

PROBLEM SOLVING
& PROGRAMMING
CONCEPTS

This page intentionally left blank

PROBLEM SOLVING
& PROGRAMMING
CONCEPTS

Ninth Edition

Maureen Sprankle
Professor Emeritus, College of the Redwoods

Jim Hubbard
HGC Technology LLC

Software Consulting

Prentice Hall
Boston Columbus Indianapolis New York San Francisco Upper Saddle River

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director: Marcia Horton
Editor-in-Chief: Michael Hirsch
Executive Editor: Tracy Dunkelberger
Editorial Assistant: Stephanie Sellinger
Vice President of Marketing: Patrice Jones
Marketing Manager: Yezan Alayan
Marketing Coordinator: Kathryn Ferranti
Vice President, Production: Vince O’Brien
Managing Editor: Jeff Holcomb
Production Project Manager: Kayla Smith-Tarbox

Senior Operations Supervisor: Lisa McDowell
Art Director: Kristine Carney
Cover Designer: Rachael Cronin
Cover Image: © ronfromyork/Shutterstock
Media Editor: Dan Sandin/ Wanda Rockwell
Project Manager: Pat Brown
Editorial Production and Composition Service: Sarvesh Mehrotra /

Aptara®, Inc.
Printer/Binder: Edwards Brothers
Cover Printer: Lehigh-Phoenix Color/Hagerstown

Copyright © 2012, 2009, 2006, 2003, 2001 by Pearson Education, Inc., publishing as Pearson, 1 Lake Street, Upper Saddle River,
New Jersey 07458. All rights reserved. Manufactured in the United States of America. This publication is protected by Copyright, and
permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in
any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from
this work, please submit a written request to Pearson Education, Inc., Permissions Department, 1 Lake Street, Upper Saddle River, New
Jersey 07458.

Pearson® is a registered trademark of Pearson PLC.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations
appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data
Sprankle, Maureen.

Problem solving and programming concepts / Maureen Sprankle, Jim Hubbard. — 9th ed.
p. cm.

Includes index.
ISBN-13: 978-0-13-249264-5
ISBN-10: 0-13-249264-4
1. Computer programming. 2. Problem solving—Data processing. I. Hubbard, Jim, 1955– II. Title.
QA76.6.S684 2011
005.1—dc22

2010053156

10 9 8 7 6 5 4 3 2 1—EB—14 13 12 11 10

To our spouses, Norm and Tamara
and our children, Bonnie, Heidi, Tamara, John and Maliyah

for their continuing support and understanding.

ISBN-10: 0-13-249264-4
ISBN-13: 978-0-13-249264-5

v

Contents

Preface ix

UNIT ONE INTRODUCTION TO PROBLEM SOLVING AND PROGRAMMING, 1

Chapter 1 General Problem-Solving Concepts 3

Chapter 3 Planning Your Solution 41

Problem Solving in Everyday Life 3
Types of Problems 5
Problem Solving with Computers 6
Difficulties with Problem Solving 6

Summary 7
New Terms 7
Questions 7
Problems 8

Constants and Variables 13
Data Types 16
How the Computer Stores Data 20
Functions 21
Operators 23

Expressions and Equations 27
Summary 34
New Terms 35
Questions 35
Problems 37

Chapter 2 Beginning Problem-Solving Concepts for the Computer 11

Communicating with the Computer 42
Organizing the Solution 43
Introduction to UML

(Unified Modeling Language) 55
Using the Tools 59
Testing the Solution 61

Coding the Solution 61
Software Development Cycle 62
Summary 62
New Terms 63
Questions 63
Problems 63

Chapter 5 Problem Solving with the Sequential Logic Structure 89

Algorithm Instructions, Flowchart Symbols,
and Pseudocode 89

The Sequential Logic Structure 92
Solution Development 94

Summary 101
Questions 102
Problems 102

UNIT ONE Supplementary Exercises, 65

UNIT TWO LOGIC STRUCTURES, 69

Chapter 4 An Introduction to Programming Structure 71

Pointers for Structuring a Solution 72
The Modules and Their Functions 74
Cohesion and Coupling 75
Local and Global Variables 77
Parameters 79
Return Values 84

Variable Names and the Data Dictionary 85
The Three Logic Structures 85
Summary 86
New Terms 86
Questions 87
Problems 87

vi � Contents

Chapter 6 Problem Solving with Decisions 105

The Decision Logic Structure 106
Multiple If/Then/Else Instructions 108
Using Straight-Through Logic 110
Using Positive Logic 111
Using Negative Logic 115
Logic Conversion 117
Which Decision Logic? 120
Decision Tables 120
Putting It All Together 127

The Case Logic Structure 135
Codes 137
Putting It All Together 138
Another Putting It All Together 140
Summary 141
New Terms 142
Questions 142
Problems 143

Chapter 10 File Concepts 255

Beginning File Concepts 256
Records as a Data Structure 256
Primary and Secondary Keys 256
Algorithm Instructions and Flowchart Symbols 256
Systems Flowcharts 259

Designing Records 259
Summary 263
New Terms 263
Questions 263
Problems 263

Chapter 7 Problem Solving with Loops 149

The Loop Logic Structure 150
lncrementing 151
Accumulating 151
While/WhileEnd 152
Putting It All Together 154
Repeat/Until 154
Putting It All Together 157
Automatic-Counter Loop 159
Putting It All Together 163

Nested Loops 163
Indicators 166
Algorithm Instructions and Flowchart Symbols 167
Recursion 169
Summary 169
New Terms 174
Questions 174
Problems 174

UNIT TWO Supplementary Exercises, 177

UNIT THREE DATA STRUCTURES, 179

Chapter 8 Processing Arrays 181

Arrays 182
One-Dimensional Arrays 184
Putting It All Together 189
Two-Dimensional Arrays 191
Putting It All Together 199
Multidimensional Arrays 208
Table Look-Up Technique 209

The Pointer Technique 213
Putting It All Together 226
Summary 235
New Terms 235
Questions 235
Problems 236

Chapter 9 Sorting, Stacks, and Queues 239

Sorting Techniques 240
Stacks 247
Queues 248
Summary 252

New Terms 252
Questions 252
Problems 253

Contents � vii

Chapter 12 Binary Trees 287

Creation of Binary Trees 288
Accessing Data in a Binary Tree 290
Traversal of Binary Trees 294
Summary 296

New Terms 296
Questions 296
Problems 296

UNIT THREE Supplementary Exercises, 297

UNIT FOUR DATABASE MANAGEMENT SYSTEMS, 299

Chapter 13 Database Management Systems 301

Why a DBMS? 302
DBMS Components 303
DBMS Models 304
Client Server Model 305

DBMS Tasks 306
Summary 307
New Terms 308
Questions 308

Chapter 14 Relational Database Management Systems 309

Tables, Records, and Fields 310
Normalizing Tables 311
Entity Relation Model (ERM) 315
Schema 318
Creating Tables 318
Queries 320
Interface Design 322

Reports 323
Planning a Solution Using an RDBMS 323
Summary 332
New Terms 332
Questions 333
Problems 333

UNIT FIVE OBJECT-ORIENTED PROGRAMMING, 335

Chapter 15 Concepts of Object-Oriented Programming 337

Object-Oriented Programming 338
Graphical User Interface (GUI) 348
Event-Driven Object-Oriented Programming 348
Interactivity 351

Summary 351
New Terms 352
Questions 352
Problems 353

Chapter 16 Object-Oriented Program Design 355

Using UML as a Design Tool 356
Designing an Object-Oriented Application 362
Interface Design 371
Summary 379

New Terms 380
Questions 380
Problems 381

Chapter 11 Linked Lists 265

Creating Linked Lists 265
Examples of Adding Data to/Deleting Data from

Linked Lists 266
Algorithms and Flowcharts to Add,

Delete, and Access Data in a Linked List 271

Summary 284
New Terms 284
Questions 284
Problems 284

viii � Contents

Chapter 18 Introduction to Assembly Language 391

Assembly Language Versus
High-Level Languages 392

Assembly Language Concepts 392
Some Basic Assembly Language Instructions 392
Assembly Language Equivalents to

the Four Logic Structures 393

Summary 395
New Terms 395
Questions 395
Problems 395

Chapter 20 Sequential-Access File Updating 433

Creating Files 434
The Master File 435
Transaction Files 435
Activity Files 435
Backup Files 435
Updating the Master File Using a

Transaction File 435

Putting It All Together 442
A Useful Alternative Method 452
Summary 457
New Terms 457
Questions 457
Problems 457

UNIT SEVEN FILE PROCESSING, 397

Chapter 19 Sequential-Access File Applications 399

Processing Sequential-Access Files 401
The Primer Read 401
Designing Output Reports 403
Headings and Line Counters 403
Control-Breaks 409
Multiple Control-Breaks 413
Using Indicators for Program Control 415

Error Handling 420
Null Files 422
Summary 430
New Terms 431
Questions 431
Problems 431

UNIT SIX INTRODUCTION TO GAME DEVELOPMENT, 383

Chapter 17 Introduction to Concepts of Game Development
Using Object-Oriented Programming 385

Game Development 386
Planning the Game 386
Steps to Develop a Simple Game 387
Summary 388

New Terms 388
Questions 388
Problems 388

APPENDIX A Otto the Robot 461

APPENDIX B ASCII and EBCDIC Codes
for Data Representation 469

APPENDIX C Forms to Use
in Problem Solving 473

APPENDIX D Other Problem-Solving Tools 493

APPENDIX E Other Functions 497

GLOSSARY 499

INDEX 507

UNIT SEVEN Supplementary Exercises, 459

Knowledge of problem solving and programming concepts is necessary for those who
develop applications for users. Unfortunately, many students have greater difficulty
with problem solving than they do with the syntax of computer languages. The art of
programming is learning multiple techniques and applying those techniques to specific
problems. When students learn basic programming and problem-solving techniques,
they can then concentrate on the syntax when learning specific languages. These tech-
niques may be presented in a separate class on problem solving or with a first language
course that concentrates on problem solving. This approach tends to decrease students’
frustration and improves their success rate.

This book is intended for a one-semester introductory course for programming
majors. It can serve as a primary text or as a supplement. Although this book is written
for students who have little or no computer experience, those who have studied a com-
puter language can benefit from the generic presentation of the material.

The text provides a step-by-step progression of ideas with detailed explanation and
many illustrations, from the basics of mathematical functions and operators to the design
and use of techniques such as codes, arrays, pointers, other data structures, database con-
cepts, and object-oriented programming concepts. The text uses problem-solving tools, such
as problem analysis charts, interactivity charts, IPO charts, algorithms, and flowcharts and
Universal Modeling Language (UML), to design a solution to a problem. The appendices
present additional tools, including Nassi-Schneiderman charts, and Warnier-Orr diagrams.
Putting It All Together sections illustrate a complete solution for a given problem, using the
concepts previously presented. In some cases, an earlier solution is updated to incorporate
more sophisticated techniques. Throughout the text, problems presented are typical of the
business world and provide excellent experience for students. These problems then can be
presented in a language course so that students can finish the solution on the computer.

Preface � ix

Preface

New in This Edition

The ninth edition responds to suggestions from reviewers and changes in the program-
ming industry. The following changes were made:

� Pseudocode has been added to the algorithm and flowchart figures.
� The Case Structure chapter has been combined with the Decision chapter. The

case logic structure is really a type of decision logic structure, therefore the two
chapters were combined.

� Updates have been made to the section on cohesion and coupling.
� The Object Oriented Programming (OOP) chapters have been rewritten and

updated.
� Universal Modeling Language (UML) is introduced in Chapter 3 and is used as

a problem-solving tool in the chapters on OOP.
� A section on the software development life cycle has been added.
� Added ten percent more end of chapter problems.

Organization of the Text

� Unit One, Introduction to Problem Solving and Programming, presents basic
concepts of problem solving, an introduction to how problems are solved on

x � Preface

computers, mathematical concepts required for problem solving using a com-
puter, and steps for analyzing a problem and designing an appropriate solution.

� Unit Two, Logic Structures, presents basic concepts of programming, including
local and global variables, parameters, and four basic logic structures. The three
basic logic structures are sequential, decision, and loop logic.

� Unit Three, Data Structures, presents the concepts of arrays, sorting techniques,
stacks, queues, linked lists, and binary trees.

� Unit Four, Database Management Systems, presents terminology and tech-
niques to implement an application using a database management system.

� Unit Five, Object-Oriented Programming, presents basic concepts in the design
of a solution using object-oriented languages. UML is used as the basic
problem-solving tool

� Unit Six, Introduction to Game Development, presents basic concepts of game
development through the use of object-oriented programming. An introduction
to assembly language is also presented because many game developers are
requiring the knowledge of assembly language to make their games run faster.

� Unit Seven, File Processing, presents techniques of file processing. While these
chapters are important to those students studying COBOL, the industry is
rapidly converting to database management systems. Therefore, these chapters
are not as important as they were 10 or 15 years ago.

� The appendices present the Otto the Robot problem, ASCII and EBCDIC
codes, blank forms, other problem-solving tools, and some common functions.
Otto software is available to instructors via the Pearson Instructor Resource
Center. Visit www.pearsonhighered.com for access.

Resources

Instructor Resources include lecture slides, Instructor’s Manual, and Otto software.
Instructor Resources are located at www.pearsonhighered.com/sprankle. Contact your
local Pearson Sales Representative for access information.

Student resources are available at www.pearsonhighered.com/sprankle.

Acknowledgments

We are indebted to those who reviewed the manuscript and offered suggestions and con-
structive comments. In particular, we thank John Arena, Augusta Technical College Augusta
(GA); Janet Brown-Sederberg, Massasoit Community College Brockton (MA); Mara Casado,
Manatee Community College (FL); Casey Cegielski, Auburn U Main Campus Auburn (AL);
Marty Dellinger, Catawba Valley Community College; Franklin Fondjo Fotou, Langston
University Langston (OK); Roy Foreman, Purdue University–Calumet; Mardi Horton,
Cerritos Community College; Pamella Johnson, KCTCS-Elizabethtown Elizabethtown (KY);
Mark Jones, Lock Haven University Lock Haven (PA); Gary Marrer, Maricopa Community
College; Meg McManus, Northwest Florida State College Niceville (FL); John Mensing,
Brookdale Community College Lincroft (NJ); Dennis Roebuck, Delta College University
Center MI (NA); Hazem Said, University of Cincinnati; Linda Shepherd, University of
Texas-San Antonio San Antonio (TX); Joyce Welby, San Jacinto Coll-South San Jacinto
(CA). Mark Whigham, Lawson St-Birmingham Birmingham (AL); Melinda White, Seminole
Community College; and Humayan Zafar, University of Texas-San Antonio San Antonio
(TX). Thanks to Tracy Dunkelberger, Pat Brown, and Kayla Smith-Tarbox at Pearson and to
Sarvesh Mehrotra at Aptara for their support throughout the production process.

Maureen Sprankle

Jim Hubbard

www.pearsonhighered.com
www.pearsonhighered.com/sprankle
www.pearsonhighered.com/sprankle

PROBLEM SOLVING
& PROGRAMMING
CONCEPTS

This page intentionally left blank

UNIT ONE

INTRODUCTION TO PROBLEM
SOLVING AND PROGRAMMING

Chapter 1: General Problem-Solving Concepts
Chapter 2: Beginning Problem-Solving Concepts for the Computer
Chapter 3: Planning Your Solution

This page intentionally left blank

Chapter 1

General Problem-Solving
Concepts

Overview

Problem Solving in Everyday Life

Types of Problems

Problem Solving with Computers

Difficulties with Problem Solving

Objectives

When you have finished this chapter, you should be able to:

1. Describe the difference between heuristic and algorithmic solutions to problems.
2. List and describe the six problem-solving steps to solve a problem that has an

algorithmic solution.
3. Use the six problem-solving steps to solve a problem.

3

Problem Solving in Everyday Life

People make decisions every day to solve problems that affect their lives. The problems
may be as unimportant as what to watch on television or as important as choosing a new
profession. If a bad decision is made, time and resources are wasted, so it’s important
that people know how to make decisions well. There are six steps to follow to ensure the
best decision. These six steps in problem solving include the following:

1. Identify the problem. The first step toward solving a problem is to identify the
problem. In a classroom situation, most problems have been identified for you
and given to you in the form of written assignments or problems out of a book.

Six Steps of Problem
Solving

4 � Chapter 1

However, when you are doing problem solving outside the classroom, you
need to make sure you identify the problem before you start solving it. If you
don’t know what the problem is, you cannot solve it.

2. Understand the problem. You must understand what is involved in the prob-
lem before you can continue toward the solution. This includes understanding
the knowledge base of the person or machine for whom you are solving the
problem. If you are setting up a solution for a person, then you must know
what that person knows. A different set of instructions might have to be used
depending on this knowledge base. For example, you would use a more
detailed set of instructions to tell someone how to find a restaurant in your
city if he has a limited knowledge of the city than if he knows it well. When
you are working with a computer, its knowledge base is the limited instruc-
tions the computer can understand in the particular language or application
you are using to solve the problem. Knowing the knowledge base is very im-
portant since you cannot use any instructions outside this base. You also must
know your own knowledge base. You cannot solve a problem if you do not
know the subject. For example, to solve a problem involving calculus, you
must know calculus; to solve a problem involving accounting, you must know
accounting. You must be able to communicate with your client and be able to
understand what is involved in solving the problem.

3. Identify alternative ways to solve the problem. This list should be as complete
as possible. You might want to talk to other people to find other solutions than
those you have identified. Alternative solutions must be acceptable ones. You
could go from Denver to Los Angeles by way of New York, but this would
probably not be an acceptable solution to your travel needs.

4. Select the best way to solve the problem from the list of alternative solutions. In
this step, you need to identify and evaluate the pros and cons of each possible
solution before selecting the best one. In order to do this, you need to select
criteria for the evaluation. These criteria will serve as the guidelines for eval-
uating each solution.

5. List instructions that enable you to solve the problem using the selected
solution. These numbered, step-by-step instructions must fall within the
knowledge base set up in step 2. No instruction can be used unless the indi-
vidual or the machine can understand it. This can be very limiting, especially
when working with computers.

6. Evaluate the solution. To evaluate or test a solution means to check its result
to see if it is correct, and to see if it satisfies the needs of the person(s) with the
problem. (When a person needs a piece of furniture to sleep on, buying her a
cot may be a correct solution, but it may not be very satisfactory.) If the result
is either incorrect or unsatisfactory, then the problem solver must review the
list of instructions to see that they are correct or start the process all over again.

If any of these six steps are not completed well, the results may be less than desired.
People solve problems daily at home, or work, or wherever they go. Problems at

home include such things as what to cook for dinner, which movie to see this evening,
which car to buy, or how to sell the house. At work, the problems might involve dealing
with fellow employees, work policies, management, or customers. The better the deci-
sions an employee can make, the more valuable that person will be to the company. In
each case, the six steps in problem solving can be followed. Most people use them with-
out even knowing it.

General Problem-Solving Concepts � 5

Take the problem of what to do this evening.

1. Identify the problem. How do the individuals wish to spend the evening?
2. Understand the problem. With this simple problem, also, the knowledge base

of the participants must be considered. The only solutions that should be
selected are ones that everyone involved would know how to do. You proba-
bly would not select as a possible solution playing a game of chess if the
participants did not know how to play.

3. Identify alternatives.
a. Watch television.
b. Invite friends over.
c. Play video games.
d. Go to the movies.
e. Play miniature golf.
f. Go to the amusement park.
g. Go to a friend’s party.
The list is complete only when you can think of no more alternatives.

4. Select the best way to solve the problem.
a. Weed out alternatives that are not acceptable, such as those that cost too

much money or do not interest one of the individuals involved.
b. Specify the pros and cons of each remaining alternative.
c. Weigh the pros and cons to make the final decision. This solution will be

the best alternative if all the other steps were completed well.
5. Prepare a list of steps (instructions) that will result in a fun evening.
6. Evaluate the solution. Are we having fun yet? If nobody is having fun, then

the planner needs to review the steps to have a fun evening to see whether
anything can be changed, if not then the process must start again.

By going through these steps, the problem solver can be assured that he has arrived at
the best possible solution and will achieve the desired results.

Types of Problems

Problems do not always have straightforward solutions. Some problems, such as
balancing a checkbook or baking a cake, can be solved with a series of actions. These
solutions are called algorithmic solutions. Once the alternatives have been eliminated,
for example, and once one has chosen the best among several methods of balancing
the checkbook, the solution can be reached by completing the actions in steps. These
steps are called the algorithm. The solutions of other problems, such as how to buy
the best stock or whether to expand the company, are not so straightforward. These
solutions require reasoning built on knowledge and experience, and a process of trial
and error. Solutions that cannot be reached through a direct set of steps are called
heuristic solutions.

The problem solver can use the six steps for both algorithmic and heuristic solu-
tions. However, in step 6, evaluating the solution, the correctness and appropriateness of
heuristic solutions are far less certain. It’s easy to tell if your completed checkbook bal-
ance is correct and satisfactory, but it’s hard to tell if you have bought the best stock.
With heuristic solutions, the problem solver will often need to follow the six steps more
than once, carefully evaluating each possible solution before deciding which is best.

algorithmic solution

algorithm

heuristic solution

6 � Chapter 1

Furthermore, this same solution may not be correct and satisfactory at another time, so
the problem solver may have to reevaluate and resolve the same problem later. The
stock that did well in January may do poorly in June.

Most problems require a combination of the two kinds of solutions.

solution
results
program

Problem Solving with Computers

In this book, the term solution means the instructions listed during step 5 of problem
solving—the instructions that must be followed to produce the best results. Results
means the outcome or the completed computer-assisted answer. Program means the set
of instructions that make up the solution after they have been coded into a particular
computer language.

Computers are built to deal with algorithmic solutions, which are often difficult
or very time consuming for humans. People are better than computers at developing
heuristic solutions. Solving a complicated calculus problem or alphabetizing 10,000
names is an easy task for the computer, but the problem of how to throw a ball or how
to speak English is not. The difficulty lies in the programming. How can problems such
as how to throw a ball or speak English be solved in a set of steps that the computer can
understand?

The field of computers that deals with heuristic types of problems is called arti-
ficial intelligence. Artificial intelligence enables a computer to do things like build its
own knowledge bank and speak in a human language. As a result, the computer’s
problem-solving abilities are similar to those of a human being. Artificial intelligence
is an expanding computer field, especially with the increased use of Robotics.

Until computers can be built to think like humans, people will process most
heuristic solutions and computers will process many algorithmic solutions. Therefore,
this book will deal only with algorithmic solutions. Heuristic problem solving can help
determine alternative solutions. However, for computer use, they must be transformed
into an algorithmic format.

Difficulties with Problem Solving

People have many problems with problem solving. Some have not been taught how to
solve problems. Others are afraid to make a decision for fear it will be the wrong one.
Often, when people go through the problem-solving process, they complete one or
more of the steps inadequately. They may not define the problem correctly or may not
generate a sufficient list of alternatives. When choosing the best alternative, they may
eliminate good alternatives or list the pros and cons too hastily. They may not use a
logical sequence of steps in their solution, or they may focus on details before the
framework for the solution is in place. Finally, they may incorrectly or haphazardly
evaluate the solution.

The problem-solving process is not easy. It takes practice and time to perfect, but
in the long run the process proves to be of great benefit.

When solving problems on the computer, one of the most difficult tasks for the
problem solver is writing the instructions. Take the task of deciding which number is
the largest from a group of three numbers. Almost anyone can immediately tell which
is the largest, but many cannot explain the steps they followed to arrive at it. Most

General Problem-Solving Concepts � 7

people will say, “I can’t explain how I know, I just know it!” This explanation is not
good enough for the computer. The computer is a tool that will perform only tasks that
the user can explain.

The computer has a specific system of communication that programmers and users
must learn. This system demands that no step in the solution to a problem be left unstated
and that all steps be in the proper order. You must assume the computer knows nothing ex-
cept what you tell it and think of it as an ignorant but efficient aid to problem solving.

Summary

The six steps in problem solving lead to the best possible solution to a problem. They
include (1) identifying the problem, (2) understanding the problem, (3) identifying
alternative solutions, (4) selecting the best solution, (5) preparing a list of instructions
to solve the problem by the chosen solution, and (6) evaluating the solution. Solutions
to problems are classified as algorithmic or heuristic. Algorithmic solutions are reached
in a series of steps. Heuristic solutions are attained through trial and error. Algorithmic
solutions are easier to define for computer use than heuristic ones.

Several things can go wrong in the problem-solving process. Sometimes the prob-
lem solver does not define the problem correctly or does not complete one or more of the
steps. At other times, the list of alternatives is not sufficient or the list of instructions to
the computer is incorrect. Sometimes one gets lost in details and overlooks the general
framework, or does not test the solution. If the problem-solving process is incomplete,
the solution will not produce the desired results.

The steps in problem solving can be applied to problems in daily life as well as to
problems put on the computer. Good problem-solving techniques enable you to look at
a problem logically and unemotionally, saving time and other resources.

New Terms

algorithm

algorithmic solution

heuristic solution

program

results

solution

Questions

1. What are the six steps of problem solving?

2. What is an algorithmic solution to a problem?

3. Name three current problems in your life that could be solved through an algorith-
mic process. Explain why each of these problems is algorithmic in nature.

4. What is a heuristic solution to a problem?

5. Name three current problems in your life that might be solved through a heuristic
approach. Explain why each of these problems is heuristic in nature.

6. Name three problems that might arise at home, at school, or in a business that could
be solved more efficiently with computer assistance. Do these problems require an
algorithmic or heuristic solution? Why?

7. State a reason why each of the six problem-solving steps is important in developing
the best solution for a problem. Give one reason for each step.

8 � Chapter 1

Problems

1. Complete the six problem-solving steps to solve one of the problems you listed in
question 3. Follow the form outlined as follows:
Step 1: Identify the problem.
Step 2: Understand the problem.

a. Comments about the problem to aid in understanding it.
b. Description of the knowledge base (this list would include what you

would be expected to know to follow the solution).
Step 3: Identify alternative solutions.

Solution Pros Cons
a.
b.
c.
.
.
.

Step 4: Select the best solution.
Why did you select this solution?

Step 5: List a set of numbered step-by-step instructions to attain the solution.
1.
2.
3.
.
.
.

Step 6: Test the solution.
Does this solution work?
If not, how might you change the solution so it will work?

2. For each of the following tasks, write a set of numbered, step-by-step instructions
(a solution) so complete that another person could perform the task without asking
questions. Define the knowledge base of this person by listing what you expect the
person to know in order to follow your directions. For example, for task “a”
(below), make a cup of cocoa, the knowledge base might include such things as
knowledge of milk or water, a refrigerator, pan, spoon, cocoa, cup, range top or mi-
crowave, and so forth.
a. Make a cup of cocoa.
b. Sharpen a pencil.
c. Walk from the classroom to the student lounge, your dorm, or the cafeteria.
d. Start a car (include directions regarding what to do if the car doesn’t start).
e. Get a glass of water from your kitchen.
f. Start your computer.

3. Test your solution in problem 2 by giving your instructions to another person to see
whether he or she can accomplish the task without your help. If they can’t, modify
your solution so that the person can accomplish the task. Check the solution again
by giving the instructions to another person.

4. Develop the knowledge base for the following problems:
a. Balancing your checkbook
b. Driving a car

General Problem-Solving Concepts � 9

c. Repairing a car
d. Building a house
e. Calculating the cost of using your car for a month
f. Play a video game.

5. Write a solution to the problem of finding the largest number out of three numbers.
List the specific steps that would enable another person to find the largest among
three numbers presented.

6. Why do you think some of the solutions in problem 2 are harder to develop than
others?

7. Appendix A contains problems dealing with Otto the Robot. Otto has a limited
number of tasks that he can accomplish. Discuss the approach you would take to
develop a set of instructions that will allow Otto to accomplish the problems pre-
sented in Appendix A.

8. Develop solutions for Otto’s problems presented in Appendix A.

9. How does your problem solving differ between finding a solution to a problem for
your own life and that of designing a solution for one of Otto’s problems?

This page intentionally left blank

Chapter 2

Beginning Problem-Solving
Concepts for the Computer

Overview

Constants and Variables
Rules for Naming and Using Variables

Data Types
Numeric Data
Character Data—Alphanumeric Data
Logical Data
Other Data Types
Rules for Data Types
Examples of Data Types

How the Computer Stores Data

Functions

Operators

Expressions and Equations
Examples

Objectives

When you have finished this chapter, you should be able to:

1. Differentiate between variables and constants.
2. Differentiate between character, numeric, and logical data types.
3. Identify operators, operands, and resultants.
4. Identify and use functions.
5. Identify and use operators according to their placement in the hierarchy chart.
6. Set up and evaluate expressions and equations using variables, constants, op-

erators, and the hierarchy of operations.

11

12 � Chapter 2

Although problems that arise in daily life are of many types, problems that can be
solved on computers generally consist of only three: (1) computational, problems in-
volving some kind of mathematical processing; (2) logical, problems involving rela-
tional or logical processing, the kinds of processing used in decision making on the
computer; and (3) repetitive, problems involving repeating a set of mathematical
and/or logical instructions. This chapter explains some computer fundamentals and
demonstrates ways to set up expressions and equations to solve these types of prob-
lems on the computer. Programmers, need to know these computer fundamentals (see
Figure 2.1).

Two of the most fundamental concepts that you will learn in this chapter are the
constant and the variable. A programmer takes the data, the unorganized facts, and the
information, the organized facts, relevant to a problem and defines them as constants
or variables. They are the building blocks of the equations and expressions that
ultimately make up solutions to computer problems. The programmer defines each
constant and variable in a problem solution as a particular data type, such as numeric
or character.

Other concepts that are essential to developing computer solutions to problems are
operators and functions. Operators are the many signs and symbols that show relation-
ships between constants and variables in the expressions and equations that make up the
solution. The programmer has to know all of the many operators and how to use them.
The order in which operators are processed is determined by a hierarchy that program-
mers need to know as well.

Operators are combined with constants and variables to create expressions and
equations. Expressions and equations are used in instructions that are the building
blocks of the solution. Functions are sets of instructions that are so commonly used
that they are built into a computer language, saving the programmer the trouble of writ-
ing them.

These are key concepts. Without an understanding of how the computer uses and
defines data, without knowing what the operators are, and without knowing how to use
these concepts to construct expressions and equations, a programmer cannot effectively
use the computer to solve problems.

When you study this chapter, it may help to keep these pointers in mind:

� Take each topic as it is presented, and learn the concepts pertaining to it.
� Understand the examples.
� Complete the questions and problems at the end of the chapter.
� Don’t skip sections.
� Don’t feel that something is too hard before you make an effort to understand it.
� Take each problem one step at a time.
� Don’t skip steps.
� Don’t assume anything.
� Don’t be afraid to read a passage over again. Once may not be enough!

Figure 2.1 Important Concepts to Learn

constants

operators

variables

hierarchy of operations
equations

data types

expressions

functions

Concepts to Learn

Beginning Problem-Solving Concepts for the Computer � 13

constant

Constants and Variables

The computer uses constants and variables to solve problems. They are data used in pro-
cessing. A constant is a value—that is, a specific alphabetical and/or numeric value—that
never changes during the processing of all the instructions in a solution. Constants can be
any type of data—numeric, alphabetical, or special symbols. (Data types are explained in
more detail later.) In some programming languages and applications, constants can be
named. In this case, the constant is given a location in memory and a name. During the
execution of the program, this constant is given a value and then is referred to by its name.
Once the constant is given a value, it cannot be changed during the execution of the pro-
gram. For example, because the value of PI does not change, it would be a constant and
defined within the program. This constant may be given a name, but the only way to
change the value of the constant is to change the program. Any constant may be given a
name. This allows an easier access to constants. Many name conventions stipulate that
named constants be given names containing all capital letters in order to easily distinguish
them from variables. However, this may vary between companies in which you may work.

In contrast, the value of a variable may change during processing. In many lan-
guages variables are called identifiers since the name identifies what the value repre-
sents. You need to be aware of this when learning the syntax and terminology of each
language. In this text the word variable will be used. A programmer must give a name to
each variable value used in a solution. The programmer uses a variable name as a refer-
ence name for a specific value of the variable. In turn, the computer uses the name as a
reference to help it find that value in its memory. The computer sets up a specific mem-
ory location to hold the value of each variable name found in a program. Variables can
be any data type, just as constants can. For instance, consider the cost of a pair of shoes.
This data item should be given a variable name because the cost of a pair of shoes may
change during the processing of the program or during multiple executions of the
program. The variable name should be consistent with what the value of the variable
represents. In this case, the name of the variable is ShoeCost because it represents the
cost of the pair of shoes:

However, if the cost of the shoes changes during the next execution of the pro-
gram, then the value of ShoeCost will change but the variable name will not:

Notice in Table 2.1 that when the value of a constant or a variable contains alphanu-
meric data—that is, numbers and/or special symbols—it is surrounded by quotation
marks. These marks indicate to the computer that the value is a datum, not a variable
name. The computer must have some way to distinguish between the two. Also notice
that the variable names stand for specific data. The variable name Cash has a sum of
money as its value. The variable name City has a city name as its value. Finally, notice
that there are no blank spaces between words in variable names.

35.00

ShoeCost

56.00

ShoeCost

variable
identifier

Each company you work for will have naming conventions for variables and mod-
ule names. The convention for naming variables may differ with companies as well as
languages. It is very important to have all programmers within an environment follow
the specified conventions, and it may be a requirement for employment.

There are many reasons to follow a naming convention. First, it allows several pro-
grammers to work on the same project without the problem of conflicting variable and
module names. Second, it allows programs to be easily read because there is only one
consistent name for a variable. It also increases the readability between applications be-
cause the form of the variable name is consistent within a company. Third, naming con-
ventions allow the code to be easily maintained. Programmers spend most of their time
on software maintenance, not development; therefore, having a convention for naming
variables decreases the time and increases the reliability when updating software. In ad-
dition, most software is maintained by many different people. Naming conventions al-
low the software to be transferred with the least difficulty. Fourth, the software should
perform more efficiently by using consistent naming of modules and variables. Fifth,
there should be an increase in performance expectation. And last, naming conventions
should produce a clean, well-written program.

In a solution that calculates payroll for a company, the name of the company
would be a constant since it does not change. The employee name, the hours, and the
rate of pay would be variables because the values of these items change for each em-
ployee. If there were no such thing as a variable, the programmer would have to write a
separate set of instructions for each employee. It is far more efficient to have one rather
than a thousand programs to process payroll for 1,000 employees.

14 � Chapter 2

Naming Conventions
for Constants
and Variables

Table 2.1 Constants and Variables on the Computer

[[Tx0002]]

Constants Variables

Rules:
Storage locations are

given names.
Values of the contents for

Referred to by variable

name variable locations
can be changed.

name in the instructions.
Examples:

Variable Name—Age

Value 25

Variable Name—Cash

Value 83.59

Variable Name—City

Value “Eureka”

Variable Name—ZipCode

Value “95501”

Rules:
Constants cannot be changed.

Examples:

Value 25

Value �1.5

Value “ARCATA”

Value “95521”

Named Constants
Rules:

A constant cannot be changed
after it is initially given a value.

Storage location given a name.
Referred to by the given name.

Example:
PI

3.142857

Beginning Problem-Solving Concepts for the Computer � 15

The rules for naming variables differ from language to language. However, the
general rule is to name the variable as near to its meaning as possible: PayRate for the
rate of pay, Hours for the number of hours worked during the pay period, and the like.
Some languages and applications have character-length limitations or other restrictions
for names (called reserved words), so adjustments have to be made as necessary. In this
book, there will be no character-length limitations for variable names.

It is important to understand the difference between the name of a variable and
the value of a variable. The name is the label the computer uses to find the correct
memory location; the value is the contents of the location. The computer uses the
variable name to find the location; it uses the value found at the memory location to
do the processing.

It is also important to be consistent in the use of variable names because the com-
puter will go only to the location with the specified name, regardless of whether it is the
one intended by the user. For example, if you use Hours for hours worked, then you
must use Hours at all times in referring to hours worked, not Hrs or HoursWorked. If the
computer cannot find a memory location by the specified name, it will either name a
new memory location and yield an incorrect result, or it will return an error message in-
dicating there is no location as referenced and then cease execution.

Rules for Naming and Using Variables

There are a number of rules for naming and using variables, as listed below. Table 2.2 il-
lustrates some examples of incorrect variable names.

1. Name a variable according to what it represents, that is, Hours for hours
worked, PayRate for rate of pay, and so on. Create as short a name as possible
but one that clearly represents the variable.

2. Do not use spaces in a variable name; for example, use HoursWorked.
3. Start a variable name with a letter.
4. Do not use a dash (or any other symbol that is used as a mathematical operator)

in a variable name. The computer will recognize these symbols as mathematical

Rules for Naming
Constants and
Variables

Table 2.2 Incorrect Variable Names

Data Item Incorrect Variable Name Problem
Corrected Variable

Name

Hours worked Hours Worked Space between words HoursWorked

Name of client CN Does not define data item ClientName

Rate of pay Pay-Rate Uses a mathematical operator PayRate

Quantity per customer Quantity/customer Uses a mathematical operator QuantityPerCustomer

6% sales tax 6%_sales_tax Starts with a number SixPercentSalesTax
or SalesTax

Client address Client_address_for_client_of_
XYZ_corporation_in_California

Too long ClientAddress

Variable name
Introduced as Hours

Hrs Inconsistent name Hours

Variable name
Introduced as Hours

Hours_worked Inconsistent name Hours

16 � Chapter 2

operators, turn your variable into two or more variables, and treat your vari-
able as a mathematical expression.

5. After you have introduced a variable name that represents a specific data
item, this exact variable name must be used in all places where the data item
is used. For example, if the data item hours worked has the variable name of
Hours, Hours must be used consistently. You may not use Hrs or
HoursWorked to represent the same data item. If you do, the computer views
these variables as new and different data items and will assign a new memory
location to the new name.

6. Be consistent when using upper- and lower-case characters. In some lan-
guages HOURS is a different variable name than Hours.

7. Use the naming convention specified by the company where you work. As
stated, in this text our naming convention is upper case for the first character
in each of the words in the name, with no spaces between words in the name.
Named constants will be in all upper case characters. For example:

Variable Names Constant Names
PayRate PI
Rate KCONSTANT
HoursWorked MULTIPLIER
Amount
Temperature

Your instructor may want you to use a different naming convention. Be sure
you follow the convention exactly.

Figure 2.2 Processing Data—How a Computer Balances a Checkbook

Data Types

To process solutions, the computer must have data. Data are unorganized facts. They go
into the computer as input and are processed by the program. What is returned to the
user is output, or information. This information is printed in the form of reports. For
example, when a computer calculates the balance of a checkbook, data are the checks,
the deposits, and the bank charges. The information from the processing is shown on the
balance sheet (see Figure 2.2).

Data

Data
Processed

into
Information

Checks
Deposits
Bk. Chgs.

Report
Input Output

Calculates the
Balance

Balance
Sheet

data

information

Beginning Problem-Solving Concepts for the Computer � 17

The data the computer uses are of many different types. Computers must be told
the data type of each variable or constant. The most common data types are numeric,
character, and logical. A few languages and applications also use the date as a data type.
Other languages allow the programmer to define data types.

Numeric Data

Numeric data include all types of numbers (see Table 2.3). Numeric is the only data
type that can be used in numeric calculations. The subtypes of numeric data include
integers and real numbers. Integers are whole numbers, such as 5,297 or -376. They
can be positive or negative. Real numbers, or floating point numbers, are whole num-
bers plus decimal parts. In problem solving on the computer, programmers use integers
when there is no reason for using partial numbers, as when they are designing counters,
expressions used for counting things, such as inventory items or people. A real number
can be expressed in scientific notation, such as 2.3E5 or 5.4E–3. In scientific notation,
the E stands for times 10 to the power of. Therefore, 2.3E5 is the same number as

or 230,000.0, and 5.4E–3 is the same number as or 0.0054. A
number expressed in scientific notation is always considered a real data type. The com-
puter does not use commas in a number during the processing of a calculation, only
when the number is formatted as output for the user.

Numeric data are used for values, such as rate of pay, salary, angles, distance, or
radius, that have calculations performed on them. Numbers such as an account number
or a zip code, which would not have calculations performed on them, would not be des-
ignated by the programmer as numeric data.

Each data type has a data set, the set of symbols necessary to specify a datum as a
particular data type. A data set is the set of values that are allowed in a particular data
type. The data set for the numeric data type includes all base 10 numbers, the plus sign
(+) and the negative sign (-). The data set for the integers includes all whole numbers
within the limitations of the computer or the language, and for the real numbers, all
whole numbers with decimal parts within the limitations of the computer or the lan-
guage, including zero as a whole number and zero as a decimal part.

5.4 * 10-3,2.3 * 105,

data type

Table 2.3 Data Types and Their Data Sets

Data Type Data Set Examples

Numeric: Integer All whole numbers 3580
-46

Numeric: Real All real numbers
(whole + decimal)

-3792.91
4739416.0
0.00246

Character (surrounded
by quotation marks)

All letters, numbers, and
special symbols

“A” “a” “M” “z” “k”
“1” “5” “7” “8” “0”
“+” “=” “(” “%” “$”

String (surrounded by
quotation marks)

Combinations of more than
one character

“Arcata”
“95521”
“707-444-5555”

Logical True False True False

numeric data

Data Set

Integers
Real Number

18 � Chapter 2

Character Data—Alphanumeric Data

The character data set, sometimes called alphanumeric data set, consists of all single-
digit numbers, letters, and special characters available to the computer—a, A, Z, 3, #, &,
and so forth—placed within quotation marks. An upper case letter is considered a dif-
ferent character from a lower case letter. The ASCII (American Standard Code for
Information Interchange) character set contains 256 characters. The first 128 comprise a
standard set (see Appendix C for the ASCII and EBCDIC data codes), and the second
128 differ with each computer. Characters cannot be used for calculations even if they
consist of only numbers. When more than one character are put together, the computer
considers this item a string—derived from a string of characters. Some languages do
not differentiate between characters and strings. All character data are considered
string data.

Character and string data can be compared and arranged in alphabetical order in
the following way. The computer gives each character a number. This numeric repre-
sentation is necessary because the computer works only with numbers. The numbers are
compared to see which is larger and are then arranged in ascending numeric order. Since
B has a larger number representing it than A, B is placed after A. C would follow B by the
same method, and so forth. String data can be tested in the same way to alphabetize
names, cities, and the like. Banana is larger than Apple because B has a larger number
representing it than A. Joan is larger than James since the letter o is attributed a larger
number than a. Upper case letters have smaller numeric representations than lower case
letters. It is important to bear this difference in mind when you are comparing letters to
see if they are equal. Languages that differentiate between lower case and upper case are
called case sensitive. When they are not case sensitive, upper- and lower case letters are
treated the same. You can use functions before the comparison to ensure that data are not
case sensitive by making all letters either upper- or lower case.

Character data or string data can be joined together with the + operator in an oper-
ation called concatenation. When two pieces of character data are joined, the concate-
nation results in the second being placed at the end of the first, as in “4” + “4” = “44”
(not “8”). Concatenation could be used to join a first name with a last name or to join
pieces of data together to make a code for an inventory item. The concatenation opera-
tor varies with each language.

Most data in business—names, account numbers, addresses, cities, states, tele-
phone numbers, zip codes—are string data. As a rule, items that would not have mathe-
matical computations performed on them should be designated string data types. There
is another reason for designating a zip code as string data. If you are using numeric data,
there is no way to hold onto leading zeros, that is, the zeros at the front of a number,
such as 00987. As a result, a zip code on the East Coast could not be entered correctly
as a numeric datum. The leading zeros could be preserved only with string data.

Logical Data

Logical data consist of two values in the data set—the words True and False. (Some
languages accept yes, T, and Y for True, and no, F, and N for False as part of the data
set.) These are used in making yes-or-no decisions. For example, logical data type might
be used to check someone’s credit record; True would mean her credit is okay, and
False would mean it’s not okay. A home accounting system could use logical data
type for check returns; True would mean the check has been returned, and False
would mean it has not. There are many such uses for logical data. They are dis-
cussed further in later chapters. Remember, the logical data set True and False are

character data

String Data

concatenation

logical data

Beginning Problem-Solving Concepts for the Computer � 19

not string data and are considered reserved words—that is, word that cannot be used
as variable names.

Other Data Types

There are other data types available to most programmers, such as the date data type and
user-defined data types. The date data type is a number for the date that is the number of
days from a certain date in the past such as the first day of the 20th century or January 1,
1940. The use of this data type for the date allows the user to subtract one date from an-
other date to calculate the number of days between dates. This simplifies the calculation
when the dates cross over years or months. The date is printed in the date format instead
of a number. The date data type is a numeric data type because you can perform mathe-
matical calculations on any date.

Programmers may define their own data types, such as data types that have as their
data set soda pop brands, or types of cars, or computer components. The user must spec-
ify the items in the data set for each user-defined data type. If the data item is not con-
tained within the data set, it is not part of the set. For example, if the programmer does
not include Mouse as part of the data set for a user-defined data type of computer parts,
then the computer does not recognize a Mouse as a computer part.

This book will use the date data type in a few places; however, user-defined data
types will not be further discussed or used.

Rules for Data Types

1. The data that define the value of a variable or a constant will most commonly
be one of three data types: numeric, character (including character string), or
logical.

2. The programmer designates the data type during the programming process.
The computer then associates the variable name with the designated data
type.

3. Data types cannot be mixed. For example, string data cannot be placed in a
variable memory location that has been designated as numeric, and vice
versa. When the computer expects a certain data type, the user must use that
type or the computer will return an error message.

4. Each of the data types uses what is called a data set (see Table 2.3). The
numeric data uses the set of all base 10 numbers, the plus sign (+), and the
negative sign (-); the character type uses the set of all characters available
to the computer; the logical data type uses the set of data consisting of
the words True and False. The use of any data outside the data set results in
an error.

5. Any numeric item that must be used in calculations resulting in a numeric re-
sult must be designated as numeric data type. All other numbers should be
designated as character or character-string data types, even if data are all
numbers, as in zip codes.

Examples of Data Types

Table 2.4 illustrates some common uses for numeric, character (including character
string), and logical data types. Data are drawn from everyday life and business, and

Date Data Type

User Defined
Data Types

Rules for Data Types

20 � Chapter 2

are examples of the kinds of data that are commonly used in solving various types of
problems on the computer. To the right of the data examples are data types and expla-
nations of why each type is appropriate to the data.

Table 2.4 Examples of Data Types

Data Data Type Explanation

The price of an
item: 7.39, 12.98

Numeric:
real

The price of an item would be used in
calculations. The price is money and needs
decimals.

An account
number: “A2453,”
“2987”

Character
string

An account number consists of alphanumeric
or simply numeric data. It is not used for
calculations.

A quantity:
12389

Numeric:
integer

A quantity is used for calculations. It is an
integer because it normally is a whole
number.

The name of a
company: “Smith
Corp.”

Character
string

A name of something is alphabetical and
therefore would be character string data
type.

A credit check:
True, False

Logical The credit check of a customer would be a
choice of two answers such as yes, it is okay,
or no, it is not okay. Therefore, it should be
logical data.

A zip code:
“95521” “76548”
“00538”

Character
string

A zip code would be a character string be-
cause there are no calculations to be done
on a zip code, and the leading zeros need to
be retained.

A date: 01/23/87
or “03/14/87”

Date or
character
string

If the date data type is available, then it is used;
if not, then it has to be a string because it is
alphanumeric.

A date: 187259 Numeric:
integer

A calendar date is the number of days from a
given date, such as the first day of the 20th
century. It can be used for calculations.

Social Security
Number
“333-33-3333”

Character
string

A SSN is string data because it is alphanu-
meric and is not used for calculations.

How the Computer Stores Data

The computer stores data internally in memory locations. These data are found by the
variable names used by a program. Each variable name is given a memory location, and
each memory location can hold one and only one value at a time. When a user enters a
new value into the variable location, the previous value is destroyed. These memory lo-
cations are temporary, as the internal memory is a volatile memory. When a program
completes its instructions, and/or when the computer is turned off, the values stored in
the internal memory are destroyed.

Data and instructions are temporarily stored in the computer’s internal memory
during the processing. When data, information, or programs have to be kept for future

Data Storage

Beginning Problem-Solving Concepts for the Computer � 21

use, they are stored externally on an external storage medium such as a hard disk drive
in storage areas called files. There are basically two types of files: program files and
data files. Program files contain the instructions to tell the computer what to do. This
book helps the programming student create programs that will be saved on the external
storage device as program files. Data files contain the data required to execute the
program files.

files

functions

parameter

Functions

Functions are small sets of instructions that perform specific tasks and return values.
They are usually built into a computer language. Functions are used as parts of instruc-
tions in a solution. Because they are basic tasks that are used repeatedly in the problem-
solving process, by using them a programmer or user can shorten the problem-solving
time and improve the readability of the solution. Each language has a set of functions
within it. This set varies with the language and the computer. Most languages allow
programmers to write their own functions. Libraries of functions can be added to many
languages.

The form of a function is the name of the function followed by an open parenthe-
sis, followed by the data needed to perform the function and concluded by a closed
parenthesis:

The value of the result of the function is returned in the name of the function.
Functions use data. The data is listed as part of the function and are called

parameters. Functions normally do not alter the parameters. Take the square root func-
tion, Sqrt(N). This function will calculate the square root of N. Sqrt is the name of the
function. N is the data needed to calculate the square root and, therefore, it is the para-
meter. Parameters are surrounded by parentheses. The maximum function, Max(N1, N2,
N3), will find which of three numbers is the largest. The name of the function is Max.
The parameters, data surrounded by parentheses and needed to do the calculation, are
N1, N2, and N3. Not all functions need parameters. The function Random generates or
calculates a random number. No data are needed to do this calculation, so there are no
parameters. A parameter can be a constant, a variable, or an expression. (An expression
is a calculation, such as interest/100, which has not been given a permanent memory lo-
cation in the computer.) The names of the functions may vary from language to lan-
guage. This book will give a generic name to each function and list the parameters in
parentheses.

Table 2.5 lists and defines a few of the basic functions that are found in many lan-
guages. Functions are unique to each language. As a programmer, you need to investi-
gate the functions used in the language in which you are writing your solution. These
functions have been divided into classes.

1. Mathematical functions. Often used in science and business, mathematical
functions calculate such things as square root, absolute value, or a random
number. Other mathematical functions used primarily for scientific purposes
have not been included in the table.

2. String functions. These are used to manipulate string variables. For exam-
ple, they copy part of the string into another variable, find the length or the
number of characters in the string, and so forth.

FunctionName1data2

Types of Functions

22 � Chapter 2

Table 2.5 Functions (continued on page 23)

Function* Definition Example Result

Mathematical Functions

Sqrt(N) Returns the square root of N. Sqrt(4) 2

Abs(N) Returns the absolute value of N. Abs(-3) 3

Round(N, n1) Returns the rounded value of N to the n1 place. Round (3.7259,2) 3.73

Integer(N) Returns the closest whole number less than
or equal to N.

Integer (5.7269) 5

Random Returns a random number between 0 and 1, but
not 1. This number is mathematically generated.
To find a number N between N1 and N2, inclusive,
use the following formula:

where N1 is the
smallest number and N2 is the largest number.
1Random * 1N2 - N1 + 122 + N1,

N = Integer

Random 0.239768

Sign(N) Returns the sign of N:
1 when N is positive,
0 when N is zero,
-1 when N is negative.

Sign(7.39) 1

String Functions

Mid(S, n1, n2) Returns a set of n2 characters starting at n1
in the string S.

Mid(S, 3, 2)
where
S = “Thomas”

“om”

Left(S, n) Returns a set of n characters on the left side
of the string S.

Left (S, 3)
where
S = “Thomas”

“Tho”

Right(S, n) Returns a set of n characters on the right side
of the string S.

Right (S, 3)
where
S = “Thomas”

“mas”

Length(S) Returns the number of characters in the string S. Length(S)
where
S = “Thomas”

6

*Definitions of symbols:
N is a numeric value—a constant, a variable, or an expression
S is a string value—a constant, a variable, or an expression
n, n1, n2 are integer values—a constant, a variable, or an expression

3. Conversion functions. These functions are used to convert data from one data
type to another. For example, since character strings cannot be used in calcula-
tions, one of these functions would convert a string value to a numeric value.

4. Statistical functions. These functions are used to calculate things such as
maximum values, minimum values, and so forth.

5. Utility functions. This class is very important in business programming be-
cause most reports require some use of utility functions. They access infor-
mation outside the program and the language in the computer system.
Examples of these include date and time functions.

Beginning Problem-Solving Concepts for the Computer � 23

operator

Operand
Ressultant

Table 2.5 (Continued from page 22)

Function* Definition Example Result

Conversion Functions (change data type)

Value(S) Changes a string value into a numeric value. Value(“57.39”) +57.39

String(N) Changes a numeric value into a string value. String (+57.39) “57.39”

Statistical Functions

Average(list) Returns the average of a list of numbers. Average (5, 3, 8, 6) 5.5

Max(list) Returns the maximum value from a list of
numbers.

Max (5, 3, 8, 6) 8

Min(list) Returns the minimum value from a list of numbers. Min (5, 3, 8, 6) 3

Sum(list) Returns the sum of a list of numbers. Sum (5, 3, 8, 6) 22

Utility Functions

Date Returns the current date from the system. The
date may be in various forms: mm/dd/yy, day
only, month only, year only, or Julian calendar.

Date 09/15/98

Time Returns the current time from the system. The
time may be in various forms: hh:mm:ss, seconds
from midnight, or minutes from midnight.

Time 9:22:38

Error Returns control to the program when a systems
error occurs.

Note: Other functions are listed in Appendix F.

Operators

The computer has to be told how to process data. This task is accomplished through the
use of operators. Operators are the data connectors within expressions and equations.
They tell the computer how to process the data. They also tell the computer what type of
processing (mathematical, logical, or whatever) needs to be done. The types of opera-
tors used in calculations and problem solving include mathematical, relational, and log-
ical operators. Without these operators very little processing can be done.

The operand and the resultant are two concepts related to the operator. Operands
are the data that the operator connects and processes. The resultant is the answer that re-
sults when the operation is completed. For example, in the expression 5 + 7, the + is the
operator, 5 and 7 are the operands, and 12 is the resultant. Operands can be constants or
variables. The data type of the operands and the resultant depends on the operator.

Table 2.5 is only a partial list of functions. There are many other functions that are not
listed here and may not be universal. Many languages have hundreds of functions for
the programmer’s use. As a programmer, you should check the function list as to the avail-
ability of the types of functions you might want to use. You also need to note that function
names are not allowed to be used as variable, constant, or module names. They are con-
sidered reserved words. Using these reserved words will cause a bug or error in a program.

24 � Chapter 2

Table 2.6 Operators and Their Computer Symbols

Operator Computer Symbol Example

Mathematical Operation Resultant

Addition + 3.0 + 5.2 8.2

Subtraction - 7.5 - 4.0 3.5

Multiplication * 8.0 * 5.0 40.0

Division / 9.0/4.0 2.25

Integer division \ 9\4 2

Modulo division MOD 9 MOD 4 1

Power ^ 3 ^ 2 9

Relational

Equal to = 5 = 7 False

Less than 6 5 6 7 True

Greater than 7 5 7 7 False

Less than or equal to 6= (two key strokes) 5 6= 7 True

Greater than or equal to 7= (two key strokes) 5 7= 7 False

Not equal to 6 7 (two key strokes) 5 6 7 7 True

Logical

Not NOT NOT True False

And AND True AND True True

Or OR True OR False True

Mathematical operators include addition, subtraction, multiplication, division,
integer division, modulo division, powers, and functions. The computer has a symbol
for each of them (see Table 2.6). You are probably familiar with addition, subtraction,
multiplication, division, and powers. However, you may not be familiar with integer and
modulo division.

These two operations are related. In integer division, the resultant is the whole
number in the quotient. In modulo division, the resultant is the whole number remain-
der. These two types of division are used in business to find the hours and minutes
someone has worked given the total number of minutes, or the days and weeks worked
given the total number of days. For example, if Jane Smith has worked 19 days during
the month, then, assuming a 5-day work week, she has worked 19 \ 5 = 3 weeks and 19
MOD 5 = 4 days. Therefore, she has worked 3 weeks and 4 days. When dividing 19 by
5, the result is 3 with a remainder of 4. The 3 is the resultant of the integer division and
the 4 is the resultant of the modulo division. If the dividend is less than the divisor, such
as 28 MOD 379, then the resultant is always equal to the dividend, in this case 28. The
resultant of 28 \ 379 is zero because the dividend is less than the divisor. When you di-
vide 28 by 379, your resultant is zero with a remainder of 28.

mathematical operator

Beginning Problem-Solving Concepts for the Computer � 25

Relational operators include the following: equal to, less than, greater than, less
than or equal to, greater than or equal to, and not equal to. A programmer uses relational
operators to program decisions. The operands of a relational operator can be either num-
beric or character (a string); however, both operands must be of the same data type. The
resultant of a relational operation is logical data type True or False. The programmer de-
signs one action or set of actions that will follow when a relational expression is True,
and another action or set of actions that will follow when the expression is False. The
use of relational operators is the only way for the computer to make decisions.

For example, when a credit card customer’s balance is less than $500 (True), then
the customer can charge another purchase. When the balance is not less than $500
(False), then he cannot charge another purchase. The expression would be set up as
Balance 6 500. The operands are Balance and 500; the operator is 6; the resultant is ei-
ther True or False depending on the value of the balance. The programmer would use
this expression in what is called a decision instruction.

Relational operators are also used to control repetitive instructions called loops. A set
of instructions to enter data for a client, which would be repeated until the data are entered
for every client, is one example of a loop. When the computer processes this type of instruc-
tion, the loop repeats until the resultant changes from True to False, or vice versa. In the ex-
ample, the resultant would change when the computer can find no more client data to enter.

Logical operators are the third type of operator (see Table 2.7). Logical operators
are used to connect relational expressions (decision-making expressions) and to perform

Table 2.7 Definitions of the Logical Operators

NOT

AND

OR

True

False

A

False

True

Not A

NOT True

NOT False

When
A Is

Is

Is

False

True

The Resultant
Is

True

True

False

False

A

True

False

True

False

B

True

False

False

False

A AND B

True

True

False

False

AND

AND

AND

AND

When
A Is

True

False

True

False

When
B Is

Is

Is

Is

Is

True

False

False

False

The Resultant
Is

True

True

False

False

A

True

False

True

False

B

True

True

True

False

A OR B

True

True

False

False

OR

OR

OR

OR

When
A Is

True

False

True

False

When
B Is

Is

Is

Is

Is

True

True

True

False

The Resultant
Is

relational operator

logical operator

26 � Chapter 2

operations on logical data. For example, a store might require a driver’s license or a
check-cashing card on file for a customer to cash a check. When the customer has a dri-
ver’s license, the check can be cashed. When she has a check-cashing card, the check
can be cashed. The expression is written as License OR Card. License and Card are the
operands. They are logical data; that is, the value of each is True or False. The operator
is OR. The resultant is True or False depending on the values of the operands. When one
or both of the operands is True, then the resultant is True. When both of the operands are
False, then the resultant is False.

The OR operator is one of three logical operators. The others are AND and NOT.
When the AND operator is used, the resultant is True only when both of the operands
are True. When either or both of the operands are False, the resultant is False. A pro-
grammer uses AND when two requirements must be True in order for an action or set of
actions to take place, such as when a store requires a customer to have both a driver’s li-
cense and a check-cashing card to cash a check. The NOT operator is the only logical
operator that requires only one operand. The resultant of the NOT operator changes in
an operand from True to False, or from False to True. A programmer uses the NOT op-
erator to change an operand to the opposite value. This operation is sometimes called
reversing the value of the operand.

These mathematical, relational, and logical operators have a hierarchy, or prece-
dence, an order in which their operations take place (see Table 2.8). To reorder the normal

hierarchy

Hierarchy of
Operations

Table 2.8 Hierarchy of Operations

Order of Operations

() Reorders the hierarchy; all operations are completed within
 the parentheses using the same hierarchy.

1. Functions

2. Power

3. \, MOD

4. *, �

5. �, �

6. �, �, �, ��, ��,
 ��

7. NOT

8. AND

9. OR

Numeric

Numeric

Numeric

Numeric

Numeric or string
 or character

Logical

Logical

Logical

Numeric

Numeric

Numeric

Numeric

Logical

Logical

Logical

Logical

Mathematical Operators

Relational Operators

Logical Operators

Operand Data Type Resultant Data Type

OR Operator

AND Operator

NOT Operator

Beginning Problem-Solving Concepts for the Computer � 27

processing sequence, the programmer uses parentheses. The processing of the operands
(as directed by the operators) always starts with the innermost parentheses and works
outward, and processes from left to right. Each level of operators within a set of paren-
theses requires that the computer make another pass through the parentheses, until all
levels have been cleared. This hierarchy is important to the programmer because the or-
der of the operations determines the result of the expression. If the operations are not
completed in the correct order, the result of the expression may be incorrect. For exam-
ple, assuming a 40-hour work week and overtime pay at 1.5 times regular pay, the ex-
pression to calculate overtime pay would subtract 40 from the hours worked and
multiply the result by the regular wage times 1.5. The expression would be written as

As you can see from the hierarchy chart, multiplication is processed before subtraction,
so parentheses must be added to tell the computer to do the subtraction first, before the
multiplication. If the parentheses are not added, the result will be incorrect.

In this hierarchy table the integer and modulo divisions are on a separate level from
real number multiplication and division. However, many languages place these four oper-
ators on the same level. When this is true, it is important to place parentheses around the
integer or modulo operations so that the integer and modulo divisions are executed before
the multiplication and division. In the following example you will get two different results
depending upon whether you execute the integer and modulo division on the same level or
separate them with parentheses to force different levels. Look at the equation:

If the multiplication and integer division is on the same level, the answer will be 1.
When they are on different levels, where the integer division will be executed first, the
answer will be 0. Remember that the execution of operators on the same level is com-
pleted from left to right. To force the integer division to be executed first, resulting in a
zero resultant, the equation would have to be changed to:

Check with the language you are working with to find out whether integer and
modulo divisions are on the same or different levels. In this book we will assume they
are on the different levels. However, please be aware of the difference when starting to
develop equations and expressions for the language you are learning.

Each type of operator requires a certain data type for operands and determines the
data type of the resultant. Mathematical operators require numeric data as the operands
and have numeric resultants. When any of the relational or logical operators are used
(regardless of whether they are used in conjunction with mathematical operators), the
resultant is logical data. Relational operators use numeric, character, or string data types
as the operands; however, the data type of the operands of an operator must be the same.
The logical operators require logical data for operands.

F = 6 * 12 \ 16 + 222

F = 6 * 2 \ 16 + 22

1Hours - 402 * Wage * 1.5

Expressions and Equations

A knowledge of constants and variables, of the three data types, and of operators,
operands, and resultants is not very valuable until you can use these concepts to create
expressions and equations. The problem you are trying to solve may be calculating pay,

28 � Chapter 2

including tax, Social Security, and medical deductions. It may be an inventory problem
with reorder quantities and cash values. It may be a problem of calculating interest or
payments on a loan, or of putting a mailing list in order. These tasks all require the use
of different operators and would be written as expressions and equations in order for the
computer to process the data and arrive at a result. There are very few computer prob-
lems that do not use expressions and equations in their solutions.

Expressions and equations make up part of the instructions in the solution to a
computer problem. An expression processes data, the operands, through the use of op-
erators. For example, to find the number of square feet in a room you would multiply the
length of the room by the width in the expression

An equation stores the resultant of an expression in a memory location in the
computer through the equal sign. The expression above would be used as part of an
instruction in the equation

The resultant of the expression Length * Width would then be stored in a memory loca-
tion called Area.

As you can see in Table 2.9, expressions use no equal sign (except as a relational
operator) and are used as part of an instruction, such as part of an equation. The resul-
tant of an expression is not stored and, therefore, is unavailable for use at another time.
An expression can use numeric, string, character, or logical data types.

Equations are often called assignment statements because the variable on the left-
hand side of the equal sign is assigned the value of the expression on the right-hand side.
The equal sign does not mean equals; instead, it means replaced by or is assigned the
value of. This distinction is important because it is possible to have equations on the
computer that are not allowed in a mathematics class, such as (one is added
to the old value of N to get a new value of N). This equation is the way the computer
counts. There is only one variable on the left-hand side of the equal sign. On the right-
hand side of the equal sign is an expression. The right-hand side is processed before the
assignment is made (see Table 2.9 and the examples that follow).

For the beginning programmer, a big part of learning to solve problems on the
computer is learning how to write and evaluate expressions and equations. (Recall that

N = N + 1

Area = Length * Width

1=2

Length * Width

Table 2.9 Expressions and Equations

Expressions Equations

A + B
A and B are numeric.
The resultant is numeric and is not stored.

C = A + B
C, A, and B are numeric.
The resultant is stored in C.

A 6 B
A and B are numeric, character, or string.
The resultant is logical and is not stored.

C = A 6 B
A and B are numeric, character, or string.
The resultant is stored in C; C is logical.

A OR B
A and B are logical.
The resultant is logical and is not stored.

C = A OR B
C, A, and B are logical.
The resultant is stored in C.

equation

expression

Beginning Problem-Solving Concepts for the Computer � 29

to evaluate means to test for correctness using actual data.) The following examples il-
lustrate how to use the concepts you’ve learned in this chapter to write and evaluate ex-
pressions and equations.

Example 1: Setting Up a Numeric Expression

A programmer will often be given an expression to use in solving a problem. Assume
the programmer has to modify the following mathematical expression for computer use:

The appropriate computer expression would be the following:

All variables, constants, and operators have to be on the same line. There must be an op-
erator between variables and/or constants. For the computer, there are no assumed mul-
tiplication signs. Parentheses are added when the hierarchy has to be reordered or when
parentheses would improve readability.

Follow these steps to complete the expression:

1. Write all parentheses, operands, and operators on a single line with the divi-
dend first, followed by the divisor:

2. Insert all implied operators. The computer does not use any implied operators
as used in mathematics. These usually include multiplication and power signs.

3. Insert all parentheses where the hierarchy needs to be reordered. X + 6 needs
to be calculated before completing the division, therefore parentheses need to
be inserted around the X + 6.

Example 2: Setting Up a Mathematical Equation

A mathematical equation might be given to the programmer in the following form:

The programmer has to modify the equation so that it is in the form of an assignment in-
struction:

Notice that there is only one variable (and no calculations) on the left side and an ex-
pression on the right side of the equal sign.

Follow these steps to complete the equation:

1. Write all parentheses, operands, and operators on a single line:

Y + 3 = X1Z + 52

Y = X * 1Z + 52 - 3

Y + 3 = X1Z + 52

X * 13 * Y + 42 - 4 * Y>1X + 62

X * 13 * Y + 42 - 4 * Y>X + 6

X13Y + 42 - 4Y>X + 6

X * 13 * Y + 42 - 4 * Y>1X + 62

X13Y + 42 -
4Y

X + 6

30 � Chapter 2

2. Use mathematical rules to complete the equation so that there is one variable
on the left side of the equal sign. In this case, subtract 3 from each side:

3. Follow the steps in Example 1 to complete the equation.

Example 3: Setting Up a Relational Expression

A relational expression is used to make decisions. Given the expression

the programmer would change its form to the following:

Because this is a relational expression, either a numeric variable, a numeric constant, or
a mathematical expression is on either side of the operator. X and Y would be the same
data type, in this case, a numeric data type. The resultant would be a logical data type—
True or False, depending on the values of X and Y.

Example 4: Setting Up a Logical Expression

Often a computer decision is based on more than one True or False operand. For example,
in order to cash a check a customer must have a driver’s license (A) or a check-cashing
card (B) on file at the store. As is the case with all logical expressions, this case would
require a logical operator, A OR B. The operands, A and B, are logical data type; it is either
True or False that the customer has a driver’s license, and True or False that she has a
check-cashing card. The resultant is also a logical type: The customer can cash a check
(True or False).

Example 5: Evaluating a Mathematical Expression

To find out if proposed solutions are correct, it is important for the programmer to
evaluate, or test, all expressions and equations. Assume the programmer has written the
expression

The programmer uses the following values to evaluate the expression:

Notice the structure of the evaluation that follows. A dashed line leading to a circle
indicates the operator. The solid lines indicate the operands. Following the illustra-
tion of the equation is a list of the operations and the resultant of each operation. The
number of circles should equal the number of operators. Be sure the circles using
other circles are below the circles they need to use, that is, 3 is lower than 1, 6 is lower
than 3 and 5.

X = 2 Y = 3 Z = 6

5 * 1X + Y2 - 4 * Y>1Z + 62

X 6 Y + 5

X is less than Y + 5

Y = X * 1Z + 52 - 3

 Y = X1Z + 52 - 3
 Y + 3 - 3 = X1Z + 52 - 3

Beginning Problem-Solving Concepts for the Computer � 31

Illustrating the structure of the expression and listing the operations and results in
this way simplifies the evaluation process for the programmer. The evaluation must be
completed according to the hierarchy of operations. The operations within the parenthe-
ses would be completed first, moving from left to right—so X + Y would be completed
first, and Z + 6 second. According to the hierarchy, the programmer would then com-
plete the multiplications and the divisions from left to right. The division would be com-
pleted after the multiplications in this expression only because it is to the right. The final
operation to be completed would be the subtraction.

This evaluation shows how to test a computer expression to see if it matches an
equivalent mathematical expression. It gives the programmer a correct result that can be
compared to the results manually calculated by the client, or by whoever requested the
computer solution to the problem, so one can be sure that the solution is correct.

Example 6: Evaluating a Relational Expression

Assume the programmer has written the expression

The programmer uses the following values to evaluate the expression:

The following illustration shows the structure of the evaluation:

According to the hierarchy of operations, the mathematical operation is completed first.

Operation Resultant
1. A - 2 4
2. Resultant of 1 7 B False

A 2 B� �

2

1

A = 6 B = 8

A - 2 7 B

Operation Resultant
1. X + Y 5
2. Z + 6 12
3. 5 * resultant of 1 25
4. 4 * Y 12
5. Resultant of 4 / resultant of 2 1
6. Resultant of 3 - resultant of 5 24

5 (X � Y) (Z � 6)4 Y ��* *

3

6

1 4

5

2

32 � Chapter 2

Example 7: Evaluating a Logical Expression

Assume the programmer has written the expression

The programmer uses the following values to evaluate the expression:

A AND B OR C AAND

3

21

A = True B = False C = True

A AND B OR C AND A

Operation Resultant
1. A AND B False
2. C AND A True
3. Resultant of 1 OR resultant of 2 True

Example 8: Evaluating an Equation That Uses Both
Relational and Logical Operators

Assume the programmer has written the following equation:

The programmer uses the following values to evaluate the equation:

The operations are completed in hierarchical order from left to right, as illustrated in the
figure.

F �

4

21
3

NOT AND(A � B) (C OR D)

A = 4 B = 2 C = True D = False

F = NOT1A 6 B2 AND 1C OR D2

Operation Resultant
1. A 6 B False
2. C OR D True
3. NOT the resultant of 1 True
4. Resultant of 3 AND

resultant of 2 True
5. Store the resultant of 4

in the memory location
called F.

Example 9: Developing a Table of All Possible
Resultants of a Logical Expression

It is often valuable for a programmer to figure out the resultants for all of the possible
combinations of values of the variables in an expression. To create a table of all possible
combinations, double the number of combinations from a table with one less unknown.
For example:

� One unknown—A. Two combinations: A can be either True or False.

A

True

False

Beginning Problem-Solving Concepts for the Computer � 33

� Two unknowns—A and B. Four combinations: B can be either True or False for
each value of A.

� Three unknowns—A, B, and C. Eight combinations.

Given the expression

the following table gives the resultants for all combinations of the values of A and B. The
equation to find the number of combinations is 2n, where n is the number of variables.
For example, with two variables, A and B, there are four combinations; and with three
variables, A, B, and C, there are eight combinations.

A B

True True

True False

False True

False False

NOT A OR B

True

False

True

True

A OR BNOT

2

1

NOT A OR B

A B

True True

True False

False True

False False

A B C

True True True

True True False

True False True

True False False

False True True

False True False

False False True

False False False

A

True

False

A B

True True

True False

False True

False False

34 � Chapter 2

Example 10: Developing a Logical Expression
from a Given Problem

Many times a programmer will be given the policies of a company and then be required
to set up a logical expression from those policies. To do this, the programmer first needs
to list the items on which the condition is dependent. Then the logical expression can be
developed from this list.

Problem: A large department store has its own charge card. The policy for a
customer to charge an item is that the customer must have a valid charge card
and either a balance of less than $500 or a charge of less than $50.

1. The first step is to list the items the charge is dependent on and their data types:
a. the charge card (logical data type)
b. the balance (numeric data type)
c. the charge amount (numeric data type)

2. The second step is to write down these items as variables along with the condi-
tions on each. Put them on one line, leaving space between, so that the logical
operator can be added next. The resultant or the data type of each expression
must be logical. Remember that the operators must match the data types of the
operands (see Table 2.7). Do not put the logical operators in as of yet.

3. The third step is to put in the logical operators and parentheses:

Because the condition between the balance and the amount is one or the other,
the OR operator is needed. The condition between the charge card and the
other two items is both; this calls for the AND operator. Since the AND has
precedence over the OR, the parentheses are added around the OR operation.

