Simply Scheme

Brian Harvey
Matthew Wright

Foreword by Harold Abelson

Simply Scheme:
Introducing Computer Science
SECOND EDITION

The MIT Press
Cambridge, Massachusetts
London, England

0 1999 by the Massachusetts Institute of Technology

The Scheme programs in this book are copyright U 1993 by Matthew Wright and Brian
Harvey.

These programs are free software; you can redistribute them and/or modify them
under the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

These programs are distributed in the hope that they will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License (Appendix D of
this book) for more details.

This book was typeset in the Baskerville typeface, using the JOVE text editor and the TgX
document formatting system, for which we thank John Baskerville (1706-75), Jonathan
Payne (1964-), and Donald Knuth (1938-), respectively.

Library of Congress Cataloging-in-Publication Data

Harvey, Brian, 1949-
Simply scheme : introducing computer science / Brian Harvey, Matthew Wright ;
foreword by Harold Abelson. — 2nd ed.
p. cm.
Includes bibliographic references and index.
ISBN 0-262-08281-0 (hc : alk. paper)
1. Scheme (Computer programming language) 2. Computer science.
I. Wright, Matthew. IL Title.
QA76.H3475 1999
005.13’3-dc21 99-10037
CIP

Contents

Foreword xv

Preface xvit

One Big Idea: Symbolic Programming xuvii
Lisp and Radical Computer Science xix
Who Should Read This Book xxii

How to Read This Book xxiii

To the Instructor xxv

Lists and Sentences xxv

Sentences and Words xxvi

Overloading in the Text Abstraction xxvii

Higher-Order Procedures, Lambda, and Recursion xxviii
Mutators and Environments xxviii

Acknowledgments xxxi

I Introduction: Functions 2

1 Showing Off Scheme 5

Talking to Scheme 5
Recovering from Typing Errors 7
Exiting Scheme 7

More Examples &8

Example: Acronyms &

Example: Pig Latin 10

Example: Ice Cream Choices 12
Example: Combinations from a Set 13
Example: Factorial 14

Play with the Procedures 15

2 Functions 17

Arithmetic 18

Words 19

Domain and Range 20

More Types: Sentences and Booleans 21
Our Favorite Type: Functions 21

Play with It 22

Thinking about What You’ve Done 22

II Composition of Functions 26

3 Expressions 29

Little People 30
Result Replacement 33
Plumbing Diagrams 33
Pitfalls 35

4 Defining Your Own Procedures 41

How to Define a Procedure 41

Special Forms 42

Functions and Procedures 43

Argument Names versus Argument Values 45
Procedure as Generalization 46
Composability 47

The Substitution Model 48

Pitfalls 51

vl Contents

5 Words and Sentences 57

Selectors 59

Constructors 61

First-Class Words and Sentences 62
Pitfalls 63

6 True and False 71

Predicates 72

Using Predicates 74

If IsaSpecial Form 76

So Are And and Or 76

Everything That Isn’t False Is True 77
Decisions, Decisions, Decisions 78

If Is Composable &1

Pitfalls 82

7 Variables &89

How Little People Do Variables 90
Global and Local Variables 92
The Truth about Substitution 94
Let 94

Pitfalls 96

III Functions as Data 100

8 Higher-Order Functions 103

Every 104

A Pause for Reflection 106

Keep 107

Accumulate 108

Combining Higher-Order Functions 109
Choosing the Right Tool 110

First-Class Functions and First-Class Sentences 113
Repeated 113

Pitfalls 115

Contents Vil

9 Lambda 127

Procedures That Return Procedures 129
The Truth about Define 130

The Truth about Let 132

Name Conflicts 133

Named and Unnamed Functions 133
Pitfalls 135

Project: Scoring Bridge Hands 141
10 Example: Tic-Tac-Toe 147

A Warning 147

Technical Terms in Tic-Tac-Toe 147
Thinking about the Program Structure 148
The First Step: Triples 150

Finding the Triples 151

Using Every with Two-Argument Procedures 153

Can the Computer Win on This Move? 155
If So, in Which Square? 157

Second Verse, Same as the First 158

Now the Strategy Gets Complicated 159
Finding the Pivots 160

Taking the Offensive 163

Leftovers 166

Complete Program Listing 166

IV Recursion 170

11 Introduction to Recursion 173

Vil

A Separate Procedure for Each Length 175
Use What You Have to Get What You Need 176
Notice That They’re All the Same 177

Notice That They’re Almost All the Same 177
Base Cases and Recursive Calls 178

Pig Latin 179

Problems for You to Try 181

Our Solutions 182

Pitfalls 185

Contents

12 The Leap of Faith 189

From the Combining Method to the Leap of Faith 189
Example: Reverse 190

The Leap of Faith 191

The Base Case 192

Example: Factorial 192

Likely Guesses for Smaller Subproblems 194

Example: Downup 195

Example: Evens 195

Simplifying Base Cases 197

Pitfalls 201

13 How Recursion Works 207

Little People and Recursion 207
Tracing 210
Pitfalls 214

14 Common Patterns in Recursive Procedures 217

The Every Pattern 218

The Keep Pattern 219

The Accumulate Pattern 221
Combining Patterns 222

Helper Procedures 223

How to Use Recursive Patterns 224
Problems That Don’t Follow Patterns 226
Pitfalls 227

Project: Spelling Names of Huge Numbers 233

15 Advanced Recursion 235

Example: Sort 235
Example: From-Binary 237
Example: Mergesort 238
Example: Subsets 239
Pitfalls 241

Project: Scoring Poker Hands 245
Extra Work for Hotshots 247

Contents

X

16 Example: Pattern Matcher 249

Problem Description 249

Implementation: When Are Two Sentences Equal? 251
When Are Two Sentences Nearly Equal? 252
Matching with Alternatives 253
Backtracking 255

Matching Several Words 259

Combining the Placeholders 261

Naming the Matched Text 264

The Final Version 266

Abstract Data Types 269

Backtracking and Known-vValues 270
How We Wrote It 272

Complete Program Listing 272

V Abstraction 278

17 Lists 281

Selectors and Constructors 282

Programming with Lists 285

The Truth about Sentences 287

Higher-Order Functions 289

Other Primitives for Lists 290

Association Lists 291

Functions That Take Variable Numbers of Arguments 292
Recursion on Arbitrary Structured Lists 294

Pitfalls 298

18 Trees 305

Example: The World 306

How Big Is My Tree? 310

Mutual Recursion 310

Searching for a Datum in the Tree 312
Locating a Datum in the Tree 313
Representing Trees as Lists 314

X Contents

Abstract Data Types 315
An Advanced Example: Parsing Arithmetic Expressions
Pitfalls 323

19 Implementing Higher-Order Functions 327

Generalizing Patterns 327

The Every Pattern Revisited 329

The Difference between Map and Every 330
Filter 331

Accumulate and Reduce 331

Robustness 333

Higher-Order Functions for Structured Lists 334
The Zero-Trip Do Loop 335

Pitfalls 336

317

VI Sequential Programming 340

20 Inputand Output 343

Printing 343

Side Effects and Sequencing 345

The Begin Special Form 348

This Isn’t Functional Programming 348

Not Moving to the Next Line 349

Strings 350

A Higher-Order Procedure for Sequencing 351
Tic-Tac-Toe Revisited 352

Accepting User Input 353

Aesthetic Board Display 355

Reading and Writing Normal Text 356
Formatted Text 358

Sequential Programming and Order of Evaluation 360
Pitfalls 362

Contents

X1

21 Example: The Functions Program 367

The Main Loop 367

The Difference between a Procedure and Its Name 368
The Association List of Functions 369

Domain Checking 370

Intentionally Confusing a Function with Its Name 373
More on Higher-Order Functions 374

More Robustness 376

Complete Program Listing 378

22 Files 387

Ports 387

Writing Files for People to Read 389
Using a File as a Database 390
Transforming the Lines of a File 391
Justifying Text 394

Preserving Spacing of Text from Files 396
Merging Two Files 397

Writing Files for Scheme to Read 399
Pitfalls 401

23 Vectors 405

The Indy 500 405

Vectors 406

Using Vectors in Programs 408
Non-Functional Procedures and State 409
Shuffling a Deck 410

More Vector Tools 413

The Vector Pattern of Recursion 414
Vectors versus Lists 415

State, Sequence, and Effects 417

Pitfalls 418

24 Example: A Spreadsheet Program 425

par)

Limitations of Our Spreadsheet 428
Spreadsheet Commands 428
Moving the Selection 429

Putting Values in Cells 430

Contents

Formulas 431

Displaying Formula Values 433

Loading Spreadsheet Commands from a File 433
Application Programs and Abstraction 434

25 Implementing the Spreadsheet Program 439

Cells, Cell Names, and Cell IDs 440
The Command Processor 441
Cell Selection Commands 443
The Load Command 444

The Put Command 445

The Formula Translator 447
The Dependency Manager 450
The Expression Evaluator 455
The Screen Printer 457

The Cell Manager 460
Complete Program Listing 462

Project: A Database Program 477

A Sample Session with Our Database 477

How Databases Are Stored Internally 481

The Current Database 483

Implementing the Database Program Commands 483
Additions to the Program 484

Extra Work for Hotshots 497

VII Conclusion: Computer Science 498

26 What’s Next? 501

Contents

The Best Computer Science Book 501
Beyond SICP 503

Standard Scheme 504

Last Words 505

Appendices

A Running Scheme 507

The Program Development Cycle 507
Integrated Editing 509

Getting Our Programs 510

Tuning Our Programs for Your System 511
Loading Our Programs 513

Versions of Scheme 514

Scheme Standards 514

B Common Lisp 515

Why Common Lisp Exists 515

Defining Procedures and Variables 516
The Naming Convention for Predicates 516
No Words or Sentences 517

True and False 517

Files 518

Arrays 519

Equivalents to Scheme Primitives 519

A Separate Name Space for Procedures 520
Lambda 521

More about Function 522

Writing Higher-Order Procedures 523

C Scheme Initialization File 525

D GNU General Public License 547
Credits 551

Alphabetical Table of Scheme Primitives 553
Glossary 557

Index of Defined Procedures 567

General Index 573

Xiv Contents

]
Foreword

One of the best ways to stifle the growth of an idea is to enshrine it in an educational
curriculum. The textbook publishers, certification panels, professional organizations,
the folks who write the college entrance exams—once they’ve settled on an approach,
they become frozen in a straitjacket of interlocking constraints that thwarts the ability to
evolve. So it is common that students learn the “modern” geography of countries that
no longer exist and practice using logarithm tables when calculators have made tables
obsolete. And in computer science, beginning courses are trapped in an approach that
was already ten years out of date by the time it was canonized in the mid-1980s, when the
College Entrance Examination Board adopted an advanced placement exam based on
Pascal . *

This book points the way out of the trap. It emphasizes programming as a way to
express ideas, rather than just a way to get computers to perform tasks.

Julie and Gerry Sussman and I are flattered that Harvey and Wright characterize
their revolutionary introduction to computer science as a “prequel” to our text Structure
and Interpretation of Computer Programs. When we were writing SICP, we often drew upon
the words of the great American computer scientist Alan Perlis (1922-1990). Perlis was
one of the designers of the Algol programming language, which, beginning in 1958,
established the tradition of formalism and precision that Pascal embodies. Here’s what
Perlis had to say about this tradition in 1975, nine years before the start of the AP exam:

Algol is a blight. You can’t have fun with Algol. Algol is a code that now
belongs in a plumber’s union. It helps you design correct structures that

* Since Hal wrote this Foreword, they’ve switched the AP exam to use C++, but the principle is
the same.

XU

don’t collapse, but it doesn’t have any fun in it. There are no pleasures in
writing Algol programs. It’s a labor of necessity, a preoccupation with the
details of tedium.

Harvey and Wright’s introduction to computing emerges from a different intellectual
heritage, one rooted in research in artificial intelligence and the programming language
Lisp. In approaching computing through this book, you’ll focus on two essential
techniques.

First is the notion of symbolic programming. This means that you deal not only with
numbers and letters, but with structured collections of data—a word is a list of characters,
a sentence is a list of words, a paragraph is a list of sentences, a story is a list of paragraphs,
and so on. You assemble things in terms of natural parts, rather than always viewing data
in terms of its tiniest pieces. It’s the difference between saying “find the fifth character
of the third word in the sentence” and “scan the sentence until you pass two spaces, then
scan past four more characters, and return the next character.”

The second technique is to work with higher-order functions. That means that you
don’t only write programs, but rather you write programs that write programs, so you can
bootstrap your methods into more powerful methods.

These two techniques belong at center stage in any beginning programming course,
which is exactly where Harvey and Wright put them. The underlying principle in both
cases is that you work with general parts that you extend and combine in flexible ways,
rather than tiny fragments that you fit together into rigid structures.

You should come to this introduction to computing ready to think about ideas rather
than details of syntax, ready to design your own languages rather than to memorize
the rules of languages other people have designed. This kind of activity changes your
outlook not only on programming, but on any area where design plays an important role,
because you learn to appreciate the relations among parts rather than always fixating on
the individual pieces. To quote Alan Perlis again,

You begin to think in terms of patterns and idioms and phrases, and no
longer pick up a trowel and some cement and lay things down brick by
brick. The Great Wall, standing for centuries, is a monument. But building
it must have been a bore.

Hal Abelson
Cambridge, MA

bai) Foreword

Preface

There are two schools of thought about teaching computer science. We might caricature
the two views this way:

* The conservative view: Computer programs have become too large and complex to
encompass in a human mind. Therefore, the job of computer science education
is to teach people how to discipline their work in such a way that 500 mediocre
programmers can join together and produce a program that correctly meets its
specification.

* The radical view: Computer programs have become too large and complex to
encompass in a human mind. Therefore, the job of computer science education is to
teach people how to expand their minds so that the programs can fit, by learning to
think in a vocabulary of larger, more powerful, more flexible ideas than the obvious
ones. Each unit of programming thought must have a big payoff in the capabilities
of the program.

Of course nobody would admit to endorsing the first approach as we’ve described it.
Yet many introductory programming courses seem to spend half their time on obscure
rules of the programming language (semicolons go between the instructions in Pascal, but
after each instruction in C) and the other half on stylistic commandments (thou shalt
comment each procedure with its preconditions and postconditions; thou shalt not use
goto). In an article that was not intended as a caricature, the noted computer scientist
Edsger Dijkstra argues that beginning computer science students should not be allowed
to use computers, lest they learn to debug their programs interactively instead of writing

XUl

programs that can be proven correct by formal methods before testing.*

If you are about to be a student in an introductory computer science course, you may
already be an experienced programmer of your home computer, or instead you may have
only a vague idea of what you’re getting into. Perhaps you suspect that programming
a computer is like programming a VCR: entering endless obscure numeric codes. Even
if you're already a computer programmer, you may not yet have a clear idea of what
computer science means. In either case, what we want to do in this book is put our best
foot forward—introduce you to some new ideas, get you excited, rather than mold you
into a disciplined soldier of the programming army.

In order to understand the big ideas, though, we’ll also have to expend some effort
on technical details; studying computer science without writing computer programs is
like trying to study German grammar without learning any of the words in the language.
Butwe’ll try to keep the ideas in view while struggling with the details, and we hope you’ll
remember them too.

One Big Idea: Symbolic Programming

We said that our approach to teaching computer science emphasizes big ideas. Our
explanation of symbolic programming in the following paragraphs is in part just an
illustration of that approach. But we chose this particular example for another reason
also. Scheme, the programming language used in this book, is an unusual choice
for an introductory computer science course. You may wonder why we didn’t use a
more traditional language, such as Pascal, Modula-2, or C. Our discussion of symbolic
programming is the beginning of an answer to that question.

Originally computers were about numbers. Scientists used them to solve equations;
businesses used them to compute the payroll and the inventory. We were rescued from
this boring state of affairs mainly by researchers in artificial intelligence—people who
wanted to get computers to think more nearly the way people do, about ideas in general
rather than just numbers.

What does it mean to represent ideas in a computer? Here’s a simple example:
We want to teach the computer to answer the question, “Was so-and-so a Beatle?” We
can’t quite ask the question in English; in this book we interact with the computer using
Scheme. Our interactions will look like this:

* “On the Cruelty of Really Teaching Computer Science,” Communications of the ACM, vol. 32,
no. 12, December, 1989.

XUl Preface

You type: (beatle? ’paul)
Computer replies: #t (computerese for “true”)

You type: (beatle? 'elvis)
Computer replies: #£ (“false”)

Here’s the program that does the job:

(define (beatle? person)
(member? person ' (john paul george ringo)))

If you examine this program with a (metaphoric) magnifying glass, you’ll find that it’s
really still full of numbers. In fact, each letter or punctuation character is represented in
the computer by its own unique number.* But the point of the example is that you don’t
have to know that! When you see

(john paul george ringo)

you don’t have to worry about the numbers that represent the letters inside the computer;
all you have to know is that you’re seeing a sentence made up of four words. Our
programming language hides the underlying mechanism and lets us think in terms
more appropriate to the problem we’re trying to solve. That hiding of details is called
abstraction, one of the big ideas in this book.

Programming with words and sentences is an example of symbolic programming.
In 1960 John McCarthy invented the Lisp programming language to handle symbolic
computations like this one. Our programming language, Scheme, is a modern dialect of
Lisp.

Lisp and Radical Computer Science

Symbolic programming is one aspect of the reason why we like to teach computer science
using Scheme instead of a more traditional language. More generally, Lisp (and therefore
Scheme) was designed to support what we’ve called the radical view of computer science.
In this view, computer science is about tools for expressing ideas. Symbolic programming
allows the computer to express ideas; other aspects of Lisp’s design help the programmer

* The left parenthesis is 40, for example, and the letter d is 100. If it were a capital D it would be
68.

Preface xix

express ideas conveniently. Sometimes that goal comes in conflict with the conservative
computer scientist’s goal of protection against errors.

Here’s an example. We want to tell our computer, “To square a number, multiply it
by itself.” In Scheme we can say

(define (square num)
(* num num))

The asterisk represents multiplication, and is followed by the two operands—in this case,
both the same number. This short program works for any number, of course, as we can
see in the following dialogue. (The lines with > in front are the ones you type.)

> (square 4)

16

> (square 3.14)
9.8596

> (square -0.3)
0.09

But the proponents of the 500-mediocre-programmer school* think this straightforward
approach is sinful. “What!” they cry. “You haven’t said whether num is a whole number
or a number with a decimal fraction!” They’re afraid that you might write the square
program with whole numbers in mind, and then apply it to a decimal fraction by mistake. 1If
you’re on a team with 499 other programmers, it’s easy to have failures of communication
so that one programmer uses another’s program in unintended ways.

To avoid that danger, they want you to write these two separate programs:

function SquareOfWholeNumber (num: integer): integer;
begin
SquareOfWholeNumber := num * num
end;

function SquareOfDecimalNumber (num: real): real;
begin
SquareOfDecimalNumber := num * num
end;

* Their own names for their approach are structured programming and software engineering.

XX Preface

Isn’t this silly? Why do they pick this particular distinction (whole numbers and decimals)
to worry about? Why not positive and negative numbers, for example? Why not odd and
even numbers?

That two-separate-program example is written in the Pascal language. Pascal was
designed by Niklaus Wirth, one of the leaders of the structured programming school,
specifically to force programming students to write programs that fit conservative ideas
about programming style and technique; you can’t write a program in Pascal at all
unless you write it in the approved style. Naturally, this language has been very popular
with school teachers.* That’s why, as we write this in 1993, the overwhelming majority
of introductory computer science classes are taught using Pascal, even though no
professional programmer would be caught dead using it.**

For fourteen years after the introduction of Pascal in 1970, its hegemony in computer
science education was essentially unchallenged. But in 1984, two professors at the
Massachusetts Institute of Technology and a programmer at Bolt, Beranek and Newman
(a commercial research lab) published the Scheme-based Structure and Interpretation
of Computer Programs (Harold Abelson and Gerald Jay Sussman with Julie Sussman,
MIT Press/McGraw-Hill). That ground-breaking text brought the artificial intelligence
approach to a wide audience for the first time. We (Brian and Matt) have been teaching
their course together for several years. Each time, we learn something new.

The only trouble with SICP is that it was written for MIT students, all of whom love
science and are quite comfortable with formal mathematics. Also, most of the students
who use SICP at MIT have already learned to program computers before they begin. As a
result, many other schools have found the book too challenging for a beginning course.
We believe that everyone who is seriously interested in computer science must read SICP
eventually. Our book is a prequel; it’s meant to teach you what you need to know in order
to read that book successfully.*** Generally speaking, our primary goal in Parts I-V has
been preparation for S/CE, while the focus of Part VI is to connect the course with the

* Of course, your teacher isn’t an uptight authoritarian, or you wouldn’t be using our book!

** Okay, we're exaggerating. But even Professor Wirth himself has found Pascal so restrictive
that he had to design more flexible languages—although not flexible enough—called Modula and
Oberon.

*#% As the ideas pioneered by SICP have spread, we are starting to see other intellectually
respectable introductions to computer science that are meant as alternatives to SICP. In particular,
we should acknowledge Scheme and the Art of Programming (George Springer and Daniel P. Friedman,
MIT Press/McGraw-Hill, 1989) as a recognized classic. We believe our book will serve as preparation
for theirs, too.

Preface XXE

kinds of programming used in “real world” application programs like spreadsheets and
databases. (These are the last example and the last project in the book.)

‘Who Should Read This Book

This book is intended as an introduction to computer programming and to computer
science for two kinds of students.

For those whose main interest is in some other field, we provide a self-contained,
one-semester experience with computer programming in a language with a minimum of
complicated notation, so that students can quickly come in contact with high-level ideas
about algorithms, functions, and recursion. The book ends with the implementation of a
spreadsheet program and a database program, so it complements a computer application
course in which the commercial versions of such programs are used.

For those who intend to continue the study of computer science but who have
no prior programming experience, we offer a preparatory course, less intense than
a traditional CS 1 but not limited to programming technique; we give the flavor of
computer science ideas that will be studied in more depth later in the curriculum. We
also include an extensive discussion of recursion, which is a stumbling block for many
beginning students.

The course at Berkeley for which we wrote this book includes both categories of
students. About 90% of the first-year students who intend to major in computer science
have already had a programming course in high school, and most of them begin with SICP.
The other 10% are advised to take this course first. But many of the students in this course
aren’t computer science majors. A few other departments (business administration and
architecture are the main ones) have a specific computer course requirement, and all
students must meet a broader “quantitative reasoning” requirement; our course satisfies
these requirements. Finally, some students come just out of curiosity about computers.

We assume that you have never programmed a computer. On the other hand, we
do assume that you can use a computer; we don’t talk about how to turn it on, how to
edit text, and so on, because those details are too different from one computer model to
another. If you’ve never used a computer before, you may wish to spend a few days with
a book written specifically for your machine that will introduce you to its operation. It
won’t take more than a few days, because you don’t have to be an expert before you read
our book. As long as you can start up the Scheme interpreter and correct your typing
mistakes, you’re ready.

XX Preface

We assume that you’re not a mathematics lover. (If you are, you might be ready to
read SICP right away.) The earlier example about squaring a number is about as advanced
as we get. And of course you don’t have to do any arithmetic at all; computers are good
at that. You’ll learn how to tell the computer to do arithmetic, but that’s no harder than
using a pocket calculator. Most of our programming examples are concerned with words
and sentences rather than with numbers. A typical example is to get Scheme to figure

out the plural form of a noun. Usually that means putting an “s” on the end, but not
quite always. (What’s the plural of “French fry”?)

How to Read This Book

Do the exercises! Whenever we teach programming, we always get students who say,
“When I read the book it all makes sense, but on the exams, when you ask me to write a
program, I never know where to start.” Computer science is two things: a bunch of big
ideas, as we’ve been saying, and also a skill. You can’t learn the skill by watching.

Do the exercises on a computer! It’s not good enough to solve the exercises on
paper, even if you feel sure your solution is correct. Maybe it’s 99% correct but there’s
some little detail you’ve overlooked. When you run such a program, you won’t get 99%
of the answer you wanted. By trying the exercise on the computer; you get unambiguous
feedback. If your program is correct, you get the response you expected. If not, not.

Don’t feel bad if you don’t get things right the first time. Even the most experienced
programmers have to debug their programs—that is, fix the parts that don’t work. In
fact, an important part of what you’ll learn from the exercises is the process of debugging
your solutions. It would be too bad if all of your programs in this course worked the
first time, because that would let you avoid the practice in debugging that you’ll certainly
need when you write more complicated programs later. Also, don’t be afraid or ashamed
to ask for help if you get stuck. That, too, is part of the working style of professional
programmers.

In some of the chapters, we’ve divided the exercises into two categories, “boring”
and “real.” The boring exercises ask you to work through examples mechanically, to
make sure you understand the rules. The real exercises ask you to invent something,
usually a small computer program, but sometimes an explanation of some situation that
we present. (In some chapters, the exercises are just labeled “exercises,” which means
that they’re all considered “real.”) We don’t intend that the boring exercises be handed
in; the idea is for you to do as many of them as you need to make sure you understand
the mechanics of whatever topic you’re learning.

Preface XXE1L

Occasionally we introduce some idea with a simplified explanation, saving the whole
truth for later. We warn you when we do this. Also, we sometimes write preliminary,
partial, or incorrect example programs, and we always flag these with a comment like

(define (something foo baz) ;; first version

)

When we introduce technical terms, we sometimes mention the origin of the word, if it’s
not obvious, to help prevent the terminology from seeming arbitrary.

This book starts easy but gets harder, in two different ways. One is that we spend
some time teaching you the basics of Scheme before we get to two hard big ideas, namely,
function as object and recursion. The earlier chapters are short and simple. You may get
the idea that the whole book will be trivial. You’ll change your mind in Parts III and IV.

The other kind of difficulty in the book is that it includes long programming
examples and projects. (“Examples” are programs we write and describe; “projects” are
programs we ask you to write.) Writing a long program is quite different from writing
a short one. Each small piece may be easy, but fitting them together and remembering
all of them at once is a challenge. The examples and projects get longer as the book
progresses, but even the first example, tic-tac-toe, is much longer and more complex than
anything that comes before it.

As the text explains more fully later, in this book we use some extensions to
the standard Scheme language—features that we implemented ourselves, as Scheme
programs. If you are using this book in a course, your instructor will provide our
programs for you, and you don’t have to worry about it. But if you’re reading the book
on your own, you’ll need to follow the instructions in Appendix A.

There are several reference documents at the end of the book. If you don’t
understand a technical term in the text, try the Glossary for a short definition, or the
General Index to find the more complete explanation in the text. If you’ve forgotten
how to use a particular Scheme primitive procedure, look in the Alphabetical Table of
Scheme Primitives, or in the General Index. If you’ve forgotten the name of the relevant
primitive, refer to the inside back cover, where all the primitive procedures are listed
by category. Some of our example programs make reference to procedures that were
defined earlier, either in another example or in an exercise. If you’re reading an example
program and it refers to some procedure that’s defined elsewhere, you can find that
other procedure in the Index of Defined Procedures.

XX Preface

To the Instructor

The language that we use in this book isn’t exactly standard Scheme. We’ve provided
several extensions that may seem unusual to an experienced Scheme programmer. This
may make the book feel weird at first, but there’s a pedagogic reason for each extension.

Along with our slightly strange version of Scheme, our book has a slightly unusual
order of topics. Several ideas that are introduced very early in the typical Scheme-based
text are delayed in ours, most notably recursion. Quite a few people have looked at our
table of contents, noted some particular big idea of computer science, and remarked, “I
can’t believe you wait so long before getting to such and such!”

In this preface for instructors, we describe and explain the unusual elements of
our approach. Other teaching issues, including the timing and ordering of topics, are
discussed in the Instructor’s Manual.

Lists and Sentences

The chapter named “Lists” in this book is Chapter 17, about halfway through the book.
But really we use lists much earlier than that, almost from the beginning.

Teachers of Lisp have always had trouble deciding when and how to introduce
lists. The advantage of an early introduction is that students can then write interesting
symbolic programs instead of boring numeric ones. The disadvantage is that students
must struggle with the complexity of the implementation, such as the asymmetry between
the two ends of a list, while still also struggling with the idea of composition of functions
and Lisp’s prefix notation.

We prefer to have it both ways. We want to spare beginning students the risk of
accidentally constructing ill-formed lists such as

XXU

(CC(() « D) . C) . B) . A

but we also want to write natural-language programs from the beginning of the book.
Our solution is to borrow from Logo the idea of a sentence abstract data type.* Sentences
are guaranteed to be flat, proper lists, and they appear to be symmetrical to the user of
the abstraction. (That is, it’s as easy to ask for the last word of a sentence as to ask for
the first word.) The sentence constructor accepts either a word or a sentence in any
argument position.

We defer structured lists until we have higher-order functions and recursion, the
tools we need to be able to use the structure effectively.** A structured list can be
understood as a tree, and Lisp programmers generally use that understanding implicitly.
After introducing car-cdr recursion, we present an explicit abstract data type for trees,
without reference to its implementation. Then we make the connection between these
formal trees and the name “tree recursion” used for structured lists generally. But
Chapter 18 can be omitted, if the instructor finds the tree ADT unnecessary, and the
reader of Chapter 17 will still be able to use structured lists.

Sentences and Words

We haven’t said what a word is. Scheme includes separate data types for characters,
symbols, strings, and numbers. We want to be able to dissect words into letters, just as
we can dissect sentences into words, so that we can write programs like plural and
pig-latin. Orthodox Scheme style would use strings for such purposes, but we want
a sentence to look (like this) and not ("like" "this"). We’ve arranged that in
most contexts symbols, strings, and numbers can be used interchangeably; our readers
never see Scheme characters at all.*** Although a word made of letters is represented
internally as a symbol, while a word made of digits is represented as a number, above
the abstraction line they’re both words. (A word that standard Scheme won’t accept as a
symbol nor as a number is represented as a string.)

* Speaking of abstraction, even though that’s the name of Part V, we do make an occasion in
each of the earlier parts to talk about abstraction as examples come up.

** Even then, we take lists as a primitive data type. We don’t teach about pairs or improper lists,
except as a potential pitfall.

*#% Scheme’s primitive 1/O facility gives you the choice of expressions or characters. Instead of
using read-char, we invent read-1ine, which reads a line as a sentence, and read-string,
which returns the line as one long word.

XXUL To the Instructor

There is an efficiency cost to treating both words and sentences as abstract aggregates,
since it’s slow to disassemble a sentence from right to left and slow to disassemble a word in
either direction. Many simple procedures that seem linear actually behave quadratically.
Luckily, words aren’t usually very long, and the applications we undertake in the early
chapters don’t use large amounts of data in any form. We write our large projects as
efficiently as we can without making the programs unreadable, but we generally don’t
make a fuss about it. Near the end of the book we discuss explicitly the efficient use of
data structures.

Overloading in the Text Abstraction

Even though computers represent numbers internally in many different ways (fixed
point, bignum, floating point, exact rational, complex), when people visit mathland, they
expect to meet numbers there, and they expect that all the numbers will understand how
to add, subtract, multiply, and divide with each other. (The exception is dividing by zero,
but that’s because of the inherent rules of mathematics, not because of the separation of
numbers into categories by representation format.)

We feel the same way about visiting textland. We expect to meet English text there.
It takes the form of words and sentences. The operations that text understands include
first, last, butfirst, and butlast to divide the textinto its component parts. You
can’t divide an empty word or sentence into parts, but it’s just as natural to divide a word
into letters as to divide a sentence into words. (The ideas of mathland and textland, as
well as the details of the word and sentence procedures, come from Logo.)

Some people who are accustomed to Scheme’s view of data types consider first
to be badly “overloaded”; they feel that a procedure that selects an element from a list
shouldn’t also extract a letter from a symbol. Some of them would prefer that we use car
for lists, use substring for strings, and not disassemble symbols at all. Others want us
to define word-first and sentence-first.

To us, word-first and sentence-first sound no less awkward than fixnum-+
and bignum-+. Everyone agrees that it’s reasonable to overload the name + because
the purposes are so similar. Our students find it just as reasonable that £irst works for
words as well as for sentences; they don’t get confused by this.

As for the inviolability of symbols—the wall between names and data—we are
following an older Lisp tradition, in which it was commonplace to explode symbols and
to construct new names within a program. Practically speaking, all that prevents us from
representing words as strings is that Scheme requires quotation marks around them. But

To the Instructor XXV

in any case, the abstraction we’re presenting is that the data we’re dissecting are neither
strings nor symbols, but words.

Higher-Order Procedures, Lambda, and Recursion

Scheme relies on procedure invocation as virtually its only control mechanism. In order
to write interesting programs, a Scheme user must understand at least one of two hard
ideas: recursion or procedure as object (in order to use higher-order procedures). We
believe that higher-order procedures are easier to learn, especially because we begin in
Chapter 8 by applying them only to named procedures. Using a named procedure as
an argument to another procedure is the way to use procedures as objects that’s least
upsetting to a beginner. After the reader is comfortable with higher-order procedures,
we introduce lambda; after that we introduce recursion. We do the tic-tac-toe example
with higher-order procedures and 1ambda, but not recursion.

In this edition, however, we have made the necessary minor revisions so that an
instructor who prefers to begin with recursion can assign Part IV before Part III.

When we get to recursion, we begin with an example of embedded recursion. Many
books begin with the simplest possible recursive procedure, which turns out to be a
simple sequential recursion, or even a tail recursion. We feel that starting with such
examples allows students to invent the “go back” model of recursion as looping.

Mutators and Environments

One of the most unusual characteristics of this book is that there is no assignment to
variables in it. The reason we avoid set! is that the environment model of evaluation is
very hard for most students. We use a pure substitution model throughout most of the
book. (With the background they get from this book, students should be ready for the
environment model when they see a rigorous presentation, as they will, for example, in
Chapter 3 of SICP)

As the last topic in the book, we do introduce a form of mutation, namely
vector-set!. Mutation of vectors is less problematic than mutation of lists, be-
cause lists naturally share storage. You really have to go out of your way to get two

XXV To the Instructor

pointers to the same vector.* Mutation of data structures is less problematic than assign-
ment to variables because it separates the issue of mutation from the issues of binding
and scope. Using vectors raises no new questions about the evaluation process, so we
present mutation without reference to any formal model of evaluation. We acknowledge
that we’re on thin ice here, but it seems to work for our students.

In effect, our model of mutation is the “shoebox” model that you'd find in a
mainstream programming language text. Before we get to mutation, we use input/output
programming to introduce the ideas of effect and sequence; assigning a value to a vector
element introduces the important idea of state. We use the sequential model to write
two more or less practical programs, a spreadsheet and a database system. A more
traditional approach to assignment in Scheme would be to build an object-oriented
language extension, but the use of local state variables would definitely force us to pay
attention to environments.

* We don’t talk about eqg? at all. We’re careful to write our programs in such a way that the issue
of identity doesn’t arise for the reader.

To the Instructor XXX

Acknowledgments

Obviously our greatest debt is to Harold Abelson, Gerald Jay Sussman, and Julie Sussman.
They have inspired us and taught us, and gave birth to the movement to which we
are minor contributors. Julie carefully read what we thought was the final draft, made
thousands of suggestions, both small and large, improved the book enormously, and set
us back two months. Hal encouraged us, read early drafts, and also made this a better
book than we could have created on our own.

Mike Clancy, Ed Dubinsky, Dan Friedman, Tessa Harvey, and Yehuda Katz also
read drafts and made detailed and very helpful suggestions for improvement. Mike
contributed many exercises. (We didn’t take their advice about everything, though, so
they get none of the blame for anything you don’t like here.)

Terry Ehling, Bob Prior, and everyone at the MIT Press have given this project the
benefit of their enthusiasm and their technical support. We’re happy to be working with
them.

The Computer Science Division at the University of California, Berkeley, allowed us
to teach a special section of the CS 3 course using the first draft of this book. The book
now in your hands is much better because of that experience. We thank Annika Rogers,
our teaching assistant in the course, and also the thirty students who served not merely
as guinea pigs but as collaborators in pinning down the weak points in our explanations.

Some of the ideas in this book, especially the different approaches to recursion, are
taken from Brian’s earlier Logo-based textbook.* Many of our explanatory metaphors,
especially the “little people” model, were invented by members of the Logo community.

* Computer Science Logo Style, volume 1: Intermediate Programming, MIT Press, 1985.

XXX0

We also took the word and sentence data types from Logo. Although this book doesn’t
use Logo itself, we tried to write it in the Logo spirit.

We wrote much of this book during the summer of 1992, while we were on the
faculty of the Institute for Secondary Mathematics and Computer Science Education, an
inservice teacher training program at Kent State University. Several of our IFSMACSE
colleagues contributed to our ideas both about computer science and about teaching; we
are especially indebted to Ed Dubinsky and Uri Leron.

We stole the idea of a “pitfalls” section at the end of each chapter from Dave Patterson
and John Hennessy.

We stole some of the ideas for illustrations from Douglas Hofstadter’s wonderful
Gadel, Escher, Bach.

David Zabel helped us get software ready for students, especially with compiling SCM
for the PC.

We conclude this list with an acknowledgment of each other. Because of the
difference in our ages, it may occur to some readers to suspect that we contributed
unequally to this book—either that Matt did all the work and Brian just lent his name
and status to impress publishers, or that Brian had all the ideas and Matt did the typing.
Neither of these is true. Almost everything in the book was written with both of us
in front of the computer, arguing out every paragraph. When we did split up to write
some sections separately, each of us read and criticized the other’s work. (We’re a little
surprised that we still like each other, after all the arguments!) Luckily we both like the
Beatles, Chinese food, and ice cream, so we had a common ground for programming
examples. But when you see an example about Bill Frisell, you can be pretty sure it’s
Matt’s writing, and when the example is about Dave Dee, Dozy, Beaky, Mick, and Tich,
it’s probably Brian’s.

XXX Acknowledgments

Simply Scheme

Part 1
Introduction: Functions

The purpose of these introductory pages before each part of the book is to call attention
to a big idea that runs through all the work of several chapters. In the chapters themselves,
the big idea may sometimes be hidden from view because of the technical details that we

need to make the idea work. If you ever feel lost in the forest, you might want to refer
back here.

In these first two chapters, our goal is to introduce the Scheme programming
language and the idea of using functions as the building blocks of a computation.

The first chapter is a collection of short Scheme programs, presented to show off
what Scheme can do. We’ll try to explain enough of the mechanism so that you don’t
feel completely mystified, but we’ll defer the details until later. Our goal is not for you to
feel that you could re-create these programs, but rather that you get a sense of what kinds
of programs we’ll be working with.

The second chapter explores functions in some detail. Traditionally, computer
programs are built out of actions: First do this, then do that, and finally print the results.
Each step in the program does something. Functional programming is different, in that
we are less concerned with actions and more concerned with values.

For example, if you have a pocket calculator with a square root button, you could
enter the number 3, push the button, and you’ll see something like 1.732050808 in the
display. How does the calculator know? There are several possible processes that the
calculator could carry out. One process, for example, is to make a guess, square it, see if
the result is too big or too small, and use that information to make a closer guess. That’s
a sequence of actions. But ordinarily you don’t care what actions the calculator takes;

what interests you is that you want to apply the square root function to the argument 3,

and get back a value. We’re going to focus on this business of functions, arguments, and
result values.

Don’t think that functions have to involve numbers. We’ll be working with functions

like “first name,” “plural,” and “acronym.” These functions have words and sentences as
their arguments and values.

Scheme-Brained Hare

1 Showing Off Scheme

We are going to use the programming language Scheme to teach you some big ideas in
computer science. The ideas are mostly about control of complexity—that is, about how to
develop a large computer program without being swamped in details.

For example, once you’ve solved part of the large problem, you can give that partial
solution a name and then you can use the named subprogram as if it were an indivisible
operation, just like the ones that are built into the computer. Thereafter, you can forget
about the details of that subprogram. This is the beginning of the idea of abstraction,
which we’ll discuss in more depth throughout the book.

The big ideas are what this book is about, but first we’re going to introduce you
to Scheme. (Scheme is a dialect of Lisp, a family of computer programming languages
invented for computing with words, sentences, and ideas instead of just numbers.)

Talking to Scheme

The incantations to get Scheme running will be different for each model of computer.
Appendix A talks about these details; you can look up the particular version of Scheme
that you’re using. That appendix will also tell you how to load the file simply.scm,
which you need to make the examples in this book work.

When Scheme has started up and is ready for you to interact with it, you’ll see a
message on the screen, something like this:

Welcome to XYZ Brand Scheme.
>

The > is a prompt, Scheme’s way of telling you that it’s ready for you to type something.
Scheme is an interactive programming language. In other words, you type a request to
Scheme, then Scheme prints the answer, and then you get another prompt. Try it out:

> 6
6

We just asked Scheme, “What is 627 and Scheme told us that 6 is 6. Most of the time we
ask harder questions:

> (+47)

11

> (- 23 5)

18

> (+ 56 7 8)
26

Whenever something you type to Scheme is enclosed in parentheses, it indicates a request
to carry out a procedure. (We’ll define “procedure” more formally later, but for now it
means something that Scheme knows how to do. A procedure tells Scheme how to
compute a particular function.) The first thing inside the parentheses indicates what
procedure to use; the others are arguments, i.e., values that are used as data by the
procedure.

Scheme has non-numeric procedures, too:

> (word ’‘comp ‘uter)
COMPUTER

(If this last example gives an error message saying that Scheme doesn’t understand the
name word, it means that you didn’t load the file simply.scm Consult Appendix A.)

In these first examples, we’ve shown what you type in boldface and what the
computer responds in lightface. Hereafter, we will rely on the prompt characters to
help you figure out who’s talking on which line.

For the most part, Scheme doesn’t care about whether you type in UPPER CASE or
lower case. For the examples in this book, we’ll assume that you always type in lower case
and that the computer prints in upper case. Your Scheme might print in lower case; it
doesn’t matter.

6 Part I Introduction: Functions

Recovering from Typing Errors

Don’t worry if you make a mistake typing these examples in; you can just try again. One
of the great things about interactive programming languages is that you can experiment
in them.

The parentheses and single quote marks are important; don’t leave them out. If
Scheme seems to be ignoring you, try typing a bunch of right parentheses,)))))), and
hitting the return or enter key. (That’s because Scheme doesn’t do anything until
you’ve closed all the parentheses you’ve opened, so if you have an extra left parenthesis,
you can keep typing forever with no response.)

Another problem you might encounter is seeing a long message that you don’t
understand and then finding yourself with something other than a Scheme prompt. This
happens when Scheme considers what you typed as an error. Here’s an example; for
now, never mind exactly why this is an error. We just want to talk about the result:

> (+ 2 a)

Unbound variable a
;Package: (user)

2 Error->

The exact form of the message you get will depend on the version of Scheme that
you’re using. For now, the important point is that some versions deal with errors by
leaving you talking to a debugger instead of to Scheme itself. The debugger may have a
completely different language. It’s meant to help you figure out what’s wrong in a large
program you’ve written. For a beginner, though, it’s more likely to get in the way. Read
the documentation for your particular Scheme dialect to learn how to escape from the
debugger. (In some versions you don’t get trapped in a debugger when you make an
error, so this problem may not arise.)

Exiting Scheme

Although there’s no official standard way to exit Scheme, most versions use the notation

> (exit)

Chapter 1~ Showing Off Scheme 7

for this purpose. If you type in some of the examples that follow and then exit from
Scheme, what you type won’t be remembered the next time you use Scheme. (Appendix
A talks about how to use a text editor along with Scheme to make a permanent record of
your work.)

More Examples

We’re about to show you a few examples of (we hope) interesting programs in Scheme.
Play with them! Type them into your computer and try invoking them with different
data. Again, don’t worry too much if something doesn’t work—it probably just means
that you left out a parenthesis, or some such thing.

While you’re going through these examples, see how much you can figure out for
yourself about how they work. In particular, try guessing what the names of procedures,
such as first and keep, mean. Some of them will probably be obvious, some of them
harder. The pointisn’t to see how smart you are, but to get you thinking about the kinds
of things you want to be able to do in a computer program. Later on we’ll go through
these examples in excruciating detail and tell you the official meanings of all the pieces.

Besides learning the vocabulary of Scheme, another point of this activity is to give
you a feeling for the ways in which we put these names together in a program. Every
programming language has its own flavor. For example, if you’ve programmed before
in other languages, you may be surprised not to find anything that says print in these
examples.

On the other hand, some of these examples are programs that we won’t expect you
to understand fully until most of the way through this book. So don’t worry if something
doesn’t make sense; just try to get some of the flavor of Scheme programming.

Example: Acronyms

Here’s our first new program. So far we have just been using procedures built into
Scheme: +, —, and word. When you first start up Scheme, it knows 100-200 procedures.
These are called primitive procedures. Programming in Scheme means defining new
procedures, called compound procedures. Right now we’re going to invent one that finds
the acronym for a title:

(define (acronym phrase)
(accumulate word (every first phrase)))

8 Part I Introduction: Functions

> (acronym ' (american civil liberties union))
ACLU

> (acronym ' (reduced instruction set computer))
RISC

> (acronym ’(quod erat demonstrandum))
QED

Did you have trouble figuring out what all the pieces do in the acronym procedure?
Try these examples:

> (first ’american)
A

> (every first ’(american civil liberties union))
(A C L U)

> (accumulate word ‘(a c 1 u))
ACLU

Notice that this simple acronym program doesn’t always do exactly what you might
expect:

> (acronym ' (united states of america))
USOA

We can rewrite the program to leave out certain words:

(define (acronym phrase)
(accumulate word (every first (keep real-word? phrase))))

(define (real-word? wd)
(not (member? wd ’'(a the an in of and for to with))))

> (acronym ' (united states of america))
USA

> (acronym ' (structure and interpretation of computer programs))
SICP

> (acronym ' (association for computing machinery))
ACM

> (real-word? ’'structure)
#T

Chapter 1~ Showing Off Scheme 9

> (real-word? ’of)
#F*

> (keep real-word? ’(united network command for law and enforcement))
(UNITED NETWORK COMMAND LAW ENFORCEMENT)

Example: Pig Latin

Our next example translates a word into Pig Latin.**

Ingualay
Atinalay
orcinapay

(define (pigl wd)
(if (member? (first wd) ’aeiou)
(word wd ’'ay)
(pigl (word (butfirst wd) (first wd)))))

> (pigl ’spaghetti)
AGHETTISPAY

> (pigl ’'ok)

OKAY

(By the way, if you've used other programming languages before, don’t fall into
the trap of thinking that each line of the pigl definition is a “statement” and that the

* In some versions of Scheme you might see () instead of #F.

** Pig Latin is a not-very-secret secret language that many little kids learn. Each word is translated
by moving all the initial consonants to the end of the word, and adding “ay” at the end. It’s usually
spoken rather than written, but that’s a little harder to do on a computer.

10 Part I Introduction: Functions

statements are executed one after the other. That’s not how it works in Scheme. The
entire thing is a single expression, and what counts is the grouping with parentheses.
Starting a new line is no different from a space between words as far as Scheme is
concerned. We could have defined pigl on one humongous line and it would mean
the same thing. Also, Scheme doesn’t care about how we’ve indented the lines so that
subexpressions line up under each other. We do that only to make the program more
readable for human beings.)

The procedure follows one of two possible paths, depending on whether the first
letter of the given word is a vowel. If so, pigl just adds the letters ay at the end:

> (pigl ’elephant)
ELEPHANTAY

The following examples might make it a little more clear how the starting-consonant
case works:

> (first ’'spaghetti)
S

> (butfirst ’'spaghetti)
PAGHETTI

> (word ’'paghetti ’s)
PAGHETTIS

> (define (rotate wd)
(word (butfirst wd) (first wd)))

> (rotate ’spaghetti)
PAGHETTIS

> (rotate ’paghettis)
AGHETTISP

> (pigl ’aghettisp)
AGHETTISPAY

You've seen every before, in the acronym example, but we haven’t told you what
it does. Try to guess what Scheme will respond when you type this:

(every pigl ’(the ballad of john and yoko))

Chapter 1~ Showing Off Scheme 11

Example: Ice Cream Choices

Here’s a somewhat more complicated program, but still pretty short considering what it
accomplishes:

(define (choices menu)
(if (null? menu)
()
(let ((smaller (choices (cdr menu))))
(reduce append
(map (lambda (item) (prepend-every item smaller))
(car menu))))))

(define (prepend-every item lst)
(map (lambda (choice) (se item choice)) 1lst))

> (choices ’((small medium large)
(vanilla (ultra chocolate) (rum raisin) ginger)
(cone cup)))

((SMALL VANILLA CONE)

(SMALL VANILLA CUP)

(SMALL ULTRA CHOCOLATE CONE)

(SMALL ULTRA CHOCOLATE CUP)

(SMALL RUM RAISIN CONE)

(SMALL RUM RAISIN CUP)

(SMALL GINGER CONE)

(SMALL GINGER CUP)

(MEDIUM VANILLA CONE)

(MEDIUM VANILLA CUP)

(MEDIUM ULTRA CHOCOLATE CONE)

(MEDIUM ULTRA CHOCOLATE CUP)

(MEDIUM RUM RAISIN CONE)

(MEDIUM RUM RAISIN CUP)

(MEDIUM GINGER CONE)

(MEDIUM GINGER CUP)

(LARGE VANILLA CONE)

(LARGE VANILLA CUP)

(LARGE ULTRA CHOCOLATE CONE)

(LARGE ULTRA CHOCOLATE CUP)

(LARGE RUM RAISIN CONE)

(LARGE RUM RAISIN CUP)

(LARGE GINGER CONE)

(LARGE GINGER CUP))

Notice that in writing the program we didn’t have to say how many menu categories

there are, or how many choices in each category. This one program will work with any
menu—try it out yourself.

12 Part I Introduction: Functions

Example: Combinations from a Set

Here’s a more mathematical example. We want to know all the possible combinations
of, let’s say, three things from a list of five possibilities. For example, we want to know all
the teams of three people that can be chosen from a group of five people. “Dozy, Beaky,
and Tich” counts as the same team as “Beaky, Tich, and Dozy”; the order within a team
doesn’t matter.

Although this will be a pretty short program, it’s more complicated than it looks. We
don’t expect you to be able to figure out the algorithm yet.* Instead, we just want you to
marvel at Scheme’s ability to express difficult techniques succinctly.

(define (combinations size set)
(cond ((= size 0) ’(()))
((empty? set) ’())
(else (append (prepend-every (first set)
(combinations (- size 1)
(butfirst set)))
(combinations size (butfirst set))))))

> (combinations 3 ‘(a b c d e))
((ABC) (ABD) (ABE) (A CD) (ACE)
(ADE) (BCD) (BCE) (BDE) (CDE))

> (combinations 2 ’(john paul george ringo))
((JOHN PAUL) (JOHN GEORGE) (JOHN RINGO)
(PAUL GEORGE) (PAUL RINGO) (GEORGE RINGO))

(If you’re trying to figure out the algorithm despite our warning, here’s a hint: All the
combinations of three letters shown above can be divided into two groups. The first
group consists of the ones that start with the letter A and contain two more letters; the
second group has three letters not including A. The procedure finds these two groups
separately and combines them into one. If you want to try to understand all the pieces,
try playing with them separately, as we encouraged you to do with the pigl and acronym
procedures.)

* What’s an algorithm? 1t’s a method for solving a problem. The usual analogy is to a recipe in
cooking, although you’ll see throughout this book that we want to get away from the aspect of that
analogy that emphasizes the sequential nature of a recipe—first do this, then do that, etc. There
can be more than one algorithm to solve the same problem.

Chapter 1~ Showing Off Scheme 13

If you’ve taken a probability course, you know that there is a formula for the number
of possible combinations. The most traditional use of computers is to work through
such formulas and compute numbers. However, not all problems are numeric. Lisp, the
programming language family of which Scheme is a member, is unusual in its emphasis
on symbolic computing. In this example, listing the actual combinations instead of
just counting them is part of the flavor of symbolic computing, along with our earlier
examples about manipulating words and phrases. We’ll try to avoid numeric problems
when possible, because symbolic computing is more fun for most people.

Example: Factorial

Scheme can handle numbers, too. The factorial of n (usually written in mathematical
notation as n!) is the product of all the numbers from 1 to n:

(define (factorial n)
(if (= n 0)
1
(* n (factorial (- n 1)))))

> (factorial 4)
24

> (factorial 1000)

4023872600770937735437024339230039857193748642107146325437999104299385
1239862902059204420848696940480047998861019719605863166687299480855890
1323829669944590997424504087073759918823627727188732519779505950995276
1208749754624970436014182780946464962910563938874378864873371191810458
2578364784997701247663288983595573543251318532395846307555740911426241
7474349347553428646576611667797396668820291207379143853719588249808126
8678383745597317461360853795345242215865932019280908782973084313928444
0328123155861103697680135730421616874760967587134831202547858932076716
9132448426236131412508780208000261683151027341827977704784635868170164
3650241536913982812648102130927612448963599287051149649754199093422215
6683257208082133318611681155361583654698404670897560290095053761647584
7728421889679646244945160765353408198901385442487984959953319101723355
5566021394503997362807501378376153071277619268490343526252000158885351
4733161170210396817592151090778801939317811419454525722386554146106289
2187960223838971476088506276862967146674697562911234082439208160153780
8898939645182632436716167621791689097799119037540312746222899880051954
4441428201218736174599264295658174662830295557029902432415318161721046
5832036786906117260158783520751516284225540265170483304226143974286933
0616908979684825901254583271682264580665267699586526822728070757813918

14 Part I Introduction: Functions

5817888965220816434834482599326604336766017699961283186078838615027946
5955131156552036093988180612138558600301435694527224206344631797460594
6825731037900840244324384656572450144028218852524709351906209290231364
9327349756551395872055965422874977401141334696271542284586237738753823
0483865688976461927383814900140767310446640259899490222221765904339901
8860185665264850617997023561938970178600408118897299183110211712298459
0164192106888438712185564612496079872290851929681937238864261483965738
2291123125024186649353143970137428531926649875337218940694281434118520
1580141233448280150513996942901534830776445690990731524332782882698646
0278986432113908350621709500259738986355427719674282224875758676575234
4220207573630569498825087968928162753848863396909959826280956121450994
8717012445164612603790293091208890869420285106401821543994571568059418
7274899809425474217358240106367740459574178516082923013535808184009699
6372524230560855903700624271243416909004153690105933983835777939410970
027753472000
00
00
00

If this doesn’t work because your computer is too small, try a more reasonably sized
example, such as the factorial of 200.

Play with the Procedures

This chapter has introduced a lot of new ideas at once, leaving out all the details. Our
hope has been to convey the flavor of Scheme programming, before we get into Chapter
2, which is full of those missing details. But you can’t absorb the flavor just by reading;
take some time out to play with these examples before you go on.

Exercises

1.1 Do 20 push-ups.

1.2 Calculate 1000 factorial by hand and see if the computer got the right answer.

1.3 Create afile called acronym. scm containing our acronym program, using the text
editor provided for use with your version of Scheme. Load the file into Scheme and run

the program. Produce a transcript file called acronym. log, showing your interaction
with Scheme as you test the program several times, and print it.

Chapter 1 ~ Showing Off Scheme 15

The function f(x,y) = sin xy plotted by computer

|
2 Functions

Throughout most of this book we’re going to be using a technique called functional
programming. We can’t give a complete definition of this term yet, but in this chapter we
introduce the building block of functional programming, the function.

Basically we mean by “function” the same thing that your high school algebra teacher
meant, except that our functions don’t necessarily relate to numbers. But the essential
idea is just like the kind of function described by f(x) = 6x —2. In that example, [is
the name of a function; that function takes an argument called x, which is a number, and
returns some other number.

In this chapter you are going to use the computer to explore functions, but you
are not going to use the standard Scheme notation as in the rest of the book. That’s
because, in this chapter, we want to separate the idea of functions from the complexities
of programming language notation. For example, real Scheme notation lets you write
expressions that involve more than one function, but in this chapter you can only use
one at a time.

To get into this chapter’s special computer interface, first start running Scheme as
you did in the first chapter, then type

(load "functions.scm")

to tell Scheme to read the program you’ll be using. (If you have trouble loading the
program, look in Appendix A for further information about load.) Then, to start the

program, type

(functions)

17

You’ll then be able to carry out interactions like the following.* In the text below we’ve
printed what you type in boldface and what the computer types in 1ightface printing:

Function: +
Argument: 3
Argument: 5

The result is: 8

Function: sqrt
Argument: 144

The result is: 12

As you can see, different functions can have different numbers of arguments. In these
examples we added two numbers, and we took the square root of one number. However,
every function gives exactly one result each time we use it.

To leave the functions program, type exit when it asks for a function.

Arithmetic

Experiment with these arithmetic functions: +, -, *, /, sgrt, quotient, remainder,
random, round, max, and expt. Try different kinds of numbers, including integers
and numbers with decimal fractions. What if you try to divide by zero? Throughout this
chapter we are going to let you experiment with functions rather than just give you a
long, boring list of how each one works. (The boring list is available for reference on
page 553.)

Try these:

Function: /
Argument: 1
Argument: 987654321987654321

Function: remainder
Argument: 12
Argument: -5

* If you get no response at all after you type (functions), just press the Return or Enter key
again. Tell your instructor to read Appendix A to see how to fix this.

18 Part I Introduction: Functions

Function: round
Argument: 17.5

These are just a few suggestions. Be creative; don’t just type in our examples.

Words

Not all Scheme functions deal with numbers. A broader category of argument is the word,
including numbers but also including English words like spaghetti or xylophone.
Even a meaningless sequence of letters and digits such as glo87rp is considered a
word.* Try these functions that accept words as arguments: first, butfirst, last,
butlast, word, and count. What happens if you use a number as the argument to one
of these?

Function: butfirst
Argument: a

Function: count
Argument: 765432

So far most of our functions fall into one of two categories: the arithmetic functions,
which require numbers as arguments and return a number as the result; and the word
functions, which accept words as arguments and return a word as the result. The one
exception we’ve seen is count. What kind of argument does count accept? What kind
of value does it return? The technical term for “a kind of data” is a type.

In principle you could think of almost anything as a type, such as “numbers that
contain the digit 7.” Such ad hoc types are legitimate and sometimes useful, but there are
also official types that Scheme knows about. Types can overlap; for example, numbers
are also considered words.

Function: word
Argument: 3.14
Argument: 1592654

Function: +
Argument: 6
Argument: seven

* Certain punctuation characters can also be used in words, but let’s defer the details until
you’ve gotten to know the word functions with simpler examples.

Chapter 2 Functions 19

Domain and Range

The technical term for “the things that a function accepts as an argument” is the domain
of the function. The name for “the things that a function returns” is its range. So the
domain of count is words, and the range of count is numbers (in fact, nonnegative
integers). This example shows that the range may not be exactly one of our standard
data types; there is no “nonnegative integer” type in Scheme.

How do you talk about the domain and range of a function? You could say, for
example, “The cos function has numbers as its domain and numbers between —1 and 1
as its range.” Or, informally, you may also say “Cos takes a number as its argument and
returns a number between —1 and 1.7*

For functions of two or more arguments, the language is a little less straightforward.
The informal version still works: “Remainder takes two integers as arguments and
returns an integer.” But you can’t say “The domain of remainder is two integers,”
because the domain of a function is the set of all possible arguments, not just a statement
about the characteristics of legal arguments.**

(By the way, we’re making certain simplifications in this chapter. For example,
Scheme’s + function can actually accept any number of arguments, not just two. But we
don’t want to go into all the bells and whistles at once, so we’ll start with adding two
numbers at a time.)

Here are examples that illustrate the domains of some functions:

Function: expt
Argument: -3
Argument: .5

Function: expt
Argument: -3
Argument: -3

Function: remainder
Argument: 5
Argument: 0

* Unless your version of Scheme has complex numbers.

** Real mathematicians say, “The domain of remainder is the Cartesian cross product of the
integers and the integers.” In order to avoid that mouthful, we’ll just use the informal wording.

20 Part I Introduction: Functions

More Types: Sentences and Booleans

We’re going to introduce more data types, and more functions that include those types
in their domain or range. The next type is the sentence: a bunch of words enclosed in
parentheses, such as

(all you need is love)

(Don’t include any punctuation characters within the sentence.) Many of the functions
that accept words in their domain will also accept sentences. There is also a function
sentence that accepts words and sentences. Try examples like butfirst of a sentence.

