TthoyS/

Hash Table Programming with C
Second Edition

Thomas Mailund

APresse

The Joys of Hashing

Thomas Mailund

Apress’

The joys of Hashing: Hash Table Programming with C, Second Edition

Thomas Mailund
Aarhus N, Denmark

ISBN-13 (pbk): 979-8-8688-0825-8 ISBN-13 (electronic): 979-8-8688-0826-5
https://doi.org/10.1007/979-8-8688-0826-5

Copyright © 2024 by The Editor(s) (if applicable) and The Author(s),
under exclusive license to APress Media, LLC, part of Springer Nature

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Melissa Duffy

Development Editor: James Markham

Coordinating Editor: Gryffin Winkler

Copy Editor: Kezia Endsley

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit https://www.apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

https://doi.org/10.1007/979-8-8688-0826-5

Table of Contents

About the AUhOFccccmmimmmnmsmsns s vii
About the Technical ReVIEWETccssusssassssessssnsssasssssssssssssassssasssnnsssass ix
Acknowledgments.......cccvummmsssssmssnnsnmmsssssssssssssnssssssssssssnnsnnsssssssssssnnnnns Xi
Chapter 1: Introduction...........ccuinmmsssessnnmmmmmsssssss s ———————— 1
Chapter 2: Hash Keys, Indices, and ColliSionsS........cccuvuunmsssssssssssssssssnns 7
Mapping from Keys to Indices 10 Binsccccooevrvrcrnrvivcnsesse s 14
Hash table 0perations.........c.ccvevvrvrrenercirser e e 18
0] TS0 0 21

0] T 1 S 28
Chapter 3: Collision Resolution, Load Factor, and Performance......... 29
L0 T2 111 1 T SRRSO 29
LINKEA LSS ..cucevveeerreerrnesessesesesesesesessese s sessesesssse s sessssnssssesessessssssensnnes 30
Chained Hashing Collision ReSOIULIONccocveeeerenernsesensenesese s senennes 35
0PN AAArESSINGceeerreerrierrsese e r e nr e 38
Probing Strategies......c.ccrvrririnerrrr e 42

Load and Performance.........c.cuccvvenerrnernessnesssssse s ssssessssesessssesessesenns 46
Theoretical Runtime Performance...........coucvvennesnnnesnsesssesesssessssesessenens 46
EXPEIMENTS ...t 54
0] T 13 T 59

iii

TABLE OF CONTENTS

Chapter 4: ReSiZiNgccccurrrsssnnnnmsssssnsnssssssnsssssssssnsssssssnnsssssssnnssssssnnnnss 61
Amortizing ReSizing COSESccovvrrierirercrrcerne e 62
Resizing Chained Hash TabIES ... 70
Resizing Open Addressing Hash TabIEscccovevnnennenenescsnseses s 74
Theoretical Considerations for Choosing the Load Factorcccoeeevnierenennns 80
EXPEIMENTS ...ttt se e s p e e e e nne 84
Resizing When Table Sizes Are Not POWErs 0f TWO........ccccvverereererserierenensensenaens 89
Dynamic RESIZING........cceververreeririrser e r s se s s s 99

Chapter 5: Adding Application Keys and Values..........cccsunsssnnnnrsssnnns 115
Generating Hash Sets ... 117

GENENIC LiSTS...viviviueeereresssssesesesessss e e ssss e e sns s se s ssss s sesssssnnas 119
Generating @ Hash Set........cccvvncniinn e 127
HaSh Maps ... e e s 134
Key and Value TYPESccoeveirrriere s s se s ssessssessesnens 136
Hash Map Definition ..o sesnens 137
Creating and Resizing @ TabIEccccvrevivnirininnnsne e 140
Freeing TabIes ... e snens 142
(0T OSSR 144
Adding and Deleting ..o 146
L0 0 U 1T 0 3L 150

Chapter 6: Heuristic Hash Functions...........ccccounemmmmmnnnnnnsssssssssssnnnns 151
What Makes a Good Hash FUNCHION?ccovcenennenerssessesenesesss s 153
Hashing Computer WOrdS.........cccvverrnenmsnsesnsesssesssssessssessssssesssesssssssssssessenes 155

Additive Hashing.........cccuoeeernrnnineness s s ssssesenns 157
Rotating Hashingccoveviinmnnnsnesessse s s ssssenens 159
One-at-a-Time Hashingcccuovricrnnnncsre s 163
Jenkins Hashingc.ccovrermrenernnesnessne s s 171
Hashing Strings 0f BYIES.......ccuvvvrieninnrnie s ssssesesse s 175

iv

TABLE OF CONTENTS

Chapter 7: Universal Hashingc..ccccmumsssmnnnmsssssnnssssssssssssssssssnsssssnns 183
Uniformly Distributed Keysccccuvrinnnnininnsnsne s sesesesss s 184
Universal Hashing ... 185
Stronger Universal Families.........ccovorneernnenennnerssesesesese s 186

Binning Hash KEYS........ccoveererenernnrneseseses s s s sesensenens 187
Collision Resolution Strategies..........coverrrerererernsessseseseseses s 189
Constructing Universal FAMIliEsccoovvenerenernnesnesese s 190
Nearly Universal FAMIlieS.........ccooveerrrenerenernsssensesesssesessesessesessesesessesessenens 190
Polynomial Construction for k-Independent Familiescocvrrenninncnes 191
Tabulation Hashingcccovevninninennssnesese e 193
Performance COMPAriSON........ccuceverrinieniesinsessesse s ssesessessessens 197
Re-NASNING.....cccceerrriiireirresir e s 201

Chapter 8: ConcCluSIONS......cceuurmrmmmmmmssssssssssnsssssssssssssssssssssssssssssnsnsnnne @ 1 1

1 . [|

About the Author

Thomas Mailund is a former associate
professor in bioinformatics at Aarhus
University, Denmark, and currently a senior
software architect at the quantum computing
company Kvantify. He has a background

in math and computer science, including
experience programming and teaching in

the C and R programming languages. For

the last decade, his main focus has been on
genetics and evolutionary studies, particularly

comparative genomics, speciation, and gene
flow between emerging species.

vii

About the Technical Reviewer

Megan J. Hirni currently teaches and

conducts research at the University of
Missouri-Columbia, focusing on statistical
methodology applied in health, social sciences,
and education. Apart from her passion for
coding, Megan enjoys meeting new people and
exploring diverse research disciplines.

ix

Acknowledgments

I am very grateful to Rasmus Pagh for his comments on the manuscript,
for suggestions on topics to add, and for correcting me when I was
imprecise or downright wrong. I am also grateful to Anders Halager for
many discussions about implementation details and bit-fiddling. I am also
grateful to Shiella Balbutin for proofreading the book.

CHAPTER 1

Introduction

This book is an introduction to the hash table data structure. When
implemented and used appropriately, hash tables are exceptionally
efficient data structures for representing sets and lookup tables. They
provide constant time, low overhead, insertion, deletion, and lookup. This
book assumes you are familiar with programming and the C programming
language. The theoretical parts of the book also assume some familiarity
with probability theory and algorithmic theory, but nothing beyond what
you would learn in an introductory course.

Hash tables are constructed from two fundamental ideas: reducing
application keys to a hash key—a number ranging from 0 to some
N — 1—and mapping that number into a smaller range from0tom — 1,

m < N. You can use the small range to index into an array with constant
time access. Both ideas are simple, but how they are implemented in
practice affects the efficiency of hash tables.

Consider Figure 1-1, which illustrates the main components of storing
values in a hash table. Potentially complex application values are mapped
to hash keys, which are integer values in a range of size N, usually 0 to
N — 1. In the figure, N = 64. Doing this simplifies the representation of the
values. You now only have integers as keys, and if N is small, you can store
the integers in an array of size N. You use their hash keys as their index
into the array. However, if N is large, this is not feasible. If, for example,
the space of hash keys is 32-bit integers, then N = 4,294,967,295; slightly
more than four billion. An array of bytes of this size would take up more
than 4GB of space. You would need between four and eight times as

© The Editor(s) (if applicable) and The Author(s), 1
under exclusive license to APress Media, LLC, part of Springer Nature 2024
T. Mailund, The Joys of Hashing, https://doi.org/10.1007/979-8-8688-0826-5_1

https://doi.org/10.1007/979-8-8688-0826-5_1#DOI

CHAPTER 1 INTRODUCTION

much memory to store pointers or integers, for example, which are still
simple objects. It is impractical to use this size of an array to store some
application keys.

Even if N is considerably smaller than four-byte words, if you plan to
store n <« N keys, you waste a lot of space to have the array. Since this array
needs to be allocated and initialized, merely creating it will cost you O(N).
Even if you get constant time insertion and deletion into such an array, the
cost of producing it can easily swamp the time your algorithm will spend
while using the array. If you want an efficient table, you should be able to
initialize it and use it to insert or delete n keys, all in time O(n). Therefore,
N should be in O(n).

The typical solution is to keep N large, but include a second step
that reduces the hash key range to a smaller bin-range of size m with
m € O(n)—this example uses m = 8. If you keep m small (i.e., in O(n)), you
can allocate and initialize it in linear time and get any bin in it in constant
time. To insert, check, or delete an element in the table, you map the
application value to its hash key and then map the hash key to a bin index.

CHAPTER 1 INTRODUCTION

Application value space Hash key space Table bin space

|

©ENON AWN= O

10

3 \
18
19
20
21
22

27
28
29
30

NoOoOhWON=O

61
62
63

Figure 1-1. Value maps to hash keys that then maps to table bins

You can reduce values to bin indices in two steps. The first step,
mapping data from your application domain to a number, is program-
specific and cannot be part of a general hash table implementation.!
Moving from large integer intervals to smaller, however, can be
implemented as part of the hash table. If you resize the table to adapt it to
the number of keys you store, you need to change m. You do not want the
application programmer to provide separate functions for each m. You can

'In some textbooks, you will see the hashing step and the binning step combined,
called hashing. Then, you have a single function that maps application-specific
keys directly to bins. I prefer to consider this as two or three separate functions,
and it is usually implemented as such.

CHAPTER 1 INTRODUCTION

think of the hash key space, [N] = [0, ..., N — 1], as the interface between the
application and the data structure. The hash table itself can map from this
space to indices in an array, [m] = [0,...,m — 1].

The primary responsibility of the first step is to reduce potentially
complicated application values into simpler hash keys. For example, to
map application-relevant information like positions on a board game or
connections in a network down to integers. These integers can then be
handled by the hash table data structure. The second responsibility of the
function is to make the hash keys uniformly distributed in the range [V].
The binning strategy for mapping hash keys to bins assumes that the hash
keys are uniformly distributed to distribute keys evenly into bins. If this is
violated, the data structure does not guarantee (expected) constant time
operations. Here, you can add a third step between the two previous that
maps from [N] — [N] and scrambles the application hash keys to hash
keys with a better distribution. See Figure 1-2. These functions can be
application-independent and part of a hash table library.

Chapters 6 and 7 return to these functions. Having a middle step does
not eliminate the need for application hash functions. You still need to
map complex data into integers. The middle step only alleviates the need
for an even distribution of keys. The map from application keys to hash
keys still has some responsibility for this, though. If it maps different data
to the same hash keys, the middle step cannot do anything but map the
same input to the same output.

CHAPTER 1 INTRODUCTION

Application key space Hash key space Table bin space

Application value space

0

—

[

NPORON O

Figure 1-2. Ifthe application maps values to keys, but they are not
uniformly distributed, then a hashing step between the application
and the binning can be added

Strictly speaking, you do not need the distribution of hash keys to
be uniform as long as the likelihood of two different values mapping to
the same key is improbable. The goal is to have uniformly distributed
hash keys, which are easiest to work with when analyzing theoretical
performance. The runtime results in Chapter 3 assume this, and therefore,
you can as well. Chapter 7 considers techniques for achieving similar
results without the assumption.

The book is primarily about implementing the hash table data
structure and only secondarily about hash functions. When implementing
hash tables, the concerns are these: given hash keys with application
values attached to them, how do you represent the data so that you
can update and query tables in constant time? The fundamental idea
is, of course, to reduce hash keys to bins and then use an array of bins
containing values. In the purest form, you can store your data values

CHAPTER 1 INTRODUCTION

directly in the array at the index that the hash and binning functions
provide. Still, if m is relatively small compared to the number of data
values, you are likely to have collisions, which are cases where two hash
keys map to the same bin. Although different values are unlikely to hash

to the same key in the range [V], this does not mean that collisions are
unlikely in the range [m] if m is smaller than N (and as the number of

keys you insert in the table, n, approaches m, collisions are guaranteed).
Dealing with collisions is a crucial aspect of implementing hash tables and
a topic that’s covered in a sizeable portion of this book.

CHAPTER 2

Hash Keys, Indices,
and Collisions

As mentioned in the introduction, this book is primarily about
implementing hash tables and not hash functions. So, to simplify the
exposition, I initially assume that the data values you store in tables are
simply hash keys. Chapter 5 addresses the changes you have to make to
store application data together with keys, but for most of the theory of hash
tables, you only need to consider hash keys. Everywhere else, you will view
additional data as black box data and just store their keys.

While the code snippets cover all that you need to implement the
concepts in this chapter, you cannot easily compile them from the book,
but you can download the complete code listings from https://github.
com/mailund/JoyChapter2.Idid notinclude the necessary header files in
the source code snippets throughout the book, but you can access them in
the repository links found at the beginning of each chapter.

I assume that the keys are uniformly distributed in the interval
[N =[0,..., N — 1], where Nis the maximum unsigned int, and consider the
most straightforward hash table I can imagine. It consists of an array where
you can store keys and a number holding the size of the table, m. To be able
to map from the range [N] to the range [m], you need to remember m, and
that is why you store it. If you always had the same table size, you wouldn'’t

© The Editor(s) (if applicable) and The Author(s), 7
under exclusive license to APress Media, LLC, part of Springer Nature 2024
T. Mailund, The Joys of Hashing, https://doi.org/10.1007/979-8-8688-0826-5_2

https://doi.org/10.1007/979-8-8688-0826-5_2#DOI
https://github.com/mailund/JoyChapter2
https://github.com/mailund/JoyChapter2

CHAPTER 2 HASH KEYS, INDICES, AND COLLISIONS

even need that, and a hash table would be an array. But you will allow for
different table sizes (when you get to Chapter 4), so you need to store the
number m in the variable size using the following structure:

struct bin { ... };
struct hash table {
struct bin *table;
unsigned int size;

};

If your bins are just an array of hash keys with no further information,
you have an interesting problem. If you find a key k in the bin where you
expect to find k, does that mean it is actually there? After all, an array is
usually uninitialized memory, so it could happen that k was there by pure
chance. Admittedly, this is extremely unlikely to happen, and I wouldn’t
worry about it happening in real life if the space of keys is large, but we
might as well consider and deal with the issue.

If the bits you have in a bin are precisely the bits you have for hash
keys, there is little that you can do about it. You need at least one bit of
information to indicate whether an array entry is initialized. There are
clever ways of representing such information without putting it in bins,
but that puts the extra information elsewhere, in auxiliary data structures.
You need a simple table here, so I do not want to go there, now or ever.

A simple solution is to add one bit of information to each bin:

struct bin {
int is_free : 1;
unsigned int key;

};

struct hash table {
struct bin *table;
unsigned int size;

};

CHAPTER 2 HASH KEYS, INDICES, AND COLLISIONS

That increases the size of the bins and leaves enough bits for the keys
and the initialization indicator. Unfortunately, even though you only ask
for one bit for the is_free flag, you can potentially get a lot more. The
struct bin has to contain enough memory for both is_free and key,
but your computer does not allocate memory in bit-sized chunks, so the
size must be rounded up. Furthermore, the memory alignment of various
types will usually result in even more rounding up. If your computer
stores integers as four bytes, it might also demand that all integers are at
offsets that are multiples of fours, and when it sees a struct like this, it
will set aside two integers per struct bin. So, by adding one bit, you have
doubled the bin size.

You should rarely worry about this, but it can be wasteful. Instead,
you could remove one bit from the hash keys, using, for example, 31 bits
for keys, and then one bit for is_free, packing both neatly into a 32-bit
integer. In practice, there is not much difference between 31-bit and 32-
bit keys, but you have just halved the space of keys, which also feels a bit
dramatic. So I won'’t go there, especially because cutting the key space in
half is unnecessary to represent whether a bin is initialized or not. You
could reserve a unique key value to indicate that and require that no one
uses that hash key for anything else. Zero, for example. Then bins can be
unsigned int, and you don’t need extra space.

#define RESERVED KEY ((unsigned int)o)
struct hash table {

unsigned int size;

unsigned int *bins;

};

For the user who has to generate hash keys, avoiding a reserved key
is a potential problem, but if that is the case, the previous solution is an
adequate fallback choice. In any case, once you get to more complicated
tables, you will need more data in bins in any case, and then the extra
is_free bit will be free, or you will need more special values for reserved

CHAPTER 2 HASH KEYS, INDICES, AND COLLISIONS

keys, and you will need to deal with these anyway. So, I go with the two
cases without complicating it further, and later in the book, you will see
more variations on both themes.

A function for allocating a table can then look like this for the variant
with struct bin:

struct hash_table *
new_table(unsigned int size)

{
// Allocate table and bins

struct hash table *table = malloc(sizeof *table);
table->size = size;
table->bins = malloc(size * sizeof *table->bins);

// Set all bins to free

struct bin *beg = table->bins, *end = beg + size;

for (struct bin *bin = beg; bin != end; bin++) {
bin->is free = true;

}

return table;

And it can look like this for the variant with a reserved key:

struct hash _table *
new_table(unsigned int size)

{
// Allocate table and bins

struct hash table *table = malloc(sizeof *table);
table->bins = malloc(size * sizeof *table->bins);

// Initialize the bins with the reserved key
unsigned int *beg = table->bins, *end = beg + size;

10

}

CHAPTER 2 HASH KEYS, INDICES, AND COLLISIONS

for (unsigned int *bin = beg; bin != end; bin++) {
*pin = RESERVED KEY;
}

return table;

They are pretty similar. In both cases, you allocate the hash_table

structure and then allocate the bins, after which you iterate through all the

bins to initialize them.

I haven’t dealt with allocation errors (malloc() returning NULL) in

either function. You could easily do it here. For example, the “reserved

key” initialization could look like this:

struct hash _table *
new_table(unsigned int size)

{

// Allocate table and bins

struct hash_table *table = malloc(sizeof *table);
unsigned int *bins = malloc(size * sizeof *bins);
if (!table || !bins) goto error;

*table = (struct hash table){.size = size, .bins = bins};

unsigned int *beg = table->bins, *end = beg + size;

for (unsigned int *bin = beg; bin != end; bin++) {
*pbin = RESERVED KEY;

}

return table;

€rror:

}

free(table);
free(bins);
return NULL;

11

CHAPTER 2 HASH KEYS, INDICES, AND COLLISIONS

However, once you start resizing tables in Chapter 4, dealing with
allocation errors gets far more complicated. Especially when every
allocation error potentially has to propagate out from deeply nested
function calls, and C doesn’t have any convenient mechanism for error
propagation. While I believe that learning how to handle allocation errors
is important, my attempts at doing that for the more complicated code you
will see in that chapter overshadowed the hash-table lessons, and the book
is about hash tables and not error handling in C. That may be an exciting
topic for a later book, but it will not be this one. What I am saying is that I
won't be handlingmalloc() errors in the book. If you want, pretend that
my malloc() is a variant that calls exit() if it fails.

One more thing I want to say about memory allocation is this: if you
can pack your data into fewer allocations, it is easier to work with. You
could have done that by putting the bins in a “flexible array member” as so:

struct hash_table {
unsigned int size;
struct bin bins[]; // flexible array member

}s

A flexible array member is an array you declare at the end of a struct
without specifying its length. If you have such a member, you can allocate
the hash_table and the bins in a single call to malloc():

struct hash _table *
new_table(unsigned int size)

{
// Allocate table and bins

struct hash_table *table =
malloc(sizeof *table + size * sizeof *table->bins);

if (table) {
table->size = size;
struct bin *beg = table->bins, *end = beg + size;

12

CHAPTER 2 HASH KEYS, INDICES, AND COLLISIONS

for (struct bin *bin = beg; bin != end; bin++) {
bin->is_free = true;
}
}

return table;

}

The trick is to allocate enough memory in the malloc() call for both
the struct and the elements you want to put in the array. Here I do
that by simply adding the size of the struct to the size of the bins array.
Depending on the memory layout of the struct members, this might be
slightly more than I need, and I could instead add the offset of the array to
the size of the array, but the difference hardly matters.

I don’t use a flexible array member in this book, and it is for the same
reason that I don’t include allocation error handling. While the flexible
array member is often helpful, it can get complicated if you need to
reallocate memory to grow or shrink your tables. Suppose you allocate
one block of memory for the table plus the bins. In that case, you cannot
easily add or remove bins later because every pointer to the table has to
be updated to point to the newly allocated version. If you have a pointer
to a table, and it has a pointer to its bins, you can update the bins pointer
once, and everyone will have access to it. Because of this, I allocate bins
separately from the hash_table structure.

To free a table’s memory again, you need to free both the table
structure and the bins array. For the two first versions, where you allocated
the bins separately, it looks like this:

void
delete table(struct hash table *table)

{
free(table->bins);

free(table);
}

13

CHAPTER 2 HASH KEYS, INDICES, AND COLLISIONS
For the flexible array member version, you can write the function as:

void
delete table(struct hash table *table)
{

free(table);

}

or just use free().

Anyway, you have some options for constructing and deleting a hash
table. Now, you need to implement some operations on it. The operations
for hash tables are the insertion and deletion of keys and queries to test if a
table holds a given key. You can use this interface for the operations:

void insert key (struct hash table *table, unsigned int key);
bool contains key (struct hash table *table, unsigned int key);
void delete key (struct hash table *table, unsigned int key);

All three will need a way to get a bin from a hash key, and the way to do
this is the same for all three operations, so let’s handle that first.

Mapping from Keys to Indices to Bins

When you have to map a hash key from [N] down to the range of the
indices in the array, [m], the most straightforward approach is to take the
remainder of a division by m, using the modulo operator:

static inline unsigned int
hash_bin_index(struct hash table *table, unsigned int key)
{

return key % table->size;

}

14

CHAPTER 2 HASH KEYS, INDICES, AND COLLISIONS

This solution will work for all m < N in the sense that it maps from
[N] to [m]. However, even if you are lucky enough to have uniformly
distributed keys in [N], the golden standard of hash keys, this mapping will
not necessarily guarantee that you also get uniformly distributed keys in
[m] (which is where it matters, as you shall see shortly).

Using modulo will only map a uniform distribution over [N] to a
uniform distribution over [m] when Nmodn = 0; otherwise, some bins will
be hit more than others, although only slightly so. If you mapped all the
numbers 0...N — 1 to [m], some lower range of [m] would be hit once more
than the remaining if m doesn’t divide N exactly. This is usually not worth
worrying about since it is as evenly distributed as possible given the two
numbers.

Still, I mainly pick m to be such a number in this book for other
reasons. Hash keys come in computer words, and their size is almost
always powers of two. Picking powers of two for hash table sizes simplifies
a few other tasks, so that is what you will do. That this will map uniformly
distributed keys to uniformly distributed bins is an added benefit.

That being said, if you read the literature, you will find that most
people suggest using hash tables where m is a prime. So what gives? This
relates to another issue: you cannot necessarily assume that your hash
keys are uniformly distributed. If hash keys have some regular pattern to
them, this will affect the performance of your tables. Taking modulo with
respect to a prime is a way to alleviate this in some cases.

Assume, for example, that all your hash keys can be writtenas h=n - k.
This looks artificial at first glance, but such a pattern is common. If, for
example, you want to hash pointers, their lower bits are often zero because
different data types often have to sit at specific address offsets. Integers,
for example, often have to sit at offsets that are a multiple of four or eight,
and that would make integer pointers a type of hash key of the form r - 4 or
n - 8. If your table size m shares a prime factor with h, say m=m’ - k,
then hmodm will only take values that are multiples of the shared factor,

15

CHAPTER 2 HASH KEYS, INDICES, AND COLLISIONS

here k. If k = 4 and m = 8, you would map 0 mod 8 =0,4 mod 8 =4, 8
mod 8 =0, 12 mod 8 = 4, 16 mod 8 = 0, and so on. In this example, you
would only hit two of the eight bins.

If your table size is prime, you are less likely to share a prime factor
with the periodic hash tables. If you do, you would map everything into bin
0, which would be bad,' but otherwise, you would hit every bin. It would
not necessarily be uniform—that would still depend on the distribution of
hash keys—but the periodicity would be taken care of.

Sticking to primes has some drawbacks, however. You will often need
to resize the tables if the number of keys is not known a priori. You'll look at
this in Chapter 4. If you want to stick to primes, you need a table of primes
to pick from when growing or shrinking your table. If you instead choose
table sizes that are powers of two, it is straightforward to grow and shrink
them. You can easily combine modulus primes with this idea: If you pick a
prime p > m, you can index bins as h(x) mod p mod m. Modulus p reduces
the problem of regularity in keys, and if m is a power of two, you can grow
and shrink tables easily. This also separates the concerns of computing
a hash key from using hash keys to index into tables, as I wrote about the
introduction chapter. You would have a two-step solution where you start
with non-random numbers in [N], map these using modul to [p], and then
continue as if your hash keys were originally uniformly distributed in [p].

If your keys are randomly distributed, any m will do fine (and if both N
and m are powers of two, you will get a uniform distribution in [m]). If you
have such powers of two, m = 2, taking the remainder with respect to m is
the same as masking out the lower k bits of the key. If the keys are random,
the lower bits will also be random.

static inline unsigned int
hash_bin_index(struct hash table *table, unsigned int key)

{

'This is less likely to happen to larger tables, but it is a concern for small tables.

16

CHAPTER 2 HASH KEYS, INDICES, AND COLLISIONS

unsigned int mask = table->size - 1;
unsigned int index = key & mask;
return index;

}

Subtracting one from the table size, m = 2%, will give you the lower k
bits, and masking with that provides you with the index.keez

Masking is a faster operation than modulo. In my experiments, I see
about a factor of five in the speed difference. Compilers can optimize
modulus to masking if they know that m is a power of two, butif mis a
prime (and larger than two), this is of little help. How much of an issue this
is depends on your application and choice of hash function. Micro-
optimisations will matter very little if you have hash functions that are slow
to compute.

If you are working with primes for m, there can be an advantage to
working with Mersenne primes, i.e. those on the form 2* — 1. One such
is 2" — 1, which can be a good choice for 32-bit words. Let p = 2° — 1 and
X < p. Write x on the form a2* + b (b < 2°), that is, let x mod 2° = b. Because
2°mod p = 1 we have xmodp = a + b mod p. Since we use integer division
and b < s2we have b/2 = 0 so we also have x/2° = a. Because x < 2° — 1,

x/2* mod p = x/2°.

Now, let y = (x mod 2°) + (x/s*). Again because x <2°— 1 we have a < p
so a + b < 2p. Therefore, either y < p or y < 2p. If the former, that is xmodp;
if the latter, thenx mod p=y — p.

Because x mod 2* is the same as masking x by p and x/2° is the same as
shifting x by s bits, we can compute modulo as this:

uint64 t mod Mersenne(uint64 t x, uint8 t s)

{
uint64 t p = (uint64 t)(1 << s) - 1;
uint64 t y = (x & p) + (x >> s);
return (y > p) 2y -p :y;

}

17

CHAPTER 2 HASH KEYS, INDICES, AND COLLISIONS

This avoids multiplications and modulo and only uses fast bit-
operations. This will be much faster than modulo.

But enough theory. Let’s get back to coding. We now have several ways
to map a key to an index, so what remains for this section is to translate
that into getting a bin. I prefer to write functions that give me pointers to
bins. Then, I can inspect or update bins through those.

For the two kinds of bins we have considered, one where a bin is a
struct and another where bins are unsigned int, such a function can look
like this:

static inline struct bin *
hash _bin(struct hash table *table, unsigned int key)
{

return table->bins + hash _bin_index(table, key);

}

static inline unsigned int *
hash_bin(struct hash_table *table, unsigned int key)

{

return table->bins + hash _bin_index(table, key);

}

They only differ in their return type.

Hash table operations

Once we have a function that maps keys to a bin, the three operations we
need to implement are quite simple. When we insert an element, we get
the bin and put the key there:

void
insert key(struct hash_table *table, unsigned int key)

{
struct bin *bin = hash_bin(table, key);

18

CHAPTER 2 HASH KEYS, INDICES, AND COLLISIONS

if (bin->is free) {
bin->key = key;
bin->is free = false;
} else {
// There is already a key here, so we have a
// collision. We cannot deal with this yet.
}
}

when we have a bit to tell us if a bin is occupied and

void
insert key(struct hash table *table, unsigned int key)
{
assert(key != RESERVED KEY);
unsigned int *bin = hash bin(table, key);
if (*bin == RESERVED KEY) {
*bin = key;
} else {
// There is already a key here, so we have a
// collision. We cannot deal with this yet.

}
}

when we have reserved a key for that purpose.
You will again notice that the two implementations are quite similar.
If the bin is already occupied, I don’t do anything meaningful. We
won’t deal with it in this chapter, but it is the topic of the next chapter.

19

CHAPTER 2 HASH KEYS, INDICES, AND COLLISIONS

To check if a key is in the table, we follow the same pattern: we get hold
of the bin and then check if the key is there. For the first version, we can
do this:

bool
contains_key(struct hash table *table, unsigned int key)
{
struct bin *bin = hash bin(table, key);
// The bin contains the key if it isn't empty and the key
// it contains is the one we are looking for.
return !bin->is free 8& (bin->key == key);

}

where we check if the bin is free before we check the key—to avoid
accidentally mistaking random data for our key. For the alternate version
were we use a special key value to indicate that nothing is stored in a bin,
we do this:

bool
contains_key(struct hash table *table, unsigned int key)
{
return *hash bin(table, key) == key;
}

We don’t need to check if the bin is occupied or not; if it matches key
and key is not allowed to be the reserved key, then comparing the value in
the bin to the key suffices.

