at	the	head	of	the	list	and	traverse	the	list
until	the	key	is	found.	The	search()	algorithm,	shown	in	Algorithm	5.2,	takes	the	search
value	as	a	parameter	and	returns	a	pointer	to	the	node	where	the	search	value	is	found.
This	algorithm	is	similar	to	the	traverse()	algorithm	(Algorithm	5.1)	with	additional	steps
to	check	if	the	value	is	found.

	
Algorithm	5.2.	search(value)

Traverse	the	linked	list	and	return	the	node	where	the	key	matches	the	search	value.

	

Pre-condition

value	is	the	same	type	as	the	key	property.

	

Post-condition

Returns	the	node	that	contains	the	value	and	NULL	if	the	value	does	not	exist	in	the	list.

	

Algorithm

search(value)

1.		tmp	=	head

2.				returnNode	=	NULL

3.				found	=	false

4.	while(!found	and	tmp	!=	NULL)

5.								if	(x.key	==	value)

6.												found	=	true

7.												returnNode	=	x

8.								else

9.												x	=	x.next

10.	return	returnNode



5.7						Inserting	a	node	into	a	singly	linked	list
When	inserting	a	node	to	a	linked	list,	there	are	three	cases	to	consider:

•	Inserting	a	node	at	the	head	of	the	list

•	Inserting	a	node	in	the	middle	of	the	list

•	Inserting	a	node	at	the	end	of	the	list

	

In	each	case,	the	pointers	in	the	nodes	surrounding	the	new	node	need	to	be	updated	in	a
specified	order	for	the	operation	to	be	successful.
Algorithm	5.3.	insertNode(leftValue,	value)

Insert	a	new	node	into	the	linked	list	after	the	node	with	a	key	value	of	leftValue.

	

Pre-conditions

leftValue	is	a	valid	key	value	for	a	node	in	the	list,	or	NULL.

value	is	a	valid	key	value

	

Post-conditions

The	new	node	has	been	added	to	the	list	after	the	leftValue	node.

	

Note:	This	algorithm	is	for	a	singly	linked	list.	To	insert	into	a	doubly	linked	list,
additional	steps	are	needed	to	handle	the	previous	pointer	for	each	node.	When	the	new
node	is	the	head	node,	node.previous	=	NULL.	Otherwise,	node.previous	=	left.

	

Algorithm

insertNode(leftValue,	value)

1.					left	=	search(leftValue)

2.					node.key	=	value

3.					node.next	=	left.next

4.					if	left	==	NULL		//head	node

5.									node.next	=	head

6.									head	=	node

7.					else	if	left.next	==	NULL		//tail	node

8.									left.next	=	node

9.									node	=	tail



10.			else			//middle	node

11.							node.next	=	left.next

12.							left.next	=	node

5.7.1					Inserting	a	new	head	node
	

Example	3:	Insert	a	node	at	the	head	of	the	list	in	Figure	14	with	a	key	value	of	1.

Figure	14.	Linked	list	for	Example	3,	insert	a	new	node	at	the	head	of	the	list.

In	this	example,	the	steps	in	the	insertNode()	algorithm	are	outlined,	as	well	as	the
corresponding	C++	commands	to	implement	the	algorithm.

Steps:

•	Line	1:	Find	the	node	in	the	list	where	node.key	=	leftValue	using	the	search()	algorithm.
For	a	new	head	of	the	list,	leftValue	will	be	NULL.

	

node	*left	=	search(leftValue);

	

•	Line	2-3:	Allocate	memory	for	the	new	node	and	set	its	key	and	next	properties	(Figure
15).

	

singleNode	*n0	=	new	node;

n0->key	=	1;

n0->next	=	left->next;

Figure	15.	The	new	node	has	been	created,	called	n0,	but	hasn’t	yet	been	linked	to	the	list.	The	next	pointer	for
the	new	node	is	still	NULL.

•	Line	5:	Update	the	next	property	of	the	new	node	to	point	to	the	current	head	of	the	list
(Figure	16).

	

n0->next	=	head;

	



Figure	16.	Connect	the	new	node	to	the	list	by	setting	its	next	pointer	to	point	to	the	head	node.

•	Line	6:	Update	the	head	pointer	to	point	to	the	new	node	(Figure	17).

	

head	=	n0;

	

Figure	17.	The	new	node	becomes	the	new	head	node,	and	the	previous	head	node	is	now	head.next.

5.7.2					Inserting	a	new	middle	node
	

Example	4:	Insert	a	node	with	a	key	value	of	10	after	the	node	with	a	key	value	of	2
in	the	linked	list	in	Figure	18.	The	new	linked	list	after	the	insert	operation	is	shown
in	Figure	19.

Figure	18.	Linked	list	for	Example	4	before	a	new	node	is	inserted	to	the	list.

Figure	19.	Linked	list	for	Example	4	after	the	new	node	is	inserted	into	the	list.

Steps:

•	Line	1:	Search	for	the	node	with	key	=	2	using	the	search()	algorithm.	Figure	20	shows
the	results	of	the	search()	call.

	

singleNode	*left	=	search(2);



Figure	20.	The	node	that	will	precede	the	new	node	is	labeled	as	left.	It	was	identified	by	calling	the	search()
algorithm.

•	Lines	2-3:	Allocate	memory	for	the	new	node	and	set	its	key	and	next	properties.	There
are	now	two	nodes	pointing	to	n4	as	their	next	node	(Figure	21).

	

singleNode	*n5	=	new	node;

n5->key	=	10;

n5->next	=	left->next;

	

Figure	21.	The	new	node	has	been	created,	called	n5,	and	its	next	pointer	points	to	the	same	node	as	left’s	next
pointer.

•	Line	12:	Update	the	next	pointer	for	left	to	point	to	the	new	node	(Figure	22).

	

left->next	=	n5;

	

Figure	22.	Final	linked	list	after	the	new	node	is	inserted	and	the	pointers	are	updated.

5.7.3					Inserting	a	new	tail	node
	

Example	5:	Insert	a	new	node	at	the	end	of	the	linked	list	in	Figure	23	with	a	key
value	of	10.

Figure	23.	Linked	list	for	Example	5,	insert	a	new	tail	node	at	the	end	of	the	list	with	a	key	value	of	10.

Steps:



•	Line	1:	Search	for	node	with	key	=	8.

	

singleNode	*left	=	search(8);

	

(Note:	without	knowing	the	key	value	of	the	last	node,	the	end	of	the	list	could	also	be
accessed	using	the	tail	pointer.)

	

•	Lines	2-3:	Allocate	memory	for	the	new	node	and	assign	it	values	of	key	=	5	and	next	=
NULL.

	

node	*n5	=	new	node;

n5->key	=	10;

n5->next	=	NULL;

	

•	Line	8:	Change	the	next	pointer	of	the	left	node	to	point	to	the	new	node.

	

tail->next	=	n5;

	

•	Line	9:	Update	the	new	node	to	be	the	tail.	The	final	linked	list	is	shown	in	Figure	24.

	

tail	=	n5;

Figure	24.	Linked	list	after	new	node	inserted	at	the	tail	position.

5.7.4					Inserting	a	node	into	a	doubly	linked	list
The	only	difference	between	inserting	a	node	into	a	singly	linked	list	and	a	doubly	linked
list	is	that	the	previous	pointer	for	a	node	needs	to	be	set	on	a	doubly	linked	list.

	

Example	6:	Insert	a	node	with	a	key	value	of	3	into	the	doubly	linked	list	in	Figure	25
after	the	node	with	a	key	value	of	1.



Figure	25.	Doubly	linked	list	for	Example	6.	Insert	a	new	node	with	a	key	value	of	3	after	the	node	with	the	key
value	of	1.

Steps:

•	Line	1:	Find	the	previous	node	in	the	list	using	the	search()	algorithm.	The	node	is
labeled	left	in	Figure	26.

	

doubleNode	*left	=	search(1);

Figure	26.	Doubly	linked	list	with	left	node	identified.	The	new	node	will	be	inserted	after	the	left	node.

•	Lines	2-3:	Allocate	memory	for	the	new	node	and	assign	it	a	key,	next,	and	previous
pointer.	The	state	of	the	list	after	these	steps	is	shown	in	Figure	27.

	

node	*n3	=	new	node;

n3->key	=	3;

n3->next	=	left->next;

n3->previous	=	left;

Figure	27.	State	of	the	doubly	linked	list	with	the	new	node	inserted.	The	pointers	have	not	been	completely
updated.	There	are	multiple	nodes	with	the	same	previous	and	next	pointers.

•	Update	the	previous	pointer	for	left.next	to	point	to	the	new	node	as	its	previous	node
(Figure	28).

	



left->next->previous	=	n3;

Figure	28.	The	previous	pointer	for	n2	has	been	updated	to	point	to	the	new	node	n3	instead	of	n1.

•	Line	8:	Update	the	next	pointer	for	the	left	node	to	point	to	the	new	node	(Figure	29).

	

left->next	=	n3;

Figure	29.	The	next	pointer	for	left	has	been	updated	to	point	to	the	new	node	n3.	The	linked	list	is	now	in	its	final
state	with	the	new	node	inserted	and	all	pointers	updated.

Example	7:	Insert	a	node	with	a	key	value	of	10	to	the	head	of	a	doubly	linked	list.

	

Steps:

•	Lines	2-3:	Create	the	new	node	and	set	its	key,	next,	and	previous	properties.

	

node	*n0	=	new	node;

n0->key	=	1;

n0->next	=	head;

n0->previous	=	NULL;

	

•	Update	the	previous	pointer	for	the	current	head	node	to	point	to	the	new	node.

	

head->previous	=	n0;

	



•	Line	6:	Update	the	head	pointer	to	point	to	the	new	node.

	

head	=	n0;

	

5.7.5					Common	pitfall	when	inserting	a	new	node
When	inserting	a	node	into	a	linked	list,	it’s	important	to	update	the	next	pointers	in	the
correct	order	or	a	portion	of	the	linked	list	can	be	lost.	For	example,	consider	this	situation
where	memory	has	been	allocated	for	the	new	node	n5,	but	the	next	pointer	to	include	it	in
the	list	hasn’t	yet	been	set	(Figure	30).

	

Figure	30.	In	this	linked	list,	the	memory	for	a	new	node	has	been	allocated,	but	none	of	the	pointers	in	the	list
have	been	updated	to	link	in	the	new	node.

If	the	left.next	pointer	is	updated	first	to	point	to	n5	instead	of	n4,	then	n4	will	be
disconnected	from	the	list,	as	shown	in	Figure	31.	The	next	pointer	for	n4	is	still	NULL,
and	since	it’s	a	singly	linked	list,	there’s	no	connection	back	to	left	from	n4.

Figure	31.	Example	of	how	a	section	of	the	list	can	be	lost	if	the	pointers	are	not	updated	in	the	correct	order.	The
node	n4	is	disconnected	from	the	list	if	the	left.next	value	is	set	before	the	n5.next	value.

However,	if	the	n5.next	pointer	is	set	first,	then	the	left.next	pointer	can	be	updated	to
point	to	the	new	node	and	the	list	remains	intact.



5.8						Deleting	a	node	from	a	singly	linked	link
To	delete	a	node	from	a	linked	list,	update	the	pointers	to	bypass	the	node,	and	then	free
the	memory	associated	with	the	node.	Just	as	with	the	insert	operations,	the	order	of	the
steps	is	important	to	ensure	that	sections	of	the	list	are	not	lost	and	there	are	no	memory
leaks.	There	are	three	cases	to	consider	when	deleting	a	node	from	a	linked	list:

	

•	Deleting	the	node	at	the	head	of	the	list.

•	Deleting	a	node	in	the	middle	node	of	the	list.

•	Deleting	the	node	at	the	tail	of	the	list.

	

Algorithm	5.4	describes	the	delete	operation.	The	algorithm	takes	the	value	of	the	node	to
delete	and	then	searches	for	that	value	in	the	list.	If	the	value	is	found,	the	node	is	deleted.
Algorithm	5.4.	delete(value)

Delete	the	node	with	the	specified	value.

	

Pre-conditions

head	and	tail	pointers	are	set	in	the	linked	list.

value	is	a	valid	search	parameter.

	

Post-conditions

Node	where	the	key	equals	the	value	has	been	deleted	from	the	list.

	

Algorithm

delete(value)

1.					if	(head.key	==	value)

2.									tmp	=	head.next

3.									head	=	head.next

4.									delete	tmp

5.				else			//middle	or	tail

6.									left	=	head

7.									tmp	=	head.next

8.									while	tmp	!=	NULL

9.													if	tmp.key	==	value



10.															left.next	=	tmp.next

11.															if	tmp	==	tail

12.																			left.next	=	NULL

13.																			tail	=	left

14.															delete	tmp

15.															break

16.											left	=	tmp

17.										tmp	=	tmp.next

5.8.1					Delete	the	head	node	in	a	singly	linked	list
Example	8:	Delete	the	node	at	the	head	of	the	list	in	Figure	32	using	Algorithm	5.4.

	

This	example	shows	the	lines	in	the	delete()	algorithm	that	execute	to	delete	the	head	of
the	list,	as	well	as	the	corresponding	C++	code	to	implement	the	algorithm.

Figure	32.	Linked	list	for	Example	8,	delete	the	first	node	in	the	list.

•	Line	2:	Create	a	pointer	to	point	to	the	head.next	of	the	list	(Figure	33).

	

singleNode	*tmp	=	head->next;

	

Figure	33.	A	variable	tmp	has	been	created	and	points	to	the	first	node	in	the	linked	list.

•	Line	3:	Set	the	head	pointer	to	point	to	head.next	(Figure	34).

	

head	=	head->next;

	



Figure	34.	The	head	pointer	is	moved	and	now	points	to	the	second	node	in	the	linked	list.

•	Delete	tmp	to	free	the	memory	allocated	to	the	old	head	node	(Figure	35).

	

delete	tmp;

	

Figure	35.	Free	the	memory	associated	with	the	tmp	pointer,	which	removes	the	old	head	node	from	the	list.

5.8.2					Delete	a	middle	node	in	a	singly	linked	list
	

Example	9:	Delete	the	node	with	the	key	value	of	5	from	the	linked	list	in	Figure	36.

Figure	36.	Linked	list	for	Example	9,	where	the	node	with	the	key	value	of	5	needs	to	be	deleted	from	the	list.

Steps:

•	Line	6:	Create	a	pointer	to	the	head	of	the	list.

	

singleNode	*left	=	head;

	

•	Line	7:	Create	a	pointer	to	point	to	head.next.

	

singleNode	*tmp	=	head->next;

	

•	Line	9:	Check	if	the	value	has	been	found	in	the	list.	At	this	point	in	the	algorithm,	left



will	be	pointing	to	the	node	that	precedes	it	and	tmp	will	be	the	node	to	delete	(Figure	37).

	

if(tmp->key	==	value)

	

Figure	37.	The	variable	tmp	points	to	the	node	to	delete.

•	Line	10:	Update	the	left.next	pointer	to	bypass	tmp	and	point	to	the	node	after	tmp
(Figure	38).

	

left->next	=	tmp->next;

Figure	38.	The	next	pointer	for	left	has	been	updated	to	point	to	the	node	after	tmp	in	the	list.	The	tmp	node	can
now	be	deleted	without	cutting	the	connection	between	left	and	the	rest	of	the	list.

•	Line	14:	Delete	the	tmp	node	(Figure	39).

	

delete	tmp;

	

Figure	39.	The	memory	associated	with	tmp	has	been	freed	and	the	node	is	no	longer	in	the	linked	list.

5.8.3					Delete	the	tail	node	in	a	singly	linked	list
	

Example	10:	Delete	the	tail	node	in	the	linked	list	in	Figure	40.



Figure	40.	Linked	list	for	Example	10,	delete	the	tail	node	in	the	linked	list.

•	Lines	11-13:	Handle	the	special	case	where	the	node	to	delete	is	the	tail	node.	The	node
left	is	the	node	that	precedes	the	tail	node	(Figure	41).

	

Figure	41.	The	left	node	is	the	node	that	precedes	the	tail	node	in	the	list.

•	Lines	12-13:	Update	left	to	be	the	tail	node	and	set	its	next	pointer	to	NULL	(Figure	42).

	

left->next		=	NULL;

tail	=	left;

Figure	42.	Final	linked	list	after	the	tail	node	is	removed	and	a	new	tail	pointer	is	set.	The	variables	left	and	tail
now	point	to	the	same	node.

•	Line	14:	Delete	the	tmp	node,	which	is	also	left.next	(Figure	43).

	

delete	tmp;

Figure	43.	Delete	the	tail	first	before	setting	the	left	pointer	to	be	the	new	tail.	This	operation	removes	the	tail
node	from	the	list.



5.9						Complexity	of	linked	list	operations
	

Insert

Inserting	a	node	at	the	head	of	the	list:	O(1).

Inserting	a	node	at	the	end	of	the	list:	O(n),	if	there	isn’t	a	tail	pointer	for	the	list,	and	O(1)
if	there	is	a	tail	pointer.

	

Search

Searching	for	a	node	within	a	specified	key	value:	O(n).

	

Delete

Delete	the	head	of	the	list:	O(1).

Delete	the	tail	of	the	list:	O(n)	for	singly	linked	list	and	O(1)	for	doubly	linked	list.

	



5.10	Linked	List	Exercises
Write	a	C++	function	to	find	the	maximum	value	in	a	singly	linked	list.	The	function	takes
one	argument	-	the	head	of	the	linked	list	and	returns	the	maximum	integer	value	in	the
list.	The	expected	function	prototype	is:

	

int	LinkedListFindMax(node	*head);

	

and	the	structure	of	the	node	is:

	

struct	node

{

				int	value;

				node	*next;

};

	

Test	case:

For	the	following	linked	list

	

9->3->100->1000->-3->9876

	

the	function	should	return	a	value	of	9876.



6									Stacks
A	stack	is	a	data	structure	that	stores	a	collection	of	elements	and	restricts	which	element
can	be	accessed	at	any	time.	Stacks	work	on	a	last	in,	first	out	principle	(LIFO):	the	last
element	added	to	the	stack	is	the	first	item	removed	from	the	stack,	much	like	a	stack	of
cafeteria	plates.	Elements	are	added	to	the	top	of	the	stack,	and	the	element	on	the	top	is
the	only	element	that	can	be	removed.

	

Example	1:	Add	the	words	of	this	classic	Napolean	Dynamite	quote,

	

A	liger	it’s	pretty	much	my	favorite	animal

	

to	a	stack.

	

Each	word	in	the	sentence	occupies	one	position	on	the	stack.	Words	are	added	at	the	top
position,	which	results	in	the	stack	growing	upwards	(Figure	1).	The	position	of	the	top
moves	each	time	a	word	is	added	to	the	stack.

Figure	1.	Contents	of	the	stack	and	the	position	of	the	top	of	the	stack	after	all	words	have	been	added.	Words	are
added	at	the	top	of	the	stack	only,	and	then	also	removed	from	the	top	of	the	stack	only.

Words	are	also	removed	from	the	top	of	the	stack,	which	moves	the	top	position.
Removing	the	words	from	the	stack	in	Figure	1	generates	the	following	sequence	of
words:

	

animal.	favorite	my	much	pretty	it’s	liger	A

	

Definitions:

When	an	element	is	added	to	a	stack,	it	is	“pushed”	onto	the	stack.

	



When	an	element	is	removed	from	a	stack,	it	is	“popped”	off	the	stack.	



6.1						The	stack	ADT
The	stack	ADT	includes	a	variable	that	tracks	the	top	of	the	stack,	the	stack	data,	and
methods	to	manipulate	the	stack	by	adding	and	removing	elements.	Stack	data	is	typically
stored	in	a	data	structure	such	as	an	array	or	a	linked	list.	The	terminology	for	interacting
with	the	stack	is	the	same	regardless	of	the	data	structure	used,	but	the	implementation
details	vary.	The	stack	ADT	shown	in	ADT	6.1	is	intentionally	generic	due	to	the
differences	in	an	array	or	linked	list	implementation.

	
ADT	6.1.	Stack

Stack:

1.					private:

2.										top

3.										data

4.										isFull()

5.										isEmpty()

6.										maxSize

7.					public:

8.										Init()

9.										push(value)

10.								pop()



6.2						Pushing	and	popping	stack	elements
6.2.1					Array	implementation	of	a	stack
In	an	array	implementation	of	a	stack,	data	elements	are	stored	in	an	array	and	the	top	of
the	stack	refers	to	the	index	where	the	next	element	will	be	added.	The	elements,	data[0…
top-1]	are	the	contents	of	the	stack.

	

•	When	top	=	0,	the	stack	is	empty.

•	When	top	=	maxSize,	the	stack	is	full.	(maxSize	is	the	size	of	the	array)

•	When	top	>	maxSize,	the	condition	is	called	stack	overflow.	Yes,	it’s	called	stack
overflow.

6.2.2					Linked	list	implementation	of	a	stack
In	the	linked	list	implementation	of	a	stack,	the	data	elements	in	the	stack	are	nodes	in	a
singly	linked	list,	where	each	node	has	a	pointer	to	the	previous	node	in	the	list.	The	node
at	the	bottom	of	the	list	has	a	previous	pointer	to	NULL	(Figure	2).	The	top	of	the	stack	is
a	pointer	to	a	node	instead	of	an	index	in	an	array.

Figure	2.	Example	of	a	stack	implemented	with	a	linked	list.	Each	node	in	the	list	has	a	pointer	to	the	previous
node	in	the	list.	This	stack	has	four	elements.	The	top	of	the	stack	is	the	node	with	the	key	value	of	7.

•	When	top	=	NULL,	the	stack	is	empty.

•	When	top	=	maxSize,	the	stack	is	full.	(maxSize	is	the	maximum	size	of	the	stack.	This
example	assumes	the	stack	has	a	maximum	allowable	size.)

6.2.3					Push	an	element	onto	an	array	stack
The	algorithm	to	push	an	element	onto	a	stack	implemented	with	an	array	is	shown	in
Algorithm	6.1.

	
Algorithm	6.1.	push(value)

Add	an	element	with	the	specified	value	to	an	array	stack.

	

Pre-conditions

value	is	a	valid	input	value.

A	method,	isFull()	exists	to	check	for	if	the	stack	is	full.

	



Post-conditions

The	value	is	added	to	the	stack	and	the	top	index	is	incremented	by	1.

	

Algorithm

push(value)

1.			if(!isFull())

2.							data[top]	=	value

3.							top	=	top	+	1

	

In	this	algorithm,	data	is	the	stack	data	structure	and	value	is	the	element	to	add	to	the
stack.	The	parameter	top	is	initialized	to	0	when	the	stack	is	initially	created.	On	Line	1,
the	conditional	to	check	for	a	full	stack	calls	the	isFull()	method	in	the	ADT,	which	checks
if	top	=	maxSize.

	

Example	2:	Push	the	values	12	and	9	onto	the	empty	stack	S	shown	in	Figure	3.

	

•	Start	with	an	empty	stack,	S

Figure	3.	Empty	array-based	stack.	The	top	of	the	stack	is	S[0].

•	Pushing	two	elements	onto	the	stack	is	handled	in	two	separate	calls	to	push():

	

push(12)

push(9)

	

Those	two	calls	generate	the	stack	configuration	shown	in	Figure	4.

Figure	4.	Stack	contents	and	index	of	the	top	variable	after	two	elements	pushed	onto	the	stack.

6.2.4					Push	an	element	onto	a	linked	list	stack
In	the	push()	operation	on	a	linked	list	(shown	in	Algorithm	6.2),	the	input	to	the



algorithm	is	the	value	for	the	new	node	to	push	onto	the	stack.	The	variable	top	is	a
pointer	to	the	node	at	the	top	of	the	list.	When	the	stack	is	empty,	top	=	NULL.

	
Algorithm	6.2.	push(value)

Push	a	node	with	the	specified	value	onto	a	stack	implemented	with	a	linked	list.

	

Pre-conditions

value	is	a	valid	linked	list	node	value.

	

Post-conditions

The	new	node	is	the	new	top	of	the	stack.

	

Algorithm

push(value)

1.				node.key	=	value

2.				if	top	==	NULL

3.								node.previous	=	NULL

4.				else

5.								node.previous	=	top

6.				top	=	node

	

Example	3:	Push	a	value	of	10	onto	the	linked	list	stack	shown	in	Figure	5.

	

Figure	5.	Push	a	new	node	onto	this	stack	with	a	key	value	of	10.

push(10)

	

The	sequence	of	operations	involved	in	pushing	the	element	onto	the	stack	is	shown	color-
coded	in	Figure	6.

•	The	initial	state	of	the	stack	variables	is	shown	in	red.	The	top	is	the	node	with	a	key
value	of	7.	The	x	node	is	the	new	node,	which	will	become	the	new	top.

•	Line	1:	Create	a	new	node	with	the	specified	key	value.



•	Line	5:	Set	the	previous	pointer	for	x	to	connect	the	node	to	the	stack,	shown	with	the
blue	arrow.

•	Line	6:	Move	top	to	point	to	x,	shown	in	green.

Figure	6.	Steps	for	pushing	a	node	onto	a	linked	list	stack.	The	initial	state	of	the	linked	list	is	shown	in	red.	The
blue	arrow	connects	the	new	10	node	to	the	existing	list.	The	top	is	then	reset	to	point	to	the	new	node.

6.2.5					Pop	an	element	from	an	array	stack
The	algorithm	to	remove	the	top	element	from	an	array	stack	is	shown	in	Algorithm	6.3.
Algorithm	6.3.	pop()

Pop	an	element	from	an	array	stack.

	

Pre-conditions

None

	

Post-conditions

Element	at	the	top	of	the	stack	is	returned	and	top	decremented	by	1.

	

Algorithm

pop()

1.				if	top	==	0

2.								print(“underflow	error”)

3.				else

4.								top	=	top	-	1

5.				return	data[top]

	

Example	4:	Pop	an	element	from	the	array	stack	shown	in	Figure	7.

	



Figure	7.	A	pop()	operation	on	this	array	stack	will	return	a	9	and	decrement	the	top	to	S[1].

pop()

	

This	call	to	pop()	will	return	a	9.

•	Line	1:	the	value	of	top	is	checked,	and	the	conditional	is	false	since	top	=	2.

•	Line	4:	top	is	decremented	and	is	now	1.

•	Line	5:	the	value	of	S[1]	is	returned,	which	is	9.

6.2.6					Pop	an	element	off	a	linked	list	stack
The	algorithm	to	pop	an	element	off	a	linked	list	stack	is	shown	in	Algorithm	6.4.	In	a
linked	list	stack	implementation,	the	pop()	operation	returns	a	node	in	the	list.

	
Algorithm	6.4.	pop()

Pop	an	element	from	a	linked	list	stack.

	

Pre-conditions

None

	

Post-conditions

Node	at	the	top	of	the	stack	is	returned	and	the	top	position	moves	to	the	previous	node	in
the	stack.

	

Algorithm

pop()

1.				if	top	==	NULL

2.								print(“underflow”)

3.				else

4.								x	=	top

5.				top	=	top.previous

6.				return	x

	

Example	5:	Pop	an	element	from	the	linked	list	stack	shown	in	Figure	8.

	



Figure	8.	A	pop()	operation	on	this	linked	list	will	return	the	node	with	a	key	value	of	7	and	move	the	top	to	point
to	the	node	with	a	key	value	of	6.

pop()

	

This	call	to	pop()	returns	the	node	with	a	key	value	of	7.	When	pop()	is	called,	the	top
pointer	is	pointing	to	the	node	with	a	key	value	of	7	(Figure	9).

Figure	9.	The	top	of	this	linked	list	stack	is	the	node	with	a	key	value	of	7.	The	top	node	will	be	removed	with	a
pop	operation.

•	Line	1:	The	conditional	fails,	since	top	is	pointing	to	a	valid	node.

•	Line	4:	The	variable	x	points	to	the	top	node	(Figure	10).

Figure	10.	Both	x	and	top	point	to	the	same	node	at	the	top	of	the	stack.

•	Line	5:	top	is	moved	to	point	to	the	previous	node	in	the	stack	(Figure	11).

Figure	11.	The	top	pointer	is	moved	to	point	to	the	previous	node	in	the	list.	The	x	pointer	hasn’t	changed	and	still
points	to	the	top	of	the	stack.

•	Line	6:	The	node	that	x	points	to	is	returned.	Once	the	node	is	processed,	the	memory
associated	with	the	node	should	be	freed	so	that	the	linked	list	will	have	one	fewer	nodes
and	there	won’t	be	any	memory	leaks	(Figure	12).

Figure	12.	The	top	of	the	linked	list	is	the	6	node	after	the	node	that	x	points	to	is	popped	from	the	stack.



6.3						Where	stacks	are	used	-	Computer	program	execution
During	the	execution	of	a	computer	program,	information	about	currently	active
subroutines	is	stored	on	a	call	stack.	As	new	subroutines	become	active,	they	are	added	to
the	stack,	and	as	subroutines	complete,	they	are	popped	off	the	stack.	For	example,
consider	the	simple	program	in	Code	6.1.

	
Code	6.1.	Call	stack	example.

int	addNums(int	a,	int	b){

return	a	+	b;

}

	

void	callAddNums(){

int	c	=	addNums(5,	6);

}

	

int	main(){

callAddNums();

}

	

The	program	starts	at	the	function	main(),	which	is	pushed	onto	the	call	stack	(Figure	13).