4. You have now created the logical expression. This expression can be used in
various ways:
a. In an assignment statement:

b. In a decision statement (this will be explained in Chapter 6):

If ChargeCard AND 1Balance 6 500 OR Amount 6 502

Then Print “Okay to charge”
Or Else Print “Not Okay to charge”

OkToChg = ChargeCard AND 1Balance 6 500 OR Amount 6 502

ChargeCard AND 1Balance 6 500 OR Amount 6 502

ChargeCard Balance 6 500 Amount 6 50

Summary

This chapter explains fundamental concepts for solving problems on the computer, in-
cluding constants, variables, data types, common functions, operators, expressions, and
equations. It also shows the beginning programmer how to set up computer expressions
and equations.

Constants are values that never change during processing, even when they are named
constants; variables are values that do change. Constants and variables are assigned data

Beginning Problem-Solving Concepts for the Computer � 35

types and are used in expressions and equations. The most common data types include nu-
meric, character, and logical.

Expressions and equations use functions to process standard tasks. Most functions
are part of the computer language. Expressions and equations use operators to process
the data. These operators are of three types: mathematical, relational, and logical. By us-
ing operators and the hierarchy of operations, a programmer can design calculations and
decisions, which are the key to solving problems on the computer.

New Terms

character data

concatenation

constant

data

data type

equation

expression

file

function

hierarchy

identifier

information

logical data

logical operator

mathematical operator

numeric data

operator

parameter

relational operator

variable

Questions

1. Why is it important to maintain a naming convention within the company that is de-
veloping computer programs?

2. Name the rules for naming constants and variables.

3. What is a constant? What is a variable?

4. Fill in the following table with the variable name and data type needed to solve an
inventory problem for White Auto Supplies.

Data Item Variable Name Data Type

a. Name of vendor company

b. Inventory item name

c. Inventory number

d. Quantity

e. Price

f. Address of company

g. Date last ordered

h. Reorder quantity

i. Obsolete item (yes/no)

5. Name the data type for each of the following constants. Explain your answer.
a. 5.38
b. “87654”

36 � Chapter 2

c. True
d. “A”
e. “707-434-5555”
f. “New York”
g. -389
h. 2.45E6
i. 48976.0
j. False

6. What is a function?

7. Why are functions used?

8. What is the difference between the operators /, \, and MOD? Give an example of each.

9. Find the result of the following operations:
a. 5 + 4
b. 10/2
c. True OR False
d. 20 MOD 3
e. 5 6 8
f. 25 MOD 70
g. “A” 7 “H”
h. NOT True
i. 25\70
j. False AND True
k. 20 * 0.5
l. 35 6= 35

m. 35/7
n. False OR False
o. True AND True
p. 50 MOD 5
q. -35 6 67
r. 4.0 ^ 3
s. 60\9
t. 35 6 35
u. True AND False

10. Using the hierarchy chart (Table 2.8), list the order in which the following opera-
tions would be processed. (Remember: Operations are processed left to right within
a level in the hierarchy table.)
a. +, -, *
b. /, \, =
c. OR, *, 6
d. NOT, AND, *
e. NOT, 7, +
f. AND, OR, NOT
g. 6, AND, 7, +
h. *, ^, +
i. NOT, +, \
j. MOD, \, 6

11. Name the data type of the operands and the resultant of each of the following ex-
pressions or equations.

Beginning Problem-Solving Concepts for the Computer � 37

12. What is the difference between an expression and an equation?

13. What does the equal sign mean in an equation? Is the meaning of the equal sign as a
relational operator different from that in an assignment statement? If so, in what way?

Problems

1. Evaluate the following equations, given the values A = 12, B = 3, C = 6, D = 2:
a.
b.
c.
d.
e.

2. Write the following equations in computer form:

a.

b.

c.

3. Is the = sign an assignment instruction or a relational operator in the following
equations? Justify your answer.
a.
b.

4. Set up an equation to calculate the following (create your own variable names):
a. The area of a room.
b. The wall area of a room including windows and doors.
c. The wall area of a room not including two windows and a door.
d. The number of miles given a number of feet. (Use 5,280 feet per mile.)
e. The percent increase (or decrease) of a value given the beginning number and

the ending number. How would the result differ between increase and decrease?
f. The average of five numbers.
g. The sale price of an item given an original price and a percentage discount.

5. Evaluate the following equations given A = 5, B = 4, C = 3, D = 12:
a.
b. E = D MOD A * B

E = A * B + D / C

A - B = 2 + C
A = B + 2 + C

X = 1X - Y22
 X = 1X - Y22

 X = 5Y +
3Z - 1

4 13Z + 12 - Y

X = Y + 3Z -
Z + Y

Z - 3

F = 1A + B2\ D ¿ 2
F = 1A + B2 MOD C
F = A + B / 1C - D ¿ 22
F = 1A + B2 / C - D ¿ 2
F = A + B / C - D ¿ 2

Data Types of Operands Data Types of Resultant

a. A * B

b. D 7 R

c. NOT C

d. B AND F

e. G = B

38 � Chapter 2

c.
d.

6. An employee came in to work and clocked in at MorningIn, clocked out at
NoonOut for lunch, clocked back in at NoonIn, and clocked out to go home at
NightOut (all in minutes since midnight). Set up equations to calculate the number
of hours and the number of minutes the employee worked for the day. (You will
develop two equations.)

7. Steve Thompson bought and charged an electric saw on Date1 and made the first
payment on Date2. Write an equation to calculate how many days (Days) elapsed
between the two dates.

8. Eureka Lumber Company gives a 2% discount if the remaining balance is paid
within 10 days of purchase. Write a logical expression to verify whether a customer
qualifies for this discount. Use the following variable names:

BuyingDate: date the customer purchased the merchandise
PaidDate: date the customer made the final payment

9. A part-time employee worked 20 hours in the first week and 15 hours in the second
week of a two-week pay period. He is paid a weekly salary based on a 40-hour
week. What is his full-time equivalent for the two weeks based on a 40-hour week
(i.e., what percentage of full time did he work)? Write a general equation that could
be used to express and store the full-time equivalent of any hours worked per week.

10. Roger would like to know the average of his test scores. Write an equation that
would calculate the average given five test scores. Write the equation with and
without using a function.

11. Sharon is traveling from city A to city B. The distance between the two cities is a
variable because she would like to use the equation to use for other cities. She
knows that 50% of the time she will be traveling 30 miles an hour and the remain-
ing 50% she will be traveling 65 miles per hour. Write an equation that will calcu-
late the time it will take to travel from one city to the next.

12. Evaluate the following equations, given A = False, B = True, C = False, D = True.
(Include the structure of the order of processing—see page 32 for example.)
a. R = A AND B OR C AND D
b. R = NOT (A AND B) OR NOT (D AND C)
c. R = (A OR B) AND (D OR C)
d. R = NOT (A AND B OR C) AND (A OR B AND D)
e. R = C OR NOT (A AND D) AND (A OR B) OR NOT (A OR C)

13. Create a table that gives all possible answers for the following logical equations.
(Include the structure of the order of processing—see page 33 for example.) Make
clear how you set up the table.
a. R = A OR B
b. R = NOT A OR B
c. R = A AND B AND (B OR C)
d. R = NOT (A OR B) AND NOT (B OR C)
e. R = B AND NOT (A OR C) OR NOT (B AND C)

FullTime =

Days =

E = D / B * 11A + 42 \ 1C + 122
E = 5 * A \ D * 1B + 12

Beginning Problem-Solving Concepts for the Computer � 39

WHAT’S WRONG WITH THIS?

1. What is wrong with these variable names? Can you correct them?
a. City Name referencing the name of a city.
b. Client-name referencing a client name.
c. City/State referencing a city and state.
d. LN referencing a last name.
e. Street address
f. Q for a quantity of books
g. Street_Address_for_Joe’s_Hardware_Supply_Incorporated_Client

2. The answers given are wrong. What is the correct answer and why are the
answers wrong?

The answer to: is:
a. 5 MOD 255 0
b. 250\100 2.5

3. What is wrong with the following expressions? Can you correct them?
a. “L” 6 5
b. “D” * “5”
c. True 6 “F”
d. False 7= 5
e. 5.9\2
f. 3 mod 5.2
g. As an equation: 5 = TotalTime - 40

14. Evaluate the following for the values A = 5, B = 2, C = True, D = False. (Include
the structure of the order of processing.)
a. R = A + 3 7 B - 1 AND C OR D
b. R = NOT C OR D OR A - 3 6= B

15. Set up a logical expression for the following conditions. A company gives a bonus
at the end of each fiscal year. For an employee to get a bonus, the following must be
true:
a. The employee has been working at the company for more than six months with

no negative reports.
b. The employee has earned more than $5,000 during the fiscal year.

16. Set up a logical expression for the following conditions. A retail store has this
check-cashing policy:
a. The customer must have a driver’s license.
b. When the check is for more than $50, the customer must have a check-cashing

card on file.

This page intentionally left blank

Chapter 3

Planning Your Solution

Overview

Communicating with the Computer
Organizing the Solution

Analyzing the Problem
Developing the Interactivity Chart
Developing the IPO Chart
Writing the Algorithms
Drawing the Flowcharts
Pseudocode
Internal and External Documentation

Introduction to UML (Unified Modeling Language)
Use Case Diagrams
Class Diagrams
Sequence Diagrams
Statechart Diagrams
Activity Diagrams

Using the Tools
Testing the Solution
Coding the Solution
Software Development Cycle

Objectives

When you have finished this chapter, you should be able to:

1. List and describe the eight basic tools used in this book to aid in the develop-
ment of a solution to a problem.

2. Use a problem analysis chart to consolidate data for a problem.

41

42 � Chapter 3

3. Use an interactivity chart to designate the modules to be used in the solution
of a problem.

4. Use an IPO chart to designate the input, processing, module number, and out-
put for a solution of a problem.

5. Use algorithms, flowcharts, and pseudocode to develop the instructions for
each module in the solution of a problem.

6. Describe the importance of internal and external documentation.
7. Describe the five diagrams used in UML.

Computers are only as good as their hardware, their software, and the people using them.
Assuming the hardware has been engineered to accomplish a given job, the efficiency of
the computer relies on the effectiveness of the programmer.

The computer must be told what to do. It needs a set of instructions, the solution,
in order to process data in the correct sequence and reach the desired results. For great-
est efficiency, the programmer or the user has to be able to easily read and interpret the
solution. The solution will be most effective if the programmer follows certain steps and
rules that have been developed over the years. The solution becomes a program when it
is coded into a computer language during the final stages of programming.

Programmers have three resources that they need to optimize for cost effective-
ness: computer memory, computer time, and programmer time. Early computers were
much less useful and efficient than they are today. Programmers worked alone, and only
when they left a company did their programs go to others. Since computers were slow
and had small memories, conservation of computer time and memory was of utmost im-
portance. For these reasons and the fact that the profession was new, programs were of-
ten hard to read and maintain. Over the years, both computers and programming
methods have changed. Because programs are larger and more complex, and need to be
completed in less time than ever before, today many programmers work together on the
same program. As a result, readability is now what’s most important. Because comput-
ers are much faster with much more memory, programmers may sacrifice these re-
sources somewhat in favor of improved readability. Cost effectiveness, decrease in
programmer frustration, and increase in programmer satisfaction are the rewards.

The type of problem the computer can solve best is one that can be solved algo-
rithmically—that is, the problem can be solved with a single sequence of instructions.
These instructions must be written in a way the computer can understand, and the com-
puter executes them in the order presented in the program. If the instructions are written
according to the appropriate rules and they correctly follow the syntax of the computer
language, then the computer will complete the task. Although this scrupulous adherence
to the instructions is usually what the programmer wants, it is also, believe it or not, the
most frustrating thing about the computer. If the instructions make sense to the com-
puter, it will complete them. If the programmer has made an error in the instructions, the
results are not likely to be what was intended. The computer does not reason, nor does it
read minds; it only follows instructions.

Communicating with the Computer

Since the computer does not speak English as you do, you have to learn its system of
communication or language. For the computer to “understand’’ a message, its system of
communication requires instructions governed by specific rules. If the instructions you
write are incorrect, the computer will give an error message, the wrong answer, or no

Planning Your Solution � 43

answer at all. If the instructions are not properly sequenced, the computer will, never-
theless, execute them in the order given, and the result will be wrong.

The meaning of an instruction is essentially the same in any computer language or
application. The differences between instructions from one language and another are in
how they are set up. Syntax refers to the rules governing the computer operating system,
the language, and the application. An error is called a bug. A bug must be found and cor-
rected, a process called debugging. Many bugs are a result of syntax errors, but some are
logic errors. You can find and correct most logic errors during the problem-solving
process. You will find and correct syntax errors when you enter your program into the
computer. All syntax errors must be corrected before you execute and test your program.

Although a set of instructions must be in a correct order to lead to the correct re-
sult, there may be several “correct’’ orders, just as there are several routes leading from
New York to San Francisco. Whether the routes are equally efficient doesn’t affect the
result. When efficiency is important, then and only then should each route be examined
and kept or discarded. People employ different logic and different ways of thinking.
Two programmers may develop equally good solutions to a problem, but the solutions
may look entirely different. There is nothing wrong with this. Computers are exact ma-
chines, but the people working with them are not.

syntax

bug
debugging

problem analysis chart
structure chart
interactivity chart
IPO chart
algorithms
flowchart
pseudocode
coupling diagram
data dictionary
UML

Organizing the Solution

Certain organizational tools will help you learn to solve problems on the computer. The
tools used in this book and illustrated in this chapter include the problem analysis
chart, which shows a beginning analysis of the problem; the structure chart or
interactivity chart, which shows the overall layout or structure of the solution;
the IPO chart, which shows the input, the processing, and the output; the algorithms,
which show the sequence of instructions comprising the solution; and the flowcharts,
which are graphic representations of the algorithms and pseudocode, which represents
a language like solution. A coupling diagram and Data Dictionary are presented in
Chapter 4. The coupling diagram shows the relationship between the modules and the
data needed for the modules. The Data Dictionary lists all date variable names and their
definitions. UML (Unified Modeling Language) is a basic tool when using Object
Oriented Programming stucture. An introduction to UML is presented in this chapter,
followed by usage in Chapters 15 and 16. To analyze a problem and set up the most ef-
ficient solution, a programmer organizes the solution by using all or some of these tools.
When the programmer does not use these tools during the problem-solving process, the
solution takes longer to program, and the final program is less efficient, lacks readabil-
ity, and increases programmer frustration.

Analyzing the Problem

To organize a solution, the programmer first has to understand and analyze the require-
ments of the problem. A good way to analyze a problem is to separate it into four parts,
shown in the problem analysis chart (PAC) in Figure 3.1:

1. The given data
2. The required results
3. The processing that is required in the problem
4. A list of solution alternatives

44 � Chapter 3

(A blank problem analysis chart for student use appears in Appendix D, Figure D.1). As
a problem unfolds (in a textbook or in the real world), the programmer can use this form
to sort it out. The PAC allows the problem solver to eliminate the words and glean only
the facts from the problem. Data, constants and variables, would be entered in the Given
Data section. Variable data are the input values. Requirements for the output reports
would be entered under Required Results. Any equations or other processing require-
ments would be listed in the Processing Required section. Finally, the programmer
would write any other ideas that spring to mind concerning the solution in the Solution
Alternatives section.

The following problem illustrates the use of the problem-solving tools: Calculate
the gross pay of an employee given the hours worked and the rate of pay. The gross pay
is calculated by multiplying the hours worked by the rate of pay.

Figure 3.2 shows how the problem solver would fill in the PAC for this problem.
The hours worked and the pay rate are the data given and are put into the Given Data
box. The gross pay is what needs to be calculated and given to the user; therefore it is
put into the Required Results box. The formula used is

It is put into the Processing Required box. The Solution Alternatives are as follows:

1. Define the hours worked and the pay rate as constants.
2. Define the hours worked and the pay rate as input values.

GrossPay = Hours * PayRate

Given Data

Section 1: Data given in the problem or
provided by the user. These can
be known values or general
names for data, such as price,
quantity, and so forth.

Processing Required

Section 3: List of processing required. This
includes equations or other types
of processing, such as sorting,
searching, and so forth.

Required Results

Section 2: Requirements for the output
reports. This includes the
information needed and the
format required.

Solution Alternatives

Section 4: List of ideas for the solution of
the problem.

Figure 3.1 Problem Analysis Chart

Given Data

Processing Required

Hours
Pay Rate

GrossPay � Hours ∗ PayRate

Required Results

Solution Alternatives

Gross Pay

 1. Define the hours worked
 and pay rate as constants.
∗2. Define the hours worked
 and pay rate as input values.

Figure 3.2 Problem Analysis Chart for the Payroll Problem

Planning Your Solution � 45

The second alternative will be used, as signified by the asterisk in the figure, since the
program will not need to be changed in order to calculate the gross pay for another
employee.

The problem analysis chart is an aid to clear thinking because it helps the problem
solver to identify the essential data and information in a problem and to disregard the
nonessentials. Most problems programmers work with are word problems. This is true
whether they are working in a classroom situation or out on the job. The PAC helps to
pare down the words.

Developing the Interactivity Chart

The next step in organizing your solution is to divide the processing into subtasks called
modules and then to connect these modules together to show the interaction of processing
between the modules. Each module should contain the tasks to accomplish one function,
such as entering data, printing results, or calculating results. There will be one module that
controls the flow to most of the other modules. This will be called the Control or Main
module. Each module should contain no more than 20 instructions. This breakdown en-
ables you to view a complex problem in simpler parts and to program smaller, simpler
parts of a program rather than one large, complex program. This chart is called the inter-
activity chart or structure chart. In the rest of the text, we will refer to this chart as the in-
teractivity chart since it really shows how the modules interact with each other.

Today’s programmer will use two different ways of looking at a solution to a
problem. Before the advent of the graphic user interface, all solutions were procedural
in nature. Solutions were developed using a top-down method to develop a procedural
program that was executed from the first lines of code to the end. The user had very
little to do with the order of execution of the modules. The program was in complete
control. However, with the advent of the graphic user interface, which allows the user
to choose what to do next, programming changed from procedural to object-oriented
programming. In object-oriented programming, execution is completed through an in-
teractivity between the computer and the user. The user is in control, not the program.
Modules are still used, and are basically the same. Within each module the execution
is procedural. The difference lies in when each module will be executed. In proce-
dural programming, there is a direct order of processing. In object-oriented program-
ming, there is no preconceived order. The user directs the order of execution of the
modules. Object-oriented programming is discussed in Chapters 16 and 17. The
Object Oriented Activity Chart will be discussed in these chapters.

In developing the procedural interactivity chart, use the top-down method. The
top-down method simply means that as you divide the problem into subtasks, you illus-
trate them in the order in which they will be processed from the top to the bottom of the
chart. When using the top-down method, the module that encompasses the complete
solution becomes what is called the Control module because it controls the processing
of all the data. The subtasks of this module are then located below it in the structure
chart. The interactivity chart shows what will happen, not how it will happen.

As you can see in Figure 3.3, the interactivity chart shows the relationships of the
parts of a problem to each other and to the whole. The programmer indicates duplicate
modules by darkening the upper left-hand corner of each module and writing the name of
the module inside the rectangle, giving the same name to identical tasks. Notice in Fig-
ure 3.3 that Module3 is found in two places, indicating that it is processed at two different
points in the solution. Since it is the same module in both places, it carries the same name.

A module processes only those tasks connected to it by a network of horizontal
and vertical lines. In Figure 3.3, the Control module processes Module1, Module2,

module

46 � Chapter 3

Until EndOfFile

Control

Module1

Module3 Module6 Module7

Module2 Module3 Module4 Module5

Figure 3.3 The Interactivity Chart

Module3, Module4, and Module5. The darkened circles indicate that the module is part
of a set of modules that are processed many times—those in a loop. At the level below
the Control module, Module1 processes Module3, and Module2 processes Module6 and
Module7. However, only one of these modules will be processed since they are part of a
decision. That is, the instructions in Module2 and the appropriate data would lead the
computer to choose one of the two modules. The diamond on the vertical line above the
box indicates which modules are involved in a decision. Annotation may be placed
beside the circle or diamond to indicate the condition. (Appendix D, Figure D.2 is an in-
teractivity chart for student use.)

Dividing a solution into modules is not an easy job. When you approach a solution
to a problem, you need to think about the basic things you want to accomplish, during
the processing, in general terms. Some of these might be input of data, initialization of
data, types of processing such as calculations or putting data in order, and completing
the solution. In most solutions you will have a control module that controls the process-
ing of the solution. In Figure 3.4, the modules include:

1. The control module (Control) to control the processing of the solution.
2. An initialize module (Initialize) to process data that needs to be accomplished

only once in the solution and at the beginning.

Until NoMoreEmployees

Control

Initialize

Calculate Salaried Hourly

Read Calculate Print WrapUp

Figure 3.4 The Completed Interactivity Chart

Planning Your Solution � 47

3. A read module (Read) to enter data needed in the solution.
4. Two modules (Salaried and Hourly) to enter data needed for two different

types of employees.
5. A calculation module (Calculate) to process the data for each employee.
6. A print module (Print) to print the processed information.
7. A wrap-up module (WrapUp) to process any data that should be done only

once in the solution and at the end of the solution.

These are some of the standard modules. In the next several chapters you might start with
four modules. The control module, the read module, the calculation module, and the print
module are basic to most programs. From there, add other modules as needed along with
the addition of processing symbols showing which modules are duplicates, which are part
of a decision, and which are repeated in a loop. In Figure 3.4, the Calculate module is du-
plicated in two places as indicated by the shaded in corner; the Salaried and Hourly mod-
ules are part of a decision as indicated by the diamond; and the Read module, the Calculate
module, and the Print module are repeated until the NoMoreEmpolyees (when there are no
more employees to process) as indicated by the filled-in circle. These concepts will be dis-
cussed further in Chapter 4.

Figure 3.5 shows the interactivity chart for the payroll problem. The top rectangle
is the Control module, which processes the Read, the Calc, and the Print modules.

Developing the IPO Chart

The IPO (input-processing-output) chart extends and organizes the information in the prob-
lem analysis chart. It shows in more detail what data items are input, what processing takes
place on that data, and what information will be the end result, the output (see Figure 3.6).
The IPO chart also shows where in the solution the processing takes place. The output is the

Read Calc Print

until NoMoreEmployees

PayrollControl

Figure 3.5 The Interactivity Chart for the Payroll Problem

Input

All input data (from
Section 1 of the
problem analysis
chart)

All processing in steps
(from Sections 3 and 4
of the problem
analysis chart)

Module reference
from the
interactivity chart

All output requirements
(from Sections 1 and
2 of the problem
analysis chart)

Processing OutputModule Reference

Figure 3.6 The IPO Chart

48 � Chapter 3

first to be completed in an IPO chart. The next is the input, and the last is the processing.
This may sound backwards, but it is really very logical. An analogy to completing an IPO
chart would be planning a trip. The first thing you need to know is the destination—San
Francisco, Paris, New York. This information is the output. Then you can plan what to
pack, your means of transportation, and all the other essentials for starting out—the input.
Finally, you plan the route—the processing. How can you know what to pack or what route
to follow if you don’t know where you’re going?

The IPO chart has four sections: the Input, the Processing, the Module Reference,
and the Output. The Input section contains all input data from the problem analysis chart.
The input includes all given data from Section 1 on the problem analysis chart. The
Processing section contains all processing, evident and implied, from Sections 3 and 4 of
the problem analysis chart. The Module Reference section contains the number from the
interactivity chart of the module in which each step in the processing is to be completed.
The Output section includes all required output as designated by the problem and/or the
user; it comes from Section 2, along with the needed input items from Section 1, of the
problem analysis chart. (An IPO chart for student use appears in Appendix D, Figure D.3.)

To illustrate how to use an IPO chart, Figure 3.7 shows one for the payroll prob-
lem. The input, the processing, and the output are taken from Figure 3.2, the problem
analysis chart for the payroll problem. The module references are taken from Figure 3.5,
the interactivity chart for this problem. They show which module will perform each step
in the processing. Notice also that these steps are numbered in the order to be processed.

Writing the Algorithms

After using the structure chart and the IPO chart, the next step in organizing a solution
is for the programmer to develop sets of instructions for the computer, called
algorithms (see Figure 3.8). To complete all of the algorithms needed to solve a prob-
lem, the programmer writes a separate set of instructions for each module in the structure

Input

Hours Worked
Pay Rate

Processing

1. Enter Hours Worked
2. Enter Pay Rate
3. Calculate Pay
4. Print Pay
5. End

Module Reference

Read
Read
Calc
Print
PayRollControl

Output

Gross pay

Figure 3.7 The IPO Chart for the Payroll Problem

Control Module

1. Instruction

2. Instruction

3. ..

4. ..

 ..

—. end

Name of Module (list of parameters)

1. Instruction

2. Instruction

3. ..

4. ..

 ..

—, exit

Figure 3.8 The Form of an Algorithm

Algorithms

Planning Your Solution � 49

chart. To be understood by the computer, the instructions have to be written according
to certain rules that will be explained in future chapters throughout this book. Setting
up the algorithms is probably the hardest part of problem solving on the computer. The
instructions cannot assume anything, cannot skip steps, must be executable one step at
a time, and must be complete. The modules are taken from the interactivity chart, and
the processing is taken from the IPO chart. The number of instructions in an algorithm
is determined by the way the programmer chooses to solve the problem. The algo-
rithms pull the interactivity chart and the IPO chart together to give a logical step-by-
step solution. Note in Figure 3.8, the Control module uses an End since this is the end
of the processing. The other modules use Exit because the processing continues.

Flowchart Symbol Explanation

Flowlines are indicated by straight lines
with optional arrows to show the direction
of data flow. The arrowhead is necessary
when the flow direction might be in doubt.
Flowlines are used to connect blocks by
exiting from one and entering another.

Flowlines

Flattened ellipses indicate the start and
the end of a module. An ellipse uses the
name of the module at the start. The end
is indicated by the word end or stop for
the top or Control module and the word
exit for all other modules. A start has no
flowlines entering it and only one exiting
it; an end or exit has one flowline entering
it but none exiting it.

End/Stop/Exit

The rectangle indicates a processing
block, for such things as calculations,
opening and closing files, and so forth.
A processing block has one entrance
and one exit.

Processing

The parallelogram indicates input to and
output from the computer memory. An
input/output (I/O) block has one entrance
and only one exit.

I/O

Start

The diamond indicates a decision. It has
one entrance and two and only two exits
from the block. One exit is the action
when the resultant is True and the other
exit is the action when the resultant is
False.Decision

Figure 3.9 Flowchart Symbols (continued on page 50)

50 � Chapter 3

There are four algorithms, flowcharts, and pseudocode for the payroll problem be-
cause there are four different modules in the structure chart. Figure 3.10 shows how the
flowcharts, algorithms, and pseudocode correspond for the payroll problem. Figure 3.11
shows the order of processing from module to module.

Drawing the Flowcharts

From the algorithms the programmer develops the flowcharts, graphic representations
of the algorithms. The algorithms and the flowcharts are the final steps in organizing a
solution. Using them, the programmer can test the solution for bugs and go on to code
the problem into a computer language for entry into the computer. A flowchart will
show errors in logic not readily visible in the other charts. Also, a set of data can be
tested easily using a flowchart.

Flowchart

* These connectors should be used as little as possible. They should
be used to enhance readability. Overuse decreases readability and
produces a cluttered effect.

Flowchart Symbol Explanation

Rectangles with lines down each side
indicate the process of modules.They
have one entrance and only one exit.

Process Module

The polygon indicates a loop with a
counter. The counter starts with A (the
beginning value) and is incremented by S
(the incrementor value) until the counter
is greater than B (the ending value).
Counter is a variable. A, B, and S may
be constants, variables, or expressions.

Automatic-Counter Loop

Flowchart sections can be connected with
two different symbols. The circle connects
sections on the same page, and the home
base plate connects flowcharts from page
to page. Inside these two symbols the
programmer writes letters or numbers. The
on-page connector uses letters inside the
circle to indicate where the adjoining con-
nector is located. An A connects to an A, a
B to a B, etc. The off-page connectors use
the page number where the next part or the
previous part of the flowchart is located. This
allows the reader to easily follow the flow-
chart. On- and off-page connectors will have
either an entrance or an exit.

On-Page Connectors*

Off-Page Connectors*

Counter
A B

S

Figure 3.9 Flowchart Symbols (continued from page 49)

Planning Your Solution � 51

There are flowchart symbols for use with various types of processing. Figure 3.9
shows and explains some general flowchart symbols. There are many specific
symbols, such as printer output, monitor output, and so forth, that are used in sys-
tems flowcharts.

A flowchart shows the flow of the processing from the beginning to the end of a
solution. Each block in a flowchart represents one instruction from an algorithm.
Flowlines indicate the direction of the data flow. Most blocks have one or more
entrances, flowlines directing the flow of the data into the block. Most blocks have only
one exit, flowlines directing the data out of the block, since, in most cases, data can flow
to only one other block. The exception to this rule is a block representing a decision
instruction, an instruction that enables the computer to make one of two choices. A
decision block has two exits, one for each choice.

Algorithm Flowchart Pseudocode

Pseudocode Pseudocode

Read

Control
Control Module

1. Repeat
 Process Read
 Process Calc
 Process Print
 Until
 NoMoreEmployees

2. End

 Repeat
 Process Read
 Process Calc
 Process Print
 Until
 NoMoreEmployees

 End

Pseudocode

End

True

False

Repeat

Calc

Print

Until
NoMoreEmployees

Algorithm Flowchart

Read

Read
Hours, PayRate

Read Module

1. Read Hours, PayRate

2. Exit

 Read Hours, PayRate

 Exit

Exit

Algorithm Flowchart

Print

Print
GrossPay

Print Module

1. Print Pay

2. Exit

 Print Pay

 Exit

Exit

Algorithm Flowchart

Calc

GrossPay �
Hours * PayRate

Calc Module

1. GrossPay �
 HoursWorked *
 PayRate

2. Exit

 GrossPay �
 Hours * PayRate

 Exit

Exit

Figure 3.10 The Algorithms and Flowcharts for the Payroll Problem

52 � Chapter 3

Read

Read
Hours, PayRate

Exit

Exit

Exit

Calc

GrossPay �
Hours * PayRate

Print

Print
GrossPay

Control

Read

Calc

Print

Until
NoMoreEmployees

End

True

False

Repeat

Figure 3.11 Order of Execution of Instructions

Planning Your Solution � 53

Besides the decision instructions, Figure 3.9 refers to another type of instruction
that you will learn to use later, but it does deserve a brief explanation here. A loop en-
ables the computer to perform a task repeatedly during the processing of a solution. An
automatic-counter loop is a type of loop that enables the computer to count in incre-
ments of a given value; the increment can be 1, 2, 5, or whatever. That given value is the
incrementor referred to in Figure 3.9.

The following are some of the rules for drawing flowcharts:

1. You should write the instructions inside the blocks.
2. If there is something you need to remember, you can write a note beside a

block. Test values of variables also can be placed beside flowchart blocks.
This makes the flowchart an annotated flowchart.

3. A flowchart always starts at the top of the page and flows to the bottom. If you
need more than one page for a flowchart, start another column on the same
page or go on to another page. On- and off-page connectors are used to con-
nect parts of the flowchart. A flowchart should not flow up, or sideways, or all
over the page.

4. Use a computer program, or a template and a straightedge, to draw the flow-
chart. When you use a computer program or a template, the symbols are the
same size and your flowchart will be neater and easier to read.

5. Make the blocks big enough to write instructions so they can be easily read.
6. Put the module number and name from the interactivity chart in the upper

right-hand corner of the page for quick reference to the correct module.
7. Have plenty of paper on hand since the final copy of the flowchart normally

will not be the first draft.
8. Use a pencil with a large eraser.

It is helpful to keep the algorithm and the flowchart of a module on the same
page. Figure 3.12 shows a form (also in Appendix D, Figure D.4) you can use to
develop your algorithms and flowcharts. Notice the last four sections of the form. The
first is the Annotation section. Here you put notes about the algorithms and the flow-
charts including test data, information about variables, things to remember, and so
forth. The Test section is used to test the solution with sample data. The other two sec-
tions, Internal Documentation and External Documentation, are for notes to refer to
later when you are completing the internal and external documentation. The last four
sections of Figure 3.12 are optional but helpful in many cases.

Pseudocode

Pseudocode is similar to the algorithm without the numbers and somewhat condensed.
The pseudocode for the Payroll problem is given on the right hand side of the flow-
charts. It closely follows the algorithm, but is characteristically closer to what you
would write in a computer language. In this book, both the algorithm and the
pseudocode will be given with developed problems. Your instructor may choose to use
one or the other.

Internal and External Documentation

Internal documentation consists of remarks written with the instructions to explain what
is being done in the program. External documentation is made up of the manuals or help
menus written about the solution. Documentation of your program is very important.

Rules for Drawing
Flowcharts

annotated flowchart

internal documentation
external documentation

54
�

C
hapter 3

Algorithm Flowchart AnnotationPseudocode Test
Internal

Documentation
External

Documentation

Figure 3.12 Algorithm and Flowchart Form

Planning Your Solution � 55

Good programming techniques require a program to be easily read by another pro-
grammer. The majority of the time, a program is passed from one programmer to an-
other programmer. Proper internal documentation ensures that the new programmer will
be able to learn about the program in the least amount of time. Internal documentation
should include such things as people who have worked on the program, an abstract of
the program, variable usage, notes about the development of the program, and anything
else that will enable the new programmer to understand this program in the least amount
of time. Internal documentation is written as the program is coded. Be careful not to
overdo the internal documentation. Write enough information to help readability, but
not so much that the instructions are lost in the remarks.

External documentation is for the user of the program. The end user will use the
program to help solve problems. Proper external documentation ensures that the end user
will have good instructions in order to learn to use this program in the least amount of
time. External documentation should also allow the end user to find answers to questions
arising while using the program. Good external documentation increases productivity for
the end user. External documentation should include such things as tutorials, input defin-
itions, usage instructions, installation instructions, command explanations, and anything
else that will allow the end user to learn to use this program in the least amount of time.
External documentation may be printed or electronic, such as help menus.

Introduction to UML (Unified Modeling Language)

Unified Modeling Language (UML) is used to create a logical model of your solution. It
uses various diagrams to describe the entire system. These diagrams help produce a
model of the problem and lead to a better understanding of the requirements of a prob-
lem. Through a better understanding of a problem, a better solution can be developed
using an object-oriented language. UML is increasingly being used in the programming
industry to design and communicate a solution to a problem. This is an overview of the
various diagrams and terminology that accompanies them. UML will be revisited in the
chapters on Object Oriented Programming.

The five diagrams defined are use case diagrams, class diagrams, sequence dia-
grams, state chart diagrams, and activity diagrams.

Use Case Diagrams

Use case diagrams describe how a system functions from the user’s standpoint. They
present who may use what part of the system. There are basically two parts of a use case
diagram: the actor and the use case. The actor represents the users of the system, in-
cluding human and nonhuman entities. The use case describes the services required by
the actor. It is represented by an oval with the service or function written inside.
Communication is indicated by lines connecting the actor and the use case. The series of
use cases required for this part of the solution are encased in a rectangle with the name
of the system in the top part of the rectangle. See Figure 3.13.

The actors in Figure 3.14 are the librarian and the client. The case uses are to add
books, delete books, add clients, delete clients, list books, list clients, check out books,
and check in books. There may be others, but these are some of the functions of the sys-
tem. The client may access only the check-in and check-out case uses. The librarian
may access all case uses. The assistant librarian can access everything except adding or
deleting books and clients.

56 � Chapter 3

Actors: System Name

Use Case Name

Use Case Name

Use Case Name

Figure 3.13 Use Case Diagram

Librarian

Client

Book Checkout

Check Out Book

Check In Book

Add a Book

Delete a Book

List Book

List Client

Add Client

Delete Client

Assistant
Librarian

Figure 3.14 Use Case Diagram

Planning Your Solution � 57

Class Diagrams

Class diagrams graphically describe how a class functions. Basically, they describe the
data structure of the solution. They describe the class, their attributes, and their opera-
tions. The simplest form is:

See Figure 3.15 for a class diagram of the Books class. The Books class includes
all books. The attributes for the Books class include library ID number, the name of the
book, its author, its ISBN, its publisher, year of its publication, whether it is checked
out, the client to whom the book is checked out, and where in the library the book is lo-
cated. The functions that involve the Books class include checking out a book, check-
ing in a book, listing all books, adding books, deleting books, and updating data on
individual books.

Sequence Diagrams

Sequencing diagrams graphically present the interactivity between objects. The interac-
tions are represented as messages in the diagram. The diagram shows the actions by the
user and the subsequent actions that result between objects. See Figure 3.16. Notice that
the user interacts with the system by sending a message of what is to be accomplished to
an object. The object may then send another message to another object to accomplish
another task. The series may include any number of messages. The number of objects
that are performing tasks and interacting with other objects also may be unlimited. See
Figure 3.17 for a sequence diagram of starting a car. The user sends a message to the
ignition by turning the key. The ignition then sends a message to the engine to start. The
user sends a message to the engine to accelerate or not by pressing or releasing the gas

Class Name

Attributes

Operations

Books Class

Library ID number
Name
Author
ISBN
Publisher
Year of publication
Checked out
Client checked out to
Area in library

Check out book
Check in book
List each book data
Add book
Delete book
Update book data

Figure 3.15 Class Diagram of Books Class

58 � Chapter 3

User:

Object A

Message

Message

Return

Object B

Return

Time

Figure 3.16 Sequence Diagram

Driver:

Ignition

Turn Key

Turn Over

Stop Engine

Engine

Turn Off Key

Press Gas Pedal

Release Gas Pedal

Time

Figure 3.17 Sequence Diagram for Starting and Turning Off a Car Engine

Planning Your Solution � 59

pedal. The user sends a message to the ignition to turn off the engine by turning the key.
The ignition then sends a message to the engine to stop running. This diagram is simpli-
fied. You may add brakes, gears, and so forth to this diagram.

Statechart Diagrams

A statechart diagram describes what happens to a given value of an object as it pro-
ceeds through the system. See Figure 3.18. An event is an activity that sends a message
that causes something to happen. The action is the set of tasks or instructions that is the
response to the event.

Activity Diagrams

An activity diagram describes the flow of activities. This type of diagram is similar to a
data flow chart. It specifies what happens and when. The major difference is in the sym-
bols used. Because you are representing general activities and not specific instructions,
all activities use a flattened ellipse. See Figure 3.19. You may add decision structures as
necessary. The flow may be from top down or may be from left to right as in Figure 3.20.

These UML diagrams illustrate how you can design and develop a solution using
an object-oriented language. When you write the various functions, modules, or scripts,
you will use the four logic structures presented in Chapters 4–8.

Action

State A:

Action

State B:

Event to enter

Event to enter

Figure 3.18 Statechart Diagram

Using the Tools

The problem-solving tools used in this book are the problem analysis chart, the structure
chart or interactivity chart, the IPO chart, the algorithm, and the flowchart. There is
much duplication in these tools. Because of this duplication, you will find that after the
first few weeks you will drop the use of some of these tools. However, for the first few

60 � Chapter 3

Activity

Activity

Activity

Activity

Activity

Activity

Figure 3.19 Activity Diagram

Activity Activity

Activity

Activity

Activity

Figure 3.20 Horizontal Activity Diagram

Planning Your Solution � 61

problems, you should use all of the tools. In this way you will know which ones help
you the most. You should end up using at least four of the eight tools:

1. The PAC
2. The IPO Chart
3. The Coupling Diagram
4. The Data Dictionary
5. The Algorithm
6. The Flowchart
7. The Pseudocode
8. UML

Other tools are presented in Appendix D.

Testing the Solution

When a solution is complete, it is important to test it to make sure it meets the requirements
of the user, and to check for errors in logic or in the setup of the expressions and equations.
To test a solution, the programmer selects test data, a set of values for the input data, and
works them through every step in the solution. It is important to select test data carefully, so
the correctness of the results can be checked with as much accuracy as possible. The values
of the input data should be capable of checking logic and calculations thoroughly. For ex-
ample, to test the expression X/Y, the test data should be numbers other than 1. Since 1/1 is
1, and 1 * 1 is also 1, this set of data would not accurately test the expression.

A solution should never be assumed correct. If a bug is detected, the solution has
to be modified to correct it, and then the testing process is started again at the beginning.
Logic errors, such as incorrect loop conditions or wrong conditions in a decision state-
ment, are the hardest to find and correct. It takes only a few logic errors to produce a
program that is unreadable and a programmer who is frustrated. It is far easier to correct
the solution in the problem-solving stages of program development than after the pro-
gram is put into the computer.

To test your solution, select a tested answer to the solution and then use that data to
carefully step through your solution to see whether your answer is the same as the tested an-
swer. Be sure you do everything that the computer would do. If your answer differs from the
tested one, then you need to review where the difference occurred. You might have a wrong
ending to a loop, or you may be counting wrong, or start with a bad value, or any number of
other problems.

Once you have completed the steps described so far, you have finished analyzing the
problem and organizing the solution. This book stops with testing the solution. The next
step is writing the solution of the problem into a computer language—that is, coding the
solution. You will learn to code solutions when you take language courses.

If the programmer follows the proper steps in developing the solution, there should
be few logic errors in the program, and the testing and coding should go quickly. Most
bugs will be syntax errors or will stem from a misunderstanding of the original problem.
Often the process will appear shorter and easier if you skip these problem-solving steps

Coding the Solution

Testing a Solution

Coding the Solution

62 � Chapter 3

and code directly into the computer. The experienced programmer knows the fallacy of
this shortsighted reasoning; this approach is almost always more time consuming, and
the resulting program is less readable and less efficient.

Summary

The efficiency of the computer relies on the effectiveness of the programmer or the user.
The programmer must write solutions that are clear, organized, and correct. A solution is
a sequence of instructions for solving a problem. A program is a solution after it has been
coded into a computer language. Data are stored internally in memory locations according
to variable names and externally on a magnetic disk. External data are stored in sections
called files, which are divided into records, which are further divided into fields. The file
must be opened before accessing the data and closed when the user has finished with it.

The steps in organizing the solution to a problem start with problem analysis, a
process whereby you separate a problem into four parts, including given data, required
results, processing needs of the problem, and solution alternatives. The problem analy-
sis chart is an aid to completing this first step. Second, the interactivity chart is devel-
oped showing the breakdown of the whole problem into subtasks called modules. The
coupling diagram indicates how the data flows from one module to another. The IPO

Software Development Cycle

The development of a solution to a problem is a continuing process until the problem
becomes obsolete. There are five steps in the software development cycle. They are:

1. The analysis of the problem. This includes analyzing the problem to identify
the needed data, the required results, and some ideas of how to process the
data to achieve the desired results. The PAC is used in this step.

2. The design of the solution. This includes deciding what modules to use, how
they interact, and naming the variables. The IPO chart, the interactivity chart,
the coupling diagram, and the data dictionary are used in this step.

3. The development of the solution. This includes the development and testing of
the code for each of the modules. The development of the code includes the
use of algorithms, flowcharts, pseudocode, UML and the code in the desired
computer language. When the program has been coded in the desired lan-
guage, the testing begins. Multiple data should be used to make sure all paths
of the program are correct.

4. The implementation of the solution. At this point the program is ready for use.
This includes marketing, training, and final testing. Many times it first goes
through selected audience to finalize the testing, before it is released for gen-
eral use.

5. Maintenance and review of the solution. After the program is in general use,
it must be maintained and reviewed often. Maintenance includes correction of
errors found after it was released and minor updates to the program. The pro-
gram should be reviewed often. If there are major updates then the software
development cycle starts over. If after the review, the program is deemed ob-
solete, then it is taken off the market.

It is important to develop good, well-running software that is easy to maintain and review.
In order to do this, the five steps of the software development cycle should be followed.

Planning Your Solution � 63

chart is the third step; it shows the input, the processing, and the output. The algorithms
are developed fourth, showing in detail the sequence of instructions in the solution. Next,
from the algorithms the programmer draws the flowcharts, showing graphic representa-
tions of the algorithms. Last is the development of the pseudocode. After completing
these steps, the programmer can test, code, and implement the solution. UML is also a
problem-solving tool mainly used in object oriented programming. UML will be revis-
ited in the chapters on Object Oriented Programming.

New Terms

activity diagram

algorithm

annotated flowchart

bug

case diagram

class diagram

coupling diagram

debugging

external documentation

flowchart

interactivity chart

internal documentation

IPO chart

module

problem analysis chart

pseudocode

sequence diagram

statechart diagram

structure chart

syntax

UML

Questions

1. What is a program?

2. Why is problem analysis important?

3. What are the tools of problem solving described in this chapter?

4. What are the relationships of the problem-solving tools to each other?

5. How would each of the flowchart symbols be used? Include an example in your ex-
planation.

6. What type of flowchart symbols would you use for Otto’s instructions? (See
Appendix A.)

7. How do the problem-solving tools help in leading to a solution?

8. What is the difference between internal documentation and external documentation?

9. Why is it important to test a solution before coding the solution?

Problems

1. Develop a PAC for a solution to balance your checkbook. Include in the PAC vari-
ous solutions for solving this problem.

2. List the various modules that you might include in the solution in problem 1. Put
these modules together in an interactivity chart. Why did you choose these modules?

3. Draw the flowchart for your solution to problem 5, Appendix A.

4. Draw the flowchart for your solution to problem 6, Appendix A.

5. After completing problem 3 or 4, list three advantages to using an algorithm or
pseudocode and three advantages to using a flowchart. Justify your answer. You
may want to discuss the answer to this problem with other classmates.

64 � Chapter 3

6. Draw an algorithm, develop a flowchart and pseudocode for a solution to find the
smallest of two numbers.

7. List the modules you might use to solve the following problems:
a. Putting a list of names in alphabetical order.
b. Calculating the average of a series of numbers.
c. Calculating the total mileage given the distance between cities.

8. Name and explain the five diagrams used in UML.

65

Unit One

Supplementary Exercises

1. Write a set of numbered step-by-step instructions to plan a trip to San Francisco.
Be sure to take into account the knowledge base of those who are going.

2. Write a set of numbered step-by-step instructions to plan a summer vacation to a
place of your choice.

3. Write a set of instructions for Otto to walk in a square figure 3.8.

4. Define the data types of the following data items. Justify your answers.
a. Sum of money
b. Telephone number
c. Zip code
d. Quantity of shoes
e. Check okay on a client
f. Account number

5. Define a variable name for each of the items in exercise 4.

6. Evaluate for and
a.
b.
c.
d.
e.

7. a. Joe Brown’s Shoe Store expects to increase its sales by 5% during the next year.
Write an equation to calculate the projected sales at the end of the year.

Hint: The standard expression to increase a number by a percentage is

b. However, inflation will decrease his profit increase. Expected inflation is
and 50% of Joe’s expenses are directly affected by inflation. Joe’s expenses are
equal to 80% of his sales. Modify the equation in exercise 7a to calculate the
projected profit, taking into consideration inflation.

8. Evaluate for
a.
b.
c.
d.
e.

9. Set up a logical expression for the following policy on using a company credit
card. The card may be used if the
a. Balance plus sales amount is less than the maximum allowable amount.
b. Last payment was less than 45 days ago.
c. Credit card has not expired.

R = NOT C OR NOT D AND A
R = NOT C AND NOT D OR A
R = B AND C OR A
R = A AND B OR C
R = 1A OR B2 AND C

A = True, B = True, C = False, D = False.

4
1
2 %,

Number * 11 + Percentage2

F = 1C * 1B + 3 * A2 + 5 * A2/C
F = 1A + 7 - C2 MOD B
F = A * C \1A + C2
F = 3 * B/A ¿ 2
F = A ¿ 2/3 * B

C = 2.A = 6, B = 4,

66 � Unit One

10. Set up a logical expression to check data using the following criteria. The data are
assumed correct when
a. Number is
b. Number is positive.
c. Number is divisible by 2.

11. Develop a flowchart for the instructions to balance your checkbook. Be sure to in-
clude all steps, such as repeating the addition of each check.

12. Select one of the problem-solving tools and answer the following questions:
a. How does this tool help in the solution of a problem?
b. Why would you use this tool?

13. Which tool do you think will be hardest for you to learn to use? Why?

14. What type of information do you think should go into external documentation?

15. What type of information do you think should go into internal documentation?

61000.

WHAT’S WRONG WITH THIS?

The following problems have errors in them. Find the error, explain what is
wrong, and correct the error.

1. Set up the following equations for the computer:

Mathematical Equation Computer Equation

a. A + B = 5D a. D = A + B/5

b.
X + Y

4
= Z

b. 1X + Y2/4 = Z

c. 5X - 3Y = Z c. Z = 5X - 3Y

Supplementary Exercises � 67

WHAT’S WRONG WITH THIS (continued)

2. What is the order of processing of the following equations:

3. Write a truth table for the following equation:

AND B OR NOT C

4. What is wrong with the following:
a. 43.8 \ 7
b. 75 mod 9.3
c. As an equation for the computer: 68.5 + R = Y
d. “g” 6 False
e. True 7 False
f. 56 6 NOT “H”

A

R � A AND B OR NOT C

B C R

False False False False

True True True True

False False True False

True False True True

True False False False

False True True False

R = A

Computer Equation Order of Processing

a. D = A + B/5 a. D � A � B �5

1

2

b. S = 5/D + 6 * 1C + B2/E b. S � 5 �D � 6* (C � B) �E

3 1

2

4 5

c. R = A 6 B AND C * F 7 G + 3 c. R � A � B AND C * F � G � 3

1 2

4

5

3

This page intentionally left blank

UNIT TWO

LOGIC STRUCTURES

Chapter 4: An Introduction to Programming Structure
Chapter 5: Problem Solving with the Sequential Logic Structure
Chapter 6: Problem Solving with Decisions
Chapter 7: Problem Solving with Loops

This page intentionally left blank

Chapter 4

An Introduction
to Programming Structure

Overview

Pointers for Structuring a Solution

The Modules and Their Functions

Cohesion and Coupling

Local and Global Variables

Parameters

Return Values

Variable Names and the Data Dictionary

The Three Logic Structures

Objectives

When you have finished this chapter, you should be able to:

1. Explain the need for structured programming.
2. Explain how to design modules and functions in terms of cohesion and

coupling.
3. Explain the difference between local and global variables.
4. Explain the use of parameters.
5. List and describe the three logic structures: sequential, decision, and loops.

The tools described in Chapter 3 help programmers organize programs as they arise in
the business world or in a textbook. The techniques explained in Chapters 4 through 7 of
Unit Two provide ways to structure solutions so the computer can efficiently read and
process the finished programs. That is, the techniques explained in these chapters help
you write the several types of instructions that make up algorithms.

71

Instruction

Flowchart

…
…

Algorithm

5. Instruction

6. Instruction

7. Instruction

8.

…
…

 Instruction

 Instruction

 Instruction

Pseudocode

Instruction

Instruction

Figure 4.1 Sequential Logic Structure

72 � Chapter 4

Pointers for
Structuring a
Solution

sequential logic
structure

decision logic structure

loop logic structure

Pointers for Structuring a Solution

The computer should be a tool to help people find solutions to their problems and to
increase their productivity. The solutions must be developed according to methods that
accomplish these goals. You can develop efficient computer solutions to problems if
you heed the following pointers:

1. Use modules—break the whole into parts, with each part having a particular
function.

2. Use the three logic structures to ensure that the solution flows smoothly from
one instruction to the next, rather than jumping from one point in the solution
to another.
a. The sequential structure executes instructions one after another in a se-

quence. See Figure 4.1.
b. The decision structure branches to execute one of two possible sets of in-

structions. See Figure 4.2.
c. The loop structure executes a set of instructions many times. See

Figure 4.3.
3. Eliminate the rewriting of identical processes by using modules.
4. Use techniques to improve readability, including the four logic structures,

proper naming of variables, internal documentation, and proper indentation.

Loop
Instruction

FlowchartAlgorithm

5. Loop

 Instruction

 Instruction

 Instruction

6.

Until <logical expression>

Pseudocode

Instruction

Instruction

Instruction

…
…

Loop

 Instruction

 Instruction

 Instruction

Until <logical expression>

…
…

Figure 4.3 Loop Logic Structure

Decision
Instruction

FlowchartAlgorithm

6.

Pseudocode

Instruction

F T

Instruction

…
…

5. If <decision>

 then

 Instruction

 else

 Instruction

…
…

 If <decision>

 then

 Instruction

 else

 Instruction

 Endif

Figure
4.2 Decision
Logic Structure

An Introduction to Programming Structure � 73

74 � Chapter 4

Rules for Designing
Modules

control module

initialization module

You can structure programs more easily if you build a library of techniques that
have been perfected by the experts over the years. One of the rules for programming a
computer is not to reinvent the wheel. Experienced programmers are productive be-
cause, among other reasons, they have learned good programming techniques.

In addition to techniques for structuring programs, the beginning programmer
needs to learn the techniques of working with data structures. Techniques used with data
structures teach the student how to store data in order to access and process it as effi-
ciently as possible. These include techniques for processing arrays, linked lists, and
trees. Beginning students also need to learn techniques for programming in a graphical
user interface computer world where instructions are not necessarily executed in a pro-
cedural manner. This is called object-oriented programming. These techniques are dis-
cussed in Units Three and Five in this textbook.

The Modules and Their Functions

Just as an author would not sit down and write without thinking about the structure of the
book, neither should a programmer write without thinking about the structure of the pro-
gram. First, an author thinks about the subject. A programmer studies the problem. Next,
the author breaks the subject matter into chapters. The programmer breaks the problem
into modules, each with a specific function. Once the chapters are in the correct order,
then the author starts to write them, one by one. Once the modules are in the correct pro-
cessing order in the interactivity chart, then the programmer writes the algorithm for each
module, one by one. A good programmer tests the algorithm for each module for cor-
rectness, as thoroughly as possible, before writing the next one. It is much easier to write
and test many small modules than a single large one. Not only that, but when the program
needs to be modified, it is much easier to test and change small modules.

Follow these rules for designing modules when you design your own solutions:

1. Each module is an entity in itself. There is one entrance and one exit. That is,
the processing starts at the top and ends at the bottom of the module.
Processing does not jump out of the middle of a module to another module,
nor does it jump into the middle of a module. The only way to go from one
module to another module is through the exit instruction or through the use of
the Process module instruction.

2. Each module has a single function, such as printing, calculating, or entering data.
3. Each module is short enough to be easily read and modified.
4. The length of a module is governed by its function and the number of instruc-

tions to be executed to perform that function.
5. A module is developed to control the order of processing. This may be where

the interface of an object-oriented program is introduced or where the in-
structions to the computer are given as to the order of processing of the mod-
ules in a procedural-oriented program.

The types of modules needed for the solutions to most problems in this unit are the
following:

1. The Control module shows the overall flow of the data through the program.
All other modules are subordinate to it.

2. The Initialization module processes instructions that are executed only once
during the program, and only at the beginning. These instructions include
opening files and setting the beginning values of variables used in processing.

An Introduction to Programming Structure � 75

process module

calculation module

print module

read module

data validation module

wrapup module

3. The Process modules may be processed only once, or they may be part of a
loop, which is processed more than once during the solution. There are several
kinds of Process modules:
a. Calculation modules do arithmetic calculations, accumulating (summing

to calculate totals), counting, or manipulating numerical data in some
other way, such as putting numbers in numerical order. Sometimes
Calculation modules manipulate string data to perform tasks such as
putting a list of values in alphabetical order.

b. Print modules print output lines (the results of the processing, line by
line), including headings and summaries.

c. Read and Data Validation modules read or input the data into the internal
memory of the computer, validate data (check the accuracy of the data),
enter data from the keyboard, and so forth. Validation modules are usually
separate from Read modules.

4. Wrapup modules process all instructions that are executed only once during
the program and only at the end. These instructions include closing files and
printing totals, among others.

5. Modules in an object-oriented program may include event modules such as
mouse down, mouse up, key entry, and so on.

Different types of modules are often combined in one solution. A module can be
broken into several smaller modules to make the parts of a program more manageable.
One module performing a specific function can be used by one or more other modules
in which that same function is needed. Other types of modules are introduced in later
chapters. The types on the previous page are the most frequently used.

cohesion

coupling

Cohesion and Coupling

One of the most difficult tasks in the development of a solution to a problem is to divide the
solution into modules. The question arises as to what should be included in each module.
Modules should be functionally independent and perform a single task. However, modules
will need to be connected, primarily through the data needed to complete the specified task
within the modules. These opposing concepts are called cohesion and coupling. These con-
cepts describe conflicting principles that lead to program design compromise.

Cohesion is the ability for a module to work independently from all other modules.
Each module should have a function such as data entry, printing information, specific cal-
culations, and so forth. To work independently, each module should have a single entry
and single exit (see Figure 4.4). As nice as this is, it is not realistic. Modules need to share
data from other modules in order to complete the modular tasks. This sharing of data is
called coupling. Coupling is accomplished by some type of interface between modules
that enables data to be passed from one module to another with the minimum interruption
of the modular independence. Coupling allows for the communication between modules.

Cohesion and coupling are important concepts to the modern programmer, who
in all probability will be working with many other programmers on the same prob-
lem. Cohesion allows a programmer to write a module of a larger program and test it
independently. This module can then become a “black box’’ in a large program.
Coupling allows all programmers to use necessary variables without losing the cohesion
of the module. For example, if Module1 performs task 1 successfully, it may be required
to provide data to Module2. Cohesion results from having separate modules; coupling
results when data are passed from Module1 to Module2. Another example of cohesion

76 � Chapter 4

and coupling would be the use of the square root function. A function is another name for
a module. The square root function is a set of instructions to calculate the value of the
square root of a number. The independence of these instructions is cohesion. The func-
tion is basically a black box. The programmer really doesn’t worry about what the in-
structions are as long as a correct value is returned. However, in order to calculate the
square root, the function needs a value to calculate the square root, and a value to return
to the programmer. These data links, the number and the square root of the number, are
what connects or couples the function to the rest of the program. This is coupling.

Cohesion is measurement of how closely related the functions are within a mod-
ule. If these functions are closely related in their activities, then the module or class
would be considered to have high cohesion. Coupling is typically contrasted with cohe-
sion. High cohesion and low coupling usually indicates a well-structured design.

Cohesion comes in many forms, some better than others (shown highest to lowest)

� Functional Cohesion is when all of the parts of a class or module are focused on
a single task. This is the highest form of cohesion.

� Sequential Cohesion is when modules are grouped such that each modules out-
put feed the next modules input.

Module1

Module4Module3

Module2

Cohesion is the ability for each module to be independent of other modules.

Coupling allows modules to share data.

Figure 4.4 Cohesion and Coupling

An Introduction to Programming Structure � 77

local variables

� Communication Cohesion is when each module operates on the same type of
data (e.g., a personnel record).

� Procedural Cohesion occurs when modules are grouped together because they
are all part of a sequence of operation to perform a complex procedure.

� Temporal Cohesion is when modules are grouped together because they all tend
to function at the same time in a program’s execution.

� Logical Cohesion is when modules are grouped together because they perform
similar functions (e.g., graphics routines).

� Coincidental Cohesion is when modules are grouped randomly and have no sig-
nificant relationship. This is the lowest form of cohesion.

High cohesion is desirable because modules written with high cohesion tend to be
more understandable, more reliable, and reusable. Typically, a highly cohesive module
is performing a small part of a highly complex program. Each module has a job, which,
if programmed correctly, will perform it's function very well.

Coupling is a measurement of the level of dependency between modules. Low cou-
pling is desired because it increases the maintainability and readability of the module.

There are many types of coupling (shown lowest to highest)

� Message coupling is when modules send “message” back and forth to each other
via a public exchange like web services using SOAP (Simple Object Access
Protocol) or client-server SQL interfaces. This is the lowest form of coupling.

� Data Coupling is when modules share data via parameters.
� Stamp Coupling is similar to data coupling but passes a complete data structure.
� Control Coupling is when one module controls the functionality of another.
� External Coupling is when modules share a common interface determined by

external criteria.
� Common Coupling is when two modules share common global data variables.
� Content Coupling is when one module relies on the internal workings of another

module. [This is extremely high coupling.]

Low coupling is desired because module changes will not adversely affect other mod-
ules that are not highly coupled. Modules become easier to reuse because they are unaf-
fected by external changes.

Local and Global Variables

The concept of local and global variables is important in many languages. Programmers
use the concept of local and global variables to allow cohesion and coupling to occur.
Global variables are defined outside of the individual modules. Local variables are
defined within a module. The major difference between the two is in the scope of the
variables. The scope of the variables designates where the value of the variable can
be used.

Local variables may be used only by the module itself. Other modules have no
knowledge of these variables. This allows cohesion to take place. Through the use of lo-
cal variables the programmer does not have to worry about variable name duplication in
modules created by other programmers. If other modules need to use the value of a vari-
able, the modules must be coupled through the use of parameters or return values.

All modules have knowledge of global variables. They are global to the program
because they can be seen by all modules. The use of global variables defeats one of the
purposes of cohesion, that is to allow for the duplication of variable names in different

global variables

78 � Chapter 4

modules. Although global variables allow data coupling through the entire program,
they should be used with caution. Only those variables that will be used in all modules
should be designated as global variables. The programmer must be careful not to use the
same variable name for a local variable and a global variable, since the hierarchy of use is
to search the local variable list first, the parameter list second, and the global variable list
last. The use of parameters and return values is not necessary since global variables couple
the data from module to module.

Figure 4.5 shows a typical small interactivity chart. Figure 4.6 shows the scope of
the variables found in this program. The variables A, B, and C are global. All modules

Variables: A, B, C Global to all modules

Local to ControlControl
Variables: X, Y, Z

Local to Module1Module1
Variables: D, E, F

Module2
Variables: G, H, I

Local to Module3
Module3

Variables: X, J, K

Local to Module2

Figure 4.6 Scope of Local and Global Variables

Module1 Module2

Module3

Control

Figure 4.5 Interactivity Chart

An Introduction to Programming Structure � 79

parameters

can use and change the values of these variables. All other variables are local. Only the
Control module can see the values of X, Y, and Z. The values of D, E, and F can be seen
only by Module1. Module2 can see G, H, and I. Module3 can see only X, J, and K.
Notice the duplication of the variable name X. In this case, there are two memory loca-
tions named X, one that can be used by the Control module and the other that can be
used by Module3. The computer will not get confused by this duplicity, since each X is
linked to its own module.

Parameters

Parameters are one of the hardest and most important concepts to understand and to
use in programming. Through the use of parameters, programmers may work inde-
pendently in groups, each developing a section of a very large program without the
worry of duplicating variable names. In this way, a program can be developed in a
relatively short amount of time. Each section is developed as a cohesive module,
coupled together mainly through the use of parameters. In learning about parameters,
new terminology will be introduced and discussed: the formal versus actual parame-
ter listings, the calling module versus the called module, and call-by-value versus
call-by-reference parameters. Refer to Figure 4.7 as you are reading the information
about these terms.

Parameters are local variables that are passed or sent from one module to another.
Parameters are another way of facilitating coupling that allows the communication of
data between modules. They are placed after the module name and within parentheses,
for example: Read(A, B, C). The calling module is the module that processes another
module. The called module is the module being processed. In Figure 4.7, the calling
module is the ControlPay module since it processes the Read module, the Calc module,
and the Print module. The Read module, the Calc module, and the Print module are the
called modules since they are the ones being processed by the Control module. The

Figure 4.7 Parameter Terminology

ControlPay

 Process Read(*Hours, *PayRate)

 Process Calc(Hours, PayRate, *Pay)
 Process Print(Pay)
 End

Read(*Hrs, *Rate)
 Enter Hrs, Rate
 Print Hrs, Rate
 Exit

Calc(Hrs, Rate, *Pay)

 Pay = Hrs * Rate
 Exit

Print(Pay)
 Print Pay
 Exit

*Indicates call-by-reference parameter, those parameters without an asterisk are call-by-value parameters.

Calling module

Actual parameter listings

Formal parameter listings
Called modules

80 � Chapter 4

actual parameter listing is the list of parameters that follows the module name being
processed in the calling module. The formal parameter listing is the list of parame-
ters that follow the module name at the beginning of the module. Notice that the vari-
able names in the actual parameter listings may or may not be the same as those in
the formal parameter listings. The values are sent and received according to the posi-
tion in the listings; the first variable in the actual listing corresponds to the first vari-
able in the formal listing, the second to the second, and so forth. In Figure 4.7, Hours
in the ControlPay module corresponds to Hrs in the Read and Calc modules.
Likewise, Pay Rate in the ControlPay module corresponds to Rate in the Read and
Calc modules, and Pay in the Control module corresponds to Pay in the Calc and
Print modules.

There are two ways to send data from one module to another through the use of
parameters. The first is to send the value of the variable, a call-by-value parameter.
The second is to send the address of the variable, a call-by-reference parameter that
is specified by the use of an asterisk (*) in front of the variable name in both the ac-
tual and the formal parameter listings. A variable name that has no asterisk in front
of the name is assumed to be a call-by-value parameter. When a call-by-value para-
meter is used, the value of the variable is sent to the called module by the calling
module. The called module will then make a new memory location (or address—a
memory location is an address) for this variable since it has no knowledge of where
the variable is stored by the calling module. Therefore, when the called module
makes a change in the variable, the change will not be made in the calling module
because the parameter has a different memory location in the called module than it
does in the calling module (see Figure 4.8). The call-by-value parameters (refer-
enced by circled 2s) have a memory location number in both modules. When a call-
by-reference parameter (referenced by circled 1s in Figure 4.8) is used, the memory
location is sent, not the value. The called module refers to the memory location to
find the value. When the called module changes the value of the parameter, the call-
ing module will see the change because they are using the same memory location—
the one designated by the calling module. The call-by-reference parameters share the
same memory location. When using parameters, variables might have the same loca-
tion but two or more names referenced from different modules, or two memory loca-
tions may have the same name used in two different modules. Figure 4.9 shows
another example of parameters.

Figure 4.10 shows the coupling diagram for Figure 4.8. A coupling diagram in-
dicates how data couples modules together. A coupling diagram has a rectangle for
each module and a line connecting the modules for each datum sent from one mod-
ule to another. In this case, there is a rectangle for Module1 and another for Module2.
Notice the connecting lines. Two double-headed arrows are drawn from the
ControlPay module to the Read module, one for the hours worked and the other for
the rate of pay. The double-headed arrows indicate that these parameters are call-by-
reference parameters and changes can be seen by both modules. In Figure 4.10, two
single-headed arrows and one double-headed arrow are drawn from the ControlPay
module to the Calc module; the single-headed arrows are for the hours worked and
the rate of pay and the double-headed arrow is for the amount of pay. In this case,
hours worked and the rate of pay have single-headed arrows with the arrowheads into
the called module, indicating that these are call-by-value parameters and changes
can be seen only by the called module. This is because the called module, Calc, will
be using these values and not changing them. The amount of pay has a double-
headed arrow, specifying a call-by-reference parameter. This is because Pay will be

Call-by-Values
Parameter
Call-by-Reference
Parameter

Actual Parameter
Listing
Formal Parameter
Listing

An Introduction to Programming Structure � 81

Read(*Hours,

Address of 2000 is sent

2000
Address of 2000 is received
Value of Hrs is found in 2000

Read(*Hrs,
1. Enter Hrs, Rate
2. Print Hrs, Rate
3. Exit

ControlPay
1. Process

*Rate)

*PayRate)

Address of 2002 is sent

2002
Address of 2002 is received

Value of Rate is found in 2002

ControlPay Addresses

Hours

PayRate

Pay

2000

2002

2004

35

12

420

2. Process Calc(Hours,

Value of 35 is sent

Value of 35 is received
and placed in a

new address

35

35

PayRate,

12

Value of 12 is sent

Value of 12 is received
and placed in a

new address

12

*Pay)

Address of 2004
is sent

2004
Address of 2004

is received
Value of Pay

is found in 2004

Calc(Hrs,

1. Pay = Hrs * Rate
2. Exit

Rate, *Pay)

3. Process Print (Pay)

420

Value of 420 is sent

Value of 420 is received and
placed in a new address

2000

4000 4002

2002

2004

6000 420

Print(Pay)
1. Print Pay
2. Exit

4. End

Calc Addresses

Print Addresses

Hrs

Rate

Pay

4000

4002

6000

1 1

2 2 1

2

35

12

420

Figure 4.8 Parameters—Call-by-Value and Call-by-Reference

82 � Chapter 4

changed in Calc and the ControlPay module needs to know the value of the change in
Pay. One double-headed arrow is drawn from the ControlPay module to the Print
module, specifying that the amount of pay is a call-by-value parameter for this mod-
ule since only the Print module will use the variable. See Figure 4.11 for the cou-
pling diagram for Figure 4.9.

Module1
A � 3
B � 4
C � 5

Process Module2 (A, B, *C)

EXIT

Module2 (X, Y, *Z) X and Y are call-by-value parameters
Z is a call-by-reference parameter

X � 7
Y � 8
Z � 9

EXIT

Value of variables before Process Module2 is executed:

Value of variable at the beginning processing of Module2:

Value of variable at the end of processing of Module2:
A B C, Z

3 4 9

X Y

7 8

A B C, Z

3 4 5

X Y

3 4

A B C, Z

3 4 5

X Y

1

2

3

1

2

3

Variables for Module1

Variables for Module2

Variables for Module1

Variables for Module2

Variables for Module1

Variables for Module2

Figure 4.9 Parameter Example

An Introduction to Programming Structure � 83

Parameters are one of the best methods of coupling modules. The programmer
does not have to worry about variable name duplication in modules that other program-
mers are developing. Parameters in the formal parameter listing (in the called module)
are neither local nor global variables and therefore should not be declared as local or
global variables. In the event of variable name duplication, the local variable has prece-
dence over the parameter variable, and the parameter variable has precedence over the
global variable. When the program is looking for the variable name, it first looks at the
local variable list, second at the formal parameter list, and last at the global variable list.
If it is not found at any of the three lists, an error occurs.

Hours

Hours

CalcRead Print

Hrs

ControlPay Pay

Pay

PayPayHrs

PayRate PayRate

RateRate

Figure 4.10 Coupling Diagram for Figures 4.7 and 4.8

Module1

A B C

X Y Z

Module2

Figure 4.11 Coupling Diagram for Figure 4.9

84 � Chapter 4

Many of the programs presented in this text will use parameters and will have cou-
pling diagrams presented as part of the solution. Likewise, many of the problems at the
end of the chapters will require the use of parameters. As a programmer it is very im-
portant that you learn how to use parameters.

Return Values

The three ways to couple modules are through the use of global variables, parameters,
and return values. As we learned in Chapter 2, when functions are used within another
instruction, they have a return value. The return value is the result of the function.
This is accomplished through the name of the function. At the conclusion of the exe-
cution of the function, the result is placed temporarily in the name. The function must
be used as part of another instruction. The value of the name of the function is no
longer available once the instruction has been executed. In the case of the return
value, the value is only sent out of the called module into the calling module. In a cou-
pling diagram the arrowhead would be a single-headed arrow, but pointing to the call-
ing module.

Figure 4.12 illustrates the use of the return value in an equation. In the equation
SquareRoot = SQRT (16) + 5. SquareRoot is the variable in which the result of the cal-
culation will be placed in memory to be saved for later use in the solution. SQRT is the
name of the function. The parameter, which is the data needed to calculate the square
root, is 16. The computer will call the SQRT function first. Next, the function will cal-
culate the square root of 16, giving a result of 4. The resultant, 4, is then placed into the
name of the function, SQRT. The processing proceeds with the equation. The number 5
is then added to the value of SQRT. The resultant value is then placed in SquareRoot.
The value of the variable SquareRoot is stored in memory. After the 5 is added to SQRT,
the value of SQRT is no longer available to be used.

SquareRoot � 5 � SQRT(16)

SQRT(X)

X takes on the value of 16

The function will calculate the square root of 16.

The resultant will be placed in SQRT, thus SQRT will equal 4

The value of SQRT is now 4.

The processing is then transferred back to the calling module where it continues

with the addition of 5 to 4, giving a resultant of 9.

The resultant, 9, is then assigned to the variable SquareRoot.

9

Figure 4.12 Return Value

Return Values

An Introduction to Programming Structure � 85

Variable Names and the Data Dictionary

Variables must be named according to what they represent. If they represent hours, then
the variable name should be Hours. When the variables are all local or used as parame-
ters, variable names must be unique to the module in which they are defined. If variables
are global, they must be unique to the total program. When you name a variable, that
name must be used whenever you are referring to that item. You cannot use Hours in
one place and Hrs in another place in one module, or again, if the variable is global,
throughout the whole program. The computer references values by their names.
Therefore, if you change the name, the computer assumes the new name represents a
new item. A data dictionary is a great help to keep track of the variable usage in your
program. It contains a list of all items, their variable names, their data types, the module
in which they are found, pseudonyms and the module in which each pseudonym is
found, and any error check that needs to be made on the variable. Figure C.5 in
Appendix C is a form to use for your data dictionary. Figure 4.13 shows an example of
a data dictionary. If you are using different names in different modules, you must also
show the coupling diagram.