Finally, for deleting keys, the two versions can look like this:

void
delete key(struct hash_table *table, unsigned int key)

{
// Set the bin to free if the key matches, otherwise not

// (it contains a different key)

20

CHAPTER 2 HASH KEYS, INDICES, AND COLLISIONS

struct bin *bin = hash_bin(table, key);
bin->is free = (bin->key == key);

}

and

void
delete key(struct hash_table *table, unsigned int key)
{
unsigned int *bin = hash bin(table, key);
if (*bin == key) {
*pin = RESERVED KEY;

Collision risk

We expect that hash key collisions are rare if they are the results of a well-
designed hash function. Although collisions of hash keys are rare, however,
it does not imply that we cannot get collisions in the indices. The range [N]
is usually vastly larger than the array indices in the [m] range. Two different
hash keys can easily end up in the same hash table bin, see Figure 2-1.
Here, we have hash keys of size N = 64 and only m = 8 bins. The numbers
next to the hash keys are written in octal, and we map keys to bins by
extracting the lower eight bits of the key, which corresponds to the last
digit in the octal representation. The keys 8 and 16, or 105 and 205 in octal,
both maps to bin number 0, so they collide in the table.

21

CHAPTER 2 HASH KEYS, INDICES, AND COLLISIONS

Hash key space Table bin space

©ONOUIAWN= O

819=10g
10
11
12

B :
14197165 14 2
B 3
1614-205 19 .
18 5
19 6
20 7

21

22

23

24

25

26

27102338 27

61
62
63

Figure 2-1. Collisions of hash keys when binning them

The figure is slightly misleading since the hash space is only a factor
of eight larger than the hash table size. In any actual application, the keys
range over a much wider interval than we could ever represent in a table.
In the setup that we consider in this book, the range [N] maps over all
possible unsigned integers, which is usually at least in the billions. This
space is much larger than what you could reasonably use for an array—if
you had to use your entire computer memory for a hash table, you would
have no space for your computer program. Each value might map to a
unique hash key, but we will likely see collisions when we have to map the
hash keys down to a smaller range to store values in a table.

22

CHAPTER 2 HASH KEYS, INDICES, AND COLLISIONS

Assuming a uniform distribution of hash keys, we can do back-of-the-
envelope calculations of collision probabilities. The chances of collisions
are surprisingly high once the number of values approaches even a tiny
fraction of the number of indices we can hit. To figure out the chances of
collisions, we use the birthday paradox. In a room of n people, what is
the probability that two or more have the same birthday? Ignoring leap
years, we have 365 days in a year, so how many people do we need for the
chance that at least two have the same birthday to be above one-half? This
number, 7, turns out to be very low. If we assume that each date is equally
likely as a birthday, then with only 23 people we expect a 50% chance that
at least two share a birthday.

We can phrase the problem of “at least two having the same birthday” a
little differently. We can ask, “What is the probability that all n people have
different birthdays?”. The answer to the first problem will be one minus the
answer to the second.

To answer the second problem, we can reason like this: out of the n
people, the first birthday hits one out of 365 days without collisions. If we
avoid collisions, the second person has to hit one of the remaining 364
days. The third one has to have his birthday on one of the 363 remaining
days. Continuing this reasoning, the probability of no collisions on
birthdays of n people is

365 364 365—-n+1
——X—— X X ———,
365 365 365

One minus this product is the risk of at least one collision when there
are n people in the room. I have shown this probability as a function of
the number of people in Figure 2-2. The curve crosses the point of 50%
collision risk between 22 and 23.

23

CHAPTER 2 HASH KEYS, INDICES, AND COLLISIONS

1.0

Collision risk

00 02 04 06 08

People

Figure 2-2. The Birthday paradox

The math carries over to an arbitrary number of “days’, m, and tells us
the risk of collision if we try to insert z elements into a hash table of size m.
Provided that the keys are uniformly distributed in the range from 0 to
m — 1, the probability that there is at least one collision is

m!

p(n|m):l—m

See Figure 2-3 for a few examples of m and n.

24

CHAPTER 2 HASH KEYS, INDICES, AND COLLISIONS

1000

1.0

10000

20000

Collision risk
0.6

0.4

0.2
]

0.0

Figure 2-3. Collision risks for different sizes of tables

In practice, we are less interested in when the risk of collision reaches
any particular probability than in how many items we can put into a table
of size n before we get the first collision. Let K denote the random variable
that represents the first time we get a collision when inserting elements
into the table. The probability that the first collision is when we add item
number k is

m! 'k—l
mk(m—k—l)! m

Pr(K=k|m)=

where the first term is the probability that there were no collisions in the
first k — 1 insertions, and the second term is the probability that the k’'th
element hits one of the k — 1 slots already occupied. The expected number
of inserts we can do until we get the first collision can then be computed as

m+1

E[k|m]=;k-Pr(K=k|m)

25

CHAPTER 2 HASH KEYS, INDICES, AND COLLISIONS

The sum starts at one where no collision is possible and ends at m + 1
where a collision is guaranteed. I have shown expected waiting time,
together with sampled collision waiting times, in Figure 2-4.

1500 1 d

1000 1 hd °

500 1

0e+00 1e+05 26405 36+05 46+05
m

Figure 2-4. Expected number of insertions before a collision

It may not be immediately apparent from Figure 2-3 and Figure 2-4
what the relationship between m and k is for the risk of collision, but it
should be evident that it is not linear. In Figure 2-3, increasing m by an
order of magnitude when going from 1000 to 10,000 does not change the k
where the risk is above 50% by an order of magnitude; the change is closer
to a factor of three. Doubling m when going from 10,000 to 20,000 is far
from doubling the k where we pass 50%. The expected number of elements
we can insert into a table does not grow linearly with the size of the table
is even more apparent from Figure 2-4, but how large should we have to
make a table before we can expect to avoid collisions?

26

CHAPTER 2 HASH KEYS, INDICES, AND COLLISIONS

An approximation to the collision risk that is reasonably accurate for
low probabilities is this:
k2
kim)~—
p(|) 2m
I have shown this approximation as dashed lines in Figure 2-5.

!

1
o | ! J 1000
= K -
| 10000
1 ’
(X)_ | 1
o]
% 20000
= ©
§ o]
z) ____________
8 I -
[aV]
8
o
S 4

Figure 2-5. Square approximation

The approximation is unquestionably very poor at high probabilities—
it tends to infinity, which is a bad approximation for a probability—but it
is only slightly conservative at low probabilities. The good thing about this
approximation is that it is easy to reason about it. We can rewrite it to:

kZ
mr——0——
2p(k|m)

The formula tells us that to keep the collision risk low, m has to
be proportional to the square of k, with a coefficient that is inversely

proportional to how low we want the risk.

27

CHAPTER 2 HASH KEYS, INDICES, AND COLLISIONS

This formula is potentially bad news. If we need to initialize the
hash table before using it,> then we automatically have a quadratic time
algorithm on our hands. That is a hefty price to pay for constant time
access to the elements we put into the table. Since hash tables are used
everywhere, this should tell you that, in practice, they do not rely on
avoiding collisions entirely; they obviously have to deal with them—and
most of this book is about how to do that.

Conclusion

As you have seen in this chapter, collisions are practically inevitable. Even
if you were guaranteed that all hash keys were unique, they would still
likely collide if you mapped them into a smaller number of bins. If you do
not deal with collisions in a meaningful way, you have to use extremely
large tables to reduce collision risk, incurring unacceptable overhead in
memory usage and initialization time. However, as you shall see in the
next chapter, there are techniques that allow you to deal with some level of
collisions without sacrificing performance.

21t is technically possible to use the array in the table without initializing it, but it
requires some trickery that incurs overhead.

28

CHAPTER 3

Collision Resolution,
Load Factor,
and Performance

Collisions are inevitable when using a hash table. At least if you want the
table size—and thus the initialization time for the table—to be linear in
the number of keys you put into it. Therefore, you need a way to deal with
collisions so you can still insert keys if the bin you map it to is already
occupied. There are two classical approaches to collision resolution:
chaining—using linked lists to store colliding keys—and open addressing—
where you find alternative empty slots to store values when keys collide.

You can download the complete code for this chapter from https://
github.com/mailund/JoyChapter3.

Chaining

One of the most straightforward approaches to resolving collisions is to
put colliding keys in a data structure that can hold them, and the most
straightforward data structure is a linked list.

© The Editor(s) (if applicable) and The Author(s), 29
under exclusive license to APress Media, LLC, part of Springer Nature 2024
T. Mailund, The Joys of Hashing, https://doi.org/10.1007/979-8-8688-0826-5_3

https://doi.org/10.1007/979-8-8688-0826-5_3#DOI
https://github.com/mailund/JoyChapter3
https://github.com/mailund/JoyChapter3

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

Linked Lists

The operations you need for storing elements in a list are these:
1. You should be able to add a new key to a list.
2. Youshould be able to test if a key is already there.
3. You should be able to remove a key from a list.

Also, you should be able to create and delete lists. For the links in a list,
you can use this data structure:

struct link {
unsigned int key;
struct link *next;

};

This is as simple as it gets; any link contains a value and a pointer to
the next link in the list. You use NULL for next to indicate that you are at the
end of the list.

You can also define a list as a pointer to a link—and this is often how it
is done—but that can complicate some operations. With a pointer to a link,
you can only modify the link at hand and search further down the link, but
you cannot change, for example, the previous link in the list. If you want
to remove a link from a list, having a pointer to the link does you no good.
You need a pointer to the previous link to update the previous link’s next
pointer to skip the link you want to delete. You need to keep track of the
previous link to delete elements from a list. This is not the only reason that
just having pointers to links is, at times, suboptimal. Ensuring that multiple
references to the same list are kept in sync is difficult if you change the
front link, for example, but access to the previous link is the key reason for
this application.

30

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

If you want to represent lists so that you have access to a link and can
modify the previous link, having a pointer to a pointer to a link turns out to
be a good solution.

typedef struct link **LIST;

For many linked list operations, especially when inserting and deleting
links, you need access to the previous link in a list so you can update its
next pointer. Writing code that expects the previous link is a problem when
you have to deal with the first link in a list, that by definition doesn’t have
a previous one. You could represent lists using some dummy link before
the first real link, and this would alleviate the need for special cases, but
in C, you can just as well get a pointer to a pointer to a link, which is what
these lists are. If you have a pointer to a link, you also the address of that
pointer, so you have a list for any link. The list can in most cases be thought
of as “the previous link’s next pointer,” so in code that needs to modify that
pointer, you have immediate access to it. However, the list representation
is more general than that; it doesn’t have to be the previous link’s next
pointer; it can be the address of any pointer to a link.

Because you are not directly pointing to links, you can have multiple
references to the same list by having them all point to the pointer that, in
turn, points to the beginning of the list (or NULL if the list is empty). When
you traverse a list, you always point to the pointer pointing to the link you
are currently addressing. When you start at the beginning of the list, you
are pointing to the struct link * that the LIST is pointing at, and when
you move along the next pointers, you keep a reference to the address of
each next pointer. This way, when you need to delete something, you have
the address of the next pointer you need to update so you can change it.

This might sound a bit complicated, but I hope it becomes clear when
you get to the operations on the list.

31

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

To create a new list, you need a struct link pointer and a pointer to
that pointer. This macro will give you such an object if you want to allocate
the head of the list on the stack:

#define EMPTY LIST &((struct link *){NULL})
You can use it like so:
LIST static_list = EMPTY_LIST;
Or, if you want to allocate a list on the heap, you can use this:

LIST

new_owned 1ist()

{
struct link **ptr = malloc(sizeof *ptr);
*ptr = NULL;
return ptr;

A newly allocated LIST is a pointer to a pointer, but the first thing you
point to doesn’t have to be a link. If it is NULL, you have an empty list. So,
allocating a list on the heap involves allocating a pointer and setting it
to NULL.

To free it again, you can use free().

void
free _owned 1list(LIST list)
{
free list(list);
free(list); // Freeing the heap allocated list
}

The free list() function here is shared between stack and heap-
allocated lists, and it runs through the links and frees them one by one:

32

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

static void

free head(LIST list)

{
struct link *next = (*1list)->next;
free(*list);
*1list = next;

}

void
free 1ist(LIST list)
{
while (*list) {
free head(list);
}
}

This might not be the usual way to write iterating through a list
because you never directly move a pointer through the list. Instead, you
have the head of the list in *1ist—the list variable contains a pointer to
a pointer to a link, so *1ist is a pointer to the first link in the list. As long as
*1ist isn’t NULL, the list has links, so you get the second link in the list and
put itin next, free the front, write the second list into 1ist, and then you
are ready for the following link.

The lists are not sorted, so if you insert a new key into a list, you can put
it at the front:

struct link *

new link(unsigned int key, struct link *next)

{

struct link *1link = malloc(sizeof *1ink);
*link = (struct link){.key = key, .next = next};
return link;

}

33

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

void
add_element(LIST list, unsigned int key)
{
*1ist = new_link(key, *1ist);
}

To search the list and delete specific keys, you need to traverse the
list until you find a given key. For this, you can write a help function that
searches forward until the head of the list is the key you are searching for,
or if it makes it through the list without finding the key, it will return NULL:

LIST
find key(LIST list, unsigned int key)
{
for (; *list; list = &(*list)->next) {
if ((*list)->key == key)
return list;

}
return NULL;
}
Checking if an element is in the list is now almost trivial to implement:
bool
contains_element(LIST list, unsigned int key)
{
return find key(list, key) != NULL;
}
Deleting the first link with a given key is almost as simple:
void

delete_element(LIST list, unsigned int key)
{

34

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

if ((list = find_key(list, key))) {
free head(list);
}
}

This will only find and delete the first occurrence of key, but it is all you
need. When you implement the hash table, you will ensure that you never
insert the same key more than once.

Chained Hashing Collision Resolution

To use linked lists to resolve collisions, you replace the table of keys with
an array of struct link **.

struct hash table {
struct link **bins;
unsigned int size;

};

The type struct link **isthe type of LIST, but this doesn’t mean
that you use bins as a list. Instead, bins is an array of pointers to links, so
any pointer info bins isa LIST.

The functions from the previous chapter for creating and deleting hash
tables must be updated to initialize the bins as link pointers (initialized
with NULL to get empty lists when you point into bins), and the lists must
be freed when you free a table:

struct hash_table *
new_table(unsigned int size)

{
struct hash table *table = malloc(sizeof *table);

table->bins = malloc(size * sizeof *table->bins);
table->size = size;

35

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

for (LIST bin = table->bins; bin < table->bins + table->size;
bin++) {

*pbin = NULL;
}

return table;

}

void
free table(struct hash table *table)
{
for (LIST bin = table->bins; bin < table->bins + table->size;
bin++) {
free list(bin);
}
free(table->bins);
free(table);

For the other three operations, you map the key to an index into the
table as before and then call the appropriate operation on the linked list at
that index:

LIST
get _key bin(struct hash_table *table, unsigned int key)

{

unsigned int mask = table->size - 1;
unsigned int index = key & mask;
return table->bins + index;

}

void

insert key(struct hash_table *table, unsigned int key)
{

36

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

LIST bin = get key bin(table, key);
if (!contains_element(bin, key)) { // Avoid duplications
add_element(bin, key);
}
}

bool
contains_key(struct hash table *table, unsigned int key)

{
return contains_element(get_key bin(table, key), key);

}

void
delete key(struct hash_table *table, unsigned int key)
{

LIST bin = get key bin(table, key);

if (contains_element(bin, key)) {

delete _element(bin, key);

}

}

If you know your application will never have duplicated keys, you can
leave out the check in the insert operation. It will likely matter little for
the running time, since you aim to keep the lists short. Because you will
keep the lists short, you don't have to worry about the linear search time in
each list. If you have an application where you cannot resize your table to
keep the number of collisions small, you can replace the linked lists with
a more advanced data structure to speed up operations per bin, such as a

search tree.

37

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

Open Addressing

The open addressing collision resolution does not use an extra data
structure, but stores keys in the table as with direct addressing (the table
implemented in the previous chapter). If there are collisions, however, and
the desired index is already in use, the trick is to find another index to store
the value. Somewhere that you can always find again, naturally.

Open addressing requires a strategy for searching for an available
index when inserting an element. This search is called probing. To
formalize this, you use a probing strategy p(k, i), which gives you an index
that depends on the hash-key, k, and an index, i, which goes from 0 to
m — 1 where m denotes the size of the hash table. When you want to insert
k into the table, you first attempt to add it at index p(k, 0). If that slot is
occupied, you instead try p(k, 1), and if that slot is also occupied, you
look at p(k, 2), and so on. You want the strategy to probe the entire table
eventually. That is, you want this sequence

p(k,0),p(k,1),p(k,2),...,p(k,m—1)

to be a permutation of the numbers 0 to m — 1. That way, provided you
haven't filled the entire table, you will eventually find an empty slot to put
the key in.

Probing by iteratively checking if bins in the table are occupied creates
a problem with deleting keys. If you remove keys by turning a table entry
from occupied to empty, a later search will only get to this point before
finding an empty bin and concluding that there are no more entries to
probe. To solve this problem, you have to add another flag to the bin
structure you used in direct hashing.

struct bin {
unsigned int key;
int in_probe : 1; // The bin is part of a sequence of used bins

38

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

int is_empty : 1; // The bin does not contain a value (but
// might still be in a probe sequence)

b

The in_probe flag is true if a slot is part of a probe, so you should
continue searching if you haven'’t found the key you are looking for yet. The
is_empty flagis true if the slot is empty, so you can put a value there. When
inserting a key, you can probe until you find a bin that is_empty. When
you look up, you must continue until you find the key you are searching for
or until you reach a bin that is not in_probe.

The structure for the hash table is the same as when there was no

collision resolution.

struct hash_table {
struct bin *bins;
unsigned int size;

};

When you create a new table, you need to initialize each bin. Initially,
no binis in_probe, and all are is_free:

struct hash_table *
new_table(unsigned int size)

{
struct hash_table *table = malloc(sizeof *table);

table->size = size;
table->bins = malloc(size * sizeof *table->bins);

struct bin empty bin = {.in probe = false, .is empty = true};
for (unsigned int i = 0; i < size; i++) {

table->bins[i] = empty bin;
}

39

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

table->size = size;
return table;

}

Freeing a table works the same as in the previous chapter. All the data is
in the bins, so you only need to free that array and then the table structure:

void
free table(struct hash table *table)
{

free(table->bins);

free(table);

}

When inserting or looking for keys, you must use the probing strategy
function to find the key or a free bin. In the next section, you see how to
implement the probing strategy in this function:

static unsigned int
p(unsigned int key, unsigned int i, unsigned int m);

Its first argument is the hash function, the second is the index into the
probe, and the last is the size of the hash table.

You can use the probe function to write two helper functions. One
function finds the bin that contains a given key, if the key is in the table, or
returns the first bin it finds that is not part of a probe. The second function
finds the first empty bin.

struct bin *
find key(struct hash_table *table, unsigned int key)
{
for (unsigned int i = 0; i < table->size; i++) {
struct bin *bin = table->bins + p(key, i, table->size);
if (bin->key == key || !bin->in_probe)
return bin;

40

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

// The table is full. We cannot handle that yet!
assert(false);

}

struct bin *
find_empty(struct hash_table *table, unsigned int key)
{
for (unsigned int i = 0; i < table->size; i++) {
struct bin *bin = table->bins + p(key, i, table->size);
if (bin->is_empty)
return bin;

}
// The table is full. We cannot handle that yet!

assert(false);

}

In the second, you only test if a bin is_empty and not whether it is
in_probe, because you will have as an invariant that all bins not part of a
probe are empty.

If you want to check if a key is in your table, you can use the find_
key () function. If it returns a bin containing the key, which is not free, the
key is in the table.

bool
contains_key(struct hash table *table, unsigned int key)

{
struct bin *bin = find key(table, key);

return bin->key == key && !bin->is_empty;

}

You need to check both if you have the key and if the bin is empty
because it would be possible to accidentally reach the end of the probe
and find a bin that, by pure chance, contained the key.

41

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

To delete a key, you can also use find_key(). If it returns a bin that
contains the key, you set is_empty to true, and if it finds the end of the
probe, it returns an empty probe where you can safely set is_empty to true
without changing anything. So you can always set the result of find_key()
to empty:

void
delete key(struct hash table *table, unsigned int key)
{
find key(table, key)->is empty = true;
}

Finally, to insert a key, you need to find out if the key is already in the
table—so you don’t insert it twice—and if it isn’t, you need to insert it at
the first empty bin in the probe. You can use contains_key() for the first
step and find_empty() for the second:

void
insert key(struct hash table *table, unsigned int key)
{
if (!contains key(table, key)) {
*find _empty(table, key) =
(struct bin){.in_probe = true, .is _empty = false,
.key = key};

Probing Strategies

Ideally, you want the probing strategy to map each key k to a random
permutation of the indices [m] =0, 1, ..., m — 1. In practice, this is
easier said than done, and you can use simpler strategies. The most
straightforward approach is linear probing. This strategy is far from a

42

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

random permutation but is simple to implement. You search linearly from
the index to get from the key to the end of the table, and then you wrap
around and start from the beginning of the table.

p(k,i)=(k+i)modm

I assume that you are using table sizes that are powers of two, which
means that you can replace modulus with masking and implement

probing like this:

static inline unsigned int
p(unsigned int key, unsigned int i, unsigned int m)
{
return (key + i) & (m - 1);
}

There are two notable drawbacks to linear probing. First, if you have
a collision, you not only collide on the first index but also on the entire
probe sequence. This isn’t that different from chaining, where you will also
need to put colliding keys in the same list, but it is not ideal. You would
expect that searching for an available bin would be faster if each key had
a different probe sequence. Second, probe collisions will tend to cluster.
If the linear probe sequence from one index overlaps the probe sequence
starting at another index, the two probes will come into conflict. Keys that
map to either index must probe to the end of the block of occupied bins.

Another strategy closer to the goal of getting a random permutation
for each key is double hashing. The idea here is to use two different
hash functions: one that maps the key to the initial index and one that
determines the probe sequence. The form of the probe is this:

p(k,i)=h,(k)+i-h,(k)modm

43

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

For now, you can assume that the keys are already hash keys and thus
uniformly distributed, so h, would always be the identity function. For h,, you
need some value that determines the probe sequence, and you have to make
sure that it gives you a permutation of the numbers from 0 to m — 1. you get a
probe that covers the entire range whenever m and h,(k) are mutual primes
(i.e., their greatest common divisor is 1). Since you use hash table sizes that
are powers of two, any hash function that gives you odd numbers will work,
so a simple approach is to turn the key into an odd number by shifting the
bits one position and setting the least significant bit to 1:

static inline unsigned int
p(unsigned int key, unsigned int i, unsigned int m)

{

unsigned int h1 = key;
unsigned int h2 = (key << 1) | 1;
return (h1 + i*h2) & (m - 1);

As a fast but crude evaluation of the two strategies, you can sample
the probe lengths in tables where you have inserted random keys. For
the experiments in Figure 3-1, I built tables of size m = 128 and inserted
n elements with n = 32, n =64 and n = 96. I then sampled 1,000 random
keys and measured the probe length for each. I also plotted the number of
linked list cells examined in the chaining collision resolution strategy for
comparison. As you can see, the probe lengths do not differ much when n
is relatively small compared to m, but as n approaches m, the distribution
of probe lengths for the linear probe shifts farther to the right than the
double hashing. For both probing approaches, the open addressing
strategy generally involves more probes than the chaining approach.’

'But don’t write off open addressing because of this. The operations on the linked
lists are usually more complicated and involve allocation of multiple memory
blocks, which is less cache efficient. If you can keep the probe length small, open
addressing can be more efficient than chaining.

44

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

Open addr. LP A

Open addr. DH {

Chained 1

Open addr. LP A

Algorithm

Chained A

Open addr. LP A
Open addr. DH

Chained A

Figure 3-1. Probe lengths for linear and double hashing probing

Open addr. DH {

f55=?

ce

¥9

T R T T

l' ‘u
g

96

10 20 30
Probe length

o

40

45

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

Load and Performance

With conflict resolution strategies, you do not need to avoid collisions
entirely, but collisions will still incur a performance penalty. If you can
avoid collisions altogether, all operations take constant time, but as you
start filling the table, the number of collisions will inevitably accumulate.
The running time for each operation will degrade accordingly.

As a measure of how full a table is, you can define its load factor.

Definition: Given a hash table with m slots that store n elements, you
define the load factor a for the table as o = n/m.

This section considers the relationship between the running time and
the load factor of a table using one of the two conflict resolution strategies
you implemented. There are many theoretical results for worst-case and
average-case performance of these strategies as functions of a; the proofs
can be somewhat involved, so I do not show them here. Instead, I refer to
algorithmic textbooks such as Sedgewick (1998)? Chapter 14 and Cormen
et al. (2009),® Chapter 11, and the references in these.

I do, though, consider the consequences of the theoretical results and
then explore performance through experiments.

Theoretical Runtime Performance

The two resolution strategies have different performance penalties

as functions of the load factor. You should not be surprised by this,
considering that chained hashing makes it impossible to fill a table to the
point where you cannot insert more keys. You can always add new keys to
one of the linked lists, regardless of how many keys you previously inserted

2Sedgewick, R. Algorithms in C++, Parts 1-4: Fundamentals, Data Structure,
Sorting, Searching, Third Edition. (1998). Pearson Education

3Cormen, TH., Leiserson, CE., Rivest, RL. and Stein, C. Introduction to Algorithms,
Third Edition. (2009). The MIT Press

46

https://doi.org/10.1007/979-8-8688-0826-5_14
https://doi.org/10.1007/979-8-8688-0826-5_11

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

into the table. With open addressing, you eventually run out of bins to
put keys in. At this point, probing will either fail or enter infinite loops,
depending on the implementation.

Chained Hashing

Chained hashing is the most straightforward strategy. The load factor for a
chained hashing table is the average number of elements stored per linked
list, assuming that keys are uniformly distributed. This follows from the
observation that each bin is equally likely to be hit by a key if the keys are
perfectly randomly distributed, and you map random keys in the key space
into random bins in the table. From this observation follows:

Property (Theorem 11.1 Cormen et al): In a hash table in which
chaining resolves collisions, both a successful and an unsuccessful search
take time @(1 + a), on average, under the assumption of uniform hashing.

If you are unfamiliar with ©-notation, @(f(n)) means that the running
time of an algorithm tends to ¢ - f{n) for some constant c as n tends to
infinity. The @-notation is part of the terminology and notation known
as “big-O” notation, where O-notation is most frequently used. If you say
an algorithm runs in time O(f{(n)), you mean that for some ¢, c - f{n) is an
upper bound for the running time as »n tends to infinity. Similarly, you use
Q(f(n)) to indicate that c - f{n) is a lower bound for the running time of
the algorithm as n — . Now, @(f(n)) means that the algorithm has both
O(f{n)) and 22(f(n)), that is, the running time of the algorithm will tend to
¢ - fln)) for some constant c.

When using chaining conflict resolution, you are fundamentally
relying on linked lists for your table. You use m of them, so you can shave
off a factor of m in the running time compared to using a single linked list.

47

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

Open Addressing Hashing

With open addressing conflict resolution, you cannot reason as directly
about conflicts as you can with chaining. Collisions can interfere; the
probe starting at one table bin will overlap the probe beginning at another
bin. There are theoretical results for the expected running time for table
operations. The proofs are beyond this book, but these results show that
the probe length depends on whether a search is successful (the key you
search for is in the table) or not (the key you seek is not in the table).
Property (Property 14.3 Sedgewick): When collisions are resolved with
linear probing, the average number of probes required to search in a hash

1 1
table of size m that contains n = am keys is about —(1 + —)

l-a
andl 1+ 1 5
2 (1-a)

for hits and misses, respectively.

Property (Property 14.4 Sedgewick): When collisions are resolved with
double hashing, the average number of probes required to search in a hash

1 1
table of size m that contains n = am keys is about —log(l—j
a -a

1
and —
l1-a

for hits and misses, respectively.
I plotted these theoretical results in Figure 3-2.

48

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

Hit Miss

-
o
L

[
]
'
]
]
[
]
]
'
]
1
]
[
]
I
'
1
1
[
I
.

Number of probes
[6)]

Strategy — Double hashing --- Linear probing

Figure 3-2. Theoretical probe length as a function of load

While the running time for chained collision resolution tends to be
linear as the load factor grows, even when « > 1, the running time for open
addressing tends to infinity as @ approaches 1. This is true only if you
ignore the actual size of the hash table and do not discover infinite loops.

Suppose the table has size m, and you avoid infinite loops when probing
for an empty slot. In that case, you should never have probes longer than
m, so in practice, the running time for open address conflict resolution
tends toward m as the load factor tends toward 1. Of course, as a tends to 1,
the chained collision resolution doesn’t tend toward linear running time in
a practical sense either. As a — 1, the probe length tends toward 1 as well,
since, with z keys in a table of size m, you expect the average linked list to
have length a = n/m, so you expect, on average, to have probe length 1. As
the load factor tends toward 1, the chained hashing strategy degrades more

49

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

gracefully than the open addressing strategy. With the open addressing
strategy, the double hashing strategy will give you shorter probes than
linear probing.