Figure	13.	State	of	the	call	stack	after	the	main()	function	is	placed	on	the	stack.

Next,	main()	calls	callAddNums(),	which	makes	that	subroutine	active	and	it	is	pushed
onto	the	call	stack	above	main()	(Figure	14).	The	most-recently	called	routine	is	at	the	top
of	the	stack.

Figure	14.	State	of	the	call	stack	after	main()	calls	callAddNums()	and	it	is	pushed	onto	the	call	stack.	The	most-
recently	called	routine	is	at	the	top	of	the	stack.



Next,	callAddNums()	calls	addNums(),	which	makes	that	subroutine	active	and	it	is
pushed	onto	the	stack.	At	this	point,	all	three	subroutines	are	active	because	none	of	them
has	completed	execution	(Figure	15).

Figure	15.	State	of	the	call	stack	after	addNums()	routine	is	pushed	onto	the	stack.	There	are	three	active
subroutines	on	the	stack,	with	the	most	recent	one	at	the	top	of	the	stack.

As	each	of	the	functions	completes,	it	is	popped	off	the	stack.	First,	addNums()	completes
and	is	popped	off	the	stack,	which	returns	the	stack	to	the	configuration	shown	in	Figure
14.	Next,	callAddNums()	completes	and	it	is	popped	off	the	stack,	leaving	only	main()	on
the	stack	(Figure	13).	Finally,	main()	completes	and	is	popped	off	the	stack,	which
completes	program	execution.



6.4						Complexity	of	stack	operations
All	stack	operations	occur	at	the	top	of	the	stack,	which	makes	their	complexity
independent	of	the	size	of	the	stack.

	

Push:	O(1)

Pop:	O(1)

	



7									Queues
A	queue	is	a	data	structure	similar	to	a	stack	in	that	it	stores	a	collection	of	elements	and
restricts	which	element	can	be	accessed	at	any	time.	However,	unlike	a	stack	which	works
on	a	LIFO	principle,	elements	in	a	queue	are	accessed	first-in-first-out	(FIFO):	the	first
element	added	to	the	queue	is	the	first	element	removed	from	the	queue,	much	like	the	line
at	the	grocery	store.

	

Example	1:	Add	the	words	of	this	classic	Napolean	Dynamite	quote,

	

A	liger	it’s	pretty	much	my	favorite	animal

	

to	a	queue.

	

Each	word	in	the	sentence	occupies	one	position	in	the	queue.	Words	are	added	to	the
queue	at	the	tail	position,	which	moves	each	time	a	word	is	added	to	the	queue	(Figure	1).

	

A	liger	it’s	pretty	much	my	favorite	animal.	

Figure	1.	Words	stored	in	a	queue.	Each	word	is	added	to	the	queue	at	the	tail	position	and	will	be	removed	from
the	queue	at	the	head	position.

Each	word	in	the	sentence	occupies	one	position	in	the	queue.	Words	are	added	at	the	tail
position	and	removed	from	the	head	position	(Figure	1).	The	positions	of	the	tail	and	head
move	as	elements	are	added	to	and	removed	from	the	queue.

	

Removing	the	words	from	the	queue	in	Figure	1	generates	the	following	sequence	of
words:

	

A	liger	it’s	pretty	much	my	favorite	animal.



	

Definitions:

When	an	element	is	added	to	a	queue,	it	is	“enqueued”.	Elements	are	enqueued	at	the
“tail”	of	the	queue.

	

When	an	element	is	removed	from	a	queue,	it	is	“dequeued”.	Elements	are	dequeued	from
the	“head”	of	the	queue.



7.1						The	queue	ADT
In	the	queue	ADT,	there	are	parameters	for	the	head	and	tail	of	the	queue	and	the	queue
size,	the	data	structure	to	store	the	queue	data,	and	methods	to	enqueue	and	dequeue	data.
Queue	data	is	typically	stored	in	a	data	structure	such	as	an	array	or	a	linked	list.	The
terminology	for	interacting	with	the	queue	is	the	same	regardless	of	the	data	structure
used,	but	the	implementation	details	vary.	A	queue	ADT	is	shown	in	ADT	7.1.

ADT	7.1.	Queue

Queue:

1.					private:

2.										head

3.										tail

4.										data

5.										queueSize

6.										maxQueue

7.										isEmpty()

8.										isFull()

9.					public:

10.								Init()

11.								enqueue(value)

12.								dequeue()



7.2						Enqueue	and	dequeue	queue	elements
7.2.1					Array	implementation	of	a	queue
In	an	array	implementation	of	a	queue,	data	elements	are	stored	in	an	array	and	the	head
of	the	queue	is	the	index	where	the	next	element	will	be	removed	and	the	tail	of	the	queue
is	the	index	where	the	next	element	will	be	added.	The	elements	in	the	array	are	the
contents	of	the	queue.

	

The	simplest,	but	least	efficient,	array	implementation	of	a	queue	involves	shifting	the
elements	when	the	head	element	is	dequeued.

	

Example	2:	Dequeue	an	element	from	the	queue	in	Figure	2	and	shift	the	remaining
elements	to	fill	the	space.

Figure	2.	A	dequeue	operation	on	this	queue	removes	the	element	at	the	head	position.	Shifting	all	elements	over
to	fill	the	space	is	a	costly	array	shifting	algorithm.

A	dequeue()	operation	removes	the	element	at	the	head	position,	which	is	an	“A”.	The
remaining	elements	are	shifted	to	fill	the	space	in	the	array	(Figure	3).	The	position	of	the
head	doesn’t	change,	but	the	tail	shifts	by	one.

Figure	3.	After	the	head	is	dequeued,	the	other	elements	in	the	array	are	shifted	by	one.	The	position	of	the	head
doesn’t	change,	but	the	tail	position	shifts	to	the	left.

Circular	array	queue

Shifting	the	elements	in	an	array	is	costly	-	O(n)	in	the	worst	case	when	the	array	is	full.	A
much	more	efficient	way	to	build	a	queue	is	to	let	the	head	and	tail	positions	wrap	around
back	to	the	beginning	of	the	array	as	elements	are	enqueued	and	dequeued.

7.2.2					Enqueue	to	an	array	queue
With	an	array	queue,	the	enqueue()	operation	needs	to	include	a	check	for	if	the	queue	is
full.	There	are	multiple	ways	to	check	this,	and	the	simplest	approach	is	to	keep	a	count	of
the	number	of	elements	in	the	queue	and	the	queue	size,	and	only	add	elements	when
there’s	room.	The	Queue	ADT	includes	variables	for	queueSize	and	maxQueue.	Then



queueSize	=	maxQueue,	the	queue	is	full.	The	enqueue()	algorithm	is	shown	in	Algorithm
7.1.

	
Algorithm	7.1.	enqueue(value)

Add	the	specified	value	to	the	queue	at	the	tail	position.

	

Pre-conditions

value	is	a	valid	queue	value.

	

Post-conditions

value	has	been	added	to	the	queue	at	the	tail	position,	queue[tail]	=	value.

The	tail	position	increases	by	1.

	

Algorithm

enqueue(value)

1.				if	(!isFull())

2.								data[tail]	=	value

3.								queueSize++

4.								if	(tail	==	data.end)

5.												tail	=	0

6.								else

7.												tail++

8.				else

9.								print(“queue	full”)

7.2.3					Dequeue	from	an	array	queue
In	the	dequeue()	operation,	there	is	a	check	for	if	the	queue	is	empty.	If	not,	the	element	at
the	head	position	is	returned.	The	tail	position	is	unchanged	in	the	dequeue()	operation.
The	dequeue()	algorithm	is	shown	in	Algorithm	7.2.

	
Algorithm	7.2.	dequeue()

Remove	the	queue	element	at	the	head	position.

	

Pre-conditions



None

	

Post-conditions

Value	at	data[head]	returned.

head	moves	by	one	position	in	the	array.

	

Algorithm

dequeue()

1.				if	(!isEmpty())

2.								value	=	data[head]

3.								queueSize—

4.								if	(head	==	data.end)

5.												head	=	0

6.								else

7.												head++

8.				else

9.								print(“queue	empty”)

10.		return	value

	

Example	3:	Show	the	state	of	the	queue,	Q,	for	the	following	set	of	dequeue()	and
enqueue()	operations	using	the	queue	in	Figure	4.

	

•	dequeue()

•	dequeue()

•	dequeue()

•	dequeue()

•	enqueue(6)

•	enqueue(10)

•	enqueue(12)

•	enqueue(2)

•	enqueue(5)

•	enqueue(13)

•	dequeue()



•	dequeue()

Figure	4.	Initial	state	of	the	queue	for	Example	3.	The	head	is	Q[0]	and	the	tail	is	Q[4].

Steps:

•	The	queue	has	four	elements	with	the	head	at	Q[0]	and	the	tail	at	Q[4].

•	dequeue()	returns	the	value	at	Q[0],	which	is	9,	and	moves	the	head	to	Q[1]	(Figure	5).

Figure	5.	The	dequeue()	operation	returns	9	and	moves	the	head	to	Q[1].	The	tail	position	is	unchanged.

•	dequeue()	returns	the	value	at	Q[1],	which	is	4,	and	moves	the	head	to	Q[2]	(Figure	6).

Figure	6.	The	dequeue()	operation	returns	4	and	moves	the	head	to	Q[2].

•	dequeue()	returns	the	value	at	Q[2],	which	is	2,	and	moves	the	head	to	Q[3]	(Figure	7).

Figure	7.	The	dequeue()	operation	returns	a	2	and	moves	the	head	to	Q[3].

•	dequeue()	returns	the	value	at	Q[3],	which	is	6,	and	moves	the	head	to	Q[4].	The	head
and	tail	are	now	at	the	same	position	and	the	queue	is	empty	(Figure	8).



Figure	8.	The	dequeue()	operation	returns	the	6.	The	head	and	tail	are	now	both	at	Q[4]	and	the	queue	is	empty.

•	enqueue(6)	adds	a	6	to	the	queue	at	the	tail	position	Q[4]	and	increments	the	tail	to
Q[5].	The	head	is	still	at	Q[4]	(Figure	9).

Figure	9.	The	enqueue(6)	operation	writes	a	4	to	the	tail	position	Q[4]	and	increments	the	tail	to	Q[5].	The	head	is
still	at	Q[4].

•	enqueue(10)	adds	a	10	to	the	queue	at	the	tail	position	Q[5]	and	increments	the	tail.
Since	the	tail	is	pointing	to	the	last	position	in	the	queue,	it	wraps	around	back	to	the
beginning.	The	tail	is	now	Q[0]	(Figure	10).

Figure	10.	The	enqueue(10)	operation	writes	a	10	to	the	tail	position	at	Q[5]	and	increments	the	tail	back	to	the
beginning	of	the	queue	at	Q[0].

•	enqueue(12)	adds	a	12	to	the	queue	at	the	tail	position	Q[0]	and	moves	the	tail	to	Q[1]
(Figure	11).

Figure	11.	The	enqueue(12)	operation	adds	a	12	to	the	queue	at	Q[0]	and	increments	the	tail	to	Q[1].

•	enqueue(2)	adds	a	2	to	the	queue	at	the	tail	position	Q[1]	and	moves	the	tail	to	Q[2]
(Figure	12).



Figure	12.	The	enqueue(2)	operation	writes	a	2	to	the	queue	at	Q[1]	and	increments	the	tail	to	Q[2].

•	enqueue(5)	adds	a	5	to	the	queue	at	the	tail	position	Q[2]	and	moves	the	tail	to	Q[3]
(Figure	13).

Figure	13.	The	enqueue(5)	operation	writes	a	5	to	the	queue	at	Q[2]	and	increments	the	tail	to	Q[3].

•	enqueue(13)	adds	a	13	to	the	queue	at	the	tail	position	Q[3]	and	moves	the	tail	to	Q[4].
The	head	and	tail	are	now	both	at	the	same	position	and	the	queue	is	full	(Figure	14).

Figure	14.	The	enqueue(13)	operation	writes	a	13	to	the	queue	and	increments	the	tail	to	Q[4].	The	head	and	tail
are	at	the	same	position	and	the	queue	is	full.

If	another	element	were	to	be	enqueued	now,	the	value	currently	at	Q[4]	would	be
overwritten.	For	example,	calling	enqueue(1)	would	write	a	1	to	Q[4]	and	overwrite	the	6
that	is	currently	stored	there.	There	needs	to	be	a	dequeue()	operation	first	before	any
more	data	can	be	added	to	the	queue.

	

•	dequeue()	returns	the	value	at	Q[4],	which	is	6,	and	moves	the	head	to	Q[5]	(Figure	15).

Figure	15.	The	dequeue	operation	returns	a	6	and	increments	the	head	to	Q[5].

•	dequeue()	returns	the	value	at	Q[5],	which	is	10,	and	increments	the	head.	Since	the
head	is	currently	at	the	last	position	in	the	queue,	it	wraps	around	back	to	the	beginning	of



the	queue	Q[0]	(Figure	16).

Figure	16.	The	dequeue()	operation	returns	a	10	and	moves	the	head	to	Q[0].

Features	of	a	circular	queue:

•	Both	the	tail	and	the	head	can	wrap	around	from	the	last	position	in	the	array	back	to	the
beginning.	In	the	previous	examples,	when	the	head	or	tail	reached	Q[5],	they	were	reset
to	Q[0].

	

•	The	condition	where	head	=	tail	can	mean	that	the	queue	is	empty	or	full,	which	needs
to	be	resolved	in	the	enqueue()	and	dequeue()	algorithms.	Calling	enqueue()	when	the
queue	is	full	can	result	in	overwriting	data	if	the	algorithm	doesn’t	check	for	a	full	queue.
Calling	dequeue()	when	the	queue	is	empty	can	result	in	an	unexpected	return	value	if	the
algorithm	doesn’t	check	for	an	empty	queue.

	

•	The	circular	queue	is	more	computationally	efficient	than	a	queue	that	uses	array
shifting,	but	it	is	more	complicated	to	implement.

7.2.4					Linked	list	implementation	of	a	queue
In	a	linked	list	implementation	of	a	queue,	the	head	and	tail	of	the	queue	are	nodes	in	the
list.	The	size	of	the	queue	can	change	dynamically	as	elements	are	added	and	removed.	In
the	linked	list	queue	shown	in	Figure	17,	each	node	has	a	pointer	to	the	next	node	in	the
list.	The	tail	node	is	the	last	node	and	it	has	a	next	pointer	of	NULL.

	

Figure	17.	Queue	implemented	with	a	linked	list.	The	head	is	the	first	node	in	the	list.	Each	node	has	a	pointer	to
the	next	node	in	the	list.	The	tail	node,	as	the	last	node	in	the	list,	has	a	next	pointer	that	points	to	NULL.

In	another	implementation	of	a	linked	list	queue,	the	queue	is	a	circular	buffer	where	the
tail	node	points	to	the	head	node	as	the	next	node	in	the	list.	Figure	18	shows	an	example
of	a	circular,	linked	list	queue.



Figure	18.	Example	of	a	circular	queue	implemented	with	a	linked	list.	The	next	pointer	for	the	tail	node	points	to
the	head	node	in	the	list.

7.2.5					Enqueue	to	a	linked	list	queue
The	algorithm	to	enqueue	a	node	to	a	linked	list	queue,	shown	in	Algorithm	7.3,	takes	the
value	to	enqueue	and	creates	a	node	with	that	queue	value.	The	new	node	is	added	at	the
tail	position.

	
Algorithm	7.3.	enqueue(value)

Add	a	node	to	a	queue	implemented	with	a	linked	list.

	

Pre-conditions

value	is	a	valid	linked	list	node	value.

	

Post-conditions

A	new	node	with	the	specified	key	value	is	added	to	the	queue.

tail	points	to	the	newly	added	node.

	

Algorithm

enqueue(value)

1.				node.key	=	value

2.				node.next	=	NULL

3.				if	tail	!=	NULL

4.								tail.next	=	node

5.								tail	=	node

6.				else

7.								tail	=	node

8.								head	=	tail

7.2.6					Dequeue	from	a	linked	list	queue
The	dequeue	algorithm,	shown	in	Algorithm	7.4,	returns	the	head	of	a	linked	list	queue,
and	moves	the	head	of	the	queue	to	the	next	position	in	the	list.



	
Algorithm	7.4.	dequeue()

Return	the	head	of	the	linked	list	queue.

	

Pre-conditions

None

	

Post-conditions

Head	of	the	queue	returned.

head	position	moved	to	the	previous	node	in	the	list.

	

Algorithm

dequeue()

1.				if	head	!=	NULL

2.								node	=	head

3.								head	=	head.next

4.				else

5.								print(“queue	empty”)

6.								tail	=	head

7.				return	node

	

Example	4:	Show	the	state	of	the	queue	for	the	following	set	of	dequeue	and	enqueue
operations	using	the	linked	list	queue	in	Figure	19	using	the	enqueue()	and	dequeue()
algorithms	in	Algorithm	7.3	and	Algorithm	7.4,	respectively.

	

•	dequeue()

•	dequeue()

•	dequeue()

•	dequeue()

•	enqueue(7)

•	enqueue(10)

•	enqueue(12)

	



Figure	19.	Initial	state	of	linked	list	queue	for	Example	4.

Steps:

•	dequeue()	returns	the	head	node,	which	contains	a	value	of	9.	The	head	is	moved	to
head.next,	which	is	the	node	that	contains	a	value	of	4	(Figure	20).	The	tail	is	unchanged.

Figure	20.	Contents	of	the	queue	after	the	head	node	dequeued	and	the	head	moves	to	the	node	that	contains	a
value	of	4.

•	dequeue()	returns	the	head	node,	which	contains		a	value	of	4.	The	head	moves	to	the
next	node,	which	contains	a	value	of	2,	and	the	tail	is	unchanged.	The	state	of	the	queue
after	the	dequeue()	operation	is	shown	in	Figure	21.

	

Figure	21.	Contents	of	the	queue	after	the	head	node	is	dequeued	and	the	head	position	moves	to	the	node	with	a
value	of	2.

•	dequeue()	returns	the	head	node,	and	the	head	position	moves	to	the	next	node,	which	is
the	same	as	the	tail	node.	The	state	of	the	queue	after	the	dequeue()	operation	is	shown	in
Figure	22.

Figure	22.	Contents	of	the	linked	list	after	the	dequeue	operation.	The	head	and	tail	now	point	to	the	same	node	in
the	list.

•	dequeue()	returns	the	only	node	in	the	queue	and	sets	the	head	to	NULL,	since	head.next
=	NULL.	Another	dequeue()	here	would	result	in	the	message	“queue	empty”	being
displayed,	and	the	tail	being	set	to	NULL	too.

	

•	enqueue(7)	adds	a	node	with	a	value	of	7	to	the	queue	at	the	tail	position.	The	tail	is
NULL,	which	causes	Lines	7-8	in	the	enqueue()	algorithm	to	execute.	The	head	and	tail



are	both	set	to	the	new	node,	as	shown	in	Figure	23.

Figure	23.	The	enqueue()	operation	adds	a	new	node	to	the	empty	list.	The	head	and	tail	point	to	the	same	node	in
the	list.

•	enqueue(10)	adds	a	node	with	a	value	of	10	to	the	queue	at	the	tail	position.	The	head
and	tail	now	point	to	different	nodes,	as	shown	in	Figure	24.

	

Figure	24.	There	are	now	two	nodes	in	the	queue	after	the	enqueue()	operation.	The	head	and	tail	point	to
different	nodes.

•	enqueue(12)	adds	a	node	with	a	value	of	12	to	the	queue	at	the	tail	position.	There	are
now	three	nodes	in	the	queue,	and	the	tail	is	set	to	the	new	node	(Figure	25).

	

Figure	25.	After	another	enqueue()	operation,	there	are	three	nodes	in	the	queue.	The	tail	position	is	set	to	the
new	node.



8									Binary	Trees
Imagine	a	simplistic	transportation	network,	such	as	the	one	shown	in	Figure	1,	that	starts
in	Denver,	and	from	Denver,	there	is	a	road	that	goes	east	to	Chicago	and	a	road	that	goes
west	to	Las	Vegas.	From	Chicago,	there	is	a	road	east	to	Boston	and	a	road	west	to	St.
Paul,	and	from	Las	Vegas,	there	is	travel	east	to	Phoenix	and	west	to	San	Diego.	In	the
scenario	just	described,	from	each	city,	there	are	two	choices	for	which	city	to	visit	next.

Figure	1.	Example	of	a	binary	tree	that	represents	travel	between	cities.	Starting	from	the	root	city,	Denver,	there
are	two	choices	for	which	city	to	visit	next,	Chicago	and	Las	Vegas.

Having	two	options	(at	most)	for	going	to	a	next	node	from	the	current	node	is	a	feature	of
a	structure	called	a	binary	tree.	The	city	network	example	in	Figure	1	can	be	viewed	as	a
tree	by	putting	the	starting	city,	also	known	as	the	root,	at	the	top	of	the	tree,	and	putting
the	two	possible	destination	cities	as	the	children.	The	top	three	nodes	in	the	tree	would
feature	Denver	as	the	root,	Las	Vegas	as	the	left	child,	and	Chicago	as	the	right	child
(Figure	2).

Figure	2.	Example	nodes	in	a	binary	tree	with	properties	for	the	parent,	key,	left	child,	and	right	child.	The	root
of	the	tree	is	Denver,	and	Denver	has	a	left	child,	Las	Vegas,	and	a	right	child,	Chicago.	The	parent	of	Las	Vegas
and	Chicago	is	Denver.	The	key	for	each	node	is	the	name	of	the	city.



8.1						Properties	of	binary	trees
Binary	trees	are	similar	to	linked	lists	in	that	the	nodes	in	the	tree	can	be	created
dynamically	and	then	linked	together	to	create	a	structure	that	can	be	easily	modified	to
support	dynamic	data.	The	next	and	previous	pointers	of	a	doubly	linked	list	are	replaced
with	parent	and	left	and	right	child	pointers	in	binary	trees	to	make	it	possible	to	represent
a	hierarchical	structure	in	a	data	set,	which	is	one	advantage	that	trees	have	over	linked
lists.	Trees	can	also	be	searched	and	modified	with	minimal	computational	effort.	These
advantages	mean	that	binary	trees	are	extremely	useful	and	frequently	used	over	other	data
structures.

	

Pointers	in	a	doubly	linked	list:

•	next

•	previous

	

Pointers	in	a	binary	tree:

•	parent

•	left	child

•	right	child

	

All	nodes	in	the	tree	can	be	a	parent	or	a	child	to	other	nodes	(except	for	the	root).	There
are	general	properties	that	all	nodes	exhibit,	as	well	as	properties	that	nodes	exhibit	as
parent	nodes	and	as	the	root	node	of	the	tree.

8.1.1					Parent	node	properties
•	Each	node	in	the	tree	has	a	parent.	In	Figure	2,	the	parent	of	both	Las	Vegas	and	Chicago
is	Denver.

•	Each	node	in	the	tree	is	a	parent	node	for	at	most	two	children,	a	left	and	a	right	child.

8.1.2					Root	node	properties
•	The	topmost	node	in	the	tree	is	called	the	root.

•	The	parent	of	the	root	is	NULL.

8.1.3					Node	properties
•	Each	node	in	the	tree	has	a	key	that	identifies	it.	In	the	city	example	in	Figure	2,	the	key
is	the	city	name.

•	If	a	node	doesn’t	have	a	left	child,	then	its	left	child	property	is	NULL.

•	If	a	node	doesn’t	have	a	right	child,	then	its	right	child	property	is	NULL.



•	If	a	node	doesn’t	have	a	left	or	a	right	child,	then	it	is	a	leaf	node.



8.2						Trees	and	Sub-trees
An	interesting	feature	of	any	binary	tree	is	that	it	is	defined	in	terms	of	the	smaller	sub-
trees	within	it.	This	is	called	self-similarity	and	it’s	computationally	significant	because	it
means	there	are	elegant	ways	to	search	the	tree	by	examining	smaller	and	smaller	sub-
trees.	For	example,	consider	the	binary	tree	T	in	Figure	3.	The	tree	has	a	root	node,	which
has	a	left	and	a	right	child.

Figure	3.	Example	of	a	binary	tree.	The	tree	has	a	root,	and	from	the	root,	there	is	a	left	and	right	sub-tree.

The	tree	can	also	be	considered	by	identifying	the	left	or	right	child	of	the	root	as	the	new
root	of	a	sub-tree	T’.	For	that	new	sub-tree	T’,	that	root	also	has	a	left	and	a	right	child.
This	relationship	is	shown	in	Figure	4.

Figure	4.	Binary	tree	T	and	a	sub-tree	T’.	The	root	of	T’	is	the	right	child	of	the	root	of	T.



	

The	pattern	continues	down	to	the	smallest	sub-tree	in	T,	which	contains	a	root	and	two
children,	but	no	additional	nodes	from	the	children	(Figure	5).	

Figure	5.	The	tree	T	can	contain	multiple	nested	sub-trees,	each	with	the	same	basic	structure	as	T.	Each	of	the
sub-trees	has	a	root	with	0,	1,	or	2	child	nodes.



9									Binary	Search	Trees
A	binary	search	tree	(BST)	is	a	special	case	of	a	binary	tree	where	the	data	in	the	tree	is
ordered.	For	any	node	in	the	tree,	the	nodes	in	the	left	sub-tree	of	that	node	all	have	a
value	less	than	the	node	value,	and	the	nodes	in	the	right	sub-tree	of	that	node	all	have	a
value	greater	than	or	equal	to	the	node	value.	For	example,	consider	the	BST	in	Figure	1,
where	the	key	value	of	each	node	is	an	integer.

Figure	1.	Example	of	a	binary	search	tree	(BST).	All	nodes	left	of	any	node	have	a	value	less	than	that	node	and
all	nodes	right	of	any	node	have	a	value	greater	than	that	node.

The	root	of	the	tree	has	a	key	value	of	5.	All	nodes	left	of	the	root	have	a	key	value	less
than	5	and	all	values	to	the	right	of	the	root	have	a	key	value	greater	than	or	equal	to	5.
These	properties	hold	for	all	other	nodes	in	the	tree.	For	example,	all	nodes	to	the	left	of
the	3	have	a	key	value	less	than	3	and	all	nodes	to	the	right	of	the	3	have	a	value	greater
than	or	equal	to	3,	but	less	than	5.

	

A	binary	search	tree	is	defined	as	follows:

	

Let	x	and	y	be	nodes	in	a	binary	search	tree.	If	y	is	in	the	left	sub-tree	of	x,	then	y.key	<
x.key.	If	y	is	in	the	right	sub-tree	of	x,	then	y.key	>=	x.key.

	

Example	1:	Build	a	binary	search	tree	from	the	following	integer	keys:

<	4,	2,	6,	9,	1,	3	>.

	

The	integers	are	added	to	the	tree	in	the	order	they	are	observed,	i.e.	4	is	added	first	and	3
is	added	last.

	

Steps:

1.	Add	4	as	the	root.

	

2.	Evaluate	the	next	value	in	the	list,	2.	Since	2	<	4,	go	left	of	the	root	and	add	the	2	to	the
tree	as	the	left	child	of	the	4.



	

3.	Evaluate	the	next	value	in	the	list,	6.	Since	6	>	4,	go	right	of	the	root	and	add	the	6	to
the	tree	as	the	right	child	of	the	4.	The	partial	tree	containing	the	first	three	nodes	added	is
shown	in	Figure	2.

Figure	2.	BST	after	the	first	three	nodes	are	added.	The	root	is	4,	the	left	child	of	the	root	is	2	and	the	right	child
of	the	root	is	6.

4.	Evaluate	the	next	value	in	the	list,	9.	Since	9	>	4,	go	right	of	the	root	and	compare	the	9
to	the	6.	Since	9	>	6,	go	right	of	the	6	and	add	the	9	as	right	child	of	the	6.

	

5.	Evaluate	the	next	value	in	the	list,	1.	Since	1	<	4,	go	left	of	the	root	and	compare	the	1
to	the	2.	Since	1	<	2,	go	left	of	the	2	and	add	the	1	as	the	left	child	of	the	2.	The	partial	tree
containing	the	first	five	nodes	is	shown	in	Figure	3.

Figure	3.	BST	after	the	first	five	nodes	are	added	to	the	tree.

6.	Evaluate	the	next	value	in	the	list,	3.	Since	3	<	4,	go	left	of	the	root	and	compare	the	3
to	the	2.	Since	3	>	2,	go	right	of	the	2	and	add	the	3	as	the	right	child	of	the	2.	The	final
tree	is	shown	in	Figure	4.

Figure	4.	Binary	search	tree	built	from	the	input	sequence:	<	4,	2,	6,	9,	1,	3	>.	Each	integer	is	added	to	the	tree	in
order,	i.e.	the	4	is	added	first	and	the	3	is	added	last.

Example	2:	Build	a	binary	search	tree	from	the	following	string	keys:	<	DEN,	LA,
CHI,	VEGAS,	SD,	DET,	NY	>.

	



A	string	is	compared	to	another	string	through	the	ASCII	values	of	the	individual
characters	in	the	string.	A	string	is	less	than	another	string	if	it	appears	first	alphabetically.