Function: sentence
Argument: (when i get)
Argument: home

Function: butfirst
Argument: (yer blues)

Function: butlast
Argument: ()

Other important functions are used to ask yes-or-no questions. That is, the range
of these functions contains only two values, one meaning “true” and the other meaning
“false.” Try the numeric comparisons =, <, >, <=, and >=, and the functions equal? and
member? that work on words and sentences. (The question mark is part of the name of
the function.) There are also functions and, or, and not whose domain and range are
both true-false values. The two values “true” and “false” are called Booleans, named after
George Boole (1815-1864), who developed the formal tools used for true-false values in
mathematics.

What good are these true-false values? Often a program must choose between two
options: If the number is positive, do this; if negative, do that. Scheme has functions to
make such choices based on true-false values. For now, you can experiment with the if
function. Its first argument must be true or false; the others can be anything.

Our Favorite Type: Functions

So far our data types include numbers, words, sentences, and Booleans. Scheme has
several more data types, but for now we’ll just consider one more. A function can be used
as data. Here’s an example:

Chapter 2 Functions 21

Function: number-of-arguments
Argument: equal?

The result is: 2

The range of number-of-arguments is nonnegative integers. But its domain is
Junctions. For example, try using it as an argument to itself!

If you’ve used other computer programming languages, it may seem strange to use a
function—that is, a part of a computer program—as data. Most languages make a sharp
distinction between program and data. We’ll soon see that the ability to treat functions
as data helps make Scheme programming very powerful and convenient.

Try these examples:

Function: every
Argument: first
Argument: (the long and winding road)

Function: keep
Argument: vowel?
Argument: constantinople

Think carefully about these. You aren’t applying the function first to the sentence
(the long and winding road); you're applying the function every to a function
and a sentence.

Other functions that can be used with keep include even? and odd?, whose
domains are the integers, and number?, whose domain is everything.

Play with It

If you’ve been reading the book but not trying things out on the computer as you go
along, get to work! Spend some time getting used to these ideas and thinking about
them. When you’re done, read ahead.

Thinking about What You’ve Done

The idea of function is at the heart of both mathematics and computer science. For
example, when mathematicians want to think very formally about the system of numbers,
they use functions to create the integers. They say, let’s suppose we have one number,

22 Part I Introduction: Functions

called zero; then let’s suppose we have the function given by f(x) = x+ 1. By applying that
function repeatedly, we can create 1 = f(0), then 2 = f(1), and so on.

Functions are important in computer science because they give us a way to think
about process—in simple English, a way to think about something happening, something
changing. A function embodies a transformation of information, taking in something
we know and returning something we didn’t know. That’s what computers do: They
transform information to produce new results.

A lot of the mathematics taught in school is about numbers, but we’ve seen
that functions don’t have to be about numbers. We’ve used functions of words and
sentences, such as first, and even functions of functions, such as keep. You can
imagine functions that transform information of any kind at all, such as the function
French (window)=fenétre or the function capital (California)=Sacramento.

You've done a lot of thinking about the domain and range of functions. You can add
two numbers, but it doesn’t make sense to add two words that aren’t numbers. Some
two-argument functions have complicated domains because the acceptable values for one
argument depend on the specific value used for the other one. (The function expt is
an example; make sure you've tried both positive and negative numbers, and fractional
as well as whole-number powers.)

Part of the definition of a function is that you always get the same answer whenever
you call a function with the same argument(s). The value returned by the function,
in other words, shouldn’t change regardless of anything else you may have computed
meanwhile. One of the “functions” you’ve explored in this chapter isn’t a real function
according to this rule; which one? The rule may seem too restrictive, and indeed it’s
often convenient to use the name “function” loosely for processes that can give different
results in different circumstances. But we’ll see that sometimes it’s important to stick
with the strict definition and refrain from using processes that aren’t truly functions.

We’ve hinted at two different ways of thinking about functions. The first is called
Junction as process. Here, a function is a rule that tells us how to transform some
information into some other information. The function is just a rule, not a thing in
its own right. The actual “things” are the words or numbers or whatever the function
manipulates. The second way of thinking is called function as object. In thisview, a function
is a perfectly good “thing” in itself. We can use a function as an argument to another
function, for example. Research with college math students shows that this second idea is
hard for most people, but it’s worth the effort because you'll see that higher-order functions
(functions of functions) like keep and every can make programs much easier to write.

Chapter 2 Functions 23

As a homey analogy, think about a carrot peeler. If we focus our attention on the
carrots—which are, after all, what we want to eat—then the peeler just represents a
process. We are peeling carrots. We are applying the function peel to carrots. It’s the
carrot that counts. But we can also think about the peeler as a thing in its own right,
when we clean it, or worry about whether its blade is sharp enough.

The big idea that we haven’t explored in this chapter (although we used it a lot in
Chapter 1) is the composition of functions: using the result from one function as an argu-
ment to another function. It’s a crucial idea; we write large programs by defining a bunch
of small functions and then composing them with each other to produce the desired
result. We’ll start doing thatin the next chapter, where we return to real Scheme notation.

Exercises

Use the functions program for all these exercises.

2.1 In each line of the following table we’ve left out one piece of information. Fill in
the missing details.

function arg 1 arg 2 result
word now here
sentence now here
first blackbird none
first (blackbird) none
3 4 7
every (thank you girl) | (hank ou irl)
member? e aardvark
member? the #t
keep vowel? (iwill)
keep vowel? eieio*
last () none
last (honey pie) (y e)
taxman aa

2.2 Whatis the domain of the vowel? function?

* Yes, there is an English word. It has to do with astronomy.

24 Part I Introduction: Functions

2.3 One of the functions you can use is called appearances. Experiment with it, and
then describe fully its domain and range, and what it does. (Make sure to try lots of cases.
Hint: Think about its name.)

2.4 One of the functions you can use is called item. Experiment with it, and then
describe fully its domain and range, and what it does.

The following exercises ask for functions that meet certain criteria. For your conve-
nience, here are the functionsin this chapter: +, -, /,<=,<,=,>=,>, and, appearances,
butfirst, butlast, cos, count, equal?, every, even?, expt, first, if, item,
keep, last, max, member?, not, number?, number-of-arguments, odd?, or,
quotient, random, remainder, round, sentence, sqrt, vowel?, and word.

2.5 List the one-argument functions in this chapter for which the type of the return
value is always different from the type of the argument.

2.6 List the one-argument functions in this chapter for which the type of the return
value is sometimes different from the type of the argument.

2.7 Mathematicians sometimes use the term “operator” to mean a function of two
arguments, both of the same type, that returns a result of the same type. Which of the
functions you’ve seen in this chapter satisfy that definition?

2.8 An operator [is commutative if [(a, b) = [(b, a) for all possible arguments @ and b.
For example, + is commutative, but word isn’t. Which of the operators from Exercise 2.7
are commutative?

2.9 An operator [is associative if f(f(a, b), ¢c) = f(a, [(b, c)) for all possible arguments a,

b, and ¢. For example, * is associative, but not /. Which of the operators from Exercise
2.7 are associative?

Chapter 2 Functions 25

Part II
Composition of Functions

The big idea in this part of the book is deceptively simple. It’s that we can take the value
returned by one function and use it as an argument to another function. By “hooking
up” two functions in this way, we invent a new, third function. For example, let’s say we
have a function that adds the letter s to the end of a word:

add-s(“run”) = “runs”

and another function that puts two words together into a sentence:

”

sentence(“day”, “tripper”) = “day tripper”

We can combine these to create a new function that represents the third person singular
form of a verb:

third-person(verb) = sentence(“she”, add-s(verb))

That general formula looks like this when applied to a particular verb:

third-person(“sing”) = “she sings”
The way we say it in Scheme is

(define (third-person verb)
(sentence ’‘she (add-s verb)))

(When we give an example like this at the beginning of a part, don’t worry about the fact

that you don’t recognize the notation. The example is meant as a preview of what you’ll
learn in the coming chapters.)

26

We know that this idea probably doesn’t look like much of a big deal to you. It seems
obvious. Nevertheless, it will turn out that we can express a wide variety of computational
algorithms by linking functions together in this way. This linking is what we mean by
“functional programming.”

27

In a bucket brigade, each person hands a result to the next.

3 Expressions

The interaction between you and Scheme is called the “read-eval-print loop.” Scheme
reads what you type, evaluates it, and prints the answer, and then does the same thing over
again. We’re emphasizing the word “evaluates” because the essence of understanding
Scheme is knowing what it means to evaluate something.

Each question you type is called an expression.* The expression can be a single value,
such as 26, or something more complicated in parentheses, such as (+ 14 7). The
first kind of expression is called an alom (or atomic expression), while the second kind of
expression is called a compound expression, because it’s made out of the smaller expressions
+, 14, and 7. The metaphor is from chemistry, where atoms of single elements are
combined to form chemical compounds. We sometimes call the expressions within a
compound expression its subexpressions.

Compound expressions tell Scheme to “do” a procedure. This idea is so important
that it has a lot of names. You can call a procedure; you can invoke a procedure; or you
can apply a procedure to some numbers or other values. All of these mean the same
thing.

If you’ve programmed before in some other language, you’re probably accustomed
to the idea of several different types of statements for different purposes. For example,
a “print statement” may look very different from an “assignment statement.” In Scheme,

* In other programming languages, the name for what you type might be a “command” or an
“instruction.” The name “expression” is meant to emphasize that we are talking about the notation
in which you ask the question, as distinct from the idea in your head, just as in English you express
an idea in words. Also, in Scheme we are more often asking questions rather than telling the
computer to take some action.

29

everything is done by calling procedures, just as we’ve been doing here. Whatever you
want to do, there’s only one notation: the compound expression.

Notice that we said a compound expression contains expressions. This means
that you can’t understand what an expression is until you already understand what an
expression is. This sort of circularity comes up again and again and again and again* in
Scheme programming. How do you ever get a handle on this self-referential idea? The
secret is that there has to be some simple kind of expression that doesn’t have smaller
expressions inside it—the atomic expressions.

It’s easy to understand an expression that just contains one number. Numbers are
self-evaluating; that is, when you evaluate a number, you just get the same number back.

Once you understand numbers, you can understand expressions that add up numbers.
And once you understand those expressions, you can use that knowledge to figure out
expressions that add wp expressions-that-add-up-numbers. Then ... and so on. In practice,
you don’t usually think about all these levels of complexity separately. You just think, “I
know what a number is, and I know what it means to add up any expressions.”

So, for example, to understand the expression

(+ (+ 2 3) (+ 4 5))

you must first understand 2 and 3 as self-evaluating numbers, then understand (+ 2 3)
as an expression that adds those numbers, then understand how the sum, 5, contributes
to the overall expression.

By the way, in ordinary arithmetic you’ve gotten used to the idea that parentheses
can be optional; 3 + 4 x5 means the same as 3 + (4 x5). But in Scheme, parentheses are
never optional. Every procedure call must be enclosed in parentheses.

Little People

You may not have realized it, but inside your computer there are thousands of little
people. Each of them is a specialist in one particular Scheme procedure. The head little
person, Alonzo, is in charge of the read-eval-print loop.

When you enter an expression, such as

(- (+58) (+2 4))

* and again

30 Part Il Composition of Functions

Alonzo reads it, hires other little people to help him evaluate it, and finally prints 7, its
value. We're going to focus on the evaluation step.

Three little people work together to evaluate the expression: a minus person and
two plus people. (To make this account easier to read, we’re using the ordinary English
words “minus” and “plus” to refer to the procedures whose Scheme names are - and +.
Don’t be confused by this and try to type minus to Scheme.)

Since the overall expression is a subtraction, Alonzo hires Alice, the first available
minus specialist. Here’s how the little people evaluate the expression:

* Alice wants to be given some numbers, so before she can do any work, she complains
to Alonzo that she wants to know which numbers to subtract.

* Alonzo looks at the subexpressions that should provide Alice’s arguments, namely,
(+ 58) and (+ 2 4). Since both of these are addition problems, Alonzo hires two
plus specialists, Bernie and Cordelia, and tells them to report their results to Alice.

* The first plus person, Bernie, also wants some numbers, so he asks Alonzo for them.

* Alonzo looks at the subexpressions of (+ 5 8) that should provide Bernie’s arguments,
namely, 5 and 8. Since these are both atomic, Alonzo can give them directly to Bernie.

* Bernie adds his arguments, 5 and 8, to get 13. He does this in his head—we don’t
have to worry about how he knows how to add; that’s his job.

* The second plus person, Cordelia, wants some arguments; Alonzo looks at the
subexpressions of (+ 2 4) and gives the 2 and 4 to Cordelia. She adds them, getting
6.

* Bernie and Cordelia hand their results to the waiting Alice, who can now subtract them
to get 7. She hands that result to Alonzo, who prints it.

How does Alonzo know what’s the argument to what? That’s what the grouping of
subexpressions with parentheses is about. Since the plus expressions are inside the minus
expression, the plus people have to give their results to the minus person.

We’ve made it seem as if Bernie does his work before Cordelia does hers. In fact, the
order of evaluation of the argument subexpressions is not specified in Scheme; different
implementations may do it in different orders. In particular, Cordelia might do her work
before Bernie, or they might even do their work at the same time, if we’re using a parallel
processing computer. However, it is important that both Bernie and Cordelia finish their
work before Alice can do hers.

Chapter 3 Expressions 31

The entire call to - is itself a single expression; it could be a part of an even larger
expression:

> (x (- (+ 5 8) (+ 2 4))
(/ 10 2))
35

This says to multiply the numbers 7 and 5, except that instead of saying 7 and 5
explicitly, we wrote expressions whose values are 7 and 5. (By the way, we would
say that the above expression has three subexpressions, the * and the two arguments.
The argument subexpressions, in turn, have their own subexpressions. However, these
sub-subexpressions, such as (+ 5 8), don’t count as subexpressions of the whole thing.)

We can express this organization of little people more formally. If an expression
is atomic, Scheme just knows the value.* Otherwise, it is a compound expression,
so Scheme first evaluates all the subexpressions (in some unspecified order) and then
applies the value of the first one, which had better be a procedure, to the values of the
rest of them. Those other subexpressions are the arguments.

We can use this rule to evaluate arbitrarily complex expressions, and Scheme
won’t get confused. No matter how long the expression is, it’s made up of smaller
subexpressions to which the same rule applies. Look at this long, messy example:

> (+ (* 2 (/ 14 7) 3)
(/ (* (- (* 35)3) (+11))
(= (x 4 3) (x 3 2)))
(- 15 18))
13

Scheme understands this by looking for the subexpressions of the overall expression,
like this:

; One of them takes two lines but you can tell by
.2) ; matching parentheses that they’re one expression.

(.-2))

(Scheme ignores everything to the right of a semicolon, so semicolons can be used to
indicate comments, as above.)

* We’ll explain this part in more detail later.

32 Part Il Composition of Functions

Notice thatin the example above we asked + to add three numbers. In the functions
program of Chapter 2 we pretended that every Scheme function accepts a fixed number
of arguments, but actually, some functions can accept any number. These include +, *,
word, and sentence.

Result Replacement

Since a little person can’t do his or her job until all of the necessary subexpressions have
been evaluated by other little people, we can “fast forward” this process by skipping the
parts about “Alice waits for Bernie and Cordelia” and starting with the completion of the
smaller tasks by the lesser little people.

To keep track of which result goes into which larger computation, you can write
down a complicated expression and then rewrile it repeatedly, each time replacing some
small expression with a simpler expression that has the same value.

(+ (* (=10 7)] (+ 4 1)) (- 15 (/ 12 3)) 17)

(+ (* 3 [(+ 4 1)) (- 15 (/ 12 3)) 17)
(+[(* 3 5)] (= 15 (/ 12 3)) 17)
(+ 15 (- 15 [(/ 12 3))) 17)
(+ 15 [(- 15 4)| 17)
[(+ 15 11 17)]
43

In each line of the diagram, the boxed expression is the one that will be replaced with its
value on the following line.

If you like, you can save some steps by evaluating several small expressions from one
line to the next:

(+ (* [(= 10 H][(+ 4 1)) (- 15 [(/ 12 3))) 17)

(+[(> 3 5) [(- 15 4)| 17)
[(+ 15 11 17)]
43

Plumbing Diagrams

Some people find it helpful to look at a pictorial form of the connections among
subexpressions. You can think of each procedure as a machine, like the ones they drew
on the chalkboard in junior high school.

Chapter 3 Expressions 33

Each machine has some number of input hoppers on the top and one chute at the
bottom. You put something in each hopper, turn the crank, and something else comes
out the bottom. For a complicated expression, you hook up the output chute of one
machine to the input hopper of another. These combinations are called “plumbing
diagrams.” Let’s look at the plumbing diagram for (- (+ 5 8) (+ 2 4)):

5 8 2 1
\ RN \ RN |
[
10 s

You can annotate the diagram by indicating the actual information that flows through
each pipe. Here’s how that would look for this expression:

T i

Wl
\\l// \\l//

N

34 Part Il Composition of Functions

Pitfalls

O One of the biggest problems that beginning Lisp programmers have comes from
trying to read a program from left to right, rather than thinking about it in terms of
expressions and subexpressions. For example,

(square (cos 3))

doesn’t mean “square three, then take the cosine of the answer you get.” Instead, as you
know, it means that the argument to square is the return value from (cos 3).

O Another big problem that people have is thinking that Scheme cares about the
spaces, tabs, line breaks, and other “white space” in their Scheme programs. We’ve been
indenting our expressions to illustrate the way that subexpressions line up underneath
each other. But to Scheme,

(+ (x 2 (/14 7) 3) (/ (* (- (*35)3) (+1
1)) (= (x4 3) (* 3 2))) (- 15 18))

means the same thing as

(+ (* 2 (/ 14 7) 3)
(/ (* (- (x 35)3) (+11))
(= (x 4 3) (x 3 2)))
(- 15 18))

So in this expression:

(+ (* 3 (sqrt 49) ;; weirdly formatted
(/ 12 4)))

there aren’t two arguments to +, even though it looks that way if you think about the
indenting. What Scheme does is look at the parentheses, and if you examine these
carefully, you’ll see that there are three arguments to *: the atom 3, the compound
expression (sqrt 49), and the compound expression (/ 12 4). (And there’s only one
argument to +.)

O A consequence of Scheme’s not caring about white space is that when you hit the
return key, Scheme might not do anything. If you’re in the middle of an expression,
Scheme waits until you’re done typing the entire thing before it evaluates what you’ve
typed. This is fine if your program is correct, but if you type this in:

Chapter 3 Expressions 35

(+ (* 3 4)
(/ 8 2) ; note missing right paren

then nothing will happen. Even if you type forever, until you close the open parenthesis
next to the + sign, Scheme will still be reading an expression. So if Scheme seems to be
ignoring you, try typing a zillion close parentheses. (You’ll probably get an error message
about too many parentheses, but after that, Scheme should start paying attention again.)

O You might get into the same sort of trouble if you have a double-quote mark (") in
your program. Everything inside a pair of quotation marks is treated as one single string.
We’ll explain more about strings later. For now, if your program has a stray quotation
mark, like this:

(+ (+ 3 " 4) ; note extra quote mark
(/ 8 2))

then you can get into the same predicament of typing and having Scheme ignore you.
(Once you type the second quotation mark, you may still need some close parentheses,
since the ones you type inside a string don’t count.)

O One other way that Scheme might seem to be ignoring you comes from the fact that
you don’t get a new Scheme prompt until you type in an expression and it’s evaluated.
So if you just hit the return or enter key without typing anything, most versions of
Scheme won’t print a new prompt.

Boring Exercises

3.1 Translate the arithmetic expressions (3+4) X5 and 3+ (4%5) into Scheme expressions,
and into plumbing diagrams.

3.2 How many little people does Alonzo hire in evaluating each of the following
expressions:

(+ 3 (* 4 5) (- 10 4))

(+ (x (- (/ 82) 1) 5) 2)

36 Part Il Composition of Functions

(* (+ (-3 (/ 42))
(sin (* 3 2))
(- 8 (sqgrt 5)))
(- (/ 2 3)
4))

3.3 Each of the expressions in the previous exercise is compound. How many subex-
pressions (not including subexpressions of subexpressions) does each one have?

For example,
(*» (=1 (+34)) 8)
has three subexpressions; you wouldn’t count (+ 3 4).

3.4 Five little people are hired in evaluating the following expression:

(+ (x 3 (-47))
(-8 (-3 5)))

Give each little person a name and list her specialty, the argument values she receives,
her return value, and the name of the little person to whom she tells her result.

3.5 Evaluate each of the following expressions using the result replacement technique:
(sgrt (+ 6 (* 5 2)))

(+ (+ (+ 1 2) 3) 4)

3.6 Draw a plumbing diagram for each of the following expressions:

(+ 3456 7)

(+ (+ 3 4) (+ 56 7))

(+ (+ 3 (+45)6)7)

3.7 What value is returned by (/ 1 3) in your version of Scheme? (Some Schemes

return a decimal fraction like 0.33333, while others have exact fractional values like
1/3 built in.)

Chapter 3 Expressions 37

3.8 Which of the functions that you explored in Chapter 2 will accept variable numbers
of arguments?

Real Exercises

3.9 The expression (+ 8 2) has the value 10. Itis a compound expression made up of
three atoms. For this problem, write five other Scheme expressions whose values are also
the number ten:

* An atom

* Another compound expression made up of three atoms

* A compound expression made up of four atoms

* A compound expression made up of an atom and two compound subexpressions

* Any other kind of expression

38 Part Il Composition of Functions

In the old days, they “defined procedures” like this.

4 Defining Your Own Procedures

Until now we’ve been using procedures that Scheme already knows when you begin
working with it. In this chapter you’ll find out how to create new procedures.

How to Define a Procedure

A Scheme program consists of one or more procedures. A procedure is a description of
the process by which a computer can work out some result that we want. Here’s how to
define a procedure that returns the square of its argument:

(define (square x)
(» x x))

(The value returned by define may differ depending on the version of Scheme you’re
using. Many versions return the name of the procedure you're defining, but others
return something else. It doesn’t matter, because when you use define you aren’t
interested in the returned value, but rather in the fact that Scheme remembers the new
definition for later use.)

This is the definition of a procedure called square. Square takes one argument, a
number, and it returns the square of that number. Once you have defined square, you
can use it just the same way as you use primitive procedures:

> (square 7)
49

> (+ 10 (square 2))
14

41

> (square (square 3))
81

This procedure definition has four parts. The first is the word define, which
indicates that you are defining something. The second and third come together inside
parentheses: the name that you want to give the procedure and the name(s) you want to
use for its argument(s). This arrangement was chosen by the designers of Scheme because
it looks like the form in which the procedure will be invoked. Thatis, (square x) looks
like (square 7). The fourth part of the definition is the body: an expression whose
value provides the function’s return value.

procedure
name

argument
name

(define (square Xx)
(* X X))

Special Forms

Defineis a special form, an exception to the evaluation rule we’ve been going on about.*
Usually, an expression represents a procedure invocation, so the general rule is that
Scheme first evaluates all the subexpressions, and then applies the resulting procedure
to the resulting argument values. The specialness of special forms is that Scheme
doesn’t evaluate all the subexpressions. Instead, each special form has its own particular
evaluation rule. For example, when we defined square, no part of the definition was
evaluated: not square, not x, and not (* x x). It wouldn’t make sense to evaluate
(square x) because you can’t invoke the square procedure before you define it!

* Technically, the entire expression (define (square x) ...) is the special form; the word
define itself is called a keyword. But in fact Lispians are almost always loose about this distinction
and say “defineis aspecial form,” just as we’ve done here. The word “form” is an archaic synonym
for “expression,” so “special form” just means “special expression.”

42 Part Il Composition of Functions

It would be possible to describe special forms using the following model: “Certain
procedures want their arguments unevaluated, and Scheme recognizes them. After
refraining from evaluating define’s arguments, for example, Scheme invokes the
define procedure with those unevaluated arguments.” But in fact the designers of
Scheme chose to think about it differently. The entire special form that starts with
define is just a completely different kind of thing from a procedure call. In Scheme

there is no procedure named define. In fact, define is not the name of anything at
all:

> +
#<PRIMITIVE PROCEDURE +>

> define
ERROR —-- INVALID CONTEXT FOR KEYWORD DEFINE

Nevertheless, in this book, unless it’s really important to make the distinction, we’ll talk
as if there were a procedure called define. For example, we’ll talk about “define’s
arguments” and “the value returned by define” and “invoking define.”

Functions and Procedures

Throughout most of this book, our procedures will describe processes that compute
Junctions. A function is a connection between some values you already know and a new
value you want to find out. For example, the square function takes a number, such as 8,
as its input value and returns another number, 64 in this case, as its output value. The
plural function takes a noun, such as “computer,” and returns another word, “computers”
in this example. The technical term for the function’s input value is its argument. A
function may take more than one argument; for example, the remainder function takes
two arguments, such as 12 and 5. It returns one value, the remainder on dividing the
first argument by the second (in this case, 2).

We said earlier that a procedure is “a description of the process by which a computer
can work out some result that we want.” What do we mean by process? Consider these two
definitions:

f(x) =3x+12
g(x) =3(x+4)

The two definitions call for different arithmetic operations. For example, to compute
f(8) we’d multiply 8 by 3, then add 12 to the result. To compute g(8), we’d add 4 to

Chapter 4 Defining Your Own Procedures 43

8, then multiply the result by 3. But we get the same answer, 36, either way. These two
equations describe different processes, but they compute the same function. The function
is just the association between the starting value(s) and the resulting value, no matter
how that result is computed. In Scheme we could say

(define (f x)
(+ (* 3 x) 12))

(define (g x)
(* 3 (+ x 4)))
and we’d say that £ and g are two procedures that represent the same function.

In real life, functions are not always represented by procedures. We could represent
a function by a table showing all its possible values, like this:

Alabama Montgomery
Alaska Juneau
Arizona Phoenix
Arkansas Little Rock
California Sacramento

This table represents the State Capital function; we haven’t shown all the lines of the
complete table, but we could. There are only a finite number of U.S. states. Numeric
functions can also be represented by graphs, as you probably learned in high school
algebra. In this book our focus is on the representation of functions by procedures. The
only reason for showing you this table example is to clarify what we mean when we say
that a function is represented by a procedure, rather than that a function s the procedure.

We’ll say “the procedure £” when we want to discuss the operations we’re telling
Scheme to carry out. We’ll say “the function represented by £” when our attention
is focused on the value returned, rather than on the mechanism. (But we’ll often
abbreviate that lengthy second phrase with “the function £” unless the context is
especially confusing.) *

* Also, we’ll sometimes use the terms “domain” and “range” when we’re talking about procedures,
although technically, only functions have domains and ranges.

44 Part Il Composition of Functions

Argument Names versus Argument Values

“It’s long,” said the Knight, “but it’s very, very beautiful. Everybody that
hears me sing it—either it brings the tears into their eyes, or else—”"

“Or else what?” said Alice, for the Knight had made a sudden pause.

“Or else it doesn’t, you know. The name of the song is called ‘Haddock’s
Eyes.””

“Oh, that’s the name of the song, is it?” Alice said, trying to feel interested.

“No, you don’t understand,” the Knight said, looking a little vexed. “That’s
what the name is called. The name really is ‘ The Aged Aged Man.’”

“Then I ought to have said “That’s what the song is called’?” Alice corrected
herself.

“No, you oughtn’t; that’s quite another thing! The song is called ‘Ways And
Means’: but that’s only what it’s called, you know!”

“Well, what is the song, then?” said Alice, who was by this time completely
bewildered.

“I was coming to that,” the Knight said. “The song really is ‘A-sitting On A
Gate’: and the tune’s my own invention.”

—Lewis Carroll, Through the Looking-Glass, and What Alice Found There

Notice that when we defined the square procedure we gave a name, X, for its argument.
By contrast, when we invoked square we provided a value for the argument (e.g., 7).
The word x is a “place holder” in the definition that stands for whatever value you use
when you call the procedure. So you can read the definition of square as saying, “In
order to square a number, multiply that number by that number” The name x holds the
place of the particular number that you mean.

Be sure you understand this distinction between defining a procedure and calling it.
A procedure represents a general technique that can be applied to many specific cases.
We don’t want to build any particular case into the procedure definition; we want the
definition to express the general nature of the technique. You wouldn’t want a procedure
that only knew how to take the square of 7. But when you actually get around to using
square, you have to be specific about which number you’re squaring.

The name for the name of an argument (whew!) is formal parameter. In our square
example, x is the formal parameter. (You may hear people say either “formal” alone or
“parameter” alone when they’re feeling lazy.) The technical term for the actual value of
the argument is the actual argument. In a case like

(square (+ 5 9))

you may want to distinguish the actual argument expression (+ 5 9) from the actual
argument value 14. Most of the time it’s perfectly clear what you mean, and you just say

Chapter 4 Defining Your Own Procedures 45

“argument” for all of these things, but right now when you’re learning these ideas it’s
important to be able to talk more precisely.

The square procedure takes one argument. If a procedure requires more than
one argument, then the question arises, which actual argument goes with which formal
parameter? The answer is that they go in the order in which you write them, like this:

(define (f a b)
(+ (* 3 a) b))

> (£ 5 8)
23

> (f 8 5)
29

Procedure as Generalization

What's the average of 17 and 25? To answer this question you could add the two numbers,
getting 42, and divide that by two, getting 21. You could ask Scheme to do this for you:

> (/ (+ 17 25) 2)
21

What'’s the average of 14 and 68?

> (/ (+ 14 68) 2)
41

Once you understand the technique, you could answer any such question by typing
an expression of the form

(/ (+) 2)

to Scheme.

But if you’re going to be faced with more such problems, an obvious next step is to
generalize the technique by defining a procedure:

(define (average a b)
(/ (+ ab) 2))

46 Part II Composition of Functions

With this definition, you can think about the next problem that comes along in terms of
the problem itself, rather than in terms of the steps required for its solution:

> (average 27 4)
15.5

This is an example of what we meant when we defined “abstraction” as noticing a pattern
and giving it a name. It’s not so different from the naming of such patterns in English;
when someone invented the name “average” it was, probably, after noticing that it was
often useful to find the value halfway between two other values.

This naming process is more important than it sounds, because once we have a
name for some idea, we can use that idea without thinking about its pieces. For example,
suppose that you want to know not only the average of some numbers but also a measure
of whether the numbers are clumped together close to the average, or widely spread
out. Statisticians have developed the “standard deviation” as a measure of this second
property. You’d rather not have to think about this mysterious formula:

2
Zi:l X (Zi:l xl)
n

O, =

but you’d be happy to use a procedure standard-deviation that you found in a
collection of statistical programs.

After all, there’s no law of nature that says computers automatically know how to add
or subtract. You could imagine having to instruct Scheme to compute the sum of two
large numbers digit by digit, the way you did in elementary school. But instead someone
has “taught” your computer how to add before you get to it, giving this technique the
name + so that you can ask for the sum of two numbers without thinking about the
steps required. By inventing average or standard-deviation we are extending the
repertoire of computations that you can ask for without concerning yourself with the
details.

Composability

We’ve suggested that a procedure you define, such as average, is essentially similar to
one that’s built into Scheme, such as +. In particular, the rules for building expressions
are the same whether the building blocks are primitive procedures or defined procedures.

Chapter 4 Defining Your Own Procedures 47

> (average (+ 10 8) (* 3 5))
16.5

> (average (average 2 3) (average 4 5))
3.5

> (sqrt (average 143 145))
12

Any return value can be used as an end in itself, as the return value from sqrt was
used in the last of these examples, or it can provide an argument to another procedure,
as the return value from * was used in the first of these examples.

These small examples may seem arbitrary, but the same idea, composition of
functions, is the basis for all Scheme programming. For example, the complicated
formula we gave for standard deviation requires computing the squares of several
numbers. So if we were to write a standard-deviation procedure, it would invoke
square.

The Substitution Model

We’ve paid a lot of attention to the details of formal parameters and actual arguments,
but we’ve been a little handwavy* about how a procedure actually computes a value when
you invoke it.

We’re going to explain what happens when you invoke a user-defined procedure.
Every explanation is a story. No story tells the entire truth, because there are always some
details left out. A model is a story that has just enough detail to help you understand
whatever it’s trying to explain but not so much detail that you can’t see the forest for the
trees.

Today’s story is about the substitution model. When a procedure is invoked, the goal
is to carry out the computation described in its body. The problem is that the body is
written in terms of the formal parameters, while the computation has to use the actual
argument values. So what Scheme needs is a way to associate actual argument values with
formal parameters. It does this by making a new copy of the body of the procedure, in

* You know, that’s when you wave your hands around in the air instead of explaining what you
mean.

48 Part Il Composition of Functions

which it substitutes the argument values for every appearance of the formal parameters,
and then evaluating the resulting expression. So, if you’ve defined square with

(define (square x)
(» x x))

then the body of squareis (* x x). When you want to know the square of a particular
number, as in (square 5), Scheme substitutes the 5 for x everywhere in the body of
square and evaluates the expression. In other words, Scheme takes

(* x x)
then does the substitution, getting
(* 55)

and then evaluates that expression, getting 25.

If you just type (* x x) into Scheme, you will get an error message complaining
that x doesn’t mean anything. Only after the substitution does this become a meaningful
expression.

By the way, when we talk about “substituting into the body,” we don’t mean that the
procedure’s definition is changed in any permanent way. The body of the procedure
doesn’t change; what happens, as we said before, is that Scheme constructs a new
expression that looks like the body, except for the substitutions.*

There are little people who specialize in square, just as there are little people who
specialize in + and *. The difference is that the little people who do primitive procedures
can do the work “in their head,” all at once. The little people who carry out user-defined
procedures have to go through this substitution business we’re talking about here. Then
they hire other little people to help evaluate the resulting expression, just as Alonzo hires
people to help him evaluate the expressions you type directly to Scheme.

Let’s say Sam, a little person who specializes in square, has been asked to compute
(square 6). Sam carries out the substitution, and is left with the expression (* 6 6) to

* You may be thinking that this is rather an inefficient way to do things—all this copying and
replacement before you can actually compute anything. Perhaps you’re afraid that your Scheme
programs will run very slowly as a result. Don’t worry. It really happens in a different way, but the
effect is the same except for the speed.

Chapter 4 Defining Your Own Procedures 49

evaluate. Sam then hires Tessa, a multiplication specialist, to evaluate this new expression.
Tessa tells Sam that her answer is 36, and, because the multiplication is the entire problem
to be solved, this is Sam’s answer also.

Here’s another example:

(define (hypotenuse a b)
(sgrt (+ (square a) (square b))))

> (hypotenuse 5 12)

Suppose Alonzo hires Harry to compute this expression. Harry must first substitute the
actual argument values (5 and 12) into the body of hypotenuse:

(sgrt (+ (square 5) (square 12)))

Now he evaluates that expression, just as Alonzo would evaluate it if you typed it at a
Scheme prompt. That is, Harry hires four little people: one sgrt expert, one + expert,
and two square experts.* In particular, some little person has to evaluate (square 5),
by substituting 5 for x in the body of square, as in the earlier example. Similarly, we
substitute 12 for x in order to evaluate (square 12):

(hypotenuse 5 12) ; substitute into HYPOTENUSE body
(sgrt (+ (square 5) (square 12))) ; substitute for (SQUARE 5)
(* 55)
25
(sgrt (+ 25 (square 12))) ; substitute for (SQUARE 12)
(*» 12 12)
144
(sgrt (+ 25 144))
(+ 25 144) ; combine the results as before
169
(sgrt 169)
13

* Until we started defining our own proceduresin this chapter, all of the little people were hired
by Alonzo, because all expressions were typed directly to a Scheme prompt. Now expressions can
come from the bodies of procedures, and so the little people needed to compute those expressions
are hired by the little person who’s computing that procedure. Notice also that each little person
reports to another little person, not necessarily the one who hired her. In this case, if Harry hires
Shari for sqrt, Paul for +, and Slim and Sydney for the two squares, then Slim reports to Paul,
not to Harry. Only Shari reports directly to Harry.

50 Part Il Composition of Functions

Don’tforget, in the heady rush of learning about the substitution model, what you already
knew from before: Each piece of this computation is done by a little person, and some
other little person is waiting for the result. In other words, the substitution model tells us
how each compound procedure is carried out, but doesn’t change our picture of the way in
which procedure invocations are composed into larger expressions.

Pitfalls

O Don’t forget that a function can have only one return value. For example, here’s a
program that’s supposed to return the sum of the squares of its two arguments:

(define (sum-of-squares x y) ;7 wrong!
(square x)
(square y))

The problem is that the body of this procedure has two expressions, instead of just one.
As it turns out, Scheme just ignores the value of the first expression in cases like this, and
returns the value of the last one. What the programmer wants is the sum of these two
values, so the procedure should say

(define (sum-of-squares x y)
(+ (square Xx)
(square y)))

O Another pitfall comes from thinking that a procedure call changes the value of a
parameter. Here’s a faulty program that’s supposed to compute the function described
by f(x) = 3x+10:

(define (f x) ;7 wrong!

(*» x 3)
(+ x 10))

Again, the first expression has no effect and Scheme will just return the value x + 10.*

O Avery common pitfall in Scheme comes from choosing the name of a procedure as
a parameter. It doesn’t come up very often with procedures like the ones in this chapter

* This is especially problematic for people who used to program in a language like Pascal or
BASIC, where you say things like “X = X * 3”all the time.

Chapter 4 Defining Your Own Procedures 51

whose domains and ranges are both numbers, but it will be more likely later. If you have
a program like this:

(define (square x)
(» x x))

(define (area square) ;7 wrong!
(square square))

then you’ll get in trouble when you invoke the procedure, for example, by saying
(area 8). The area little person will substitute 8 for square everywhere in the
procedure definition, leaving you with the expression (8 8) to evaluate. That expression
would mean to apply the procedure 8 to the argument 8, but 8 isn’t a procedure, so an
error message results.

Itisn’t a problem if the formal parameter is the name of a procedure that you don’t
use inside the body. The problem arises when you try to use the same name, e.g., square,
with two meanings within a single procedure. But special forms are an exception; you
can never use the name of a special form as a parameter.

O A similar problem about name conflicts comes up if you try to use a keyword (the
name of a special form, such as define) as some other kind of name—either a formal
parameter or the name of a procedure you're defining. We’re listing this separately
because the result is likely to be different. Instead of getting the wrong value substituted,
as above, you’ll probably see a special error message along the lines of “improper use of
keyword.”

U Formal parameters must be words. Some people try to write procedures that have
compound expressions as the formal parameters, like this:

(define (f (+ 3 x) y) ;7 wrong!
(» xy))

Remember that the job of the procedure definition is only to provide a name for
the argument. The actual argument isn’t pinned down until you invoke the procedure.
People who write programs like the one above are trying to make the procedure definition
do some of the job of the procedure invocation.

52 Part Il Composition of Functions

Boring Exercises

4.1 Consider this procedure:

(define (ho-hum x y)
(+x (* 2y)))

Show the substitution that occurs when you evaluate

(ho-hum 8 12)

4.2 Given the following procedure:

(define (yawn x)
(+ 3 (*x x 2)))

list all the little people that are involved in evaluating

(yawn (/ 8 2))

(Give their names, their specialties, their arguments, who hires them, and what they do
with their answers.)

4.3 Here are some procedure definitions. For each one, describe the function in
English, show a sample invocation, and show the result of that invocation.

(define (f x y) (- y x))
(define (identity x) x)
(define (three x) 3)
(define (seven) 7)
(define (magic n)
(= (/ (+ (+ (* 3 n)
13)
(- n 1))

4)
3))

Chapter 4 Defining Your Own Procedures 53

Real Exercises

4.4 Each of the following procedure definitions has an error of some kind. Say what’s
wrong and why, and fix it:

(define (sphere-volume r)
(* (/ 4 3) 3.141592654)
(» r rr))

(define (next x)
(x + 1))

(define (square)
(» x x))

(define (triangle-area triangle)
(* 0.5 base height))

(define (sum-of-squares (square x) (square y))
(+ (square xX) (square y)))

4.5 Write a procedure to convert a temperature from Fahrenheit to Celsius, and another
to convert in the other direction. The two formulas are F = %C +32and C = g(F -32).

4.6 Define a procedure fourth that computes the fourth power of its argument. Do
this two ways, first using the multiplication function, and then using square and not
(directly) using multiplication.

4.7 Write a procedure that computes the absolute value of its argument by finding the
square root of the square of the argument.

4.8 “Scientific notation” is a way to represent very small or very large numbers by
combining a medium-sized number with a power of 10. For example, 5 x 107 represents
the number 50000000, while 3.26 x 1077 represents 0.00000000326 in scientific notation.
Write a procedure scientific that takes two arguments, a number and an exponent
of 10, and returns the corresponding value:

> (scientific 7 3)
7000

54 Part Il ~ Composition of Functions

> (scientific 42 -5)
0.00042

Some versions of Scheme represent fractions in a/b form, and some use scientific
notation, so you might see 21/50000 or 4 . 2E-4 as the result of the last example instead
of 0.00042, but these are the same value.

(A harder problem for hotshots: Can you write procedures that go in the other direction?
So you’d have

> (sci-coefficient 7000)
7

> (sci-exponent 7000)
3

You might find the primitive procedures 1log and floor helpful.)

4.9 Define a procedure discount that takes two arguments: an item’s initial price and
a percentage discount. It should return the new price:

> (discount 10 5)
9.50

> (discount 29.90 50)
14.95

4.10 Write a procedure to compute the tip you should leave at a restaurant. It should
take the total bill as its argument and return the amount of the tip. It should tip by 15%,
but it should know to round up so that the total amount of money you leave (tip plus
original bill) is a whole number of dollars. (Use the ceiling procedure to round up.)

> (tip 19.98)
3.02

> (tip 29.23)
4.77

> (tip 7.54)
1.46

Chapter 4 Defining Your Own Procedures 55

THE FAR SIDE By GARY LARSON

THE FAR SIDE By GARY LARSON

What we Sa¥ to dogs

inger! Tive had it!

}, nqer, M €_/
out of The garsdz

G B T

of the qarbae <2

10-25 ©Chronicle Features, 1983

What we sayTe cats... A%
fHy, youve Clowed
WCH/FM] the |ast
Jove for as
e

"] not foleate |
. (£
;l:af L ehovior any 10042

nicle Features, 1983

© Chro

5 Words and Sentences

We started out, in Part I, with examples about acronyms and so on, but since then
we’ve been working with numbery old numbers. That’s because the discussions about
evaluation and procedure definition were complicated enough without introducing extra
ideas at the same time. But now we’re ready to get back to symbolic programming.

As we mentioned in Chapter 3, everything that you type into Scheme is evaluated
and the resulting value is printed out. Let’s say you want to use “square” as a word in
your program. For example, you want your program to solve the problem, “Give me an
adjective that describes Barry Manilow.” If you just type square into Scheme, you will
find out that square is a procedure:

> square
#<PROCEDURE>

(Different versions of Scheme will have different ways of printing out procedures.)

What you need is a way to say that you want to use the word “square” itself, rather
than the value of that word, as an expression. The way to do this is to use quote:

> (quote square)
SQUARE

> (quote (tomorrow never knows))
(TOMORROW NEVER KNOWS)

> (quote (things we said today))
(THINGS WE SAID TODAY)

57

Quote is a special form, since its argument isn’t evaluated. Instead, it just returns
the argument as is.

Scheme programmers use quote a lot, so there is an abbreviation for it:

> ’square
SQUARE

> ' (old brown shoe)
(old brown shoe)

(Since Scheme uses the apostrophe as an abbreviation for quote, you can’t use one
as an ordinary punctuation mark in a sentence. That’s why we’ve been avoiding titles
like (can’t buy me love). To Scheme this would mean (can (quote t) buy me
love)!)*

This idea of quoting, although it may seem arbitrary in the context of computer
programming, is actually quite familiar from ordinary English. What is a book? It’s a
bunch of pieces of paper, with printing on them, bound together. What is “a book™ It’s
a noun phrase, made up of an article and a noun. See? Similarly, what’s 2 + 32 It’s five.
What’s “2 + 3”2 It’s an arithmetic formula. When you see words inside quotation marks,
you understand that you're supposed to think about the words themselves; you don’t
evaluate what they mean. Scheme is the same way.

(I’s no accident that kids who make jokes like

Matt: “Say your name.”

Brian: “Your name.”

grow up to be computer programmers. The difference between a thing and its name is
one of the important ideas that programmers need to understand.)

* Actually, it is possible to put punctuation inside words as long as the entire word is enclosed in
double-quote marks, like this:

> ’("can’'t" buy me love)
("can’t" BUY ME LOVE)

Words like that are called strings. We’re not going to use them in any examples until almost the end
of the book. Stay away from punctuation and you won’t get in trouble. However, question marks
and exclamation points are okay. (Ordinary words, the ones that are neither strings nor numbers,
are officially called symbols.)

58 Part Il Composition of Functions

Selectors

So far all we’ve done with words and sentences is quote them. To do more interesting
work, we need tools for two kinds of operations: We have to be able to take them apart,
and we have to be able to put them together.* We’ll start with the take-apart tools; the
technical term for them is selectors.

> (first ’something)
S

> (first ' (eight days a week))

EIGHT

> (first 910)

9

> (last ’'something)
G

> (last ' (eight days a week))
WEEK

> (last 910)
0

> (butfirst ’'something)
OMETHING

> (butfirst ’(eight days a week))
(DAYS A WEEK)

> (butfirst 910)
10

> (butlast ’'something)
SOMETHIN

* The procedures we’re about to show you are not part of standard, official Scheme. Scheme
does provide ways to do these things, but the regular ways are somewhat more complicated and
error-prone for beginners. We’ve provided a simpler way to do symbolic computing, using ideas
developed as part of the Logo programming language.

Chapter 5 Words and Sentences 59

> (butlast ’'(eight days a week))
(EIGHT DAYS A)

> (butlast 910)
91

Notice that the £irst of a sentence is a word, while the £irst of a word is a letter. (But
there’s no separate data type called “letter”; a letter is the same as a one-letter word.)
The butfirst of a sentence is a sentence, and the butfirst of a word is a word. The
corresponding rules hold for 1last and butlast.

The names butfirst and butlast aren’t meant to describe ways to sled; they
abbreviate “all but the first” and “all but the last.”

You may be wondering why we’re given ways to find the first and last elements but
not the 42nd element. It turns out that the ones we have are enough, since we can use
these primitive selectors to define others:

(define (second thing)
(first (butfirst thing)))

> (second ' (like dreamers do))
DREAMERS

> (second ’‘michelle)
I

There is, however, a primitive selector item that takes two arguments, a number n and a
word or sentence, and returns the nth element of the second argument.

> (item 4 ’(being for the benefit of mister kite!))
BENEFIT

> (item 4 ’'benefit)
E

Don’t forget that a sentence containing exactly one word is different from the word
itself, and selectors operate on the two differently:

> (first ’'because)
B

> (first '’ (because))
BECAUSE

60 Part Il Composition of Functions

> (butfirst ’because)
ECAUSE

> (butfirst ’ (because))

@)

The value of that last expression is the empty sentence. You can tell it’s a sentence because
of the parentheses, and you can tell it’s empty because there’s nothing between them.

> (butfirst ’a)

> (butfirst 1024)
|l024ll

As these examples show, sometimes butfirst returns a word that has to have double-
quote marks around it. The first example shows the empty word, while the second shows
a number that’s not in its ordinary form. (Its numeric value is 24, but you don’t usually
see a zero in front.)

> 024
24

> ll024ll
ll024ll

We’re going to try to avoid printing these funny words. But don’t be surprised if you see
one as the return value from one of the selectors for words. (Notice that you don’t have
to put a single quote in front of the double quotes. Strings are self-evaluating, just as
numbers are.)

Since butfirst and butlast are so hard to type, there are abbreviations bf and
bl. You can figure out which is which.

Constructors

Functions for putting things together are called constructors. For now, we just have two of
them: word and sentence. Word takes any number of words as arguments and joins
them all together into one humongous word:

> (word ’'ses ‘qui 'pe ’‘da ’lian ’ism)
SESQUIPEDALIANISM

Chapter 5 Words and Sentences 61

> (word ’'now ’here)
NOWHERE

> (word 35 893)
35893

Sentence issimilar, but slightly different, since it can take both words and sentences
as arguments:

> (sentence ’‘carry ’‘that ’‘weight)
(CARRY THAT WEIGHT)

> (sentence ’(john paul) ' (george ringo))
(JOHN PAUL GEORGE RINGO)

Sentence is also too hard to type, so there’s the abbreviation se.

> (se ’'(one plus one) ’'makes 2)
(ONE PLUS ONE MAKES 2)

By the way, why did we have to quote makes in the last example, but not 27 It’s
because numbers are self-evaluating, as we said in Chapter 3. We have to quote makes
because otherwise Scheme would look for something named makes instead of using the
word itself. But numbers can’t be the names of things; they represent themselves. (In
fact, you could quote the 2 and it wouldn’t make any difference—do you see why?)

First-Class Words and Sentences

If Scheme isn’t your first programming language, you’re probably accustomed to dealing
with English text on a computer quite differently. Many other languages treat a sentence,
for example, as simply a collection (a “string”) of characters such as letters, spaces, and
punctuation. Those languages don’t help you maintain the two-level nature of English
text, in which a sentence is composed of words, and a word is composed of letters.

Historically, computers just dealt with numbers. You could add two numbers, move
a number from one place in the computer’s memory to another place, and so on. Since
each instruction in the computer’s native machine language couldn’t process anything
larger than a number, programmers developed the attitude that a single number is a “real
thing” while anything more complicated has to be considered as a collection of things,
rather than as a single thing in itself.

62 Part Il Composition of Functions

The computer represents a text character as a single number. In many programming
languages, therefore, a character is a “real thing,” but a word or sentence is understood
only as a collection of these character-code numbers.

But thisisn’t the way in which human beings normally think about their own language.
To you, a word isn’t primarily a string of characters (although it may temporarily seem
like one if you're competing in a spelling bee). It’s more like a single unit of meaning.
Similarly, a sentence is a linguistic structure whose parts are words, not letters and spaces.

A programming language should let you express your ideas in terms that match your
way of thinking, not the computer’s way. Technically, we say that words and sentences
should be first-class data in our language. This means that a sentence, for example, can
be an argument to a procedure; it can be the value returned by a procedure; we can
give it a name; and we can build aggregates whose elements are sentences. So far we’ve
seen how to do the first two of these. We’ll finish the job in Chapter 7 (on variables) and
Chapter 17 (on Usts).

Pitfalls

O We’ve been avoiding apostrophes in our words and sentences because they're
abbreviations for the quote special form. You must also avoid periods, commas,
semicolons, quotation marks, vertical bars, and, of course, parentheses, since all of these
have special meanings in Scheme. You may, however, use question marks and exclamation
points.

O Although we’ve already mentioned the need to avoid names of primitives when
choosing formal parameters, we want to remind you specifically about the names word
and sentence. These are often very tempting formal parameters, because many
procedures have words or sentences as their domains. Unfortunately, if you choose these
names for parameters, you won’t be able to use the corresponding procedures within
your definition.

(define (plural word) ;7 wrong!
(word word ’s))

> (plural ’‘george)
ERROR: GEORGE isn’t a procedure

The result of substitution was not, as you might think,

(word ’george 's)

Chapter 5 Words and Sentences 63

but rather
('george ’'george ’'s)

We’ve been using wd and sent as formal parameters instead of word and sentence,
and we recommend that practice.

U There’s a difference between a word and a single-word sentence. For example,
people often fall into the trap of thinking that the butfirst of a two-word sentence
such as (sexy sadie) is the second word, but it’s not. It’s a one-word-long sentence.
For example, its count is one, not five.*

> (bf ’(sexy sadie))
(SADIE)

> (first (bf ’(sexy sadie)))
SADIE

O We mentioned earlier that sometimes Scheme has to put double-quote marks around
words. Just ignore them; don’t get upset if your procedure returns "6-of-hearts"
instead of just 6—-of-hearts.

O Quote doesn’t mean “print.” Some people look at interactions like this:

> ’(good night)
(GOOD NIGHT)

and think that the quotation mark was an instruction telling Scheme to print what
comes after it. Actually, Scheme always prints the value of each expression you type, as
part of the read-eval-print loop. In this case, the value of the entire expression is the
subexpression that’s being quoted, namely, the sentence (good night). That value
wouldn’t be printed if the quotation were part of some larger expression:

> (bf ’(good night))
(NIGHT)

* You met count in Chapter 2. It takes a word or sentence as its argument, returning either the
number of letters in the word or the number of words in the sentence.

64 Part Il Composition of Functions

O Ifyou see an error message like

> (+ 3 (bf 1075))
ERROR: INVALID ARGUMENT TO +: "075"

try entering the expression

> (strings-are-numbers #t)
OKAY

and try again. (The extension to Scheme that allows arithmetic operations to work on
nonstandard numbers like " 075" makes ordinary arithmetic slower than usual. So we’ve
provided a way to turn the extension on and off. Invoking strings-are-numbers
with the argument #£ turns off the extension.)*

Boring Exercises

5.1 Whatvalues are printed when you type these expressions to Scheme? (Figure it out
in your head before you try it on the computer.)

(sentence ‘I ' (me mine))
(sentence ' () ’'(is empty))
(word ’23 ’'45)

(se 23 '45)

(bf ra)

(bf ' (aye))

(count (first ’(maggie mae)))

(Se nn l() nn I())

(Count (Se nn l() nn I()))

* See Appendix A for a fuller explanation.

Chapter 5 Words and Sentences 65

5.2 For each of the following examples, write a procedure of two arguments that, when
applied to the sample arguments, returns the sample result. Your procedures may not

include any quoted data.

> (fl "(abc) "(de £f))
(B CDE)

> (f2 "(abc) "(de £f))
(B C D E AF)

> (f3 "(abc) "(de £f))
(A BCABZC)

> (f4 "(abc) "(de £f))
BE

5.3 Explain the difference in meaning between (first 'mezzanine) and (first

' (mezzanine)).

5.4 Explain the difference between the two expressions (first (square 7)) and

(first ’ (square 7)).

5.5 Explain the difference between (word 'a ‘b 'c) and (se 'a 'b ’'c).

5.6 Explain the difference between (bf ’zabadak) and (butfirst ’zabadak).

5.7 Explain the difference between (bf ‘x) and (butfirst ’(x)).

5.8 Which of the following are legal Scheme sentences?

(here, there and everywhere)

(help!)

(all i’ve got to do)

(you know my name (look up the number))

66 Part 1T

Composition of Functions

5.9 Figure out what values each of the following will return before you try them on the
computer:

(se (word (bl (bl (first ’(make a))))
(bf (bf (last ’(baseball mitt)))))
(word (first ’'with) (bl (bl (bl (bl ’'rigidly))))
(first 'held) (first (bf ’stitches))))

(se (word (bl (bl ’'bring)) ’'a (last ’‘clean))

(word (bl (last ’(baseball hat))) (last ’'for) (bl (bl ’'very))
(last (first ’(sunny days)))))

5.10 What kinds of argument can you give butfirst so that it returns a word? A
sentence?

5.11 What kinds of argument can you give last so that it returns a word? A sentence?

5.12 Which of the functions first, last, butfirst, and butlast can return an
empty word? For what arguments? What about returning an empty sentence?

Real Exercises

5.13 What does ' ' banana stand for?

Whatis (first ’’banana) and why?

5.14 Write a procedure third that selects the third letter of a word (or the third word
of a sentence).

5.15 Write a procedure first-two that takes a word as its argument, returning a
two-letter word containing the first two letters of the argument.

> (first-two ’ambulatory)
AM

Chapter 5 Words and Sentences 67

5.16 Write a procedure two-first that takes two words as arguments, returning a
two-letter word containing the first letters of the two arguments.

> (two-first ’brian ’‘epstein)
BE

Now write a procedure two-first-sent that takes a two-word sentence as argument,
returning a two-letter word containing the first letters of the two words.

> (two-first-sent ' (brian epstein))
BE

5.17 Write a procedure knight that takes a person’s name as its argument and returns
the name with “Sir” in front of it.

> (knight ' (david wessel))
(SIR DAVID WESSEL)

5.18 Try the following and explain the result:

(define (ends word)
(word (first word) (last word)))

> (ends ’john)

5.19 Write a procedure insert-and that takes a sentence of items and returns a new
sentence with an “and” in the right place:

> (insert-and ' (john bill wayne fred joey))
(JOHN BILL WAYNE FRED AND JOEY)

68 Part Il Composition of Functions

5.20 Define a procedure to find somebody’s middle names:

> (middle-names ’ (james paul mccartney))
(PAUL)
> (middle-names ’(john ronald raoul tolkien))

(RONALD RAOUL)

> (middle-names ’ (bugs bunny))

@)

> (middle-names ’ (peter blair denis bernard noone))
(BLAIR DENIS BERNARD)

5.21 Write a procedure query that turns a statement into a question by swapping the
first two words and adding a question mark to the last word:

> (query '(you are experienced))
(ARE YOU EXPERIENCED?)

> (query ' (i should have known better))
(SHOULD I HAVE KNOWN BETTER?)

Chapter 5 Words and Sentences 69

i S
1 "\\\-.
il]‘ R

e

" : F\"’
g ‘*f-‘{'e‘\‘ !a'!’"‘-"’.’” /:_;};\. =y
- S e o = % ' L]
TS A AT,

Pt i

“Contrariwise,” continued Tweedledee, “if it was so, it might be; and if it were so, it
would be; but as itisn’t, it ain’t. That’s logic.”

6 True and False

We still need one more thing before we can write more interesting programs: the ability
to make decisions. Scheme has a way to say “if this is true, then do this thing, otherwise
do something else.”

Here’s a procedure that greets a person:

(define (greet name)
(if (equal? (first name) ’'professor)
(se (i hope i am not bothering you) ’'professor (last name))
(se '(good to see you) (first name))))

> (greet ’(matt wright))
(GOOD TO SEE YOU MATT)

> (greet ' (professor harold abelson))
(I HOPE I AM NOT BOTHERING YOU PROFESSOR ABELSON)

The program greets a person by checking to see if that person is a professor. If so, it
says, “I hope I am not bothering you” and then the professor’s name. But if it’s a regular
person, the program just says, “Good to see you,” and then the person’s first name.

If takes three arguments. The first has to be either true or false. (We’ll talk in a
moment about exactly what true and false look like to Scheme.) In the above example,
the first word of the person’s name might or might not be equal to the word “Professor.”
The second and third arguments are expressions; one or the other of them is evaluated
depending on the first argument. The value of the entire if expression is the value of
either the second or the third argument.

You learned in Chapter 2 that Scheme includes a special data type called Booleans
to represent true or false values. There are just two of them: #t for “true” and #f for

71

“false.”™

We said that the first argument to if has to be true or false. Of course, it would be
silly to say

> (if #t (+ 4 5) (» 2 7))
9

because what’s the point of using if if we already know which branch will be followed?
Instead, as in the greet example, we call some procedure whose return value will be
either true or false, depending on the particular arguments we give it.

Predicates

A function that returns either #t or #£ is called a predicate.** You’ve already seen the
equal? predicate. It takes two arguments, which can be of any type, and returns #t if the
two arguments are the same value, or #£ if they’re different. It’s a convention in Scheme
that the names of predicates end with a question mark, but that’s just a convention. Here
are some other useful predicates:

> (member? ’'mick ’(dave dee dozy beaky mick and tich))
#T

> (member? ’'mick ’(john paul george ringo))

#F

> (member? ‘e ’'truly)

#F

* In some versions of Scheme, the empty sentence is considered false. Thatis, () and #£f may
be the same thing. The reason that we can’t be definite about this point is that older versions of
Scheme follow the traditional Lisp usage, in which the empty sentence is false, but since then a
standardization committee has come along and insisted that the two values should be different. In
this book we’ll consider them as different, but we’ll try to avoid examples in which it matters. The
main point is that you shouldn’t be surprised if you see something like this:

> (= 3 4)
()

in the particular implementation of Scheme that you’re using.