Data Dictionary

logic structures

Item Variable Name Data Type Module Scope Pseudonym/Module Error Check

Hours worked Hours Numeric—real ControlPay Hrs

Hours � 0Hours worked Hrs Numeric—real Read/
Calc

Hours

None

Pay rate PayRate Numeric—real ControlPay

ControlPay

Rate

Pay rate � 4.00Pay rate Rate Numeric—real PayRate

None

Net pay Pay Numeric—real

Read/
Calc

None None

Net pay Pay Numeric—real Calc/
Print None None

Data Dictionary

Local

Parameter

Local

Parameter

Local

Parameter

Figure 4.13 Example of a Data Dictionary

The Three Logic Structures

Up to now, this book has discussed the structure of the problem—that is, how to break a
problem into parts, or modules, and arrange them so the data flow in a solution is logi-
cal. There are other types of structures used to design the modules themselves. These
structures are called logic structures, and they control the logic of the data flow though

the module. The instructions that make up the algorithms and the flowcharts are combi-
nations of the four logic structures.

Chapters 5, 6, and 7 in this unit are devoted to the three basic logic structures:

1. The sequential logic structure
2. The decision logic structure
3. The loop logic structure

A brief explanation of each of these logic structures follows.
The sequential logic structure processes data one instruction after another. This

logic structure is the most widely used, and it is normally used in conjunction with oth-
ers. The programmer uses the decision logic structure to program the computer to make
choices. The programmer uses calculations that use relational or logical operators to de-
sign these choices. The third logic structure is the loop, which enables the computer to
repeat tasks. When a problem is broken down in modules, the appropriate logic struc-
tures can be applied to each module. Effective use of the three logic structures results in
efficient and readable solutions.

86 � Chapter 4

Three Logic
Structures

Summary

Unit Two consists of several chapters on how to structure solutions for particular computer
languages and applications. You will learn three logic structures for designing programs
for problem solving, plus additional techniques for record processing. These techniques are
extremely important because they can greatly increase productivity. They help you effec-
tively organize the instructions in each of the algorithms that make up your solution. As a
result, the computer can read the solution easily and process your program efficiently.

Cohesion is designing a module to be as independent of the rest of the modules as
possible. Coupling refers to how data connects the modules. The three ways to couple
modules are through the use of global variables, parameters, and return values. Global
variables are those variables known to other modules. Local variables are those variables
known to only one module. The computer searches for variables first in the local vari-
able list, then the parameter list, and finally the global list.

Parameters are local variables that are shared with other modules. Call-by-reference
parameters pass the address or location of the variable to the other module. Call-by-value
parameters pass the actual value of the variable to the other module. The calling module
can recognize a change made by the called module when using a call-by-reference para-
meter. The calling module, when using a call-by-value parameter, does not recognize a
change made by the called module. It is very important for a programmer to learn how to
effectively use parameters.

To make a computer problem manageable, break your solution into modules. For
Unit Two, the types of modules you will need include Control, Initialization, Process,
and Wrapup. There are several kinds of Process modules, including Calculation mod-
ules, various Print modules, Read modules, and Data Validation modules.

New Terms

cohesion

coupling

global variables

local variables

logic structures:
sequential structure
decision structure
loop structure

parameters

types of modules:
Control
Initialization

An Introduction to Programming Structure � 87

Process
Calculation
Print
Read
Data Validation

Wrapup

Questions

1. Name the three logic structures.

2. What is a module? How is it used?

3. Name the major types of modules and explain their functions.

4. List the kinds of Process modules.

5. What is meant by the cohesion of a module?

6. What is meant by coupling modules?

7. Why are cohesion and coupling important to programmers?

8. How are modules coupled?

9. What does a coupling diagram show?

10. Define the two types of parameters. How do they differ? Under what circumstances
would you use each type?

11. How can you use a return value later in your solution?

12. What is the difference between using a return value and a call-by-reference parameter?

Problems

1. Create a calling module name and parameters for the following. (Remember that
the asterisk before the parameter name indicates a call-by-reference parameter.)
a. Process Print(Average, Count)
b. Process Calc(AgeSum, Count, Average)
c. Process Calc(Length, Width, Height, Volume)
d. Process Init(Number)
e. (Test1, Test2, Test3, Test4)
f. Process Calc(Sqrt(A), C, D)

2. Using the modules in problem 1, answer the following questions:
a. Which of the parameters are call-by-value parameters?
b. Which of the parameters are call-by-reference parameters?
c. Are there any parameters that cannot be changed by the called module? If so,

which ones? Justify your answer.
d. Which parameters, if changed by the called module, will the calling module

recognize as changed values?
e. Which parameters have more than one location in the computer; one associated

with the calling module and the other associated with the called module?
f. Which parameters have one location in the computer, that of the calling module?
g. Where is the return value placed?
h. In problem 1f., what are the two modules? Which is called first?

3. Create a data dictionary for the parameters in problem 1.

4. If a programmer created a module and put all functions whose names started with
the letter ‘M’ what kind of cohesion would this be?

5. If two modules refer to a global variable, they would be coupled in what way?

*
Maximum = Max

*
*

*

This page intentionally left blank

Chapter 5

Problem Solving with the
Sequential Logic Structure

Overview

Algorithm Instructions, Flowchart Symbols, and Pseudocode

The Sequential Logic Structure

Solution Development
Problem Analysis
The Interactivity Chart
The IPO Chart
Coupling Diagram and Data Dictionary
Internal and External Documentation
The Algorithms and Flowcharts

Objectives

When you have finished this chapter, you should be able to:

1. Use the sequential logic structure to develop a solution to a problem.
2. Use the proper form for instructions in an algorithm, flowchart, and pseudocode.
3. Use problem-solving tools to develop a solution to a problem.

89

Algorithm Instructions, Flowchart Symbols, and Pseudocode

The computer’s system of communication dictates how the programmer designs algo-
rithms and flowcharts. Recall that an algorithm is a set of instructions telling the com-
puter how to process a module in a solution. You will write an algorithm for each
module in a program. A flowchart is a visual illustration of an algorithm. You will draw
a flowchart to accompany each algorithm. The Pseudocode will follow the flowchart.
The coupling diagram shows the relationship between the modules and the flow of data

90 � Chapter 5

from one module to the next. The data dictionary lists the variables and their definitions.
All have a specific function in the development of a problem. This chapter begins with
only a few of the specific algorithm instructions and flowchart symbols you will use as
a trained programmer, those required to solve problems using the sequential structure.
They are found in Table 5.1 and include the instructions to start and stop each module,
to enter data, to output data, to process modules, and to perform calculations.

You write an instruction in two parts: a general instruction followed by specifica-
tions regarding what is to be processed. In Table 5.1 the general instruction is the first

Algorithm
Instruction

Start
module name
list of parameters
(module number)

Enter list of
variable names

Variable =
expression

Write list of
variable names

Print list of
variable names

Process
module names
(list of parameters)

Stop the processing of the module, place
 the value of the variable in the module
 name, and continue with the instruction
 containing the module call.

Stop the processing of the module.
 Processing ceases with the End ; with
 the Exit, processing continues with the
 next instruction after the Process.

Execute the instructions in the named
 module, and then return to execute
 the next instruction.

End/Exit

Return
(variable)

Flowchart
Symbol

Definition (What the instruction
tells the computer)

Print on the screen the values represented
 by the following variable names.

Write to the printer the values represented
 by the following variable names.

Assign the value of the following expression
 to a variable location. This is called an
 assignment instruction. A module may
 be processed as part of an expression,
 if there is a return value.

Enter data from a data block or from the
 keyboard into the following variable
 memory locations.

Start processing a module. The word
Start is optional and is not used

 in this text.

Table 5.1 Algorithm Instructions and Flowchart Symbols

Problem Solving with the Sequential Logic Structure � 91

word in the Algorithm Instruction column, that is, and so
forth. The specifications—a specific module name, a list of variable names, a specific
expression, and so forth—follow the instruction. They are data and ways of processing
drawn from the problem and collected for the problem and information from the struc-
ture chart and the other charts you completed prior to the algorithms.

The Start instruction is always understood, if not stated, at the beginning of an
algorithm and flowchart and indicates where the module begins. The oval is the flow-
chart symbol for the Start instruction. The instruction includes the name of the module
and all parameters. For example

or

The name of the module also may be written at the beginning of the algorithm, which is
the case throughout this text.

The Enter instruction enables the user to enter data into memory locations with
variable names. The list of variable names follows the Enter instruction. For example,

Data are entered from the keyboard as specified in the program.
(commonly called the assignment instruction) enables a user to

instruct the computer to store a constant, a variable, or an expression in a named vari-
able memory location. The order of the instruction is the variable name followed by the
equal sign followed by a constant, a variable name, or an expression, as in

A module, called a function, may be processed in an expression if and only if the
module or function has a return value. For example, the square root function is used in
an assignment statement as follows:

If we were to look at the instructions for the square root function, we would see that the
result of the square root of X would be returned in the name of the function, in this case
Sqrt. This value is added to 7 and then stored in A.

The Write instruction outputs values to the printer. The list of information to be
printed follows the Write, as in

The Print instruction is similar to the Write instruction except that the output is directed
to the screen rather than the printer.

The Process instruction tells the computer to process the instructions of a named mod-
ule before continuing. The name of the module to be processed follows the Process instruc-
tion. The list of parameters, enclosed in parentheses, follows the module name. For example

or

If there are no parameters, the parentheses are not included.

Process Calc (Hours, PayRate)

Process Init (Hours, PayRate)

Write Name, Age

A = Sqrt1X2 + 7

Pay = Hours * Wage

Variable =

Enter Name, Age

Print (Hours, Pay)

Init (Hours, PayRate)

Start, Enter, Variable = ,

Sequential
Instructions

92 � Chapter 5

The End, Exit, or Return instruction specifies the completion of a module. End is
used to end the Control module and indicates that the processing of the solution is com-
plete. Exit is used to end a subordinate module if there is no return value, and indicates
that the processing will continue in another module, the module where the Process
instruction originated.

The Return (variable) is used to place a value in the name of the module. The
Return is used when the module is to be processed within an expression. The only way
to preserve the value of the function name is either to use it in an expression or to place
the value in a variable through the use of the assignment statement. The processing con-
tinues in the calling module, the module in which the instruction that contained the
expression originated. The programmer writes each instruction in its entirety within the
appropriate flowchart symbol. The list of instructions in Table 5.1 will be expanded in
future chapters.

The Sequential Logic Structure

The most commonly used and the simplest logic structure is the sequential structure. All
problems use the sequential structure, and most problems use it in conjunction with one
or more of the other logic structures. To illustrate how to use this structure, this chapter
develops a sample problem solution demonstrating each of the computer problem-solving
steps explained in Chapter 3.

A programmer who uses the sequential logic structure is asking the computer to
process a set of instructions in sequence from the top to the bottom of an algorithm. In
general, the form of the algorithm looks like this:

ModuleName (list of parameters)
1. Instruction
2. Instruction
3.

XX.End, Exit, or Return (variable)

The algorithm begins with the Start instruction represented by the name, the list of para-
meters, and number of the module. The numbered instructions following the Start might
be any of the instructions other than Start and End/Exit/Return depending on the prob-
lem. The form of the flowchart corresponds to the form of the algorithm (see Figure 5.1). The
first block is the Start block. Other instruction blocks follow. These blocks can be of any
type other than the flattened ellipse, which indicates Start or End/Exit/Return. The final
block is the End, Exit, or Return block. See Figure 5.2 for an example of the algorithm
and the flowchart for a solution that enters a name and an age into the computer and
prints them to the screen.

The name of the module is NameAge. There are no parameters. The flowchart uses
the flattened ellipse to indicate that this is the start of this module. The first instruction
to be executed is the Enter instruction. The instruction is in the form of the word Enter
followed by the list of data items whose values will be entered from the keyboard, a data
block. The flowchart uses a parallelogram to designate that this is an input instruction.
The second instruction to be executed is the Print instruction. This instruction is in the
form of the word Print followed by the list of data items whose values will be printed
to the screen. The flowchart uses the parallelogram to indicate that this is an output

Á
Á

Sequential Logic
Structure

Problem Solving with the Sequential Logic Structure � 93

instruction. The input and output instructions both use the parallelogram in the flow-
chart. The last instruction is the End instruction. This signals the end of the list of
instructions and to stop the execution of the program. The end is placed in a flattened
ellipse in the flowchart. All of the start and ending instructions use the flattened ellipse
in the flowchart. Notice that the algorithm instructions are numbered starting with the
first instruction after the name of the module.

Algorithm

NameAge

1. Enter Name, Age

2. Print Name, Age

3. End

Enter Name, Age

Print Name, Age

End

NameAge

Enter Name,
Age

Flowchart Pseudocode

End

Print Name,
Age

Figure 5.2 Algorithm, Flowchart, and Pseudocode to Enter and Print Two Variables

Instruction

Instruction

ModuleName

Exit

Figure 5.1 Flowchart Diagram for the Sequential Structure

94 � Chapter 5

Solution Development

In Chapter 3, the tools for organizing problems were introduced. Now you will use them
to solve problems from the business world. These organizing tools are used in the first
six steps of developing a solution.

1. The problem analysis chart—helps you define and understand the problem,
develop ideas for the solution, and select the best solution.

2. The interactivity chart—breaks the solution to the problem into parts.
3. The IPO chart—helps define the input, the output, and the processing steps.
4. The coupling diagram and the data dictionary designate the data flow

between modules. The data dictionary records information on the items.
5. The algorithms define the steps of the solution.
6. The flowcharts are a graphic form of the algorithms.
7. The pseudocode presents a generic language representation of the algorithm.

The seventh step in solving the problem is to test the solution to catch any errors in
logic or calculation. Remember, the charts are aids to the efficient development of a
well-written program. They will not be perfect the first time around and will often need
several revisions.

As you follow the solution to the sample sequential structure problem that follows,
take the time to think through each step. Photocopy the forms in Appendix D to com-
plete the seven steps. The solution to the following problem will be developed. This
may seem like a lot of work for this simple of a problem; however, it is easier to learn on
a simple short problem than on a long difficult one. If you can understand this problem
and the use of the tools involved in the solution of this problem, you will be able to solve
more difficult problems as they come up.

Problem: Mary Smith is looking for the bank that will give the most return on
her money over the next five years. She has $2,000 to put into a savings
account. The standard equation to calculate principal plus interest at the end
of a period of time is

where P Principal (amount of money to invest, in this case $2,000)
I Interest (percentage rate the bank pays to the investor)
N Number of Years (time for which the principal is invested)
M Compound Interval (the number of times per year the interest is calculated

and added to the principal)

(Refer to Table 2.5 to review the meanings of the operators used here.)

Problem Analysis

The first step in analyzing the problem is to understand what is needed and what is given
and to separate them from all of the nonessential information in the problem. Write
down the input in the Given Data section and the output in the Required Results section.
Record the processing that the problem demands in the section of the problem analysis
chart headed Required Processing. Finally, write possible solutions for the problem and
any ideas related to the solution in the Solution Alternatives section. Generate solution
ideas through brainstorming and creative thinking. When you are first learning problem-
solving skills, brainstorming is best accomplished in groups of two to three people. The
more ideas, the easier it is to develop a good solution.

=
=
=
=

Amount = P * 11 + I /M2¿1N * M2

Solution
Development

The Problem

Problem Analysis

Problem Solving with the Sequential Logic Structure � 95

In Figure 5.3, the problem analysis chart has been filled in for the interest problem
given in the previous section. The given data are the Principal ($2,000), the Interest
(variable), the Number of Years the Principal is to be invested (5), and the Compound
Interval (variable). The required result is the Amount of Principal plus Interest at the
end of the time period. The required processing is the equation for the Amount. Solution
ideas include the following:

1. Enter all input data as variables.
2. Enter the principal and interest as constants and the other values as variables.
3. Enter the data for one bank per run.
4. Enter the data for all banks per run.

Figuring out the best solution involves weighing the ideas and alternatives in the
Solution Alternatives section of the problem analysis chart. Since a solution should be
as flexible as possible, it would be better to enter all the data as variables. Variables pro-
vide flexibility because their values can be changed, whereas the values of constants
cannot. It is best to use variables wherever there is a possibility that the data might
change, and constants only if it is known that the data won’t change. Furthermore, since
the user probably will not have all data from all banks at once, entering one bank per run
would be best for this solution.

The Interactivity Chart

At this point, you can develop the interactivity chart. To complete the interactivity chart
you have to answer the question: How can I divide this problem into smaller, more man-
ageable parts? In Figure 5.4, the interest problem is broken into four modules:

1. The InterestControl module, which controls the solution
2. The Read module, which enters the data
3. The Calc module, which calculates the amount
4. The Print module, which prints the result

Given Data Required Results

Required Processing

Solution Alternatives

Principal plus Interest at the end of
 the time period

Principal—$2,000
Interest
Number of Years—5
Compound Interval (#/year)

*1. Enter all data as variables.

Amount � P * (1 � l � M) (N * M)>

 4. Process all banks in one run.
*Processes selected for the best solution.

*3. Process one bank in one run.
 2. Enter principal and interest as constants and the other data as variables.

Figure 5.3 Problem Analysis Chart—Interest Problem

Interactivity Chart

96 � Chapter 5

The interactivity chart shows that the InterestControl module processes the other
three modules in the following order—the Read, Calc, and Print modules, respectively.
These four modules are the only ones in this solution. There is no Init module since
there is nothing to be initialized (no files to open, no headings to print, or the like), nor
is there a Wrapup module since there is nothing to be done at the conclusion of the pro-
cessing (no files to close, no totals to print, or the like). The solution requires only that
data be entered, that a calculation be performed, and that the results be printed. Each
box represents a module. Each module has a function and represents two or more
instructions. The modules are numbered according to their level.

The IPO Chart

Now the IPO chart can be developed from the problem analysis chart and the interactiv-
ity chart. To complete the IPO chart you have to answer the question: How can the input
be processed to achieve the required output? You will provide general instructions for
the solution on the IPO chart. You will not write the specific instructions to the com-
puter until you complete the algorithms and the flowcharts.

Remember to start with the output, next specify the input, and then develop the pro-
cessing method required to calculate the output from the input. In Figure 5.5, the output
is the amount of the Principal plus Interest after five years. The input required to produce

Read Calc

InterestControl

Print

Figure 5.4 The Interactivity Chart—Interest Problem

Input

1. Beginning Principal

2. Interest Rate

3. Number of Years

4. Number of Times
 Interest is
 Compounded Yearly

1. Enter data
 (Change interest rate to
 hundredths)

2. Calculate ending
 Principal and
 Interest

3. Print required results

Output

1. Ending Principal plus
 Interest

2. All input data

Processing Module Reference

>

AMOUNT � PRINCIPAL * (1 �
INTEREST � TIME) (YEARS * TIME)

Read

Calc

Print

Figure 5.5 The IPO Chart—Interest Problem

IPO Chart

Problem Solving with the Sequential Logic Structure � 97

this result includes the beginning Principal, the Interest Rate (changed to hundredths
after it is input), the Number of Years Invested, and the Compounded Time Interval. The
processing includes entering the data (found in the Read module), calculating the amount
(found in the Calc module), and printing the amount (found in the Print module).

Coupling Diagram and Data Dictionary

Figure 5.6, the coupling diagram, and Figure 5.7, the data dictionary, are interrelated.
The coupling diagram shows which variables are passed from one module to another.

The data dictionary shows which modules use each variable and the scope of each
variable (whether the variable is local or global.) In this problem, all variables are
local, therefore, all coupling will be done through parameters. The variables that cou-
ple the InterestControl module and the Read module are the Principal, the Interest, the
NumberOfYears, and the CompoundingTime. These are all call-by-reference parameters
since the variables sent to the Read module must have values assigned to them. Because
the memory locations of Principal, Interest, Years, and Time were sent to the Read mod-
ule, both modules are using the same memory locations. Therefore, when the Read
module enters values into Principal, Interest, Years, and Time, the InterestControl mod-
ule will be able to see the new values. The same four are call-by-value parameters when
coupling the InterestControl module to the Calc module. In this case the values of
Principal, Interest, Years, and Time are sent to the Calc module. The Calc module then
assigns new memory locations for these variables. Since the InterestControl module and
the Calc module have different memory locations for these variables, the
InterestControl module will not be able to see any changed values and will retain the
original values even if the Calc module were to change them. This is because they will
not be changed, only used, in the Calc module. The amount, however, needs to be a call-
by-reference parameter since the value of the Amount will be calculated in the Calc
module and the InterestControl module needs the new value. All five variables couple the
InterestControl module to the Print module. They are call-by-value parameters since the
Print module only needs to use them. The five variables will not be changed in the Print

P � Principal (variable name)
I � Interest (variable name)
N � Years (variable name)
M � Time (variable name)
A � Amount (variable name)

InterestControl

P I N M P I N M A P I N M A

P I N M P I N M A P I N M A

Calc PrintRead

Figure 5.6 Coupling Diagram

Coupling Diagram

Data Dictionary

98 � Chapter 5

module. Usually, to determine which variables are call-by-reference parameters and which
are call-by-value parameters, the programmer needs to see which variables will be changed
in the called module. If the variable is changed, then it needs to be a call-by-reference
parameter. If the called module is going to use only the value of the variable, then it
needs to be a call-by-value parameter.

Internal and External Documentation

Documentation is useful to everyone involved with the program, so it is important that
the programmer or the user of the application package write down important details
about the program. The programmer’s colleagues need to know what was done, how it
was done, and where, in order to finish and maintain the program. The user needs to
know what has been done and how, in order to use the program or application effec-
tively, and, further, to make sure the processing is correct. Internal documentation
involves noting within the instruction set what the instructions do. This is accomplished
through the use of remark or comment statements. These statements appear only in the
listing of the statements and nowhere else. They are for the use of the programmer only.
The end user never sees them. External documentation involves writing manuals (either
printed or electronic) with detailed explanations of the program and how to use it.

You take notes for internal and external documentation during problem solving
because it is easy to forget the details that you need later when you are writing the doc-
umentation. There is an Annotation section for these notes on page 465 of Figure C.4—
Algorithm, Flowchart, and Pseudocode Appendix C. You write the notes for the
documentation as you develop the algorithms and the flowcharts, including any impor-
tant information that is not already part of the algorithms and flowcharts. In the
InterestControl module in Figures 5.8a–d, the exact task of each of the Process modules
(the Read, the Calc, and the Print modules) is not specified. The remarks in the
Annotation section specify those tasks. For example, the Read module enters all data

Module(s)

InterestControl/
Read/Calc/Print

InterestControl/
Read/Calc/Print

InterestControl/
Read/Calc/Print

InterestControl//Read/
Calc/Print

InterestControl/
Calc/Print

Item Variable Name Data Type

Principal Principal Numeric—real

Interest Interest Numeric—real

Number of years Years Numeric—real

Compounding time Time Numeric—real

Amount Amount Numeric—real

Pseudonym/
Module

None

None

None

None

None

Error
Check

None

None

None

None

None

Data Dictionary

Scope

Local
Parameter

Local
Parameter

Local
Parameter

Local
Parameter

Local
Parameter

Figure 5.7 Data Dictionary

Documentation

Problem Solving with the Sequential Logic Structure � 99

from the keyboard. The Annotation section is the only place you can explain such things
in any depth. Only after the module has been developed completely can you tell all that
belongs in the documentation, so it is best not to finish the notes on each module until
then. The Annotation and Documentation sections of the Algorithm and Flowchart form
are optional, but are often useful later.

The Algorithms and Flowcharts

Once the structure chart and the IPO chart are completed, you can proceed with the
algorithms and the flowcharts. To complete an algorithm, you have to answer the ques-
tion: How can this module complete its function? To draw the flowchart, you answer the
question: How does the algorithm look graphically? By using the completed algorithms
and the flowcharts, you can find and correct logic errors.

Figures 5.8a–d show the four algorithms, one for each module in the structure chart,
and their corresponding flowcharts. The InterestControl module uses a sequential struc-
ture to execute the instructions, as do each of the other modules. Notice how the instruc-
tions simply flow in order from the top to the bottom of each algorithm. Remember, you

Flowchart Pseudocode Annotation Test

Enters all data from
keyboard

Calculates amount

Prints data and
amount

4. Transfer to Print

3. Transfer to Calc

2. Transfer to Read

1. Start

Algorithm

InterestControl

1. Process Read
 (*Principal, *Interest
 *Years, *Time)

2. Process Calc
 (Principal, Interest,
 Years, Time, *Amount)

3. Process Print
 (Principal, Interest,
 Years, Time, Amount)

4. End

 Process Read
 (*Principal, *Interest
 *Years, *Time)

Process Calc
 (Principal, Interest,
 Years, Time, *Amount)

Process Print
 (Principal, Interest,
 Years, Time, Amount)

End

Read

InterestControl

Calc

End

Print

* Specifies call-by-reference
 parameters.

Internal Documentation External Documentation

1. Same as 1 in Internal Documentation1. Remark at top: Calculates principal and interest given,
 beginning principal, interest rate, number of years, and
 compounded time interval.

2. Include annotations

Figure 5.8a Algorithm, Flowchart, and Pseudocode for InterestControl Module

100 � Chapter 5

2000

Principal

5%

Interest

5

Years

2

Time

External Documentation

1. Explain input data

1. Interest is Rate

2. Time is number of
 times interest is
 compounded yearly

Internal Documentation

1. Remark at top: Module to enter all data and
 to convert interest rate

*Specifies call-by-reference
 parameters.

1. Enter Principal,
 Interest, Years,
 Time

2. Interest � Interest
� 100

3. Exit

Read (*Principal,
*Interest, *Years, *Time)

Enter Principal,
Interest, Years,
Time

Interest �
Interest � 100

Exit

Read (*Principal,
*Interest, *Years,
*Time)

TestAnnotationFlowchart PseudocodeAlgorithm

Exit

Read

Interest
� Interest

� 100

Enter Principal,
Interest, Years,

Time

Figure 5.8b Algorithm, Flowchart, and Pseudocode for Read Module

Amount � 2000 *
(1 � .05 � 2) (5 * 2)

External Documentation

1. Specify equation

None

Internal Documentation

1. Remark at top: Module to enter all data and interest

*Specifies call-by-reference
 parameters.

Calc (Principal,
Interest, Time, *Amount)

TestAnnotationFlowchart PseudocodeAlgorithm

Exit

Calc

1. Amount � Principal
* (1 � Interest�Time)

(Years * Time)
2. Exit

>

>

Calc (Principal,
Interest, Years,
Time, *Amount)

Amount � Principal
* (1 � Interest�Time)

Exit
Amount � Principal

* (1 � Interest �Time)
(Years * Time)

>

Amount �
2000 * (1 � .025) 10

Amount � 2560

>

Figure 5.8c Algorithm, Flowchart, and Pseudocode for Calc Module

Problem Solving with the Sequential Logic Structure � 101

must only use the algorithm instructions in Table 5.1, and each instruction must be in
the form presented. The same is true for the flowcharts. The Annotation and
Documentation sections of this figure have been completed to show how to use these
sections in the Algorithm and Flowchart form.

The next step in developing the solution is to take a set of test data and work it
through the algorithm instructions on a piece of paper or in the section provided on the
Algorithm and Flowchart form. Do not skip any steps. It is important to process the data
as you have instructed the computer to do it, starting at the beginning of the
InterestControl module and working a set of data through the instructions in the algo-
rithms for each module, one by one. As you process each module, write down the
results. The solution is correct if the output matches the desired results. In this problem,
the output should match the hand-calculated value of the amount. If the correct output is
produced, then the analysis is complete. If not, you need to make corrections in the
algorithm until you reach the correct output. At that point the analysis will be complete
and coding into a language or application can begin. Coding is done in a language or
applications course.

External Documentation

1. Specify output

1. Print each variable
 on a separate line
 with a label.

Internal Documentation

1. Remark at top: Module to print required output

*Specify only what and when the information is printed, not how it is printed.

Print (Principal,
Interest, Years, Time,
Amount)

TestAnnotationFlowchart PseudocodeAlgorithm

Exit

Print

1. Print Amount,
 Principal, Interest,
 Years, Time

2. Exit

Print (Principal,
Interest, Years, Time,
Amount)

Print (Amount,
Principal, Interest,
Years, Time)

Exit

Print Amount,
Principal, Interest,

Years, Time

Prints what is
required

*

Figure 5.8d Algorithm, Flowchart, and Pseudocode for Print Module

Summary

The instructions in every algorithm must use particular logic structures in order to
increase readability for the programmer or user. The first logic structure is the sequen-
tial structure, in which the processing flows from one instruction to the next from start
to end. The particular instructions used with the sequential structure include Start, Enter
data, Print and Write data, assign a value to a variable Process another
module, and End/Exit/Return.

1variable =2,

102 � Chapter 5

A solution to a problem is developed in seven steps:

1. Analyze the problem.
2. Develop the structure chart.
3. Develop the IPO chart.
4. Develop the coupling diagram and the data dictionary.
5. Develop the algorithms.
6. Develop the flowcharts.
7. Test the solution.

These steps will help you develop a solution that is efficient and easy to understand,
code, and maintain.

After preparing the structure chart and the IPO chart, and while developing the
algorithms and flowcharts, the programmer takes notes for the internal and external doc-
umentation that will be completed later. The internal documentation will be written
within the program. The external documentation will be written in the form of manuals
explaining the program.

Questions

1. What is the sequential logic structure?

2. Which flowchart symbols are used for the sequential logic structure?

3. Why is documentation important?

4. What is meant by solution development? Why is it important?

Problems

Complete the seven steps of solution development for the following problems:

1. A painter wants to know the amount of paint needed to paint only the walls and the
interior side of the door in a room. The chosen paint covers 100 square feet per gallon.
There are two windows. Test the problem with the following data:

The room is 12 feet long, 10 feet wide, and 8 feet tall.

The two windows are 5 by 3 feet, and 6 by 2 feet, respectively.

2. One of the jobs that Joe Roberts has been given at work is to order special paper for
a report for a board meeting. The paper comes in reams of 500 sheets. He always
makes five more copies than the number of people that will be there. Joe wants to
know how many reams of paper he needs for a meeting. He can order only whole,
not partial, reams. Assume the required number of pages will not equal an exact
number of reams. Test your solution with the following data:

The report is 140 pages long.

There will be 25 people at the meeting.

3. An instructor calculates grades by dropping the lowest homework score and the
lowest test score and adding the remaining scores together. He then calculates the
final points as a percentage of the total points possible. The instructor needs to
know the final points for a given student.

Problem Solving with the Sequential Logic Structure � 103

(Hint: Use the minimum function, that is, the function that returns the minimum value
in a list of values.) Test your solution with the following data:

Total points possible—500 points

Tom Johnson

Homework scores—45, 46, 41, 31, 44

Test scores—95, 84, 75, 98

4. a. Develop a solution that would return the fewest coins in change from a purchase
of under one dollar. (Include pennies, nickels, dimes, quarters, and half dollars.)

Example: purchase 63¢

change 37¢

coins 1 quarter

1 dime

2 pennies

b. Develop a solution that would return the fewest bills and coins for a purchase
under $50.

5. Mary Williams needs to change a Fahrenheit temperature to Celsius. Use the
Fahrenheit temperature of 80 degrees to test your solution.

(Hint:)

6. Write a solution to print the number of months (use 30 days to a month) and
remaining days given the number of days between two dates.

7. A sweater is on sale for 25% off the original price. The original price is $50. Write
a solution to calculate and print the sale price.

8. Bob would like to know what percentage of his income his rent is. Write a solution
that would calculate and print this percentage.

(Hint:)

9. An instructor calculates the grade percentage based on the highest score on a test.
Given the highest score and one student’s score, write a solution to calculate and
print that student’s test percentage.

(Hint:)

10. Joe would like to build several bookcases that are different heights and widths. All
will be 12 inches in depth. The bookcases will have three shelves, in addition to the
bottom and the top. Write a solution to print the number of feet of 12-inch-wide
boards that will Joe need to complete a bookcase, given the height and width.

11. Given three numbers, print the maximum value.

(Hint: Use the Maximum function.)

12. Given three numbers, print their sum and their product.

13. Have the computer “throw’’ a pair of dice and print out the resulting numbers.

(Hint: Use the random number generator twice, once for each die. There are six dif-
ferent numbers on a die.)

14. Sharon would like to know how much gas will cost for her to take a trip to her vaca-
tion home 180 miles away. She knows the average price of gas and the average
miles per gallon for her car. Write a solution to calculate the cost of the gas for her
trip. (Remember she has to travel back.)

Percentage = Score/Highest Score * 100

Percentage = Number/Total * 100

C = 5/ 91F - 322

104 � Chapter 5

15. Michael has designated 5% of his paychecks for the year for presents (birthday,
Mother’s Day, etc.). Write a solution to calculate the amount of money he can spend
given the amount of money he earns.

16. Jim is going to replant his lawn. He would like to know how much the sod will cost,
given cost of the sod and the length and width of two different lawn areas. Write a
solution to calculate this cost.

WHAT’S WRONG WITH THIS?

Correct the following algorithm instructions:

1.

2. Output A, B, C

3. Input A, B, C

4. Enter a, b, and c

5. Stop

6. Goto Calc

7.

8. 7 = B + A

9. Input A = 5, B

10. Print “A,” B = 9, C, D

A = 5 B * C

A + B = C

Chapter 6

Problem Solving
with Decisions

Overview

The Decision Logic Structure

Multiple If/Then/Else Instructions

Using Straight-Through Logic

Using Positive Logic

Using Negative Logic

Logic Conversion

Which Decision Logic?

Decision Tables

Putting It All Together

The Case Logic Structure

Codes

Putting It All Together

Another Putting It All Together

Objectives

When you have finished this chapter, you should be able to:

1. Develop problems using the decision logic structure in conjunction with the
sequential logic structure.

2. Use problem-solving tools when developing a solution using the decision
logic structure.

3. Use nested decision instructions to develop a problem solution.
4. Distinguish the different uses of straight-through, positive, and negative

nested decision logic structures.

105

106 � Chapter 6

5. Convert a positive decision logic structure to a negative decision logic
structure.

6. Develop decision tables given a set of policies.
7. Develop a decision logic structure from a decision table.
8. Develop problems using the case logic structure.
9. Use problem-solving tools when developing a solution using the case logic

structure.

The logic structures will almost always be used in some combination with each other
in a program. In this chapter you will learn how to use a second logic structure, the
decision structure, as a way to design instructions. The decision structure is one of the
most powerful because it is the only way that the computer can choose between two or
more sets of actions. Without decisions, the computer would be nothing more than a
fast calculator.

The decision logic structure is relatively easy to understand since it works much
like the way humans think. Because of the complexity of some of the decisions a pro-
grammer has to design, however, it is often one of the most difficult structures to imple-
ment. The difficulty goes back to the fact that people make decisions without
understanding the reasoning involved. Also, a decision can be written in many different
ways, which can add to the confusion.

If/Then/Else instruction

The Decision Logic Structure

The decision logic structure uses the If/Then/Elseinstruction. It tells the computer that If
a condition is true, Then execute a set of instructions, or Else execute another set of in-
structions. The Else part is optional, as there is not always a set of instructions if the condi-
tions are false. When there are no instructions for true, a Continue statement must be used.
The following algorithm instruction for the decision structure (the decision instruction)
should be added to the list in Table 5.1. Notice the brackets and the indentation in the illus-
tration of the algorithm of the decision instruction. Programmers use these features when
they are writing instructions in the decision structure because they improve readability.

The True instructions are processed when the resultant of the condition is True,
and the False instructions are processed when the resultant of the condition is False. A
condition can be one of four things: a logical expression, that is, an expression that uses
logical operators (AND, OR, and NOT); an expression using relational operators
(greater than, less than, greater than or equal to, less than or equal to, equal to, and not
equal to); a variable of the logical data type (True or False); or a combination of logical,
relational, and mathematical operators.

Some examples of conditional expressions are as follows:

1. (A and B are the same data type—either numeric, character, or string)
2. (X and Z are numeric data)
3. or (E and F are numeric data)
4. DataOk (DataOk is a logical datum)

F 7 10E 6 5
X + 5 7 = Z
A 6 B

If �condition(s)�

Then
True

False

�True instruction(s)�

Else
�False instruction(s)�

Problem Solving with Decisions � 107

A

B

If
�Condition(s)�

False True

Instruction
Set

For True

Instruction
Set

For False

Figure 6.1 Flowchart Diagram of the Decision Structure

Logical operators are used to link more than one condition together. For example, con-
sider a store policy requiring that to cash a check, a customer must have a driver’s license,
AND the check must be under $50. Two conditions are linked by the logical operator AND.
(See Tables 2.6, 2.7 and 2.8 for the definitions and the hierarchy of all the operators.)

The programmer can set up the conditions for a decision through the use of
operands and various operators. These conditions can be used alone or linked with other
conditions for use in the instruction. The programmer derives the information needed to
set up the condition(s) for a decision from the problem itself during problem analysis.

Figure 6.1 shows a simple flowchart illustrating the decision structure. In the fig-
ure, the resultant of the condition(s) can be True or False depending on the data. From
the decision block (the diamond), there will be a flowline, a branch for each set of in-
structions: one branch for the instructions to be executed if the resultant is True, and an-
other branch for the instructions to be executed if the resultant is False. There can never
be more than two flowlines coming from a decision block since there are only two pos-
sibilities for the resultant of the condition(s). The True branch and the False branch can
come from any of the lower three points of the diamond. It is best to be as consistent as
possible in choosing the points of the diamond on which these branches are placed. The
convention is to draw the True branch on the right and the False branch on the left or
bottom, although it depends on the decisions to be made. This book follows that con-
vention whenever possible. The processing flow from both the True branch and the
False branch must connect to the rest of the processing somewhere before exiting the
module. There can be no dangling flowchart blocks—blocks with no flowlines leading
to another block. The processing must flow somewhere. Each module can have only one
entrance and one exit. The only way to get to another module is through a Process in-
struction, that is, by telling the computer to process the instructions in another module
and then return to continue processing in the current module.

A simple decision with only one condition and one action or set of actions (one in-
struction or set of instructions) for True and another for False is relatively simple. For
example, assume you are calculating pay at an hourly rate and overtime pay (over 40 hours)
at 1.5 times the hourly rate. The decision to calculate pay would be stated in the follow-
ing way: If the hours are greater than 40, Then the pay is calculated for overtime, or Else
the pay is calculated in the usual way (see Figure 6.2).

Single Condition

108 � Chapter 6

Decisions in which you have multiple conditions that lead to one action or set of
actions for True and another action or set of actions for False are slightly more compli-
cated than those with single conditions. In these decisions you will use logical operators
to connect the conditions. As with decisions based on a single condition, the resultant
will determine whether the True or the False actions are taken.

The decision structure becomes more complicated as the number of conditions
and/or the number of actions for a True or False resultant increases.

Multiple Condition

Multiple If/Then/Else
Instructions

Straight-through logic

A

Algorithm Flowchart Pseudocode

B

If
Hours � 40

False True

Pay �
Rate * Hours

Pay � Rate *
(40 � 1.5 *

(Hours � 40))

If Hours � 40

Then

Else
Pay � Rate * Hours

Pay � Rate * (40
 � 1.5 * (Hours
 � 40))

False

True

If Hours � 40 Then

Else
Pay � Rate * Hours

Pay � Rate * (40
 � 1.5 * (Hours
 � 40))

Endif

Figure 6.2 Single Condition—Two Possible Actions or Sets of Actions

Multiple If/Then/Else Instructions

There are three types of decision logic you will use to write algorithms for solutions
consisting of more than one decision. These types of decision logic include straight-
through logic, positive logic, and negative logic.

Straight-through logic means that all of the decisions are processed sequentially,
one after the other. There is no Else part of the instructions; the False branch always
goes to the next decision, and the True branch goes to the next decision after the in-
structions for the True branch have been processed.

On the other hand, with positive logic not all of the instructions are processed.
Positive logic allows the flow of the processing to continue through the module instead
of processing succeeding decisions, once the resultant of a decision is True. Whenever
the resultant is False (the Else part of the decision), another decision in the sequence is
processed until the resultant is True, or there are no more decisions to process. At that
time, the False branch processes the remaining instructions.

Negative logic is similar to positive logic except that the flow of the processing
continues through the module when the resultant of a decision is False. Whenever the

Positive logic

negative logic

Problem Solving with Decisions � 109

resultant is True, another decision is processed until the resultant is False, or there are
no more decisions to process. At that time, the True branch processes the remaining in-
structions. Negative logic is the hardest to use and understand.

Some series of decisions will require a combination of two or more of these logic
types. The use of each decision logic type will be further explained and illustrated later
in this chapter.

In algorithms containing multiple decisions, you may have to write nested
If/Then/Else instructions. Decisions using positive and negative logic use nested
If/Then/Else instructions. Decisions using straight-through logic do not. Nested
If/Then/Else instructions are sets of instructions in which each level of a decision is
embedded in a level before it; like nesting baskets, one goes inside the next. You use
the nested If/Then/Else structure only when one of several possible actions or sets of
actions are to be processed (see Figure 6.3). In composing an If/Then/Else instruction,
draw a large bracket around each If/Then/Else in the algorithm to ensure that each in-
struction is in the proper place. The top part of the bracket indicates the condition.
The middle section of the bracket indicates the True branch, or the Then part of the
decision. The bottom part of the bracket indicates the False branch, or the Else part of
the decision.

In Figure 6.3, the decision is and says, Is the value of the
variable PayType equal to the string constant “Hourly”? If the two are equal, then the
resultant is True and the instruction set for the True is processed. If the resultant is False,
the instruction set for the False branch is processed. The True branch uses a nested
If/Then/Else instruction; the decision is embedded in the True branch of the first deci-
sion. This decision says, Are the hours worked greater than 40? If the answer is “yes,”
the resultant is True, and the pay is processed at the overtime rate. When the resultant is

If PayType = “Hourly”

nested If/Then/Else
instructions

A

Algorithm Flowchart

B

If
PayType �

"Hourly"

False True

False True
Pay � Salary

Pay � Rate *
(40 � 1.5 *

(Hours � 40))

Pay �
Rate * Hours

If
Hours � 40

False

True

If Hours � 40

Then

Else
Pay � Rate * Hours

Pay � Rate * (40
 � 1.5 * (Hours
 � 40))

False

True

If PayType � "Hourly"

Then

Else
Pay � Salary

Pseudocode

If Hours � 40 Then

Else

Endif

Endif

Pay � Rate * Hours

Pay � Rate * (40
 � 1.5 * (Hours
 � 40))

If PayRate � "Hourly" Then

Else
Pay � Salary

Figure 6.3 Nested If/Then/Else Instructions

110 � Chapter 6

False, that is, when the hours are not greater than 40, the pay is processed at the normal
rate. When the resultant of the first decision is False, that is, when the PayType is not
equal to “Hourly,” then the pay is processed at the salary rate. (Notice that when the
PayType is not equal to “Hourly,” the embedded decision on the True branch cannot be
processed—an example of negative logic.) A good programmer thoroughly tests algo-
rithms that use decision logic with many sets of test data. Every path in every algorithm
is checked, and a separate set of data is used for each path. It is important to test each
path so errors will be eliminated.

Using Straight-Through Logic

With decisions following straight-through logic, all conditions are tested. To test a con-
dition means to process a condition to get a True or False resultant. Straight-through
logic is the least efficient of all types of decision logic because all the decisions must be
processed. However, you must use it to solve certain problems—those that require two
or more unrelated decisions and those in which all decisions must be processed. It is
often used in conjunction with the other two logic types and in data validation (checking
data to make sure it is correct). It is also used with languages that have limited features
in their decision instruction.

The problem illustrated in Figure 6.4 is to find the amount to charge people of
varying ages for a concert ticket. When the person is under 16, the charge is $7; when
the person is 65 or over, the charge is $5; all others are charged $10. The conditions are
the following:

Age Charge
7

10
5

Notice in Figure 6.4 that even when the age is less than 16, the other decisions must be
processed.

In the algorithm and flowchart in Figure 6.4, notice that there is no Else in straight-
through logic. If the resultant of the condition is False, then the processing flow drops to the
next instruction. There is no need for the Else since there are no instructions for the False
branch. If the resultant of the condition is True, then the set of instructions for the True part
is processed, and the processing flow then drops to the next instruction. The set of condi-
tions in Figure 6.4 is more efficiently executed by using either of the other types of logic
since only one condition has to be met in order to execute the correct set of instructions.

The problem found in Figure 6.5 is to change the value of X to 0 when X becomes
greater than 100, and to change the value of Y to 0 when Y becomes greater than 250.
Each decision is independent of the other. The conditions are

Straight-through logic is required when all the decisions have to be processed, and
when they are independent of each other. Based on these criteria, the only appropriate
logic type for the decision in Figure 6.5 would be straight-through logic.

The following example is a similar problem, but with two sets of actions rather
than one. When the age of a person is greater than 18, the person can vote; when the age

X 7 100 X becomes 0

Y 6 250 Y becomes 0

Age 7 = 65
Age 7 = 16 and Age 6 65
Age 6 16

Straight-Through
Logic

Problem Solving with Decisions � 111

Algorithm

If Age � 16

Then
True Charge � 7

If Age �� 16 AND Age � 65

Then
True Charge � 10

If Age �� 65

Then
True Charge � 5

Flowchart Pseudocode

Charge � 7

Charge � 5

Charge � 10

False

False

False

A

B

True

True

True

If
Age � 16

If
Age �� 16

AND
Age � 65

If
Age �� 65

If Age � 16 Then

Endif

Endif

Endif

Charge � 7

If Age �� 16 AND Age � 65 Then

Charge � 10

If Age �� 65 Then

Charge � 5

Figure 6.4 Straight-Through Logic—Example 1

is greater than 21, the person can have alcoholic beverages. Both decisions are contin-
gent on the age of the person; however, the two actions take place at different ages. At
the age of 20, a person can vote, but cannot be served alcoholic beverages. In this case,
straight-through logic is required because all the decisions have to be processed and be-
cause they are independent of each other.

Using Positive Logic

Positive logic is the easiest type for most people to use and understand because it is the
way we think. Positive logic always uses nested If/Then/Else instructions. In general,
when you use positive logic, you are telling the computer to follow a set of instructions

Positive Logic

112 � Chapter 6

and continue processing if the condition is True; if the condition is not True, then the
computer processes another decision. When you use this logic, no more decisions are
processed once the resultant of a condition is True. Taking the same problem, and
therefore, the same set of conditions as in Figure 6.4, Figure 6.6 shows how the al-
gorithm would be structured using positive logic. Notice that there are fewer deci-
sions processed than in Figure 6.4—two compared to three—even if all the decisions
are processed. There is no need to process the third decision because the resultant of
the third condition statement has to be True once you have processed the second
statement and found it False. That is, when the age is NOT less than 16, it has to be
greater than or equal to 16. Therefore, this test can be eliminated if nested
If/Then/Else instructions are used. Likewise, if the age is NOT less than 65, it must
be greater than or equal to 65. Therefore, the third decision in the set of conditions is
not necessary.

Figure 6.7 illustrates another set of conditions using positive logic and a nested
If/Then/Else structure. The problem illustrated in this figure is to calculate the commis-
sion rate for a salesperson, given the amount of sales. When the salesperson has sold
less than or equal to $2,000 worth of goods, the commission is 2%. When the sales total
is more than $2,000 and less than or equal to $4,000, the commission is 4%. When the
sales total is more than $4,000 and less than or equal to $6,000, the commission is 7%.

Algorithm

If X � 100

Then
True X � 0

If Y � 250

Then
True Y � 0

Flowchart Pseudocode

X � 0

Y � 0

False

False

A

B

True

True

If
X � 100

If
Y � 250

If X � 100 Then

Endif

Endif

X � 0

If Y � 250 Then

Y � 0

Figure 6.5 Another Example of Straight-Through Logic—Example 2

Problem Solving with Decisions � 113

A

Algorithm Flowchart Pseducode

B

If
Age � 16

True

False

True

Then

Else

False

TrueFalse
Charge � 7

Charge � 5 Charge � 10

If
Age � 65False

True

If Age � 16

If Age � 65

Then
Charge � 7

Charge � 10

Charge � 5

Else

Else

If Age � 16 Then

If Age � 65

Charge � 7

Charge � 10

Charge � 5

Else

Endif

Endif

Figure 6.6 Positive Logic—Example 1

When the person has sold more than $6,000, the commission is 10%. The conditions are
the following:

Sales Commission

.02
2001–4000 .04
4001–6000 .07

.10

Notice that in Figure 6.7 there are only three decisions. The fourth decision is not
necessary; when the sales are NOT they have to be Remember,
when setting up an expression, you must have an operand on each side of the operator.

does not mean this is true for any sales amount between 2001 and
4000. The computer will subtract 4000 from 2001 first, then it will compare Sales to the
resultant, –1999. The proper expression for this condition is and

Also, remember that if this is the second decision in a nested decision
and the first decision is the expression in the second decision will be

since will always be true. Any will
have dropped out of the nested Ifs during the first decision.

Figure 6.7 is easy to read and understand because of the structure of the algorithm:
Brackets and indentation are used with positive logic to show the nested levels of the de-
cision structure. These features are important to readability.

Sales 7 = 2000Sales 7 2000Sales 6 = 4000
Sales 6 = 2000,

Sales 6 = 4000.
Sales 7 2000

Sales = 2001–4000

7 6000.6 = 6000

7 6000

6 = 2000

114
�

C
hapter 6

A

Algorithm PseudocodeFlowchart Test

1. Test For
 Sales � 1500
 Is Sales � � 2000?
 True
 Commission � .02

B

If
Sales � � 2000

False True

False True

Commission
� .04

Commission
� .07

Commission
� .1

If
Sales � � 4000

False TrueIf
Sales � � 6000

False

True

Then

Then

Else

Else
False

TrueFalse

True

If Sales � � 2000

If Sales � � 4000

If Sales � � 6000

Then
Commission � .02

Commission � .04

Commission � .07

Commission � .1

Else

Else

Endif

Endif

Endif

Else

If Sales � � 2000 Then

If Sales �4000 Then

If Sales �6000 Then

Commission � .02

Commission � .04

Commission � .07

Commission � .1

Else

Commission
� .02

2. Test For
 Sales � 3500
 Is Sales � � 2000?
 False
 Is Sales � � 4000?
 True
 Commission � .04

3. Test For
 Sales = 5500
 Is Sales � � 2000?
 False
 Is Sales � � 4000?
 False
 Is Sales � � 6000?
 True
 Commission � .07

4. Test For
 Sales = 7500
 Is Sales � � 2000?
 False
 Is Sales � � 4000?
 False
 Is Sales � � 6000?
 False
 Commission � .1

Figure 6.7 Positive Logic—Example 2

Problem Solving with Decisions � 115

Negative Logic

To test positive logic for correctness, choose data to test every path. In the Test sec-
tion of the algorithm and flowchart in Figure 6.7, there are four separate sets of data
tested, one for each commission. You should arrive at the correct commission (hand cal-
culated) by working each piece of test data through the flowchart. Notice that when

there is only one decision to be processed; the resultant is True, the
Commission is replaced by .02, and the processing continues at on-page connector B.
When the Sales is equal to 3500, two decisions are processed before the resultant of one
of them is found to be True.

There are times when it is more efficient to start an algorithm with one condition
rather than another. The general rule is that the condition that will have a resultant of
True most of the time should be the first. This way you will have to process the fewest
decisions. See Figure 6.8 for another way to set up a solution for the conditions found in
the sales commission problem illustrated in Figure 6.7. Notice the changes in the opera-
tors and in the order of the decisions. If you are unable to judge the condition that is
most likely to be True, then it really does not matter how the logic starts.

Sales = 1500,

Using Negative Logic

Negative logic is the hardest for most people to comprehend because they do not think
in negative terms. In general, when you use negative logic you are telling the computer
to process another decision when the resultant of the condition is True; if the resultant is
False, then the computer processes a consequent set of instructions and continues pro-
cessing the module. It is often advantageous to use negative logic to decrease the num-
ber of tests or to improve the readability of a program.

In Figure 6.9, negative logic is used with the same set of conditions as in Figure 6.4.
Notice that the actions take place on the False part of the instruction unless there are no
more tests. Again, the algorithm uses brackets and indentation for readability. With the in-
dentations the algorithm makes a sideways V. If a nested If/Then/Else instruction using
negative logic does not form a sideways V, then either the indentation is wrong, or some of
the instructions for each True or False are set up incorrectly. The top section of each
bracket indicates a condition or conditions. The middle section indicates the instructions
processed when the resultant of the condition(s) is True. This section is much larger when
a decision uses negative logic than when the decision uses positive logic. The bottom sec-
tion indicates the instructions to process when the resultant of the condition(s) is False.
This section is much smaller when a decision uses negative logic than when the decision
uses positive logic. The brackets make the nested If/Then/Else instruction easier to read by
partitioning the conditions, the True section, and the False section.

For example, in the algorithm and the flowchart in Figure 6.9, when the resultant
of the first condition is True, another decision is processed
When the resultant of the first condition is False, the charge of the ticket is $7; after this
decision the processing continues through the rest of the module. When the resultant of
the second condition is True the charge is $5; when False, the charge is $10.

Figure 6.10 shows the solution from the positive logic illustration in Figure 6.7 if
we were to use negative logic. The conditions are the following:

Sales Commission
.02

2001–4000 .04
4001–6000 .07

.107 6000

6 = 2000

(Age 7 = 65).(Age 6 16)

116
�

C
hapter 6

A

Algorithm Flowchart Pseudocode Test

1. Sales � 1500
 Is Sales � 6000?
 False
 Is Sales � 4000?
 False
 Is Sales � 2000?
 False
 Commission � .02

2. Sales � 3500
 Is Sales � 6000?
 False
 Is Sales � 4000?
 False
 Is Sales � 2000?
 True
 Commission � .04

3. Sales � 5500
 Is Sales � 6000?
 False
 Is Sales � 4000?
 True
 Commission � .07

4. Sales � 7500
 Is Sales � 6000?
 True
 Commission � .1

B

If
Sales � 6000

False True

False True

Commission
� .07

Commission
� .04

Commission
� .02

If
Sales � 4000

False TrueIf
Sales � 2000

False

True

Then

Then

Else

Else
False

TrueFalse

True

If Sales � 6000

If Sales � 4000

If Sales � 2000

Then
Commission � .1

Commission � .07

Commission � .04

Commission � .02

Else

Else

Endif

Endif

Endif

Else

If Sales � 6000 Then

If Sales � 4000 Then

If Sales � 2000 Then

Commission � .1

Commission � .07

Commission � .04

Commission � .02

Else

Commission
� .1

Figure 6.8 The Conditions in Figure 6.7 Set Up in a Different Way

Problem Solving with Decisions � 117

Notice how the testing takes place. Without proper testing, the problem-solving
process is useless. Testing the algorithm or the flowchart reveals errors in logic, so cor-
rections can be made before proceeding. It is far easier to make corrections during prob-
lem solving than after the coding has been done.

Figure 6.11 shows another way to organize the set of conditions in Figure 6.10
using negative logic. Here again, the rule is to have the computer make as few tests as
possible.

Logic Conversion

Logic Conversion

There are times when it is necessary to change the logic from positive to negative or
vice versa in order to improve the efficiency or readability of a solution. Sometimes
the structure of a solution simply does not lend itself to the logic type that you’ve
used, either because of the number and nature of the instructions to be processed, or
because there are no instructions to be processed. In a decision, there must always be
instructions for a True section, but not always for a False section. If there are no in-
structions for the True section of a decision instruction, then it is better to convert the
logic type.

To convert from positive logic to negative logic or vice versa, do the following:

1.
2.
3. Change all 7 to 6 =

Change all 6 to 7
Change all 6 to 7 =

A

Algorithm Flowchart Pseudocode

B

If
Age � 16

False

False

True

Then

Else

True

False True
Charge � 7

Charge � 5Charge � 10

If
Age � 65

False

True

If Age � 16

If Age � 65
Then

Charge � 10

Charge � 7

Charge � 5

Else

Else

Endif

Endif

If Age � 16 Then

If Age � 65 Then

Charge � 10

Charge � 7

Charge � 5

Else

Figure 6.9 Negative Logic—Example 1

118
�

C
hapter 6

A

Algorithm Flowchart Pseudocode Test

1. Sales � 1500
 Is Sales � 2000?
 False
 Commission � .02

2. Sales � 3500
 Is Sales � 2000?
 True
 Is Sales � 4000?
 False
 Commission � .04

3. Sales � 5500
 Is Sales � 6000?
 True
 Is Sales � 4000?
 True
 Is Sales � 6000?
 False
 Commission � .07

4. Sales � 7500
 Is Sales � 2000?
 True
 Is Sales � 4000?
 True
 Is Sales � 6000?
 True
 Commission � .1

B

If
Sales � 2000

False

False

True

Then

Then

Else

Else

True

False True

Commission
� .04

Commission
� .1

Commission
� .07

If
Sales � 4000

False TrueIf
Sales � 6000

False

True

False

True

If Sales � 2000

If Sales � 4000

If Sales � 6000

Then

Commission � .1

Commission � .07

Commission � .04

Commission � .02
Else

Else

Else

Endif

Endif

Endif

If Sales � 2000 Then

If Sales � 4000 Then

If Sales � 6000 Then

Commission � .1

Commission � .07

Commission � .04

Commission � .02
Else

Commission
� .02

Figure 6.10 Negative Logic—Example 2

Problem
 Solving w

ith D
ecisions

�
119

A

Algorithm Flowchart Pseudocode Test

1. Sales � 1500
 Is Sales � � 6000?
 True
 Is Sales � � 4000?
 True
 Is Sales � � 2000?
 True
 Commission � .02

2. Sales � 3500
 Is Sales � � 6000?
 True
 Is Sales � � 4000?
 True
 Is Sales � � 2000?
 False
 Commission � .04

3. Sales = 5500
 Is Sales � � 6000?
 True
 Is Sales � � 4000?
 False
 Commission � .07

4. Sales = 7500
 Is Sales � � 6000?
 False
 Commission � .1

B

If
Sales � � 6000

False True

False True

Commission
� .07

Commission
� .02

Commission
� .04

If
Sales � � 4000

False TrueIf
Sales � � 2000

False

True

Then

Then

Else

Else

False

True

False

True

If Sales � � 6000

If Sales � � 4000

If Sales � � 2000

Then

Commission � .02

Commission � .04

Commission � .07

Commission � .1

Else

Else

Else

Endif

Endif

Endif

If Sales � � 6000 Then

If Sales � � 4000 Then

If Sales � � 2000 Then
Commission � .02

Commission � .04

Commission � .07

Commission � .1

Else

Commission
� .1

Figure 6.11 The Conditions in Figure 6.10 Set Up in a Different Way

120 � Chapter 6

4.
5.
6.
7. Interchange all of the Then set of instructions with the corresponding Else set

of instructions.

If you are using the convention to keep all Trues to the right and all Falses to the left in
the flowchart, then reverse flowchart sections (see Figure 6.12). Figure 6.12 revisits the
problem regarding the charge for a concert ticket based on age, illustrated in Figure 6.6.
Notice that first, the relational operators are changed in the conditions. Second, the True
sections of the algorithms and flowcharts are exchanged with the False sections.

Change all 6 7 to =
Change all = to 6 7
Change all 7 = to 6

Which Decision Logic?

How do you decide which type of decision logic to use? The general rule is to evaluate
all three types for each solution and choose the one that is most readable, requires the
fewest tests, and is easiest to maintain. It is easy to fall into the trap of always using the
same logic type. It is also easy to fall into the habit of accepting and using a set of con-
ditions exactly as the customer has given them. Such habits are not the most efficient
ways of solving problems.

Figure 6.13 contains flowcharts showing four ways to set up the same conditions.
The problem is to calculate a pay bonus given the set of conditions in the figure. From
the data given, which logic type is the most efficient? Since the first and second solu-
tions (the examples of positive logic) are easy to read, and the second solution requires
the fewest tests, the second solution would be the best.

To analyze which type of decision logic would be most efficient for a particular so-
lution, answer the following questions:

1. Which type would make the solution most readable?
2. Which type would make the solution the easiest to maintain or change?
3. Which would require the fewest tests when you don’t know anything about

the data?
4. Which would require the fewest tests when you’re given some data?

If you find at the end of the analysis that more than one of the logic types could be
equally effective, then simply choose one.

Decision Tables

You may have a problem with multiple conditions and multiple consequent actions. In
such a case discovering all of the actions that correspond to particular conditions—and
discovering which combination of conditions, if any, leads to meaningful actions—can
be complicated. A good way to simplify this process is to draw a decision table. You
would draw a decision table during problem analysis. It is an excellent tool to use as a
communication vehicle with a customer or with the person for whom you are solving
the problem. You can also use it to test the algorithm and the flowchart.

A decision table consists of four parts:

1. The conditions
2. The actions

Decision Tables

decision table

Problem Solving with Decisions � 121

Algorithm Flowchart

1. Change to � �
1.

1.

2. Exchange the
 true sides with the
 false sides

A

Change � 5 Change � 10

Change � 7

B

A

If
Age � 16

If Age � 16

If Age � 65

If
Age � 65

TrueFalse

TrueFalse

Charge � 5Charge � 10

Charge � 7

B

If
Age � � 16

If
Age � � 65

TrueFalse

False True

2.

2.

True

True

Then

Then

Else

Else

Charge � 5

Change to Negative Logic

1. � Becomes � �

2. The true instructions
 exchange with
 the false instructions

Charge � 10

Charge � 7

False

False

If Age � � 16

If Age � � 65

True True

Then

Then

Else

Else

Charge � 10

Charge � 5

Charge � 7False

False

Figure 6.12 Conversion from Positive Logic to Negative Logic

122 � Chapter 6

Conditions:
Bonus �
Bonus �
Bonus �

Positive Logic

10
50

100

when Pay � � 1000
when 1000 � Pay � � 2000
when Pay � 2000

1.

Negative Logic

3.
A

False If
Pay � � 1000

If
Pay �1000

True False

False

True

False True

B B

If
Pay � � 2000

If
Pay � 2000

Bonus � 10 Bonus � 10

Bonus � 100 Bonus � 50 Bonus � 50 Bonus � 100

True

A

2. 4.
A

False If
Pay � 2000

If
Pay � � 2000

True False

False

True

False True

B B

If
Pay � 1000

If
Pay � � 1000

Bonus � 100 Bonus � 100

Bonus � 10 Bonus � 50 Bonus � 50 Bonus � 10

True

A

Figure 6.13 Four Ways to Design a Set of Conditions

Problem Solving with Decisions � 123

3. The combinations of True and False for the conditions
4. The action to be taken or the consequences for each combination of conditions

Draw a decision table in the form of a rectangle divided into the four major sec-
tions. Each section is divided into smaller sections, as needed, according to the number
of possible combinations of True and False (see Table 6.1). The total number of possi-
ble combinations of True and False for the conditions is two to the power of the number
of conditions. That is, if there are two conditions, then there are or 4 possible
combinations of True and False. If there are three conditions, then there are or 8
possible combinations. If there are four conditions then there are or 16 possible
combinations.

A flowchart must then be developed from the decision table. Figure 6.14 shows the
flowchart development from the decision table in Table 6.1. The first step in the devel-
opment of the flowchart is to draw in all decisions. Figure 6.14a shows the starting flow-
chart. Notice that the first decision is the first condition. The second decision is the
second condition and is repeated on the true side and the false side of the first decision.
The third decision is the third condition. This decision is repeated four times, once for
each true and false for the second decision. This will allow all combinations of true and
false values. Step two is to look at both sides of each decision, starting with decision
one. Figure 6.14b shows the comparison of sides. If both sides are the same the decision
is not needed. Notice that the true side of decision one is exactly the same as the false
side. Therefore, this decision is not needed. The decision and the false side can be elim-
inated. The true side and the false side of the second decision are different and therefore,
they need to stay. The same is true for the third decision. Figure 6.14c shows the final al-
gorithm and flowchart. The four steps to develop a flowchart from the decision table are
the following:

1. Draw all decisions in flowchart form.
2. Compare the true and false sides of each decision, starting with the first one.
3. Eliminate any decisions that have the same instructions on both the true and

false sides, keeping the true consequence or action.
4. Redraw the flowchart.

The decision table is a graphical way of stating a policy for a company, such as
a policy for cashing a check or for giving a bonus. Only the manager of the company
can instruct the programmer regarding the company policy, so the programmer must
work with the manager to complete the decision table. The manager tells the pro-
grammer the conditions and the actions, or consequences, of the decisions. The only

2 ¿ 4,
2 ¿ 3,

2 ¿ 2,

Table 6.1 Decision Table Format

List of
Conditions

List of
Actions Consequences

All Possible
Combinations
of True & False

Condition1

Condition2

Condition3

Action1

True

True

False

X

True

False

False

X

Action2

True

True

True

X

True

False

False

X

True

True

False

X

False

False

False

X

Action3

True

True

False

X

True

False

False

X

124
�

C
hapter 6

B

A

If
Condition1

If
Condition2

If
Condition2

If
Condition3

If
Condition3

If
Condition3

If
Condition3

Action2 Action3 Action1 Action2 Action2 Action3 Action1 Action2

False True False True

False TrueFalse TrueFalse True False True

False True

Figure 6.14a Starting Flowchart from Table 6.1

Problem
 Solving w

ith D
ecisions

�
125

B

A

If
Condition1

If
Condition2

If
Condition2

If
Condition3

If
Condition3

If
Condition3

If
Condition3

Action2 Action3 Action1 Action2 Action2 Action3 Action1 Action2

False True False True

False TrueFalse TrueFalse True False True

False True

Identical Actions
for True and False

KeepEliminate
Condition

and One Side

Figure 6.14b Elimination of Conditions

126 � Chapter 6

part the programmer fills in is the upper right-hand section showing the possible combi-
nations of True and False. It is important for the programmer to work with the customer
to make sure all combinations have the correct set of actions. From the decision table,
the programmer proceeds to write the algorithm and the flowchart to solve the problem.
The major difficulty in designing the algorithm is to make decision structure as efficient
as possible by weeding out all unnecessary tests and putting the conditions in the best
possible order. It often takes several experiments to come up with the best structure.

Table 6.2 shows a decision table for a store policy for charging a purchase. There
are three conditions:

1. The purchase is less than $100.
2. The last payment to the account was made in the last 30 days.
3. The balance of the account is less than $1,000.

B

A

If
Condition2

If
Condition3

Action2 Action3

False True

TrueFalse If
Condition3

Action1 Action2

TrueFalse

False

True

False

False

True

True

If Condition2
Then

If Condition3

If Condition3

Then

Else

Else

Action2

Action1

Then

Else
Action3

Action2

Algorithm
If Condition2 Then

If Condition3 Then

If Condition3 Then

Else

Endif
Else

Endif

Action2

Action1

Else
Action3

Action2

PseudocodeFlowchart

Endif

Figure 6.14c Final Flowchart

Problem Solving with Decisions � 127

Each of these three conditions could be True or False depending on the customer. The
following actions could be taken:

1. Credit is okay, and the customer can charge the item.
2. Refer the customer to the credit department.
3. Credit is denied and the customer cannot charge the item.

These conditions and actions are supplied by the manager of the credit department.
The manager also states when each of the actions will take place. The policy illus-
trated in Table 6.2 specifies that a customer can charge an item when all three condi-
tions are True, or when the first and third conditions are True and the second one is
False. The customer is referred to the credit department in the following cases: when
conditions 1 and 2 are True and 3 is False; when 2 and 3 are True and 1 is False; and
when 1 and 2 are False and 3 is True. Credit is denied in these cases: when conditions
2 and 3 are False and 1 is True; when 1 and 3 are False and 2 is True; and when all
three are False.

Figure 6.15 shows the development of the flowchart from Table 6.2. Figure 6.15a
shows the complete flowchart with all decisions. The condition is
the first decision. LastPaymentWithin30Days is the second condition and is repeated
twice, once each for the true and false in the first decision. The third decision is

This decision is repeated four times, once for each true and false
in decision two. This will give the actions for all combinations of true and false.
Figure 6.15b shows the decisions that have the same true and false actions. Notice
that the second decision on the false side of the first decision has identical actions on
the true side and the false side. This indicates that this decision is not necessary and
can be eliminated. After all, if the same action takes place whether the decision is
true or false, the decision is not needed. Figure 6.15c shows the redrawn flowchart
and the associated algorithm.

Balance 6 $1,000.

Purchase 6 $100

Putting It All Together

The Putting It All Together (PIAT) sections in this book are designed to show students
how to pull together and use the concepts from a previous section or sections. The fol-
lowing PIAT demonstrates how to use the six steps of problem solving on the computer
to develop a solution that uses the sequential and the decision logic structures. The prob-
lem is as follows:

Example

Table 6.2 Decision Table

List of
Conditions

List of
Actions

True True True True

True True True TrueFalse False False False

FalseFalseFalseFalse

False False False False

X X

1

2

3

2

3

1

Purchase � $100

LastPaymentWithin30Days

Balance � $1000

ReferToCreditDepartment

CreditDenied

CreditOk

X X X

X X X

True True True True

128
�

C
hapter 6

B

A

If
Purchase

� 100

If
LastPayment

� 30

If
Balance
� 1000

If
Balance
� 1000

If
Balance
� 1000

If
Balance
� 1000

Print
“Credit
Denied”

Print
“Refer to

Credit Dept”

Print
“Credit
Denied”

Print
“Refer to

Credit Dept”

Print
“Credit
Denied”

Print
“Credit

Ok”

Print
“Credit

Ok”

Print
“Refer To

Credit Dept”

False True False True

False TrueFalse TrueFalse True False True

False True

If
LastPayment

� 30

Figure 6.15a Starting Flowchart from Table 6.2

Problem
 Solving w

ith D
ecisions

�
129

B

A

If
Purchase

� 100

Keep

If
LastPayment

� 30

If
Balance
� 1000

If
Balance
� 1000

If
Balance
� 1000

If
Balance
� 1000

Print
“Credit
Denied”

Print
“Refer to

Credit Dept”

Print
“Credit
Denied”

Print
“Refer to

Credit Dept”

Print
“Credit
Denied”

Print
“Credit

Ok”

Print
“Credit

Ok”

Print
“Refer to

Credit Dept”

False True False True

False TrueFalse TrueFalse True False True

False True

Eliminate
Condition

and One Side

Identical Actions
for True and False

If
LastPayment

� 30

Figure 6.15b Elimination of Conditions

130
�

C
hapter 6

B

False True

A

False True

TrueFalseTrueFalse TrueFalse

True

False

True

False

True

False

False

True

If Purchase � 1000
Then

If LastPayment � 30

If Balance � 1000

Then

Then

Else

If Balance � 1000

Print “Credit Ok”

Then

Else

Print “Refer to Credit
Dept”

Print “Credit Denied”

Algorithm:

Else
Print “Refer to
Credit Dept”

Then
If Balance � 1000

Print “Credit Ok”
Else

Print “Credit
Denied”

Else

If Purchase � 1000 Then

If LastPayment � 30 Then

If Balance � 1000 Then
Else

If Balance � 1000

Print “Credit Ok”

Else

Print “Refer to Credit
Dept”

Print “Credit Denied”

Endif

Endif

Endif

Endif

Endif

Pseudocode

Else
Print “Refer to
Credit Dept”

If Balance � 1000 Then

Print “Credit Ok”
Else

Print “Credit
Denied”

Else

If
Purchase
� 1000

If
Balance
� 1000

If
Balance
� 1000

If
Balance
� 1000

If
LastPayment

� 30

Print
“Credit
Denied”

Print
“Refer to

Credit Dept”

Print
“Refer to

Credit Dept”

Print
“Credit
Denied”

Print
“Credit

Ok”

Print
“Credit

Ok”

Figure 6.15c Final Flowchart

Problem Solving with Decisions � 131

Given Data

Wholesale buyers:
• Must have resale number.
• Amount of purchase discount

� 100 2%
� � 100 AND � 500 5%
� � 500 10%

Retail buyers:
• No discount

Amount of purchase (AP)
6% Tax

Processing Required

Retail � 1.06 * AP
 Wholesale � (1�D) * AP

Required Results

Amount owed

Solution Alternatives

*• Use positive logic for discount
• Use negative logic for discount
• Use straight-through logic for discount

*This solution was chosen because it results
in the fewest number of tests and it is easily
read.

Figure 6.16a Fantastic Floral Company—Problem Analysis Chart

Read Calc

Control

Print

Figure 6.16b Fantastic Floral Company—Structure Chart

The Fantastic Floral Company sells to wholesale and retail buyers. The wholesale
buyer needs a resale number in order to buy at no tax and to receive discounts. The re-
tail buyer pays 6% tax. These are the discounts to the wholesale buyer:

Given an amount of purchase, how much will the customer owe the company? (See
Figure 6.16a–h.)

Discount = 10%Amount 7 = $500
Discount = 5%Amount 7 = $100 AND 6 $500
Discount = 2%Amount 6 $100

132 � Chapter 6

Item

Purchase
Amount

Resale Number

Amount Owed

Numeric

Numeric

Numeric

All

Control, Calc,
 Print

Local

Local

Local

None

None

None

None

None

None

Variable Name Data Type Module Scope Pseudonym Error Cks.