	

Steps:

1.	Add	DEN	as	the	root.

	

2.	Evaluate	LA	by	comparing	the	ASCII	value	of	D	to	the	ASCII	value	of	L,	the	first
letters	in	DEN	and	LA.	L	has	an	ASCII	value	of	76	and	D	has	an	ASCII	value	of	68,
which	makes	DEN	<	LA.	Add	LA	as	the	right	child	of	DEN.

	

3.	Evaluate	CHI	by	comparing	the	ASCII	value	of	D	to	the	ASCII	value	of	C.	C	is	less
than	D.	Add	CHI	as	the	left	child	of	DEN.	The	BST	with	the	first	three	nodes	is	shown	in
Figure	5.

Figure	5.	BST	with	the	first	three	nodes	added	to	the	tree.	DEN	is	the	root	of	the	tree.	The	left	child	of	the	root	is
CHI	and	the	right	child	of	the	root	is	LA.

4.	Evaluate	VEGAS	by	comparing	the	ASCII	value	of	D	to	the	ASCII	value	of	V.	V	is
greater	than	D,	so	go	to	the	right	child	of	DEN	and	compare	VEGAS	to	LA.	Compare	the
ASCII	value	of	V	to	the	ASCII	value	of	L	in	LA.	V	is	greater	than	L.	Add	VEGAS	as	the
right	child	of	LA.

	

5.	Evaluate	SD	by	comparing	the	ASCII	value	of	D	in	DEN	to	the	ASCII	value	of	S	in	SD.
S	is	greater	than	D,	so	go	to	the	right	child	of	DEN	and	compare	SD	to	VEGAS.	S	is	less
than	V.	Add	SD	as	the	left	child	of	VEGAS.	The	BST	with	the	first	five	nodes	added	is
shown	in	Figure	6.

Figure	6.	BST	with	the	first	five	nodes	added	to	the	tree.

6.	Evaluate	DET	by	comparing	the	D	in	DEN	to	the	D	in	DET.	Since	they	are	equal,



evaluate	the	second	letter	in	DEN	and	DET.	They	are	also	equal,	so	move	to	the	third
letter	and	compare	T	and	N.	T	is	greater	than	N,	so	go	to	the	right	child	of	DEN	and
compare	DET	to	LA.	D	is	less	than	L.	Add	DET	as	the	left	child	of	LA	(Figure	7).

Figure	7.	BST	after	DET	added	as	the	left	child	of	LA.

7.	Evaluate	NY,	the	final	key	in	the	sequence,	by	comparing	the	ASCII	value	of	D	in	DEN
to	the	ASCII	value	of	N	in	NY.	N	is	greater	than	D.	Go	right.	Compare	NY	to	LA	by
comparing	the	ASCII	value	of	N	to	the	ASCII	value	of	L.	N	is	greater	than	L.	Go	to	the
right	child	of	LA	and	compare	NY	to	VEGAS.	The	ASCII	value	of	N	is	less	than	the
ASCII	value	of	V;	go	to	the	left	child	of	VEGAS	and	compare	NY	to	SD.	N	is	less	than	S.
Add	NY	as	left	child	of	SD.	The	final	tree	is	shown	in	Figure	8.

Figure	8.	Binary	search	tree	built	from	the	input	sequence	of	cities:	<DEN,	LA,	CHI,	VEGAS,	SD,	DET,	NY>.



9.1						Binary	search	tree	ADT
In	a	binary	search	tree	ADT,	shown	in	ADT	9.1,	the	data	is	stored	in	a	tree	that	is	accessed
through	the	root	of	the	tree.	The	root	is	stored	as	a	private	variable,	and	there	are	public
methods	to	initialize	the	tree,	insert	and	delete	nodes,	traverse	the	tree,	and	search	the	tree.
A	private	search	method	is	also	included	to	support	the	recursive	search	functionality	in
the	tree.

	
ADT	9.1.	Binary	Search	Tree

BinarySearchTree:

1.					private:

2.										root

3.										searchRecursive(node,	value)

4.					public:

5.										Init()

6.										insert	(value)

7.										search(value)

8.										traverseAndPrint()

9.										delete(value)

10.								deleteTree()

9.1.1					C++	implementation	of	a	binary	tree	node
A	binary	tree	node	in	C/C++	can	be	built	with	a	struct,	just	like	a	node	in	a	linked	list,
where	the	members	of	the	struct	include	the	key,	a	pointer	to	the	parent	node,	pointers	to
the	leftChild	and	rightChild	nodes,	and	any	additional	data	that	the	program	needs	to	store
to	operate	successfully.

	

struct	node{

int	key

node	*parent

node	*leftChild

node	*rightChild

}



9.2						Searching	a	BST
The	BST	ordering	generates	a	structure,	whereby,	from	any	given	node,	a	search	operation
can	identify	a	section	of	the	tree	that	might	contain	the	search	value	and	eliminate	the	rest
of	the	tree	from	consideration.	For	example,	if	the	search	value	is	less	than	the	value	of	a
given	node,	then	all	nodes	to	the	right	of	that	node	don’t	need	to	be	evaluated.	This
ordering	prunes	the	search	space	by	removing	branches	that	won’t	contain	the	search
value.

	

The	BST	search	can	be	performed	recursively	or	iteratively.	In	the	recursive	version,	the
search()	algorithm,	shown	in	Algorithm	9.1,	takes	the	value	to	search	for	as	an	argument
and	calls	another	algorithm	searchRecursive()	(shown	in	Algorithm	9.2),	which	takes	the
search	value	and	the	node	to	evaluate	as	arguments.	The	search	returns	when	the	value	is
found,	or	the	bottom	of	the	tree	is	reached,	which	indicates	that	the	value	does	not	exist	in
the	tree.

	
Algorithm	9.1.	search(value)

Returns	a	pointer	to	the	node	with	a	key	that	matches	the	search	value.	The	search	starts	at
the	root	of	the	tree	and	calls	searchRecursive()	to	evaluate	non-root	nodes.

	

Pre-conditions

value	is	a	valid	search	parameter	that	is	the	same	type	as	the	node	key.

	

Post-conditions

Returns	pointer	to	the	node	with	a	key	that	matches	the	search	value	or	NULL	if	the	key
does	not	exist	in	the	tree.

	

Algorithm

search(value)

1.				if	(root	!=	NULL)

2.								if	(root.key	==	value)

3.												return	root

4.								else	if	(root.key	>	value)

5.												return	searchRecursive(root.left,	value)

6.								else

7.												return	searchRecursive(root.right,	value)



8.				else

9.								return	NULL

	
Algorithm	9.2.	searchRecursive(node,	value)

Returns	a	pointer	to	the	node	with	a	key	that	matches	the	search	value.

	

Pre-conditions

value	is	a	valid	search	parameter	that	is	the	same	type	as	the	node	key.

node	is	a	valid	node	being	evaluated	in	a	BST.

	

Post-conditions

Returns	pointer	to	the	node	with	a	key	that	matches	the	search	value	or	NULL	if	the	key
does	not	exist	in	the	tree.

	

Algorithm

searchRecursive(node,	value)

1.				if	(node!=NULL)

2.								if	(node.key	==	value)

3.												return	node

4.								else	if	(node.key	>	value)

5.												return	searchRecursive(node.left,	value)

6.								else

7.												return	searchRecursive(node.right,	value)

8.				else

9.								return	NULL

	

In	the	recursive	searchRecursive()	algorithm,	node	is	the	node	in	the	BST	to	evaluate	and
value	is	the	value	to	search	for.	On	Lines	5	and	7	of	the	algorithm,	searchRecursive()	is
called	recursively	on	the	left	or	right	child	of	node.	If	value	is	less	than	the	node	key,	the
left	branch	is	searched	and	if	value	is	greater	than	or	equal	to	the	node	key,	then	the	right
branch	is	explored.	If	the	algorithm	doesn’t	find	the	specified	value	in	the	tree,	the
algorithm	returns	NULL.

	

Searching	a	BST	does	not	need	to	be	done	recursively.	In	the	non-recursive	algorithm,	a
while	loop	is	used	to	check	for	when	the	bottom	of	the	tree	has	been	reached	or	the	value



has	been	found.	An	iterative	search	algorithm	is	shown	in	Algorithm	9.3.

	
Algorithm	9.3.	searchIterative(value)

Returns	a	pointer	to	the	node	where	the	key	matches	the	search	value.

	

Pre-conditions

value	is	a	valid	search	value	that	is	the	same	type	as	the	node	key.

	

Post-conditions

Returns	a	pointer	to	the	node	where	the	search	value	matches	the	key	or	NULL	if	the	key
does	not	exist	in	the	tree.

	

Algorithm

searchIterative(value)

1.				node	=	root

2.				while(node	!=	NULL)

3.								if	(node.key	>	value)

4.												node	=	node.left

5.								else	if(node.key	<	value)

6.												node	=	node.right

7.								else

8.												return	node

9.				return	NULL

	

In	the	searchIterative()	algorithm,	the	while	loop	on	Line	1	checks	that	node	is	not	NULL,
which	will	be	true	when	the	tree	is	not	empty	and	the	bottom	of	the	tree	has	not	been
reached.	This	condition	will	fail	when	the	search	has	reached	a	left	or	right	child	that	is	set
to	NULL	at	the	bottom	of	the	tree.	If	this	happens,	then	value	doesn’t	exist	in	the	tree	and
the	algorithm	returns	NULL.	Otherwise,	node	is	updated	to	move	through	the	tree	by
pointing	to	its	left	or	right	child	depending	on	the	node	key	and	search	value.

9.2.1					Inserting	a	node	into	a	BST
Inserting	a	node	into	a	BST	involves	first,	searching	for	the	correct	placement	of	the	node,
and	then,	modifying	the	tree	to	add	the	node.	The	insert()	algorithm	is	shown	in	Algorithm
9.4.

	



Algorithm	9.4.	insert(value)

Inserts	a	node	with	the	specified	value	into	a	BST	at	the	appropriate	position.

	

Pre-conditions

value	is	a	valid	node	value.

	

Post-conditions

Memory	for	the	node	is	allocated	and	the	BST	has	been	modified	correctly	to	include	the
new	node.

	

Algorithm

insert(value)

1.					tmp	=	root

2.					node.key	=	value

3.					node.parent	=	NULL

4.					node.leftChild	=	NULL

5.					node.rightChild	=	NULL

6.					while(tmp	!=	NULL)

7.									parent	=	tmp

8.									if(node.key	<	tmp.key)

9.													tmp	=	tmp.leftChild

10.							else

11.											tmp	=	tmp.rightChild

12.			if	(parent	==	NULL)

13.							root	=	node

14.			else	if(node.key	<	parent.key)

15.							parent.leftChild	=	node		

16.							node.parent	=	parent

17.			else

18.							parent.rightChild	=	node

19.							node.parent	=	parent

	

In	the	insert()	algorithm,	the	node	is	created	with	value	as	the	key	value	and	the	parent,



leftChild,	and	rightChild	pointers	initialized	to	NULL.	The	while	loop	on	Lines	6-11
identifies	the	correct	placement	for	the	new	node	by	searching	for	a	node	with	a	NULL
pointer	its	left	or	right	child.	At	the	end	of	the	while	loop,	the	value	of	tmp	will	be	NULL
because	it	will	be	pointing	to	the	child.	Lines	12-19	of	the	algorithm	add	the	node	to	the
tree	as	either	the	root	if	the	tree	is	empty,	or	the	left	or	right	child.	The	parent	value	of	the
new	node	is	also	set.

	

Example	3:	Insert	a	3	into	the	BST	shown	in	Figure	9.

Figure	9.	Add	a	node	with	a	key	value	of	3	to	this	BST	for	Example	3.

Steps:

1.	On	Line	1,	set	tmp	to	point	to	the	root	node,	which	points	tmp	to	the	node	with	the	key
value	of	15.

	

2.	On	Line	8,	compare	the	3	to	the	15,	and	since	3	<	15,	go	left	to	evaluate	the	nodes	in	the
left	sub-tree	of	the	15.	Set	tmp	to	the	left	child	of	the	root	on	Line	9,	which	points	tmp	to
the	6.

	

3.	Evaluate	the	while	loop	condition	again	on	Line	6;	tmp	is	not	NULL,	since	it’s	pointing
to	the	6.

	

4.	On	Line	8,	compare	the	3	to	the	6,	and	since	3	<	6	and	go	left	again.	The	6	doesn’t	have
a	left	child,	therefore,	on	Line	9,	tmp	is	set	to	NULL.

	

5.	Evaluate	the	while	loop	condition	again,	which	fails	because	the	value	of	tmp	is	NULL.
At	this	point,	parent	is	the	6.	The	new	node	will	be	added	as	either	a	left	or	right	child	of
the	6.

	

6.	On	Line	12,	check	if	the	tree	is	empty,	which	is	true	if	parent	is	NULL.

	

7.	On	Line	14,	the	conditional	is	true,	since	3	<	6.	This	means	that	the	3	should	be	added
as	the	left	child	of	the	6,	which	is	accomplished	by	setting	the	6’s	leftChild	property	to
point	to	the	3	on	Line	15.	The	parent	property	of	the	new	node	is	updated	on	Line	16	to
point	to	the	6.	The	new	tree	is	shown	in	Figure	10.



Figure	10.	BST	after	the	3	is	added	as	the	left	child	of	the	6.

9.2.2					Deleting	a	node	from	a	BST
When	a	node	is	deleted	from	the	tree,	the	node	may	need	to	be	replaced	with	another	node
in	the	tree.	The	replacement	node	needs	to	be	selected	such	that	the	BST	properties	are
preserved.

	

There	are	three	cases	to	consider	when	deleting	a	node.	Exactly	one	of	the	following
conditions	is	true	about	the	deleted	node:

1.	The	node	has	no	children.

2.	The	node	has	one	child.

3.	The	node	has	two	children.

	

Figure	11	shows	a	BST	with	examples	of	nodes	with	0,	1,	or	2	children.	The	nodes	with
values	of	3,	9,	17,	and	20	have	no	children.	The	node	with	a	value	of	7	has	one	child,	and
the	nodes	with	values	of	6,	15,	and	18	have	two	children.	The	delete()	algorithm	that
handles	all	three	cases	is	shown	in	Algorithm	9.5.	For	brevity,	only	the	case	where	the
deleted	node	is	its	parent’s	left	child	is	shown.

Figure	11.	BST	with	nodes	that	have	no	children	(3,	9,	17,	20),	one	child	(7),	and	two	children	(6,	15,	18).

Algorithm	9.5.	delete(value)

Deletes	the	node	where	the	value	matches	the	node	key	value.

	

Pre-conditions



value	is	a	valid	search	value	whose	type	matches	the	node	key	type.

search()	algorithm	exists	to	identify	the	node	to	delete.

treeMinimum()	algorithm	exists	to	identify	the	minimum	value	in	a	sub-tree,	which	will	be
the	replacement	node	for	a	deleted	node	with	two	children.	(Algorithm	9.5)

	

Post-conditions

Node	with	specified	key	value	is	deleted	from	the	tree.

parent,	left	child,	and	right	child	pointers	for	the	deleted	node	and	neighboring	nodes	are
reset	accordingly.

	

Algorithm

(Note:	this	is	not	the	complete	delete()	algorithm.	For	the	one-	and	two-children	cases,
only	the	case	where	the	deleted	node	is	the	left	child	of	its	parent	is	shown.	Additional
cases	are	needed	to	handle	when	the	deleted	node	is	the	right	child.)

	

delete(value)

1.					node	=	search(value)

2.					if(node	!=	root)

3.									if(node.leftChild	==	NULL	and	node.rightChild	==	NULL)	//no	children

4.													node.parent.leftChild	=	NULL

5.									else	if(node.leftChild	!=	NULL	and	node.rightChild	!=	NULL)	//two	children

6.													min	=	treeMinimum(node.rightChild)

7.													if	(min	==	node.rightChild)

8.																	node.parent.leftChild	=	min

9.																	min.parent	=	node.parent

10.											else

11.															min.parent.leftChild	=	min.rightChild

12.															min.parent	=	node.parent

13.															min.right.parent	=	min.parent

14.															node.parent.leftChild	=	min

15.															min.leftChild	=	node.leftChild

16.															min.rightChild	=	node.rightChild

17.															node.rightChild.parent	=	min



18.															node.leftChild.parent	=	min

19.							else	//one	child

20.											x	=	node.leftChild

21.											node.parent.leftChild	=	x

22.											x.parent	=	node.parent

23.			else

24.							//repeat	cases	of	0,	1,	or	2	children

25.							//replacement	node	is	the	new	root

26.							//parent	of	replacement	is	NULL

27.			delete	node			

	

Node	has	no	children

In	the	tree	shown	in	Figure	13,	nodes	3,	9,	17,	20	don’t	have	any	children.	To	delete	a
node	with	no	children:

•	Reset	the	appropriate	leftChild	or	rightChild	pointer	for	the	parent	of	the	deleted	node	to
NULL.

•	Free	the	memory	to	delete	the	node.

	

Example	4:	Delete	the	3	from	the	BST	in	Figure	11.

	

The	3	is	the	left	child	of	the	6.

	

Steps:

1.	Set	the	left	child	pointer	for	the	6	to	NULL.

	

2.	Delete	the	3	node.

	

Node	has	one	child

In	the	BST	shown	in	Figure	13,	the	7	has	only	one	child.	To	delete	a	node	with	one	child:

•	Update	the	node’s	parent	to	point	to	the	node’s	child.

•	Delete	the	node.

	

Example	5:	Delete	the	7	from	the	BST	in	Figure	11.



	

The	7	is	the	right	child	of	the	6.

	

Steps:

1.	Set	the	right	child	pointer	of	the	6	to	point	to	the	9.

2.	Delete	the	7	node.

	

The	node	has	two	children

In	the	tree	shown	in	Figure	13,	the	6,	15,	and	18	have	two	children.	To	delete	a	node	with
two	children,	a	node	in	its	right	sub-tree	that	doesn’t	have	a	left	child	should	replace	the
deleted	node,	i.e.	the	minimum	value	in	the	right	sub-tree.	Figure	14	shows	the	right	sub-
tree	of	the	6.	The	replacement	for	the	6	in	a	delete	operation	is	the	7,	since	it	is	the	first
node	found	that	doesn’t	have	a	left	child.

	

Example	6:	Delete	the	6	from	the	BST	in	Figure	12.

Figure	12.	The	right	sub-tree	of	the	6	includes	the	7	and	the	9.	The	first	node	encountered	that	doesn’t	have	a	left
child	is	the	7,	which	makes	it	the	minimum	value	in	the	sub-tree	and	the	replacement	for	the	6.

In	this	example,	the	replacement	for	the	6	is	its	rightChild,	the	7.	Reset	the	parent	and
leftChild	properties	for	the	nodes	surrounding	the	6,	including	the	3,	7	and	15.	The	rest	of
the	right	sub-tree	is	unmodified.

	

Steps:

1.	The	parent	property	of	the	3	is	updated	to	point	to	the	7.

	

2.	The	leftChild	property	of	the	15	is	updated	to	point	to	the	7.

	



3.	The	parent	property	of	the	7	is	updated	to	point	to	the	15.

	

4.	Delete	the	6	node.	The	new	BST	is	shown	in	Figure	13.

Figure	13.	BST	after	the	6	is	deleted	and	replaced	by	the	7.	Properties	of	the	15,	3,	and	7	were	updated	to
restructure	the	tree	and	delete	the	6.

In	Example	6,	the	replacement	node	was	the	right	child	of	the	node	to	delete.	There	is
another	case	where	the	replacement	node	is	the	minimum	value	in	the	right	sub-tree,	but	it
is	not	the	right	child	of	the	deleted	node.

	

Example	7:	Remove	the	6	from	the	BST	in	Figure	14.

Figure	14.	Delete	the	6	from	this	tree	and	replace	it	with	the	minimum	value	in	its	right	sub-tree.	The	minimum
value	is	found	by	traversing	left	down	the	right	sub-tree	until	a	node	without	a	left	child	is	found.

Identify	the	replacement	for	the	6.	The	replacement	is	in	its	right	sub-tree,	but	it	not	its
right	child.	The	replacement	node	has	to	be	the	minimum	value	in	the	right	sub-tree	to
preserve	the	BST	properties.	To	find	the	minimum,	start	at	the	right	child	and	traverse	left
until	the	node	doesn’t	have	a	left	child.	In	this	example,	the	right	child	is	the	10,	which	has
a	left	child.	The	10	can’t	be	the	minimum	in	the	sub-tree	and	therefore,	is	not	the
replacement	node.	Next,	evaluate	the	left	child	of	the	10,	which	is	the	8.	The	8	doesn’t
have	a	left	child,	which	makes	it	the	minimum	value	in	the	sub-tree.	Replace	the	6	with
the	8	by	updating	the	parent,	leftChild,	and	rightChild	properties	for	the	surrounding
nodes	of	the	6	and	the	8.



	

Steps:

1.	Update	the	leftChild	property	of	the	10	to	point	to	the	9.

	

Line	11:	min.parent.leftChild	=	min.leftChild

	

2.	Update	the	parent	property	of	min	to	point	to	the	15.

	

Line	12:	min.parent	=	node.parent

	

3.	Update	the	parent	property	of	the	9	to	point	to	the	10.

	

Line	13:	min.rightChild.parent	=	min.parent

	

4.	Update	the	leftChild	property	of	the	15	to	point	to	the	8.

	

Line	14:	node.parent.leftChild	=	min

	

5.	Update	the	leftChild	property	of	the	8	to	point	to	the	4.

	

Line	15:	min.leftChild	=	node.leftChild

	

6.	Update	the	rightChild	property	of	the	8	to	point	to	the	10.

	

Line	16:	min.rightChild	=	node.rightChild

	

7.	Update	the	parent	property	of	the	10	to	point	to	the	8.

	

Line	17:	node.rightChild.parent	=	min

	

8.	Update	the	parent	property	of	the	4	to	point	to	the	8.

	



Line	18:	node.leftChild.parent	=	min

	

The	final	tree	with	the	6	removed	is	shown	in	Figure	15.

Figure	15.	BST	after	the	6	is	deleted	and	the	tree	is	reordered	to	maintain	the	BST	properties.

9.2.3					Find	minimum	or	maximum	value	in	a	BST
The	minimum	value	of	a	tree	or	sub-tree	can	be	found	by	traversing	left	until	reaching	a
node	whose	left	child	is	NULL.	That	node	is	the	minimum	value.	For	example,	in	the	tree
shown	in	Figure	17,	the	minimum	value	in	the	tree	is	found	by	starting	at	the	15,	going	left
to	the	8,	and	then	left	to	the	4.	The	4	doesn’t	have	a	left	child,	which	makes	it	the
minimum	value	in	the	tree.	The	algorithm	to	find	the	minimum	value	in	a	BST	is	shown	in
Algorithm	9.6.

	
Algorithm	9.6.	treeMinimum(node)

Returns	a	pointer	to	the	node	with	the	minimum	key	value	in	a	sub-tree,	where	the	root	of
the	sub-tree	is	node.

	

Pre-conditions

node	is	a	valid	node	in	a	BST	and	the	starting	node	in	the	search.

	

Post-conditions

Returns	a	pointer	to	the	node	with	the	minimum	key	value	in	a	sub-tree	by	finding	the
node	whose	leftChild	property	is	NULL.

	

Algorithm

treeMinimum(node)

1.				while	(node.leftChild	!=	NULL)



2.								node	=	node.leftChild

3.				return	node

	

A	similar	approach	is	used	to	find	the	maximum	value	in	a	tree	or	sub-tree.	Traverse	right
in	the	tree	until	reaching	a	node	whose	rightChild	property	is	NULL.	This	node	will	be	the
maximum	value	in	the	tree.	The	algorithm	to	find	the	maximum	value	in	a	BST	is	shown
in	Algorithm	9.7.

	
Algorithm	9.7.	treeMaximum(node)

Return	a	pointer	to	the	node	with	the	maximum	key	value	in	a	sub-tree,	where	the	root	of
the	sub-tree	is	node.

	

Pre-conditions

node	is	a	valid	node	in	a	BST	and	the	starting	node	in	the	search

	

Post-conditions

Returns	a	pointer	to	the	node	with	the	maximum	key	value	in	a	sub-tree	by	finding	the
node	whose	rightChild	property	is	NULL.

	

Algorithm

treeMaximum(node)

1.				while	(node.rightChild	!=	NULL)

2.								node	=	node.rightChild

3.				return	node

	

The	treeMinimum()	and	treeMaximum()	algorithms	can	take	any	node	in	the	tree	as	the
starting	node.	For	example,	consider	the	tree	T	and	sub-tree	T’	in	Figure	16.



Figure	16.	BST	T	and	T’.	The	BST	T’	is	a	sub-tree	within	the	BST	T.

Finding	the	minimum	or	maximum	of	T	and	T’	can	produce	a	different	result.

	

Example	8:	Find	the	minimum	value	in	T.

	

treeMinimum(T.root)	=	1

	

In	this	call	to	treeMinimum(),	the	algorithm	searches	from	the	root	of	T,	and	finds	that	the
minimum	value	in	the	BST	is	1.	This	is	the	minimum	value	for	the	entire	tree.

	

Example	9:	Find	the	minimum	value	in	T’.

	

treeMinimum(T’.root)	=	5

	

In	this	call	to	treeMinimum(),	the	algorithm	searches	from	the	root	of	T’,	which	is	the	6.
The	minimum	value	in	that	sub-tree	is	not	the	minimum	for	the	entire	tree,	and	the
algorithm	returns	a	5.

	

Example	10:	Find	the	maximum	value	for	T	and	T’.

	

treeMaximum(T.root)	=	9

	

treeMaximum(T’.root)	=	9

	

When	treeMaximum()	is	called	on	either	T	or	T’,	the	same	value	is	returned.	T’	contains



the	right-most	node	in	the	tree	and	therefore	will	contain	the	maximum	value	in	the	entire
tree.	The	same	would	be	true	for	the	minimum	value	and	a	sub-tree	that	contains	the	left-
most	node	in	the	entire	tree.

9.2.4					Find	nodes	within	a	range	of	values
The	properties	of	BSTs	make	it	possible	to	efficiently	identify	all	nodes	in	the	tree	with
key	values	in	a	specified	range,	such	as	nodes	with	values	greater	than	5	and	less	than	12.

	

Example	11:	Find	all	nodes	in	T	in	Figure	16	with	a	value	less	than	3.

	

Steps:

1.	Starting	at	the	root,	compare	3	to	the	root.key	value.	Since	3	<	4,	go	left	and	evaluate
the	nodes	in	the	left	sub-tree	of	the	root.	All	nodes	in	the	right	sub-tree	of	the	root	can	be
excluded	from	evaluation;	they	will	have	values	greater	than	3.

	

2.	Evaluate	the	left	child	of	the	root,	which	is	the	2.	Since	2	<	3,	the	entire	left	sub-tree	of
the	2	will	also	be	less	than	3.	The	only	value	in	the	left	sub-tree	is	the	1.

	

3.	The	2	doesn’t	have	a	right	sub-tree	to	evaluate.

	

The	values	in	the	tree	less	than	3	are	<	1,	2	>.

	

Example	12:	Find	all	nodes	with	key	values	less	than	10	in	the	BST	in	Figure	17.

Figure	17.	Find	all	nodes	with	key	values	less	than	10	in	this	BST.

Steps:

1.	Starting	at	the	root,	compare	10	to	the	root	value.	Since	10	<	15,	go	left	and	evaluate	the
nodes	in	the	left	sub-tree	of	the	root.	The	right	sub-tree	of	the	root	can	be	excluded	from



evaluation.

	

2.	Evaluate	the	left	child	of	the	root,	which	has	a	value	of	6,	and	since	6	<	10,	that	node
and	all	nodes	left	of	it	are	less	than	10.	The	list	of	values	less	than	10	currently	includes	<
2,	3,	4,	6>.

	

3.	Evaluate	the	right	sub-tree	of	the	6,	which	will	contain	values	between	6	and	14	by	the
BST	properties.	The	values	will	be	greater	than	or	equal	to	6	because	it’s	the	right	sub-tree
of	the	6	and	and	less	than	15	because	it’s	the	left	sub-tree	of	the	15.

	

4.	Evaluate	right	child	of	the	6,	which	is	7.	Add	7	to	the	list	of	values	less	than	10,	which
now	includes	<	2,	3,	4,	6,	7>.

	

5.	The	7	doesn’t	have	a	left	child	to	evaluate.

	

6.	Evaluate	the	right	child	of	the	7,	which	has	a	value	of	13.	The	left	sub-tree	of	the	13	can
contain	values	between	7	and	12.	The	right	sub-tree	of	13	will	contain	values	greater	than
or	equal	to	13,	which	are	all	greater	than	10.

	

7.	Evaluate	the	left	child	of	the	13,	which	has	a	value	of	9.	The	9	doesn’t	have	any
children	to	evaluate,	which	means	that	there	are	no	additional	node	to	check.

	

The	final	list	of	nodes	in	the	BST	with	values	less	than	10	is	<	2,	3,	4,	6,	7,	9	>.