Using the implementations from the previous section, you can validate
the theoretical results experimentally. I constructed tables of size m = 1024
and varied n from 32 to 900 (with an « from 0.03125 to 16.0) and counted
how many probes each method needed when looking up a random key
(which, since the space of possible keys is much larger than 7, is most
likely a miss). I plotted the results in Figures 3-3 and 3-4, with the full range
of load factors shown in Figure 3-3 and the load factors smaller than 1/2
shown in Figure 3-4 (in the full range, the results for small load factors are
drowned out by the long probes at high load factors). The lines are loess-
fitted smoothings of the data, roughly showing the mean values along the
load axis. The experimental results show the same pattern as you would
expect from the theoretical results. The chaining approach has the probe
length grow linearly as a function of the load factor. In contrast, the open
addressing probe length grows super-linearly while approaching 1, with
the linear probe strategy growing faster than the double hashing strategy.

50

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

51 . —
4 1 » t

(@]
31 Y IS S FRSY Y TR N RN 2 -
3
o

24 en 3TI ASERTFATIPSESCRNSISNS

11 GaeCERESDASIRIRATCELIDEISRSYSR

30+

2 9
I : g
S 20 N
-~ . o
() . Q
2 AP
a 1] SRRSO N
0- el it il il i e s acsacsanceaacecnas |]
300 —
2001 8
[0}
=)
L)
- Q
PR =
100 1 LR -
.-- el

PR

.o s s

0d commann TS SRS s Y 2 TY

0.00 0.25 0.50 0.75

Figure 3-3. Number of probes for different load factors

51

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

4.

3 RPN R o
=
=8
=]
@

2 LMo oe %ML WE R[S

1{#ERVT T F SR ET T E

6.

z g
[®)] o)
C >
Q 4 £ o 4 T e " 8_
Q g
-8 s ¥ & T 9 - ‘" U
o T

2 TR I N I BT N S R

m W W 8 v WP P» & N N YOS

101 o
°
@
=]

Y Q
aQ
. . a
5 . . e . e '_
. . P— o

e . r L (1} - -y - t 4

- -~ "we - -~ -~ e » - te (34 ”»

- w -| - W = - w - e - - » - -~

0.1 0.2 0.3 0.4
Load

Figure 3-4. Number of probes for different small load factors

In Figure 3-5, the dots are the mean probe lengths for each load factor,
and the dashed lines are the theoretical expectations.

52

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

o %o .-
i -
1.75 .- .
”
P °
[] ‘/’ C:?_
1.50 4 - 3
o*° ’,’. o, E
AR 2
°
1.25 °-
. .,‘,
o/'. *
2 é
1.004 L
8- .
.
1
) o
_'_C_‘ 6 1 . / -9
&) , S
& I S
K o, >
° a
O 4 oo, g
s S =
7
a ’.,’ T
-e
21 e [._.—.—.’.—6 [] b
.....—.-.'.. -
°
60 1
@]
®
40 3
8
o/ | &
1 -
° —
201 o |5
.
‘.’
04 ce00000000000000 00 *®

0.00 0.25 0.50 0.75
Load

Figure 3-5. Mean probe lengths vs. theoretical probe lengths

Probe lengths aren’t everything, however. The cost involved with each
probe matters as well. For linked lists, there is some overhead involved,
although it is relatively minor, and this overhead might make open
addressing more appealing as long as you keep a < 1. Also, while the
double-hashing strategy gives you shorter probes, this comes at the cost of

53

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

evaluating two hash functions instead of one. On top of this, there is cache
efficiency to consider. With chained hashing, you need to allocate list links,
and all links in any given list are not necessarily found close together in
memory. With double hashing, you jump around in the table of bins, and
this is not cache-efficient. You search bins close together in memory with
linear probing, which might compensate for the longer probe sequences.
The optimal strategy might very well depend on your application and can
only be examined by considering actual implementations.

Experiments

To evaluate the time usage for the three different collision resolution
methods, I once again constructed tables of size 1024 (a power of two since
you map keys to bins by masking) and then inserted n elements, varying n
from 32 to 900 (with an « from 0.03125 to 16.0). After populating the tables,
I performed 1,000 lookups with random keys (which means that you are
vastly more likely to have misses in the search than hits, thus providing
conservative runtime results). Figure 3-6 shows the results for the entire
range of load factors. The x-axis is on a log scale, which is why the chained
collision resolution strategy does not appear as a line.

54

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

0.00020 1

0.00015 1
£ i
e 0.00010 1

0.00005 A

; s 5 ¢ :\ [} ;:wv;--lﬂw'""“
0.00000 A
0.1 1.0 10.0
Load
Algorithm @ Chained Open addr. DH Open addr. LP

Figure 3-6. Lookup time usage as a function of load

Overall, you see the degradation in performance in open addressing
collision resolution as the load factor approaches 1, while the chained
collision resolution degrades more gracefully. Also note that the linear
probing strategy gets slower than the double hashing strategy as the load
factor approaches 1.

You might expect shorter probes with double hashing, but as observed
in the previous section, this comes at the cost of more expensive probe
operations. Consider low load factors; see Figures 3-7 and 3-8, where the
latter displays the same information as the former but is less cluttered
since it only shows the mean time for each load factor instead of each
replication. These plots focus on small load factors. You can see that at

55

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

small load factors, a < 0.2, the linear probe, with its small computational
overhead, is the fastest. The double hashing implementation overtakes
linear probing around « = 0.45, but long before that, at « = 0.2, the linked
list chaining is fastest (and remains so as a grows).

0.0101

0.008)
) ,
£
|_

0.006 1

0.004 1

0.0 0.1 0.2 03 0.4
Load
Algorithm == Chained Open addr. DH Open addr. LP

Figure 3-7. Lookup time usage as a function of load

56

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

0.0121

0.010 1
(O]
£
F 0.008 - :

0.006 5

0.004{ =

0.0 0.2 0.4 06
Load
Algorithm == Chained Open addr. DH Open addr. LP

Figure 3-8. Mean lookup time usage as a function of load

The exact ranges of load factors at which the different conflict
resolution methods dominate in runtime will depend on the
implementations, runtime systems, and the hardware you run the
experiments on. In general, however, at small load factors, linear probing,
with the lowest overhead, will be best. As @ approaches 1, the chaining
approach will be best (and it will, naturally, be the only approach that
works for a > 1).

However, it is only partially fair to say that chained hashing is out-
competing the open addressing tables just from these experiments. You
should also consider cache efficiency. In these experiments, the tables are
all relatively small, so you do not see a cache effect, but for larger tables,
you will. Dynamically allocated links for the lists in chained hashing are
non-optimal for cache usage unless you implement your lists to explicitly

57

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

avoid it. Allocating links to minimize cache misses is far from trivial. You
will need to allocate memory pools for the links, and you will want to have
separate pools for each bin, so searching through the keys in any given
bin will involve searching in a list where the links are located close to each
other in memory. If you jump around too much in memory as you scan
through a list, you will see many cache misses, and the performance will
degrade accordingly.

Because the bins in open addressing tables are allocated in contiguous
memory locations, caching performance is likely better. If all your bins fit
into a cache line, open addressing is very efficient. If they do not, linear
probing will have fewer cache misses. As you scan linearly through the
bins, your probes access nearby memory locations, which is optimal
for cache efficiency. With double hashing, you will jump around in
memory; you would, therefore, expect more cache misses. Although the
probe lengths might be longer for linear hashing, the improved cache
performance can easily compensate for this. In Figure 3-9, I plotted the
runtime for larger table sizes (all with load 0.5). Here, you can see that
open addressing outperforms chained hashing once the tables are large
enough where cache efficiency is an issue, even in the load range where
chained hashing outperforms open addressing for smaller tables.

58

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

1e-04 1
(O]
£
|_

5e-05 1

0e+00{

0 20000 40000 60000
Table size
Algorithm === Chained Open addr. DH Open addr. LP

Figure 3-9. Table size vs time

Many considerations will affect the performance of your hash tables,
and there are many tradeoffs. There isn’t one best solution, as it depends
on your application. If the performance of a hash table is critical to your
application, it might be worthwhile to experiment with different solutions
and engineer your table to be optimal for the specific usage you will
subject it to.

Conclusion

You have now seen techniques for alleviating the problem of collisions, at
least when you do not have too many of them. With the chained hashing
strategy, you can in principle deal with any number of collisions, but

the performance will degrade linearly with the number of elements you

59

CHAPTER 3 COLLISION RESOLUTION, LOAD FACTOR, AND PERFORMANCE

put in a table. With open addressing hashing, the performance degrades
dramatically after a point. With this strategy, you can never deal with more
elements than you have bins. If you can deal with some collisions, but not
too many, you need a way to scale the size of your tables with the number
of elements they contain. That is the topic of the next chapter.

60

CHAPTER 4

Resizing

If you know how performance degrades as the load factor of a hash table
increases, you can use this information to pick a table size where the
expected performance matches your needs—presuming that you know
how many keys the table will need to store. If you do not know the number
of elements you need to keep, n, you cannot choose a table size, m, which
ensures that a = n/m is below a desired upper bound. In most applications,
you do not know n before you run the program. Therefore, you must adjust
m as n increases by resizing the table.

You can download the code from this chapter from https://github.
com/mailund/JoyChapter4.

Whenever you resize a hash table from size m,, to m,,,, you need
to create a new array of length m,,,,. After that, you need to copy all the
elements from the old table’s bins into the new table’s bins (where the
keys are expected to be more spread out if the new array is larger than
the old array). Allocating the new array and initializing its bins takes time
0O(m,,,) and moving elements from the old array to the new also takes time
O(n) = O(a - My + myy). If the load factor is bounded by some constant,
resizing a table takes time proportional to the new table size. This runtime
cost tells you that you cannot be too aggressive with resizing. If you aim to
keep the load factor small to guarantee constant time lookups, you should
not expect to pay for this through linear time updates.

© The Editor(s) (if applicable) and The Author(s), 61
under exclusive license to APress Media, LLC, part of Springer Nature 2024
T. Mailund, The Joys of Hashing, https://doi.org/10.1007/979-8-8688-0826-5_4

https://doi.org/10.1007/979-8-8688-0826-5_4#DOI
https://github.com/mailund/JoyChapter4
https://github.com/mailund/JoyChapter4

CHAPTER 4 RESIZING

Amortizing Resizing Costs

Resizing a table takes time O(m,,,,) (as long as a < 1), so you cannot
guarantee an expected constant running time for all operations if insertion
or deletion can trigger resizing. Most operations might take constant
time—or be expected to be constant time, as the actual time depends on
the length of linked lists or the length of open addressing probes. If an
operation requires that you resize the table, however, that operation will
not run in constant time. Instead of ensuring constant time operations,
you can achieve something almost as good; that you can always perform n
operations in expected time O(n).

Such a guarantee is known as an amortized running time.' The way
you amortize the resizing of hash tables is similar to how you implement a
stack using a “growable array.” This structure is simpler than a hash table,
so you first see the trick there, and then take it to the hash table afterwards.

The abstract interface of a stack allows you to check if it is empty, push
elements on it, and pop elements from it. The interface could look like this:

struct stack *new stack(int initial size);
void free stack(struct stack *stack);

bool is empty(struct stack *stack);
void push(struct stack *stack, int value);
int pop(struct stack *stack);

! Strictly speaking, amortized means that you write off expensive operations

over time, and this suggests that cheaper ones follow costly operations. Doing

this would not give you the runtime guarantee you are after, however. If you

stop an algorithm right after an expensive operation and do not follow it with

a series of cheap operations, you will be in trouble; you will not be meeting the
runtime guaranteed. What you do with amortized running time is save up some
“computation” when doing cheap operations such that you can guarantee that you
have enough computation in your “bank account” when you need to pay for an
expensive operation.

62

CHAPTER 4 RESIZING

If you implement a stack using an array, the stack structure will hold
this array, and you can keep track of how many elements are in the stack to
access the top of the stack.

struct stack {
int *array;
unsigned int used;

b

If used moves past the size of the array, however, you need to resize it.
For this, you need a growable array.

A growable array is a data structure that you can append to in
amortized constant time as well as update and access elements in worst-
case constant time. Updating and accessing elements work just as for
arrays; you keep values in contiguous memory and can access them
through a pointer and an index. Because you use contiguous memory,
appending might have to add an element that doesn’t fit in the space you
have allocated. When this happens, you need to resize the underlying
allocated array.

To keep track of both the size of the array and the number of used
entries, you can update the stack with an additional counter:

struct stack {
int *array;
unsigned int size;
unsigned int used;

};

Creating and deleting a stack is straightforward, and similar to what
you have done with hash tables so far:

struct stack *
new_stack()

{

63

CHAPTER 4 RESIZING

struct stack *stack = malloc(sizeof *stack);
*stack = (struct stack){.size = 1,

.used = 0,
.array = malloc(sizeof *stack->
array)};
return stack;
}
void
free stack(struct stack *stack)
{
free(stack->array);
free(stack);
}
Checking if a stack is empty is even simpler:
bool
is_empty(struct stack *stack)
{

return stack->used == 0;

}

For pushing and popping, you mostly do what you would expect—add
an element at index used or return the element there—but you might also
trigger a resize operation if you have grown to the point where there is
no additional space, or if you have shrunk the stack so that you can use
less memory.

void
push(struct stack *stack, int value)

{
if (stack->used == stack->size)
resize(stack, 2 * stack->size);

64

CHAPTER 4 RESIZING

stack->array[stack->used++] = value;

}

int

pop(struct stack *stack)

{
int top = stack->array[--(stack->used)];
if (stack->used < stack->size / 4)

resize(stack, stack-»>size / 2);

return top;

}

The choice of when to shrink the array is described soon.
Resizing the array is a simple call to realloc():

static void

resize(struct stack *stack, unsigned int new_size)
stack->array = realloc(stack->array, new size * sizeof
*stack->array);
stack->size = new_size;

When an append triggers a resize, you double the allocated memory.
You use realloc() to automatically free the old array and automatically
copy the old elements into the new when necessary. When you resize hash
tables later, you need to move elements because you also need to map
the keys to new bins. You cannot use realloc() so easily, but you can
implement resizing by explicitly moving elements.

Growing the size by a constant factor—two when you double the
size—is crucial for getting amortized constant time. If you instead chose
to increase the length just enough to store the next element, resizing
becomes prohibitively expensive. Each time you resize the array, you need

65

CHAPTER 4 RESIZING

to allocate new memory and move all the existing values to the new array.
This takes time proportional to the length of the array. If you started with
an array of size 1 and pushed »n elements onto the array, you would use
timel+2+--+n—1+n=n(n-1)/2=0(n?.

If you double the array size each time you grow, it lets you append m
elements in time O(m). In general, increasing the array size by any fixed
factor f > 1 will do this; I return to this later in this chapter. I first consider
doubling the size. To see that m appends can be done in time O(m),
consider the appends between two successive resizing calls. Let the size
of the append just after the first size increase be m and the size after the
second be 2m. When you increased the size to m, you did this from m/2
and a full array, so the state just after the increase has a half-full array (that
is, the array has length m and contains m/2 elements). You need to append
an additional m/2 elements to get to the next resizing. The first m/2 — 1
of these operations takes constant time. The last takes constant time for
appending the last element, then uses time 2m for allocating a new array,
and finally uses time m for copying all the items to the new array. So in
total, the m/2 operators take time m/2 — 1 + 1 + 4m/2 + 2m/2 =7m/2,
which is in O(m).

There is another way to put it: you can make each append cost seven
“computations.” Of these seven, one is used on the append, and six are
put in the bank. After the m/2 — 1 appends, the bank contains 6(m/2 — 1)
computations. If you include the seven from the last append, making this
operation pay one “computation” immediately and put the remaining six
in the bank as the other operations did, you have 6m/2 left in the bank
before you resize. That number of banked operations is what you need to
allocate a new array of size 2m (4m/2) and copy m elements (2m/2).

66

CHAPTER 4 RESIZING

Resizing is illustrated in Figure 4-1. Here, the first (dark gray) block
represents the elements that you copied from the previous m/2-sized array
into the size m array. The next block (light gray) is the m/2 long block into
which you can insert elements. When you have inserted all these, you must
allocate the 2m sized array and move both dark and light gray elements, m
elements in total, to the new array.

T
| |
~
N

m/2

1) Insert m/2 new elements =

| 3

2) Then allocate length 2m array

2m

(I
3

3) And move n elements to the new array

Figure 4-1. Illustration of the steps to go from one enlargement of the
array to another

Figure 4-2 shows the running time when growing an array each time
you fill it up. The graph shows the number of operations spent on actually
inserting elements, allocating memory for them, and moving them from
the old array to the new, and then the cost of all the operations combined
in the total running time. The linear upper bound 7m, which you just
derived, is shown as a dashed line.

67

CHAPTER 4 RESIZING

3000 1
2000 1
1000 1
0-
0 100 200 300 400 500
operations — Total ---- Moves --- Allocations - - Insertions

Figure 4-2. Illustration of the running time when growing an array
by doubling it each time it gets filled

This analysis assumes that you move from one resize operation to the
next as early as you can, by appending m/2 times in a row. If you include
the other operations, and let them put elements in the bank, you only end
up with a larger account before you need to resize.

Growing the array suffices if you only want to ensure that you can store
all the elements you ever need to hold, but it can be a waste of memory
if you only hold this maximum number of items early in a program and
hold much fewer items after that. As an example of this, you can introduce
a “pop” operation that removes the last element and shrinks the array to
reduce memory usage. For shrinking, you need to insert coins in the bank
when popping to pay for resizing and get amortized running time.

You can halve the length of the array when you have popped the array
to a sufficiently small size and choose the quarter of the allocated size for
“sufficiently low.”

With this choice, you can pop m times in time O(m). Consider the
pops between two resize operations. Let the first resizing be one that
leaves the length of the array at m and the second one that reduces the size

68

CHAPTER 4 RESIZING

to m/2. Between these two resize operations, you must have appended
m/4 elements. The resize to m would have left the table containing m/2
elements (regardless of whether the resize operation grew or shrunk
the array), and you do not shrink the array to length m/2 before it only
contains m/4 elements.

If you move directly from the m’th resize event to the m/2 resizing, you
must have performed m/4 pops where the first m/4 — 1 involves m/4 — 1
constant time pops and the last involves one operation for popping and
then m/2 (for allocating the new array) plus m/4 (for copying elements), so
in total m/4 — 1 + 1 + 2m/4 + m/4 = m. Using the banking analogy, you can
charge each pop four, one for the pop and three for the bank. If you do this,
you have 3m/4 in the bank when you need to resize and copy. Resizing
costs 2m/4 and copying costs m/4.

Now consider the hash tables. The resizing strategy for those is similar
to the array. The thresholds for when you grow or shrink a table can be the
same for chained hashing as for the stack: you grow when you have “filled”
the table by having a load of @ = 1, and you shrink it to half that size when
the load is a quarter, al/4.

For open addressing hashing, you cannot allow the hash table to fill
up before you grow it. The performance degrades dramatically as the
load factor approaches 1. You need to resize the tables before a gets too
close to 1. Any fixed load factor will do, but as an initial choice, you grow
tables when a = 1/2, which gives you a new load factor of 1/4, and shrink
them when a = 1/8, which also gives you a load factor of 1/4. This will
keep the load factor for any resizable tables between 1/8 and 1/2, and
those load factors should provide excellent performance, according to the
calculations in the previous chapter.

The runtime analysis for resizing works analogous to the analysis
for arrays. You have to bank a bit more for each cheap operation, but
otherwise, the analysis is the same. Between growing a table from
size m to size 2m, you need to increase the number of keys stored in
the table from m/4 to m/2 (m/4 constant time operations) and then

69

CHAPTER 4 RESIZING

allocate the new table (2m) and copy the elements (/2), for a total of
m/4 +8m/4 +2m/4 =11m/4. So, you can charge each insertion 11. The
m/4 insertions cost m/4 directly and leave 10m/4 in the bank, while
allocating the new array costs 2m, which leaves m/2 in the bank. You can
use this to pay for the m/2 elements you need to copy.

For deletion, consider the operations between resizing to m and
shrinking to m/2. Here, you need to remove m/8 elements (after resizing
to size m, the table contains m/4 elements and you shrink when you reach
m/8). The resizing costs m/2 and the copying costs m/8, so during the m/8
delete operations, you need to save up 5m/8. If you charge each delete
6m/8, you can pay for the deletion and save many computations for the
resizing.

A final modification to the hash tables compared to the stack is that
you will give them a minimum size. This size could be one, as the stack, but
it does not make much sense to resize the tables when they are tiny. So,
you give them a minimal size, for example

#define MIN SIZE 8

New tables will have at least this many bins, and you will never shrink
them below this size. This doesn’t change the amortization calculations,
but you avoid allocating and reallocating small blocks of memory.

Resizing Chained Hash Tables

The overall pattern for resizing hash tables is the same for the different
strategies. You check a used variable against the size variable after each
insert or deletion. If you trigger a resize, you allocate a new array of bins,
initialize it, and copy all elements from the old array to the new one. The
details differ slightly between chained hashing and open addressing,
however, so let's consider the two strategies separately. Let's start with
chained hashing.

70

CHAPTER 4 RESIZING

First, you need to make sure you keep track of the size and the number
of keys stored in the table. For this, you need the two variables: size
and used.

struct hash table {
struct link **bins;
unsigned int size;
unsigned int used;

b

When you create a table, you initialize it with at least MIN_SIZE bins,
and you store that in its size, but otherwise, there is not much change
compared to the previous chapter.

static void init bins(struct hash table *table)

{
for (LIST bin = table->bins; bin < table->bins + table->size;
bin++) {
*pin = NULL;
}
}

struct hash table *
new_table()
{
struct hash table *table = malloc(sizeof *table);
struct link **bins = malloc(MIN SIZE * sizeof *bins);
*table = (struct hash_table){.bins = bins, .size = MIN SIZE,
.used = 0};
init bins(table);
return table;

}

71

CHAPTER 4 RESIZING

You might trigger a resize every time you insert or delete a key. You
only want to risk this when you actually insert or delete a key, so you first
check if the key in question is in the table, and if it is, you will trigger the
resize operation after the insertion or deletion. With the stack, you resized
before inserting, but it doesn’t really matter with a chained hash table
since you cannot run out of bins, and it is easier to insert or delete first
since you have the bin for the key as part of the lookup operation, and this
bin would change in a resize.

So, insertion and deletion can be implemented like this:

void
insert key(struct hash table *table, unsigned int key)
{
LIST bin = get key bin(table, key);
if (!contains_element(bin, key)) {
add_element(bin, key);
table->used++;
if (table-»>size == table->used) {
resize(table, 2 * table->size);
}
}
}

void
delete key(struct hash_table *table, unsigned int key)
{
LIST bin = get key bin(table, key);
if (contains_element(bin, key)) {
delete element(bin, key);
table->used--;
if (table-»>size > MIN SIZE && table->used
< table->size / 4) {

72

CHAPTER 4 RESIZING

resize(table, table-»>size / 2);
}

}
}

When resizing, you need to allocate a new array for the bins and then
copy all the links from the old bins to the new ones. You can split this into
two functions. The first function allocates the new bins and calls the other

to move the links:

static void
resize(struct hash_table *table, unsigned int new size)

{

// Remember these so we can copy and free the old bins
struct link **old bins = table->bins, **old from = old bins,
**0ld to = old from + table->size;

// Set up the new table

table->bins = malloc(new_size * sizeof *table->bins);
table->size = new size;

init bins(table);

// Copy links from the old bins to the new ones
copy_links(table, old from, old to);

// Free the old bins memory
free(old bins);

Finally, you can copy the links from the old array to the new one by

moving each link:

static void
copy links(struct hash table *table, LIST from, LIST to)

{

73

CHAPTER 4 RESIZING

for (; from < to; from++) {
while (*from) {

struct link *link = *from;
// Remove the first link from old bin by replacing
// it by its next.
*from = link->next;
// Connect the link to the new bin.
LIST new_bin = get key bin(table, link->key);
link->next = *new_bin;
*new_bin = link;

Resizing Open Addressing Hash Tables

For open addressing, there is a tiny complication: deleted elements still
take up space in the table. When you insert elements, you increase the
load, but when you delete them, you only “kinda” decrease it. When

you delete an element, you mark its bin as “free,” but it will still be part

of the probes. So, if you are searching for a free bin, the load has indeed
decreased, but if you are searching for a key, it hasn’t. The load factor
indicates how many keys a table holds, but deleted elements slow down
contains_key and, consequently, both insertion and deletion operations,
as much as keys that are still in the table.

To know when to grow the table to ensure good performance, the used
counter has to count both the number of keys in the table and the number
of deleted elements. This means that you cannot decrease used when you
delete elements, which is a problem if you want to shrink tables as well as
grow them.

74

CHAPTER 4 RESIZING

You can get around this issue by using two counters instead of one. The
first, used, counts how many bins are part of the probes—either because
a bin contains a key or because it holds a key that was previously deleted.
The second, active, only counts the number of bins that hold an actual
key. The updated hash_table structure will look like this:

struct hash_table {
struct bin *bins;
unsigned int size;
unsigned int used;
unsigned int active;

b
You can create and free tables like this:

struct hash _table *

new_table()

{
struct hash table *table = malloc(sizeof *table);
init_table(table, MIN SIZE, NULL, NULL);
return table;

}

void
delete table(struct hash table *table)
{

free(table->bins);

free(table);

}

You will learn more about the init_table() function later, but it will
set up the bookkeeping in the hash table and allocate the bins to the size
given as its second argument. The third and fourth arguments are used
when you resize a table.

75

CHAPTER 4 RESIZING
Use the same two helper functions as before:

struct bin *
find key(struct hash_table *table, unsigned int key)
{
for (unsigned int i = 0; i < table->size; i++) {
struct bin *bin = table->bins + p(key, i, table->size);
if (bin->key == key || !bin->in_probe)
return bin;

}
// The table is full. This should not happen!

assert(false);

}

struct bin *
find_empty(struct hash_table *table, unsigned int key)

{
for (unsigned int i = 0; i < table->size; i++) {
struct bin *bin = table->bins + p(key, i, table->size);
if (bin->is_empty)
return bin;

}
// The table is full. This should not happen!

assert(false);

}

They don’t change just because you keep track of the table size, but
this time you should never get to a full table, so the assert()s are only
for show.

Looking up a key is also the same as in the previous chapter:

bool
contains_key(struct hash_table *table, unsigned int key)

{

76

CHAPTER 4 RESIZING

struct bin *bin = find_key(table, key);
return bin->key == key && !bin->is_empty;

}

When you insert a key, there are three cases to consider. If the key is
already in the table, you leave the counters alone. You also don’t check if it
is time to resize the table, since nothing has changed since the last update
operation.

Ifyou insert a key into an empty bin, you have one of two cases: the bin
could be (an empty) part of a probe, in which case you have to increase
the number of active bins but not the number of used bins—the bin was
already in use, after all. Or, the bin could be outside a probe, in which case
you need to increment both active and used.

Once you insert a key, you need to check if the load is more than half,
and if it is, you grow the table to twice its current size.

void
insert key(struct hash table *table, unsigned int key)

{
if (!contains key(table, key)) {
struct bin *key bin = find_empty(table, key);

table->active++;
if ('key bin->in_probe)
table->used++; // We are using a new bin

*key bin = (struct bin){.in probe = true, .is empty =
false, .key = key};

if (table->used > table->size / 2)
resize(table, table-»>size * 2);

77

CHAPTER 4 RESIZING

When deleting, you do nothing if the key is not already in the table.
Otherwise, you remove it, and you have to decrease active and but not
used, since the bin that contained the key is still in a probe. Then, you
check if it is time to resize—if the load is less than 1/8 and the table is
above its minimal size.

void
delete_key(struct hash_table *table, unsigned int key)
{
struct bin *bin = find_key(table, key);
if (bin->key != key)
return; // Nothing more to do

bin->is_empty = true; // Delete the bin
table->active--; // Same bins in use but one less active

if (table-»active < table->size / 8 8& table->size >
MIN SIZE)
resize(table, table-»>size / 2);

The resizing function is relatively simple since the real work is done
ininit table().You get hold of the old bin array, so you can copy bins
and free memory. Then you call init_table() to update the table and
allocate new bins, and in this call, you provide the range of old bins so
init table() can insert them. After that, you free the old array.

static void
resize(struct hash_table *table, unsigned int new size)
{
//Remember the old bins until we have moved them.
struct bin *old bins begin = table->bins,
*old bins end = old bins begin + table->size;

78

CHAPTER 4 RESIZING

// Update the table and copy the old active bins to it.
init table(table, new_size, old bins_begin, old bins end);

// Finally, free memory for old bins
free(old bins_begin);

The final function, init_table(), should also look mostly familiar. You
allocate bins and initialize them as empty, just as in the previous chapter.
Then you run through the old bins, and every time you see a non-empty
bin, you use insert_key() to add them to the new table. Since the table is
initialized with used = 0and active = 0, inserting the keys this way takes
care of the bookkeeping.

static void
init table(struct hash table *table, unsigned int size, struct
bin *begin,

struct bin *end)

// Initialize table members
struct bin *bins = malloc(size * sizeof *bins);
*table =
(struct hash _table){.bins = bins, .size = size,
.used = 0, .active = 0};

// Initialize bins

struct bin empty bin = {.in probe = false, .is empty = true};

for (unsigned int i = 0; i < table->size; i++) {
table->bins[i] = empty bin;

}

// Copy the old bins to the new table
for (struct bin *bin = begin; bin != end; bin++) {

79

CHAPTER 4 RESIZING

if (!'bin->is_empty) {
insert key(table, bin->key);
}
}
}

Theoretical Considerations for Choosing
the Load Factor

You, somewhat arbitrarily, chose to grow or shrink the table when the
load factor reached 1/2 or 1/8. In the amortized analysis of the running
time, you saw that this gave you a linear running time for doing » insert
or delete operations, but we didn’t explore how the value of « affects this
running time.