** Why is it called that? Think about an English sentence, such as “Ringo is a drummer.” As you
may remember from elementary school, “Ringo” is the subject of that sentence, and “is a drummer”
is the predicate. That predicate could be truthfully attached to some subjects but not others. For
example, it’s true of “Neil Peart” but not of “George Harrison.” So the predicate “is a drummer”
can be thought of as a function whose value is true or false.

72 Part Il Composition of Functions

> (member? 'y ‘truly)

#T

> (=34)

#F

> (= 67 67)

#T

> (> 98 97)

#T

> (before? ’zorn ’‘coleman)
#F

> (before? ’'pete ’'ringo)
#T

> (empty? ' (abbey road))
#F

> (empty? ‘())

#T

> (empty? ’hi)

#F

> (empty? (bf (bf 'hi)))
#T

> (empty? "")

#T

Member? takes two arguments; it checks to see if the first one is a member of the second.
The =, >, <, >=, and <= functions take two numbers as arguments and do the obvious
comparisons. (By the way, these are exceptions to the convention about question marks.)
Before? is like <, but it compares two words alphabetically. Empty? checks to see if its
argument is either the empty word or the empty sentence.

Why do we have both equal? and = in Scheme? The first of these works on any
kind of Scheme data, while the second is defined only for numbers. You could get
away with always using equal?, but the more specific form makes your program more
self-explanatory; people reading the program know right away that you’re comparing
numbers.

There are also several predicates that can be used to test the type of their argument:

> (number? ’three)

#F

> (number? 74)

#T

> (boolean? #f)

#T

> (boolean? ’(the beatles))
#F

Chapter 6 True and False 73

> (boolean? 234)

#F

> (boolean? #t)

#T

> (word? 'flying)
#T

> (word? ' (dig it))
#F

> (word? 87)

#T

> (sentence? ’‘wait)
#F

> (sentence? ’(what goes on))
#T

Of course, we can also define new predicates:

(define (vowel? letter)
(member? letter ’aeiou))

(define (positive? number)
(> number 0))

Using Predicates
Here’s a procedure that returns the absolute value of a number:

(define (abs num)
(if (< num 0)
(- num)
num))

(If you call - with just one argument, it returns the negative of that argument.) Scheme
actually provides abs as a primitive procedure, but we can redefine it.

Do you remember how to play buzz? You're all sitting around the campfire and
you go around the circle counting up from one. Each person says a number. If your
number is divisible by seven or if one of its digits is a seven, then instead of calling out
your number, you say “buzz.”

(define (buzz num)
(if (or (divisible? num 7) (member? 7 num))
'buzz
num))

74 Part Il ~ Composition of Functions

(define (divisible? big little)
(= (remainder big little) 0))

Or can take any number of arguments, each of which must be true or false. It returns
true if any of its arguments are true, that is, if the first argument is true or the second
argument is true or... (Remainder, as you know, takes two integers and tells you what
the remainder is when you divide the first by the second. If the remainder is zero, the
first number is divisible by the second.)

Or is one of three functions in Scheme that combine true or false values to produce
another true or false value. And returns true if all of its arguments are true, that is, the
first and second and. .. Finally, there’s a function not that takes exactly one argument,
returning true if that argument is false and vice versa.

In the last example, the procedure we really wanted to write was buzz, but we found
it useful to define divisible? also. It’s quite common that the easiest way to solve
some problem is to write a helper procedure to do part of the work. In this case the helper
procedure computes a function that’s meaningful in itself, but sometimes you’ll want to
write procedures with names like buzz-helper that are useful only in the context of
one particular problem.

Let’s write a program that takes a word as its argument and returns the plural of that
word. Our first version will just put an “s” on the end:

(define (plural wd)
(word wd ’s))

> (plural 'beatle)
BEATLES

> (plural ’‘computer)
COMPUTERS

> (plural 'fly)
FLYS

This works for most words, but not those that end in “y.” Here’s version two:

(define (plural wd)
(if (equal? (last wd) 'y)
(word (bl wd) ‘ies)
(word wd ’s)))

Chapter 6 True and False 75

This isn’t exactly right either; it thinks that the plural of “boy” is “boies.” We’ll ask you to
add some more rules in Exercise 6.12.

If Is a Special Form

There are a few subtleties that we haven’t told you about yet. First of all, if is a special
form. Remember that we’re going to need the value of only one of'its last two arguments.
It would be wasteful for Scheme to evaluate the other one. So if you say

(if (= 3 3)
sure
(factorial 1000))

if won’t compute the factorial of 1000 before returning sure.

The rule is that if always evaluates its first argument. If the value of that argument
is true, then if evaluates its second argument and returns its value. If the value of the
first argument is false, then if evaluates its third argument and returns that value.

So Are And and Or

And and or are also special forms. They evaluate their arguments in order from left to
right* and stop as soon as they can. For or, this means returning true as soon as any of
the arguments is true. And returns false as soon as any argument is false. This turns out
to be useful in cases like the following:

(define (divisible? big small)
(= (remainder big small) 0))

(define (num-divisible-by-4? x)
(and (number? x) (divisible? x 4)))

> (num-divisible-by-4? 16)
#T

* Since you can start a new line in the middle of an expression, in some cases the arguments
will be “top to bottom” rather than “left to right,” but don’t forget that Scheme doesn’t care about
line breaks. That’s why Lisp programmers always talk as if their programs were written on one
enormously long line.

76 Part Il Composition of Functions

> (num-divisible-by-4? 6)
#F

> (num-divisible-by-4? ’aardvark)
#F

> (divisible? ’'aardvark 4)
ERROR: AARDVARK IS NOT A NUMBER

We want to see if x is a number, and, if so, if it’s divisible by 4. It would be an error to
apply divisible? to a nonnumber. If and were an ordinary procedure, the two tests
(number? and divisible?) would both be evaluated before we would have a chance
to pay attention to the result of the first one. Instead, if X turns out not to be a number,
our procedure will return #£ without trying to divide it by 4.

Everything That Isn’t False Is True

#T isn’t the only true value. In fact, every value is considered true except for #£.

> (if (+ 3 4) ’'yes 'no)
YES

This allows us to have semipredicates that give slightly more information than just true
or false. For example, we can write an integer quotient procedure. That is to say,
our procedure will divide its first argument by the second, but only if the first is evenly
divisible by the second. If not, our procedure will return #£.

(define (integer-quotient big little)
(if (divisible? big little)
(/ big little)
#£))

> (integer-quotient 27 3)
9

> (integer-quotient 12 5)
#F

And and or are also semipredicates. We’ve already explained that or returns a true

result as soon as it evaluates a true argument. The particular true value that or returns
is the value of that first true argument:

Chapter 6 True and False 77

> (or #f 3 #f 4)
3

And returns a true value only if all of its arguments are true. In that case, it returns the
value of the last argument:

> (and 1 2 3 4 5)
5

As an example in which this behavior is useful, we can rewrite integer-quotient
more tersely:

(define (integer-quotient big little) ;; alternate version
(and (divisible? big little)
(/ big little)))

Decisions, Decisions, Decisions

If is great for an either-or choice. But sometimes there are several possibilities to
consider:

(define (roman-value letter)
(if (equal? letter 'i)

1
(if (equal? letter 'v)
5
(if (equal? letter 'x)
10
(if (equal? letter '1)
50
(if (equal? letter ’'c)
100
(if (equal? letter ’d)
500
(if (equal? letter ’'m)

1000
"huh?))))))))

That’s pretty hideous. Scheme provides a shorthand notation for situations like this in
which you have to choose from among several possibilities: the special form cond.

78 Part Il Composition of Functions

(define (roman-value letter)

(cond ((equal? letter ’'i) 1)
((equal? letter ’'v) 5)
((equal? letter ’x) 10)
((equal? letter ’'1l) 50)
((equal? letter ’c) 100)
((equal? letter ’d) 500)
((equal? letter 'm) 1000)
(else ’'huh?)))

The tricky thing about cond is that it doesn’t use parentheses in quite the same way
as the rest of Scheme. Ordinarily, parentheses mean procedure invocation. In cond,
most of the parentheses still mean that, but some of them are used to group pairs of tests
and results. We’ve reproduced the same cond expression below, indicating the funny
ones in boldface.

(define (roman-value letter)

(cond ((equal? letter ’i) 1)
((equal? letter 'v) 5)
((equal? letter ’x) 10)
((equal? letter ‘1) 50)
((equal? letter ’c) 100)
((equal? letter 'd) 500)
((equal? letter 'm) 1000)
(else ’huh?)))

Cond takes any number of arguments, each of which is two expressions inside a pair
of parentheses. Each argument is called a cond clause. In the example above, one typical
clause is

((equal? letter ‘1) 50)

The outermost parentheses on that line enclose two expressions. The first of the two
expressions (the condition) is taken as true or false, just like the first argument to if. The
second expression of each pair (the consequent) is a candidate for the return value of the
entire cond invocation.

Cond examines its arguments from left to right. Remember that since cond is a
special form, its arguments are not evaluated ahead of time. For each argument, cond
evaluates the first of the two expressions within the argument. If that value turns out to
be true, then cond evaluates the second expression in the same argument, and returns

Chapter 6 True and False 79

that value without examining any further arguments. But if the value is false, then cond
does not evaluate the second expression; instead, it goes on to the next argument.

By convention, the last argument always starts with the word else instead of an
expression. You can think of this as representing a true value, but else doesn’t mean
true in any other context; you’re only allowed to use it as the condition of the last clause
of a cond.*

Don’t get into bad habits of thinking about the appearance of cond clauses in terms
of “two parentheses in a row.” That’s often the case, but not always. For example,
here is a procedure that translates Scheme true or false values (#t and #£f) into more
human-readable words true and false.

(define (truefalse value)
(cond (value 'true)
(else ’'false)))

> (truefalse (= 2 (+ 1 1)))
TRUE

> (truefalse (= 5 (+ 2 2)))
FALSE

When a cond tests several possible conditions, they might not be mutually exclu-
sive.** This can be either a source of error or an advantage in writing efficient programs.
The trick is to make the most restrictive test first. For example, it would be an error to say

(cond ((number? (first sent)) ...) ;7 wrong
((empty? sent) ...)
.2)

because the first test only makes sense once you’ve already established that there is a first
word of the sentence. On the other hand, you don’t have to say

(cond ((empty? sent) ...)
((and (not (empty? sent)) (number? (first sent))) ...)

)

* What if you don’t use an else clause at all? If none of the clauses has a true condition, then
the return value is unspecified. In other words, always use else.

** Conditions are mutually exclusive if only one of them can be true at a time.

80 PartII Composition of Functions

because you’ve already established that the sentence is nonempty if you get as far as the
second clause.

If Is Composable

Suppose we want to write a greet procedure that works like this:

> (greet ’'(brian epstein))
(PLEASED TO MEET YOU BRIAN -- HOW ARE YOU?)

> (greet ' (professor donald knuth))
(PLEASED TO MEET YOU PROFESSOR KNUTH -- HOW ARE YOU?)

The response of the program in these two cases is almost the same; the only difference is
in the form of the person’s name.

This procedure could be written in two ways:

(define (greet name)
(if (equal? (first name) ’'professor)

(se ’'(pleased to meet you)
'professor
(last name)
'(-- how are you?))

(se ’'(pleased to meet you)
(first name)
'(-- how are you?))))

(define (greet name)
(se '(pleased to meet you)
(if (equal? (first name) ’'professor)
(se 'professor (last name))
(first name))
'(-- how are you?)))

The second version avoids repeating the common parts of the response by using if
within a larger expression.

Some people find it counterintuitive to use if as we did in the second version.
Perhaps the reason is that in some other programming languages, if is a “command”
instead of a function like any other. A mechanism that selects one part of a program
to run, and leaves out another part, may seem too important to be a mere argument

Chapter 6 True and False 81

subexpression. But in Scheme, the value returned by every function can be used as part
of a larger expression.*

We aren’t saying anything new here. We’ve already explained the idea of composition
of functions, and we’re just making the same point again about if. But we’ve learned
that many students expect if to be an exception, so we’re taking the opportunity to
emphasize the point: There are no exceptions to this rule.

Pitfalls

O The biggest pitfall in this chapter is the unusual notation of cond. Keeping track of
the parentheses that mean function invocation, as usual, and the parentheses that just
group the parts of a cond clause is tricky until you get accustomed to it.

O Many people also have trouble with the asymmetry of the member? predicate. The
first argument is something small; the second is something big. (The order of arguments
is the same as the order of a typical English sentence about membership: “Is Mick a
member of the Beatles?”) It seems pretty obvious when you look at an example in which
both arguments are quoted constant values, but you can get in trouble when you define
a procedure and use its parameters as the arguments to member?. Compare writing a
procedure that says, “does the letter E appear in this word?” with one that says, “is this
letter a vowel?”

U Many people try to use and and or with the full flexibility of the corresponding
English words. Alas, Scheme is not English. For example, suppose you want to know
whether the argument to a procedure is either the word yes or the word no. You can’t
say

(equal? argument (or ’'yes ’‘no)) ; wrong!

This sounds promising: “Is the argument equal to the word yes or the word no?”
But the arguments to or must be true-or-false values, not things you want to check for

* Strictly speaking, since the argument expressions to a special form aren’t evaluated, if is a
function whose domain is expressions, not their values. But many special forms, including if, and,
and or, are designed to act as if they were ordinary functions, the kind whose arguments Scheme
evaluates in advance. The only difference is that it is sometimes possible for Scheme to figure out
the correct return value after evaluating only some of the arguments. Most of the time we’ll just
talk about the domains and ranges of these special forms as if they were ordinary functions.

82 Part Il Composition of Functions

equality with something else. You have to make two separate equality tests:
(or (equal? argument ’‘yes) (equal? argument ’'no))

In this particular case, you could also solve the problem by saying
(member? argument ’'(yes no))

but the question of trying to use or as if it were English comes up in other cases for which
member? won’t help.

O This isn’t exactly a pitfall, because it won’t stop your program from working, but
programs like

(define (odd? n)
(if (not (even? n)) #t #£f))

are redundant. Instead, you could just say

(define (odd? n)
(not (even? n)))

since the value of (not (even? n)) is already #t or #£.

Boring Exercises

6.1 What values are printed when you type these expressions to Scheme? (Figure it out
in your head before you try it on the computer.)

(cond ((= 3 4) ’'(this boy))
((< 2 5) '(nowhere man))
(else ' (two of us)))

(cond (empty? 3)
(square 7)
(else 9))

(define (third-person-singular verb)
(cond ((equal? verb ’be) ’is)
((equal? (last verb) ‘o) (word verb ‘es))

(else (word verb ’s))))

(third-person-singular ’go)

Chapter 6 True and False 83

6.2 What values are printed when you type these expressions to Scheme? (Figure it out
in your head before you try it on the computer.)

(or #f #f #f #t)

(and #f #f #f #t)

(or (=2 3) (=4 3))

(not #f)

(or (not (= 2 3)) (= 4 3))

(or (and (= 2 3) (= 3 3)) (and (< 2 3) (< 3 4)))

6.3 Rewrite the following procedure using a cond instead of the ifs:

(define (sign number)
(if (< number 0)
'negative
(if (= number 0)
'zero
'positive)))

6.4 Rewrite the following procedure using an if instead of the cond:

(define (utensil meal)
(cond ((equal? meal ’'chinese) ’‘chopsticks)
(else ’fork)))

Real Exercises

Note: Writing helper procedures may be useful in solving some of these problems.

6.5 Write a procedure european-time to convert a time from American AM/PM
notation into European 24-hour notation. Also write american-time, which does the
opposite:

> (european-time ’ (8 am))
8

84 Part Il Composition of Functions

> (european-time ’ (4 pm))
16

> (american-time 21)
(9 PM)

> (american-time 12)
(12 PM)

> (european-time ‘(12 am))
24

Getting noon and midnight right is tricky.
6.6 Write a predicate teen? that returns true if its argument is between 13 and 19.

6.7 Write a procedure type-of that takes anything as its argument and returns one of
the words word, sentence, number, or boolean:

> (type-of ’(getting better))
SENTENCE

> (type-of ’'revolution)
WORD

> (type-of (= 3 3))
BOOLEAN

(Even though numbers are words, your procedure should return number if its argument
is a number.)

Feel free to check for more specific types, such as “positive integer,” if you are so inclined.

6.8 Write a procedure indef-article that works like this:

> (indef-article ’'beatle)
(A BEATLE)

> (indef-article ’‘album)
(AN ALBUM)

Don’t worry about silent initial consonants like the h in hour.

Chapter 6 True and False 85

6.9 Sometimes you must choose the singular or the plural of a word: 1 book but
2 books. Write a procedure thismany that takes two arguments, a number and a
singular noun, and combines them appropriately:

> (thismany 1 ’partridge)
(1 PARTRIDGE)

> (thismany 3 ’‘french-hen)
(3 FRENCH-HENS)

6.10 Write a procedure sort2 that takes as its argument a sentence containing two
numbers. It should return a sentence containing the same two numbers, but in ascending
order:

> (sort2 (5 7))
(57)

> (sort2 (7 5))
(5 7)

6.11 Write a predicate valid-date? that takes three numbers as arguments, repre-
senting a month, a day of the month, and a year. Your procedure should return #t if
the numbers represent a valid date (e.g., it isn’t the 31st of September). February has 29
days if the year is divisible by 4, except that if the year is divisible by 100 it must also be
divisible by 400.

> (valid-date? 10 4 1949)
#T

> (valid-date? 20 4 1776)
#F

> (valid-date? 5 0 1992)
#F

> (valid-date? 2 29 1900)
#F

> (valid-date? 2 29 2000)
#T

86 Part Il Composition of Functions

6.12 Make plural handle correctly words that end in y but have a vowel before the y,
such as boy. Then teach it about words that end in x (box). What other special cases
can you find?

6.13 Write a better greet procedure that understands as many different kinds of names
as you can think of:

> (greet ’(john lennon))
(HELLO JOHN)

> (greet ’(dr marie curie))
(HELLO DR CURIE)

> (greet ’'(dr martin luther king jr))
(HELLO DR KING)

> (greet ’'(queen elizabeth))
(HELLO YOUR MAJESTY)

> (greet ’'(david livingstone))
(DR LIVINGSTONE I PRESUME?)

6.14 Write aprocedure describe-time that takes anumber of seconds as its argument
and returns a more useful description of that amount of time:

> (describe-time 45)
(45 SECONDS)

> (describe-time 930)
(15.5 MINUTES)

> (describe-time 30000000000)
(9.506426344208686 CENTURIES)

Chapter 6 True and False 87

Trombone players produce different pitches partly by varying the length of a tube.

7 Variables

A variableis a connection between a name and a value.* That sounds simple enough, but
some complexities arise in practice. To avoid confusion later, we’ll spend some time now
looking at the idea of “variable” in more detail.

The name variable comes from algebra. Many people are introduced to variables in
high school algebra classes, where the emphasis is on solving equations. “If x*> -8 = 0,
what is the value of x?” In problems like these, although we call x a variable, it’s really
a named constant! In this particular problem, x has the value 2. In any such problem, at
first we don’t know the value of x, but we understand that it does have some particular
value, and that value isn’t going to change in the middle of the problem.

In functional programming, what we mean by “variable” is like a named constant in
mathematics. Since a variable is the connection between a name and a value, a formal
parameter in a procedure definition isn’t a variable; it’s just a name. But when we invoke
the procedure with a particular argument, that name is associated with a value, and a
variable is created. If we invoke the procedure again, a new variable is created, perhaps
with a different value.

There are two possible sources of confusion about this. One is that you may have
programmed before in a programming language like BASIC or Pascal, in which a variable
often does get a new value, even after it’s already had a previous value assigned to it.
Programs in those languages tend to be full of things like “X = X + 1.” Back in Chapter
2 we told you that this book is about something called “functional programming,” but
we haven’t yet explained exactly what that means. (Of course we have introduced a lot

* The term “variable” is used by computer scientists to mean several subtly different things. For
example, some people use “variable” to mean just a holder for a value, without a name. But what
we said is what we mean by “variable.”

89

of functions, and that is an important part of it.) Part of what we mean by functional
programming is that once a variable exists, we aren’t going to change the value of that
variable.

The other possible source of confusion is that in Scheme, unlike the situation in
algebra, we may have more than one variable with the same name at the same time.
That’s because we may invoke one procedure, and the body of that procedure may invoke
another procedure, and each of them might use the same formal parameter name. There
might be one variable named x with the value 7, and another variable named x with the

value 51, at the same time. The pitfall to avoid is thinking “x has changed its value from
7to51.”

As an analogy, imagine that you are at a party along with Mick Jagger, Mick Wilson,
Mick Avory, and Mick Dolenz. If you’re having a conversation with one of them, the
name “Mick” means a particular person to you. If you notice someone else talking with a
different Mick, you wouldn’t think “Mick has become a different person.” Instead, you’d
think “there are several people here all with the name Mick.”

How Little People Do Variables

You can understand variables in terms of the little-people model. A variable, in this
model, is the association in the little person’s mind between a formal parameter (name)
and the actual argument (value) she was given. When we want to know (square 5), we
hire Srini and tell him his argument is 5. Srini therefore substitutes 5 for x in the body
of square. Later, when we want to know the square of 6, we hire Samantha and tell her
that her argument is 6. Srini and Samantha have two different variables, both named x.

(define
s:luare x

(* x %))

90 Part Il Composition of Functions

Srini and Samantha do their work separately, one after the other. But in a more
complicated example, there could even be more than one value called x at the same
time:

(define (square x) (* x X))

(define (hypotenuse x y)
(sgrt (+ (square x) (square y))))

> (hypotenuse 3 4)
5

Consider the situation when we’ve hired Hortense to evaluate that expression. Hortense
associates the name x with the value 3 (and also the name y with the value 4, but we’re
going to pay attention to x). She has to compute two squares. She hires Solomon to
compute (square 3). Solomon associates the name x with the value 3. This happens
to be the same as Hortense’s value, but it’s still a separate variable that could have had a
different value—as we see when Hortense hires Sheba to compute (square 4). Now,
simultaneously, Hortense thinks x is 3 and Sheba thinks x is 4.

. (define A (define
' (hypotenuse x y) _ i (squarex)
(sqrt (+ squarex) (square y))) '

(Remember that we said a variable is a connection between a name and a value. So
x isn’t a variable! The association of the name x with the value 5 is a variable. The reason
we’re being so fussy about this terminology is that it helps clarify the case in which several
variables have the same name. But in practice people are generally sloppy about this fine
point; we can usually get away with saying “x is a variable” when we mean “there is some
variable whose name is x.”)

Chapter 7 Variables 91

Another important point about the way little people do variables is that they can’t
read each others’ minds. In particular, they don’t know about the values of the local
variables that belong to the little people who hired them. For example, the following
attempt to compute the value 10 won’t work:

(define (f x)
(g 6))

(define (g y)
(+ xy))

> (f 4)
ERROR -- VARIABLE X IS UNBOUND.

We hire Franz to compute (£ 4). He associates x with 4 and evaluates (g 6) by hiring
Gloria. Gloria associates y with 6, but she doesn’t have any value for x, so she’s in trouble.
The solution is for Franz to tell Gloria that x is 4:

(define (f x)
(g x 6))

(define (g x y)
(+ xy))

> (f 4)
10

Global and Local Variables

Until now, we’ve been using two very different kinds of naming. We have names for
procedures, which are created permanently by define and are usable throughout our
programs; and we have names for procedure arguments, which are associated with values
temporarily when we call a procedure and are usable only inside that procedure.

These two kinds of naming seem to be different in every way. One is for procedures,
one for data; the one for procedures makes a permanent, global name, while the one for
data makes a temporary, local name. That picture does reflect the way that procedures
and other data are usually used, but we’ll see that really there is only one kind of naming.
The boundaries can be crossed: Procedures can be arguments to other procedures, and
any kind of data can have a permanent, global name. Right now we’ll look at that last
point, about global variables.

92 Part Il Composition of Functions

Just as we’ve been using def ine to associate names with procedures globally, we can
also use it for other kinds of data:

> (define pi 3.141592654)

> (+ pi 5)
8.141592654

> (define song ' (I am the walrus))

> (last song)
WALRUS

Once defined, a global variable can be used anywhere, just as a defined procedure
can be used anywhere. (In fact, defining a procedure creates a variable whose value is
the procedure. Just as pi is the name of a variable whose value is 3.141592654, last
is the name of a variable whose value is a primitive procedure. We’ll come back to this
point in Chapter 9.) When the name of a global variable appears in an expression, the
corresponding value must be substituted, just as actual argument values are substituted
for formal parameters.

When alittle person is hired to carry out a compound procedure, his or her first step
is to substitute actual argument values for formal parameters in the body. The same little
person substitutes values for global variable names also. (What if there is a global variable
whose name happens to be used as a formal parameter in this procedure? Scheme’s rule
is that the formal parameter takes precedence, but even though Scheme knows what to
do, conflicts like this make your program harder to read.)

How does this little person know what values to substitute for global variable names?
What makes a variable “global” in the little-people model is that every little person knows
its value. You can imagine that there’s a big chalkboard, with all the global definitions
written on it, that all the little people can see. If you prefer, you could imagine that
whenever a global variable is defined, the define specialist climbs up a huge ladder,
picks up a megaphone, and yells something like “Now hear this! Pi is 3.141592654!”

The association of a formal parameter (a name) with an actual argument (a value)
is called a local variable.

It’s awkward to have to say “Harry associates the value 7 with the name foo” all the
time. Most of the time we just say “foo has the value 7,” paying no attention to whether
this association is in some particular little person’s head or if everybody knows it.

Chapter 7 Variables 93

The Truth about Substitution

We said earlier in a footnote that Scheme doesn’t actually do all the copying and
substituting we’ve been talking about. What actually happens is more like our model
of global variables, in which there is a chalkboard somewhere that associates names
with values—except that instead of making a new copy of every expression with values
substituted for names, Scheme works with the original expression and looks up the value
for each name at the moment when that value is needed. To make local variables work,
there are several chalkboards: a global one and one for each little person.

The fully detailed model of variables using several chalkboards is what many people
find hardest about learning Scheme. That’s why we’ve chosen to use the simpler
substitution model.*

Let

We’re going to write a procedure that solves quadratic equations. (We know this is the
prototypical boring programming problem, but it illustrates clearly the point we’re about
to make.)

We’ll use the quadratic formula that you learned in high school algebra class:

b+ Vb2 —-4ac
2a

ax> +bx+c=0 when x-=

(define (roots a b c)
(se (/ (+ (= b) (sart (- (* b b) (» 4 ac))))
(* 2 a))
(/ (= (= b) (sart (- (* b b) (* 4 ac))))
(* 2 a))))

Since there are two possible solutions, we return a sentence containing two numbers.
This procedure works fine,** but it does have the disadvantage of repeating a lot of the

* The reason that all of our examples work with the substitution model is that this book uses only
functional programming, in the sense that we never change the value of a variable. If we started
doing the X = X + 1 style of programming, we would need the more complicated chalkboard
model.

** That is, it works if the equation has real roots, or if your version of Scheme has complex

94 Part Il Composition of Functions

work. It computes the square root part of the formula twice. We’d like to avoid that
inefficiency.

One thing we can do is to compute the square root and use that as the actual
argument to a helper procedure that does the rest of the job:

(define (roots a b c)
(rootsl a b ¢ (sqgrt (- (* b b) (* 4 a c)))))

(define (rootsl a b ¢ discriminant)
(se (/ (+ (- b) discriminant) (* 2 a))
(/ (- (- b) discriminant) (* 2 a))))

This version evaluates the square root only once. The resulting value is used as the
argument named discriminant in rootsl.

We’ve solved the problem we posed for ourselves initially: avoiding the redundant
computation of the discriminant (the square-root part of the formula). The cost, though,
is that we had to define an auxiliary procedure roots1 that doesn’t make much sense
on its own. (That is, you’d never invoke roots1 for its own sake; only roots uses it.)

Scheme provides a notation to express a computation of this kind more conveniently.
It’s called let:

(define (roots a b c)
(let ((discriminant (sqgrt (- (* b b) (* 4 a c)))))
(se (/ (+ (- b) discriminant) (* 2 a))
(/ (- (- b) discriminant) (* 2 a)))))

Our new program is just an abbreviation for the previous version: In effect, it creates
a temporary procedure just like rootsl, but without a name, and invokes it with the
specified argument value. But the let notation rearranges things so that we can say, in
the right order, “let the variable discriminant have the value (sqgrt...) and, using
that variable, compute the body.”

Let is a special form that takes two arguments. The first is a sequence of name-value
pairs enclosed in parentheses. (In this example, there is only one name-value pair.) The
second argument, the body of the let, is the expression to evaluate.

numbers. Also, the limited precision with which computers can represent irrational numbers can
make this particular algorithm give wrong answers in practice even though it’s correct in theory.

Chapter 7 Variables 95

Now that we have this notation, we can use it with more than one name-value
connection to eliminate even more redundant computation:

(define (roots a b c)
(let ((discriminant (sqrt (- (* b b) (* 4 a c))))
(minus-b (- b))
(two-a (* 2 a)))
(se (/ (+ minus-b discriminant) two-a)
(/ (- minus-b discriminant) two-a))))

In this example, the first argument to let includes three name-value pairs. It’s as if we’d
defined and invoked a procedure like the following:

(define (rootsl discriminant minus-b two-a) ...)

Like cond, let uses parentheses both with the usual meaning (invoking a proce-
dure) and to group sub-arguments that belong together. This grouping happens in two
ways. Parentheses are used to group a name and the expression that provides its value.
Also, an additional pair of parentheses surrounds the entire collection of name-value
pairs.

Pitfalls

U Ifyou’ve programmed before in other languages, you may be accustomed to a style
of programming in which you change the value of a variable by assigning it a new value.
You may be tempted to write

> (define x (+ x 3)) ;7 nho-no

Although some versions of Scheme do allow such redefinitions, so that you can correct
errors in your procedures, they’re not strictly legal. A definition is meant to be
permanent in functional programming. (Scheme does include other mechanisms for
non-functional programming, but we’re not studying them in this book because once
you allow reassignment you need a more complex model of the evaluation process.)

U When you create more than one temporary variable at once using let, all of the
expressions that provide the values are computed before any of the variables are created.
Therefore, you can’t have one expression depend on another:

> (let ((a (+ 4 7)) ;7 wrong!

(b (¥ a 5)))
(+ a b))

96 Part Il Composition of Functions

Don’t think that a gets the value 11 and therefore b gets the value 55. That let
expression is equivalent to defining a helper procedure

(define (helper a b)
(+ a b))

and then invoking it:
(helper (+ 4 7) (* a 5))

The argument expressions, as always, are evaluated before the function is invoked. The
expression (* a 5) will be evaluated using the global value of a, if there is one. If not,
an error will result. If you want to use a in computing b, you must say

> (let ((a (+ 4 7)))
(let ((b (* a 5)))
(+ ab)))
66

O Let’s notation is tricky because, like cond, it uses parentheses that don’t mean
procedure invocation. Don’t teach yourself magic formulas like “two open parentheses
before the let variable and three close parentheses at the end of its value.” Instead,
think about the overall structure:

(let variables body)

Let takes exactly two arguments. The first argument to let is one or more name-value
groupings, all in parentheses:

((namel valuel) (name2 value2) (name3 value3) ...)

Each name is a single word; each value can be any expression, usually a procedure
invocation. If it’s a procedure invocation, then parentheses are used with their usual
meaning.

The second argument to let is the expression to be evaluated using those variables.

Now put all the pieces together:

(let ((namel (fnl argl))
(name2 (fn2 arg2))
(name3 (£fn3 arg3)))

body)

Chapter 7 Variables 97

Boring Exercises

7.1 The following procedure does some redundant computation.

(define (gertrude wd)

(se (if (vowel? (first wd)) ’an ’'a)
wd
'is
(if (vowel? (first wd)) ’'an ’a)
wd
'is
(if (vowel? (first wd)) ’'an ’a)
wd))

> (gertrude ’'rose)
(A ROSE IS A ROSE IS A ROSE)

> (gertrude ’iguana)
(AN IGUANA IS AN IGUANA IS AN IGUANA)

Use let to avoid the redundant work.

7.2 Putin the missing parentheses:

> (let pi 3.14159
pie ’lemon meringue
se 'pi is pi ’'but pie is pie)
(PTI IS 3.14159 BUT PIE IS LEMON MERINGUE)

Real Exercises

7.3 The following program doesn’t work. Why not? Fix it.

(define (superlative adjective word)
(se (word adjective ’est) word))

It’s supposed to work like this:

> (superlative ’'dumb ’'exercise)
(DUMBEST EXERCISE)

98 Part 1T

Composition of Functions

7.4 What does this procedure do? Explain how it manages to work.

(define (sum-square a b)
(let ((+ =*)
(*x +))

(* (+ aa) (+ bb))))

Chapter 7 Variables

99

Part II1
Functions as Data

By now you’re accustomed to the idea of expressing a computational process in terms
of the function whose value you want to compute, rather than in terms of a sequence
of actions. But you probably think of a function (or the procedure that embodies it) as
something very different from the words, sentences, numbers, or other data that serve as
arguments to the functions. It’s like the distinction between verbs and nouns in English:
A verb represents something (o do, while a noun represents something that is.

In this part of the book our goal is to overturn that distinction.

Like many big ideas, this one seems simple at first. All we’re saying is that a function
can have functions as its domain or range. One artificially simple example that you’ve
seen earlier was the number-of-arguments function in Chapter 2. That function
takes a function as argument and returns a number. It’s not so different from count,
which takes a word or sentence as argument and returns a number.

But you’ll see that this idea leads to an enormous rise in the length and complexity
of the processes you can express in a short procedure, because now a process can give
rise to several other processes. A typical example is the acronym procedure that we
introduced in Chapter 1 and will examine now in more detail. Instead of applying the
first procedure to asingle word, we use £irst as an argument to a procedure, every,
that automatically applies it to every word of a sentence. A single every process gives
rise to several £irst processes.

The same idea of function as data allows us to write procedures that create and return
new procedures. At the beginning of Part II we showed a Scheme representation of a
function that computes the third person singular of a verb. Now, to illustrate the idea of
function as data, we’ll show how to represent in Scheme a function make-conjugator
whose range is the whole family of verb-conjugation functions:

100

(define (make-conjugator prefix ending)
(lambda (verb) (sentence prefix (word verb ending))))

Never mind the notation for now; the idea to think about is that we can use
make-conjugator to create many functions similar to the third-person example of
the Part I introduction:

> (define third-person (make-conjugator ’‘she ’s))

> (third-person ’'program)
(SHE PROGRAMS)

> (define third-person-plural-past (make-conjugator ’‘they ‘ed))

> (third-person-plural-past ‘play)
(THEY PLAYED)

> (define second-person-future-perfect
(make-conjugator ‘' (you will have) ’‘ed))

> (second-person-future-perfect ’‘laugh)
(YOU WILL HAVE LAUGHED)

We’ll explore only a tiny fraction of the area opened up by the idea of allowing a
program as data. Further down the same road is the study of compilers and interpreters, the
programs that translate your programs into instructions that computers can carry out. A
Scheme compiler is essentially a function whose domain is Scheme programs.

101

Turning function machines into plowshares

8 Higher-Order Functions

Note: If you read Part 1V before this one, pretend you didn’t; we are going to develop a different

technique for solving similar problems.

You can use the function first to find the first letter of a word. What if you want
to find the first letters of several words? You did this in the first chapter, as part of the

process of finding acronyms.

To start with a simple case, suppose you have two words (that is, a sentence of length
two). You could apply the first procedure to each of them and combine the results:

(define (two-firsts sent)
(se (first (first sent))
(first (last sent))))

> (two-firsts ‘' (john lennon))
(J L)

> (two-firsts ' (george harrison))
(G H)

Similarly, here’s the version for three words:

(define (three-firsts sent)
(se (first (first sent))
(first (first (bf sent)))
(first (last sent))))

> (three-firsts ’(james paul mccartney))
(J P M)

103

But this approach would get tiresome if you had a sentence of five words—you’d have
to write a procedure specifically for the case of exactly five words, and that procedure
would have five separate subexpressions to extract the first word, the second word, and
so on. Also, you don’t want a separate procedure for every sentence length; you want one
function that works no matter how long the sentence is. Using the tools you’ve already
learned about, the only possible way to do that would be pretty hideous:

(define (first-letters sent)
(cond ((= (count sent) 1) (one-first sent))
((= (count sent) 2) (two-firsts sent))
((= (count sent) 3) (three-firsts sent))
...andsoon...))

But even this won’t work because there’s no way to say “and so on” in Scheme. You could
write a version that works for all sentences up to, let’s say, length 23, but you’d be in
trouble if someone tried to use your procedure on a 24-word sentence.

Every

To write a better any-length first-letter procedure, you need to be able to say “apply the
function first to every word in the sentence, no matter how long the sentence is.”
Scheme provides a way to do this:*

(define (first-letters sent)
(every first sent))

> (first-letters ' (here comes the sun))
(HCTS)

> (first-letters ’‘(lucy in the sky with diamonds))
(LI TS WD)

Every takes two arguments. The second argument is a sentence, but the first is
something new: a procedure used as an argument to another procedure.** Notice that

* Like all the procedures in this book that deal with words and sentences, every and the other
procedures in this chapter are part of our extensions to Scheme. Later, in Chapter 17, we’ll
introduce the standard Scheme equivalents.

** Talking about every strains our resolve to distinguish functions from the procedures that
implement them. Is the argument to every a function or a procedure? If we think of every itself

104 Part Il Functions as Data

there are no parentheses around the word first in the body of first-letters! By
now you’ve gotten accustomed to seeing parentheses whenever you see the name of a
function. But parentheses indicate an invocation of a function, and we aren’t invoking
first here. We're using £irst, the procedure itself, as an argument to every.

> (every last ’(while my guitar gently weeps))
(EYRY S)

> (every - (4 57 8 9))
(-4 -5 -7 -8 -9)

These examples use every with primitive procedures, but of course you can also define
procedures of your own and apply them to every word of a sentence:

(define (plural noun)
(if (equal? (last noun) 'y)
(word (bl noun) ’ies)
(word noun ’s)))

> (every plural ’(beatle turtle holly kink zombie))
(BEATLES TURTLES HOLLIES KINKS ZOMBIES)

You can also use a word as the second argument to every. In this case, the
first-argument procedure is applied to every letter of the word. The results are collected
in a sentence.

(define (double letter) (word letter letter))

> (every double ’girl)
(GG II RR LL)

> (every square 547)
(25 16 49)

In all these examples so far, the first argument to every was a function that returned
a word, and the value returned by every was a sentence containing all the returned

as a procedure—that is, if we’re focusing on how it does its job—then of course we must say that
it does its job by repeatedly invoking the procedure that we supply as an argument. But it’s equally
valid for us to focus attention on the function that the every procedure implements, and that
function takes functions as arguments.

Chapter 8§ Higher-Order Functions 105

words. The first argument to every can also be a function that returns a sentence. In this
case, every returns one long sentence:

(define (sent-of-first-two wd)
(se (first wd) (first (bf wd))))

> (every sent-of-first-two ’(the inner light))
(THINTLI)

> (every sent-of-first-two ’(tell me what you see))
(TEMEWHYO S E)

> (define (g wd)
(se (word ’'with wd) ’you))

> (every g ’'(in out))
(WITHIN YOU WITHOUT YOU)

A function that takes another function as one of its arguments, as every does, is
called a higher-order function. If we focus our attention on procedures, the mechanism
through which Scheme computes functions, we think of every as a procedure that takes
another procedure as an argument—a higher-order procedure.

A Pause for Reflection

Earlier we used the metaphor of the “function machine,” with a hopper at the top into
which we throw data, and a chute at the bottom from which the result falls, like a meat
grinder. Well, every is a function machine into whose hopper we throw another function
machine! Instead of a meat grinder, we have a metal grinder.*

Do you see what an exciting idea this is? We are accustomed to thinking of numbers
and sentences as “real things,” while functions are less like things and more like activities.
As an analogy, think about cooking. The real foods are the meats, vegetables, ice cream,
and so on. You can’t eat a recipe, which is analogous to a function. A recipe has to be
applied to ingredients, and the result of carrying out the recipe is an edible meal. It

* You can get in trouble mathematically by trying to define a function whose domain includes all
functions, because applying such a function to itself can lead to a paradox. In programming, the
corresponding danger is that applying a higher-order procedure to ifself might result in a program
that runs forever.

106 Part Il Functions as Data

would seem weird if a recipe used other recipes as ingredients: “Preheat the oven to 350
and insert your Joy of Cooking.” But in Scheme we can do just that.*

Cooking your cookbook is unusual, but the general principle isn’t. In some contexts
we do treat recipes as things rather than as algorithms. For example, people write recipes
on cards and put them into a recipe file box. Then they perform operations such as
searching for a particular recipe, sorting the recipes by category (main dish, dessert,
etc.), copying a recipe for a friend, and so on. The same recipe is both a process (when
we’re cooking with it) and the object of a process (when we’re filing it).

Keep

Once we have this idea, we can use functions of functions to provide many different
capabilities.

For instance, the keep function takes a predicate and a sentence as arguments. It
returns a sentence containing only the words of the argument sentence for which the
predicate is true.

> (keep even? (1 2 3 4 5))
(2 4)

> (define (ends-e? word) (equal? (last word) ’‘e))

> (keep ends-e? '(please put the salami above the blue elephant))
(PLEASE THE ABOVE THE BLUE)

> (keep number? ‘(1 after 909))
(1 909)

Keep will also accept a word as its second argument. In this case, it applies the
predicate to every letter of the word and returns another word:

> (keep number? ’‘zonk23hey9)
239

> (define (vowel? letter) (member? letter ‘(a e i o u)))

> (keep vowel? ’piggies)
ITE

* Some recipes may seem to include other recipes, because they say things like “add pesto
(recipe on p. 12).” But this is just composition of functions; the result of the pesto procedure is
used as an argument to this recipe. The pesto recipe itself is not an ingredient.

Chapter 8 Higher-Order Functions 107

When we used every to select the first letters of words earlier, we found the first
letters even of uninteresting words such as “the.” We’re working toward an acronym
procedure, and for that purpose we’d like to be able to discard the boring words.

(define (real-word? wd)
(not (member? wd ’'(a the an in of and for to with))))

> (keep real-word? ’(lucy in the sky with diamonds))
(LUCY SKY DIAMONDS)

> (every first (keep real-word? ' (lucy in the sky with diamonds)))
(L S D)

Accumulate

In every and keep, each element of the second argument contributes independently to
the overall result. That is, every and keep apply a procedure to a single element at a
time. The overall result is a collection of individual results, with no interaction between
elements of the argument. This doesn’t let us say things like “Add up all the numbers
in a sentence,” where the desired output is a function of the entire argument sentence
taken as a whole. We can do this with a procedure named accumulate. Accumulate
takes a procedure and a sentence as its arguments. It applies that procedure to two of
the words of the sentence. Then it applies the procedure to the result we got back and
another element of the sentence, and so on. It ends when it’s combined all the words of
the sentence into a single result.

> (accumulate + (6 3 4 -5 7 8 9))
32

> (accumulate word ‘(a c 1 u))
ACLU

> (accumulate max ‘(128 32 134 136))
136

> (define (hyphenate wordl word2)
(word wordl ‘- word2))

> (accumulate hyphenate ’(ob la di ob la da))
OB-LA-DI-OB-LA-DA

(In all of our examples in this section, the second argument contains at least two elements.
In the “pitfalls” section at the end of the chapter, we’ll discuss what happens with smaller
arguments.)

108 Part Il Functions as Data

Accumulate can also take a word as its second argument, using the letters as
elements:

> (accumulate + 781)
16

> (accumulate sentence ‘colin)
(COLTIN)

Combining Higher-Order Functions

What if we want to add up all the numbers in a sentence but ignore the words that aren’t
numbers? First we keep the numbers in the sentence, then we accumulate the result
with +. It’s easier to say in Scheme:

(define (add-numbers sent)
(accumulate + (keep number? sent)))

> (add-numbers ' (4 calling birds 3 french hens 2 turtle doves))
9

> (add-numbers ‘(1 for the money 2 for the show 3 to get ready
and 4 to go))
10

We also have enough tools to write a version of the count procedure, which finds
the number of words in a sentence or the number of letters in a word. First, we’ll define
a procedure always-one that returns 1 no matter what its argument is. We’ll every
always-one over our argument sentence,* which will result in a sentence of as many
ones as there were words in the original sentence. Then we can use accumulate with +
to add up the ones. This is a slightly roundabout approach; later we’ll see a more natural
way to find the count of a sentence.

(define (always-one arg)
1)

* We mean, of course, “We’ll invoke every with the procedure always-one and our argument
sentence as its two arguments.” After you’ve been programming computers for a while, this sort of
abuse of English will come naturally to you.

Chapter 8§ Higher-Order Functions 109

(define (count sent)
(accumulate + (every always-one sent)))

> (count ' (the continuing story of bungalow bill))
6

You can now understand the acronym procedure from Chapter 1:

(define (acronym phrase)
(accumulate word (every first (keep real-word? phrase))))

> (acronym ' (reduced instruction set computer))
RISC

> (acronym ' (structure and interpretation of computer programs))
SICP

Choosing the Right Tool

So far you’ve seen three higher-order functions: every, keep, and accumulate. How
do you decide which one to use for a particular problem?

Every transforms each element of a word or sentence individually. The result
sentence usually contains as many elements as the argument.*

* What we mean by “usually” is that every is most often used with an argument function that

returns a single word. If the function returns a sentence whose length might not be one, then the
number of words in the overall result could be anything!

110 Part Il Functions as Data

Keep selects certain elements of a word or sentence and discards the others. The
elements of the result are elements of the argument, without transformation, but the
result may be smaller than the original.

Vool \
> > >

Accumulate transforms the entire word or sentence into a single result by combin-
ing all of the elements in some way.

These three pictures represent graphically the differences in the meanings of every,
keep, and accumulate. In the pictures, we’re applying these higher-order procedures
to sentences, but don’t forget that we could have drawn similar pictures in which the
higher-order procedures process the letters of a word.

Here’s another way to compare these three higher-order functions:

function purpose first argumentisa ...
every transform one-argument #ransforming function
keep select one-argument predicate function

accumulate combine two-argument combining function

Chapter 8§ Higher-Order Functions 111

To help you understand these differences, we’ll look at specific examples using each
of them, with each example followed by an equivalent computation done without the
higher-order procedure. Here is an example for every:

> (every double ’girl)
(GG II RR LL)

> (se (double ’gqg)
(double '1i)
(double 'r)
(double ’'1l))
(GG II RR LL)

You can, if you like, think of the first of these expressions as abbreviating the second.

An expression using keep can also be replaced with an expression that performs the
same computation without using keep. This time it’s a little messier:

> (keep even? (1 2 3 4 5))
(2 4)

> (se (if (even? 1)
(if (even? 2)
(if (even? 3)
(if (even? 4)
(if (even? 5)
(2 4)

()
"))
"))
"))
"))

O W N -

Here’s how an accumulate can be expressed the long way:

> (accumulate word ‘(a c 1 u))
ACLU

> (word 'a (word ‘c (word 'l 'u)))
ACLU

(Of course word will accept any number of arguments, so we could have computed the
same result with all four letters as arguments to the same invocation. But the version
we’ve shown here indicates how accumulate actually works; it combines the elements
one by one.)

112 Part Il Functions as Data

First-Class Functions and First-Class Sentences

If Scheme (or any dialect of Lisp) is your first programming language, having procedures
that operate on entire sentences at once may not seem like a big deal. But if you used
to program in some lesser language, you’re probably accustomed to writing something
like first-letters as a loop in which you have some variable named I and you carry
out some sequence of steps for I=1, I=2, and so on, until you get to N, the number of
elements. The use of higher-order functions allows us to express this problem all at once,
rather than as a sequence of events. Once you're accustomed to the Lisp way of thinking,
you can tell yourself “just take every first of the sentence,” and that feels like a single
step, not a complicated task.

Two aspects of Scheme combine to permit this mode of expression. One, which
we’ve mentioned earlier, is that sentences are first-class data. You can use an entire
sentence as an argument to a procedure. You can type a quoted sentence in, or you can
compute a sentence by putting words together.

The second point is that functions are also first-class. This lets us write a procedure
like pigl that applies to a single word, and then combine that with every to translate an
entire sentence to Pig Latin. If Scheme didn’t have first-class functions, we couldn’t have
general-purpose tools like keep and every, because we couldn’t say which function to
extend to all of a sentence. You'll see later that without every it would still be possible
to write a specific pigl-sent procedure and separately write a first-letters
procedure. But the ability to use a procedure as argument to another procedure lets us
generalize the idea of “apply this function to every word of the sentence.”

Repeated

All the higher-order functions you’ve seen so far take functions as arguments, but none of
them have functions as return values. That is, we have machines that can take machines
in their input hoppers, but now we’d like to think about machines that drop other machines
out of their output chutes—machine factories, so to speak.

In the following example, the procedure repeated returns a procedure:

> ((repeated bf 3) ’(she came in through the bathroom window))
(THROUGH THE BATHROOM WINDOW)

> ((repeated plural 4) ’'computer)
COMPUTERSSSS

Chapter 8§ Higher-Order Functions 113

> ((repeated square 2) 3)
81

> (define (double sent)
(se sent sent))

> ((repeated double 3) ’(banana))
(BANANA BANANA BANANA BANANA BANANA BANANA BANANA BANANA)

The procedure repeated takes two arguments, a procedure and a number, and
returns a new procedure. The returned procedure is one that invokes the original
procedure repeatedly. For example, (repeated bf 3) returns a function that takes
the butfirst of the butfirst of the butfirst of its argument.

Notice that all our examples start with two open parentheses. If we just invoked
repeated at the Scheme prompt, we would get back a procedure, like this:

> (repeated square 4)
#<PROCEDURE>

The procedure that we get back isn’t very interesting by itself, so we invoke it, like this:

> ((repeated square 4) 2)
65536

To understand this expression, you must think carefully about its two subexpressions.
Two subexpressions? Because there are two open parentheses next to each other, it
would be easy to ignore one of them and therefore think of the expression as having
four atomic subexpressions. But in fact it has only two. The first subexpression,
(repeated square 4), has a procedure as its value. The second subexpression, 2,
has a number as its value. The value of the entire expression comes from applying the
procedure to the number.

All along we’ve been saying that you evaluate a compound expression in two steps:
First, you evaluate all the subexpressions. Then you apply the first value, which has to be a
procedure, to the rest of the values. But until now the first subexpression has always been
just a single word, the name of a procedure. Now we see that the first expression might
be an invocation of a higher-order function, just as any of the argument subexpressions
might be function invocations.

We can use repeated to define item, which returns a particular element of a
sentence:

114 Part Il Functions as Data

(define (item n sent)
(first ((repeated bf (- n 1)) sent)))

> (item 1 '(a day in the life))
A

> (item 4 ’'(a day in the life))
THE

Pitfalls

O Some people seem to fall in love with every and try to use it in all problems, even
when keep or accumulate would be more appropriate.

O If you find yourself using a predicate function as the first argument to every, you
almost certainly mean to use keep instead. For example, we want to write a procedure
that determines whether any of the words in its argument sentence are numbers:

(define (any-numbers? sent) ;7 wrong!
(accumulate or (every number? sent)))

This is wrong for two reasons. First, since Boolean values aren’t words, they can’t be
members of sentences:

> (sentence #T #F)
ERROR: ARGUMENT TO SENTENCE NOT A WORD OR SENTENCE: #F

> (every number? ‘(a b 2 c 6))
ERROR: ARGUMENT TO SENTENCE NOT A WORD OR SENTENCE: #T

Second, even if you could have a sentence of Booleans, Scheme doesn’t allow a
special form, such as or, as the argument to a higher-order function.* Depending on
your version of Scheme, the incorrect any-numbers? procedure might give an error
message about either of these two problems.

Instead of using every, select the numbers from the argument and count them:

(define (any-numbers? sent)
(not (empty? (keep number? sent))))

* As we said in Chapter 4, special forms aren’t procedures, and aren’t first-class.

Chapter 8§ Higher-Order Functions 115

U The keep function always returns a result of the same type (i.e., word or sentence)
as its second argument. This makes sense because if you're selecting a subset of the words
of a sentence, you want to end up with a sentence; but if you’re selecting a subset of the
letters of a word, you want a word. Every, on the other hand, always returns a sentence.
You might think that it would make more sense for every to return a word when its
second argument is a word. Sometimes that ¢s what you want, but sometimes not. For
example:

(define (spell-digit digit)
(item (+ 1 digit)
' (zero one two three four five six seven eight nine)))

> (every spell-digit 1971)
(ONE NINE SEVEN ONE)

In the cases where you do want a word, you can just accumulate word the sentence
that every returns.

U Remember that every expects its first argument to be a function of just one
argument. If you invoke every with a function such as quotient, which expects two
arguments, you will get an error message from quotient, complaining that it only got
one argument and wanted to get two.

Some people try to get around this by saying things like

(every (quotient 6) (1 2 3)) ;7 wrong!

This is a sort of wishful thinking. The intent is that Scheme should interpret the first
argument to every as afill-in-the-blank template, so that every will compute the values of

(quotient 6 1)
(quotient 6 2)
(quotient 6 3)

But of course what Scheme really does is the same thing it always does: It evaluates
the argument expressions, then invokes every. So Scheme will try to compute
(quotient 6) and will give an error message.

We picked quotient for this example because it requires exactly two arguments.
Many Scheme primitives that ordinarily take two arguments, however, will accept only
one. Attempting the same wishful thinking with one of these procedures is still wrong,

116 Part Il Functions as Data

but the error message is different. For example, suppose you try to add 3 to each of
several numbers this way:

(every (+ 3) (1 2 3)) ;7 wrong!

The first argument to every in this case isn’t “the procedure that adds 3,” but the result
returned by invoking + with the single argument 3. (+ 3) returns the number 3, which
isn’t a procedure. So you will get an error message like “Attempt to apply non-procedure
3'7’

The idea behind this mistake—looking for a way to “specialize” a two-argument
procedure by supplying one of the arguments in advance—is actually a good one. In the
next chapter we’ll introduce a new mechanism that does allow such specialization.

U If the procedure you use as the argument to every returns an empty sentence, then
you may be surprised by the results:
(define (beatle-number n)
(if (or (< nl) (> n 4))
")

(item n ' (john paul george ringo))))

> (beatle-number 3)
GEORGE

> (beatle-number 5)

@)

> (every beatle-number (2 8 4 0 1))
(PAUL RINGO JOHN)

What happened to the 8 and the 0? Pretend that every didn’t exist, and you had to do
it the hard way:

(se (beatle-number 2) (beatle-number 8) (beatle-number 4)
(beatle-number 0) (beatle-number 1))

Using result replacement, we would get
(se 'paul ’() ’‘ringo ‘() ’john)

which is just (PAUL RINGO JOHN).

Chapter 8§ Higher-Order Functions 117

On the other hand, if every’s argument procedure returns an empty word, it will
appear in the result.

> (every bf ’(i need you))
("" EED OU)

The sentence returned by every has three words in it: the empty word, eed, and ou.
[0 Don’t confuse

(first ' (one two three four))

with

(every first ’(one two three four))

In the first case, we’re applying the procedure first to a sentence; in the second, we’re
applying £irst four separate times, to each of the four words separately.

O What happens if you use a one-word sentence or one-letter word as argument to
accumulate? It returns that word or that letter, without even invoking the given
procedure. This makes sense if you're using something like + or max as the accumulator,
but it’s disconcerting that

(accumulate se ' (one-word))
returns the word one-word.

O What happens if you give accumulate an empty sentence or word? Accumulate
accepts empty arguments for some combiners, but not for others:

> (accumulate + ‘' ())
0

> (accumulate max ' ())
ERROR: CAN'T ACCUMULATE EMPTY INPUT WITH THAT COMBINER

The combiners that can be used with an empty sentence or word are +, *, word, and
sentence. Accumulate checks specifically for one of these combiners.

Why should these four procedures, and no others, be allowed to accumulate an
empty sentence or word? The difference between these and other combiners is that you

118 Part Il Functions as Data

can invoke them with no arguments, whereas max, for example, requires at least one
number:

> (+)
0

> (max)
ERROR: NOT ENOUGH ARGUMENTS TO #<PROCEDURE>.

Accumulate actually invokes the combiner with no arguments in order to find out what
value to return for an empty sentence or word. We would have liked to implement
accumulate so that any procedure that can be invoked with no arguments would be
accepted as a combiner to accumulate the empty sentence or word. Unfortunately,
Scheme does not provide a way for a program to ask, “How many arguments will this
procedure accept?” The best we could do was to build a particular set of zero-argument-
okay combiners into the definition of accumulate.

Don’t think that the returned value for an empty argument is always zero or empty.

> (accumulate * ‘' ())
1

The explanation for this behavior is that any function that works with no arguments
returns its identity element in that case. What’s an identity element? The function + has
the identity element 0 because (+ anything 0) returns the anything. Similarly, the empty
word is the identity element for word. In general, a function’s identity element has the
property that when you invoke the function with the identity element and something
else as arguments, the return value is the something else. It’s a Scheme convention
that a procedure with an identity element returns that element when invoked with no
arguments.®

O The use of two consecutive open parentheses to invoke the procedure returned by a
procedure is a strange-looking notation:

((repeated bf 3) 987654)

* PC Scheme returns zero for an invocation of max with no arguments, but that’s the wrong
answer. If anything, the answer would have to be —oo0.

Chapter 8§ Higher-Order Functions 119

Don’t confuse this with the similar-looking cond notation, in which the outer parentheses
have a special meaning (delimiting a cond clause). Here, the parentheses have their
usual meaning. The inner parentheses invoke the procedure repeated with arguments
bf and 3. The value of that expression is a procedure. It doesn’t have a name, but for the
purposes of this paragraph let’s pretend it’s called bfthree. Then the outer parentheses
are basically saying (bfthree 987654); they apply the unnamed procedure to the
argument 987654.

In other words, there are two sets of parentheses because there are two functions
being invoked: repeated and the function returned by repeated. So don’t say

(repeated bf 3 987654) ;7 wrong

just because it looks more familiar. Repeated isn’t a function of three arguments.

Boring Exercises

8.1 What does Scheme return as the value of each of the following expressions? Figure
it out for yourself before you try it on the computer.

> (every last ’(algebra purple spaghetti tomato gnu))

> (keep number? ' (one two three four))

> (accumulate * (6 7 13 0 9 42 17))

> (member? 'h (keep vowel? '(t h r o a t)))

> (every square (keep even? ‘(87 4 7 12 0 5)))

> (accumulate word (keep vowel? (every first ’(and i love her))))

> ((repeated square 0) 25)

\

(every (repeated bl 2) ' (good day sunshine))

8.2 Fillin the blanks in the following Scheme interactions:

> (vowel? ’birthday)
IA

120 Part Il Functions as Data

>
(G S)

>
GOLDEN

> (

first ’(golden slumbers))

' (golden slumbers))

"(little child))

(E D)

> (

ED

>
(2 3 4 5)

>
14

+ 7(2 3 4 5))

+ 7(2 3 4 5))

"(little child)))

8.3 Describe each of the following functions in English. Make sure to include a
description of the domain and range of each function. Be as precise as possible; for

example, “the argument must be a function of one numeric argument” is better than
“the argument must be a function.”

(define (f a)
(keep even? a))

(define (g b)
(every b ’(blue jay way)))

(define (h c d)
(¢ (c d)))

(define (i e)

(/ (accumulate + e) (count e)))

accumulate
sgrt
repeated

(repeated sqrt 3)

Chapter 8§ Higher-Order Functions

121

(repeated even? 2)
(repeated first 2)

(repeated (repeated bf 3) 2)

Real Exercises

Note: Writing helper procedures may be useful in solving some of these problems. Ifyou
read Part IV before this, do not use recursion in solving these problems; use higher order functions
instead.