Control

Read Calc Print

PurchAmt

ResaleNo

AmtOwed

All

AmtOwed
ResaleNo

PurchAmt

PurchAmt AmtOwed

ResaleNo PurchAmt

ResaleNo

AmtOwed

ResaleNo

PurchAmt

PurchAmt
ResaleNo PurchAmt

ResaleNo

AmtOwed

Figure 6.16d Coupling Diagram and Data Dictionary

Input

1. Amount of purchase
2. Resale number
 (If 0 then a retail customer)

Processing

1. Enter input data
2. Calculate discount
3. Calculate amount owed
4. Print output information

Module Reference

Read
Calc
Calc
Print

Output

1. Amount of purchase
2. Resale #
3. Amount owed

Figure 6.16c Fantastic Floral Company—IPO Chart

Problem Solving with Decisions � 133

Algorithm Pseducode

Control

Flowchart Annotation

Enters data

Calculates
amount
owed

Prints
output

Test

1. Process Read (*PurchAmt,
 *ResaleNo)

2. Process Calc (PurchAmt,
 ResaleNo, *AmtOwed)

3. Process Print (PurchAmt,
 ResaleNo, AmtOwed)

4. End

Main

Process Read (*PurchAmt,
*ResaleNo)

Process Calc (PuchAmt,
ResaleNo, *AmtOwed)

Process Print (PurchAmt,
ResaleNo, AmtOwed)

End

*Specifies call-by-reference
 parameters.

Internal Documentation External Documentation

1. Title: calculates amount owed given amount of sale
 and resale #

1. Same as internal documentation
2. Explain problem

GoToRead
Module

GoToCalc
Module

GoToPrint
Module

Stop
End

Print

Calc

Read

Control

Figure 6.16e The Algorithms and Flowcharts—Control Module

Algorithm

Read (*PurchAmt, *ResaleNo)

Flowchart Annotation

PurchAmt =
amount of
purchase

ResaleNo =
resale
number
(0 means
retail
purchase)

Test

1. Enter PurchAmt

2. Enter ResaleNo

3. Exit

Pseudocode

Read (*PurchAmt, *ResaleNo)

Enter PurchAmt

Enter ResaleNo

Exit

*Specifies call-by-reference
 parameters.

Internal Documentation External Documentation

1. Title: Enters data from keyboard
2. See annotations

1. Same as internal documentation

Return

ResaleNo

PurchAmt

27505

Exit

Enter
ResaleNo

Enter
PurchAmt

Read

300

Figure 6.16f The Algorithms and Flowcharts—Read Module

134
�

C
hapter 6

Calc

Algorithm

1. If ResaleNo � 0
Then

Then

AmtOwed � PurchAmt * 1.06

AmtOwed � PurchAmt * .98

AmtOwed � PurchAmt
 * .95
AmtOwed � PurchAmt
 * .9

Flowchart Pseudocode Test

AmtOwed

285

ResaleNo � 0
(retail
customer)

Annotation

If
ResaleNo

� 0

False True

False True AmtOwed �
PurchAmt
* (1.06)

AmtOwed �
.98 *

PurchAmt

AmtOwed �
.9 *

PurchAmt

AmtOwed �
.95 *

PurchAmt

If
PurchAmt

� 100

If
PurchAmt

� 500

False True

Calc (PurchAmt, ResaleNo,
 *AmtOwed)

Else
If PurchAmt � 100

If PurchAmt � 500
Else

Then

Else

If ResaleNo � 0 Then

AmtOwed � PurchAmt * 1.06

AmtOwed � .98 * PurchAmt

AmtOwed � .95 * PurchAmt

AmtOwed � .9 * PurchAmt

Calc (PurchAmt, ResaleNo,
 *AmtOwed)

Else
If PurchAmt � 100 Then

If PurchAmt � 500 Then
Else

Else

Endif

Endif

Endif

Return

External DocumentationInternal Documentation

*Specifies call-by-reference
 parameters.

1. Same as internal documentation

2. Exit

1. Title: Calculates amount owed
2. See annotation

Exit

Figure 6.16g The Algorithms and Flowcharts—Calc Module

Problem Solving with Decisions � 135

Print

Algorithm

1. Print PurchAmt,
 ResaleNo,
 AmtOwed

Print (PurchAmt, ResaleNo,
 AmtOwed)

Flowchart Pseudocode TestAnnotation

None Prints
Output

Return

External DocumentationInternal Documentation

1. Same as internal documentation

2. Exit

Print PurchAmt,
 ResaleNo,
 AmtOwed

Print (PurchAmt, ResaleNo,
 AmtOwed)

Exit

1. Title: prints output data

Exit

Print
PurchAmt,
ResaleNo,
AmtOwed

Figure 6.16h The Algorithms and Flowcharts—Print Module

The Case Logic Structure

Sometimes a solution to a problem requires the computer to select one action from a set of
actions. This kind of solution can be designed through the decision logic structure, but the
case logic structure is more efficient for this purpose. The case logic structure is a special
variation of the decision structure, although it is different enough to present here separately.
This structure is used in many business-related problems, such as those dealing with types of
accounts in a bank, types of insurance available to an employee, or the selection of a bonus.

The case logic structure is made up of several sets of instructions, usually only one
of which will be selected by a condition and then executed by the computer. Through
the use of the case logic structure, a programmer can enable a user to enter the value of
a variable from the keyboard, from a file, or use a calculated value to select one of sever-
al options in a list. Then the instruction following the EndOfCase instruction is executed.
(The EndOfCase instruction is the last instruction in the case logic structure.) The case
logic structure does not enable the program to loop back to select another option. If the
solution requires looping back, then the programmer has to use the loop logic structure.
The form of the case logic structure is the following:

CaseOf
<Condition1>

actions for <Condition1>
<Condition2>

actions for <Condition2>
<Condition3>

actions for <Condition3>
.
.

Otherwise:
actions when all other conditions are False

EndOfCase

Notice how the indentation improves the readability of the algorithm.

136 � Chapter 6

When the case logic structure is processed, the first condition is evaluated. If it is
True then the actions for the first condition are executed. For most languages, the pro-
cessing then continues after the EndOfCase. If the first condition is False, then the pro-
cessing continues with the second condition. If this is True, then the actions for the
second condition are processed. If False, the processing continues on with the next
condition until no more conditions are available. When all conditions are False, then
the actions for Otherwise are processed before dropping out of the CaseOf instruction.
The EndOfCase signals the end of the CaseOf instruction. This would be equivalent to
nested If/Then/Else instructions. However, a few languages allow more than one set of
actions to take place. Therefore, when a condition is True, the actions for that condition
are processed and then the next condition is evaluated. This would be equivalent to
straight-through logic of If/Then/Else instructions. You will need to check your lan-
guage manual to determine the type of case logic structure you will be using. Figures
6.17 and 6.18 shows the flowchart diagram for the CaseOf instruction. Figures 6.19
and 6.20 demonstrate the If/The/Else equivalencies of this instruction.

Examples of the use of this instruction include the determination of a bonus, a
medical insurance deduction, a vendor, a paycheck, or income tax deduction. The
number of possible options or sets of instructions in the case logic structure is limited
only by the language in use. When using the CaseOf instruction, the conditions may
be in any order, with the Otherwise always last. However, the best order is to place
them is the order of most used. This will speed up your program by limiting the num-
ber of instructions.

There are some pitfalls when using the CaseOf instruction. You need to make
sure that the order that you place the conditions will allow the correct condition to
occur. For example, if you have one set of actions for and another set
of instructions for the condition needs to be first or itSalary 6 500Salary 6 500,

Salary 6 1,000

<Condition1> <Condition2> <Condition3> Otherwise

B

CaseOf

A

Instructions

True

False False False

True True

Instructions Instructions Instructions

Figure 6.17 Flowchart Diagram for the Case Logic Structure

Problem Solving with Decisions � 137

<Condition1> <Condition2> <Condition3> Otherwise (optional)

B

CaseOf

A

Instructions

True True True

False False False

Instructions Instructions Instructions

Figure 6.18 Alternate Flowchart Diagram for the Case Logic Structure

will never execute a salary of 450 because 450 is also less than 1,000. If you are
using a CaseOf instruction that allows you to test all conditions, then you want to
make sure you drop out of the instruction by putting a GoTo instruction at the end of
each set of actions. There are times that you want to have more than one condition’s
actions take place. In this case, do not use the GoTo or Continue instruction and
make sure you do not change the variables in the conditions during the execution of
a set of actions.

There are other instruction names and relational operators that you may encounter.
Instead of CaseOf, you may find Select or Choose. Other operators may include
Inbetween or InSet. There are many varieties of this instruction. Check your language to
find what is available for you to use.

Codes

Codes are characters, character strings, numbers, or some combination of these types of
data that a programmer uses to name the options, the constants, in a case structure. They
are abbreviations for each of the options. They direct the processing path just as indica-
tors do by specifying the choice that the user prefers—and, therefore, that the computer
will make, such as a particular employee medical plan out of many plans: B for Best
Medical Insurance Company, D for Direct Medical Insurance Company, and the like.

The major differences between indicators and codes are the following:

1. Codes are data to be entered by the user. Indicators are internal signals to
change the processing path.

codes

138 � Chapter 6

B

A

Instructions
for

Otherwise

False True

If
<Condition2>

False True

If
<Condition3>

False True

If
<Condition4>

False True

Instructions
for

<Condition1>

If
<Condition1>

Instructions
for

<Condition4>

Instructions
for

<Condition3>

Instructions
for

<Condition2>

Figure 6.19 Nested Decision-Structure Equivalent to the Case Logic Structure

2. A code can have a value of many different types. The value of an indicator
can be logical data, True or False, or it can have an implausible value for the
variable it represents in the solution.

A code is used to indicate choices such as the type of insurance an employee is buying,
the gender of an individual, or the vendor in an inventory problem. When using codes,
the Otherwise option indicates an error. Without the use of codes, solutions requiring a
choice from among several options would be longer, harder to read, and more difficult
to maintain.

Putting It All Together

This PIAT illustrates the use of codes in a solution using the case logic structure.

Problem: A company has four different medical plans. The programmer has
given each plan a code corresponding to the beginning initial of the company:
Plan 1 = F, Plan 2 = B, Plan 3 = K, Plan 4 = E.

Problem Solving with Decisions � 139

A

Connect

If
<Condition1>

If
<Condition2>

If
<Condition3>

If
<Condition4>

Instructions for
<Condition1>

Instructions for
<Condition2>

Instructions for
<Condition3>

Instructions for
<Condition4>

Instructions for
Otherwise

Figure 6.20 Straight-through Decision Structure Equivalent
to the Case Logic Structure

140 � Chapter 6

The company pays for all of Plan 1. The individual has to pay for part of the
others. The payroll deduction for Plan for Plan and for
Plan Any other codes are considered in error. Write the algorithm
and draw the flowchart for a module to determine the payroll deduction.

Figure 6.21 shows the module to calculate the insurance deduction. The variable
name for the medical plan code is MedCode. MedCode can have only the value of F, B,
K, or E. Any other value is unacceptable, and therefore an error. When MedCode has the
value of F, then MedDeduction, the medical deduction, is 0; when it has the value of B,
MedDeduction is 4.65; when it has the value of K, MedDeduction is 7.85; when it has the
value of E, MedDeduction is 5.50. If MedCode has any other value, then an error module
is processed. An error module is simply the module that prints out an error message.

4 = 5.50.
3 = 7.85,2 = 4.65,

Another Putting It All Together

This PIAT illustrates the use of a pay-type code to calculate an employee’s pay. The
codes are as follows:

H = Hourly pay = rate * hours
P = Piece work pay = rate * number of pieces
C = Commission pay = commission * sales
S = Salary pay = salary

Flowchart

InsuranceDeduction

CaseOf

MedDeduction
� 7.85

Algorithm

InsuranceDeduction (MedCode,
*Med Deduction)

1. CaseOf
 MedCode � “F”:
 MedDeduction � 0
 MedCode � “B”:
 MedDeduction � 4.65
 MedCode � “K”:
 MedDeduction � 7.85
 MedCode � “E”:
 MedDeduction � 5.50
 Otherwise
 Process Error
 EndOfCase

Exit

MedDeduction
� 0

MedDeduction
� 4.65

MedDeduction
� 5.50

Error

MedCode � “F” MedCode � “B” MedCode � “K” MedCode � “E” Otherwise

2. Exit

Pseudocode

InsuranceDeduction (MedCode,
*Med Deduction)

CaseOf MedCode
 “F” : MedDeduction � 0
 “B” : MedDeduction � 4.65
 “K” : MedDeduction � 7.85
 “E” : MedDeduction � 5.50
 Otherwise : Print “Error”
CaseEnd

 Exit

Figure 6.21 Using Codes—Medical Insurance Problem—InsuranceDeduction Module

Problem Solving with Decisions � 141

PayCalc (PayCode, *Pay)

1. CaseOf
 PayCode � “H”
 Pay � Rate * Hours
 PayCode � “P”
 Pay � Rate * NoPieces
 PayCode � “C”
 Pay � Commission * Sales
 PayCode � “S”
 Pay � Salary
 EndOfCase

2. Exit

Flowchart

PayCalc

CaseOf

Pay �
Commission *

Sales

Algorithm

Exit

Pay � Rate *
Hours

Pay � Rate *
NoPieces

Pay � Salary
Process

Error

PayCode � “H” PayCode � “P” PayCode � “C” PayCode � “S” Otherwise

PayCalc (PayCode, *Pay)

CaseOf PayCode

 “H” : Pay � Rate * Hours

 “P” : Pay � Rate * NoPieces

 “C” : Pay � Commission * Sales

 “S” : Pay � Salary

 Otherwise : Print “Error”

CaseEnd

Exit

Pseudocode

Figure 6.22 Algorithm and Flowchart to Illustrate Pay Module

The module to calculate an employee’s pay is illustrated in Figure 6.22. Notice that there
is an instruction box for each pay type that explains how to calculate each employee’s
pay. The Otherwise instruction processes an error module to catch any keyboard entry
errors. If there is an error, the processing returns to an instruction that reenters the em-
ployee’s data.

Summary

The decision logic structure is the second basic logic structure used to design algorithms,
the first being the sequential logic structure. You now know the following types of in-
structions for communicating with the computer:

� Start
� Stop
� Print
� assignment
� If/Then/Else
� Process module
� End/Exit
� Return
� Continue

142 � Chapter 6

The instruction added in this chapter was If/Then/Else, the decision instruction.
This instruction is powerful because it enables the computer to make decisions. It is an
instruction that is easy to understand but more difficult to put to work.

There are three decision logic types: straight-through, positive, and negative logic.
The programmer evaluates the conditions that arise in the problem to decide which logic
type to use.

When you are using the decision structure, a decision table is a tool to help you de-
velop the best set of decision instructions. You can use it to find the consequences fol-
lowing from every condition in a decision, so you can design the most efficient
algorithms to solve the problem.

The case logic structure is the fourth basic logic structure. It enables the computer
to select one set of actions from many by selecting an integer or a character from a list
of coded choices designed by a programmer. Codes are one of the tools of the case logic
structure. The case structure replaces a multiple nested If/Then/Else instruction that uses
positive logic and the relative operator equals. By using the case structure rather than the
nested If/Then/Else alternative, a programmer can improve the readability and reduce the
complexity of the program.

New Terms

decision table

If/Then/Else instruction

negative logic

nested If/Then/Else
instruction

positive logic

straight-through logic

Questions

1. What is the decision logic structure?

2. What are the three types of decision logic?

3. Without specific data, outline an algorithm and a flowchart for each of the three
types of decision logic.

4. What factors should determine which decision logic type to use for a specific problem?

5. How do you use a decision table?

6. When should you use single decision logic over nested decision logic?

7. Why would the case logic structure be used instead of the decision structure?

8. What are the differences between an indicator and a code?

9. For what type of problems would you use the case logic structure?

10. For which of the following would you use the case logic structure? State why or
why not.
a. The cost of a car given 10 models.
b. The cost of a car given 7 ranges of the cost of cars.
c. Population of a state given 50 states.
d. Average temperature of a given month.
e. Months having a given average temperature.
f. Bonus given commission.
g. Temperature zone given a city’s average temperature.
h. Cost of books for a semester.

Problem Solving with Decisions � 143

Problems

1. Set up four different algorithms and flowcharts for calculating a student’s letter
grade given the following (do not use straight-through logic):

2. Which of the four solutions from problem 1 would be the best? Justify your answer.

3. Using first positive and then negative logic, write the algorithms and draw the flow-
charts for the following set of conditions:

4. Change the positive logic algorithm and flowchart from problem 3 to reflect the
following:

5. a. Write the Calculation module to choose the largest number from a set of three
numbers A, B, and C. Write the algorithm and draw the flowchart. Do not use
the maximum function.

b. Modify the logic in the calculation module to print A, B, and C in the correct order.

6. Complete the seven problem-solving steps to calculate the water bill given the
cubic feet of water used for Eureka Water Company, which charges the homeowner
one of the following:
a. A flat rate of $15.00 for usage up to and including 1000 cubic feet.
b. $0.0175 per cubic foot for usage over 1000 cubic feet and up to and including

2000 cubic feet.
c. $0.02 per cubic foot for usage over 2000 cubic feet and up to and including 3000

cubic feet.
d. A flat rate of $70.00 for usage over 3000 cubic feet.

Test your flowchart with actual data.

7. A company that issues check-cashing cards uses an algorithm to create card num-
bers. The algorithm adds the digits of a four-digit number, and then adds a fifth
digit of 0 or 1 to make the sum of the digits even. The last digit in the number is
called the check digit. Complete the seven problem-solving steps to develop a solu-
tion that accepts a four-digit number into one variable, adds the check digit, and
prints the original number and the new number. Test your flowchart with the fol-
lowing data: Original (47371) and 4631 (46310).

Hint: You may use any or all of these functions and the principle of concatenation
of strings.

number = 4737

otherwise R = 75

R = 250 for S = 4001–8000

R = 100 for S = 1000–4000

R = 75 for S 7 8000

R = 250 for S = 4001–8000

R = 100 for S = 1001–4000

R = 50 for S 6 = 1000

 below 60 = F

 60–69 = D

 70–79 = C

 80–89 = B

 90–100 = A

144 � Chapter 6

Integer(X)—Integer function

String(X)—Numeric to string

Value(A)—String to numeric

Note: The Integer(X) gives the whole number value of the real number X. When X
is 546.43, the Integer(X) is 546; when X is 23.899 the Integer(X) is 23. The
String(X) and Value(A) are conversion functions. The resultant of the function
String(X) is the string value of the numeric X. The resultant of Value(A) is the nu-
meric value of the string A. Concatenation is the combining of strings by placing
the first string in front of the second one. For example, the resultant of
would be “45.”

8. Create a decision table, flowchart, and algorithm for problem 8 in Chapter 2.

9. An admission charge for The Little Rep Theater varies according to the age of the
person. Develop a solution to print the ticket charge given the age of the person.
The charges are as follows:
a. Over 55: $10.00
b. 21–54: $15.00
c. 13–20: $10.00
d. 3–12: $5.00
e. Under 3: Free

10. A customer needs a specific amount of paper. The charges on the paper are $0.10 for
single sheets, $0.055 for amounts in multiples of 100 sheets, $0.04 in multiples of
500 sheets, and $0.03 in multiples of 1000 sheets. Develop a solution to calculate the
type and number of package(s) for the least amount of money the customer should
buy, given the minimum amount of sheets the customer needs. For example, if the
customer needs 380 sheets, the amount she would pay when buying in multiples of
100 would be $22.00. However, if the customer bought 500 sheets, the cost would be
$20.00. It would be cost effective for the customer to buy a package of 500 sheets.

11. A hotel has a pricing policy as follows:
a. 2 people: $85
b. 3 people: $90
c. 4 people: $95
d. Additional people: $6 per person

If the customer is staying on company business, there is a 20% discount. If the cus-
tomer is over 60 years of age, there is a 15% discount. A customer does not receive
both discounts. Given the above data, print the cost of the room.

12. A manufacturer would like to have a device for a car that will turn on a light when
the temperature is between 34 and 40 degrees Fahrenheit (F) and sound a warning
signal when the outside temperature is 34 degrees F or below. The light and the
sound are never going simultaneously. Write a solution to this problem.

(Hint: Use the enter statement to input the present outside temperature. Print out
what should happen, instead of actually turning on the light and the signal.)

13. Joan is planning her vacation. She is considering two different destinations. She
would like to go to the one that will be less expensive for the total trip including
gas, hotel room for six nights, and meals for seven days. Write a solution to tell her
which of the destinations would be the less expensive.

14. Monica needs to buy a present for her best friend. She can buy it online or she can
travel 30 miles to buy at the store. She is not sure which would be less expensive

“4” + “5”

Problem Solving with Decisions � 145

considering shipping and handling costs to buy online and gas costs to travel to the
store. The cost is the same in both places. Write a solution to tell Monica which
would be the best way to buy the present.

15. Develop the pseudocode for the flowcharts on page 113 and 114.

16. Develop the other modules to complete the pay-type problem in the second PIAT.
Allow the user to enter as many employees as needed. Develop a trip value to end
the execution of the program. Remember that when an error occurs in the pay code,
the execution for that employee is ignored and the employee’s information must be
reentered. The information to enter includes the employee’s name, social security
number, pay-type code, and pay information (commission, hours, or number of
pieces—do these have to be three entries?).

17. Modify problem 16 so that only the pay-type code is reentered when an error in the
code is entered.

18. Develop the algorithm and flowchart for a module that calculates the retirement de-
duction rate according to the following codes:

19. Develop a solution to change Roman numerals into their decimal equivalents.
Consider all possibilities of Roman numerals—no letters, only one letter, two let-
ters, and so forth. Assume that the Roman numerals are in correct order. One
Roman numeral character is entered at a time. The Roman numeral is entered from
left to right. Roman numeral equivalents are as follows:

Examples of input numbers are IV, XIX, MMCDXL, and CCLV.

20. A student wants to know his grade point average for the semester. The grades
are given in letter grades with numeric equivalents. Develop a solution to calcu-
late a grade point average given the letter grades. (Remember, the grade point
average is figured per unit of credit, not per course.) An

Test the solution with the following data:

History B 3 units

Economics A 3 units

PE A 1 unit

Chemistry C 4 units

Art B 3 units

(Hint: Use a trip value to stop the processing of the loop and a case structure to find
the grade points.)

C = 2.0, D = 1.0, F = 0.0.
A = 4.0, B = 3.0,

M = 1000

D = 500

C = 100

L = 50

X = 10

V = 5

I = 1

G = 5%

P = 8%

R = 10%

146 � Chapter 6

21. A bank has five different types of savings accounts. The interest rates on these
accounts change often. The bank manager would like to have the computer print out
information about the account type of her choice. Develop a solution to solve the
manager’s problems.

22. Mr. Johnson would like to know how many As, Bs, Cs, Ds, and Fs his students
received on a test. He has 200 students who took the test. He would like to enter the
student number and the number grade for the test for each student. Develop the so-
lution to print out each student’s student number, number grade, letter grade, and
the total number of As, Bs, Cs, Ds, and Fs. His grading scale is as follows: 90–100
is an A, 78–89 is a B, 65–77 is a C, 50–64 is a D, and below 50 is an F.

23. How would you modify problem 20 to process any number of students?

24. John Smith is a new car salesperson. He would like to have the computer calculate
the total cost of a car given the following:

initial price of the car

0 to 10 accessories (the computer would select the price according to the
accessory)

sales tax

25. Rewrite problem 1 using the CaseOf instruction.

26. Rewrite problem 6 using the CaseOf instruction.

27. Rewrite problem 9 using the CaseOf instruction.

WHAT’S WRONG WITH THIS?

1. a. Is the following nested If/Then/Else statement valid? Why or why not?

Then

Then

Else

b. Which If does the Else go with? Explain your answer.
c. How would you change the statement to clarify the statement?

(Hint: Use a Continue statement.)
d. Discuss your answer with your classmates and your instructor.

2. Correct the following algorithmic instructions:
a.

Else

b.
Print S

c.
Print “Object Is a Square.”
Otherwise
Print “Object Is Not a Square.”

If Width = Length Then

 If Len(S) 6 “5” Then
A = 5

If A 6 B + C Then

Y = Y + 1

X = X + 1

If Y 6 Z

If X 6 Y

Problem Solving with Decisions � 147

3. Correct the following sets of algorithm segments:

Enter L

CaseOf

Process M5

Process M10

Otherwise

Process MOtherwise

EndOfCase

4. Enter V

CaseOf

Process MCar1

Process MCar2

Process MCar3

EndOfCase

= Car3

= Car2

= Car1

L 6 5:

L 6 10:

This page intentionally left blank

Chapter 7

Problem Solving with Loops

Overview

The Loop Logic Structure

Incrementing

Accumulating

While/WhileEnd

Putting It All Together

Repeat/Until

Putting It All Together

Automatic-Counter Loop

Putting It All Together

Nested Loops

Indicators

Algorithm Instructions and Flowchart Symbols

Recursion

Objectives

When you have finished this chapter, you should be able to:

1. Develop problems using the loop logic structure in conjunction with the
decision and sequential logic structures.

2. Use the problem-solving tools when developing a solution using the loop logic
structure.

3. Use counters and accumulators in a problem solution.

149

150 � Chapter 7

4. Use nested loop instructions to develop a problem solution.
5. Distinguish the different uses of three types of loop logic structures.
6. Use recursion in a simple problem.

loop logic structure

The Loop Logic Structure

A third logic structure for designing decisions is the loop structure. The loop logic struc-
ture is the repeating structure. Most problems in business involve doing the same task
over and over for different sets of data, so this structure is extremely important. Through
the loop structure, a program can process many payroll records or inventory items, or put
a mailing list in alphabetical or zip code order. This structure is harder to understand than
the decision structure, but easier to use. The main difficulty in using it as part of a solu-
tion is identifying what instructions should be repeated. Besides being used to repeat
instructions in a solution, the loop structure is also used to return the processing to an ear-
lier point in the solution. When it is used in this way, it is a replacement for the GoTo
statement. (The GoTo is an instruction that tells the computer to transfer to another
instruction in the solution instead of processing the next instruction in sequence.)
Replacing the GoTo statement in this way increases the readability of the program.

There are three types of loop structures, and each of them can be written in another
way as a set of instructions using the If/Then/Else structure and the GoTo instruction.
However, the If/Then/Else is a decision logic structure and generally should not be used
to facilitate a loop. The loop structure is easier to read and to maintain than the
If/Then/Else and GoTo combination. Since you already understand the decision logic
structure, the decision equivalence to each loop structure will be illustrated to aid your
understanding of loops.

The first type of loop structure is the While/WhileEnd loop, which repeats instruc-
tions while a condition is True and stops repeating when a condition arises that is not
True. The second type is the Repeat/Until loop, which repeats instructions while a con-
dition is False or until a condition is True. The third is the automatic-counter loop in
which a variable is set equal to a given number and increases in equal given increments
until it is greater than an ending number. Each of the three loop structures has a specific
use according to the language and/or the problem.

The algorithm and the flowchart differ with each type of loop structure. It is
extremely important to indent the instructions in algorithms using the loop structure—
as it is with the decision structure—to improve readability. Also, nested loops are com-
mon, and in these solutions indentation with bracketing allows you to easily identify
each loop.

Several standard types of tasks are accomplished through the use of the loop struc-
ture. Two of these are counting (also called incrementing and decrementing) and accu-
mulating (also called calculating a sum or a total). In both tasks a number is added or
subtracted from a variable and the result is stored back into the same variable. The basic
difference between counting and accumulating is in the value that is added or sub-
tracted. When counting, the value is a constant; when accumulating, the value is a vari-
able. In each case the resultant variable is assigned the value of zero before starting the
loop. This is called initializing the variable.

An updated table of the Algorithm instructions and Flowchart symbols is found in
Table 7.1 on pages 167–168. These have either been introduced in the previous chapters
or will be introduced in this chapter. Please use this table as a reference to the instruc-
tions you will be using in this chapter.

Problem Solving with Loops � 151

incrementing

accumulating

Products

Incrementing

The task of incrementing, or counting, as we said, is done by adding a constant, such as
1 or 2, to the value of a variable. To write the instruction to increment a variable, you use
an assignment statement. For example,

when counting by ones. An assignment statement allows the variable on the left side of
the equal sign to be assigned the value of, or to be replaced by, the resultant of the expres-
sion on the right side of the equal sign. The counter or incrementor instruction is a spe-
cial version of the assignment instruction. This instruction enables the programmer to
count the number of items, people, temperatures, and so on, as part of the solution to a
problem.

Notice the structure of the assignment instruction for incrementing. The same vari-
able name is on both sides of the equal sign; the amount the variable is to be incre-
mented follows the plus sign. This instruction takes the value of the counter, adds one to
it, and then replaces the old value of the counter with the new. The increment can be
one, two, or any other constant, including negative numbers if you want to decrement
rather than increment. In this example Counter or C must be initialized to zero before
starting the loop.

Counter = Counter + 1 or C = C + 1

Accumulating

Another task that a program must often perform is accumulating, or summing, a group
of numbers. The process of accumulating is similar to incrementing, except a variable
instead of a constant is added to another variable, which holds the value of the sum or
total. The instruction for accumulating is the following:

For example, the instruction to find total sales would be

Like the instruction to increment, the instruction to accumulate is a special version
of the assignment instruction. As in incrementing, the same variable name appears on
both sides of the equal sign (TotalSales) but in accumulating, a variable rather than a
constant is on the right-hand side of the plus sign (Sales in this case). In other words,
with an accumulator you are adding a variable (the item you are accumulating) to the
value of another variable, which holds the sum or total. In these examples Sum and
TotalSales must be initialized to zero before starting the loop.

Calculating the product of a series of numbers is similar to finding the sum of a
series of numbers with two exceptions. First, the plus sign is replaced by the multiplica-
tion sign (*). Second, the product variable must be initialized to 1 instead of 0. For
example

Finding the product of a series of numbers is used very little. However, it will be used in
the discussion on recursion at the end of this chapter.

 Product = Product * Number
 Product = 1

TotalSales = TotalSales + Sales

Sum = Sum + Variable or S = S + V

152 � Chapter 7

while/whileend

While/WhileEnd

The first of the three types of loop structures is the While/WhileEnd structure. This
type of loop tells the computer that while the condition is True, repeat all instructions
between the While and the WhileEnd. The form of the algorithm is the following:

When you design While/WhileEnd loops, use brackets and indentation to improve the
readability of the algorithms. In the illustration, notice how the bracket connects the
beginning (While) and the end (WhileEnd) of the loop, and how the instructions are
indented within the brackets to make the algorithm easily readable. The general form of
the While/WhileEnd flowchart is shown in Figure 7.1.

The symbol used for the While part of the instruction is the diamond, the symbol
for a decision. Since this flowchart shows only part of an algorithm, on-page connectors
are used. The completed algorithm would have one part that would connect to A and
another part that would connect to B.

While �Condition(s)�
Instruction
Instruction
.
.

WhileEnd

A

B

Instruction

Instruction

True

FalseWhile
�Condition(s)�

Figure 7.1 Flowchart Diagram of While/WhileEnd

Problem Solving with Loops � 153

At the beginning of the While/WhileEnd loop, the program processes the condition
in order to decide whether to execute the loop instructions, as illustrated in the diamond
at the top of the flowchart. When the resultant of the condition is False at the start, the
instructions within the loop will not be executed. When the resultant of the condition is
True, the complete set of instructions will be executed, and then the computer will go
back to the beginning of the loop and process the condition again. The loop will repeat
until the resultant of the condition is False, at which time the processing will continue
with the instruction following the WhileEnd.

Figure 7.2 shows the decision-structure equivalent to the While/WhileEnd loop
structure. Notice that the decision structure requires a separate GoTo instruction to
return to the top of the loop. Also notice that when the condition is False, the line of exe-
cution transfers to the instruction after the loop instructions.

Use the While/WhileEnd structure when you do not know the number of times the
instructions will be repeated, or if there are cases when the instructions in the loop
should not be processed. In those cases, the resultant of the condition is False at the start
of the loop, so the loop is not processed. Examples of such cases are when you are entering
information on clients and you don’t know the number of clients; when you are finding

True

Then

Instruction

Instruction

GoTo 100

Algorithm Flowchart Pseudocode

If �Condition(s)�

If
�Condition(s)�

A

B

GoTo

Instruction

Instruction

True

False

Instruction

Instruction

Instruction

GoTo 100

GoTo 200

If �Condition(s)� Then

Else

EndIf

100

200

Figure 7.2 Decision Equivalent to While/WhileEnd

154 � Chapter 7

the total amount of sales for the day and you don’t know the number of sales; or when
you are calculating test averages for each student in a class. In the case of calculating
test averages, the loop instructions should not be executed for students who for some
reason have no test grades. To calculate the average you would accumulate and count
the test scores and then divide the total score by the number of tests. Since the number
of grades would be zero for the student who didn’t take any tests, the computer would
try to divide by zero, and an error would result. The While/WhileEnd loop would enable
the processing to pass over the student and go on to the next student.

primer read

repeat/Until

Putting It All Together

Problem: Create the algorithm and the flowchart to find the average age of all
the students in a class.

Figure 7.3 demonstrates the use of a While/WhileEnd structure to calculate the average
age of a group of people. The first instruction initializes the value of the Sum (the total
of all ages) to zero. The second instruction initializes the value of the counter variable to
zero. Next the first age is entered. An age must be entered before the loop so that the
condition has data to use to get a resultant. This is called a primer Read because it gives
the While/WhileEnd loop a valid value for the variable Age in order for the conditions to
be true the first time through the loop. If there is no primer Read, the value of Age is
unknown. The next read is at the end of the loop for two reasons. First, the first value of
Age must be included in the calculations. Second, the test for the trip value (the value of
age that makes the condition false and signals the end of the list of students) must be just
before the condition, so the trip value will not be calculated as part of the average age.
The While begins the loop and processes the condition Age When the resultant
is True, the instructions in the loop are processed; when the resultant is False, the pro-
cessing continues with the calculation of the average. The first loop instruction accumu-
lates the ages by adding each age to the total, followed by an instruction that counts the
people by adding one to the counter variable. The final instruction in the loop enters the
next age. The processing then returns to process another condition. The last age should
be zero. This zero is called a trip value, or a flag. It allows the value of Age to control
when to stop the looping process and continue with the rest of the solution. When the
looping process stops, the processing continues at the calculation of the average age,
and finally, the printing of the average age.

The data for this problem can be entered from the keyboard; the user enters a 0
when there are no more ages to enter.

6 7 0.

Example

Repeat/Until

The second type of loop structure is the Repeat/Until structure. This type of loop tells
the computer to repeat the set of instructions between the Repeat and the Until, until a
condition is True. There are two major differences between this instruction and the
While/WhileEnd. First, in the While/WhileEnd loop, the program continues to loop as
long as the resultant of the condition is True; in the Repeat/Until loop, the program
stops the loop process when the resultant of the condition is True. Second, in the
While/WhileEnd loop, the condition is processed at the beginning; in the Repeat/Until
loop, the condition is processed at the end. When the condition is processed at the end,

Problem Solving with Loops � 155

AverageAge

Algorithm Flowchart Pseudocode

Sum � 0
Initializes
sum and
counter to 0

(Primer Read)
Enters first
age

Age = 0 is
a value to
stop the
loop

Accumulates
the ages

Counts the
number of
ages

Enters the
next age

Calculates
the average

Prints the
average

AverageAge

True

False

Counter � 0

Enter
Age

While
Age �� 0

Sum � Sum
� Age

Counter �
Counter � 1

Average �
Sum�Counter

Enter
Age

Print
Average

End

1. Sum � 0

2. Counter � 0

3. Enter Age

4. While Age �� 0

WhileEnd

Sum = Sum � Age

Counter = Counter � 1

Enter Age

5. Average � Sum�Counter

6. Print Average

7. End

AverageAge

Sum � 0

Counter � 0

Enter Age

While Age �� 0

WhileEnd

Sum = Sum � Age

Counter = Counter � 1

Enter Age

Average � Sum�Counter

Print Average

End

Figure 7.3 Average Age of a Class—While/WhileEnd

156 � Chapter 7

the instructions in the loop are processed entirely at least once, regardless of whether it
is necessary.

It is important that you be able to distinguish between the loop structures so you
can use them appropriately. Both the setup and the uses for the two loop structures are
different. When you are using the While/WhileEnd, you must initialize the data so that
the resultant of the condition is True the first time through the loop. Otherwise, the loop
instructions will never be processed. With the Repeat/Until, you can set the operands of
the conditions anywhere within the loop since the condition is processed at the end. If
there is any reason that the loop instructions should not be processed the first time, then
the While/WhileEnd must be used because the Repeat/Until always processes the
instructions at least once.

The format of the Repeat/Until algorithm is the following:

Here again, use brackets and indentation to improve readability. Figure 7.4 shows
the form of the flowchart. When you are designing a Repeat/Until flowchart, write the
word Repeat above the first instruction of the loop.

Figure 7.5 shows the equivalent decision structure. Unlike the While/WhileEnd deci-
sion equivalent, in which the processing of the condition is always at the beginning of the
instructions to be repeated, with the Repeat/Until decision equivalence, the processing of

Repeat
Instruction
Instruction
.
.

Until�Condition(s)�

Instruction

True

False

Instruction

Until
�Condition(s)�

Repeat

A

B

Figure 7.4 Flowchart Diagram of Repeat/Until

Problem Solving with Loops � 157

Example

Putting It All Together

Using the Repeat/Until loop structure, this section illustrates the same problem as in the
Putting It All Together section for the While/WhileEnd loop.

Figure 7.6 demonstrates the use of the Repeat/Until structure to calculate the aver-
age age of a group of people. The first instruction initializes the value of the Sum (the
total of all ages) to zero. The second instruction initializes the value of the counter vari-
able to zero. Next the first age is entered. An age must be entered so that there is a value
for Age to use in the calculations the first time through. The data must be entered just
before processing the condition, or the trip values will be used in the last calculations in
the solution. This is the primer Read. However, unlike the While/WhileEnd loop struc-
ture, when a zero is entered at this place in the processing, the instructions within the
loop will be executed at least once, depending on what is entered at the second Enter

the condition always takes place at the end of the instructions to be repeated. Also notice
that there is no evidence of a loop until the condition is reached. The loop structure pro-
vides a solution that is easier to read and understand.

Use the Repeat/Until structure when you do not know the number of times the
instructions will be executed, when you know they will be executed at least once, or
when you do not know the condition for repeating until after the instructions in the loop
are processed. Usually, the problem will dictate which loop to use.

Instruction

True

False

False

True

Instruction

If
�Condition(s)�

A

Flowchart PseudocodeAlgorithm

B

GoTo

Then

Else
GoTo 10

Continue

10. Instruction

11. Instruction

12. If �Condition(s)�

Else

Endif

GoTo 100

Go to 200

Instruction

200

Instruction

Instruction

If �Condition(s)� Then

100

Figure 7.5 Decision Equivalent to Repeat/Until

158 � Chapter 7

AverageAge

Algorithm Flowchart Pseudocode

Sum � 0
Initializes

Sum
and

Counter

Repeat

Accumulates
Age

Primer
Read

Counts
number of

Ages

Prints
Average

Calculates
Average

Condition
to repeat

Enters next
age

AverageAge

Counter � 0

Enter
Age

Sum � Sum
� Age

Enter
Age

Average �
Sum�Counter

Until
Age � 0

Print
Average

End

1. Sum � 0

2. Counter � 0

3. Enter Age

4. Repeat

Until Age � 0

Sum � Sum � Age

Counter � Counter �1

Enter Age

5. Average � Sum�Counter

6. Print Average

7. End

Counter �
Counter � 1

False

True

AverageAge

Sum � 0

Counter � 0

Enter Age

Repeat

Until Age � 0

Sum � Sum � Age

Counter � Counter �1

Enter Age

Average � Sum�Counter

Print Average

End

Figure 7.6 Average Age of a Class—Repeat/Until

Problem Solving with Loops � 159

instruction. For this reason, the While/WhileEnd loop structure is often the preferred
choice. The Repeat begins the loop. The first instruction in the loop accumulates the
ages by adding each age to the total, followed by an instruction that counts the people by
adding 1 to the counter variable. The last instruction in the loop enters the next age. The
next instruction is the loop-end instruction. This instruction processes the condition

When the resultant is False the instructions in the loop are processed; when
the resultant is True the processing continues with the calculation of the average. The
last age is a zero, the trip value or dummy value. It allows the value of Age to control
when to stop the loop process and continue with the rest of the solution. When the loop-
ing process stops, the processing continues at the calculation of the average age, and
finally, the printing of the average age.

The programmer or the language dictates which loop structure to use. Sometimes
the While/WhileEnd and the Repeat/Until could be used with equal efficiency. The
choice is then a matter of the programmer’s preference.

Age = 0.

Automatic-Counter Loop

The third type of loop structure is the automatic-counter loop. This type of loop
increments or decrements a variable each time the loop is repeated. To design an auto-
matic-counter loop, the programmer uses a variable as a counter that starts counting at
a specified number and increments the variable each time the loop is processed. The
amount to be incremented is specified by the instruction. The set of instructions within
the loop repeats until the counter is greater than an ending number. The beginning
value, the ending value, and the increment value may be constants, variables, or
expressions (calculations). They should not be changed during the processing of the
instructions in the loop. They may be changed after the loop is completed. The test for
whether to process the loop instructions in an automatic-counter loop will be found at
the beginning or at the end of the loop depending on the language or the version of the
language.

The form of the algorithm for the automatic-counter loop is the following:

Here again, a bracket connects the beginning (Loop) and the end (Loop-End) of the
algorithm, and the instructions are indented to improve readability, just as in the other
loop structures.

The flowchart in Figure 7.7 shows the automatic-counter loop structure. Counter
is the variable used for the counter, Begin is the beginning value, End is the ending
value, and StepValue is the value by which the counter is to be incremented. To decre-
ment, StepValue needs to be a negative number and Begin must be greater than End.

Figure 7.8 shows the decision equivalents to the automatic-counter loop struc-
ture. There are two solutions illustrated since there are two places the decision can be
processed: at the beginning of the loop or at the end of the loop. Which decision equivalent

Loop: Counter � Begin To End Step StepValue
Instruction
Instruction
.
.
.

Loop-End: Counter

automatic-counter loop

160 � Chapter 7

would be used depends on the language or the version of the language. You will not
find both versions in the same language or language version.

Figure 7.9 shows the equivalent algorithms and flowcharts of the While/WhileEnd
and Repeat/Until loops for the automatic-counter loop. Note that both these loops
require a counter instruction and initialization of the
counter The decision for both loops involves the use of the ending
value The automatic-counter
loop takes care of these instructions automatically. The While/WhileEnd loop executes
the test at the beginning of the loop, and the Repeat/Until executes it at the end. When
Begin is greater than End at the beginning of the loop, the While/WhileEnd will not exe-
cute any internal instructions, whereas the Repeat/Until will execute the instructions
once. When you know the starting and ending values of the counter and you need a
counter to run through a group of instructions multiple times, the use of the automatic-
counter loop is preferred.

There are rules that the computer follows when processing the automatic-counter
loop. The rules are simple, and it is important that the user understands and follows
them when testing a solution.

When incrementing the counter, remember the following rules:

1. When the computer executes the Loop instruction, it sets the counter equal to
the beginning number (see a, and in Figures 7.7 and 7.8).a2a1 ,

(While Counter 6 = End and Until Counter 7 End).
(Counter = Begin).

(Counter = Counter + StepValue)

Instruction

A

Counter

EndBegin

StepValue

Instruction

Counter

D

(a)

(b and c)

Figure 7.7 Flowchart of Automatic-Counter Loop

Problem Solving with Loops � 161

Counter � Begin

A

When test is at the
end of the loop:

When test is at the
beginning of the loop:

Instruction

Instruction

Instruction

Instruction

Counter � Counter � StepValue

Counter � Counter � StepValue

True
If

Counter �� End

False

D D

(a1) Counter � Begin

A

(a2)

(c2)

(b1)

(c1)
(b2)

True

If
Counter �� End

False

Figure 7.8 Decision Equivalents to Automatic-Counter Loop

2. When the computer executes the Loop-End, it increments the counter. Since
the counter is usually incremented before the condition is processed, this
book assumes the incrementing of the counter at Loop-End (see b, and
in Figures 7.7 and 7.8).

3. When the counter is less than or equal to the ending number, the processing
continues at the instruction that follows the Loop instruction. When the
counter is greater than the ending number, the processing continues at the
instruction that follows the Loop-End instruction (see c, and in Figures
Figures 7.7 and 7.8).

There are two differences in these rules when decrementing the counter. First, the
counter is decremented instead of incremented at the end of the loop. Second, when the
counter is greater than or equal to the ending value, the loop continues, instead of when

c2c1 ,

b2b1 ,

162 � Chapter 7

Algorithm

10. Counter � Begin

11. While Counter �� End

Instruction

Instruction

Counter � Counter � StepValue

WhileEnd

12

Counter � Begin

While Counter �� End

Instruction

Instruction

Counter � Counter � StepValue

WhileEnd

Flowchart Pseudocode

Counter � Begin

Instruction

Instruction

While
Counter ��

End

Counter � Counter � StepValue

Figure 7.9a While/WhileEnd Loop Equivalent of the Automatic-Counter Loop

Algorithm

10. Counter � Begin

11. Repeat

Instruction

Instruction

Counter � Counter � StepValue

Until counter � End

12

Counter � Begin

Repeat

Instruction

Instruction

Counter � Counter � StepValue

Until counter � End

Flowchart Pseudocode

Counter � Counter � StepValue

Counter � Begin

Instruction

Instruction

Repeat

Until
Counter �

End

Figure 7.9b Repeat/Until Loop Equivalent of the Automatic-Counter Loop

Problem Solving with Loops � 163

it is less than or equal to the ending value when incrementing. It is important to under-
stand these rules in order to use this structure correctly.

Use the automatic-counter loop structure when you know from the start the num-
ber of times the loop will be executed—for example, when you know the exact number
of people in the group for the average-age problem. Do not use a decision to exit from
this loop. A decision cannot be used to exit a loop since to do so would require a GoTo
instruction. GoTo instructions tend to decrease readability, so they are used as little as
possible in structured programming. If a decision instruction is necessary, then consider
using one of the other types of loop structures for your solution. Counter loops are
overused because they are easy to code. A good programmer is careful not to fall into
this trap. It is important to choose the best loop structure for the problem.

Putting It All Together

This section illustrates the same problem, using the automatic-counter structure that the
previous two Putting It All Together sections did, using the other two types of loop
instructions. The solution calculates the average age of a group of people. The program-
mer would use the automatic-counter loop structure for this solution only if the number
of students in the class—in this case, 12—is known.

In the automatic-counter loop in Figure 7.10, as in the other two loop structures, the
first two instructions initialize the variables Sum and Counter. The next instruction begins
the loop. The A is the counter variable. The counter begins at 1 and is incremented by
1 until the counter is greater than 12, so the loop will be repeated 12 times. Notice that
there is no increment value. When the increment value is left out, the computer assumes
the value to be 1. When the counter increases to a value greater than 12, the average age is
calculated and printed. Also notice the absence of the primer Read. The primer Read is not
necessary because there is no trip value needed since the number of students is known.
Whenever the number of items to be counted is known, the automatic-counter loop is pre-
ferred. If that number is not known, then one of the other loop structures is preferred.

Nested Loops

Loops can be nested like decisions can. Each loop must be nested inside the loop just
outside it. The general rules regarding loops, such as where the condition is processed
and how indentation and brackets are used, hold true for nested loops as well as single
loops. The inner loops do not have to be the same types of loop structures as the outer
loops; that is, a While/WhileEnd may be nested inside a Repeat/Until loop, or vice versa.

Examples of nested loops are found in Figure 7.11. Notice that the nested loop in
each flowchart results in the same output. The output for all four nested loops is the
following:

Example

Nested Loops

OuterLoop

(outer loop counter)

InterLoop
(inter loop counter)

1 1
1 2
1 3
2 1
2 2
2 3

164 � Chapter 7

In the first flowchart in Figure 7.11, the nested loops are both While/WhileEnd
structures. The inner loop will be processed as long as the value of InnerLoop is less
than 3. The inner loop increments InnerLoop and, later, prints the values of OuterLoop
and InnerLoop. During the processing of the inner loop, the value of OuterLoop does
not change. When InnerLoop becomes equal to 3, the inner loop has completed the pro-
cessing, and the processing continues with the outer loop. The OuterLoop increments
OuterLoop, sets InnerLoop equal to 0, and then processes the InnerLoop. When
OuterLoop becomes equal to 2, processing continues at B. This whole process is essen-
tially what happens in the other three examples of nested loops. The outer loop incre-
ments OuterLoop, sets InnerLoop equal to 0 or 1, and processes the inner InnerLoop
loop. The InnerLoop increments InnerLoop and prints the values of OuterLoop and
InnerLoop.

Algorithm

AverageAge

1. Sum � 0

2. Loop: Counter �1 TO 12

EnterAge

Sum � Sum � Age

Loop-End: Counter

3. Average � Sum � (Counter � 1)

4. Print Counter, Average

5. End

Flowchart Pseudocode

Average � Sum �
(Counter � 1)

Sum � Sum � Age

Sum � 0

AverageAge

End

Counter
1 12

1

Enter Age

Print
Counter,
Average

AverageAge

Sum � 0

Loop: Counter �1 TO 12

Sum � Sum � Age

Counter � Counter � 1

EnterAge

Loop-End: Counter

Average � Sum � Counter *100

Print Average

End

Counter

Figure 7.10 Example of an Algorithm and Flowchart for a Problem Using an Automatic-Counter Loop

Problem Solving with Loops � 165

1. 2.
A

OuterLoop � 0

While
OuterLoop � 2

B

B

A

OuterLoop � 0

OuterLoop � OuterLoop � 1

False

True

OuterLoop � OuterLoop � 1

InnerLoop � 0

InnerLoop � 0

InnerLoop � InnerLoop � 1

Print
OuterLoop, InnerLoop

InnerLoop � InnerLoop � 1

Print
OuterLoop, InnerLoop

While
InnerLoop � 3

False

True Until
InnerLoop � � 3

False

False

True

True

Until
OuterLoop � � 2

Repeat

Repeat

Figure 7.11 Nested Loops(continued on page 166)

166 � Chapter 7

Indicators

Indicators are logical variables that a programmer sets within a program to change the
processing path or to control when the processing of a loop should end. They are some-
times called flags, switches, or trip values. The user has no knowledge of these indica-
tors during processing. These indicators are used to detect changes in the output line, in
the processing of data, and so forth. An error indicator designates that an error has
occurred in the input or the output. An end-of-data indicator designates that there are no
more data to be entered.

3. 4.

A

B

A

InnerLoop � 0

Print
OuterLoop, InnerLoop

InnerLoop � InnerLoop � 1

Until
InnerLoop � � 3

False

True

Repeat

OuterLoop

InnerLoop

B

OuterLoop

Print
OuterLoop, InnerLoop

OuterLoop

21

1
OuterLoop

21

1

InnerLoop

31

1

Figure 7.11 Nested Loops (continued from page 165)

indicators

Problem Solving with Loops � 167

The main thing to remember about indicators is that they are set internally to
change the processing. An indicator was used in the average-age problem in Figures 7.3
and 7.6 (the zero value of Age) to stop the looping when there were no more ages to be
entered. An indicator can be a variable of logical data type or a value that the variable
can never equal. For example, an indicator for Age might be 0 or 500 or An indi-
cator for an error could be a variable with the value True when an error has occurred,
and False when there have been no errors.

-300.

Table 7.1 Algorithm Instructions and Flowchart Symbols (continued on page 168)

Algorithm
Instruction

Flowchart
Symbol

Definition (What the instruction
tells the computer)

Start processing a module.

Enter data from a data block or from the
 keyboard into the following variable
 memory locations.

Assign the value of the following expression
 to a variable location. This is called an
 assignment instruction. A module may
 be processed as part of an expression,
 if there is a return value.

Write to the printer the values represented
 by the following variable names.

Print on the screen the values represented
 by the following variable names.

Execute the instructions in the named
 module, and then return to execute
 the next instruction.

Process module name
(list of parameters)

Print list of variable
names

Write list of variable
names

Variable � expression

Enter list of variable
names

Start module name
(module number)

Algorithm Instructions and Flowchart Symbols

Table 7.1 is an update of the Algorithm Instructions and Flowchart Symbols table, last
seen in Chapter 5. The new instructions and logic structure instructions are found in
Chapters 4 and 5.

� Decision Logic Structure If/Then/Else
� Instructions:

Incrementing
Accumulating
Product Product = Product * Number

Sum = Sum + Variable
Counter = Counter + 1

� Loop Logic Structures While/WhileEnd
Repeat/Until

Step S
Loop-End: Counter

Loop: Counter = Begin To End

168 � Chapter 7

Table 7.1 Algorithm Instructions and Flowchart Symbols (continued from page 167)

Algorithm
Instruction

Flowchart
Symbol

Definition (What the instruction
tells the computer)

End/Exit

Return
(variable)

If/Then/Else

Continue

Counter � Counter � 1
(C � C � 1)

Sum � Sum � Variable
(S � S � V)

While/WhileEnd

Repeat�Until

Loop: Counter � Begin To End
 Step Step Value
Loop-End: Counter

or no box

C

S

A B

Stop the processing of the module.
 Processing ceases with the End; with
 the Exit, processing continues with the
 next instruction after the Process.

Stop the processing of the module,
 place the value of the variable in
 the module name, and continuing
 with the instruction continuing the
 module call.

When the condition is True, use one set
 of instructions; when the condition is
 False, use another set of instructions.

A placeholder. Does no processing and
 continues to next instruction.

Increments the counter C.

Accumulates the values of the variable V.

Product � Product * Number Finds the product of a group of numbers.

Repeat a set of instructions as long as a
 condition is True.

Repeat a set of instructions as long as a
 condition is False.

Repeat a set of instructions using a counter
 C that starts at A(Begin) and
 increments by S(Step) and C is greater
 than B(End).

Problem Solving with Loops � 169

Recursion

Another type of loop structure is recursion. Recursion occurs when a module or a func-
tion calls itself. The condition that ends the loop must be within the module. Recursive
procedures can be replaced by conventional loop structures; however, recursive proce-
dures are usually faster. Figure 7.12 is an example of a recursive function that calculates
a factorial number such as Notice that Factorial(N) contin-
ues to call itself until There must be a way to stop the recursion. See Figure 7.13
for the execution of this problem where

Recursion is difficult to use in a solution; however, it is needed more and more in
today’s programming. A recursive technique is used, for example, in finding the power of a
number, sorting large amounts of data, and selecting the correct form from many report
forms. The main problem in using a recursive technique is to figure out what goes before
the calling of the function (or module) or after. The previous problem did not have anything
happening after the If/Then/Else instruction. However, this is not true in most cases. Figure
7.14 shows the instructions for printing out the following using a recursive technique.

*
**

**
*

The first four lines are printed before the If/Then/Else instruction, and the last four are
printed afterwards. The middle line is printed in the Else section of the If/Then/Else
instruction. Because there are no values to be returned, the procedure will take place in
a Process Module instruction. See Figures 7.14 and 7.15 for the algorithm, flowchart,
and execution of this problem.

N = 4.
N = 1.

5! (5! = 5 * 4 * 3 * 2 * 1).

Summary

The third basic logic structure is the loop logic structure. By using this structure a pro-
grammer can design solutions that repeat processes.

There are three common tasks associated with the loop logic structure. The first is
counting, or incrementing, to determine a total number of items. The second is summing, or
accumulating, to find totals. The third is processing arrays, which are presented in Chapter 9.

The loop logic structure includes three types of loops. The While/WhileEnd loop
repeats a set of instructions as long as the resultant of a condition is True. The condition
is processed before the first instruction of the loop. The second type of loop structure is
the Repeat/Until loop. This loop repeats the instructions until a condition is True. The
condition in this case is processed after the last instruction in the loop. The third loop
structure is the automatic-counter loop. In this case the instructions are repeated a given
number of times, directed by a loop counter, which starts at a beginning number and is
increased by a given increment until the counter is greater than an ending number. The
condition can be processed at the beginning or the end of an automatic-counter loop
depending on the language. For a programmer, the type of loop to use is determined by
the problem and the language or application.

Indicators are used with loop structures to change the course of processing and to
control the ending of a loop. Indicators are written in the instructions within the solution
and normally are not entered externally by the user.

recursion

170 � Chapter 7

Flowchart PseudocdeAlgorithm

 Control

1. Enter N

Control

Enter
N

End

Factorial(N)Factorial(N)

Exit

Print
NFactorial

NFactorial �
Factorial(N)

Factorial � 1 Factorial � N *
Factorial(N � 1)

*

* 2. NFactorial � Factorial(N)

3. Print NFactorial

4. End

 Control

Enter N

Process NFactorial
� Factorial(N)

Print NFactorial

End

* Factorial(N) is a user-defined
 function.

False TrueIf
N � 1

1. If N � 1
 Then
 Factorial �
 N * Factorial(N � 1)

2. Exit

Else
 Factorial � 1

Factorial(N)

Endif

Exit

Else

Factorial � 1

Factorial �

N * Factorial(N � 1)

If N � 1 Then

Figure 7.12 Recursion

Problem
 Solving w

ith L
oops

�
171

This figure shows how recursion works during execution. N � 4 in this processing and therefore variables will be replaced by the actual numbers.

1. Enter N [4]
2. NFactorial � Factorial(4) (Factorial has a value of 24 upon return)

3. Print NFactorial (The value of NFactorial is now 24.)
4. End

Factorial(4)
If 4 � 1
 Then
 Factorial � 4 * Factorial(3) (Factorial has a value of 6 upon return)

 Else
 Factorial � 1
Return (24)

 Else
 Factorial � 1
Return (6)

Factorial(3)
If 3 � 1
 Then
 Factorial � 3 * Factorial(2) (Factorial has a value of 2 upon return)

 Else
 Factorial � 1
Return (2)

Factorial(2)
If 2 � 1
 Then
 Factorial � 2 * Factorial(1) (Factorial has a value of 1 upon return)

 Else
 Factorial � 1
Return (1)

Factorial(1)
If 1 � 1 (This condition is now false and does not call Factorial)
 Then
 Factorial � 1 * Factorial(0)

Figure 7.13 Execution of a Recursion Problem

172 � Chapter 7

Flowchart PseudocodeAlgorithm

Control

1. Enter Number

2. Counter � 1

3. Process Stars(Number, Counter)

4. End

Control

Enter Number

Counter � 1

Process Stars(Number, Counter)

End

Stars(Number, Counter)

1. If Number �� Counter Then

Loop: Star � 1 to Counter

Print “*” (w/o CR)

Print “*” (w/o CR)

LoopEnd: Star

Print (CR)

Print (CR)

Counter � Counter � 1

Process Stars(Number, Counter)

Endif

Counter � Counter � 1

Loop: Star � 1 to Counter

LoopEnd: Star

Control

Enter Number

Counter � 1

Process Stars(Number, Counter)

End

2. Exit

Stars(Number, Counter)

If Number �� Counter Then

Loop: Star � 1 to Counter

Print “*” (w/o CR)

Print “*” (w/o CR)

LoopEnd: Star

Print (CR)

Print (CR)

Counter � Counter � 1

Process Stars(Number, Counter)

Endif

Counter � Counter � 1

Loop: Star � 1 to Counter

LoopEnd: Star

Exit

Stars(Number, Counter)

Counter � Counter � 1

Stars(Number, Counter)

Print “*” w/o (CR)

Star

Print (CR)

Star
Counter

Print “*” w/o (CR)

Star

Counter � Counter � 1

1 Counter

Star

True

False

1

1

1

Exit

If
Number � � Counter

Figure 7.14 Algorithm and Flowchart for Printing Stars in a Recursion Proceeding

Problem Solving with Loops � 173

Enter Number (3)
Counter � 1
Process Stars(3,1)

Stars(3, 1)

If 3 ��1 Then
Loop: Star � 1 to 1

Loop: Star � 1 to 2

Loop: Star � 1 to 3

Prints *
Print “*” (w/o CR)
LoopEnd: Star
Print (CR)
Counter � 1 � 1
Process Stars(3, 2)

Stars(3, 2)

Stars(3, 3)

Process Stars(3, 3)

If 3 �� 2 Then
Prints **

Prints ***

Prints **

Prints *

Print “*” (w/o CR)

Print “*” (w/o CR)

Print “*” (w/o CR)

Print “*” (w/o CR)

Print “*” (w/o CR)

LoopEnd: Star

LoopEnd: Star
Print (CR)

LoopEnd: Star
Print (CR)

LoopEnd: Star
Print (CR)

Print (CR)

Exit

Counter 2 � 1

If 3 �� 3 Then

LoopEnd: Star
Print (CR)
Counter � 3
Process Stars(3,3)

Counter � 2 � 1
Loop: Star � 1 to 2

Counter � 3 � 1
Loop: Star �1 to 2

Counter � 3 � 1
Loop: Star � 1 to 2

EndIf

Endif

EndIf

Exit

Exit

End

Figure 7.15 Execution of Star Recursive Procedure

174 � Chapter 7

New Terms

accumulating

automatic-counter loop

incrementing

indicators

primer Read

recursion

Repeat/Until

While/WhileEnd

Questions

1. Write the instruction to increment a variable by 1.

2. Write the instruction to accumulate a variable A.

3. Name the three types of loop structures.

4. State the major differences in the three types of loop structures.

5. Write the equation to find the product of a group of numbers entered into the vari-
able A each time through a loop.

6. Why would you use a While/WhileEnd over the other two?

7. Why would you use a Repeat/Until over the other two?

8. Why would you use an automatic-counter loop over the other two?

9. Explain a recursive procedure.

10. What do you have to do to stop the continued recalling of a recursive procedure?

Problems

Complete the seven steps of solution development and a data dictionary for the follow-
ing problems:

1. The Last Stop Boutique is having a five-day sale. Each day, starting on Monday, the
price will drop 10% of the previous day’s price. For example, if the original price of
a product is $20.00, the sale price on Monday would be $18.00 (10% less than the
original price). On Tuesday the sale price would be $16.20 (10% less than
Monday). On Wednesday the sale price would be $14.58; on Thursday the sale
price would be $13.12; and on Friday the sale price would be $11.81. Develop a
solution that will calculate the price of an item for each of the five days, given the
original price. Test the solution for an item costing $10.00.

2. Make changes in the solution to problem 1 to set the price at wholesale when the sale
price drops below the wholesale price. Test the solution with the following prices:

Retail Prices: $20.00, $25.00
Wholesale Prices: $10.00, $20.00

3. Develop a solution that will calculate the average temperature, given a set of
temperatures. The number of temperatures may differ from time to time. (Use a
trip value to stop the processing of the loop.) Test the solution with the following
10 temperatures:

78° 90°
85° 80°
87° 83°
75° 90°
86° 70°

Problem Solving with Loops � 175

4. Mr. Brown has given a test to his class. He would like to have the average score for
the class as well as the highest and lowest scores. Develop a solution to calculate
and print out these values. (Use a trip value to stop the processing of the loop.)

5. Mary Smith, a student, has borrowed $3,000 to help pay her college expenses. After
setting up a budget, $85 was the maximum monthly payment she could afford to
make on the loan. Develop a solution to calculate and print the interest, the princi-
pal, and the balance on the loan per month. Other information she would like to
know is the number of years and months it will take to pay the loan back and the
total interest she will pay during that period. The interest rate is 1% per month on
the unpaid balance. Keep in mind these formulas:

6. Develop a solution to flip a coin a given amount of times and then print the number
of heads and the number of tails. The equation to toss the coin is

(See page 22 for explanation of this formula.) When the toss is heads,
and when the toss is tails. Random returns a number between 0 and 1,
including 0 but not 1. Therefore, when Random is less than 0.5, Coin will equal 1:
and when Random is greater than or equal to 0.5 and less than 1, Coin will
equal 2.

7. Develop a solution to calculate a student’s grade average for one semester. The let-
ter grades should be entered and the grade average printed out. An A is equivalent
to 4 grade points, a B is 3 grade points; a C is 2 grade points, a D is 1 grade point,
and an F is zero grade points.

8. Write a solution to tell the user whether a number is a palindrome. (A palindrome is
a number that is the same written both forward and backward, such as 81318.)

9. Write a solution to tell the user whether a string is a palindrome. (A palindrome
string is a list of characters that spell the same word(s) forward or backward, such
as wow or radar.)

10. Write a solution to tell the user whether a number is a prime number.

(Hint: A prime number can be divided only by one and itself. There are no other
factors.)

11. Write a solution to print out all of the factors of a number. Specify to the user
whether the number is a prime number, that is, if the only factors are one and itself.

12. Using the recursion technique, develop a solution to calculate the power of a num-
ber, given the number and the exponent.

13. Write a solution to find the average miles per gallon on a car after six fillups at a gas
station. Additional data kept included the number of gallons of gas at each fillup,
the starting odometer reading, and the odometer reading at each fillup.

14. In problem 13, which loop did you use? Justify why you used that particular loop
and not one of the other two. Did you need all of the data that was collected? Why
or why not?

15. Mr. Jones, a history instructor, would like to know the percentage increase in
the population of the United States per decade given the first decade and the last

Coin = 2
Coin = 1

Coin = Integer(Random * 2) + 1

 new balance = balance - payment

 payment = balance - interest

 interest normal = balance*interest rate

176 � Chapter 7

decade. Other given data include the population at the beginning of each
decade.

(Hint:
)

16. In problem 15, which loop did you use? Justify why you used that particular loop
and not one of the other two. Did you need all of the data that was collected? Why
or why not?

17. Jerry would like to know the balance in his checkbook given the beginning balance,
the deposits, the check amounts, and the bank fees. Write a solution to print out the
ending balance.

18. Modify your solution in problem 17 to print out the deposits, the check amounts,
and the bank fees.

19. Using a recursive technique, print out the numbers starting with an input value of
Start and ending value of End, then going backward to the starting number.

present population * 100.
Percentage = (present decade population - previous decade population)/

TESTING SOLUTIONS

1. The problem is: Find the average score for five people. Correct the following
set of instructions:

Counter = 1

While Counter 6 5

Enter Score

Total = Total + Score

Counter = Counter + 1

WhileEnd

2. The problem is: Find the average score for five people. Correct the following
set of instructions:

Counter = 1

Repeat

Enter Score

Total = Total + Score

Counter = Counter + 1

Until X 6 5

3. The problem is to find the sum of the numbers from 10 to 100. Correct the fol-
lowing set of instructions:

Sum = 0.0

Loop: Counter = 10 TO 100 Step 15

Sum = Counter

Loop-End: Counter

Print “Sum of the Numbers =”, Sum

End

Unit Two

Supplementary Exercises

Problem Solving with Loops � 177

Develop a complete solution and a data dictionary for the following problems:

1. Draw a solid diamond on the screen using a single character. The size of the dia-
mond should be entered from the keyboard:

Example:

*

*

2. Draw the same diamond except make it hollow:

Example:

*

* *

* *

* *

*

3. Modify problem 4 in Chapter 5 so that the program stops when the remaining
change becomes zero.

4. Reverse the digits of a number such that 1234 becomes 4321.

5. Calculate the ending balance of your checking account, given the beginning bal-
ance, the checks written, the deposits made, and the bank charges.

6. Create your own dice game. Print directions and rules. Have the user play against
the computer.

7. Print all prime factors of a number entered from the keyboard.

8. Print out four cards dealt randomly from a 52-card deck. Differentiate between
hearts, spades, clubs, and diamonds.

9. Calculate the average rainfall over a two-week period.

10. The counselor of a camp would like to know the average age of those attending a
camp, and who the oldest and the youngest are. The number of people attending a
camp can vary from 50 to 100.

Size = 5, Character = “*”

Size = 5, Character = “*”

11. Flowchart your solutions to the problems presented in Appendix A: Otto the Robot.
Are there any changes in your solutions that you might want to make? Explain what
changes you would make and why.

12. Using a recursive technique, write a solution to exercise 1.

13. Using a recursive technique, write a solution to exercise 2.

178 � Chapter 7

UNIT THREE

DATA STRUCTURES

Chapter 8: Processing Arrays
Chapter 9: Sorting, Stacks, and Queues
Chapter 10: File Concepts
Chapter 11: Linked Lists
Chapter 12: Binary Trees

This page intentionally left blank

Chapter 8

Processing Arrays

Overview

Arrays

One-Dimensional Arrays
Entering Data
Printing
Accumulating the Elements

Putting It All Together

Two-Dimensional Arrays
Entering Data
Printing
Accumulating the Rows and Columns

Putting It All Together

Multidimensional Arrays

Table Look-Up Technique
Sequential Search
Binary Search

The Pointer Technique
Frequency Distribution
Cross-Tabulation

Putting It All Together

181

182 � Chapter 8

Objectives

When you have finished this chapter, you should be able to:

1. Develop problem solutions for the computer using one-dimensional and two-
dimensional arrays.

2. Develop problem solutions requiring table look-ups, sequential and binary
searches, frequency distributions, and cross-tabulations.

arrays
Subscripted Variables
Tables

Dimensioning the
Variable

static arrays

Arrays

Data are stored in the computer in a logical way in order to find values as quickly as
possible. The way data are stored is called the structure of the data, hence the term data
structures. The only data structure you have used so far in this text is the single variable.
Using this data structure, a single value is stored in a single named location. This is the
simplest of all data structures. Another type of data structure is the array.

It is often advantageous for a user to store several values for the same variable in
the internal memory of the computer because it decreases processing time. This mul-
tiple storage means there has to be more than one memory location in the computer
for each variable name. When more than one memory location is designated for a sin-
gle variable, it is called an array. Sometimes these variables are called subscripted
variables. This term comes from mathematics, where subscripts are used to designate
multiple values. Arrays are also called tables, a term from business, where data are
often put into tables. For the purposes of this book, array will be used because it is
universal and is becoming the most common term. The other two terms may be used
in other sources.

Arrays are used in the problem-solving process. A programmer who has many val-
ues of data of the same kind—many ages, temperatures, names, or the like—can store
them in the computer in the form of an array, which makes them easier to read and use.
The programmer can also use the values in one array to point to values in another array.
This is the way the computer tallies the number of times a value appears in an array.
Without arrays this task would be very difficult.

A programmer uses arrays when more than one value of a variable is used in the
solution—for example, when calculating the percentage of each store’s sales out of the
total company’s sales or when calculating each student’s test grade based on the highest
and lowest scores. The store sales or the student grade would be the variable with more
than one value—a value for each store or for each student. If the user does not need to
use the data more than once in the solution, then there is no need for the programmer to
use arrays. Their overuse is a common mistake for beginning programmers.

The programmer tells the computer how many memory locations to save for an
array through a special instruction or within the definitions of the data types. In many
languages this is called dimensioning the variable. The number of memory locations to
be saved is equal to or greater than the number of locations used in the solution. If it is
less than the number of locations used, an error will result. For problem-solving pur-
poses, this number is part of the annotation of the flowchart.

Most languages use static arrays. This means that once the computer is told how
many locations to save, that number cannot be changed unless the instruction is
changed. In most languages, the number in the instruction is a constant. However, some
languages allow the number to be a named constant, which is set once, and only once,
during the execution of the solution. In this case, the number of memory locations saved

Processing Arrays � 183

for an array can change from execution to execution, but it cannot change during an
execution. This type of array is still considered static.

Some languages allow dynamic arrays. When using dynamic arrays, the program-
mer designates the number of array locations as a variable, which can be expanded or con-
tracted during the execution of the solution. Dynamic arrays are more flexible and use less
memory space than static arrays, but are usually more time consuming during processing.

If the number of the designated memory locations is a constant, then the program-
mer has to know how big the array will be, at its largest, while writing the solution.
When that number is a variable but cannot be changed during execution, then the size of
the array is part of the input data. This kind of static array allows more flexibility in the
solution and in the use of memory than the static array in which the number of memory
locations is a constant. The most flexible arrays are dynamic. The solution itself deter-
mines the size of a dynamic array, and thus, the programmer does not have to predict the
size of the array.

Each array memory location is called an element and is given a number or numbers
corresponding to the position of the location in the array. This number is a reference num-
ber relative to the location of the first value of the array. The name of the element has two
parts. The first part is the variable name; the second part is the reference number, also
called the index number, an element number or subscript in parentheses.

Because computers are zero-based, for counting purposes, many programming
languages are also zero-based. This means that the first array element is numbered zero,
and not one; it is a base-zero system. In this way, the computer adds the element num-
ber to the memory location number of the beginning box to locate the needed value. If
the language uses the base-one system, then to identify a specific data memory loca-
tion, add the element number minus one to the beginning number (see Figure 8.1). Base

Element

base-zero system

base-one system

dynamic arrays

Base 0

A

A(0) 0

A(1) 1

A(2) 2

A(3) 3

A(4) 4

A(5) 5

A(6) 6

A(7) 7

A(N) N

.

.

.

Base 1

A

A(1) 1

A(2) 2

A(3) 3

A(4) 4

A(5) 5

A(6) 6

A(7) 7

A(8) 8

A(N) N

.

.

.

.

.

.

.

.

.

Figure 8.1 Base-Zero Versus Base-One Arrays

184 � Chapter 8

one is easier for the programmer to understand because the first element is the first box,
the second element is the second box, and so on. When using zero-based arrays, the zero
element is the first box, the first element is the second box, and so on. Often program-
mers will avoid zero elements in an array because they make it more difficult to keep
track of element numbers. In this chapter, base one will be assumed.