Now consider the general case of growing a table when the load factor
reaches some a. The case for shrinking the table is similar: before you
grew the table to size m, it had size m/2 and contained am/2 elements
and (1 — a)m/2 empty cells; see Figures 4-3 and 4-4. The next time you
grow the table, you will have am elements, so you must have inserted
am — am/2 elements. The resizing then takes 2m operations, and you
move am elements to the new table. In total, you do m(2a + 2 — a/2)
operations, and you must pay for it in the am — am/2 insertion operations.
Dividing one by the other, you get this:

m(2a+2-a/2) 20+2-o/2

m(o—a/2) o—o/2

This is the coefficient for the amortized line in the analysis for general
a thresholds.

80

CHAPTER 4 RESIZING

1) Insert am - a/2 m new elements

2) Then allocate length 2m array

b |
= >

am

3) And move an elements to the new array

Figure 4-3. Resizing when you only fill the array up to an elements
before resizing

40

30 1

Time

201

10

0.25 0.50 0.75 1.00
o

Figure 4-4. The theoretical running time for growing a hash table, as
a function of the load factor threshold, a

81

CHAPTER 4 RESIZING

In Figure 4-5, I plotted the theoretical running time for growing a table
as a function of a. The figure implies that the higher the load, the better the
performance. This shouldn’t surprise you. The more you fill up the array
before you resize, the less relative time you spend on the resizing. The
figure is misleading, however. It does not take into account the costs of the
probe operations, which also depend on the load factor. If you have an idea
of how many successful and unsuccessful searches you expect in a typical
run, you can combine this formulae with the formulae for probe lengths
from the previous chapter, but it is easier to explore the actual running
time via experiments.

82

8000 1

6000 A

4000 A

2000 1

0-
8000 A
6000
4000
2000 A
0] —eme=ETEER
8000 A
6000
4000
2000 A
0 ===
8000 A
6000
4000

2000 A

= e e e =

CHAPTER 4 RESIZING

€0

Gg0=

1SS S St I TITI NI TS Tl LT LT MR L s e

o T LF e M e

EERCEEES R

Paepepeppepep—— B

S TLTIS TSNS TS D D T T LE e e e e

operations — Total ----

Moves ---

300 400 500

Allocations - - Insertions

Figure 4-5. The theoretical running time, split into its different
components, for growing a hash table as a function of the load factor

threshold, a

83

CHAPTER 4 RESIZING

Experiments

From the theoretical analysis of the performance of the hash tables with
resizing, you should be able to insert n elements in time O(n). You should
also be able to test if these keys are in the table—they all should be—and
do this test in linear time. You should be able to look up z random keys

in linear time as well. This is a better measure of the actual performance
since the running time guarantees are worse for keys that are not in the
table compared to those that are. In either case, each lookup is in O(1) if a
is bounded by a constant. Finally, you should be able to delete the n keys
stored in the table in time O(#n). Let's test this in practice.

Figure 4-6 shows the performance of the three different conflict
resolution strategies when you insert, look up, and delete n elements while
keeping the load factor a < 1/2. Figure 4-7 shows the same experiments
but contains only the open addressing strategies, using a different scale on
the y-axis to make it easier to see their performance. In these experiments,
Iinitialized all tables with size two. In a real application, you should
consider the likely number of keys a table will hold. The table will adjust
its size as needed, but if you know how many keys it will hold, you can save
some time by initializing it with a capacity around that value.

84

0.020 1

0.0151

0.010 1

Time

0.005 1

0.000 1

CHAPTER 4 RESIZING

0 2500 5000 7500 10000

n
Algorithm =e=Chained Open addr. DH Open addr. LP

Figure 4-6. Time usage for inserting n elements, looking them up,
and then deleting them again, resizing along the way

0.00100 A o .

0.00075 A
(0]
£ 0.00050
|_

0.00025 A

P =
0.00000{__%
0 2500 5000 7500 10000
n
Algorithm === Open addr. DH Open addr. LP

Figure 4-7. Time usage experiments from Figure 4-6, including only
the open addressing strategies

85

CHAPTER 4 RESIZING

The time usage looks more stepwise than linear, but considering
that the amortized analysis only tells you that the time usage should be
bounded by a line—and you know that resizing operations are expensive
while non-resizing inserts and deletions are not—you shouldn’t be
surprised by this. The stepwise growth of the time usage measurements
merely reflects the stepwise function of the smallest powers of two larger
than n. Whenever 2¢~! < m < 2%, for some k, you have to allocate and
initialize a table of size 2*, and this table creation is the most expensive
operation in the entire experiment. The steps you see in the experiments
are the transitions between different powers of two.

As discussed in the previous section, the choice of the threshold for the
load factor a can be any number 0 < @ < 1. In Figure 4-8, you can see the
performance of the same experiments as previously, with different choices
of load factor limits. Figure 4-9 shows the same data (and a few more load
factor limits) with smoothed curves, and in Figure 4-10, the same data is
shown with selected load factors on the x-axis and the time on the y-axis.?

2For these experiments, I modified the resize thresholds in the code to resize at the
specified load instead of at .

86

CHAPTER 4 RESIZING

Open addr. DH | | Open addr. LP
L]
0.002 1
aE) . ‘ $.
[
= uss 1 o.“i“
0.001 1 . o°
f8cach $3acee
Hhﬁdﬂﬁ A‘ACOA
00001 . . . r — . . , ,
0 2500 5000 7500 100000 2500 5000 7500 10000
n
as.factor(load_limit) e« 0.1 0.5 0.9

Figure 4-8. Running time with different thresholds for resizing

Open addr. DH | | Open addr. LP |
1e-03 1
()] ~—
£ = =
— 5e-04 1
Oe+00- IV T T T T l\/ T T T T
o o o S o o o S
o Q S Q S o Q S Q S
Yol (=] Yol > Yol o Yol oS
l TS} N e al [rs) N =
n
= 0.1 == 0.3 0.5 0.7 0.9

as.factor(load_limit)
- 02 = 04 0.6 0.8

Figure 4-9. Smoothed data from Figure 4-8

87

CHAPTER 4 RESIZING

2100

4100

0.00100 1

0.00075 1

0.00050 1

0.00025 1
.
) ac® 5<L° l
£
|_
0.00100 1
0.00075 1
0.00050 1
0.00025 1 °
a® °L6é$

| 6100
l 9
g
b4 |B
6 OAO Q$%
9
g
8 g
b 40 05

Load factor limit

Figure 4-10. Time as a function of n (the three panels) and different

load factors

You can see that the resize threshold affects the running time
substantially. The tradeoff is between the cost of resizing versus the cost of
probing as the load factor increases. If you set this threshold very low, you
spend too much time resizing, while if you set it very high, you spend too

much time probing.

88

CHAPTER 4 RESIZING

The optimal choice of load factor threshold depends on your
application, the typical sizes of n, and the insertion and deletion patterns.
It also depends on your runtime system, which determines the cost of
allocating m cells and setting them to 0. As a rule of thumb, though, you
are generally best off if you make the threshold at least one-half. Less than
that, and you always allocate at least twice as much memory as you need,
potentially much more, if your threshold is small. The performance does
not substantially degrade until you get close to a load factor of 1, so you
will get better performance as your threshold approaches 1 than when it
approaches 0. You will never do poorly with a threshold of around one-
half. However, if you have an algorithm that crucially depends on the
performance of a hash table, tweaking the threshold is a place to start in
your algorithmic engineering.

Resizing When Table Sizes Are Not
Powers of Two

You resize your hash table when it contains am or am/4 elements, up or
down, respectively, and you grow or shrink the table by a factor of two.
As long as you use bit-masking to get the bin index for keys, you need
the table size to be a factor of two. You can loosen that assumption if you
use modulo, and then you can use a prime for m to avoid clustering of
occupied bins.

Instead of growing and shrinking the table size in factors of two, you
can introduce another parameter, 3, and set the table size to f - m when
growing and m/f when shrinking. Unfortunately, primes are not spread
out such that p/f and pp will always be primes when p is, so you cannot

89

CHAPTER 4 RESIZING

achieve exactly this. The best you can do is pick primes that are close to
this and tabulate primes p,, p,, ..., py (for some choice of M)? such that
pi-1<pi/pand p;..>p - p;

To handle sizes and a table of primes, you can add a variable, primes_
idx, to your struct hash_table:*

struct hash_table {
struct bin *bins;
unsigned int size;
unsigned int used;
unsigned int active;
unsigned int primes_idx; // <- new member

};

You can add a table of primes based on your choice of $. For example,
for =2, you can define this table as so:

int primes[] = {
2, 5, 11, 23, 47, 97, 197, 397,
797, 1597, 3203, 6421, 12853, 25717, 51437,
102877, 205759, 411527, 823117, 1646237,
3292489, 6584983, 13169977 };
static unsigned int no primes = sizeof(primes)/sizeof(int);

3Technically, you could compute these primes as needed, but this would be much
slower than all the other hash table operations, so tabulating the primes you

need is the only practical way. You can go to this URL, https://primes.utm.edu/
lists/, to get alist of the first 1,000, 10,000 or 50 million primes and build a table
from them by filtering them according to your choice of step size.

*You do not necessarily need your table size to be prime just because you use
modulo as a prime to get your bins. You can first get a random key using modulus
and then mask out the lower bits. This way, you get a table size that is easier to
work with—you can grow it and shrink it by a power of two—but, of course, at

the cost of needing two operations to get your bin index. Since getting this index
is unlikely to be the most time-critical when using a hash table, this is a small
price to pay.

90

https://primes.utm.edu/lists/
https://primes.utm.edu/lists/

CHAPTER 4 RESIZING
In insert_key, you can update the resizing code to this:

if (table->used > table->size / 2) {
assert(table->primes_idx + 1 < no_primes);
resize(table, table->primes idx + 1);

}

And in delete_key, you can use this:

if (table->active < table->size / 8 && table->
primes_idx > 0) {
resize(table, table->primes idx - 1);

}

You can consider the theoretical amortized time analysis when you
have a growth factor $ added to the story. First, ignore a and assume you
fill the table before you resize, similar to the growing array. The case is
shown in Figure 4-11, and the reasoning is similar to what you did before
to get the amortized running time. Between growing the array to size m
and growing it to size fm, you must insert m(1 — 1/f) elements. These
elements must pay for the m(1 — 1/4) insertions, then the allocation of an
array of size fin, and finally for moving m elements to the new array. If you
divide the total cost by the number of insertion operations, you get this:

m(2+pB-1/pB)
m(1-1/B)

91

CHAPTER 4 RESIZING

m/B

J

1) Insert m(1-1/B) new elements

m(1-1/B)

=

Ir
3 -

2) Then allocate length Bm array
Bm

7|
3

3) And move n elements to the new array

Figure 4-11. Growing an array by a factor of

Figure 4-12 shows this running time as a function of # while Figure 4-13
shows the components of the time usage for different values of 5. When
fis close to 0, you grow the array by a tiny amount each time you resize,
and consequently, you have to reallocate memory frequently, which will
give you a runtime penalty. When f# grows to infinity, the running time
degrades, simply because the cost of a single allocation will grow linearly
in 4.5 The expression has a minimum at =1+ V2, shown as the black dot
in the figure. Since =1+ V2x241, your choice of = 2 was not far from
optimal, but could be better.

5The reason I say that n insertion takes (amortized) linear time is that the cost per
operation does not depend on n. It does depend on β, however, as you see
from the figure.

92

CHAPTER 4 RESIZING

201

Time

104

1 2 3 4 5
p

Figure 4-12. Amortized running time for rescaling as a function of 3

B=1.66 || p=2 || p=2.33 |

4000

3000 1

2000 1

1000 1

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

operations — Total ---- Moves --- Allocations - - Insertions

Figure 4-13. Details of the time usage when growing by a factor

Do not rely too much on this analytical result for the optimal choice of
p, however. It assumes that all the operations you perform have precisely
the same cost, which is unlikely to be true. The insertion cost depends on
the price for updating linked lists or for probing the open addressing table;

93

CHAPTER 4 RESIZING

the movement cost will depend on this cost as well. The allocation cost
depends both on the operating and runtime system. You need experiments
to get an accurate measurement of the performance in practice.

If you want your experiments to include open addressing, however,
you cannot handle a = 1, as you just did when you resized the table when
it was full. So you need to add a to your analysis again. The full setup is
shown in Figures 4-14 and 4-15. You derive the linear cost per insertion
operation as before, just with am — a/fn insertions, allocation to a size
pm array, and moving an elements. The slope for the resulting line is as
follows:

2+ -a/pB
oa—al/p

1) Insert am - a/B n new elements

2) Then dllocate length Bm array

. Bm —
| | |

am

3) And move an elements to the new array

Figure 4-14. Resizing when a and f} are both taken into account

94

CHAPTER 4 RESIZING

B—1.66 || B=2 || B=233

7500 4

5000 1

2500 4

7500 4

5000 1

2500 4

7500 4

5000 1

2500 1

7500 4

5000 1

2500 4

—_———— e
==
e TR T e =

...... v -
s =TS - -

AL EE LY Rl

= e

el AP

TETSIT e e

0 100 200300400500 0 100 200 300 400500 0 100 200 300 400 500

operations — Total ---- Moves --- Allocations - - Insertions

Figure 4-15. The different components of the running time for a
growing table when a and 3 are both taken into account

95

CHAPTER 4 RESIZING

In Figure 4-16, I plotted this amortized operation cost as a function of
both @ and p. On the left, I show a range of « values for different choices
of 4. On the right, I show a range of /3 values for different choices of a. As
discussed earlier, this formula suggests that you should always make a as
large as possible, which you cannot do since you need to keep the load
factor low. For any given choice of @, however, there is an optimal f at
1-1+a . This optimal value is shown as dots on the plot to the right. This
optimum, however, requires that all operations take the same time, which
they don’t, so you have to use experiments to see how the actual running
time varies for different choices of @ and /.

96

CHAPTER 4 RESIZING

254

201

101

raa,
e,
e,
e T AR
S I C U,

0.2 0.4 0.6 0.8 1.0
o

B — 5/8 ---- 2 -= 1442 -=- 7/3

60 1

201

o — 02 === 03 ==+ 05 == 07 =+ 1

Figure 4-16. Amortized operation cost when varying a and

In my experiments, using tables of sizes that are powers of two and
binning based on bit-masking performs better than tables of prime size
with modulus—see Figure 4-17—but this can vary. All measurements in
Figure 4-17 used linear probing. You saw that linear probing was slightly
superior to double hashing for the load-factor thresholds you used, so
you chose the fastest solution. You also did this to ensure that m and h,(k)

97

CHAPTER 4 RESIZING

are mutual primes and thus that the double hashing probe can scan the

entire table. To guarantee this is trivial when m is a factor of two but more

complicated otherwise.

B=1.33 || B=1.66 || p=2
0.0020
L]
'\ !
A
0.0015 1 it
e .
L7 \“:‘ of8a . X
0.0010 1 oy £ i
" R
9] of®
0.00054 e [t w
g 2 v o ,v‘
‘V
[ud »d
0.0000 1" .
(0]
E B=2.33 | | B=2.66 | | Masking |
0.0020
0.0015
(]
) e
0.0010 1 i o
”’a‘ -®
, 2
0.0005 1 o - fhioe
... b :]A o 4
e -~ 2cC
0.00001{°~ 2l ©
o o o Q o o o Q o o o Q
© 8 8 8 82 8 8 8 82 8 8 8 8§
a o K~ 2 a K2 SR To B NS
n
as.factor(load_limit) ¢ 0.3 0.5 0.7

Figure 4-17. Time performance for tables of prime size with different
choices of load factor thresholds, a, and resizing scales, . Masking

denotes the powers-of-two table with masking

98

CHAPTER 4 RESIZING

Dynamic Resizing

Doubling and halving tables when you resize them gives you amortized
constant time operations, but the resizing will be slow. This can be
remedied by incrementally growing and shrinking a table, one bucket
at a time. One approach to this is linear hashing® (not to be confused
with linear probing for open addressing hashing). You still need the
amortization trick to a much smaller degree, but you do not need to
initialize tables when you resize.

The underlying idea is this: you split the keys into three parts, where
the lower bits index into “sub-tables,” the middle bits pick which sub-table
a key should be inserted into, and the higher bits are ignored (for now).
When you get a key, you mask out the lower bits to get an index that picks
the sub-table and an index into the sub-table.

You then manipulate keys using bit operations as follows. Assume that
sub-tables have size 2° and that you have 2’ sub-tables. Then, given a key,
you will mask out the lower s bits to get an index into a sub-table and use
the following ¢ bits to select a sub-table.

By, (x)=xA (25 —1)
By (x)=(x/2%)A(2-1)

OrinC:

h_bin
h_tab

x & ((1 << s) - 1);
(x >>s) & ((1 << t) - 1);

You then use h_tab to pick a sub-table and h_sub to get a bin index in
the sub-table.

8Litwin, W. Linear Hashing: A New Tool for File and Table Addressing. Conference
on Very Large Databases. (1980) pp. 212-223

99

CHAPTER 4 RESIZING

For example, imagine that the key is eight bits, xxxxttbb, and the
sub-table size is four (two bits). You would then mask out the four most
significant bits, xxxx, use the next two to pick a sub-table, and the last two
to select an entry into the sub-table:

// key = xxxx tt bb
bin = tables[tt][bb]

The bits you use to pick tables, tt here, will grow and shrink as you add
and remove keys.

See Figure 4-18 for the basic idea of how to structure the table.

‘ _ Index into 2b bins
'

Index into 2k tables | |

Figure 4-18. Indexing keys

You can map any number to table indices this way, and you will exploit
the correspondence between bin indices and numbers in several places.
Any time you have a table with N bins, any number in [N] can be thought
of as an index into a table of N bins or as two keys, a table and a sub-
table index.

The resizing works by having a number m = 2?, initially the size of
a sub-table, and you have a variable split in the range 0, ..., m. As an
invariant, all bins with index up to m + split - 1 will be initialized. When

100

CHAPTER 4 RESIZING

you insert a new key, you increment split and initialize the m + split
bin. When you remove an element, you will clear the m + split - 1 bin and
decrement split.

The growing and shrinking always involve moving elements from the
range 0, ..., m — 1 to the range m, ..., 2m — 1 (you will move elements from
split to m + split). Shrinking involves moving elements from the range
m, ..., 2m — 1 to the range 0, ..., m — 1 (moving elements from m + split to
split). Growing moves split to 2m.

The way you should think about this is that the range 0, ..., m — 1 is a
table that uses one less “table bit” than the range 0, ..., 2m — 1. As split
moves from 0 to m, you conceptually add one bit to the table index. Keys
that fall lower than split if you look only at the first b bits (m = 2%), get
to have one additional table bit, so they can fall in the range O, ..., 2m — 1
(although they only hit the range 0, ..., m + split because their lower b bits
are less than split).

Every time split moves up, some keys get to use one additional bit.
Likewise, when split moves down, some keys will get one less bit to
index with.

Keys with the same b least significant bits might sit in different tables,
but they will always sit at the same index into those tables. If the next k bits
are the same, they will also be in the same table. But imagine if you extend
the key by one additional bit, x;. Then, the keys that would otherwise be
in the same table at the same index, because they agree on the first k bits.
They would sit in one of two tables, depending on which bit they have at
position k. See Figure 4-19. If the keys are random, about half will sit in the
first table and half in the second.

101

CHAPTER 4 RESIZING

Index into 2X tables l l

Pair of bins to split and merge

Bit k+1 choose table

Figure 4-19. Pairs of bins to split and merge

This tells you that you can grow the table by splitting the split bin
when you increase it, whereby “splitting” means looking at bin b and
sending to the higher or lower index, split or m + split, based on that bit.
When you need to merge two bins, you mask out bit b and the m + split
and split bins end up in split.

If you grow and shrink a table you have allocated this way, you do not
need to touch the sub-tables to double the size of the table. You need to
allocate a new “table of tables’, and you need to move pointers to the sub-
tables to the new table, but this table is likely to be small compared to the
total table size.

It is relatively simple to implement this idea with chained hashing
because each bin when using k table bits only maps to two other bins
when using k + 1 bits. The probing complicates initialization with open
addressing. You can keep track of how much of a table is initialized by
another counter if you use linear probing, but with double hashing, you
either need to initialize tables when you allocate them, or you need to use
complicated bookkeeping. I only present chained hashing in the following

implementation.

102

CHAPTER 4 RESIZING

I use this structure to hold the tables:

static const unsigned int SUBTABLE BITS = 3; // 8 bins to a
sub-table

// A sub-table is an array of pointers to links.
// A sub-table plus an index is also a struct link **
// which by good fortune is a LIST.
typedef struct link **subtable;
struct hash table {
subtable *tables; // Tables is an array of sub-tables

unsigned int table_bits; // Bits used for indexing into
sub-tables

unsigned int split; // Pointer to the bin you need to
split/merge

unsigned int allocated_subtables; // Number of sub-tables
allocated

};

You can set the number of bits you use per sub-table and the
SUBTABLE_BITS variable as you please, as long as it is non-zero. The
tables variable points to an array of sub-tables (and will still need the
amortization trick to grow). The table bits variable is the number of
bits you have for tables, the split variable is the counter you use to index
where you need to split or merge, and allocated subtables keeps track of
how many sub-tables you allocated so you can free them again.

You do not store m because you can get it from the existing
information. If you have s bits for sub-tables and ¢ for tables, then m**".

// Size of a word with “bits™ bits
static inline unsigned int
bits_size(unsigned int bits)

103

CHAPTER 4 RESIZING

{

return 1 << bits;

}

// The range [0, split + m) are initialized.

// The range [split + m, 2m) is where we are

// adding new initialized bins through splitting.
static inline unsigned int

m(struct hash_table *table)

{
return bits _size(table->table bits + SUBTABLE BITS);

}

The largest index currently active is at m + split, and you will need to
access it later, so you must write a function for it:

// The largest bin that is currently in use
static inline unsigned int
max_index(struct hash_table *table)

{
return m(table) + table->split;

}

For getting bin indices, there is a bit of bit-fiddling (no pun intended),
but it can look like this:

// Mask for the lower "bits™ bits
static inline unsigned int

bit mask(unsigned int bits)

{

return bits size(bits) - 1;

}

104

CHAPTER 4 RESIZING

// A mask for the parts of hash keys we are currently
considering

static inline unsigned int

key mask(struct hash_table *table)

{
return bit mask(table->table bits + 1 + SUBTABLE_BITS);

}

// The bins up to split + m are valid, the higher indices
are not.

// 1If we are below this index, we can use the index,
otherwise we need

// to use the smaller range [0, m).

static inline unsigned int

key in table_range(struct hash_table *table, unsigned int

hash_key)

{
unsigned int masked key = hash key & key mask(table);
return (masked key < max_index(table)) ? masked key :

(masked key - m(table));

}

static inline unsigned int
table _index(struct hash_table *table, unsigned int hash_key)
{

return hash_key >> SUBTABLE_BITS;

}

static inline unsigned int
bin _index(struct hash table *table, unsigned int hash key)

{
return hash key & bit mask(SUBTABLE BITS);

}

105

CHAPTER 4 RESIZING

// Get a bin from an index

static inline LIST

get bin(struct hash_table *table, unsigned int hash key)

{
unsigned int tab_idx = table index(table, hash key);
unsigned int bin idx = bin_index(table, hash key);
return &table->tables[tab _idx][bin_idx];

}

Given a hash key, you mask out the lower ¢ + s + 1 bits and check if
you get a value in the range 0, ..., m+ split. If so, it is a valid index. If not,
you have to use only the lower ¢ + s bits, or the number minus m. Once
you have the correctly masked key, getting the table index and bin index
is straightforward. It follows the previous example (except that you have
already masked out the xxxx bits, so you don’t need to do that again).

When you create a new table, you initialize m to the number of bins in
a sub-table, you allocate an array of two sub-tables (but you only allocate
and initialize the first), and you set the table bits and split to 0. This
means you have m initialized bins that you can insert keys into.

struct hash_table *
new_table()

{
struct hash_table *table = malloc(sizeof *table);

// Initial size holds 2 table-pointers, [0,m) and [m,2m).
table->tables = malloc(2 * sizeof *table->tables);

// Allocate and initialize the first table only.
table->tables[0] =
malloc(bits size(SUBTABLE BITS) * sizeof
*table->tables[0]);

106

CHAPTER 4 RESIZING

for (unsigned int i = 0; i < bits size(SUBTABLE BITS); i++) {
table->tables[0][i] = NULL;

}
table->allocated subtables = 1;

table->table bits = 0; // we only use bin bits initially
table->split = 0; // we start splitting at the first bin

return table;

Deleting a table is not much different from the previous examples.

The only complication is that you need to know how many sub-tables you

have actually allocated, but you can keep track of that with the allocated

subtables variable, and then deallocating is a breeze.

void
delete table(struct hash table *table)

{

// Delete lists in all initialized bins

for (unsigned int bin = 0; bin < max_index(table); bin++) {
free list(get bin(table, bin));

}

// Delete sub-tables.
for (unsigned int tbl = 0; tbl < table->allocated subtables;
tbl++) {

free(table->tables[tbl]);

}

// And finally free the tables array and the table
free(table->tables);
free(table);

107

CHAPTER 4 RESIZING

The three operations you implement for all hash tables are
straightforward as well. Whether you insert, check for membership, or
delete a key, you get the appropriate bin (which involves the bit-masking)
and then do roughly the same thing you did for all previous examples. The
only real change is that you will do a split operation every time you insert
and a merge operation every time you delete.

void
insert key(struct hash table *table, unsigned int key)
{
LIST bin = get bin(table, key in table range(table, key));
if (!contains element(bin, key)) {
add_element(bin, key);
split(table);
}
}

bool

contains_key(struct hash table *table, unsigned int key)

{
LIST bin = get bin(table, key in table range(table, key));
return contains_element(bin, key);

}

void
delete key(struct hash_table *table, unsigned int key)
{
LIST bin = get bin(table, key in table range(table, key));
if (contains_element(bin, key)) {
delete element(bin, key);
merge(table);
}
}

108

CHAPTER 4 RESIZING

When you split, you need to prepare the new table atindex m +
split and then split from index split to split and m + split (max_
index(table) in the C code).

static void

split(struct hash table *table)

{
// Initialize the target bin at split + m.
init next subtable(table);

// Get the split bin and if there are elements there,
split them.

LIST from bin = get bin(table, table->split);

LIST to bin = get bin(table, max_index(table));

split bin(from bin, to_bin, m(table));

// Update counter to reflect that we have split
table->split++;

Initializing the next table might involve allocating a new table, if you
move from one sub-table to the next and the table there isn’t already
allocated. This will also involve growing the table->tables array if you
are moving beyond its current range. The allocation and resizing is not
something you haven’t seen before, but you also have to increase the
number of bits in table->table bits if you grow the table->tables
array, because this happens when split has reached m and you thus need
more bits for the tables indices.

void
init_next_subtable(struct hash_table *table)
{

// Grow table if we have inserted m elements.
if (table-»>split == m(table)) {

109

CHAPTER 4 RESIZING

// Use one more bit for table indices
table->table bits++;

// Alloc more table pointers (but don't initialize,
we do that
// incrementally). The first half of the new size
handles the
// new [0,m) and the second the new [m,2m) range. The
new [0,m)
// range is already initialized.
size t new size = 2 * bits_size(table->table bits) * sizeof
*table->tables;
table->tables = realloc(table->tables, new size);

// Reset split pointer
table->split = 0;
}

unsigned int tab_index = table_index(table, max_
index(table));
if (tab_index == table->allocated subtables) {
// If we are moving into a new sub-table, we need to
allocate it
table->tables[tab _index] =
malloc(bits size(SUBTABLE BITS) * sizeof
*table->tables[tab_index]);
table->allocated subtables++;

}
}

The actual split is the least exciting of the lot; it just involves running
through a linked list and moving links—nothing you haven’t done
before either.

110

CHAPTER 4 RESIZING
void

split bin(LIST from bin, LIST to bin, unsigned int split bit)
{

struct link *link = *from bin; // Catch list before we clear

the bin.
*to_bin = NULL; // Initialize if it
isn't already
*from_bin = NULL; // Make bin ready for
new values

while (link) {
struct link *next = link->next;
if (link->key & split bit) {
// Move link
link->next = *to_bin;
*to bin = link;
} else {
// Put link back into its current bin
link->next = *from_bin;
*from bin = link;
}

link = next;

When you merge, you decrement split, merge the bin in m + split
into the split bin and shrink the table if you have reduced the number of
contained keys sufficiently.

static void
merge(struct hash_table *table)

{

111

CHAPTER 4 RESIZING

// Decrement split. If it is a zero, we need to

// decrement table bits and m instead, and set split
tom - 1.

dec_split(table);

// Merge largest bin into split bin (well, one before the
split bin so the

// indices match)

merge bins(get bin(table, max_index(table)), get bin(table,

table->split));

shrink tables(table);

Decrementing split is a little interesting. You cannot simply do
split--ifsplit == 0.Ifsplit > 0 this will not be a problem, but when
splitis 0, you shouldn’t decrement it (and get an underflow). Rather you
should change m — m/2 (by reducing table bits). If you do reduce m,
you need to set splittom — 1.

static inline void
dec_split(struct hash table *table)
{
if (table->split > 0) {
table->split--;
} else {
table->table bits--;
table->split = m(table) - 1;
}
}

112

CHAPTER 4 RESIZING
Merging bins is also a simple linked list exercise:

static void
merge _bins(LIST from bin, LIST to_bin)
{
struct link *link = *from bin;
while (link) {
struct link *next = link->next;
link->next = *to_bin;
*to_bin = link;

link = next;

Finally, shrinking the table is triggered when you reach a quarter of the
allocated sub-tables. This is similar to what you did with the stack, which
resembles the way you increase or decrease the capacity when you insert
and remove keys. When you shrink the table, you need to free the sub-
tables from the new size up to allocated subtables and then update the
table of tables and the allocated subtables bookkeeping.

static void
shrink tables(struct hash table *table)
{
// Checking when we point to the beginning of [0,2m).
if (table->split == 0 &&
bits size(table->table bits) < table->allocated
subtables / 4) {
unsigned int new_no_tables = bits size(table->table_
bits + 1);
for (unsigned int i = new_no_tables; i < table->allocated_
subtables; i++) {
free(table->tables[i]);

113

CHAPTER 4 RESIZING

}
table->tables =

realloc(table->tables, new_no_tables * sizeof
*table->tables);
table->allocated subtables = new_no_tables;
}
}

Incrementally growing and shrinking tables reduces the time it takes
to resize, but all operations get more complicated and thus slower. Unless
you want to reduce the time each operation takes, using more time on
resizing and less on all the others is preferable. Over a series of operations,

the latter will be faster.