9.3						BST	Complexity
The	runtime	for	the	search(),	insert(),	and	delete()	algorithms	on	a	BST	depends	on	how
the	tree	is	built.	For	example,	the	following	sequence	of	integers:

	

<	15,	8,	4,	18,	10,	17,	20,	9,	11	>

	

generates	the	BST	shown	in	Figure	18.	The	BST	is	balanced;	the	left	and	right	child
positions	for	all	nodes	in	the	tree	are	occupied	at	all	levels	except	the	last	level,	and	there
is	only	a	one-level	difference	in	the	left	and	right	sub-trees	of	the	root.

Figure	18.	Example	of	a	balanced	BST.	The	left	and	right	child	positions	are	occupied	at	all	levels	except	the	last
and	there	is	only	a	one-level	difference	in	the	left	and	right	sub-trees	of	the	root.

However,	a	BST	built	from	a	sorted	sequence	of	data:

	

<4,	8,	9,	10,	11,	15,	17,	18,	20>

	

generates	the	BST	in	Figure	19.



Figure	19.	Example	of	a	BST	built	from	sorted	data.	The	BST	is	effectively	a	linked	list	and	operations	on	this
BST	will	have	O(n)	behavior.

Definition	of	balanced	tree

A	balanced	binary	search	tree	has	the	minimum	possible	maximum	height.	For	each	node
x,	the	heights	of	the	left	and	right	sub-trees	of	x	differ	by	at	most	1.

	

In	a	BST,	basic	operations	to	search,	insert,	and	delete	run	in	O(h)	time,	where	h	is	the
height	of	the	tree.	When	n	=	h,	where	n	is	the	number	of	nodes,	then	these	operations	are
O(n)	and	the	BST	has	the	same	runtime	properties	as	a	linked	list.	When	the	tree	is
balanced,	as	in	Figure	18,	the	distance	from	the	root	to	any	leaf	node	at	the	bottom	of	the
tree,	is	log2(n),	where	n	is	the	number	of	nodes	in	the	tree.	In	a	BST	with	9	nodes,	there
are	3-4	levels,	and	in	the	worst	case,	there	would	be	4	comparisons	to	find	a	node	in	the
tree.	Calculating	log2(9)	≈	3.16	shows	that	log(n)	is	a	good	approximation.

	

In	contrast	to	the	height-balanced	tree	in	Figure	18,	the	unbalanced	tree	in	Figure	19
would	require	n	comparisons	to	search	for	a	node	at	the	bottom	of	the	tree.	Searching	for
the	20,	for	example,	would	require	evaluating	all	9	nodes	in	the	tree.	On	smaller	trees,	it
may	not	matter	that	much	if	the	tree	is	structured	like	an	n-node	linked	list,	but	with
thousands	or	millions	of	nodes,	having	a	balanced	tree	can	significantly	improve	the
runtime	of	operations	on	the	BST.	For	example,	consider	a	tree	with	a	million	nodes.	If	the
tree	is	balanced,	then	the	height	of	the	tree	is	log2	(1000000)	≈	19,	anything	can	be	found
in	the	tree	in	approximately	19	comparisons.	However,	if	the	tree	is	unbalanced,	up	to
1,000,000	comparisons	could	be	required.

	



10				Recursion
Recursion	is	the	process	of	a	function	calling	itself,	and	it	is	frequently	used	to	evaluate
structures	that	can	be	defined	by	self-similarity,	such	as	trees.	A	recursive	call	to	a
function	evaluates	a	smaller	and	smaller	instance	of	the	structure	until	the	smallest	case	is
reached.

	

Recursion	is	typically	used	on	problems	where	the	structure	of	the	data	is	also	recursive,
such	as	a	file	system	on	a	computer.	The	directory	structure	is	defined	recursively	in	terms
of	smaller	and	smaller	directory	structures.	At	the	top	level,	there	are	directories	and	files.
Within	the	directories,	there	are	other	directories	and	files,	and	within	those	directories
there	can	be	other	directories,	and	so	on.	Searching	through	the	file	system	reveals	a
repeating	pattern	down	to	a	level	where	there	are	only	files.	In	a	recursive	search
algorithm,	if	the	search	gets	to	this	level	and	doesn’t	find	the	specified	file,	then	the
algorithm	returns	that	the	file	is	not	found	in	the	file	system.



10.1	Rules	for	recursive	algorithms
There	are	two	rules	that	define	the	structure	of	any	recursive	algorithm.	The	algorithm
needs	to	include:

	

•	A	base	case.	This	is	the	smallest	unit	of	the	problem	that	can	be	defined.	Once	the	base
case	is	reached,	the	algorithm	should	return	without	additional	recursive	calls.

•	A	set	of	rules	that	can	reduce	all	cases	down	to	the	base	case.	The	base	case	is	the	exit
strategy	for	a	recursive	algorithm.	If	the	algorithm	never	reaches	the	base	case,	then	it	will
never	exit.

	

The	base	case	is	defined	by	the	structure	of	the	data.	In	a	file	system,	the	base	case	is	an
individual	file.	Traversal	of	a	directory	structure	down	to	the	base	case	means	going	down
to	a	level	where	there	are	only	files	and	no	additional	directories.	In	a	BST,	the	base	case
is	an	individual	node	with	no	children.	Smaller	and	smaller	sub-trees	can	be	evaluated
until	a	sub-tree	is	reached	that	is	a	single	node.

	

Consider	the	following	function	called	printNode()	in	Code	10.1	to	traverse	a	binary	tree
and	print	the	key	values	of	all	nodes	in	the	tree.	The	function	takes	a	node	in	the	tree	as	an
argument	and	then	recursively	visits	the	left	and	then	the	right	children	of	all	nodes	in	the
tree.

	
Code	10.1.	printNode(node	*n)

Traverse	a	binary	tree	by	recursively	evaluating	the	left	and	then	the	right	children	of	a
node.

	

void	printNode(node	*n)

1.				cout<<“key:	“<<n->key>>endl;

2.				if(n->leftChild!=NULL)

3.								printNode(n->leftChild);

4.				if(n->rightChild!=NULL)

5.								printNode(n->rightChild);

	

The	first	time	printNode()	is	called,	it	is	passed	the	root	of	the	tree	as	an	argument.	If	the
node	has	a	left	child,	then	printNode()	is	called	again	on	Line	3	with	the	node.leftChild	is
the	argument.	If	the	node	doesn’t	have	a	left	child,	the	algorithm	checks	if	the	node	has	a
right	child	on	Line	4,	and	if	so,	printNode()	is	called	on	node.rightChild.	The	printNode()
function	will	be	called	on	every	node	in	the	tree	until	there	are	no	more	left	or	right



children	to	evaluate.

	

In	the	printNode()	function,	the	base	case	occurs	when	the	left	and	right	children	of	a	node
are	NULL.	When	this	condition	is	reached,	the	current	instance	of	the	function	exits.	The
rule	that	reduces	a	case	to	the	base	case	is	calling	printNode()	on	a	child	node.	Eventually,
the	bottom	of	the	tree	will	be	reached.



10.2	Tree	traversal	algorithms
Recursion	is	often	used	in	tree	traversal	algorithms.	Just	as	the	contents	of	an	array	can	be
traversed,	so	can	the	nodes	in	a	tree	to	determine	the	values	in	the	tree.	With	any	tree
traversal	algorithm,	the	objective	is	to	evaluate	every	node	in	the	tree	exactly	once,	and	the
algorithm	used	determines	the	order	in	which	the	nodes	are	visited.

	

There	are	three	orderings	to	consider	for	tree	traversals:

•	In-order	-	Nodes	are	visited	in	the	order	left	child	-	parent	-	right	child,	which	can
generate	a	sorted	output	in	a	binary	search	tree	(BST).

•	Pre-order	-	Nodes	are	visited	in	the	order	parent	-	left	child	-	right	child.

•	Post-order	-	Nodes	are	visited	left	child	-	right	child	-	parent.

10.2.1																									In-order	tree	traversal
Consider	the	three-node	tree	shown	in	Figure	1.

Figure	1.	BST	with	three	nodes.

If	the	nodes	were	listed	in	sorted	order,	the	output	would	be	2,	6,	and	8.	From	the	root	of
this	three-node	tree,	that	ordering	can	also	be	expressed	in	terms	of	the	tree	structure	as
left	child,	parent,	right	child.	In	a	larger	tree,	that	same	left	child,	parent,	right	child
pattern	would	be	applied	to	generate	an	ordered	output	for	the	entire	tree.	An	in-order
traversal	algorithm	that	prints	the	keys	in	a	binary	tree	is	shown	in	Algorithm	10.1.
Algorithm	10.1.	printNode(node)

Traverse	a	binary	tree	by	visiting	nodes	in	the	order	left	child	-	parent	-	right	child.

	

Pre-conditions

node	is	a	valid	node	in	the	tree.

	

Post-conditions

All	key	values	in	the	tree	are	displayed.

	

Algorithm

printNode(node)



1.				if	(node.leftChild	!=	NULL)

2.							printNode(node.leftChild)

3.				print(node.key)

4.				if	(node.rightChild	!=	NULL)

5.								printNode(node.rightChild)

	

Example	1:	Traverse	the	BST	in	Figure	2	using	an	in-order	tree	traversal	algorithm.

An	in-order	traversal	needs	to	process	the	minimum	value	in	the	tree	first,	which	is	found
by	traversing	left	until	a	node	is	found	that	has	no	left	child.	In	this	example,	the	minimum
value	in	the	tree	is	the	3.

Figure	2.	BST	to	evaluate	using	an	in-order	traversal.	The	first	node	that	will	be	processed	is	the	node	with	the
value	3,	and	the	last	node	that	will	be	processed	is	the	node	with	the	value	8.

Examining	how	calls	to	the	printNode()	algorithm	are	pushed	and	popped	from	the	call
stack	can	make	it	easier	to	understand	why	the	algorithm	produces	an	in-order	output.
Calls	to	printNode()	are	pushed	onto	the	stack,	and	then	popped	off	the	stack	when	they
complete.

	

Steps:

1.	Call	printNode()	from	the	root,	which	pushes	it	onto	the	call	stack	as	printNode(7).	A
visual	representation	of	the	call	stack	is	shown	in	Figure	3.

Figure	3.	Call	stack	after	printNode(7)	called	on	the	root	of	the	BST	in	Figure	2.

2.	On	Line	1,	the	conditional	node.leftChild	!=	NULL	is	true,	and	printNode()	is	called
again	as	printNode(5)	on	the	left	child	of	the	root.	The	call	stack	is	shown	in	Figure	4.



Figure	4.	Call	stack	after	printNode(7)	and	printNode(5)	called.

3.	The	call	to	printNode(5)	is	now	the	currently	running	version,	and	on	Line	1,
node.leftChild	!=	NULL	is	evaluated	again	for	the	5.	The	5	does	have	a	left	child,	which	is
the	4,	and	printNode()	is	called	again	as	printNode(4)	and	pushed	onto	the	call	stack
(Figure	5).

Figure	5.	Call	stack	after	printNode(7),	printNode(5),	and	printNode(4)	are	called.

4.	The	call	to	printNode(4)	is	now	the	currently	running	version,	and	on	Line	1,
node.leftChild	!=	NULL	is	evaluated	again	for	the	4.	The	4	does	have	a	left	child,	which	is
the	3,	and	printNode()	is	called	again	as	printNode(3)	and	pushed	onto	the	call	stack
(Figure	6).

Figure	6.	Call	stack	after	printNode(7),	printNode(5),	printNode(4),	and	printNode(3)	called.

5.	The	call	to	printNode(3)	is	now	the	currently	running	version.	The	conditional	on	Line
1,	node.leftChild	!=	NULL	is	false	because	the	3	doesn’t	have	a	left	child.	The	call	to
printNode()	on	Line	2	is	skipped.

	

6.	On	Line	3,	the	key	value	of	the	node	is	printed,	which	outputs	a	3.	This	is	the	minimum
value	in	the	tree	and	it	is	the	first	value	to	be	printed.

	

7.	On	Line	4,	the	conditional	node.right	!=	NULL	is	false	because	the	3	doesn’t	have	a



right	child.	The	call	to	printNode(3)	completes	and	is	popped	off	the	stack	(Figure	7).

Figure	7.	Call	stack	after	printNode(3)	completes	and	is	popped	off	the	stack.

8.	Program	execution	returns	to	printNode(4)	at	the	spot	where	printNode(3)	was	called,
which	is	Line	2.	The	next	line	to	execute	is	Line	3,	which	prints	a	4.	At	this	point,	the
program	has	output	3,	4.

	

9.	On	Line	4,	the	conditional	node.rightChild	!=	NULL,	is	false	because	the	4	doesn’t
have	a	right	child.	The	call	to	printNode()	on	Line	5	is	skipped	and	printNode(4)	exits	and
is	popped	off	the	stack.	The	state	of	the	stack	is	shown	in	Figure	8.

Figure	8.	Call	stack	after	printNode(4)	completes	and	is	popped	off	the	stack.

10.	Program	execution	returns	to	the	point	in	printNode(5)	where	printNode(4)	was	called,
which	is	on	Line	2.	The	next	line	to	execute	is	Line	3,	which	prints	a	5.	At	this	point	in	the
program,	the	output	is	3,	4,	5.

	

11.	On	Line	4,	the	conditional	checks	if	the	5	has	a	right	child,	which	it	does.	The
algorithm	is	called	again	as	printNode(6)	and	pushed	onto	the	call	stack	(Figure	9).

Figure	9.	Call	stack	after	printNode(6)	is	called	and	pushed	onto	the	stack.

12.	The	currently	running	version	is	now	printNode(6).	The	6	does	not	have	a	left	child,	so
the	conditional	on	Line	1	is	false.	The	algorithm	advances	to	Line	3	and	prints	a	6.	At	this



point,	the	program	output	is	3,	4,	5,	6.

	

13.	On	Line	4,	the	conditional	checks	if	the	6	has	a	right	child,	which	it	doesn’t.	The	call
to	printNode(6)	completes	and	is	popped	off	the	stack	(Figure	10).

Figure	10.	Call	stack	after	printNode(6)	completes	and	is	popped	off	the	stack.

14.	Program	execution	returns	to	printNode(5)	at	the	spot	where	printNode(6)	was	called,
which	is	Line	5.	The	printNode(5)	call	completes	and	is	popped	off	the	stack	(Figure	11).

Figure	11.	Call	stack	after	printNode(5)	completes	and	is	popped	off	the	stack.

15.	Program	execution	returns	to	the	spot	in	printNode(7)	where	printNode(5)	was	called,
which	is	Line	2.	The	next	line	to	execute	is	Line	3,	which	prints	a	7.	At	this	point	in	the
program,	the	output	is	3,	4,	5,	6,	7.

	

16.	On	Line	4,	the	conditional	checks	if	the	7	has	a	right	child,	which	it	does.	On	Line	5,
printNode()	is	called	again	as	printNode(8)	and	pushed	onto	the	call	stack	(Figure	12).

Figure	12.	Call	stack	after	printNode(8)	is	called	and	pushed	onto	the	stack.

17.	The	call	to	printNode(8)	is	now	the	currently	running	version.	The	8	doesn’t	have	a	left
or	a	right	child,	so	neither	of	the	conditionals	will	be	true	and	no	additional	calls	to
printNode()	will	be	made.	On	Line	3,	printNode(8)	displays	the	value	of	the	node.	The
output	of	the	program	after	printNode(8)	executes	is	3,	4,	5,	6,	7,	8.



	

18.	The	call	to	printNode(8)	completes	and	is	popped	off	the	stack.	The	program	returns	to
printNode(7)	on	Line	5	where	printNode(8)	was	called.

	

19.	The	printNode(7)	function	completes	and	is	popped	off	the	stack.

	

20.	The	stack	is	empty,	and	the	tree	traversal	is	complete.	The	output	of	the	program	was
3,	4,	5,	6,	7,	8.

10.2.2																									Pre-order	tree	traversal
In	a	pre-order	tree	traversal,	the	value	of	the	root	node	is	printed	before	the	values	of	the
child	nodes.	In	the	recursive	pre-order	traversal	algorithm	in	Algorithm	10.2,	the	print
statement	to	output	the	value	of	the	node	appears	before	additional	calls	to	the	algorithm
for	each	of	the	node’s	children.	Stepping	through	the	algorithm	and	drawing	the	output
and	the	call	stack	can	demonstrate	the	expected	output	for	a	pre-order	traversal.	Using	the
same	tree	as	in	the	in-order	traversal	example,	the	output	for	the	pre-order	traversal	is	7,	5,
4,	3,	6,	8.

	
Algorithm	10.2.	printNodePreorder(node)

Display	node	values	in	a	tree	using	a	pre-order	traversal	that	evaluates	parent	-	left	child	-
right	child.

	

Pre-conditions

node	is	a	valid	node	in	the	tree

	

Post-conditions

All	key	values	in	the	tree	are	displayed.

	

Algorithm

printNodePreorder(node)

1.				print(node.key)

2.				if	(node.leftChild	!=	NULL)

3.									printNodePreorder(node.leftChild)

4.				if	(node.right	!=	NULL)

5.								printNodePreorder(node.rightChild)

10.2.3																									Post-order	tree	traversal



In	a	post-order	tree	traversal,	the	children	are	printed	before	the	root	value.

Using	the	post-order	algorithm	shown	in	Algorithm	10.3	and	the	tree	from	the	previous
examples,	the	output	would	be	3,	4,	6,	5,	8,	7.

	
Algorithm	10.3.	printNodePostorder(node)

Display	node	values	in	a	tree	using	a	post-order	traversal	that	evaluates	left	child	-	right
child	-	parent.

	

Pre-conditions

node	is	a	valid	node	in	the	tree

	

Post-conditions

All	key	values	in	the	tree	are	displayed.

	

Algorithm

printNodePostorder(node)

1.				if	(node.leftChild	!=	NULL)

2.								printNodePostorder(node.leftChild)

3.				if	(node.rightChild	!=	NULL)

4.								printNodePostorder(node.rightChild)

5.				print(node.key)



11				Tree	Balancing
Binary	search	trees	(BST)	provide	an	efficient	structure	for	storing	and	retrieving	data.
When	the	BST	is	balanced	with	a	height	of	O(log	n),	the	complexity	of	insert,	search,	and
delete	operations	is	also	O(log	n),	where	n	is	the	number	of	nodes	in	the	tree.	However,	in
an	unbalanced	tree,	the	complexity	of	these	operations	can	be	O(n)	in	the	worst	case.

	

Tree-balancing	algorithms	are	applied	to	BSTs	to	ensure	that,	as	nodes	are	added	to	the
tree,	the	tree	remains	balanced	with	an	O(log2	n)	height	and	the	complexity	of	operations
on	the	tree	is	also	O(log2n).



11.1	Red-black	trees
One	common	approach	to	tree	balancing	is	to	build	the	BST	as	a	red-black	tree.	In	the
red-black	tree	algorithm,	each	node	in	the	BST	is	assigned	a	color,	either	red	or	black,	and
the	nodes	in	the	tree	are	ordered	such	that	no	path	from	the	root	to	a	leaf	can	be	more	than
twice	as	long	as	any	other	path.	This	coloring	results	in	red-black	trees	having	a	height	of
O(log	n),	which	guarantees	a	worst-case	runtime	of	O(log	n)	on	search,	insert,	and	delete
operations.

11.1.1																									Red-black	node	properties
Each	node	in	a	red-black	tree	has	at	least	the	following	properties:

•	color

•	key

•	left	child

•	right	child

•	parent

	

The	only	red-black	property	not	found	in	a	regular	BST	is	the	color,	which	is	added	to	the
nodes	to	create	the	structure	in	the	tree.	The	properties	that	the	tree	must	exhibit	in	order
to	be	a	valid	red-black	tree	are:

	

Property	1:	A	node	is	either	red	or	black.

Property	2:	The	root	node	is	black.

Property	3:	Every	leaf	(NULL)	node	is	black.

Property	4:	If	a	node	is	red,	then	both	of	its	children	must	be	black.

Property	5:	For	each	node	in	the	tree,	all	paths	from	that	node	to	the	leaf	nodes	contain
the	same	number	of	black	nodes.

	

Another	difference	between	a	regular	BST	and	a	red-black	tree	is	how	the	leaf	nodes	are
represented.	In	a	red-black	tree,	the	leaf	nodes	are	external	sentinel	nodes	with	all	of	the
same	properties	as	a	regular	node,	but	they	are	effectively	empty	nodes.	The	leaf	nodes	are
black	to	satisfy	Property	3	of	a	red-black	tree.

	

Figure	1	shows	the	features	of	a	red-black	tree	node.	The	root	node	is	black	to	satisfy
Property	2.	The	nodes	are	either	red	or	black	to	satisfy	Property	1.	The	sentinel	nodes,
shown	as	the	smaller	boxes,	are	also	black	as	required	by	Property	3,	and	Property	4
requiring	children	of	red	nodes	to	be	black.



Figure	1.	An	example	of	a	three-node	red-black	tree.	The	tree	has	red	and	black	nodes,	and	the	root	of	the	tree	is
black.	The	smaller	boxes	are	the	sentinel	nodes,	which	are	black.

11.1.2																									Red-black	tree	ADT
The	red-black	tree	ADT	contains	similar	functionality	to	the	BST	ADT	to	insert	and	delete
nodes	in	the	tree.	Searching	a	red-black	tree	uses	the	same	algorithm	as	searching	a
regular	BST,	shown	in	Algorithm	9.1.	The	red-black	tree	ADT,	shown	in	ADT	11.1,
contains	public	methods	for	the	insert,	delete,	and	search	operations,	as	well	as	private
methods	to	support	these	operations.

	
ADT	11.1.	Red-black	Tree

RedBlackTree:

1.					private:

2.									root

3.									leftRotate(node)

4.									rightRotate(node)

5.									insertRB(value)

6.									rbBalance(node)

7.					public:

8.									Init()

9.									redBlackInsert(value)

10.							redBlackDelete(value)

11.							search(value)

12.							deleteTree()

	

11.1.3																									Red-black	tree	balancing
When	nodes	are	added	or	deleted	from	a	red-black	tree,	the	operation	can	destroy	the	red-
black	properties	of	the	tree.	For	example,	deleting	the	4	from	the	red-black	tree	in	Figure	2
potentially	creates	a	configuration	where	the	2,	which	is	red,	has	a	red	child.	This
configuration	violates	Property	4,	which	states	that	children	of	a	red	node	must	be	black.
To	resolve	this	violation,	the	tree	can	be	balanced	using	rotation	and	recoloring	to	restore



the	red-black	properties.	The	particular	balancing	algorithm	needed	depends	on	the
operation	and	the	violation.

Figure	2.	In	this	red-black	tree,	a	delete	operation	on	the	4	potentially	creates	a	configuration	where	the	red	2
node	has	a	red	child,	which	violates	Property	4.

11.1.4																									Left	and	right	rotations
Rotations	are	local	operations	on	nodes	that	reorder	the	nodes	in	the	tree	in	a	way	that
preserves	the	BST	properties	and	set	the	tree	up	for	recoloring	to	restore	the	red-black
properties.	Rotations	are	used	in	red-black	trees	as	well	as	in	most	other	tree-balancing
algorithms.

	

There	are	two	types	of	rotations:	a	left	rotation	and	a	right	rotation.	Figure	3	shows	the
tree	that	results	from	both	a	left	and	a	right	rotation.	These	rotations	are	inverses	of	each
other:	a	tree	rooted	at	x,	shown	in	the	right-side	image	in	Figure	3,	that	undergoes	a	left
rotation	produces	the	tree	shown	in	the	left-side	image	in	Figure	3.	Performing	a	right
rotation	on	that	same	tree,	rooted	at	y,	returns	the	tree	to	its	original	state.

Figure	3.	Left	and	right	rotations	change	the	structure	of	the	tree	while	still	maintaining	the	BST	properties.	The
rotations	are	inverses	of	each	other:	a	sub-tree	rotated	in	one	direction	will	return	to	its	original	state	if	it	is
rotated	in	the	other	direction.

The	leftRotate()	algorithm	(Algorithm	11.1)	takes	the	node	to	rotate	about	as	the	argument
and	produces	the	rotated	tree.	The	algorithm	uses	the	nullNode	variable	as	the	sentinel
node	for	the	tree.

	
Algorithm	11.1.	leftRotate(x)

Rotate	the	sub-tree	about	the	node	x	in	a	red-black	tree.

	



Pre-conditions

x	is	a	valid	node	in	a	red-black	tree.

nullNode	defined	as	the	empty	sentinel	node	of	the	red-black	tree.

root	defined	as	the	root	of	the	red-black	tree.

	

Post-conditions

Tree	rotated	about	x.

	

Algorithm

leftRotate(x)

1.					y	=	x.rightChild

2.					x.rightChild	=	y.leftChild

3.					if(y.leftChild	!=	nullNode)

4.										y.leftChild.parent	=	x

5.					y.parent	=	x.parent

6.					if	(x.parent	==	nullNode)

7.									root	=	y

8.					else

9.									if(x	==	x.parent.leftChild)

10.												x.parent.leftChild	=	y

11.								else

12.												x.parent.rightChild	=	y

13.			y.leftChild	=	x

14.			x.parent	=	y

	

The	rightRotate()	algorithm,	shown	in	Algorithm	11.2,	is	reversed	from	the	left	rotation	by
swapping	the	references	to	the	left	and	right	children	for	a	node	and	the	references	to	the	x
and	y	nodes.

	
Algorithm	11.2.	rightRotate(y)

Rotate	the	sub-tree	about	the	node	y	in	a	red-black	tree.

	

Pre-conditions



y	is	a	valid	node	in	a	red-black	tree.

nullNode	defined	as	the	empty	sentinel	node	of	the	red-black	tree.

root	defined	as	the	root	of	the	red-black	tree.

	

Post-conditions

Tree	rotated	about	y.

	

Algorithm

rightRotate(y)

1.					x	=	y.leftChild

2.					y.leftChild	=	x.rightChild

3.					if(x.rightChild	!=	nullNode)

4.										x.rightChild.parent	=	y

5.					x.parent	=	y.parent

6.					if(y.parent	==	nullNode)

7.										root	=	x

8.					else	if	(y	==	(y.parent.leftChild))

9.										y.parent.leftChild	=	x

10.			else

11.								y.parent.rightChild	=	x

12.			x.rightChild	=	y

13.			y.parent	=	x

	

Example	1:	Demonstrate	the	left	rotation	on	the	red-black	tree	shown	in	Figure	4
using	the	leftRotate()	algorithm	in	Algorithm	11.1.

Figure	4.	A	left	rotation	on	the	node	x	in	the	red-black	tree	on	the	left	produces	the	tree	shown	on	the	right.



In	this	example,	the	15	is	the	x	and	the	18	is	the	y	in	the	leftRotate()	algorithm.	The	nodes
that	change	in	the	rotation	are:

	

•	x.parent

•	y.parent

•	x.rightChild

•	y.leftChild

	

The	nodes	that	don’t	change	in	the	rotation	are:

•	y.rightChild

•	x.leftChild

	

Steps:

•	Line	2:	changes	the	right	child	of	x	to	point	to	the	left	child	of	y.	Figure	5	shows	that	the
right	child	of	x	is	now	the	B	node.

Figure	5.	The	right	child	of	the	node	x	is	the	B	node,	which	was	the	left	child	of	the	node	y.	The	left	child	of	x
hasn’t	changed.

•	Lines	3	and	4:	x’s	new	right	child	is	updated	to	set	x	as	its	parent	(Figure	6).

Figure	6.	The	parent	of	B	is	set	to	be	the	node	x.

•	Line	5:	y’s	parent	is	set	to	x’s	parent.	This	operation	effectively	moves	y	into	x’s	position
in	the	tree.	The	previous	parent	for	y	was	x.	After	this	update,	y’s	parent	is	z	(Figure	7).



Figure	7.	Update	y’s	parent	to	move	y	into	x’s	position	in	the	tree.	The	previous	parent	for	y	was	x,	and	now	y’s
parent	is	z.	The	right	child	of	y	hasn’t	changed.

•	Lines	6-12:	update	x’s	parent	to	point	to	y	as	a	child	instead	of	x.	There	are	separate
cases	for	whether	x	was	its	parent’s	left	or	right	child	or	the	root	of	the	tree.	The	left	child
case	is	handled	on	Line	10,	and	the	right	child	case	is	handled	on	Line	12.	In	this	example,
x	is	its	parent’s	left	child	(Figure	8).	After	the	update,	y	is	z’s	left	child.

Figure	8.	The	node	z	is	updated	to	point	to	y	as	its	left	child	instead	of	x.

•	Lines	13-14:	the	node	x	replaces	B	as	y’s	left	child	by	setting	y’s	left	child	pointer	to	x
and	x’s	parent	pointer	to	y	(Figure	10).	This	final	step	completes	the	rotation.

Figure	9.	Move	x	to	replace	B	as	the	left	child	of	y	by	setting	y’s	left	child	pointer	to	x	and	x’s	parent	pointer	to	y.
The	left	rotation	is	now	complete.

11.1.5																									Inserting	a	node	into	a	red-black	tree
Nodes	are	added	to	red-black	trees	in	the	same	way	they	are	added	to	a	regular	BST.
However,	when	a	node	is	added,	the	operation	can	destroy	the	red-black	tree	properties,
which	requires	that	there	are	additional	steps	in	the	algorithm	to	restore	these	properties.