You do not have to use an array in any special order. The data used as the actual
values of the elements must have the same data type as you have identified for the vari-
able name of the array. By using the assignment instruction, you can assign the value of
a constant, a variable, or an expression to an element.

one-dimensional array

One-Dimensional Arrays

The simplest array structure is the one-dimensional array. This array consists of
one column of memory locations. In Figure 8.2, there is a one-dimensional array
named Age. In mathematics, the reference name for each of the equation elements
would be and so forth. Array elements are given similar reference
names. Since the computer has trouble with subscripts (because it is hard to roll the
screen up a little to print subscripts), the reference names are written as Age(1),
Age(2), Age(3), and so forth. The number in the parentheses is a reference number
only and can be a constant, a variable, or an expression. Age(5) would be the fifth
element of the Age array. In most languages the reference numbers must be of the
integer data type, although a few computer languages allow any data type for the
index or reference value. Since this practice is not common, and since the use of each
of the data types is very similar to the use of integers as element numbers, this book
will use only integers for the index.

age1 , age2 , age3 ,

Array
Age

1 32

2 54

3 25

4 36

5 45

6 20

7 28

8 50

9 42

Variable
Reference

Name

Age(1) The number in the
parentheses refers
to the box number
in the array, the
element number.

Age(2)

Age(3)

Age(4)

Age(5)

Age(6)

Age(7)

Age(8)

Age(9)

Figure 8.2 One-Dimensional Array

Processing Arrays � 185

parallel arrays Parallel arrays are two or more arrays in which values in the same elements relate
to each other. For example, in Figure 8.3 there are three arrays. The first array contains
area numbers, the second array contains temperatures for day 1, and the third, tempera-
tures for day 2. The data in the first elements in the second and third arrays pertain to the
area in the first array; the data in the second elements in the second and third arrays per-
tain to the area in the second element of the first array, and so forth. They are called par-
allel arrays because the same element number in all arrays has data pertaining to the
same subject.

Entering Data

When you enter data into an array, or load an array, you use a loop. If you know the
number of elements, then use the automatic-counter loop. If you do not know the num-
ber of elements, then use an indicator code with the Repeat/Until or the While/WhileEnd
loop. Use a counter to keep track of how many elements are entered into the array.

Figure 8.4 shows the loop process for entering the data into an array. In Fig-
ure 8.4a, the number of elements in the array is known to be the value of NElements.
The counter Element of the loop allows the computer to increase the element number by
1 each time a piece of data is entered into a memory location. The computer can find a
particular memory location for an element in the array by first finding the set of loca-
tions for the array Array, and then using the reference number, which has the value of
Element. Figure 8.4b shows the use of the Repeat/Until loop structure. Here, the ele-
ments are counted to find the total number of elements (NElements) in the array. The
number NElements is then used for the number of elements through the rest of the solu-
tion. Figure 8.4c shows the use of the While/WhileEnd loop structure. Here again, the
elements are counted to find the total number of elements. Notice that in the
Repeat/Until and the While/WhileEnd loops, the indicator element number (indicating
the end of the array) is not included in the total number of elements since it is not
needed. The number of elements is known and, therefore, the indicator is not needed to
signal the end of the array.

Entering Data

AreaNo Day2

1 80

2 72

3 82

4 87

5 92

6 80

7 83

Day1

1 82

2 75

3 80

4 90

5 95

6 78

7 85

1 5

2 9

3 15

4 35

5 50

6 73

7 88

Figure 8.3 Parallel Arrays

186 � Chapter 8

Printing

After the array is loaded, it can be used in other calculations or printed. You write the
algorithm to print an array by using the automatic-counter loop since the number of ele-
ments in the array is now known (see Figure 8.5). The array will be printed one element
at a time down the page. To print the array across the page, you must use the Write or
Print instruction without a carriage return. With parallel arrays, the corresponding ele-
ments will be printed in columns on the same line. The headings to the columns have to
be printed before the processing starts into the automatic-counter loop.

Accumulating the Elements

Often you need the sum of the elements in an array. Use the accumulation instruction to
total the sum (see Figure 8.6). Initially, set the variable containing the value of the sum
to zero. The accumulation instruction tells the com-
puter to add the value of the element Array(Element) to the old value of the sum (Sum)

(Sum = Sum + Array(Element))

Printing

Accumulating
Elements in an Array

Algorithm Flowchart Pseudocode

Enter Array(Element)

Loop: Element � 1 To NElements Step 1

LoopEnd: Element

Enter Array(Element)

Loop: Element � 1 To NElements Step 1

LoopEnd: Element

Element � Element number

Array(Element) � Specific element
 of the array.

NElements � Total number
 of elements

B

A

Element

1

1 NElements

Enter
Array(Element)

Element

Figure 8.4a Loading an Array Using the Automatic-Counter Loop

Processing Arrays � 187

Algorithm Flowchart Pseudocode

1. Element � 0

2. Repeat

Until Array (Element) � � 1

* 3. NElements � Element � 1

B

A

Element � 0

Enter
Array (Element)

NElements �
Element � 1

Element � Element � 1
Enter Array (Element)

False

True

Until
Array (Element)

� � 1

Element �
Element � 1

*

Repeat

Element � 0

Repeat

Until Array (Element) � � 1

NElements � NElements � 1

Element � Element � 1
Enter Array(Element)

* The number of elements in the array should
 not include the trip value of �1.

Figure 8.4b Loading an Array Using the Repeat/Until Loop

and to store the result in the sum memory location (Sum). The value of the element num-
ber Element changes as the loop counter progresses from one element to the other dur-
ing summing.

Observe the testing of the flowchart in Figure 8.6 through the use of the various
variable memory locations. The first time the loop is processed, the value of Element
is 1, and the value of Array(Element), or Array(1), is 2. This value is added to the pre-
vious value of the Sum, which is zero since the value of Sum is zero at the start. The
resultant is 2, which is placed into the Sum memory location. The second time the

188 � Chapter 8

loop is processed, Element is incremented to 2 and the value of Array(Element), or
Array(2), is 4. This value is added to the previous value of Sum, which is 2, and placed
into the Sum memory location. Sum now has the value of 6. The third time the loop is
processed, Element is incremented to 3, and Array(Element), which has the value of 6,
is added to Sum and placed into the Sum memory location. The value of Sum is now 12.

Algorithm Flowchart Pseudocode

1. Element � 1

2. Enter Array (Element)

3. While Array(Element) �� �1

* 4. NElements � Element � 1

B

A

Element � 1

Enter
Array (Element)

Enter
Array (Element)

NElements �
Element � 1

* The number of elements in the array should
 not include the trip value of �1.

Element � Element � 1
ENTER Array (Element)

WhileEnd

 Element � 1

 Enter Array(Element)

 While Array(Element) �� �1

NElements � NElements � 1

Element � Element � 1
ENTER Array (Element)

WhileEnd

False

True

While
Array (Element)

�� � 1

Element �
Element � 1

*

Figure 8.4c Loading an Array Using the While/WhileEnd Loop

Processing Arrays � 189

This sequence is repeated each time the loop is processed until the value of Element has
increased to a number greater than the value of NElements. The final value of Sum is 42.

Putting It All Together

This PIAT illustrates how to enter, use, and print one-dimensional arrays.

Problem: The president of the Too Little Variety Stores would like to know
each store’s percentage of the total sales of the corporation. There are 15
stores altogether.

Figure 8.7 shows the complete solution to this problem. Figures 8.7a–c shows the
Problem Analysis Chart, the Interactivity Chart, the IPO Chart, the coupling chart and
the data dictionary. Figures 8.7d–g show the algorithms and flowcharts for each module.
The Control module processes each of the modules, Init, Read, Calc, and Print. The Sum
is set equal to zero in the Init module. The Read module enters the values of the sales per
store into the Sales array. The value of R becomes the store number. In the Calc module,

Algorithm Flowchart Pseudocode

Loop: Element � 1 To NElements Step 1

LoopEnd: Element

NElements � Total number
 of elements

Element � Element number

Print Array(Element)

Array (Element) � Specific element
 of the array.

B

Element

Element

A

1

Print
Array(Element)

1 NElements

Loop: Element � 1 To NElements Step 1

LoopEnd: Element

Print Array(Element)

Figure 8.5 Printing a One-Dimensional Array

Example

190 � Chapter 8

Algorithm Flowchart Pseudocode

Loop: Element � 1 To NElements Step 1

LoopEnd: Element

NElements � Number of elements

Element � Element number

Sum � Sum � Array (Element)

Loop: Element � 1 To NElements Step 1

LoopEnd: Element

Sum � Sum � Array(Element)

Sum � Sum of the
 elements of Array

Array(Element) � Specific elements
 of the array.

B

ElementArray

1 2 21 3

6

2 4

3 6

4 8
5 10

6 12

TEST:

NElements

4 5 6 7

Sum

62 12

20 30 42

Element

A

1

Sum � Sum
� Array(Element)

1 NElements

Element

Figure 8.6 Accumulating the Elements of a One-Dimensional Array

Given Data Required Results

1. 15 stores
2. Sales per store

Percent of total sales per store

Solution AlternativesProcessing Required

Percent (store) � sales (store)/total sales Must use arrays

Figure 8.7a Problem Analysis Chart

Processing Arrays � 191

two-dimensional array

the sum of the sales for all 15 stores is calculated through the use of a loop and the accu-
mulation instruction. The next loop calculates the value of the percentage for each store
and places that value in the Percent array. The Sales array and the Percent array are par-
allel arrays since each element corresponds to the same store. The values of the store
number, the Sales, and the Percent are printed, element by element, in the Print module.

Init

Interactivity (Structure) Chart

IPO Chart

Input Processing Output

For each store:
 1. Store number
 2. Sales
 3. % of total sales

Module Reference

Read
Init
Calc
Calc
Print

1. Sales per store 1. Enter data
2. Set sum to 0
3. Accumulate sales
4. Calculate percent
5. Print output

Read Calc Print

Sales

Figure 8.7b Interactivity Chart and IPO Chart

Two-Dimensional Arrays

A two-dimensional array is a block of memory locations associated with a single
memory variable name and designated by row and column numbers. Each element num-
ber is written as Array (Row #, Column #). The row number is always first and the col-
umn number second. As in one-dimensional arrays, the row and column numbers can be
constants, variables, or expressions, and they are of the integer data type. Whatever pro-
cessing takes place, the row and column numbers always remain in the same positions
in the parentheses. As with one-dimensional arrays, you can change the values in a two-
dimensional array by using the assignment instruction.

Two-dimensional arrays are used for tables of values. They can replace parallel arrays
if the data are of the same data type in all of the arrays. In Figure 8.8, the two-dimensional
array Array is shown. This figure shows the general form of a two-dimensional array,
and of reference names (including the variable name and the row and column num-
bers), for each location. For example, Array(3,2) is found at the intersection of row 3
and column 2.

192 � Chapter 8

Entering Data

You load a two-dimensional array with nested loops (see Figure 8.9). The data are nor-
mally loaded row by row. When you load the data row by row, the outer loop represents
the row, and the inner loop represents the column. This order of the loops allows the row
number to remain constant while the column number varies. In Figure 8.9, compare the
data block to the array block. In the flowchart, notice that the first four numbers in the
data block are read into the first row of the array, the second four into the second row,
and the last four into the third row. The array is now loaded with the numbers 1 to 12.)

Printing

After the array is loaded, it can be used in calculations, or it can be printed. As in load-
ing, use nested loops to print a two-dimensional array. Normally, the array is printed
row by row. For example, in Figure 8.10 the outer loop (Row loop) is the row loop and
the inner loop (Column loop) is the column loop. Notice that the flowchart is designed
so that the element is printed without a carriage return. The carriage return is executed
after a row is printed, that is, after the end of the column loop. Place the Cursor Return

Item

Sum of Sales

Sales Array

Sales
 Percentage

Element No.

Sum

Sales

Percent

Numeric

Element

Numeric

Numeric

Numeric

Control, Init, Calc

All

Control, Calc,
 Print

Read, Calc, Print

Local

Local

Local

Local

None

None

None

None

None

None

None

None

Variable Name Data Type Module Scope Pseudonyms Error Cks.

Sales

Read Init Calc Print

Sales

Sales

Sales

Sales

Sum

Sum

Percent

Percent

Percent Percent

Sales

Sales

Sum

Sum

Figure 8.7c Coupling Diagram and Data Dictionary

Entering Data

Printing

Processing Arrays � 193

Sum

0

Exit

2. Exit
Sum � 0

1. Sum � 0

InitInit (Sum)

Exit

Sum � 0

Init

End

Sales

Init

Algorithm Flowchart Pseudocode Testing

Sales

5. End

4. Process Print
 (Sales, Percent)

3. Process Calc
 (Sales, *Percent, Sum)

2. Process Read
 (*Sales)

1. Process Init (*Sum)

Sales

End

Print

Calc

Read

Init

Read

Calc

Print

Figure 8.7d Algorithms and Flowcharts for the Control and Init Modules

194 � Chapter 8

instruction between the two LoopEnd instructions. The column headings are printed
before either loop is executed. Each row heading is printed between the two beginning
loop instructions.

Follow the execution of the loop in Figure 8.10 to see how the array is printed.
Notice that the column headings are printed first. Then the row loop (Row loop) prints
row 1 and continues to print through row NRows, the total number of rows. Within each
row, the row heading must be printed first. Then, through the use of the Column loop,
each element of the row, designated by the column number (Column), is printed without
a cursor or carriage return. Once the elements of the row are printed, the cursor or car-
riage has to be returned before the next row can be printed.

Accumulating the Rows and Columns

In many solutions you need a total of rows, columns, and the grand total of all elements
in a two-dimensional array, and as in the one-dimensional array, you use the assignment
statement to do so. In the solution, you can use a row following the last row of the array
for the sums of the columns, and a column to the right of the last column for the sums of

Algorithm Flowchart Pseudocode Testing

Read (*Sales)

1. Loop: Element � 1 To 15

2. End

LoopEnd: Element

Enter Sales (Element)

50015

22514

32513

10012

37511

35010

4759

4508

1757

1256

2755

4004

1503

3002

2001

Sales

Element
1 2 3 4 5 6 7

9 10
14 15

1112138
Read

Element

1

Enter
Sales (Element)

1 15

Element

Exit

Read (*Sales)

Loop: Element � 1 To 15 Step 1

Exit

LoopEnd: Element

Enter Sales (Element)

Figure 8.7e Algorithm and Flowchart for the Read Module

Accumulating

Processing Arrays � 195

Percent

4425
3700
3275
2550
1625
1325
650

3925
3375
2900
2075
1450
1050
5802000

Sum

4.51

1 15

1

Element
6.82

3.43

9.04

6.25

2.86

4.07

10.28

10.79

7.910

8.511

2.312

7.313

5.114

11.315

1 2 3 4 5 6 7

Element

8 9 10 1112 13
14 15

Exit

Element

Percent (Element)�
Sales(Element)

�Sum*100

Element

Sum � Sum
� Sales (Element)

Element

CalcCalc (Sales, Sum, *Percent)

1. Loop: Element � 1 To 15

2. Loop: Element � 1 To 15

3. Exit

LoopEnd: Element

LoopEnd: Element

Flowchart PseudocodeAlgorithm Testing

1

1 15
Sum � Sum
 � Sales (Element)

Percent (Element) �
 Sales (Element)
 �Sum*100

Calc (Sales, Sum, *Percent)

Loop: Element � 1 To 15 Step 1

Loop: Element � 1 To 15 Step 1

Exit

LoopEnd: Element

LoopEnd: Element

Sum � Sum
 � Sales (Element)

Percent (Element) �
 Sales(Element)
 �Sum *100

Figure 8.7f Algorithm and Flowchart for the Calc Module

196 � Chapter 8

PercentSales#

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

200

300

150

400

275

125

175

450

475

350

375

100

325

225

500

4.5

6.8

3.4

9.0

6.2

2.8

4.0

10.2

10.7

7.9

8.5

2.3

7.3

5.1

11.3

Element

Exit

Print Element,
Sales (Element),

Percent (Element)

Element

PrintPrint (Sales, Percent)

1. Print Headings

2. Loop: Element � 1 To 15

3. Exit

LoopEnd: Element

Flowchart PseudocodeAlgorithm Testing

1

1 15

Print Element, Sales (Element),
 Percent (Element)

Print
Headings

Print (*Sales)

Loop: Element � 1 To 15 Step 1

Exit

LoopEnd: Element

Print Sales(Element),
 Percent(Element)

Figure 8.7g Algorithm and Flowchart for the Print Module

A

1

2

3

R Array (Row,1) Array (Row,2) Array (Row,3) Array (Row,4) . . .

. . .

1 32 . . . C4Row
Column

Array (Row,Column)

Array (3,1) Array (3,2) Array (3,3) Array (3,4) . . . Array(3,Column)

Array (2,1) Array (2,2) Array (2,3) Array (2,4) . . . Array(2,Column)

Array (1,1) Array (1,2) Array (1,3) Array (1,4) . . . Array(1,Column)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 8.8 General Form of a Two-Dimensional Array

Processing Arrays � 197

the rows (see Figure 8.11). For the grand total, use the intersection of the last row and
the last column. This placement of row, column, and grand totals facilitates printing
them in the printout of the array.

In the array in Figure 8.11, the fourth row is used for the sum of each column, and
the fifth column is used for the sum of each row. The element in the lower right-hand
corner—Array(4,5)—holds the grand total. In the solution, the sum of both the rows and
columns can be done in the same nested loop. It does not make any difference if the sum
of a single row is completed before the start of the sum of the next row, or if the sums of
all rows are done at the same time, column by column. Notice in Figure 8.11 that the
final sum is the same if you accumulate a whole row at one time or all of the rows at the
same time. Either way, the sum of the first row is 10, the sum of the second row is 26,
and the sum of the third row is 42. The same is true of the columns.

Data Block

1

1 3

1

Row

A

Array

The row remains
constant as the
column varies.

Column
1 2 3 4

1 2 3 4

5 6 7 8

9

1

2

3 10 11 12Column

1 3

1

Enter
Array (Row,Column)

Column

Row

Array

2
3
4
5
6
7
8
9
10
11
12

Row by Row

B

Row

Figure 8.9 Loading a Two-Dimensional Array, Row by Row and Column by Column

198 � Chapter 8

In Figure 8.12, the algorithm and the flowchart are shown for summing the rows
and columns of the array in Figure 8.11. Notice the differences between the assign-
ment instructions for summing the rows, the columns, and the grand total. The only
difference is in the reference numbers of the array elements containing the sums. The

Row

B

Return
Cursor

Column

Print
Array (Row,Column)

W/O Cursor
Return

Column

Print
Row

heading
(Row)

1

1 NColumns

Row

1

1 NRows

Print
Column

Headings

A

Figure 8.10 Printing a Two-Dimensional Array

Processing Arrays � 199

grand total is the sum of the last column since the sum of the rows is complete at the
end of the inner loop.

In the instruction to sum the rows in Figure 8.12, the element numbers are repre-
sented by the variable Row for the row number, and the expression for the
column number containing the sum of the rows. In the instruction to sum the columns, the
element numbers are represented by the expression for the row containing the
sum of the columns, and the variable Column for the column number. The element num-
bers of the box containing the grand total, at the intersection of the sums of the rows and
the columns, are and When the rows are summed in the
outer loop, they are summed one row at a time; the columns are summed when all the rows
have been processed. The summation of the grand total is placed between the two
LoopEnds because it is the summation of the sums of the rows. The elements to be accu-
mulated for the grand total are the row sums in Array(Row, NColumns + 1).

NColumns + 1.NRows + 1

NRows + 1

NColumns + 1

Putting It All Together

This PIAT illustrates how to enter, use, and print a two-dimensional array.

Problem: The president of the Too Little Variety Stores has collected sales
data on the 15 stores in the corporation for seven days. He would like to know
the total sales for each store for the week, the total sales for the company for
each of the seven days, and the total sales for the company for the week (see
Figure 8.13).

In this problem the data can be stored in a two-dimensional sales array; the sum of
the store sales per week can be stored in a one-dimensional array; the sum of the store
sales per day can be stored in another one-dimensional array; and the grand total for the
week can be stored in a single variable. An alternative way to store the data would be to
place the totals in an additional row and column in the two-dimensional sales array. The
latter would be the better alternative since there is only one array to keep track of and to
print. This makes the processing easier and more readable.

The problem is divided into five modules: the Control, Init, Read, Calc, and Print
modules. The Control module uses the sequential logic structure to process the modules.

Array

Row

Column

1 2 3 4 5

1 2 3 4

5 6 7 8

9

1

2

3

4

10 11 12

15

• Column 5 holds the sum of each of the rows.

• Row 4 holds the sum of each of the columns.

• Array (4,5) holds the grand total.

18 21 24

1 3
6 10

5 11
18 26

9 19
30 42

10 361241038261
78

Figure 8.11 Accumulating a Two-Dimensional Array

Example

200 � Chapter 8

Algorithm

Loop: Row � 1 To NRows Step 1

LoopEnd: Row

Loop: Column � 1 To NColumns Step 1

LoopEnd: Column

Array (NRows � 1,NColumns �1) �
 Array (NRows � 1,NColumns � 1)
 � Array(Row,NColumns � 1)

Array (Row,NColumns � 1)
 � Array(Row,NColumns � 1)
 � Array (Row,Column)
Array (NRows � 1,Column)
 � Array (NRows � 1,Column)
 � Array (Row,Column)

Pseudocode

Loop: Row � 1 To NRows Step 1

LoopEnd: Row

Loop: Column � 1 To NColumns Step 1

LoopEnd: Column

Array(NRows � 1,NColumns �1) �
 Array(NRows � 1,NColumns � 1)
 � Array(Row,NColumns � 1)

Array (Row,NColumns � 1)
 � Array(Row,NColumns � 1)
 � Array (Row,Column)
Array(NRows � 1,Column)
 � Array(NRows � 1,Column)
 � Array(Row,Column)

Row

Array(NRows � 1,NColumns � 1)
� Array(NRows � 1,NColumns � 1)

� Array(Row,NColumns � 1)

B

Column

Column

1

1 NColumns

Row

1

1 NRows

A

Flowchart

Array(NRows � 1,Column) �
Array(NRows � 1,Column) �

� Array(Row,Column)

Array(Row,NColumns � 1) �
Array(Row,NColumns � 1) �

Array(Row,Column)

Figure 8.12 Algorithm and Flowchart for Column and Row Summation

Processing Arrays � 201

The Init module sets the elements of the array to zero. The Read module enters the sales
data into the Sales array, row by row. The Calc module sums the rows to give the totals
for each store, the columns to give the totals for each day, and the grand total for the
total sales for the company for the week. The Print module prints the Sales array includ-
ing the totals.

Sales
Control

PrintCalcReadInit

Figure 8.13a Problem Analysis Chart for Array Problem

Given Data

Processing Required

Required Results

Solution Alternatives

1. Summing store sales
2. Summing day’s sales
3. Summing all sales

1. Total sales for each store for the week
2. Total sales for the company for each day
3. Total sales for the company for the week

1. Use two-dimensional array for data, one-dimensional
 array for store totals and day’s totals, and a
 single variable for grand total
2. Use a two-dimensional array to store all values

1. 15 stores
2. Sales for all stores for seven days

Figure 8.13b Interactivity Chart

Input Processing

1. Sales�day�store
2. 15 stores

1. Enter data
2. Set array � 0
3. Calculate totals
4. Print output

Read
Init
Calc
Print

Module Reference Output

1. Total sales for each store
 for the week
2. Total sales for each day
 for company
3. Total sales for week for
 company

Figure 8.13c IPO Chart for Array Problem

202 � Chapter 8

Item

Sales Array

Column No.

Sales Numeric

Row Numeric

Numeric

All Local

Local

Local

None

None

None

None

None

None

Variable Name Data Type Module Scope Pseudonyms Error Cks.

Control

ReadInit Calc Print

Sales

Sales

Sales

Sales

Sales

Sales

Sales

Sales

Read, Calc, Print

Read, Calc, Print

Row No.

Column

Figure 8.13d Coupling Diagram and Data Dictionary

Processing Arrays � 203

Algorithm

Sales Control

1. Process Init

2. Process Read

3. Process Calc

4. Process Print

5. End

Sales Control

Init

Read

Calc

Print

Flowchart Pseudocode

Sales
Control

Init

End

Read

Calc

Print

End

Figure 8.13e Algorithm and Flowchart for Control Module

204 � Chapter 8

Init

Algorithm Flowchart Pseudocode

1. Loop: Row � 1 To 16

LoopEnd: Row

LoopEnd: Column

Loop: Column � 1 To 8

Sales (Row,Column) � 0

2. Exit

Init

Exit

Row

1

1 16

Column

1

Sales (Row,Column)
� 0

1 8

Column

Row

Init

Loop: Row � 1 To 16 Step 1

LoopEnd: Row

LoopEnd: Column

Loop: Column � 1 To 8 Step 1

Sales (Row,Column) � 0

Exit

Figure 8.13f Algorithm and Flowchart for Init Module for Array Problem

Processing Arrays � 205

Read

Algorithm Flowchart Pseudocode

1. Loop: Row � 1 To 15

LoopEnd: Row

LoopEnd: Column

Loop: Column � 1 To 7

Enter Sales (Row,Column)

2. Exit

Read

Exit

Row

1

1 15

Column

1

Enter
Sales

(Row,Column)

1 7

Column

Row

Read

Loop: Row � 1 To 15 Step 1

LoopEnd: Row

LoopEnd: Column

Loop: Column � 1 To 7 Step 1

Enter Sales (Row,Column)

Exit

Figure 8.13g Algorithm and Flowchart for Read Module for Array Problem

206 � Chapter 8

Algorithm Flowchart Pseudocode

Calc

Row

1

1 15

Annotation

Row loop

Column loop

Sum of each row*

Sum of each column**

Grand total
of all elements***

Column

 * Column 8 contains the sum of each
 of the rows.
 ** Row 16 contains the sum of each of
 the columns.
 *** Element row 16, column 8, contains
 the grand total.

Calc

2. Exit

1. Loop: Row � 1 To 15

Loop: Column � 1 To 7

LoopEnd: Column

Sales (16,8) � Sales (16,8)
 � Sales (Row,8)

Sales (Row,8) � Sales (Row,8)
 � Sales(Row,Column)

Sales (16,Column) �
 Sales(16,Column)
 � Sales(Row,Column)

LoopEnd: Row

Exit

Column

1

Sales (Row,8) �
Sales (Row,8) �

Sales(Row,Column)

Sales(16,Column) �
Sales(16,Column) �
Sales(Row,Column)

1 7

Sales(16,8) �
Sales(16,8) �
Sales(Row,8)

Row

Calc

Exit

Loop: Row � 1 To 15 Step 1

Loop: Column � 1 To 7 Step 1

LoopEnd: Column

Sales (16,8) � Sales(16,8)
 � Sales (Row, Column)

Sales (Row,8) � Sales (Row,8)
 � Sales(Row, Column)

Sales (16,Column) �
 Sales (16, Column)
 � Sales(Row,8)

LoopEnd: Row

Figure 8.13h Algorithm and Flowchart for Calc Module for Array Problem

Processing Arrays � 207

Algorithm

Print

1. Print Column
 Headings

3. Exit

2. Loop: Row � 1 To 16

LoopEnd: Row

LoopEnd: Column

Loop: Column � 1 To 8

Flowchart Pseudocode

Print {CursorReturn}

Print RowHeadings (Row)
 W/O {CursorReturn}

Print Sales (Row,Column)
 W/O {CursorReturn}

Print

Exit

Print
Column

Headings

Row

1

1 16

Print
RowHeadings

(Row) W/O {CursorReturn}

Column

1

Column

1 8

Print
Sales (Row,Column)
W/O {CursorReturn}

Print
{CursorReturn}

Row

Print

Print Column Headings

Exit

Loop: Row � 1 To 16 Step 1

LoopEnd: Row

LoopEnd: Column

Loop: Column � 1 To 8 Step 1

Print (CR)

Print RowHeadings (Row)
 (W/O CR)

Print Sales(Row,Column)
 (W/O CR)

Sales (16,Column) �
 Sales (16,Column) �
 Sales (Row,8)

Figure 8.13i Algorithm and Flowchart for Print Module for Array Problem

208 � Chapter 8

1,1,1

Depth

1,1,2

1,2,1

1,2,2

1,3,1

1,3,2

1,4,1

1,4,2

1,5,1

1,5,2

1,5,2

1,5,1

2,5,2

2,5,1

3,5,2

3,5,1

4,5,2

4,5,1

Column

Row

1,1,1

2,1,1

3,1,1

4,1,1

1,2,1

2,2,1

3,2,1

4,2,1

1,3,1

2,3,1

3,3,1

4,3,1

1,4,1

2,4,1

3,4,1

4,4,1

1,5,1

2,5,1

3,5,1

4,5,1

Figure 8.14 Three-Dimensional Array

Multidimensional Arrays

In some cases there is a need for arrays with a third or even a fourth dimension. These
arrays are called multidimensional arrays. You will use these multidimensional arrays
relatively infrequently. They can facilitate an understanding of the data, improve the
readability of algorithms, and facilitate processing since the data can be processed
through the use of three or more nested loops. For example, with input data on temper-
atures referenced by day, city, county, and state, day would be the first dimension, city
would be the second dimension, county would be the third dimension, and state would
be the fourth dimension of the array. In any case, any temperature could be found as
long as the day, the city, the county, and the state are known. A multidimensional array
allows the programmer to use one array for all the data.

Figure 8.14 shows a block of memory locations and their reference names for a
three-dimensional array. The recommended variable names for the indexes of a three-
dimensional array are Row for row, Column for column, and Depth for depth. For a
fourth dimension, Volume for volume is used. These arrays are processed much like
two-dimensional arrays, and, therefore, are not discussed further.

multidimensional
arrays

Processing Arrays � 209

1

2

31

Element Days Algorithm

1. Enter Month
2. DaysOfMonth � Days(Month)
3. Print DaysOfMonth
4. End

Flowchart

28

3 31

4 30

5 31

6 30

7 31

8 31

9 30

10 31

11 30

12 31

Start

End

Enter
Month

DaysOfMonth
� Days(Month)

Print
DaysOfMonth

Figure 8.15 Table Look-Up Technique

Table Look-Up Technique

A common application for arrays is using a value to look up another value in a table. A
one-dimensional array would be used if the element number can be utilized as the given
value (see Figure 8.15). A two-dimensional array with two columns would be used if the
element number cannot be utilized. In this case the first column would contain the val-
ues to compare with the given value, and the second column would contain the values to
be located. Figure 8.15 illustrates a one-dimensional array and the algorithm and flow-
chart for a table look-up problem. In this problem we need to find the number of days in
a month given the month number. In this case we can utilize the element number as the
month number. For example, given month number 3, the number of days in the month
would be 31.

Table Look-up

210 � Chapter 8

Sequential Search

There are instances when you do not know the element number, but you do know the
value of the element. In this case a search must be made on the array to find the correct
element. The easiest way to search an array is called a sequential search. Figure 8.16
shows the algorithm and the flowchart of a sequential search. The methodology is sim-
ple. Given the search value of the element you want to find, element number one is
tested to see if it matches the search variable. If it does, the flow of the program drops
out of the loop with the desired element number. If it doesn’t match, the element num-
ber is incremented and loops back to test again.

sequential search

T

Algorithm

1. Element � 1

2. While SearchName �� Array (Element)
AND Element �� NElements

Element � Element � 1

WhileEnd

3. If Element � NElements

Then
Print “Element

Not Found”

Else

Flowchart Pseudocode

Element � 1

Element �
Element � 1

B

F T

While
SearchName

�� Array (Element)
AND Element � �

NElements

A

F

If
Element �
NElements

Print
Array (Element)

Print
“Element Not

Found”

1

2

3

4

Print Array(Element)

Element � 1

While SearchName �� Array (Element)
AND Element �� NElements

Element � Element � 1

WhileEnd

If Element � NElements Then

Print “Element
Not Found”

Else

EndIf

Print Array (Element)

Figure 8.16 Search Algorithm and Flowchart

Processing Arrays � 211

Notes on Figure 8.16

The numbers of the notes correspond to the circled numbers in Figure 8.16.

1. The element number is set to 1.
2. A loop is set up to test the search value against the value of the present ele-

ment of the array. This test also includes a test to make sure the element
number is less than or equal to the number of elements in the array. If the
element number is greater than the number of elements, then the value was
not found.

3. The element number is incremented.
4. A test is made on the element number. If the element number is greater than

the number of elements in the array, an error message is printed; if not, the
value of the element is printed.

Binary Search

A faster method of finding the desired element of an array is the binary search. Fig-
ure 8.17a shows the algorithm and flowchart of the binary search. The binary search
technique involves comparing the mid-element of all or part of the array. If it com-
pares, the flow of the program drops out of the loop with the desired element number.
If it does not compare, the program checks to see if the value is lower or higher than the
middle value. The boundaries are then reset to select a new section of the array in
which the search value should be found. The midpoint of this new section is then
checked. The program continues to divide the remaining elements by half until the
desired element is found. At that time the program drops out of the loop with the ele-
ment number of the desired element. Even with 1,000 elements, this method will take
less than 10 comparisons. Figure 8.17b shows an example of a binary search using the
algorithm and flowchart in Figure 8.17a.

Notes on Figure 8.17a

The numbers of the notes correspond to the circled numbers in Figure 8.17a.

1. The lower boundary is set at 1 (lowest element number).
2. The upper boundary is set at the maximum number of elements in the

array.
3. The flag is set at zero. This flag is set at 1 when the element is found and 2

when the element could not be found. The flag is zero until one of the two
preceding conditions is met.

4. The loop is started and will continue as long as
5. The mid-element number is calculated. This always rounds down because the

Int function is used.
6. This is the test to see if the mid-element is equal to the value of the desired

element. If it is, Flag is set equal to 1, and the flow goes back to the While
statement. The condition at the While statement is now false so the flow drops
out of the loop. If the mid-element is not equal to the desired value, then the
flow of the program will need to loop again to test another element against the
search value.

7. The next test is made so the upper or lower boundaries can be reset. This
will designate the new section of the array. This is accomplished by testing

Flag = 0.

binary search

212 � Chapter 8

B

False True

False

True A

C

If
Array(Element) �

SearchValue

B

Flag � 2

AB

C

Lower � 1

Flowchart PseudocodeAlgorithm

Binary Search

Lower
Upper
NElements
Element
SearchValue

Binary
Search

1

2

3

8

7

4

5

6

9

10

False

True

False

True

False True

Upper � NElements

Flag � 0

Element � Int
((Lower � Upper) � 2)

Flag � 1

Upper � Element � 1 Lower � Element � 1

While
Flag � 0

If
SearchValue �
Array(Element)

If
Lower �
Upper

If
Flag � 2

Print
Array (Element)

Exit

Print
“SearchValue
Not Found”

1. Lower � 1

2. Upper � NElements

3. Flag � 0

4. While Flag � 0
Element � Int ((Lower �
 Upper) � 2)

WhileEnd

5. If Flag � 2

6. Exit

Array (Element)
Print

Else

Then

Not Found”
Print “SearchValue

Flag � 2
Then

If Lower � Upper

Upper � Element � 1
Else

Else

Then

Then
Flag � 1

Lower � Element � 1

If SearchValue �
Array (Element)

If Array (Element) �
 SearchValue

Binary Search

Lower � 1

Upper � NElements

Flag � 0

While Flag � 0
Element � Int ((Lower �
 Upper) � 2)

WhileEnd

If Flag � 2 Then

Exit

Array (Element)
Print

Else
Not Found”

Print “SearchValue

Flag � 2
If Lower � Upper Then

Upper � Element � 1
Else

EndIf

EndIf

EndIf

EndIf

Else
Flag � 0

Lower � Element � 1

If SearchValue �
Array(Element) Then

If Array(Element) �
SearchValue Then

Figure 8.17a The Binary Search

the value of the element against the search value. If the search value is
greater than the value of the mid-element number, then the lower boundary
is set to one more than the midpoint. This means that the desired element is
in the upper half of this section. If not, the upper boundary is set to one less
than the midpoint. This means the desired element is in the lower half of the
section.

8. This test is to make sure there are still elements in the section to be tested. If
the lower boundary is less than the upper boundary, the flag is set to 2, indi-
cating that the element could not be found.

Processing Arrays � 213

The Pointer Technique

Another way to use arrays is to specify the value of an element in one array as the ele-
ment number in another array. This use of array is called the pointer technique because
the value of the element in the first array points to the element in the second. The pointer
technique is used in frequency distributions. A frequency distribution is a tally of one
type of value in an array, such as how many students in a school are in each class or how
many of a company’s customers live in each zip code area. The result of a frequency dis-
tribution is a one-dimensional array that contains the tally for the value of each element
number. The pointer technique is also used for calculating statistics from a question-
naire by cross-tabulating items, such as how many students are in each major and each

Order of comparisons to find the element number of 44:
 1. Element 7 (Upper � 13, Lower � 1, Element Number � 7)
 2. Element 10 (Upper � 13, Lower � 8, Element Number � 10)
 3. Element 12 (Upper � 13, Lower � 11, Element Number � 12)
Number 44 is found in three comparisons, compared to 12 with the
sequential search.

A

1

2

3

4

5

6

7

8

9

10

11

12

13

5

7

9

12

15

20

25

28

33

35

40

44

47

Figure 8.17b Example of a Binary Search

pointer technique

9. The flow then returns to the While statement and continues or drops out of the
loop according to the value of Flag.

10. After the flow of the program drops out of the loop, the flag is checked. When
the Flag is 1, the element (or elements if using parallel arrays or multidimen-
sional arrays) information is printed. If Flag is equal to 2, an error message is
printed.

214 � Chapter 8

class. The result of this cross-tabulation is a two-dimensional array containing the tally
for the combination of the majors and the classes; the majors would be the rows and the
classes would be the columns.

Frequency Distribution

In the development of the solution for a frequency distribution, the arrays must be
defined. First, you define the array from which the frequency distribution is to be
calculated. This array contains data that are coded using the numbers from 1 to
the number of different values in the array. For example, when doing a frequency
distribution on grades in a class, the grades must be coded numerically, such as,

Or if the frequency distribution deals with the
number of first-, second-, third-, and fourth-year students, including graduate stu-
dents in a college, each class would be given a number from 1 to 5. The number of
values of the code then becomes the number of elements in the frequency distribu-
tion array.

Figure 8.18 illustrates the solution to the following problem: Using a grading scale
of 1 to 10, design a solution to find the number of students out of a class of 30 who
received each grade (1 through 10) on a test. The Grade array contains 30 elements, one
element for each student, which have the values of 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10, depend-
ing on the student’s grade. The F (frequency distribution) array contains 10 elements,
one for each different grade: The first element contains the number of students who
received a 1, the second element contains the number of students who received a 2, the
third element contains the number of students who received a 3, and so forth (see Fig-
ure 8.18d).

Figures 8.18a–c demonstrate the use of pointers for a frequency distribution.
Notice in the Calc module that the value of the Grade array element is the element num-
ber of the frequency distribution array. The Grade array element value points to the
location of the element in the frequency distribution array that needs to be incremented,
an example of the pointer technique. Follow the notes for Figures 8.18a–c for an expla-
nation of each major step in the solution to the frequency distribution problem. Fig-
ure 8.18d shows an example of data and outcomes of this problem.

Notes for Figures 8.18a–c

The following notes explain the flowcharts for a frequency distribution. The numbers of
the notes correspond to the circled numbers in Figures 8.18a–c.

1. The Init module initializes the variables to zero.
2. The Read module enters the data.
3. The Calc module calculates the frequency distribution.
4. The Print module prints the frequency distribution.
5. The frequency distribution array (Frequency) is 10 elements long since there

are 10 grades. Each element in this array is set to zero because each element
is a counter.

6. There are 30 elements in the Grade array since there are 30 students. This
loop enters the grades into the Grade array. There is one element per
student.

7. In this loop the ending number is the number of students, since that will deter-
mine the frequency distribution.

3 = C, 4 = D, 5 = F.1 = A, 2 = B,

Frequency
Distribution

Processing Arrays � 215

Algorithm

FreqDist

1. Process Init

2. Process Read

3. Process Calc

4. Process Print

5. End

FreqDist

Init

Read

Calc

Print

End

Flowchart Pseudocode

End

FreqDist

Print

Calc

Read

Init

4

3

2

1

Figure 8.18a Algorithm and Flowchart of Control Module for a Frequency
Distribution

8. Through the pointer technique, the value of the StudentGrades(Student)
points to the element number of the frequency distribution array to indicate
which element will be incremented. The Grade variable is the pointer vari-
able. It has the same value as the grade of student number Student.

9. The Grade element of the frequency array is incremented. At the conclusion
of the loop, the frequency array will contain the values of the number of stu-
dents receiving each of the 10 grades.

10. This loop executes 10 times since there are 10 elements in the frequency
array.

11. This loop prints the number of the element (Student), which is equal to the
grade and the value of the Student element of the frequency array (Frequency),
which is the number of students receiving the grade (Student).

216 � Chapter 8

Exit

Student

Enter
StudentGrades

(Student)

Student

Read

1

1 30

6

Exit

Frequency
(NGrade) � 0

NGrade

NGrade

FlowchartAlgorithm Pseudocode

Init

Read

2. Exit

2. Exit

1. Loop: Student � 1 To 30

LoopEnd: Student

Enter StudentGrades
 (Student)

1. Loop: NGrade � 1 To 10

LoopEnd: NGrade

Frequency (NGrade) � 0

Init

1

1 10

5

Init

Read

Exit

Exit

Loop: Student � 1 To 30 Step 1

LoopEnd: Student

Enter StudentGrades
 (Student)

Loop: NGrade � 1 To 10 Step 1

LoopEnd: NGrade

Frequency(NGrade) � 0

Figure 8.18b Algorithms and Flowcharts of Init and Read Modules for a Frequency
Distribution

Processing Arrays � 217

Exit

NGrade

Print
NGrade,

Frequency (NGrade)

NGrade

Print

1

1 10
10

Exit

Student

Grade �
StudentGrades

(Student)

Student

Flowchart PseudocodeAlgorithm

Calc

Print

2. Exit

1. Loop: NGrade � 1 To 10

LoopEnd: NGrade

Print NGrade,
 Frequency (NGrade)

1. Loop: Student � 1 To 30

2. Exit

LoopEnd: Student

Grade � StudentGrades
 (Student)

Frequency (Grade) �
 Frequency (Grade) � 1

Calc

1

1 30

7

11

8

9
Frequency(Grade) �

Frequency (Grade) � 1

Calc

Print

Exit

Loop: NGrade � 1 To 10 Step 1

LoopEnd: NGrade

Print NGrade,
 Frequency(NGrade)

Loop: Student � 1 To 30 Step 1

Exit

LoopEnd: Student

Grade � StudentGrades
 (Student)

Frequency(Grade) �
Frequency (Grade) � 1

Figure 8.18c Algorithms and Flowcharts of Calc and Print Modules for a Frequency Distribution

218 � Chapter 8

Cross-Tabulation

Figure 8.19 demonstrates the use of pointers for a cross-tabulation. Notice that in this
case, one value points to the row and another value points to the column in the cross-
tabulation array. The data for cross-tabulation problems come from questionnaires. A
cross-tabulation shows the number of people who gave the same responses to two ques-
tions from the questionnaire. A frequency distribution shows the number of people who
gave the same answer to one question. For example, in a frequency distribution, a set of
test scores would be separated into the number of students who received each grade. In
a cross-tabulation, a set of test scores could be separated into the number of females that
received each test grade and the number of males that received each test grade, or the
number in each class that received each test grade. A cross-tabulation allows the user to
have more detail in the analysis of the data.

Figure 8.19 shows the algorithms and flowcharts for a cross-tabulation for the
following problem: A questionnaire has been sent out by a company that conducts
polls. The company needs a program to calculate the cross-tabulation for any two items
on the questionnaire. The questionnaire has five items. Items 1 and 2 are age and
education (5 possible answers). Items 3 through 5 are yes or no questions. There were
150 questionnaires returned. The following would be a sample output given option

and option The CrossTab array represents the output2 = question 1.1 = gender

Cross-Tabulation

11
12
23
14
15
36
47
58
69
610

Frequency

101
82
53
104
95
106
67
18
39
810
711
712
1013
914
815
916
917
618
719

StudentGrades

420
321
222
723
624
825
926
1027
928
829
1030

The element number of the frequency distribution array is the number of
points correct and the value of the element is the number of students that
received that grade. Therefore, the frequency distribution array Frequency
shows that there is 1 student who received 1 point, 1 who received 2 points,
2 who received 3 points, 1 who received 4 points, 1 who received 5 points,
3 who received 6 points, 4 who received 7 points, 5 who received 8 points,
6 who received 9 points and 6 who received 10 points.

Figure 8.18d Example of a Frequency Distribution

Processing Arrays � 219

CrossTab

Init

Flowchart PseudocodeAlgorithm

CrossTab

1. Process Init

2. Process EnterData

4. While Option1 � 0

1

2

3. Process ChooseOptions

Enters
questionnaire
data.

Chooses the
items for
the cross-
tabulation.

Repeats the
cross-tabulation.

Calculates
the cross-
tabulation.

Prints the
results.

Process Calc

Process Print

Process Init

Process ChooseOptions

5. End

WhileEnd

CrossTab

Init

EnterData

While Option1 � 0

ChooseOptions

Calc

Print

ChooseOptions

End

WhileEnd

3

4
False

True

5

6

7

8

End

EnterData

ChooseOptions

Calc

Print

Init

ChooseOptions

While
Option1 � 0

Figure 8.19a Algorithm and Flowchart of Control Module for Cross-Tabulation Solution

220 � Chapter 8

Flowchart PseudocodeAlgorithm

Init

CrossTab
(Row,Column) � 0

Column

Column

1

1 5

Row

Exit

Row

9

1

1 5

Init

1. Loop: Row � 1 To 5

2. Exit

Loop: Column � 1 To 5

LoopEnd: Column

LoopEnd: Row

CrossTab (Row,Column) � 0

Init

Loop: Row � 1 To 5 Step 1

Exit

Loop: Column � 1 To 5 Step 1

LoopEnd: Column

LoopEnd: Row

CrossTab (Rows,Column) � 0

Figure 8.19b Algorithm and Flowchart of Init Module for Cross-Tabulation Solution

where row 1 represents females; row 2, males; column 1, yes for question 1; and col-
umn 2, no for question 1.

CrossTab 1
Yes

2
No

1
Females

2
Males

32

51

25

42

Processing Arrays � 221

Flowchart PseudocodeAlgorithm

10

EnterData

1. Loop: Row � 1 To 150

Loop: Column � 1 To 5

Enter QData(Row,Column)

If Column � 1

Then

Then

Then

Else

Else

If QData (Row,1) � 2

QData (Row,1) � 1

If QData (Row,1) � 40

If QData (Row,1) � 21

11

12

2. Exit

LoopEnd: Row

LoopEnd: Column

If QData (Row,1) � 3

Row

Exit

Column

QData
(Row,1) � 3

QData
(Row,1) � 2

QData (Row,1) � 1

False TrueIf
QData (Row,1)

� 40

False

False

True

True

If
QData (Row,1)

� 21

If
Column � 1

Enter
QData (Row,Column)

Column

1

1 5

Converts
age into
three
groups.

Row

1 150

EnterData

1

EnterData

Loop: Row � 1 To 150 Step 1

Loop: Column � 1 To 5 Step 1

Enter QData (Row,Column)

If Column � 1 Then

EndIf

Else

EndIf

Else

EndIf

QData � 2

QData (Row, 1) � 1

If QData (Row, 1) � 40 Then

If QData (Row,1) � 21 Then

Exit

LoopEnd: Row

LoopEnd: Column

QData (Row, 1) � 3

Figure 8.19c Algorithm and Flowchart of Enter Module for Cross-Tabulation Solution

222 � Chapter 8

Flowchart PseudocdeAlgorithm

13

ChooseOptions

1. Clear Screen

2. Print Menu

3. Repeat:

4. Option2 � Option1

6. Exit

5. While Option1 �� 0 AND
 (Option1 � Option2
 OR Option2 � 0
 OR Option2 � 5)

Enter Option1

Until Option1 ��1
 AND Option1 � 5

14

15

16

Enter Option2

WhileEnd

ChooseOptions

Exit

Clear
Screen

Menu
 0: Quit
 1: Age
 2: Education
 3: Question
 4: Question
 5: Question

Repeat

False

True

True

Enter
Option2

False

Option2 �
Option1

Print
Menu

Enter
Option1

Until
Option1 � �1
AND Option1

� 6

While
Option1 �� 0

AND (Option1 � Option2
OR Option2 � 0

OR Option2
� 5)

ChooseOptions

Print (Clear Screen)

Print (Menu)

Repeat:

Option2 � Option1

Exit

While Option1 �� 0
 AND (Option1 � Option2
 OR Option2 � 0
 OR Option2 � 5)

Enter Option1

Until Option1 ��1
 AND Option1 � 6

Enter Option2

WhileEnd

Figure 8.19d Algorithm and Flowchart of ChooseOptions Module for Cross-Tabulation Solution

Processing Arrays � 223

Flowchart PseudocodeAlgorithm

1. Rmax � 0

2. Cmax � 0

Rmax � Row

Cmax � Column

3. Loop: Questionnaire � 1 To 150

4. Exit

Row �
QData(Questionnaire,Option1)

Column �
QData(Questionnaire,Option2)

CrossTab(Row,Column) �
CrossTab(Row,Column) � 1

If Row � Rmax

If Column � Cmax

Then

Then

17

Calc

Rmax � Maximum number
of rows used in the
cross-tabulation array.

Cmax � Maximum number
of columns used in the
cross-tabulation array.

Q is the questionnaire;
the number goes to
150 because there are
150 questionnaires.

QData is the
questionnaire
data.

R is the pointer
to the row of the
cross-tabulation array.

C is the pointer to
the column in the
cross-tabulation array.

Calculates the size of
the cross-tabulation
array for printout
purposes.

18

19

20

21

22

23

Questionnaire

Exit

Calc

Rmax � 0

Cmax � 0

Questionnaire

1

Row � QData
(Questionnaire,Option1)

1 150

Column � QData
(Questionnaire,Option2)

CrossTab(Row,Column) �
CrossTab(Row,Column) � 1

If
Row � Rmax

False

True

TrueIf
Column �

Cmax

Rmax � Row

Cmax �
Column

False

LoopEnd: Questionnaire

Rmax � 0

Cmax � 0

Rmax � Row

Cmax � Column

Loop: Questionnaire � 1 To 150

Exit

Row �
 QData (Questionnaire,Option1)

Column �
 QData (Questionnaire,Option2)

CrossTab(Row,Column) �
 CrossTab (Row,Column) � 1

If Row � Rmax Then

EndIf

EndIf

If Column � Cmax Then

Calc

LoopEnd: Questionnaire

Figure 8.19e Algorithm and Flowchart of Calc Module for Cross-Tabulation Solution

224 � Chapter 8

Flowchart PseudocodeAlgorithm

24

Print

3. Exit

LoopEnd: Row

LoopEnd: Column

Loop: Column � 1 To Cmax

2. Loop: Row � 1 To Rmax

1. Print Column Headings

Print CrossTab
(Row,Column) W/O {CR}

Print Row Heading

Print {CR}

Row

*

**

Exit

Print

Print
Column

Headings

Row

1
1 Rmax25

26

27

Column

28

29

Print
Row

Headings

Print
CrossTab (Row,Column)

W/O {CR}

Column

1
1 Cmax

Print
{CR}

* {CR} � Cursor return for monitor or carriage return for printer.

Print

Exit

LoopEnd: Row

LoopEnd: Column

Loop: Column � 1 To Cmax

Loop: Row � 1 To Rmax

Print (Column Headings)

Print CrossTab
 (Row, Column) (W/O CR)

Print (Row Headings)

Print (CR)

Figure 8.19f Algorithm and Flowchart of Print Module for Cross-Tabulation Solution

The values of the four elements add up to the total number of questionnaires. The
CrossTab array shows that 32 females answered yes to question 1, 25 females answered
no, 51 males answered yes, and 42 males answered no.

Notes on Figure 8.19

The following notes explain the flowcharts in Figure 8.19. The numbers of the notes
correspond to the circled numbers in Figures 8.19a–f.

1. The Init module initializes the variables.
2. The EnterData module enters the questionnaire data.
3. The ChooseOptions module chooses the two items for the cross-tabulation.
4. This loop repeats the cross-tabulation until no more cross-tabulations are

desired by the user.
5. The Calc module calculates the cross-tabulation.
6. The Print module prints the results of the cross-tabulation.
7. The Init module, processed at this point, reinitializes the variables for another

cross-tabulation on the same data.
8. This ChooseOptions module chooses the two items for the next cross-tabulation.
9. This nested automatic-counter loop sets the elements of the cross-tabulation

array to zero.
10. These loops are set so that the rows (Row) are the questionnaires (1 to 150)

and the columns (Column) are the items (1 to 5).
11. This instruction enters the questionnaire data, one element at a time.
12. This decision instruction checks to see if the column number is 1; if it is, then

the instruction changes the ages to age groups:
and 40,

13. These instructions clear the screen and print the menu of the questionnaire
items.

14. This loop enters the first item number (Option1) for the cross-tabulation
option. It repeats until the number entered is within the limits of the options
of the menu (0 to 5).

15. This instruction initializes Option2 to prepare for the next loop.
16. This loop enters the second item number (Option2) and repeats until the

answer is within the limitations of the number of items (1 to 5) and is not
equal to Option1.

17. Rmax is the maximum number of rows used in the cross-tabulation. It is set to
zero since the maximum number of rows has to be greater than zero.

18. Cmax is the maximum number of columns used in the cross-tabulation. It is
set to zero since the maximum number of columns has to be greater than zero.

19. This loop is set up for the number of questionnaires (150).
20. Row is the pointer to the row of the cross-tabulation array. The value comes

from the value in the Option1 column for that questionnaire. Option1 is the
first item number entered by the user.

21. Column is the pointer to the column of the cross-tabulation array. The value
comes from the value in the Option2 column for that questionnaire. Option2
is the second item number entered by the user.

22. This instruction increments the element in the cross-tabulation array specified
by the pointers Row and Column.

3 = over 40.
1 = under 21, 2 = between 21

Processing Arrays � 225

226 � Chapter 8

23. These decisions calculate the maximum row number and the maximum col-
umn number for printing.

24. This instruction prints column headings.
25. This loop specifies the number of rows to print, determined by RMax.
26. This instruction prints the row heading each time through the loop.
27. This loop specifies the number of columns to print, determined by CMax.
28. This instruction prints an element without a carriage return, as specified by

Row and Column.
29. This instruction returns the carriage after a row is printed.

Putting It All Together

This PIAT illustrates the use of arrays in the solution to a cross-tabulation problem.

Problem: A company has data on the number of days each employee was ab-
sent during the previous year. The data also include gender

pay type
education

and age
group The personnel manager
would like a cross-tabulation on these data giving the average number of
days absent. The company has 55 employees (see Figure 8.20).

In this example output, the CrossTab array represents the average absences, where
row 1 represents salary pay type; row 2, hourly pay type; row 3, commission pay type;
column 1, females; and column 2, males.

The CrossTab array shows that the average number of absences for females having
salary pay type is 2.4; males had 5.6. Females having hourly pay types had an average
number of absences of 5.2; males had 4.8. Females who were under commission pay
type had an average number of absences of 6.1; males had 5.3. In this case, to find the

CrossTab 1
Females

2
Males

1
Salary

pay type

2
Hourly

pay type

3
Commission

pay type

2.4

5.2

6.1

5.6

4.8

5.3

(1 = below 30, 2 = 30–50, 3 = over 50).
graduate degree),associate degree, 4 = bachelor’s degree, 5 =

 degree, 2 = high school diploma, 3 =(1 = no diploma or
(1 = salary, 2 = hourly wage, 3 = commission),2 = male),

(1 = female,

Example

Processing Arrays � 227

55

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3

2

1Employee

Gender Pay Type Education Age Group
of Days
Absent

Figure 8.20a Cross-Tabulation Problem

Solution Alternatives

Processing Required

Required ResultsGiven Data

Cross-tabulate for average number of
days absent

Must use cross-tabulation pointer technique

Calculation of average using cross-tabulation
technique

Per employee:
 Gender (1 � F, 2 � M)
 Pay type (1 � S, 2 � H, 3 � C)
 Education (1 � N, 2 HS, 3 � C, 4 � B,
 5 � G)
 Age group (1 � � 30; 2 � 30 to 50; 3 � � 50)
 # of days absent

Figure 8.20b Problem Analysis Chart

average number of absences, the number of absences in each category is totaled in the
CT array, and the number of people in each category are counted in the N array. The
average is then calculated by dividing each element in the CT array by the correspond-
ing element in the N array. The N array is tested for zero before dividing to avoid a divi-
sion by zero error.

228 � Chapter 8

Interactivity (Structure) Chart

Absent

Init

Menu

Enter Calc Print

IPO Chart

Input Processing Output

Print

Calc

Menu

Menu

Enter

Init

Module Reference

For each employee

1. Gender

2. Pay type

3. Education

4. Age group

5. # of days absent

1. Set cross-tab array
 and counter array � 0

2. Enter data

3. Print menu

4. Choose options

5. Calculate cross-
 tabulation

6. Print cross-tab array

7 Repeat 3–7 until
 option 1 � 0

1. Gender

2. Pay type

3. Education

4. Age

Average # of days absent for
 any two:
 (cross-tabulation)

Figure 8.20c Interactivity Chart and IPO Chart

Processing Arrays � 229

Algorithm

4. End

3. While Option1 � 0

2. Process Enter

1. Process Init

Process Calc

Process Print

Process Init

Flowchart Pseudocode

Absent

Enter

Absent

Init

While
Option1 � 0

False

True

Calc

Print

Init

End

WhileEnd

End

While Option1 � 0

Process Enter

Process Init

Calc

Print

Init

Absent

WhileEnd

Figure 8.20d Algorithm and Flowchart of Absent Control Module for PIAT Cross-
Tabulation Problem

230 � Chapter 8

Algorithm

1. Loop: Row � 1 To 5

2. Process Menu

3. Rmax � 0

4. Cmax � 0

5. Exit

Loop: Column � 1 To 5

LoopEnd: Column

LoopEnd: Row

NPeople (Row,Column) � 0

CrossTab (Row,Column) � 0

Flowchart Pseudocode

InitInit

Menu

A

Exit

Row

Column

NPeople
(Row,Column) � 0

CrossTab
(Row,Column) � 0

Column

1

1 5

Row

A

Rmax � 0

1

1 5

Cmax � 0

Loop: Row � 1 To 5 Step 1

Process Menu

Rmax � 0

Cmax � 0

Exit

Loop: Column � 1 To 5 Step 1

LoopEnd: Column

LoopEnd: Row

NPeople (Row,Column) � 0

CrossTab (Rows,Column) � 0

Init

Figure 8.20e Algorithm and Flowchart of Init Module for PIAT Cross-Tabulation Problem

Processing Arrays � 231

Algorithm

1. Clear Screen

2. Print Menu

3. Repeat

4. Option2 � Option1

5. While Option1 �� 0 AND
 (Option1 � Option2 OR
 Option2 � 4 OR Option2
 � 0)

Enter Option1

Until Option1 � �1 AND
 Option1 � 5

5. Exit

Flowchart Pseudocode

Menu

Clear
Screen

0. Exit
1. Gender
2. Pay type
3. Education
4. Age group

Menu

Option2 �
Option1

True

False Until
Option1 � �1

AND
Option1

�5

Enter Option2

WhileEnd

Exit

Enter
Option2

True

False
While

Option1 �� 0
AND (Option1 �

Option2 OR Option2
�4 OR Option2

�0)

Print
Menu

Enter
Option1

Repeat

Print (Clear Screen)

Print (Menu)

Repeat

Option2 � Option1

While Option1 �� 0 AND
 (Option1 � Option2 OR
 Option2 � 0 OR Option2
 � 4)

Enter Option1

Until Option1 � �1 AND
 Option1 � 5

Exit

Menu

Enter Option2

WhileEnd

Figure 8.20f Algorithm and Flowchart of Menu Module for PIAT Cross-Tabulation Problem

232 � Chapter 8

Algorithm Flowchart Pseudocode

Enter

Row

1

Column

Enter
Questionnaire
(Row,Column)

1

1 55

2. Exit

LoopEnd: Row

LoopEnd: Column

Loop: Column � 1 To 5

1. Loop: Row � 1 To 55

Enter Questionnaire
 (Row,Column)

Enter

Exit

Exit

LoopEnd: Row

LoopEnd: Column

Loop: Column � 1 To 5 Step 1

Loop: Row � 1 To 55 Step 1

Enter Questionnaire
 (Row,Column)

Enter

Column

1 5

Row

Figure 8.20g Algorithm and Flowchart of Enter Module for PIAT Cross-Tabulation Problem

Processing Arrays � 233

Algorithm Flowchart Pseudocode

Calc

DataRow

1

DataColumn

1

Row �
Questionnaire

(DataRow,Option1)

1 55

Calc

Exit

If
Row � Rmax

NPeople (Row,Col) �
NPeople (Row,Col) � 1

DataColumn

1 Cmax

1

DataRow

1 Rmax

DataRow

True

False

Col �
Questionnaire

(DataRow,Option2)

CrossTab (Row,Col) �
CrossTab (Row,Col) �

Questionnaire
(DataRow,5)

CrossTab (DataRow,
DataColumn) �

CrossTab (DataRow,
DataColumn)�

NPeople (DataRow,
DataColumn)

If
Col � Cmax

Rmax � Row

Cmax � Col
True

False

DataRow

A

If
NPeople

(DataRow,
DataColumn)

� 0

True

False

A

3. Exit

2. Loop: DataRow � 1 To Rmax

LoopEnd: DataColumn

LoopEnd: DataRow

If Col � Cmax

If Row � Rmax

Row � Questionnaire
 (DataRow,Option1)
Col � Questionnaire
 (DataRow,Option2)
CrossTab (Row,Col) �
 CrossTab (Row,Col)
 � Questionnaire (DataRow,5)
NPeople (Row,Col) �
 NPeople (Row,Col) � 1

1. Loop: DataRow � 1 To 55

If CrossTab(DataRow,
 DataColumn) � 0

Then

Then
Cmax � Col

Then
Rmax � Row

Loop: DataColumn � 1 To Cmax

LoopEnd: DataRow

CrossTab (DataRow,
 DataColumn)/
NPeople (DataRow,
 DataColumn)

CrossTab (DataRow,
 DataColumn) �

CrossTab (DataRow,
 DataColumn)/
NPeople (DataRow,
 DataColumn)

CrossTab(DataRow,
 DataColumn) �

Calc

Exit

Loop: DataRow � 1 To Rmax

LoopEnd: DataColumn

LoopEnd: DataRow

If Col � Cmax Then

If Row � Rmax Then

EndIf

EndIf

Row � Questionnaire
 (DataRow,Option1)
Col � Questionnaire
 (DataRow,Option2)
CrossTab(Row,Col) �
 CrossTab (Row,Col)
 � Questionnaire (DataRow,5)
NPeople(Row,Col) �
 NPeople (Row,Col) � 1

Loop: DataRow � 1 To 55

If NPeople(DataRow,
 DataColumn) � 0 Then

Cmax � Col

Rmax � Row

Loop: DataColumn � 1 To Cmax

EndIf

LoopEnd: DataRow

Figure 8.20h Algorithm and Flowchart of Calc Module for PIAT Cross-Tabulation Problem

234 � Chapter 8

Algorithm Flowchart Pseudocode

Print

Print
Column

Headings

Print

1. Print Column
 Headings

2. Loop: Row � 1 To Rmax

3. Exit

Write Row Headings

Loop: Column � 1 To Cmax

LoopEnd: Column

LoopEnd: Row

Print {CR}

Print CrossTab (Row,Column)
 W�O {CR} 1

Row

1 Rmax

Column

1

Column

1 Cmax

Row

Exit

Print
Row

Headings

Print
CrossTab

(Row,Column)
W/O {CR}

Print
{CR}

Print

Print (Column Headings)

Loop: Row � 1 To Rmax

Exit

Print (Row Headings)

Loop: Column � 1 To Cmax

LoopEnd: Column

LoopEnd: Row

Print (CR)

Print CrossTab (Row,Column)
 (W�O CR)

Figure 8.20i Algorithm and Flowchart of Print Module for PIAT Cross-Tabulation Problem

Processing Arrays � 235

Summary

Arrays facilitate the processing of data that is needed more than once in the processing
of a solution. Even though arrays are not difficult to learn, they are difficult to use well.
Therefore, it is important that a student of programming learn how to use them in a solu-
tion. To use arrays, the student needs to learn to enter or load data into an array, to print
an array, to sum the elements of an array, and to use an array to store data needed at a later
point in the solution. There are three types of arrays: one-dimensional, two-dimensional,
and multidimensional.

A technique that is important to the use of arrays is the pointer technique, wherein
you use the value of an element in one array to point to the number of the element in
another. It is used in frequency distributions and cross-tabulations.

New Terms

array

base-one system

base-zero system

binary search

dynamic array

multidimensional array

one-dimensional array

parallel arrays

pointer technique

sequential search

static array

two-dimensional array

Questions

1. Draw and name a one-dimensional array that would hold 10 temperatures. Number
the elements.

2. Draw and name four parallel arrays that would hold the following data:

Store Sales Customers Region

A24 5000 500 A
A26 3000 200 A
C30 6000 550 C
B44 4000 560 B

3. Draw and name a two-dimensional array that would hold the data for 10 homework
scores for 15 students. Number the rows and the columns.

4. Can all of the data in question 2 be put into a two-dimensional array? Explain.

5. What is the pointer technique for finding data? Why is it used?

6. What are the problem requirements for using the pointer technique?

7. Explain when you would use:
a. A one dimensional array
b. A two dimensional array
c. a multi-dimensional array

8. When would you use the Binary Search method over the Sequential Search method?

9. Under what circumstances would you choose to use the Frequency Distribution
method?

10. Under what circumstances would you choose to use the Cross Tabulation method?

236 � Chapter 8

Problems

Complete the seven steps of solution development for the following problems.

1. Mr. Jones always gives True/False tests to his class. His tests always have 20 ques-
tions. The maximum class size is 35. He needs a program that will calculate the stu-
dents’ grades based on the best score.

Grade

A will range from the best score, to the best score minus 2.

B will range from the best score minus 3, to the best score minus 4.

C will range from the best score minus 5, to the best score minus 6.

D will range from the best score minus 7, to the best score minus 8.

F will be anything below the best score minus 8.

Each student’s ID and test answers will be entered. The output will be each stu-
dent’s ID, number correct, and grade, along with the single highest score for the
class. Develop a solution for Mr. Jones’s problem. Use four one-dimensional
arrays—one for the correct scores and the other three for the needed output.

2. A restaurant manager wants to know how many employees are needed at the restau-
rant each hour of the day. The minimum number of employees needed at any hour
is 3. After that, one additional employee is required for each 20 customers. The
restaurant is open 24 hours a day. The manager has counted the number of cus-
tomers each hour for 14 days. The manager will use the average number of cus-
tomers for each hour over the 14 days to calculate the needed number of employees
for each hour. Develop a solution to output the needed number of employees per
hour. (There is no such thing as a partial employee.)

3. A company has 10 salespeople. The manager needs to know the average dollar
amount of sales for each salesperson for a week, and the total dollar amount of sales
for the store for each day and for the week. The store is open 7 days a week, and
each salesperson gets 2 days off. The data are entered into a two-dimensional array
with the days of the week as the columns and the salespeople as the rows. Develop
a solution to output the needed information.

4. An instructor has 30 students in her class. Each student is identified by a number
from 1 to 30. Grades are stored in a one-dimensional array. The instructor would
like to enter a student number and have the student’s test score printed on the mon-
itor. Develop a solution to output the needed information.

5. An instructor has a class of 25 students. Each student is identified by a number from
1 to 25. All tests are stored in a two-dimensional array, with each column contain-
ing the grades for each test. The instructor would like to enter the student number
and the test number and have the grade for that test printed on the monitor. Develop
a solution to output the needed information.

6. The instructor in problem 5 would like to enter the last name of the student instead
of the student number. Modify your solution to allow the instructor to enter the stu-
dent name instead of the student number.

7. A university has four undergraduate class levels and a graduate school. There are 7
majors, although not all students have chosen a major. There are 1,200 students
attending the university. The administration would like to know how many students

Processing Arrays � 237

are in each level, and how many students have each major. They also would like to
know how many of each class level have declared each major. Develop a solution to
output the needed information.

8. A questionnaire was sent to a random selection of the alumni of a college. In all, 95
questionnaires were returned. The questionnaire requested the following items:

age

gender

marital status

college major

salary

The administration would like to know the average salary, given any two sets of
items. Develop a solution to cross-tabulate the items and output the needed infor-
mation. (Remember, the computer cannot divide by zero.)

9. a. The student names and the grades for four tests for Mr. Smith’s class have been
placed in parallel arrays. Mr. Smith would like to have one student’s name and
test scores printed. Develop a solution that will enter the student’s name, search
for the name in the same array, and then print the name and test scores. Use the
sequential-search method.

b. What would have to change in the solution in problem 9a if we were to use a
binary search instead of the sequential-search method?

c. Modify the solution in problem 9a to use a binary search instead of a sequential
search.

10. Modify problem 4 in Chapter 7 (the Roman numeral problem) using arrays. Which
method do you think is the most efficient for the programmer? Which method do
you think is the most user-friendly?

11. The human resources manager of XYZ Corporation would like to analyze the fol-
lowing characteristics of company employees:
a. the wages of women compared with those of men
b. the total number of employees in each of the 12 departments
c. the number of women and men in each of the 12 departments
d. the average age of the women and men in each department

Develop a solution for this problem.

12. John has a weather station in his house. He has been keeping track of the fastest
wind speed for each day for two weeks. He would like to know the average wind
speed over the two weeks, the days on which the highest wind speed and the lowest
wind speed were recorded, and the difference between the highest wind speed
recorded and each day’s average wind speed.

13. Create a solution to print the number of times a pair of dice would be rolled before
there would be a duplicate number. (Hint: Store the values of each roll in an array
and check the values of the array each time the dice are rolled.)

14. Expand problem 13 to print the average number of rolls over N times. N is an input
value.

15. Develop a dice game for two players. Explain the game and list the rules for the game.

16. Develop a card game for two players. Explain the game and list the rules for the
game.

238 � Chapter 8

WHAT’S WRONG WITH THIS?

Correct the following segments of algorithms:

1. S = 1
While EmployeeNo 6 7 0

Enter EmployeeNo(s)

S = S � 1
WhileEnd

2. Loop: Row = 1 To 5
Loop: Column � 1 To 3

Print A(Column, Row)
LoopEnd: Row
LoopEnd: Column

3. Loop: C = 1 To 100

Enter Name(EmployeeNumber)

LoopEnd: C

Chapter 9

Sorting, Stacks, and Queues

Overview

Sorting Techniques
Notes on Figure 9.2a
Notes on Figure 9.4
Notes on Figure 9.6

Stacks
Notes on Figure 9.8

Queues
Notes on Figure 9.9

Objectives

When you have finished this chapter, you should be able to:

1. Explain the different types of data structures used in a computer.
2. Use several sorting techniques.
3. Use stacks in a solution.
4. Use queues in a solution.

Data are stored in the computer in one of many logical ways in order to find needed values
as fast as possible. The way data are stored is called the structure of data, hence the term
data structures. You have already used several types of data structures in developing solu-
tions for problems in this text. The simplest data structure is the single variable. This data
structure was the first one you used. The single-variable data structure includes single val-
ues of the data types presented in Chapter 2. Other data structures you have used include
strings and arrays. To review, a string is a type of array because it is a group of characters
stored in a continuous fashion as in arrays. Many languages treat strings as arrays. An array
consists of multiple values for one variable name. Data can be stored in one-dimensional,
two-dimensional, or multidimensional arrays. The single variable and the array are types of

239

240 � Chapter 9

data structures that are used as methods of storing data in the internal memory during the
processing of the data. Methods of storing data on external memory sources are presented
in Chapters 11 and 12. Sorting techniques, stacks, and queues are presented in this chapter.
Sorting places an array of values in order. There are many techniques to accomplish this.
Three techniques are presented in this chapter. Stacks and queues are used to manipulate
data in the computer and are important for the student to understand how they work.

sorting

Selection Sort

Sorting Techniques

Most accessing techniques require data to be sorted. Sorting is the process of putting
data in alphabetical or numeric order using one key field or a concatenation of two or
more fields. Data are sorted according to the primary key. Once data are in order, they
can be accessed by various means, including the sequential search and the binary
search. These techniques were presented in Chapter 8.

There are many different techniques of sorting: The selection exchange sort, the bub-
ble sort, and the shell sort. In this chapter we explain how techniques work, along with
showing the algorithms and the flowcharts. Other popular sorting techniques include the
quick sort and the heap sort. The best sorting method is determined by how large the array
or file is and how close the file is to being in order. Ultimately the best sorting method is
determined by the number of comparisons and switches that need to take place.

All sorting techniques require a comparison of two data items with a possibility of
a switch. If the sort is in ascending order, the comparison would be to see if the primary
key of data 1 is larger than the primary key of data 2. If it is, then data 1 is switched with
data 2, and if not, they are left in the same position. The comparisons take place until
data are in the required order.

The first technique is the selection exchange sort. Figure 9.1 shows the switches
made during each pass. The theory is to find the smallest value of the remaining values
and switch with the value found in the first position of the remaining elements. During
the first pass (first time through the outer loop) the smallest value (15) is switched with
the first element (65). During the second pass the smallest of the remaining values (25)
remained as the second element (25). During the third pass the smallest of the remaining
values (34) remains as the third element since no element was found that was smaller.
This continues until the last position is in the right order. See Figure 9.1 for all passes.
Figure 9.2 shows the algorithm and the flowchart for the selection exchange sort.