114

CHAPTER 5

Adding Application
Keys and Values

So far, the book has only considered storing integer keys in hash tables.
Most of the techniques for implementing hash tables do not depend on
whether you store simple keys or whether you associate application values
with them. The setup where you only store keys that you can also use as
hash keys, however, is practically never used in real-life applications. This
chapter is about storing application values in bins together with their
hash keys. You can download the code at https://github.com/mailund/
JoyChapters.

Hash tables are typically used for two things: to implement a set
data structure or to implement a map data structure—the setup where
you only store hash keys implements neither. What you've seen so far is
implementations of sets of hash keys, but remember that you compute
hash keys from some other data. Hash keys are the result of applying a
hash function to the application keys, and they represent a simplification
of the original data.

Implementing a set while storing hash keys alone does not guarantee
that membership tests will work. It is likely to work since you expect
different keys to map to the same key with a small probability, but you
cannot rule out collisions. You will need to compare application keys when
you search for membership or when you delete keys; only comparing hash
keys will not suffice. Consider Figure 5-1. Note that you can have collisions

© The Editor(s) (if applicable) and The Author(s), 115
under exclusive license to APress Media, LLC, part of Springer Nature 2024
T. Mailund, The Joys of Hashing, https://doi.org/10.1007/979-8-8688-0826-5_5

https://doi.org/10.1007/979-8-8688-0826-5_5#DOI
https://github.com/mailund/JoyChapter5
https://github.com/mailund/JoyChapter5

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

at two levels. Different application keys can be mapped to the same hash
key, and different hash keys can be mapped to the same table bin. This
has solved the second problem; to solve the first, you need to store the
application keys in the table.

Application key space Hash key space Table bin space

|

©ROND U AW N O

10

1

12
13
14
15
16

17
18
19
20
21
22

28
29
30

NOOAWON = O

Figure 5-1. Hash keys and application keys

Theoretically, storing application keys and values in hash tables is not
complicated. Instead of storing the hash key alone in links or bins, you
store the application keys and, for maps, the application values. When
you look up, you map the application key to a hash key, and then you
proceed as you have done so far. In practice, however, and especially in
C, it gets a bit more complicated. If you look up keys, how do you then
compare keys? Do you need a callback function of some sort (like qsort
or bsearch)? When you store anything in a data structure, you need to

116

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

worry about ownership. Is the data structure expected to free its elements,
or is the user? If the table is responsible for deleting elements, how do you
configure this?

I do not explore all the issues with designing data structures in C, as
that is beyond the scope of this book, but in this chapter, I present two
approaches to implementing a generic hash table. I implement a generic
hash set using macros to generate type-specific code, and I implement a
hash map using callback functions. In both cases, I assume that the hash
table takes ownership of all values you provide to it and will delete data
when you no longer need it. This will not be the use pattern you want for
all applications, but you should be able to adapt the two solutions to your
needs if you want to.

In the first implementation, in the next section, I only store application
keys in the table, but you sometimes want to store the hash keys as well,
since recomputing hash keys can be expensive. This is an optimization,
however, that I leave to the second implementation in this chapter.

Generating Hash Sets

For a hash set, you have some application type of keys, K, and from the
hash table, you want operations for creating and destroying a table.

hash_table *new table();
void free table(hash table *table);

The usual operations for updating and querying the hash table are as
follows:

void insert key(hash table *table, K key);
void delete key(hash table *table, K key);
bool contains key(hash table *table, K key);

117

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

Translating this interface into the one you used in the previous
chapters is easy in theory. You only need a function that can give you a
hash key from a K key:

unsigned int hash(K key);

As already hinted at, things can be more complicated in C, because you
can’t use OOP techniques to implement comparisons of arbitrary types
and you don’t have destructors to handle when keys should be freed.

To use a generic key type, you must be able to compare two keys for
equality, and you (probably) need a way to free keys. Together with the
hash function, you could say that the key “interface” must satisfy:

unsigned int hash(K key);
bool eq(K k1, K k2);
void dealloc(K key);

And somehow, you must weave this interface into the hash table code.

In this chapter, you will generate type-specific tables, which means
that given a type K and a specification of these three operations, you will
generate a hash table for that key type. This resembles what languages that
support generics do in this situation; it is just more cumbersome with C,
where such generic programming is not natively supported.

The benefit of generics is that you can generate code that is optimized
for the exact type you operate on without relying on function pointers
that can slow down computation when your CPU cannot predict which
branch you will jump to. In C, you can also get type-safe code, which isn’t
immediately available in the other generic approach you will use in the
next section, which relies on void pointers to get generic functionality.
The drawback of this type of generic programming is that C really doesn’t
support it, and you have to implement everything as code-generating

118

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

macros.! Writing macros that generate code is tedious, error-prone,

and hellish to debug. You have to be careful never to generate the same
code twice unless you can link it separately—or you will have duplicated
symbols, which the linker won’t like. But it is a valid approach to generic
data structures, and you will implement an example here that you can
compare to the alternative approach in the next section.

Generic Lists

The hash table you will implement is a chained hashing table, so you will
start with implementing generic lists, that is, lists that you can instantiate
with any type K if you can provide the right operations for it. For lists, you
don’t need hashing, but you will need an equality and a deallocation
operation. You will implement this macro:

GEN_LIST(LIST NAME, KEY _TYPE, IS EQ, FREE KEY)

It generates a list called LIST_NAME (what this means will hopefully be
clear shortly), with the underlying key type KE_TYPE (which would be your
type K), and with macros or functions IS_EQ and FREE_KEY, which you can
call to compare or free keys, respectively.

The macro needs to generate all the data structures you need plus all
the operations you need (which for lists would be creation and destruction
plus operations for adding, deleting, and querying a key). To avoid name
clashes (or at least alleviate the headache that they might give you), you
give the data structures a suffix and the functions a prefix derived from
LIST_NAME. If you define a list with GEN_LIST(my type, K, ...), youwill
get (among other things) a data structure called this:

struct my_type list;

'T freely admit here that if I can avoid it, I never use this type of generated code.
If I need generics, there are better macro languages than C’s that you can use to
instantiate code with different types. This book sticks to pure C.

119

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES
And functions as so:

void my type add key(struct my type list *, K key);
void my type delete key(struct my type list *, K key);
bool my type contains key(struct my type 1list *, K key);
void my type free list(struct my type list *);

(Thereisnomy_type new_list here because you will initialize lists in
a different way.)

Okay, that is the idea. Now, there are a few things to consider when
implementing the idea. When you use macros to generate code, you are
doing pure textural manipulation. The C preprocessor does not check that
you are generating valid code, and it generally has no idea what the text is
supposed to look like. So, you want to be careful when writing macros that are
fairly easy to read. You will not get any help debugging the macros if they fail
at some point. You also don’t want the macros to have too many arguments
or create too many types since that can be super difficult to debug as well.
The simpler you can make the macros—even if this simplicity comes from
exploiting type inference or instantiating macros that only exist to help you
write macros—the better. You need a very simple design for linked lists so the
macros that generate code for these lists are as short and simple as possible.

I'will not dare to claim that I came up with the best and simplest
solution here, but with a few design decisions on lists, I have written what I
can consider fairly short macros for each generated function.

You learned about a few different approaches to linked lists earlier in
the book, and the design here is not substantially different. You will need a
link structure that holds data and some other structure, 1list, to represent
complete lists. The representation I chose was this:

struct my_type link {
struct my type link *next;
KEY_TYPE key;

};

120

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

struct my type list {
struct my type link *head;

b

The true list is implemented as the links and the list structure contains
a pointer to the head of the list. When you work with lists, they will be
pointers to the list structure, not unlike the representation you had earlier
of a pointer to a pointer of a link. This example does not abandon the
pointer-to-pointer to link idea, though. You can implement most of the
operations you need through an “iterator” interface, where an iterator is
exactly a pointer-to-pointer to link.

Generating the structures is as simple as this macro:

#tdefine GEN LIST STRUCTS(LIST NAME, KEY TYPE) \
struct LIST NAME## link {
struct LIST NAME## link *next;
KEY_TYPE key;
};
struct LIST NAME## 1list {
struct LIST NAME## link *head;

};

If you have a struct my_type list, thatNULL can be assigned to any

~ s s s s

pointer type, so you don’t need to generate constructors. If you define this:
#define NEW LIST() { .head = NULL }

You can initialize a new list with this:
struct my type list list = NEW _LIST();

Now, to manipulate lists, you will define a few helper macros. The first,

#define LIST(LIST NAME) struct LIST NAME## list

121

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

gives you a convenient way to get the name of the data structure you are
generating from the macro argument LIST_NAME. The others give you a
generic iterator interface into lists:

#define ITR(LIST) typeof(LIST->head) *

// Turn list into iter

#define ITR BEG(LIST) (&((LIST)->head))

// Check if you are at the end of the iteration
#define ITR_END(ITR) (!*(ITR))

// Get next element in the iterator

#tdefine ITR_NEXT(ITR) (&((*(ITR))->next))

// Get the current iterator element

#define ITR_DEREF(ITR) (*(ITR))

The ITR(LIST) macro defines a type from a list. It uses the typeof()
operator from C23, but if your compiler doesn’t support it, you can replace
it with this:

#tdefine ITR(LIST NAME) struct LIST NAME## link **

An iterator is just a pointer to a pointer to a link, as you have seen
before. The ITR_BEG gives you an iterator that points to the head of a list
(by dereferencing a pointer to a list and then getting the address of the
head link).

struct my_type list *list ...; // some list of my type
struct my_type link *head = list->head; // head of the list
&(list->head); // ITR BEG(list)

struct my type link **itr

The ITR_END macro tests if an iterator is pointing to NULL, which would
be the end of a linked list, ITR_NEXT gets the next link in an iteration, and
ITR _DEREF extracts the current link the iterator is referring to.

122

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

Going through pointers to pointers to links this way might seem
complicated, but as you have seen before, it can simplify manipulating
lists since you always have access to the pointers you need to update.
The macros only give you a more convenient notation for manipulating
lists in this way. But when you see the macros in action, you can judge for
yourself.

Start by adding a key to a list:

#define PUSH NEW LINK(ITR)
do {
typeof (**ITR) *1link = malloc(sizeof *1ink);
link->next = *(ITR);
*(ITR) = link;
} while (0)

~ - -

#define GEN LIST ADD KEY(LIST NAME, KEY TYPE) \
void LIST NAME## add key(LIST(LIST NAME) * list, \
KEY_TYPE key) \
{ \
PUSH_NEW_LINK(ITR_BEG(list)); \
ITR_DEREF(ITR BEG(list))->key = key; \

}

The GEN_LIST ADD_KEY macro generates a function. The function
name is the concatenate of LIST NAME and _add_key, so if you had called
the macro GEN_LIST ADD KEY(my type, char *) for example, you would
get this function:

void my type add key(struct my type list *1list, char *key);

The PUSH_NEW_LINK macro allocates a new link, points its next pointer
at the link the iterator is pointing to, and then writes the address of the
new link into the iterator. In effect, it pushes the new link to the front
of the list that ITR is pointing at. Again, if your compiler does not yet

123

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

support typeof(), you can generate the iterator type from LIST _NAME. The
function you generate with GEN_LIST _ADD_KEY will, in its body, contain the
expanded PUSH_NEW_LINK that will put a new link at the front of the list,
and then the ITR_DEREF(ITR_BEG(list))->key = key will write the key
into this new link. (The ITR_DEREF(ITR BEG(...)) to get the head element
in the list is something you would never write if you were implementing
the function directly—there you could just write 1ist->head->key, but
I prefer to keep the macro operations small so I can keep track of them,
and if that means I have to write something with operations I normally
wouldn't, then so be it. The generated code will amount to the same thing.)
This macro only needs to know the name you gave the list, LIST_NAME,
and the type of keys, KEY_TYPE, because the function you generate needs to
know the type.
To free an entire list, you also need to know how to free keys, so that
macro will take an additional FREE_KEY argument.

#define DELETE_LINK(ITR)
do {
typeof (**ITR) *next = (*(ITR))->next;
free(*(ITR));
*(ITR) = next;
} while (0)

~ - s

#define GEN_LIST FREE_LIST(LIST NAME, KEY TYPE, FREE_KEY) \
void LIST NAME## free 1ist(LIST(LIST NAME) * list) \
{ \
ITR(list) itr = ITR BEG(list); \
while (!ITR_END(itr)) { \
FREE_KEY(ITR DEREF(itr)->key); \
DELETE_LINK(itr); \
} \

}

124

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

The DELETE_LINK macro generates code for freeing the front link an
iterator is pointing at. You get hold of the iterator’s next in a temporary
variable next, free the link the iterator points to, and then point ITR to
next. The GEN_LIST FREE_LIST macro generates a LIST NAME## free
list function that takes a list as an argument; that function will get the
head of the list and free links as long as the head is not NULL. Before you
free a link, you dereference the iterator to get the link; from there, you get
the key, and you call FREE_KEY to free the application key.

To check if a list contains a key, you only need IS EQ and you can use
the iterators to run through a list and dereference them to get access to
keys. You can compare the keys to the one you are searching for by calling
IS_EQ and then report what you find:

#define GEN LIST CONTAINS KEY(LIST NAME, KEY TYPE, IS EQ) \
bool LIST NAME## contains key(LIST(LIST NAME) * list, \
const KEY_TYPE key) \

{ \
for (ITR(list) itr = ITR BEG(list); \
ITTR_END(itr); \

itr = ITR_NEXT(itr)) { \

if (IS_EQ(ITR DEREF(itr)->key, key)) { \
return true; \

} \

} \

\

return false;

}

To delete a specific key, you need to compare and free keys, so for this
macro, you need both IS EQ and FREE_KEY:

#define GEN LIST DELETE KEV(LIST NAME, KEY TYPE, IS EQ, FREE_KEY) \
void LIST NAME## delete key(LIST(LIST NAME) * list, \
const KEY_TYPE key) \

125

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

{
for (ITR(list) itr = ITR BEG(list);
ITTR_END(itr);
itr = ITR_NEXT(itr)) {
if (IS_EQ(ITR DEREF(itr)->key, key)) {
FREE_KEY(ITR DEREF(itr)->key);
DELETE_LINK(itr);
return;
}
}
}

In the function generated here, you use the iterators for a linear scan

P T

through the linked list, use the IS_EQ on each key you see to determine if
you have found the key you are looking for, and if you have, you use FREE _
KEY to delete the key and DELETE_LINK to remove the link. If this wasn't
a function-generating macro but a regular function, I doubt there would
be anything to confuse readers here. (If there is when you are reading the
macros, I hear you. Code-generating macros can be a headache.)

The complete code-generating macro is simply the combination of all
the macros you wrote:

#define GEN LIST(LIST NAME, KEY TYPE, IS EQ, FREE_KEY) \
GEN_LIST STRUCTS(LIST NAME, KEY TYPE); \
GEN_LIST ADD KEY(LIST NAME, KEY TYPE); \
GEN_LIST DELETE_KEY(LIST NAME, KEY TYPE, IS EQ, FREE_KEY); \
GEN_LIST CONTAINS KEY(LIST NAME, KEY TYPE, IS EQ); \
GEN_LIST FREE_LIST(LIST NAME, KEY TYPE, FREE_KEY);

To generate code, you only have to provide the list name, the
underlying type, and the two operators IS _EQ and FREE_KEY. These can be

macros or functions.

126

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

For example, if you want lists of integers, the appropriate comparison
is just ==, and you don’t need to free them, as they will be embedded in
the links you are already freeing in the list code. So, you could define an
integer linked list like this:

#define EQ CMP(A, B) ((A) == (B))
#define NOP_DESTRUCTOR(KEY) //

GEN_LIST(integer, // name of the list type
unsigned int, // underlying type
EQ_CMP, // how you compare keys

NOP_DESTRUCTOR) // how you free keys;

If you instead work with pointers to integers, you should dereference
them before you compare them, and you probably need to call free on
them when they are deleted:

#tdefine DEREF_EQ CMP(A, B) (*(A) == *(B))
GEN_LIST(intp, unsigned int *, DEREF_EQ CMP, free);

For strings, you would also free them, but the comparison would
probably be testing if strcmp () returned 0:

#define STR_EQ(A, B) (strcmp(A, B) == 0)
GEN _LIST(str, char *, STR EQ, free);

Generating a Hash Set

With a chained hashing strategy, you handle most of the operations in
linked lists, so you do not have much more to generate to also get a hash
set. But you have to be careful with the names you give functions so they
don’t clash. You can write some macros to assign names to things:

#define BIN(HASH NAME) struct HASH NAME## bin list
#define HTABLE(HASH NAME) struct HASH NAME## hash table

127

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

#define LIST FN(HASH NAME, FUNC_NAME) HASH NAME##
bin## ##FUNC_NAME
#define HASH FN(HASH NAME, FUNC_NAME) HASH NAME## ##FUNC_NAME

Here, HASH_NAME is the name that defines hash structures and
functions, and you define a derived name BIN(HASH_NAME) for the linked
lists. This is the name you will use when you generate code for the lists.
The HTABLE (HASH_NAME) will then be the corresponding name for hash
table code. Finally, you use LIST_FN and HASH_FN to get the generated
names for functions from the lists and hash tables, respectively.

You also define a minimum size for hash tables:

#define MIN SIZE 8

This is the same as you saw in Chapter 4.

When you generate structures, you generate the linked list code first,
with the comparison and destructor operations appropriate for the key
type (is is in the lists these are used, after all), and then you generate a
hash table structure. The latter will have an array of lists—represented as a
pointer to BIN(HASH_NAME) —and the size and used counters you used in
the previous chapter.

#define GEN HASH_STRUCTS(HASH NAME, KEY TYPE, KEY CMP, KEY_
DESTRUCTOR) \
GEN_LIST(HASH NAME## bin, KEY TYPE, KEY CMP, KEY DESTRUCTOR) \

HTABLE (HASH_NAME) { \
BIN(HASH_NAME) * bins; \
unsigned int size; \
unsigned int used; \

};

128

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

The code you generate to create and free tables is close to the code
you used in Chapter 4. I inlined a few things to generate fewer functions,
but you should see the resemblance. In the creation code, you allocate the
table structure and the bins, run through the bins, and initialize them with
NULL for their head.

#tdefine GEN NEW TABLE(HASH NAME)
HTABLE (HASH_NAME) * HASH_FN(HASH NAME, new_table)()
{
HTABLE (HASH_NAME) *table = malloc(sizeof *table);
BIN(HASH NAME) *bins = malloc(MIN SIZE * sizeof *bins);
*table = (HTABLE(HASH NAME)){.bins = bins,
.size = MIN_SIZE,
.used = 0};
for (BIN(HASH NAME) *bin = table->bins;
bin < table->bins + table->size;
bin++) {
bin->head = NULL;
}

return table;

P g G O R - G

}

When you delete, you call the list’s free _list function (using LIST
FN(HASH _NAME, free list) to get the right name). It will take care of
freeing the application keys.

#tdefine GEN_FREE_TABLE(HASH_NAME) \
void HASH FN(HASH NAME, free table)(HTABLE(HASH NAME) *table)\
{ \
for (BIN(HASH NAME) *bin = table->bins; \
bin < table->bins + table-»size; \
bin++) { \
LIST FN(HASH NAME, free list)(bin); \
} \

129

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

free(table->bins);
free(table);

}

As before, you want a function that gives you a bin (i.e., a linked list)
from a hash key:

#define GEN_GET_KEY_ BIN(HASH NAME)
BIN(HASH NAME) *
HASH FN(HASH NAME, get key bin)(HTABLE(HASH NAME) *table,
unsigned int hash_key)
{
unsigned int mask = table->size - 1;
unsigned int index = hash_key & mask;

s s s s s s~

return &table->bins[index];

}

Generating a function for this operation is not what I would have
preferred since it pollutes the namespace just for convenience, but
statement expressions are not yet part of the C standard, so a function it is.

With this function, adding keys, deleting keys, and checking for keys
are very similar to what you had before, even though the syntax is more
complicated because you need to track the generated names. The only
main difference between what you saw in Chapter 4 is that you need to
translate application keys to hash keys before you can call the (generated)
get key bin, so you need the HASH operation as a parameter to the
macros, and you need to call it on the application key to get the hash key.

#define GEN_INSERT KEY(HASH NAME, KEY TYPE, HASH)
void
HASH_FN(HASH_NAME, insert key)(HTABLE(HASH NAME) *table,
KEY_TYPE key)

{

- s s s s

BIN(HASH NAME) *bin =

130

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

HASH_FN(HASH _NAME, get key bin)(table, HASH(key));

if (!LIST FN(HASH NAME, contains key)(bin, key)) {
LIST_FN(HASH NAME, add key)(bin, key);
table->used++;
if (table-»>size == table->used) {

HASH_FN(HASH NAME, resize)(table, 2*table->size);

}

}

}

#tdefine GEN_CONTAINS_KEY(HASH_NAME, KEY_TYPE, HASH)
bool

\
\
\
\
\
\
\
\

HASH_FN(HASH_NAME, contains_key)(HTABLE (HASH NAME) *table,

KEY_TYPE key)
{
BIN(HASH_NAME) *bin =
HASH_FN(HASH NAME, get key bin)(table, HASH(key));
return LIST FN(HASH_NAME, contains_key)(bin, key);

}

#tdefine GEN DELETE_KEY(HASH NAME, KEY TYPE, HASH)
void
HASH_FN(HASH_NAME, delete key)(HTABLE(HASH NAME) *table,
KEY_TYPE key)
{
BIN(HASH NAME) *bin =
HASH_FN(HASH_NAME, ge‘t_key_bin)(‘table, HASH(key));
if (LIST FN(HASH NAME, contains key)(bin, key)) {
LIST FN(HASH NAME, delete key)(bin, key);
table->used--;
if (table-»>size > MIN_SIZE
88 table->used < table->size / 4) {

P

P T G G

131

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

HASH FN(HASH NAME, resize)(table, table->size / 2); \
} \
} \
}

The only remaining function is resize. Here, I changed the code a
little. Instead of having a copy_1links function, I have inlined the code—to
avoid generating more functions than I have to, thereby alleviating the
risks of name clashes—and instead I used a macro that moves a link from
one list iterator to another. I also need to compute the hash keys to get the
bins I move the values to. If I had stored the hash keys in the lists—like I
will in the structure in the next section—I could have reused the computed
value instead.

#define MOVE_LINK(FROM, TO) \
do { \
typeof (**FROM) *1link = *FROM; \
*FROM = link->next; \
link->next = *TO; \
*TO = link; \

} while (0)

#tdefine GEN RESIZE(HASH NAME, HASH)
void
HASH_FN(HASH_NAME, resize)(HTABLE(HASH NAME) *table,
unsigned int new_size)
{
BIN(HASH NAME) *old bins = table-»>bins,
*o0ld_from = old bins,

*old to = old from + table->size;

table->bins = malloc(new_size * sizeof *table->bins);
table->size = new_size;
for (BIN(HASH NAME) *bin = table->bins;

P

132

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

bin < table->bins + table->size;
bin++) {
bin->head = NULL;
}
for (BIN(HASH NAME) *bin = old from;

\
bin < old_to; \
bin++) { \
\
\

~ -

for (ITR(bin) itr = ITR BEG(bin); !ITR _END(itr);) {
unsigned int hash_key = HASH(ITR_DEREF(itr)->key);

MOVE_LINK(itr, \
ITR_BEG(HASH_FN(HASH NAME, get key bin)(table, hash_
key))); \

} \
} \
free(old bins);

}

With this kind of generated code, you can emulate the generics found
in many other languages. Writing code-generating macros is far from easy,
and using the generated code isn’t necessarily easy either. In the code I
presented, I generate structures and functions as one unit, but this will not
work across compilation units where the linker cannot handle duplication
of symbols. There, you need to use a macro that generates structures
and prototypes and another that generates the functions. But even with
that approach, there are drawbacks. You get (binary) copies of the code
for each instantiation, leading to binary bloat. If you get complication
errors, tracking them from the generated code into the macros you used to
generate them is often far from trivial. While generating code is sometimes
the right approach and often leads to more efficient code, writing generic
code directly in C is sometimes the better choice. And that is what you will
do now, for a hash map.

133

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

Hash Maps

This section shows you how to implement hash maps using an alternative
approach to writing generic hash tables in C. In this section, you do not
generate code, so you have to rely on the one generic type that the C
language has: the void pointer. The language standard guarantees that
avariable of type void * can be assigned any pointer type and that any
pointer type variable can be assigned a void *. This means that you can
write code that uses void * objects, and this code can handle any other
type of pointers.

A drawback is that type checking variables mostly goes out the
window—you can assign an int *toavoid * and thentoachar *
without type issues (but likely with substantial runtime issues). You can
get around this by writing wrapper code with the correct pointer types, and
you can use techniques similar to those in the previous section to auto-
generate such wrappers. If you do, you will avoid many of the drawbacks
of the generated code. The main code is the same for all instances of
tables because you use the underlying void * types instead of generating
tables for each type, and the generated code can typically be inlined so an
optimizing compiler can get rid of it after checking type correctness. I don't
generate such wrapper code here, but I trust you can easily do so based on
what you learned in the previous section.

Another drawback is more substantial for the ergonomics of the code
and difficult to get around. The approach can only work on pointers. You
cannot assign an int or a char inavoid * (atleast not according to the
C standard). For many types, this results in some cumbersome code. Say,
for example, you want a map of strings to integers. Strings are already
pointers, char *, so those are not a problem, but any integer you have, you
must translate into an int *. If you have a variable i, you can use &1, but
for a literal, like 42, you need tricks like &(int){42}). For example:

134

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

int i = 13;
add_map(map, "foo", 8&i); // maps foo -> 13
add_map(map, "bar", &(int){42}); // maps bar -> 42

int j = *(int *)lookup_key(map, "bar"); // gets us 42
printf("j = %d\n", j);

In both cases, you must ensure that nothing in the value you insert into
the table isn’t changed or the hash mechanics cannot find them again.
That means you cannot assign to i again if the pointer is inserted verbatim,
and likely, you cannot create another &(int){literal} expression again,
as compilers tend to reuse their memory. Of course, this is simply part of
a larger problem when working with pointers; if you have pointers to data,
you can modify it, and if you have data in a hash table, you absolutely must
not do so. Itis just easier to get it wrong with expressions like these.

The hash tables you create will be able to handle expressions like
these, but they require some pointer discipline. You can’t get around
working with pointers, as that is all that void * can handle, but you can
make it as flexible and as easy to use as that constraint allows. It comes
at a performance cost, and you can get around some of it by modifying
the code to your needs. Essentially, the rule is that everything in a table
is owned by the table, so the table must copy keys and values when you
insert them into it. In many cases, this is unnecessary (and to some degree,
you can also avoid it with the code you will write), but by following this
rule, it is always clear who owns the data and who can modify it. Since you
copy keys and values, the code will work since it simply isn’t possible for a
user to overwrite the numbers you inserted into the table, even if they are
pointers to memory on the caller’s stack.

135

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

Key and Value Types

Since you cannot generally know how to copy, compare, and free keys and
values, you must provide a mechanism for the user to tell you. You also had
to do this when generating code, but now you can do so without invoking
macros. You define types for keys and values; any user who wants to create
a table must provide one for each. The types are just pointers to functions
implementing the operations you need:

typedef unsigned int (*hash_func)(void const *);

typedef bool (*compare func)(void const *, void const *);
typedef void (*destructor func)(void *);

typedef void *(*copy func)(void const *);

struct key type {
hash_func hash;
compare_func cmp;
copy_func cpy;
destructor func del;

b

struct value_type {
copy_func cpy;
destructor func del;

b

You must be able to compute a hash value and compare two keys for
keys, and you must be able to copy and free data for both keys and values.
The operations you will implement are as follows:

struct hash _table *
new table(struct key type const *key type, struct value type
const *value type);

136

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

void
delete table(struct hash table *table);

void

add_map(struct hash_table *table, void const *key, void const
*value);

void

delete key(struct hash _table *table, void const *key);

void *const

lookup key(struct hash table *table, void const *key);

The const declarations indicate that you won't take ownership of keys
and values. (You cannot specify that you won'’t store them either, but you will
make copies to ensure that data doesn’t change behind the table’s back.)