8.4 Write a procedure choose-beatles that takesa predicate function as its argument
and returns a sentence of just those Beatles (John, Paul, George, and Ringo) that satisfy
the predicate. For example:

(define (ends-vowel? wd) (vowel? (last wd)))
(define (even-count? wd) (even? (count wd)))

> (choose-beatles ends-vowel?)
(GEORGE RINGO)

> (choose-beatles even-count?)
(JOHN PAUL GEORGE)

8.5 Write a procedure transform-beatles that takes a procedure as an argument,
applies it to each of the Beatles, and returns the results in a sentence:

(define (amazify name)
(word ’'the-amazing- name))

> (transform-beatles amazify)
(THE-AMAZING-JOHN THE-AMAZING-PAUL THE-AMAZING-GEORGE
THE-AMAZING-RINGO)

> (transform-beatles butfirst)
(OHN AUL EORGE INGO)

122 Part Il Functions as Data

8.6 When you’re talking to someone over a noisy radio connection, you sometimes have
to spell out a word in order to get the other person to understand it. But names of letters
aren’t that easy to understand either, so there’s a standard code in which each letter is
represented by a particular word that starts with the letter. For example, instead of “B”
you say “bravo.”

Write a procedure words that takes a word as its argument and returns a sentence of the
names of the letters in the word:

> (words ‘cab)
(CHARLIE ALPHA BRAVO)

(You may make up your own names for the letters or look up the standard ones if you
want.)

Hint: Start by writing a helper procedure that figures out the name for a single letter.

8.7 [14.5]* Write a procedure letter-count that takes a sentence as its argument
and returns the total number of letters in the sentence:

> (letter-count ’(fixing a hole))
11

8.8 [12.5] Write an exaggerate procedure which exaggerates sentences:

> (exaggerate ’'(i ate 3 potstickers))
(I ATE 6 POTSTICKERS)

> (exaggerate ’'(the chow fun is good here))
(THE CHOW FUN IS GREAT HERE)

It should double all the numbers in the sentence, and it should replace “good” with
“great,” “bad” with “terrible,” and anything else you can think of.

* Exercise 14.5 in Part IV asks you to solve this same problem using recursion. Here we are
asking you to use higher-order functions. Whenever we pose the same problem in both parts, we’ll
crossreference them in brackets as we did here. When you see the problem for the second time,
you might want to consult your first solution for ideas.

Chapter 8§ Higher-Order Functions 123

8.9 What procedure can you use as the first argument to every so that for any sentence
used as the second argument, every returns that sentence?

What procedure can you use as the first argument to keep so that for any sentence used
as the second argument, keep returns that sentence?

What procedure can you use as the first argument to accumulate so that for any
sentence used as the second argument, accumulate returns that sentence?

8.10 Write a predicate true-for-all? that takes two arguments, a predicate proce-
dure and a sentence. It should return #t if the predicate argument returns true for every
word in the sentence.

> (true-for-all? even? (2 4 6 8))
#T

> (true-for-all? even? (2 6 3 4))
#F

8.11 [12.6] Write a GPA procedure. It should take a sentence of grades as its argument
and return the corresponding grade point average:

> (gpa '(A A+ B+ B))
3.67

Hint: write a helper procedure base-grade that takes a grade as argument and returns
0,1, 2, 3, or 4, and another helper procedure grade-modifier that returns —.33, 0, or
.33, depending on whether the grade has a minus, a plus, or neither.

8.12 [11.2] When you teach a class, people will get distracted if you say “um” too many
times. Write a count-ums that counts the number of times “um” appears in a sentence:

> (count-ums
'(today um we are going to um talk about functional um programming))

8.13 [11.3] Write a procedure phone-unspell that takes a spelled version of a phone
number, such as POPCORN, and returns the real phone number, in this case 7672676.
You will need to write a helper procedure that uses an 8-way cond expression to translate
a single letter into a digit.

124 Part Il Functions as Data

8.14 Write the procedure subword that takes three arguments: a word, a starting
position number, and an ending position number. It should return the subword
containing only the letters between the specified positions:

> (subword ’'polythene 5 8)
THEN

Chapter 8§ Higher-Order Functions 125

Alonzo Church
inventor of lambda calculus

9 Lambda

Let’s say we want to add three to each of the numbers in a sentence. Using the tools from
Chapter 8, we would do it like this:

(define (add-three number)
(+ number 3))

(define (add-three-to-each sent)
(every add-three sent))

> (add-three-to-each (1 9 9 2))
(4 12 12 5)

It’s slightly annoying to have to define a helper procedure add-three just so we can use
it as the argument to every. We’re never going to use that procedure again, but we still
have to come up with a name for it. We’d like a general way to say “here’s the function I
want you to use” without having to give the procedure a name. In other words, we want a
general-purpose procedure-generating procedure!

Lambda is the name of a special form that generates procedures. It takes some
information about the function you want to create as arguments and it returns the
procedure. It'll be easier to explain the details after you see an example.

(define (add-three-to-each sent)
(every (lambda (number) (+ number 3)) sent))

> (add-three-to-each (1 9 9 2))
(4 12 12 5)

127

The first argument to every is, in effect, the same procedure as the one we called
add-three earlier, but now we can use it without giving it a name. (Don’t make the
mistake of thinking that 1ambda is the argument to every. The argument is the procedure
returned by lambda.)

Perhaps you’re wondering whether “lambda” spells something backward. Actually,
it’s the name of the Greek letter L, which looks like this: A. It would probably be
more sensible if 1ambda were named something like make-procedure, but the name
lambda is traditional.*

Creating a procedure by using lambda is very much like creating one with define,
as we’ve done up to this point, except that we don’t specify a name. When we create
a procedure with define, we have to indicate the procedure’s name, the names of its
arguments (i.e., the formal parameters), and the expression that it computes (its body).
With lambda we still provide the last two of these three components.

As we said, lambda is a special form. This means, as you remember, that its
arguments are not evaluated when you invoke it. The first argument is a sentence
containing the formal parameters; the second argument is the body. What lambda
returns is an unnamed procedure. You can invoke that procedure:

> ((lambda (a b) (+ (* 2 a) b)) 5 6)
16

> ((lambda (wd) (word (last wd) (first wd))) ’impish)
HI

In real life, though, you’re not likely to create a procedure with lambda merely
to invoke it once. More often, we use lambda as in the first example in this chapter,
to provide a procedure as argument to a higher-order function. Here are some more
examples:

> (every (lambda (wd) (se (first wd) wd (last wd)))
’(only a northern song))
(O ONLY Y A A A N NORTHERN N S SONG G)

* It comes from a branch of mathematical logic called “lambda calculus” that’s about the
formal properties of functions. The inclusion of first-class functions in Lisp was inspired by this
mathematical work, so Lisp borrowed the name lambda.

128 Part Il Functions as Data

> (keep (lambda (n) (member? 9 n)) ‘(4 81 909 781 1969 1776))
(909 1969)

> (accumulate (lambda (this that)
(if (> (count this) (count that)) this that))
'(wild honey pie))
HONEY

> (keep (lambda (person) (member? person ’'(john paul george ringo)))
' (mick smokey paul diana bill geddy john yoko keith reparata))
(PAUL JOHN)

> (keep (lambda (person) (member? ‘e person))
' (mick smokey paul diana bill geddy john yoko keith reparata))
(SMOKEY GEDDY KEITH REPARATA)

Procedures That Return Procedures

An even more powerful use of 1ambda is to provide the value returned by some procedure
that you write. Here’s the classic example:

(define (make-adder num)
(lambda (x) (+ x num)))

> ((make-adder 4) 7)
11

> (every (make-adder 6) ‘(2 4 8))
(8 10 14)

The value of the expression (make-adder 4) is a procedure, not a number. That
unnamed procedure is the one that adds 4 to its argument. We can understand this by
applying the substitution model to make-adder. We substitute 4 for num in the body of
make-adder; we end up with

(lambda (x) (+ x 4))

and then we evaluate that expression to get the desired procedure.

Here’s a procedure whose argument is a procedure:

(define (same-arg-twice fn)
(lambda (arg) (fn arg arg)))

Chapter 9 Lambda 129

> ((same-arg-twice word) ’'hello)
HELLOHELLO

> ((same-arg-twice *) 4)
16

When we evaluate (same-arg-twice word) we substitute the procedure word
for the formal parameter f£n, and the result is

(lambda (arg) (word arg arg))

One more example:

(define (flip fn)
(lambda (a b) (fn b a)))

> ((flip -) 5 8)
3

> ((flip se) ’'goodbye ’hello)
(HELLO GOODBYE)

The Truth about Define

Remember how we said that creating a procedure with lambda was a lot like creating a
procedure with define? That’s because the notation we’ve been using with define is
an abbreviation that combines two activities: creating a procedure and giving a name to
something.

As you saw in Chapter 7, define’s real job is to give a name to some value:
> (define pi 3.141592654)

> (* pi 10)
31.41592654

> (define drummer ' (ringo starr))

> (first drummer)
RINGO

130 Part Il Functions as Data

When we say

(define (square x) (* x X))
it’s actually an abbreviation for

(define square (lambda (x) (* x X)))

In this example, the job of 1lambda is to create a procedure that multiplies its argument
by itself; the job of define is to name that procedure square.

In the past, without quite saying so, we’ve talked as if the name of a procedure were
understood differently from other names in a program. In thinking about an expression
such as

(* x x)

we’ve talked about substituting some actual value for the x but took the * for granted as
meaning the multiplication function.

The truth is that we have to substitute a value for the * just as we do for the x. It just
happens that * has been predefined to have the multiplication procedure as its value.
This definition of * is global, like the definition of pi above. “Global” means that it’s
not a formal parameter of a procedure, like x in square, but has a permanent value
established by define.

When an expression is evaluated, every name in the expression must have some
value substituted for it. If the name is a formal parameter, then the corresponding actual
argument value is substituted. Otherwise, the name had better have a global definition,
and that value is substituted. It just so happens that Scheme has predefined a zillion
names before you start working, and most of those are names of primitive procedures.

(By the way, this explains why when you make a typing mistake in the name of
a procedure you might see an error message that refers to variables, such as “variable
frist not bound.” You might expect it to say “frist is not a procedure,” but the
problem is no different from that of any other name that has no associated value.)

Now that we know the whole truth about define, we can use it in combination with
the function-creating functions in these past two chapters.

> (define square (same-arg-twice *))

> (square 7)
49

Chapter 9 Lambda 131

> (define fourth-power (repeated square 2))

> (fourth-power 5)
625

The Truth about Let

In Chapter 7 we introduced let as an abbreviation for the situation in which we would
otherwise define a helper procedure in order to give names to commonly-used values in
a calculation. We started with

(define (roots a b c)
(rootsl a b ¢ (sqgrt (- (* b b) (* 4 a c)))))

(define (rootsl a b ¢ discriminant)
(se (/ (+ (- b) discriminant) (* 2 a))
(/ (- (- b) discriminant) (* 2 a))))

and introduced the new notation

(define (roots a b c)
(let ((discriminant (sqgrt (- (* b b) (* 4 a c)))))
(se (/ (+ (- b) discriminant) (* 2 a))
(/ (- (- b) discriminant) (* 2 a)))))

to avoid creating an otherwise-useless named procedure. But now that we know about
unnamed procedures, we can see that let is merely an abbreviation for creating and
invoking an anonymous procedure:

(define (roots a b c)
((lambda (discriminant)
(se (/ (+ (- b) discriminant) (* 2 a))
(/ (= (- b) discriminant) (* 2 a))))
(sqrt (- (» b b) (» 4 a ¢)))))

What’s shown in boldface above is the part that invokes the procedure created by the
lambda, including the actual argument expression.

Just as the notation to define a procedure with parentheses around its name is an
abbreviation for a define and a lambda, the let notation is an abbreviation for a
lambda and an invocation.

132 Part Il Functions as Data

Name Conflicts

When a procedure is created inside another procedure, what happens if you use the same
formal parameter name in both?

(define (f x)
(lambda (x) (+ x 3)))

Answer: Don’t do it.

What actually happens is that the inner x wins; that’s the one that is substituted
into the body. But if you find yourself in this situation, you are almost certainly doing
something wrong, such as using nondescriptive names like x for your variables.

Named and Unnamed Functions

Although you’ve been running across the idea of function since high school algebra,
you’ve probably never seen an unnamed function until now. The high school function
notation, g(x) = 3x + 8, requires you to give the function a name (g in this case) when
you create it. Most of the functions you know, both in math and in programming, have
names, such as logarithm or first.*

When do you want to name a function, and when not? It may help to think about an
analogy with numbers. Imagine if every Scheme number had to have a name before you
could use it. You’d have to say

(define three 3)
(define four 4)

>
>
> (+ three four)
7

This is analogous to the way we’ve dealt with procedures until now, giving each one a
name. Sometimes it’s much easier to use a number directly, and it’s silly to have to give it
a name.

But sometimes it isn’t silly. A common example that we’ve seen earlier is

* Professional mathematicians do have a notation for unnamed functions, by the way. They
write (x1— 3x+8).

Chapter 9 Lambda 133

(define pi 3.141592654)

(define (circle-area radius)
(* pi radius radius))

(define (circumference radius)
(* 2 pi radius))

(define (sphere-surface-area radius)
(* 4 pi radius radius))

(define (sphere-volume radius)
(* (/ 4 3) pi radius radius radius))

If we couldn’t give a name to the number 3.141592654, then we’d have to type it over
and over again. Apart from the extra typing, our programs would be harder to read and
understand. Giving Ta name makes the procedures more self-documenting. (That is,
someone else who reads our procedures will have an easier time understanding what we
meant.)

It’s the same with procedures. If we’re going to use a procedure more than once,
and if there’s a meaningful name for it that will help clarify the program, then we define
the procedure with define and give it a name.

(define (square x) (* x X))

Square deserves a name both because we use it often and because there is a good
traditional name for it that everyone understands. More important, by giving square
a name, we are shifting attention from the process by which it works (invoking the
multiplication procedure) to its purpose, computing the square of a number. From now
on we can think about squaring as though it were a Scheme primitive. This idea of
naming something and forgetting the details of its implementation is what we’ve been
calling “abstraction.”

On the other hand, if we have an unimportant procedure that we’re using only once,
we might as well create it with 1lambda and without a name.

> (every (lambda (x) (last (bl x))) ’‘(all together now))
(L E O)

We could have defined this procedure with the name next-to-1last, but if we’re never
going to use it again, why bother?

134 Part Il Functions as Data

Here’s an example in which we use an obscure unnamed function to help us define
one that’s worth naming:

(define (backwards wd) (accumulate (lambda (a b) (word b a)) wd))

> (backwards ’yesterday)
YADRETSEY

> (every backwards ’'(i saw her standing there))
(I WAS REH GNIDNATS EREHT)

Pitfalls

O It’s very convenient that define has an abbreviated form to define a procedure
using a hidden lambda, but because there are two notations that differ only subtly—one
has an extra set of parentheses—you could use the wrong one by mistake. If you say

(define (pi) 3.141592654)

you’re not defining a variable whose value is a number. Instead the value of pi will be a
procedure. It would then be an error to say

(* 2 pi)

U When should the body of your procedure be a 1ambda expression? It’s easy to go
overboard and say “I'm writing a procedure so I guess I need lambda” even when the
procedure is supposed to return a word.

The secret is to remember the ideas of domain and range that we talked about
in Chapter 2. What is the range of the function you're writing? Should it return a
procedure? If so, its body might be a lambda expression. (It might instead be an
invocation of a higher-order procedure, such as repeated, that returns a procedure.)
If your procedure doesn’t return a procedure, its body won’t be a 1ambda expression.
(Of course your procedure might still use a 1lambda expression as an argument to some
other procedure, such as every.)

For example, here is a procedure to keep the words of a sentence that contain the
letter h. The domain of the function is sentences, and its range is also sentences. (That
is, it takes a sentence as argument and returns a sentence as its value.)

Chapter 9 Lambda 135

(define (keep-h sent)
(keep (lambda (wd) (member? ’'h wd)) sent))

By contrast, here is a function of a letter that returns a procedure to keep words containing
that letter.

(define (keeper letter)
(lambda (sent)
(keep (lambda (wd) (member? letter wd)) sent)))

The procedure keeper has letters as its domain and procedures as its range. The
procedure returned by keeper has sentences as its domain and as its range, just as
keep-h does. In fact, we can use keeper to define keep-h:

(define keep-h (keeper 'h))

O Don’t confuse the creation of a procedure with the invocation of one. Lambda
creates a procedure. The procedure is invoked in response to an expression whose
first subexpression represents that procedure. That is, the first subexpression could be
the name of the procedure, or it could be a 1ambda expression if you want to create a
procedure and invoke it right away:

((lambda (x) (+ x 3)) 6)

In particular;, when you create a procedure, you specify its formal parameters—the
names for its arguments. When you invoke the procedure, you specify values for those
arguments. (In this example, the lambda expression includes the formal parameter x,
but the invocation provides the actual argument 6.)

Boring Exercises

9.1 What will Scheme print? Figure it out yourself before you try it on the computer.
> (lambda (x) (+ (* x 3) 4))

> ((lambda (x) (+ (* x 3) 4)) 10)

> (every (lambda (wd) (word (last wd) (bl wd)))
'(any time at all))

136 Part Il Functions as Data

> ((lambda (x) (+ x 3)) 10 15)

9.2 Rewrite the following definitions so as to make the implicit 1ambda explicit.

(define (second stuff)
(first (bf stuff)))

(define (make-adder num)
(lambda (x) (+ num x)))

9.3 What does this procedure do?

(define (let-it-be sent)
(accumulate (lambda (x y) y) sent))

Real Exercises

9.4 The following program doesn’t work. Why not? Fix it.

(define (who sent)
(every describe '’ (pete roger john keith)))

(define (describe person)
(se person sent))

It’s supposed to work like this:

> (who ’'(sells out))
(pete sells out roger sells out john sells out keith sells out)

In each of the following exercises, write the procedure in terms of lambda and
higher-order functions. Do not use named helper procedures. If you've read Part IV,
don’t use recursion, either.

9.5 Write prepend-every:

> (prepend-every ‘s ’‘(he aid he aid))
(SHE SAID SHE SAID)

> (prepend-every ’‘anti ’(dote pasto gone body))
(ANTIDOTE ANTIPASTO ANTIGONE ANTIBODY)

Chapter 9 Lambda 137

9.6 Write a procedure sentence-version that takes a function F as its argument
and returns a function G. F should take a single word as argument. G should take a
sentence as argument and return the sentence formed by applying F to each word of that
argument.

> ((sentence-version first) ‘(if i fell))
(I IF)

> ((sentence-version square) ‘(8 2 4 6))
(64 4 16 36)

9.7 Write a procedure called letterwords that takes as its arguments a letter and a
sentence. It returns a sentence containing only those words from the argument sentence
that contain the argument letter:

> (letterwords ‘o ’'(got to get you into my life))
(GOT TO YOU INTO)

9.8 Suppose we’re writing a program to play hangman. In this game one player has
to guess a secret word chosen by the other player, one letter at a time. You're going
to write just one small part of this program: a procedure that takes as arguments the
secret word and the letters guessed so far, returning the word in which the guessing
progress is displayed by including all the guessed letters along with underscores for the
not-yet-guessed ones:

> (hang ’'potsticker ’‘etaoi)
—-OT_TI__E_-

Hint: You’ll find it helpful to use the following procedure that determines how to display
a single letter:

(define (hang-letter letter guesses)
(if (member? letter guesses)
letter
=))

9.9 Write a procedure common-words that takes two sentences as arguments and
returns a sentence containing only those words that appear both in the first sentence and
in the second sentence.

138 Part Il Functions as Data

9.10 In Chapter 2 we used a function called appearances that returns the number
of times its first argument appears as a member of its second argument. Implement
appearances.

9.11 Write a procedure unabbrev that takes two sentences as arguments. It should
return a sentence that’s the same as the first sentence, except that any numbers in the
original sentence should be replaced with words from the second sentence. A number 2
in the first sentence should be replaced with the second word of the second sentence, a
6 with the sixth word, and so on.

> (unabbrev ’(john 1 wayne fred 4) ’'(bill hank kermit joey))
(JOHN BILL WAYNE FRED JOEY)

> (unabbrev ‘(i 3 4 tell 2) ’(do you want to know a secret?))
(I WANT TO TELL YOU)

9.12 Write a procedure first-last whose argument will be a sentence. It should
return a sentence containing only those words in the argument sentence whose first and
last letters are the same:

> (first-last ’'(california ohio nebraska alabama alaska massachusetts))
(OHIO ALABAMA ALASKA)

9.13 Write a procedure compose that takes two functions f and g as arguments. It
should return a new function, the composition of its input functions, which computes
f(g(x)) when passed the argument x.

\

((compose sqgrt abs) -25)

> (define second (compose first bf))

> (second ' (higher order function))
ORDER

9.14 Write a procedure substitute that takes three arguments, two words and a
sentence. It should return a version of the sentence, but with every instance of the
second word replaced with the first word:

> (substitute ’'maybe ’'yeah ’'(she loves you yeah yeah yeah))
(SHE LOVES YOU MAYBE MAYBE MAYBE)

Chapter 9 Lambda 139

9.15 Many functions are applicable only to arguments in a certain domain and result in
error messages if given arguments outside that domain. For example, sqrt may require
a nonnegative argument in a version of Scheme that doesn’t include complex numbers.
(In any version of Scheme, sqrt will complain if its argument isn’t a number at all!)
Once a program gets an error message, it’s impossible for that program to continue the
computation.

Write a procedure type-check that takes as arguments a one-argument procedure £
and a one-argument predicate procedure pred. Type-check should return a one-
argument procedure that first applies pred to its argument; if that result is true, the
procedure should return the value computed by applying f to the argument; if pred
returns false, the new procedure should also return #£:

> (define safe-sqrt (type-check sqgrt number?))

> (safe-sqgrt 16)
4

> (safe-sqrt ’sarsaparilla)
#F

9.16 In the language APL, most arithmetic functions can be applied either to a number,
with the usual result, or to a vector—the APL name for a sentence of numbers—in which
case the resultis a new vector in which each element is the result of applying the function
to the corresponding element of the argument. For example, the function sgrt applied
to 16 returns 4 as in Scheme, but sqrt can also be applied to asentence such as (16 49)
and it returns (4 7).

Write a procedure aplize that takes as its argument a one-argument procedure whose
domain is numbers or words. It should return an APLized procedure that also accepts
sentences:

> (define apl-sqrt (aplize sqrt))

> (apl-sqgrt 36)
6

> (apl-sqgrt ‘(1 100 25 16))
(1 10 5 4)

9.17 Write keep in terms of every and accumulate.

140 Part Il Functions as Data

Project: Scoring Bridge Hands

At the beginning of a game of bridge, each player assigns a value to his or her hand
by counting points. Bridge players use these points in the first part of the game, the
“bidding,” to decide how high to bid. (A bid is a promise about how well you’ll do in the
rest of the game. If you succeed in meeting your bid you win, and if you don’t meet the
bid, you lose.) For example, if you have fewer than six points, you generally don’t bid
anything at all.

You're going to write a computer program to look at a bridge hand and decide how
many points it’s worth. You won’t have to know anything about the rest of the game; we’ll
tell you the rules for counting points.

A bridge hand contains thirteen cards. Each ace in the hand is worth four points,
each king is worth three points, each queen two points, and each jack one. The other
cards, twos through tens, have no point value. So if your hand has two aces, a king, two
jacks, and eight other cards, it’s worth thirteen points.

A bridge hand might also have some “distribution” points, which are points having
to do with the distribution of the thirteen cards among the four suits. If your hand has
only two cards of a particular suit, then it is worth an extra point. Ifit has a “singleton,”
only one card of a particular suit, that’s worth two extra points. A “void,” no cards in a
particular suit, is worth three points.

In our program, we’ll represent a card by a word like h5 (five of hearts) or dk (king
of diamonds).* A hand will be a sentence of cards, like this:

* Why not 5h? Scheme words that begin with a digit but aren’t numbers have to be surrounded
with double-quote marks. Putting the suit first avoids that.

141

(sa s10 s7 s6 s2 hg hj h9 ck c4 dk d9 d3)

This hand is worth 14 points: ace of spades (4), plus queen of hearts (2), plus jack
of hearts (1), plus king of clubs (3), plus king of diamonds (3), plus one more for having
only two clubs.

To find the suit of a card, we take its first, and to find the rank, we take the
butfirst. (Why not the last?)

We have a particular program structure in mind. We’ll describe all of the procedures
you need to write; if you turn each description into a working procedure, then you
should have a complete program. In writing each procedure, take advantage of the ones
you’ve already written. Our descriptions are ordered bottom-up, which means that for each
procedure you will already have written the helper procedures you need. (This ordering
will help you write the project, but it means that we’re beginning with small details. If
we were describing a project to help you understand its structure, we’d do it in top-down
order, starting with the most general procedures. We’ll do that in the next chapter, in
which we present a tic-tac-toe program as a larger Scheme programming example.)

Card-val

Write a procedure card-val that takes a single card as its argument and returns the
value of that card.

> (card-val ’cq)
2

> (card-val ’s7)
0

> (card-val ’ha)
4

High-card-points

Write a procedure high-card-points that takes a hand as its argument and returns
the total number of points from high cards in the hand. (This procedure does not count
distribution points.)

142 Part Il Functions as Data

> (high-card-points ’(sa s10 hg ck c4))
9

> (high-card-points ’'(sa s10 s7 s6 s2 hg hj h9 ck c4 dk d9 d3))
13

Count-suit

Write a procedure count-suit that takes a suit and a hand as arguments and returns
the number of cards in the hand with the given suit.

> (count-suit ’'s ‘(sa sl0 hg ck c4))

2

> (count-suit ‘c ‘(sa sl0 s7 s6 s2 hg hj h9 ck c4 dk d9 d3))
2

> (count-suit ’'d ’(h3 d7 sk s3 cl0 dg d8 s9 s4 d10 c7 d4 s2))
5

Suit-counts

Write a procedure suit-counts that takes a hand as its argument and returns a
sentence containing the number of spades, the number of hearts, the number of clubs,
and the number of diamonds in the hand.

> (suit-counts ‘(sa sl1l0 hg ck c4))
(2 120)

> (suit-counts ’(sa s10 s7 s6 s2 hg hj h9 ck c4 dk d9 d3))
(5 3 2 3)

> (suit-counts ‘' (h3 d7 sk s3 cl0 dg d8 s9 s4 dl0 c7 d4 s2))
(51 25)

Suit-dist-points

Write suit-dist-points that takes a number as its argument, interpreting it as the

Project: Scoring Bridge Hands 143

number of cards in a suit. The procedure should return the number of distribution
points your hand gets for having that number of cards in a particular suit.

\

(suit-dist-points 2)

\

(suit-dist-points 7)

\

(suit-dist-points 0)

Hand-dist-points

Write hand-dist-points, which takes a hand as its argument and returns the number
of distribution points the hand is worth.

> (hand-dist-points ’'(sa s10 s7 s6 s2 hg hj h9 ck c4 dk d9 d3))
1

> (hand-dist-points ’(h3 d7 sk s3 cl0 dg d8 s9 s4 d10 c7 d4 s2))
3

Bridge-val

Write a procedure bridge-val that takes a hand as its argument and returns the total
number of points that the hand is worth.

> (bridge-val ’(sa sl1l0 s7 s6 s2 hg hj h9 ck c4 dk d9 d3))
14

> (bridge-val ’'(h3 d7 sk s3 cl1l0 dg d8 s9 s4 dl0 c7 d4 s2))
8

144 Part Il Functions as Data

oo S
©% o o
a w_\o _,
Lo ®/
. A zwoﬁ%@a 3 *

olle

This computer, built of Tinker-Toy parts, plays tic-tac-toe.

10 Example: Tic-Tac-Toe

Now that you’ve learned about higher-order functions, we’re going to look at a large
example that uses them extensively. Using the techniques you’ve learned so far, we're
going to write a program that plays perfect tic-tac-toe.

You can load our program into Scheme by typing

(load "ttt.scm")

(See Appendix A if this doesn’t work for you.)

A Warning

Programs don’t always come out right the first time. One of our goals in this chapter is to
show you how a program is developed, so we’re presenting early versions of procedures.
These include some mistakes that we made, and also some after-the-fact simplifications
to make our explanations easier. If you type in these early versions, they won’t work. We
will show you how we corrected these “bugs” and also will present a complete, correct
version at the end of the chapter.

To indicate the unfinished versions of procedures, we’ll use comments like “first
version” or “not really part of game.”

Technical Terms in Tic-Tac-Toe

We’ll number the squares of the board this way:

147

N N
[osliex{ o}
|| o

We’ll call a partially filled-in board a “position.”

o
X0
X X

To the computer; the same position will be represented by the word ——o_xox_x.
The nine letters of the word correspond to squares one through nine of the board.
(We’re thinking ahead to the possibility of using item to extract the nth square of a given
position.)

Thinking about the Program Structure

Our top-level procedure, ttt, will return the computer’s next move given the current
position. It takes two arguments: the current position and whether the computer is
playing X or O. If the computer is O and the board looks like the one above, then we’d
invoke ttt like this:

(ttt '——o—x0x-xX '0)

Here is a sample game:

> (ttt X '0) ; Human goes first in square 5
1 ; Computer moves in square 1

> (ttt '0——XXe—ea '0) ; Human moves in square 4

6 ; Computer blocks in square 6
> (ttt '0-xXXX0——- '0) ; Human moves in square 3

7 ; Computer blocks again

> (ttt 'o-xxxoox- '0)

2

This is not a complete game program! Later, when we talk about input and output,
you’ll see how to write an interactive program that displays the board pictorially, asks the
player where to move, and so on. For now, we’ll just write the strategy procedure that
chooses the next move. As a paying customer, you wouldn’t be satisfied with this partial
program, but from the programmer’s point of view, this is the more interesting part.

148 Part Il Functions as Data

Let’s plan the computer’s strategy in English before we start writing a computer
program. How do you play tic-tac-toe? You have several strategy rules in your head,
some of which are more urgent than others. For example, if you can win on this move,
then you just do it without thinking about anything else. But if there isn’t anything that
immediate, you consider less urgent questions, such as how this move might affect what
happens two moves later.

So we’ll represent this set of rules by a giant cond expression:

(define (ttt position me) ;; first version
(cond ((i-can-win?)
(choose-winning-move))
((opponent-can-win?)
(block-opponent-win))
((i-can-win-next-time?)
(prepare-win))
(else (whatever))))

We’re imagining many helper procedures. I-can-win? will look at the board and
tell if the computer has an immediate winning move. If so, choose-winning-move will
find that particular move. Opponent-can-win? returns true if the human player has
an immediate winning move. Block-opponent-win will return a move that prevents
the computer’s opponent from winning, and so on.

We didn’t actually start by writing this definition of ttt. The particular names of
helper procedures are just guesses, because we haven’t yet planned the tic-tac-toe strategy
in detail. But we did know that this would be the overall structure of our program. This
big picture doesn’t automatically tell us what to do next; different programmers might
fill in the details differently. But it’s a framework to keep in mind during the rest of the
job.

Our first practical step was to think about the data structures in our program. A
data structure is a way of organizing several pieces of information into a big chunk. For
example, a sentence is a data structure that combines several words in a sequence (that
is, in left-to-right order).

In the first, handwavy version of ttt, the strategy procedures like i—-can-win? are
called with no arguments, but of course we knew they would need some information
about the board position. We began by thinking about how to represent that information
within the program.

Chapter 10 Example: Tic-Tac-Toe 149

The First Step: Triples

A person looking at a tic-tac-toe board looks at the rows, columns, and diagonals. The
question “do I have a winning move?” is equivalent to the question “are there three
squares in a line such that two of them are mine and the last one is blank?” In fact,
nothing else matters about the game besides these potential winning combinations.

There are eight potential winning combinations: three rows, three columns, and
two diagonals. Consider the combination containing the three squares 1, 5, and 9. If
it contains both an x and an o then nobody can win with this combination and there’s
nothing to think about. But if it contains two Xs and a free square, we’re very interested
in the combination. What we want to know in particular is which square is free, since we
want to move in that square to win or block.

More generally, the only squares whose numbers we care about are the ones we might
want to move into, namely, the free ones. So the only interesting information about a
square is whether it has an x or an o, and if not, what its number is.

The information that 1, 5, 9 is a potential winning combination and the information
that square 1 contains an x, square 5 is empty, and square 9 contains another x can be
combined into the single word x5x. Looking at this word we can see immediately that
there are two xs in this “triple” and that the free square is square 5. So when we want to
know about a three-square combination, we will turn it into a triple of that form.

Here’s a sample board position:

X0

and here is a sentence of all of its triples:

(1xo 4x6 089 140 xx8 069 1x9 oxo)

Take a minute to convince yourself that this sentence really does tell you everything
you need to know about the corresponding board position. Once our strategy procedure
finds the triples for a board position, it’s never going to look at the original position
again.

This technique of converting data from one form to another so that it can be
manipulated more easily is an important idea in computer science. There are really three
representations of the same thing. There’s this picture:

150 Part III - Functions as Data

as well as the word —xo-x—o—— and the sentence (1xo 4x6 089 140 xx8 069 1x9
oxo). All three of these formats have the same information but are convenient in
different ways. The pictorial form is convenient because it makes sense to the person
who’s playing tic-tac-toe. Unfortunately, you can’t type that picture into a computer, so
we need a different format, the word —_xo_x—_o—_, which contains the conients of the
nine squares in the picture, but without the lines separating the squares and without the
two-dimensional shape.

The third format, the sentence, is quite inconvenient for human beings. You’d never
want to think about a tic-tac-toe board that way yourself, because the sentence doesn’t
have the visual simplicity that lets you take in a tic-tac-toe position at a glance. But the
sentence of triples is the most convenient representation for our program. Ttt will
have to answer questions like “can x win on the next move?” To do that, it will have
to consider an equivalent but more detailed question: “For each of the eight possible
winning combinations, can x complete that combination on the next move?” It doesn’t
really matter whether a combination is a row or a column; what does matter is that each of
the eight combinations be readily available for inspection by the program. The sentence-
of-triples representation obscures part of the available information (which combination
is where) to emphasize another part (making the eight combinations explicit, instead of
implicit in the nine boxes of the diagram).

The representation of fractions as “mixed numerals,” such as 2%, and as “improper
fractions,” such as %, is a non-programming example of this idea about multiple repre-
sentations. A mixed numeral makes it easier for a person to tell how big the number is,
but an improper fraction makes arithmetic easier.

Finding the Triples

We said that we would combine the current board position with the numbers of the
squares in the eight potential winning combinations in order to compute the things we’'re
calling triples. That was our first task in writing the program.

Our program will start with this sentence of all the winning combinations:

(123 456 789 147 258 369 159 357)

Chapter 10 Example: Tic-Tac-Toe 151

and a position word such as —xo_x—o—_; it will return a sentence of triples such as

(1xo 4x6 089 140 xx8 069 1x9 oxo)

All that’s necessary is to replace some of the numbers with xs and os. This kind of
word-by-word translation in a sentence is a good job for every.

(define (find-triples position) ;; first version
(every substitute-triple ' (123 456 789 147 258 369 159 357)))

We’ve made up a name substitute-triple for a procedure we haven’t written
yet. This is perfectly OK, as long as we write it before we try to invoke find-triples.
The substitute-triple function will take three digits, such as 258, and return a
triple, such as 2x8:

(define (substitute-triple combination) ;; first version
(every substitute-letter combination))

This procedure uses every to call substitute-letter on all three letters.

There’s a small problem, though. Every always returns a sentence, and we want
our triple to be a word. For example, we want to turn the potential winning combination
258 into the word 2x8, but every would return the sentence (2 x 8). So here’s our
next version of substitute-triple:

(define (substitute-triple combination) ;; second version
(accumulate word (every substitute-letter combination)))

Substitute-letter knows that letter number 3 of the word that represents the
board corresponds to the contents of square 3 of the board. This means that it can just
call itemwith the given square number and the board to find out what’s in that square.
If it’s empty, we return the square number itself; otherwise we return the contents of the
square.

(define (substitute-letter square) ;; first version
(if (equal? ’'— (item square position))
square

(item square position)))

Whoops! Do you see the problem?

152 Part Il Functions as Data

> (substitute-letter 5)
ERROR: Variable POSITION is unbound.

Using Every with Two-Argument Procedures

Our procedure only takes one argument, square, but it needs to know the position so it
can find out what’s in the given square. So here’s the real substitute-letter:

(define (substitute-letter square position)
(if (equal? ’'— (item square position))
square
(item square position)))

> (substitute-letter 5 ’'_x0-_xX-0--)
X

> (substitute-letter 8 ’'_xo-x-0--)
8

Now substitute-letter can do its job, since it has access to the position. But
we’ll have to modify substitute-triple to invoke substitute-letter with two
arguments.

This is a little tricky. Let’s look again at the way we're using substitute-letter
inside substitute-triple:

(define (substitute-triple combination) ;; second version again
(accumulate word (every substitute-letter combination)))

By giving substitute-letter another argument, we have made this formerly correct
procedure incorrect. The first argument to every must be a function of one argument,
not two. This is exactly the kind of situation in which lambda can help us: We have a
function of two arguments, and we need a function of one argument that does the same
thing, but with one of the arguments fixed.

The procedure returned by

(lambda (square) (substitute-letter square position))

does exactly the right thing; it takes a square as its argument and returns the contents of
the position at that square.

Chapter 10 Example: Tic-Tac-Toe 153

Here’s the final version of substitute-triple:

(define (substitute-triple combination position)
(accumulate word
(every (lambda (square)
(substitute-letter square position))
combination)))

> (substitute-triple 456 ’'_xX0-X-0--)
ll4X6ll

> (substitute-triple 147 ’'_xX0-X-0--)
" 140"

> (substitute-triple 357 ’'_xX0-X-0--)
0OXO

As you can see, Scheme prints some of these words with double-quote marks. The rule is
that a word that isn’t a number but begins with a digit must be double-quoted. Butin the
finished program we’re not going to print such words at all; we’re just showing you the
working of a helper procedure. Similarly, in this chapter we’ll show direct invocations of
helper procedures in which some of the arguments are strings, but a user of the overall
program won’t have to use this notation.

We’ve fixed the substitute-letter problem by giving substitute-triple
an extra argument, so we're going to have to go through the same process with
find-triples. Here’s the right version:

(define (find-triples position)
(every (lambda (comb) (substitute-triple comb position))
'(123 456 789 147 258 369 159 357)))

It’s the same trick. Substitute-triple is a procedure of two arguments. We use
lambda to transform it into a procedure of one argument for use with every.

We’ve now finished find-triples, one of the most important procedures in the
game.

> (find-triples ’'-_xX0-X-0--)
("1X0" "4X6" 089 "140" XX8 069 "1X9" 0XO)

> (find-triples ’"Xe———— 0XO0)
(X23 456 OXO X40 "25X" "360" X50 "350")

154 Part Il Functions as Data

Here again are the jobs of all three procedures we’ve written so far:

Substitute-letter finds the letter in a single square.
Substitute-triple findsall three letters corresponding to three squares.
Find-triples finds all the letters in all eight winning combinations.

We’ve done all this because we think that the rest of the program can use the
triples we’ve computed as data. So we’ll just compute the triples once for all the other
procedures to use:

(define (ttt position me)
(ttt-choose (find-triples position) me))

(define (ttt-choose triples me) ;; first version
(cond ((i-can-win? triples me)
(choose-winning-move triples me))
((opponent-can-win? triples me)
(block-opponent-win triples me))

)

Can the Computer Win on This Move?

The obvious next step is to write i-can-win?, a procedure that should return #t if the
computer can win on the current move—that is, if the computer already has two squares
of a triple whose third square is empty. The triples x6x and oo7 are examples.

So we need a function that takes a word and a letter as arguments and counts how
many times that letter appears in the word. The appearances primitive that we used in
Chapter 2 (and that you re-implemented in Exercise 9.10) will do the job:

> (appearances ‘o '007)
2

\

(appearances ’'x '007)

The computer “owns” a triple if the computer’s letter appears twice and the
opponent’s letter doesn’t appear at all. (The second condition is necessary to exclude
cases like xxo0.)

Chapter 10 Example: Tic-Tac-Toe 155

(define (my-pair? triple me)
(and (= (appearances me triple) 2)
(= (appearances (opponent me) triple) 0)))

Notice that we need a function opponent that returns the opposite letter from ours.

(define (opponent letter)
(if (equal? letter ’'x) 'o ’'x))

> (opponent ’'x)
(0]

> (opponent ’‘0)
X

> (my-pair? ‘oo7 ’'0)
#T

> (my-pair? ’'xo7 ‘o)
#F

> (my-pair? ‘oox ‘o)
#F

Finally, the computer can win if it owns any of the triples:

(define (i-can-win? triples me) ;; first version
(not (empty?
(keep (lambda (triple) (my-pair? triple me))
triples))))

> (i-can-win? ’("1lxo" "4x6" 089 "1l40" xx8 069 "1x9" oxo) 'Xx)
#T

> (i-can-win? ’("1lxo" "4x6" 089 "l40" xx8 069 "1x9" oxo) '0O)
#F

By now you’re accustomed to this trick with lambda. My-pair? takes a triple and the
computer’s letter as arguments, but we want a function of one argument for use with
keep.

156 Part III - Functions as Data

If So, in Which Square?

Suppose i-can-win? returns #t. We then have to find the particular square that will
win the game for us. This will involve a repetition of some of the same work we’ve already
done:

(define (choose-winning-move triples me) ;7 not really part of game
(keep number? (first (keep (lambda (triple) (my-pair? triple me))
triples))))

We again use keep to find the triples with two of the computer’s letter, but this time we
extract the number from the first such winning triple.

We’d like to avoid this inefficiency. As it turns out, generations of Lisp programmers
have been in just this bind in the past, and so they’ve invented a kludge* to get around it.

Remember we told you that everything other than #£f counts as true? We’ll take
advantage of that by having a single procedure that returns the number of a winning
square if one is available, or #f otherwise. In Chapter 6 we called such a procedure
a “semipredicate.” The kludgy part is that cond accepts a clause containing a single
expression instead of the usual two expressions; if the expression has any true value, then
cond returns that value. So we can say

(define (ttt-choose triples me) ;; second version
(cond ((i-can-win? triples me))
((opponent-can-win? triples me))

)

where each cond clause invokes a semipredicate. We then modify i—-can-win? to have
the desired behavior:

(define (i-can-win? triples me)
(choose-win
(keep (lambda (triple) (my-pair? triple me))
triples)))

* A kludge is a programming trick that doesn’t follow the rules but works anyway somehow. It

w@s

doesn’t thyme with “sludge”; it’s more like “clue” followed by “j” as in “Jim.”

Chapter 10 Example: Tic-Tac-Toe 157

(define (choose-win winning-triples)
(if (empty? winning-triples)
#f
(keep number? (first winning-triples))))

> (i-can-win? ’("1lxo" "4x6" 089 "1l40" xx8 069 "1x9" oxo) 'Xx)
8

> (i-can-win? ‘' ("1lxo" "4x6" 089 "1l40" xx8 069 "1x9" oxo) '0O)
#F

By this point, we’re starting to see the structure of the overall program. There will
be several procedures, similar to i-can-win?, that will try to choose the next move.
I-can-win? checks to see if the computer can win on this turn, another procedure
will check to see if the computer should block the opponent’s win next turn, and other
procedures will check for other possibilities. Each of these procedures will be what we’ve
been calling “semipredicates.” That is to say, each will return the number of the square
where the computer should move next, or #£ if it can’t decide. All that’s left is to figure
out the rest of the computer’s strategy and write more procedures like i—-can-win?.

Second Verse, Same as the First

Now it’s time to deal with the second possible strategy case: The computer can’t win on
this move, but the opponent can win unless we block a triple right now.

(What if the computer and the opponent both have immediate winning triples? In
that case, we’ve already noticed the computer’s win, and by winning the game we avoid
having to think about blocking the opponent.)

Once again, we have to go through the complicated business of finding triples that
have two of the opponent’s letter and none of the computer’s letter—but it’s already
done!

(define (opponent-can-win? triples me)
(i-can-win? triples (opponent me)))

> (opponent-can-win? ‘("1lxo" "4x6" 089 "1l40" xx8 069 "1x9" oxo) ’'X)
#F

> (opponent-can-win? ‘("1lxo" "4x6" 089 "1l40" xx8 069 "1x9" oxo) ‘o)
8

Is that amazing or what?

158 Part III - Functions as Data

Now the Strategy Gets Complicated

Since our goal here is to teach programming, rather than tic-tac-toe strategy, we're just
going to explain the strategy we use and not give the history of how we developed it.

The third step, after we check to see if either player can win on the next move, is to
look for a situation in which a move that we make now will give rise to two winning triples
next time. Here’s an example:

X |0
X

Neither x nor o can win on this move. But if the computer is playing x, moving
in square 4 or square 7 will produce a situation with two winning triples. For example,
here’s what happens if we move in square 7:

X |0
X

From this position, x can win by moving either in square 3 or in square 4. It’s o’s turn,
but o can block only one of these two possibilities. By contrast, if (in the earlier position)
X moves in square 3 or square 6, that would create a single winning triple for next time,
but o could block it.

In other words, we want to find (wo triples in which one square is taken by the
computer and the other two are free, with one free square shared between the two triples.
(In this example, we might find the two triples x47 and 3x7; that would lead us to move
in square 7, the one that these triples have in common.) We’ll call a situation like this a
“fork,” and we’ll call the common square the “pivot.” This isn’t standard terminology; we
just made up these terms to make it easier to talk about the strategy.

In order to write the strategy procedure i-can-fork? we assume that we’ll need
a procedure pivots that returns a sentence of all pivots of forks currently available
to the computer. In this board, 4 and 7 are the pivots, so the pivots procedure
would return the sentence (4 7). If we assume pivots, then writing i-can-fork? is
straightforward:

(define (i-can-fork? triples me)
(first-if-any (pivots triples me)))

Chapter 10 Example: Tic-Tac-Toe 159

(define (first-if-any sent)
(if (empty? sent)
#f
(first sent)))

Finding the Pivots

Pivots should return a sentence containing the pivot numbers. Here’s the plan. We’ll
start with the triples:

(x03 4x6 780 x47 ox8 360 xxo0 3x7)

We keep the ones that have an x and two numbers:

(4x6 x47 3x7)

We mash these into one huge word:

4x6x473x7

We sort the digits from this word into nine “buckets,” one for each digit:

(llll nn 3 44 v 6 77 "n» |lll)

We see that there are no ones or twos, one three, two fours, and so on. Now we can easily
see that four and seven are the pivot squares.

Let’s write the procedures to carry out that plan. Pivots has to find all the triples
with one computerowned square and two free squares, and then it has to extract the
square numbers that appear in more than one triple.

(define (pivots triples me)
(repeated-numbers (keep (lambda (triple) (my-single? triple me))
triples)))

(define (my-single? triple me)
(and (= (appearances me triple) 1)

(= (appearances (opponent me) triple) 0)))

> (my-single? "4x6" 'x)
#T

160 Part Il Functions as Data

> (my-single? ’'xo3 ’'x)
#F

> (keep (lambda (triple) (my-single? triple ’'x))
(find-triples ’'XO0——_X——_0))
("4X6" X47 "3X7")

My-single? is just like my-pair? except that it looks for one appearance of the letter
instead of two.

Repeated-numbers takes a sentence of triples as its argument and has to return a
sentence of all the numbers that appear in more than one triple.

(define (repeated-numbers sent)
(every first
(keep (lambda (wd) (>= (count wd) 2))
(sort-digits (accumulate word sent)))))

We’re going to read this procedure inside-out, starting with the accumulate and working
outward.

Why is it okay to accumulate word the sentence? Suppose that a number appears
in two triples. All we need to know is that number;, not the particular triples through
which we found it. Therefore, instead of writing a program to look through several triples
separately, we can just as well combine the triples into one long word, keep only the digits
of that word, and simply look for the ones that appear more than once.

> (accumulate word ' ("4x6" x47 "3x7"))
"4X6X473XT7"

We now have one long word, and we’re looking for repeated digits. Since this is
a hard problem, let’s start with the subproblem of finding all the copies of a particular
digit.

(define (extract-digit desired-digit wd)
(keep (lambda (wd-digit) (equal? wd-digit desired-digit)) wd))

> (extract-digit 7 "4x6x473x7")
77

> (extract-digit 2 "4x6x473x7")

Chapter 10 Example: Tic-Tac-Toe 161

Now we want a sentence where the first word is all the 1s, the second word is all the
2s, etc. We could do it like this:

(se (extract-digit 1 "4x6x473x7")
(extract-digit 2 "4x6x473x7")
(extract-digit 3 "4x6x473x7")
.Y)

but that wouldn’t be taking advantage of the power of computers to do that sort of
repetitious work for us. Instead, we’ll use every:

(define (sort-digits number-word)
(every (lambda (digit) (extract-digit digit number-word))
‘(123456 7829)))

Sort-digits takes a word full of numbers and returns a sentence whose first word
is all the ones, second word is all the twos, etc.*

> (sort-digits 123456789147258369159357)
(111 22 333 44 5555 66 777 88 999)

> (sort-digits "4x6x473x7")
(nn nn 3 44 nn 6 7 7 nn nn)

Let’s look at repeated-numbers again:

(define (repeated-numbers sent)
(every first
(keep (lambda (wd) (>= (count wd) 2))
(sort-digits (accumulate word sent)))))

> (repeated-numbers ’("4x6" x47 "3x7"))
(4 7)

> (keep (lambda (wd) (>= (count wd) 2))
’ (ll n nn 3 44 nn 6 77 nn nn))
(44 77)

> (every first (44 77))
(4 7)

* Brian thinks this is a kludge, but Matt thinks it’s brilliant and elegant.

162 Part Il Functions as Data

This concludes the explanation of pivots. Remember that i-can-fork? chooses
the first pivot, if any, as the computer’s move.

Taking the Offensive

Here’s the final version of ttt—-choose with all the clauses shown:

(define (ttt-choose triples me)

(cond ((i-can-win? triples me))
((opponent-can-win? triples me))
((i-can-fork? triples me))
((i-can-advance? triples me))

(else (best-free-square triples))))

You already know about the first three possibilities.

Just as the second possibility was the “mirror image” of the first (blocking an
opponent’s move of the same sort the computer just attempted), it would make sense for
the fourth possibility to be blocking the creation of a fork by the opponent. That would
be easy to do:

(define (opponent-can-fork? triples me) ;7 not really part of game
(i-can-fork? triples (opponent me)))

Unfortunately, although the programming works, the strategy doesn’t. Maybe the
opponent has two potential forks; we can block only one of them. (Why isn’t that a
concern when blocking the opponent’s wins? It is a concern, but if we’ve allowed the
situation to reach the point where there are two ways the opponent can win on the next
move, it’s too late to do anything about it.)

Instead, our strategy is to go on the offensive. If we can get two in a row on this
move, then our opponent will be forced to block on the next move, instead of making a
fork. However, we want to make sure that we don’t accidentally force the opponent into
making a fork.

Let’s look at this board position again, but from o’s point of view:

X |0
X

Chapter 10 Example: Tic-Tac-Toe 163

X’s pivots are 4 and 7, as we discussed earlier; o couldn’t take both those squares. Instead,
look at the triples 369 and 789, both of which are singles that belong to o. So o should
move in one of the squares 3, 6, 7, or 8, forcing x to block instead of setting up the fork.
But o shouldn’t move in square 8, like this:

X |0
X
[ORe]

because that would force x to block in square 7, setting up a fork!

X |0
X
X|]O0|O0

The structure of the algorithm is much like that of the other strategy possibilities.
We use keep to find the appropriate triples, take the first such triple if any, and then
decide which of the two empty squares in that triple to move into.

(define (i-can-advance? triples me)
(best-move (keep (lambda (triple) (my-single? triple me)) triples)
triples
me))

(define (best-move my-triples all-triples me)
(if (empty? my-triples)
#f
(best-square (first my-triples) all-triples me)))

Best-move does the same job as first-if-any, which we saw earlier, except that it
also invokes best-square on the first triple if there is one.

Since we’ve already chosen the relevant triples before we get to best-move, you
may be wondering why it needs all the triples as an additional argument. The answer is
that best-square is going to look at the board position from the opponent’s point of
view to look for forks.

(define (best-square my-triple triples me)

(best-square-helper (pivots triples (opponent me))
(keep number? my-triple)))

164 Part Il Functions as Data

(define (best-square-helper opponent-pivots pair)
(if (member? (first pair) opponent-pivots)
(first pair)
(last pair)))

We keep the two numbers of the triple that we’ve already selected. We also select
the opponent’s possible pivots from among all the triples. If one of our two possible
moves is a potential pivot for the opponent, that’s the one we should move into, to block
the fork. Otherwise, we arbitrarily pick the second (last) free square.

> (best-square "780" (find-triples ’'X0——-X-—--0) '0O)
7

\

(best-square "360" (find-triples 'x0—__X——_0) '0O)

\

(best-move ’("780" "360") (find-triples 'xXO0—__X——_-0) '0O)

\

(i-can-advance? (find-triples ’'x0—--X---0) '0)

What if both of the candidate squares are pivots for the opponent? In that case, we’ve
picked a bad triple; moving in either square will make us lose. As it turns out, this can
occur only in a situation like the following:

If we chose the triple 307, then either move will force the opponent to set up a fork, so
that we lose two moves later. Luckily, though, we can instead choose a triple like 208. We
can move in either of those squares and the game will end up a tie.

In principle, we should analyze a candidate triple to see if both free squares create
forks for the opponent. But since we happen to know that this situation arises only
on the diagonals, we can be lazier. We just list the diagonals last in the procedure
find-triples. Since we take the first available triple, this ensures that we won’t take a
diagonal if there are any other choices.*

* Matt thinks this is a kludge, but Brian thinks it’s brilliant and elegant.

Chapter 10 Example: Tic-Tac-Toe 165

Leftovers

If all else fails, we just pick a square. However, some squares are better than others. The
center square is part of four triples, the corner squares are each part of three, and the
edge squares each a mere two.

So we pick the center if it’s free, then a corner, then an edge.

(define (best-free-square triples)
(first-choice (accumulate word triples)
‘(51379246 8)))

(define (first-choice possibilities preferences)
(first (keep (lambda (square) (member? square possibilities))
preferences)))

> (first-choice 123456789147258369159357 (5 1 3 7 9 2 4 6 8))

5

> (first-choice "1x04x6089140xx80691x90x0" (5 1 3 7 9 2 4 6 8))
1

> (best-free-square (find-triples '——m—me—————))

5

> (best-free-square (find-triples '————X———_))

1

Complete Program Listing

ttt.scm
Tic-Tac-Toe program

Y
rrir
Y
rrir

(define (ttt position me)
(ttt-choose (find-triples position) me))

(define (find-triples position)
(every (lambda (comb) (substitute-triple comb position))
"(123 456 789 147 258 369 159 357)))

(define (substitute-triple combination position)
(accumulate word
(every (lambda (square)
(substitute-letter square position))
combination)))

166 Part Il Functions as Data

(define (substitute-letter square position)
(if (equal? ’_ (item square position))
square
(item square position)))

(define (ttt-choose triples me)
(cond ((i-can-win? triples me))
((opponent-can-win? triples me))
((i-can-fork? triples me))
((i-can-advance? triples me))
(else (best-free-square triples))))

(define (i-can-win? triples me)
(choose-win
(keep (lambda (triple) (my-pair? triple me))
triples)))

(define (my-pair? triple me)
(and (= (appearances me triple) 2)
(= (appearances (opponent me) triple) 0)))

(define (opponent letter)
(if (equal? letter ’'x) ‘o 'X))

(define (choose-win winning-triples)
(if (empty? winning-triples)
#f
(keep number? (first winning-triples))))

(define (opponent-can-win? triples me)
(i-can-win? triples (opponent me)))

(define (i-can-fork? triples me)
(first-if-any (pivots triples me)))

(define (first-if-any sent)
(if (empty? sent)
#f
(first sent)))

(define (pivots triples me)

(repeated-numbers (keep (lambda (triple) (my-single? triple me))
triples)))

Chapter 10 Example: Tic-Tac-Toe 167

(define (my-single? triple me)
(and (= (appearances me triple) 1)
(= (appearances (opponent me) triple) 0)))

(define (repeated-numbers sent)
(every first
(keep (lambda (wd) (>= (count wd) 2))
(sort-digits (accumulate word sent)))))

(define (sort-digits number-word)
(every (lambda (digit) (extract-digit digit number-word))
‘'(12345672819)))

(define (extract-digit desired-digit wd)
(keep (lambda (wd-digit) (equal? wd-digit desired-digit)) wd))

(define (i-can-advance? triples me)
(best-move (keep (lambda (triple) (my-single? triple me)) triples)
triples
me))

(define (best-move my-triples all-triples me)
(if (empty? my-triples)
#f
(best-square (first my-triples) all-triples me)))

(define (best-square my-triple triples me)
(best-square-helper (pivots triples (opponent me))
(keep number? my-triple)))

(define (best-square-helper opponent-pivots pair)
(if (member? (first pair) opponent-pivots)
(first pair)
(last pair)))

(define (best-free-square triples)
(first-choice (accumulate word triples)
‘(51379246 8)))

(define (first-choice possibilities preferences)

(first (keep (lambda (square) (member? square possibilities))
preferences)))

168 Part Il Functions as Data

Exercises

10.1 The ttt procedure assumes that nobody has won the game yet. What happens
if you invoke ttt with a board position in which some player has already won? Try to
figure it out by looking through the program before you run it.

A complete tic-tac-toe program would need to stop when one of the two players wins.
Write a predicate already-won? that takes a board position and a letter (x or o) as its
arguments and returns #t if that player has already won.

10.2 The program also doesn’t notice when the game has ended in a tie, thatis, when all
nine squares are already filled. What happens now if you ask it to move in this situation?

Write a procedure tie-game? that returns #t in this case.

10.3 A real human playing tic-tac-toe would look at a board like this:

O|X|O
XX
X |0

(@]

and notice that it’s a tie, rather than moving in square 9. Modify tie-game? from
Exercise 10.2 to notice this situation and return #t.

(Can you improve the program’s ability to recognize ties even further? What about

boards with two free squares?)

10.4 Here are some possible changes to the rules of tic-tac-toe:

* What if you could win a game by having three squares forming an L shape in a corner,
such as squares 1, 2, and 4?

* What if the diagonals didn’t win?

* What if you could win by having four squares in a corner, such as 1, 2, 4, and 5?

Answer the following questions for each of these modifications separately: What would
happen if we tried to implement the change merely by changing the quoted sentence
of potential winning combinations in find-triples? Would the program successfully
follow the rules as modified?

10.5 Modify ttt to play chess.

Chapter 10 Example: Tic-Tac-Toe 169

Part IV
Recursion

By now you’re very familiar with the idea of implementing a function by composing other
functions. In effect we are breaking down a large problem into smaller parts. The idea of
recursion—as usual, it sounds simpler than it actually is—is that one of the smaller parts
can be the same function we are trying to implement.

At clothes stores they have arrangements with three mirrors hinged together. If you
keep the side mirrors pointing outward, and you’re standing in the right position, what
you see is just three separate images of yourself, one face-on and two with profile views.
But if you turn the mirrors in toward each other, all of a sudden you see what looks
like infinitely many images of yourself. That’s because each mirror reflects a scene that
includes an image of the mirror itself. This self-reference gives rise to the multiple images.

Recursion is the idea of self-reference applied to computer programs. Here’s an
example:
“I'm thinking of a number between 1 and 20.”
(Her number is between 1 and 20. I’ll guess the halfway point.) “10.”
“Too low.”
(Hmm, her number is between 11 and 20. I'll guess the halfway point.) “15.”
“Too high.”
(That means her number is between 11 and 14. I'll guess the halfway point.) “12.”

“Got it!”

We can write a procedure to do this:

170

(define (game low high)
(let ((guess (average low high)))
(cond ((too-low? guess) (game (+ guess 1) high))
((too-high? guess) (game low (- guess 1)))
(else (I win!)))))

This isn’t a complete program because we haven’t written too-low? and too-high?.
But it illustrates the idea of a problem that contains a version of itself as a subproblem:
We’re asked to find a secret number within a given range. We make a guess, and if it’s not
the answer, we use that guess to create another problem in which the same secret number
is known to be within a smaller range. The self-reference of the problem description is
expressed in Scheme by a procedure that invokes itself as a subprocedure.

Actually, this isn’t the first time we’ve seen self-reference in this book. We defined
“expression” in Chapter 3 self-referentially: An expression is either atomic or composed
of smaller expressions.