Original Array

65

25

34

15

47

50

1

2

3

4

5

6

First Pass

15

25

34

65

47

50

1

2

3

4

5

6

Second Pass

15

25

34

65

47

50

1

2

3

4

5

6

Third Pass

15

25

34

65

47

50

1

2

3

4

5

6

Fourth Pass

15

25

34

1

2

3

4

5

6

Fifth Pass

15

25

34

1

2

3

4

5

6

Sorted Array

15

25

34

47

50

65

47

50

65

47

65

50

1

2

3

4

5

6

Figure 9.1 Selection Exchange Sort Technique

Sorting, Stacks, and Queues � 241

SelectionExchangeSort

Loop: I

Algorithm Flowchart Pseudocode

SelectionExchangeSort

Loop: I � 1 To N � 1

Loop: J � I � 1 To N

If A(Min) � A(J)

Then

 Min � J

Loop End: J

If I � Min

Then

R � A(I)

A(I) � A(Min)

A(Min) � R

Loop End: I

Min � I

1 N � 1

1

Loop: J

I � 1 N

1

1

1.

2. Exit

Min � J
If

A(Min) � A(J)

2

3

False

False

J

4
True

True

 If
I � Min

I

Swap
A(Min), A(I)

Exit

Min � I

5

SelectionExchangeSort

Loop: I � 1 To N � 1

Step 1

Step 1

Loop: J � I � 1 To N

If A(Min) � A(J) Then

 Min � J

Loop End: J

If I � Min Then

Swap(A(Min), A(I))

Loop End: I

Exit

Min � I

EndIf

EndIf

Figure 9.2a The Selection Exchange Sort

242 � Chapter 9

Notes on Figure 9.2a

The following notes explain the circled numbers on the flowchart of Figure 9.2a.

1. This loop is set up to start with the first element and continue to the second-to-
last element. The last element will be in the correct order when the second-to-last
element is in order, because there is nowhere else for the last element to be placed.

2. The initial start value for the minimum value is the value of the lowest
element number of the unordered elements.

3. This is the comparison test. It tests to see if this value is less than the previ-
ously saved minimum value. If it is, then the element number of the minimum
value is set equal to the present element number. If not, then the flow contin-
ues to loop back either to make another comparison or to drop out of the loop.

4. This test is to see if the minimum value is in an element other than the small-
est element of this segment. If it is, then the two values are swapped; if not,
then the elements remain the same.

5. The end of this loop increments the element number.

The next sorting technique we discuss is the bubble sort. Figure 9.3a shows the
values of the array elements at the end of each iteration of the J loop. In Figure 9.3a,
the first element (65) is compared to the second element (25). The first element is
greater than the second and therefore they are exchanged. When is now
the second element. The second element (65) is compared to the third element (34).
The second element is greater than the third and therefore they are exchanged. The
same is true for each of the values of J: Figure 9.3b shows the switches made in
each pass using the bubble sort. The theory of the bubble sort is to compare each element
with the next element. If the element is larger than the next element, the elements are
switched. If not, they remain the same. After the first pass, the largest element has “bubbled”

J = 2, 65

Bubble Sort

Swap(*A,*B)

1. R � A
2. A � B
3. B � R
4. Exit

Swap(*A,*B)

 R � A
 A � B
 B � R
Exit

Swap(*A,*B)

R � A

A � B

B � R

Exit

Algorithm Flowchart Pseudocode

Figure 9.2b Algorithm and Flowchart for Swap Module

Sorting, Stacks, and Queues � 243

its way to the bottom. On the next pass elements 1 through are considered because
the nth element is the largest. The elements are again compared and the largest is bubbled
down to the element. A flag is set during each pass. If a switch has been made,
another pass is made; if a switch has not been made, then data are in order and no more
passes are made. During the second pass, only 15 and 34 need to be switched. All others
are either in order or nearly in order. During the third pass 15 and 25 are switched. The
value 15 now has bubbled to the top. During the fourth pass there are no switches; the
flag has not been set, which indicates that the data are in order and no more passes need
to be made. Figure 9.4 shows the algorithm and the flowchart for the bubble sort.

Notes on Figure 9.4

The following notes explain the circled numbers on the flowchart of Figure 9.4.

1. The flag is set equal to 1. This primes the loop so the test will pass the first
time through.

2. The number of elements being compared is set equal to the number of ele-
ments minus 1. Since the comparison is always with one element and the next
element, the last element does not need to be tested.

n - 1

n - 1

65

25

34

15

47

50

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

25

65

34

15

47

50

25

34

65

15

47

50

25

34

15

65

47

50

25

34

15

47

65

50

25

34

15

47

50

65

Original List J � 1 J � 2 J � 3 J � 4 J � 5

1. 65 is compared
1. to 25.
2. 65 and 25 are
2. exchanged.

1. 65 is compared
1. to 34.
2. 65 and 34 are
2. exchanged.

1. 65 is compared
1. to 15.
2. 65 and 15 are
2. exchanged.

1. 65 is compared
1. to 47.
2. 65 and 47 are
2. exchanged.

1. 65 is compared
1. to 50.
2. 65 and 50 are
 exchanged.

Figure 9.3a Example Pass, I = 1

Original Array

1

2

3

4

5

6

First Pass

25

34

15

47

50

65

1

2

3

4

5

6

Second Pass

25

15

34

47

50

65

1

2

3

4

5

6

Third Pass

15

25

34

47

50

65

1

2

3

4

5

6

Fourth Pass

15

25

34

47

50

65

1

2

3

4

5

6

Sorted Array

15

25

34

47

50

65

1

2

3

4

5

6

65

25

34

15

47

50

Figure 9.3b Bubble Sort

244 � Chapter 9

BubbleSort

Loop: J

Algorithm PseudocodeFlowchart

BubbleSort

1. Flag � 1

3. While Flag � 1

4.

Flag � 0

Loop: J � 1 To E

If A(J) � A(J �1)

Then

Swap A(J) ,A (J � 1)

Flag � 1

Loop End: J

E � E � 1

WhileEnd

Exit

Flag � 1

1 E

1

1

Flag � 0

E � E � 1

E � N � 1

While
Flag � 1

2

3
False

False

4

5

Flag � 1

True

True

 If
A(J) � A(J � 1)

J

Swap
A(J), A(J �1)

Exit

2. E � N � 1

6

7

8

BubbleSort

Flag � 1

While Flag � 1

Flag � 0

Loop: J � 1 To E

Step 1

If A(J) � A(J �1) Then

Swap (A(J) ,A (J � 1))

Flag � 1

Endlf

Loop End: J

E � E � 1

WhileEnd

Exit

E � N � 1

*

* See Swap Module on page 236

Figure 9.4 Algorithm and Flowchart for the Bubble Sort

Sorting, Stacks, and Queues � 245

Shell Sort

3. The loop is set to continue as long as the flag is set equal to 1. This indicates
that data are not in order.

4. The flag is set equal to zero. This says that data are in order until a switch is
made and the flag is set equal to 1.

5. A loop is set up to compare the elements.
6. The comparison of the elements is made. When the present element is greater

than the next element, the elements are switched and the flag is set equal to 1,
indicating the data may not be in order yet.

7. The counter is incremented and the loop continues with the next element. If
the elements have all been compared, the flow of the program drops out of the
loop.

8. The number of elements to be compared is decreased by 1 because the last el-
ement of each loop is in the correct order.

The last sort technique to be presented is the shell sort. Figure 9.5 shows the
switches that have been made in each pass using the shell sort technique. The theory of
the shell sort is to compare each element with another element in the data set using a gap
to separate the elements. The gap during the first pass is the number of elements divided
by 2. The truncated value is used. In Figure 9.5 the gap is 3 for the first pass since there
are 6 elements. In the succeeding passes, the new gap is the old gap divided by 2. Again,
the truncated value is used. In the second pass, the gap is 1 since the previous gap was 3.
When two elements need to be switched, and there are elements a gap above the present
element, then elements are compared upward until elements are reached that do not
need switching. During the first pass the following comparisons are made:

1. element 1 to element 4—a switch is made (there are no elements a gap above
element 1 so the next comparison is in order)

2. element 2 to element 5—no switches
3. element 3 to element 6—no switches

During the second pass the following comparisons are made:

1. element 1 to element 2—no switches
2. element 2 to element 3—no switches
3. element 3 to element 4—no switches

Original Array

65

25

34

15

47

50

1

2

3

4

5

6

1

2

3

4

5

6

First Pass
Gap � 3

15

25

34

65

47

50

Second Pass
Gap � 1

15

25

34

47

50

65

1

2

3

4

5

6

Sorted Array

15

25

34

47

50

65

1

2

3

4

5

6

Figure 9.5 Shell Sort

246 � Chapter 9

4. element 4 to element 5—A switch is made and, because there are elements a
gap above, the following elements are compared: the new value of element
4 to element 3—no switches; since no switch took place, the elements above
the fourth element are assumed to be in order and the comparison continues in
order.

5. element 5 to element 6—A switch is made, and other comparisons are made
as above in 4.

At this time the data are in order. Figure 9.6 shows the algorithm and the flowchart for
the shell sort.

ShellSort

Loop: J

Algorithm PseudocodeFlowchart

ShellSort

1. G � Int(N/2)

 M � N � G

 Loop: J � 1 To M

 If A(J) � A(J � G)

 Then

 L � J

 Flag � True

 While Flag

 Swap A(L), A(L � G)

 L � L � G

 If L � � 1

 Then

 Then

 Flag � False

 If A(L) �� A(L � G)

 Else

 Continue

 Else

 Flag � False

 WhileEnd

 LoopEnd: J

G � Int(G/2)

 WhileEnd

3. Exit

G � Int(N/2)

1 M

1

1
L � J

Flag � True

L � L � G

Flag �
False

M � N � G

G � Int(G/2)

Swap
A(L), A(L � G)

While
G � 0

While
Flag

8

9

10

11

12

13

14

2

3

False

False

4

5
True

True

True

If
A(L) � � A(L � G)

True

If
L � � 1

True

False

 If
A(J) � A(J � G)

J

A

False

False

B

A

B

Exit

2. While G � 0

6

7 Flag �
False

ShellSort

G � Int(N/2)

 M � N � G

 Loop: J � 1 To M

Step 1

If A(J) � A(J � G) Then

 L � J

 Flag � True

 While Flag

 Swap (A(L), A(L � G))

 L � L � G

If L � � 1 Then

If A(L) �� A(L � G) Then

 Flag � False

EndIf

EndIf

EndIf

Else
 Flag � False

 WhileEnd

 LoopEnd: J

G � Int(G/2)

 WhileEnd

Exit

While G � 0

*

* See Swap Module on page 236

Figure 9.6 Algorithm and Flowchart for the Shell Sort

Sorting, Stacks, and Queues � 247

Notes on Figure 9.6

The following notes explain the circled numbers on the flowchart of Figure 9.6.

1. The gap is set to the truncated value of the number of elements divided by 2.
2. A loop is set up to continue while the gap is greater than zero.
3. The number of elements to be compared with another element is set equal to

the number of elements minus the gap.
4. A loop is set up to start at the first element and continue to the element num-

ber set in note 3.
5. The comparison is made. If the element is greater than the element a gap

below, then a switch needs to take place; if not, then the flow continues to the
end of the loop.

6. The element number is incremented and the flow returns to the loop set up in
note 4.

7. The gap is set equal to the truncated value of the last gap divided by 2. The
flow then returns to the loop set in note 2.

8. L is set equal to the element number. This allows the comparisons with ele-
ments above the present element.

9. The Flag is set equal to True to prime the loop so flow will continue through
the loop at least once.

10. A loop is set up to continue as long as Flag is True. Flag will be set equal to
false when a switch is not necessary.

11. The switch is made.
12. L is set equal to the previous value of L minus the gap. This allows the check-

ing to be made with elements above the present element.
13. This checks to see if there are any more elements to be compared.
14. If the elements need to be switched, the flow continues through the loop. If

not, the Flag is set to False to stop the loop.

Stacks

A stack is a list of numbers, such as an array of numbers, to which all additions are at
one end and all deletions are at the same end. This is a last-in, first-out procedure. A
stack is like a stack of plates: the last one added on the top is the first one to be used.
When a value (X) is added to the stack, it is called pushing the stack. When a value
(X) is used from the stack, it is called popping the stack. Once a number is used, it
cannot be used again. The stack has a number, called the stack pointer, that points to
the last value pushed and the next value to be popped. When the stack is pushed, the
pointer is incremented and the value (X) being pushed is placed in the stack at the ele-
ment number in the pointer. When the stack is popped, the value in the stack at the ele-
ment number of the pointer is placed in X, and the pointer is decremented. Figure 9.7
shows a stack to which the following procedures have been implemented:

Push 3

Push 4

Push 7

Pop X

Pop X

Push 6

stack

pushing the stack
popping the stack

248 � Chapter 9

Notes on Figure 9.8

Figure 9.8 shows the algorithm and flowchart to push the stack and to pop the stack. The
following notes explain the circled numbers on the two flowcharts:

1. The Error flag is set to zero.
2. When the pointer is equal to the maximum number of elements in the stack,

no more values can be pushed. An error message is printed, and the Error flag
is set equal to 1.

3. When the pointer is not equal to the maximum number of elements, the
pointer is incremented, and X is placed in the stack at the element number that
is equal to the pointer.

4. The module is exited.
5. The Error flag is set to zero.
6. When the pointer is equal to zero, there are no values in the stack to be

popped. An error message is printed, and the Error flag is set equal to 2.
7. When the pointer is greater than zero, X is set equal to the value of the ele-

ment of the stack that has the element number of the pointer. The pointer is
then decremented.

8. The module is exited.

Queues

Stacks manipulate data by the use of the last-in, first-out (LIFO) principle. Stacks act
like a stack of plates: the last one on top of the stack is the first one you use. Queues
manipulate data by the use of the first-in, first-out (FIFO) principle. Queues act like the
checkout line in a grocery store—the first one in line is the first one to get served.
Therefore, a queue is a list that adds data to one end and deletes data from the other end.
(See Figure 9.9.)

An array will serve as a queue, with two variables to act as pointers to the head
and end of the queue. One method of implementing a queue is to always add to the
bottom and delete from the top. After a deletion, the elements of the queue are all
moved up one. However, this is time consuming and therefore not the best method.
The method used in this text is a circular implementation of the queue. It adds to the
bottom and deletes from the top until the queue has filled to the limit. At that time it

6

3

Stack

5

4 6

4

73

empty

empty

empty

2

1

0 1 2 3 2 1 2

7 4

X

Head Pointer

Push 3

Push 4

Push 7

Pop X

Pop X

Push 6

Instructions Executed

Figure 9.7 Example of a Stack That Has Been Pushed and Popped

queue

Sorting, Stacks, and Queues � 249

Push (X)

Algorithm PseudocodeFlowchart

Push (X)
1. Error � 0
2. If Pointer � Max
 Then
 Print "Error: Stack Full"
 Error � 1
 Else
 Pointer � Pointer � 1
 Stack(Pointer) � X
3. Exit

Pop (X)
1. Error � 0
2. If Pointer � 0
 Then
 Print "Error: Empty Stack"
 Error � 2
 Else
 X � Stack(Pointer)
 Pointer � Pointer �1
3. Exit

Definitions:
Max � Maximum elements in stack
Pointer � Pointer to last element
 to be pushed or next element
 to be popped
Stack � Stack array
X � Value to be Pushed
 or Popped

Error � 0

Error �1

1

Pointer �
Pointer � 1

23

4

TrueFalse If
Pointer � Max

Print
"Error:

Stack Full"

Stack
 (Pointer) � X

Exit

Pop (X)

Error � 0

Error � 2

5

Pointer �
Pointer � 1

67

8

If
Pointer � 0

Print
"Error:

Empty Stack"

X � Stack
(Pointer)

Exit

False True

Push (X)
 Error � 0
 If Pointer � Max Then
 Print "Error: Stack Full"
 Error � 1
 Else
 Pointer � Pointer � 1
 Stack(Pointer) � X
 EndIf
Exit

Pop (X)
 Error � 0
 If Pointer � 0 Then
 Print "Error: Empty Stack"
 Error � 2
 Else
 X � Stack(Pointer)
 Pointer � Pointer �1
 EndIf
Exit

Figure 9.8 Algorithm and Flowchart to Push and Pop a Stack

250 � Chapter 9

starts adding to the top of the array, keeping track of where the head and the end of
the queue are located. In this way elements are not moved from one place to another,
as shown in Figure 9.9. The usage of linked lists (presented in Chapter 12) is another
way to manipulate a queue.

Notes on Figure 9.9

Figure 9.9 shows the algorithm and flowchart of one method of how additions and dele-
tions are made to a queue. The following notes explain the circled numbers on the flow-
chart. The module Queue has two parameters. The first is X, which is the value of the data
to be added to the queue. Option is the flag to determine whether the user wants to add or
delete data. If data are deleted, the value is returned in the name of the module, Queue.

1. Test to find out if data need to be added to the queue. When Option is equal to
“Add,” then the processing goes to circled 2.

2. Test to find out if the queue is full.

Algorithm Pseudocode

If Option � "Add"
Then

If Count � Maximum
Then,

I � HeadPtr � Count
If I �� Maximum

Then
Continue

Else
I � (HeadPtr � Count) MOD Maximum

Que(I) � X
Count � Count � 1

Else
Print "Queue Is Full"
Process Error1

Else
If Option � "Delete"

Then
If Count � 0

Then
Queue � Que(HeadPtr)
Count � Count � 1
HeadPtr � HeadPtr � 1
If HeadPtr �� Maximum

Then
Continue

Else
HeadPtr � HeadPtr MOD Maximum

Else
Print "Queue Is Empty"
Process Error2

Else
Print "Incorrect Option"
Process Error3

Queue(X, Option)

Exit

1.

2.

Exit

EndIf

EndIf

EndIf

EndIf

EndIf
EndIf

Que(I) � X

HeadPtr � HeadPtr MOD Maximum

 Print "Queue Is Empty"

If HeadPtr �� Maximum Then

Else

Else

Else

Else

Queue(X, Option)

If Option � "Add" Then

If Count � Maximum Then

I � HeadPtr � Count
If I �� Maximum Then

Continue

I � (HeadPtr � Count MOD Maximum)
Else

Else

Count � Count � 1

Print "Queue Is Full"

Error1

If Option � "Delete" Then

If Count � 0 Then
Queue � Que(HeadPtr)
Count � Count � 1
HeadPtr � HeadPtr � 1

Continue

Error2

Error3

Print "Incorrect Option"

Figure 9.9a Algorithm for Additions and Deletions to a Queue

Sorting, Stacks, and Queues � 251

Queue (X, Option)Flowchart

If Option � "Add"

If Count �
Maximum

If Option �
"Delete"

Exit

HeadPtr �
HeadPtr MOD

Maximum

Count �
Count � 1

If HeadPtr ��
Maximum

Que(I) � X
HeadPtr �
HeadPtr � 1

I � (HeadPtr �
Count) MOD

Maximum

Count �
Count � 1 Process Error2

I � HeadPtr �
Count

Print "Queue
Is Full" If Count � 0 Print "Incorrect

Option"

If I ��
Maximum Process Error1 Queue �

Que(HeadPtr)
Print "Queue

Is Empty" Process Error3

True

12

True

True

False

False

False

True

True

True

False

False

False

11 10

8

7

9

6

5

4 3

2

1

13

14

Figure 9.9b Flowchart for Additions and Deletions to a Queue

252 � Chapter 9

3. When the maximum length of the queue is equal to the number of values in
the queue, the queue is full. Therefore, no more values may be added to the
queue and an error occurs.

4. When the number of values in the queue is less than the maximum number
allowed, then the element number where the new value is placed is set equal
to the head pointer plus the number of values.

5. When the element number is greater than the maximum length of the queue,
then the element number is recalculated. This allows the queue to wrap
around, hence the circular implementation.

6. The new value is added to the queue and the count is increased by 1.
7. Test to find out if data needs to be deleted from the queue.
8. When Option equals something other than “Add” or “Delete,” then there is an

error.
9. Test to make sure Count is greater than zero.

10. When Count is less than zero, the Queue is empty. Therefore, data cannot be
deleted from the queue and an error occurs.

11. The value is placed in the module name. Count is decremented and HeadPtr
is incremented.

12. Test to find out if HeadPtr is greater than Maximum length of the queue.
13. If HeadPtr is greater than Maximum length, the value of HeadPtr is recalcu-

lated.
14. The module is exited.

Summary

Data are stored in many ways in both external and internal storage devices. These meth-
ods are called data structures. Internally, data are stored in single variables and arrays.
Many times arrays need to be in order. This is accomplished through sorting techniques.
The three techniques presented in this text are selection exchange sort, bubble sort, and
shell sort. Stacks and queues are used to manipulate data. Algorithms for adding and
deleting from stacks and queues have been presented in this chapter.

New Terms

poppining the stack

pushing the stack

queue

sorting
stack

Questions

1. Explain the technique used in the:
a. Selection Exchange Sort
b. Bubble Sort
c. Shell Sort

2. How would you choose which sorting techniques are the most efficient for a set of data?

3. What is a stack?

4. Under what circumstances would you use a stack?

Sorting, Stacks, and Queues � 253

Problems

1. Identify the comparisons and the exchanges made to sort the following array using
the selection exchange sort technique.

2. Identify the comparisons and the exchanges made to sort the array found in prob-
lem 1 using the bubble sort technique.

3. Identify the comparisons and the exchanges made to sort the array found in prob-
lem 1 using the shell sort technique.

4. Which method is the most efficient? Why?

5. Complete problems 1–4 using 30 random numbers.

6. Complete problems 1–4 using 25 numbers that are nearly in order.

7. What would be the values found in a stack and the value of the stack pointer after
the following executions:

Push 34

Push 54

Push 32

Pop X

Pop X

Push 10

Push 11

Pop X

Number

23

45

13

5

56

74

10

30

65

40

5. What is a Queue?

6. How does a Queue differ from a Stack?

7. Under what circumstances would you use a Queue?

254 � Chapter 9

8. What would be the values of a queue if the following were executed:

Add 34

Add 54

Add 32

Delete X

Delete X

Add 10

Add 11

Delete X

Chapter 10

File Concepts

Overview

Beginning File Concepts

Records as a Data Structure

Primary and Secondary Keys

Algorithm Instructions and Flowchart Symbols

Systems Flowcharts

Designing Records

Objectives

When you have finished this chapter, you should be able to:

1. Explain the concepts of records, fields, and files.
2. Explain the concept of a primer read.
3. Develop a systems flowchart.
4. Design an input record.

Most computer applications require processing of large amounts of data. Data cannot be
held in the internal memory over a period of time because this memory is volatile. Data
must be stored on an external storage source that is not volatile. These data are kept in files.
Individual sets of data, called records, are then read into the computer to be processed or
deleted, or new records are added to the files. Updating the files requires these records to
be accessed. Records may be accessed sequentially, that is one after another, or randomly,
that is to somehow choose the record to be processed. The computer can find the next record
in the file or any record in which the record number has been identified. These records are
another type of data structure. A record contains several pieces of data that can be manipu-
lated at one time, which makes the finding, updating, and processing of data more efficient.

255

256 � Chapter 10

file

record

field

key

primary key

secondary key

Beginning File Concepts

The basic concepts of data files include the following:

Files. Data are stored in files. Files contain information pertinent to one application.
Each file is divided into records. You might think of a file as a sort of table with the
records listed vertically and the fields horizontally.
Records. A record contains information pertaining to one entity in the file. Records
are numbered from one to the maximum number of records in the file. Each record is
divided into fields.
Fields. A field contains one piece of datum. All records in a file have the same number of
fields. Each corresponding field contains the same number of bytes, the same name, the
same type of data, and the same format. That is, the first field in all records in a personnel
file may contain the last name of an employee, the second field may contain the first
name, the third field the employee’s address, and so forth. The first field in all records is
given attributes such as 25 bytes, the field name of LastName, string data type, and so on.
Each field has its own set of attributes. Only the field name must be a unique attribute.

Records as a Data Structure

The structure of a record is considered a data structure since a record is a way of storing
data. The record is defined and given a name. It can then be referred to by the name or
by its parts—the fields. It is defined by designating the fields and their attributes. Each
field will have a name and can be used as an individual piece of data, or the record may
be manipulated as a group of fields given the record name and number. The record name
corresponds to the file, the file name, and the logical file number. There is only one
record name per file. The individual records in the file are referred to by the record num-
ber. There can only be one record in the internal memory at a time.

Primary and Secondary Keys

A key is a value that is used in the solution either to arrange the file in order or to search
through the file for a specific record. Each file has one or more key fields. A key field is
the field in the record that is designated for the key. For example, the key field for a
client file might be the field designated for the client number.

In order to find records, many techniques are used, including linked lists, binary ta-
bles, hashing, and others. Most of these techniques use a primary key to enable the program
to find the needed record. The primary key is a field containing unique data for each
record. Most techniques are ordered by the primary key. In that way a unique record may be
found. The primary key may be an account number, a combination of last name and first
name, the last name as long as there are no duplicates, or a computer-generated string value.

Sometimes a record is accessed by a key other than the primary key. These other
keys are called secondary keys. They may or may not be unique. In the case of the
mailing list, a user may need a list of people living in a particular zip code area. In this
case, the zip code would be a secondary key.

Algorithm Instructions and Flowchart Symbols

Several algorithm instructions and flowchart symbols have been covered so far in the
text. In this chapter three more instructions will be added.

1. The Open LFN file name instruction tells the computer that the data in the file
called filename is to be used, starting at the first record. LFN stands for

File Concepts � 257

logical file number, a reference number to be used in the solution. It is used
in the Read instruction and the Close instruction and refers to the file name in
the Open instruction, which has the same logical file number. The LFN is
used since there can be more than one file open at one time and the computer
has to know which file to read from and which file to close. It is easier to use
the LFN than to write the name of the file each time you want to reference it.

2. Read (LFN) Record copies the next record into the internal memory or into a
small holding memory called a buffer memory. The use of the buffer memory
speeds up the input processing.

3. Close LFN tells the computer that the file will not be used anymore. If a file
is not closed, the data in the files may be lost. Once closed, the file may not be
used again until it is reopened.

Table 10.1 includes all of the instructions and flowchart symbols covered so far.

logical file number
(LFN)

Table 10.1 Algorithm Instructions and Flowchart Symbols (continued on page 258)

Algorithm
Instruction

Flowchart
Symbol

Definition (What the instruction
tells the computer)

Start processing a module.Start module name
(module number)

Enter list of variables
names

Variable � expression

Write list of variable
names

Print list of variable
names

Process module name
(list of parameters)

End/Exit

Enter data from a data block or from the
 keyboard into the following variable
 memory locations.

Assign the value of the following expression
 to a variable location called the
 assignment instruction. A module may
 be processed as part of an expression,
 if there is a return value.

Write to the printer the values represented
 by the following variable names.

Print on the screen the values represented
 by the following variable names.

Execute the instructions in the named
 module and then return to execute
 the next instruction.

Stop the processing of the module.
 Processing ceases with the End; with
 the Exit, processing continues with the
 next instruction after the Process.

258 � Chapter 10

Table 10.1 Algorithm Instructions and Flowchart Symbols (continued from page 257)

Algorithm
Instruction

Flowchart
Symbol

Definition (What the instruction
tells the computer)

Stop the processing of the module,
 place the value of the variable in
 the module name, and continue
 with the instruction continuing the
 module call.

When the condition is True, use one set
 of instructions; when the condition is
 False, use another set of instructions.

A placeholder. Does no processing and
 continues to next instruction.

Increments the counter C.

Accumulates the values of the variable V.

Repeat a set of instructions as long as a
 condition is True.

Repeat a set of instructions as long as a
 condition is False.

Loop: C � Begin To End
 Step S
LoopEnd : C

Repeat/Until

While/WhileEnd

Sum � Sum � Variable
(S � S � V)

Counter � Counter + 1
(C � C � 1)

Continue

If/Then/Else

Return
(variable)

or no box

Repeat a set of instructions using a counter
 C that starts at A(Begin) and
 increments by S(Step) and C is greater
 than B(End).

C

S

A B

File Concepts � 259

systems flowchart

Designing Records

Table 10.1 Algorithm Instructions and Flowchart Symbols (continued from page 258)

Flowchart
Symbol

Algorithm
Instruction

CaseOf Variable
 EndOfCase

Open LFN, FN

Read (LFN)
 Record

Close LFN

Definition (What the instruction
tells the computer)

Select a set of instructions to execute
 according to the value of the variable.

Tells the computer the data in the file named
 FN is needed starting with the first record.
 (FN is given a reference number called
 the LFN).

Copy the next record into the internal
 memory from the opened file LFN.

Tells the computer that the file corresponding
 to the LFN will not be used again.

Systems Flowcharts

A systems flowchart indicates the flow of data throughout the entire computer system.
This includes where the data are coming from (keyboard, disk drive, etc.), the name of
the program to be processed, and where the information is to go (disk drive, tape drive,
printer, etc.). Figure 10.1 includes some of the more common systems flowchart sym-
bols. These include the keyboard, a disk drive, a tape drive, a printer, a program, and a
monitor. Most of these symbols can be found on a flowchart template. Figure 10.2
shows an example of a systems flowchart. This chart shows that the data are read from
the disk drive and processed by the report program. The results are printed on a printer
and also written to the disk drive.

Designing Records

Recall that a file is composed of records. A record contains all of the data on a given
subject, such as all of the employment and benefit information for one employee.
Records are composed of individual items, called fields—for example, one employee’s
withholding status for income tax.

A programmer beginning to design a solution to a problem must first identify the
data to be put in the files. It is important to design the record carefully to make sure all
of the necessary data are included and the lengths of the fields are correct. The length of
a field is measured by the number of character spaces an item in the field occupies
when it is entered in the computer. For example, the length of the field for the field

260 � Chapter 10

name, ZipCodeIn (in for input), would be 10 characters long, allowing space in the field
for a 9-digit code plus the underscore. The order of the fields is also important. When
you fill out the Given Data section of the problem analysis chart, you will identify all of
the data needed to process the file. Use the Record Data Dictionary and Record Layout
(Appendix C, Figure C.6) to identify the name, length, data type, and so forth of each
data field, and to design the record. These fields will become the record. Figure 10.3
shows the record data dictionary and the design of a record, the record layout, for a
mailing list file. All records in a file will have the number of fields identified in the
record data dictionary, so you design only one record.

When you are designing a record, there are many items to consider: the number of
fields and their order, names, data types and lengths, and the total record length.

Report

MasterFile

Process
Program

NewFile

Figure 10.2 Example of a Systems Flowchart

Monitor: Printer:Keyboard:

Disk drive:Program:

Figure 10.1 Systems Flowchart Symbols

File Concepts � 261

1. The number of fields is the number of items you listed under the heading Item
Description in the record data dictionary.

2. The order of the fields is determined by the order of importance of the data.
Normally, the identifying fields will be first—those fields that will determine
the order of the file, or the field that will be used to search for a specific
record. Fields are also generally in the order of data entry, although this is not
as important since the data-entry screen can be reordered.

The problem will dictate the field used to order the file. If it is a mail-
ing list, the field for ordering the file will be the zip code or the last name.
The zip code field would be arranged numerically; the last name field, al-
phabetically. Also, the problem will dictate which fields will be used for a
search. If the name of an individual is used to find the record, then the last
name would be the search field. The fields used to order the file and the
search fields are usually at the beginning of the record. The order of data
entry would then be considered for the remaining fields.

TeleNoIn

FNameIn StAddressIn

Record Layout

ZipCodeIn

LNameIn
1

1

Item Description

Last Name

First Name

Street Address

City

State

Zip Code

Telephone Number

Field
Number

File Name: Mailing List
Record Data Dictionary

2

3

4

5

6

7

15

10

20

20

2

10

12

C

Field
LengthField Name Comments

LNameIn

FNameIn

StAddressIn

CityIn

StateIn

ZipCodeIn

TeleNoIn

Data
Type

of
Decimals

C

C

C

C

C

C

15

68 77

16 25 6766654626 45

78 89

CityIn StateIn

Figure 10.3 Record Data Dictionary and Record Layout for a Mailing List File

262 � Chapter 10

3. The names of the fields should correspond to the item descriptions of the data.
Part of the name should also indicate that it is input. The total hours worked
might be written as HoursIn, or the rate of pay as PayRateIn. The field name
is decided by the programmer. Any name is acceptable as long as it is an un-
derstandable name and can be read and interpreted easily by another pro-
grammer. The field name is used as a variable name in the solution.

4. The data type of each field is determined by the requirements of the solution.
If the data type is numerical, then specify the number of decimal places. Field
data types include numerical (numbers), character string (alphanumeric), and
logical (True and False).

5. The length of the field is largely determined by the number of characters in
the field. When the field is string character data, the length is determined
by the longest piece of data that would be entered. For example, the length
of the field Salesperson name would be at least as long as the longest name
that would be entered into that field—such as Gullickson or Stanislovsky,
at 10 and 12 characters long, respectively. String data are normally left jus-
tified in the field with the remainder of the field on the right filled in with
blanks. If the programmer did not design enough space in the field and the
data are longer than the field, then the computer will truncate the data on
the right.

When the data type is numerical, the length of the field must be large
enough to accept the number of digits in the largest number that might be
placed in the field. The length must include spaces for the decimal point
and a negative sign. If the field is not large enough for the number, the
computer will either return an error or truncate the number on the left. If the
number is to be in scientific notation, four spaces must be included for the
magnitude of the number, which is . The letter E stands for times
ten to the power of. It is followed by a plus or minus sign and a two-digit
number indicating the power of 10. Numbers are normally right justified
in the field.

When the data type is logical, normally the field length is one character—
for T or F. If the date data type is used, the field length is predetermined,
normally in the form of MM/DD/YYYY.

6. Records are normally stored in external memory in blocks or sections of a
specific length. Normally the length of a block is 256 characters, but sys-
tems may differ. It is more efficient to transfer sections of data or blocks of
data at one time than to transfer a character at a time from external memory
to internal memory. The length of a block is determined by the operating
system of the computer you are using, and therefore, the programmer has
little or no control over this number. The total record length should be equal
to or less than the number of characters in a block or else multiples of this
number. That is, the total length of a record or block of records should be
less than or equal to 256 or some multiple of 256. Planning record length
this way saves space on the disk drive. If the length of a record is 260, for
example, then each record will take two blocks of memory for storage. If
the fields can be modified so the total length of the record is 256, which is
only 4 characters less, the file will take half the space on the auxiliary stor-
age device.

E + nn

File Concepts � 263

Summary

Concepts and terminology of record processing is an important aspect of applications on
the computer. Most applications involve some type of file processing. Primary and sec-
ondary keys are used to find records that need to be processed. Good record design can
increase the efficiency of the computer and therefore decrease time spent reading and
writing to external storage devices.

New Terms

field

file

key

logical file number (LFN)

primary key

record

secondary key

systems flowchart

Questions

1. What is the LFN? Why is it used?

2. Define a key and explain why it is used.

Problems

Design the input records and system flowcharts for the following problems:

1. The Eureka Lumber Company would like to calculate the gross pay for its employ-
ees. The input records should include the following: name, address, Social Security
number, pay type (,) pay rate, and hours worked.

2. A sales manager wants a program that lists all of the company’s customers accord-
ing to the salesperson assigned to each. The input file contains the following data:
the customer’s name, address, and telephone number, and the salesperson’s name.

3. The Up-to-Date Department Store needs to convert its inventory from a manual
system to a computerized system. The input record should include the following:
the inventory number, the department number, the store number, the item descrip-
tion, the quantity, the wholesale price, the markup percentage, and the vendor.

4. A sales manager would like to be able to track the clients of each of his salespeople.
He would like to know when each customer was last contacted, the outcome of the
contact (not interested, sale made, call back later, no contact made), the sale amount
if a sale was made, and the name and number of the salesperson.

5. Design the input record for a video/sound inventory for a TV or radio station. (CDs,
DVDs, and VCRs are all used by the station.) How would this file be ordered?

S = salaryH = hourly

This page intentionally left blank

Chapter 11

Linked Lists

Overview

Creating Linked Lists

Examples of Adding Data to/Deleting Data from Linked Lists

Algorithms and Flowcharts to Add, Delete, and Access Data in a Linked List

Objectives

When you have finished this chapter, you should be able to:

1. Develop a solution to a problem using a linked list technique.
2. Develop a solution to a problem using linked lists to access data.

Data are stored externally in files. In many applications these files hold large amounts of
data. The problem now lies in how to update and access the needed data as fast as pos-
sible. The simplest way is sequentially—that is, to start at the beginning of the file and
check each record until the correct record is found. Many times a file must be processed
in order; therefore, the file must be accessed in order. The initial file should be in order;
however, after adding and deleting records, the file has holes where the records were
deleted and is unordered because of the addition of records. The problem now is how to
add and delete records and still keep the file in order for processing. Using linked lists is
one way of accessing an unordered file in an ordered manner. This chapter presents
methods of creating the original file, adding records, deleting records, and processing the
file using one or more linked lists.

265

Creating Linked Lists

A linked list is a file in which each record points to its successor, except for the last
record, which has an end-of-list indicator. The method of pointing to the next record is
a field, which contains the record number of the next record in order. This is called the

linked list

266 � Chapter 11

linking field, since the value in this field links the records in proper order. Figure 11.1
shows a file that is a linked list. The file must contain a key field along with a corre-
sponding link field. Notice that the link field of the first record points to the second
record, which is the next to be processed. The link field of the second record points to
the third record, which is the third record to be processed. The linking continues through
the last record. The last record contains a zero, which indicates the last record in order.

Changing Data in a
Linked List

Examples of Adding Data to/Deleting Data from Linked Lists

5

KeyRec. # Other Data Link ListPointer

EmptyPointer

0 indicates end of list.

10

17

25

30

35

2 1

3

4

5

6

0

1

2

3

4

5

6

0

Figure 11.1 Example of an Initially Created Linked List

15

KeyRec. # Other Data Link ListPointer

EmptyPointer

0 indicates end of list.

3

17

14

30

35

25

28

3 2

1

7

5

0

0

8

6

1

2

3

4

5

6

7

8

4

Figure 11.2 Example of a Linked List After Multiple Adds and Deletions

The advantage of a linked list is in the addition and deletion process. A file does not
have to be physically rewritten to add and delete records. When a record is deleted, it is
put into an empty list. The additions are placed in the records that have been deleted or
at the end if there are no empty records. An empty records linked list is kept in the link
field to locate the records that are available in which to place the additions.

If there are no empty records, the addition is placed at the bottom of the file.
Figure 11.2 shows a file that has had additions and deletions. Notice the two linked
lists—the data linked list is processed in the following order: 2, 1, 3, 7, 8, 6. The empty list
is as follows: 4, 5. The data list starts at 2, which is designated by the ListPointer. The

Linked Lists � 267

empty list starts at 4, which is designated by the empty pointer. The zero indicates the end
of the list. Notice there is a zero in the link field for the end of each list. Figure 11.3 shows
a file as records are added and deleted. Figure 11.3a shows the original file before any ad-
ditions and deletions. Figure 11.3b shows the same file after all the following additions and
deletions have been made. Each of the other illustrations in Figure 11.3 show one addition
or deletion as indicated. The following additions and deletions are shown being completed:

1. Figure 11.3c: add 69
2. Figure 11.3d: delete 17
3. Figure 11.3e: delete 44
4. Figure 11.3f: add 37
5. Figure 11.3g: delete 29
6. Figure 11.3h: add 40
7. Figure 11.3i: add 90
8. Figure 11.3j: add 1
9. Figure 11.3k: add 16

1

2

3

4

5

6

7

8

9

10

34

29

67

44

25

17

79

13

2

33

4

10

7

3

9

2

0

6

0

1

Rec. # Key Other Data Link

HeadPointer

EmptyPointer

8

5

Comment: Notice that records 5 and 9
are records that have been deleted in
the past and are included in the empty
list, even though there are data in the
record. The used list skips these records.

Figure 11.3a Original File

1

2

3

4

5

6

7

8

9

10

11

34

40

67

37

69

90

79

13

1

33

16

4

3

5

2

7

0

6

11

8

1

10

Rec. # Key Other Data Link

HeadPointer

EmptyPointer

9

0

Figure 11.3b File After the Additions and Deletions

268 � Chapter 11

1

2

3

4

5

6

7

8

9

10

34

29

67

44

25

17

79

13

2

33

4

10

7

3

9

2

0

6

0

1

Rec. # Key Other Data Link

HeadPointer

EmptyPointer

8

5 97

5

69

Figure 11.3c Add 69

1

2

3

4

5

6

7

8

9

10

34

29

67

44

69

17

79

13

2

33

4

10

5

3

7

2

0

6

0

1

Rec. # Key Other Data Link

HeadPointer

EmptyPointer

8

69

2

9

Figure 11.3d Delete 17

1

2

3

4

5

6

7

8

9

10

34

29

67

44

69

17

79

13

2

33

4

10

5

3

7

9

0

2

0

1

Rec. # Key Other Data Link

HeadPointer

EmptyPointer

8

6 4

6

3

Figure 11.3e Delete 44

Linked Lists � 269

1

2

3

4

5

6

7

8

9

10

34

29

67

44

69

17

79

13

2

33

3

10

5

6

7

9

0

2

0

1

Rec. # Key Other Data Link

HeadPointer

EmptyPointer

8

4 6

3

4

37

Figure 11.3f Add 37

1

2

3

4

5

6

7

8

9

10

34

29

67

37

69

17

79

13

2

33

4

10

5

3

7

9

0

2

0

1

Rec. # Key Other Data Link

HeadPointer

EmptyPointer

8

6 2

10

6

Figure 11.3g Delete 29

1

2

3

4

5

6

7

8

9

10

34

29

67

37

69

17

79

13

2

33

4

6

5

3

7

9

0

10

0

1

Rec. # Key Other Data Link

HeadPointer

EmptyPointer

8

2 6

340

2

Figure 11.3h Add 40

270 � Chapter 11

1

2

3

4

5

6

7

8

9

10

34

40

67

37

69

17

79

13

2

33

4

3

5

2

7

9

0

10

0

1

Rec. # Key Other Data Link

HeadPointer

EmptyPointer

8

6 9
090

6

Figure 11.3i Add 90

1

2

3

4

5

6

7

8

9

10

34

40

67

37

69

90

79

13

2

33

4

3

5

2

7

0

6

10

0

1

Rec. # Key Other Data Link

HeadPointer

EmptyPointer

8

9 0

81

9

Figure 11.3j Add 1

1

2

3

4

5

6

7

8

9

10

11

34

40

67

37

69

90

79

13

1

33

16

4

3

5

2

7

0

6

10

8

1

10

Rec. # Key Other Data Link

HeadPointer

EmptyPointer

9

0

Comment: In this case, since
there were no more empty
records, the new record was
placed in an appended record.

11

Figure 11.3k Add 16

Linked Lists � 271

Algorithms and Flowcharts to Add, Delete, and Access
Data in a Linked List

Figure 11.4 presents the algorithm and flowchart to create a linked list file and Figure 11.5
presents the interactivity chart and algorithms and flowcharts used to modify the linked
list file. Follow the flowchart and algorithms in Figure 11.5b–k to see how the additions
and deletions are accomplished as a computer program. In general, the steps to add and
delete are as follows:
To add

1. Search to find where the new record will be logically inserted—if
(You need to remember the previous record number.)

2. Add NewRecord to the record number indicated by the EmptyPointer value.
3. Put the value of the EmptyPointer into the previous record link field of the

previous record remembering the old value.
4. Put the value of the remembered old previous record link field (from step 3)

into NewRecord link field remembering the old value.
5. Put the value of the remembered NewRecord link field (from step 4) into

EmptyPointer.

To delete

1. Search to find the record to be deleted—if
(You will need to remember the previous record number.)

2. Put the value of the EmptyPointer into deleted record link field remembering
the old value of the link field.

3. Put the remembered value of the old deleted record link field (from step 2)
into previous record link field remembering the old value.

4. Put the remembered value of the old previous record link field (from step 3)
into the EmptyPointer.

Remember these are general instructions. Refer to Figure 11.5b–k for the algorithms and
flowcharts.

Notes on Figure 11.4

Figure 11.4 shows the algorithm and flowchart to create a linked list. The following
notes explain the circled numbers for this figure.

1. Process a Read module, which opens the data file, enters all records for the
file, and counts the number of records (N). The file must have a key and an
extra field for the link field.

2. The file is sorted in key order.
3. The HeadPointer is set to 1, since the first record would be the first record in

order.
4. A loop is set up to process all records in order to add the correct link number

in the link field. The loop starts with the first record and continues to the next
to the last record, since the last record must have a zero to indicate the end of
the list.

5. A record is read. The Link field is set equal to the which would
be the next record in order. The record is written to the file. The next record is
then processed.

record + 1,

DeleteRecord = ListRecord(R).

7 ListRecord(R).
NewRecord

272 � Chapter 11

Create

Read

Sort

Read 1,
Record(R)

R

HeadPointer � 1

EmptyPointer � 0

Algorithm PseudocodeFlowchart

Create
 1. Process Read
 2. Process Sort
 3. HeadPointer � 1
 4. EmptyPointer � 0
 5. Loop: R � 1 To N � 1
 Read 1, Record(R)
 Link � R � 1
 Write 1, Record(R)
 Loop-End
 6. Read 1, Record(N)
 7. Link �0
 8. Write 1, Record(N)
 9. Open 2, Pointers
 10. Write 2, HeadPointer,
 EmptyPointer, N
 11. Close All Files
 12. Exit

Definitions:
 HeadPointer � Record number
 of first record in ordered list
 R � Current record
 Link � Linked field

3

2

1

4

5

6

7

8

R

1

1

N � 1

Link � R � 1

Write 1,
Record(R)

Read 1,
Record(N)

Write 1,
Record(N)

Link � 0

Link � 0
Indicates

End Of List

Open 2,
Pointers

Close All
Files

Write 2,
HeadPointer,

EmptyPointer, N

Exit

Create
 Read
 Sort
 HeadPointer � 1
 EmptyPointer � 0
 Loop: R � 1 To N � 1 Step 1
 Read 1, Record(R)
 Link � R � 1
 Write 1, Record(R)
 LoopEnd: R
 Read 1, Record(N)
 Link � 0
 Write 1, Record(N)
 Open 2, Pointers
 Write 2, HeadPointer, EmptyPointer, N
 Close All Files

Exit

Figure 11.4 Algorithm and Flowchart to Create a Linked List

Linked Lists � 273

6. The last record is read. The Link field is set equal to zero. The record is writ-
ten to the file.

7. The Pointer file is opened. The HeadPointer, EmptyPointer, and the number
of records (N) is written to this file. All files are then closed.

8. The Create module is completed.

Notes on Figure 11.5

Figure 11.5 shows the interactivity (structure) chart, the algorithms, and the flowcharts
for a program that processes and updates a file using a linked list technique. Figure
11.5a shows the structure chart for this program. The following are the notes explaining
the circled numbers in Figure 11.5b–k.

1. The Control module for the LinkedList program.
2. Process the Init module.
3. This instruction primes the loop so the condition will be true the first time

through the loop.
4. A loop is set up to continue to process or update the file until Q is entered for

the choice in the Menu module.
5. The Menu module is processed, which prints the menu and allows the user to

enter a value for Choice.
6. One of the modules is processed, according to the value of Choice.
7. The program is completed.
8. The Init module initializes values for the program.
9. The files are opened.

10. The values of HeadPointer, EmptyPointer, and N are read.
11. The Pointer file is closed, which ends the Init module.
12. The Menu module prints the menu and allows the user to enter a value for

Choice.
13. The screen is cleared and the menu is printed on the screen.
14. A loop is set up to make sure a correct value is entered for Choice. When a

correct value is entered the Menu module is completed.

Init Menu Add

ReadNew Search Search Search

Delete

LinkedList

Change Report Wrapup

Figure 11.5a Interactivity Chart for Processing and Updating a Linked List

274 � Chapter 11

15. The Add module allows the user to add a record to the linked list.
16. The new record number (NR) is set equal to the empty pointer. The data for a

new record are entered through processing the ReadNew module.
17. The search for the records that precede and succeed the new record is

executed.
18. A test is made to see if there is a duplicate record. If there is, a message is

printed and the Add module is exited.
19. If there is no duplicate record, a test is made to see if there is an empty

record in which to place the new record. If there is no empty record, a record
is appended to the end of the file. The number of records is incremented by 1
and the new record number (NR) is set equal to the last record number,
which is the total number of records.

End

Algorithm Flowchart Pseudocode

LinkedList
 1. Process Init
 2. Choice � "A"
 3. While Choice � � "Q"
 Process Menu
 CaseOf Choice
 "A": Process Add
 "D": Process Delete
 "C": Process Change
 "R": Process Report
 "Q": Process Wrapup
 Case End
 WhileEnd
 4. End

LinkedList 1

2

3

4

5

6

7

Add

� "A"

Definitions:
R � Present record
HeadPointer � First ordered record
EmptyPointer � First empty record
Choice � Menu selection
S � Error flag
 � 1: Record found
 � 2: Record not found
Link � Value of link field
Key � Value of key field
SKey � Search key
PR � Previous record

� "D" � "C" � "R" � "Q"

False

Delete Change

Menu

Choice �
 "A"

Init

Report Wrapup

CaseOf
Choice

While
Choice
�� "Q"

True

LinkedList
 Init

 Choice � "A"
 While Choice � � "Q" Then

Menu
Case of : Choice
 "A": Add
 "D": Delete
 "C": Change
 "R": Report
 "Q": Quit
Case End

 WhileEnd
Exit

Figure 11.5b Algorithm and Flowchart of the LinkedList (Control) Module for Processing and Updating
a Linked List

Linked Lists � 275

20. If there is an empty record, the empty record is read and the EmptyPointer is
set equal to the Link field value.

21. A test is made to see if the new record should be placed before the first record
in order. If so, the Link field is set equal to the HeadPointer, the HeadPointer is
set equal to the new record number (NR), and the record is written to the file.

22. If not, the link field of the previous record and the new record need to be
updated. To do this, the new record is written to the file and the previous
record is read. The Link field value is saved and the Link field is set equal

Init

Algorithm Flowchart Pseudocode

Init
1. Open 1, DataFile
2. Open 2, PointerFile
3. Read 2, HeadPointer,
 EmptyPointer, N
4. Close 2
5. Exit

Open 1,
DataFile

Exit

10

Open 2,
PointerFile

Read 2,
HeadPointer,
EmptyPointer,

N

Close 2

9

8

11

Init
 Open 1, DataFile
 Open 2, PointerFile
 Read 2, HeadPointer,
 EmptyPointer, N
 Close 2
 Exit

Figure 11.5c Algorithm and Flowchart of the Init Module for Processing and Updating a Linked List

276 � Chapter 11

Menu

A: Add
D: Delete
R: Report
C: Change
Q: Quit

Algorithm PseudocodeFlowchart

Menu
 1. Clear Screen
 2. Print Menu
 3. Choice � "Z"
 4. While Choice �� "A" OR
 Choice �� "D" OR
 Choice �� "R" OR
 Choice �� "C" OR
 Choice �� "Q"
 Enter Choice
 WhileEnd
5. Exit

Clear
Screen

Exit

Print
Menu

Enter
Choice

Choice � "Z"

While
Choice �� "A"

OR Choice �� "D" OR
Choice �� "R" OR

Choice �� "C"
OR Choice

�� "Q"

13

14

12

False

True

Menu
 Clear Screen
 Print Menu
 Choice � "Z"
 While Choice �� "A" OR
 Choice �� "D" OR
 Choice �� "R" OR
 Choice �� "C" OR
 Choice �� "Q"
 Enter Choice
 WhileEnd
 Exit

Figure 11.5d Algorithm and Flowchart of the Menu Module for Processing and Updating a Linked List

Linked Lists � 277

Add

NR � EmptyPointer

ReadNew

Search

Print
"Duplicate Record"

Algorithm Flowchart Pseudocode

Add
 1. NR � EmptyPointer
 2. Process ReadNew
 3. Process Search
 4. If S � 1
 Then
 Print "Duplicate Record"
 Else
 If NR � 0
 Then
 Append Record (1)
 N � N � 1
 NR � N
 Else
 Read 1, Record (NR)
 EmptyPointer � Link
 If PR � 0
 Then
 Link = HeadPointer
 HeadPointer � NR
 Write 1, Record(NR)
 Else
 Write 1, Record(NR)
 Read 1, Record(PR)
 SaveLink � Link
 Link � NR
 Write 1, Record(PR)
 Read 1, Record(NR)
 Link � SaveLink
 Write 1, Record(NR)

5. Exit

Add
 NR � EmptyPointer
 ReadNew
 Search
 If S � 1 Then
 Print "Duplicate Record"
 Else
 If NR � 0 Then
 Append Record (1)
 N � N � 1
 NR � N
 Else
 Read 1, Record (NR)
 EmptyPointer � Link
 Endlf
 If PR � 0 Then
 Link = HeadPointer
 HeadPointer � NR
 Write 1, Record(NR)
 Else
 Write 1, Record(NR)
 Read 1, Record(PR)
 SaveLink � Link
 Link � NR
 Write 1, Record(PR)
 Read 1, Record(NR)
 Link � SaveLink
 Write 1, Record(NR)
 Endlf
 Endlf

Exit

If
S � 1

Append Record
(1)

Read 1,
Record(NR)

N � N � 1

True

True

True

EmptyPointer
� Link

NR � N

If
NR � 0

If
PR � 0

15

16

17

18

1920

2122

Link �
HeadPointer

Write 1,
Record(NR)

Read 1,
Record(PR)

SaveLink �
Link

Link � NR

Write 1,
Record(PR)

Write 1,
Record(NR)

Read 1,
Record(NR)

Link � SaveLink

Headpointer
� NR

Write 1,
Record(NR)

False

False

False
Exit

Figure 11.5e Algorithm and Flowchart of the Add Module for Processing and Updating a Linked List

278 � Chapter 11

to the new record number (NR). The previous record is then written to the
file and the new record is read. The Link field of the new record is set equal
to the saved link value from the previous record and the new record is writ-
ten to the file. This completes the Add module.

23. The ReadNew module enters data for the new record.
24. The new data are entered.
25. The search key (SKey) is set equal to the new record key. The ReadNew mod-

ule is completed.
26. The Search module searches for a record using a search key value (SKey).
27. The record number is set equal to the HeadPointer. The error flag (S) is set

equal to zero, and the previous record number (PR) is set equal to zero.
28. A loop is set up to process the file until a record is found or the key

of the record is less than the search key or the end of the list occurs

29. The current record is read.
30. A test is made to see if the record has been found; if it has, S is set equal to 1

and the module is exited.
31. If the record has not been found, a test is made to see if the record key is less

than the search key.
32. If it is not, S is set equal to 2 and the module is exited.
33. If it is, the record has not been found yet. The previous record (PR) is set

equal to the present record number (R), and the end of the link is checked.
34. If the present record is at the end of the list, S is set equal to 2, R is set equal

to zero, and the module is exited.
35. If present record is not at the end of the list, then the present record number

(R) is set equal to the Link field value and the loop continues.

(S = 2).
(S = 2),

(S = 1),

ReadNew

Algorithm Flowchart Pseudocode

ReadNew
1. Read New Record Data
2. SKey � NRKey
3. Exit

ReadNew
 Enter New Record Data
 SKey � NRKey

Enter
New Record

Data

Exit

25
SKey�
NRKey

24

23

Exit

Figure 11.5f Algorithm and Flowchart of the ReadNew Module for Processing and Updating a Linked List

Linked Lists � 279

Search

Algorithm Flowchart Pseudocode

Search
 1. R � HeadPointer
 2. S � 0
 3. PR � 0
 4. While S � 0
 Read 1, Record(R)
 If Key � SKey
 Then
 S � 1
 Else
 If Key �SKey
 Then
 PR � R
 If Link � 0
 Then
 R � 0
 S � 2
 Else
 R � Link
 Else
 S � 2
 WhileEnd
 5. Exit

Search

R � HeadPointer

S � 0

PR � 0

S � 1

S � 2 PR � R

29

32

True

True

False

TrueFalse

False

True

False

While
S � 0

If
Key � SKey

If
Key � SKey

If
Link � 0

R � Link R � 0

S � 2

Read 1,
Record(R)

Exit

35 34

33

31 30

28

27

26
R � HeadPointer
 S � 0
 PR � 0
 While S � 0
 Read 1, Record(R)
 If Key � SKey Then
 S � 1
 Else
 If Key �SKey Then
 PR � R
 If Link � 0 Then
 R � 0
 S � 2
 Else
 R � Link
 Endlf
 Else
 S � 2
 Endlf
 Endlf
 WhileEnd
 Exit

Figure 11.5g Algorithm and Flowchart of the Search Module for Processing and Updating a Linked List

280 � Chapter 11

Delete

Search

Print "Record
Not Found"

PseudocodeAlgorithm Flowchart

 Then
 Print "Record Not Found"
 Else
 If PR � 0
 Then
 HeadPointer � Link
 Else
 SaveLink � Link
 Read 1, Record(PR)
 Link � SaveLink
 Write 1, Record(PR)
 Read 1, Record(R)

 If EmptyPointer � 0
 Then
 EmptyPointer � R
 Link � 0
 Else
 Read 1, Record
 (EmptyPointer)
 SaveLink � Link
 Link � R
 Write 1, Record
 (EmptyPointer)
 Read 1, Record(R)
 Link � SaveLink

Exit

If
S � 2

HeadPointer
� Link

Read 1,
Record(PR)

True

True

True

SaveLink
� Link

Link �
SaveLink

Enter
SKey

If
PR � 0

Write 1,
Record(PR)

Read 1,
Record(R)

If
EmptyPointer

� 0

36

37

39 38

4041

4243

EmptyPointer
� R

Read 1, Record
(EmptyPointer)

SaveLink �
Link

Link � R

Write 1, Record
 (EmptyPointer)

Read 1,
Record(R)

Link �
SaveLink

Link � 0

False

False

False

Delete
 1. Enter SKey
 2. Process Search
 3. If S � 2

Delete

 4. Exit

 Enter SKey
 Search
 If S � 2 Then
 Print "Record Not Found"
 Else
 If PR � 0 Then
 HeadPointer � Link
 Else
 SaveLink � Link
 Read 1, Record(PR)
 Link � SaveLink
 Write 1, Record(PR)
 Read 1, Record(R)
 Endlf
 If EmptyPointer � 0 Then
 EmptyPointer � R
 Link � 0
 Else
 Read 1, Record (EmptyPointer)
 SaveLink � Link
 Link � R
 Write 1, Record (EmptyPointer)
 Read 1, Record(R)
 Link � SaveLink
 Endlf
 Endlf

Exit

Figure 11.5h Algorithm and Flowchart of the Delete Module for Processing and Updating a Linked List

36. The Delete module allows the user to delete a record.
37. The search key of the record to be deleted is entered and the Search module is

processed to find the correct record.
38. A test is made to see if the record was found. If it was not, an error message is

printed, and the module is exited.
39. If a record was found, the link fields need to be updated. A test is made to see

if the deleted record is the first record in the ordered list.
40. If it is, the HeadPointer is set equal to the Link field value.

Linked Lists � 281

Change

Algorithm Flowchart Pseudocode

Change
1. Enter SKey
2. Process Search
3. If S � 2
 Then
 Print "Record Not Found"
 Else
 Change Record(R) Data
 Write1, Record(R)

4. Exit

Enter
SKey

Exit

Search

If
S � 2

Print
"Record

Not Found"

Write1,
Record(R)

Change
Record(R)

Data

45

47

False True

46

44
Change

 Enter SKey
 Search
 If S � 2 Then
 Print "Record Not Found"
 Else
 Change Record(R) Data
 Write1, Record(R)
 Endlf

Exit

Figure 11.5i Algorithm and Flowchart of the Change Module for Processing and Updating a Linked List

41. If not, the Link field value is saved. The previous record is read. The Link field
value is set equal to the saved link value. The previous record is written to the
file, and the record to be deleted is read.

42. Next, the empty linked list needs to be updated. A test is made to see if the
EmptyPointer is equal to zero. If it is, the EmptyPointer is set equal to the
record number to be deleted and the Link field is set equal to zero.

282 � Chapter 11

Report

Algorithm Flowchart Pseudocode

Report
1. R � HeadPointer
2. While R �� 0
 Read1, Record(R)
 Print Record(R)
 R � Link
 WhileEnd
3. Exit

Report
 R � HeadPointer
 While R �� 0
 Read1, Record(R)
 Print Record(R)
 R � Link
 WhileEnd

R �
HeadPointer

Exit

While
R �� 0

Read 1,
Record(R)

Print
Record(R)

R � Link

50

52

51

False

True

48

49
Exit

Figure 11.5j Algorithm and Flowchart of the Report Module for Processing and Updating a Linked List

Linked Lists � 283

Wrapup

Algorithm Flowchart Pseudocode

Wrapup
 1. Open 2, Pointers
 2. Write 2, HeadPointer,
 EmptyPointer, N
 3. Close All Files
 4. Print "Run Complete"
 5. Exit

Wrapup
 Open 2, Pointers
 Write 2, HeadPointer,
 EmptyPointer, N
 Close All Files
 Print "Run Complete"

Open 2,
Pointers

Exit

Write 2,
HeadPointer,
EmptyPointer,

N

Print
"Run

Complete"

Close All
Files

55

54

53

Exit

Figure 11.5k Algorithm and Flowchart of the Wrapup Module for Processing and Updating a Linked List

43. If the EmptyPointer is not equal to zero, the EmptyPointer record is read. The
Link field value is saved. The Link field is set equal to R. The EmptyPointer
record is written to the file. The record to be deleted is read and the Link field
is set equal to the saved link. The record to be deleted is written to the file.
The module is exited.

44. The Change module allows the user to change data in a record.
45. A search key of the record to be changed is entered and the Search module is

processed to find the correct record.
46. A test is made to see if the record was found. If it was not, an error message is

printed, and the module is exited.
47. If the record was found, the data are changed, and the record is written to the

file. The module is then exited.

284 � Chapter 11

48. The Report module processes a linked list in order.
49. The current record number is set equal to the HeadPointer.
50. A loop is set up to continue until the next record to be processed is zero.
51. The record is read, processed, and printed.
52. The current record is set equal to the Link field value and the loop continues

until the value of the link field is zero.
53. The Wrapup module completes the program.
54. The Pointer file is opened. The values of the HeadPointer, EmptyPointer, and

N are written to the Pointer file. All files are closed.
55. A message telling the user that the program run is complete is printed to the

monitor. The module is exited.

The theory of linked lists can be expanded to include circularly linked lists, doubly
linked lists, and multilinked lists. Circularly linked lists have no end. The last record is
linked to the first record. This allows a search to continue from the last search, without
starting at the first ordered record again. A doubly linked list has two linked fields. One
is in ascending order, and the other is in descending order. Multilinked lists have multi-
ple link fields, one for each way the file needs to be ordered.

Summary

Data files are kept in an external storage source. The use of linked lists is one method
to add and delete records to a data file and still process the file in order. A linked list
is a file in which each record has one or more fields in which is kept the pointer to
its successor. In this way records may be deleted and new records added into the
holes left by the deleted records or at the end of the file, and still the file will be
processed in order.

New Terms

linked list

Questions

1. What is a linked list?

2. Does a linked list have to be in order? Explain your answer.

3. How does a circularly linked list differ from a singly linked list?

4. Under what circumstances would you use a linked list?

Problems

1. a. Using the following file and the name field, create the linked list in the Link #1
field. Designate the EmptyPointer and the HeadPointer for this link.

b. Create a linked list for the debt in the Link #2 field. This will make the file into
what is called a doubly linked file. Designate the HeadPointer for this link. Do
you need another EmptyPointer? Explain your answer.

Linked Lists � 285

2. Show the following updates on the file from problem 1:

Add: Peterson 55
Delete: Black
Delete: Adams
Delete: Stone
Add: Hudson 255
Add: Neill 167

3. List the records that were compared when searching for Green. Use the file as
updated in problem 2.

Answer problems 4–7 using the following data (add other data fields as desired):

1245 Hammer
1278 Screwdriver
1479 Saw
1098 Electric drill
3001 Electric saw
1174 Wrench
2023 Pliers
2488 Sander
5053 Sandpaper

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Dunlap

Johnson

White

Green

Smith

Adams

Black

Cooper

Bennet

Olson

Williams

Nelson

Holding

Little

Grey

Brown

Stone

Smart

Rec. #

210

100

125

275

225

25

400

50

350

75

175

200

335

150

250

325

300

40

Name Debt Other Data Link #1 Link #2

286 � Chapter 11

4. Create a linked list using the inventory number for the order.

5. Add a linked list using the item description for the order.

6. Show the following additions to the file:
a. 3423 Paint

b. 3200 Paintbrush

c. 6000 Drill press

d. 1000 Nails

7. List the records that would be compared when searching for
a. 3200 Paintbrush

b. 2488 Sander

Chapter 12

Binary Trees

Overview

Creation of Binary Trees

Accessing Data in a Binary Tree

Traversal of Binary Trees

Objectives

When you have finished this chapter, you should be able to:

1. Explain how a binary tree is set up.
2. Develop a solution to a problem using a binary tree to search for data.

The use of binary trees is another method to update and access data files. Binary trees
are more complicated to use; however, they tend to be faster when used with large
amounts of data. They also are faster when a single record is often needed. Binary trees
use two fields to indicate the next record to be accessed.

A tree structure uses a top-down or hierarchical structure for the data. The tree
structure looks like an upside-down tree found in nature, with the root on top, the
branches growing down, and the leaves at the bottom. A genealogy chart is an example
of a tree structure. Each record is called a node. The top position is called the root. In
Figure 12.1, the node with the key value of G is the root node. A node at a higher level
in the tree is called the parent. Referring again to Figure 12.1, the node with the key
value of D is the parent of the nodes with the key values of B and F. The nodes with the
key values of B and F are called children since they are on a lower level in the tree. They
are the children of D. The bottom nodes are called leaf nodes. A branch consists of the
chain of nodes from the leaf to the root. A subtree consists of the chain of nodes from a
node to the leaves.

287

Node
Root
Parent

Children
Leaf Node

288 � Chapter 12

Creating a Binary Tree
binary tree

Creation of Binary Trees

A binary tree is a tree in which each node has, at the most, two children. Each record of
the file has all of the regular data, including a key, plus two other fields. One holds the
pointer to the left child node (called the left node) and the other holds the pointer to the
right child node (called the right node). Figure 12.2 shows the data file that accompa-
nies the tree diagram in Figure 12.1. Note that the root is midpoint at record 7. The left
pointer for the root node is 4, and the right pointer is 11. These are shown as the children
nodes of the root node in the tree diagram. The binary tree is in order when the left node
is less than the current node and the right node is greater than the current node. Note on
Figure 12.1 that this is always true.

Root

B F

A C E JH L

G

I

D K

M

7

Figure 12.1 An Example of a Binary Tree

Record

1

2

3

4

5

6

7

8

9

10

11

12

13

A

B

C

D

E

F

G

H

I

J

K

L

M

*

1

*

2

*

5

4

*

8

*

9

*

12

*

3

*

6

*

*

11

*

10

*

13

*

*

Key Data Left Pointer Right Pointer

Figure 12.2 File for Binary Tree in Figure 12.1

Binary Trees � 289

Notes on Figure 12.3

Figure 12.3 shows the algorithm and the flowchart to create a binary tree. The following
notes explain the circled numbers on the flowchart for this procedure.

1. The Create module creates a data file with two pointer fields—the left point-
er (pointer to the left node) and the right pointer (pointer to the right node).

2. Read the data for the file and count the number of records. Sort the file
according to the key field.

3. Set the initial value of the lower bound (LB) to 1 and the upper bound (UB) to
the number of records in the file (N).

4. Set the current node (CNode) to the whole number average of the lower
bound and the upper bound. This is an integer division and therefore always
rounds down.

5. The root node (Root) is set to the current node.
6. The node counter (C) is set equal to zero.
7. A loop is set up to continue to process the nodes as long as the node counter

is less than the total records in the file.
8. The node counter is incremented.
9. The current node is read.

10. A test is made to see if the current node has a left child. If it does, the left
pointer is set equal to the integer average of the lower bound and the current
node minus 1. If it does not, the left pointer is set equal to zero, which indi-
cates there are no more left nodes.

11. A test is made to see if the current node has a right child. If it does, the right
pointer is set equal to the integer average of the upper bound and the current
node plus 1. If it does not, the right pointer is set equal to zero, which indi-
cates there are no more right nodes.

12. The pointers have values, and the record can now be written to the file.
13. The next node needs to be found.
14. When the left pointer is not equal to zero and the right pointer is not equal to

zero, the new upper boundary is set equal to the current node minus one and
the current node is set equal to the left pointer.

15. When the left pointer is not equal to zero and the right pointer is equal to zero,
the values of the right pointer, the current node plus one, and the upper bound
need to be saved by pushing the stack. The new upper boundary is equal to the
current node minus one and the current node is set equal to the left pointer.

16. When the left pointer is equal to zero and the right pointer is not equal to zero,
the lower bound needs to be set equal to the current node plus one and the cur-
rent node is set equal to the right pointer.

17. When the left pointer is equal to zero and the right pointer is equal to zero and
the stack pointer is equal to zero, all of the records in the file have been processed
and the node counter is set equal to the total number of records in the file.

18. When the left pointer is equal to zero and the right pointer is equal to zero and
the stack pointer is not equal to zero, the values of the upper bound, the lower
bound, and the current node are popped from the stack.

19. The loop continues until the value of the node counter is greater than or equal
to the number of records in the file.

20. The Root file is opened and the root record number is saved. All of the files
are then closed.

21. The module is exited.

290 � Chapter 12

Figure 12.4 shows the tree diagram for the file found in Figure 12.5, which was
created from the procedure in Figure 12.3.

Accessing Data

Accessing Data in a Binary Tree

One advantage of a tree structure is the search technique. Since all of the keys on
the left of a node are less than the current node, and all of the keys on the right of a
node are greater than the current node, the search can proceed down a branch, moving

Create

Algorithm Flowchart Pseudocode

Create
 1. Process Read
 2. Process Sort
 3. LB � 1
 4. UB � N
 5. CNode � (LB � UB)\ 2
 6. Root � CNode
 7. C � 0
 8. While C � N
 C � C � 1
 Read 1, Record(CNode)
 If LB � � CNode � 1
 Then
 LPtr � RND((LB � CNode �1)/2)
 Else
 LPtr � 0
 If UB � � CNode � 1
 Then
 RPtr � RND((CNode � 1 � UB)/2)
 Else
 RPtr � 0
 Write 1, Record(CNode)
 If LPtr � � 0
 Then
 If RPtr � 0
 Then
 Continue
 Else
 Push RPtr
 Push CNode � 1
 Push UB
 UB � CNode �1
 CNode � LPtr
 Else
 If RPtr � � 0
 Then
 LB � CNode � 1
 CNode � RPtr
 Else
 If Pointer � 0
 Then
 C � N
 Else
 Pop
 Pop LB
 Pop CNode

 WhileEnd
 9. Open 2, Root
 10. Write 2, Root
 11. Close Files
 12. Exit

Create
 Read
 Sort
 LB � 1
 UB � N
 CNode � (LB � UB)\ 2
 Root � CNode
 C � 0
 While C � N
 C � C � 1
 Read 1, Record(CNode)
 If LB � � CNode � 1 Then
 LPtr � RND((LB � CNode �1)/2)
 Else
 LPtr � 0
 Endlf
 If UB � � CNode � 1 Then
 RPtr � RND((CNode � 1 � UB)/2)
 Else
 RPtr � 0
 Endlf
 Write 1, Record(CNode)
 If LPtr � � 0 Then
 If RPtr � � 0 Then
 Continue
 Else
 Push RPtr
 Push CNode � 1
 Push UB
 Endlf
 UB � CNode �1
 CNode � LPtr
 Else
 If RPtr � � 0 Then
 LB � CNode � 1
 CNode � RPtr
 Else
 If Pointer � 0 Then
 C � N
 Else
 Pop UB
 Pop LB
 Pop CNode
 Endlf
 End If
 Endlf
 WhileEnd
 Open 2, Root
 Write 2, Root
 Close File

Read

Sort

LB � 1

UB � N

CNode �
(LB � UB)\ 2

Root � CNode

C � 0

C � C � 1

LPtr � RND
((LB � CNode �1)/2)LPtr � 0

11

True

False

TrueFalse

10

9

8

6

5

4

3

2

1

7

TrueFalse

B While
C � N

Read 1,
Record(CNode)

RPtr � RND
((CNode �1 � UB)/2)RPtr � 0

If
UB � �

CNode � 1

If
LB � �

CNode � 1

A

E

Exit

Figure 12.3a Algorithm and Flowchart to Create a Binary Tree

Binary Trees � 291

Flowchart

Push RPtr

Push CNode
 � 1

Push UB

LB � CNode � 1

CNode � RPtrC � NPop UB

Pop LB

Pop CNode

Write 1,
Record(CNode)

Definitions:
 LB � Lower bound
 of current subtree
 UB � Upper bound
 of current subtree
 CNode � Current node
 Root � Root node
 LPtr � Left pointer field
 RPtr � Right pointer field
 Pointer � Stack pointer
 C � Record counter

12

13

1415

16

1817

19

20

21

False

True

True

True

True

False

False

FalseIf
RPtr � � 0

If
RPtr � � 0

UB � CNode �1

CNode � LPtr

Open 2, Root

Write 2, Root

Close Files

Exit

If
Pointer � 0

If
LPtr � � 0

A

B

E

Figure 12.3b Flowchart to Create a Binary Tree

to the left and right according to the key. Using the file in Figure 12.5, the order of
comparisons to find 30 would be 35, 15, 25, and 30. This would take four compar-
isons instead of six in a sequential search. To find the number 45, the order of com-
parisons would be 35, 55, and 45. This would take three comparisons instead of
nine in a sequential search. As soon as the key value of the node equals the search
key, the procedure stops.