	

There	are	three	changes	to	the	BST	insert	operation	needed	to	support	a	red-black	tree.

	

In	a	red-black	tree:

1.	Replace	all	instances	of	NULL	in	the	BST	insert()	algorithm	(Algorithm	9.3)	with	the
sentinel	node	nullNode.	This	change	sets	the	parent	of	the	root	to	nullNode	and	the	left	and
right	children	of	a	new	node	to	nullNode.

2.	Set	the	color	of	the	new	node	to	red.



3.	Resolve	any	violation	of	the	red-black	properties	using	tree	balancing.

	

If	x	is	a	node	added	to	a	red-black	tree,	then	the	initial	conditions	on	x	are:

•	x.color	=	red

•	x.leftChild	=nullNode

•	x.rightChild	=	nullNode

	

When	a	node	is	added	to	the	tree,	the	two	properties	that	can	be	violated	are.

1.	The	root	must	be	black.

2.	The	children	of	a	red	node	must	be	black.

	

Both	violations	are	possible	because	a	new	node	is	initially	colored	red.	There	are	six
possible	configurations	that	a	red-black	tree	can	take	on	when	a	new	node	is	inserted	into
the	tree.	Three	configurations	are	symmetric	to	the	other	three	depending	on	whether	the
parent	of	the	new	node	is	the	left	or	right	child	of	its	parent.	Figure	10	shows	an	example
where	the	parent	is	the	left	child.	In	this	figure,	the	new	node	is	labeled	x,	and	its	parent	is
the	15.	The	parent	of	the	15	is	the	18.

	

The	steps	needed	to	rebalance	the	tree	depend	on	the	color	of	the	new	node’s	“uncle”
node.	Figure	10	also	shows	an	example	of	an	“uncle”	node.	The	new	node	x	has	an
“uncle”	that	is	x.parent.parent.rightChild.	If	x’s	parent	were	a	right	child,	then	x’s	“uncle”
would	be	x.parent.parent.leftChild.

Figure	10.	The	“uncle”	of	x	is	x.parent.parent.right.	The	color	of	x’s	“uncle”	node	determines	the	steps	needed	to
rebalance	the	tree	after	inserting	a	node.

Case	1:	The	“uncle”	node	is	red.	

If	the	parent.parent.rightChild	of	the	new	node	is	red	(shown	as	“uncle”	in	Figure	11),
then	parent	of	the	new	node	is	also	red,	and	the	parent.parent	of	the	new	node	is	black.	In
Figure	11,	the	new	node	is	labeled	x.	It	is	initially	colored	red,	and	its	parent	and	“uncle”
are	also	red.



Figure	11.	Case	1	example,	where	the	“uncle”	node	is	red.	The	x	points	to	the	new	node.	The	parent	of	x	is	also
red,	which	violates	the	constraint	that	a	red	node	can’t	have	a	red	child.

Steps	to	resolve	a	Case	1	violation	in	the	tree:

1.	Recolor	both	the	parent	and	the	“uncle”	of	the	new	node	to	be	black,	and	recolor	the
parent.parent	of	the	new	node	to	be	red.	This	recoloring	resolves	the	violation	up	to	the
parent.parent	level	in	the	tree.

2.	Move	up	two	levels	in	the	tree	by	setting	x	=	x.parent.parent.	Figure	12	shows	the	red-
black	tree	after	the	violations	have	been	resolved.	The	x	in	Figure	12	points	to	the	node
that	would	be	recolored	next,	if	additional	iterations	of	recoloring	were	necessary.

3.	Repeat	Steps	1	and	2	until	x	is	the	root	of	the	tree	or	x’s	parent	is	black.

	

Figure	12.	The	red-black	tree	after	nodes	have	been	recolored	to	fix	the	violation	of	a	red	node	having	a	red	child.

Case	2:	The	new	node	is	a	right	child	and	its	uncle	is	black.

Case	3:	The	new	node	is	a	left	child	and	its	uncle	is	black.

	



Figure	13.	Case	2	where	the	“uncle”	node	is	black	and	the	new	node	x	is	a	right	child.	The	violation	is	that	a	red
node	has	a	red	child.

In	both	Case	2	and	Case	3,	the	“uncle”	node	is	black.	The	difference	in	the	cases	is
whether	the	new	node	is	a	left	or	right	child	of	its	parent.	Figure	13	shows	an	example	of
Case	2,	where	x	is	the	new	node	and	it’s	a	right	child	of	the	15.

	

Steps	to	resolve	a	Case	2	violation	in	the	tree:

1.	Set	x	=	x.parent.

2.	Apply	the	leftRotate()	algorithm	to	x	to	convert	a	Case	2	configuration	to	a	Case	3
configuration.	Additional	rebalancing	can	then	be	applied	to	resolve	the	Case	3	violation.
The	result	of	the	left	rotation	on	the	tree	in	Figure	13	is	shown	in	Figure	14.	The	new	node
is	now	a	left	child	of	its	parent.

Figure	14.	A	Case	3	configuration	is	generated	from	a	left	rotation	on	x’s	parent	on	the	tree	in	Figure	13.

Steps	to	resolve	a	Case	3	violation	in	the	tree:

1.	Recolor	x.parent	and	x.parent.parent.

2.	Apply	a	right	rotation	about	x.parent.parent	on	the	tree	in	Figure	14	to	get	the	tree	in
Figure	15.

	



Figure	15.	Red-black	sub-tree	after	a	right	rotation	on	the	tree	shown	in	Figure	14.	The	tree	is	now	balanced;	all
red-black	violations	have	been	resolved.

The	algorithm	to	insert	a	node	into	a	red-black	tree	is	shown	in	Algorithm	11.3.	The
redBlackInsert()	algorithm	takes	the	value	of	the	node	to	insert	as	an	argument,	and	calls
insertRB(),	shown	in	Algorithm	11.6	to	add	the	node	to	the	tree.
Algorithm	11.3.	redBlackInsert(value)

Insert	a	node	into	a	red-black	tree	and	apply	the	appropriate	tree-balancing	algorithm	to
restore	the	red-black	properties.

	

Pre-conditions

value	is	a	valid	node	key	value.

insertRB()	exists	to	create	and	return	a	pointer	to	the	new	node.

	

Post-conditions

New	node	inserted	into	a	red-black	tree	with	no	violations	of	the	red-black	properties.

	

Algorithm

redBlackInsert(value)

1.					x	=	insertRB(value)

2.					while	((x	!=	root)	and	(x.parent.color	==	red))

3.									if	(x.parent	==	x.parent.parent.left)

4.													uncle	=	x.parent.parent.right

5.													if	(uncle.color	==	red)

6.																	RBCase1Left(x,	uncle)

7.																	x	=	x.parent.parent

8.													else

9.																	if	(x	==	x.parent.right)



10.																			x	=	x.parent

11.																			leftRotate(x)

12.														//Case	3	-	x	is	now	left	child

13.															RBCase3Left(x)

14.							else

15.										//x’s	parent	is	a	right	child.

16.										//Exchange	right	and	left

17.			root.color	=	black

	
Algorithm	11.4.	RBCase1Left(x,	uncle)

Recolors	the	red-black	tree	for	the	case	where	uncle	is	red	and	the	parent	of	the	new	node
x	is	a	left	child.

	

Pre-conditions

x	and	uncle	are	valid	nodes	in	a	red-black	tree.

	

Post-conditions

Color	of	the	parent,	grandparent,	and	uncle	of	the	new	node	are	changed.

	

Algorithm

RBCase1Left(x,	uncle)

1.					x.parent.color	=	black

2.					uncle.color	=	black

3.					x.parent.parent.color	=	red

	
Algorithm	11.5.	RBCase3Left(x)

Recolors	and	rotates	a	red-black	tree	for	the	case	where	the	new	node	x	is	a	left	child	and
the	“uncle”	node	is	black.

	

Pre-conditions

x	is	a	valid	node	in	a	red-black	tree.

	

Post-conditions



Color	of	the	parent	and	grandparent	of	the	new	node	are	changed	and	the	tree	is	right
rotated	about	the	grandparent	of	the	new	node.

	

Algorithm

RBCase3Left(x)

1.					x.parent.color	=	black

2.					x.parent.parent.color	=	red

3.					rightRotate(x.parent.parent)

	
Algorithm	11.6.	insertRB(value)

Private	method	called	from	redBlackInsert()	to	insert	a	node	into	a	red-black	tree	and
return	a	pointer	to	the	node.

	

Pre-conditions

value	is	a	valid	node	key	value.

	

Post-conditions

New	node	inserted	into	the	tree.

Returns	a	pointer	to	the	new	node.

	

Algorithm

insertRB(value)

1.					node.left	=	nullNode

2.					node.right	=	nullNode

3.					node.color	=	red

4.					node.key	=	value

5.					tmp	=	root

6.					while(tmp	!=	NULL)

7.									parent	=	tmp

8.									if(node.key	<	tmp.key)

9.													tmp	=	tmp.leftChild

10.							else

11														tmp	=	tmp.rightChild



12.			if	(parent	==	NULL)

13.									root	=	node

14.			else	if(node.key	<	parent.key)

15.							parent.leftChild	=	node		

16.			else

17.							parent.rightChild	=	node

18.			return	node

	

Example	2:	Add	a	4	to	the	red-black	tree	shown	in	Figure	17	using	the
redBlackInsert()	algorithm	in	Algorithm	11.3.

Figure	16.	When	a	4	is	added	to	this	red-black	tree,	it	is	added	as	the	left	child	of	the	5.	The	operation	will	create	a
violation	because	the	red	5	will	have	a	red	child.	The	Case	1	rebalancing	algorithm	needs	to	be	applied;	the
“uncle”	is	the	red	8	node.

The	4	is	added	as	the	left	child	of	the	5,	which	creates	a	situation	where	the	red	5	has	a	red
child	and	violates	Property	4	that	a	red	node	can’t	have	a	red	child.	The	“uncle”	of	the	new
node	is	the	red	8,	which	results	in	a	Case	1	violation:	the	new	node	is	a	left	child	with	a
red	“uncle”.

	

Steps:

1.	Line	6	redBlackInsert():	call	RBCase1Left()	with	the	new	node	and	“uncle”	node	as
arguments.

2.	Line	1	RBCase1Left():	Recolor	the	5	to	be	black.

3.	Line	2	RBCase1Left():	Recolor	the	8	to	be	black.

4.	Line	3	RBCase1Left():	Recolor	the	7	to	be	red.	The	state	of	the	tree	after	recoloring	is
shown	in	Figure	17.	All	nodes	below	the	7	in	the	tree	should	now	have	the	correct
coloring.	However,	the	recoloring	created	a	violation	between	the	2	and	7	nodes,	where
the	2	has	a	red	child.



Figure	17.	Red-black	tree	after	applying	the	Case	1	rules	to	recolor	the	5,	7,	and	8	nodes.	Now	there	is	a	violation
between	the	2	and	7,	where	the	2	has	a	red	child.

5.	Line	7	redBlackInsert():	After	the	RBCase1Left()	algorithm	exits,	control	returns	to
redBlackInsert().	Move	up	two	levels	in	the	tree	to	examine	the	properties	of	the	tree
starting	at	the	7	and	working	toward	the	root	of	the	tree.	The	x	now	points	to	the	7.

6.	Line	4	redBlackInsert():	Set	the	“uncle”	to	be	the	14,	shown	as	y	in	Figure	18.	The	tree
is	now	in	a	Case	2	configuration	-	x	is	a	right	child	and	the	“uncle”	is	black.

Figure	18.	Positions	of	x	and	“uncle”	in	the	red-black	tree-balancing	algorithm.	The	x	node	is	the	node	currently
being	evaluated,	and	the	“uncle”	of	x	is	the	y	node.

7.	Lines	10-11	redBlackInsert():	Set	x	to	point	to	x.parent,	which	is	the	2	node.	Apply	the
leftRotate()	algorithm	to	x.	The	resulting	tree	is	shown	in	Figure	19.	The	7	has	moved	up
one	level	in	the	tree	and	x	is	now	its	left	child.	The	tree	is	now	an	example	of	a	Case	3
configuration:	x	is	a	left	child	with	a	black	“uncle”.

	



Figure	19.	Red-black	tree	configuration	after	a	left	rotation	about	the	2.	The	7	has	moved	up	one	level	in	the	tree,
and	the	2	is	now	its	left	child.	The	tree	is	an	example	of	a	Case	3	configuration:	x	is	a	left	child	with	a	black
“uncle”.

8.	Line	13	redBlackInsert():	Call	RBCase3Left()	on	the	2,	which	recolors	the	7	to	be
black	and	the	root	to	be	red,	and	generates	the	configuration	shown	in	Figure	20.	The	red
root	violates	Property	2.

Figure	20.	The	color	violations	have	been	resolved	in	this	tree,	except	for	the	violation	that	the	root	cannot	be	red.
A	rightRotate()	about	the	root	can	resolve	this	issue.

9.	Line	3	RBCase3Left():	Apply	the	rightRotate()	algorithm	to	x.parent.parent,	which	is
the	11	to	generate	the	tree	shown	in	Figure	21.	All	conditions	on	the	red-black	tree	are
now	satisfied.

Figure	21.	The	final	red-black	tree	after	the	right	rotation	about	the	root.	The	tree	now	satisfies	all	red-black	tree



constraints.

Example	3:	Build	a	red-black	tree	from	the	following	sequence

	

<15,	11,	14,	2,	1	>

	

of	integers	using	the	redBlackInsert()	algorithm	in	Algorithm	11.3.

	

Call	redBlackInsert()	for	each	value	in	the	sequence	to	add	it	to	the	tree.	The
redBlackInsert()	algorithm	calls	insertRB()	(Algorithm	11.6)	to	add	the	integer	as	a	node
to	the	tree,	and	then	resolves	red-black	violations.

	

Steps:

1.	Line	1:	Call	insertRB(15)	to	add	the	15	as	the	root	node	and	color	it	red.	On	Line	17,
recolor	the	node	to	be	black.

2.	Line	1:	Call	insertRB(11)	to	add	the	11	as	the	left	child	of	15	and	color	it	red.

3.	Line	1:	Call	insertRB(14)	to	add	the	14	as	the	right	child	of	the	11	and	color	it	red.	The
11	is	also	red,	which	violates	the	property	that	a	red	node	can’t	have	a	red	child.	The
current	configuration	of	the	tree	is	shown	in	Figure	22.	The	new	node	is	labeled	x	and	the
nullNode	sentinel	nodes	are	shown	as	the	smaller	black	nodes.	This	configuration	is	an
example	of	Case	2:	x	is	a	right	child	and	the	“uncle”	node,	which	is	the	right-child
nullNode	of	the	15,	is	black.

Figure	22.	Red-black	tree	after	three	nodes,	with	values	15,	11,	and	14,	have	been	added.	There	is	a	violation	of
the	red-black	property	that	a	red	node	can’t	have	a	red	child	between	the	11	and	the	14.

4.	Line	10-11:	Apply	leftRotate()	to	x.parent	to	generate	the	tree	shown	in	Figure	23.	The
tree	is	now	an	example	of	Case	3:	x	is	a	left	child	and	the	“uncle”	node	is	black.



Figure	23.	Result	of	a	left	rotation	on	the	red-black	tree	in	Figure	23.	The	node	x	is	now	a	left	child	and	the	Case	3
rules	can	be	applied.

6.	Line	13:	Call	RBCase3Left()	to	recolor	the	x.parent	and	x.parent.parent	nodes	and
apply	the	rightRotate()	algorithm	on	x.parent.parent.	The	state	of	the	tree	after	the
recoloring	is	shown	in	Figure	24,	and	the	result	of	the	right	rotation	is	shown	in	Figure	25.

	

Figure	24.	Result	of	applying	the	Case	3	recoloring	to	x.parent	and	x.parent.parent	in	the	tree	in	Figure	23.

Figure	25.	Result	of	applying	the	Case	3	right	rotation	on	the	15,	which	was	x.parent.parent	in	Figure	24.

7.	Line	1:	Call	insertRB(2)	to	add	the	2	as	the	left	child	of	the	11.	This	operation	produces
the	Case	1	configuration	shown	in	Figure	26,	where	the	“uncle”	node,	which	is	the	15,	is
red.



Figure	26.	Adding	the	2	to	the	red-black	tree	in	Figure	25	generates	a	Case	1	configuration	where	the	new	node
has	a	red	“uncle”.

8.	Line	6:	Call	RBCase1Left()	to	recolor	the	x.parent	and	“uncle”	nodes	to	be	black,	and
the	root	node	to	be	red.	On	Line	17,	the	root	node	is	recolored	to	be	black.	The	new	tree	is
shown	in	Figure	27.

	

Figure	27.	State	of	the	red-black	tree	after	Case	1	recoloring	is	applied	and	the	red-black	properties	are	restored.

9.	Line	1:	Call	insertRB(1)	to	add	the	1	as	the	left	child	of	the	2,	which	creates	a	Case	3
violation	where	the	1	is	a	left	child	and	the	“uncle”	is	the	nullNode	right	child	of	the	11,
which	is	black.

10.	Line	13:	Call	RBCase3Left()	to	recolor	and	apply	a	right	rotation.	The	colors	of
x.parent	and	x.parent.parent	are	changed,	which	makes	the	2	black	and	the	11	red.	The
right	rotation	on	x.parent.parent,	which	is	the	11,	produces	the	red-black	tree	shown	in
Figure	28.	All	values	have	been	added	to	the	tree	and	all	red-black	violations	have	been
resolved.

Figure	28.	The	Case	3	rules	were	applied	to	the	tree	in	Figure	27	after	the	1	was	added	as	the	left	child	of	the	2.
The	2	and	the	11	were	recolored,	and	a	right	rotation	was	applied	to	the	11	to	produce	this	tree,	which	satisfies	the
red-black	properties.

11.1.6																									Deleting	a	node	in	a	red-black	tree
The	algorithm	for	deleting	a	node	from	a	red-black	tree	is	the	same	as	the	algorithm	for
deleting	a	node	from	a	regular	BST,	with	the	addition	of	steps	to	address	violations
introduced	to	the	red-black	properties.

	

The	rules	for	deleting	a	node	from	a	red-black	tree	are	the	same	as	the	rules	for	deleting	a
node	from	a	regular	BST:



•	If	the	node	has	no	children	-	delete	the	node.

•	If	the	node	has	one	child	-	replace	the	node	with	its	remaining	child.

•	If	the	node	has	two	children	-	replace	the	node	with	the	minimum	node	in	its	right
branch.

	

A	violation	can	occur	if	the	node’s	replacement	is	black,	which	can	change	the	number	of
black	nodes	along	a	path	from	the	root	to	a	leaf	node	in	the	tree.	In	this	situation,	the
violations	need	to	be	resolved	by	rebalancing	the	tree.

	

Example	4:	Delete	the	10	from	the	red-black	tree	shown	in	Figure	29.

Figure	29.	If	the	10	is	deleted	from	this	red-black	tree,	it	will	be	replaced	with	the	12.	The	number	of	black	nodes
on	the	path	from	the	15	to	the	leaf	nodes	in	its	left	branch	will	change	and	introduce	a	violation	of	the	red-black
properties.

In	this	example,	when	the	10	is	deleted,	its	position	in	the	tree	will	be	filled	by	the	12,
which	is	labeled	as	y	in	Figure	29.	The	x	will	move	into	the	position	held	by	the	y.	This
deletion	and	replacement	will	reduce	the	number	of	black	nodes	on	the	path	and	require
that	the	tree	be	rebalanced	to	address	the	violation.

	

The	algorithm	to	delete	a	node	from	a	red-black	tree	is	shown	in	Algorithm	11.7.	The
algorithm	is	broken	down	into	cases	for	0,	1,	or	2	children	and	whether	the	node	to	delete
is	the	root	of	the	tree.	An	additional	algorithm	to	rebalance	the	tree	after	the	deletion	is
shown	in	Algorithm	11.8.

	
Algorithm	11.7.	redBlackDelete(value)

Delete	a	node	from	a	red-black	tree.	Calls	rbBalance()	to	resolve	red-black	violations
caused	by	the	delete	operation.

	

Pre-conditions

value	is	a	valid	node	search	value.



search()	exists	the	returns	a	pointer	to	the	node	to	delete.

treeMinimum()	exists	to	find	the	minimum-valued	node	in	a	branch	in	the	tree.

rbBalance()	exists	to	resolve	red-black	violations.

	

Post-conditions

The	node	with	the	specified	value	is	deleted	from	the	red-black	tree	and	all	red-black
violations	are	resolved.

	

Note:	This	algorithm	only	handles	the	case	where	the	node	to	delete	is	the	left	child	of	its
parent.	Additional	steps	are	needed	to	handle	the	right-child	case.

	

Algorithm

redBlackDelete(value)

1.					node	=	search(value)

2.					nodeColor	=	node.color

3.					if(node	!=	root)

4.									if(node.leftChild	==	nullNode	and	node.rightChild	==	nullNode)	//no	children

5.													node.parent.leftChild	=	nullNode

6.									else	if(node.leftChild	!=	nullNode	and	node.rightChild	!=	nullNode)	//two	children

7.													min	=	treeMinimum(node.rightChild)

8.													nodeColor	=	min.color	//color	of	replacement

9.													x	=	min.rightChild

10.											if	(min	==	node.rightChild)

11.															node.parent.leftChild	=	min

12.															min.parent	=	node.parent

13.											else

14.															min.parent.leftChild	=	min.rightChild

15.															min.parent	=	node.parent

16.															min.right.parent	=	min.parent

17.															node.parent.leftChild	=	min

18.															min.leftChild	=	node.leftChild

19.															min.rightChild	=	node.rightChild

20.															node.rightChild.parent	=	min



21.															node.leftChild.parent	=	min

22.															min.color	=	node.color	//replacement	gets	nodes	color

23.							else	//one	child

24.											x	=	node.leftChild

25.											node.parent.leftChild	=	x

26.											x.parent	=	node.parent

27.			else

28.							//repeat	cases	of	0,	1,	or	2	children

29.							//replacement	node	is	the	new	root

30.							//parent	of	replacement	is	nullNode

31.			if	nodeColor	==	BLACK

32.							RBBalance(x)

33.			delete	node			

	

The	rbBalance()	algorithm	(shown	in	Algorithm	11.8)	to	restore	the	red-black	properties
is	called	on	the	x	node,	which	is	the	replacement	for	the	min	node	in	the	redBlackDelete()
algorithm.	rbBalance()	is	called	when	the	color	of	min,	which	is	the	minimum	value	in
node’s	right	branch,	is	black.

	
Algorithm	11.8.	rbBalance(x)

Restores	the	red-black	properties	to	a	tree	following	a	node	deletion.

	

Pre-conditions

x	points	to	the	node	that	replaced	the	return	value	of	treeMinimum()	in	the	deletion.

	

Post-conditions

Red-black	properties	restored	to	the	tree.

	

Algorithm

RBBalance(x)

1.					while	(x	!=	root	and	x.color	==	BLACK)

2.									if	(x	==	x.parent.leftChild)

3.													s	=	x.parent.rightChild



4.													if	(s.color	==	RED)		//Case	1

5.																	s.color	=	BLACK

6.																	x.parent.color	=	RED

7.																	leftRotate(x.parent)

8.																	s	=	x.parent.rightChild

9.													if	(s.leftChild.color	==	BLACK	and	s.rightChild.color	==	BLACK)	//Case	2

10.															s.color	=	RED

11.															x	=	x.parent

12.											else	if(s.leftChild.color	==	RED	and	s.rightChild.color	==	BLACK)	//Case	3

13.																		s.leftChild.color	=	BLACK

14.																		s.color	=	RED

15.																		rightRotate(s)

16.																		s	=	x.parent.rightChild

17.											else

18.															s.color	=	x.parent.color		//Case	4

19.															x.parent.color	=	BLACK

20.															s.rightChild.color	=	BLACK

21.															leftRotate(x.parent)

22.															x	=	root

23.							else

24.											//x	is	a	right	child

25.											//exchange	left	and	right

26.			x.color	=	BLACK

	

In	the	rbBalance()	algorithm	there	are	four	cases	that	can	be	observed	regarding	the	color
of	the	replacement	node’s	“sibling”	node.	The	“sibling”	node	is	identified	on	Line	3	of
rbBalance().

	

Case	1:	Min’s	replacement	has	a	red	“sibling”.

Figure	30	shows	an	example	of	a	Case	1	configuration.	The	replacement	node	is	labeled	x
and	the	“sibling”	node	is	labeled	s.



Figure	30.	This	red-black	tree	is	an	example	of	a	Case	1	configuration	in	the	rbBalance()	algorithm.	The
replacement	node,	labeled	X,	has	a	red	“sibling”,	labeled	S.

Steps	for	resolving	a	Case	1	violation:

1.	Line	5-6:	The	color	of	S	and	its	parent	are	switched	to	produce	the	configuration	shown
in	Figure	31.

Figure	31.	After	Lines	5-6	in	rbBalance(),	the	color	of	the	S	node	and	it’s	parent	are	swapped.

2.	Line	7-8:	Apply	a	left	rotation	to	x.parent	and	re-assign	S	to	point	to	the	right	child	of
x’s	parent	to	produce	the	configuration	shown	in	Figure	32.

Figure	32.	After	Lines	7-8	in	rbBalance(),	the	tree	has	been	left	rotated	about	x’s	parent	and	S	points	to	the	new
right	child	of	x’s	parent.

Case	2:	Both	of	“sibling”	S’s	children	are	black,	and	S	is	also	black.

Case	2	evaluates	the	color	of	the	left	and	right	children	of	the	“sibling”	S.	The	Case	2
configuration	can	be	evaluated	after	the	Case	1	rebalancing	or	independent	of	Case	1.

	

Steps	to	resolve	a	Case	2	violation:

1.	Line	10:	Recolor	S	to	be	red.



2.	Line	11:	Set	x	to	point	to	its	parent.	The	new	tree	configuration	is	shown	in	Figure	33.

Figure	33.	The	Case	2	steps	in	rbBalance()	recolor	S	and	reset	x	to	point	to	x.parent.

•	Line	24:	Recolor	x	to	black,	which	produces	the	configuration	shown	in	Figure	34.

Figure	34.	After	the	Case	2	algorithm	is	executed,	S	(which	is	the	15)	is	red.

Case	3:	The	“sibling”	S	is	black	and	has	a	red	left	child	and	a	black	right	child.

An	example	of	a	Case	3	configuration	is	shown	in	Figure	35.	The	replacement	for	the	min
node,	labeled	x,	has	a	black	sibling	S	with	a	red	left	child	and	a	black	right	child.

Figure	35.	Example	of	a	Case	3	configuration.	The	replacement	node,	labeled	x,	has	a	black	“sibling”,	labeled	S,
with	a	red	left	child	and	a	black	right	child.

Steps	to	resolve	a	Case	3	violation:

1.	Lines	13-14:	Recolor	S	and	its	left	child	to	generate	the	configuration	in	Figure	36.



Figure	36.	Configuration	of	the	red-black	tree	after	S	and	its	left	child	are	recolored.	The	(x)	and	(y)	labels	show
the	nodes	are	x	and	y	in	the	right	rotation,	which	is	the	next	step	in	the	algorithm.

2.	Line	15:	Apply	a	right	rotation	to	S.	The	result	is	shown	in	Figure	37.

	

Figure	37.	Red-black	tree	after	the	right	rotation	on	S.	The	tree	is	now	an	example	of	Case	4:	a	black	“sibling”	S
with	a	black	left	child	and	a	red	right	child.

The	Case	3	algorithm	transforms	the	tree	into	a	Case	4,	where	the	“sibling”	has	a	black
left	child	and	a	red	right	child.

	

Case	4:	Min’s	replacement’s	“sibling”	is	black	and	has	a	black	left	child	and	a	red
right	child.

Steps	to	resolve	a	Case	4	violation:

1.	Lines	18-20:	Recolor	S,	its	parent,	and	its	right	child	produce	the	configuration	in
Figure	38.

	



Figure	38.	Configuration	of	the	red-black	tree	after	recoloring	S,	its	parent,	and	its	right	child	as	part	of	resolving
a	Case	4	violation.

2.	Line	21:	Apply	the	leftRotate()	algorithm	to	x.parent	to	produce	the	tree	shown	in
Figure	39.

Figure	39.	Red-black	tree	after	the	left	rotation	at	the	end	of	the	Case	4	algorithm.	If	the	S	is	the	root	of	the	tree,	it
will	be	recolored	on	the	last	line	of	the	rbBalance()	algorithm.

3.	Line	22-23:	Set	x	to	the	root	of	the	tree	to	exit	the	while	loop	and	ensure	that	the	root	of
the	tree	is	colored	black	on	the	last	line	of	the	rbBalance()	algorithm.



12				Graphs
The	map	of	Boulder,	Colorado	in	Figure	1	shows	the	city	in	the	area	around	the	University
of	Colorado.	There	are	roads,	bike	trails	(shown	in	dark	green),	and	some	of	the	major
landmarks,	all	of	which	are	common	features	on	most	maps.	But,	for	someone	interested
only	in	the	bike	paths	in	the	city,	the	map	might	contain	too	much	information.

Figure	1.	Map	of	the	roads	and	bike	paths	around	University	of	Colorado	in	Boulder,	Colorado.	The	bike	paths
are	shown	in	dark	green	and	the	roads	are	shown	in	gray.