The idea of self-reference also comes up in some paradoxes: Is the sentence “This
sentence is false” true or false? (If it’s true, then it must also be false, since it says so; if
it’s false, then it must also be true, since that’s the opposite of what it says.) This idea
also appears in the self-referential shapes called fractals that are used to produce realistic-
looking waves, clouds, mountains, and coastlines in computer-generated graphics.

171

Print Gallery, by M. C. Escher (lithograph, 1956)

11 Introduction to Recursion

I know an old lady who swallowed a fly.
I don’t know why she swallowed the fly.
Perhaps she’ll die.

I know an old lady who swallowed a spider

that wriggled and jiggled and tickled inside her.

She swallowed the spider to catch the fly.
I don’t know why she swallowed the fly.
Perhaps she’ll die.

I know an old lady who swallowed a bird.
How absurd, to swallow a bird!
She swallowed the bird to catch the spider

that wriggled and jiggled and tickled inside her.

She swallowed the spider to catch the fly.
I don’t know why she swallowed the fly.
Perhaps she’ll die.

I know an old lady who swallowed a cat.
Imagine that, to swallow a cat.

100 bottles of beer on the wall,

100 bottles of beer.

If one of those bottles should happen to fall,
99 bottles of beer on the wall.

99 bottles of beer on the wall,

99 bottles of beer.

If one of those bottles should happen to fall,
98 bottles of beer on the wall.

She swallowed the cat to catch the bird.

She swallowed the bird to catch the spider
that wriggled and jiggled and tickled inside her.
She swallowed the spider to catch the fly.

I don’t know why she swallowed the fly.
Perhaps she’ll die.

I know an old lady who swallowed a dog.

What a hog, to swallow a dog!

She swallowed the dog to catch the cat.

She swallowed the cat to catch the bird.

She swallowed the bird to catch the spider
that wriggled and jiggled and tickled inside her.
She swallowed the spider to catch the fly.

I don’t know why she swallowed the fly.
Perhaps she’ll die.

I know an old lady who swallowed a horse.
She’s dead of course!

98 bottles of beer on the wall,

98 bottles of beer.

If one of those bottles should happen to fall,
97 bottles of beer on the wall.

97 bottles of beer on the wall,

97 bottles of beer.

If one of those bottles should happen to fall,
96 bottles of beer on the wall. ..

173

In the next few chapters we’re going to talk about recursion: solving a big problem by
reducing it to a similar, smaller subproblem. Actually that’s a little backward from the
old lady in the song, who turned her little problem into a similar but bigger problem! As
the song warns us, this can be fatal.

Here’s the first problem we’ll solve. We want a function that works like this:

> (downup ’‘ringo)
(RINGO RING RIN RI R RI RIN RING RINGO)

> (downup 'marsupial)
(MARSUPIAL
MARSUPIA
MARSUPI
MARSUP
MARSU
MARS
MAR
MA
M
MA
MAR
MARS
MARSU
MARSUP
MARSUPI
MARSUPIA
MARSUPIAL)

None of the tools that we’ve used so far will handle this problem. It’s not a “compute
this function for each letter of the word” problem, for which we could use every.*
Rather, we have to think about the entire word in a rather complicated way.

We’re going to solve this problem using recursion. It turns out that the idea of
recursion is both very powerful—we can solve a lot of problems using it—and rather
tricky to understand. That’s why we’re going to explain recursion several different ways
in the coming chapters. Even after you understand one of them, you’ll probably find
that thinking about recursion from another point of view enriches your ability to use this
idea. The explanation in this chapter is based on the combining method.

* If your instructor has asked you to read Part IV before Part III, ignore that sentence.

174 Part IV Recursion

A Separate Procedure for Each Length

Since we don’t yet know how to solve the downup problem in general, let’s start with a
particular case that we can solve. We’ll write a version of downup that works only for
one-letter words:

(define (downupl wd)
(se wd))

> (downupl ’a)
(A)

So far so good! This isn’t a very versatile program, but it does have the advantage of
being easy to write.

Now let’s see if we can do two-letter words:

(define (downup2 wd)
(se wd (first wd) wd))

> (downup2 ’be)
(BE B BE)

Moving right along. ..

(define (downup3 wd)
(se wd
(bl wd)
(first wd)
(bl wd)
wd))

> (downup3 ’foo)
(FOO FO F FO FOO)

We could continue along these lines, writing procedures downup4 and so on. If we
knew that the longest word in English had 83 letters, we could write all of the single-length
downups up to downup83, and then write one overall downup procedure that would
consist of an enormous cond with 83 clauses, one for each length.

Chapter 11 Introduction to Recursion 175

Use What You Have to Get What You Need

But that’s a terrible idea. We’d get really bored, and start making a lot of mistakes, if we
tried to work up to downup83 this way.

The next trick is to notice that the middle part of what (downup3 ’foo) does is
justlike (downup2 ’fo):

> (downup3 ’foo)

(FOO [FO F FO| FOO)

(downup2 ’'fo)

So we can find the parts of downup3 that are responsible for those three words:

(define (downup3 wd)
(se wd

(bl wd)

(first wd)

(bl wd)

wd))

(FOO [FO F FO| F00)

and replace them with an invocation of downup2:

(define (downup3 wd)
(se wd (downup2 (bl wd)) wd))

How about downup4? Once we’ve had this great idea about using downup2 to help
with downup3, it’s not hard to continue the pattern:

(define (downup4 wd)
(se wd (downup3 (bl wd)) wd))

> (downup4 ’paul)
(PAUL PAU PA P PA PAU PAUL)

The reason we can fit the body of downup4 on one line is that most of its work is done
for it by downup3. If we continued writing each new downup procedure independently,
as we did in our first attempt at downup3, our procedures would be getting longer and
longer. But this new way avoids that.

176 Part IV Recursion

(define (downup59 wd)
(se wd (downup58 (bl wd)) wd))

Also, although it may be harder to notice, we can even rewrite downup2 along the
same lines:

(define (downup2 wd)
(se wd (downupl (bl wd)) wd))

Notice That They’re All the Same

Although downup59 was easy to write, the problem is that it won’t work unless we also
define downup58, which in turn depends on downup57, and so on. This is a lot of
repetitive, duplicated, and redundant typing. Since these procedures are all basically the
same, what we’d like to do is combine them into a single procedure:

(define (downup wd) ;; first version
(se wd (downup (bl wd)) wd))

Isn’t this a great idea? We’ve written one short procedure that serves as a kind of
abbreviation for 59 other ones.

Notice That They’re Almost All the Same

Unfortunately, it doesn’t work.

> (downup 'toe)
ERROR: Invalid argument to BUTLAST: ""

What’s gone wrong here? Not quite every numbered downup looks like

(define (downupn wd)
(se wd (downupn-1 (bl wd)) wd))

The only numbered downup that doesn’t follow the pattern is downup1l:

(define (downupl wd)
(se wd))

Chapter 11 Introduction to Recursion 177

So if we collapse all the numbered downups into a single procedure, we have to treat
one-letter words as a special case:

(define (downup wd)
(if (= (count wd) 1)
(se wd)
(se wd (downup (bl wd)) wd)))

> (downup 'toe)
(TOE TO T TO TOE)

> (downup 'banana)
(BANANA BANAN BANA BAN BA B BA BAN BANA BANAN BANANA)

This version of downup will work for any length word, from a to pneumonoultra-
microscopicsilicovolcanoconinosis* or beyond.

Base Cases and Recursive Calls

Downup illustrates the structure of every recursive procedure. There is a choice among
expressions to evaluate: At least one is a recursive case, in which the procedure (e.g.,
downup) itself is invoked with a smaller argument; at least one is a base case, that is, one
that can be solved without calling the procedure recursively. For downup, the base case
is a single-letter argument.

How can this possibly work? We’re defining downup in terms of downup. In English
class, if the teacher asks you to define “around,” you’d better not say, “You know, around!”
But we appear to be doing just that. We’re telling Scheme: “In order to find downup of
a word, find downup of another word.”

The secret is that it’s not just any old other word. The new word is smaller than the
word we were originally asked to downup. So we’re saying, “In order to find downup of a
word, find downup of a shorter word.” We are posing a whole slew of subproblems asking
for the downup of words smaller than the one we started with. So if someone asks us the
downup of happy, along the way we have to compute the downups of happ, hap, ha,
and h.

* It’s a disease. Coal miners get it.

178 Part IV Recursion

A recursive procedure doesn’t work unless every possible argument can eventually
be reduced to some base case. When we are asked for downup of h, the procedure just
knows what to do without calling itself recursively.

We’ve just said that there has to be a base case. It’s also important that each recursive
call has to get us somehow closer to the base case. For downup, “closer” means that in the
recursive call we use a shorter word. If we were computing a numeric function, the base
case might be an argument of zero, and the recursive calls would use smaller numbers.

Pig Latin

Let’s take another example; we’ll write the Pig Latin procedure that we showed off in
Chapter 1. We’re trying to take a word, move all the initial consonants to the end, and
add “ay.”

The simplest case is that there are no initial consonants to move:

(define (pigl0 wd)
(word wd 'ay))

> (pigl0 ’alabaster)
ALABASTERAY

(This will turn out to be the base case of our eventual recursive procedure.)

The next-simplest case is a word that starts with one consonant. The obvious way to
write this is

(define (pigll wd) ;; obvious version
(word (bf wd) (first wd) ‘ay))

> (pigll ’'salami)
ALAMISAY

but, as in the downup example, we’d like to find a way to use pigl0 in implementing
pigll. This case isn’t exactly like downup, because there isn’t a piece of the return
value that we can draw a box around to indicate that pigl0 returns that piece. Instead,
piglO puts the letters ay at the end of some word, and so does pigll. The difference
is that pigll puts ay at the end of a rearrangement of its argument word. To make this
point clearer, we’ll rewrite pigll in a way that separates the rearrangement from the ay
addition:

Chapter 11 Introduction to Recursion 179

(define (pigll wd)
(word (word (bf wd) (first wd))
‘ay))

> (pigll ’'pastrami)
ASTRAMIPAY

Now we actually replace the piglO-like part with an invocation. We want to replace
(word something ’ay) with (pigl0 something). If we use pigl0 to attach the
ay at the end, our new version of pigl1 looks like this:

(define (pigll wd)
(pigl0 (word (bf wd) (first wd))))

How about a word starting with two consonants? By now we know that we’re going
to try to use pigll as a helper procedure, so let’s skip writing pigl2 the long way. We
can just move the first consonant to the end of the word, and handle the result, a word
with only one consonant in front, with pigll:

(define (pigl2 wd)
(pigll (word (bf wd) (first wd))))

> (pigl2 'trample)
AMPLETRAY

For a three-initial-consonant word we move one letter to the end and call pigl2:

(define (pigl3 wd)
(pigl2 (word (bf wd) (first wd))))

> (pigl3 ’chrome)
OMECHRAY

So how about a version that will work for any word?* The recursive case will involve

* As it happens, there are no English words that start with more than four consonants. (There
are only a few even with four; “phthalate” is one, and some others are people’s names, such as
“Schneider.”) So we could solve the problem without recursion by writing the specific procedures
up to pigl4 and then writing a five-way cond to choose the appropriate specific case. But as you
will see, it’s easier to solve the more general case! A single recursive procedure, which can handle
even nonexistent words with hundreds of initial consonants, is less effort than the conceptually
simpler four-consonant version.

180 Part IV Recursion

taking the pigl of (word (bf wd) (first wd)), to match the pattern we found in
pigll, pigl2, and pigl3. The base case will be a word that begins with a vowel, for
which we’ll just add ay on the end, as pigl0 does:

(define (pigl wd)
(if (member? (first wd) ’aeiou)
(word wd ’'ay)
(pigl (word (bf wd) (first wd)))))

It’s an unusual sense in which pigl’s recursive call poses a “smaller” subproblem.
If we’re asked for the pigl of scheme, we construct a new word, chemes, and ask for
pigl of that. This doesn’t seem like much progress. We were asked to translate scheme,
a six-letter word, into Pig Latin, and in order to do this we need to translate chemes,
another six-letter word, into Pig Latin.

But actually this is progress, because for Pig Latin the base case isn’t a one-letter
word, but rather a word that starts with a vowel. Scheme has three consonants before the
first vowel; chemes has only two consonants before the first vowel.

Chemes doesn’t begin with a vowel either, so we construct the word hemesc and try
to pigl that. In order to find (pigl "hemesc) we need to know (pigl 'emesch).
Since emesch does begin with a vowel, pigl returns emeschay. Once we know
(pigl ’emesch), we’ve thereby found the answer to our original question.

Problems for You to Try

You’ve now seen two examples of recursive procedures that we developed using the
combining method. We started by writing special-case procedures to handle small
problems of a particular size, then simplified the larger versions by using smaller versions
as helper procedures. Finally we combined all the nearly identical individual versions
into a single recursive procedure, taking care to handle the base case separately.

Here are a couple of problems that can be solved with recursive procedures. Try
them yourself before reading further. Then we’ll show you our solutions.

> (explode ’'dynamite)
(DYNAMTITE)

> (letter-pairs ’george)
(GE EO OR RG GE)

Chapter 11 Introduction to Recursion 181

Our Solutions

What'’s the smallest word we can explode? There’s no reason we can’t explode an empty
word:

(define (explode0 wd)
()

That wasn’t very interesting, though. It doesn’t suggest a pattern that will apply to larger
words. Let’s try a few larger cases:

(define (explodel wd)
(se wd))

(define (explode2 wd)
(se (first wd) (last wd)))

(define (explode3 wd)
(se (first wd) (first (bf wd)) (last wd)))

With explode3 the procedure is starting to get complicated enough that we want
to find a way to use explode2 to help. What explode3 does is to pull three separate
letters out of its argument word, and collect the three letters in a sentence. Here’s a
sample:

> (explode3 ’tnt)
(T N T)

Explode2 pulls two letters out of a word and collects them in a sentence. So we could
let explode2 deal with two of the letters of our three-letter argument, and handle the
remaining letter separately:

(define (explode3 wd)
(se (first wd) (explode2 (bf wd))))

We can use similar reasoning to define explode4 in terms of explode3:

(define (explode4d wd)
(se (first wd) (explode3 (bf wd))))

Now that we see the pattern, what’s the base case?r Our first three numbered
explodes are all different in shape from explode3, but now that we know what the

182 Part IV Recursion

pattern should be we’ll find that we can write explode2 in terms of explodel, and
even explodel in terms of explode0:

(define (explode2 wd)
(se (first wd) (explodel (bf wd))))

(define (explodel wd)
(se (first wd) (explodel0 (bf wd))))

We would never have thought to write explodel in that roundabout way, especially
since explode0 pays no attention to its argument, so computing the butfirst doesn’t
contribute anything to the result, but by following the pattern we can let the recursive
case handle one-letter and two-letter words, so that only zero-letter words have to be
special:

(define (explode wd)
(if (empty? wd)
()
(se (first wd) (explode (bf wd)))))

Now for letter-pairs. What’s the smallest word we can use as its argument?
Empty and one-letter words have no letter pairs in them:

(define (letter-pairs0 wd)
"())

(define (letter-pairsl wd)
"())

This pattern is not very helpful.

(define (letter-pairs2 wd)
(se wd))

(define (letter-pairs3 wd)
(se (bl wd) (bf wd)))

(define (letter-pairs4 wd)
(se (bl (bl wd))
(bl (bf wd))
(bf (bf wd))))

Chapter 11 Introduction to Recursion 183

Again, we want to simplify letter-pairs4 by using letter-pairs3 to help. The
problem is similar to explode: The value returned by letter-pairs4 is a three-word
sentence, and we can use letter—-pairs3 to generate two of those words.

> (letter-pairs4 ’'nems)
(NE [EM MS])

This gives rise to the following procedure:
(define (letter-pairs4 wd)

(se (bl (bl wd))
(letter-pairs3 (bf wd))))

Does this pattern work for defining letter-pairs5 in terms of letter-pairs4?
(define (letter-pairs5 wd) ;7 wrong
(se (bl (bl wd))
(letter-pairs4 (bf wd))))

> (letter-pairs5 ’bagel)
(BAG AG GE EL)

The problem is that (bl (bl wd)) means “the first two letters of wd” only when wd
has four letters. In order to be able to generalize the pattern, we need a way to ask for
the first two letters of a word that works no matter how long the word is. You wrote a
procedure to solve this problem in Exercise 5.15:

(define (first-two wd)
(word (first wd) (first (bf wd))))

Now we can use this for letter-pairs4 and letter-pairs5:

(define (letter-pairs4 wd)
(se (first-two wd) (letter-pairs3 (bf wd))))

(define (letter-pairs5 wd)
(se (first-two wd) (letter-pairs4 (bf wd))))

This pattern does generalize.

184 Part IV Recursion

(define (letter-pairs wd)
(if (<= (count wd) 1)
()
(se (first-two wd)
(letter-pairs (bf wd)))))

Note that we treat two-letter and three-letter words as recursive cases and not as base cases.
Just as in the example of explode, we noticed that we could rewrite letter-pairs2
and letter-pairs3 to follow the same pattern as the larger cases:

(define (letter-pairs2 wd)
(se (first-two wd)
(letter-pairsl (bf wd))))

(define (letter-pairs3 wd)
(se (first-two wd)
(letter-pairs2 (bf wd))))

Pitfalls

O Every recursive procedure must include two parts: one or more recursive cases, in
which the recursion reduces the size of the problem, and one or more base cases, in
which the result is computable without recursion. For example, our first attempt at
downup fell into this pitfall because we had no base case.

U Don’t be too eager to write the recursive procedure. As we showed in the
letter-pairs example, what looks like a generalizable pattern may not be.

Boring Exercises
11.1 Write downup4 using only the word and sentence primitive procedures.

11.2 [8.12]* When you teach a class, people will get distracted if you say “um” too many
times. Write a count-ums that counts the number of times “um” appears in a sentence:

* Exercise 8.12 in Part III asks you to solve this same problem using higher-order functions.
Here we are asking you to use recursion. Whenever we pose the same problem in both parts, we’ll
cross-reference them in brackets as we did here. When you see the problem for the second time,
you might want to consult your first solution for ideas.

Chapter 11 Introduction to Recursion 185

> (count-ums

'(today um we are going to um talk about the combining um method))

3

Here are some special-case count—-ums procedures for sentences of particular lengths:

(define (count-ums0 sent)
0)

(define (count-umsl sent)
(if (equal? 'um (first sent))
1
0))

(define (count-ums2 sent)
(if (equal? 'um (first sent))
(+ 1 (count-umsl (bf sent)))
(count-umsl (bf sent))))

(define (count-ums3 sent)
(if (equal? ’'um (first sent))
(+ 1 (count-ums2 (bf sent)))
(count-ums2 (bf sent))))

Write count-ums recursively.

11.3 [8.13] Write a procedure phone-unspell that takes a spelled version of a phone
number, such as POPCORN, and returns the real phone number, in this case 7672676.
You will need a helper procedure that translates a single letter into a digit:

(define (unspell-letter letter)

(cond ((member? letter ’abc) 2)
((member? letter ’'def) 3)
((member? letter ’'ghi) 4)
((member? letter ’'jkl) 5)
((member? letter ’'mno) 6)
((member? letter ’prs) 7)
((member? letter ’tuv) 8)
((member? letter 'wxy) 9)
(else 0)))

Here are some some special-case phone-unspell procedures:

186

Part IV Recursion

(define (phone-unspelll wd)
(unspell-letter wd))

(define (phone-unspell2 wd)
(word (unspell-letter (first wd))
(unspell-letter (first (bf wd)))))

(define (phone-unspell3 wd)
(word (unspell-letter (first wd))
(unspell-letter (first (bf wd)))
(unspell-letter (first (bf (bf wd))))))

Write phone-unspell recursively.

Real Exercises

Use recursion to solve these problems, not higher order functions (Chapter 8)!
11.4 Who first said “use what you have to get what you need”?

11.5 Write a procedure initials that takes a sentence as its argument and returns a
sentence of the first letters in each of the sentence’s words:

> (initials ’(if i needed someone))
(I I N S)

11.6 Write a procedure countdown that works like this:

> (countdown 10)
(10 9 8 7 6 5 4 3 2 1 BLASTOFF!)

> (countdown 3)
(3 2 1 BLASTOFF!)

11.7 Write a procedure copies that takes a number and a word as arguments and
returns a sentence containing that many copies of the given word:

> (copies 8 ’spam)
(SPAM SPAM SPAM SPAM SPAM SPAM SPAM SPAM)

Chapter 11 Introduction to Recursion 187

Drawing Hands, by M. C. Escher (lithograph, 1948)

12 The Leap of Faith

In the combining method, we build up to a recursive procedure by writing a number of
special-case nonrecursive procedures, starting with small arguments and working toward
larger ones. We find a generalizable way to use a smaller version in writing a larger one.
As a result, all our procedures end up looking nearly the same, so we combine them into
one procedure.

The combining method is a good way to begin thinking about recursion because
each step of a solution is clearly justified by earlier steps. The sequence of events by which
we get from a problem statement to a Scheme procedure is clear and straightforward.
The disadvantage of the combining method, though, is that it involves a lot of drudgery,
not all of which really helps toward the ultimate solution. In this chapter we’re going to
develop a new method called the leap of faith that overcomes this difficulty.

From the Combining Method to the Leap of Faith

Let’s look again at the way we developed the letter-pairs procedure in the last
chapter. We went through several steps:

* We wrote specific versions for zero-, one-, two-, and three-letter words.

* We wrote letter-pairs4, decided it was too complicated, and looked for a way to
use letter-pairs3 to help.

* Having rewritten letter-pairs4, we tried to write letter-pairs5 using the same
pattern. Since it didn’t quite work, we revised the pattern.

* We generalized the pattern to write an unnumbered, recursive letter-pairs.

189

* We checked to make sure that the recursive pattern would work for two-letter and
three-letter words.

* Since the pattern doesn’t work for zero- or one-letter words, we made those the base
cases.

Although we needed the lowest numbered procedures in order to make the entire
collection of numbered procedures work, those low-numbered ones didn’t contribute to
the critical step of finding a generalizable pattern. Once you understand the idea of
recursion, writing the individual procedures is wasted effort.

In the leap of faith method, we short-circuit this process in two ways. First, we don’t
bother thinking about small examples; we begin with, for example, a seven-letter word.
Second, we don’t use our example to write a particular numbered procedure; we write
the recursive version directly.

Example: Reverse

We’re going to write, using the leap of faith method, a recursive procedure to reverse the
letters of a word:

> (reverse ’'beatles)
SELTAEB

Is there a reverse of a smaller argument lurking within that return value? Yes,
many of them. For example, LTA is the reverse of the word ATL. But it will be most
helpful if we find a smaller subproblem that’s only slightly smaller. (This idea corresponds
to writing letter-pairs7 using letter-pairsé6 in the combining method.) The
closest smaller subproblem to our original problem is to find the reverse of a word one
letter shorter than beatles.

> (reverse ’'beatle)
ELTAEB

This result is pretty close to the answer we want for reverse of beatles. What’s the

relationship between ELTAEB, the answer to the smaller problem, and SELTAEB, the
answer to the entire problem? There’s one extra letter, S, at the beginning. Where did

190 Part IV Recursion

the extra letter come from? Obviously, it’s the last letter of beatles.*

This may seem like a sequence of trivial observations leading nowhere. But as a
result of this investigation, we can translate what we’ve learned directly into Scheme. In
English: “the reverse of a word consists of its last letter followed by the reverse of'its
butlast.” In Scheme:

(define (reverse wd) ;; unfinished
(word (last wd)
(reverse (bl wd))))

The Leap of Faith

If we think of this Scheme fragment merely as a statement of a true fact about reverse,
it’s not very remarkable. The amazing part is that this fragment is runnable/** It doesn’t
look runnable because it invokes itself as a helper procedure, and—if you haven’t already
been through the combining method—that looks as if it can’t work. “How can you use
reverse when you haven’t written it yet?”

The leap of faith method is the assumption that the procedure we’re in the middle
of writing already works. That is, if we’re thinking about writing a reverse procedure
that can compute (reverse ’'paul), we assume that (reverse 'aul) will work.

Of course it’s not 7really a leap of faith, in the sense of something accepted as
miraculous but not understood. The assumption is justified by our understanding of the
combining method. For example, we understand that the four-letter reverse is relying
on the three-letter version of the problem, not really on itself, so there’s no circular
reasoning involved. And we know that if we had to, we could write reversel through
reverse3 “by hand.”

The reason that our technique in this chapter may seem more mysterious than the
combining method is that this time we are thinking about the problem top-down. In
the combining method, we had already written whatever3 before we even raised the
question of whatever4. Now we start by thinking about the larger problem and assume

* There’s also a relationship between (reverse 'eatles) and (reverse ’'beatles), with
the extra letter b at the end. We could take either of these subproblems as a starting point and end
up with a working procedure.

#* Well, almost. It needs a base case.

Chapter 12 The Leap of Faith 191

that we can rely on the smaller one. Again, we’re entitled to that assumption because
we’ve gone through the process from smaller to larger so many times already.

The leap of faith method, once you understand it, is faster than the combining
method for writing new recursive procedures, because we can write the recursive solution
immediately, without bothering with many individual cases. The reason we showed you
the combining method first is that the leap of faith method seems too much like magic, or
like “cheating,” until you’ve seen several believable recursive programs. The combining
method is the way to learn about recursion; the leap of faith method is the way to write
recursive procedures once you've learned.

The Base Case

Of course, our definition of reverse isn’t finished yet: As always, we need a base case.
But base cases are the easy part. Base cases transform simple arguments into simple
answers, and you can do that transformation in your head.

For example, what’s the simplest argument to reverse? If you answered “a
one-letter word” then pick a one-letter word and decide what the result should be:

> (reverse ’'Xx)
X

reverse of a one-letter word should just be that same word:

(define (reverse wd)
(if (= (count wd) 1)
wd
(word (last wd)
(reverse (bl wd)))))

Example: Factorial

We’ll use the leap of faith method to solve another problem that we haven’t already solved
with the combining method.

The factorial of a number 7 is defined as 1 X 2 X [(IIX n. So the factorial of 5 (written
“b1”) is 1 X2 x3 x4 x5. Suppose you want Scheme to figure out the factorial of some
large number, such as 843. You start from the definition: 843! is 1 x 2 x [T x 842 x 843.
Now you have to look for another factorial problem whose answer will help us find the
answer to 843!. You might notice that 2!, that is, 1 X 2, is part of 843!, but that doesn’t

192 Part IV Recursion

help very much because there’s no simple relationship between 2! and 843!. A more
fruitful observation would be that 842! is 1 x [IIk 842—that is, all but the last number in
the product we’re trying to compute. So 843! = 843 x 842!. In general, n! is n X (n—1)!.
We can embody this idea in a Scheme procedure:

(define (factorial n) ;; first version
(* n (factorial (- n 1))))

Asking for (n —1)! is the leap of faith. We’re expressing an answer we don’t know, 843!,
in terms of another answer we don’t know, 842!. But since 842! is a smaller, similar
subproblem, we are confident that the same algorithm will find it.*

Remember that in the reverse problem we mentioned that we could have chosen
either the butfirst or the butlast of the argument as the smaller subproblem? In the
case of the factorial problem we don’t have a similar choice. If we tried to subdivide
the problem as

6! =1%x(2x3%x4x5x6)

then the part in parentheses would not be the factorial of a smaller number.**

* What makes us confident? We imagine that we’ve worked on this problem using the combining
method, so that we’ve written procedures like these:

(define (factoriall n)
1)

(define (factorial2 n)
(* 2 (factoriall (- n 1))))

(define (factorial3 n)
(* 3 (factorial2 (- n 1))))

rr

(define (factorial842 n)
(* 842 (factorial84l (- n 1))))

and therefore we’re entitled to use those lower-numbered versions in finding the factorial of 843.
We haven’t actually written them, but we could have, and that’s what justifies using them. The
reason we can take 842! on faith is that 842 is smaller than 843; it’s the smaller values that we’re
pretending we’ve already written.

** As it happens, the part in parentheses does equal the factorial of a number, 6 itself. But
expressing the solution for 6 in terms of the solution for 6 doesn’t lead to a recursive procedure;
we have to express this solution in terms of a smaller one.

Chapter 12 The Leap of Faith 193

As the base case for factorial, we’lluse 1! = 1.

(define (factorial n)
(if (= n 1)
1
(* n (factorial (- n 1)))))

Likely Guesses for Smaller Subproblems

To make the leap of faith method work, we have to find a smaller, similar subproblem
whose solution will help solve the given problem. How do we find such a smaller
subproblem?

In the examples so far, we’ve generally found it by finding a smaller, similar refurn
value within the return value we’re trying to achieve. Then we worked backward from
the smaller solution to figure out what smaller argument would give us that value. For
example, here’s how we solved the reverse problem:

original argument beatles

desired return value SELTAEB

smaller return value ELTAEB

corresponding argument beatle

relationship of arguments beatle is (bl ’beatles)
relationship of return values SELTAEB is (word ‘s 'ELTAEB)
Scheme expression (word (last arg)

(reverse (bl arg)))

Similarly, we looked at the definition of 843! and noticed within it the factorial of a
smaller number, 842.

But a smaller return value won’t necessarily leap out at us in every case. If not, there
are some likely guesses we can try. For example, if the problem is about integers, it makes
sense to try n — 1 as a smaller argument. If the problem is about words or sentences,
try the butfirst or the butlast. (Often, as in the reverse example, either will
be helpful.) Once you’ve guessed at a smaller argument, see what the corresponding
return value should be, then compare that with the original desired return value as we’ve
described earlier.

In fact, these two argument-guessing techniques would have suggested the same
subproblems that we ended up using in our two examples so far. The reason we didn’t
teach these techniques from the beginning is that we don’t want you to think they’re

194 Part IV Recursion

essential parts of the leap of faith method. These are just good guesses; they don’t always
work. When they don’t, you have to be prepared to think more flexibly.

Example: Downup

Here’s how we might rewrite downup using the leap of faith method. Start by looking at
the desired return value for a medium-sized example:

> (downup ‘paul)
(PAUL PAU PA P PA PAU PAUL)

Since this is a procedure whose argument is a word, we guess that the butfirst or the
butlast might be helpful.

> (downup ‘aul)
(AUL AU A AU AUL)

> (downup 'pau)
(PAU PA P PA PAU)

This is a case in which it matters which we choose; the solution for the butfirst
of the original argument doesn’t help, but the solution for the butlast is most of the
solution for the original word. All we have to do is add the original word itself at the
beginning and end:

(define (downup wd) ;7 no base case
(se wd (downup (bl wd)) wd))

As before, this is missing the base case, but by now you know how to fill that in.

Example: Evens

Here’s a case in which mindlessly guessing butfirst or butlast doesn’t lead to a very
good solution. We want a procedure that takes a sentence as its argument and returns a
sentence of the even-numbered words of the original sentence:

> (evens ' (i want to hold your hand))
(WANT HOLD HAND)

Chapter 12 The Leap of Faith 195

We look at evens of the butfirst and butlast of this sentence:

> (evens ' (want to hold your hand))
(TO YOUR)

> (evens ‘(i want to hold your))
(WANT HOLD)

Butfirst is clearly not helpful; it gives all the wrong words. Butlast looks promising.
The relationship between evens of the bigger sentence and evens of the smaller
sentence is that the last word of the larger sentence is missing from evens of the smaller
sentence.

(define (losing-evens sent) ;7 no base case
(se (losing-evens (bl sent))
(last sent)))

For a base case, we’ll take the empty sentence:

(define (losing-evens sent)
(if (empty? sent)
()
(se (losing-evens (bl sent))
(last sent))))

> (losing-evens ’(i want to hold your hand))
(I WANT TO HOLD YOUR HAND)

This isn’t quite right.

It’s true that evens of (i want to hold your hand) is the same as evens of
(i want to hold your) plus the word hand at the end. But what about evens of
(i want to hold your)? By the reasoning we’ve been using, we would expect that to
be evens of (i want to hold) plus the word your. But since the word your is the
fifth word of the argument sentence, it shouldn’t be part of the result at all. Here’s how
evens should work:

> (evens ‘(i want to hold your))
(WANT HOLD)

> (evens ' (i want to hold))
(WANT HOLD)

196 Part IV Recursion

When the sentence has an odd number of words, its evens is the same as the evens of
itsbutlast.* So here’s our new procedure:

(define (evens sent) ;; better version
(cond ((empty? sent) '())
((odd? (count sent))
(evens (bl sent)))
(else (se (evens (bl sent))
(last sent)))))

This version works, but it’s more complicated than necessary. What makes it
complicated is that on each recursive call we switch between two kinds of problems:
even-length and odd-length sentences. If we dealt with the words two at a time, each
recursive call would see the same kind of problem.

Once we’ve decided to go through the sentence two words at a time, we can reopen
the question of whether to go right-to-left or left-to-right. It will turn out that the latter
gives us the simplest procedure:

(define (evens sent) ;; best version
(if (<= (count sent) 1)
()
(se (first (bf sent))
(evens (bf (bf sent))))))

Since we go through the sentence two words at a time, an odd-length argument sentence
always gives rise to an odd-length recursive subproblem. Therefore, it’s not good enough
to check for an empty sentence as the only base case. We need to treat both the empty
sentence and one-word sentences as base cases.

Simplifying Base Cases

The leap of faith is mostly about recursive cases, not base cases. In the examples in this
chapter, we’ve picked base cases without talking about them much. How do you pick a
base case?

* It may feel strange that in the case of an odd-length sentence, the answer to the recursive
subproblem is the same as the answer to the original problem, rather than a smaller answer. But
remember that it’s the argument, not the return value, that has to get smaller in each recursive
step.

Chapter 12 The Leap of Faith 197

In general, we recommend using the smallest possible base case argument, because
that usually leads to the simplest procedures. For example, consider using the empty
word, empty sentence, or zero instead of one-letter words, one-word sentences, or one.

How can you go about finding the simplest possible base case? Our first example in
this chapter was reverse. We arbitrarily chose to use one-letter words as the base case:

(define (reverse wd)
(if (= (count wd) 1)
wd
(word (last wd)
(reverse (bl wd)))))

Suppose we want to consider whether a smaller base case would work. One approach
is to pick an argument that would be handled by the current base case, and see what
would happen if we tried to let the recursive step handle it instead. (To go along with
this experiment, we pick a smaller base case, since the original base case should now be
handled by the recursive step.) In this example, we pick a one-letter word, let’s say m, and
use that as the value of wd in the expression

(word (last wd)
(reverse (bl wd)))

The result is

(word (last 'm)
(reverse (bl 'm)))

which is the same as

(word 'm
(reverse ""))

We want this to have as its value the word M. This will work out provided that (reverse
" ") has the empty word as its value. So we could rewrite the procedure this way:

(define (reverse wd)
(if (empty? wd)
(word (last word)
(reverse (bl word)))))

198 Part IV Recursion

We were led to this empty-word base case by working downward from the needs of the
one-letter case. However, it’s also important to ensure that the return value used for the
empty word is the correct value, not only to make the recursion work, but for an empty
word in its own right. That is, we have to convince ourselves that (reverse "") should
return an empty word. But it should; the reverse of any word is a word containing the
same letters as the original word. If the original has no letters, the reverse must have
no letters also. This exemplifies a general principle: Although we choose a base case
argument for the sake of the recursive step, we must choose the corresponding return
value for the sake of the argument itself, not just for the sake of the recursion.

We’ll try the base case reduction technique on downup:

(define (downup wd)
(if (= (count wd) 1)
(se wd)
(se wd (downup (bl wd)) wd)))

If we want to use the empty word as the base case, instead of one-letter words, then we
have to ensure that the recursive case can return a correct answer for a one-letter word.
The behavior we want is

> (downup 'a)
(A)

But if we substitute ’a for wd in the recursive-case expression we get
(se 'a (downup "") ’'a)

which will have two copies of the word A in its value no matter what value we give to
downup of the empty word. We can’t avoid treating one-letter words as a base case.

In writing factorial, we used 1 as the base case.
(define (factorial n)
(if (= n 1)

1
(* n (factorial (- n 1)))))

Our principle of base case reduction suggests that we try for 0. To do this, we substitute
1 for n in the recursive case expression:

(* 1 (factorial 0))

Chapter 12 The Leap of Faith 199

We’d like this to have the value 1; this will be true only if we define 0! = 1. Now we can say

(define (factorial n)
(if (= n 0)
1
(* n (factorial (- n 1)))))

In this case, the new procedure is no simpler than the previous version. Its only advantage
is that it handles a case, 0!, that mathematicians find useful.

Here’s another example in which we can’t reduce the base case to an empty word.
In Chapter 11 we used the combining method to write letter-pairs:

(define (letter-pairs wd)
(if (<= (count wd) 1)
()
(se (first-two wd)
(letter-pairs (bf wd)))))

(define (first-two wd)
(word (first wd) (first (bf wd))))

It might occur to you that one-letter words could be handled by the recursive case, and
the base case could then handle only the empty word. But if you try to evaluate the
expression for the recursive case as applied to a one-letter word, you find that

(first-two ’a)
is equivalent to
(word (first 'a) (first (bf ’a)))

which is an error. There is no second letter of a one-letter word. As soon as you see the
expression (first (bf wd)) within this program, you know that one-letter words must
be part of the base case. The same kind of reasoning can be used in many problems; the
base case must handle anything that’s too small to fit the needs of the recursive case.

200 Part IV Recursion

Pitfalls

O One possible pitfall is a recursive case that doesn’t make progress, that is, one that
doesn’t reduce the size of the problem in the recursive call. For example, let’s say we’re
trying to write the procedure down that works this way:

> (down 'town)
(TOWN TOW TO T)

Here’s an incorrect attempt:

(define (down wd) ;7 wrong!
(if (empty? wd)
()
(se wd (down (first wd)))))

The recursive call looks as if it reduces the size of the problem, but try it with an actual
example. What’s first of the word splat? What’s first of thatresult? What’s first
of that result?

O A pitfall that sounds unlikely in the abstract but is actually surprisingly common is to
try to do the second step of the procedure “by hand” instead of trusting the recursion to
do it. For example, here’s another attempt at that down procedure:

(define (down wd) ;; incomplete
(se wd ...))

You know the first word in the result has to be the argument word. Then what? The next
thing is the same word with its last letter missing:

(define (down wd) ;7 wrong!
(se wd (bl wd) ...))

Instead of taking care of the entire rest of the problem with a recursive call, it’s tempting
to take only one more step, figuring out how to include the second word of the required
solution. But that approach won’t get you to a general recursive solution. Just take the
first step and then trust the recursion for the rest:

(define (down wd)
(if (empty? wd)
()
(se wd (down (bl wd)))))

Chapter 12 The Leap of Faith 201

U The value returned in the base case of your procedure must be in the range of the
function you are representing. If your function is supposed to return a number, it must
return a number all the time, even in the base case. You can use this idea to help you
check the correctness of the base case expression.

For example, in downup, the base case returns (se wd) for the base case argument
of a one-letter word. How did we think to enclose the word in a sentence? We know that
in the recursive cases downup always returns a sentence, so that suggests to us that it must
return a sentence in the base case also.

U Ifyour base case doesn’t make sense in its own right, it probably means that you're
trying to compensate for a mistake in the recursive case.

For example, suppose you’ve fallen into the pitfall of trying to handle the second
word of a sentence by hand, and you’ve written the following procedure:

(define (square-sent sent) ;7 wrong
(if (empty? sent)
()
(se (square (first sent))
(square (first (bf sent)))
(square-sent (bf sent)))))

> (square-sent ' (2 3))
ERROR: Invalid argument to FIRST: ()

After some experimentation, you find that you can get this example to work by changing
the base case:

(define (square-sent sent) ;; still wrong
(if (= (count sent) 1)
()
(se (square (first sent))
(square (first (bf sent)))
(square-sent (bf sent)))))

> (square-sent ' (2 3))
(4 9)

The trouble is that the base case doesn’t make sense on its own:

> (square-sent ' (7))

@)

202 Part IV Recursion

In fact, this procedure doesn’t work for any sentences of length other than two. The
moral is that it doesn’t work to correct an error in the recursive case by introducing an
absurd base case.

Boring Exercises

12.1 Here is a definition of a procedure that returns the sum of the numbers in its
argument sentence:

(define (addup nums)
(if (empty? (bf nums))

(first nums)
(+ (first nums) (addup (bf nums)))))

Although this works, it could be simplified by changing the base case. Do that.
12.2 Fix the bug in the following definition:
(define (acronym sent) ;7 wrong
(if (= (count sent) 1)
(first sent)

(word (first (first sent))
(acronym (bf sent)))))

12.3 Can we reduce the factorial base case argument from 0 to —1? If so, show the
resulting procedure. If not, why not?

12.4 Here’s the definition of a function f:

(sent) = {sent, if sent is empty;
[(sent) = sentence(f(butfirst(sent)), first(sent)), otherwise.

Implement f as a Scheme procedure. What does f do?

Chapter 12 The Leap of Faith 203

Real Exercises

Solve all of the following problems with recursive procedures. If you've read Part III, do not use any
higher-order functions such as every, keep, oraccumulate.

12.5 [8.8] Write an exaggerate procedure which exaggerates sentences:

> (exaggerate ’'(i ate 3 potstickers))
(I ATE 6 POTSTICKERS)

> (exaggerate ’'(the chow fun is good here))
(THE CHOW FUN IS GREAT HERE)

It should double all the numbers in the sentence, and it should replace “good” with
“great,” “bad” with “terrible,” and anything else you can think of.

12.6 [8.11] Write a GPA procedure. It should take a sentence of grades as its argument
and return the corresponding grade point average:

> (gpa '(A A+ B+ B))
3.67

Hint: write a helper procedure base-grade that takes a grade as argument and returns
0,1, 2, 3, or 4, and another helper procedure grade-modifier that returns —.33, 0, or
.33, depending on whether the grade has a minus, a plus, or neither.

12.7 Write a procedure spell-number that spells out the digits of a number:

> (spell-number 1971)
(ONE NINE SEVEN ONE)

Use this helper procedure:
(define (spell-digit digit)

(item (+ 1 digit)
' (zero one two three four five six seven eight nine)))

12.8 Write a procedure numbers that takes a sentence as its argument and returns
another sentence containing only the numbers in the argument:

204 Part IV Recursion

> (numbers ’ (76 trombones and 110 cornets))
(76 110)

12.9 Write a procedure real-words that takes a sentence as argument and returns
all the “real” words of the sentence, using the same rule as the real-word? procedure
from Chapter 1.

12.10 Write a procedure remove that takes a word and a sentence as arguments and
returns the same sentence, but with all copies of the given word removed:

> (remove ’‘the ’(the song love of the loved by the beatles))
(SONG LOVE OF LOVED BY BEATLES)

12.11 Write the procedure count, which returns the number of words in a sentence or
the number of letters in a word.

12.12 Write a procedure arabic which converts Roman numerals into Arabic numerals:

> (arabic "MCMLXXI)
1971

> (arabic 'MLXVI)
1066

You will probably find the roman-value procedure from Chapter 6 helpful. Don’t
forget that a letter can reduce the overall value if the letter that comes after it has a larger
value, such as the C in MCM.

12.13 Write a new version of the describe-time procedure from Exercise 6.14.
Instead of returning a decimal number, it should behave like this:

> (describe-time 22222)
(6 HOURS 10 MINUTES 22 SECONDS)

> (describe-time 4967189641)
(1 CENTURIES 57 YEARS 20 WEEKS 6 DAYS 8 HOURS 54 MINUTES 1 SECONDS)

Can you make the program smart about saying 1 CENTURY instead of 1 CENTURIES?

Chapter 12 The Leap of Faith 205

What’s the base case?

13 How Recursion Works

The last two chapters were about how to write recursive procedures. This chapter is about
how to believe in recursive procedures, and about understanding the process by which
Scheme carries them out.

Little People and Recursion

The crowning achievement of the little-people model is explaining recursion. Remember
that every time you call a procedure, a little person is hired to compute the result. If you
want to know (+ 2 (+ 3 4)), there are two separate plus specialists involved.

When we used the combining method, it was probably clear that it’s okay for
downup3 to invoke downup2, and for downup2 to invoke downupl. But it probably
felt like magic when we combined these numbered procedures into a single downup
procedure that calls #tself. You may have thought, "THow can downup do all the different
tasks at once without getting confused?” The little-people model answers this question
by showing that tasks are done by procedure invocations, not by procedures. Each little
person handles one task, even though several little people are carrying out the same
procedure. The procedure is just a set of instructions; someone has to carry out the
instructions.

So what happens when we want to know (downup ’smile)? We hire Donna, a
downup specialist, and she substitutes smile for wd in the body of downup, leaving her
with

(if (= (count ’‘smile) 1)

(se ’'smile)
(se 'smile (downup (bl ’'smile)) ’smile)))

207

We’ll leave out the details about hiring the if, =, count, and bl specialists in this
example, so Donna ends up with

(se 'smile (downup ’‘smil) ‘smile)

In order to evaluate this, Donna needs to know (downup ’'smil). She hires David,
another downup specialist, and waits for his answer.

David’s wd is smil. He substitutes smil for wd in the body of downup, and he gets
(if (= (count ’smil) 1)

(se ’'smil)

(se 'smil (downup (bl ’‘smil)) ’‘smil)))
After some uninteresting work, David has

(se 'smil (downup ‘smi) ’smil)

and he hires Dennis to compute (downup ’smi). There are now three little people, all
in the middle of some downup computation, and each of them is working on a different
word.

Dennis substitutes smi for wd, and ends up with
(se 'smi (downup ‘sm) ’‘smi)
He hires Derek to compute (downup ’sm). Derek needs to compute
(se ’'sm (downup ’s) ’sm)

Derek hires Dexter to find downup of s. Now we have to think carefully about the
substitution again. Dexter substitutes his actual argument, s, for his formal parameter
wd, and ends up with

(if (= (count ’'s) 1)
(se ’'s)
(se 's (downup (bl ’'s)) ’'s)))

Count of s is 1. So Dexter hires Simi, a sentence specialist, who returns (s). Dexter
returns the same answer to Derek.

Derek, you will recall, is trying to compute

208 Part IV Recursion

(se ’'sm (downup ’s) ‘sm)
and now he knows the value of (downup ’s). So he hires Savita to compute
(se ’'sm ’'(s) ’'sm)

and the answer is (sm s sm). Derek returns this answer to Dennis. By the way, do
you remember what question Derek was hired to answer? Dennis wanted to know
(downup ’'sm). The answer Derek gave him was (sm s sm), which is downup of sm.
Pretty neat, huh?

Dennis hires Sigrid to compute
(se 'smi ’'(sm s sm) ’'smi)

and returns (smi sm s sm smi) to David. His answer is the correct value of
(downup ‘smi). David returns

(smil smi sm s sm smi smil)

Chapter 13 How Recursion Works 209

to Donna, who has been waiting all this time to evaluate
(se 'smile (downup ’‘smil) ‘smile)
Her waiting microseconds are over. She hires a sentence specialist and returns

(smile smil smi sm s sm smi smil smile)

If you have a group of friends whose names all start with “D,” you can try this out
yourselves. The rules of the game are pretty simple. Remember that each one of you
can have only one single value for wd. Also, only one of you is in charge of the game at
any point. When you hire somebody, that new person is in charge of the game until he
or she tells you the answer to his or her question. If some of you have names that don’t
start with “D,” you can be specialists in sentence or butlast or something. Play hard,
play fair, nobody hurt.

Tracing

The little-people model explains recursion very well, as long as you’re willing to focus your
attention on the job of one little person, taking the next little person’s subtask as a “black
box” that you assume is carried out correctly. Your willingness to make that assumption
is a necessary step in becoming truly comfortable with recursive programming.

Still, some people are very accustomed to a sequential model of computing. In that
model, there’s only one computer, not a lot of little people, and that one computer has
to carry out one step at a time. If you’re one of those people, you may find it hard to take
the subtasks on faith. You want to know exactly what happens when! There’s nothing
wrong with such healthy scientific skepticism about recursion.

If you’re a sequential thinker, you can trace procedures to get detailed information
about the sequence of events.* But if you’re happy with the way we’ve been talking
about recursion up to now, and if you find that this section doesn’t contribute to your
understanding of recursion, don’t worry about it. Our experience shows that this way of
thinking helps some people but not everybody.** Before we get to recursive procedures,

* Unfortunately, trace isn’t part of the Scheme standard, so it doesn’t behave the same way in
every version of Scheme.

** Even if tracing doesn’t help you with recursion, you’ll find that it’s a useful technique in
debugging any procedure.

210 Part IV Recursion

let’sjust trace some nonrecursive ones:
(define (double wd) (word wd wd))

> (trace double)
> (double 'frozen)
(double frozen)
frozenfrozen

FROZENFROZEN

The argument to trace specifies a procedure. When you invoke trace, that procedure
becomes “traced”; this means that every time you invoke the procedure, Scheme will
print out the name of the procedure and the actual arguments. When the procedure
returns a value, Scheme will print that value.*

Tracing isn’t very interesting if we’re just invoking a traced procedure once. But
look what happens when we trace a procedure that we’re using more than once:

> (double (double (double ’‘yum)))
(double yum)

yumyum

(double yumyum)

yumyumyumyum

(double yumyumyumyum)
yumyumyumyumyumyumyumyum

YUMYUMYUMYUMYUMYUMYUMYUM

This time, there were three separate invocations of double, and we saw each one as it
happened. First we doubled yum, and the answer was yumyum. Then we doubled
yumyum, and so on. Finally, after we invoked double for the last time, its result was
printed by the read-eval-print loop.

When you’re finished investigating a procedure, you can turn off tracing by invoking
untrace with the procedure as argument:

> (untrace double)

* In this example the return value was printed twice, because the procedure we traced was
invoked directly at the Scheme prompt. Its return value would have been printed once anyway, just
because that’swhat Scheme always does. It was printed another time because of the tracing. In this
book we’ve printed the trace-specific output in smaller type and lower-case to help you understand
which is what, but of course on the actual computer you’re on your own.

Chapter 13 How Recursion Works 211

Let’s try tracing a recursive procedure:

(define (downup wd)
(if (= (count wd) 1)
(se wd)
(se wd (downup (bl wd)) wd)))

> (trace downup)

> (downup 'trace)

(downup trace)

| (downup trac)

| | (downup tra)

| | | (downup tr)

| | | | (downup t)

B

| | | (tr t tr)

| | (tra tr t tr tra)

| (trac tra tr t tr tra trac)

(trace trac tra tr t tr tra trac trace)
(TRACE TRAC TRA TR T TR TRA TRAC TRACE)

When a procedure calls itself recursively, depending on the phase of the moon,* Scheme
may indent the trace display to show the levels of procedure calling, and draw a line of
vertical bars (“|”) from a procedure’s invocation to its return value below. This is so you
can look at a procedure invocation and see what value it returned, or vice versa.

How does the trace help us understand what is going on in the recursion? First, by
reading the trace results from top to bottom, you can see the actual sequence of events
when the computer is carrying out your Scheme program. For example, you can see that
we start trying to figure out (downup ’trace); the first thing printed is the line that
says we’re starting that computation. But, before we get a result from that, four more
downup computations have to begin. The one that begins last finishes first, returning
(t); then another one returns a value; the one that started first is the last to return.

You can also read the trace horizontally instead of vertically, focusing on the levels of
indentation. If you do this, then instead of a sequence of independent events (such-and-

* That’s computer science slang for “depending on a number of factors that I consider too
complicated to bother explaining” or “depending on a number of factors that I don’t understand
myself.” Some computer systems automatically print the phase of the moon on program listings
as an aid for programmers with “POM-dependent” programs. What we meant in this case is that it
depends both on your version of Scheme and on the exact form of your recursive procedure.

212 Part IV Recursion

such starts, such-and-such returns a value) you see the inclusion of processes within other
ones. The smallest downup invocation is entirely inside the next-smallest one, and so on.
The initial invocation of downup includes all of the others.

Perhaps you’re thinking that downup’s pattern of inclusion is the only one possible
for recursive procedures. That is, perhaps you’re thinking that every invocation includes
exactly one smaller invocation, and that one includes a yet-smaller one, and so on. But
actually the pattern can be more complicated. Here’s an example. The Fibonacci numbers
are a sequence of numbers in which the first two numbers are 1 and each number after
that is the sum of the two before it:

1,1,2,3,5,8,13,21,34,55,...

(They’re named after Leonardo Pisano. You’d think they’d be called “Pisano numbers,”
but Leonardo had a kind of alias, Leonardo Fibonacci, just to confuse people.) Here’s a
procedure to compute the nth Fibonacci number:

(define (fib n)
(if (<= n 2)
1
(+ (fib (- n 1))
(fib (- n 2)))))

Here’s a trace of computing the fourth Fibonacci number:

> (fib 4)
(fib 4)

| (£fib 2)

1

(fib 3)

| (fib 1)
| 1
| (fib 2)
| 1
2

I
I
I
I
I
I
I
3
3

(By the way, this trace demonstrates that in the dialect of Scheme we used, the argument
subexpressions of the + expression in £ib are evaluated from right to left, because the
smaller £ib arguments come before the larger ones in the trace.)

As you can see, we still have invocations within other invocations, but the pattern
is not as simple as in the downup case. If you’re having trouble making sense of this
pattern, go back to thinking about the problem in terms of little people; who hires whom?

Chapter 13 How Recursion Works 213

Pitfalls

O Whenever you catch yourself using the words “go back” or “goes back” in describing
how some procedure works, bite your tongue. A recursive invocation isn’t a going back;
it’s a separate process. The model behind “go back” is that the same little person starts
over again at the beginning of the procedure body. What actually happens is that a new
little person carries out the same procedure. It’s an important difference because when
the second little person finishes, the first may still have more work to do.

For example, when we used little people to show the working of downup, Dennis
computes the result (smi sm s sm smi) and returns that value to David; at that point,
David still has work to do before returning his own result to Donna.

U The trace mechanism doesn’t work for special forms. For example, you can’t say

(trace or)

although you can, and often will, trace primitive procedures that aren’t special forms.

Boring Exercises
13.1 Trace the explode procedure from page 183 and invoke
(explode 'ape)

How many recursive calls were there? What were the arguments to each recursive call?
Turn in a transcript showing the trace listing.

13.2 How many pigl-specialist little people are involved in evaluating the following
expression?

(pigl ’'throughout)
What are their arguments and return values, and to whom does each give her result?

13.3 Here is our first version of downup from Chapter 11. It doesn’t work because it
has no base case.

(define (downup wd)
(se wd (downup (bl wd)) wd))

214 Part IV Recursion

> (downup 'toe)
ERROR: Invalid argument to BUTLAST: ""

Explain what goes wrong to generate that error. In particular; why does Scheme try to
take the butlast of an empty word?

13.4 Here is a Scheme procedure that never finishes its job:

(define (forever n)
(if (= n 0)
1
(+ 1 (forever n))))

Explain why it doesn’t give any result. (If you try to trace it, make sure you know how to
make your version of Scheme stop what it’s doing and give you another prompt.)

Real Exercises

13.5 It may seem strange that there is one little person per invocation of a procedure,
instead of just one little person per procedure. For certain problems, the person-per-
procedure model would work fine.

Consider, for example, this invocation of pigl:

> (pigl ’prawn)
AWNPRAY

Suppose there were only one pigl specialist in the computer, named Patricia. Alonzo
hires Patricia and gives her the argument prawn. She sees that it doesn’t begin with a
vowel, so she moves the first letter to the end, gets rawnp, and tries to pigl that. Again,
it doesn’t begin with a vowel, so she moves another letter to the end and gets awnpr.
That does begin with a vowel, so she adds an ay, returning awnpray to Alonzo.

Nevertheless, this revised little-people model doesn’t always work. Show how it fails to
explain what happens in the evaluation of

(downup ‘smile)

13.6 As part of computing (factorial 6), Scheme computes (factorial 2) and
gets the answer 2. After Scheme gets that answer, how does it know what to do next?

Chapter 13 How Recursion Works 215

14 Common Patterns in Recursive Procedures

There are two ideas about how to solve programming problems.* One idea is that
programmers work mostly by recognizing categories of problems that come up repeatedly
and remembering the solution that worked last time; therefore, programming students
should learn a lot of program patterns, or templates, and fill in the blanks for each specific
problem. Another idea is that there are a few powerful principles in programming, and
that if a learner understands the principles, they can be applied to any problem, even
one that doesn’t fit a familiar pattern.

Research suggests that an expert programmer, like an expert at any skill, does work
mainly by recognizing patterns. Nevertheless, we lean toward the powerful-principle
idea. The expert’s memory is not full of arbitrary patterns; it’s full of meaningful patterns,
because the expert has gone through the process of struggling to reason out how each
procedure works and how to write new procedures.

Still, we think it’s worth pointing out a few patterns that are so common that you’ll
have seen several examples of each before you finish this book. Once you learn these
patterns, you can write similar procedures almost automatically. But there’s an irony in
learning patterns: In Scheme, once you’ve identified a pattern, you can write a general-
purpose procedure that handles all such cases without writing individual procedures
for each situation. Then you don’t have to use the pattern any more! Chapter 8
presents several general pattern-handling procedures, called higher-order procedures. In
this chapter we’ll consider the patterns corresponding to those higher-order procedures,
and we’ll use the names of those procedures to name the patterns.

* That’s because there are two kinds of people: those who think there are two kinds of people,
and those who don’t.

217

What’s the point of learning patterns if you can use higher-order procedures instead?
There are atleast two points. The first, asyou’ll see very soon, is that some problems almost
follow one of the patterns; in that case, you can’t use the corresponding higher-order
procedure, which works only for problems that exactly follow the pattern. But you can
use your understanding of the pattern to help with these related problems. The second
point is that in Chapter 19 we’ll show how the higher-order functions are themselves
implemented using these recursive patterns.

This chapter isn’t an official list of all important patterns; as you gain programming
experience, you’ll certainly add more patterns to your repertoire.

The Every Pattern

Here’s a procedure to square every number in a sentence of numbers:

(define (square-sent sent)
(if (empty? sent)
()
(se (square (first sent))
(square-sent (bf sent)))))

Here’s a procedure to translate every word of a sentence into Pig Latin:

(define (pigl-sent sent)
(if (empty? sent)
()
(se (pigl (first sent))
(pigl-sent (bf sent)))))

The pattern here is pretty clear. Our recursive case will do something straightforward
to the first of the sentence, such as squareing it or pigling it, and we’ll combine
that with the result of a recursive call on the butfirst of the sentence.

The letter-pairs procedure that we wrote in Chapter 11 is an example of a
procedure that follows the every pattern pretty closely, but not exactly. The difference
is that letter-pairs looks at its argument sentence two words at a time.

(define (letter-pairs wd)
(if (= (count wd) 1)
()
(se (word (first wd) (first (bf wd)))
(letter-pairs (bf wd)))))

218 Part IV Recursion

Compare this with the earlier definition of square-sent. The recursive case still uses
se to combine one part of the result with a recursive call based on the butfirst of the
argument, but here both the first letter and the second letter of the argument contribute
to the first word of the result. That’s why the base case also has to be different; the
recursive case requires at least two letters, so the base case is a one-letter word.*

Let’s solve a slightly different problem. This time, we want to break the word down
into non-overlapping pairs of letters, like this:

> (disjoint-pairs ’‘tripoli) ;; the new problem
(TR IP OL I)

> (letter-pairs ’tripoli) ;; compare the old one
(TR RI IP PO OL LI)

The main difference between these two functions is that in disjoint-pairs we
eliminate two letters at once in the recursive call. A second difference is that we have to
deal with the special case of odd-length words.

(define (disjoint-pairs wd)
(cond ((empty? wd) ’'())
((= (count wd) 1) (se wd))
(else (se (word (first wd) (first (bf wd)))
(disjoint-pairs (bf (bf wd)))))))

The Keep Pattern

In the every pattern, we collect the results of transforming each element of a word
or sentence into something else. This time we’ll consider a different kind of problem:
choosing some of the elements and forgetting about the others. First, here is a procedure
to select the three-letter words from a sentence:

(define (keep-three-letter-words sent)
(cond ((empty? sent) '())
((= (count (first sent)) 3)
(se (first sent) (keep-three-letter-words (bf sent))))
(else (keep-three-letter-words (bf sent)))))

* Ifyou’ve read Chapter 8, you know that you could implement square-sent and pigl-sent
without recursion, using the every higher order function. But try using every to implement
letter-pairs;you’ll find that you can’t quite make it work.