Hash Map Definition

The hash map you implement is based on the linear probing strategy. It is
not that different from what you saw in Chapter 4, but you'll add a cached
hash key in the bins, so you don’t need to recompute hash values when
you resize, and the table will have a pointer to the key type and value
type function definitions.

struct bin {
int in_probe : 1; // The bin is part of a sequence of
used bins
int is_empty : 1; // The bin does not contain a value (but
might still be
// in a probe sequence)

unsigned int hash_key; // cached hash key
void *key; // pointer to the actual key
void *val; // pointer to the value

};

137

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

struct hash_table {
struct bin *bins;
unsigned int size;
unsigned int used;
unsigned int active;
struct key type const *key type;
struct value type const *value type;

1
The probing strategy is the same one you used before:

unsigned int static p(unsigned int k, unsigned int i,
unsigned int m)
{
return (k + i) & (m - 1);
}

Because you have to look up operations in a type structure pointed
to by a table, calling operations will be very verbose. So, add some helper
functions:

The hash function uses the key type’s hash function to map a user key
to a hash key.

static inline unsigned int
hash(struct hash table *table, void const *key)

{
return table->key type->hash(key);

}

The copy_key and copy_val functions use the key and value types to
make a copy of input. The free_key and free_val functions, similarly, use
the types to free memory.

138

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

static inline void *
copy_key(struct hash table *table, void const *key)

{
return table->key type->cpy(key);

}

static inline void *
copy val(struct hash table *table, void const *val)

{
return table->value type->cpy(val);

}

static inline void
free key(struct hash_table *table, void *key)

{
table->key type->del(key);

}

static inline void
free val(struct hash table *table, void *val)

{
table->value type->del(val);

}

Finally, with a function that doesn’t involve the types, is_active_bin
checks if a bin is currently active (i.e., it is part of a probe and not marked

as empty):
static inline bool

is_active bin(struct bin *bin)

{

return bin->in_probe && !bin->is_empty;

}

139

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

Creating and Resizing a Table

The creation and resizing processes are largely identical to what you have
seen in Chapter 4, so I do not explain it in detail again here. You use an
init table() function to initialize tables and update them when resizing.
It gets a (new) size and a (possibly empty) sequence of empty bins, and
then it updates all the bookkeeping and moves the bins into the new table.
The function uses a helper, add_map_internal(), which I get to later when
you learn to implement insertion. This function inserts a key to a value
map into the table, assuming you already have the hash value and have
already copied the key and value data, which will be the case in init
table(), because you can get it from existing bins.

// add_map_internal is a helper function for add_map that
// expects us to have already computed the hash key for the
// key and copied the key and value. It inserts the
// hash_key/key -> value mapping in the table.
static void
add map_internal(struct hash table *table,

unsigned int hash_key,

void *key copy, void *value copy);

// Initialize the table with “size” bins, and then copy
// the bins from “begin® to “end” into the table.
static void
init table(struct hash table *table, unsigned int size,
struct bin *begin,
struct bin *end)
{
// Initialize table members
table->bins
table->size

malloc(size * sizeof *table->bins);

size;

140

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

table->used = 0;
table->active = 0;

// Initialize bins

struct bin empty bin = {.in probe = false,
.is_empty = true};
for (unsigned int i = 0; i < table->size; i++) {
table->bins[i] = empty bin;

}
// Copy the old bins to the new table
for (struct bin *bin = begin; bin != end; bin++) {

if (!'bin->is_empty) {
add _map_internal(table, bin->hash_key,
bin->key, bin->val);

When you create a new table, you initialize it with the initial size (MIN_

SIZE in this implementation) and with an empty sequence of existing bins
(begin and end arguments are both NULL).

#define MIN SIZE 8

struct hash _table *
new_table(struct key type const *key type, struct value type
const *value type)

{

struct hash_table *table = malloc(sizeof *table);
table->key type = key type;

table->value_type = value_type;

init_table(table, MIN_SIZE, NULL, NULL);

return table;

141

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

For resizing, you call init_table with the new size and the existing
bins. Since init_table will overwrite the bins pointer in the table
structure, you save a pointer to them in old_bins_begin to free them
afterward. After a resize, the pointers to keys and values are moved into the
new bins by init_table() and add_map_internal() so you will not leak
application memory when you delete the old bins.

static void
resize(struct hash _table *table, unsigned int new size)
{
// Remember the old bins until we have moved them.
struct bin *old bins_begin = table->bins,
*old bins_end = old bins _begin + table->size;

// Update the table and copy the old active bins to it.
init table(table, new size, old bins_begin, old bins end);

// finally, free memory for old bins
free(old bins begin);

Compared to the same hash map in Chapter 4, the main difference is
how you move old data into new tables when you resize. Here, you now
have to worry about memory management, something you didn’t when
you only had integer keys and values. This is all taken care of in init_
table()’s call to add_map_internal(), so all you have seen so far is that
you get both a key and a hash key from the bins you copy.

Freeing Tables

In the version from Chapter 4, you only needed to free the bins and the
table struct when you deleted a table, but now you need to free the data
you copied into the table as well. The flow is reasonably straightforward;
you run through each bin and free any data there. You know if a bin

142

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

contains data from the flags set in it, and you can use the is_active bin()
helper function to check. If there is data there, you need to free the key and
value, which you do using the free key() and free val() helpers that
dispatch to the key and value types, respectively.

// If there is data in a bin, free it
static inline void
free bin(struct hash table *table, struct bin *bin)
{
if (is_active bin(bin)) {
free key(table, bin->key);
free val(table, bin->val);
bin->is_empty = true; // Delete the bin
table->active--; // Same bins in use but one less active
}
}

void
delete table(struct hash table *table)
{

for (struct bin *bin = table->bins; bin != table->bins +
table->size; ++bin) {

free bin(table, bin);

}

free(table->bins);

free(table);

}

The free_bin() function ignores bins that aren’t active, so you can
safely call it with inactive probes. If you are in an active probe, it will free
the data stored in the bin and update the active counter, which you need
for resizing (see Chapter 4).

143

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

Lookup

Checking if a key is in the table and returning the value if it is also follows
the pattern from Chapter 4. (Spoiler alert: All the operations do.) Checking
if a key is in a bin is slightly more complicated now, however, because

you store user keys together with hash keys. You need to write a helper
function for this:

// Check if the bin contains the key. We first check if
// the bin is active, then, if the hash keys match
// (if they don't, we don't need to call a potentially
// expensive key comparison function), and finally,
// we compare the keys.
static inline bool
key in bin(struct hash table *table, struct bin *bin, unsigned
int hash_key,
void const *key)
{
return is_active bin(bin) && bin->hash key == hash key 88&
table->key type->cmp(bin->key, key);

For a key to be in a bin, the bin must be active (otherwise, a key match
would be spurious or match to a deleted key). It must also match the key,
as defined by the key type’s comparison function. You could check only
those two conditions, but you also added a comparison of hash keys. If the
key is a match, the hash values will also match, so the comparison doesn'’t
contribute to determining a match. Still, by comparing hash functions first,
you can avoid calling the comparison function in the (highly likely) cases
where different keys have different hash values.

Next, you need code to find the bin that contains a key. This is a simple
matter of following the probe until you find a match or a bin that is not part
of a probe, similar to Chapter 4. The probing loop goes in a helper function
because you will use it later when inserting and deleting.

144

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

// Find the bin containing key, or the first bin past the
// end of its probe. It will never return a bin that is in
// a probe and empty, since those cannot contain the key,
// and if we need an empty bin we will search for
// the earliest in the probe using find_empty().
struct bin *
find key(struct hash_table *table, unsigned int hash_key, void
const *key)
{
for (unsigned int i = 0; i < table->size; i++) {

struct bin *bin = table->bins + p(hash_key, i,
table->size);

if (!'bin->in_probe ||

key in_bin(table, bin, hash_key, key))
return bin;

}

assert(false); // We should never get here

}

The assert(false) statement should never be reached since you can
only reach the end of the for loop if you searched the entire table, and
resizing prevents this.

There is nothing special about returning the next bin in the probe
when you don’t find the key. You need to return something, and returning
the bin after the probe gives you an easy-to-check value. If the return value
is not active, itisn’t in a probe, so you know you didn'’t find the key. If the
return value is active, you must have found the key. This is all you need to
implement the lookup_key() function:

void *const
lookup _key(struct hash_table *table, void const *key)

{

145

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

struct bin *bin = find key(table, hash(table, key), key);
return bin->in_probe ? bin->val : NULL;

}

This returns a pointer to the value stored in the table, so this is not a
copy. Therefore, the return value is void * const. You could also have
returned a copy (and the user would then always need to free the return
value), but in most uses of hash maps, you want a reference to the value
without taking ownership, so that is how the function is implemented.

Adding and Deleting

This section deals with deletion first since that is the simplest. The find
key () function from the previous section is used to locate the bin that
contains a given hash key. Then you delete it. (Then you resize it, but there
is nothing new to resizing compared to Chapter 4.)

void

delete key(struct hash _table *table, void const *key)

{
struct bin *bin = find key(table, hash(table, key), key);
free bin(table, bin);

if (table-»active < table->size / 8
8& table->size > MIN_SIZE)
resize(table, table-»>size / 2);

The reason you can call free_bin() on the result of find_key()
without checking if you found something is that free_bin() only deletes
values in an active bin. If you didn’t find key, find_key() would have given
you an inactive bin, and then free_bin() would not do anything. So, you
only free data if the table contains the key.

146

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES
The main add_map() function is even simpler:

void
add_map(struct hash table *table,
void const *key, void const *value)
{
unsigned int hash_key = hash(table, key);
void *key copy = copy key(table, key);
void *value copy = copy val(table, value);
add _map_internal(table, hash key, key copy, value copy);

}

This simplicity hides the complexity in add_map_internal(). The
user-callable add_map() needs to compute the hash key from the user key
and copy the key and value, but after that, it can hand over the task to the
internal version, which looks like this:

static void
add_map_internal(struct hash table *table,
unsigned int hash_key,
void *key copy, void *value copy)
{
struct bin *bin = get bin(table, hash _key, key copy);
store_in bin(table, bin, hash_key, key copy, value copy);

if (table->used > table->size / 2)
resize(table, table->size * 2);

(The get_bin() function is defined in the following code. The resizing
is still the same as in the previous chapter, so you can ignore that.)

The function first finds the bin that contains the key, or the next free
bin in the key’s probe, and then it inserts the values in that bin.

147

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

The get_bin() function will first try to find a bin that contains the key
using the find_key() function. If it finds such a bin, it returns it; otherwise,
it will search for the first free bin in the probe.

struct bin *
get bin(struct hash_table *table,
unsigned int hash_key, void *const key)
{
struct bin *bin = find key(table, hash_key, key);
return bin->in _probe ? bin : find empty(table, hash key);
}

// Find the first empty bin in its probe.
struct bin *
find _empty(struct hash_table *table, unsigned int hash_key)
{
for (unsigned int i = 0; i < table->size; i++) {
struct bin *bin = table->bins + p(hash key, i,
table->size);
if (bin->is_empty)
return bin;

}

assert(false); // you should never get here

}

The only remaining function is store_in_bin(), which is responsible
for storing a key/value mapping in a bin. This sounds simple, but the
function is perhaps longer than you would expect:

static inline void
store_in bin(struct hash table *table, struct bin *bin,
unsigned int hash_key,

void *key, void *value)

148

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

{
// Update counters based on current state of bin.
table->active += !lbin->is_empty;
table->used += !bin->in_probe;
// Free any key or value currently in the bin.
free bin(table, bin);
// Store the new key and value in the bin.
*bin = (struct bin){
.in_probe = true,
.is_empty = false,
.hash_key = hash_key,
key = key,
.val = value,
};
}

The complicated bits are the first two lines that keep track of the table’s
counters. After that, you free any values already in the bin and then update
the bin with the new values, which is all pretty straightforward.

The counters in the table, active and used, are the same as in
Chapter 4. You keep track of how many bins are used (i.e. part of a probe)
and how many are active (i.e., both part of a probe and not empty). The
in_probe and is_empty flags in the bin tell you all you need to update the
counters. If they were always 0 or 1, you could add is_empty to active
and, that way, increment active if and only if the bin is empty. Similarly,
adding !in_probe to used would increment used only when a bin is not
in a probe. The is_empty and in_probe members are not bool, however,
butint : 1, soyou are not guaranteed that their numerical value is 0 or 1,
only that “false” means 0, while “true” could be any non-zero value. You
are guaranteed, however, that ! x will be 1 if x is non-zero and 0 otherwise,
and you are guaranteed that ! | x will be 1 if X is non-zero and 0 otherwise.
That is the explanation behind the weird counting in the function.

149

CHAPTER 5 ADDING APPLICATION KEYS AND VALUES

Conclusions

Extending the simple hash tables from earlier with user-defined keys

and values has little to do with hashing or table strategies and more with
general memory management and dealing with C's lack of generics. C
doesn’t support generics except in the limited case of void pointers, and it
doesn’t support polymorphism except as function pointers. Those are the
tools you have to work with.

This chapter covered two approaches—you can generate code using
macros or restrict yourself to pointers and use void * as a generic type.
Both approaches have pros and cons, so the right choice will depend on
the application for which you need a hash table.

In both cases, you need to deal with hashing—getting a hash value
from a user key—comparison—so you can provide functionality for
comparing keys—and memory management—both in the sense that you
know whether the table or the user has ownership of the data or so you
can ensure that you don’t leak memory or risk freeing memory more
than once.

150

CHAPTER 6

Heuristic Hash
Functions

The main focus of this book is on the practical implementation of hash
tables, with hash functions being a secondary but crucial aspect. The book
starts with the assumption that the hash keys are uniformly distributed,
although this is often not the case in real-world scenarios. In this chapter,
Iintroduce you to commonly used heuristic hash functions, which are
invaluable in such situations. The next chapter explores an approach
that can provide stronger probabilistic guarantees, enhancing your
understanding and application of hash functions. You can download the
code at https://github.com/mailund/JoyChapteré.

As you embark on this chapter, you'll begin by considering two cases
where your data is not randomly distributed. To help you visualize this,
assume you have data that can be represented in 16 bits with 64 data
points. You'll map these data points within the length ranges of 8, 16, 32,
and 64 for powers of 2 or 7, 17, 31, and 67 for tables with lengths that are
prime numbers. This will allow you to understand how keys are distributed
over bins with tables of different sizes without worrying about conflict
resolution and load at this stage.

I set up two pathological cases, one where I have consecutive numbers
from 0 to 128 and one where I have the same numbers but shifted two bits.
The latter is to emulate the case where you have pointers that are four
bytes apart. Usually, you will have pointers aligned with computer words,

© The Editor(s) (if applicable) and The Author(s), 151
under exclusive license to APress Media, LLC, part of Springer Nature 2024
T. Mailund, The Joys of Hashing, https://doi.org/10.1007/979-8-8688-0826-5_6

https://doi.org/10.1007/979-8-8688-0826-5_6#DOI
https://github.com/mailund/JoyChapter5

CHAPTER 6 HEURISTIC HASH FUNCTIONS

which are likely to be four or eight bytes apart, so the lowest two or four bits
will be zero. The numbers can all be represented in 8 bits, but I allow the hash
keys to take values in 16 bits and mask them down to the lower half of the bits.

I plotted the first case in Figure 6-1 and the second in Figure 6-2. 1 do
not plot the input (application) keys. These are all the numbers from 0 to
128, and you would not be able to see them in either plot except as a thin
bar to the left of the histogram. They would be at the very left end of the
x-axis since N = 2'® = 65,536 and 128 is tiny compared to 65,536. Even if you
shift them two bits up, you only get to 512, which would still be at the far
left of the range. What the plots show are the hash keys when binned to the
different table sizes using masking or modulus.

Masked table, size 8 Masked table, size 16 Masked table, size 32 Masked table, size 64
Modulus table, size 7 Modulus table, size 17 Modulus table, size 31 Modulus table, size 67

AR AN R

Figure 6-1. Consecutive numbers directly mapped to hash keys

Masked table, size 8 Masked table, size 16 Masked table, size 32 Masked table, size 64

Modulus table, size 7 Modulus table, size 17 Modulus table, size 31 Modulus table, size 67

NAnnn Gl - RN

Figure 6-2. Numbers shifted two bits directly mapped to hash keys

Although the input keys are far from evenly spread across the range
of all possible keys, you, of course, get a relatively even distribution when
you bin them by mapping using masking or modulus to the table range.
This is somewhat artificial, and an artifact of the way taking the remainder

152

CHAPTER 6 HEURISTIC HASH FUNCTIONS

works. As long as you cover the whole range of the smaller table, you will
see a good spread there. This is not what I want you to focus on. What is
interesting is the difference in behavior when you go from covering the full
range of [128] to only mapping every fourth key in [512].

In the first case, you get good spreads for both the masked and the
prime-number hash tables, while in the second case, you only get a good
spread for the prime-number-sized hash tables. That should not be a surprise.
You base your bins on the lower bits when you mask them, and you get a
poor distribution when you shift them. The second case is the worst setup for
masking. Thus, better hash functions are needed than just masking/taking
modulus. One of the reasons people prefer to use hash keys modulo a prime
is precisely to avoid this problem. With good hash functions, however, you can
get closer to the goal of randomly distributed hash keys when you mask the
lowest bits. Heuristics for this is considered in this chapter.

What Makes a Good Hash Function?

Before you see how to engineer these hash functions, consider these
properties:

1. They should be fast to compute.
2. They should be deterministic.'

3. They should aim at distributing values uniformly in
their target domain.

!When I say deterministic here, I mean that a hash function should always produce
the same output on the same input. There are plenty of randomized hash functions
in the sense that they use random numbers as part of their construction. You fix
these random numbers when you use the function to hash application keys. You can
change from one hash function to another by picking new random numbers, but you
can’t change them at arbitrary times if you want your function to consistently give
you the same output for the same input. Universal hashing, which is discussed in the
next chapter, uses random numbers to create deterministic hash functions.

153

CHAPTER 6 HEURISTIC HASH FUNCTIONS

You always want fast computation, and obviously also for hash
functions. The goal of hash tables is to achieve constant time lookups,
but if the hash function is slow at computing the hash key, then much of
the efficiency is lost. If time is so vital that you prefer masking bits instead
of calculating the remainder modulus a prime, then the hash function
shouldn’t be slower than the modulus operation. This means that you
need bit-wise operations rather than arithmetic operations and adding
and subtracting rather than multiplying and dividing.

The second property is essential. If the hash function is not
deterministic, you might end up with two different keys for the same
value. If the hash key changes each time you want to look up a value,
the hash table cannot do lookups. However, this point does not mean
that you cannot use randomization. As you will see later, you can
use randomization to avoid poor performance of hash functions on
pathological data where values map to a small range of hash table bins. If
you use random values, however, they need to be parameters to the hash
function so you can get deterministic behavior out of it.

The third property is why you need hash functions, and this property
is the hardest to achieve. You get the best performance in a hash table
when keys are spread uniformly over the hash table bin. If the hash table
produces random keys, you will also get a uniform spread in bins. If it does
not, there are no runtime guarantees. This is, unfortunately, impossible
to guarantee with a single deterministic hash function. If you map k-bit
values to a [-bit range, you map 2* possible values into 2’ keys. The best
you can achieve if the map is uniform, is to map 2! values to each key.
An adversary that knows your hash function can exploit this and maximize
the number of collisions you get. You can mitigate this with an ensemble
of different hash functions by choosing a hash function dependent on the
data. You can avoid adversarial data by randomly selecting (deterministic)
hash functions. With a single good hash function that tends to map similar
data to very different hash keys, you usually get good performance without
randomization tricks.

154

CHAPTER 6 HEURISTIC HASH FUNCTIONS

Hashing Computer Words

The remainder of this chapter considers two cases. First, you have values
that you can fit into a single computer word, and you want to scramble up
the values to make them evenly distributed. Second, in the more general
case, you have a sequence of bytes for each value where the length varies
from value to value. Any case that does not fit the first can be handled

by the second since you can serialize any data to a stream of bytes, even
though it might require some programming to get there for some data
structures.

In the following, I only consider the example case where the numbers
were shifted two bits to the right. When you use consecutive numbers
from 0 to 63 and shift these by two bits, the result still fits into a single byte.
Although I use 32-bit words in all the functions, remember that in the
input, the only non-zero bits are in the least significant byte. Also, I mask
the hash keys to the 16 least significant bits for plotting purposes.

Now, from the identity hash function, the problem you had with
the masked tables was that the lower bits were all zeros. Having 3/4 of
the bytes in the input values identical makes the test data somewhat
adversarial. If you are hashing something like pointers, it is not unusual
that the least significant bits are identical. If some bits in the input are
always the same, their input domain is effectively smaller, and no hash
function can compensate for this when scrambling the input. Still, if the
hash function scrambles the remaining bits well, you should still get good
performance.

Before addressing the hash functions, you need to understand some
terminology. Consider Figure 6-3, which shows the components of a hash
function when you deal with an entire computer word as a single unit. You
can assume that you have a parameter that goes into the function. This
gives you a way to parameterize a function, and this value can be random
as long as you use the same parameter every time you hash a value. The

155

CHAPTER 6 HEURISTIC HASH FUNCTIONS

parameter can potentially be used to randomize a function if you get poor
performance.

Parameter
(State)

Combine Mix >

Figure 6-3. Components of a single-word hash function

This parameter is also called a state (or initial state) because it works
as an intermediate state when you hash multiple words; see Figure 6-4.
Multiple words do not necessarily refer to complete computer words here
but also to individual sub-keys, such as the four bytes, which a 32-bit
computer word consists of. When you split a word into individual bytes or
hash over multiple-word values, the output of a single computation in the
hash function behaves as the input of the next, and you call such values the
states of the function as you process the input.

[mput) (put) [nput | [mput |

TN 2 2 ¥ ¥ /TN
(e sl contire sl e sl combre sl e sl comme bal wx b—sl comme bs| wx o] roamn o outut)
N N

Figure 6-4. Components of a multiple-word hash function

When you hash, you first combine the input with the state of the
function, starting from the initial state. Combining means that you XOR or
add the state to the input. Adding the input to the state is a slightly better
choice for scrambling the bits in the input since a single bit in the input
will only affect a single bit in the output with XOR. When you add, a carry
bit can propagate a single input bit several bits to the left in the result. For
maximum speed, on the other hand, XOR is preferable.

156

CHAPTER 6 HEURISTIC HASH FUNCTIONS

You then mix up the result after combining the input and state. In
this step, you attempt to modify the state such that each bit in the state
will affect several other bits as a result of the mixing. If you hash a value
consisting of multiple components—bytes or words—you perform several
combine and mix steps, and you might have some additional mixing after
you have processed all the input.

Most functions I present in this chapter are taken from Bob Jenkins’
excellent web page at http://www.burtleburtle.net/bob/hash/doobs.
html, in some cases with minor modifications. I have not included all hash
functions described there, but I have selected a few that tend to perform
well. If you want to explore more functions, Jenkins’ web page is a good
starting point. All functions take a 32-bit integer as its state input (even
when this value is ignored), a 32-bit bit word for the input, and produce a
32-bit integer as output.

Additive Hashing

One of the simplest hash functions is the additive hashing function.? This
function, shown here, combines the input and the state by addition and
without mixing. It does move all the four bits in a 32-bit word to the least
significant byte, so the lower bits are potentially affected by the full 32-
bit input. The higher bits do not affect the lower bits if you simply add
hash and input in the function. For the test input, where the three most
significant bytes are all zeros, it behaves exactly as the identity function
when the state parameter is 0; see Figure 6-5. When state is not 0, it still
leaves the two lowest bits constant on the input. The two lowest bits will

2The simplest I have seen was used to hash ASCII strings and only used the first
character. For standard ASCII, there are only 128 characters (they use seven bits
per character), while for Extended ASCII there are 256. That is not the bad part,
however. If you hash common words, such as variable names in a program, then
these do not use the full set of ASCII characters. Using only the first character of a
string is a very poor hash function.

157

http://www.burtleburtle.net/bob/hash/doobs.html
http://www.burtleburtle.net/bob/hash/doobs.html

CHAPTER 6 HEURISTIC HASH FUNCTIONS

be copied directly from the state parameter and will not be affected by
the input.

uint32_t additive hash(uint32_t state, uint32_t input)
{

uint32_t hash = state;

uint8 t *p = (uint8 t*)&input;

// combine
hash += *(p++);
hash += *(p++);
hash += *(p++);
hash += *p;

return hash;

Masked table, size 8 Masked table, size 16 Masked table, size 32 Masked table, size 64

Modulus table, size 7 Modulus table, size 17 Modulus table, size 31 Modulus table, size 67

L ey

Figure 6-5. Additive hashing
Since the sizes of your masked hash tables are 8, 16, 32, and 64, the

binned keys are 3, 4, 5, and 6 bits. The additive hashing function can only
modify 1, 2, 3, and 4, respectively, since the lower two bits are constant.
The input spans all possible bit-patterns of these, so you already have the
best possible spread you can get using this hash function, regardless of
the state parameter. It cannot perform better than the identity hash
function on the test data.

158

CHAPTER 6 HEURISTIC HASH FUNCTIONS

Rotating Hashing

On many hardware architectures that have a rotate operation,

implemented using shift and OR, you can write a high-speed hash function

that operates using rotate and XOR.

#tdefine rot(x,k) (((x)<<(k)) I ((x)>>(32-(k))))
uint32_t rotating hash(uint32_t state, uint32_t input)
{

uint32_t hash = state;

uint8 t *p = (uint8 t*)&input;

// mix ; combine
hash "= *(p++);
hash += rot(hash, 4) * *(p++);
hash += rot(hash, 4) * *(p++);
hash += rot(hash, 4) ~ *p;

return hash;

Big-endian and small-endian architectures will combine the input
bytes in different order. To reverse the order in which you add the bytes,
you can implement the function like this:

uint32_t rotating hash(uint32_t state, uint32_t input)
{

uint32_t hash = state;

uint8 t *p = ((uint8 t*)&input) + 3;

// mix ; combine
hash A= *(p--);
hash += rot(hash, 4) * *(p--);
hash += rot(hash, 4) * *(p--);

159

CHAPTER 6 HEURISTIC HASH FUNCTIONS
hash += rot(hash, 4) ~ *p;

return hash;

This function rotates the hash function state in each mixing step and
combines one byte at a time using XOR. Rotating can preserve input bits
through many cycles of input, but for a single computer word, it does
not work well in this application. If you first combine with the byte that
contains different data, as you would do on a big-endian computer, the
mixing operations shift out of the lower bits entirely, and the function
would only depend on the addition that preserves bit-positions through
the three operations; see Figure 6-6. I highlighted the input bytes using
boxes; the boxes on the right eight bits show where the input bytes enter
the function. With the three first bytes set to 0, as in the test data, and the
two least-significant bits at zero as well, you will not get a better spread
over bins than you get with additive hashing, although the hash keys are
spread out more than with additive hashing. See Figure 6-7.

///ﬂ/////// A A
/ T !
. %/////// ==

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Bit-position

Operation

[N

Figure 6-6. Bits affected by the first input byte (shown in black).
Addition (vertical edges) is shown as if it only affects single bits. In
actuality, some bits to the left of an addition will be affected

160

CHAPTER 6 HEURISTIC HASH FUNCTIONS

Masked table, size 8 Masked table, size 16 Masked table, size 32 Masked table, size 64
Modulus table, size 7 Modulus table, size 17 Modulus table, size 31 Modulus table, size 67

LRy |

Figure 6-7. Rotate hashing with the last byte carrying information

With more bytes in the input, the first byte will wrap around and start
affecting later bytes, but the periodicity in when the first byte affects the
least significant bytes will be an issue. The best you can hope for is to
return the initial byte to the lowest bits minus two, where your 64 keys will
take all possible values for your mapped bits. However, this solution only
applies to this test data and does not generalize.

When the informative byte in the test data is added in the last
combination step, the rotation hash function is a simple XOR between a
rotation of the initial state and the variable byte. If the initial state is 0, you
will get the same performance as with the additive hashing; see Figure 6-8.
Changing the initial state will affect the keys because of the XOR operation,
but as with additive hashing, no choice of initial state will allow you to have
anything but a constant for the last two bits in the key when the last two
bits are constant in the input.

Masked table, size 8 Masked table, size 16 Masked table, size 32 Masked table, size 64
Modulus table, size 7 Modulus table, size 17 Modulus table, size 31 Modulus table, size 67

| [T]] [-y TR

Figure 6-8. Rotate hashing with the first byte carrying information

161

CHAPTER 6 HEURISTIC HASH FUNCTIONS

Another way to plot the performance of the hash function is to show
how the input bit-patterns translate to output bit-patterns. For the rotating
hash function, I have done this in Figures 6-9 and 6-10. The performance
of the masking hash tables can be seen by looking at the last 3, 4, 5, and 6
bits. Here, you see that the two least significant bits do not change for the
example input, so you get poor performance.

200

number

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
bits

Figure 6-9. Input and output bit-patterns for the rotating hash
function when the input is least-significant-byte last

200

number

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
bits

Figure 6-10. Input and output bit-patterns for the rotating hash
Jfunction when the input is least-significant-byte first

162

CHAPTER 6 HEURISTIC HASH FUNCTIONS

One-at-a-Time Hashing

The one-at-a-time hash function, developed by Bob Jenkins, uses addition
to combine the state and the input, one byte at a time. It then mixes the
result using bit-wise shift, addition, and XOR. You can implement it in two
different ways, varying in the order in which you add the bytes in the input.
Either this:

uint32_t one_at a time hash(uint32_t state, uint32_t input)
{

uint32_t hash = state;

uint8 t *p = (uint8 t*)&input;

// combine 5 mix

hash += *(p++); hash += (hash << 10); hash *= (hash >> 6);
hash += *(p++); hash += (hash << 10); hash *= (hash >> 6);
hash += *(p++); hash += (hash << 10); hash *= (hash >> 6);
hash += *p; hash += (hash << 10); hash *= (hash >> 6);

// final mix

hash += (hash << 3);
hash ~= (hash >> 11);
hash += (hash << 15);

return hash;

Or this:

uint32_t one_at a time hash(uint32 t state, uint32_t input)

{
uint32_t hash = state;
uint8 t *p = ((uint8 t*)&input) + 3;

// combine ; mix

163

CHAPTER 6 HEURISTIC HASH FUNCTIONS

hash += *(p--); hash += (hash << 10); hash *= (hash >> 6);
hash += *(p--); hash += (hash << 10); hash *= (hash >> 6);
hash += *(p--); hash += (hash << 10); hash *= (hash >> 6);
hash += *p; hash += (hash << 10); hash ~= (hash >> 6);

// final mix

hash += (hash << 3);
hash *= (hash >> 11);
hash += (hash << 15);

return hash;

Assuming you can assign and perform an operation in one instruction,
so += and "= are one operation, you spend seven operations on combining,
4 x 6 on mixing and six operations on the final mix, for a total of 30
operations.