Graphs	provide	a	structure	for	representing	connections	between	people,	places,	or	things
that	captures	the	essence	of	the	connections.	A	person	wanting	to	navigate	Boulder	by	bike
path	might	want	to	know	if	there	is	a	path	between	locations	A	and	B	the	distance	of	that
path,	and	if	the	path	goes	through	other	locations	along	the	way.



12.1	Adjacency	Matrix
An	adjacency	matrix	is	a	structure	for	representing	direct	connections	between	entities	in
a	graph,	such	as	locations.	In	a	2D	matrix,	these	entities	are	listed	on	both	the	horizontal
and	vertical	axis.	If	there	is	a	direct	connection	between	two	entities,	it	means	they	are
adjacent	and	there	is	a	1	at	that	location	in	the	matrix.	If	there	isn’t	a	direct	connection,
they	are	not	adjacent	and	there	is	a	0	at	that	location	in	the	matrix.

	

Example	1:	Generate	an	adjacency	matrix	for	five	locations	in	Boulder	-	campus,
downtown,	the	dorms,	mountaineering	store,	and	the	mall	-	showing	which	locations
are	directly	connected	by	bike	path.

	

Steps:

1.	Generate	a	blank	2D	matrix	that	lists	the	locations	on	both	axes.	The	vertical	axis	is	the
starting	location	and	the	horizontal	axis	is	the	destination	(Figure	2).

	

Figure	2.	Empty	adjacency	matrix	with	the	starting	location	on	the	vertical	axis	and	the	destination	on	the
horizontal	axis.

2.	Add	a	1	to	the	matrix	if	two	locations	have	a	bike	path	between	them	and	add	a	0	to	the
matrix	if	they	don’t.	(Note:	The	bike	paths	are	shown	in	dark	green	on	the	map,	but	the
map	doesn’t	show	all	locations).	For	this	example,	assume	that	the	bike	paths	generate	the
adjacency	matrix	in	Figure	3.

Figure	3.	Adjacency	matrix	showing	the	locations	connected	by	a	bike	path	in	the	Boulder	map.	The	1	means
there	is	a	path	directly	between	the	locations	and	the	0	means	there	isn’t	a	path	between	the	locations.

•	The	first	row	in	the	matrix	represents	the	scenario	of	starting	at	the	campus	and	going
directly	to	another	location,	without	going	through	any	other	locations.	There	is	a	path
from	campus	to	downtown,	the	dorms,	and	the	mall.	There	isn’t	a	path	from	campus	to	the
mountaineering	store,	which	doesn’t	mean	that	there’s	no	way	to	go	from	campus	to	the
mountaineering	store.	It	only	means	that	any	path	between	those	two	locations	has	to	go
through	at	least	one	other	location.



	

•	The	second	row	in	the	matrix	shows	a	starting	location	of	downtown.	There	are	paths
from	downtown	to	campus	and	the	mall.	There	isn’t	a	path	from	downtown	to	the	dorms
or	the	mountaineering	store.

	

•	The	third	row	in	the	matrix	shows	a	starting	location	of	the	dorms,	and	there	is	a	path
from	the	dorms	to	campus,	the	mountaineering	store,	and	the	mall.

	

•	The	fourth	row	in	the	matrix	shows	a	starting	location	of	the	mountaineering	store.	There
is	only	one	adjacent	location	to	the	mountaineering	store	and	that	is	the	dorms.

	

•	The	fifth	row	in	the	matrix	shows	a	starting	location	of	the	mall.	There	is	a	path	from	the
mall	to	every	location	except	the	mountaineering	store.

	

•	The	values	on	the	matrix	diagonal	represent	the	condition	of	staying	in	the	current
location,	e.g.	going	from	campus	to	campus.	In	this	example,	it	is	assumed	that	this	is
possible,	and	therefore,	these	values	are	all	1.

	

This	adjacency	matrix	is	symmetrical,	which	means	that	the	path	going	from	campus	to
downtown	is	the	same	as	the	path	going	from	downtown	to	campus.



12.2	Graph	Representation
The	information	in	an	adjacency	matrix	can	be	represented	as	a	graph,	where	a	graph
structure	is	defined	as	G	=	(V,	E);	graph	G	has	a	set	of	V	vertices	connected	by	a	set	of	E
edges.	If	the	adjacency	matrix	has	a	1	in	a	cell,	then	the	graph	has	an	edge	between	those
two	vertices.

	

Consider	the	graph	G	in	Figure	4.

Figure	4.	Graph	G,	with	edges		<e1,	…	en	>	and	vertices	<	v1,	…	vk	>.

The	edges	E	in	the	graph	are	labeled

	

<	e1,	e2,	…	en	>,

	

and	the	vertices	V	in	the	graph	are	labeled

	

<	v1,	v2,	…	vk	>,

	

where	n	is	the	number	of	edges	and	k	is	the	number	of	vertices.	All	of	the	vertices	and
edges	make	up	the	graph	G:

	

G	=	{	<	v1,	v2,	…	vk	>,	<	e1,	e2,	…	en	>	}

	

The	graph	for	the	adjacency	matrix	in	Figure	3	is	shown	in	Figure	5.



Figure	5.	Graph	constructed	from	the	adjacency	matrix	shown	in	Figure	3.	An	edge	between	two	vertices	means
there	is	a	connection	in	both	directions	with	the	same	properties,	e.g.	the	edge	between	campus	and	downtown	is
the	same	as	the	edge	between	downtown	and	campus.

For	locations	that	don’t	have	an	edge	between	them,	there	is	a	0	in	the	adjacency	matrix.
The	circle	at	each	vertex	is	the	self-loop	showing	that	there	is	a	direct	edge	back	to
the	current	location.	Neither	the	placement	of	the	vertices	in	the	graph,	nor	the	length	of
the	edges	has	any	meaning	relative	to	the	original	map.	This	graph	only	captures	the
connections	between	vertices.



12.3	Adjacency-list	Representation
Another	method	for	storing	graph	data	is	to	use	an	adjacency	list	instead	of	an	adjacency
matrix.	In	this	approach,	the	vertices	in	the	graph	are	stored	in	an	array,	and	each	vertex	in
the	array	contains	a	pointer	to	a	list	of	its	adjacent	vertices.	For	example,	an	array	of
vertices	for	the	Boulder	locations	would	each	contain	a	list	of	the	vertices	that	the	vertex
connects	to,	as	shown	in	the	adjacency	list	in	Figure	6.	This	list	contains	the	same	data
shown	in	the	adjacency	matrix	in	Figure	3	and	the	graph	in	Figure	5.	The	campus	vertex
has	four	adjacent	vertices	-	campus,	downtown,	the	dorms,	and	the	mall.	In	the	adjacency
list,	there	are	four	elements,	one	for	each	of	these	adjacent	vertices.

Figure	6.	Adjacency	list	for	the	adjacency	matrix	in	Figure	3.	The	vertices	in	the	graph	are	stored	in	an	array.
Each	vertex	in	the	array	stores	a	pointer	to	a	list	of	vertices	that	it	is	adjacent	to	in	the	graph.



12.4	Directed	and	Undirected	Graphs
12.4.1																									Undirected	Graph
The	graph	shown	in	Figure	5	is	an	example	of	an	undirected	graph.	The	edge	between	two
vertices	exists	in	both	directions.	For	example,	the	edge	connecting	campus	and
downtown	means	there	is	an	edge	between	campus	and	downtown	and	downtown	and
campus.

12.4.2																									Directed	Graph
In	a	directed	graph,	the	edges	between	two	vertices	have	a	direction	associated	with	them,
and	the	edge	may	be	different,	or	not	exist,	in	one	direction.	To	illustrate,	assume	a	few	of
the	bike	paths	on	the	Boulder	map	are	one	way,	e.g	there	is	a	path	from	campus	to
downtown,	but	not	the	other	direction.	An	adjacency	matrix	or	an	adjacency	list	can
capture	the	information	in	a	directed	graph.	A	1	in	the	matrix	represents	an	edge	in	a
direction,	and	a	0	represents	no	edge	in	a	direction.	The	adjacency	matrix	won’t	be
symmetrical,	as	it	is	with	an	undirected	graph,	if	there	are	edges	that	only	go	in	one
direction.

	

Example	2:	Generate	the	adjacency	matrix	and	graph	if	there	are	three,	one-way
bike	paths	in	Boulder.	All	other	paths	are	the	same	as	in	Example	1.

	

The	three	one-way	paths	are:

campus	to	downtown

dorms	to	mall

mall	to	campus

	

The	adjacency	matrix	needs	to	reflect	that	there	are	no	longer	edges	for:

downtown	to	campus

mall	to	dorms

campus	to	mall

	

by	having	a	0	in	the	matrix	for	those	edges.	The	new	adjacency	matrix	is	shown	in	Figure
7.	For	each	of	the	edges	that	no	longer	exist	in	the	graph,	there	is	a	0	in	the	matrix.



Figure	7.	Adjacency	matrix	for	Example	2	with	three,	one-way	directed	edges.	There	is	an	edge	between	campus
and	downtown,	but	not	downtown	and	campus.	There	is	also	not	an	edge	between	the	mall	and	the	dorms	or
campus	and	the	mall.

To	draw	a	directed	graph,	add	arrows	to	the	edges	between	the	vertices	to	indicate	the
direction	of	the	edge.	The	directed	graph	for	the	adjacency	matrix	in	Figure	6	is	shown	in
Figure	8.	For	edges	that	go	in	both	directions,	there	is	an	arrow	at	both	ends	of	the	edge.
Directed	graphs	can	also	be	drawn	with	separate	edges	for	each	direction.	For	the	edge
between	campus	and	the	dorms,	there	would	be	two	edges	drawn,	each	with	the	arrow	in
the	opposite	direction.	

Figure	8.	Example	of	a	directed	graph	where	an	arrow	shows	the	direction	of	the	edge.	For	edges	that	go	in	both
directions	between	two	vertices,	there	is	an	arrow	on	both	ends	of	the	edge.



12.5	Weighted	Graphs
In	the	examples	so	far,	the	edges	represent	a	connection	between	two	places,	but	do	not
contain	any	other	information,	such	as	the	distance	between	the	places.	In	a	weighted
graph,	the	edge	has	a	weight	that	provides	information	about	the	connection,	such	as	the
distance,	the	cost	of	travel	between	vertices,	or	the	flow	of	goods	between	two	vertices.
Using	a	weighted	graph,	questions	such	as,	“What	is	the	shortest	distance	between	all
vertices?”	or	“What	is	the	cheapest	path	between	two	or	more	cities?”	can	be	answered.

	

The	approximate	distances	(according	to	Google	Maps)	between	the	locations	on	the
Boulder	map	are	shown	in	the	adjacency	matrix	in	Figure	9.

Figure	9.	Distances	between	adjacent	locations,	according	to	Google	Maps.	These	numbers	are	the	edge	weights	in
the	graph.	A	weight	of	-1	means	there	is	not	an	edge	between	those	vertices.

There	are	a	few	changes	to	the	adjacency	matrix	to	represent	the	information	in	a	directed
graph.	The	matrix	now	includes	a	0	for	self-loops,	such	as	campus	to	campus,	because	the
distance	between	the	place	and	itself	is	0.	For	vertices	that	don’t	have	a	connecting	edge,
such	as	downtown	to	the	dorms,	there	is	a	-1	in	the	matrix.	The	weights	in	the	adjacency
matrix	are	used	to	generate	the	weighted	graph	in	Figure	10.

	

Using	the	edge	weights,	the	final	distance	between	any	two	places	can	be	calculated.	For
example,	to	go	from	campus	to	the	mall,	by	way	of	dorms,	the	distance	is	1.3	+	1.5	=	2.8
miles.	It’s	1.3	miles	from	campus	to	the	dorms	and	then	1.5	from	the	dorms	to	the	mall.

	

Figure	10.	Weighted	graph	generated	from	the	adjacency	matrix	in	Figure	9.	The	edges	with	a	weight	of	0	are
removed.



12.6	Graph	ADT
In	the	graph	ADT,	the	vertices	in	the	graph	are	stored	as	a	private	variable.	There	are
public	methods	to	initialize	the	graph,	insert	and	delete	edges	and	vertices,	print	the	graph,
and	search	the	graph.	The	edges	are	stored	in	an	adjacency	list	for	each	vertex	in	the
vertices	variable,	and	therefore,	don’t	need	to	be	represented	separately	as	private
variables	in	the	graph	ADT.	A	suggested	set	of	minimum	functionality	is	shown	in	ADT
12.1.

ADT	12.1.	Graph

Graph:

1.					private:

2.									vertices

3.					public:

4.									Init()

5.									insertVertex(value)

6.									insertEdge(startValue,	endValue,	weight)

7.									deleteVertex(value)

8.									deleteEdge(startValue,	endValue)

9.									printGraph()

10.							search(value)



12.7	Implementing	a	Graph	class	in	C++
12.7.1																									Vectors
C++	has	a	container	data	type	called	a	vector	in	the	Standard	Template	Library	that
behaves	like	a	linked	list	and	an	array.	Elements	in	a	vector	can	be	indexed	like	elements
in	an	array,	and	they	can	be	added	and	removed	one	at	a	time	like	elements	in	a	linked	list
without	the	developer	having	to	explicitly	handle	expensive	operations	such	as	array
shifting	and	doubling.

	

This	graph	implementation	uses	vectors	instead	of	an	array	or	a	linked	list	to	simplify	the
memory	management	of	the	graph.

	

To	declare	a	vector	variable:

	

vector<type>	variable;

	

where	<type>	is	the	data	type,	such	as	int,	double,	or	a	user-defined	type,	and	variable	is
the	name	of	the	vector	variable.

12.7.2																									Creating	graph	vertices	and	edges
In	code,	the	graph	can	be	represented	in	a	Graph	class:

	

class	Graph{

		private:

				//vertices	and	edges	definition	goes	here

		public:

				//methods	for	accessing	the	graph	go	here

}

	

Each	vertex	in	the	graph	is	defined	by	a	struct	with	two	members:	a	key	that	serves	as	the
key	value	for	the	vertex,	and	a	vector	adjacent	to	store	the	adjacency	list	for	the	vertex.

	

A	vertex	is	defined	as:

	

struct	vertex{



				std::string	key;

				std::vector<adjVertex>	adjacent;

}

	

The	adjVertex	data	type	is	also	defined	by	a	struct	with	two	members:	contains	a	pointer
to	the	adjacent	vertex	v,	and	an	integer	weight	that	stores	the	edge	weight	between	the	two
vertices.

	

struct	adjVertex{

vertex	*v;

int	weight;

};

	

An	empty	vector	of	vertex	can	be	created	using	the	statement:

	

std::vector	<vertex>	vertices;

	

The	adjVertex	struct	only	stores	the	destination	vertex	in	v	because	the	origin	vertex	is
stored	in	the	vertices	vector.	In	this	design,	each	vertex	in	the	graph	has	a	vector	of
adjacent	vertices	that	contains	the	vertex	at	the	other	end	of	the	edge.	The	number	of
adjacent	vertices	can	vary	for	each	vertex	in	vertices.	The	size	of	the	adjacent	vector	is
also	dynamic	for	each	vertex.

	

A	visual	representation	of	the	setup	is	shown	in	Figure	11.

Figure	11.	A	visual	representation	of	the	vertices	vector	and	the	adjacent	vector	for	each	vertex.	The	vertices
vector	contains	all	of	the	vertices	in	the	graph.	The	adjacent	vector	is	the	adjacency	list	for	each	vertex.



In	Figure	11,	vertices[0]	has	only	3	adjacent	vertices.	For	vertices[1]	and	vertices[2],
there	are	k	and	n	adjacent	vertices,	respectively.	This	diagram	illustrates	that	each
vertices[i]	can	have	a	different	number	of	adjacent	vertices	stored	in	its	adjacent	vector.

12.7.3																									Insert	vertex
Adding	vertices	to	the	graph	is	handled	through	a	public	method	that	takes	the	vertex	key
value	as	an	argument.	The	insertVertex()	algorithm	is	shown	in	Algorithm	12.1.	A	vertex
with	the	specified	key	value	is	added	to	the	vertices	variable.	Memory	for	the	vertex	is
allocated	when	it	is	added	to	vertices.

	
Algorithm	12.1.	insertVertex(value)

Add	a	vertex	with	the	specified	value	to	a	graph.

	

Pre-conditions

value	is	a	valid	key	value	of	the	same	type	as	the	key	parameter	in	vertex.

vertices	is	an	array	of	graph	vertices.

	

Post-conditions

Vertex	added	to	vertices	if	it	doesn’t	already	exist.

	

Algorithm

insertVertex(value)

1.				found	=	false

2.	for	x	=	0	to	vertices.end

3.									if(vertices[x].key	==	value)

4.												found	=	true

5.												break

6.					if(found	==	false)

7.									vertex.key	=	value

8.									vertices.add(vertex)

	

The	insertVertex()	algorithm	is	shown	in	C++	in	Code	12.1,	which	uses	a	vector	to	store
the	vertices.	In	the	insertVertex()	method,	a	bool	called	found	controls	the	search	of	the
vertices	vector.	If	the	key	already	exists	in	the	vector,	set	found	to	true	and	break	out	of	the
loop.	If	the	key	isn’t	found	in	vertices,	it	is	added	to	vertices	using	the	vector	push_back()
method.



	
Code	12.1.	insertVertex(string	value)

void	Graph::insertVertex(string	value){

1.			bool	found	=	false;

2.			for(int	i	=	0;	i	<	vertices.size();	i++){

3.								if(vertices[i].key	==	value){

4.												found	=	true;

5.												cout<<vertices[i].key<<”	found.”<<endl;

6.											break;

7.								}

8.			}

9.				if(found	==	false){

10.						vertex	v;

11.						v.key	=	value;

12.						vertices.push_back(v);

13.		}

14.	}

	

The	insertVertex()	method	can	be	called	as	follows:

	

Graph	g;

g.insertVertex(“Boulder”);

	

to	create	an	instance	of	Graph,	called	g,	and	add	a	vertex	with	the	key	“Boulder”.

12.7.4																									Insert	edge
After	vertices	have	been	added	to	the	graph,	edges	can	be	added	to	connect	them.	The
insertEdge()	algorithm,	shown	in	Algorithm	12.2,	takes	the	two	key	values	of	the	vertices
to	connect	and	the	weight	of	the	edge	between	them,	and	adds	an	element	to	the	adjacent
list	for	the	source	vertex.	The	insertEdge()	algorithm	first	checks	that	the	two	key
parameters,	v1	and	v2,	exist	in	vertices.	If	they	are	in	vertices,	then	the	adjacent	vector	for
the	source	vertex	v1	is	updated	to	include	the	new	edge	with	a	weight	and	a	pointer	to	the
destination	vertex	v2.

	
Algorithm	12.2.	insertEdge(v1,	v2,	weight)



Add	an	edge	between	vertices	v1	and	v2	with	the	specified	weight.

	

Pre-conditions

v1	and	v2	exist	in	the	graph	and	there	isn’t	an	existing	edge	from	v1	to	v2.

	

Post-conditions

Entry	added	to	the	adjacency	list	for	v1	connecting	it	to	v2	with	the	specified	weight.

	

Algorithm

insertEdge(v1,	v2,	weight)

1.				for	x	=	0	to	vertices.end

2.								if(vertices[x].key	==	v1)

3.												for	y	=	0	to	vertices.end

4.																if(vertices[y].key	==	v2	and	x	!=	y)

6.																				adjacent.vertex	=	vertices[y]

7.																				adjacent.weight	=	weight

8.																				vertices[x].adjacent.add(adjacent)

	

The	insertEdge()	algorithm	is	shown	in	C++	in	Code	12.2,	which	uses	a	vector	to	store	the
adjacency	list	of	vertices.	If	both	vertices	are	found	in	vertices,	then	the	adjacent	vector	is
updated	to	add	an	edge	using	the	vector	push_back()	method.

	
Code	12.2.	insertEdge(string	v1,	string	v2,	int	weight)

void	Graph::insertEdge(string	v1,	string	v2,	int	weight){

1.				for(int	x	=	0;	x	<	vertices.size();	x++){

2.								if(vertices[x].key	==	v1){

3.												for(int	y	=	0;	y	<	vertices.size();	y++){

4.																if(vertices[y].key	==	v2	&&	x	!=	y){

5.																				adjVertex	av;

6.																				av.v	=	&vertices[y];

7.																				av.weight	=	weight;

8.																				vertices[x].adjacent.push_back(av);

9.																}



10.										}

11.						}

12.		}

13.	}

	

•	On	Lines	1-2	of	Code	12.2,	the	vertices	vector	is	checked	for	a	key	value	that	matches
v1,	and	if	it	is	found,	then	on	Lines	3-4,	the	vertices	vector	is	checked	again	for	v2.

	

•	On	Lines	5-8,	the	destination	vertex	vertices[y]	is	added	to	the	adjacency	list	for	the
source	vertex	v1.	The	adjVertex	struct	stores	a	pointer	to	the	vertex,	which	is	why	the
address	of	vertices[y]	is	used	on	Line	6.

	

The	insertEdge()	method	adds	an	edge	in	one	direction	only.	In	an	undirected	graph,	the
method	would	need	to	be	called	twice	with	the	source	and	destination	vertices	swapped	to
add	the	edge	between	two	vertices	in	both	directions.	For	example,	to	add	an	undirected
edge	between	Boulder	and	Denver,

	

g.insertEdge(“Boulder”,	“Denver”,	30);

g.insertEdge(“Denver“,	“Boulder“,	30);

	

calls	insertEdge()	the	first	time	with	Boulder	as	the	source	and	Denver	as	the	destination
and	calls	insertEdge()	the	second	time	with	Denver	as	the	source	and	Boulder	as	the
destination.

12.7.5																									Printing	the	graph
Printing	the	graph	vertices	and	adjacent	vertices	is	a	simple	way	to	verify	that	the	graph	is
set	up	as	expected.	To	print	the	graph,	traverse	the	vertices	variable,	and	print	all	elements
of	the	adjacent	variable	for	each	vertex.	Two	loops	are	needed,	one	for	the	elements	in
vertices,	and	one	for	the	elements	of	adjacent	for	each	vertex	in	vertices.	An	algorithm	to
print	the	graph	is	shown	in	Algorithm	12.3	and	the	C++	code	for	the	algorithm	is	shown	in
Code	12.3.

	
Algorithm	12.3.	printGraph()

Display	the	vertices	and	the	adjacent	vertices	for	each	vertex	in	the	graph.

	

Pre-conditions

None



	

Post-conditions

vertices	and	adjacent	vertices	displayed.

	

Algorithm

printGraph()

1.				for	x	=	0	to	vertices.end

2.									print(vertices[x].key)

3.									for	y	=	0	to	vertices[x].adjacent.end

4.														print(vertices[x].adjacent[y].vertex.key)

	
Code	12.3.	printGraph()

void	Graph::printGraph(){

1.				for(int	x	=	0;	x	<	vertices.size();	x++){

2.									cout<<vertices[x].key<<“—>“;

3.								for(int	y	=	0;	y	<	vertices[x].adjacent.size();	y++){

4.														cout<<vertices[x].adjacent[y].v->key<<“***”;

5.									}

6.								cout<<endl;

7.				}

8.	}

	

•	On	Line	3	of	Code	12.3,	vertices[x].adjacent.size()	gets	the	size	of	the	adjacency	list,
stored	as	the	vector	adjacent,	for	vertices[x].

	

•	On	Line	4,	the	key	of	the	vertex	stored	in	the	adjacency	list	is	printed.	The	v->key
notation	is	needed	because	v	is	a	pointer	to	an	existing	element	in	vertices,	and	v->key
dereferences	the	pointer	and	gets	the	key	value	of	that	vertices	element.

12.7.6																									Searching	a	graph
The	search()	algorithm	in	Algorithm	12.4	takes	the	key	value	to	search	for	as	a	parameter
and	traverses	vertices	for	a	vertex	that	contains	that	value	as	its	key.	The	algorithm	returns
the	vertex	where	the	value	is	found.

	
Algorithm	12.4.	search(value)



Returns	the	vertex	with	a	key	value	that	matches	the	search	value.

	

Pre-conditions

value	is	a	valid	search	parameter	with	the	same	type	as	the	key	in	vertices

	

Post-conditions

Returns	the	vertex	in	vertices	where	vertex.key	=	value.	Returns	NULL	if	the	value	isn’t
found.

	

Algorithm

search(value)

1.					for	x	=	0	to	vertices.end

2.									if	vertices[x].key	==	value

3.													return	vertices[x]

4.					return	NULL



12.8	Graph	traversal	algorithms
Graph	traversal	algorithms	reveal	features	of	the	information	stored	in	the	graph	by
visiting	the	vertices	in	a	specified	order.	The	appropriate	traversal	algorithm	to	use
depends	on	the	question	that	needs	to	be	answered	about	the	graph.

	

Some	questions	to	answer	about	graphs	include	the	following:

	

•	Does	a	vertex	with	a	specified	value	exist	in	a	graph?

•	How	many	adjacent	vertices	does	a	particular	vertex	have?

•	Is	there	a	path	between	two	vertices?

•	What	is	the	shortest	path	between	two	vertices?

12.8.1																									Traversing	graph	edges
Each	edge	in	a	graph	can	be	thought	of	as	a	step	between	two	vertices	in	the	graph.
Counting	the	number	of	steps	between	two	vertices	is	the	same	as	counting	the	number	of
edges	between	the	vertices.	Vertices	that	are	one	step	from	another	vertex	are	the	adjacent
vertices;	they	are	connected	directly	by	an	edge.	The	vertices	that	are	two	steps	away	are
the	vertices	that	can	be	reached	by	traversing	two	edges,	which	requires	going	through	an
intermediate	vertex.	Vertices	that	are	three	steps	apart	are	separated	by	two	intermediate
vertices,	and	so	on.

	

Example	5:	Using	the	graph	in	Figure	12,	determine	which	vertices	are	one,	two,	and
three	steps	from	vertex	A?

Figure	12.	Graph	for	Example	5.	Determine	which	vertices	are	1,	2,	and	3	steps	from	vertex	A.

In	this	example,	the	adjacent	vertices	to	A	are	B	and	E.	The	vertices	that	are	two	steps
from	A	are	C	and	F,	which	can	be	reached	by	going	A-B-C,	A-E-C,	or	A-B-F.	The	vertex
that	is	three	steps	from	A	is	D,	which	can	be	reached	by	going	A-B-C-D	or	A-E-C-D.

	

Another	approach	to	visualizing	graph	traversals	is	to	view	the	graph	is	as	a	tree	rooted	at



the	starting	vertex.	In	this	approach,	A	is	the	root	of	the	tree,	and	the	vertices	adjacent	to	A
are	its	children.	The	vertices	two	steps	from	A	are	its	children’s	children,	and	so	on.	Figure
13	shows	the	graph	in	Figure	12	represented	as	a	tree.	The	vertices	B	and	E	are	A’s
children.	From	vertex	B,	there	is	an	edge	back	to	vertex	A	and	an	edge	to	vertices	C	and	F.
Edges	are	only	shown	once	in	this	tree,	which	is	why	the	edges	back	to	a	previous	vertex
are	not	represented.	From	the	vertex	E,	there	is	only	one	option,	vertex	C,	and	from	there,
there	is	also	just	one	connecting	vertex,	which	is	vertex	D.

Figure	13.	The	graph	in	Figure	12	represented	as	a	tree	rooted	at	vertex	A.	The	children	of	each	vertex	in	the	tree
are	the	adjacent	vertices	to	that	vertex	in	the	graph.	For	example,	B	and	E	are	adjacent	to	A.

12.8.2																									Breadth-first	search
Redrawing	the	graph	as	a	tree	can	make	it	easier	to	visualize	the	order	that	vertices	are
traversed	with	a	particular	search	algorithm.	For	example,	in	the	tree	in	Figure	13,	vertices
could	be	examined	going	across	one	level	in	the	tree	before	the	vertices	at	deeper	levels	in
the	tree	are	evaluated.	In	this	case,	the	children	of	the	root,	which	are	vertices	B	and	E,
would	be	evaluated	before	either	of	B	or	E’s	children,	vertices	C	and	F,	are	evaluated.

	

Evaluating	the	vertices	at	the	same	level	of	a	graph	before	evaluating	nodes	at	deeper
levels	is	a	breadth-first	evaluation.	A	search	algorithm	that	evaluates	nodes	in	a	breadth-
first	ordering	is	called	a	breadth-first	search.	Figure	14	shows	the	order	that	nodes	are
evaluated	in	a	breadth-first	evaluation.	The	number	assigned	to	the	node	is	the	evaluation
order,	e.g.	the	root	is	evaluated	first,	followed	by	the	root’s	children	going	from	left	to
right	or	right	to	left.

	



Figure	14.	Search	order	for	the	breadth-first	search	algorithm.	Nodes	are	evaluated	across	one	level	in	the	tree
before	moving	to	deeper	levels	in	the	tree.

The	root	in	this	tree	is	the	starting	vertex	in	a	graph.	The	children	of	the	root,	which	are	all
vertices	adjacent	to	the	root	vertex	in	a	graph,	are	evaluated	next.	Then,	the	children’s
children,	which	are	all	vertices	two	steps	from	the	root	in	a	graph,	are	evaluated.	Each
level	in	the	tree	is	the	same	as	one	edge	in	a	graph.	For	example,	the	node	assigned	the
number	14	in	the	tree	would	be	four	edges	away	from	the	node	assigned	the	number	1	in
the	tree	if	the	two	nodes	were	in	a	graph.