Chapter 14 Common Patterns in Recursive Procedures 219

> (keep-three-letter-words ’(one two three four five six seven))
(ONE TWO SIX)

Next, here is a procedure to select the vowels from a word:

(define (keep-vowels wd)
(cond ((empty? wd) "")
((vowel? (first wd))
(word (first wd) (keep-vowels (bf wd))))
(else (keep-vowels (bf wd)))))

> (keep-vowels ‘napoleon)
AOEO

Let’s look at the differences between the every pattern and the keep pattern. First
of all, the keep procedures have three possible outcomes, instead of just two as in most
every-like procedures. In the every pattern, we only have to distinguish between the
base case and the recursive case. In the keep pattern, there is still a base case, but
there are fwo recursive cases; we have to decide whether or not to keep the first available
element in the return value. When we do keep an element, we keep the element itself,
not some function of the element.

As with the every pattern, there are situations that follow the keep pattern only
approximately. Suppose we want to look for doubled letters within a word:

> (doubles ’bookkeeper)
OOKKEE

> (doubles ’'mississippi)
SSSSPP

This isn’t a pure keep pattern example because we can’t decide whether to keep the first
letter by looking at that letter alone; we have to examine two at a time. But we can write
a procedure using more or less the same pattern:

(define (doubles wd)
(cond ((= (count wd) 1) "")
((equal? (first wd) (first (bf wd)))
(word (first wd) (first (bf wd)) (doubles (bf (bf wd)))))
(else (doubles (bf wd)))))

As in the evens example of Chapter 12, the base case of doubles is unusual, and one
of the recursive calls chops off two letters at once in forming the smaller subproblem.

220 Part IV Recursion

But the structure of the cond with a base case clause, a clause for keeping letters, and a
clause for rejecting letters is maintained.

The Accumulate Pattern

Here are two recursive procedures for functions that combine all of the elements of the
argument into a single result:

(define (addup nums)
(if (empty? nums)
0
(+ (first nums) (addup (bf nums)))))

(define (scrunch-words sent)
(if (empty? sent)

(word (first sent) (scrunch-words (bf sent)))))

> (addup ‘(8 3 6 1 10))
28

> (scrunch-words ' (ack now ledge able))
ACKNOWLEDGEABLE

What'’s the pattern? We’re using some combiner (+ or word) to connect the word
we’re up to with the result of the recursive call. The base case tests for an empty argument,
but the base case return value must be the identity element of the combiner function.

If there is no identity element for the combiner, as in the case of max, we modify the
pattern slightly:*

(define (sent-max sent)
(if (= (count sent) 1)
(first sent)
(max (first sent)
(sent-max (bf sent)))))

* Of course, if your version of Scheme has —oco, you can use it as the return value for an empty
sentence, instead of changing the pattern.

Chapter 14 Common Patterns in Recursive Procedures 221

Combining Patterns

(define (add-numbers sent)
(cond ((empty? sent) 0)
((number? (first sent))
(+ (first sent) (add-numbers (bf sent))))
(else (add-numbers (bf sent)))))

> (add-numbers ’(if 6 were 9))
15

This procedure combines aspects of keep with aspects of accumulate. We want to do
two things at once: get rid of the words that aren’t numbers and compute the sum of those
that are numbers. (A simple keep would construct a sentence of them.) Add-numbers
looks exactly like the keep pattern, except that there’s a funny combiner and a funny
base case, which look more like accumulate.*

Here’s an example that combines every and keep. We want a procedure that takes
a sentence as its argument and translates every word of the sentence into Pig Latin, but
leaves out words that have no vowels, because the Pig Latin translator doesn’t work for
such words. The procedure safe-pigl will be like a keep pattern in that it keeps only
words that contain vowels, but like an every in that the result contains transformed
versions of the selected words, rather than the words themselves.

(define (safe-pigl sent)
(cond ((empty? sent) '())
((has-vowel? (first sent))
(se (pigl (first sent)) (safe-pigl (bf sent))))
(else (safe-pigl (bf sent)))))

(define (has-vowel? wd)
(not (empty? (keep-vowels wd))))

* Here’s the higher-order function version, from Chapter 8:

(define (add-numbers sent)
(accumulate + (keep number? sent)))

The higher-order function version is more self-documenting and easier to write. The recursive
version, however, is slightly more efficient, because it avoids building up a sentence as an
intermediate value only to discard it in the final result. If we were writing this program for our own
use, we’d probably choose the higher-order function version; but if we were dealing with sentences
of length 10,000 instead of length 10, we’d pay more attention to efficiency.

222 Part IV Recursion

> (safe-pigl ’'(my pet fly is named xyzzy))
(ETPAY ISAY AMEDNAY)

Finally, here’s an example that combines all three patterns. In Chapter 1 we wrote
(using higher-order procedures) the acronym procedure, which selects the “real” words
of a sentence (the keep pattern), takes the first letter of each word (the every pattern),
and combines these initial letters into a single word (the accumulate pattern). In a
recursive procedure we can carry out all three steps at once:

(define (acronym sent)
(cond ((empty? sent) "")
((real-word? (first sent))
(word (first (first sent))
(acronym (bf sent))))
(else (acronym (bf sent)))))

Don’t become obsessed with trying to make every recursive problem fit one of the
three patterns we’ve shown here. As we said at the beginning of the chapter, what’s most
important is that you understand the principles of recursion in general, and understand
how versatile recursion is. The patterns are just special cases that happen to come up
fairly often.

Helper Procedures

Let’s say we want a procedure every-nth that takes a number n and a sentence as
arguments and selects every nth word from the sentence.

> (every-nth 3 ' (with a little help from my friends))
(LITTLE MY)

We get in trouble if we try to write this in the obvious way, as a sort of keep pattern.

(define (every-nth n sent) ;7 wrong!
(cond ((empty? sent) '())
((=n 1)
(se (first sent) (every-nth N (bf sent))))
(else (every-nth (- n 1) (bf sent)))))

The problem is with the n that’s in boldface. We’re thinking that it’s going to be the n
of the original invocation of every-nth, that is, 3. But in fact, we’ve already counted
n down so that in this invocation its value is 1. (Check out the first half of the same
cond clause.) This procedure will correctly skip the first two words but will keep all the

Chapter 14 Common Patterns in Recursive Procedures 223

words after that point. That’s because we’re trying to remember two different numbers:
the number we should always skip between kept words, and the number of words we still
need to skip this time.

If we’re trying to remember two numbers, we need two names for them. The way
to achieve this is to have our official every-nth procedure call a helper procedure that
takes an extra argument and does the real work:

(define (every-nth n sent)
(every-nth-helper n n sent))

(define (every-nth-helper interval remaining sent)
(cond ((empty? sent) '())
((= remaining 1)
(se (first sent)
(every-nth-helper interval interval (bf sent))))
(else (every-nth-helper interval (- remaining 1) (bf sent)))))

This procedure always calls itself recursively with the same value of interval, but with
a different value of remaining each time. Remaining keeps getting smaller by one in
each recursive call until it equals 1. On that call, a word is kept for the return value, and
we call every-nth-helper recursively with the value of interval, thatis, the original
value of n, as the new remaining. If you like, you can think of this combination of an
initialization procedure and a helper procedure as another pattern for your collection.

How to Use Recursive Patterns

One way in which recursive patterns can be useful is if you think of them as templates
with empty slots to fill in for a particular problem. Here are template versions of the
every, keep, and accumulate patterns as applied to sentences:

(define (every-something sent)
(if (empty? sent)
()
(se ((first sent))
(every-something (bf sent)))))

(define (keep-if-something sent)
(cond ((empty? sent) '())
((? (first sent))
(se (first sent) (keep-if-something (bf sent))))
(else (keep-if-something (bf sent)))))

224 Part IV Recursion

(define (accumulate-somehow sent)
(if (empty? sent)

((first sent)
(accumulate-somehow (bf sent)))))

Suppose you’re trying to write a procedure first-number that takes a sentence
as its argument and returns the first number in that sentence, but returns the word
no-number if there are no numbers in the argument. The first step is to make a guess
about which pattern will be most useful. In this case the program should start with an
entire sentence and select a portion of that sentence, namely one word. Therefore, we
start with the keep pattern.

(define (first-number sent) ;; first guess
(cond ((empty? sent) '())
(((first sent))
(se (first sent) (first-number (bf sent))))
(else (first-number (bf sent)))))

The next step is to fill in the blank. Obviously, since we’re looking for a number,
number? goes in the blank.

The trouble is that this procedure returns a/l the numbers in the given sentence.
Now our job is to see how the pattern must be modified to do what we want. The overall
structure of the pattern is a cond with three clauses; we’ll consider each clause separately.

What should the procedure return if sent is empty? In that case, there is no first
number in the sentence, so it should return no—-number:

((empty? sent) ’'no-number)

What if the first word of the sentence is a number? The program should return just
that number, ignoring the rest of the sentence:

((number? (first sent)) (first sent))

What if the first word of the sentence isn’t a number? The procedure must make a
recursive call for the butfirst, and whatever that recursive call returns is the answer.
So the else clause does not have to be changed.

Here’s the whole procedure:

(define (first-number sent)
(cond ((empty? sent) ’‘no-number)
((number? (first sent)) (first sent))
(else (first-number (bf sent)))))

Chapter 14 Common Patterns in Recursive Procedures 225

After filling in the blank in the keep pattern, we solved this problem by focusing
on the details of the procedure definition. We examined each piece of the definition to
decide what changes were necessary. Instead, we could have focused on the behavior of
the procedure. We would have found two ways in which the program didn’t do what it
was supposed to do: For an argument sentence containing numbers, it would return all
of the numbers instead of just one of them. For a sentence without numbers, it would
return the empty sentence instead of no—number. We would then have finished the job
by debugging the procedure to fix each of these problems. The final result would have
been the same.

Problems That Don’t Follow Patterns

We want to write the procedure sent-before?, which takes two sentences as arguments
and returns #t if the first comes alphabetically before the second. The general idea is
to compare the sentences word by word. If the first words are different, then whichever
is alphabetically earlier determines which sentence comes before the other. If the first
words are equal, we go on to compare the second words.*

> (sent-before? ’(hold me tight) ’(sun king))
#T

> (sent-before? ’(lovely rita) ’(love you to))
#F

> (sent-before? ’(strawberry fields forever)
' (strawberry fields usually))
#T

Does this problem follow any of the patterns we’ve seen? It’s not an every, because
the result isn’t a sentence in which each word is a transformed version of a word in
the arguments. It’s not a keep, because the result isn’t a subset of the words in the
arguments. And it’s not exactly an accumulate. We do end up with a single true or
false result, rather than a sentence full of results. But in a typical accumulate problem,

* Dictionaries use a different ordering rule, in which the sentences are treated as if they were
single words, with the spaces removed. By the dictionary rule, “a ¢” is treated as if it were “ac” and
comes after “ab”; by our rule, “a ¢” comes before “ab” because we compare the first words (“a” and
« 1

ab”).

226 Part IV Recursion

every word of the argument contributes to the solution. In this case only one word from
each sentence determines the overall result.

On the other hand, this problem does have something in common with the keep
pattern: We know that on each invocation there will be three possibilities. We might
reach a base case (an empty sentence); if not, the first words of the argument sentences
might or might not be relevant to the solution.

We’ll have a structure similar to the usual keep pattern, except that there’s no se
involved; if we find unequal words, the problem is solved without further recursion. Also,
we have two arguments, and either of them might be empty.

(define (sent-before? sentl sent2)
(cond ((empty? sentl) #t)
((empty? sent2) #f)
((before? (first sentl) (first sent2)) #t)
((before? (first sent2) (first sentl)) #f)
(else (sent-before? (bf sentl) (bf sent2)))))

Although thinking about the keep pattern helped us to work out this solution, the result
really doesn’t look much like a keep. We had to invent most of the details by thinking
about this particular problem, not by thinking about the pattern.

In the next chapter we’ll look at examples of recursive procedures that are quite
different from any of these patterns. Remember, the patterns are a shortcut for many
common problems, but don’t learn the shortcut at the expense of the general technique.

Pitfalls

Review the pitfalls from Chapter 12; they’re still relevant.

O How do you test for the base case? Most of the examples in this chapter have used
empty?, and it’s easy to fall into the habit of using that test without thinking. But, for
example, if the argument is a number, that’s probably the wrong test. Even when the
argument is a sentence or a non-numeric word, it may not be empty in the base case, as
in the Pig Latin example.

Chapter 14 Common Patterns in Recursive Procedures 227

O A serious pitfall is failing to recognize a situation in which you need an extra variable
and therefore need a helper procedure. If at each step you need the entire original
argument as well as the argument that’s getting closer to the base case, you probably
need a helper procedure. For example, write a procedure pairs that takes a word as
argument and returns a sentence of all possible two-letter words made of letters from the
argument word, allowing duplicates, like this:

> (pairs ’toy)
(TT TO TY OT OO OY YT YO YY)

O A simple pitfall, when using a helper procedure, is to write a recursive call in the
helper that calls the main procedure instead of calling the helper. (For example, what
would have happened if we’d had every—-nth-helper invoke every-nth instead of
invoking itself?)

O Some recursive procedures with more than one argument require more than one
base case. But some don’t. One pitfall is to leave out a necessary base case; another is to
include something that looks like a base case but doesn’t fit the structure of the program.

For example, the reason sent-before? needs two base cases is that on each
recursive call, both sentl and sent2 get smaller. Either sentence might run out first,
and the procedure should return different values in those two cases.

On the other hand, Exercise 11.7 asked you to write a procedure that has two
arguments but needs only one base case:

(define (copies num wd)
(if (= num 0)
()

(se wd (copies (- num 1) wd))))

In this example, the wd argument doesnt get smaller from one invocation to the next. It
would be silly to test for (empty? wd).

A noteworthy intermediate case is every-nth-helper. It does have two cond
clauses that check for two different arguments reaching their smallest allowable values,
but the remaining clause isn’t a base case. If remaining has the value 1, the procedure
still invokes itself recursively.

The only general principle we can offer is that you have to think about what base
cases are appropriate, not just routinely copy whatever worked last time.

228 Part IV Recursion

Exercises

Classify each of these problems as a pattern (every, keep, or accumulate), if possible,
and then write the procedure recursively. In some cases we’ve given an example of
invoking the procedure we want you to write, instead of describing it.

14.1

> (remove-once ’'morning ’(good morning good morning))
(GOOD GOOD MORNING)

(It’s okay if your solution removes the other MORNING instead, as long as it removes only
one of them.)

14.2

> (up 'town)
(T TO TOW TOWN)

14.3

> (remdup ’‘(ob la di ob la da)) ;; remove duplicates
(OB LA DI DA)

(It’s okay if your procedure returns (DI OB LA DA) instead, as long as it removes all but
one instance of each duplicated word.)

14.4

> (odds ' (i lost my little girl))
(I MY GIRL)

14.5 [8.7] Write a procedure letter-count that takes a sentence as its argument and
returns the total number of letters in the sentence:

> (letter-count ’(fixing a hole))
11

14.6 Write member?.

Chapter 14 Common Patterns in Recursive Procedures 229

14.7 Write differences, which takes a sentence of numbers as its argument and
returns a sentence containing the differences between adjacent elements. (The length
of the returned sentence is one less than that of the argument.)

> (differences (4 23 9 87 6 12))
(19 -14 78 -81 6)

14.8 Write expand, which takes a sentence as its argument. It returns a sentence similar
to the argument, except that if a number appears in the argument, then the return value
contains that many copies of the following word:

> (expand ' (4 calling birds 3 french hens))
(CALLING CALLING CALLING CALLING BIRDS FRENCH FRENCH FRENCH HENS)

> (expand ' (the 7 samurai))
(THE SAMURAI SAMURAI SAMURAI SAMURAI SAMURAI SAMURAI SAMURAT)

14.9 Write a procedure called location that takes two arguments, a word and a
sentence. It should return a number indicating where in the sentence that word can be
found. If the word isn’t in the sentence, return #£. If the word appears more than once,
return the location of the first appearance.

> (location ’'me ' (you never give me your money))
4

14.10 Write the procedure count-adjacent-duplicates that takes a sentence as
an argument and returns the number of words in the sentence that are immediately
followed by the same word:

> (count-adjacent-duplicates '(y a b b adabbadoo))
3

> (count-adjacent-duplicates ' (yeah yeah yeah))
2

14.11 Write the procedure remove-adjacent-duplicates that takes a sentence as
argument and returns the same sentence but with any word that’s immediately followed
by the same word removed:

230 Part IV Recursion

> (remove-adjacent-duplicates '(y a b badabbadoo))
(YABADABADO)

> (remove-adjacent-duplicates ' (yeah yeah yeah))
(YEAH)

14.12 Write a procedure progressive-squares? that takes a sentence of numbers
as its argument. It should return #t if each number (other than the first) is the square
of the number before it:

> (progressive-squares? ‘(3 9 81 6561))
#T

> (progressive-squares? ' (25 36 49 64))
#F

14.13 What does the pigl procedure from Chapter 11 do if you invoke it with a word
like “frzzmlpt” that has no vowels? Fix it so that it returns “frzzmlptay.”

14.14 Write a predicate same-shape? that takes two sentences as arguments. It should
return #t if two conditions are met: The two sentences must have the same number of
words, and each word of the first sentence must have the same number of letters as the
word in the corresponding position in the second sentence.

> (same-shape? ' (the fool on the hill) ’(you like me too much))
#T

> (same-shape? ' (the fool on the hill) ’(and your bird can sing))
#F

14.15 Write merge, a procedure that takes two sentences of numbers as arguments.
Each sentence must consist of numbers in increasing order. Merge should return a single
sentence containing all of the numbers, in order. (We’ll use this in the next chapter as
part of a sorting algorithm.)

> (merge ‘(4 7 18 40 99) '(3 6 9 12 24 36 50))
(346 7 9 12 18 24 36 40 50 99)

Chapter 14 Common Patterns in Recursive Procedures 231

14.16 Write a procedure syllables that takes a word as its argument and returns the
number of syllables in the word, counted according to the following rule: the number
of syllables is the number of vowels, except that a group of consecutive vowels counts as
one. For example, in the word “soaring,” the group “oa” represents one syllable and the
vowel “i” represents a second one.

Be sure to choose test cases that expose likely failures of your procedure. For example,
what if the word ends with a vowel? What if it ends with two vowels in a row? What if it
has more than two consecutive vowels?

@, ”

(Of course this rule isn’t good enough. It doesn’t deal with things like silent “e”s
that don’t create a syllable (“like”), consecutive vowels that don’t form a diphthong

(“cooperate”), letters like “y” that are vowels only sometimes, etc. If you get bored, see
whether you can teach the program to recognize some of these special cases.)

232 Part IV Recursion

Project: Spelling Names of Huge Numbers

Write a procedure number—name that takes a positive integer argument and returns a
sentence containing that number spelled out in words:

> (number-name 5513345)
(FIVE MILLION FIVE HUNDRED THIRTEEN THOUSAND THREE HUNDRED FORTY FIVE)

> (number-name (factorial 20))

(TWO QUINTILLION FOUR HUNDRED THIRTY TWO QUADRILLION NINE HUNDRED TWO
TRILLION EIGHT BILLION ONE HUNDRED SEVENTY SIX MILLION SIX HUNDRED
FORTY THOUSAND)

There are some special cases you will need to consider:
* Numbers in which some particular digit is zero
* Numbers like 1,000,529 in which an entire group of three digits is zero.
* Numbers in the teens.

Here are two hints. First, split the number into groups of three digits, going from
right to left. Also, use the sentence

’(thousand million billion trillion quadrillion quintillion
sextillion septillion octillion nonillion decillion)

You can write this bottom-up or top-down. To work bottom-up, pick a subtask and
get that working before you tackle the overall structure of the problem. For example,
write a procedure that returns the word FIFTEEN given the argument 15.

To work top-down, start by writing number-name, freely assuming the existence of
whatever helper procedures youlike. You can begin debugging by writing stub procedures
that fit into the overall program but don’t really do their job correctly. For example, as
an intermediate stage you might end up with a program that works like this:

> (number-name 1428425) ;; intermediate version
(1 MILLION 428 THOUSAND 425)

233

Zoom in on some parts of a fractal and you’ll see a miniature version of the whole thing.

15 Advanced Recursion

By now you’ve had a good deal of experience with straightforward recursive problems,
and we hope you feel comfortable with them. In this chapter, we present some more
challenging problems. But the same leap of faith method that we used for easier problems
is still our basic approach.

Example: Sort

Firstwe’ll consider the example of sorting a sentence. The argument will be any sentence;
our procedure will return a sentence with the same words in alphabetical order.

> (sort ’'(i wanna be your man))
(BE I MAN WANNA YOUR)

We’ll use the before? primitive to decide if one word comes before another word
alphabetically:

> (before? ’'starr 'best)
#F

How are we going to think about this problem recursively? Suppose that we’re given
a sentence to sort. A relatively easy subproblem is to find the word that ought to come
first in the sorted sentence; we’ll write earliest-word later to do this.

Once we’ve found that word, we just need to put it in front of the sorted version of
the rest of the sentence. This is our leap of faith: We’re going to assume that we can
already sort this smaller sentence. The algorithm we’ve described is called selection sort.

235

Another subproblem is to find the “rest of the sentence”—all the words except for
the earliest. But in Exercise 14.1 you wrote a function remove-once that takes a word
and a sentence and returns the sentence with that word removed. (We don’t want to use
remove, which removes all copies of the word, because our argument sentence might
include the same word twice.)

Let’s say in Scheme what we’ve figured out so far:

(define (sort sent) ;; unfinished
(se (earliest-word sent)
(sort (remove-once (earliest-word sent) sent))))

We need to add a base case. The smallest sentence is (), which is already sorted.

(define (sort sent)
(if (empty? sent)
()
(se (earliest-word sent)
(sort (remove-once (earliest-word sent) sent)))))

We have one unfinished task: finding the earliest word of the argument.

(define (earliest-word sent)
(earliest-helper (first sent) (bf sent)))

(define (earliest-helper so-far rest)
(cond ((empty? rest) so-far)
((before? so-far (first rest))
(earliest-helper so-far (bf rest)))
(else (earliest-helper (first rest) (bf rest)))))*

For your convenience, here’s remove—-once:

(define (remove-once wd sent)
(cond ((empty? sent) '())
((equal? wd (first sent)) (bf sent))
(else (se (first sent) (remove-once wd (bf sent))))))

* If you've read Part III, you might instead want to use accumulate for this purpose:

(define earliest-word sent)
(accumulate (lambda (wdl wd2) (if (before? wdl wd2) wdl wd2))
sent))

236 Part IV Recursion

Example: From-Binary

We want to take a word of ones and zeros, representing a binary number, and compute
the numeric value that it represents. Each binary digit (or bit) corresponds to a power of
two, just as ordinary decimal digits represent powers of ten. So the binary number 1101
represents (1 X 8) + (1 x4) + (0x2) + (1 x1) = 13. We want to be able to say

> (from-binary 1101)
13

> (from-binary 111)
7

Where is the smaller, similar subproblem? Probably the most obvious thing to try is
our usual trick of dividing the argument into its first and its butfirst. Suppose we
divide the binary number 1101 that way. We make the leap of faith by assuming that we
can translate the butfirst, 101, into its binary value 5. What do we have to add for the
leftmost 1?7 It contributes 8 to the total, because it’s three bits away from the right end of
the number, so it must be multiplied by 23. We could write this idea as follows:

(define (from-binary bits) ;; incomplete
(+ (* (first bits) (expt 2 (count (bf bits))))
(from-binary (bf bits))))

That is, we multiply the £irst bit by a power of two depending on the number of bits
remaining, then we add that to the result of the recursive call.

As usual, we have written the algorithm for the recursive case before figuring out the
base case. Butit’s pretty easy; a number with no bits (an empty word) has the value zero.*

(define (from-binary bits)
(if (empty? bits)
0
(+ (* (first bits) (expt 2 (count (bf bits))))
(from-binary (bf bits)))))

Although this procedure is correct, it’s worth noting that a more efficient version
can be written by dissecting the number from right to left. As you’ll see, we can then
avoid the calls to expt, which are expensive because we have to do more multiplication
than should be necessary.

* A more straightforward base case would be a one-bit number, but we’ve reduced that to this
more elegant base case, following the principle we discussed on page 197.

Chapter 15 Advanced Recursion 237

Suppose we want to find the value of the binary number 1101. The butlast of
this number, 110, has the value six. To get the value of the entire number, we double
the six (because 1100 would have the value 12, just as in ordinary decimal numbers 430
is ten times 43) and then add the rightmost bit to get 13. Here’s the new version:

(define (from-binary bits)
(if (empty? bits)
0
(+ (* (from-binary (bl bits)) 2)
(last bits))))

This version may look a little unusual. We usually combine the value returned by the
recursive call with some function of the current element. This time, we are combining
the current element itself with a function of the recursive return value. You may want
to trace this procedure to see how the intermediate return values contribute to the final
result.

Example: Mergesort

Let’s go back to the problem of sorting a sentence. It turns out that sorting one element
ata time, as in selection sort, isn’t the fastest possible approach. One of the fastest sorting
algorithms is called mergesort, and it works like this: In order to mergesort a sentence,
divide the sentence into two equal halves and recursively sort each half. Then take the
two sorted subsentences and merge them together, that is, create one long sorted sentence
that contains all the words of the two halves. The base case is that an empty sentence or
a one-word sentence is already sorted.

(define (mergesort sent)
(if (<= (count sent) 1)
sent
(merge (mergesort (one-half sent))
(mergesort (other-half sent)))))

The leap of faith here is the idea that we can magically mergesort the halves of the
sentence. If you try to trace this through step by step, or wonder exactly what happens
at what time, then this algorithm may be very confusing. But if you just believe that the
recursive calls will do exactly the right thing, then it’s much easier to understand this
program. The key point is that if the two smaller pieces have already been sorted, it’s
pretty easy to merge them while keeping the result in order.

We still need some helper procedures. You wrote merge in Exercise 14.15. It uses
the following technique: Compare the first words of the two sentences. Let’s say the first
word of the sentence on the left is smaller. Then the first word of the return value is the

238 Part IV Recursion

first word of the sentence on the left. The rest of the return value comes from recursively
merging the butfirst of the left sentence with the entire right sentence. (It’s precisely
the opposite of this if the first word of the other sentence is smaller.)

(define (merge left right)
(cond ((empty? left) right)
((empty? right) left)
((before? (first left) (first right))
(se (first left) (merge (bf left) right)))
(else (se (first right) (merge left (bf right))))))

Now we have to write one-half and other-half. One of the easiest ways to
do this is to have one-half return the elements in odd-numbered positions, and have
other-half return the elements in even-numbered positions. These are the same as
the procedures odds (from Exercise 14.4) and evens (from Chapter 12).

(define (one-half sent)
(if (<= (count sent) 1)
sent
(se (first sent) (one-half (bf (bf sent))))))

(define (other-half sent)
(if (<= (count sent) 1)
()
(se (first (bf sent)) (other-half (bf (bf sent))))))

Example: Subsets

We’re now going to attack a much harder problem. We want to know all the subsets
of the letters of a word—that is, words that can be formed from the original word by
crossing out some (maybe zero) of the letters. For example, if we start with a short word
like rat, the subsets are r, a, t, ra, rt, at, rat, and the empty word (""). As the word
gets longer, the number of subsets gets bigger very quickly.*

As with many problems about words, we’ll try assuming that we can find the subsets
of the butfirst of our word. In other words, we’re hoping to find a solution that will
include an expression like

(subsets (bf wd))

* Try writing down all the subsets of a five-letter word if you don’t believe us.

Chapter 15 Advanced Recursion 239

Let’s actually take a four-letter word and look at its subsets. We’ll pick brat, because
we already know the subsets of its butfirst. Here are the subsets of brat:

""'br at br ba bt ra rt at bra brt bat rat brat

You might notice that many of these subsets are also subsets of rat. In fact, if
you think about it, all of the subsets of rat are also subsets of brat. So the words in
(subsets ’'rat) are some of the words we need for (subsets 'brat).

Let’s separate those out and look at the ones left over:

rat subsets: ""'r a t ra rt at rat
others: b br ba bt bra brt bat brat

Right about now you’re probably thinking, “They’ve pulled a rabbit out of a hat, the
way my math teacher always does.” The words that aren’t subsets of rat all start with
b, followed by something that is a subset of rat. You may be thinking that you never
would have thought of that yourself. But we’re just following the method: Look at the
smaller case and see how it fits into the original problem. It’s not so different from what
happened with downup.

Now all we have to do is figure out how to say in Scheme, “Put a b in front of every
word in this sentence.” This is a straightforward example of the every pattern:

(define (prepend-every letter sent)
(if (empty? sent)
()
(se (word letter (first sent))
(prepend-every letter (bf sent)))))

The way we’ll use thisin (subsets ’brat) is
(prepend-every ’'b (subsets ‘rat))

Of course in the general case we won’t have b and rat in our program, but instead
will refer to the formal parameter:

(define (subsets wd) ;; first version
(se (subsets (bf wd))
(prepend-every (first wd) (subsets (bf wd)))))

We still need a base case. By now you’re accustomed to the idea of using an empty
word as the base case. It may be strange to think of the empty word as a set in the first
place, let alone to try to find its subsets. But a set of zero elements is a perfectly good set,
and it’s the smallest one possible.

240 Part IV Recursion

The empty set has only one subset, the empty setitself. What should subsets of the
empty word return? It’s easy to make a mistake here and return the empty word itself.
But we want subsets to return a sentence, containing all the subsets, and we should
stick with returning a sentence even in the simple case.* (This mistake would come from
not thinking about the range of our function, which is sentences. This is why we put so
much effort into learning about domains and ranges in Chapter 2.) So we’ll return a
sentence containing one (empty) word to represent the one subset.

(define (subsets wd) ;; second version
(if (empty? wd)
(se "")
(se (subsets (bf wd))
(prepend-every (first wd) (subsets (bf wd))))))

This program is entirely correct. Because it uses two identical recursive calls,
however, it’s a lot slower than necessary. We can use let to do the recursive subproblem
only once:**

(define (subsets wd)
(if (empty? wd)
(se "")
(let ((smaller (subsets (bf wd))))
(se smaller
(prepend-every (first wd) smaller)))))

Pitfalls

O We’ve already mentioned the need to be careful about the value returned in the base
case. The subsets procedure is particularly error-prone because the correct value, a
sentence containing the empty word, is quite unusual. An empty subset isn’t the same as
no subsets at all!

O Sometimes you write a recursive procedure with a correct recursive case and a
reasonable base case, but the program still doesn’t work. The trouble may be that the
base case doesn’t quite catch all of the ways in which the problem can get smaller. A

* We discussed this point in a pitfall in Chapter 12.

** How come we’re worrying about efficiency all of a sudden? We really did pull this out of a hat.
The thing is, it’s a lot slower without the let. Adding one letter to the length of a word doubles
the time required to find its subsets; adding 10 letters multiplies the time by about 1000.

Chapter 15 Advanced Recursion 241

second base case may be needed. For example, in mergesort, why did we write the
following line?

(<= (count sent) 1)

This tests for two base cases, empty sentences and one-word sentences, whereas in most
other examples the base case is just an empty sentence. Suppose the base case test
were (empty? sent) and suppose we invoke mergesort with a one-word sentence,
(test). We would end up trying to compute the expression

(merge (mergesort (one-half ’(test)))
(mergesort (other-half ’(test))))

If you look back at the definitions of one-half and other-half, you’ll see that this is
equivalent to

(merge (mergesort ’'(test)) (mergesort ’()))

The first argument to merge is the same expression we started with! Here is a situation
in which the problem doesn’t get smaller in a recursive call. Although we’ve been trying
to avoid complicated base cases, in this situation a straightforward base case isn’t enough.
To avoid an infinite recursion, we must have two base cases.

Another example is the £ib procedure from Chapter 13. Suppose it were defined
like this:

(define (fib n) ;7 wrong!
(if (= n 1)
1

(+ (£fib (- n 1))
(fib (- n 2)))))

It would be easy to make this mistake, because everybody knows that in a recursion
dealing with numbers, the base case is the smallest possible number. But in £ib, each
computation depends on {wo smaller values, and we discover that we need two base cases.

O The technique of recursion is often used to do something repetitively, but don’t get
the idea that the word “recursion” means repetition. Recursion is a technique in which
a procedure invokes itself. We do use recursion to solve repetitive problems, but don’t
confuse the method with the ends it achieves. In particular, if you've programmed in
other languages that have special-purpose looping mechanisms (the ones with names
like for and while), those aren’t recursive. Conversely, not every recursive procedure
carries out a repetition.

242 Part IV Recursion

Exercises

15.1 Write a procedure to-binary:

> (to-binary 9)
1001

> (to-binary 23)
10111

15.2 A “palindrome” is a sentence that reads the same backward as forward. Write a
P

predicate palindrome? that takes a sentence as argument and decides whether it is a

palindrome. For example:

> (palindrome? ' (flee to me remote elf))
#T

> (palindrome? ' (flee to me remote control))
#F

Do not reverse any words or sentences in your solution.

15.3 Write a procedure substrings that takes a word as its argument. It should return
a sentence containing all of the substrings of the argument. A substring is a subset whose
letters come consecutively in the original word. For example, the word bat is a subset,
but not a substring, of brat.

15.4 Write a predicate procedure substring? that takes two words as arguments and
returns #t if and only if the first word is a substring of the second. (See Exercise 15.3 for
the definition of a substring.)

Be careful about cases in which you encounter a “false start,” like this:

> (substring? ’‘ssip '‘mississippi)
#T

and also about subsets that don’t appear as consecutive letters in the second word:

> (substring? 'misip ’'mississippi)
#F

Chapter 15 Advanced Recursion 243

15.5 Suppose you have a phone number, such as 223-5766, and you’d like to figure out
a clever way to spell it in letters for your friends to remember. Each digit corresponds
to three possible letters. For example, the digit 2 corresponds to the letters A, B, and
C. Write a procedure that takes a number as argument and returns a sentence of all the
possible spellings:

> (phone-spell 2235766)
(AADJPMM AADJPMN ... CCFLSOO)

(We’re not showing you all 2187 words in this sentence.) You may assume there are no
zeros or ones in the number, since those don’t have letters.

Hint: This problem has a lot in common with the subsets example.

15.6 Let’s say a gladiator kills a roach. If we want to talk about the roach, we say “the
roach the gladiator killed.” But if we want to talk about the gladiator, we say “the gladiator
that killed the roach.”

People are pretty good at understanding even rather long sentences as long as they’re
straightforward: “This is the farmer who kept the cock that waked the priest that married
the man that kissed the maiden that milked the cow that tossed the dog that worried the
cat that killed the rat that ate the malt that lay in the house that Jack built.” But even a
short nested sentence is confusing: “This is the rat the cat the dog worried killed.” Which
rat was that?

Write a procedure unscramble that takes a nested sentence as argument and returns a
straightforward sentence about the same cast of characters:

> (unscramble ’'(this is the roach the gladiator killed))
(THIS IS THE GLADIATOR THAT KILLED THE ROACH)

> (unscramble ’(this is the rat the cat the dog the boy the
girl saw owned chased bit))
(THIS IS THE GIRL THAT SAW THE BOY THAT OWNED THE DOG THAT
CHASED THE CAT THAT BIT THE RAT)

You may assume that the argument has exactly the structure of these examples, with no
special cases like “that lay in the house” or “that Jack built.”

244 Part IV Recursion

Project: Scoring Poker Hands

The idea of this project is to invent a procedure poker-value that works like this:

> (poker-value ’'(h4 s4 c6 s6 c4))
(FULL HOUSE - FOURS OVER SIXES)

> (poker-value ’'(h7 s3 c5 c4 dé6))
(SEVEN-HIGH STRAIGHT)

> (poker-value '(dg d10 dj da dk))
(ROYAL FLUSH - DIAMONDS)

> (poker-value ’'(da d6 d3 c9 hé6))
(PAIR OF SIXES)

As you can see, we are representing cards and hands just as in the Bridge project, except
that poker hands have only five cards.*

Here are the various kinds of poker hands, in decreasing order of value:

* Royal flush: ten, jack, queen, king, and ace, all of the same suit

* Straight flush: five cards of sequential rank, all of the same suit

e Four of a kind: four cards of the same rank

¢ Full house: three cards of the same rank, and two of a second rank
* Flush: five cards of the same suit, not sequential rank

* Straight: five cards of sequential rank, not all of the same suit

¢ Three of a kind: three cards of the same rank, no other matches

* Later on we’ll think about seven-card variants of poker.

245

* Two pair: two pairs of cards, of two different ranks
e Pair: two cards of the same rank, no other matches
* Nothing: none of the above

An ace can be the lowest card of a straight (ace, 2, 3, 4, 5) or the highest card of a straight
(ten, jack, queen, king, ace), but a straight can’t “wrap around”; a hand with queen, king,
ace, 2, 3 would be worthless (unless it’s a flush).

Notice that most of the hand categories are either entirely about the ranks of the
cards (pairs, straight, full house, etc.) or entirely about the suits (flush). It’s a good idea
to begin your program by separating the rank information and the suit information. To
check for a straight flush or royal flush, you’ll have to consider both kinds of information.

In what form do you want the suit information? Really, all you need is a true or
false value indicating whether or not the hand is a flush, because there aren’t any poker
categories like “three of one suit and two of another.”

What about ranks? There are two kinds of hand categories involving ranks: the ones
about equal ranks (pairs, full house) and the ones about sequential ranks (straight). You
might therefore want the rank information in two forms. A sentence containing all of
the ranks in the hand, in sorted order, will make it easier to find a straight. (You still have
to be careful about aces.)

For the equal-rank categories, what you want is some data structure that will let you
ask questions like “are there three cards of the same rank in this hand?” We ended up
using a representation like this:

> (compute-ranks ‘(g 3 4 3 4))
(ONE Q TWO 3 TWO 4)

One slightly tricky aspect of this solution is that we spelled out the numbers of cards,
one to four, instead of using the more obvious (1 Q 2 3 2 4). The reason, as you can
probably tell just by looking at the latter version, is that it would lead to confusion between
the names of the ranks, most of which are digits, and the numbers of occurrences, which
are also digits. More specifically, by spelling out the numbers of occurrences, we can use
member? to ask easily if there is a three-of-a-kind rank in the hand.

You may find it easier to begin by writing a version that returns only the name of a
category, such as three of a kind, and only after you get that to work, revise it to give
more specific results such as three sixes.

246 Part IV Recursion

Extra Work for Hotshots

In some versions of poker, each player gets seven cards and can choose any five of the
seven to make a hand. How would it change your program if the argument were a
sentence of seven cards? (For example, in five-card poker there is only one possible
category for a hand, but in seven-card you have to pick the best category that can be made

from your cards.) Fix your program so that it works for both five-card and seven-card
hands.

Another possible modification to the program is to allow for playing with “wild”
cards. If you play with “threes wild,” it means that if there is a three in your hand you’re
allowed to pretend it’s whatever card you like. For this modification, your program will
require a second argument indicating which cards are wild. (When you play with wild
cards, there’s the possibility of having five of a kind. This beats a straight flush.)

Project: Scoring Poker Hands 247

+|+
+
+
+
+
+/
w':
——
+

+

&t
+
+
/s
+
T
+
™
+
+
+ /4
+ +

+ ++ + ++ +++
+ 4], \+ | g %
L 61 £ *

KL< |0 2\
ESON@B@
AIDO]I1X NN

63

In each set, how do the ones on the left differ from the ones on the right?

16 Example: Pattern Matcher

It’s time for another extended example in which we use the Scheme tools we’ve been
learning to accomplish something practical. We’ll start by describing how the program
will work before we talk about how to implement it.

You can load our program into Scheme by typing

(load "match.scm")

Problem Description

A pattern matcher is a commonly used procedure whose job is to compare a sentence to a
range of possibilities. An example may make this clear:

> (match '(* me *) ’'(love me do))
#T

> (match '(* me *) '(please please me))
#T

> (match '(* me *) ’(in my life))
#F

The first argument, (* me *), is a pallern. In the pattern, each asterisk (*) means “any
number of words, including no words atall.” So the entire pattern matches any sentence
that contains the word “me” anywhere within it. You can think of match as a more
general form of equal? in the sense that it compares two sentences and tells us whether
they’re the same, but with a broader meaning of “the same.”

249

Our pattern matcher will accept patterns more complicated than this first example.
There are four special characters that indicate unspecified parts of a pattern, depending
on the number of words that should be allowed:

At most one word.
Exactly one word.

—

At least one word.

* @

Any number of words.

These characters are meant to be somewhat mnemonic. The question mark means
“maybe there’s a word.” The exclamation point means “precisely one word!” (And it’s
vertical, just like the digit 1, sort of.) The ampersand, which ordinarily means “and,”
indicates that we’re matching a word and maybe more. The asterisk doesn’t have any
mnemonic value, but it’s what everyone uses for a general matching indicator anyway.

We can give a name to the collection of words that match an unspecified part of
a pattern by including in the pattern a word that starts with one of the four special
characters and continues with the name. If the match succeeds, match will return a
sentence containing these names and the corresponding values from the sentence:

> (match ' (*start me *end) ’'(love me do))
(START LOVE ! END DO !)

> (match ' (*start me *end) ' (please please me))
(START PLEASE PLEASE ! END !)

> (match ’'(mean mr mustard) ' (mean mr mustard))

@)

> (match ' (*start me *end) ’'(in my life))
FAILED

In these examples, you see that match doesn’t really return #t or #f; the earlier set
of examples showed a simplified picture. In the first of the new examples, the special
pattern word *start is allowed to match any number of words, as indicated by the
asterisk. In this case it turned out to match the single word “love.” Match returns a
result that tells us which words of the sentence match the named special words in the
pattern. (We’ll call one of these special pattern words a placeholder.) The exclamation
points in the returned value are needed to separate one match from another. (In the
second example, the name end was matched by an empty set of words.) In the third

250 Part IV Recursion

example, the match was successful, but since there were no placeholders the returned
sentence was empty. If the match is unsuccessful, match returns the word failed.*

If the same placeholder name appears more than once in the pattern, then it must
be matched by the same word(s) in the sentence each time:

> (match ’(!twice !other !twice) ' (cry baby cry))
(TWICE CRY ! OTHER BABY !)

> (match ' (!twice !other !twice) ’'(please please me))
FAILED

Some patterns might be matchable in more than one way. For example, the
invocation

> (match ' (*front *back) ’(your mother should know))

might return any of five different correct answers:

(FRONT YOUR MOTHER SHOULD KNOW ! BACK !)
(FRONT YOUR MOTHER SHOULD ! BACK KNOW !)
(FRONT YOUR MOTHER ! BACK SHOULD KNOW !)
(FRONT YOUR ! BACK MOTHER SHOULD KNOW !)
(FRONT ! BACK YOUR MOTHER SHOULD KNOW !)

We arbitrarily decide that in such cases the first placeholder should match as many words
as possible, so in this case match will actually return the first of these answers.

Before continuing, you might want to look at the first batch of exercises at the end
of this chapter, which are about using the pattern matcher. (The rest of the exercises are
about the implementation, which we’ll discuss next.)

Implementation: When Are Two Sentences Equal?

Our approach to implementation will be to start with something we already know how

* Why not return the sentence if successful or #£f otherwise? That would be fine in most versions
of Scheme, but as we mentioned earlier, the empty sentence () is the same as the false value #f
in some dialects. In those Schemes, a successfully matched pattern with no named placeholders,
for which the program should return an empty sentence, would be indistinguishable from an
unmatched pattern.

Chapter 16 Example: Pattern Matcher 251

to write: a predicate that tests whether two sentences are exactly equal. We will add
capabilities one at a time until we reach our goal.

Suppose that Scheme’s primitive equal? function worked only for words and not
for sentences. We could write an equality tester for sentences, like this:

(define (sent-equal? sentl sent2)
(cond ((empty? sentl)
(empty? sent2))
((empty? sent2) #f)
((equal? (first sentl) (first sent2))
(sent-equal? (bf sentl) (bf sent2)))
(else #£f)))

Two sentences are equal if each word in the first sentence is equal to the corresponding
word in the second. They’re unequal if one sentence runs out of words before the other.

Why are we choosing to accept Scheme’s primitive word comparison but rewrite the
sentence comparison? In our pattern matcher, a placeholder in the pattern corresponds
to a group of words in the sentence. There is no kind of placeholder that matches only
part of a word. (It would be possible to implement such placeholders, but we’ve chosen
not to.) Therefore, we will never need to ask whether a word is “almost equal” to another
word.

When Are Two Sentences Nearly Equal?

Pattern matching is just a more general form of this sent-equal? procedure. Let’s
write a very simple pattern matcher that knows only about the “I” special character and
doesn’t let us name the words that match the exclamation points in the pattern. We’ll
call this one match? with a question mark because it returns just true or false.

(define (match? pattern sent) ;; first version: ! only
(cond ((empty? pattern)
(empty? sent))
((empty? sent) #f£f)
((equal? (first pattern) ’!)
(match? (bf pattern) (bf sent)))
((equal? (first pattern) (first sent))
(match? (bf pattern) (bf sent)))
(else #£f)))

252 Part IV Recursion

This program is exactly the same as sent-equal?, except for the highlighted cond
clause. We are still comparing each word of the pattern with the corresponding word
of the sentence, but now an exclamation mark in the pattern matches any word in the
sentence. (If first of pattern is an exclamation mark, we don’t even look at first
of sent.)

Our strategy in the next several sections will be to expand the pattern matcher by
implementing the remaining special characters, then finally adding the ability to name
the placeholders. For now, when we say something like “the * placeholder,” we mean the
placeholder consisting of the asterisk alone. Later, after we add named placeholders, the
same procedures will implement any placeholder that begins with an asterisk.

Matching with Alternatives

The ! matching is not much harder than sent-equal?, because it’s still the case that
one word of the pattern must match one word of the sentence. When we introduce the
? option, the structure of the program must be more complicated, because a question
mark in the pattern might or might not be paired up with a word in the sentence. In
other words, the pattern and the sentence might match without being the same length.

(define (match? pattern sent) ;; second version: ! and ?
(cond ((empty? pattern)
(empty? sent))
((equal? (first pattern) ’'?)
(if (empty? sent)
(match? (bf pattern) ' ())
(or (match? (bf pattern) (bf sent))
(match? (bf pattern) sent))))
((empty? sent) #f£f)
((equal? (first pattern) ’'!)
(match? (bf pattern) (bf sent)))
((equal? (first pattern) (first sent))
(match? (bf pattern) (bf sent)))
(else #£f)))

Note that the new cond clause comes before the check to see if sent is empty. That’s
because sent might be empty and a pattern of (?) would still match it. But if the
sentence is empty, we know that the question mark doesn’t match a word, so we just have
to make sure that the butfirst of the pattern contains nothing but question marks.
(We don’t have a predicate named all-question-marks?; instead, we use match?
recursively to make this test.)

Chapter 16 Example: Pattern Matcher 253

In general, a question mark in the pattern has to match either one word or zero
words in the sentence. How do we decide? Our rule is that each placeholder should
match as many words as possible, so we prefer to match one word if we can. But allowing
the question mark to match a word might prevent the rest of the pattern from matching
the rest of the sentence.

Compare these two examples:

> (match? ' (? please me) ’'(please please me))
#T

> (match? ' (? please me) ' (please me))
#T

In the first case, the first thing in the pattern is a question mark and the first thing
in the sentence is “please,” and they match. That leaves “please me” in the pattern to
match “please me” in the sentence.

In the second case, we again have a question mark as the first thing in the pattern
and “please” as the first thing in the sentence. But this time, we had better not use up
the “please” in the sentence, because that will only leave “me” to match “please me.” In
this case the question mark has to match no words.

To you, these examples probably look obvious. That’s because you're a human
being, and you can take in the entire pattern and the entire sentence all at once. Scheme
isn’t as smart as you are; it has to compare words one pair at a time. To Scheme, the
processing of both examples begins with question mark as the first word of the pattern
and “please” as the first word of the sentence. The pattern matcher has to consider both
cases.

How does the procedure consider both cases? Look at the invocation of or by
the match? procedure. There are two alternatives; if either turns out true, the match
succeeds. One is that we try to match the question mark with the first word of the
sentence just as we matched ! in our earlier example—by making a recursive call on the
butfirsts of the pattern and sentence. If that returns true, then the question mark
matches the first word.

The second alternative that can make the match succeed is a recursive call tomatch?
on the butfirst of the pattern and the entire sentence; this corresponds to matching

254 Part IV Recursion

the ? against nothing.*

Let’s trace match? so that you can see how these two cases are handled differently
by the program.

> (trace match?)

> (match? ' (? please me) ’'(please please me))

(match? (? please me) (please please me))

| (match? (please me) (please me)) Try matching ? with please.
| | (match? (me) (me))

| | | (matchz () ())

| | | #t It works!
|1 #t

| #t

#t

#T

> (match? ' (? please me) ’'(please me))
(match? (? please me) (please me))

| (match? (please me) (me)) Try matching ? with please.
#f It doesn’t work.
(match? (please me) (please me)) This time, match ? with nothing.

I

I

| | (match? (me) (me))
| | | (match? () ())
| | | #t
| | #t
| #t
#t

#T

Backtracking

The program structure that allows for two alternative routes to success has more profound
implications than you may think at first.

When match? sees a question mark in the pattern, it has to decide whether or not
to “use up” a word of the sentence by matching it with the question mark. You might
wonder, “How does the question mark decide whether to take a word?” The answer is
that the decision isn’t made “by the question mark”; there’s nothing about the particular

* Actually, since or is a special form, Scheme avoids the need to try the second alternative if the
first one succeeds.

Chapter 16 Example: Pattern Matcher 255

word that the question mark might match that helps with the decision! Instead, the
decision depends on matching what comes to the right of the question mark.

Compare this situation with the keep recursive pattern. There, too, the procedure
makes a decision about the first word of a sentence, and each alternative leads to a
recursive call for the butfirst:

(cond ((empty? sent) '())
((some-test? (first sent))
(se (first sent) (recursive-call (bf sent))))
(else (recursive-call (bf sent))))

The difference is that in the keep pattern the choice between alternatives can be made
just by looking at the immediate situation—the single word that might or might not be
chosen; the decision doesn’t depend on anything in the rest of the problem. As a result,
the choice has already been made before any recursive call happens. Therefore, only
one of the recursive calls is actually made, to make choices about the remaining words in
the sentence.

Inmatch?, by contrast, any particular invocation can’t make its choice until it knows
the result of a recursive invocation. The result from the recursive call determines the
choice made by the caller.

Here’s a model that might help you think about this kind of recursion. Match?
sees a question mark in the pattern. It makes a tentative decision that this question mark
should match the first word of the sentence, and it uses a recursive invocation to see
whether that decision allows the rest of the problem to be solved. If so, the tentative
choice was correct. If not, match? tries an alternative decision that the question mark
doesn’t match a word. This alternative is still tentative; another recursive call is needed
to see if the rest of the pattern can succeed. If not, the overall match fails.

This structure is called backtracking.

What if there are two question marks in the pattern? Then there are four ways to
match the overall pattern. Both question marks can match a word, or only the first
question mark, or only the second, or neither. A pattern with several placeholders
leads to even more alternatives. A pattern with three question marks will have eight
alternatives. (All three match words, the first two do but the third doesn’t, and so on.)
A pattern with 10 question marks will have 1024 alternatives. How can match? try all
these alternatives? The procedure seems to make only one two-way choice; how can it
accomplish a four-way or many-way decision?

256 Part IV Recursion

The secret is the same as the usual secret of recursion: Most of the work is done
in recursive calls. We take a leap of faith that recursive invocations will take care of
the decisions concerning question marks later in the pattern. Think about it using the
backtracking model. Let’s suppose there are 10 question marks in the pattern. When
match? encounters the leftmost question mark, it makes a tentative decision to match
the question mark with a word of the sentence. To test whether this choice can work,
match? invokes itself recursively on a pattern with nine question marks. By the leap
of faith, the recursive invocation will examine 512 ways to match question marks with
words—half of the total number. If one of these 512 works, we’re finished. If not, the
original match? invocation changes its tentative choice, deciding instead not¢ to match
its question mark (the leftmost one) with a word of the sentence. Another recursive call
is made based on that decision, and that recursive call checks out the remaining 512
possibilities.

By the way, the program doesn’t always have to try all of the different combinations of
question marks matching or not matching words separately. For example, if the problem
is

(match? "(ab ? 2?2 2?2 ?) '"(xXy zwpdg))

then the very first comparison discovers that a is different from x, so none of the 16
possible arrangements about question marks matching or not matching words will make
a difference.

Here are some traced examples involving patterns with two question marks, to show
how the result of backtracking depends on the individual problem.

> (match? ’'(? ? foo) ’(bar foo))
(match? (? ? foo) (bar foo))

| (match? (? foo) (foo))

| (match? (foo) ())

I

| | #f

| | (match? (foo) (foo))
| | | (match? () ())
|| | #t

| | #t

| #t

#t

#T

In this first example, the first question mark tries to match the word bar, but it can’t tell
whether or not that match will succeed until the recursive call returns. In the recursive
call, the second question mark tries to match the word foo, and fails. Then the second

Chapter 16 Example: Pattern Matcher 257

question mark tries again, this time matching nothing, and succeeds. Therefore, the first

question mark can report success; it never has to try a recursive call in which it doesn’t
match a word.

> (match? ' (? ? foo bar) ’'(foo bar))

In our second example, each question mark will have to try both alternatives,
matching and then not matching a word, before the overall match succeeds.

(match? (? ? foo bar) (foo bar))

t
T

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
#
#

(match? (? foo bar) (bar))

| (match? (foo bar) ())

| #f

| (match? (foo bar) (bar))

| #f

#f

(match? (? foo bar) (foo bar))
| (match? (foo bar) (bar))

| #f

| (match? (foo bar) (foo bar))
| | (match? (bar) (bar))

| | | (match? () ())

| |1 #t

| | e

| #t

#

The first question mark tries to match the word foo in the sentence, leaving the pattern
(? foo bar) to match (bar). The second question mark will try both matching and
not matching a word, but neither succeeds. Therefore, the first question mark tries

again, this time not matching a word. The second question mark first tries matching

foo, and when that fails, tries not matching anything. This last attempt is successful.

In the previous example, every question mark’s first attempt failed. The following
example illustrates the opposite case, in which every question mark’s first attempt
succeeds.

258

Part IV Recursion

> (match? ’(? ? baz) ’'(foo bar baz))
(match? (? ? baz) (foo bar baz))

| (match? (? baz) (bar baz))

| | (match? (baz) (baz))
| | | (match? () ())

| | | #t

| | #t

L

#t

The first question mark matches foo; the second matches bar.

If the sentence is shorter than the pattern, we may end up trying to match a pattern
against an empty sentence. This is much easier than the general problem, because there
aren’t two alternatives; a question mark has no word in the sentence to match.

> (match? ' (? ? foo) '())
(match? (? ? foo) ())

| (match? (2 foo) ())

| | (match? (foo) ())

| | 4t

| #f

#f

#f

Each question mark knows right away that it had better not try to match a word, so we
never have to backtrack.

Matching Several Words

The next placeholder we’ll implement is *. The order in which we’re implementing
these placeholders was chosen so that each new version increases the variability in the
number of words a placeholder can match. The ! placeholder was very easy because it
always matches exactly one word; it’s hardly different at all from a non-placeholder in
the pattern. Implementing ? was more complicated because there were two alternatives
to consider. But for *, we might match any number of words, up to the entire rest of the
sentence.

Our strategy will be a generalization of the ? strategy: Start with a “greedy” match,
and then, if a recursive call tells us that the remaining part of the sentence can’t match
the rest of the pattern, try a less greedy match.

Chapter 16 Example: Pattern Matcher 259

The difference between ? and * is that ? allows only two possible match lengths, zero
and one. Therefore, these two cases can be checked with two explicit subexpressions of
an or expression. In the more general case of *, any length is possible, so we can’t check
every possibility separately. Instead, as in any problem of unknown size, we use recursion.
First we try the longest possible match; if that fails because the rest of the pattern can’t
be matched, a recursive call tries the next-longest match. If we get all the way down to an
empty match for the * and still can’t match the rest of the pattern, then we return #£.

(define (match? pattern sent) ;; third version: !, ?, and *
(cond ((empty? pattern)
(empty? sent))
((equal? (first pattern) ’?)
(if (empty? sent)
(match? (bf pattern) ’())
(or (match? (bf pattern) (bf sent))
(match? (bf pattern) sent))))
((equal? (first pattern) ')
(*-longest-match (bf pattern) sent))
((empty? sent) #f£f)
((equal? (first pattern) ’'!)
(match? (bf pattern) (bf sent)))
((equal? (first pattern) (first sent))
(match? (bf pattern) (bf sent)))
(else #£f)))

(define (*-longest-match pattern-rest sent)
(*—1lm-helper pattern-rest sent '()))

(define (*-lm-helper pattern-rest sent-matched sent-unmatched)
(cond ((match? pattern-rest sent-unmatched) #t)
((empty? sent-matched) #f£f)
(else (*-1lm-helper pattern-rest
(bl sent-matched)
(se (last sent-matched) sent-unmatched)))))

If an asterisk is found in the pattern, match? invokes *—longest-match, which carries
out this backtracking approach.

The real work is done by *-1m-helper, which has three arguments. The first
argument is the still-to-be-matched part of the pattern, following the * placeholder
that we’re trying to match now. Sent-matched is the part of the sentence that
we’re considering as a candidate to match the * placeholder. Sent-unmatched is

260 Part IV Recursion

the remainder of the sentence, following the words in sent-matched; it must match
pattern-rest.

Since we’re trying to find the longest possible match, *-longest-match chooses
the entire sentence as the first attempt for sent-matched. Since sent-matched is
using up the entire sentence, the initial value of sent-unmatched is empty. The only
job of *—~longest-match is to invoke *—1m-helper with these initial arguments. On
each recursive invocation, *—1m-helper shortens sent-matched by one word and
accordingly lengthens sent-unmatched.

Here’s an example in which the * placeholder tries to match four words, then three
words, and finally succeeds with two words:

> (trace match? #*-longest-match *-1lm-helper)

> (match? ' (* days night) ’(a hard days night))
(match? (* days night) (a hard days night))

| (*-longest-match (days night) (a hard days night))

| (*-1lm-helper (days night) (a hard days night) ())

| (match? (days night) ())

#f

(*-1lm-helper (days night) (a hard days) (night))

| (match? (days night) (night))

#f

(*-1m-helper (days night) (a hard) (days night))
| (match? (days night) (days night))

| | (match? (night) (night))
| | | (match? () ())
| 1| e
RS
| #t
#t

I
I
I
I
I
I
I
I
I
#

t

I
I
I
I
I
I
I
I
I
I
I
I
I
#

t

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
#

o+

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
#
#

o

Combining the Placeholders

We have one remaining placeholder, &, which is much like * except that it fails unless it
can match at least one word. We could, therefore, write a &-~longest-match that would
be identical to *~longest-match except for the base case of its helper procedure. If
sent-matched is empty, the resultis #f even if it would be possible to match the rest of

Chapter 16 Example: Pattern Matcher 261

the pattern against the rest of the sentence. (All we have to do is exchange the first two
clauses of the cond.)

(define (&-longest-match pattern-rest sent)
(&—1m-helper pattern-rest sent '()))

(define (&-lm-helper pattern-rest sent-matched sent-unmatched)
(cond ((empty? sent-matched) #f£f)
((match? pattern-rest sent-unmatched) #t)
(else (&-1lm-helper pattern-rest
(bl sent-matched)
(se (last sent-matched) sent-unmatched)))))

When two procedures are so similar, that’s a clue that perhaps they could be combined
into one. We could look at the bodies of these two procedures to find a way to
combine them textually. But instead, let’s step back and think about the meanings of the
placeholders.

The reason that the procedures *-~longest-match and &-longest-match are
so similar is that the two placeholders have almost identical meanings. * means “match
as many words as possible”; & means “match as many words as possible, but at least one.”
Once we’re thinking in these terms, it’s plausible to think of ? as meaning “match as
many words as possible, but at most one.” In fact, although this is a stretch, we can also
describe ! similarly: “Match as many words as possible, but at least one, and at most one.”