Similar to how the rotating hash was visualized, you can show how
the one-at-a-time hash function moves bits around. In Figure 6-11, I show
how the bits in the first byte propagate down through the operations, and
in Figure 6-12, I show how the bits in the last byte propagate. Each mixing
step consists of two operations, so the input bytes are added as operations
0, 2, 4, and 6. The last three operations are the final mixing.

164

CHAPTER 6 HEURISTIC HASH FUNCTIONS

0 . D e . .
=1 |
SR
B .
=
3
I~
8 <33
@ —
8 I~
Os
<3 —_———
> -
R V%]]
—

32 31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 i1 10 9 8 7 6 5 4 3 2 1
Bit-position

Figure 6-11. Bits affected by the first input byte (shown in black)
using one-at-a-time hashing

Operation

32 31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Bit-position

Figure 6-12. Bits affected by the first last byte (shown in black) using
one-at-a-time hashing

165

CHAPTER 6 HEURISTIC HASH FUNCTIONS

Plotting how input bits propagate to the output bits tells you how many
output bits are affected by your input and, more importantly, how many
input bits each output bit depends on. I plotted this dependency for the
least- and the second-least significant bit—the bits that were constant in
your previous attempts at hash functions—in Figures 6-13 and 6-14. This
isn’t the entire story since some of the operations can cancel each other,
but you can see that the least significant bit depends on all the input bits
from the first byte and all except bit 3 for the last byte. For the second-least
significant bit, you can see that it depends on all the bits in the first byte
and four out of eight of the last byte.

0 === 2=
—
—
= |
]
3 e e e e |
===
]
—
=
Q
8o (= |
] |
] —
——
9 \

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Bit-position

Figure 6-13. Dependencies for the least significant bit in one-at-a-
time hashing

166

CHAPTER 6 HEURISTIC HASH FUNCTIONS

L ===

\
\

\\
\
\\

N

I
y
)i

Operation
>

10
y
)i

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Bit-position

Figure 6-14. Dependencies for the second-least significant bit in one-
at-a-time hashing

Based on these observations, you expect that this hash function
performs better on your test data, which seems to be the case. See
Figures 6-15 and 6-16. Since the output bits depend on all the bits in the
first byte and only some of the bits in the last byte, you might expect that
putting the informative byte in your test data as the first byte would be
slightly better, but both options seem to work well.

Masked table, size 8 Masked table, size 16 Masked table, size 32 Masked table, size 64

I bl il) i s

Modulus table, size 7 Modulus table, size 17 Modulus table, size 31 Modulus table, size 67

|IIII|II THIS inl.|| bk i otksis

Figure 6-15. One-at-a-time hashing adding the informative byte in
the first combine operation

167

CHAPTER 6 HEURISTIC HASH FUNCTIONS

Masked table, size 8 Masked table, size 16 Masked table, size 32 Masked table, size 64
llllllll - ||I|||||-I-II {||II|IIIII.||.I il “mhnnh ||||||]n ul
Modulus table, size 7 Modulus table, size 17 Modulus table, size 31 Modulus table, size 67

T MR T g e

Figure 6-16. One-at-a-time hashing adding the informative byte in
the last combine operation

You can also see that the output bits depend on combinations of the
initial state and the input, suggesting that poor performance on adversarial
data can be improved by changing the initial state.

The bit-patterns for the input and output of this hash function are
shown in Figures 6-17 and 6-18. You can see that you propagate some of
the variation in the input to the least-significant bits.

200

number

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
bits

Figure 6-17. Input and output bit-patterns for the one-at-a-time
hash function when the input is least-significant-byte first

168

CHAPTER 6 HEURISTIC HASH FUNCTIONS

200

number

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
bits

Figure 6-18. Input and output bit-patterns for the one-at-a-time
hash function when the input is least-significant-byte last

The initial state affects the hash keys when you use rotating hashing,
but it will not change the two least significant bits, which are constant on
the example input. For one-at-a-time hashing, these bits do vary with the
initial state. See Figures 6-19 to 6-22. This should give you some hope that,
if the hash function performs poorly on specific data, you can change the
initial state and get better performance.

169

CHAPTER 6 HEURISTIC HASH FUNCTIONS

200

number

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
bits

Figure 6-19. Input and output bit-patterns for the one-at-a-time
hash function when the input is least-significant-byte first and initial
state set to 1

200

number

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
bits

Figure 6-20. Input and output bit-patterns for the one-at-a-time
hash function when the input is least-significant-byte first and initial
state set to 0x9e3779b9

170

CHAPTER 6 HEURISTIC HASH FUNCTIONS

Masked table, size 8 Masked table, size 16 Masked table, size 32 Masked table, size 64
-IIIII.I .|I.|||I|II||.|I lllnl:llll:ll |||||||||||| || I |“|“||“|||||||||| | ||‘
Modulus table, size 7 Modulus table, size 17 Modulus table, size 31 Modulus table, size 67

alnalll v, L i bbb

Figure 6-21. One-at-a-time hashing adding the informative byte in
the last combine operation and the initial state set to 1

Masked table, size 8 Masked table, size 16 Masked table, size 32 Masked table, size 64

Dl kst Ll Dl

Modulus table, size 7 Modulus table, size 17 Modulus table, size 31 Modulus table, size 67

|IIIIIII llllllllllllII.I. II ||I||I|||||| ||||||||||| il |h‘||||| h||| ||||||“|| |||i‘

Figure 6-22. One-at-a-time hashing adding the informative byte in
the last combine operation and the initial state set to 0x9e3779b9

Jenkins Hashing

The Jenkins’ loopup2 function operates on full computer words and looks
as follows:

uint32_t jenkins_hash(uint32_t state, uint32_t input)
{

uint32_t a, b; a = b = 0x9e3779b9;

uint32_t c = state;

// combine
a += input;

171

CHAPTER 6 HEURISTIC HASH FUNCTIONS

// mix

a-=b; a-=c;a’ s (c>13);
b -=c; b-=a; b "= (ack8);
c -=a; ¢ -= b; c "= (b>»13);
a-=b;a-=c¢; an”rs (c>>12);
b -=c; b-=a; b "= (akk16);
C -=a; c -=b; c = (b>>5);
a-=b;a-=c;a’ (c>3);
b -=c; b-=a; b "= (akk10);
c -=a; c -=b; c = (b>>15);
return c;

This hash function uses more operations than one-at-a-time. It uses
one operation for combining and 9 x 4 on mixing, so a total of 37. For
larger keys, however, you can operate on data in chunks of 12 bytes, where
you can combine 12 bytes in three operations and still mix in 36 operations
to get a performance of 36/12n = 3n operations for keys of n bytes. The
one-at-a-time function will use 2n — 1 operations for combining, 207 for
mixing, and six for the final mix, with a total of 40n + 5 operations. You'll
learn about hashing variable length keys later in this chapter.

In this implementation, I set the variable c to the initial state, but in
reality, all three variables, a, b, and ¢, should be considered the state of the
function. When you hash more than a single word, all three variables move
the state from one word to the next.

A plot of how individual bits move through this function’s mixing step
gets complicated and does not provide much insight into the function. You
can, however, plot the input and output bit-patterns (see Figures 6-23 and
6-24) and the corresponding hash table performance (see Figures 6-25
and 6-26).

172

CHAPTER 6 HEURISTIC HASH FUNCTIONS

200

number

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
bits

Figure 6-23. Input and output bit-patterns for Jenkins’ lookup2 hash
function when the initial state is set to 0

200

number

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
bits

Figure 6-24. Input and output bit-patterns for Jenkins’ lookup2 hash
function when the initial state is set to 0x9e3779b9

173

CHAPTER 6 HEURISTIC HASH FUNCTIONS

Masked table, size 8 Masked table, size 16 Masked table, size 32 Masked table, size 64

||IIIII|I ||.I|I||||I|||n L.|.|||||..|| bl Mn il m

Modulus table, size 7 Modulus table, size 17 Modulus table, size 31 Modulus table, size 67

|IIIIlII III-IIIIIIIIIIIII |.|.. i |.| 1 ||i|h|||“|l||||ﬂ||‘n|

Figure 6-25. Jenkins’ lookup2 hashing with initial state 0

Masked table, size 8 Masked table, size 16 Masked table, size 32 Masked table, size 64
|llIIIIII II||.II|||||I||| LI.I |||..I.||I...||. whil | ih M| thlindy ||||]
Modulus table, size 7 Modulus table, size 17 Modulus table, size 31 Modulus table, size 67
|lllllll .-.IIII-.lnl.Ill ||||||||||||||h|| ||I|||||| !hu‘hl (bl o M

Figure 6-26. Jenkins’ lookup2 hashing with initial state 0x9e3779b9

Figures 6-25 and 6-26 show the performance of this function on the
test data for two different initial states. You get a good spread for either
initial state, and the difference between using one state and another is
apparent.

A successor, lookup3, is more complex but also faster on larger input
data than what is considered here. It is a good choice for hashing entire
files. For a hash table, however, lookup2 is a good choice and more
straightforward to implement.

In Figure 6-27, I plotted the performance of the different hash
functions as I implemented them. I normalized the time measures so they
are relative to the mean of the identity function. As expected, the complex
functions are slower than the simplest functions, with the Jenkins function
about a factor of ten slower than the identity.

174

CHAPTER 6 HEURISTIC HASH FUNCTIONS

—

Relative time
>

—_—l

identity additive rotating one_at_a_time Jenkins
Hash function

Figure 6-27. Hash function speed (normalized by the mean
performance of the identity function)

Hashing Strings of Bytes

There is not much difference between hashing a single computer word
and a string of bytes of variable length except for a loop. You do not have to
worry about the endianness of byte keys since byte keys come in the same
order on all software. You can, of course, iterate through the bytes in any
order, but there is less reason to worry about it since you can assume that
all bytes in such keys would carry information.

Iinclude the length of the key in the signature of hash functions on
byte keys. For C strings, you could exploit that these are null-terminated,
but this will only work when the keys are strings. It will not work if you
serialize a general data structure and then hash it. For the Jenkins hash
function, you also need to know the length of the input to handle the input
12 bytes at a time.

175

CHAPTER 6 HEURISTIC HASH FUNCTIONS

The first three functions— additive_hash, rotating_hash, and
one_at _a time_hash-are easy to translate into versions that iterate over a
sequence of bytes:

uint32_t additive hash(uint32 t state, char *input, int len)
{
uint32_t hash = state;
for (int i = 0; i < len; i++) {
// combine
hash += input[i];
}

return hash;

}

#tdefine rot(x,k) (((x)<<(k)) I ((x)>>(32-(k))))
uint32_t rotating hash(uint32 t state, char *input, int len)
{
uint32_t hash = state;
for (int i = 0; i < len; i++) {
// mix combine
hash += rot(hash, 4) * input[i];
}

return hash;

}

uint32_t one_at_a time hash(uint32_t state, char *input,
int len)
{
uint32_t hash = state;
for (int i = 0; i < len; i++) {
// combine
hash += input[i];
// mix

176

CHAPTER 6 HEURISTIC HASH FUNCTIONS

hash += (hash << 10); hash *= (hash >> 6);

}

// final mix

hash += (hash << 3);
hash ~= (hash >> 11);
hash += (hash << 15);

return hash;

The jenkins_hash function takes a little more work since it handles 12
bytes at a time. It reads these into the three state variables, a, b, and c when
there are 12 bytes left, and when there are fewer than 12 bytes, it reads in as
many as it can using a switch statement:

#define mix(a,b,c) \

{ \
a-=b;a-=c;anr=(c>>13); \
b -=c; b-=a;b"= (a<c8); \
c-=a; c-=b; c”=(b>»»13); \
a-=b;a-=c¢ a”"=s (c>>12); \
b -=c; b-=a; b "= (akk16); \
c -=a; ¢ -=b; c "= (b>»5); \
a-=b;a-=c;a’ (c>3); \
b -=c; b-=a; b "= (akk10); \
c -=a; ¢ -= b; ¢ "= (b>»15); \

}

uint32_t jenkins_hash(uint32_t state, char *input, int len)
{

uint32_t a, b; a = b = 0x9e3779b9;

uint32_t c = state;

int k = 0;

177

CHAPTER 6 HEURISTIC HASH FUNCTIONS

178

// handle most of the key
while (len >= 12)

a += *((uint32_t*)input);
b += *((uint32_t*)input + 4);
c += *((uint32_t*)input + 8);

switch(len) // all the case statements fall through

input[10] << 24;
input[9] << 16;
input[8] << 8;
input[7] << 24;
input[6] << 16;
input[5] << 8;
input[4];
input[3] << 24;
input[2] << 16;
input[1] << 8;

nothing left to add

{
mix(a,b,c);
input += 12;
len -= 12;

}

// handle the last 11 bytes

c += len;

{
case 11: C +=
case 10: c +=
case 9 : C +=
case 8 : b +=
case 7 : b +=
case 6 : b +=
case 5 : b +=
case 4 : a +=
case 3 : a +=
case 2 : a +=
case 1 : a +=

// case 0:

}

mix(a,b,c);

return c;

CHAPTER 6 HEURISTIC HASH FUNCTIONS

In Figures 6-28 through 6-31, I plotted the result of the four hash
functions where I hashed each word in the poem The Walrus and the
Carpenter.® All functions work well on these words.

Masked table, size 8 Masked table, size 16 Masked table, size 32 Masked table, size 64

|III|||| |‘I‘IIIIII|II||| .|I|..|...|.|.m|‘.||.|||.|||. ,.hhlhlhhld|nhl“.ll

Modulus table, size 7 Modulus table, size 17 Modulus table, size 31 Modulus table, size 67

I|||||I ‘||||||“‘|“I|‘I dih uﬁhmm

Masked table, size 8 Masked table, size 16 Masked table, size 32 Masked table, size 64

IIIIIIII I|‘|II|||I||I|| p||||||I|I|||||I|I‘I||I|I|||||| illlilﬂ“illltlllm]ﬂ

Modulus table, size 7 Modulus table, size 17 Modulus table, size 31 Modulus table, size 67

|I|I||| |.|I||I‘||‘|‘|I“ bl Lil.u...mmJN.

Figure 6-29. Hashing words using rotating hashing

Figure 6-28. Hashing words using additive hashing

3Taken from https://www.poetryfoundation.org/poems/43914/
the-walrus-and-the-carpenter-56d222cbc80a9.

179

https://www.poetryfoundation.org/poems/43914/the-walrus-and-the-carpenter-56d222cbc80a9
https://www.poetryfoundation.org/poems/43914/the-walrus-and-the-carpenter-56d222cbc80a9

CHAPTER 6 HEURISTIC HASH FUNCTIONS

Masked table, size 8 Masked table, size 16 Masked table, size 32 Masked table, size 64
Modulus table, size 7 Modulus table, size 17 Modulus table, size 31 Modulus table, size 67

IIIIIII |‘|‘|‘|‘|||“‘|‘| ||I||I|“|i||||||| ‘||I| Lmhh il

Figure 6-30. Hashing words using one-at-a-time hashing

Masked table, size 8 Masked table, size 16 Masked table, size 32 Masked table, size 64

Ml i i

Modulus table, size 7 Modulus table, size 17 Modulus table, size 31 Modulus table, size 67

II'IIII |||||I||I|‘I|||‘| il |\ | ulMlﬂlJluﬂhilJu\

The functions you have seen in this chapter are fast to evaluate and

Figure 6-31. Hashing words using Jenkins hashing

widely used, but they do guarantee that hash keys are evenly distributed.
In general, any fixed hash function, &, cannot guarantee that it maps all
keys uniformly over the range [m] for all sets of keys. After all, if keys are
taken from N possible values and put into m bins, then h must map N/m
keys to at least one bin. If an adversary knew which hash function you

180

CHAPTER 6 HEURISTIC HASH FUNCTIONS

are using and could pick the keys to give you the worst performance, they
could choose the keys such that you get the most collisions possible.
Randomized algorithms avoid adversarial scenarios by adding
stochasticity into the analysis. For hashing, you can pick random functions
h. The adversary might know from which family of functions you sample
h, but not which function you will use. You do not use worst-case running
time in the analysis of these algorithms; the worst case would be the
same as if the adversary knew your hash function. Instead, consider the
expected running time, over the distribution of functions.
Rehashing the functions you have seen so far does not give you
sufficient guarantees to use them in a randomized algorithm analysis.
You do not know how different two random choices of a function will be
when you choose different function parameters. Universal families of hash
functions do give you guarantees. That is the topic of Chapter 7.

181

CHAPTER 7

Universal Hashing

Generally, you cannot assume that an application can produce uniformly
distributed keys, and the hash functions in Chapter 6 are only heuristics.
They make no guarantees about the results of hashing application keys
and thus risk pathological cases where operations are linear rather than
constant. You can download this chapter's code at https://github.com/
mailund/JoyChapter7.

Since you cannot make assumptions about the hash keys, there is
another technique you can employ: randomize the hash functions. Instead
of using a fixed hash function that might be sensitive to pathological
keys, you can use a family of functions and sample from this. You rely on
random functions to provide expected constant-time operations. The
family of functions needs to satisfy specific properties to provide you with
this. You need them to be so-called universal, and it is conditional on them
being universal that you get guarantees for the expected running times. Of
course, expected running times are not worst-case running times; you only
see the expected performance on average. You can still risk pathological
cases. If that happens, however, you can sample new functions. If you
resample functions sufficiently often, you will see the average performance
over a long run of table operations.

Because universal hashing is heavily based on probability theory, this
chapter is more mathematical than the previous chapters. It is mainly
concerned with how to construct hash function families to implement
universal hashing, not with proving the probabilistic expectations results.

© The Editor(s) (if applicable) and The Author(s), 183
under exclusive license to APress Media, LLC, part of Springer Nature 2024
T. Mailund, The Joys of Hashing, https://doi.org/10.1007/979-8-8688-0826-5_7

https://doi.org/10.1007/979-8-8688-0826-5_7#DOI
https://github.com/mailund/JoyChapter7
https://github.com/mailund/JoyChapter7

CHAPTER 7 UNIVERSAL HASHING

As before, n refers to the number of keys inserted into a table, m is
the size of the table, and a = n/m is the load of the table. I use x;, ..., x,, to
denote keys from the application universe and yj, ..., y, to denote hash keys
in the range [m]. I use 1 as the indicator function (i.e., 1ey is 1 when the
event occurs and 0 when the event does not occur).

Uniformly Distributed Keys

To motivate universal hashing, you must first revisit random keys.
Consider chained hashing in a case with load a < 1, and consider N
operations on the table. Let O; be the operation number i, h(x;) = y; the keys
involved in operation O,, S; the set of keys in the table after operation i — 1,
and T(O,) the time it takes to perform operation O,.

If the hash keys y;, ..., y, are independent and uniformly distributed,
you can show that the expected time for each operation is amortized
constant time. Consider the expected running time of the N operations.

N
E {ZT(O,.)}
i=1
By linearity of expectation, you have
N
5| 31(0) |- 36[r(0))]
i=1

Since the cost of O; is the number of keys in the bin y; maps to, you get
the following:

184

CHAPTER 7 UNIVERSAL HASHING
E[T(0,)|=1+E[#{yeS,|y=y,}]

:1+E{Zl(y=yi)}

YES;

-1 SE1(5=,)]

Yes;

<141+) Pr(ly:yi)

YES; Y#Y;

1
<l+14+m-—=3
m

In the last step, you use that IS] must be less than m when the load is
less than 1 and that the keys are uniform so Pr(y;=y;) = 1/mfor y; # y;.

Universal Hashing

You cannot assume that keys are random, as they depend on the

application. Instead, you can sample random hash functions from a

family of functions H. In the previous proof, the keys didn't have to be

independent and uniformly distributed; you only needed Pr (y;=y;) = 1/m.
You can say that a family of hash functions H is universal if

1
Pr(h(xl.)= h(xj)) < —
when x; # x; and h is chosen at random from H. Notice that it is & that is
random here; you make no assumptions about the keys x; and x;, other
than they are different. (If they were the same, one should hope that the

collision probability would be 1, or you have a very poor hash function
indeed.)

185

CHAPTER 7 UNIVERSAL HASHING

To get amortized constant time operations in a chained hash table
with a load less than 1, you only need the family of hash functions to be
universal. You do not need the hash function to map application keys to
uniformly distributed hash keys. Universality is also sufficient to show that
the expected amortized time for each operation is n/m when the load is
larger than 1.

A family of hash functions H is nearly universal if

3=

Pr(h(xi)= h(xj)) <

for some constant k when x; # x; and & is chosen at random from H.

You can repeat the previous proof with nearly universal hash functions
and still get constant time operations. The cost will be bounded by 2 + k
instead of by 3.

Stronger Universal Families

A universal family of hash functions does not give you uniformly
distributed hash keys. If you have a family of hash functions that would
genuinely give you random hash keys, then for any » application keys
Xy, ..., X, and hash keys y;, ..., y, (which could be selected before you
sample the hash function, &) you would have the following:

1 1 1
Pr(h(x,)=y,,...h(x,)=y,)=———=1/m"
((x)=w (x,)=y) mom m
That this should hold for any number of keys n is a very strong property
of the family of functions, especially considering that you have to create
H and be able to sample from it. In general, you cannot sample functions
entirely at random. However, you can create and sample from function

families with weaker properties that are still stronger than universal families.

186

CHAPTER 7 UNIVERSAL HASHING

A family of hash functions is k-independent if for any k fixed application
and hash keys, xy, ..., xy and y,, ..., yi

Pr(h(x,)=y,..h(x,)=y,)=1/m"*

Families that are two-independent are also called pairwise-
independent or strong universal. Pairwise independent families are also
universal, but universal families are not necessarily pairwise independent.

Any k-independent family is also k -independent for k < k.

Binning Hash Keys

As you saw earlier, when you map from application keys to hash keys, it
is convenient to first map the keys to a large set, [V], and then bin these
in m < N bins (i.e., map the hash keys from the large range down to the
smaller range).

If you can create a family that is k-independent on the larger range,
you also need it to be k-independent on the smaller range. This property
is not true for universal functions, but it is for strong universal families if m
divides N.! For example, if N is a power of two and the range [m] is picked
from the lower bits of keys in the range [m] then k-independent families
remain k-independent families (i.e. if N = 2L and m =2", L'<Landhisa
k-independent family on [N], then /'(x) = h(x) mod m is a k-independent
family on [m]).

'If m does not divide N you cannot make universal families. You simply cannot get
the same number of keys mapped to each bin. If N is much larger than , however,
you get sufficiently close that it doesn’t matter in practice.

187

CHAPTER 7 UNIVERSAL HASHING

For x, ..., x, distinct application keys there are n(n — 1)/2 pairs of
keys. A collision occurs when h(x;) = h(x;) for i # j. Let X be the number of
collisions. The expected number of collisions is then:

E[X|=E {Zln@-)h(x,-)}

= ;Pr(h(xi)= h(xj))
:@Pr(h(xi) :h(xj))
n(n—l).

2m

This immediately gives you that if m € O(n) then E [X] € O(n). It also
gives you that if m = n*> then E[X] = 1/2 — 1/2n < 1/2, (i.e., the expected
number of collisions is less than one half). Furthermore, since the
probability of no collisions is Pr(X=0) =1 — Pr(X>0) and

Pr(X>O)=ZPr(X=x)<Zx-Pr(X=x)=E[X]<%

x>1 x>1

This means that the probability of more than one collision is less than
one half, so the probability of no collisions is more than one half. If you
pick hash functions at random, and you have a collusion, you expect to get
a function that gives you no collisions on a second sample.

Requiring that m € O(n?), however, means that you must spend time
O(n?) to initialize and resize tables. That is a high price to pay unless you
expect to do more than O(n?) operations on a table (while still bounding
the number of keys that are in the table to O(n)).

Expecting zero collisions with high probability is a strong requirement.
If you allow collisions and resolve them using the strategies you saw in
Chapter 3, you can still get expected constant time operation, although you
must make assumptions about k-independence for open addressing.

188

CHAPTER 7 UNIVERSAL HASHING

Collision Resolution Strategies

Using chained hashing, a nearly universal family will give you expected
constant time operations, as you saw previously. You cannot guarantee this
with open addressing unless you make stronger assumptions about the
family of functions.

With double hashing, h(x) = hy(x) + i - hy(x), you get constant time
operations if both functions are drawn from two-independent families.?

For linear probing, a five-independent family is needed for expected
constant time operations;? with five-wise independence the expected
probe length is O((1 — a)~*2). For k-independence, k < 5, there exist
function families that result in logarithmic length probe sequences.* In
general, the expected number of operations to query a table or construct a
table with n elements, as a function of k are these:

Independence 2 3 4 5

Query ©O(log n) O(log n) 6(1)
o(Vn)

Construction O(nlog n) ©(nlog n) on) o(n)

The results that require five-independence for constant time
operations guarantees expected constant time as long as the function
family is five-independent. The result that four-independent families do
not have this property only shows that some four-independent families do
not guarantee constant time operations. Some families can have k < 5 and

2Bradford, PG. and Katehakis, MN. A Probabilistic Study on Combinatorial
Expanders and Hashing. SIAM J. Comput. (2007) 317(1) pp. 83-111.

3Pagh, A., Pagh, R. and Ruzic, M. Linear Probing with 5-wise Independence. SIAM
Rev. (2011) 53(3) pp. 547-558.

*Patrashcu, M. and Thorup, M. On the k-Independence Required by Linear Probing
and Minwise Independence. ACM Transactions on Algorithms (2016) 12(1)

pp. 1-27.

189

CHAPTER 7 UNIVERSAL HASHING

still give expected constant time operations. For example, three-
independent tabulation hashing does.’ I cover tabulation hashing later in
this chapter.

Constructing Universal Families

All the probabilistic properties you get from universal hashing are only
of interest if you can create function families with these properties,
and preferably functions that are fast to evaluate. You can do this in
multiple ways.

Nearly Universal Families

For constant time operations in chained hashing, nearly universal
functions suffice. Dietzfelbinger et al.® showed that if N = 2” and m = 29,
q < p, then the family of functions

h,(x)= (ax mod 27) /271
is nearly universal if a is a random odd number 0 < a < 27. They
showed that
Pr(h,(x,)=h,(x,))<1/27" =1/2°.

You need one multiplication, ax, one mask ax mod2” and one shift
2P~ 49to compute this function. If p is the number of bits in a computer

SPatrashcu, M and Thorup, M. The Power of Simple Tabulation Hashing.]. ACM
(2012) 59(3) pp. 14:1-14:50.

8 Dietzfelbinger, M; Hagerup, T; Katajainen, J; and Penttonen, M. A reliable
randomized algorithm for the closest-pair problem, Journal of Algorithms (1997)
25(1) pp. 19-51.

190

CHAPTER 7 UNIVERSAL HASHING

word, then ax mod2” is just one multiplication in p-bit words, since

these are multiplication modulo 27, and then you even avoid masking.

Polynomial Construction for k-Independent Families

A common way of creating k-independent hash functions, for any k, is
based on k — 1 order polynomials.” The construction works as follows: pick
a prime, p > m. You can pick this prime to be larger than any m you expect
to use in your application. Keep it fixed for the algorithm where you use
your table. To sample a function, you pick k random integers in [p]; call
them ay, ..., a;_,. Your function is

k-1
h(x)= [Zaixi] mod p mod m
i=1

Allocating the data you need to represent a polynomial hash function
is trivial. If you use 32-bit numbers it is simple as this:

malloc(sizeof(uint32_t) * k);

Once you allocate the memory, you can sample functions by picking k
random numbers and putting them in this array:

void poly sample(uint32 t *a, int k, uint32_t p)
{
for (int i = 0; i < k; ++i) {
a[i] = rand() % p;

“Wegman MN. and Carter JL. New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences (1981) 22(3)
PP 265-279.

191

CHAPTER 7 UNIVERSAL HASHING

Here, I am assuming that you do the mapping into m bins as a separate
operation. The mapping will be the same for all hash functions, so it is not
specific to universal hashing.

For Mersenne primes, primes of the form 2/ — 1, you can avoid the
modulo operation and replace it with hashing and shifting, as mentioned

in Chapter 2.

uint64 t

mod_Mersenne(uint64_t x, uint8_t s)

{
uint64 t p = (uint64 t)(1 << s) - 1;
uint64 t y = (x & p) + (x >> s);
return (y > p) 2y -p :y;

}

uint32 t

poly hash2 Mersenne(uint32 t x, uint32_t *a, uint8 t s)
{
uint64 t ax1 = mod Mersenne((uint64 t)a[1] *
(uint64 t)x, s);
uint32_t y = (uint32_t) mod Mersenne(a[0] + ax1, s);
return y;

}

uint32 t
poly hash5 Mersenne(uint32_t x, uint32_t *a, uint8 t s)
{
// No need for % p for the first value, it will fit
// in 64-bit.

uint64 t x1 = (uint64 t)x;

uint64 t x2 = mod Mersenne(x1 * (uint64 t)x, s);
uint64 t x3 = mod_Mersenne(x2 * (uint64_t)x, s);
uint64 t x4 = mod_Mersenne(x3 * (uint64 t)x, s);

192

CHAPTER 7 UNIVERSAL HASHING

uint64 t a0 = (uint64 t)a[o]

)
uint64 t ax1 = (uint64 t)a[1] * x1;
uint64 t ax2 = (uint64 t)a[2] * x2;
uint64 t ax3 = (uint64 t)a[3] * x3;
uint64 t ax4 = (uint64 t)a[4] * x4;

// Since all values fit in 32 bits we

// can add them in 64 bits without overflow
uint64 t y = a0 + ax1 + ax2 + ax3 + ax4;
return (uint32_t)mod Mersenne(y, s);

For 32-bit words, you need to do multiplication in 64-bit words, and
you need the modulo after each operation to keep them in 64-bit words.