	

In	a	breadth-first	search	of	the	graph,	the	objective	is	to	find	a	value	in	the	graph	using	the
breadth-first	evaluation	order	just	described.	Each	vertex	is	visited	exactly	once.	The
search	ordering	is	often	controlled	using	a	queue	to	store	the	vertices.	When	a	vertex	is
visited,	its	children	are	added	to	the	queue.	When	a	vertex	is	dequeued	and	evaluated,	its
children	are	enqueued.	This	process	continues	until	there	are	no	vertices	left	to	evaluate
and	the	queue	is	empty.	

	

The	breadthFirstTraversal()	algorithm	in	Algorithm	12.5	evaluates	an	entire	graph	using	a
breadth-first	ordering.	The	vertex	struct	includes	an	additional	member,	called	visited,	that
tracks	if	the	vertex	has	been	evaluated.	Only	vertices	where	visited	=	false	are	added	to	the
queue.

	

struct	vertex{

				std::string	key;

				std::vector<adjVertex>	adjacent;

bool	visited;

}

	
Algorithm	12.5.	breadthFirstTraversal(value)

Print	the	key	values	of	the	vertices	in	the	graph	in	a	breadth-first	order,	starting	at	the
vertex	where	vertex.key	=	value.

	

Pre-conditions

value	is	a	valid	key	value	for	a	vertex	in	the	graph.

search()	algorithm	exists	to	find	the	vertex	where	vertex.key	=	value.

visited	property	initialized	to	false	for	all	vertices

	

Post-conditions



The	vertices	in	the	graph	are	displayed	in	breadth-first	order	from	the	starting	vertex.

	

Algorithm

breadthFirstTraversal(value)

1.					vertex	=	search(value)

2.					vertex.visited	=	true

3.					queue.enqueue(vertex)

4.					while(!queue.isEmpty())

5.									n	=	queue.dequeue()

6.									for	x	=	0	to	n.adjacent.end

7.													if(!n.adjacent[x].visited)

8.																n.adjacent[x].visited	=	true

9.																print(n.adjacent[x].v.key)

10.														queue.enqueue(n.adjacent[x].v)

	

Example	6:	Using	the	graph	in	Figure	15,	show	the	order	that	vertices	are	enqueued
and	dequeued	in	the	breadthFirstTraversal()	algorithm,	starting	from	vertex	A.

Figure	15.	Show	the	order	that	the	vertices	in	this	graph	are	enqueued	and	dequeued	in	the
breadthFirstTraversal()	algorithm,	starting	from	vertex	A.

Steps:

1.	Line	1:	the	visited	property	for	the	starting	vertex	A	is	set	to	true.

2.	Line	2:	the	starting	vertex	A	is	added	to	the	queue,	and	then	dequeued	on	Line	4	for
evaluation.

3.	Lines	5-6:	the	loop	checks	the	vertices	adjacent	to	A,	which	are	B	and	F,	for	whether
they	have	already	been	visited.	The	visited	property	for	both	vertices	is	false.

4.	Line	7:	the	adjacent	vertices	B	and	F	are	marked	as	visited.



5.	Line	9:	vertex	B	is	added	to	the	queue,	and	then	vertex	F	is	added	to	the	queue	the	next
time	through	the	loop.

6.	Back	to	Line	3,	the	while	conditional	checks	if	the	queue	is	empty.	It	isn’t,	since	B	and
F	were	just	added.

7.	Line	4:	vertex	B	is	dequeued.	The	vertices	adjacent	to	B,	which	are	A	and	G,	are
checked	for	whether	they	have	been	visited.	Only	the	G	has	not	been	visited.

8.	Line	9:	the	vertex	G	is	added	to	the	queue.

9.	Back	to	Line	3,	the	while	conditional	checks	if	the	queue	is	empty.	It	isn’t,	since	it
contains	the	F	and	G.

10.	Line	4:	vertex	F	is	dequeued.	The	vertices	adjacent	to	F	are	A,	E,	and	H.	The	E	and	H
have	not	been	visited.

11.	Line	9:	the	vertices	E	and	H	are	added	to	the	queue;	one	vertex	is	added	each	time
through	the	loop.

12.	Back	to	Line	3,	the	queue	still	isn’t	empty,	since	it	contains	the	G,	E,	and	H.

13.	Line	4:	the	vertex	G	is	dequeued,	All	of	G’s	adjacent	vertices	have	been	visited,	so
there	is	nothing	to	enqueue.

14.	Back	to	Line	3,	the	queue	still	isn’t	empty,	since	it	contains	the	E	and	H.

15.	Line	4:	the	vertex	E	is	dequeued.	All	of	E’s	adjacent	vertices	have	been	visited,	so
there	is	nothing	to	enqueue.

16.	Back	to	Line	3,	the	queue	still	isn’t	empty,	since	it	contains	the	H.

17.	Line	4:	the	vertex	H	is	dequeued.	All	of	H’s	adjacent	vertices	have	been	visited,	so
there	is	nothing	left	to	enqueue.

18.	The	vertex	H	was	the	last	vertex	in	the	queue.	On	Line	3,	the	conditional	is	false	and
the	breadthFirstTraversal()	routine	exits.

	

The	evaluation	order	of	the	graph	vertices	in	Figure	15,	viewed	as	a	tree,	is	shown	in
Figure	16.	The	vertex	A	is	evaluated	first,	followed	by	B,	F,	G,	E,	and	H	in	that	order.

Figure	16.	The	evaluation	order	of	the	graph	vertices	in	Figure	15	using	the	breadthFirstTraversal()	algorithm.
The	vertex	A	is	evaluated	first,	followed	by	B,	F,	G,	E,	and	H.

12.8.3																									Shortest	distance	in	an	unweighted	graph
The	breadthFirstTraversal()	algorithm	traverses	the	graph,	but	it	doesn’t	provide



information	about	the	graph,	such	as	the	distance	between	any	two	vertices	or	whether	a
value	exists	in	the	graph.	The	algorithm	can	be	modified	to	search	for	a	specified	vertex,
and	calculate	the	number	of	edges	traversed	to	that	vertex	from	the	starting	vertex.	A
distance	parameter	is	added	to	the	vertex	struct	to	store	the	number	of	edges.	Each	time	a
vertex	is	enqueued,	meaning	that	an	edge	was	traversed	to	reach	the	vertex,	its	distance	is
incremented	by	1.

	

struct	vertex{

				std::string	key;

				std::vector<adjVertex>	adjacent;

bool	visited;

int	distance;

}

	

In	the	breadthFirstSearch()	algorithm	in	Algorithm	12.6,	the	arguments	to	the	routine	are
the	value	of	the	starting	vertex	and	the	value	to	search	for	are	arguments	to	the	algorithm.
A	search()	algorithm	(Algorithm	12.4)	is	needed	to	support	breadthFirstSearch().

	
Algorithm	12.6.	breadthFirstSearch(startValue,	searchValue)

Calculates	the	distance	between	the	startValue	and	searchValue	vertices,	and	returns	the
searchValue	vertex.

	

Pre-conditions

startValue	and	searchValue	are	valid	search	parameters	with	a	type	that	matches	the	key
value	of	the	vertices	in	the	graph.

search()	takes	startValue	as	a	parameter	and	returns	the	vertex	in	the	graph	with	that	key
value.

visited	initialized	to	false	for	all	vertices	in	the	graph.

Post-conditions

Returns	the	vertex	with	a	key	that	matches	the	searchValue.	Included	in	the	vertex	is	the
shortest	distance	back	to	the	startValue	vertex.

Returns	NULL	if	the	value	isn’t	found.

	

Algorithm

breadthFirstSearch(startValue,	searchValue)

1.					vertex	=	search(startValue)



2.					vertex.visited	=	true

3.					vertex.distance	=	0

4.					queue.enqueue(vertex)

5.					while(!queue.isEmpty())

6.										n	=	queue.dequeue()

7.									for	x	=	0	to	n.adjacent.end

8.														if(!n.adjacent[x].v.visited)

9.																	n.adjacent[x].v.distance	=	n.distance	+	1

10.																if(n.adjacent[x].v.key	==	searchValue)

11.																				return	n.adjacent[y].v

12.																else

13.																				n.adjacent[x].v.visited	=	true

14.																			queue.enqueue(n.adjacent[x].v)

15.				return	NULL

	

The	breadthFirstSearch()	algorithm	will	return	the	vertex	if	it’s	found	and	NULL	if	it’s
not.	Stored	in	the	vertex	is	the	distance	back	to	the	starting	vertex.

	

Example	7:	What	is	the	shortest	distance	between	vertices	A	and	G	in	the	graph	in
Figure	17?

	

Figure	17.	Find	the	shortest	path	in	this	graph	between	vertex	A	and	the	other	vertices	in	the	graph.	The	ID	of	the
vertex	is	shown	next	to	its	key	value.

The	primary	difference	in	the	breadthFirstTraversal()	and	breadthFirstSearch()
algorithms	is	the	distance	calculation.

	



Steps:

1.	Line	1:	starting	vertex	identified	using	search().

2.	Lines	2-3:	distance	to	starting	vertex	initialized	to	0	and	vertex	marked	visited.

3.	Line	4:	starting	vertex	A	enqueued.

4.	Line	6:	the	starting	vertex	A	is	dequeued.

5.	Lines	7-9:	the	vertices	adjacent	to	A,	which	are	B	and	F,	are	added	to	the	queue.	The
distance	for	each	of	them	is	the	(distance	to	A)	+	1,	so	they	both	have	a	distance	of	1.

6.	Line	6:	vertex	B	is	dequeued.	The	only	vertex	adjacent	to	B	that	hasn’t	been	visited	is
G,	which	is	also	the	value	being	searched	for.

7.	Line	9:	the	distance	to	G	is	the	(distance	to	B)	+	1,	which	makes	the	distance	2.

8.	Line	10:	the	conditional	checks	if	G	is	the	value	being	searched	for,	and	since	it	is,	the
vertex	is	returned	on	Line	11.

12.8.4																									Breadth-first	shortest	path
The	distance	between	two	vertices	in	an	unweighted	graph	is	the	number	of	edges
traversed	to	go	from	one	vertex	to	the	other	vertex.	The	path	between	two	vertices	is	the
list	of	the	vertices	visited	on	the	path	between	two	vertices.	In	Example	7,	the	shortest
distance	between	A	and	G	is	2,	and	the	shortest	path	is	A-B-G.	To	find	the	path,
information	about	the	vertices	visited	needs	to	be	stored	along	with	the	distance.

	

There	are	two	options	commonly	used	for	storing	path	information.

1.	Create	an	array	to	store	the	index	of	the	parent	vertex,	and	then	trace	back	through	the
array	to	re-create	the	path.

2.	Store	a	pointer	to	the	parent	vertex	in	each	vertex,	and	follow	the	pointers	back	to	the
root	vertex	to	re-create	the	path.

	

The	breadthFirstSearch()	algorithm	can	be	easily	modified	to	store	path	information	using
an	array	that	stores	the	parent	index.	The	vertex	struct	is	modified	to	assign	each	vertex	an
integer	ID	that	will	serve	as	its	array	index.

	

struct	vertex{

1.				std::string	key;

2.				std::vector<adjVertex>	adjacent;

3.				bool	visited;

4.				int	distance;

5.				int	ID;



};

	

A	breadthFirstSearch()	algorithm	that	finds	the	shortest	path	from	a	starting	vertex	to	all
other	vertices	in	the	graph	is	shown	in	Algorithm	12.7.
Algorithm	12.7.	breadthFirstSearch(startValue)

Find	the	path	and	the	distance	from	the	starting	vertex	to	all	other	vertices	in	the	graph.

	

Pre-conditions

previous	array	exists	that	is	same	size	as	the	number	of	vertices	in	the	graph.	All	previous
values	initialized	to	-1.

startValue	is	valid	vertex	key	value.

search()	algorithm	exists	to	identify	starting	vertex	in	the	graph.

	

Post-conditions

previous	populated	with	parent	ID	for	all	vertices	on	the	path	from	the	starting	vertex.

	

Algorithm

breadthFirstSearch(startValue)

1.					vertex	=	search(startValue)

2.					vertex.visited	=	true

3.					vertex.distance	=	0

4.					queue	=	new	queue()

5.					queue.enqueue(vertex)

6.					while(!q.isEmpty())

7.										n	=	queue.dequeue()

8.										for	x	=	0	to	v.adjacent.end

9.														if(!n.adjacent[x].v.visited)

10.																n.adjacent[x].v.distance	=	n.distance	+	1

11.																previous[v.adjacent[x].v.ID]	=	n.ID

12.																n.adjacent[x].v.visited	=	true

13.																queue.enqueue(n.adjacent[x].v)

	

Example	8:	Find	the	shortest	path	between	vertices	A	and	the	other	vertices	in	the



graph	in	Figure	17	using	Algorithm	12.7.

	

Each	of	the	vertices	in	Figure	17	has	been	assigned	an	integer	index,	which	is	stored	in	the
ID	property	of	the	vertex.	For	example,	vertex	A	has	an	ID	of	0;	and	vertex	B	has	an	ID	of
1.

	

Steps:

1.	Create	an	array	previous	of	length	n,	where	n	is	the	number	of	vertices	in	the	graph.

	

int	previous[n];

	

2.	Initialize	all	values	in	the	previous	array	to	-1	to	produce	the	previous	array	shown	in
Figure	18.	

Figure	18.	The	shortest	path	algorithm	uses	an	array	called	previous.	Initially,	all	values	in	previous	are	-1.	The
size	of	previous	is	the	same	size	as	the	number	of	vertices	in	the	graph.

3.	Line	7:	vertex	A	is	dequeued	(enqueued	on	Line	5)	and	its	adjacent	vertices	are
evaluated	and	enqueued	on	Lines	8-13.

	

4.	Line	11:	the	previous[ID]	value	for	each	of	vertex	A’s	adjacent	vertices	is	set	to	the	ID
of	A,	which	is	0.	The	ID	for	vertex	B	is	1	and	the	ID	for	vertex	F	is	4,	which	sets	the
values	for	previous[1]	and	previous[4]	to	0.	The	state	of	the	previous	array	is	shown	in
Figure	19.

Figure	19.	The	previous	values	for	vertex	A’s	adjacent	vertices	are	updated	to	include	the	index	of	A.	The	vertex



A	has	an	ID	of	0,	therefore,	a	0	is	written	to	positions	1	and	4,	the	IDs	of	A’s	adjacent	vertices	B	and	F.

5.	Line	7:	dequeue	the	vertex	B	and	evaluate	and	enqueue	it’s	unvisited	adjacent	vertices
on	Lines	8-13.	The	only	unvisited	vertex	is	G,	which	has	an	index	of	2.	Set	previous[2]	=
1	to	show	that	B	is	G’s	parent.	The	ID	of	vertex	B	is	1.	The	updated	previous	array	is
shown	in	Figure	20.

Figure	20.	State	of	the	previous	array	after	vertex	G’s	parent	is	added	to	the	array.	G	has	an	index	of	2	and	G’s
parent	has	an	index	of	1,	therefore,	a	1	is	stored	in	previous[2].

6.	Line	7:	dequeue	the	vertex	F,	which	has	an	ID	of	4.	The	unvisited	adjacent	vertices	to	F
are	the	E	and	H.

7.	Line	11:	set	the	previous	array	for	the	E	and	H	vertices.	The	ID	of	E	is	3	and	the	ID	of
H	is	5.	The	values	for	previous[3]	and	previous[5]	are	set	to	4.	The	final	previous	array	is
shown	in	Figure	21.

	

Figure	21.	The	final	previous	array	after	all	vertices	evaluated.	The	array	can	be	used	to	re-create	the	path	from
any	vertex	back	to	vertex	A.

Once	the	previous	array	has	been	generated,	it	can	be	used	to	re-create	the	path	back	to	the
starting	vertex	from	any	vertex	in	the	graph.	To	re-create	the	path	from	the	vertex	G	back
to	the	vertex	A:

	

Steps:

1.	Start	at	the	ID	of	G	in	the	previous	array,	which	is	2,	and	examine	previous[2]	to	get	the
parent	ID	of	G,	which	is	1.	The	vertex	with	an	ID	of	1	is	B,	which	means	that	the	path	to	G
goes	through	B.

2.	Go	to	previous[1]	to	get	the	parent	ID	of	B,	which	is	0.	The	vertex	with	an	ID	of	0	is	A.



3.	Go	to	previous[0]	to	get	the	parent	ID	of	A,	which	is	-1.	The	-1	signifies	that	A	is	the
starting	vertex	and	doesn’t	have	a	parent.

	

The	shortest	path	from	A	to	G	goes	through	the	vertices	A-B-G.

12.8.5																									Depth-first	search
Another	ordering	for	searching	the	vertices	in	a	graph,	called	depth-first	search	(DFS),
evaluates	the	vertices	along	one	path	before	evaluating	other	paths.	DFS	is	used	in	the
tree-traversal	algorithms	for	binary	trees	(shown	in	Algorithm	10.1,	10.2,	and	10.3)	that
print	the	nodes	in	the	tree.	Those	algorithms	recursively	traversed	all	the	way	to	the	leaf
nodes	in	the	tree,	following	the	left	or	right	branch,	before	evaluating	any	of	the	other
branches	in	the	tree.	For	the	graph	in	Figure	22,	a	DFS	that	starts	at	vertex	A	and	selects
the	next	adjacent	vertex	alphabetically,	would	evaluate	vertices	in	the	order	A-B-C-D
backing	up	and	selecting	a	different	path	to	evaluate	vertices	E	and	F.	This	ordering
differs	from	a	breadth-first	search,	which	would	evaluate	vertices	B	and	E	before
evaluating	vertices	C	and	D.	Also,	unlike	breadth-first	search,	which	would	find	the
shortest	path	between	two	vertices	in	an	unweighted	graph	if	a	path	exists,	depth-first
search	would	find	a	path,	but	not	necessarily	the	shortest	path.

Figure	22.	To	find	a	path	from	A	to	D	in	this	unweighted	graph	using	depth-first	search,	B,	C,	and	D	would	be
evaluated	before	E.

The	evaluation	order	of	vertices	in	a	graph	is	shown	in	the	tree	in	Figure	23.	The	child
nodes	in	the	tree	are	the	adjacent	vertices	in	a	graph.	For	example,	a	search	that	starts	at
vertex	A	in	Figure	22	would	place	A	as	the	root	of	a	tree.	Vertex	B	is	the	left-child	of	A	in	a
tree	and	vertex	C	is	the	left-child	of	B	in	the	tree.	These	are	the	first	three	nodes	evaluated
in	a	DFS.

	



Figure	23.	Evaluation	order	in	a	depth-first	search.	Nodes	at	deeper	levels	in	the	tree	are	evaluated	before	nodes
at	the	same	level	in	the	tree.

Once	the	bottom	of	the	left	branch	in	a	tree	is	reached,	which	is	equivalent	to	following	a
path	in	a	graph	until	there	are	no	unvisited,	adjacent	vertices	on	that	path	to	evaluate,	DFS
will	evaluate	all	nodes	in	the	right	branch.	In	a	graph,	following	a	different	branch	means
selecting	a	different	vertex	at	the	last	decision	point.	In	the	graph	in	Figure	22,	after	the
path	A-B-C-D	is	evaluated,	the	algorithm	would	return	to	vertex	C	and	select	vertex	E	to
evaluate	the	path	A-B-C-E.

	

DFS	can	be	implemented	using	a	recursive	or	a	non-recursive	algorithm.	Examples	of
both	algorithms	are	shown	in	Algorithm	12.8	and	Algorithm	12.9,	respectively.	Both
algorithms	take	the	key	value	of	the	starting	vertex	as	an	argument	and	employee	a
search()	algorithm	(Algorithm	12.4)	to	find	the	starting	vertex	in	the	graph	and	traverse
the	graph	in	a	depth-first	ordering	from	that	vertex.	Non-recursive	implementations	of
DFS	typically	use	a	stack	data	structure	to	store	the	vertices	as	they	are	visited.	The	stack
generates	an	ordering	where	the	most-recently	visited	vertices	are	popped	off	the	stack	and
processed	before	vertices	that	were	encountered	at	higher	levels	in	the	tree	are	processed.

	
Algorithm	12.8.	depthFirstSearch(value)

Print	the	key	values	in	the	graph	using	a	depth-first	traversal	of	the	vertices.

	

Pre-conditions

value	is	a	valid	vertex	key	value	for	the	root	of	the	search	tree.

search()	algorithm	exists	to	identify	the	vertex	in	the	graph	where	vertex.key	=	value

	

Post-conditions

key	values	displayed	in	a	depth-first	order	from	the	starting	vertex.

	



Algorithm

DFS(vertex)

1.				vertex.visited	=	true

2.				for	x	=	0	to	vertex.adjacent.end

3.									if(!vertex.adjacent[x].v.visited)

4.													vertex.adjacent[x].v.distance	=	vertex.distance	+	1

5.													print(vertex.adjacent[x].v.key)

6.													DFS(vertex.adjacent[x].v)

	

depthFirstSearch(value)

1.					vertex	=	search(value)

2.					vertex.visited	=	true

3.					vertex.distance	=	0

4.					for	x	=	0	to	vertex.adjacent.end

5.										if(!vertex.adjacent[x].v.visited)

6.														vertex.adjacent[x].v.distance	=	vertex.distance	+	1

7.														print(vertex.adjacent[x].v.key)

8.														DFS(vertex.adjacent[x].v)

	
Algorithm	12.9.	depthFirstSearchNonRecursive(value)

Print	the	key	values	in	a	graph	using	a	non-recursive	depth-first	search.

	

Pre-conditions

value	is	a	valid	vertex	key	value	for	the	root	of	the	search	tree.

search()	algorithm	exists	to	identify	the	vertex	in	the	graph	where	vertex.key	=	value.

	

Post-conditions

key	values	in	the	graph	displayed	in	a	depth-first	order	from	the	starting	vertex.

	

Algorithm

depthFirstSearchNonRecursive(value)

1.					vertex	=	search(value)



2.					vertex.visited	=	true

3.					vertex.distance	=	0

4.					stack.push(vertex)

5.						while(!stack.isEmpty())

6.											ve	=	stack.pop()

7.											print(v.key)

8.											for	x	=	0	to	ve.adjacent.end

9.															if(!ve.adjacent[x].v.visited)

10.																			ve.adjacent[x].v.visited	=	true

11.																			ve.adjacent[x].v.distance	=	ve.distance	+	1

12.																			stack.push(ve.adjacent[x].v)



12.9	Dijkstra’s	algorithm
The	breadth-first	algorithm	found	the	shortest	distance	in	an	unweighted	graph,	where	the
shortest	distance	is	the	path	that	traverses	the	fewest	number	of	edges.

	

In	a	weighted	graph,	the	path	with	the	shortest	distance	between	two	vertices	is	the	path
with	the	lowest	cumulative	edge	weight,	which	makes	the	calculation	a	bit	more
complicated	than	in	an	unweighted	graph.	The	path	with	the	lowest	weight	won’t
necessarily	be	the	path	that	traverses	the	fewest	number	of	edges.

Figure	24.	In	this	weighted	graph,	there	are	multiple	paths	between	vertices	A	and	G,	each	with	a	different	cost.
The	path	with	the	lowest	cost	is	the	one	with	the	lowest	total	weight	for	the	edges	traversed.

In	the	weighted	graph	in	Figure	24,	there	are	multiple	paths	between	vertices	A	and	G.
One	path	traverses	A-B-G	with	a	weight	of	350.	Another	path	traverses	A-F-E-G	with	a
weight	of	100.	There	is	also	a	path	that	traverses	A-F-H-E-G	with	a	weight	of	130.	The
shortest	path	in	this	weighted	graph	is	the	one	with	a	weight	of	100:	A-F-E-G,	even	though
it	traverses	more	edges	than	the	A-B-G	path.

	

The	shortest	distance	in	weighted	graph,	where	the	edge	weights	are	strictly	positive,	can
be	found	using	Dijkstra’s	algorithm,	which	is	a	greedy	algorithm	that	chooses	the	lowest
cumulative	weight	to	any	adjacent	vertex	that	hasn’t	yet	been	solved.	The	shortest	path
overall	is	found	from	these	individual	lowest	weight	decisions.

	

Example	9:	Find	the	shortest	path	in	the	graph	in	Figure	25	between	the	Start	and
End	vertices.



Figure	25.	Find	the	shortest	path	between	the	Start	and	End	vertices	in	this	weighted	graph.

The	vertex	struct	is	modified	to	included	a	solved	parameter	that	serves	a	similar	purpose
to	the	visited	property	in	the	breadthFirstSearch()	and	depthFirstSearch()	algorithms.	The
struct	is	also	modified	to	store	the	parent	vertex.

	

struct	vertex{

1.				std::string	key;

2.				std::vector<adjVertex>	adjacent;

3.				bool	solved;

4.				int	distance;

5.				vertex	*parent;

};

	

Steps:

1.	Mark	the	Start	vertex	as	solved,	and	set	the	distance	to	Start	as	0.

2.	Find	the	unsolved	(unvisited)	vertices	adjacent	to	Start	and	calculate	the	distance	to
those	vertices	as	the	distance	to	Start	+	the	edge	weight	connecting	the	vertex	to	Start.	The
unsolved	vertices	adjacent	to	Start	are	A,	B,	and	C	(shown	in	blue	in	Figure	26).	The
distance	to	A	is	2,	to	B	is	10,	and	to	C	is	3.



Figure	26.	From	the	Start	vertex,	identify	the	unsolved	vertices	adjacent	to	Start	and	calculate	the	distance	to
each	vertex.	Those	vertices	are	A,	B,	and	C.

3.	Select	the	vertex	with	the	shortest	distance	and	mark	it	as	solved.	Update	the	vertex	to
show	its	distance	to	Start.	In	this	example,	the	shortest	distance	is	to	vertex	A.	The	A	is
now	solved,	with	a	distance	of	2	(shown	in	green	in	Figure	27),	and	a	parent	of	Start.	The
vertex	won’t	be	solved	again	through	another	path.

	

Figure	27.	The	vertex	closest	to	Start	is	A	with	a	distance	of	2.	The	vertex	A	is	now	marked	solved	with	its	parent
as	Start	and	won’t	be	solved	again	through	another	path.

4.	Repeat	the	process	of	selecting	all	unsolved	vertices	adjacent	to	all	solved	vertices,	and
calculate	the	distance	to	those	unsolved	vertices.	The	solved	vertices	are	Start	and	A,	and
the	unsolved	vertices	adjacent	to	Start	and	A	are	B	with	a	shortest	distance	of	4	going
through	A,	C	with	a	distance	of	3,	F	with	a	distance	of	7,	and	G	with	a	distance	of	12
(Figure	28).



Figure	28.	The	vertices	Start	and	A	are	both	solved.	The	unsolved	adjacent	vertices	to	Start	and	A	are	B,	C,	F,	and
G.

5.	The	distance	of	3	to	vertex	C	is	the	shortest.	Mark	C	as	solved	and	its	parent	is	Start.
The	solved	vertices	are	shown	in	Figure	29.

	

Figure	29.	The	vertices	Start,	A,	and	C	are	now	solved.

6.	Select	all	unsolved	vertices	adjacent	to	all	solved	vertices	and	calculate	their	distances.
The	unsolved	vertices	adjacent	to	Start,	A,	and	C	are	B	with	a	shortest	distance	of	4,	F
with	a	distance	of	7,	E	with	a	distance	of	7,	and	G	with	a	distance	of	12	(Figure	30).

	



Figure	30.	The	solved	vertices	are	Start,	A,	and	C.	The	vertices	adjacent	to	the	solved	vertices	are	B,	E,	F,	and	G.

7.	The	shortest	path	is	to	B	through	A	with	a	distance	of	4.	Mark	vertex	B	as	solved	with	a
distance	of	4	(Figure	31).	The	parent	of	B	is	A.

Figure	31.	The	vertices	Start,	A,	B,	and	C	are	now	solved.	There	are	no	unsolved	vertices	adjacent	to	the	Start
vertex.

8.	Select	all	unsolved	vertices	adjacent	to	all	solved	vertices	and	calculate	their	distances
to	the	Start	vertex.	All	vertices	adjacent	to	Start	have	been	marked	as	solved.	The
unsolved	adjacent	vertices	to	A,	B,	and	C	are	D	with	a	distance	of	8,	E	with	a	shortest
distance	of	7,	F	with	a	distance	of	7,	and	G	with	a	distance	of	12	(Figure	32).



Figure	32.	The	solved	vertices	are	Start,	A,	B,	and	C.	The	unsolved	vertices	adjacent	to	the	solved	vertices	are	D,
E,	F,	and	G.

9.	There	is	a	tie	between	E	and	F.	Choose	E	using	an	alphabetical	tie-breaker,	and	mark	E
as	solved	with	a	distance	of	7	to	the	Start	vertex	(Figure	33).	The	parent	of	E	is	C.

Figure	33.	The	vertex	E	is	marked	solved	with	a	distance	of	7.	The	solved	vertices	are	Start,	A,	B,	C,	and	E.