292 � Chapter 12

Notes on Figure 12.6

Figure 12.6 shows the algorithm and the flowchart of the search module for a binary
tree. The following are notes explaining the circled numbers in the flowchart of
Figure 12.6.

1. The Search module searches for a record given a search key.
2. The current node (CNode) is set equal to the root node (Root).
3. The parent node (PN) is initialized to zero.

Root

10 25

5 3020 5040 7060

35

45

15 55

65

7

Figure 12.4 Binary Tree Created Using the Flowchart in Figure 12.3

Record

1

2

3

4

5

6

7

8

9

10

11

12

13

14

5

10

15

20

25

30

35

40

45

50

55

60

65

0

1

2

0

4

0

3

0

8

0

9

0

12

0

0

5

0

6

0

11

0

10

0

13

0

14

70 0 0

Key Data Left Pointer Right Pointer

Figure 12.5 File for Binary Tree in Figure 12.3

Binary Trees � 293

Search

Algorithm Flowchart Pseudocode

Search
 1. CNode � Root
 2. PN � 0
 3. S � 0
 4. While S � 0
 Read 1, Record(CNode)
 If Key � SKey
 Then
 S � 1
 Else
 If Key � SKey
 Then
 CNode � LPtr
 Else
 CNode � RPtr
 If CNode � 0
 Then
 S � 2
 Else
 Continue

 WhileEnd

5. If S � 1
 Then
 Print Record Data
 Else
 Print "Record Not Found"

6. Exit

Definitions:
 CNode � Current node
 PN � Parent node
 S � Search flag
 1 � Record found
 2 � Record not found
 Key � Key of current record
 SKey � Search key
 RPtr � Pointer to right node

Search
 CNode � Root
 PN � 0
 S � 0
 While S � 0
 Read 1, Record(CNode)
 If Key � SKey Then
 S � 1
 Else
 PN � CNode
 If Key � SKey Then
 CNode � LPtr
 Else
 CNode � RPtr
 Endlf
 If CNode � 0 Then
 S � 2
 Endlf
 End If
 WhileEnd
 If S � 1 Then
 Print Record Data
 Else
 Print "Record Not Found"
 Endlf

CNode � Root

PN � 0

S � 0

S � 1

CNode � RPtr CNode � LPtr

PN � CNode

10

True

True

True

False

TrueFalse

TrueFalse

False

False

While
S � 0

If
Key � SKey

If
Key � SKey

If
CNode � 0

S � 2

Read 1,
Record(CNode)

Exit

If
S � 1

Print
Record Data

Print
"Record Not Found"

11

12

13

9

7
8

5

6

2

3

4

1

Exit

Figure 12.6 Algorithm and Flowchart to Search a Binary Tree

4. The search flag (S) is initialized to zero.
5. A loop is set up to process the file as long as the search flag is equal to zero.
6. The current node record is read.
7. If the key of the current node is equal to the search key, the record has been

found. The search flag is set equal to 1, indicating that the record has been found.
8. If the key of the current node is not equal to the search key, the parent node is

set equal to the current node and a new current node is located. (The value of
the parent node is required if you are adding or deleting records.)

294 � Chapter 12

9. If the key of the current node is less than the search key, then the next node to
be compared is found at the left pointer.

10. If the key of the current node is greater than the search key, then the next node
to be compared is found at the right pointer.

11. If the new current node is equal to zero, the record could not be found. The
search flag is set equal to 2, indicating that the record could not be found.

12. If the search flag is 1, the record data are printed; if not, a message is printed
stating that the record could not be found.

13. The module is exited.

Traversal of Binary Trees

Records in a file need to be processed. If a report is needed, this processing will most
likely need to be in order. However, a binary tree can be processed in any of several or-
ders. The processing of each node once in an orderly manner is called tree traversal.
Every traversal algorithm faces three choices at each node:

1. Process the node.
2. Follow the left branch (follow the left node).
3. Follow the right branch (follow the right node).

Whichever of these three choices is taken, the other two must be completed at a
later time. It is the order of these choices that specifies the traversal method. Three tra-
versal methods are as follows:

1. Preorder. The node is processed first, then the left branch, and then the right
branch. This is abbreviated as NLR and represents the choices in 1, 2, 3 order.

2. Inorder. The left branch is processed first, then the node, and finally the right
branch. This is abbreviated as LNR and represents the choices in 2, 1, 3 order.

3. Postorder. The left branch is processed first, then the right branch, and final-
ly the node. This is abbreviated as LRN and represents the choices in 3, 2, 1
order.

The following list shows the order of the binary tree in Figure 12.1 when it is
processed in each of the three methods:

1. Preorder (NLR). GDBACFEKIHJML
2. Inorder (LNR). ABCDEFGHIJKLM
3. Postorder (LRN). ACBEFDHJILMKG

Notes on Figure 12.7

Figure 12.7 shows the algorithm and the flowchart to process an inorder traversal of a
binary tree. The following are notes for Figure 12.7:

1. The Report module processes the binary tree using an inorder traversal
method.

2. The stack is initialized to zero.
3. The current node (CNode) is set equal to the root node.
4. The process flag is set equal to zero.
5. A loop is set up to process the file as long as the process flag is zero.

traversal

Preorder

Inorder

Postorder

Binary Trees � 295

Report

Algorithm Flowchart Pseudocode

Report
 1. Process Init Stack
 2. CNode � Root
 3. S � 0
 4. While S � 0
 Push CNode
 If LPtr � 0
 Then
 Flag � 0
 While Flag � 0
 If Pointer � 0
 Then
 Flag � 1
 S � 1
 Else
 Pop CNode
 Read 1, Record(CNode)
 Print Record Data
 If RPtr � 0
 Then
 Continue
 Else
 Flag � 1
 CNode � RPtr

 WhileEnd
 Else
 CNode � LPtr

 WhileEnd

 5. Exit

Definitions:
 CNode � Current node
 Root � Root node
 S � Process flag
 0 � Continue
 1 � Stop
 LPtr � Pointer to left node
 RPtr � Pointer to right node
 Flag � Process subtree flag
 Pointer � Stack pointer

Report
 Init Stack
 CNode � Root
 S � 0
 While S � 0
 Push CNode
 If LPtr � 0 Then
 Flag � 0
 While Flag � 0
 If Pointer � 0 Then
 Flag � 1
 S � 1
 Else
 Pop CNode
 Read 1, Record(CNode)
 Print Record Data
 If RPtr � 0 Then
 Continue
 Else
 Flag � 1
 CNode � RPtr
 Endlf
 Endlf
 WhileEnd
 Else
 CNode � LPtr
 Endlf

 WhileEnd

Init Stack

ExitPush CNode

CNode � Root

S � 0

Flag � 0CNode � LPtr

True

True

True

True

False

False

False

False

FalseWhile
S � 0

If
LPtr � 0

While
Flag � 0

Pop CNode Flag � 1

S � 1

Flag � 1

CNode � RPtr

If
Pointer � 0

If
RPtr � 0

Read 1,
Record(CNode)

Print
Record Data

8

1011

12

13

9

14

7

5

6

2

3

4

1

Exit

Figure 12.7 Algorithm and Flowchart to Process a Binary Tree in Order

6. The current node is pushed into the stack. This is to keep track of where to
return since the current node is the middle choice and needs to be processed.

7. If the left pointer is not zero, the current node is set equal to the left pointer.
8. If the left pointer is zero, either the end of the file is found, or a node is found

that needs to be processed. A process branch flag is set equal to zero.
9. A loop is set up to process the nodes in the stack.

10. If the stack pointer is zero, all of the records have been processed. The process
stack nodes flag (Flag) is set equal to 1 as is the process stack flag (S).

11. If the stack pointer is not zero, then a node needs to be processed.
12. The stack is popped with the current node. The current node data are read and

the data are printed.
13. If the right pointer of the current node is zero, the next node to be processed is

in the stack. If not, the right node needs to be processed. The process stack
nodes flag is set equal to 1, and the current node is set equal to the right pointer.

14. The Report module is exited.

The binary tree of Figure 12.7 is balanced since there is no more than one node dif-
ference between the number of nodes on the right from the number of nodes on the left.
When nodes are added and deleted, the tree tends to become unbalanced. The more the im-
balance, the less effective the tree becomes. Therefore, the tree either needs to be balanced
as the nodes are added or deleted, or the tree needs to be balanced periodically. There are
standard techniques for these processes. Because of the complexities of balancing a binary
tree, this text does not present the algorithms and flowcharts to update a binary tree.

More complex trees use multilinked tree structure techniques. In a multilinked tree
structure, one node can have many children. This fact adds much complexity to the tech-
niques of processing and updating these files.

Hashing is another technique used with list. An algorithm for a formula is devised
to find the correct record to retrieve. The major problem with this method is that of cre-
ating an algorithm that produces a unique record number, since two records cannot have
the same record number.

296 � Chapter 12

Summary

Chapter 12 presented linked lists as a method to process data files. The use of binary trees
is another method. A binary tree has two fields, one of which points to the left node and
the other to the right node, that are used to process records. The method of traversal is
determined by how the nodes need to be processed. The methods discussed in this chap-
ter include preorder, inorder, and postorder. The use of multilinked trees is another
method of processing data files.

hashing

hashing traversal

New Terms

binary tree

Questions

1. What is a binary tree?

2. Does a binary tree have to be in order? Explain your answer.

3. Under what circumstances would you use a binary tree?

Problems

1. Using the master file found in problem 1, Chapter 11, develop the two pointer fields
for a binary tree. Draw the tree diagram for this file.

2. List the records that were compared when searching for Green. (Use the tree devel-
oped in problem 1.)

3. Draw a binary tree using both the data in the table and the additions in problem 6 in
Chapter 11.

4. Create a table for the binary tree in problem 3.

5. Using the binary tree created in problem 4, list the records that would be compared
when searching for
a. 3200 Paintbrush
b. 2488 Sander

Binary Trees � 297

Unit Three

Supplementary Exercises

Develop a complete solution, including a data dictionary, to the following problems:

1. Develop a game using dominos. Explain the game and list the rules.

2. Given a decimal number develop the Roman numeral equivalent.

3. Given a two-dimensional table, look up a value given a number corresponding to the
first row and a number corresponding to the first column. Accept only values that are
equal to the values found in the table (see Chapter 9—Table Look-up Technique).

Example: RowNumber = 25 ColNumber = 100

TABLE:

0 10 50 100 200 400

5 65 78 98 67 54

10 99 54 36 77 65

15 55 66 75 87 43

25 34 44 53 32 75

50 54 65 76 87 34

THE ANSWER WOULD BE: 53

4. Modify the solution in problem 2 to accept values of RowNumber and ColNumber
that are not exactly equal to one of the values found in the table.

5. The president of a college would like to know the age distribution of the students.
Complete a solution using the frequency distribution technique to output the needed
results.

6. Create a linked list of the following data. The data will be in ascending order by
temperature.

Day Temperature

Nov. 28 33

Nov. 29 38

Nov. 30 30

Dec. 1 43

Dec. 2 48

Dec. 3 42

Dec. 4 40

Delete all November readings and add:

Dec. 5 35
Dec. 6 33
Dec. 7 40

7. Create a binary tree using all data found in problem 5

298 � Chapter 12

UNIT FOUR

DATABASE MANAGEMENT
SYSTEMS

Chapter 13: Database Management Systems
Chapter 14: Relational Database Management Systems

This page intentionally left blank

Chapter 13

Database Management
Systems

Overview

Why a DBMS?

DBMS Components

DBMS Models

Client Server Model

DBMS Tasks

Objectives

When you have finished this chapter, you should be able to:

1. Define the components of a DBMS.
2. Understand why a DBMS is used.
3. Define the DBMS models.
4. Understand the tasks of a DBMS.
5. Understand the Client–Server model as it relates to DBMS.

One of the major requirements of a computer system is to manage large amounts of data
efficiently. Today this is done for the most part through the use of database management
systems. The major goal of a database management system (DBMS) is to gather large
amounts of data and be able to process and update this data efficiently and by more than
one person simultaneously. Another major goal of a database management system is to
have the foundation of a future application already programmed. This includes the way
the data are entered, stored, and accessed. From there a specific application can be built
to suit the company or individual’s needs.

301

302 � Chapter 13

Database Management Systems (DBMS) software is a data organizer. The pri-
mary function of a DBMS is to store large quantities of data, organize data, protect data
integrity, and secure the data. This software is the key to many businesses. Business use
of DBMS includes inventory management, client and sales tracking, financial manage-
ment, and personnel management to name a few. Personal use of DBMS includes lists
of address, CD collection, recipes collections, home inventory, and book collection, to
name a few. A database management system in its simplest form usually consist of two
parts, the “data” itself and the “client” to access the data. We see this access in daily life
whenever we use the Internet, the browser being the “client” and the webpage being the
server. There are, in fact, more “layers” involved when you access data via the Internet,
but we will discuss that in Chapter 14. When a problem arises that requires the organi-
zation of large amounts of data, the primary software solution is the use of a DBMS.

Programming is necessary to use a DBMS efficiently. The language depends upon
the database software in use. Structured Query Language (SQL) is rapidly becoming the
standard language for accessing relational data industry wide. The modules that are nec-
essary to develop depend upon the application and are tied to parts of the DBMS. It is
important for a programmer to understand database theory because databases are the
key to many Internet and business problems and because it takes programming to effi-
ciently implement a database as a solution to a problem.

database management
systems (DBMS)

Why a DBMS?

The growth of businesses, along with their increased use of computers, has led to a sig-
nificant increase in the demand for database management systems. The benefits of a
DBMS include

1. Centralization of data. A DBMS allows the user to store all the data in an
external storage device on a single computer instead of in many files on nu-
merous computers at several locations. This reduces the number of times data
has to be entered and updated, which reduces the possibility of errors. It also
means that everyone working on the data can access up-to-date data simulta-
neously.

2. Increased reliability of data. It is important that data are reliable and as up
to date as possible for everyone who needs to access the database. A com-
pany’s reputation is in jeopardy if unreliable data are distributed.

3. Decrease in redundancy of data. A DBMS decreases the overlap of data.
When several files contain the same data, then every file must be updated.
With a DBMS, data are located in only one place.

4. Simultaneous access of data. A DBMS allows many people to access and
update the same data simultaneously. This increases the productivity of indi-
viduals working with the database.

5. Increased security of data. A DBMS has security measures built in, so there
is control over who may access and update specific data. Only a few appro-
priate people should have access to sensitive data. Also, only a few people
should be allowed to change data in the database. A DBMS has passwords
built in at different levels to increase the security of the data.

6. Increased performance of data access. A DBMS has the ability to allow
fast access to the data through the use of indexing and built-in procedures
that allow for extremely fast retrieval of large amount of preformatted and/or

Database Management Systems � 303

summarized data. Without this performance, centralization of data in a geo-
graphically large organization would be difficult, and a distributed data model
would be required, which has a number of reliability issues.

7. Increased data integrity. A DBMS has the ability to protect itself from “bad
data” through the use of transactions, constraints, and triggers, which will be
discussed in Chapter 14.

These are important reasons to implement a DBMS; however, because of these reasons,
a DBMS becomes complex very quickly. Consequently, it is expensive to implement and
maintain a DBMS.

Entities
Attributes

field
record
table

DBMS Components

A database is developed to store data. Just as the name implies, it stores data that needs
to be retrieved at a later date. Items in the database that have one or more data values
attached to them, such as an inventory item, an employee, a place, a thing, and so on, are
called entities. Each entity has attributes. The attributes are data items that are required
to be associated with the entity. For example, the attributes of a client entity might be
last name, first name, street address, city, state, zip code, sales rep, and so forth. An
entity set is a collection of related entities. An entity set may be inventory items,
employees, clients, and so on.

This terminology is standard for database theory. However, you will find other
terms used informally by the developers of specific DBMS. In this text we will refer to
more informal names. An attribute is a field. An entity is a record. An entity set is a
table. A database is a collection of related tables. For example, you might have a CD
table. Each entity or record contains the attributes or fields about one CD. Each attribute
or field contains one piece of data about the entity such as the name of the CD or its pro-
ducer. Fields may contain entered numbers, text, images, hyperlinks, dates, or times, or
may be results calculated using other fields.

Fields may contain entered numbers, text, images, hyperlinks, dates (datetime), or
they may be the result of a calculation using other fields. These are called properties of
the field, and a database designer will assign theses field properties carefully when cre-
ating the fields in a table. The importance of data design becomes apparent when you
consider the potential for large amounts of data that will be collected over time. Many
database languages reserve space for data not entered into a record, thus files sizes can
bloat, causing space allocation issues as well as performance issues. More sophisticated
database languages have the field properties to allow for dynamic space reservation,
such that space is only used if needed. However, the designer has to know how to use
these properties to attain the desired result. Some other property “gotchas:” consider a
field to collect Social Security Number. Because we all know this is a number, we
assume that the field would be a number. There are a few problems with this assump-
tion. First, SSN is formatted as “999-99-9999,” so to store this we would need to be a
character field to accommodate the “-” entry, or you could save just the number part of
the entry and then format the input and output to display the hyphens as needed. This
would presumably work, but what if an SSN were 009-45-0345? If the field type was
numeric, the database would drop off the leading zeros and store 9450345. Then, when
you wanted to view this using a report of screen, the formatting would not know (neces-
sarily) how to display the leading positions in the number. This would mean every report
or screen designed to display SSN would have to know how to deal with the underlying
data. If the data was stored as character data—i.e., “009-45-0345”—then no formatting

property

304 � Chapter 13

needs to be done, and it would be much simpler to design the screens and reports using
this data. The tradeoff would be storage space required to store 11 characters versus a
9-decimal number. The designer would have to have the skill and knowledge to make
these kinds of judgments when creating a database.

Other components besides tables are saved as part of a database. These include
queries or views, constraints, triggers, defaults, stored procedures, and user-defined
functions. Queries and view are predefined perspectives of the data that can be a single
table or combinations of tables. Constraints are rules that the data must adhere to in
order for the data to be saved. Triggers are built-in, user-defined routines that occur
when data are manipulated, usually from a data insert, update, or delete action. Defaults
are user-defined values when the record is created; the user doesn’t have to enter this
information. Stored procedures are code scripts with the database used to perform func-
tions to the database. This code can be accessed from client software or from another
stored procedure. User-defined functions are functions built into the database used by
views and stored procedures for behaviors specific to the database.

Personal databases usually contain a reporting designer, a form design, and an
interface scripting language for application automation. This type of database is typi-
cally used on a single computer for small database activities such as CD lists or small
business management.

Larger database server systems separate the client functions from the database func-
tions. This allows the database designer to create a database that “serves” data to a client
through various types of data connections. It is the responsibility of the database and its
designer to make sure the data are structured correctly and protected for data integrity and
data security, whereas the client designer will focus on the user input (Forms) and output
(Reports) interface. This is the basis for the “client-server” data access model.

constraint
trigger

relational database
management system
(RDBMS)

hierarchical database
management system
(DBMS)

network database
management system
(DBMS)

object-oriented
database management
system (DBMS)

DBMS Models

There are four basic types or models of database management systems: relational, hier-
archical, network, and object-oriented databases.

� The Relational Database Management System (RDBMS) is a system of ta-
bles with a common field that relates one table to another, thus the term
relational. The RDBMS is less complex, costs less, accommodates smaller
databases, and is used on smaller computers. This is the database you will prob-
ably use at home or in a small business. Chapter 14 presents problem solving
using an RDBMS.

� The Hierarchical Database Management System (DBMS) organizes data in
a treelike structure according to record types. The relationship between records
is parent–child (see Chapter 12).

� The Network Database Management System (DBMS) is similar to the
Hierarchical Database Management System with the exception that one record
type (sometimes called tables) can relate to any number of other record types.

� Object-Oriented Database Management System (DBMS) represent data in
the form of objects as used in Object-Oriented Programming. As we will find
out in Unit 5, Object-Oriented Programming (OOP), the database appears to the
OOP designer as an object.

As wonderful as databases are, the drawbacks to the last three models are that
they are complex and expensive. However, they can accommodate very large databases

Database Management Systems � 305

that are required for large businesses with mainframe computer systems. They also
require a team of individuals to maintain and update the database even after the data-
base is in use.

client server

Client Server Model

The client server model started gaining acceptance in the 1980s. Its architecture was a
vast improvement over its predecessor, mainframe architecture.

When using a mainframe system, the users interact with the mainframe host com-
puter using terminals for key entry and display. All of the computing power is at the
mainframe host computer. Limitations of mainframe architecture include: minimal sup-
port of graphical interfaces; no support of distributed computing, which could lead to
distributed databases; and no shared computing power. The mainframe was typically a
centralized host computer in one geographic location.

File sharing architecture is based on PC networking where files are downloaded
from the main database and processed at the local PC. This strategy works when the
shared usage is low and volume is low; however, in a real world environment file share
architecture breaks down very quickly. Many personal database systems that attach to
remote databases still need to process large amounts of data on the local PC using a
form of file share architecture.

The client server model overcomes many of the issues with mainframe and file
sharing architectures by sharing the workload between the server and the client, reduc-
ing the network traffic by providing a response for information instead of a complete
file and by using Remote Procedure Calls (RPCs) or Standard Query Language (SQL)
to communicate between the server and the client.

To understand the significance of the client server architecture as compared to the
file share or mainframe architecture, consider a business database that handles client
relations. This business has offices on the east and west coast of the United States. Each
office has five customer service representatives. Using file share or mainframe architec-
tures, each office would typically have a copy of the database at their location and on
some regularity the database would be synced together (usually each night when the
databases are not being used). This method presents many operational problems. First,
how does an update of a client record that has been changed at the east coast office and
the west coast office on the same day get reconciled? Secondly, how does each office get
real time data without syncing more frequently? If a manager wants to run reports on the
most current data how does she collect all the data together so the reports are accurate?
As you can imagine the problems with this type of database architecture are significant
and become more apparent as users and office locations increase.

Using client-server architecture the business gets the centralization of data and the
distribution of client software while maintaining data access performance. This is
accomplished by using store procedures on the server and remote procedure calls on the
client to invoke the server to execute the procedure.

Consider the same business described above that has a central database using a
database server to send data to the appropriate requestor in real time. This would
include managing record locking and updates and deletions so that users would be
receiving the most up-to-date information. The record locking would prevent simulta-
neous updates to records. All of this can be accomplished with acceptable perfor-
mance due to the ability of the server to send only the data needed for each client
instead of complete files.

306 � Chapter 13

The following is an example of a remote procedure call and a store procedure used
to receive the call. Notice the data parameter that is sent in the call is used to filter the
record set returned by the call.

Remote procedure call example:

GetNewPersonnel ‘01/01/2008’

Stored Procedure Example: This example returns a set of records from the table
tbl_Personnel where the LastUpdate field has a date greater than or equal to the date
passed in via the remote procedure call. In the previous RPC example the date of
‘01/01/2008’ was passed to the GetNewPersonnel stored procedure so only the record
with the LastUpdate field greater than or equal to ‘01/01/2008’ would be returned.

CREATE PROCEDURE GetNewPersonnel
@LastDate Datetime,
AS

Select*
from tbl_Personnel where tbl_Personnel.LastUpdate
>= @LastDate

From this example you can see that only a limited amount of records would be
returned to the requesting client. The client server interaction would then minimize the
amount of network traffic which greatly enhances software performance.

In addition to selecting data from a database server, the client-server model can
add, update and delete database information. All of this functionality is typically part of
a database transaction. The transaction usually has a begin-commit or begin-rollback
cycle depending on the outcome of the transaction. An example of a transaction is a
patient medical chart that is sent as a set of patient data records to the server as a batch
update. If the connection is lost while sending the records the transaction will rollback
so that incomplete patient information does not become available at the server. This is
imperative so that medical personnel don’t misinterpret incomplete information when
caring for a patient. If all of the records reach the server then the transaction is commit-
ted and the data becomes available at the server.

The client-server model has allowed for the centralization of data without the sac-
rifice of high performance data access from multiple geographic locations. This tech-
nology, along with higher internet networking speeds, has greatly enhanced the
usability of database servers in business enterprises.

transaction

DBMS Tasks

A DBMS must perform many tasks. These are available in all databases; however, some
may require programming in more complex systems.

1. Designing and creating a database. This is part of the planning stage of im-
plementing a DBMS. A good design aids in the easy use of the DBMS. A bad
design can decrease productivity, increase frustrations, and will probably
have to go back to be redesigned. Once the design is done, then the database
can be created through the use of the DBMS. Data then must be entered into
the database. This may be a time-consuming effort.

2. Entering data. Once the database is created and tested, data must be entered.
This may be a huge task depending on the complexity of the database, and it
may require months of planning and data entry.

Database Management Systems � 307

3. Maintaining data. After the data are entered, it must be maintained—that is,
the user must have the ability to add, delete, and change data. A company is
dynamic and data changes constantly; therefore, the database must be
updated often.

4. Accessing of data. The user must also have the ability to access any data
electronically or on a printed copy. This may be through the use of a computer
monitor or through printed reports. A database is not of much use if you can-
not access the data.

5. Selecting data. Most of the time only specific data are needed; therefore,
employees must have the ability to access selected records and fields. This is
accomplished through the use of a query function. The query function allows
the user to select needed records and fields by putting the needed data into a
new table for output use. When data are updated, these tables are also updated
automatically.

6. Sorting records. Most reports required the data to be in some kind of order.
This is accomplished by sorting the records by one field or a combination of
fields. The records may be ordered alphabetically or numerically and in
ascending or descending order.

7. Securing data. It is very important that data are secure. A DBMS has built-in
security mechanisms that can be implemented to ensure the integrity of the
data.

8. Producing reports. One of the most important tasks to the user is that reports
on data need to be developed and produced. The ultimate goal of a DBMS is
for people to access and report information.

9. Using a language to make the database a “turnkey” system. A large database
requires many people to use it in a company. These users normally are not fa-
miliar with the inner workings of the DBMS they are using. Therefore, the
developer of the database must make the application as user-friendly as possi-
ble. This is done through the use of a programming language. Some
RDBMSs use Visual Basic (VB). Larger systems use Structural Query
Language (SQL) or Extensible Markup Language (XML) to build databases
that are accessible not only to local employees but also to Internet users.
Many businesses sell through the Internet and therefore must make the data-
base of items they are selling available to the public. Also, the database must
allow buyers to add their own data such as name, address, telephone number,
and so forth. These languages have instructions that increase the productivity
of the programmer in developing the project.

These tasks are important functions of a DBMS and are used by the programmer
and the user to develop a good solution to a problem.

Summary

Database management systems are used to manage large amounts of data in businesses
as well as at home. They allow the user to enter, delete, update, and access data. Security
issues are part of the development of an application using a DBMS. There are several
DBMS types or models: relational, hierarchical, network, and object-oriented. Each
uses a different method of storing and retrieving data. A DBMS has various tasks to per-
form, including queries, sorting, defaults, triggering, and stored procedures (scripts) as
well as securing, maintaining, and accessing the data.

308 � Chapter 13

New Terms

client server

constraint

Database Management
System (DBMS)

field

Hierarchical Database
Management System
(DBMS)

Network Database
Management System
(DBMS)

Object-Oriented Database
Management System
(DBMS)

property

record

Relational Database
Management System
(RDBMS)

table

transactions

trigger

Questions

1. Why would a company or a home user want to use a DBMS?

2. List and explain the DBMS models.

3. Why is each of the various tasks important to the application developer and to the
user of a DBMS?

Chapter 14

Relational Database
Management Systems

Overview

Tables, Records, and Fields
Primary, Secondary, and Foreign Keys

Normalizing Tables

Entity Relation Model (ERM)

Schema

Creating Tables

Queries

Interface Design
Form Design

Reports

Planning a Solution Using an RDBMS
Example RDBMS: Home Inventory

Objectives

When you have finished this chapter, you should be able to:

1. Understand the parts of a relational database created in an RDBMS.
2. Normalize relational database tables.
3. Create the schema for a relational database.
4. Design queries for a relational database.
5. Design forms for a relational database.
6. Design reports for a relational database.
7. Plan a relational database for a specific problem.

309

310 � Chapter 14

A Relational Database Management System (RDBMS) is a type of DBMS. The RDBMS
uses a common field that relates one table to another, hence the name Relational DBMS.
This type of database is usually used by smaller computers and is the one you normally
will find on microcomputers. This chapter presents problem-solving techniques for
building applications using an RDBMS.

Tables, Records, and Fields

table
record
field

Field Description Field Name
ID Number ID Number
Name of CD Name
The producer Producer
Date of publication Date

Data are organized into one or more tables or entity sets. A table is a group of related
records or entities. Each record is an entity in the table. A record is a group of related
fields or attributes. Each field or attribute is a specific piece of data pertaining to the
record. Each record in the table includes fields that are created in the design of the table.
Each record is given a number. Each field is given a name. This name is the same for all
records. Each table, query, report, and form is also given a name. You should name each
according to what data they contain. The database is given a file name.

Let’s examine an example of a database for a CD collection where only the CD
names, producers, and dates of publication will be organized (see Figure 14.1). The
database will be called CD Collection. There will be only one table called CDs. Each
record, a horizontal row of data, will contain data in four separate areas, called fields: ID
Number, Name, Producer, and Date. These fields and their descriptions as follows:

Records are numbered starting with one. Individual fields have the same number of char-
acters in every record. For example, if 25 characters have been specified for the field
called Name, then every record has a maximum of 25 characters to enter the name of

Database File Name: CD Collection

Table Name: CDs

Fields: ID Number Name Producer Date

Record 1 Winds XYZ Corp 2000

Record 2 Whale Song XYZ Corp 2001

Record 3 Songs of
Ireland

ECL Publishers 2003

:
:
:
:

Record N

500

502

503

Figure 14.1 CDs Table

Relational Database Management Systems � 311

the CD. You may have a derived field also called a computed field. The data in this type
of field is derived, or computed from, other fields. For example, the retail cost may be
computed from the wholesale cost and the percentage markup.

Tables are holders of data to be organized and printed. In the planning stages of a
database, it is important that all data required for the printed reports are part of one of
the tables. Therefore, when you are developing a solution to a problem requiring a data-
base, you should identify the information required for the reports. This sounds back-
wards; however, you need to know where you are going in order to know how to start.
When you have your reports planned, then you may define your tables. The third step is
to plan how to get from the data to the report. Remember: Plan your output, then your
input, and finally your processing.

Primary, Secondary, and Foreign Keys

One field may be designated as a primary key. A primary key field contains unique
data, that is, data that will not be repeated in the same field of another record. For exam-
ple, the CD ID number (ID Number) would be a primary key in the CDs table. It is used
in many projects to designate an identification number or an account number. You do
not have to designate a primary key field. Many tables do not have a field that is unique.
If you designate a field as a primary key, the RDBMS will not allow you to enter a value
that is repeated from another record.

Secondary keys are not necessarily unique. They are primarily used to search for a
specific record when you do not know the primary key. For example, in the CD example
you may not know the ID number (ID Number), but you may know the name of the CD
(Name). Therefore, you could search on the CD name.

A foreign key is a relational field to another table. The foreign key is a primary
key in another table and determines the relationship between the tables. For example,
you may have information about the producers of the CD in the second table. The pro-
ducer’s identification number would be the primary key in the Producers table. In order
to find the producer information for a CD you need to have the producers identification
number in the CDs table also. This would be a foreign key in the CDs table whereas it is
a primary key in the Producers table. The field name is the same in the two tables (see
Figure 14.2).

primary key

foreign key

Normalizing Tables

For most problems, data should be separated into multiple but related tables. Let’s
revisit the CD Collection database. This time there are more fields required, including
the name, artist, and time length of each track on each CD. The address information for
the publisher is also required. Figure 14.3 shows a single list of attributes, or fields, for
a table if all data were to go into one table. This table has several problems. First, how
many fields should be reserved for the music selections? Each CD has a different num-
ber of selections. Another problem arises when data are repeated in many records, such
as the publishers’ addresses. This repetition creates possible errors in entry as well as in
table maintenance. Therefore, database tables should be normalized. Normalizing
tables is separating data into multiple, related tables to increase efficiency as much as
possible when entering, using, and updating data.

Other problems that may occur in database design are null data and data redun-
dancy. Null data have no value, as all value is absent. Primary keys cannot contain null
data. A null data field is not a blank field because a blank field contains spaces, which
are characters. Null values should be eliminated if at all possible.

normalizing

312 � Chapter 14

Multiple values within a field occur when there is more than one value required for
one field. Data repetition occurs when data are repeated in multiple records. Lost data
occurs when pertinent data are deleted when a record is deleted. These three problems
lead to three types of anomalies.

1. The insertion anomaly occurs when you cannot add a record because there is
more than one value required for one field and the number of values for this field
differ in each record, such as in the case of the music selections. If the number of
values for a field is the same for all records, the solution is to make multiple
fields. However, as in the case of the music selections, there is a different num-
ber of values for each record. Therefore, you cannot designate different fields for
each value because you do not know the number of values. This creates what is
called an unflat table, a table that requires a different number of fields for each
record. An unflat table is not allowed in an RDBMS. The solution is to create an-
other table with a relational field tying the new table to the old table.

Database File Name: CD Collection

Table Name: CDs

Fields: ID Number Name Producer Date ProdID

Record 1

Record 2

Record 3

 :
 :
 :
 :

Record N

Database File Name: CD Collection

Table Name: Producers

Fields: ProdID Address City State Zip

Record 1

Record 2

Record 3

 :
 :
 :
 :

Record N

Primary
Key

Foreign
Key

Name

Figure 14.2 Primary and Foreign Keys for CDs Table and Producers Table

Relational Database Management Systems � 313

2. The update anomaly occurs when the same data must be changed in more than
one record, as in the case of the publishers’ addresses. Because there are con-
siderably fewer publishers than CDs, there are many records to update when
the address of a publisher changes. The solution is to create a table for the
information on the publishers with a relational field tying the new table to the
old table.

3. The deletion anomaly occurs when there is a loss of critical data when you
delete a record. In the case of the CD collection, assume the publishers’ in-
formation were to be kept in the original table. If only one CD had a specific
publisher and that CD was deleted, you would lose the address information
for that publisher. In contrast, if the address information is in a separate pub-
lisher information table, even if there were no CDs by that publisher in your
collection, the address information would still remain in the publisher infor-
mation table.

Normalization takes care of these problems. The first normalization takes care of
unflat tables, or the insertion problem. The second normalization takes care of repeated
data, or the update problem. The third normalization takes care of key data as a nonkey
field of the file, or the deletion problem.

When you are normalizing a table, the first step is to create a list of fields or attrib-
utes required for the output reports. See Figure 14.4 for the original field list, the list
after the first normalization, and the list after the second normalization. There is no need

CD Name Artist Producer DateSelection Time Address City State Zipcode Telephone

Record 1

Record 2

Record 3

:
:
:
:
:
:

Record N

CDs Table

Attributes or Fields

CD Name
Selection
Artist
Producer
Date
Time
Address
City
State
Zipcode
Telephone

Figure 14.3 Attributes of the CDs Table

314 � Chapter 14

for a third normalization. The original table shows all fields. Notice the fields that hold
multiple data are simply named to represent the data, in this case Selections, Artist, and
Time. The list is then divided into separate fields, such as the Artist into Artist first name
and Artist last name, and grouped together like fields, in this case the CD data, the
Selection data, and the Producers’ data.

The next step is to develop the first normalized form of your database. You will
create a new table with one field that is identical to a field in the original table in order
to show the relationship between the two tables; in this case, CDID. This is the CD iden-
tification number. The field in the Selections table is the foreign key and the field in the
CD Collections table is the primary key. This is because the primary key must be unique
and there are many records in the Selections table compared to one record in the CD
Collections table. The steps to complete the first normalization are as follows:

1. Move related fields that have more than one value to the new table. In this
case move the fields associated with the selections to the new table, named
Selections.

2. Add the foreign key to the new table and a field with the same name as a pri-
mary key to the original table. In this case add the foreign key of fk_CDID to
the Selections table and the primary key of CDID to the CDs table.

This will produce a new table and a modified table (see Figure 14.4b).
The next step is to develop the second normalized form of your database. You will

be creating a third table with one field that is identical to a field in the original table to
show the relation between the two tables, in this case PRODID (see Figure 14.4c). The
steps to complete the second normalization are as follows:

1. Move the related fields that are in more than one record to a new table. In this
case move the fields associated with the producers to the Producers table.

Attributes or Fields

CD Name

Selection

Artist

Producer

Date

Time

Address

City

State

Zipcode

Telephone

List of Fields: Adjust order of fields and group like data:

Attributes or Fields

CD Name

Producer

Date

Address

City

State

Zipcode

Telephone

Selection

Artist Last Name

Artist First Name

Time

Figure 14.4a Normalization of CDs Table Original Data

Relational Database Management Systems � 315

2. Add a field in the new table that will be a primary key and the same named
field in the modified table as a foreign key. In this case add the primary key of
PRODID to the Producers table and the foreign key of fk_PRODID to the
CDs table.

There are now three tables.
The last step, if required, is to develop the third normalized form of your database.

You would be creating a fourth table with one field that is identical to a field in the orig-
inal table to show the relation between the two tables. Data to be moved from the first
table are not necessarily repeated in multiple records but are data that you want to save
even if the record is deleted. To complete the third normalization, create a new relation
field in both tables and move the required data to the new table. In our CD Collection
database case, there are no data that require a third normalization.

You now should have your tables in the most efficient form possible. If any of the
normalizations require more than one new table, you would need to repeat the steps for
that normalization. Complete all required new tables in each normalization before con-
tinuing on to the next normalization. You will rarely use all three normalizations for a
solution to a problem; however, you should examine the original table for the possibility
of all three.

entity relation model
(ERM)

Entity Relation Model (ERM)

An Entity Relation Model is a model of the data that provides the designer with three
main semantic concepts: entities, relationships, and attributes. Entities are distinct
objects in the enterprise, relationships are the interaction of the entities, and attributes
describe the entities and relationships. When designing using an E-R model, the entities

First Normalization:

1. Move Selection data to new table.
2. Add primary key to new table and foreign key to CDs Table.

Attributes or Fields Attributes or Fields

Attributes or FieldsAttributes or Fields
CD Name

Producer

Date

Address

City

State

Zipcode

Telephone

CDs Table

CDs Table

Selection

Time

Selections Table

Selections Table

Selection
Artist Last Name

Time

CDID

fk_CDID

1.

2.

CD Name

Date Selection

Time

CDID

CDID

Producer

Address

City

State

Zipcode

Resulting Tables:

Artist Last Name

Artist First Name

Artist Last Name

Artist First Name Artist First Name

Telephone

Figure 14.4b First Normalization

316 � Chapter 14

and relationships become tables, and the attributes become the fields within the tables.
By creating the E-R model in the early stages of database design, the designer can
describe the enterprise model and flush out any problems with the data design before
moving to far into the database creation stage.

Consider our previous CD example. From our original table we derived three
entities—Publishers, CDs, and Selection—and two relationships—Publishers to CDs
and CDs to Selections. Figure 14.5 describes these entities and their relationships using
an E-R model.

Once an E-R model has been created, the table structure becomes apparent. Figure
14.6 shows the tables used to implement the entities in the E-R model. As you can see,
the Selections table has a foreign key to the CDs table (fk_CDID), and the CDs table has
a foreign key to the Producers table (fk_PRODID).

CDs Table

CD Name

Date

fk_PRODID

Attributes or FieldsAttributes or FieldsAttributes or Fields

Selection

Artist Last Name

Artist First Name

Time

Selections Table

SELID

fk_CDID

Attributes or Fields

Selection

Artist Last Name

Artist First Name

Time

Selections Table

SELID

fk_CDID

Producers Table

Producer

Address

City

State

Zipcode

Telephone

Producer

Address

City

State

Zipcode

Telephone

CDID

CD Name

Date

fk_PRODID

CDID

CD CollectionTable

Attributes or Fields

PRODID

Attributes or Fields

Producers Table

Producer

Address

City

State

Zipcode

Telephone

PRODID

1.

2.

Resulting Tables:

Second Normalization:

1. Move Producer fields to Producers Table.
2. Add primary key of PRODID to Producers table and foreign key of PRODID to CDs table.

Figure 14.4c Second Normalization and Final Tables

Relational Database Management Systems � 317

Publishers

Publish

CDs

1

M

CDs

Has

Selections

1

M

Figure 14.5 Entity Relation Model.

Producers

Publish

CDs

1

M

Has

Selections

1

M

CDs

CDID

fk_PRODID
CDName
Date

PK

Selections

SELID

fk_CDID
Selection
Artist Last Name
Artist First Name
Time

PK

Producer

PRODID

Producer
Addres
City
State
Zipcode
Telephone

PK

Figure 14.6 Entity Relation Model and Schema

318 � Chapter 14

schema

Schema

The schema of your database shows the relationships among the tables (see Figure
14.7). Start with the normalized list of attributes for each table. Then draw a line
between the tables connecting the relational fields. Add a one or an infinity sign on
each end of the line to indicate the following:

1. One (1) to one (1) indicates that one record in one table relates to one record
in another table. A one (1) appears on both ends of the line.

2. One (1) to many indicates that one record in the table on the one (1) side
references to many records in the table on the infinity side. A one (1) is
placed on the end of the line pointing to the table that references to one record
and a many sign is placed on the other end.

3. Many to many indicates that there are many records in one table that are
related to many records in the other table. An infinity sign appears on
both ends of the line.

Figure 14.7 shows the schema for the CD Collection database example. Notice
that there are three tables, including the CDs table, the Selections table, and the
Producers table.

1q2
1q2

1q2
1q2

1q2

Attributes or Fields

Attributes or Fields

CDID

fk_PRODID

CD CollectionTable

CD Name

Date

Attributes or Fields

Producers Table

Producer

Address

City

State

Zipcode

Telephone

PRODID

Selection

Artist Last Name

Artist First Name

Time

Selections Table

fk_CDID

SELID

1

1

Schema

∞

∞

Figure 14.7 Schema of the CD Collection Database

Creating Tables

Data are entered into the tables through forms or a data view listing. The form shows
one record on the monitor at a time. The data view shows multiple records, but only as
many fields as will fit on the monitor. You must scroll for additional fields. Tables must

Relational Database Management Systems � 319

be created by designating the fields and their defining characteristics. Each field in a
table has field characteristics, including the field name, the data type, the description of
the field, the number of characters in the field (called the field size), the number of dec-
imal places for numbers, format, input mask, and default value.

The name of the field should be long enough to readily identify the contents.
However, it should be short enough so that the exact name can be remembered easily,
and the field header in the form or in the data view does not take up too much space. The
field description describes the contents of the field. The field size is the maximum num-
ber of characters any entry will require. If the field contains a name, the field size may
be 20 characters if all records have names fewer than 21 characters. The computer will
not allow you to enter more characters than the size of the field. If you have a name that
is longer than 20 characters, you must increase the size of the field by changing the
design of the table.

SQL databases have standard database types with varying attributes depending on
the type. Character fields consist of alphanumeric data and the number of allowed char-
acters is specified. Varchar(x) or nvarchar(x), where x is the number of allowed charac-
ters, is a data type used by SQL RDBMS. nvarchar differs from varchar in that it can be
used for multilingual data storage; however it takes twice as much space to store that
data. Numeric data consist of many different storage formats including integer, smallint,
tinyint, real, float, and decimal, to name a few. There is also date information called
datetime or smalldatetime, which hold data information to very precise levels—
datetime to 3.33 milliseconds. Bit or boolean fields hold a single bit (0 or 1) and are usu-
ally used to indicate a yes or no data point. Memo or Text fields are used to hold more
data that standard character fields (nvarchar, varchar, etc)—these fields do not have a
field size and are variable length by design. These are used for large amounts of text
data that have no pattern to the information—for instance, a medical narrative about a
patient’s condition. Binary data can hold any object’s data type. These are used to store
pictures, audio files, video files, or any other binary data type. A database designer must
take into consideration the data types provided by the database being used when design-
ing the tables needed for an application. Speed, functionality, and storage requirements
depend greatly on the data types used by the designer.

Each data type has attributes that need to be specified when creating them.
Character data needs the field length; decimal data needs the number of decimal places,
for example. Other data types have no size attribute. For instance, integers are fixed in
size as described in Figure 14.8.

Some RDBMS systems contain other attributes such as input mask, format, and
text alignment. These attributes pertain mainly to the client interface and not the data
type. They help the client interface designer when composing forms and reports by
automatically enforcing these attributes. For instance, an input mask can specify the
parentheses and dashes in a phone number and enforce the data entry to be numeric. A
sample input mask for a phone number would be “(999) 999-9999” where the “9” indi-
cates the numeric entries. Conversely, the format attribute would determine how that
data would be displayed either in a form or a report.

RDBMS also may contain default values and validation rule attributes. These
attributes help to protect the data from bad data entry. For instance, if you are docu-
menting patient information about diastolic blood pressure, a validation rule would pro-
tect from values less than 0 and greater than 500. A more complex validation may
protect for a male patient’s condition entered as pregnant. Each RDBMS offers varying
levels of sophistication of data validation at the database design level for data protec-
tion. Default value attribute is used to populate a field at creation time. For instance,

320 � Chapter 14

when most of the clients for a business are in California, then a default value for the
State Field would be set to CA. The feature decreases the number of keystrokes in the
data entry process, which inherently reduces the possibility of bad data.

query
query table

Queries

Queries are the way to select fields and/or records to be processed. The result of a query
is a query table that contains the selected data items required for an output report.
When a query is made, you set up a query design that will select the required items from
a specified table. Figure 14.9 shows an example of a query made on the CDs table.
Notice that the field names are in the top row, the table name is in the second row, the
selected fields are in the third row, and the criteria is in the fourth row.
The fifth row is not used. This query will create a query table with records from the CDs
table that have been published after 1990. You may then print this new query table
through the use of reports.

The query table is defined by using five rows of information. The first row con-
tains the table name where the data for each field are found. The second row contains an
X, which specifies the sort field for the new query table. The third row specifies the
fields that should be included in the new table. The fourth and fifth rows specify the cri-
teria for selecting records. All ANDs are in the same row, and the OR is in the fifth row.

“date 7 1990”

Data Types Description

bigint Integer data from �2^63 through 2^63 � 1

int Integer data from �2^31 through 2^31 � 1

smallint Integer data from �2^15 through 2^15 � 1

tinyint Integer data from 0 through 255

bit Integer data with either a 1 or 0 value

decimal Numeric data from �10^38 � 1 through 10^38 � 1

numeric Numeric data from �10^38 � 1 through 10^38 � 1

money Monetary data values from �2^63 through 2^63 � 1

smallmoney Monetary data values from �214,748.3648 through � 214,748.3647

float Floating precision number data from �1.79E � 308 through 1.79E � 308

real Floating precision number data from �3.40E � 38 through 3.40E � 38

datetime Date and time data from January 1, 1753, through December 31, 9999,

with an accuracy of 3.33 milliseconds

smalldatetime Date and time data from January 1, 1900, through June 6, 2079,

with an accuracy of one minute

char Fixed-length character data with a maximum length of 8,000 characters

varchar Variable-length data with a maximum of 8,000 characters

text Variable-length data with a maximum length of 2^31 � 1 characters

nchar Fixed-length Unicode data with a maximum length of 4,000 characters

nvarchar Variable-length Unicode data with a maximum length of 4,000 characters

ntext Variable-length Unicode data with a maximum length of 2^30 � 1 characters

binary Fixed-length binary data with a maximum length of 8,000 bytes

Figure 14.8 Database Data Types

Relational Database Management Systems � 321

You will use relational operators to specify the criteria. Figure 14.10 shows examples
of criteria. Example 1 shows one criterion: Cost is less than 25. Using this criteria, the
new query table will include all records in which the cost is less than 25. Example 2
shows two criteria that both must be true in order to include a record in the function
calculations. Notice that the criteria are on the same row. This is similar to the AND
operator. The resulting table will include all records where the value of Cost is less
than 25 and Quantity is less than 10. Example 3 also shows two criteria, but only one
of these criteria must be true in order to include a record in the function calculations.
Notice that the criteria are on separate rows. This is similar to the OR operator. The
resulting table will include all records with Cost less than 25 or Quantity less than 10.
Example 4 shows three criteria using both the AND and the OR logic. In this case, in
order for the record to be included, the Cost must be greater than or equal to 10 and the
Quantity must be less than 5, or the Cost must be less than 10. The resulting table will
include all records in which the Cost is less than 10 and all records in which the Cost is
greater than or equal to 10 and the Quantity is less than 5. In the fourth row notice the
AND operator and in the fifth row the OR operator. When you want your selection to
be based on two or more criteria and they all have to be met, then you place each crite-
rion in the fourth row under the associated field name. When only one of the criteria
must be met, then you place each criterion on different rows. Be very careful when you
start mixing ANDs and ORs to ensure you are asking for the correct records to be
selected. Check your resulting table carefully as well. If you identify more or fewer
records than you had expected from the query, then you need to correct the design of
the query.

The types of queries you will perform are determined by the project. You may
want special sums, averages, or special updates. Just about any application that is used
with and RDBMS requires some type of query.

Queries are developed through the use of an interface to the powerful Structural
Query Language (SQL). SQL exists to facilitate the retrieval of selected data needed for
processing. You may program your own methods of retrieving needed data by learning to
use SQL. Many RDBMSs allow the users extensive use of SQL. This tends to decrease
the user friendliness of the application for the developer while increasing its flexibility.
The final results should create a database that is user friendly for the end user. This is the
job of the programmer. Other RDBMS types use a programming language such as Visual

Field Name:

Table:

Sort:

Show:

Criteria:

OR:

Name Artist Producer Date

CDs CDs CDs CDs

X

X X X X

� 1990

Figure 14.9 Example of a Query

322 � Chapter 14

Basic to develop interfaces between the user and the database. The four logic structures
are used to attach scripts or modules that contain short sets of instructions for interactive
devices such as buttons or check boxes. An interactive screen may be developed to aid
the user in the updating and processing of the tables in a database. The developer of a
database must know programming to be able to develop these scripts or modules.

Interface Design

Most solutions to business problems are designed to be accessed through an interface. A
form with buttons is set up as an interface to automate the use of the database. This form
is sometimes called a switchboard because it switches from one activity to another

Example 1:

Field Name Item Cost Quantity

Table
Sort X

Show X X X
Criteria � 25
OR

Example 2:

Field Name Item Cost Quantity

Table
Sort X

Show X X X

� 10Criteria � 25
OR

Example 3:

Field Name Item Cost Quantity

Table
Sort X

Show X X X

� 10

Criteria � 25

OR

Example 4:

Field Name Item Cost Quantity

Table
Sort X

Show X X X
� 5Criteria �� 10

� 10OR

Figure 14.10 Example of Criteria Ranges for Database Functions

Relational Database Management Systems � 323

through the use of buttons. Chapters 15 and 16 present information on the design and
implementation of interfaces. These interfaces are developed through the use of a pro-
gramming language.

Form Design

Forms allow the user to see all or some of the fields of a record on the monitor. The
table is transversed through the use of buttons to go to the next, the previous, the last, or
the first record. Derived fields may be added. Fields may be placed and moved to any
location on the monitor. The data may be viewed or updated. New records may be
added. Each field is labeled and has an input box that holds the data.

The form must be designed well to ensure the end user’s productivity. Fields
should be located on the form for easy reading and entering of data. If a source docu-
ment is being used, the fields should be located on the monitor in the same order as on
the source document. Key information should be located in one area. The form should
be pleasant to look at and read, and pertinent information should be easy to locate. Add
graphics only to enhance the locating and reading of data. Remember that users of this
form will be viewing it day after day. You want them to enjoy looking it.

Reports

Reports are really the reason you have completed everything else. Reports are printed
documents of the records in a specific database or query table. You may choose any or
all of the fields to be included in your report. In the case of the CD Collection database
example, the report may include only the CD names and artists. You may sort them in
any way you please. You may sort them by CD names, artists, date, or publisher depend-
ing upon the requirements of the problem. To design a report, you need to specify the
report headings, the footers, the headers, the contents of each column, the width of the
column, the format of the data, the column headings, the sorting criteria for the data, and
the subtotals that will be calculated. You also may specify images to be imported on the
document and other line art as required by the specifications of the problem.

You may specify the column width as greater than, equal to, or less than the field
length. If the data do not fit into the column they will word wrap within the column. To
avoid this, try to make the columns at least as wide as the field length. You do need to
stay within the width of the paper on which you are creating the report. The number of
characters across the page is dependent upon the font type, the number of characters,
and the font size that you are using. Try to specify extra space for each column. You
may have as many columns as you desire; however, the data must fit into the columns on
the printed page.

Planning a Solution Using an RDBMS

This section presents forms to help you plan the development of databases. The first
form allows you to list the required reports and the required data for each report. You
should start with a list of reports and the corresponding data for the reports because this
is how you will know what data are needed for the database. See Figure 14.11 for the
report list form.

form

report

324 � Chapter 14

The next step is to list all of the data and create the field names. Figure 14.12 pre-
sents a form for entering the data items and field names. When you finish listing the data
items and field names, you will need to normalize the original table to separate the data
items into related tables. After you have normalized the database, then create the
schema. Figure 14.13 presents a form for developing the schema. Figure 14.14 presents
a form for designing each table. In this step, the fields and their attributes are specified.
You will need one of these forms for each table. After your tables are designed, you
would design each of your database forms. You would designate the background, the
fields that will be on the form, and their layout. Figure 14.15 presents a form to help
design each form. Notice the place for the algorithms and flowcharts for your scripts
that are attached to the form.

The next step is to design your queries. Figure 14.16 presents a form to help you.
The last step is to design your reports. You would specify margins, headers, footers,
report headings, column contents, column widths, and anything else that you want to
specify for a report. See Figure 14.17 for a report layout form.

The last step is to develop your modules (macros or scripts). Use the algorithm
and flowchart form to develop each module. Indicate on the algorithm and flowchart
form the database form to which it is attached. An example of the form is found in
Figure 14.18.

List of Required Reports:

Report Name Data to Be Included in Report

Figure 14.11 Lists of Required Reports Form

Original Table:

Item Field Name

First Normalization
New Table(s)

Item Field Name

Second Normalization
New Table(s)

Item Field Name

Third Normalization
New Table(s)

Item Field Name

Figure 14.12 RDBMS Table Development Form

Relational Database Management Systems � 325

Field Name Field Name Field Name Field Name

Field Name Field Name Field Name

Figure 14.13 Schema Form

Field Name

Table Name:___________________________________

Description Data Type No. of Decimals Field Length Format Input Mask Default Value

Figure 14.14 Field Characteristics for One Table

326 � Chapter 14

Example RDBMS: Home Inventory

Problem: John has just purchased homeowner’s insurance. His insurance agent has indi-
cated that in case of a disaster he should have an inventory of everything he owns. He
has just purchased a new computer with an RDBMS installed on it. John would like
to use this for his inventory. He would like to keep the following information on his
possessions:

1. Item
2. Original cost
3. Room where it is located
4. Information about the store where the item was purchased
5. Appraised value of jewelry, artwork, and antiques
6. Appraiser’s name, address, and phone number

Background:___________________
Table:________________________

Figure 14.15 Form Design

 Field Name:

Table Name:___________________________________

Table:

 Sort:

 Show:

 Criteria:

 OR:

Figure 14.16 Query Design Form

Relational Database Management Systems � 327

John would like the following reports:

1. An alphabetical listing of the items and all associated data
2. A list of the stores
3. A list of the appraisers
4. A form for the monitor to view each item
5. A list of items worth more than $500

Figure 14.19 presents the planning forms for this example.

Report Layout:

Report Name:

Table or Query Name:

Margins:
Top: Top Printer:

Bottom: Bottom Printer:

Left: Left Printer:

Right: Right Printer:

Header: Top Printer:

Footer: ______________ Bottom Printer:

Paper Size: Orientation: Color/B&W:

Sort By:

Subtotals on Following Fields:

Images to Be Imported:

File Description Use Location

Header Contents:

Footer Contents:

Report Heading:

Column Heading

Field Name

Column Width

Figure 14.17 Report Layout Form

328 � Chapter 14

This example involves an inventory for a household. This is a typical problem that
arises for personal use of RDBMS. There are four reports and one screen form that are
required. After normalization, there are three tables: Inventory, Store, and Appraiser.
The schema is developed next. There are three tables with a relationship between the
Inventory table and the other two tables of many records to one record. There are many
inventory items that were purchased at the same store and that had the same appraiser.

Macro Name: ______________________
Attach to Form: ____________________

Algorithm: Flowchart:

Figure 14.18 Algorithm and Flowchart Form for Database Module

Report Name Data to Be Included in Report

Inventory item, original value, room, appraised value,

 store information, appraiser information

Stores store information

Appraisers appraiser information

Items Over 500 item, original value, appraised value

Form to Show One Item:

Inventory item, original value, room, appraised value,

 store, appraiser information

Figure 14.19a List of Reports

The fields and their characteristics for each table were developed next. Notice the
input masks on the telephone numbers. The screen form for one inventory item was
developed. The items were placed on the screen in the best viewing order. Report Four
required a query to select all items that cost or were appraised at more than $500. The
reports then were planned. Report One lists the inventory and requires the Stores and
Appraisers tables. Report Two lists the store information from the Stores table. Report
Three lists the appraiser’s information from the Appraisers table. Report Four uses the
query table to list the items that cost or were appraised at more than $500.

Databases must be maintained. This is a continuous and complex job that many
times is handled by a person called the database administrator or database manager. The
more complex the database, the bigger the need for a single person responsible for
maintaining it. Even at home, the database must be maintained. It is best to have one
person in charge of that maintenance.

Relational Database Management Systems � 329

Original Table:

Item Field Name

First Normalization
New Table(s)

Item Field Name

Second Normalization
New Table(s)

Item Field Name

Third Normalization
New Table(s)

Item Field Name
Item
Room
Original Value
Appraised Value
Store Purchased
Store Address
Store City

Store State

Store Zipcode
Store Phone
Appraiser
App. Address
App. City
App. State
App. Zipcode
App. Phone

Rel. Field
Rel. Field

Item
Room
Value
AppValue
Store
SAddress
SCity

SState
SZipcode
SPhone
Appraiser
AAddress
ACity
AState

AZipcode
APhone
fk_SID
fk_AID

None Table 2:
Store Purchased
Store Address
Store City
Store State
Store Zipcode
Store Phone

Store
SAddress
SCity
SState
SZipcode
SPhone

Table 3:
Appraiser
App. Address
App. City

App. State
App. Zipcode
App. Phone

Appraiser

AAddress
ACity
AState
AZipcode
APhone

None

Figure 14.19b Table Development

input mask

330 � Chapter 14

Item

Room

Value

AppValue

fk_SID

fk_AID

Store

SAddress

SCity

SState

SZipcode

SPhone

SID

Appraiser

AID
1

AAddress

ACity

AState

AZipcode

APhone

Field Name Field Name Field Name Field Name

Field Name Field Name Field Name

1

∞
∞

Figure 14.19c Schema

Relational Database Management Systems � 331

 Field Name

Table: Inventory

Description Data Type # of Decimals Field Length Format Input Mask Default Value

Item
Room
Value
AppValue

fk_SID

fk_AID

 Table: Stores
SID
Store
SAddress
SCity
SState
SZipcode

SPhone

 Table: Appraisers
AID
Appraiser
AAddress
ACity
AState
AZipcode

APhone

Inventory Item
Location
Original Value
Appraised Value

Rel. Field

Rel. Field

Rel. Field

Store Name
Store Address
Store City
Store State
Store Zip Code

Store Phone

Rel. Field
Appraiser Name
App. Address
App. City
App. State
App. Zip Code

App. Phone

Text
Text
Number
Number

Text

Text

Text
Text

Text
Text
Text
Text

Text

Text
Text
Text
Text
Text
Text

Text

10
10
10
10

5

5

5
10

15
10
3

10

15

5
10
15
10
3

10

15

2
2

(xxx) xxx-xxxx

(xxx) xxx-xxxx

Figure 14.19d Table Characteristics

Background:__Default____
Table:__Inventory/Store/Appraisers____

Item Name: Item

Original Value: Value

Appraised Value: AppValue

 Room Where Located: Room

Store Where Purchased: Store

Appraiser: Appraiser

Figure 14.19e Form Design

332 � Chapter 14

Field Name:

Table Name:___Inventory__________

Table:

Sort:

Show:

Criteria:

OR:

Item Room Value AppValue SID AID

Inventory Inventory Inventory Inventory Inventory Inventory

X X X X

� 500

� 500

Figure 14.19f Queries

Summary

Relational Database Management Systems (RDBMSs) are data organizers. They allow
the end user to enter data, organize them, and print reports. Databases created through the
use of an RDBMS have multiple parts, including tables that hold all the data, forms that
display data, queries that select data, reports that output organized data, and macros that
help automate the database.

Tables are designed through analysis of the reports required. The data are then nor-
malized into tables for the most efficient entry, use, and update of the database. A table
is a group of related records. A record contains fields of individual pieces of data. The
database schema shows the relationship between tables.

When designing a database, all the parts are designed individually, many times by
different specialists with different areas of expertise. The team of designers is usually led
by a systems analyst who has the oversight of the entire system. The database itself is
designed by a database designer whose expertise is in data normalization and optimiza-
tion. The user interface is designed by a GUI designer who gives great attention to con-
sistent look and feel as well as human interface guidelines. Report designers work on
consistent layout as well as expertise in statistical analysis. Together this team creates the
building blocks that become the final application.

RDBMSs have become a primary resource of businesses. RDBMSs in a large-scale
enterprise represent a major capital investment in the design, maintenance, and upgrad-
ing of functionality. It is extremely important to design the database using the discipline
described in this chapter. The tools will allow designers to take a very complex system
and break it down into smaller parts that become easier to understand and maintain.

New Terms

Entity Relation Model
(ERM)

field

foreign key

form

input mask

normalizing

primary key

query

query table

record

report

schema

table

Relational Database Management Systems � 333

Questions

1. Name and explain the parts of a database.

2. What is a primary key?

3. When would you use a primary key?

4. Why would you not use a primary key? Give an example.

5. What is a foreign key?

6. Why is a database table normalized?

7. Explain the process of normalizing your database table.

8. Explain a schema. Give an example of each of the types of table relationships.

9. Name and describe four attributes of a field. Include examples of each attribute in
your answer.

10. Explain a query.

11. In example 15.7, how would you change the query to reflect the following:
a. Include in the report only the name, the artist, and the producer.
b. Include only CDs by Tom Smith in the report.
c. Include only Tom Smith CDs that were produced after 1985.
d. Include all CDs that were produced after 1995 and all by Tom Smith.
e. Include all CDs that were produced after 1995 and all Tom Smith CDs that were

produced after 1985.

Problems

1. Bill owns a hardware store. He has a special catalog for customers that have
indicated they would like to receive one. He has their names, addresses, and
favorite department. He would like to have mailing labels printed for these cus-
tomers. Bill also would like to have a list organized by favorite departments so
he can add specials about the most popular departments. Plan an RDBMS that
solves this problem.

2. Susan has an audiotape collection that she wants to catalog. She would like to cre-
ate the following reports:
a. An alphabetical listing of the names of the tapes and associated information

(artist and favorite listening place)
b. An alphabetical listing of the artists and their tapes
c. A listing of the tapes organized by where she most likes to listen to them (the

car, bedroom, family room, while walking or outside)
d. A listing of all music selections and the tape on which each is found

Plan an RDBMS for this problem.

3. You are the secretary of the Computer Club. You want to computerize the club’s
membership list. You have the name, address, telephone number, and e-mail
address of each member. You also would like to add the committee name to which
each member is assigned and when the committee meets. You want to create a
report listing all members’ information such as their names and e-mail addresses, a
form that lists all information for each member, and mailing labels. Plan an
RDBMS for this problem.

4. The New Plays Repertory Theater would like to computerize its ticket sales. The
theater seats 500 people, offers seven plays each year, and sells season tickets and

single-night tickets. The season tickets are all for performances at the same time
during the week. Each play has 20 performances. The theater keeps a customer list
of those people who buy tickets in order to send play information for advertising
purposes.

The reports they would like to create are:
a. A listing of available seats
b. A listing of all plays and the actors in the plays
c. A listing of customers
d. Labels printed for all customers
e. A listing of season ticket holders

Plan an RDBMS for this problem.

5. You are planning a trip to France. You are compiling a lot of research on lodging,
restaurants, and things to do in the cities you are interested in visiting. The data are
beginning to overwhelm you. Therefore, you would like to organize it on the com-
puter. The reports you would like include:
a. A listing of all lodgings and associated information
b. A listing of all restaurants and associated information
c. A listing of all activities and associated information
d. A listing of each city with the lodging, restaurants, and activities associated

with it

Plan an RDBMS for this problem.

6. Sam is the sales manager at the regional office of XYZ Gadgets, Inc. He needs to
prepare an annual report that includes:
a. A listing of salespeople and their territory, sales, and number of clients
b. A listing of all clients
c. A listing of territories and the total number of salespeople, and clients associated

with each territory
d. A listing of the total sales per month

Plan an RDBMS for this problem.

334 � Chapter 14

UNIT FIVE

OBJECT-ORIENTED
PROGRAMMING

Chapter 15: Concepts of Object-Oriented Programming
Chapter 16: Object-Oriented Program Design

This page intentionally left blank

Chapter 15

Concepts of Object-Oriented
Programming

Overview

Object-Oriented Programming
Classes
Inheritance
Polymorphism
Encapsulation
Objects
Methods
Instance versus Static Methods

Graphical User Interface (GUI)

Event-Driven Object-Oriented Programming
Events
User-Defined Events

Interactivity

Objectives

1. Understand the difference between a linear procedural solution and an object-
oriented solution.

2. Understand the basic principles of object-oriented design.
3. See some object-oriented design in action with C# (C sharp).
4. Understand methods, encapsulation, objects, and classes.
5. Make the leap in thinking object orientation.

Computer hardware and software have constantly become more and more complex as new
innovations in computer science and technology have evolved. The graphical user interface
(GUI) as well as internet browser technologies are prime examples of this rapid change. As
a result of these innovations, more and more people with varying skill levels have become
users of computers in the workplace and the home. Expectations for performance as well

337

338 � Chapter 15

as user-friendliness have grown along with the innovations. Software designers look for
new strategies in programming in order to exploit the rapidly changing functionality and
innovation in computer technology; one of these strategies is object-oriented program-
ming (OOP).

Object-oriented programming (OOP) has become the standard programming
methodology for software engineers and developers. It is a different way of approaching a
solution to a problem. OOP methodology may be used to create procedural-type pro-
grams, but more importantly, it lends itself to use with a GUI. Because the GUI is an inter-
active user interface that uses icons and menus, a nonlinear approach to programming is
required. This is because the user has the option to choose any one of many things to do;
save a document, print a document, insert a picture, change attributes of a document, and
so on. Object-oriented programming allows a programmer to develop a nonlinear
approach to a solution. When working with OOP instead of thinking about the various
processes or the procedures of how to solve the problem, one looks at parts of the problem
in terms of data: the properties of data, the attributes of data, how data work together, and
how to develop the methods that describe how data behave. You will still work with mod-
ules; however, the modules will be related to the data parts and not the procedural parts of
the solution. The result is a nonprocedural and a nonlinear solution to a problem.

This chapter will introduce new concepts and terms used in object-oriented program-
ming. In this chapter, we will be introducing some programming example in C#. (C Sharp)
As you examine these program snippets, notice the naming conventions used. There are
many standards used for naming; we chose an obvious one. You will see a class object called
clsInstruments. In this kind if naming the first three letters in lower case represent the object
type then the capital letter helps to separate the name of the object. Programmer will use the
capital letters often in variable naming so that the eye can quickly recognize the title. For
instance, ListenToBookProcess is much easier to understand than listentobookprogress.

The chapter is divided into two parts. The first part will present concepts and terms
used in object-oriented programming, such as C++, C Sharp, or Visual Basic.Net. The sec-
ond part will present concepts and terms used in event-driven object-oriented languages
using C Sharp. Both are driven by data objects, messages, and events sent to the modules to
complete the required processing, but the basic problem-solving is different.

object-oriented
programming (OOP)

Object-Oriented Programming

Program design using object-oriented programming languages, for example C++,
allows the programmer to look at the solution in terms of data parts instead of proce-
dures. Consider a library book checkout system. In a procedural program, you would
design the program with the procedures in mind:

� Input of the data—book name, book number, date, client, and so on
� Checking out the book
� Checking in the book
� Printout of all outstanding books
� Printout of all books
� Add, delete, and update book information

In an object-oriented program, you would design the program with the data parts
in mind:

� Books
� Clients

Concepts of Object-Oriented Programming � 339

Each part then would be assigned responsibilities:

� Books
� Properties

� ID of the book
� Author of the book
� Title of the book

� Methods
� Check in the book
� Check out the book
� Add, edit, or delete a book

� Clients
� Properties

� ID of the client.
� Name, address, etc. of the client

� Methods
� List of books checked out
� History of client activity
� Add, edit, or delete client data

There may be other data parts and other responsibilities, but you should be able to see the
difference in the strategy of the solution. In order to complete the responsibilities, each part
needs to interact with other parts. Now let’s put some common names to the ideas presented.

Classes

A class is a collection of like items or objects. The class defines the members (objects) in
the class. A class also defines the “portholes’’ for the rest of the program to manipulate
the class or read the current state of the class. When you create a class, you are essentially
creating a new data type. Accounts in a bank would be a class; cars in a car dealership
would be a class. In our library problem, the classes are Books and Clients. Associated
with each class is a set of properties, structures, methods, and/or behaviors. The Books
class contains the property definitions that define objects of that class: an ID code, loca-
tion in the library, and so on. In addition, the class defines operations (methods) that can
manipulate class objects such as the ability to check in and out, and so forth. The Clients
class would have the properties of client name, client address, client ID code, and others.
An object is an instance of its class. For example, Tom Sawyer by Mark Twain is a book
object, which belongs to the Books class. Figure 15.1 shows a diagram of the Books class.
Superclasses may be created in which all subclasses have inherited characteristics. This
relationship is called inheritance. Inheritance allows designer to reuse code from super-
class to subclass in the same way the book object is part of the book class. The book class
would contain attributes about all books, for example, title and ID, while the book object
would contain the specifics about a particular book, for example, Title: Tom Sawyer, ID:
TS1983838. If our library example were to be expanded to include magazines, tapes,
CDs, and other media types, we would create a superclass of library items. Each subclass
adds characteristics and therefore becomes more specific. Another example might be the
superclass of mammals that have specific characteristics that define a mammal. Humans
are a subclass of the superclass of mammals and have inherited all the characteristics of
the superclass of mammals, but have more characteristics that distinguish a human from
another mammal. Figure 15.2 shows a diagram of the Mammals class, its members
(objects, for example, Humans, Marsupials, etc.) that are subclasses of the Mammals

class

inheritance

340 � Chapter 15

Books Class

Books

Books Objects
(Individual Books)

Figure 15.1 Example of the Books Class and Its Objects (instance of a class)

Mammals Class

Mammals

Mammals Objects
(Subclasses of Mammals)

Humans
Humans Objects
(Individual Humans)

Marsupials

Individual humans are objects (members) of the
Humans class, which is a subclass (member)
of the Mammals class. Humans have their
own set of characteristics and have inherited
characteristics from the Mammals class.

Figure 15.2 Example of the Mammals Class, Its Objects, Which Are
Subclasses, and the Objects of the Subclasses

Concepts of Object-Oriented Programming � 341

class, and the members or objects of the Humans class. Notice that there are classes
(Humans, Marsupials, etc.) that are members of another class (Mammals). This makes
the Humans class, the Marsupials class, and others, subclasses of Mammals.

The class also defines operations to manipulate class objects. These will be defined
through the use of functions. The functions will be executed whenever they are called
within a program. The function call includes the object and any data (parameters) required
by the function. A function may be executed often in a single execution of the program and
never used in another. For example, you may print several times when using a word proces-
sor on one occasion and never at another time. It is left to the user to decide what functions
are needed during the running of the application and it is left up to the programmer to make
sure all needed functions are part of the program. In our library checkout system, functions
defined in the Books class will define how to mark that the book is checked out, how the
book is marked as checked in, how to update book data, how to add and delete books, and
how to list the book’s attributes. Functions defined in the Clients class will define how to
list all the books checked out for each client, how to print client data, how to update client
data, how to add and delete clients, and so forth. These are all of the things that can be done
with a specific book (Books object) or a specific client (Clients object).

Inheritance

Inheritance was introduced in the previous section on classes. Inheritance is an impor-
tant part of OOP because it greatly reduces the amount of programming needed to
accomplish many common tasks. For instance, consider the creation of a form used to
enter client or book data. A form is merely a built-in object in Visual Basic—it has stan-
dard properties and methods, but in our solution we will add a new standard function
close—to a form. In Figure 15.3 we build such a form with the button and underlying
code to close a form. The programmer would never use this form directly; instead,
another form would inherit from this form.