Tabulation Hashing

Tabulation hashing? is another way to construct a universal family.
Tabulation hashing only gives you three-independence, but it still gives
you expected constant time operations for linear probing.

Tabulation hashing uses a table and has more initialization overhead
than the polynomial construction, but it compensates for this with
faster evaluation times. It avoids expensive multiplication and modulus
operations and replaces them with table lookups and XOR operations.

Tabulation hashing maps p-bit words (N = 27) to g-bit words (m = 29) by
splitting application keys into r-bit chunks; there are ¢ = p/r of these. You
now build a table T with one row for each of the ¢ chunks and 2" columns.
In each of the cells of 7, you put a random g-bit number.

For the key x, let x, denote the first r bits in x, x, the next r bits, and so
on until x,_,. Because each of the x; r-bit chunks can be used to index into

8Carter JL an Wegman MN. Universal classes of hash functions. Journal of
Computer and System Sciences (1979) 18(2) pp. 143-154.

193

CHAPTER 7 UNIVERSAL HASHING

an array of length 2" you can get a g-bit word from 77i, x;] for each i =0, ...,
t — 1. You then XOR these together to get the hash key:

h(x)=T[0,x,|®T[Lx,]®---®T[t-1,x,_,]

The 2" number of columns might scare you—exponential numbers
always should—but you work with small r values, which keeps the problem
under control.

Indexing into g-bit words requires a lot of bit-fiddling, but if you stick
to the number of bits available as C data types, you can handle it by casting
a pointer, as you will see shortly.

You can treat all tables as bytes when you allocate them. You need
to pick an r value. That also defines ¢ = p/r (I assume that p is always 32).
Then, for g, you can pick 8-, 16-, and 32-bit words, corresponding to
uint8_t,uint16_t, and uint32_t.

For example, for r=2 and g = 16 (i.e. uint16_t), you allocate like this:

int p = 32;

int r =2

int q = 16;

int no_cols = (1 << 1);
intt=p/r;

no_cols = (1 << 1);
bytes = t * no_cols * q / 8;
uint8 t *T8 = malloc(bytes);

I called the table T8 to indicate that it contains bytes, uint8_t. You
always allocate a byte array, but you will cast it to different types for
different g.

194

CHAPTER 7 UNIVERSAL HASHING

You can treat the table as an array of 32-bit words and sample it
like this:

void tabulation sample(uint32 t *start, uint32 t *end)
{
while (start != end)
*(start++) = rand();

Once the byte-array is allocated, you cast it to 32-bit numbers and
sample into it:

int32_t *T32 = (uint32_t*)T8;
int32_t *T32_end = (uint32_t*)(T8 + bytes);
tabulation sample(T32, T32 end);

A straightforward approach to hashing numbers, for example 32-bit
numbers using uint32_t, would be this:

uint32 t
tabulation hash(uint32_t x, uint32_t *T, int p, int r)
{

intt=p/r1;

int no_cols = 1 << 1;

uint32_t r mask = (1 << 1) - 1;

uint32_t y = 0;

for (int i = 0; 1 < t; ++1) {
y = T[1i * no_cols + (x & r_mask)];
X >>= I;

}

return y;

195

CHAPTER 7 UNIVERSAL HASHING

This, however, involves multiplications to compute the indices into
T, and more than for the polynomial function for most choices of . You
can also, however, fix the indices at compile time if you use a specialized
function for each r and g combination. Hashing an r = 8 table with g = 16
would look like this:

uint32 t
tabulation hash r8 q16(uint32 t x, uint8 t *T)
{
//These are all known at compile time
const int r = 8;
const uint32_t no_cols = 1 << 1;
const uint32 t mask = (1 << 1) - 1;

// q == 16

uint16 t *T_ = (uint16 t*)T;

// T ==8 ->t ==

uint32_t y;

y =T_[0 * no cols + (x & mask)]; x >>= 1;
y = T [1 * no_cols + (x & mask)]; x >>= r;
y *= T_[2 * no_cols + (x & mask)]; x >>= r;
y *= T [3 * no_cols + (x & mask)];

return y;

I unrolled the loop here to gain more speed.

Different choices of r will have different tradeoffs, but you can
specialize functions to any given application or, based on experiments,
pick an r that is generally good. If you know what g values you are going to
need, you can also fix that. The easiest, however, is to use 32-bit numbers.
It will make the tables larger than for smaller g, and the initialization
correspondently slower, but you will never use an m larger than g*, so it
will always work.

196

CHAPTER 7 UNIVERSAL HASHING

You could also adjust the function as the table grows to larger m,
but that would require calling the hash function through a pointer, and
computing jump points like that can confuse the CPUs pipelining and slow
down the hashing.

Performance Comparison

In Figure 7-1, I plotted the cost of sampling functions both for polynomials
and tabulation hashing. I normalized the time measurements by dividing
by the mean of the degree two polynomial computation, which is the
fastest. That way, each of the other times is relative to that and shows how
much slower they are. The mean times are these:

Function Time
Polynomial k=2 1.00
Polynomial k=5 1.99
Tabulation r=2 g=8 4.45
Tabulation r=2 g=16 8.75
Tabulation r=2 g=32 17.55
Tabulation r=4 g=8 8.76
Tabulation r=4 q=16 18.27
Tabulation r=4 q=32 38.01
Tabulation r=8 =8 76.18
Tabulation r=8 g=16 150.40
Tabulation r=8 q=32 296.41

197

CHAPTER 7 UNIVERSAL HASHING

60

200

100

|
I

|
I

3

Polynomial k=2
Polynomial k=51
321

=2q=87
r=2g=167
=2 g=

Tabulation -
Tabulation r=4 q=8

Tabulation
Tabulation r
Tabulation r=4 =167
Tabulation r=4 q=32
Tabulation r=8 q=8

Function

Figure 7-1. Initialization performance relative to sampling two
random integers (polynomial with $k=23)

There is a larger overhead in filling the tables compared to sample
coefficients for the polynomials, and for large r, where the 2" columns
in the table are problematic, this is substantial. If you stick with g = 32,
to get a value that will work for all choices of m, you have 20 to 40 times
the allocation cost. This needs to be compensated for by the speed of the
hash functions. Luckily, tabulation hashing is much faster than computing
polynomials.

Figure 7-2 shows a comparison of the functions, normalized with the
performance of tabulation with p = 16 and r = 8. The following table shows
the mean of the measurements. The tabulation hash functions are an order
of magnitude faster than the degree two polynomial and twice as fast at
the Mersenne prime degree two function. For the degree five polynomial,
necessary for constant time linear probing, the tabulation functions are
four times as fast.

198

CHAPTER 7

UNIVERSAL HASHING

Time

ot _$éﬁz$=$§

2.0

;

1=8 q=32
4.q
r=4 q=16
r=2q=8
r=2q=32"1 ®

ulation r=8 q=16
ulation r=4 q=32

Tabulation r=2 q=16

Tabulation
Tabulation

Tabulation
Tabulati

Tabulation r=8 q=8
Tabulation r=4 g=8

Tabulati
Tabulation

Function

Figure 7-2. Hashing performance relative to the degree two

polynomial computation

Function Mean
Tabulation r=8 g=8 0.118
Tabulation r=8 q=16 0.109
Tabulation r=8 g=32 0.109
Tabulation r=4 g=8 0.112
Tabulation r=4 g=16 0.111
Tabulation r=4 q=32 0.110
Tabulation r=2 g=8 0.110
Tabulation r=2 g=16 0.111
Tabulation r=2 g=32 0.112
Polynomial k=2 1.00
Polynomial k=2 (Mersenne) 0.259
Polynomial k=5 1.78
Polynomial k=5 (Mersenne) 0.414

199

CHAPTER 7 UNIVERSAL HASHING

In Figure 7-3, for comparison with the heuristic hash functions from
the previous chapter, I show the g = 32 bit tables and the polynomials
together with the identity function—a baseline that does nothing—and the
Jenkins hashing, the slowest from the previous chapter.

oo $

3000

Time
n
8
8
38

1000 .

2
5

Identity
4q=32
Jenkins

Tabulation r=4 =
5 (Mersenne)

Tabulation r=2 q=32
Polynomial k:
Polynomial k:

Polynomial k=2 (Mersenne)

Polynomial k:

Function

Figure 7-3. Heuristic hash functions vs universal hash functions

It is clear that the universal hashing functions are competitive as
long as you use Mersenne primes for the polynomials. They are faster to
compute than the Jenkins hashing while providing stronger probabilistic
guarantees.

With the large initialization cost for tabulation hashing but faster
hashing operations, you should consider how many operations you need
to do before tabulation hashing outperforms the polynomial method.

I plotted this in Figure 7-4. Again, the time measures are relative—I
normalized them by the initialization cost for the degree two polynomial.
If you do not re-hash more often than about every 100th operation, the
tabulation hashing is generally faster than the polynomial.

200

CHAPTER 7 UNIVERSAL HASHING

300

Function

—— Polynomial k=2 (Mersenne)
-== Polynomial k=5 (Mersenne)
--- Tabulation r=2 q=32

- - Tabulation r=4 q=32

100

0 250 500 750 1000

Figure 7-4. Method performance as a function of n

Re-hashing

Having guarantees on the expected running times does not mean that you
have guarantees for any specific choice of hash function that you sampled,
of course. You only get the average behavior over many samples. One
technique for getting average behavior is to resample from time to time. If
you do this, one unlucky sample will only affect some operations and will,
with high probability, be replaced by a better choice when you resample.

You cannot re-hash too often since re-hashing is a linear time
operation—you need to move all the keys from the bins where the old hash
function mapped them, and to the bins where the new hash function is
assigning them. If you do not frequently re-hash, though, you do not get
the average behavior.

If you rehash every time you spend some O(n) time on hash table
operations, then you have amortized the cost of re-hashing. What factor
you will multiply to »n for this depends on the hash function sampling and
the cost of moving keys. You can experiment to find a good value for your
choices.

201

CHAPTER 7 UNIVERSAL HASHING

To see an example of using re-hashing, let's go back to the resizing
tables in Chapter 4 and use the open addressing conflict resolution. You
also need to add user keys, but not as general as in Chapter 5; in this case,
the example assumes that you have user keys that you hash to get bin
indices.

First, define a family of hash functions from which you can sample
hash functions. I use a r = 4, g = 32 tabular hash function.

#define R 4
#define Q 32
#define HASH FUNC WORDS (Q * (1 << R) / sizeof(uint32_ t))

typedef uint32_t hash_func[HASH_FUNC_WORDS];

// Sample a new function and place it in f
void tabulation sample(hash func f) {
uint32_t *start = f;
uint32_t *end = start + HASH_FUNC_WORDS;
while (start != end)
*(start++) = rand();

}

// tabulation hashing, r=4, g=32
uint32_t hash(uint32_t x, hash_func f) {
const uint32_t no_cols = 1 << R;
const uint32_t mask = no_cols - 1;

uint32 t y = 0;

y "= f[0 * no_cols + (x & mask)]; x >>= R;
y "= f[1 * no_cols + (x & mask)]; x >>= R;
y "= f[2 * no_cols + (x & mask)]; x >>= R;
y "= f[3 * no_cols + (x & mask)]; x >>= R;
y = f[4 * no_cols + (x & mask)]; x >>= R;
y "= f[5 * no_cols + (x & mask)]; x >>= R;

202

CHAPTER 7 UNIVERSAL HASHING

y "= f[6 * no_cols + (x & mask)]; x >>= R;
y "= f[7 * no_cols + (x & mask)];

return y;

}

With a hash_func, you can sample a new function using tabulation_
sample() and map a user key into a hash key using hash().

For the hash table, you place user keys in the bins—those are the ones
you need to match to have a hit, not the hashed keys—and in the table, you
place a hash_func and a counter of how many operations you have done
since the last re-hash.

struct bin {
unsigned int user key; // User (not hash) key
int in_probe : 1;
int is_empty : 1;

b

struct hash table {
struct bin *bins;
unsigned int size;
unsigned int used;
unsigned int active;

// sampled hash function

hash_func hash_func;

// counter to check if it is time to re-hash
unsigned int ops_since rehash;

};

203

CHAPTER 7 UNIVERSAL HASHING

You can use any probing strategy with the table, but I use the simple
linear probe:

unsigned int static
p(unsigned int k, unsigned int i, unsigned int m)
{
return (k + i) & (m - 1);
}

Creating and deleting tables involves the same functions as in
Chapter 4:

struct hash table *new table() {
struct hash_table *table = malloc(sizeof *table);
init_table(table, MIN SIZE, NULL, NULL);
return table;

}

void delete table(struct hash table *table) {
free(table->bins);
free(table);

}

Butin init table(), you add a call to tabulation sample() to get
new hash functions any time you create a new table, resize a table, or
re-hash.’

static void init table(struct hash table *table, unsigned
int size,
struct bin *begin, struct bin *end) {
// Initialize table members

*This example also uses table->attribute = value instead of the (struct
hash_table){attributes} expressions, so you don’t have to copy the hash_func,
but this is a minor change.

204

CHAPTER 7 UNIVERSAL HASHING

table->bins
table->size = size;
table->used = 0;

table->active = 0;

malloc(size * sizeof *table->bins);

table->ops_since_rehash = 0;

// Initialize the hash table with a new function
// from the hash family
tabulation_sample(table->hash func);

// Initialize bins

struct bin empty bin = {.in probe = false, .is empty = true};

for (unsigned int i = 0; i < table->size; i++) {
table->bins[i] = empty bin;

}

// Copy the old bins to the new table
for (struct bin *bin = begin; bin != end; bin++) {
if (!bin->is_empty) {
insert key(table, bin->user key);
}
}
}

As in Chapter 4, resizing is mostly handled by init_table(), except for
extracting the old bins before calling the initialization code, and because
resizing handles mapping the old bins to the new one, you can implement
re-hashing as a resize (it doesn’t change the size of the table).

static void
resize(struct hash table *table, unsigned int new size)
{
//Remember the old bins until we have moved them.
struct bin *old bins begin = table->bins,
*old_bins_end = old bins_begin + table->size;

205

CHAPTER 7 UNIVERSAL HASHING

// Update the table and copy the old active bins to it.
init table(table, new _size, old bins_begin, old bins end);

// Finally, free memory for old bins
free(old bins begin);
}

static void

rehash(struct hash_table *table)

{
// Resizing and re-hashing is the same code,
// except we don't change the size.
resize(table, table->size);

}

Because you now work with the user and hash keys, you have to update
the search functions. You have found a key if you have found the user key,
not just the hash key (since you could have collisions). You need to use the
hash key for the probe but the user key to check if a key is in the current
bin. Aside from that, the functions are the same as in Chapter 4:

// Find the bin containing key or the first bin
// past the end of its probe
struct bin *
find_key(struct hash_table *table,
unsigned int user_key,
uint32_t hash_key)
{
for (unsigned int i = 0; i < table->size; i++) {
struct bin *bin = table->bins + p(hash_key, i,
table->size);
if (bin->user_key == user_key Il !bin->in_probe)
return bin;

206

CHAPTER 7 UNIVERSAL HASHING

// The table is full. This should not happen!
assert(false);

}

// Find the first empty bin in its probe.
struct bin *
find empty(struct hash table *table, uint32_t hash key)
{
for (unsigned int i = 0; i < table->size; i++) {
struct bin *bin = table->bins + p(hash_key, i,
table->size);
if (bin->is_empty)
return bin;
}
// The table is full. This should not happen!
assert(false);

}

For the three main operations, you need to make two changes. You
need to hash the user key to get a hash key and you need to check if you
have performed table->size operations since the last re-hash. If you have,
you need to call rehash().

void
insert key(struct hash table *table, unsigned int user key)

{

if (table->ops_since rehash++ > table->size)
rehash(table);

uint32_t hash_key = hash(user key, table->hash func);
struct bin *bin = find key(table, user key, hash key);

if (bin->user_key != user key Il bin->is_empty) {
struct bin *key bin = find _empty(table, hash key);

207

CHAPTER 7 UNIVERSAL HASHING

table->active++;
if (!'key bin->in_probe)
table->used++; // We are using a new bin

*key bin =
(struct bin){.in_probe
.is_empty

true,

false,
.user_key = user_key};

if (table->used > table->size / 2)
resize(table, table-»>size * 2);
}
}

bool
contains_key(struct hash table *table, unsigned int user key)
{
if (table->ops since rehash++ > table->size)
rehash(table);

uint32_t hash_key = hash(user_key, table->hash func);
struct bin *bin = find_key(table, user_key, hash key);
return bin->user_key == user_key && !bin->is_empty;

}

void
delete key(struct hash_table *table, unsigned int user key)
{
if (table->ops since rehash++ > table->size)
rehash(table);

uint32_t hash_key = hash(user_key, table->hash func);
struct bin *bin = find key(table, user key, hash key);
if (bin->user_key != user_key)

return; // Nothing more to do

208

CHAPTER 7

bin->is_empty = true;
table->active--;

if (table->active < table-»>size / 8
8& table->size > MIN SIZE)
resize(table, table-»>size / 2);

UNIVERSAL HASHING

209

CHAPTER 8

Conclusions

This book explored the hash table data structure. It covered how to map
keys from a large space—whereby you assume that the keys are uniformly
distributed—into a small space of table bins. It considered a table's
performance as a function of the number of bins versus how many keys are
stored in a table. It also considered a table’s performance as a function of
the number of bins versus how many keys are stored in a table. This book
covered strategies for handling collisions when two or more different keys
map to the same bin and the performance consequences of the choice

of strategy. It also discussed how to dynamically adjust the size of tables
to avoid having them fill up and incurring high runtime performance
penalties as a consequence, while ensuring that you do not allocate tables
larger than necessary and incur memory penalties as a consequence.

It is risky to assume that keys are uniformly distributed before you map
them to bins, and for natural keys in most applications, where keys might
be strings or numbers, this is not true. Generally, it is necessary to first
map the application keys to a uniformly distributed space of keys before
you can use these "random" keys in a hash table. In the literature, hash
functions are often considered functions that map application keys to bins.
I considered this mapping process having two or three separate steps in
this book. The first step is application-dependent and reduces your data
to a number. The (optional) second step scrambles the keys, bringing
them closer to being uniformly distributed. The last step then maps the
hash keys to bins. I referred to the first two steps as hash functions but not
the third.

© The Editor(s) (if applicable) and The Author(s), 211
under exclusive license to APress Media, LLC, part of Springer Nature 2024
T. Mailund, The Joys of Hashing, https://doi.org/10.1007/979-8-8688-0826-5_8

https://doi.org/10.1007/979-8-8688-0826-5_8#DOI

CHAPTER 8 CONCLUSIONS

Constructing hash functions that create close to uniformly distributed
hash keys is a research field in its own right and an essential part of
modern cryptography research, but it's also beyond the scope of this book.
Here, I chose to focus mainly on the hash table data structure and covered
a few functions for scrambling application hash functions.

There is much more to hashing and hash tables than I have managed
to cover in this book. But now that you know the basics, you should be
able to implement your own tables, and from there, read and understand
research papers about more advanced topics. I wish you the best of luck in
your future relationship with hashing.

212

Index

A

Adding keys, 130

Additive hashing function,
157-158, 160, 161, 179

add_map() function, 147

add_map_internal() function,
140, 142, 147

allocated_subtables variable,
103,107,113

Amortized operation cost, 96, 97

Amortized resizing costs

abstract interface of stack, 62

array to another, 67
banking analogy, 69
computations, 66
constant factor, 65
deletion, 70

doubling the size, 66
growable array, 62, 63
load factor, 69
minimum size, 70

n operations, 62
pops, 68

realloc(), 65

running time, 62, 67, 68
runtime analysis, 69
stack

© The Editor(s) (if applicable) and The Author(s),

abstract interface, 63
creating and deleting, 63
pushing and popping, 64
sufficiently low, 68
time depends, 62
Application keys, 1, 115-117,
186-188
assert(), 76
assert(false) statement, 145

B

Banking analogy, 69

Big-endian and small-endian
architectures, 159

Bin index, 2, 3, 89, 99, 100, 104, 106

Bit-masking, 89, 97, 108

Bit-operations, 18

C

Callback functions, 116, 117

Chained hashing, 35-37, 47, 57-59,
102, 127, 189, 190

Chained hashing table, 47, 119

Chained hash tables, 70-74, 186

Chaining, linked lists, 30-35

Code-generating macros, 126, 133

213

under exclusive license to APress Media, LLC, part of Springer Nature 2024
T. Mailund, The Joys of Hashing, https://doi.org/10.1007/979-8-8688-0826-5

https://doi.org/10.1007/979-8-8688-0826-5#DOI

INDEX

Colliding keys, 29, 43
Collision resolution
constant time operations, 189
functions, 189
linear probing, 189
methods, 54
tabulation hashing, 190
Collisions, 6, 22, 29, 48
Conflict resolution methods, 57
Constructing universal families
probabilistic properties, 190
contains_key, 42, 74
copy_key function, 138
copy_links function, 132
copy_val function, 138

D, E
DELETE_LINK macro, 125, 126
Deleting keys, 20, 38, 130
Double hashing, 43-45, 48, 50,
54-56, 58, 97, 98, 102
Dynamic resizing
allocated_subtables variable,
107,113
bin index, 100, 104, 106
bit operations, 99
eight bits, 100
growing and shrinking, 99, 101
indexing keys, 100
linear hashing, 99
merge operation, 108
merging bins, 113
number of bits, 103

214

pairs of bins to split and
merge, 102

split, 101

split bin, 102, 111

split operation, 108

structure, 103

sub-tables, 99, 100, 102, 106,
107,113

table->table_bits, 109

table->tables array, 109

F

find_empty() function, 42

find_key() function, 41, 42,
146, 148

for loop, 145

free_bin() function, 143, 146

FREE_KEY, 124-126

free_key function, 138

free_list() function, 32, 129

free_val function, 138

G

Generic programming, 118

Generics, 118,119, 133, 150

GEN_LIST_ADD_KEY macro,
123,124

GEN_LIST_FREE_LIST
macro, 125

get_bin() function, 147, 148

get_key bin, 130

Growable array, 62, 63

H

HASH_FN, 128
Hash functions, 138, 153, 154, 167,
172,179, 197, 202, 211, 212

computation, 154
guarantees, 154
properties, 153
randomization, 154
randomization tricks, 154
signature, 175

Hashing, 3, 48, 157-162, 179, 180, 199

Hashing computer words
consecutive numbers, 155
data structures, 155
functions, 157
hash function, 155
multiple-word, 156
parameter, 156
single-word, 156
XOR, 156

Hashing strings, bytes
functions, 176
variable length, 175

Hash key collisions, 21

Hash keys, 1, 115, 116
add bit, 8
allocation error, 13
array, 8
collision, 22, 26
flexible array, 14
indices, 14
initialization, 11
memory alignment, 9

INDEX

primes, 16
space, 9
uniform distribution, 23
variant, 10
hash(K key), 118
Hash maps, 134
addition and deletion, 146-149
creation and resizing
processes, 140-142
definition, 137-139
freeing tables, 142, 143
hash tables, 135
key and value types, 136, 137
lookup_key() function, 145-147
void pointer, 134
HASH_NAME, 128
Hash table operations, 18-21, 90, 201
Hash tables, 29, 35, 38-40, 46-49,
59,115,117, 119, 128, 134,
135, 151
application maps, 5
primary responsibility, 4
second responsibility, 4
set and map data structure, 115
Hash values, 136, 137, 140, 144, 150
Helper functions, 40, 76, 138
Heuristic hash functions, 151, 200
HTABLE(HASH_NAME), 128

Index bins, 16
init_table() function, 75, 78, 79,
140, 142, 204, 205

215

INDEX

in_probe flag, 39, 149

insert_key(), 79

is_active_bin, 139

is_active_bin() helper function, 143
is_empty flag, 39, 149

IS_EQ, 125, 126

ITR_END macro, 122

ITR(LIST) macro, 122

J

jenkins_hash function, 175, 177

Jenkins hashing, 171, 180, 200

Jenkins’ lookup2 hash function,
173,174

Jenkins’ lookup2 hashing, 174

K

KE_TYPE, 119
KEY_TYPE, 124
key_type function, 137

L

Linear hashing, 45, 99

Linear probing, 42, 43, 48, 50, 54,
56-58, 97

link structure, 120

Linked list operations, 31

Link’s next pointer, 30, 31

*list, 33

LIST_FN, 128

LIST_NAME, 119, 124

216

LIST_NAME##_free_list
function, 125
Load factors, 46, 80-84, 86, 88, 89
probes for different load
factors, 51
probes for different small load
factors, 52
lookup_key() function, 145

malloc() errors, 12

Mersenne prime degree, 198
Mersenne primes, 17, 192, 200
Micro-optimisations, 17
Modulo operator, 14

N

Non-empty bin, 79

O

One-at-a-time function, 172
One-at-a-time hash function,
163, 164, 168-170
One-at-a-time hashing, 165-169,
171, 180
OOP techniques, 118
Open addressing, 38
collision resolution, 55
find_key() function, 41, 42
hashing, 48-54
hash tables, 74-80

in_probe flag, 39
is_free, 39

is_empty flag, 39
probing, 38

probing strategy, 42-44

P,Q

Polynomial computation, 197, 199
Polynomial function, 196
Polynomial hash function, 191
Pop operation, 68
Prime-number-sized hash
tables, 153
Probe lengths, mean vs.
theoretical, 53
Probing, 38, 40, 42-44, 138
Probing strategy p(k,i), 38
PUSH_NEW_LINK macro, 123

R

Randomized algorithms, 181
Re-hashing, 201-209
Resizing
amortizing resizing
costs, 62-70
chained hash tables, 70-74
cost of resizing vs. the cost of
probing, 88
dynamic, 99-114
experiments, 84-89
hash table, 61
load factor, 61, 80-83

INDEX

open addressing hash
tables, 74-80
powers of two
allocation cost, 94
amortized operation
cost, 96, 97
analytical result, 93
and binning, 97
components of running
time, 95
components of time
usage, 92, 93
double hashing, 98
growing array, 91, 92
linear cost per insertion
operation, 94
modulo, 89
optimal value, 96
parameter, 89
primes, 90
running time for
rescaling, 92, 93

time performance for tables

of prime size, 98
thresholds, 87

Resolution strategies, 46, 84, 189-190

Rotate operation, 159
Rotating hashing, 159-162, 179
Rotation hash function, 161

S

Smoothed data, 86, 87
Square approximation, 27

INDEX

stack structure, 63 U
store_in_bin()function, 148
strcmp(), 127
struct link, 31, 32
struct link **, 35
struct my_type_list, 121
SUBTABLE_BITS

variable, 103
Sub-tables, 99, 102, 106, 107

Universal functions, 187, 190
Universal hashing
chained, 184
collisions, 188
constant time operations, 186
family, 186
function, 183
independent families, 187
keys, 187
T operations, 184, 186
pairwise independent, 187
probability theory, 183
straightforward approach, 195
table, 184
universal, 185

table_bits variable, 103
table->table_bits, 109
table->tables array, 109
Tabulation functions, 198
Tabulation hashing, 193-198
tabulation_sample(), 204

Theoretical probe V! W, Xa Ys Z
length, 49, 53 value_type function, 137
Time usage measurements, 86 void * const, 146
typeof() operator, 122 void * objects, 134
Type-specific tables, 118 void * types, 134

218

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction
	Chapter 2: Hash Keys, Indices, and Collisions
	Mapping from Keys to Indices to Bins
	Hash table operations
	Collision risk

	Conclusion

	Chapter 3: Collision Resolution, Load Factor, and Performance
	Chaining
	Linked Lists
	Chained Hashing Collision Resolution

	Open Addressing
	Probing Strategies

	Load and Performance
	Theoretical Runtime Performance
	Chained Hashing
	Open Addressing Hashing

	Experiments
	Conclusion

	Chapter 4: Resizing
	Amortizing Resizing Costs
	Resizing Chained Hash Tables
	Resizing Open Addressing Hash Tables
	Theoretical Considerations for Choosing the Load Factor
	Experiments
	Resizing When Table Sizes Are Not Powers of Two
	Dynamic Resizing

	Chapter 5: Adding Application Keys and Values
	Generating Hash Sets
	Generic Lists
	Generating a Hash Set

	Hash Maps
	Key and Value Types
	Hash Map Definition
	Creating and Resizing a Table
	Freeing Tables
	Lookup
	Adding and Deleting

	Conclusions

	Chapter 6: Heuristic Hash Functions
	What Makes a Good Hash Function?
	Hashing Computer Words
	Additive Hashing
	Rotating Hashing
	One-at-a-Time Hashing
	Jenkins Hashing

	Hashing Strings of Bytes

	Chapter 7: Universal Hashing
	Uniformly Distributed Keys
	Universal Hashing
	Stronger Universal Families
	Binning Hash Keys
	Collision Resolution Strategies

	Constructing Universal Families
	Nearly Universal Families
	Polynomial Construction for k-Independent Families
	Tabulation Hashing
	Performance Comparison

	Re-hashing

	Chapter 8: Conclusions
	Index