10.	Calculate	the	distance	to	all	unsolved	vertices	adjacent	to	solved	vertices.	The	shortest
distance	is	to	F	with	a	distance	of	7	(Figure	34).



Figure	34.	The	solved	vertices	are	Start,	A,	B,	C,	and	E.	The	unsolved	vertices	are	D,	F,	G,	and	End.	The	shortest
distance	is	to	F	with	a	cost	of	7.

11.	Mark	F	as	solved	with	a	distance	of	7	back	to	Start.	The	parent	of	F	is	vertex	A.

	

12.	Calculate	the	distance	to	unsolved	vertices	from	all	solved	vertices.	The	solved
vertices	are	Start,	A,	B,	C,	E,	and	F.	The	unsolved	vertices	are	D	with	a	shortest	distance
of	8,	G	with	a	shortest	distance	of	9,	and	End	with	a	distance	of	14	(Figure	35).

	

Figure	35.	The	vertex	F	is	now	solved.	The	unsolved	vertices	are	D,	G,	and	End	with	costs	of	8,	9,	and	14
respectively.

13.	The	shortest	distance	is	to	D	with	a	distance	of	8.	Mark	vertex	D	as	solved.	The	parent
of	D	is	vertex	B.	The	remaining	unsolved	vertices	are	G	with	a	shortest	distance	of	9	and
End	with	a	shortest	distance	of	13	(Figure	36).



Figure	36.	The	only	unsolved	vertices	are	G	with	a	shortest	distance	of	9	and	End	with	a	shortest	distance	of	13.

14.	Mark	G	as	solved	with	a	distance	of	9.	The	parent	of	G	is	vertex	F.	The	only
remaining	unsolved	vertex	is	End,	which	now	has	a	shortest	distance	of	12	following	a
path	that	goes	through	G	(Figure	37).

	

Figure	37.	The	vertex	G	is	marked	as	solved	with	a	distance	of	9.	The	only	unsolved	vertex	is	End	with	a	distance
of	12.

15.	Mark	End	as	solved	(Figure	38).	The	parent	of	End	is	the	vertex	G.	The	shortest
distance	from	Start	to	End	is	12	following	the	path:	Start-A-F-G-End.

	



Figure	38.	The	shortest	distance	from	Start	to	End	is	12	following	the	path	Start-A-F-G-End.

12.9.1																									Implementing	Dijkstra’s	algorithm
Dijkstra’s	algorithm	uses	a	breadth-first	search	to	identify	the	unsolved	vertices	at	each
step.	The	algorithm	builds	a	list	of	solved	vertices,	where	each	vertex	in	the	list	includes
the	distance	back	to	the	root	vertex	and	a	pointer	to	its	parent	vertex.	The	algorithm	is
shown	in	Algorithm	12.10.

	
Algorithm	12.10.	Dijkstra(start,	end)

Find	the	shortest	path	between	the	start	and	end	vertices	in	a	graph.

	

Pre-conditions

start	and	end	are	valid	key	values

search()	algorithm	finds	the	start	and	end	vertex	in	the	graph

INT_MAX	contains	maximum	system	integer	value

	

Post-conditions

Shortest	path	between	start	and	end	found	and	stored	in	the	graph	vertices.

	

Algorithm

Dijkstra(start,	end)

1.					startV	=	search(start)

2.					endV	=	search(end)

3.					startV.solved	=	true



4.					startV.distance	=	0

5.					solved	=	{startV}	//list	of	solved	vertices

6.					while	(!endV.solved)

7.								minDistance	=	INT_MAX

8.									solvedV	=	NULL

9.									for	x	=	0	to	solved.end

10.										s	=	solved[x]

11.										for	y	=	0	to	s.adjacent.end

12.														if(!s.adjacent[y].v.solved)

13.																		dist	=	s.distance	+	s.adjacent[y].v.distance

14.																		if(dist	<	minDistance)

15.																						solvedV	=	s.adjacent[y].v

16.																						minDistance	=	dist

17.																						parent	=	s

18.					solvedV.distance	=	minDistance

19.					solvedV.parent	=	parent

20.					solvedV.solved	=	true

21.					solved.add(solvedV)

	



13				Hash	tables
A	hash	table,	also	known	as	a	hash	map,	is	a	data	structure	that	stores	data	using	a
parameter	in	the	data,	called	a	key,	to	map	the	data	to	an	index	in	an	array.	The	data	is	also
called	a	record,	and	the	array	where	records	are	stored	is	called	a	hash	table.

	

There	are	two	necessary	components	to	a	hash	table:	the	array	where	the	records	are	stored
and	a	hash	function	that	generates	the	mapping	to	an	array	index.

	

For	example,	imagine	the	hash	table	is	used	to	store	records	of	movies.	Each	movie	record
contains	the	Title,	Ranking,	and	Year	of	the	movie.	The	movie	could	be	defined	with	a
struct	as	follows:

	

struct	movie{

string	Title;

int	Ranking;

int	Year;

}

	

Figure	1	shows	the	process	of	how	individual	movie	records	are	stored	in	a	hash	table.
Each	movie	is	a	record	that	contains	the	properties	of	the	movie.	The	key	for	the	record,
which	in	this	case	is	the	title,	is	input	to	a	hash	function,	shown	in	Figure	1	as	h(Title).	The
hash	function	uses	the	ASCII	characters	in	the	title,	generates	a	unique	integer	value	for
that	title.	That	integer	value	is	the	index	in	the	hash	table	array	where	the	movie	record	is
then	stored.	For	example,	if	the	hash	function	returned	a	value	of	2,	then	the	movie	would
be	stored	at	index	=	2	in	the	hash	table	array.

Figure	1.	Process	showing	how	individual	movie	records	are	stored	in	a	hash	table.	The	movie	Title	is	the	input	to
a	hash	function,	which	outputs	an	integer	that	serves	as	the	index	for	the	movie	in	an	array.



13.1	Hash	functions
Hash	functions	convert	the	key	into	an	integer	index	to	store	the	record	in	the	hash	table.
One	of	the	simplest	hash	functions	converts	a	string	to	an	integer	by	summing	the	ASCII
values	of	all	letters	in	the	string	and	then	modding	the	sum	by	the	array	size.	The	mod
operation	ensures	that	the	integer	is	within	the	bounds	of	the	array.	The	algorithm	for	this
hash	function	is	shown	in	Algorithm	13.1.	The	algorithm	takes	the	key	and	the	size	of	the
hash	table	as	arguments	and	returns	the	index	where	the	record	is	to	be	stored	in	the	hash
table.

	
Algorithm	13.1.	hashSum(key,	tableSize)

Calculates	the	index	in	a	hash	table	for	a	record	with	a	specified	key	value.

	

Pre-conditions

key	is	a	string	or	character	array.

tableSize	is	the	size	of	the	array.

	

Post-conditions

Returns	integer	index,	where	0<=	index	<=	tableSize.

	

Algorithm

hashSum(key,	tableSize)

1.				sum	=	0

2.				for	x	=	1	to	key.end

3.								sum	=sum	+	key[x]		

4.				sum	=	sum	%	tableSize

5.				return	sum

	

Example	1:	Calculate	the	hash	value	of	Shawshank	Redemption	if	the	size	of	the	hash
table	is	50	using	Algorithm	13.1?

	

•	Lines	2-3:	The	ASCII	values	for	the	letters	in	Shawshank	Redemption	are	summed	and
stored	in	the	variable	sum.	The	ASCII	values	for	each	letter	are	shown	in	Figure	2.	The
sum	of	the	ASCII	values	is	2015.



Figure	2.	ASCII	values	for	the	characters	in	“Shawshank	Redemption”.

•	Line	4:	The	sum	is	modded	by	the	tableSize,	which	is	50,	to	scale	the	sum	to	a	value
between	0	and	tableSize.	The	result:	2015	%	50	=	15.	Shawshank	Redemption	is	stored	at
index	15	in	the	hash	table.



13.2	Using	a	hash	function	in	C++
An	example	of	how	the	hashSum()	algorithm	is	used	in	a	hash	table	is	shown	below	in
C++.	An	array	of	a	specified	size	is	created	to	store	the	hash	table	elements.	In	this
example,	they	are	movies	that	are	defined	by	the	movie	struct.

	

•	Create	an	array	to	store	50	movie	objects:

	

movie	hashTable[50];

	

•	Create	an	instance	of	movie:

	

movie	m;

	

•	Set	the	Title	property	of	the	movie	to	“Shawshank	Redemption”:

	

m.Title	=	“Shawshank	Redemption”;

	

•	Use	the	movie	title	as	the	argument	to	hashSum(),	which	returns	the	index	in	the	hash
table	where	the	title	will	be	stored:

	

int	index	=	hashSum(m.Title,	50);

	

•	Use	the	index	to	store	the	movie:

	

hashTable[index]	=	m;

	

•	To	retrieve	a	record	from	a	hash	table,	perform	the	steps	in	reverse.	Calculate	the	hash
value	for	the	key,	and	then	retrieve	the	information	at	that	index	in	the	hash	table.

	

int	index	=	hashSum(“Shawshank	Redemption”,	50);

movie	m	=	hashTable[index];



13.3	Collisions
If	every	key	always	mapped	to	a	unique	index	in	a	hash	table,	then	hash	tables	would	be
used	for	everything.	There	would	be	no	reason	to	store	data	in	any	other	data	structure
because	hash	tables	would	be	the	faster	than	any	other	data	structure	available.	However,
in	any	large	data	set,	the	reality	is	that	multiple	records	often	have	the	same	hash	value,
and	therefore,	need	to	be	stored	in	the	same	index	in	a	hash	table.	When	this	happens,	it’s
called	a	collision,	which	is	when	two	or	more	keys	hash	to	the	same	index.

	

Formally,	given	a	hash	function	h,	a	collision	occurs	when:

	

h(k1)	=	h(k2),	k1	!=	k2,	where	k1	and	k2	are	keys.

	

Consider	the	strings:

	

Go	Cat	Go.

	

and

	

Go	Dog,	Go

	

The	sum	of	the	ASCII	characters	in	Go	Cat	Go.	is

	

71	+	111	+	32	+	67	+	97	+	116	+	32	+	71	+	111	+	46	=	754.

	

The	sum	of	the	ASCII	characters	in	Go	Dog,	Go	is

	

71	+	111	+	32	+	68	+	111	+	103	+	44	+	32	+	71	+	111	=	754.	

	

Using	the	hashSum()	algorithm	as	the	hash	function,	these	two	strings	will	hash	to	the
same	index	in	the	hash	table	and	produce	a	collision.	To	store	multiple	elements	at	the
same	location	in	a	hash	table,	an	additional	data	structure,	such	as	a	linked	list,	needs	to	be
added	to	the	hash	table.



13.4	Hash	functions
In	the	real	world,	collisions	happen,	a	lot.	The	challenge	of	designing	a	good	hash	table	is
in	designing	a	hash	function	that	limits	the	frequency	of	collision.	The	hash-function
design	needs	to	consider	both	the	size	of	the	hash	table	as	well	as	the	hash	function	that
maps	keys	to	indices.	A	table	size	that	is	too	small	for	the	number	of	records	that	need	to
be	stored	will	result	in	collisions	and	inefficiency.	A	hash	table	that	is	too	big	will	result	in
wasted	space	in	memory.

13.4.1																									Perfect	hash	functions
A	perfect	hash	function	assigns	all	records	to	a	location	in	the	hash	table	without	collisions
or	wasted	space.

	

Example	2:	Store	100	phone	numbers,	with	unique	values	between	3034841000	and
3034841099	in	a	hash	table	of	size	100.

	

The	values	for	the	phone	numbers	are:

	

3034841000

3034841001

3034841002

.

.

.

3034841099

	

A	hash	function	that	just	mods	the	phone	number	by	the	hash	table	size	of	100:

	

phoneNumber	%	100

	

will	return	the	last	two	digits	in	the	number:

	

3034841000

.

.



.

3034841050

.

.

.

3034841099

	

Those	last	two	digits	can	be	used	as	the	hash	table	index	for	each	phone	number	and	the
numbers	will	all	be	stored	in	a	unique	location	with	no	collisions.

13.4.2																									Imperfect	hash	functions
With	an	imperfect	hash	function,	multiple	keys	can	be	assigned	to	the	same	index	and
result	in	collisions.

	

Example	3:	Store	100	phone	numbers,	with	unique	values	between	3034841000	and
3034841099	in	a	hash	table	of	size	10.

	

The	values	for	the	phone	numbers	are	the	same	as	in	the	previous	example:

3034841000

3034841001

.

.

.

3034841099

	

A	hash	function	that	mods	the	phone	number	by	10:

	

phoneNumber	%	10

	

will	return	the	last	digit	in	the	phone	number:

	

3034841000

3034841001

.



.

.

3034841050

.

.

.

3034841099

	

If	the	last	digit	is	used	as	the	index	in	the	hash	table,	then	only	indices	0	-	9	in	the	hash
table	will	be	used,	and	the	indices	10	-	49	will	be	empty.	The	10	used	indices	are	only	10%
of	the	table;	the	other	90%	will	be	wasted.	To	store	all	100	values	in	10%	of	the	table
requires	that	10	phone	numbers	be	assigned	to	each	used	index.

	

Considerable	effort	goes	into	improving	the	performance	of	hash	tables	by	designing	new
hash	functions	or	finding	the	appropriate	hash	function	for	the	type	of	data	that	needs	to	be
stored.	Many	of	these	approaches	involve	complicated	bit	shifting	and	masking	operations
that	are	beyond	the	scope	of	this	book.	The	hash	functions	shown	here	are	meant	as	an
introduction	to	how	a	few	simple	hash	functions	perform,	the	challenges	of	designing	a
hash	function,	and	how	heuristics	are	used	for	choosing	a	good	hash	table	size.

	

In	designing	a	hash	function,	it’s	important	to	recognize	how	the	function	will	operate	on	a
particular	set	of	data.	Consider	the	following	cases	that	use	the	hashSum()	algorithm
previously	presented.

	

Example	4:	Calculate	the	range	of	hash	values	for	strings	of	10	uppercase	letters	for
various	table	sizes.

The	ASCII	values	in	a	string	of	10	A‘s	will	sum	to	650	(the	ASCII	value	of	A	is	65).	The
ASCII	values	in	a	string	of	10	Z‘s	will	sum	to	900.	All	other	strings	of	10	capital	letters
will	have	a	sum	between	650	and	900,	which	means	that	there	is	a	maximum	range	of	250.
For	a	table	size	of	1000,	only	25%	of	the	table	will	ever	be	used.	Increasing	the	table	size
to	accommodate	additional	data	won’t	reduce	collisions	because	the	hash	function	doesn’t
distribute	records	evenly	throughout	the	table.

	

Example	5:	Calculate	the	range	of	hash	values	for	strings	of	10	uppercase	and
lowercase	letters	for	various	table	sizes.

	

The	ASCII	values	in	a	string	of	10	A’s	will	sum	to	650	and	a	string	of	10	lowercase	z‘s
will	sum	to	1220.	All	other	strings	of	10	capital	or	lowercase	letters	will	sum	to	between



650	and	1220,	which	means	there	is	a	maximum	range	of	570.	If	the	table	size	is	1000,	the
hashSum()	algorithm	will	return	values	between	0	and	570.	Only	57%	of	the	table	will
ever	be	used.	Just	as	with	Example	4	using	10	capital	letters,	increasing	the	table	size
won’t	reduce	collisions	because	the	hash	function	is	not	distributing	records	evenly
throughout	the	table.

13.4.3																									Multiplication	method
Another	category	of	hash	functions	uses	multiplication	as	part	of	the	function.	A	simple
multiplication	method	includes	the	following	steps:

	

1.	Given	a	key	k	(k	is	a	string),	generate	the	sum	of	the	ASCII	values	for	the	characters	in
k.

2.	Multiply	k	by	a	constant	A,	where	0	<	A	<	1.

2.	Store	the	fractional	part	of	kA.

3.	Multiply	fractional	part	of	kA	by	a	constant,	m,	and	take	the	floor	of	the	result.

	

The	value	of	m	is	generally	selected	to	be	a	power	of	2,	and	A	=	13/32.	Empirical	studies
have	shown	these	values	for	m	and	A	to	work	reasonably	well.

	

Example	6:	Use	the	multiplication	method	to	calculate	the	hash	value	of	a	string	of	10
uppercase	A’s,	let	m	=	1024	and	A	=	13/32.

	

The	sum	of	the	ASCII	values	of	10	A’s	is	650.

	

kA	=	(650	*	(13/32))	=	264.0625

	

The	fractional	part	is	.0625.

	

0.0625m	=	0.0625	*	1024	=	64

	

Since	there	is	no	decimal	component	of	64,	that	is	the	hash	value.

	

Example	7:	Use	the	multiplication	method	to	calculate	the	hash	value	of	a	string	of	10
lowercase	z’s,	let	m	=	1024	and	A	=	13/32.

	

The	sum	of	the	ASCII	values	of	10	z’s	is	1220.



	

kA	=	(1220	*	(13/32)	=	495.625

	

The	fractional	part	is	.625.

	

0.625m	=	0.625	*	1024	=	640

	

Since	there	is	no	decimal	component	of	640,	that	is	the	hash	value.



13.5	Collision	resolution	by	chaining
There’s	no	such	thing	as	a	perfect	hash	function	for	real	data,	which	means	that	collisions
happen.	One	common	method	for	handling	collisions	is	to	use	an	algorithm	called
chaining,	where	the	hash	table	is	set	up	as	an	array	of	pointers	that	serve	as	the	head	of	a
linked	list	for	a	particular	array	index.	An	example	of	a	hash	table	that	stores	movie
records	using	chaining	is	shown	in	Figure	3.	The	hash	table	T	has	a	size	of	7.	The	entries
T[0	…	3]	are	unused.	The	entries	T[4	…	6]	contain	pointers	to	the	head	of	a	linked	list,
where	each	node	in	the	list	is	a	movie	record.	For	example,	both	Casablanca	and	The
Godfather	have	a	hash	value	of	5	using	the	hashSum()	algorithm	in	Algorithm	12.1	with	a
table	size	of	7.	They	are	both	included	as	nodes	in	a	linked	list	at	T[5]	in	alphabetical
order.

Figure	3.	Example	of	a	hash	table	that	uses	collision	resolution	by	chaining.	Each	element	in	the	table	is	a	pointer
to	a	linked	list	that	stores	the	records	that	have	the	same	hash	value.

13.5.1																									Creating	a	hash	table	with	chaining
When	the	hash	table	is	created,	all	locations	in	the	table	are	initialized	to	NULL,	or	empty
movie	records,	and	will	serve	as	sentinels	to	the	head	of	a	linked	list.	When	an	element	is
added	to	the	hash	table,	the	NULL	entry	is	updated	to	point	to	the	head	of	a	linked	list.	In
C++,	vectors	can	also	be	used	in	place	of	a	linked	list.

	

Example	8:	Add	Shawshank	Redemption	to	an	empty	hash	table	that	uses	chaining.
The	movie	title	is	the	key,	the	hash	table	size	is	7,	and	the	hash	function	is	the
hashSum()	algorithm.

	

The	hashSum()	algorithm	returns	a	value	of	6.	Since	the	table	is	empty,	the	movie



Shawshank	Redemption	is	the	first	entry	in	a	doubly	linked	list	at	index	6	(Figure	4).

	

Figure	4.	Hash	table	with	chaining	after	the	movie	Shawshank	Redemption	is	added	at	index	6.

The	next	and	previous	pointers	of	the	Shawshank	Redemption	movie	node	are	set	to
NULL.

	

Example	9:	Add	the	following	movies	to	the	hash	table	in	Figure	4	using	the
hashSum()	algorithm.

	

The	Godfather

The	Usual	Suspects

Casablanca

Whiplash

	

The	return	value	of	hashSum(“The	Godfather”)	is	1237	%	7	=	5.

The	return	value	of	hashSum(“The	Usual	Suspects”)	is	1733	%	7	=	4.

The	return	value	of	hashSum(“Casablanca”)	is	985	%	7	=	5.

The	return	value	of	hashSum(“Whiplash”)	is	832	%	7	=	6.

	

When	these	four	movies	are	added	to	the	hash	table,	there	is	a	collision	at	index	5	with
The	Godfather	and	Casablanca,	and	a	collision	at	index	6	with	Shawshank	Redemption



and	Whiplash.

	

The	order	that	the	movies	are	stored	in	the	hash	table	is	shown	in	Figure	5.	The	next	and
previous	pointers	in	the	doubly	linked	list	connect	the	movie	nodes	and	make	it	easier	to
add	new	movie	nodes	sorted	alphabetically.	As	an	example,	the	movie	Casablanca	at	T[5]
has	a	previous	pointer	of	NULL,	and	a	next	pointer	to	the	movie	node	The	Godfather.	The
Godfather’s	previous	pointer	points	to	the	Casablanca	node,	and	its	next	pointer	points	to
NULL.

	

Figure	5.	Hash	table	with	chaining	after	Shawshank	Redemption,	The	Usual	Suspects,	Casablanca,	The
Godfather,	and	Whiplash	are	added	to	the	table.



13.6	The	hash	table	ADT
The	functionality	for	a	hash	table	ADT	that	uses	a	linked	list	to	implement	collision
resolution	with	chaining	is	shown	in	ADT	13.1.	The	size	of	the	hash	table	and	the	hash
table	array	are	private	variables	in	the	ADT.	The	public	methods	to	insert,	search,	and
delete	take	the	key	value	as	an	argument.	The	insert()	method	adds	the	record	to	the	hash
table	chain	in	alphabetical	order.	The	search()	method	returns	a	pointer	to	the	record	if	it
is	found	and	NULL	if	it	is	not	found.	The	delete()	method	searches	the	hash	table	for	the
value,	resets	the	pointers	in	the	chain	to	bypass	the	record,	and	then	frees	the	memory	for
that	node.	In	this	implementation,	the	hashTable	stores	empty	records	that	serve	as
sentinel	nodes	to	a	linked	list	for	each	index.
ADT	13.1.	Hash	Table

HashTable:

1.					private:

2.									tableSize

3.									hashTable

4.					public:

5.									Init()

6.									insert(value)

7.									search(value)

8.									delete(value)

9.									deleteTable()

13.6.1																									Searching	for	a	record
The	search()	algorithm,	shown	in	Algorithm	13.2,	first	calculates	the	hash	value	for	the
search	key	to	determine	the	index	in	the	hashTable	array	where	the	record	should	be
stored.	On	Line	2,	the	algorithm	checks	if	the	hashTable	array	is	NULL	at	that	index.	If	it
is	NULL,	then	the	key	value	is	not	in	the	hash	table	and	the	algorithm	returns	NULL	on
Line	9.	If	hashTable[index]	is	not	NULL,	then	the	key	could	exist	in	the	linked	list	chain
for	that	index.	Lines	4	-	8	traverse	the	chain	checking	for	records	where	the	key	matches
the	search	key.
Algorithm	13.2.	search(value)

Search	for	a	node	in	the	hash	table	with	the	specified	key	value	and	return	a	pointer	to	the
node.

	

Pre-conditions

Unused	indices	in	the	hash	table	are	set	to	NULL.

value	is	a	valid	key	search	value	for	the	hash	table.



	

Post-conditions

Returns	a	pointer	to	the	node	in	the	hash	table	chain	where	node.key	=	value.

	

Algorithm

search(value)

1.					index	=	hashSum(value,tableSize)

2.					if	(hashTable[index].next	!=	NULL)

3.										tmp	=	hashTable[index].next

4.										while(tmp	!=	NULL)

5.														if	(tmp->key	==	value)

6.																		return	tmp

7.														else

8.																		tmp	=	tmp.next

9.				return	NULL

13.6.2																									Inserting	a	record
The	algorithm	to	insert	a	record	into	a	hash	table,	shown	in	Algorithm	13.3,	calculates	the
hash	value	of	the	new	record	from	its	key,	which	is	an	argument	to	the	algorithm.	On
Lines	2	-3,	the	key	and	next	properties	of	the	new	record	are	set.	Line	4	checks	if	there	are
already	entries	in	the	hash	table	for	that	hash	value.	If	there	are	no	entries,	the	new	record
is	added	as	the	first	element	at	that	location	on	Lines	5	-	6.	If	there	are	entries,	Lines	9	-	13
check	if	the	record	is	already	in	the	hash	table.	Lines	15	-	16	traverse	the	chain	for	the
position	where	the	new	record	will	be	in	alphabetical	order.	On	Lines	17	-	19,	the	pointers
for	the	existing	records	are	updated	to	include	the	new	record.
Algorithm	13.3.		insert(value)

Insert	a	record	into	a	hash	table.

	

Pre-conditions

Unused	indices	in	the	hash	table	are	set	to	NULL.

value	is	a	valid	hash	table	key	value.

	

Post-conditions

Record	inserted	into	the	hash	table	at	the	correct	location,	as	specified	by	the	hash
function.

	



Algorithm

insert(value)

1.					index	=	hashSum(value,tableSize)

2.					hashElement.key	=	value

3.					hashElement.next	=	NULL

4.					if	(hashTable[index].next	==	NULL)

5.										hashElement.previous	=	hashTable[index]

6.										hashTable[index].next	=	hashElement

7.					else

8.										tmp	=	hashTable[index].next

9.										while(tmp	!=	NULL)

10.												if(tmp.key	==	value)

11.																	print(“duplicate”)

12.																	return

13.												tmp	=	tmp.next

14.								tmp	=	hashTable[index].next

15.								while(tmp.next	!=	NULL	&&	tmp.title	>	tmp.next.title)

16.												tmp	=	tmp.next									

17.								hashElement.next	=	tmp

18.								hashElement.previous	=	tmp.previous

19.								tmp.previous.next	=	hashElement

13.6.3																									Deleting	a	record
The	steps	to	delete	a	record	from	a	hash	table,	shown	in	Algorithm	13.4,	follow	the	same
pattern	initially	as	the	steps	to	insert	and	search	for	a	record.	The	index	for	the	element	to
delete	is	identified	on	Line	1	with	a	call	to	the	hash	function.	Once	the	key	value	is	found
in	the	hash	table	chain,	on	Line	5,	the	next	and	previous	pointers	for	the	surrounding	nodes
in	the	chain	are	updated	on	Lines	6	-	8.	One	Line	9,	the	node	is	deleted,	which	frees	the
memory.
Algorithm	13.4.	delete(value)

Delete	a	record	from	a	hash	table.

	

Pre-conditions

Unused	indices	in	the	hash	table	are	NULL.

value	is	a	valid	search	key	for	a	record	in	the	hash	table.



	

Post-conditions

Node	with	the	specified	key	value	deleted	from	the	chain	and	the	memory	freed.

Pointers	in	the	linked	list	updated	to	bypass	the	deleted	node.

	

Algorithm

delete	(value)

1.					index	=	hashSum(name,tableSize)

2.					if	(hashTable[index].next	!=	NULL)

3.									tmp	=	hashTable[index].next

4.									while(tmp	!=	NULL)

5.														if(tmp.key	==	value)																				

6.																			tmp.previous.next	=	tmp.next																

7.																			if(tmp.next	!=	NULL)																								

8.																							tmp.next.previous	=	tmp.previous																				

9.																			delete	tmp

10.																	break



13.7	Complexity	of	hash	tables
The	average	performance	of	searching	and	inserting	records	in	a	hash	table	is	O(1);	it’s
constant	and	doesn’t	depend	on	the	size	of	the	hash	table	or	the	number	of	records	to	store.

	

The	worst-case	performance	of	hash-table	operations	occurs	when	all	keys	hash	to	the
same	location.	The	n	records	in	the	hash	table	would	generate	a	linked-list	of	n	elements,
and	the	worst-case	behavior	would	be	the	same	as	that	of	a	linked	list:	O(n).

13.7.1																									Selecting	hash	table	size
There	are	a	few	things	to	consider	when	selecting	the	size	of	the	hash	table.

1.	How	many	records	need	to	be	stored?

2.	What	is	an	acceptable	number	of	evaluations	in	an	unsuccessful	search?

	

There	is	a	heuristic	(educated	guess)	for	selecting	the	size	of	the	hash	table.	Choose	a
prime	number	closest	to	number	of	records	/	acceptable	evaluations.	For	example,	if	there
are	1000	records,	and	3	evaluations	of	a	linked	list	is	acceptable,	then	1000/3	≈	333.	The
closest	prime	number	to	333	is	331,	which	would	be	the	table	size.	

13.7.2																									Hash	table	load	factor
The	size	of	the	hash	table	influences	the	load	factor	of	the	table,	and	in	turn,	the
performance	of	the	hash	table.	The	load	factor	is	calculated	as	n/N,	where	n	is	the	number
of	keys	stored	and	N	is	the	size	of	the	hash	table.	If	the	load	factor	stays	below	1,	and	the
hash	function	produces	a	minimal	number	of	collisions,	then	performance	of	the	hash
table	will	be	good.	Searching	and	inserting	will	be	O(1)	operations.	If,	however,	n	>	N	and
the	load	factor	is	too	large,	then	the	number	of	collisions	will	increase	and	more	operations
will	be	needed	to	find	records	stored	in	the	table.	Performance	will	no	longer	be	constant,
but	rather,	closer	to	O(n).
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