Placeholder Minimum size Maximum size
* 0 no limit
& 1 no limit
? 0 1
! 1 1

We’ll take advantage of this newly understood similarity to simplify the program by using
a single algorithm for all placeholders.

How do we generalize *—longest-match and &-longest-match to handle all
four cases? There are two kinds of generalization involved. We’ll write a procedure
longest-match that will have the same arguments as *—longest-match, plus two
others, one for for the minimum size of the matched text and one for the maximum.

262 Part IV Recursion

We’ll specify the minimum size with a formal parameter min. (The corresponding
argument will always be 0 or 1.) Longest-match will pass the value of min down to
lm-helper, which will use it to reject potential matches that are too short.

Unfortunately, we can’t use a number to specify the maximum size, because for * and
& there is no maximum. Instead, longest-match has a formal parameter max-one?
whose value is #t only for ? and !.

Our earlier, special-case versions of longest-match were written for * and &,
the placeholders for which max-one? will be false. For those placeholders, the new
longest-match will be just like the earlier versions. Our next task is to generalize
longest-match so that it can handle the #t cases.

Think about the meaning of the sent-matched and sent-unmatched parameters
in the lm-helper procedures. Sent-matched means “the longest part of the sentence
that this placeholder is still allowed to match,” while sent—unmatched contains whatever
portion of the sentence has already been disqualified from being matched by the
placeholder.

Consider the behavior of *-longest-match when an asterisk is at the begin-
ning of a pattern that we’re trying to match against a seven-word sentence. Initially,
sent-matched is the entire seven-word sentence, and sent-unmatched is empty.
Then, supposing that doesn’t work, sent-matched is a six-word sentence, while
sent-unmatched contains the remaining word. This continues as long as no match
succeeds until, near the end of longest-match’s job, sent-matched is a one-word
sentence and sent-unmatched contains six words. At this point, the longest possible
match for the asterisk is a single word.

This situation is where we want to start in the case of the ? and ! placeholders. So
when we’re trying to match one of these placeholders, our initialization procedure won’t
use the entire sentence as the initial value of sent-matched; rather, the initial value
of sent-matched will be a one-word sentence, and sent-unmatched will contain the
rest of the sentence.

(define (longest-match pattern-rest sent min max-one?) ;; first version
(cond ((empty? sent)
(and (= min 0) (match? pattern-rest sent)))
(max-one?
(lm-helper pattern-rest (se (first sent)) (bf sent) min))
(else (lm-helper pattern-rest sent ‘() min))))

Chapter 16 Example: Pattern Matcher 263

(define (lm-helper pattern-rest sent-matched sent-unmatched min)
(cond ((< (length sent-matched) min) #f£f)
((match? pattern-rest sent-unmatched) #t)
((empty? sent-matched) #f£f)
(else (lm-helper pattern-rest
(bl sent-matched)
(se (last sent-matched) sent-unmatched)
min))))

Now we can rewrite match? to use longest-match. Match? will delegate
the handling of all placeholders to a subprocedure match-special that will invoke
longest-match with the correct values for min and max-one? according to the table.

(define (match? pattern sent)
(cond ((empty? pattern)

(empty? sent))

((special? (first pattern))
(match-special (first pattern) (bf pattern) sent))
((empty? sent) #f£f)

((equal? (first pattern) (first sent))

(match? (bf pattern) (bf sent)))
(else #£f)))

;; fourth version

(define (special? wd)
(member? wd '(* & ? !)))

;; first version

(define (match-special placeholder pattern-rest sent) ;; first version

(cond ((equal? placeholder ’'?)
(longest-match pattern-rest sent 0 #t))

((equal? placeholder '!)
(longest-match pattern-rest sent 1 #t))

((equal? placeholder '=x*)
(longest-match pattern-rest sent 0 #£f))

((equal? placeholder '&)

(longest-match pattern-rest sent 1 #£f))))

Naming the Matched Text

So far we’ve worked out how to match the four kinds of placeholders and return a true or
false value indicating whether a match is possible. Our program is almost finished; all we
need to make it useful is the facility that will let us find out which words in the sentence
matched each placeholder in the pattern.

264 Part IV Recursion

We don’t have to change the overall structure of the program in order to make
this work. But most of the procedures in the pattern matcher will have to be given
an additional argument, the database of placeholder names and values that have been
matched so far.* The formal parameter known-values will hold this database. Its
value will be a sentence containing placeholder names followed by the corresponding
words and an exclamation point to separate the entries, as in the examples earlier in the
chapter. When we begin the search for a match, we use an empty sentence as the initial
known-values:

(define (match pattern sent)
(match-using-known-values pattern sent ’()))

(define (match-using-known-values pattern sent known-values)

)

As match-using-known-values matches the beginning of a pattern with the be-
ginning of a sentence, it invokes itself recursively with an expanded known-values
containing each newly matched placeholder. For example, in evaluating

(match ' (!twice l!other !twice) ’(cry baby cry))

the program will call match-using-known-values four times:

pattern sent known-values
(!twice !other !twice) (cry baby cry) ()
(!other !twice) (baby cry) (twice cry !)
(!twice) (cry) (twice cry ! other baby !)

() () (twice cry ! other baby !)

In the first invocation, we try to match !twice against some part of the sentence.

* The word database has two possible meanings in computer science, a broad meaning and a
narrow one. The broad meaning, which we’re using here, is a repository of information to which
the program periodically adds new items for later retrieval. The narrow meaning is a collection
of information that’s manipulated by a database program, which provides facilities for adding new
information, modifying existing entries, selecting entries that match some specified criterion, and
so on. We’ll see a database program near the end of the book.

Chapter 16 Example: Pattern Matcher 265

Since ! matches exactly one word, the only possibility is to match the word cry. The
recursive invocation, therefore, is made with the first words of the pattern and sentence
removed, but with the match between twice and cry added to the database.

Similarly, the second invocation matches !other with baby and causes a third
invocation with shortened pattern and sentence but a longer database.

The third invocation is a little different because the pattern contains the placeholder
!twice, but the name twice is already in the database. Therefore, this placeholder
can’t match whatever word happens to be available; it must match the same word that
it matched before. (Our program will have to check for this situation.) Luckily, the
sentence does indeed contain the word cry at this position.

The final invocation reaches the base case of the recursion, because the pattern is
empty. The value that match-using-known-values returns is the database in this
invocation.

The Final Version

We’re now ready to show you the final version of the program. The program structure
is much like what you’ve seen before; the main difference is the database of placeholder
names and values. The program must add entries to this database and must look for
database entries that were added earlier. Here are the three most important procedures
and how they are changed from the earlier version to implement this capability:

* match-using-known-values, essentially the same as what was formerly named
match? except for bookkeeping details.

* match-special, similar to the old version, except that it must recognize the case
of a placeholder whose name has already been seen. In this case, the placeholder
can match only the same words that it matched before.

* longest-match and lm-helper, also similar to the old versions, except that
they have the additional job of adding to the database the name and value of any
placeholder that they match.

Here are the modified procedures. Compare them to the previous versions.

(define (match pattern sent)
(match-using-known-values pattern sent ’()))

266 Part IV Recursion

(define (match-using-known-values pattern sent known-values)
(cond ((empty? pattern)
(if (empty? sent) known-values 'failed))
((special? (first pattern))
(let ((placeholder (first pattern)))
(match-special (first placeholder)
(bf placeholder)
(bf pattern)
sent
known-values)))
((empty? sent) ’‘failed)
((equal? (first pattern) (first sent))
(match-using-known-values (bf pattern) (bf sent) known-values))
(else 'failed)))

(define (match-special howmany name pattern-rest sent known-values)
(let ((old-value (lookup name known-values)))
(cond ((not (equal? old-value ’'no-value))
(if (length-ok? old-value howmany)
(already-known-match
old-value pattern-rest sent known-values)
'failed))
((equal? howmany ’?)
(longest-match name pattern-rest sent 0 #t known-values))
((equal? howmany '!)
(longest-match name pattern-rest sent 1 #t known-values))
((equal? howmany ’=*)
(longest-match name pattern-rest sent 0 #f known-values))
((equal? howmany '&)
(longest-match name pattern-rest sent 1 #f known-values)))))

(define (longest-match name pattern-rest sent min max-one? known-values)
(cond ((empty? sent)

(if (= min 0)
(match-using-known-values pattern-rest
sent
(add name '’ () known-values))
'failed))
(max-one?

(lm-helper name pattern-rest (se (first sent))
(bf sent) min known-values))
(else (lm-helper name pattern-rest
sent ’() min known-values))))

Chapter 16 Example: Pattern Matcher 267

(define (lm-helper name pattern-rest
sent-matched sent-unmatched min known-values)
(if (< (length sent-matched) min)
'failed
(let ((tentative-result (match-using-known-values
pattern-rest
sent-unmatched
(add name sent-matched known-values))))
(cond ((not (equal? tentative-result ’‘failed)) tentative-result)
((empty? sent-matched) ’'failed)
(else (lm-helper name
pattern-rest
(bl sent-matched)
(se (last sent-matched) sent-unmatched)
min
known-values))))))

We haven’t listed all of the minor procedures that these procedures invoke. A
complete listing is at the end of the chapter, but we hope that you have enough
confidence about the overall program structure to be able to assume these small details
will work. In the next few paragraphs we discuss some of the ways in which the procedures
shown here differ from the earlier versions.

In the invocation of match-special we found it convenient to split the placeholder
into its first character, the one that tells how many words can be matched, and the butfirst,
which is the name of the placeholder.

What happens if match-special finds that the name is already in the database? In
this situation, we don’t have to try multiple possibilities for the number of words to match
(the usual job of longest-match); the placeholder must match exactly the words that
it matched before. In this situation, three things must be true in order for the match to
succeed: (1) The first words of the sent argument must match the old value stored in
the database. (2) The partial pattern that remains after this placeholder must match
the rest of the sent. (3) The old value must be consistent with the number of words
permitted by the howmany part of the placeholder. For example, if the pattern is

(*stuff and !stuff)

and the database says that the placeholder *stuff was matched by three words from
the sentence, then the second placeholder !stuff can’t possibly be matched because it
accepts only one word. This third condition is actually checked first, by length-ok?, and
if we pass that hurdle, the other two conditions are checked by already-known-match.

268 Part IV Recursion

The only significant change to longest-matchis thatitinvokes add to compute an
expanded database with the newly found match added, and it uses the resulting database
as an argument to match-using-known-values.

Abstract Data Types

As you know, a database of known values is represented in this program as a sentence
in which the entries are separated by exclamation points. Where is this representation
accomplished in the program you’ve seen? There’s nothing like

(sentence old-known-values name value '!)

anywhere in the procedures we’ve shown. Instead, the program makes reference to the
database of known values through two procedure calls:

(lookup name known-values) ; in match-special
(add name matched known-values) ; in longest-match

Only the procedures lookup and add manipulate the database of known values:

(define (lookup name known-values)
(cond ((empty? known-values) ’‘no-value)
((equal? (first known-values) name)
(get-value (bf known-values)))
(else (lookup name (skip-value known-values)))))

(define (get-value stuff)
(if (equal? (first stuff) ’1!)
()
(se (first stuff) (get-value (bf stuff)))))

(define (skip-value stuff)
(if (equal? (first stuff) ’1!)
(bf stuff)
(skip-value (bf stuff))))

(define (add name value known-values)
(if (empty? name)
known-values
(se known-values name value '!)))

Chapter 16 Example: Pattern Matcher 269

These procedures are full of small details. For example, it’s a little tricky to extract
the part of a sentence from a name to the next exclamation point. It’s convenient that
we could write the more important procedures, such as longest-match, without filling
them with these details. As far as longest-match knows, lookup and add could be
Scheme primitive procedures. In effect we’ve created a new data type, with add as its
constructor and lookup as its selector.

Types such as these, that are invented by a programmer and aren’t part of the Scheme
language itself, are called abstract data types. Creating an abstract data type means drawing
a barrier between an idea about some kind of information we want to model in a program
and the particular mechanism that we use to represent the information. In this case, the
information is a collection of name-value associations, and the particular mechanism is a
sentence with exclamation points and so on. The pattern matcher doesn’t think of the
database as a sentence. For example, it would be silly to translate the database into Pig
Latin or find its acronym.

Just as we distinguish the primitive procedures that Scheme knows all along from
the compound procedures that the Scheme programmer defines, we could use the names
“primitive data type” for types such as numbers and Booleans that are built into Scheme
and “compound data type” for ones that the programmer invents by defining selectors
and constructors. But “compound data type” is a bit of a pun, because it also suggests
a data type built out of smaller pieces, just as a compound expression is built of smaller
expressions. Perhaps that’s why the name “abstract data type” has become generally
accepted. It’s connected to the idea of abstraction that we introduced earlier, because in
order to create an abstract data type, we must specify the selectors and constructors and
give names to those patterns of computation.

Backtracking and Known-Values

What happens to the database in cases that require backtracking, where a particular
recursive call might be “on the wrong track”™ Let’s trace match-using-known-values
and see what happens. (We’ll use the little-people model to discuss this example, and so
we’re annotating each invocation in the trace with the name of its little person.)

270 Part IV Recursion

> (trace match-using-known-values)
> (match ' (*start me *end) ’'(love me do))

| | (start love ! end do !)
| (start love ! end do !)
| (start love ! end do !)
(start love ! end do !)
(START LOVE ! END DO !)

(match-using-known-values (*start me *end) (love me do) ()) Martha

| (match-using-known-values (me *end) () (start love me do !)) Mercutio

| failed

| (match-using-known-values (me *end) (do) (start love me !)) Masayuki

| failed

| (match-using-known-values (me *end) (me do) (start love !)) Mohammad
| | (match-using-known-values (*end) (do) (start love !)) Mae

| | | (match-using-known-values () () (start love ! end do !)) Merlin

I

I

Martha, the first little person shown, has an empty known-values. She makes
three attempts to match *start with parts of the sentence. In each case, a little person
is hired with the provisional match in his or her known-values. (Actually, Martha does
not directly hire Mercutio and the others. Martha hires amatch-special little person,
who in turn hires a longest-match specialist, who hires an 1m-helper specialist, who
hires Mercutio. But that added complexity isn’t important for the point we’re focusing
on right now, namely, how backtracking can work. Pretend Martha hires Mercutio.)

If you don’t use the little-people model, but instead think about the program as if
there were just one known-values variable, then the backtracking can indeed be very
mysterious. Once a provisional match is added to the database, how is it ever removed?
The answer is that it doesn’t work that way. There isn’t a “the” database. Instead, each
little person has a separate database. If an attempted match fails, the little person who
reports the failure just stops working. For example, Martha hires Mercutio to attempt
a match in which the name start has the value love me do. Mercutio is unable to
complete the match, and reports failure. It is Martha, not Mercutio, who then hires
Masayuki to try another value for start. Martha’s database hasn’t changed, so Martha
gives Masayuki a database that reflects the new trial value but not the old one.

Not every hiring of a little person starts from an empty database. When a match
is partially successful, the continuation of the same attempt must benefit from the work
that’s already been done. So, for example, when Mohammad hires Mae, and when
Mae hires Merlin, each of them passes on an extended database, not an empty one.
Specifically, Mae gives Merlin the new match of the name end with the value do, but also
the match of start with love that she was given by Mohammad.

So as you can see, we don’t have to do anything special to keep track of our database
when we backtrack; the structure of the recursion takes care of everything for free.

Chapter 16 Example: Pattern Matcher 271

How We Wrote It

For explanatory purposes we’ve chosen to present the pieces of this program in a
different order from the one in which we actually wrote them. We did implement the
easy placeholders (! and ?) before the harder ones. But our program had provision for
a database of names from the beginning.

There is no “right” way to approach a programming problem. Our particular
approach was determined partly by our past experience. Each of us had written similar
programs before, and we had preconceived ideas about the easy and hard parts. You
might well start at a different point. For example, here is an elegant small program we’d
both been shown by friends:

(define (match? pattern sent)

(cond ((empty? pattern) (empty? sent))
((empty? sent)
(and (equal? (first pattern) ’*) (match? (bf pattern) sent)))
((equal? (first pattern) ')
(or (match? pattern (bf sent))

(match? (bf pattern) sent)))
(else (and (equal? (first pattern) (first sent))
(match? (bf pattern) (bf sent))))))

What'’s appealing about this is the funny symmetry of taking the butfirst of the pattern
or of the sentence. That’s not something you’d naturally think of, probably, but once
you’ve worked out how it can work, it affects your preconceptions when you set out to
write a pattern matcher yourself.

Based on that inspiration, we might well have started with the hard cases (such
as x), with the idea that once they’re in place, the easy cases won’t change the program
structure much.

Complete Program Listing

(define (match pattern sent)
(match-using-known-values pattern sent ’()))

272 Part IV Recursion

(define (match-using-known-values pattern sent known-values)
(cond ((empty? pattern)
(if (empty? sent) known-values ’'failed))
((special? (first pattern))
(let ((placeholder (first pattern)))
(match-special (first placeholder)
(bf placeholder)
(bf pattern)
sent
known-values)))
((empty? sent) ’'failed)
((equal? (first pattern) (first sent))
(match-using-known-values (bf pattern) (bf sent) known-values))
(else 'failed)))

(define (special? wd)
(member? (first wd) ’(* & 2?2 !)))

(define (match-special howmany name pattern-rest sent known-values)
(let ((old-value (lookup name known-values)))
(cond ((not (equal? old-value ’‘no-value))
(if (length-ok? old-value howmany)
(already-known-match
old-value pattern-rest sent known-values)
'failed))
((equal? howmany ’?)
(longest-match name pattern-rest sent 0 #t known-values))
((equal? howmany ’!)
(longest-match name pattern-rest sent 1 #t known-values))
((equal? howmany ’*)
(longest-match name pattern-rest sent 0 #f known-values))
((equal? howmany ’&)
(longest-match name pattern-rest sent 1 #f known-values)))))

(define (length-ok? value howmany)
(cond ((empty? value) (member? howmany ’(? *)))
((not (empty? (bf value))) (member? howmany ' (* &)))
(else #t)))

(define (already-known-match value pattern-rest sent known-values)
(let ((unmatched (chop-leading-substring value sent)))
(if (not (equal? unmatched ’'failed))
(match-using-known-values pattern-rest unmatched known-values)
'failed)))

Chapter 16 Example: Pattern Matcher 273

(define (chop-leading-substring value sent)
(cond ((empty? value) sent)
((empty? sent) ’'failed)
((equal? (first value) (first sent))
(chop-leading-substring (bf value) (bf sent)))
(else 'failed)))

(define (longest-match name pattern-rest sent min max-one? known-values)
(cond ((empty? sent)

(if (= min 0)
(match-using-known-values pattern-rest
sent
(add name ’ () known-values))
'failed))
(max-one?

(1m-helper name pattern-rest (se (first sent))
(bf sent) min known-values))
(else (lm-helper name pattern-rest
sent ‘() min known-values))))

(define (lm-helper name pattern-rest
sent-matched sent-unmatched min known-values)
(if (< (length sent-matched) min)
'failed
(let ((tentative-result (match-using-known-values
pattern-rest
sent-unmatched
(add name sent-matched known-values))))
(cond ((not (equal? tentative-result ‘failed)) tentative-result)
((empty? sent-matched) ’‘failed)
(else (lm-helper name
pattern-rest
(bl sent-matched)
(se (last sent-matched) sent-unmatched)
min
known-values))))))

;7 Known values database abstract data type

(define (lookup name known-values)
(cond ((empty? known-values) ’'no-value)
((equal? (first known-values) name)
(get-value (bf known-values)))
(else (lookup name (skip-value known-values)))))

274 Part IV Recursion

(define (get-value stuff)
(if (equal? (first stuff) ’!)
")
(se (first stuff) (get-value (bf stuff)))))

(define (skip-value stuff)
(if (equal? (first stuff) '!)
(bf stuff)
(skip-value (bf stuff))))

(define (add name value known-values)
(if (empty? name)
known-values
(se known-values name value ’!)))

Exercises about Using the Pattern Matcher

16.1 Design and test a pattern that matches any sentence containing the word C three
times (not necessarily next to each other).

16.2 Design and test a pattern that matches a sentence consisting of two copies of a
smaller sentence, such as (a b a b).

16.3 Design and test a pattern that matches any sentence of no more than three words.
16.4 Design and test a pattern that matches any sentence of at least three words.

16.5 Show sentences of length 2, 3, and 4 that match the pattern

(*x *y *y *X)

For each length, if no sentence can match the pattern, explain why not.

16.6 Show sentences of length 2, 3, and 4 that match the pattern

(*x *y &y &x)

For each length, if no sentence can match the pattern, explain why not.

16.7 List all the sentences of length 6 or less, starting with a b a, that match the pattern

(*x *y *y *X)

Chapter 16 Example: Pattern Matcher 275

Exercises about Implementation
16.8 Explain how longest-match handles an empty sentence.

16.9 Suppose the first cond clause in match-using-known-values were

((empty? pattern) known-values)

Give an example of a pattern and sentence for which the modified program would give a
different result from the original.

16.10 What happens if the sentence argument—not the pattern—contains the word *
somewhere?

16.11 For each of the following examples, how many match-using-known-values
little people are required?

(match ' (from me to you) ’(from me to you))

(match ’(*x *y *x) '(a b c a b))

(match ' (*x *y *z) '‘(a b c a b))

(match ’'(*x hey *y bulldog *z) ’(a hey b bulldog c))
(match "(*x abcde f) "(abcdef))

(match "(abcdef *x) "(abcdef))

In general, what can you say about the characteristics that make a pattern easy or hard to
match?

16.12 Show a pattern with the following two properties: (1) It has at least two
placeholders. (2) When you match it against any sentence, every invocation of lookup
returns no-value.

16.13 Show a pattern and a sentence that can be used as arguments to match so that
lookup returns (the beatles) at some point during the match.

16.14 Our program can still match patterns with unnamed placeholders. How would
it affect the operation of the program if these unnamed placeholders were added to the
database? What part of the program keeps them from being added?

16.15 Why don’t get-value and skip-value check for an empty argument as the
base case?

276 Part IV Recursion

16.16 Why didn’t we write the first cond clause in 1length-ok? as the following?

((and (empty? value) (member? howmany ’(? *))) #t)

16.17 Where in the program is the initial empty database of known values established?

16.18 For the case of matching a placeholder name that’s already been matched in
this pattern, we said on page 268 that three conditions must be checked. For each of
the three, give a pattern and sentence that the program would incorrectly match if the
condition were not checked.

16.19 What will the following example do?
(match " (?x is *y !x) ’(! is an exclamation point !))
Can you suggest a way to fix this problem?

16.20 Modify the pattern matcher so that a placeholder of the form *15x is like *x
except that it can be matched only by exactly 15 words.

> (match ' (*3front *back) ' (your mother should know))
(FRONT YOUR MOTHER SHOULD ! BACK KNOW !)

16.21 Modify the pattern matcher so that a + placeholder (with or without a name
attached) matches only a number:

> (match ' (*front +middle #*back) ’(four score and 7 years ago))
(FRONT FOUR SCORE AND ! MIDDLE 7 ! BACK YEARS AGO !)

The + placeholder is otherwise like ! —it must match exactly one word.

16.22 Does your favorite text editor or word processor have a search command that
allows you to search for patterns rather than only specific strings of characters? Look into
this and compare your editor’s capabilities with that of our pattern matcher.

Chapter 16~ Example: Pattern Matcher 277

PartV
Abstraction

We’ve really been talking about abstraction all along. Whenever you find yourself
performing several similar computations, such as

> (sentence ’'she (word ’‘run ’s))
(SHE RUNS)

> (sentence ’'she (word ’'walk ’s))
(SHE WALKS)

> (sentence ’'she (word ’'program ’s))
(SHE PROGRAMS)

and you capture the similarity in a procedure

(define (third-person verb)
(sentence ’‘she (word verb ’s)))

you’re abstracting the pattern of the computation by expressing it in a form that leaves
out the particular verb in any one instance.

In the preface we said that our approach to computer science is to teach you to think
in larger chunks, so that you can fit larger problems in your mind at once; “abstraction”
is the technical name for that chunking process.

In this part of the book we take a closer look at two specific kinds of abstraction.
One is data abstraction, which means the invention of new data types. The other is
the implementation of higher-order functions, an important category of the same process
abstraction of which third-person is a trivial example.

278

Until now we’ve used words and sentences as though they were part of the natural
order of things. Now we’ll discover that Scheme sentences exist only in our minds and
take shape through the use of constructors and selectors (sentence, first, and so on)
that we wrote. The implementation of sentences is based on a more fundamental data
type called lsts. Then we’ll see how lists can be used to invent another in-our-minds data
type, trees. (The technical term for an invented data type is an abstract data type.)

You already know how higher-order functions can express many computational
processes in a very compact form. Now we focus our attention on the higher-order
procedures that implement those functions, exploring the mechanics by which we create
these process abstractions.

279

17 Lists

Suppose we’re using Scheme to model an ice cream shop. We’ll certainly need to know
all the flavors that are available:

(vanilla ginger strawberry lychee raspberry mocha)

For example, here’s a procedure that models the behavior of the salesperson when you
place an order:

(define (order flavor)
(if (member? flavor
'(vanilla ginger strawberry lychee raspberry mocha))
' (coming right up!)
(se '(sorry we have no) flavor)))

But what happens if we want to sell a flavor like “root beer fudge ripple” or “ultra
chocolate” We can’t just put those words into a sentence of flavors, or our program will
think that each word is a separate flavor. Beer ice cream doesn’t sound very appealing.

What we need is a way to express a collection of items, each of which is itself a
collection, like this:

(vanilla (ultra chocolate) (heath bar crunch) ginger (cherry garcia))
This is meant to represent five flavors, two of which are named by single words, and the
other three of which are named by sentences.

Luckily for us, Scheme provides exactly this capability. The data structure we’re
using in this example is called a lst. The difference between a sentence and a list is that
the elements of a sentence must be words, whereas the elements of a list can be anything

281

at all: words, #t, procedures, or other lists. (A list that’s an element of another list is
called a sublist. We’ll use the name structured list for a list that includes sublists.)

Another way to think about the difference between sentences and lists is that the
definition of “list” is self-referential, because a list can include lists as elements. The
definition of “sentence” is not self-referential, because the elements of a sentence must
be words. We’ll see that the selfreferential nature of recursive procedures is vitally
important in coping with lists.

Another example in which lists could be helpful is the pattern matcher. We used
sentences to hold known-values databases, such as this one:

(FRONT YOUR MOTHER ! BACK SHOULD KNOW !)

This would be both easier for you to read and easier for programs to manipulate if we
used list structure to indicate the grouping instead of exclamation points:

((FRONT (YOUR MOTHER)) (BACK (SHOULD KNOW)))

We remarked when we introduced sentences that they’re a feature we added to
Scheme just for the sake of this book. Lists, by contrast, are at the core of what Lisp has
been about from its beginning. (In fact the name “Lisp” stands for “LISt Processing.”)

Selectors and Constructors

When we introduced words and sentences we had to provide ways to take them apart,
such as first, and ways to put them together, such as sentence. Now we’ll tell you
about the selectors and constructors for lists.

The function to select the first element of a list is called car.* The function to
select the portion of a list containing all but the first element is called cdr, which is

* Don’t even try to figure out a sensible reason for this name. It’s a leftover bit of history from
the first computer on which Lisp was implemented. It stands for “contents of address register”
(at least that’s what all the books say, although it’s really the address portion of the accumulator
register). Cdr, coming up in the next sentence, stands for “contents of decrement register.”
The names seem silly in the Lisp context, but that’s because the Lisp people used these register
components in ways the computer designers didn’t intend. Anyway, this is all very interesting to
history buffs but irrelevant to our purposes. We’re just showing off that one of us is actually old
enough to remember these antique computers first-hand.

282 Part V. Abstraction

pronounced “could-er.” These are analogous to first and butfirst for words and
sentences.

Of course, we can’t extract pieces of a list that’s empty, so we need a predicate that
will check for an empty list. It’s called null? and it returns #t for the empty list, # £ for
anything else. This is the list equivalent of empty? for words and sentences.

There are two constructors for lists. The function list takes any number of
arguments and returns a list with those arguments as its elements.

> (list (+ 2 3) ’squash (= 2 2) (list 4 5) remainder ’‘zucchini)
(5 SQUASH #T (4 5) #<PROCEDURE> ZUCCHINI)

The other constructor, cons, is used when you already have a list and you want to add
one new element. Cons takes two arguments, an element and a list (in that order), and
returns a new list whose car is the first argument and whose cdr is the second.

> (cons ’‘for ’(no one))
(FOR NO ONE)

> (cons ’julia ' ())
(JULIA)

There is also a function that combines the elements of two or more lists into a larger
list:

> (append ' (get back) ’(the word))
(GET BACK THE WORD)

It’simportant that you understand how 1ist, cons, and append differ from each other:

> (list ’(i am) ’(the walrus))
((I AM) (THE WALRUS))

> (cons ’'(i am) ’(the walrus))
((I AM) THE WALRUS)

> (append ‘(i am) ' (the walrus))
(I AM THE WALRUS)

When list is invoked with two arguments, it considers them to be two proposed
elements for a new two-element list. List doesn’t care whether the arguments are
themselves lists, words, or anything else; it just creates a new list whose elements are the
arguments. In this case, it ends up with a list of two lists.

Chapter 17 Lists 283

Cons requires that its second argument be a list.* Cons will extend that list to
form a new list, one element longer than the original; the first element of the resulting
list comes from the first argument to cons. In other words, when you pass cons two
arguments, you get back a list whose car is the first argument to cons and whose cdr is
the second argument.

Thus, in this example, the three elements of the returned list consist of the first
argument as one single element, followed by the elements of the second argument (in this
case, two words). (You may be wondering why anyone would want to use such a strange
constructor instead of 1ist. The answer has to do with recursive procedures, but hang
on for a few paragraphs and we’ll show you an example, which will help more than any
explanation we could give in English.)

Finally, append of two arguments uses the elements of both arguments as elements
of its return value.

Pictorially, 1ist creates a list whose elements are the arguments:

s O A O O
VoVl /
O A OO

Cons creates an extension of its second argument with one new element:

cons Q ()

> <

(O)

* This is not the whole story. See the “pitfalls” section for a slightly expanded version.

284 Part V. Abstraction

Append creates a list whose elements are the elements of the arguments, which must be

00O)

(OO O)

Programming with Lists

(define (praise flavors)
(if (null? flavors)
()
(cons (se (car flavors) ’'(is delicious))
(praise (cdr flavors)))))

> (praise ’'(ginger (ultra chocolate) lychee (rum raisin)))
((GINGER IS DELICIOUS) (ULTRA CHOCOLATE IS DELICIOUS)
(LYCHEE IS DELICIOUS) (RUM RAISIN IS DELICIOUS))

In this example our result is a /list of sentences. That is, the result is a list that includes
smaller lists as elements, but each of these smaller lists is a sentence, in which only words
are allowed. That’s why we used the constructor cons for the overall list, but se for each
sentence within the list.

This is the example worth a thousand words that we promised, to show why cons
is useful. List wouldn’t work in this situation. You can use 1ist only when you know
exactly how many elements will be in your complete list. Here, we are writing a procedure
that works for any number of elements, so we recursively build up the list, one element
at a time.

In the following example we take advantage of structured lists to produce a translation
dictionary. The entire dictionary is a list; each element of the dictionary, a single
translation, is a two-element list; and in some cases a translation may involve a phrase
rather than a single word, so we can get three deep in lists.

Chapter 17 Lists 285

(define (translate wd)
(lookup wd ’((window fenetre) (book livre) (computer ordinateur)
(house maison) (closed ferme) (pate pate) (liver foie)
(faith foi) (weekend (fin de semaine))
((practical joke) attrape) (pal copain))))

(define (lookup wd dictionary)
(cond ((null? dictionary) '(parlez-vous anglais?))
((equal? wd (car (car dictionary)))
(car (cdr (car dictionary))))
(else (lookup wd (cdr dictionary)))))

> (translate ’computer)
ORDINATEUR

> (translate ’(practical joke))
ATTRAPE

> (translate ’'recursion)
(PARLEZ-VOUS ANGLAIS?)

By the way, this example will help us explain why those ridiculous names car and
cdr haven’t died out. In this not-so-hard program we find ourselves saying

(car (cdr (car dictionary)))

to refer to the French part of the first translation in the dictionary. Let’s go through that
slowly. (Car dictionary) gives us the first element of the dictionary, one English-
French pairing. Cdr of that first element is a one-element list, that is, all but the English
word that’s the first element of the pairing. What we want isn’t the one-element list but
rather its only element, the French word, which is its car.

This car of cdr of car business is pretty lengthy and awkward. But Scheme gives
us a way to say it succinctly:

(cadar dictionary)

In general, we’re allowed to use names like cddadr up to four deep in As and Ds. That
one means

(cdr (cdr (car (cdr something))))

286 Part V. Abstraction

or in other words, take the cdr of the cdr of the car of the cdr of its argument. Notice
that the order of letters A and D follows the order in which you’d write the procedure
names, but (as always) the procedure that’s invoked first is the one on the right. Don’t
make the mistake of reading cadr as meaning “first take the car and then take the cdr.”
It means “take the car of the cdr.”

The most commonly used of these abbreviations are cadr, which selects the second
element of a list; caddr, which selects the third element; and cadddr, which selects the
fourth.

The Truth about Sentences

You’ve probably noticed that it’s hard to distinguish between a sentence (which must be
made up of words) and a list that happens to have words as its elements.

The fact is, sentences are lists. You could take car of a sentence, for example, and
it’d work fine. Sentences are an abstract data type represented by lists. We created the
sentence ADT by writing special selectors and constructors that provide a different way
of using the same underlying machinery—a different interface, a different metaphor, a
different point of view.

How does our sentence point of view differ from the built-in Scheme point of view
using lists? There are three differences:

* A sentence can contain only words, not sublists.
* Sentence selectors are symmetrical front-to-back.

¢ Sentences and words have the same selectors.

All of these differences fita common theme: Words and sentences are meant to represent
English text. The three differences reflect three characteristics of English text: First,
text is made of sequences of words, not complicated structures with sublists. Second, in
manipulating text (for example, finding the plural of a noun) we need to look at the
end of a word or sentence as often as at the beginning. Third, since words and sentences
work together so closely, it makes sense to use the same tools with both. By contrast,
from Scheme’s ordinary point of view, an English sentence is just one particular case of a
much more general data structure, whereas a symbol* is something entirely different.

* As we said in Chapter 5, “symbol” is the official name for words that are neither strings nor
numbers.

Chapter 17 Lists 287

The constructors and selectors for sentences reflect these three differences. For
example, it so happens that Scheme represents lists in a way that makes it easy to find
the first element, but harder to find the last one. That’s reflected in the fact that there
are no primitive selectors for lists equivalent to last and butlast for sentences. But
we want last and butlast to be a part of the sentence package, so we have to write
them in terms of the “real” Scheme list selectors. (In the versions presented here, we are
ignoring the issue of applying the selectors to words.)

(define (first sent) ;137 Just for sentences
(car sent))

(define (last sent)
(if (null? (cdr sent))
(car sent)
(last (cdr sent))))

(define (butfirst sent)
(cdr sent))

(define (butlast sent)
(if (null? (cdr sent))
()

(cons (car sent) (butlast (cdr sent)))))

If you look “behind the curtain” at the implementation, last is a lot more complicated
than first. But from the point of view of a sentence user, they’re equally simple.

In Chapter 16 we used the pattern matcher’s known-values database to introduce the
idea of abstract data types. In that example, the most important contribution of the ADT
was to isolate the details of the implementation, so that the higher-level procedures could
invoke lookup and add without the clutter of looking for exclamation points. We did
hint, though, that the ADT represents a shift in how the programmer thinks about the
sentences that are used to represent databases; we don’t take the acronym of a database,
even though the database is a sentence and so it would be possible to apply the acronym
procedure to it. Now, in thinking about sentences, this idea of shift in viewpoint is
more central. Although sentences are represented as lists, they behave much like words,
which are represented quite differently.* Our sentence mechanism highlights the uses of
sentences, rather than the implementation.

* We implemented words by combining three data types that are primitive in Scheme: strings,
symbols, and numbers.

288 Part V. Abstraction

Higher-Order Functions

The higher-order functions that we’ve used until now work only for words and sentences.
But the idea of higher-order functions applies perfectly well to structured lists. The
official list versions of every, keep, and accumulate are called map, filter, and
reduce.

Map takes two arguments, a function and a list, and returns a list containing the
result of applying the function to each element of the list.

> (map square ‘(9 8 7 6))
(81 64 49 36)

> (map (lambda (x) (se x X)) ’'(rocky raccoon))
((ROCKY ROCKY) (RACCOON RACCOON))

> (every (lambda (x) (se x x)) ’'(rocky raccoon))
(ROCKY ROCKY RACCOON RACCOON)

> (map car ’'((john lennon) (paul mccartney)
(george harrison) (ringo starr)))
(JOHN PAUL GEORGE RINGO)

> (map even? (9 8 7 6))
(#F #T #F #T)

> (map (lambda (x) (word x x)) ’‘rain)
ERROR -- INVALID ARGUMENT TO MAP: RAIN

The word “map” may seem strange for this function, but it comes from the mathematical
study of functions, in which they talk about a mappingof the domain into the range. In this
terminology, one talks about “mapping a function over a set” (a set of argument values,
that is), and Lispians have taken over the same vocabulary, except that we talk about
mapping over lists instead of mapping over sets. In any case, map is a genuine Scheme
primitive, so it’s the official grownup way to talk about an every-like higher-order
function, and you’d better learn to like it.

Filter also takes a function and a list as arguments; it returns a list containing only
those elements of the argument list for which the function returns a true value. This
is the same as keep, except that the elements of the argument list may be sublists, and
their structure is preserved in the result.

Chapter 17 Lists 289

> (filter (lambda (flavor) (member? ’‘swirl flavor))
'((rum raisin) (root beer swirl) (rocky road) (fudge swirl)))
((ROOT BEER SWIRL) (FUDGE SWIRL))

> (filter word? ’((ultra chocolate) ginger lychee (raspberry sherbet)))
(GINGER LYCHEE)

> (filter (lambda (nums) (= (car nums) (cadr nums)))
"((2 3) (4 4) (56) (78) (99)))
((4 4) (99))

Filter probably makes sense to you as a name; the metaphor of the air filter that allows
air through but doesn’t allow dirt, and so on, evokes something that passes some data and
blocks other data. The only problem with the name is that it doesn’t tell you whether the
elements for which the predicate function returns #t are filtered in or filtered out. But
you’re already used to keep, and filter works the same way. Filter is not a standard
Scheme primitive, but it’s a universal convention; everyone defines it the same way we do.

Reduce is just like accumulate except that it works only on lists, not on words.
Neither is a built-in Scheme primitive; both names are seen in the literature. (The
name “reduce” is official in the languages APL and Common Lisp, which do include this
higher-order function as a primitive.)

> (reduce * (4 5 6))
120

> (reduce (lambda (listl list2) (list (+ (car listl) (car list2))
(+ (cadr listl) (cadr list2))))
"((1 2) (30 40) (500 600)))
(531 642)

Other Primitives for Lists
The 1ist? predicate returns #t if its argument is a list, #£ otherwise.

The predicate equal?, which we’ve discussed earlier as applied to words and
sentences, also works for structured lists.

The predicate member?, which we used in one of the examples above, isn’t a true
Scheme primitive, but part of the word and sentence package. (You can tell because
it “takes apart” a word to look at its letters separately, something that Scheme doesn’t
ordinarily do.) Scheme does have a member primitive without the question mark that’s

290 Part V. Abstraction

like member? except for two differences: Its second argument must be a list (but can
be a structured list); and instead of returning #t it returns the portion of the argument
list starting with the element equal to the first argument. This will be clearer with an
example:

> (member 'd '"(a bcde f g))
(D EF G)

> (member 'h "(a bcde f g))
#F

This is the main example in Scheme of the semipredicate idea that we mentioned earlier
in passing. It doesn’t have a question mark in its name because it returns values other
than #t and #£, but it works as a predicate because any non-# £ value is considered true.

The only word-and-sentence functions that we haven’t already mentioned are item
and count. The list equivalent of itemis called 1ist-ref (short for “reference”); it’s
different in that it counts items from zero instead of from one and takes its arguments in
the other order:

> (list-ref ’(happiness is a warm gun) 3)
WARM

The list equivalent of count is called length, and it’s exactly the same except that it
doesn’t work on words.

Association Lists

An example earlier in this chapter was about translating from English to French. This
involved searching for an entry in a list by comparing the first element of each entry with
the information we were looking for. A list of names and corresponding values is called
an association list, or an a-list. The Scheme primitive assoc looks up a name in an a-list:

> (assoc 'george
'((john lennon) (paul mccartney)
(george harrison) (ringo starr)))
(GEORGE HARRISON)

> (assoc ‘x ‘((i 1) (v 5) (x 10) (1 50) (c 100) (d 500) (m 1000)))
(X 10)

> (assoc ‘ringo ’((mick jagger) (keith richards) (brian jones)

(charlie watts) (bill wyman)))
#F

Chapter 17 Lists 291

(define dictionary
' ((window fenetre) (book livre) (computer ordinateur)
(house maison) (closed ferme) (pate pate) (liver foie)
(faith foi) (weekend (fin de semaine))
((practical joke) attrape) (pal copain)))

(define (translate wd)
(let ((record (assoc wd dictionary)))
(if record
(cadr record)
' (parlez-vous anglais?))))

Assoc returns #f if it can’t find the entry you're looking for in your association list.
Our translate procedure checks for that possibility before using cadr to extract the
French translation, which is the second element of an entry.

Functions That Take Variable Numbers of Arguments

In the beginning of this book we told you about some Scheme procedures that can take
any number of arguments, but you haven’t yet learned how to write such procedures for
yourself, because Scheme’s mechanism for writing these procedures requires the use of
lists.

Here’s a procedure that takes one or more numbers as arguments and returns true
if these numbers are in increasing order:

(define (increasing? number . rest-of-numbers)
(cond ((null? rest-of-numbers) #t)
((> (car rest-of-numbers) number)
(apply increasing? rest-of-numbers))
(else #£f)))

> (increasing? 4 12 82)
#T

> (increasing? 12 4 82 107)
#F

The first novelty to notice in this program is the dot in the first line. In listing the

formal parameters of a procedure, you can use a dot just before the last parameter to
mean that that parameter (rest-of-numbers in this case) represents any number of

292 Part V. Abstraction

arguments, including zero. The value that will be associated with this parameter when
the procedure is invoked will be a list whose elements are the actual argument values.

In this example, you must invoke increasing? with at least one argument;
that argument will be associated with the parameter number. If there are no more
arguments, rest-of-numbers will be the empty list. But if there are more arguments,
rest-of-numbers will be a list of their values. (In fact, these two cases are the same:
Rest-of-numbers will be a list of all the remaining arguments, and if there are no
such arguments, rest-of-numbers is a list with no elements.)

The other novelty in this example is the procedure apply. It takes two arguments, a
procedure and a list. Apply invokes the given procedure with the elements of the given
list as its arguments, and returns whatever value the procedure returns. Therefore, the
following two expressions are equivalent:

(+ 3 4 5)
(apply + (3 4 5))

We use apply in increasing? because we don’t know how many arguments we’ll need
in its recursive invocation. We can’t just say

(increasing? rest-of-numbers)
because that would give increasing? a list as its single argument, and it doesn’t take
lists as arguments—it takes numbers. We want the numbers in the list to be the arguments.

We’ve used the name rest-of-numbers as the formal parameter to suggest “the
rest of the arguments,” but that’s not just an idea we made up. A parameter that follows
a dot and therefore represents a variable number of arguments is called a rest parameter.

Here’s a table showing the values of number and rest-of-numbers in the
recursive invocations of increasing? for the example

(increasing? 3 5 8 20 6 43 72)

number rest-of-numbers
3 (5 8 20 6 43 72)
5 (8 20 6 43 72)
8 (20 6 43 72)
20 (6 43 72) (returns false at this point)

Chapter 17 Lists 293

In the increasing? example we’ve used one formal parameter before the dot, but
you may use any number of such parameters, including zero. The number of formal
parameters before the dot determines the minimum number of arguments that must be
used when your procedure is invoked. There can be only one formal parameter after the
dot.

Recursion on Arbitrary Structured Lists

Let’s pretend we’ve stored this entire book in a gigantic Scheme list structure. It’s a list
of chapters. Each chapter is a list of sections. Each section is a list of paragraphs. Each
paragraph is a list of sentences, which are themselves lists of words.

Now we want to know how many times the word “mathematicians” appears in the
book. We could do it the incredibly boring way:

(define (appearances-in-book wd book)
(reduce + (map (lambda (chapter) (appearances-in-chapter wd chapter))
book)))

(define (appearances-in-chapter wd chapter)
(reduce + (map (lambda (section) (appearances-in-section wd section))
chapter)))

(define (appearances-in-section wd section)
(reduce + (map (lambda (paragraph)
(appearances-in-paragraph wd paragraph))
section)))

(define (appearances-in-paragraph wd paragraph)
(reduce + (map (lambda (sent) (appearances-in-sentence wd sent))
paragraph)))

(define (appearances-in-sentence given-word sent)
(length (filter (lambda (sent-word) (equal? sent-word given-word))
sent)))

but that would be incredibly boring.

What we’re going to do is similar to the reasoning we used in developing the idea
of recursion in Chapter 11. There, we wrote a family of procedures named downupl,
downup2, and so on; we then noticed that most of these procedures looked almost
identical, and “collapsed” them into a single recursive procedure. In the same spirit,

294 Part V. Abstraction

notice that all the appearances—in- procedures are very similar. We can make them
even more similar by rewriting the last one:

(define (appearances-in-sentence wd sent)
(reduce + (map (lambda (wd2) (appearances-in-word wd wd2))
sent)))

(define (appearances-in-word wd wd2)
(if (equal? wd wd2) 1 0))

Now, just as before, we want to write a single procedure that combines all of these.

What'’s the base case? Books, chapters, sections, paragraphs, and sentences are all
lists of smaller units. It’s only when we get down to individual words that we have to do
something different:

(define (deep-appearances wd structure)
(if (word? structure)
(if (equal? structure wd) 1 0)
(reduce +
(map (lambda (sublist) (deep-appearances wd sublist))
structure))))

> (deep-appearances
"the
"(((the man) in ((the) moon)) ate (the) potstickers))

> (deep-appearances ‘n ‘(lambda (n) (if (=n 0) 1 (* n (£ (- n 1))))))
4

> (deep-appearances ’'mathematicians the-book-structure)
7

This is quite different from the recursive situations we’ve seen before. What looks
like a recursive call from deep-appearances to itself is actually inside an anonymous
procedure that will be called repeatedly by map. Deep-appearances doesn’t just call
itself once in the recursive case; it uses map to call itself for each element of structure.
Each of those calls returns a number; map returns a list of those numbers. What we want
is the sum of those numbers, and that’s what reduce will give us.

This explains why deep-appearances must accept words as well as lists as the
structure argument. Consider a case like

Chapter 17 Lists 295

(deep-appearances 'foo ’((a) b))

Since structure has two elements, map will call deep-appearances twice. One of
these calls uses the list (a) as the second argument, but the other call uses the word b as
the second argument.

Of course, if structure is a word, we can’t make recursive calls for its elements;
that’s why words are the base case for this recursion. What should deep-appearances
return for a word? If it’s the word we’re looking for, that counts as one appearance. If
not, it counts as no appearances.

You're accustomed to seeing the empty list as the base case in a recursive list
processing procedure. Also, you're accustomed to thinking of the base case as the end
of a complete problem; you’ve gone through all of the elements of a list, and there are
no more elements to find. In most problems, there is only one recursive invocation
that turns out to be a base case. But in using deep-appearances, there are many
invocations for base cases—one for every word in the list structure. Reaching a base case
doesn’t mean that we’ve reached the end of the entire structure! You might want to trace
a short example to help you understand the sequence of events.

Although there’s no official name for a structure made of lists of lists of ... of lists,
there is a common convention for naming procedures that deal with these structures;
that’s why we’ve called this procedure deep-appearances. The word “deep” indicates
that this procedure is just like a procedure to look for the number of appearances of a
word in a list, except that it looks “all the way down” into the sub-sub-[II&ublists instead
of just looking at the elements of the top-level list.

This version of deep-appearances, in which higher-order procedures are used to
deal with the sublists of a list, is a common programming style. But for some problems,
there’s another way to organize the same basic program without higher-order procedures.
This other organization leads to very compact, but rather tricky, programs. It’s also a
widely used style, so we want you to be able to recognize it.

Here’s the idea. We deal with the base case—words—just as before. But for lists we
do what we often do in trying to simplify a list problem: We divide the list into its first
element (its car) and all the rest of its elements (its cdr). But in this case, the resulting
program is a little tricky. Ordinarily, a recursive program for lists makes a recursive call
for the cdr, which is a list of the same kind as the whole argument, but does something
non-recursive for the car, which is just one element of that list. This time, the car of
the kind of structured list-of-lists we’re exploring may itself be a list-of-lists! So we make a
recursive call for it, as well:

296 Part V. Abstraction

(define (deep-appearances wd structure)

(cond ((equal? wd structure) 1) ; base case: desired word
((word? structure) 0) ; base case: other word
((null? structure) 0) ; base case: empty list

(else (+ (deep-appearances wd (car structure))
(deep-appearances wd (cdr structure))))))

This procedure has two different kinds of base case. The first two cond clauses are
similar to the base case in the previous version of deep-appearances; they deal with a
“structure” consisting of a single word. If the structure is the word we’re looking for, then
the word appears once in it. If the structure is some other word, then the word appears
zero times. The third clause is more like the base case of an ordinary list recursion; it
deals with an empty list, in which case the word appears zero times in it. (This still may
not be the end of the entire structure used as the argument to the top-level invocation,
but may instead be merely the end of a sublist within that structure.)

If we reach the else clause, then the structure is neither a word nor an empty
list. It must, therefore, be a non-empty list, with a car and a cdr. The number of
appearances in the entire structure of the word we’re looking for is equal to the number
of appearances in the car plus the number in the cdr.

In deep-appearances the desired result is a single number. What if we want to
build a new list-of-lists structure? Having used car and cdr to disassemble a structure,
we can use cons to build a new one. For example, we’ll translate our entire book into
Pig Latin:

(define (deep-pigl structure)
(cond ((word? structure) (pigl structure))
((null? structure) ’'())
(else (cons (deep-pigl (car structure))
(deep-pigl (cdr structure))))))

> (deep-pigl ’((this is (a structure of (words)) with)
(a (peculiar) shape)))

((ISTHAY ISAY (AAY UCTURESTRAY OFAY (ORDSWAY)) ITHWAY)
(AAY (ECULIARPAY) APESHAY))

Compare deep-pigl with an every-pattern list recursion such as praise on
page 285. Both look like

(cons (something (car argument)) (something (cdr argument)))

Chapter 17 Lists 297

And yet these procedures are profoundly different. Praise is a simple left-to-right
walk through the elements of a sequence; deep-pigl dives in and out of sublists.
The difference is a result of the fact that praise does one recursive call, for the cdr,
while deep-pigl does two, for the car as well as the cdr. The pattern exhibited by
deep-pigl is called car-cdr recursion. (Another name for it is “tree recursion,” for a
reason we’ll see in the next chapter.)

Pitfalls

O Just as we mentioned about the names word and sentence, resist the temptation
to use 1ist as a formal parameter. We use 1st instead, but other alternatives are capital
L or seq (for “sequence”).

O The list constructor cons does not treat its two arguments equivalently. The second
one must be the list you're trying to extend. There is no equally easy way to extend a
list on the right (although you can put the new element into a one-element list and use
append). If you get the arguments backward, you're likely to get funny-looking results
that aren’t lists, such as

((3 .2) . 1)

The result you get when you cons onto something that isn’t a list is called a pair 1t’s
sometimes called a “dotted pair” because of what it looks like when printed:

> (cons 'a 'b)
(A . B)

It’s just the printed representation that’s dotted, however; the dot isn’t part of the pair
any more than the parentheses around a list are elements of the list. Lists are made of
pairs; that’s why cons can construct lists. But we’re not going to talk about any pairs that
aren’t part of lists, so you don’t have to think about them at all, except to know that if dots
appear in your results you're consing backward.

O Don’tgetconfused between lists and sentences. Sentences have no internal structure;
the good aspect of this is that it’s hard to make mistakes about building the structure, but
the bad aspect is that you might need such a structure. You can have lists whose elements
are sentences, but it’s confusing if you think of the same structure sometimes as a list and
sometimes as a sentence.

298 Part V. Abstraction

O Inreading someone else’s program, it’s easy not to notice that a procedure is making
two recursive calls instead of just one. If you notice only the recursive call for the cdr,
you might think you’re looking at a sequential recursion.

O Ifyou’re writing a procedure whose argument is a list-of-lists, it may feel funny to let
it also accept a word as the argument value. People therefore sometimes insist on a list
as the argument, leading to an overly complicated base case. If your base case test says

(word? (car structure))
then think about whether you’d have a better-organized program if the base case were

(word? structure)

O Remember that in a deep-structure recursion you may need two base cases, one for
reaching an element that isn’t a sublist, and the other for an empty list, with no elements
atall. (Our deep-appearances procedure is an example.) Don’t forget the empty-list
case.

Boring Exercises

17.1 What will Scheme print in response to each of the following expressions? Try to
figure it out in your head before you try it on the computer.

> (car '(Rod Chris Colin Hugh Paul))

> (cadr ’'(Rod Chris Colin Hugh Paul))

> (cdr ' (Rod Chris Colin Hugh Paul))

> (car 'Rod)

> (cons ’'(Rod Argent) ’'(Chris White))

> (append ’'(Rod Argent) ' (Chris White))
> (list ’(Rod Argent) ’'(Chris White))

> (caadr ’'((Rod Argent) (Chris White)
(Colin Blunstone) (Hugh Grundy) (Paul Atkinson)))

Chapter 17 Lists 299

> (assoc ’‘Colin ’((Rod Argent) (Chris White)
(Colin Blunstone) (Hugh Grundy) (Paul Atkinson)))

> (assoc ’'Argent ’((Rod Argent) (Chris White)
(Colin Blunstone) (Hugh Grundy) (Paul Atkinson)))

17.2 For each of the following examples, write a procedure of two arguments that, when
applied to the sample arguments, returns the sample result. Your procedures may not
include any quoted data.

> (fl "(abc) "(de £f))
((B CD))

> (f2 "(abc) "(de £f))
((B C) E)

> (f3 "(abc) "(de £f))
(A BCABZC)

> (f4 "(abc) '"(de £f))
((A D) (BCETF))

17.3 Describe the value returned by this invocation of map:

> (map (lambda (x) (lambda (y) (+ x y))) (1 2 3 4))

Real Exercises

17.4 Describe the result of calling the following procedure with a list as its argument.
(See if you can figure it out before you try it.)

(define (mystery lst)
(mystery-helper 1lst '()))

(define (mystery-helper 1lst other)
(if (null? 1lst)
other
(mystery-helper (cdr 1lst) (cons (car lst) other))))

300 Part V. Abstraction

17.5 Here’s a procedure that takes two numbers as arguments and returns whichever
number is larger:

(define (max2 a b)
(if (> b a) b a))

Use max2 to implement max, a procedure that takes one or more numeric arguments
and returns the largest of them.

17.6 Implement append using car, cdr, and cons. (Note: The built-in append can
take any number of arguments. First write a version that accepts only two arguments.
Then, optionally, try to write a version that takes any number.)

17.7 Append may remind you of sentence. They're similar, except that append
works only with lists as arguments, whereas sentence will accept words as well as lists.
Implement sentence using append. (Note: The builtin sentence can take any
number of arguments. First write a version that accepts only two arguments. Then,
optionally, try to write a version that takes any number. Also, you don’t have to worry
about the error checking that the real sentence does.)

17.8 Write member.
17.9 Write 1list-ref.
17.10 Write length.

17.11 Write before-in-1ist?, which takes a list and two elements of the list. It
should return #t if the second argument appears in the list argument before the third
argument:

> (before-in-1list? ’(back in the ussr) ’‘in ’ussr)
#T

> (before-in-1list? ’(back in the ussr) ’‘the ’back)
#F

The procedure should also return #£ if either of the supposed elements doesn’t appear
at all.

Chapter 17 Lists 301

17.12 Write a procedure called flatten that takes as its argument a list, possibly
including sublists, but whose ultimate building blocks are words (not Booleans or
procedures). It should return a sentence containing all the words of the list, in the order
in which they appear in the original:

> (flatten ’(((a b) c (d e)) (£ g) ((((h))) (1 3) k)))
(ABCDEFGHTIJRK)

17.13 Hereis a procedure that counts the number of words anywhere within a structured
list:

(define (deep-count lst)
(cond ((null? 1st) 0)
((word? (car 1lst)) (+ 1 (deep-count (cdr 1lst))))
(else (+ (deep-count (car 1lst))
(deep-count (cdr 1lst))))))

Although this procedure works, it’'s more complicated than necessary. Simplify it.

17.14 Write a procedure branch that takes as arguments a list of numbers and a nested
list structure. It should be the list-of-lists equivalent of item, like this:

> (branch (3) ’"((a b) (c d) (e £) (g h)))

(E F)

> (branch (3 2) '((a b) (c d) (e £f) (g h)))

F

> (branch '(2 3 1 2) '((a b) ((c d) (e £) ((g h) (1 3)) k) (1 m)))
H

In the last example above, the second element of the list is
((C D) (EF) ((G H) (I J)) K)

The third element of that smaller list is ((G H) (I J)); the first element of that is
(G H); and the second element of that is just H.

17.15 Modify the pattern matcher to represent the known-values database as a list of
two-element lists, as we suggested at the beginning of this chapter.

302 Part V. Abstraction

17.16 Write a predicate valid-infix? that takes a list as argument and returns #t if
and only if the list is a legitimate infix arithmetic expression (alternating operands and
operators, with parentheses—that is, sublists—allowed for grouping).

> (valid-infix? (4 + 3 * (5 - 2)))
#T

> (valid-infix? (4 + 3 * (5 2)))
#F

Chapter 17 Lists 303

Apple Tree in Blossom, Piet Mondrian (1912)

18 Trees

The big advantage of full-featured lists over sentences is their ability to represent structure
in our data by means of sublists. In this chapter we’ll look at examples in which we
use lists and sublists to represent two-dimensional information structures. The kinds of
structures we’ll consider are called trees because they resemble trees in nature:

The components of a tree are called nodes. At the top is the root node of the tree; in the
interior of the diagram there are branch nodes; at the bottom are the leafnodes, from which
no further branches extend.

We’re going to begin by considering a tree as an abstract data type, without thinking
about how lists are used to represent trees. For example, we’ll construct trees using
a procedure named make-node, as if that were a Scheme primitive. About halfway
through the chapter, we’ll explore the relationship between trees and lists.

305

Example: The World

Here is a tree that represents the world:

{ @ @ Tegucigalpa
S .@ (ShanghaD)\Gurhow Getori)

D X Geoume ot
o] i) (pbighs)

T @
THINED O G G e
& @ B Gretna
Gambridge> | Gubury)

Gt

Each node in the tree represents some region of the world. Consider the node
labeled “Great Britain.” There are two parts to this node: The obvious part is the
label itself, the name “Great Britain.” But the regions of the world that are included
within Great Britain—that is, the nodes that are attached beneath Great Britain in the
figure—are also part of this node.

We say that every node has a datum and zero or more children. For the moment,
let’s just say that the datum can be either a word or a sentence. The children, if any,
are themselves trees. Notice that this definition is recursive—a tree is made up of trees.
(What’s the base case?)

This family metaphor is also part of the terminology of trees.* We say that a node is
the parent of another node, or that two nodes are siblings. In more advanced treatments,
you even hear things like “grandparent” and “cousin,” but we won’t get into that.

* Contrariwise, the tree metaphor is also part of the terminology of families.

306 Part V. Abstraction

What happens when you prune an actual tree by cutting off a branch? The cut-off
part is essentially a tree in itself, with a smaller trunk and fewer branches. The metaphor
isn’t perfect because the cut-off part doesn’t have roots, but still, we can stick the end in
the ground and hope that the cut-off end will take root as a new tree.

It’s the same with a country in our example; each country is a branch node of the
entire world tree, but also a tree in itself. Depending on how you think about it, Great
Britain can be either a component of the entire world or a collection of smaller locations.
So the branch node that represents Great Britain is the root node of a subtree of the entire
tree.

Whatis a node? Itmight seem natural to think of a node as being just the information
in one of the circles in the diagram—that is, to think of a node as including only its
datum. In that way of thinking, each node would be separate from every other node, just
as the words in a sentence are all separate elements. However, it will be more useful to
think of a node as a structure that includes everything below that circle also: the datum
and the children. So when we think of the node for Great Britain, we’re thinking not
only of the name “Great Britain,” but also of everything in Great Britain. From this
perspective, the root node of a tree includes the entire tree. We might as well say that the
node is the tree.

The constructor for a tree is actually the constructor for one node, its root node. Our
constructor for trees is therefore called make-node. It takes two arguments: the datum
and a (possibly empty) list of children. As the following example shows, constructing
what we think of as one tree requires the construction of many such nodes.

Chapter 18 Trees 307

(define world-tree ;7 painful-to-type version
(make-node
'world
(list (make-node
"italy
(list (make-node ’venezia ' ())
(make-node ’‘riomaggiore ' ())
(make-node ‘firenze ‘())
(make-node ‘roma ’())))
(make-node
’(united states)
(list (make-node ’‘california
(list (make-node ’berkeley '())
(make-node ' (san francisco) ‘())
(make-node ’‘gilroy ’'())))
(make-node ’'massachusetts
(list (make-node ’cambridge ’())
(make-node ’'amherst ’())
(make-node ’‘sudbury ‘()))))))))

You’ll notice that we haven’t defined all of the places shown in the figure. That’s because
we got tired of doing all this typing; we’re going to invent some abbreviations later. For
now, we’ll take time out to show you the selectors for trees.

> (datum world-tree)
WORLD

> (datum (car (children world-tree)))
ITALY

> (datum (car (children (cadr (children world-tree)))))
CALIFORNIA

> (datum (car (children (car (children
(cadr (children world-tree)))))))
BERKELEY

Datum of a tree node returns the datum of that node. Children of a node returns a list
of the children of the node. (A list of trees is called a forest.)

Here are some abbreviations to help us construct the world tree with less typing.
Unlike make-node, datum, and children, which are intended to work on trees in
general, these abbreviations were designed with the world tree specifically in mind:

308 Part V. Abstraction

(define (leaf datum)
(make-node datum ’()))

(define (cities name-list)
(map leaf name-list))

With these abbreviations the world tree is somewhat easier to define:

(define world-tree
(make-node
'world
(list (make-node
"italy
(cities ' (venezia riomaggiore firenze roma)))
(make-node
’(united states)
(list (make-node
'california
(cities ' (berkeley (san francisco) gilroy)))
(make-node
'massachusetts
(cities ' (cambridge amherst sudbury)))
(make-node ’‘ohio (cities ’(kent)))))
(make-node ’‘zimbabwe (cities ’ (harare hwange)))
(make-node ’‘china
(cities ' (beijing shanghai guangzhou suzhou)))
(make-node
' (great britain)
(list
(make-node ’‘england (cities ’(liverpool)))
(make-node ’‘scotland
(cities ’(edinburgh glasgow (gretna green))))
(make-node ’‘wales (cities ' (abergavenny)))))
(make-node
"australia
(list
(make-node ’‘victoria (cities ’ (melbourne)))
(make-node ' (new south wales) (cities ' (sydney)))
(make-node ’'queensland
(cities ’(cairns (port douglas))))))
(make-node 'honduras (cities ’(tegucigalpa))))))

Chapter 18 Trees 309

How Big Is My Tree?

Now that we have the tree, how many cities are there in our world?

(define (count-leaves tree)
(if (leaf? tree)
1
(reduce + (map count-leaves (children tree)))))

(define (leaf? node)
(null? (children node)))

> (count-leaves world-tree)
27

At first glance, this may seem like a simple case of recursion, with count-leaves
calling count-leaves. But since what looks like a single recursive call is really a call to
map, it is equivalent to several recursive calls, one for each child of the given tree node.

Mutual Recursion

In Chapter 14 we wrote recursive procedures that were equivalent to using higher-order
functions. Let’s do the same for count-leaves.

(define (count-leaves tree)
(if (leaf? tree)
1
(count-leaves-in-forest (children tree))))

(define (count-leaves-in-forest forest)
(if (null? forest)
0
(+ (count-leaves (car forest))
(count-leaves-in-forest (cdr forest)))))

Note that count-leaves calls count-leaves-in-forest, and count-leaves-
in-forest calls count-leaves. This pattern is called mutual recursion.

Mutual recursion is often a useful technique for dealing with trees. In the typical
recursion we’ve seen before this chapter, we’ve moved sequentially through a list or
sentence, with each recursive call taking us one step to the right. In the following
paragraphs we present three different models to help you think about how the shape of
a tree gives rise to a mutual recursion.

310 Part V. Abstraction

In the first model, we’re going to think of count-leaves as an initialization
procedure, and count-leaves-in-forest as its helper procedure. Suppose we
want to count the leaves of a tree. Unless the argument is a very shallow* tree, this
will involve counting the leaves of all of the children of that tree. What we want is
a straightforward sequential recursion over the list of children. But we’re given the
wrong argument: the tree itself, not its list of children. So we need an initialization
procedure, count-leaves, whose job is to extract the list of children and invoke a
helper procedure, count-leaves-in-forest, with that list as argument.

The helper procedure follows the usual sequential list pattern: Do something to the
car of the list, and recursively handle the cdr of the list. Now, what do we have to do
to the car? In the usual sequential recursion, the car of the list is something simple,
such as a word. What’s special about trees is that here the car is itself a tree, just like
the entire data structure we started with. Therefore, we must invoke a procedure whose
domain is trees: count-leaves.

This model is built on two ideas. One is the idea of the domain of a function; the
reason we need two procedures is that we need one that takes a tree as its argument
and one that takes a list of trees as its argument. The other idea is the leap of faith; we
assume that the invocation of count-leaves within count-leaves-in-forest will
correctly handle each child without tracing the exact sequence of events.

The second model is easier to state but less rigorous. Because of the two-dimensional
nature of trees, in order to visit every node we have to be able to move in two different
directions. From a given node we have to be able to move down to its children, but from
each child we must be able to move across to its next sibling.

The job of count-leaves-in-forestis to move from left to right through a list of
children. (It does this using the more familiar kind of recursion, in which it invokes itself
directly.) The downward motion happens in count-leaves, which moves down one
level by invoking children. How does the program move down more than one level? At
each level, count-leaves is invoked recursively from count-leaves-in-forest.

The third model is also based on the two-dimensional nature of trees. Imagine for a
moment that each node in the tree has at most one child. In that case, count-leaves
could move from the root down to the single leaf with a structure very similar to the
actual procedure, but carrying out a sequential recursion:

* You probably think of trees as being short or tall. But since our trees are upside-down, the
convention is to call them shallow or deep.

Chapter 18 Trees 311

(define (count-leaf tree)
(if (leaf? tree)
1
(count-leaf (child tree))))

The trouble with this, of course, is that at each downward step there isn’t a single “next”
node. Instead of a single path from the root to the leaf, there are multiple paths from the
root to many leaves. To make our idea of downward motion through sequential recursion
work in a real tree, at each level we must “clone” count-leaves as many times as there
are children. Count-leaves-in-forest is the factory that manufactures the clones.
It hires one count-leaves little person for each child and accumulates their results.

The key point in recursion on trees is that each child of a tree is itself a perfectly
good tree. This recursiveness in the nature of trees gives rise to a very recursive structure
for programs that use trees. The reason we say “very” recursive is that each invocation of
count-leaves causes not just one but several recursive invocations, one for each child,
by way of count-leaves-in-forest.

In fact, we use the name tree recursion for any situation in which a procedure invocation
results in more than one recursive call, even if there isn’t an argument that’s a tree. The
computation of Fibonacci numbers from Chapter 13 is an example of a tree recursion
with no tree. The car-cdr recursions in Chapter 17 are also tree recursions; any
structured list-of-lists has a somewhat tree-like, two-dimensional character even though it
doesn’t use the formal mechanisms we’re exploring in this chapter. The cdr recursion
is a “horizontal” one, moving from one element to another within the same list; the car
recursion is a “vertical” one, exploring a sublist of the given list.

Searching for a Datum in the Tree

Procedures that explore trees aren’t always as simple as count-leaves. We started
with that example because we could write it using higher-order functions, so that you’d
understand the structure of the problem before we had to take on the complexity of
mutual recursion. But many tree problems don’t quite fit our higher-order functions.

For example, let’s write a predicate in-tree? that takes the name of a place and a
tree as arguments and tells whether or not that place is in the tree. It is possible to make
itwork with filter:

(define (in-tree? place tree)
(or (equal? place (datum tree))
(not (null? (filter (lambda (subtree) (in-tree? place subtree))
(children tree))))))

312 Part V. Abstraction

This awkward construction, however, also performs unnecessary computation. If the
place we’re looking for happens to be in the first child of anode, £ilter will nevertheless
look in all the other children as well. We can do better by replacing the use of filter
with a mutual recursion:

(define (in-tree? place tree)
(or (equal? place (datum tree))
(in-forest? place (children tree))))

(define (in-forest? place forest)
(if (null? forest)
#f
(or (in-tree? place (car forest))
(in-forest? place (cdr forest)))))

> (in-tree? ’'abergavenny world-tree)
#T

> (in-tree? ’'abbenay world-tree)
#F

> (in-tree? ’‘venezia (cadr (children world-tree)))
#F

Although any mutual recursion is a little tricky to read, the structure of this program
does fit the way we’d describe the algorithm in English. A place is in a tree if one of two
conditions holds: the place is the datum at the root of the tree, or the place is (recursively)
in one of the child trees of this tree. That’s what in-tree? says. As for in-forest?, it
says that a place is in one of a group of trees if the place is in the first tree, or if it’s in one
of the remaining trees.

Locating a Datum in the Tree

Our next project is similar to the previous one, but a little more intricate. We’d like to
be able to locate a city and find out all of the larger regions that enclose the city. For
example, we want to say

> (locate ’'berkeley world-tree)
(WORLD (UNITED STATES) CALIFORNIA BERKELEY)

Instead of just getting a yes-or-no answer about whether a city is in the tree, we now want
to find out where it is.

Chapter 18 Trees 313

The algorithm is recursive: To look for Berkeley within the world, we need to be
able to look for Berkeley within any subtree. The world node has several children
(countries). Locate recursively asks each of those children to find a path to Berkeley.
All but one of the children return #£, because they can’t find Berkeley within their
territory. But the (united states) node returns

((UNITED STATES) CALIFORNIA BERKELEY)

To make a complete path, we just prepend the name of the current node, wor1ld, to this
path. What happens when locate tries to look for Berkeley in Australia? Since all of
Australia’s children return #£, there is no path to Berkeley from Australia, so locate
returns #£.

(define (locate city tree)
(if (equal? city (datum tree))
(list city)
(let ((subpath (locate-in-forest city (children tree))))
(if subpath
(cons (datum tree) subpath)

#£))))

(define (locate-in-forest city forest)
(if (null? forest)
#f
(or (locate city (car forest))
(locate-in-forest city (cdr forest)))))

Compare the structure of locate with that of in-tree?. The helper procedures
in-forest? and locate-in-forest are almost identical. The main procedures look
different, because locate has a harder job, but both of them check for two possibilities:
The city might be the datum of the argument node, or it might belong to one of the
child trees.

Representing Trees as Lists

We’ve done a lot with trees, but we haven’t yet talked about the way Scheme stores trees
internally. How do make-node, datum, and children work? It turns out to be very
convenient to represent trees in terms of lists.

(define (make-node datum children)
(cons datum children))

314 Part V. Abstraction

(define (datum node)
(car node))

(define (children node)
(cdr node))

In other words, a tree is a list whose first element is the datum and whose remaining
elements are subtrees.

> world-tree

(WORLD
(ITALY (VENEZIA) (RIOMAGGIORE) (FIRENZE) (ROMA))
((UNITED STATES)

(CALIFORNIA (BERKELEY) ((SAN FRANCISCO)) (GILROY))
(MASSACHUSETTS (CAMBRIDGE) (AMHERST) (SUDBURY))
(OHIO (KENT)))

(ZIMBABWE (HARARE) (HWANGE))

(CHINA (BEIJING) (SHANGHAI) (GUANGSZHOU) (SUZHOW))
((GREAT BRITAIN)

(ENGLAND (LIVERPOOL))

(SCOTLAND (EDINBURGH) (GLASGOW) ((GRETNA GREEN)))
(WALES (ABERGAVENNY)))

(AUSTRALIA

(VICTORIA (MELBOURNE))

((NEW SOUTH WALES) (SYDNEY))

(QUEENSLAND (CAIRNS) ((PORT DOUGLAS))))

(HONDURAS (TEGUCIGALPA)))

> (car (children world-tree))
(ITALY (VENEZIA) (RIOMAGGIORE) (FIRENZE) (ROMA))

Ordinarily, however, we’re not going to print out trees in their entirety. As in the
locate example, we’ll extract just some subset of the information and put it in a more
readable form.

Abstract Data Types

The procedures make-node, datum, and children define an abstract data type for
trees. Using this ADT, we were able to write several useful procedures to manipulate trees
before pinning down exactly how a tree is represented as a Scheme list.

Although it would be possible to refer to the parts of a node by using car and cdr
directly, your programs will be more readable if you use the ADT-specific selectors and

Chapter 18 Trees 315

constructors. Consider this example:

(in-tree? ’venezia (caddr world-tree))

What does caddr mean in this context? Is the caddr of a tree a datum? A child? A
forest? Of course you could work it out by careful reasoning, but the form in which we
presented this example originally was much clearer:

(in-tree? ’venezia (cadr (children world-tree)))

Even better would be

(in-tree? ’venezia (list-ref (children world-tree) 1))

Using the appropriate selectors and constructors is called respecting the data abstrac-
tion. Failing to use the appropriate selectors and constructors is called a data abstraction
violation.

Since we wrote the selectors and constructor for trees ourselves, we could have
defined them to use some different representation:

(define (make-node datum children)
(list 'the 'node 'with ’‘datum datum ‘and ’‘children children))

(define (datum node) (list-ref node 4))

(define (children node) (list-ref node 7))

> (make-node ’italy (cities ’(venezia riomaggiore firenze roma)))
(THE NODE WITH DATUM ITALY AND CHILDREN

((THE NODE WITH DATUM VENEZIA AND CHILDREN ())

(THE NODE WITH DATUM RIOMAGGIORE AND CHILDREN ())

(THE NODE WITH DATUM FIRENZE AND CHILDREN ())

(THE NODE WITH DATUM ROMA AND CHILDREN ())))

You might expect that this change in the representation would require changes to all the
procedures we wrote earlier, such as count-leaves. Butin fact, those procedures would
continue to work perfectly because they don’t see the representation. (They respect the
data abstraction.) Aslong as datumand children find the right information, it doesn’t
matter how the trees are stored. All that matters is that the constructors and selectors
have to be compatible with each other.

On the other hand, the example in this section in which we violated the data
abstraction by using caddr to find the second child of world-tree would fail if

316 Part V. Abstraction

we changed the representation. Many cases like this one, in which formerly working
programs failed after a change in representation, led programmers to use such moralistic
terms as “respecting” and “violating” data abstractions.*

An Advanced Example: Parsing Arithmetic Expressions

Consider the notation for arithmetic expressions. Scheme uses prefix notation: (+ 3 4).
By contrast, people who aren’t Scheme programmers generally represent arithmetic
computations using an #nfix notation, in which the function symbol goes between two
arguments: 3 + 4.

Our goal in this section is to translate an infix arithmetic expression into a tree
representing the computation. This translation process is called parsing the expression.
For example, we’ll turn the expression

4+3x7-5/(3+4)+6

into the tree

* Another example of a data abstraction violation is in Chapter 16. When match creates an
empty known-values database, we didn’t use a constructor. Instead, we merely used a quoted empty
sentence:

(define (match pattern sent)
(match-using-known-values pattern sent '()))

Chapter 18 Trees 317

The point of using a tree is that it’s going to be very easy to perform the computation
once we have it in tree form. In the original infix form, it’s hard to know what to do first,
because there are precedence rules that determine an implicit grouping: Multiplication
and division come before addition and subtraction; operations with the same precedence
are done from left to right. Our sample expression is equivalent to

(((4+(3%x7)) = (5/(3+4))) +6)

In the tree representation, it’s easy to see that the operations nearer the leaves are done
first; the root node is the last operation, because it depends on the results of lower-level
operations.

Our program will take as its argument an infix arithmetic expression in the form of
a list:

> (parse '(4 + 3 * 7 -5/ (3 + 4) + 6))

Each element of the list must be one of three things: a number; one of the four symbols +,
=, *, or /; or a sublist (such as the three-element list (3 + 4) in this example) satisfying
the same rule. (You can imagine that we’re implementing a pocket calculator. If we were
implementing a computer programming language, then we’d also accept variable names
as operands. But we’re not bothering with that complication because it doesn’t really
affect the part of the problem about turning the expression into a tree.)

What makes this problem tricky is that we can’t put the list elements into the tree as
soon as we see them. For example, the first three elements of our sample list are 4, +,
and 3. It’s tempting to build a subtree of those three elements:

But if you compare this picture with the earlier picture of the correct tree, you’ll see that
the second argument to this + invocation isn’t the number 3, but rather the subexpression
3% 7.

By this reasoning you might think that we have to examine the entire expression
before we can start building the tree. But in fact we can sometimes build a subtree with
confidence. For example, when we see the minus sign in our sample expression, we can

318 Part V. Abstraction

tell that the subexpression 3 * 7 that comes before it is complete, because * has higher
precedence than - does.

Here’s the plan. The program will examine its argument from left to right. Since
the program can’t finish processing each list element right away, it has to maintain
information about the elements that have been examined but not entirely processed. It’s
going to be easier to maintain that information in two parts: one list for still-pending
operations and another for still-pending operands. Here are the first steps in parsing
our sample expression; the program examines the elements of the argument, putting
numbers onto the operand list and operation symbols onto the operation list:*

Remaining Expression Operations Operands
4+3%7-5/ (3+4)+6 0 ()

43575/ (3+4)+6 0 (@)
3%7-5/(3+4)+6 (+) (@)

%7-5/ (3+4)+6 (+) ® @)

At this point, the program is looking at the * operator in the infix expression. If this
newly seen operator had lower precedence than the + that’s already at the head of the
list of operations, then it would be time to carry out the + operation by creating a tree
with + at the root and the first two operands in the list as its children. Instead, since * has

higher precedence than +, the program isn’t ready to create a subtree but must instead
add the * to its operation list.

7-5/(3+4)+6 (% +) 3 @)
~5/(3+4)+6 (% +) @ 3 @)

This time, the newly seen - operation has lower precedence than the * at the head
of the operation list. Therefore, it’s time for the program to handle the * operator, by

* Actually, as we’ll see shortly, the elements of the operand list are trees, so what we put in the
operand list is a one-node tree whose datum is the number.

Chapter 18 Trees 319

making a subtree containing that operator and the first two elements of the operand list.
This new subtree becomes the new first element of the operand list.

-5/ (3+4)+6 (+) @Q%@ @)

Because the program decided to handle the waiting * operator, it still hasn’t moved
the — operator from the infix expression to the operator list. Now the program must
compare - with the + at the head of the list. These two operators have the same
precedence. Since we want to carry out same-precedence operators from left to right, it’s
time to handle the + operator.

(+)
5/ (3+4)+6 () 4) ()
3) D

Finally the program can move the - operator onto the operator list. The next several
steps are similar to ones we’ve already seen.

(+)
5/ (3+4)+6 (-) @ (%)
3 @
(+)
/(3+4)+6 (=) G @ &)
3 @
(+)
(3+4) +6) ® @
3 @

320 Part V. Abstraction

This is a new situation: The first unseen element of the infix expression is neither a

number nor an operator, but a sublist. We recursively parse this subexpression, adding

the resulting tree to the operand list.

- (@o)

Then we proceed as before, processing the / because it has higher precedence than

the +, then the - because it has the same priority as the +, and so on.

+6

+6

empty

Chapter 18 Trees

(=)

0

(+)

(+)

G
%)
5)
(%)

321

Once the program has examined every element of the infix expression, the operators
remaining on the operator list must be handled. In this case there is only one such
operator. Once the operators have all been handled, there should be one element

remaining on the operand list; that element is the desired tree for the entire original
expression.

empty 0

The following program implements this algorithm. It works only for correctly
formed infix expressions; if given an argument like (3 + =), it'll give an incorrect result
or a Scheme error.

(define (parse expr)
(parse-helper expr ’() '()))

(define (parse-helper expr operators operands)
(cond ((null? expr)
(if (null? operators)
(car operands)
(handle-op ' () operators operands)))

((number? (car expr))
(parse-helper (cdr expr)

operators

(cons (make-node (car expr) ’'()) operands)))
((list? (car expr))
(parse-helper (cdr expr)

operators

(cons (parse (car expr)) operands)))
(else (if (or (null? operators)

(> (precedence (car expr))

(precedence (car operators))))
(parse-helper (cdr expr)
(cons (car expr) operators)
operands)
(handle-op expr operators operands)))))

322 Part V. Abstraction

(define (handle-op expr operators operands)
(parse-helper expr
(cdr operators)
(cons (make-node (car operators)
(list (cadr operands) (car operands)))
(cddr operands))))

(define (precedence oper)
(if (member? oper '(+ -)) 1 2))

We promised that after building the tree it would be easy to compute the value of
the expression. Here is the program to do that:

(define (compute tree)
(if (number? (datum tree))
(datum tree)
((function-named-by (datum tree))
(compute (car (children tree)))
(compute (cadr (children tree))))))

(define (function-named-by oper)
(cond ((equal? oper '+) +)
((equal? oper '-) -)
((equal? oper ’'=*) =*)
((equal? oper /) /)
(else (error "no such operator as" oper))))

> (compute (parse ‘(4 + 3 * 7 -5/ (3 + 4) + 6)))
30.285714285714

Pitfalls

O Aleaf node is a perfectly good actual argument to a tree procedure, even though the
picture of a leaf node doesn’t look treeish because there aren’t any branches. A common
mistake is to make the base case of the recursion be a node whose children are leaves,
instead of a node that’s a leaf itself.

O The value returned by children is not a tree, but a forest. It’s therefore not a
suitable actual argument to a procedure that expects a tree.

Chapter 18 Trees 323

Exercises

18.1 What does

((SAN FRANCISCO))
mean in the printout of world-tree? Why two sets of parentheses?

18.2 Suppose we change the definition of the tree constructor so that it uses list
instead of cons:

(define (make-node datum children)
(list datum children))

How do we have to change the selectors so that everything still works?

18.3 Write depth, a procedure that takes a tree as argument and returns the largest
number of nodes connected through parent-child links. That is, a leaf node has depth
1; a tree in which all the children of the root node are leaves has depth 2. Our world
tree has depth 4 (because the longest path from the root to a leaf'is, for example, world,
country, state, city).

18.4 Write count—nodes, a procedure that takes a tree as argument and returns the
total number of nodes in the tree. (Earlier we counted the number of leaf nodes.)

18.5 Write prune, a procedure that takes a tree as argument and returns a copy of the
tree, but with all the leaf nodes of the original tree removed. (If the argument to prune
is a one-node tree, in which the root node has no children, then prune should return
£ because the result of removing the root node wouldn’t be a tree.)

324 Part V. Abstraction

18.6 Write a program parse-scheme that parses a Scheme arithmetic expression
into the same kind of tree that parse produces for infix expressions. Assume that all
procedure invocations in the Scheme expression have two arguments.

The resulting tree should be a valid argument to compute:

> (compute (parse-scheme ’'(* (+ 4 3) 2)))
14

(You can solve this problem without the restriction to two-argument invocations if you
rewrite compute so that it doesn’t assume every branch node has two children.)

Chapter 18 Trees 325

19 Implementing Higher-Order Functions

This chapter is about writing higher-order procedures—that is, procedures that implement
higher-order functions. We are going to study the implementation of every, keep, and
so on.

Really there are no new techniques involved. You know how to write recursive
procedures that follow the every pattern, the keep pattern, and so on; it’s a small
additional step to generalize those patterns. The truly important point made in this
chapter is that you aren’t limited to a fixed set of higher-order functions. If you feel a
need for a new one, you can implement it.

Generalizing Patterns

In Chapter 14, we showed you the procedures square-sent and pigl-sent, which
follow the every pattern of recursion. In order to write the general tool, every itself,
we have to generalize the pattern that those two have in common.

Before we get to writing higher-order procedures, let’s look at a simpler case of
generalizing patterns.

Suppose we want to find out the areas of several different kinds of shapes, given one
linear dimension. A straightforward way would be to do it like this:

(define pi 3.141592654)
(define (square-area r) (* r r))
(define (circle-area r) (* pi r r))

(define (sphere-area r) (* 4 pi r r))

327

(define (hexagon-area r) (* (sqrt 3) 1.5 r r))

> (square-area 6)
36

> (circle-area 5)
78.53981635

This works fine, but it’s somewhat tedious to define all four of these procedures, given
that they’re so similar. Each one returns the square of its argument times some constant
factor; the only difference is the constant factor.

We want to generalize the pattern that these four procedures exhibit. Each of these
procedures has a particular constant factor built in to its definition. What we’d like
instead is one single procedure that lets you choose a constant factor when you invoke
it. This new procedure will take a second argument besides the linear dimension r (the
radius or side): a shape argument whose value is the desired constant factor.

(define (area shape r) (* shape r r))
(define square 1)

(define circle pi)

(define sphere (* 4 pi))

(define hexagon (* (sgrt 3) 1.5))

> (area sphere 7)
615.752160184

What'’s the point? We started with several procedures. Then we found that they had
certain points of similarity and certain differences. In order to write a single procedure
that generalizes the points of similarity, we had to use an additional argument for each
point of difference. (In this example, there was only one point of difference.)

In fact, every procedure with arguments is a generalization in the same way. Even
square-area, which we presented as the special case to be generalized, is more general
than these procedures:

(define (area-of-square-of-side-5)
(» 55))

(define (area-of-square-of-side-6)
(* 6 6))

328 Part V. Abstraction

These may seem too trivial to be taken seriously. Indeed, nobody would write such
procedures. But it’s possible to take the area of a particular size square without using
a procedure at all, and then later discover that you need to deal with squares of several
sizes.

This idea of using a procedure to generalize a pattern is part of the larger idea of
abstraction that we’ve been discussing throughout the book. We notice an algorithm that
we need to use repeatedly, and so we separate the algorithm from any particular data
values and give it a name.

The idea of generalization may seem obvious in the example about areas of squares.
But when we apply the same idea to generalizing over a function, rather than merely
generalizing over a number, we gain the enormous expressive power of higher-order
functions.

The Every Pattern Revisited

Here again is the every template:

(define (every-something sent)
(if (empty? sent)
()
(se ((first sent))
(every-something (bf sent)))))

You've been writing every-like procedures by filling in the blank with a specific function.
To generalize the pattern, we’ll use the trick of adding an argument, as we discussed in
the last section.

(define (every fn sent)
(if (empty? sent)
()
(se (fn (first sent))
(every fn (bf sent)))))

This is hardly any work at all for something that seemed as mysterious as every probably
did when you first saw it.

Recall that every will also work if you pass it a word as its second argument. The
version shown here does indeed work for words, because first and butfirst work
for words. So probably “stuff” would be a better formal parameter than “sent.” (The

Chapter 19 Implementing Higher-Order Functions 329

result from every is always a sentence, because sentence is used to construct the
result.)

The Difference between Map and Every

Here’s the definition of the map procedure:

(define (map fn 1lst)
(if (null? 1lst)
()
(cons (fn (car 1lst))
(map fn (cdr 1st)))))

The structure here is identical to that of every; the only difference is that we use cons,
car, and cdr instead of se, first, and butfirst.

One implication of this is that you can’t use map with a word, since it’s an error to
take the car of a word. When is it advantageous to use map instead of every? Suppose
you’re using map with a structured list, like this:

> (map (lambda (flavor) (se flavor ' (is great)))
’(ginger (ultra chocolate) pumpkin (rum raisin)))
((GINGER IS GREAT) (ULTRA CHOCOLATE IS GREAT)
(PUMPKIN IS GREAT) (RUM RAISIN IS GREAT))

> (every (lambda (flavor) (se flavor ’(is great)))

’(ginger (ultra chocolate) pumpkin (rum raisin)))
(GINGER IS GREAT ULTRA CHOCOLATE IS GREAT PUMPKIN IS GREAT
RUM RAISIN IS GREAT)

Why does map preserve the structure of the sublists while every doesn’t? Map uses
cons to combine the elements of the result, whereas every uses sentence:

> (cons ’(pumpkin is great)
(cons ’(rum raisin is great)

(1))
((PUMPKIN IS GREAT) (RUM RAISIN IS GREAT))

> (se ' (pumpkin is great)
(se '(rum raisin is great)
“()))
(PUMPKIN IS GREAT RUM RAISIN IS GREAT)

330 Part V. Abstraction

Filter

Here’s the implementation of filter:

(define (filter pred 1lst)
(cond ((null? 1st) '())
((pred (car 1lst))
(cons (car 1lst) (filter pred (cdr 1lst))))
(else (filter pred (cdr 1lst)))))

Like map, this uses cons as the constructor so that it will work properly on structured
lists. We’re leaving the definition of keep, the version for words and sentences, as an
exercise.

(Aside from the difference between lists and sentences, this is just like the keep
template on page 224.)

Accumulate and Reduce

Here are the examples of the accumulate pattern that we showed you before:

(define (addup nums)
(if (empty? nums)
0
(+ (first nums) (addup (bf nums)))))

(define (scrunch-words sent)
(if (empty? sent)

(word (first sent) (scrunch-words (bf sent)))))

What are the similarities and differences? There are (wo important differences
between these procedures: the combiners (+ versus word) and the values returned
in the base cases (zero versus the empty word). According to what we said about
generalizing patterns, you might expect that we’d need two extra arguments. You’d
invoke three-arg-accumulate like this:

> (three-arg-accumulate + 0 (6 7 8))
21

> (three-arg-accumulate word "" ’(come together))
COMETOGETHER

Chapter 19 Implementing Higher-Order Functions 331

But we’ve actually defined accumulate and reduce so that only two arguments are
required, the procedure and the sentence or list. We thought it would be too much
trouble to have to provide the identity element all the time. How did we manage to avoid
it?

The trick is that in our reduce and accumulate the base case is a one-element
argument, rather than an empty argument. When we’re down to one element in the
argument, we just return that element:

(define (accumulate combiner stuff) ;; first version
(if (empty? (bf stuff))
(first stuff)
(combiner (first stuff)
(accumulate combiner (bf stuff)))))

This version is a simplification of the one we actually provide. What happens if
stuff is empty? This version blows up, since it tries to take the butfirst of stuff
immediately. Our final version has a specific check for empty arguments:

(define (accumulate combiner stuff)
(cond ((not (empty? stuff)) (real-accumulate combiner stuff))
((member combiner (list + * word se append))
(combiner))
(else (error
"Can'’t accumulate empty input with that combiner"))))

(define (real-accumulate combiner stuff)
(if (empty? (bf stuff))
(first stuff)
(combiner (first stuff) (real-accumulate combiner (bf stuff)))))

This version works just like the earlier version as long as stuff isn’t empty. (Reduce is
the same, except that it uses null?, car, and cdr.)

As we mentioned in Chapter 8, many of Scheme’s primitive procedures return their
identity element when invoked with no arguments. We can take advantage of this; if
accumulate is invoked with an empty second argument and one of the procedures +,
*, word, sentence, append or list, we invoke the combiner with no arguments to
produce the return value.

On the other hand, if accumulate’s combiner argument is something like
(lambda (x y) (word x '- y)) or max, then there’s nothing accumulate can
return, so we give an error message. (But it’s a more descriptive error message than

332 Part V. Abstraction

the first version; what message do you get when you call that first version with an empty
second argument?)

It’s somewhat of a kludge that we have to include in our procedure a list of the
functions that can be called without arguments. What we’d like to do is invoke the
combiner and find out if that causes an error, but Scheme doesn’t provide a mechanism
for causing errors on purpose and recovering from them. (Some dialects of Lisp do have
that capability.)

Robustness

Instead of providing a special error message for empty-argument cases that accumulate
can’t handle, we could have just let it blow up:

(define (accumulate combiner stuff) ;; non-robust version
(if (not (empty? stuff))
(real-accumulate combiner stuff)
(combiner)))

Some questions about programming have clear right and wrong answers—if your
program doesn’t work, it’s wrong! But the decision about whether to include the extra
check for a procedure that’s usable with an empty argument is a matter of judgment.

Here is the reasoning in favor of this simpler version: In either version, the user who
tries to evaluate an expression like

(accumulate max ‘' ())

is going to get an error message. In the longer version we’ve spent both our own
programming effort and a little of the computer’s time on every invocation just to give a
different error message from the one that Scheme would have given anyway. What’s the
point?

Here is the reasoning in favor of the longer version: In practice, the empty-argument
situation isn’t going to arise because someone uses a quoted empty sentence; instead
the second argument to accumulate will be some expression whose value happens to
be empty under certain conditions. The user will then have to debug the program that
caused those conditions. Debugging is hard; we should make it easier for the user, if we
can, by giving an error message that points clearly to the problem.

Chapter 19 Implementing Higher-Order Functions 333

A program that behaves politely when given incorrect input is called robust. 1t’s not
always a matter of better or worse error messages. For example, a program that reads
input from a human user might offer the chance to try again if some input value is
incorrect. A robust program will also be alert for hardware problems, such as running
out of space on a disk, or getting garbled information over a telephone connection to
another machine because of noise on the line.

It’s possible to pay either too little or too much attention to program robustness. If
you’re a professional programmer, your employer will expect your programs to survive
errors that are likely to happen. On the other hand, your programs will be hard to read
and debug if the error checking swamps the real work! As a student, unless you are
specifically asked to “bulletproof” your program, don’t answer exam questions by writing
procedures like this one:

(define (even? num) ;: silly example
(cond ((not (number? num)) (error "Not a number."))
((not (integer? num)) (error "Not an integer."))
((< num 0) (error "Argument must be positive."))
(else (= (remainder num 2) 0))))

In the case of accumulate, we decided to be extra robust because we were writing a
procedure for use in a beginning programming course. If we were writing this tool just
for our own use, we might have chosen the non-robust version. Deciding how robust a
program will be is a matter of taste.

Higher-Order Functions for Structured Lists

We’ve given you a fairly standard set of higher-order functions, but there’s no law that
says these are the only ones. Any time you notice yourself writing what feels like the
same procedure over again, but with different details, consider inventing a higher-order
function.

For example, here’s a procedure we defined in Chapter 17.

(define (deep-pigl structure)
(cond ((word? structure) (pigl structure))
((null? structure) ' ())
(else (cons (deep-pigl (car structure))
(deep-pigl (cdr structure))))))

334 Part V. Abstraction

This procedure converts every word in a structured list to Pig Latin. Suppose we have a
structure full of numbers and we want to compute all of their squares. We could write a
specific procedure deep-square, but instead, we’ll write a higher-order procedure:

(define (deep-map f structure)
(cond ((word? structure) (f structure))
((null? structure) ’'())
(else (cons (deep-map f (car structure))
(deep-map f (cdr structure))))))

The Zero-Trip Do Loop

The first programming language that provided a level of abstraction over the instructions
understood directly by computer hardware was Fortran, a language that is still widely
used today despite the advances in programming language design since then. Fortran
remains popular because of the enormous number of useful programs that have already
been written in it; if an improvement is needed, it’s easier to modify the Fortran program
than to start again in some more modern language.

Fortran includes a control mechanism called do, a sort of higher-order procedure
that carries out a computation repeatedly, as every does. But instead of carrying out
the computation once for each element of a given collection of data (like the sentence
argument to every), do performs a computation once for each integer in a range
specified by its endpoints. “For every number between 4 and 16, do such-and-such.”

What if you specify endpoints such that the starting value is greater than the ending
value? In the first implementation of Fortran, nobody thought very hard about this
question, and they happened to implement do in such a way that if you specified a
backward range, the computation was done once, for the given starting value, before
Fortran noticed that it was past the ending value.

Twenty years later, a bunch of computer scientists argued that this behavior was
wrong—that a do loop with its starting value greater than its ending value should not
carry out its computation at all. This proposal for a “zero-trip do loop” was strongly
opposed by Fortran old-timers, not because of any principle but because of all the
thousands of Fortran programs that had been written to rely on the one-trip behavior.

The point of this story is that the Fortran users had to debate the issue so heatedly
because they are stuck with only the control mechanisms that are built into the language.
Fortran doesn’t have the idea of function as data, so Fortran programmers can’t write
their own higher-order procedures. But you, using the techniques of this chapter, can

Chapter 19 Implementing Higher-Order Functions 335

create precisely the control mechanism that you need for whatever problem you happen
to be working on.

Pitfalls

O The most crucial point in inventing a higher-order function is to make sure that the
pattern you have in mind really does generalize. For example, if you want to write a
higher-order function for structured data, what is the base case? Will you use the tree
abstract data type, or will you use car/cdr recursion?

U When you generalize a pattern by adding a new argument (typically a procedure),
be sure you add it to the recursive invocation(s) as well as to the formal parameter list!

Boring Exercises

19.1 What happens if you say the following?

(every cdr ' ((john lennon) (paul mccartney)
(george harrison) (ringo starr)))

How is this different from using map, and why? How about cadr instead of cdr?

Real Exercises

19.2 Write keep. Don’t forget that keep has to return a sentence if its second argument
is a sentence, and a word if its second argument is a word.

(Hint: it might be useful to write a combine procedure that uses either word or
sentence depending on the types of its arguments.)

19.3 Write the three-argument version of accumulate that we described.

> (three-arg-accumulate + 0 (4 5 6))
15

> (three-arg-accumulate + 0 ' ())
0

336 Part V. Abstraction

> (three-arg-accumulate cons () ‘(a b c d e))
(A BCDE)

19.4 Our accumulate combines elements from right to left. That is,

(accumulate - (2 3 4 5))

computes 2—(3—-(4—-5)). Write left-accumulate, which will compute ((2—-3) —4) =5
instead. (The result will be the same for an operation such as +, for which grouping
order doesn’t matter, but will be different for -.)

19.5 Rewrite the true-for-all? procedure from Exercise 8.10. Do not use every,
keep, or accumulate.

19.6 Write a procedure true-for-any-pair? that takes a predicate and a sentence
as arguments. The predicate must accept two words as its arguments. Your procedure
should return #t if the argument predicate will return true for any two adjacent words
in the sentence:

> (true-for-any-pair? equal? '(a b c b a))
#F

> (true-for-any-pair? equal? ‘(a b c c d))
#T

> (true-for-any-pair? < (20 16 5 8 6)) ;7 5 is less than 8
#T

19.7 Write a procedure true-for-all-pairs? that takes a predicate and a sentence
as arguments. The predicate must accept two words as its arguments. Your procedure
should return #t if the argument predicate will return true for every two adjacent words
in the sentence:

> (true-for-all-pairs? equal? '(a b c c d))
#F

> (true-for-all-pairs? equal? ’'(a a a a a))
#T

> (true-for-all-pairs? < (20 16 5 8 6))
#F

Chapter 19 Implementing Higher-Order Functions 337

> (true-for-all-pairs? < (3 7 19 22 43))
#T

19.8 Rewrite true-for-all-pairs? (Exercise 19.7) using true-for-any-pair?
(Exercise 19.6) as a helper procedure. Don’t use recursion in solving this problem
(except for the recursion you’ve already used to write true-for-any-pair?). Hint:
You’ll find the not procedure helpful.

19.9 Rewrite either of the sort procedures from Chapter 15 to take two arguments, a list
and a predicate. It should sort the elements of that list according to the given predicate:

> (sort ‘(4 23 7 5 16 3) <)
(3 457 16 23)

> (sort ‘(4 23 7 5 16 3) >)
(23 16 7 5 4 3)

> (sort ’(john paul george ringo) before?)
(GEORGE JOHN PAUL RINGO)

19.10 Write tree-map, analogous to our deep-map, but for trees, using the datum
and children selectors.

19.11 Write repeated. (This is a hard exercise!)

19.12 Write tree-reduce. You may assume that the combiner argument can be
invoked with no arguments.

> (tree-reduce
+
(make-node 3 (list (make-node 4 ' ())
(make-node 7 ' ())
(make-node 2 (list (make-node 3 ‘' ())
(make-node 8 ’()))))))
27

19.13 Write deep-reduce, similar to tree-reduce, but for structured lists:

> (deep-reduce word '(r ((a (m b) (1)) (e (r)))))
RAMBLER

338 Part V. Abstraction

Part VI
Sequential Programming

The three big ideas in this part are effect, sequence, and state.

Until now, we’ve been doing functional programming, where the focusis on functions
and their return values. Invoking a function is like asking a question: “What’s two plus
two?” In this part of the book we’re going to talk about giving commands to the computer
as well as asking it questions. That is, we’ll invoke procedures that tell Scheme to do
something, such as wash-the-dishes. (Unfortunately, the Scheme standard leaves
out this primitive.) Instead of merely computing a value, such a procedure has an effect,

an action that changes something.

Once we’re thinking about actions, it’s very natural to consider a sequence of actions.
First cooking dinner, then eating, and then washing the dishes is one sequence. First
eating, then washing the dishes, and then cooking is a much less sensible sequence.

Although these ideas of sequence and effect are coming near the end of our book,
they’re the ideas with which almost every introduction to programming begins. Most
books compare a program to a recipe or a sequence of instructions, along the lines of

to go-to-work
get-dressed
eat-breakfast
catch-the-bus

This sequential programming style is simple and natural, and it does a good job of
modeling computations in which the problem concerns a sequence of events. If you're
writing an airline reservation system, a sequential program with reserve-seat and
issue-ticket commands makes sense. But if you want to know the acronym of a
phrase, that’s not inherently sequential, and a question-asking approach is best.

340

Some actions that Scheme can take affect the “outside” world, such as printing
something on the computer screen. But Scheme can also carry out internal actions,
invisible outside the computer, but changing the environment in which Scheme itself
carries out computations. Defining a new variable with define is an example; before the
definition, Scheme wouldn’t understand what that name means, but once the definition
has been made, the name can be used in evaluating later expressions. Scheme’s
knowledge about the leftover effects of past computations is called its state. The third big
idea in this part of the book is that we can write programs that maintain state information
and use it to determine their results.

Like sequence, the notion of state contradicts functional programming. Earlier in
the book, we emphasized that every time a function is invoked with the same arguments,
it must return the same value. But a procedure whose returned value depends on
state—on the past history of the computation—might return a different value on each
invocation, even with identical arguments.

We’ll explore several situations in which effects, sequence, and state are useful:

* Interactive, question-and-answer programs that involve keyboard input while the com-
putation is in progress;

* Programs that must read and write long-term data file storage;

» Computations that model an actual sequence of events in time and use the state of the
program to model information about the state of the simulated events.

After introducing Scheme’s mechanisms for sequential programming, we’ll use those
mechanisms to implement versions of two commonly used types of business computer
applications, a spreadsheet and a database program.

341

20 Input and Output

In the tic-tac-toe project in Chapter 10, we didn’t write a complete game program. We
wrote a function that took a board position and x or o as arguments, returning the next
move. We noted at the time that a complete game program would also need to carry
on a conversation with the user. Instead of computing and returning one single value, a
conversational program must carry out a sequence of events in time, reading information
from the keyboard and displaying other information on the screen.

Before we complete the tic-tac-toe project, we’ll start by exploring Scheme’s mecha-
nisms for interactive programming.

Printing

Up until now, we’ve never told Scheme to print anything. The programs we’ve written
have computed values and returned them; we’ve relied on the read-eval-print loop to
print these values.*

But let’s say we want to write a program to print out all of the words to “99 Bottles of
Beer on the Wall.” We could implement a function to produce a humongous /st of the
lines of the song, like this:

(define (bottles n)
(if (= n 0)
()
(append (verse n)
(bottles (- n 1)))))

* The only exception is that we’ve used trace, which prints messages about the progress of a
computation.

343

(define (verse n)
(list (cons n ’(bottles of beer on the wall))
(cons n ' (bottles of beer))
'(if one of those bottles should happen to fall)
(cons (- n 1) ’(bottles of beer on the wall))
"()))

> (bottles 3)
((3 BOTTLES OF BEER ON THE WALL)
(3 BOTTLES OF BEER)
(IF ONE OF THOSE BOTTLES SHOULD HAPPEN TO FALL)
(2 BOTTLES OF BEER ON THE WALL)
()
(2 BOTTLES OF BEER ON THE WALL)
(2 BOTTLES OF BEER)
(IF ONE OF THOSE BOTTLES SHOULD HAPPEN TO FALL)
(1 BOTTLES OF BEER ON THE WALL)
()
(1 BOTTLES OF BEER ON THE WALL)
(1 BOTTLES OF BEER)
(IF ONE OF THOSE BOTTLES SHOULD HAPPEN TO FALL)
(0 BOTTLES OF BEER ON THE WALL)

0))

The problem is that we don’t want a list. All we want is to print out the lines of the song;
storing them in a data structure is unnecessary and inefficient. Also, some versions of
Scheme would print the above list like this:

((3 BOTTLES OF BEER ON THE WALL) (3 BOTTLES OF BEER) (IF ONE OF
THOSE BOTTLES SHOULD HAPPEN TO FALL) (2 BOTTLES OF BEER ON THE

WALL) () (2 BOTTLES OF BEER ON THE WALL) (2 BOTTLES OF BEER) (IF
ONE OF THOSE BOTTLES SHOULD HAPPEN TO FALL) (1 BOTTLES OF BEER ON
THE WALL) () (1 BOTTLES OF BEER ON THE WALL) (1 BOTTLES OF BEER)

(IF ONE OF THOSE BOTTLES SHOULD HAPPEN TO FALL) (0 BOTTLES OF BEER
ON THE WALL) ())

or even all on one line. We can’t rely on Scheme’s mechanism for printing lists if we want
to be sure of a particular arrangement on the screen.

Instead we’ll write a program to print a verse, rather than return it in a list:

(define (bottles n)
(if (= n 0)
"burp
(begin (verse n)
(bottles (- n 1)))))

344 Part VI~ Sequential Programming

(define
(show
(show
(show
(show
(show

> (bottles
(3 BOTTLES
(3 BOTTLES
(IF ONE OF
(2 BOTTLES
()

(2 BOTTLES
(2 BOTTLES
(IF ONE OF
(1 BOTTLES
()

(1 BOTTLES
(1 BOTTLES
(IF ONE OF
(0 BOTTLES

0
BURP

(verse n)
(cons n
(cons n
'(if one of those bottles should happen to fall))
(cons (- n 1)

"()))

' (bottles of beer on the wall)))
' (bottles of beer)))

' (bottles of beer on the wall)))

3)

OF BEER ON THE WALL)

OF BEER)

THOSE BOTTLES SHOULD HAPPEN TO FALL)
OF BEER ON THE WALL)

OF BEER ON THE WALL)

OF BEER)

THOSE BOTTLES SHOULD HAPPEN TO FALL)
OF BEER ON THE WALL)

OF BEER ON THE WALL)

OF BEER)

THOSE BOTTLES SHOULD HAPPEN TO FALL)
OF BEER ON THE WALL)

Notice that Scheme doesn’t print an outer set of parentheses. Each line was printed
separately; there isn’t one big list containing all of them.*

Why was “burp” printed at the end? Just because we’re printing things explicitly
doesn’t mean that the read-eval-print loop stops functioning. We typed the expression
(bottles 3). In the course of evaluating that expression, Scheme printed several lines
for us. But the value of the expression was the word burp, because that’s what bottles
returned.

Side Effects and Sequencing
How does our program work? There are two new ideas here: side effects and sequencing.

Until now, whenever we’ve invoked a procedure, our only goal has been to get a
return value. The procedures we’ve used compute and return a value, and do nothing
else. Show is different. Although every Scheme procedure returns a value, the Scheme

* We know that it’s still not as beautiful as can be, because of the capital letters and parentheses,
but we’ll get to that later.

Chapter 20 Input and Output 345

language standard doesn’t specify what value the printing procedures should return.*
Instead, we are interested in their side effects. In other words, we invoke show because
we want it to do something, namely, print its argument on the screen.

What exactly do we mean by “side effect” The kinds of procedures that we’ve used
before this chapter can compute values, invoke helper procedures, provide arguments to
the helper procedures, and return a value. There may be a lot of activity going on within
the procedure, but the procedure affects the world outside of itself only by returning a
value that some other procedure might use. Show affects the world outside of itself by
putting something on the screen. After show has finished its work, someone who looks
at the screen can tell that show was used.**

Here’s an example to illustrate the difference between values and effects:

(define (effect x)
(show x)
'done)

(define (value x)
x)

> (effect ’'(oh! darling))
(OH! DARLING)
DONE

> (value ’(oh! darling))
(OH! DARLING)

> (bf (effect ’'(oh! darling)))
(OH! DARLING)
ONE

* Suppose show returns #£f in your version of Scheme. Then you might see

> (show 7)
7
#F

But since the return value is unspecified, we try to write programs in such a way that we never use
show’s return value as the return value from our procedures. That’s why we return values like
burp.

** The term side effect is based on the idea that a procedure may have a useful return value as
its main purpose and may also have an effect “on the side.” It’s a misnomer to talk about the side
effect of show, since the effect is its main purpose. But nobody ever says “side return value”!

346 Part VI~ Sequential Programming

> (bf (value ’(oh! darling)))
(DARLING)

> (define (lots-of-effect x)
(effect x)
(effect x)
(effect x))

> (define (lots-of-value Xx)
(value x)
(value x)
(value x))

> (lots-of-effect ' (oh! darling))
(OH! DARLING)

(OH! DARLING)

(OH! DARLING)

DONE

> (lots-of-value ’(oh! darling))
(OH! DARLING)

This example also demonstrates the second new idea, sequencing: Each of effect,
lots-of-effect, and lots-of-value contains more than one expression in its
body. When you invoke such a procedure, Scheme evaluates all the expressions in the
body, in order, and returns the value of the last one.* This also works in the body of a
let, which is really the body of a procedure, and in each clause of a cond.**

* In Chapter 4, we said that the body of a procedure was always one single expression. We lied.
But as long as you don’t use any procedures with side effects, it doesn’t do you any good to evaluate
more than one expression in a body.

** For example:

> (cond ((< 4 0)
(show ' (how interesting))
(show (4 is less than zero?))
#f)
((> 4 0)
(show ’(more reasonable))
(show (4 really is more than zero))
'value)
(else
(show ’(you mean 4=07?))
#£))
(MORE REASONABLE)
(4 REALLY IS MORE THAN ZERO)
VALUE

Chapter 20 Input and Output 347

When we invoked lots-of-value, Scheme invoked value three times; it dis-
carded the values returned by the first two invocations, and returned the value from
the third invocation. Similarly, when we invoked lots-of-effect, Scheme invoked
effect three times and returned the value from the third invocation. But each
invocation of effect caused its argument to be printed by invoking show.

The Begin Special Form

The lots-of-effect procedure accomplished sequencing by having more than one
expression in its body. This works fine if the sequence of events that you want to perform
is the entire body of a procedure. But in bottles we wanted to include a sequence as
one of the alternatives in an if construction. We couldn’t just say

(define (bottles n) ;7 wrong
(if (= n 0)
()
(verse n)
(bottles (- n 1))))

because if must have exactly three arguments. Otherwise, how would if know whether
we meant (verse n) to be the second expression in the true case, or the first expression
in the false case?

Instead, to turn the sequence of expressions into a single expression, we use the
special form begin. It takes any number of arguments, evaluates them from left to right,
and returns the value of the last one.

(define bottles n)
(if (= n 0)
'burp
(begin (verse n)
(bottles (- n 1)))))

(One way to think about sequences in procedure bodies is that every procedure body has
an invisible begin surrounding it.)

This Isn’t Functional Programming

Sequencing and side effects are radical departures from the idea of functional program-
ming. In fact, we’d like to reserve the name function for something that computes and

348 Part VI = Sequential Programming

returns one value, with no side effects. “Procedure” is the general term for the thing
that 1ambda returns—an embodiment of an algorithm. If the algorithm is the kind that
computes and returns a single value without side effects, then we say that the procedure
implements a function.*

There is a certain kind of sequencing even in functional programming. If you say
(* (+ 3 4) (- 92 15))

it’s clear that the addition has to happen before the multiplication, because the result
of the addition provides one of the arguments to the multiplication. What’s new in
the sequential programming style is the emphasis on sequence, and the fact that the
expressions in the sequence are independent instead of contributing values to each other.
In this multiplication problem, for example, we don’t care whether the addition happens
before or after the subtraction. If the addition and subtraction were in a sequence, we’d
be using them for independent purposes:

(begin
(show (+ 3 4))
(show (- 92 15)))

This is what we mean by being independent. Neither expression helps in computing
the other. And the order matters because we can see the order in which the results are
printed.

Not Moving to the Next Line

Each invocation of show prints a separate line. What if we want a program that prints
several things on the same line, like this:

> (begin (show-addition 3 4)
(show-addition 6 8)
'done)

3+4=7

6+8=14

DONE

* Sometimes people sloppily say that the procedure s a function. In fact, you may hear people
be really sloppy and call a non-functional procedure a function!

Chapter 20 Input and Output 349

We use display, which doesn’t move to the next line after printing its argument:

(define (show-addition x y)
(display x)
(display '+)
(display y)
(display ’'=)
(show (+ x y)))

(The last one is a show because we do want to start a new line after it.)

What if you just want to print a blank line? You use newline:

(define (verse n)
(show (cons n ’(bottles of beer on the wall)))
(show (cons n ’(bottles of beer)))
(show ’(if one of those bottles should happen to fall))
(show (cons (- n 1) ’'(bottles of beer on the wall)))
(newline)) ; replaces (show ' ())

In fact, show isn’t an official Scheme primitive; we wrote it in terms of display and
newline.

Strings

Throughout the book we’ve occasionally used strings, that is, words enclosed in double-
quote marks so that Scheme will permit the use of punctuation or other unusual
characters. Strings also preserve the case of letters, so they can be used to beautify our
song even more. Since any character can be in a string, including spaces, the easiest
thing to do in this case is to treat all the letters, spaces, and punctuation characters of
each line of the song as one long word. (If we wanted to be able to compute functions of
the individual words in each line, that wouldn’t be such a good idea.)

(define (verse n)
(display n)
(show " bottles of beer on the wall,")
(display n)
(show " bottles of beer.")
(show "If one of those bottles should happen to fall,")
(display (- n 1))
(show " bottles of beer on the wall.")
(newline))

350 Part VI~ Sequential Programming

> (verse 6)

6 bottles of beer on the wall,

6 bottles of beer.

If one of those bottles should happen to fall,
5 bottles of beer on the wall.

#F ; or whatever is returned by (newline)
It’s strange to think of “ bottles of beer on the wall,” as a single word. But the

rule is that anything inside double quotes counts as a single word. It doesn’t have to be
an English word.

A Higher-Order Procedure for Sequencing
Sometimes we want to print each element of a list separately:

(define (show-list 1lst)
(if (null? 1lst)
'done
(begin (show (car 1lst))
(show-list (cdr 1st)))))

> (show-list ’((dig a pony) (doctor robert) (for you blue)))
(DIG A PONY)

(DOCTOR ROBERT)

(FOR YOU BLUE)

DONE

Like other patterns of computation involving lists, this one can be abstracted into a
higher-order procedure. (We can’t call it a “higher-order function” because this one is for
computations with side effects.) The procedure for-each is part of standard Scheme:

> (for-each show ’((mean mr mustard) (no reply) (tell me why)))
(MEAN MR MUSTARD)

(NO REPLY)

(TELL ME WHY)

The value returned by for-each is unspecified.

Why couldn’t we just use map for this purpose? There are two reasons. One is just
an efficiency issue: Map constructs a list containing the values returned by each of its
sub-computations; in this example, it would be a list of three instances of the unspecified
value returned by show. But we aren’t going to use that list for anything, so there’s no
point in constructing it. The second reason is more serious. In functional programming,
the order of evaluation of subexpressions is unspecified. For example, when we evaluate
the expression

Chapter 20 Input and Output 351

(- (+45) (x 67))

we don’t know whether the addition or the multiplication happens first. Similarly, the
order in which map computes the results for each element is unspecified. That’s okay
as long as the ultimately returned list of results is in the right order. But when we are
using side effects, we do care about the order of evaluation. In this case, we want to make
sure that the elements of the argument list are printed from left to right. For-each
guarantees this ordering.

Tic-Tac-Toe Revisited

We’re working up toward playing a game of tic-tac-toe against the computer. But as a first
step, let’s have the computer play against itself. What we already have is ttt, a strategy
function: one that takes a board position as argument (and also a letter x or o) and
returns the chosen next move. In order to play a game of tic-tac-toe, we need two players;
to make it more interesting, each should have its own strategy. So we’ll write another
one, quickly, that just moves in the first empty square it sees:

(define (stupid-ttt position letter)
(location ’'- position))

(define (location letter word)
(if (equal? letter (first word))
1
(+ 1 (location letter (bf word)))))

Now we can write a program that takes two strategies as arguments and actually plays
a game between them.

(define (play-ttt x-strat o-strat)
(play-ttt-helper x-strat o-strat '——————___ 'x))

(define (play-ttt-helper x-strat o-strat position whose-turn)
(cond ((already-won? position (opponent whose-turn))
(list (opponent whose-turn) ‘wins!))
((tie—-game? position) ’(tie game))
(else (let ((square (if (equal? whose-turn ’x)
(x-strat position ’'x)
(o-strat position '0))))
(play-ttt-helper x-strat
o-strat
(add-move square whose-turn position)
(opponent whose-turn))))))

352 Part VI~ Sequential Programming

We use a helper procedure because we need to keep track of two pieces of information
besides the strategy procedures: the current board position and whose turn itis (x or o).
The helper procedure is invoked recursively for each move. First it checks whether the
game is already over (won or tied).* If not, the helper procedure invokes the current
player’s strategy procedure, which returns the square number for the next move. For
the recursive call, the arguments are the same two strategies, the new position after the
move, and the letter for the other player.

We still need add-move, the procedure that takes a square and an old position as
arguments and returns the new position.

(define (add-move square letter position)
(if (= square 1)
(word letter (bf position))
(word (first position)
(add-move (- square 1) letter (bf position)))))

> (play-ttt ttt stupid-ttt)
(X WINS!)

> (play-ttt stupid-ttt ttt)
(O WINS!)

Accepting User Input

The work we did in the last section was purely functional. We didn’t print anything
(except the ultimate return value, as always) and we didn’t have to read information from
a human player, because there wasn’t one.

You might expect that the structure of an interactive game program would be very
different, with a top-level procedure full of sequential operations. But the fact is that we
hardly have to change anything to turn this into an interactive game. All we need is a

* You wrote the procedures already-won? and tie-game? in Exercises 10.1 and 10.2:

(define (already-won? position who)
(member? (word who who who) (find-triples position)))

(define (tie-game? position)
(not (member? ’'_- position)))

Chapter 20 Input and Output 353

new “strategy” procedure that asks the user where to move, instead of computing a move
based on built-in rules.

(define (ask-user position letter)
(print-position position)
(display letter)

(display "'s move: ")
(read))
(define (print-position position) ;; first version

(show position))

(Ultimately we’re going to want a beautiful two-dimensional display of the current
position, but we don’t want to get distracted by that just now. That’s why we’ve written a
trivial temporary version.)

> (play-ttt ttt ask-user)

X
0’S MOVE: 1
O XX
0’S MOVE: 4
O——OXXX——
0'S MOVE: 3
OX00XXX——
0'S MOVE: 8
(TIE GAME)

What the user typed is just the single digits shown in boldface at the ends of the lines.

What’s new here is that we invoke the procedure read. It waits for you to type
a Scheme expression, and returns that expression. Don’t be confused: Read does not
evaluate what you type. It returns exactly the same expression that