The two form examples in Figures 15.4 and 15.5 are inherited from the inheritance
form (base form) below. Notice the Close button at the bottom. All of the other fields
and labels are unique to the newly created forms, whereas the Close button is not. Many
forms can be created using this base form. If the developer needs to add common func-
tionality to all of the forms, she only needs to add it to the base form and all other forms
will inherit the new functionality. The beauty of this is the reduced time to modify

Figure 15.3 Example of an Inheritance Form

342 � Chapter 15

multiple forms as well as reduced redundancy in code, which reduces the possibility of
bug introduction. In turn, this speeds the development process.

When the Close button is pressed or clicked, the underlying code in the base form
will execute the event closing the form that this button has inherited. There is no need to
constantly rewrite form close code for each form in your application.

When working with object-oriented languages, such as C++, C#, or VB.Net, there
are certain design rules and steps you need to follow. In order to think in object orientation,
you must understand the concepts of object orientation—specifically, the treating of
class objects like “black boxes” of code with “portholes” that other objects can use to
ask for information or have processes performed.

In other words, all of the properties and methods within the objects are declared as pri-
vate or public. The public methods in an object can use the private method within the object;
this ensures encapsulation of the code specific to the object’s purpose. These public methods
and properties are the “portholes” into the object. None of the private methods or properties

Figure 15.4 Example of an Inherited Book Form

Figure 15.5 Example of an Inherited Client Form

Concepts of Object-Oriented Programming � 343

are accessible from other objects. The ability to declare the methods, data, and properties
with pubic or private access is paramount to the protection of the object function.

Second, applying inheritance to object creation, a designer must consider all of the
objects needed in the application and how those objects group together. A class would
be created that would provide an instance of variables and methods common to all of the
objects in the group. This class is called a super class. All of the objects in the group
would inherit from this newly created super class. The objects in the group would be a
subclass of the super class. The super class and subclass are related in a generalization-
to-specialization relationship: the super class being the generalized methods and prop-
erties while the subclass is the specialized methods and properties. The following is a
C# example of a super class, subclass, and the instantiation and calling code from a
form. Figure 15.6 shows the screen display.

Here is the Form with the button on-click events.

Figure 15.6 Display Form Diagram

public partial class DisplayForm : Form
{

public DisplayForm()
{

InitializeComponent();
}

//istantiate the sub class
clsSubClass m_subclass = new clsSubClass();

private void btnDisplaySuperClass_Click(object sender, EventArgs e)

{
//Set the superclass property

{
m_subclass.WordToDisplay = "Hello World from super class";
//Run the inherited DisplaySuperClassWord function from the subclass
m_subclass.DisplaySuperClassWord();

}
}

private void btnDisplaySubClass_Click(object sender, EventArgs e)
{

//Run the function in the sub class to display the word
m_subclass.DisplaySubClassWord();

}
}

}

Figure 15.7

344 � Chapter 15

public class clsSubClass : clsSuperClass
{

private string m_strWordToDisplay = "Hello World from the subclass";
public void DisplaySubClassWord()
{

//Display a message
MessageBox.Show("The classes word is : " + m_strWordToDisplay ,"Sub

Class Message",MessageBoxButtons.OK);
}

}

Figure 15.9

public class clsSuperClass
{

//Declare a private variable for storing a string
//Default it to 'Hello World'

private string m_strWordToDisplay = "Hello World";
//Let an outside object change the private varible
public string WordToDisplay
{

get { return m_strWordToDisplay; }
set { m_strWordToDisplay = value; }

}

public void DisplaySuperClassWord()
{

//Display a message
MessageBox.Show("The classes word is : " + m_strWordToDisplay, "Super
Class Message", MessageBoxButtons.OK);

}
}

Figure 15.8

Here is the super class creation.

Here is the subclass creation.

Notice that the super class is never instantiated in the form, instead, it is automat-
ically instantiated when the subclass, clsSubClass, is created. The public method
DisplaySuperClassWord is available because it has been inherited. So when the users’
clicking the button execute the event btnDisplaySuperClass_Click, the message box
appears with “Hello World from super class” in the text. There are potentially multiple
layers of the super class subclass-subclass depending on the complexity of the object
generalization and specialization. As you start to design your application, object-ori-
ented thinking will help in the class structure hierarchy, as you will begin to understand
how and where to locate methods within the classes. This discipline will reduce code
redundancy because common methods and variables will reside in a super class and be
inherited.

Concepts of Object-Oriented Programming � 345

Polymorphism

Polymorphism is the ability of an object of various types to respond to method call of
the same name and act appropriately. The programmer does not have to know in
advance what kind of object will be used for a given method, the behavior will be deter-
mined by a runtime. This allows the programmer to simply implement a message- pass-
ing to object of various types using a common interface of operations.

Let us consider the collection of objects we call musical instruments. Each one of
these instruments can play musical notes of a certain pitch but will sound very different
from each other when played. The concept is similar here; if we tell the piano to play
middle ‘C’ versus a guitar to play middle ‘C’ the instruction is the same but the result is
quite different. Perhaps in our object model we would have a method call “play” that
accepts a note to play as an argument. Then we would have an object of type piano and
object of type guitar both are of sub class of instrument. We could then invoke a method
called play as follows:

� Piano.play(C)
� Guitar.play(C)

Each of these objects would play the appropriate note using their play method. The sound
would be completely different. As you know, a piano, when played, uses a felt hammer
to strike a set of strings attached to a soundboard, whereas a guitar is plucked on a sin-
gle string on a fret board.

We see this in practice on a computer all the time. When a software program
“plays” a file many things could happen. Perhaps it is a video file that is opening, so
the “open” method will run the video “play” method. If it is an audio file, then the
“open” method will run the audio “play” method. As you can see the software is taking
two different types of media object and applying the appropriate yet different “open”
action to each object.

Encapsulation

Encapsulation, as the word infers, is an object surrounding all of its properties,
methods, and events into a single well-protected package. The protection comes
from the object ability to hide these internal attributes and methods from outside
classes. Outside classes should not be able to manipulate internal attributes, meth-
ods, or events with a protected object. Outside objects can make requests of an
object but it is up to the internal methods of the object to determine whether the
request is appropriate.

An example might be an external class asking our Piano to play a ‘C.’ The external
class didn’t have to study music theory: it just had to ask for the piano to play and the
piano played the note. What would happen if you try to play an ‘H?’ Well if you know
anything about music you would know that musical notes go from A to G; therefore ‘H’
would be inappropriate and the object would protect itself from trying to play an ‘H’
which may be harmful to its health.

Objects

An instance of an object is paramount to understanding why OOP is so important. In
regular structural programming we tend to think in terms of linear programming: An
event happens (like a form button is pushed) and something happens as a result. In OOP

346 � Chapter 15

we begin to think in terms of “I need one of these objects to do some work,’’ so we cre-
ate an instance of the object and let it work for us. The beauty is we can create multiple
instances of the same object to do the same kind of work with different circumstances
(variable setting). The instance will keep track of its own stack of variables independent
of other instances of the same class. Then when we are done with the object we can
destroy it, which removes it from memory.

An object is an instance (member) of a class. In our library checkout system
example, each book would be an object of the Books class, and each client would be an
object of the Clients class. An object consists of one or more data values that define the
object. An object may be, a graphic, a person, a device, a magazine, a book, a tape, a
video clip, a sound clip, or some other data value, depending upon the class of which it
is a member. It is what you, as a programmer, work with in the same manner as you
work with a specific record in a file.

Once an object instance has done the work needed, it can be destroyed, which
allows for memory to be freed, greatly enhancing the performance of the system.
Procedural programs typically completely load the entire program, which takes up all
the resources that the program needs to complete the task; whereas in OOP, objects can
be instantiated and destroyed so computer systems can perform much more complex
operation with smaller impact on the system resources.

Methods

Methods within an object are executable sets for performing object specific operation.
When the instrument plays a note the method “play” is determined by the steps it takes
to play the note. For a piano, the player must push the key on the keyboard to play a par-
ticular note. For a guitar, a guitarist must pluck a particular string and push a freeboard
position to play a particular note.

Developing the solutions for methods in an object follows exactly the same steps
you have been using for procedural programming, since each individual method is a
procedural module. Each method is cohesive, and data are coupled in the same manner
as was done in procedural programming.

Instance versus Static Methods

Whenever a method is created it is typically created as an instance method. This means
that in order for the method to execute, it has to be associated with an object that was
created. For instance:

Let us say you have a class called clsInstruments. This class has a static attribute
for master tuning that is an integer and is set at 440htz that is the standard hertz fre-
quency for the ‘A’ tone. Let us also say you create an instrument called piano but it’s
tuning is slightly off at 441htz because the piano needs to be tuned. And let us add a gui-
tar, also out of tune at 443htz.

Because clsInstruments has static variable called intMasterTune that is set to
440htz by default the programmer can, without creating a specific instrument, see what
the master tuning is for all instruments.

The program can create an instrument; in our case piano and guitar, and set the
tuning of these instruments specifically using the MasterTune property setting. The
piano is set to 441htz and the guitar is set to 443htz.

object
instance of a class

Concepts of Object-Oriented Programming � 347

class clsInstrument
{

// See the static statement
public static string intMasterTune = "440";
private int intTune;

//Property MasterTune
public int MasterTune
{

get
{

return intTune;
}
set
{

intTune = value;
}

}
}

Figure 15.10 Class Declaration: clsInstrument

public partial class StaticVersusInstance : Form
{

public StaticVersusInstance()
{

InitializeComponent();
}

private void StaticVersusInstance_Load(object sender, EventArgs e)
{

// Here is the class itself (clsInstrument)
// Not using a specific instance of the class
this.txtMasterTune.Text = clsInstrument.intMasterTune;

// Here is an instance (piano) of the class
clsInstrument piano = new clsInstrument();
piano.MasterTune = 441;
this.txtPianoTune.Text = piano.MasterTune.ToString();

// Here is an instance (guitar) of the class
clsInstrument guitar = new clsInstrument();
guitar.MasterTune = 443;
this.txtGuitarTune.Text = guitar.MasterTune.ToString();

}
}

Figure 15.11 Class Declaration: StaticVersusInstance

348 � Chapter 15

Here is the result of the program when it runs.

event-driven object-
oriented programming

Figure 15.12 Form: StaticVersusInstance

As you can see all of the tune values text boxes have been filled in with the appro-
priate values.

Graphical User Interface (GUI)

A graphical user interface (GUI) is a computer screen designed for easy interaction
between the user and the computer. Each item on the screen is an object with related
responsibilities. A GUI may be designed using a language such as C++ or an event-
driven language such as Visual Basic or C Sharp. Chapter 17 presents information on
interface design. The graphical user interface is now the standard user interface.

Event-Driven Object-Oriented Programming

Event-driven object-oriented languages have many built-in capabilities to assist in the
development of a GUI. Part of the language includes a relatively easy way to add and
design interactivity tools, such as buttons, menus, input boxes, and so on, along with a
relatively easy method of adding scripts to these tools. Examples of these types of lan-
guages are Visual Basic.Net and C# (C Sharp). These languages have been developed
for object-oriented programming much like C++, the original object-oriented lan-
guage. These languages are easier to learn than an object-oriented language such as
C++; however, they are not as flexible in the development of a solution to a problem.

Event-driven object-oriented programming uses actions or events to trigger the exe-
cution of a set of instructions called a script. A script is another name for a module. The GUI
is designed so that each item on the screen is an object with assigned properties. There are no
programmer-defined classes. The object may be in the form of a button, a graphic, a user
input box, an output box, a pull-down menu, a text box, a video clip, a sound clip, or anything
else that has been placed on the screen. The properties of these objects may be such things as
location on the screen, the name of the object, color, text formats, color palette used, desig-
nation of editable text, size, speed of video or sound, and so on. A script may be attached to
each object. There is an overall program script that designates any actions that refer to the
entire application, such as initializations, beeps of the mouse, or designating global variables
(called public variables). Once the application starts, the user has complete control over the
order of processing through the use of events, the GUI, a pointing device, and a keyboard.

Many languages now support multiple-thread events. This is the concept of more
than one process of code operating at the same time, or asynchronously. Programmers
use these techniques to perform lightweight system tasks or timed events using a system
time to refresh an object status. For example, a user is filling out a form on the screen
that has certain fields that are required based on the values in other fields. The program-
mer may want to display the field list of required fields as a sidebar on the form. In order
for the sidebar to refresh as the user types, the programmer can invoke a timed thread to

graphical user
interface (GUI)

multiple-thread

Concepts of Object-Oriented Programming � 349

event

run every five seconds. The thread would examine the fields the user has filled-in and
update the sidebar display appropriately. The alternative would be to invoke the update
after every AfterUpdate event for each field.

Events

An event is something that happens in the computer. Some typical events are the following:

user-defined event

on mousedown on change
on mouseup before update
on keydown after update
on keyup

Each language has its own set of events. The only time the script for an event is executed is
when the event happens. When a button is clicked, a set of instructions attached to the
clicked object is executed when the mouse button goes down. A different set of instructions
may be executed when the mouse button comes up. When a specific key is depressed or
released, another set of instructions may be executed. In this case, the computer saves the
value of the key. The programmer may use this information in the script. The program is
executed through the use of events, many of which are directed by the user.

User-Defined Events

Many programming languages have the capability of implementing user-defined events.
So in addition to the built-in events described above, a programmer can create an event and
then raise it when needed. This is especially helpful when objects need to communicate to
other objects without depending on them. For example: let’s suppose we created an object
call BookProcess whose purpose was to read book data from a large data file and process the
data one record at a time. Within the looping structure of the read function in the object we
raise an event called BroadcastProgress. When we raise the event, we pass three variables—
one that represents the percentage of completion, one that is the record count, and the last
the current title of the book being processed. The code might look something like this:

public class clsBookProcess
{

public event BroadcastProgressEventHandler BroadcastProgress;
public delegate void BroadcastProgressEventHandler(Int16

intPercentComplete, Int16 intCoutn, string strTitle);

public void ProcessBook()
{

Int16 x = default(Int16);
for (x = 1; x <= 1000; x++)
{

if (BroadcastProgress != null)
{

BroadcastProgress(x, x, "Gone with the wind");
}

}
}

}
}

Figure 15.13 Class Declaration: clsBookProcess

350 � Chapter 15

The form in Figure 15.14 would have code in it to handle the event BroadcastProgress.
In effect, the form is listening to the object doing the processing of the book data and
displaying it to a user so the user can follow the progress of the work being done. That
code would look like the following:

The object gets created:

Dim WithEvents BookProcess As New clsBookProcess

The subfunction handles (listens to) BroadcastProgress:

public partial class ProgressForm : Form
{

public clsBookProcess BookProcess = new clsBookProcess();
public void BookWatcher()
{

//Create the event handler
BookProcess.BroadcastProgress += new

clsBookProcess.BroadcastProgressEventHandler(ListenToBookProcess);
}
private void ListenToBookProcess(Int16 intPercentComplete, Int16
intCount, string strTitle)
{

//consume the event result
this.ProgressBar.Value = intPercentComplete;
this.BookTitle.Text = "Working on record " + intCount + " " +

strTitle;

}
public ProgressForm()
{

InitializeComponent();
}

private void ProgressForm_Load(object sender, EventArgs e)

Figure 15.14 Progress Form

Figure 15.15 Class Declaration: ProgressForm

Concepts of Object-Oriented Programming � 351

Now let’s suppose that you have this same object running the same code in the
middle of the night automatically from a completely different program. The Progress
Form in this new program doesn’t exist. So when the code runs, the BroadcastProgress
event occurs but Progress Form is not listening. For an OOP language this is no prob-
lem. The object is broadcasting that it has done the work, but unless another object is
listening, nothing happens. There is no dependency between the Progress Form and the
BookProcess object—the two objects are not coupled, yet they can interact using user-
defined events.

{
//Start listening to the broadcast of BookProcess
BookWatcher();

}

private void Button1_Click(object sender, EventArgs e)
{

//Start the processing
BookProcess.ProcessBook();

}
}

}

Figure 15.15 Class Declaration: ProgressForm (continued)

Interactivity

When using event-driven languages, interactivity exists between screens or between
the user and the computer. Each screen becomes an entity to be designed and pro-
grammed. Interaction may cause something to happen on the screen, take the user to a
new or a modified screen, stop the program from running, or create a printed document.
This interaction produces a nonlinear application. For example, let’s look at a problem
to calculate the interest of an amount of money over several years. The user has to input
the amount, the interest, and the number of years. In a procedural solution, the program
specifies the order in which the user enters the data and changes may or may not be
allowed without starting over. In an event-driven object-oriented solution, there would
be three user input boxes on the screen. The user may input the data in any order and
change any of the data as necessary. The calculation does not take place until the user
requests the answer through the use of a button—an event.

Interactivity requires that navigational tools be built into the program. These tools
include hot spots, hot objects, time, and different types of buttons such as a back button,
a forward button, a jump button, a menu button, a quit button, and so on. It is very
important to plan navigation carefully. The user needs to navigate through the program
with ease and with as little frustration as possible and must be able to quit at any time.

Summary

Object-oriented programming (OOP) requires a different approach to developing a solu-
tion to a problem.

Classes become the building blocks of an object-oriented solution. Classes are
encapsulated to hold all of the methods, properties, and data.

interactivity

navigational tools

352 � Chapter 15

Classes can inherit from another class, which allow for increased complexity in the
solution as well as program maintainability. Programming languages such as C# come
with ready to use object that can be created, inherited, and destroyed as needed. Remem-
ber a form used, when programming, is a built-in object that has been provided as part
of the software language.

Objects are instances of classes and all hold their own set of methods, properties,
and data. Objects can be created and destroyed as needed and allow the program to most
effectively manage the system resources.

OOP is an event-driven methodology. All of the built-in objects used in program
development have event associated with them, for instance on click for a button object.

Users can define their own events, which can handle various program specific
tasks.

New Terms

class

encapsulation

event

event-driven object
oriented programming

inheritance

instance method

instance of a class

interactivity

multiple thread

object

object-oriented

polymorphism

private Access

property

public Access

static method

user-defined event

Questions

1. What is the relationship between a class and an object in object-oriented pro-
gramming?

2. What is the difference between a procedural solution and an object-oriented solu-
tion to a problem?

3. What is a GUI?

4. Why is a GUI important to the development of solutions to problems today?

5. What is an example of an event?

6. What is the difference between an event and a user-defined event?

7. Describe how a class would inherit functionality from another class.

8. Object Oriented Programming uses classes to:
a. Teach the user how to use the program
b. A way to encapsulate all of the methods, properties, and behaviors within a

module.
c. Allow programmer to build linear code blocks.
d. All of the above

9. The difference between a class and an object is:
a. An object is compiled code and a class is source code
b. An object is an instantiation of a class

c. There is no difference
d. None of the above

10. Inheritance allows the following:
a. Objects to adopt the behavior of another object
b. Allows programmer to reuse code
c. Allows a form to look like another with additional unique fields and/or data.
d. All of the above
e. None of the above

11. Objects can be similar methods that produce different results
a. True
b. False

12. Encapsulation refers to the technique of:
a. Creating a dll in C sharp
b. Protecting the internal methods and properties of an object
c. Writing code that is recursive
d. None of the above

13. The difference between a method and a function is:
a. A method is just pseudocode of a procedure, but a function is the code itself.
b. A method is a term used in OOP, whereas a function is used in procedural

programming.
c. There is no difference.

14. A static method:
a. Cannot change data in the class
b. Does not require an instance of a class
c. Is the typical way methods are created
d. All of the above

15. A user-defined event:
a. Allows a programmer to create her own events that can be raised depending on

other actions within a program.
b. Allows object to communicate without being coupled.
c. Can expand a classes abilities beyond the built-in events
d. All of the above.

Concepts of Object-Oriented Programming � 353

Problems

1. Explain what classes you would use in the solutions to the following problems:
a. A restaurant wants a scheduling system for its employees. The software will

allow the restaurant owner to schedule employees for up to 40 hours in a seven-
day week. The restaurant is open from 6:00 AM to 10:00 PM. The system
should include a check-in and a check-out system for the employees, a printout
of employees’ work hours, and the ability to change hours if necessary.

b. A college computer lab manager wants a system to check in and check out stu-
dents using the lab. The system should include the ability to check a student in
and out of the lab, to check lab materials in and out, to keep track of students’
hours, and to track all materials that are checked out. The system should also
have the ability to determine if a computer is open before allowing the student to
check in.

2. A video store need to track video rentals. I need to track customers, videos and,
rental and late fees.
a. Design the classes you would use to create the application.
b. What methods would be needed for the classes?
c. How would the classes interact with the databases used to store the information?

3. A cruise ship operator need to manage cabin assignments for each cruise. The ship
disembarks every two weeks.
a. What information would the programmer need to know about the ship?
b. Design the class that would represent the ships used by the operator.
c. What information would the programmer need to know about the customer?
d. Design the class that would represent the customer.

354 � Chapter 15

Chapter 16

Object-Oriented Program
Design

Overview

Using UML as a Design Tool
Use Case Diagrams
Class Diagrams
Sequence Diagrams
UML State Machine Diagram
Activity Diagram
Timing Diagram
Communication Diagram
Interaction Overview Diagram
Deployment Diagram
Component Diagram
Composite Structure Diagram
Packaging Diagram
Profile Diagram

Designing an Object-Oriented Application
Enumerations
The Calculator Code

Interface Design
Designing an Event-Driven Object-Oriented Application

Objectives

Design an Object-Oriented application using UML

1. Determine the classes, properties and methods for an Object-Oriented application
2. Understand the advantage of using an Object-Oriented approach
3. Understand the basic rules of Interface Design

355

356 � Chapter 16

Designing object-oriented applications requires somewhat different tools and problem-
solving strategies. Modules become part of object; called methods and interactivity, also
part of an object, become the events that drive the actions of the application. To describe
these object and their interactions new tools need to be explored. Many of the tools used
previously can describe the inner-workings of the methods, but are not as effective in
describing the events, activities and classes. We will be exploring UML (Unified Mod-
eling Language) to describe these types of systems.

Many programmer and analysts use UML to design a solution using an object-
oriented language. It consists of the development of several diagrams describing the
solution. Both methods present ways of helping you design the most efficient solution
to complex problems. Remember that these methods help you design the overall view
of the solution and the way the final program is executed.

Using UML as a Design Tool

Unified Modeling Language (UML) is a relatively new way of model an object-oriented
system. UML was created at Rational Software by Grady Booch, Ivar Jacobson, and Jim
Rumbaugh with other leading methodologists, software vendors, and users. It was adopted
as a modeling standard in 1997 by the Object Management Group (www.omg.org). Like
pseudocode, flowcharts, and hierarchy charts are used to describe linear programming
structures and processes, UML is used to describe object-oriented processes. It uses vari-
ous diagrams to describe the entire system. These diagrams help produce a model of the
problem and lead to a better understanding of the requirements of a problem. Through a
better understanding of a problem, a better solution can be developed using an object-
oriented language. UML has become the industry standard for object-oriented design.

There are three types of UML diagramming classifications, behavioral, interaction
and structural:

1. Behavioral describe the behavior of a process.
a. Use Case diagram: describes the functionality of a system using actors and

their process scenarios.
b. Activity diagram: describes the flow of control within a process or system.
c. UML State Machine diagram: describes the states within a system and the

transitions states.
2. Interaction diagrams describe the interactions between objects.

a. Sequence diagram: describe the object communication sequences.
b. Timing diagram: describe an object interaction that has critical temporal

components.
c. Communication diagram: describes object communication messaging.
d. Interaction overview diagram: Describes an overview of interactions in a

system.
3. Structural diagrams refer to those components that are structural and not

temporal.
a. Deployment diagram: Describes the components used for the implementa-

tion phase of a project.
b. Object diagram: Describes a view of the structure of a modeled system

with a temporal component.
c. Class diagram: Describes the structure of a system with its classes, attrib-

utes and class relationships.

www.omg.org

Object-Oriented Program Design � 357

Book Management

Check In Book

Check Out Book

List Books

Add a Book

Delete A Book

Client
Librarian

Assistant
Librarian

Figure 16.1 Use Case Diagram

d. Component diagram: Describes how the application may be broken up
into different components and the relationship between each component.

e. Composite Structure diagram: Describes the internal structure of a class.
f. Packaging diagram: Describes how the system is split into different

related groupings.
g. Profile diagram: Describes an application or process specifically for a par-

ticular business model or programming language.

Use Case Diagrams

Use case diagrams describe how a system functions from the user’s standpoint. They
present who may use what part of the system. There are basically two parts of a use case
diagram: the actor and the use case. The actor represents the users of the system,
including human and nonhuman entities. The use case describes the services required
by the actor. It is represented by an oval with the service or function written inside.
Lines connecting the actor and the use case indicate communication. The series of use
cases required for this part of the solution are encased in a rectangle with the name of
the system in the top part of the rectangle.

The actors in Figure 16.1 are the librarian, librarian assistant and the client. The
case uses are to add books, delete books, list books, check out books, and check in
books. There may be others, but these are some of the functions of the system. The
client may access only the check-in and checkout case uses. The librarian may access all
case uses. The assistant librarian can add and delete books.

The actors in Figure 16.2 are the librarian and the assistant librarian. The librarian
can add, edit and delete clients whereas the assistant can only add and edit clients.

358 � Chapter 16

Book

Library Employee Address

Client

Title : String
Author : String
Edition : String
CatalogueNumber : Double
ISBN : String
YearOfPublication : String
Category : Enumeration
CurrentClient : int
CurrentStatus : Enumeration

Name : String
EmailAddress : String
PhoneNumber : String
HireDate : Date
Title : String

Name : String
EmailAddress : String
PhoneNumber : String
ClientNumber : int

Street : int
City : int
State : String
PostalCode : string
State : String
County : String

ValidateAddress() : booleanAddClient() : Void
DeleteClient() : Void
EditClient() : void
CheckOutBooks() : Void
CheckInBooks() : Void
ListBooks() : Void
AddBook() : Void
DeleteBook() : Void

CheckOutBook() : Void
CheckInBook() : Void

Uses Books

Lives At

Lives At

Figure 16.3 Class Diagram

Class Diagrams

Class diagrams graphically describe how a class functions. Basically, they describe the
data structure of the solution. They describe the class, their attributes, and their meth-
ods. The diagram is divided into three sections; the topmost contains the name of the
class. The middle section contains a list of attributes (variables) and the bottom section
contains a list of methods used by the class.

Figure 16.3 is a class diagram depicting the Library Book System that shows four
classes and their attributes and methods as well as the relationships between the classes.

Client Management

Add Client

Delete Client

Edit Client

Librarian

Assistant
Librarian

Figure 16.2

Object-Oriented Program Design � 359

/Client

Request A Book

Advise Client To
Book Location

Request Book Check Out

Check Out Book

Locate the Book

Display Book Location

Lookup Book

/Librarian /Computer System /Library

Figure 16.4 Sequence Diagram

The Library Employee describes the Librarian and the Assistant Librarian and the
attributes and methods accessible by the class. The address class is linked to the Library
Employee and the client class as both of these classes have address attributes.

Sequence Diagrams

Sequencing diagrams graphically present the interactivity between objects. The interac-
tions are represented as messages in the diagram. The diagram shows the actions by the
user and the subsequent actions that result between objects. Notice that the user inter-
acts with the system by sending a message of what is to be accomplished to an object.
The object may then send another message to another object to accomplish another task.
The series may include any number of messages. The number of objects that are per-
forming tasks and interacting with other objects also may be unlimited.

See Figure 16.4 for a sequence diagram of various book management sequences.
The client can request a book location from the librarian who then would lookup the
book by using the book list method. Then the librarian can tell the client where the book
is located. The client can then locate the book in the library and finally the client can
checkout the book.

UML State Machine Diagram

A UML State Machine Chart diagram describes what happens to a given value of a class
or object at different points of time as it proceeds through the system. An event is an
activity that sends a message that causes something to happen. The action is the set of
tasks or instructions that is the response to the event.

Activity Diagram

An activity diagram describes the flow of activities. This type of diagram is similar to a
data flow chart. It specifies what happens and when. The major difference is in the sym-
bols used. Because you are representing general activities and not specific instructions,
all activities use a flattened ellipse. You may add decision structures as necessary. The
flow may be from top down or may be from left to right. These UML diagrams illustrate

360 � Chapter 16

how you can design and develop a solution using an object-oriented language. When
you write the various methods, modules, or scripts, you will use the four logic structures
presented in chapters 4–8.

Figure 16.6 describes the activity of a client looking for a book. The description is
very similar to a flowchart.

Timing Diagram

A Timing Diagram is a new diagram type in UML 2.0. It depicts the change in state or
condition of an instance or a role over a period of time. The reason for using a timing
diagram would be to point out critical issue involving time in a process. For instance, in
an online banking scenario the system would want to log-off an individual after a certain
amount of inactivity on the Web site to protect the client. If a user forgot to logout and
someone else accessed the workstation the users banking records would be public and
vulnerable.

Communication Diagram

Communication diagrams are used to show the messaging between objects in the
object-oriented design. I will also show the role of the object in the interaction with
other object as well as the relationship between objects. Communication diagrams
are typically a combination of object taken from Class, Sequence, and Use Case
diagrams.

Figure 16.7 depicts the book check communication messaging and timing. The
numbers next to the message indicate the order of the step taken in the process.

Suggest a different bookCheck Out the book

The book is at the library The book is checked out

Look up the book

Book found in the list

Book not in the list

Enter Search Criteria

Display List of Books

Select Book

Display the book details

Figure 16.6 Activity Diagram

Locate a Book

Select Book from List

Show List of Books Book Not Found

Display Book

Checkout Book

Complete Transaction

Lookup Book

Lookup Books

Enter search criteria
for the book

Figure 16.5 Statechart Diagram

Object-Oriented Program Design � 361

Library Workstation

Web Browser

Jave Applet

Database Server

HTTP

HTTPS

ODBC TCPIP

Library Database

Web Server

Apache http

Java Server

Figure 16.7a Typical Deployment Diagram

Interaction Overview Diagram

Interaction overview diagram represent an overview of all the interaction diagrams in
the system, diagrams are typically represented by nodes in the overview diagram.

Deployment Diagram

A deployment diagram describes the physical deployment of hardware resources as well
as the software components used on the hardware and how they interconnect. Hardware
consists of the workstation or Web server whereas the components would consist of the
Web server software being used, such as Apache or IIS software.

:Client :Check Out Book

:Cashier

:Check in Book

:Book

2.2: Calc Late Fees

1.1: Update Book Location

2.3: Pay Fees

2.1 Add book to Receive

1. Add Book To Order

Figure 16.7 Communication Diagram

362 � Chapter 16

Component Diagram

A component diagram is used to show how various components of a system are con-
nected together to create a larger system. Typically these diagrams are needed when the
system is large in scope, with many different hardware, software and user groups
depending on each system component in order for the entire system to function.
Imagine the complexity of a banking system and all of the inter-related functionality
needed and you could easily see how a component diagram would be useful in depicting
how the system works.

Composite Structure Diagram

A Composite Structure diagram describes the internal structure of a class as well as the
class’s portholes to the outside. I can show the interconnecting variables between
classes or object instances of the classes.

Packaging Diagram

A package in UML Modeling is used to group elements together. All UML elements’
classes, objects, use cases, components etc, can be grouped into a package. Packages
can contain other packages within there structure. A packaging diagram depicts how all
of these packages are group and organized.

Profile Diagram

A Profile diagram describes an application or process specifically for a particular
business model or programming language. This kind of diagram would use lan-
guage and element common to the profile being described. For instance if you were
modeling a vehicle engineering system the diagram would use standard language
used in the industry.

Designing an Object-Oriented Application

When working with an object-oriented language such as C++, there are certain steps
you need to take in the basic design of the application. These steps are as follows:

1. Determine the requirements of the program in terms of input, output, and
needed data requirements. This is accomplished by discussing requirements
with users, a knowledge base of the current system in place (if any), and re-
search.

2. Begin the process of defining the system requirements using Use Case dia-
grams. Use case diagrams are used so the analyst can understand how various
users will interact with the application.

3. Detail each requirement using Activity Diagrams. An activity diagram will
depict the behavior in various scenarios of a method within a class to make
sure the there is a clear understanding of the functionality.

4. Determine the interactivity between classes and between the methods
within the class. This defines the public methods and properties, “port-
holes,” within the class. Determine the classes, including the properties and

Object-Oriented Program Design � 363

Figure 16.8

their attributes, and methods of each class. This includes data classes, built-
in classes such as forms and reports, and any other utility classes needed to
build the application. Once these classes are determined, an inheritance
hierarchy can be created.

5. Repeat the processes and review the scope of your design. Expand scope
where needed and narrow scope to define the basic elements of the project.
This would include instructions to accomplish each method.

A more detailed explanation of these steps follows, including a description of the tools
designed to help develop each step.

Step 1: Determine the requirements of the program in terms of output and needed data
requirements.

From the given information, you will need to determine first what the output require-
ments are and design the user interface. Until you know what output is required and
what the interface screens will look like, it is impossible to continue with an object-
oriented solution. The output requirements will determine needed data to execute the
program.

In our exploration we are going to create a calculator capable of addition, subtrac-
tion, multiplication and division. So to begin we need to define what is need for a user
to enter data, in our case the numbers 0 to 9 and what is needed to perform a mathemat-
ical calculation on the numbers entered, in our case Add, Subtract, Multiply and Divide.
We also need a way of resetting the calculator to start a new calculation as well as a way
to end our application.

See Figures 16.8 and 16.9 for the input and output requirements.

Input Requirements Formats Comments

Clear Method Button On Calculator Form

Clear Current Number Button On Calculator Form

Add Method Button On Calculator Form

Subtract Method Button On Calculator Form

Multiple Method Button On Calculator Form

Divide Method Button On Calculator Form

Numbers 0 to 9 Button On Calculator Form

Figure 16.9 Input/Output Diagram

Output Requirements Formats Comments

Calculation result Textbox On Calculator Form

Number Entered Textbox On Calculator Form

364 � Chapter 16

Step 2: Begin the process of defining the system requirements using Use Case diagrams
for using the calculator.

A Use Case Diagram is a UML diagram to describe how a user will interact with the
system. It will attempt to present all of the possible ways a user might interact with the
system as presented. Certain users will be able to interact with the system differently
than other users depending on their role in the system.

Figure 16.10 is a simple Use Case for our calculator user. Our user can enter and
number, enter an arithmetic operator, clear the result and start over.

In a large project there would be numerous use cases to be considered.

Step 3: Detail each requirement using Activity Diagrams.

An Activity Diagram will detail the behavior of a functional requirement. This
would include various scenarios depending on the current state of the data in the
application.

Figure 16.11 describes one of the activities required for our calculator project. The
user is entering a number between 0 and 9. If the display is showing the result of a pre-
vious result the program must clear that result. Secondly, if the number being entered is
not the first digit set the digit position and put the number in the proper position. In other
words, if the user pushes the “1” button then the “2” button the number should end up
being “12.” So we would need to move the “1” over to the second digit and put the “2”
in the first digit position.

Step 4: Create a class interactivity diagram.

The purpose of the class diagram is to describe the class in the project model. The dia-
gram will show the attributes, methods and the interactivity with other classes.
Remember, the diagram is divided into three sections; the topmost contains the name of
the class, the middle section contains a list of attributes (variables) and the bottom sec-
tion contains a list of methods used by the class.

Enter a Number

Enter Math Operator

Enter Equal

Enter Clear

User

Figure 16.10 Calculator Use Case

Object-Oriented Program Design � 365

The first class is a built-in class of type Form. This class contains three user attrib-
utes: CurrentAmount as a double (floating point number), ArithmeticOperations an
instance of the class clsArithmeticOperations and beginNumber a Boolean variable
used as a flag. It also contains three private methods: Calculate, AssembleNumber, and
ClearAll.

The second class is the clsArithmeticOperations class that is used to perform the
mathematic for the calculator. It contains two public and one private attribute.
ArithmeticOperator is a public attribute used by the form to set the mathematical
operation that is going to be performed. The private variable dblCurrentResult is used
to store the most recent result of the mathematical operations. Finally bolClearSet is
used to tell the class we are done with the current calculation and are ready to begin a
new calculation.

Calculator Form

CurrentAmount : Double
calc : clsArithmeticOperations
BeginNumber : Boolean

Calculate() : Void
AssembleNumber() : Void
ClearAll() : void

Process Arithmetic Operation

ArithmeticOperator : ArithmeticOperator
dblCurrentResult : Double
bolClearSet : Boolean

CalcResult() : Double
ClearResult() : Null
CalculateResult() : Double

Enumerations

Enum_ArithmeticOperations : Int

Enum_ArithmeticOperations Values :
Add
Subtract
Multiply
Divide

Figure 16.12 Describes Three Classes.

Enter a Number (0–9)

Previous Result Exists

Previous Number Enter

Clear result

Add number to proper digit

Display Number

Figure 16.11 Calculator Activity Case

366 � Chapter 16

The last class, clsEnumerations, is a class used to enumerate the possible choice
used for mathematical operation as follows: add, subtract, multiply, divide.

Enumerations

An enumeration consists of a set of named integer constants. It is used make code
more readable. In our case we create a list of mathematical operations: add, subtract,
multiply, divide. When we need to pass the operation to the class we can just refer to
one of the enumerate values in the set. This makes code more readable and well as
limits the programmer to only valid choice for the operations.

Step 5: Repeat the processes and review the scope of your design.

In this step we will begin to define individual processes for our design. This could
include adding more Use-Case, Activity and Class Diagrams as we begin to fully
describe the system. We may also need to review our scope to make sure we have
throughout the entire system. Perhaps when we did a use-case study we discovered
our calculator application has to perform square-root functionality for a particular
group of users. Or we need to add some other functionality to make it more com-
petitive in the marketplace. Remember that the design phase is meant to bring out
all of the possibilities for discussion and then scope can be defined depending on
whatever factors are involved; like time constraint, budget, expertise, and so on.

The Calculator Code

Our first object is a built-in object called Calculator in our class diagram. In C sharp we
declare the object as public class Calculator : Form. This class is inhereting the built-in
class of type Form.

Figure 16.13 is the creation of our built-in Form class called Calculator and it also
shows the creation of three private variables,

1. calc that is an invocation of the class clsArithmeticOperations.
2. beginNumber that is a Boolean defaulting to true when the form is

created.
3. dblDisplayNumber that is a double used for local storage of the current num-

ber and results of calculations.

Figure 16.14 depicts the Calculator form. The blue rectangle is a text box and is
named txtResult. It is used to show and hold the current number being entered as well as
the result returned from a mathematical operation.

public class Calculator : Form
{

//Private variables
clsArithmeticOperations calc = new clsArithmeticOperations();
private bool beginNumber = true;
private double dblDisplayNumber;

Figure 16.13 Form Declaration

Object-Oriented Program Design � 367

Figure 16.15 shows one of the private methods used by the form. This method
receives on parameter called ArithmeticOperation. It is of type ArithmeticOperator that
is defined in the enumeration class. As noted above we are using an internal private vari-
able called dblDisplayNumber to hold the current values. In this method, we are invok-
ing the object called calc that was created when the Calculator Form was created (see
Figure 16.15). The calc class calls the public method CalcResult. We pass the variable
dblDisplayName and the ArithmeticOperation to the calc. CalResult method. These are
required parameters. The method returns the result (the answer) to a private variable call
dblresult. Once the result has been calculated we update the local variable,
dblDisplayNumber, to the result and call the private method, DisplayNumber, to update
the textbox on the form.

Figure 16.16 depicts the call to the calculate method using the click event of the
plus sign button, sending in the Add enumeration to the calculate method. Each
mathematical button contains a similar call with the appropriate enumeration in the
calling parameter.

//Private Methods
private void calculate(ArithmeticOperator ArithmeticOperation)
{

double dblresult;
dblresult = this.calc.CalcResult(dblDisplayNumber, ArithmeticOperation);
dblDisplayNumber = dblresult;
beginNumber = true;

//Display the result
DisplayNumber();

}

Figure 16.15 Calculate Code

Figure 16.14 Form Layout

368 � Chapter 16

Figure 16.17 implements the activity diagram described in Figure 16.4.
As you recall if the user is entering a number between 0 and 9 and the display is

showing the result of a previous result the program must clear that result. So if
beginNumber is true then the previous result is being shown simply overwrite the value
in dblDisplayNumber with the current value that was passed into the method.

Secondly, if the number being entered is not the first digit set the digit position and
put the number in the proper position. This is accomplished by converting the double to
a string. The when you use the + operator in C# it will concatenate the string and NOT
add the values together. In other words “12” + “1” = “121” and NOT 12 + 1 = 13. Once
you have done the string manipulation we will convert back to a double and invoke the
DisplayNumber() method to display the number in the textbox on the calculator.

Figure 16.18 depicts the call from the button1 click event. So when the user
presses the button using the mouse then it calls AssembleNumber and passes a “1” into
the method. There are similar methods for each number button.

private void buttonPlus_Click(object sender, EventArgs e)
{

calculate(ArithmeticOperator.Add);
}

Figure 16.16 Plus Button Click Event Code

//Number button click methods
private void button1_Click(object sender, EventArgs e)
{

AssembleNumber(1);
}

Figure 16.18 Number Button Click Code

private void AssembleNumber(double value)
{

if (beginNumber = true)
{

dblDisplayNumber = value;
beginNumber = false;

}
else
{

//We need to treat this number as a string to concatinate
//then convert back to a double
string strDisplayNumber = Convert.ToString(dblDisplayNumber) +

Convert.ToString(value);
dblDisplayNumber = Convert.ToDouble(strDisplayNumber);

}
//Display the number in the textbox
DisplayNumber();

}

Figure 16.17 Assemble Number Code

Object-Oriented Program Design � 369

Our next object from our class interactivity diagram (Figure 16.5) is the class
called clsArithmeticOperations. Its primary function is to calculate the mathematical
result of two numbers.

Figure 16.19 shows the class declaration, the private variables and two public
properties. These public properties are described in the class interactivity diagram as:

1. ArithmeticOperator is of type ArithmeticOperator that is an enumeration of
the mathematical operations allowed by the program. Notice the private vari-
able named Arithmeticoperator is spelled the same but the case is different.
This is acceptable in C.

2. Clear is a Boolean value that represents the state of the class. If the class is in
a Clear state then it is ready for a new mathematical operation.

class clsArithmeticOperations
{

// Here are the private variables use internally
private ArithmeticOperator arithmeticoperator;
private double dblCurrentResult;
private bool bolClearSet = true;

// Here is the porthole to the outside
// for setting and getting the arithmetic operator
public ArithmeticOperator ArithmeticOperator
{

get
{

return arithmeticoperator;
}
set
{

arithmeticoperator = value;
}

}
// Here is the porthole to the outside
// for clearing the results
public bool Clear
{

get
{

return bolClearSet;
}
set
{

bolClearSet = value;
}

}

}

Figure 16.19 Class Arithmetic Operations Code

370 � Chapter 16

Figure 16.20 describes the public method called CalcResult. This method is acces-
sible from the Calculator form class and will return the result of the calculation to the
Calculator form. Notice that the method accepts two parameters:

1. Value that is a double of the incoming number from the calculator form.
2. NextArithmeticOperator that is an ArithmeticOperator enumeration.

This method doesn’t actually do any mathematics, it either returns the original
number passed in because it is the first number in the calculation or it calls the pri-
vate method CalculateResult to get the result of the calculation. It also sets the next
mathematical operation so that the class will remember what to do the next time
CalcResult is called. In other words if the user enters 10 *12 then + it will return
120 and set the next operator to addition. So if the user then enters 12 = it will
return 132 (120 + 12) and then clear the calculator since the user pressed the equal
button.

It returns the result in the last line in the method return dblCurrentResult.
Figure 16.21 describes the private method within the class clsArithmeticOperations

that actually performs the mathematics. Since the variable Arithmeticoperator is a local
variable to the class declaration it can use the variable. Remember this variable is an
enumeration that we defined in the Enumeration class. You can see that by using enu-
merations it make this code very readable.

// Here is the porthole to the outside
// for performing the calculation
public double CalcResult(double value,

ArithmeticOperator NextArithmeticOperator)
{

//Let see if the clear falg is set.
//If so then this is the first number is the result
if (this.Clear == true)
{

dblCurrentResult = value;
this.Clear = false;

}
// The clear is not set
// Lets calculate the result of the dblCurrentResult and
// the incoming value from the form.

else
{

this.Clear = false;
dblCurrentResult = CalculateResult(value);

}
// Set the operator for the next time we send a number.
this.ArithmeticOperator = NextArithmeticOperator;
// Return the result (the answer)
return dblCurrentResult;

}

Figure 16.20 CalcResult Code

Object-Oriented Program Design � 371

Figure 16.15 shows the declaration of the static class enumerations and the public
enumeration called ArithmeticOperator.

private double CalculateResult(double value)
{

switch (arithmeticoperator)
{

case ArithmeticOperator.Add:
return dblCurrentResult + value;

case ArithmeticOperator.Subtract:
return dblCurrentResult - value;

case ArithmeticOperator.Multiply:
return dblCurrentResult * value;

case ArithmeticOperator.Divide:
return dblCurrentResult / value;

}
}

Figure 16.21 Calculate Result Code

static class clsEnumerations
{

public enum ArithmeticOperator
{

Add,
Subtract,
Multiply,
Divide

}

}

Figure 16.22 Enumeration Code

Interface Design

A graphical user interface (GUI) is usually developed when creating an application that
requires a user to interface with the application.

The success of an application many times depends on the GUI design. There are
five very basic rules you must follow when developing an interface design.

Rule I: Never lose sight of the purpose or the message. The problem should have a pur-
pose. Never lose sight of that purpose. Interface screens should be designed with this
purpose in mind. The use of appropriate artwork, video clips, and sound clips ensures
the enhancement of the message. If an appropriate object cannot be found, leave it out.
If you are designing an interface that introduces Alaska and you can find only palm
trees, leave out the trees. Consider finding something else that is appropriate, such as
a bear or a seal.

372 � Chapter 16

Rule 2: Keep it simple. With so many choices of clip art, photo clips, video clips, and
other artwork available, it is easy to overdo the amount of material on the screen. The
message is always the key to a successful application. If the message is lost in the glitz
of other material on the screen, the application is a failure. Text should be kept at a min-
imum. People will not read a lot of text on a screen, even in a scroll bar text box. To
increase readability, spread the text over several screens instead of cramming everything
on one screen. In our complex world, many times simplicity is a welcomed format.

Rule 3: Be consistent. Consistent does not mean constant. Screens should have the same
look and feel throughout the application, but should not be boring. Subtle changes can
be very attractive and eye catching. Different screens should use the same or look-alike
fonts. A font is the typeface of the text. Fonts vary greatly in appearance. There are for-
mal fonts, informal fonts, text fonts, title fonts, and so on. You want to choose your font
carefully in conjunction with the purpose of the application. You would not want to use
a different set of fonts on each screen or within the same screen. The user will get frus-
trated. Also, be consistent with colors. Develop a color scheme and use it throughout the
application. Change the colors only when the change enhances the message. Many appli-
cation development platforms provide for the use of style sheets. Using styles will
greatly enhance the look and feel of the system and will be much more efficient use of
development time. It is very common for developers design an application so that the
user can create they own personal look of the application.

Rule 4: Design the navigation with the user in mind. A program must be easy to navi-
gate. The width and breadth of the menus must be taken into consideration. A “bread-
crumb” system can be used to show the user where she is within the system and allow
her to retreat to previous screens. The ability to get back to the Main Menu or Home as
well as Exit should be available from any screen within the system.

Rule 5: Understand when you can break the rules. Rules can be broken, but only for good
reasons. If you break one of the first three rules, make sure the message has been
enhanced and interest in the topic has been increased.

These rules allow the designer to create a functional, user-friendly interface. This
is important, as a user will be more satisfied with a well-designed interface. The appli-
cation should have a visual style that is consistent with the purpose of the project. If the
project is formal, the style should be formal. The fonts should be traditional fonts, the
artwork should be serious and in conjunction with the theme of the project. If the pro-
ject is informal, then more fun fonts can be used and the artwork can include some car-
toons. However, even in the most formal project, a moment of levity many times is
appreciated.

Designing an Event-Driven Object-Oriented Application

In Chapter 3, we learned some of the guideline for planning a solution to a problem.
These can be expanded upon using some of the tools described earlier in this chapter.

1. Analyze the problem.
a. UML Use Case diagrams

2. Develop an Interactivity Chart
a. UML Activity diagram
b. UML Class and Object diagrams

3. Develop an IPO Chart
a. UML Use Case Diagram

Object-Oriented Program Design � 373

4. Write the algorithms
a. UML Interaction and Behavioral diagrams

5. Create flowcharts
a. UML Activity diagram

6. Document!

All of these processes are relevant to the creation of an object-oriented event dri-
ven solution. In addition to these steps the following steps should be used in order to
create an OO Solution.

The steps to create an event-driven object-oriented project are as follows:

1. Define the audience and the environment.
2. Create the Storyboards.
3. Define all objects.
4. Define the interactivity between screens.
5. Define the scripts.

Development platforms contain built-in object for building applications. In
Figure 16.23 are some of the common GUI components (objects) that are used when
developing an application.

Figure 16.23 Common Objects

Object Description

Textbox The textbox is used for user input. It is typically linked to an
underlying data property that will be saved.

Label Labels are used to identify a corresponding object’s purpose. In our
example we label the textbox with “Enter Name:” to tell the user the
purpose of the textbox. Labels are also properties of objects, such as
the button object that has “Cancel” and “Submit” as label there
respective label properties.

Combobox The combobox is like a textbox but it contains a dropdown list of
predetermined choices. This is frequently used to pick a State when
filling in address information.

Datetime Picker This is a specialty object for collecting dates and/or times. It will
display a calendar when the dropdown is invoked.

Optionbox An optionbox is used to present choices typically when only ONE
choice can be entered. In our example “Member” or “Guest” can be
picked but NOT both.

Tab Control A tab control is used to increase the form’s real estate by presenting
information under various tabs. The use can pick a tab at the top of
the control to display different pages of information.

Checkedbox List A checkedbox List is a listing with a box on the left (or right) that is
used to select multiple data. In our example the categories of interest
in the library.

Button The button is used to invoke an event. In our case submitting the
information or canceling the input.

374 � Chapter 16

The Steps to Create an Event-Driven Object-Oriented Project

Step 1: Define the audience and the environment. In addition to the problem definition
as part of the problem-solving steps as described in Chapter 1, the audience and the envi-
ronment in which the project will be viewed must also be defined. The audience needs
to be defined in terms of size, age, and knowledge. In general, the larger the audience,
the fewer the objects on the screen. More text and more objects can be placed on the
screen if the viewer is sitting directly in front of the monitor as opposed to a situation in
which the viewer is part of a 500-person audience. Terminology and graphics differ
according to age and knowledge of the subject. Buzzwords may be used if the audience
is knowledgeable, but should not be used for an audience with minimal subject knowl-
edge. The environment in which the project will be viewed is also important to analyze.
Questions that need to be answered include what hardware and software will be used?
What types of equipment are required? And what is the viewing area? Audience and
environment analysis can make the difference between a successful project and one that
is unsuccessful. The audience using the library checkout system would be the librarian
on duty. She would know about the library and about the system; therefore, the interface
can be simple, and buzzwords may be used. Only one person at a time will be using the
system; therefore, more information may be placed on the screen. The environment will
be the library; therefore, the equipment needs to be quiet-no sound and a very quiet
printer if needed. The system needs to be networked to the main computer files and needs
to be dedicated to the library checkout system during all hours that the library is open.

Step 2: Create the Storyboards. Storyboards define what is placed on the screens and the
order of development of the screens. Figure 16.25 shows a storyboard for the main screen
in the library checkout system. In the box, the developer sketches the objects to be placed
on the screen. Fine detail is not necessary, but all objects should be placed in enough detail

Figure 16.24 Common Built-in Object

Object-Oriented Program Design � 375

Figure 16.26 Storyboard Add/Edit Screen

so the programmer can use this document as a plan to start the computerization of the appli-
cation. The lines allow for notes on the screen, such as interactivity guidelines, object
sources, animation effects, and so on. Each storyboard should have a reference number.
Storyboards allow the developer to organize data, objects, and ideas.

Figure 16.25 Storyboard Main Screen

376 � Chapter 16

Step 3: Define all objects. Screens are made up of objects. These objects may be devel-
oped in the software package, or they may be imported from another source. Just as we
needed a data dictionary when using a procedural language, we need an object dictio-
nary for event-driven object-oriented languages. Figure 16.28 shows an example object
dictionary for the library checkout system. Data that pertain to the object need to be
placed in the object dictionary.

Step 4: Define the interactivity between screens. The next step is to design the interac-
tivity between the screens. The interactivity chart contains the relevant storyboard with
arrows connecting the storyboards together. Figure 16.29 shows all of our storyboards
for the library checkout system. The arrows connect an object on storyboard to another
storyboard. In this example the buttons on the main screen open the other forms so each
button points to the screen it will open. On the list screens the data row in the list points
to the book screen and the client screen to indicate that if the user clicks a row in the list
it will open the add/edit screen for the appropriate list. As you can tell, these interactions
can get complex very quickly. It is a good habit to document these interactions for future
testing and maintenance purposes.

Step 5: Define the script. Scripts are short sets of instructions Written in the language
used by the application, i.e., C++, C# VB.Net. These scripts are procedural in nature
and will either return a result or perform a process. The logic structures presented in
earlier chapters in this text hold true for these scripts. Variables within the object’s
scripts are not made public to external objects; instead, properties are used to set object
level variables. If data is needed from one object to another the return of a public meth-
ods or property must be public in order for the external object to access the data. Once the
storyboards and object dictionary is create the forms and object on the form can be

Figure 16.27 Storyboard Add/Delete Clients

Object-Oriented Program Design � 377

created. Figure 16.30 depicts the add/edit book storyboard created earlier in Figure
16.26. As you can see, it looks similar to the storyboard in design.

Once the form and its object have been created the scripts for the form can be writ-
ten. In Figure 16.31 is a sample of the Book Id Leave event that was described in the
object dictionary.

Object-oriented programming has become the standard practice for newly created
software applications. It has been recognized in the industry as the best way to handle
large complex application requirements because it breaks down the solution into many
smaller subsets that can be managed by objects within the application. Much like people
having different specific jobs in an organization, objects also perform different tasks
with an application.

Figure 16.28 Object Dictionary

Object Name Type Screen Name Event Script

Add/Delete Book Button Main Screen Click OpenAddBookScreen()

Add/Delete Client Button Main Screen Click OpenAddClientScreen()

List Book Button Main Screen Click OpenListBookScreen()

List Client Button Main Screen Click OpenListClientScreen()

Exit Button Main Screen Click ExitApplication()

Title Label Main Screen None

Book Id Text Box Add/Edit Book Leave CheckDuplicate()

ISBN# Text Box Add/Edit Book Leave ValidateISBN()

Author Text Box Add/Edit Book None

Edition Text Box Add/Edit Book None

Location Text Box Add/Edit Book OnExit ValidateLocation()

Front Cover Image Add/Edit Book None

Add Button Add/Edit Book Click AddBook()

Delete Button Add/Edit Book Click DeleteBook()

Cancel Button Add/Edit Book Click Cancel()

Client ID Text Box Add/Edit Book OnExit CheckDuplicateClient()

Address Text Box Add/Edit Book None

City Text Box Add/Edit Book None

State Text Box Add/Edit Book OnExit ValidateState()

Zip Text Box Add/Edit Book None

Add Button Add/Edit Client Click AddClient()

Delete Button Add/Edit Client Click DeleteClient()

Cancel Button Add/Edit Client Click CancelClient()

378 � Chapter 16

Figure 16.29 Storyboard Interactivity

Procedural programming is still prevalent in many industries and still has its place
within object-oriented design; however, it is no longer the standard method of application
development. Students should learn “object-oriented” thinking with encapsulated pro-
cedural design. With this knowledge an application can easily be created to solve any
problem at hand.

Object-Oriented Program Design � 379

Figure 16.30 Sample Add/Edit Book Screen

public partial class AddEditBook : Form
{

public AddEditBook()
{

InitializeComponent();
}

private void txtBookID_Leave(object sender, System.EventArgs e)
{

//Insert the call to CheckDuplicate() code here

}

}

Figure 16.31 Sample Script on Book ID Leave Event

Summary

1. Object oriented programming is the industry standard for producing software
application.

2. UML has become the tool for modeling object-oriented processes. It has
many design diagrams that developers and analysts use to describe the prob-
lems to be solved. There are behavioral, Interaction and Structural diagram

380 � Chapter 16

New Terms

activity diagram

behavior diagrams

button

checkedbox List

class diagram

combobox

component diagram

communication diagram

composite Structure
diagram

deployment diagram

datetime Picker

enumeration

graphical user interface

interaction diagrams

interaction overview
diagram

label

object diagram:

object dictionary

optionbox

packaging diagram

sequence diagram

storyboard

structural diagrams

structural diagram

timing diagram

textbox

tab control

UML

use case diagram

UML State Machine
diagram

Questions

1. What is the purpose of the following UML tools?
a. An activity Diagram
b. A Class Diagram
c. A Use Case Diagram

2. What are some activities you might have to do to create a Use Case Diagram?
a. Write a Select Case statement in your module.
b. Tell users how the system is going to work.
c. Interview Users to learn how they do their work.

that have specific purposes in communicating the requirements to create the
application.

3. There are five basic steps to create an object-oriented application: determine
the requirements of the program, defining the system requirements, detail
each requirement, determine the interactivity between classes, and repeat the
processes and review the scope of your design.

4. When creating an application interface there are five basic rules to follow.
Never lose sight of the purpose or the message, keep it simple, be consistent,
design the navigation with the user in mind, and understand when you can
break the rules.

5. When designing an event-driven application follow many of the procedural
guideline learned in the earlier chapters and add five steps for describing the
events and interactions. Define the audience and the environment. Create the
storyboards, define all objects, define the interactivity between screens and
define the scripts.

6. Different development platforms contain their own set of built-in object for
building applications. Programmers must learn how to use these built in
objects.

Object-Oriented Program Design � 381

Problems

1. A restaurant wants a scheduling system for its employees. The software needs to
allow the restaurant owner to schedule employees for up to 40 hours in a seven-day
week. The restaurant is open from 6:00 AM to 10:00 PM. The system should
include a check-in and a checkout system for the employees, a printout of employ-
ees’ work hours, and the ability to change hours if necessary.
a. Design a solution to the following problems using the five steps to design an

object-oriented solution.
b. Create the storyboards for the application with the storyboard interactivity dia-

gram. Be creative!
c. Describe some Use Cases for the application. Create one Use Case Diagram for

the application.

2. A business has four meeting rooms that are used for various meetings. The owner
wants a system to schedule meeting in each room. The system needs to check for

d. Draw a screen of the user fields.
e. None of the above.

3. An object is a:
a. Field
b. Variable
c. Class
d. Category

4. Enumeration is:
a. A way to calculate numbers.
b. A named representation of a set integer constants
c. A code outline tool.
d. None of the above

5. A class diagram describes:
a. Show how the code is written in a class module.
b. Shows an overview of methods, properties and data in a class.
c. Describes the timing of a programs execution.
d. Has a seating chart as part of its drawing.

6. In this statement “dblresult = this.calc.CalcResult(dblDisplayNumber,
ArithmeticOperation)”;
a. dblResult is a variable of type double.
b. calc is an object with a public method called CalcResult.
c. CalcResult has two input parameters.
d. None of the above
e. All of the above

7. Assuming you have created a class called clsMath and it contains one public
method called AddStuff and one private variable called intAnswer:
a. An external class has access to intAnswer.
b. An external class has access to AddStuff
c. An external class has no access to clsMath
d. None of the above

8. What technique from Chapter 16 could be used to develop an application described
in the chapter using storyboards and why would you use it?

382 � Chapter 16

previously schedule meeting and room capacity. Two of the rooms hold 20 people
while the other two hold 40 people.
a. Describe the classes and objects you would use designing this system.
b. Create an UML class diagram for the application.
c. Describe the architecture you would use to deploy this application.

3. An auto parts store needs to manage its inventory of parts. The storeowner wants to
maximize profit by keeping inventories at an optimum level. To do this the software
must know the lead-time, in days, for parts from the warehouse and usage informa-
tion. The software needs to be able to read parts information from the existing
Point-of-Sale (POS) system as well as analyze sales to predict what parts and at
what level to create a reorder point.
a. Create a UML Component diagram with the existing POS system.
b. Create a UML Deployment Diagram for the system integration.

UNIT SIX

INTRODUCTION TO GAME
DEVELOPMENT

Chapter 17: Introduction to Concepts of Game Development Using
Object-Oriented Programming

Chapter 18: Introduction to Assembly Language

This page intentionally left blank

Chapter 17

Introduction to Concepts
of Game Development Using
Object-Oriented Programming

Overview

Game Development

Planning the Game
Game Resources

Steps to Develop a Simple Game

Objectives

When you have finished this chapter, you should be able to:

1. Understand the terminology used in game development.
2. Understand the game development process.

The electronic game industry has grown tremendously in the last ten years. Games are
types of computer software designed to be interactive—with the user making decisions
using the mouse, the keyboard, or joysticks—and have a story line with goals and re-
wards for the user. Games include educational games, games for fun, casino slot machine
games, and games for advertising, to name some categories. Many students plan to make
the game development industry a career.

For the most part, game development uses object-oriented programming tech-
niques and special languages developed especially for the industry. This chapter will
present the basic concepts of game development using object-oriented programming
techniques. However, many people are requesting that games process at a faster rate.
The industry is responding to this request by programming games in assembly lan-
guage. This takes a greater amount of time and is far more tedious to develop; however,
the product does run faster. Chapter 18 will present an introduction to basic concepts of
assembly language programming.

385

386 � Chapter 17

Game Development

Game development can be fun. It is also a lot of work. Planning is essential and may
take more time than the development of the game. You probably will be developing the
game with many other people, so the planning will be done as a group. As one of the
team, you need to be a team player, be able to compromise, and understand that good
group interaction will produce the best game. You also need to understand that members
of the group will have various talents—some may be artists, others programmers, and
others leaders.

Planning the Game

The game developer needs to plan the game before starting to develop it. There are
many things to keep in mind during the planning process. Sketching helps in the plan-
ning stage and the development of the game since then you can start to visualize the
finished product.

1. Players or users are an important consideration when developing computer
games, which game developers need to keep in mind. The intended audience
will affect the plan of the game. Considerations include the age of the users,
the reason to use the game, and the experience of the players.

2. Games need a story line. The story line may be simple—such as a catching a
rabbit before it jumps in a hole—or very complex. You should start with a
simple game then proceed slowly to the complex. Write down the story line,
explaining what will happen in the game from start to finish, including a time-
line showing what will happen during the execution of the game.

3. Players need to make decisions during the execution of the game. You should
include in your plan the types of decisions you want the user to make, keep-
ing in mind that the player needs to be in control, without frustration, given
the audience for which the game is written.

4. Games need resources. These resources will be explained in the next section
of this chapter; however, they include such things as the background, the ob-
jects, and the actions or events. Include with these resources the way they
look, including the textures and the 3-D effect you might want.

5. Games should have a goal, which is how the user finishes the game. This
might be as simple as catching the rabbit or as complex as obtaining a number
of treasures. The goal should include how the user will accomplish this task.
Goals should be attainable for the audience for which the game is written.

6. Users expect rewards as the game progresses. This may include points of
some kind or stockpiling treasures, and it may include a list of top point play-
ers. Again, keep the audience in mind when planning your rewards: A
preschooler may not understand the concept of points.

Once your plan is completed to the best of your ability, then it is time to start the devel-
opment of the game on the computer.

Game development software uses object-oriented programming techniques. Most
of the things presented in this chapter are an extension of Chapters 15 and 16. We will
not be creating a game, only describing the process and the terms used in the game
development industry.

Introduction to Concepts of Game Development Using Object-Oriented Programming � 387

Game Resources

Parts of the Environment

� Objects: Objects are the entities of the game. This includes all of the parts
that you will eventually see on the screen.

� Environment: Environments are where the objects live.
� Sprites: Sprites are animated images used to represent the objects. They

allow the object to do something according to the program of the sprite, such as
walk or bounce.

� Sounds: Sounds are the music or other sounds that act as a background or as
effects. In our modern world sound is necessary in anything on screen, whether
it is a game, an advertisement, or a movie.

� Backgrounds: Backgrounds are the images used to give the environment
dimension and substance.

� Events: Events are the interaction between the player and the game.
� Instances: Instances are the objects in the environment. You may have more

than one instance of an object, such as more than one ball; however, you may
have different sprites attached to the different instances.

When developing a game, you need an environment to define the setting and a back-
ground so the environment has definition. You need to place instances of objects so you
can define the program, such as the grass, the rabbit, a ball, or a wall. Each object needs
a sprite, or animated image, so it can viewed on the screen. Events are defined to make
the object do something or change an action.

Other Types of Resources

� Scripts: Scripts are a set of instructions given to an object or a sprite. These
instructions use the four logic structures to develop the program.

� Timelines: Timelines specify when something will happen.

room
sprite

sound

background

script

Steps to Develop a Simple Game

The ultimate goal of game development is the completed game, and the process to get
there has many steps. The final product needs to be a good game that will sell well and
be enjoyed by users. In this section we will describe the steps to develop a simple game.
The development of a more complex game is similar but expanded.

1. Plan your game carefully. When you are finished planning, your game should
go together smoothly. You may spend more time planning the game than de-
veloping it.

2. Use game development software to complete your game. Many resources
are included in the software, which will eliminate developing some of the
resources on your own. This saves time and energy. When you do create
your own resources, you will want to keep them so you can use them at an-
other time.

3. Create the resources not found in the game development software. These will
include the objects, the sprites, and the music or sounds. You will need to de-
fine the events for your objects.

388 � Chapter 17

4. Create your environment.
5. Give your environment a background. Specify the textures and any images

that will be permanent.
6. Add instances of your object to the environment.
7. Test your game by running the program. Run it first in the debug mode, which

will allow you to correct the program as you go. Then run it normally and
have fun with it.

8. If you are in industry, the next step is to market the product.

Summary

Electronic game development has become a very big industry in the computer world in
the last ten years. Game development uses object-oriented programming techniques.
There are also high-level languages for the purpose of developing games. New termi-
nology has been introduced, such as sprites, scripts, environments, backgrounds, and so
on. Planning is essential to the development of good games. When developing a large
game, a team of people will be the developer since companies need to get the game to
market as soon as possible.

New Terms

background

environment
spritescript

sound

Questions

1. What are the steps to develop a good game?

2. What are some requirements for a person to work as part of a team to develop a
game?

Problems

1. Using a game that you enjoy playing, answer the following questions:
a. What is name of the game?
b. What is its goal?
c. What are the objects?
d. What do the objects do?
e. What does the environment look like?
f. What types of interaction between the player and the computer does this game

use? What type of input devices do you use to play the game?
g. Sketch the environment, including the background.
h. Add the objects and sketch in what they will do.
i. What are the rewards that you receive in this game?

2. Answer the following questions about a simple game you would like to develop:
a. What simple game would you like to develop?
b. What is the goal?

Introduction to Concepts of Game Development Using Object-Oriented Programming � 389

c. What are the objects?
d. What would you like the objects to do?
e. What does the environment look like?
f. What types of interaction between the player and the computer would you like

to see? What type of input devices would you use?
g. Sketch the environment including the background.
h. Add an object and sketch in what it will do.
i. What are the rewards that you would like to implement?

This page intentionally left blank

Chapter 18

Introduction to Assembly
Language

Overview

Assembly Language Versus High-Level Languages

Assembly Language Concepts

Some Basic Assembly Language Instructions

Assembly Language Equivalents to the Four Logic Structures
Sequential Logic Structure
Decision Logic Structure
Loop Logic Structure

Objectives

When you have finished this chapter, you should be able to:

1. Know the difference between developing a solution in assembly language and
high level languages.

2. Recognize some basic assembly language instructions.
3. Develop short solutions using assembly language.

Game players have requested that the games run faster. To accommodate this request, the
game development industry has responded by using assembly language to develop
games for the advanced user. This requires specially trained programmers, takes more
time hence costs more money to develop, and is far more tedious for the developer. How-
ever, as long as the developer has enough financing to complete the development, the
product should make a profit because it will run faster as requested by users. This chap-
ter will present the basic concepts of assembly language.

391

392 � Chapter 18

machine language

assembly language

accumulator

register

Assembly Language Versus High-Level Languages

The computer works with zeros and ones, called machine language. All programming
languages must be translated into these zeros and ones in order for the computer to
process a program. The next step up from machine language is assembly language.
Assembly language is a direct translation from normally a three-letter assembly lan-
guage instruction to a machine language instruction. Once the translation is complete,
assembly language is as fast as if it were written in machine language. The next level up
is high-level languages. The rest of this book is written with high-level languages in
mind. There are two ways a high-level language is translated into machine language.
One is a compiler, which takes the high-level language and changes it permanently into
machine language. After the change has taken place, the machine language instructions
are executed. These machine language instructions are used until the program is com-
piled again. The problem with a compiler is that the translation is not always the most
efficient; however, it is cheaper to use because it takes less time to program a solution to
a problem. Languages such as C++ use a compiler. The second way is an interpreter.
Basic requires an interpreter. In this case, each high-level language instruction is
changed temporarily as the program is executed. Each time the program is executed, the
translation takes place again. Again, the translation is not necessarily the most efficient.
Therefore, if speed is required, efficiency is also required, hence the use of assembly
language is a better selection.

Assembly Language Concepts

Assembly language requires the use of individual instructions. In a high-level language,
the equation is one instruction. In assembly language, this equation requires
three instructions. You need to load the accumulator with B, add C, and then store the
result in A. The accumulator is where any calculations take place. The high-level lan-
guage is easier to write and read; however, with assembly language the programmer has
more control of the efficiency of the solution. Along with the accumulator, the com-
puter uses registers to keep numbers that it may use now or later, saving the time to read
and write to memory. Registers are high-speed temporary holding areas built into the
computer to hold instructions and data needed for the current processing.

Every machine has different machine language codes and uses different registers.
The new computers have a very complex set of assembly language instructions. If you
do any assembly language programming, the first thing you must do is to find out the in-
structions that your machine uses. This set is found in your computer manual, online, or
through the maker of your computer. After you have a list of the instructions, study
them very carefully in order to develop the most efficient program. This chapter will
present some generic assembly language instructions for you to try out.

A = B + C

Some Basic Assembly Language Instructions

Assembly language instructions are formatted with an instruction followed by a parame-
ter, which may be an address or a number, depending upon the instruction. Most assembly
languages today can use two parameters; however, in this chapter we will keep it simple
and use only one. The instructions we will be using are as following. The names of some of
these instructions are probably not the same as in your instruction set, but you will be able
to begin to understand how to use instructions at this level of computer execution.

Introduction to Assembly Language � 393

Instruction Description
LDA X Load the accumulator with the value found in the address

named X
LDN N Load the accumulator with the value of N
ADD X Add the value found in the address named X to the value found

in the accumulator
ADN N Add the value of N to the value found in the accumulator
SUB X Subtract the value found in the address named X from the value

found in the accumulator
SBN N Subtract the value of N from the value found in the

accumulator
MUL X Multiply the value found in the address named X by the value

found in the accumulator
MLN N Multiply the value of N by the value found in the accumulator
DIV X Divide the value found in the address named X by the value

found in the accumulator
DVN N Divide the value of N by the value found in the accumulator
STO X Store the value of the accumulator into address X
JMP X Jump to instruction number X
JPZ X Jump to instruction number X when the accumulator is zero
JPN X Jump to instruction number X when the accumulator is

negative
JPP X Jump to instruction number X when the accumulator is

positive
RD X Store a value from the keyboard into the address X

These are just a few assembly language instructions that we will use in the
next section. The number of instructions varies. The more you know about the set of
assembly language instructions for your computer, the more efficient your program
can be.

Assembly Language Equivalents to the Four
Logic Structures

You have studied the four logic structures in this book. Let’s look as the equivalent
assembly language instructions.

Sequential Logic Structure

To calculate the assembly language instructions are
...........

10 LDA B
11 ADD C
12 ADD D
13 STO A

.........

A = B + C + D,

394 � Chapter 18

Decision Logic Structure

For the decision instruction:
If A = B

Then
C = A + B

Else
C = A – B

The assembly language equivalent is:
...........

24 LDA A
25 SUB B
26 JMZ 31
27 LDA A
28 SUB B
29 STO C
30 JMP 34
31 LDA A
32 ADD B
33 STO C
34

Loop Logic Structure

For the loop logic structure:
A = 5
B = 10
While A < B

Enter D
J = J + D
A = A + 1

WhileEnd
The assembly language instructions would be:

...........
10 LDN 5
11 STO A
12 LDN 10
13 STO B
14 SUB A
15 JPN 25
16 RD D
17 LDA D
18 ADD J
19 STO J
20 LDA A
21 ADN 1
22 STO A
23 LDA B
24 JMP 14
25

The three logic structures are presented here. You can expand on these examples
for other problems. This chapter gives you a brief introduction to assembly language. If
you are interested in learning more, you might want to take an assembly language class.

Introduction to Assembly Language � 395

Summary

Assembly language is used when efficiency is more important than time or money. It is
the next step up from machine language and is hard to use and to read. However, with
the increased needs of the game development industry, speed is the primary goal of the
programs. Every computer has its own set of assembly language instructions. In this
chapter, the instructions are generic. The equivalent assembly language instructions for
the three logic structures are presented.

New Terms

accumulator

assembly language

Questions

1. Compare machine language to assembly language.

2. Compare assembly language to high-level languages.

3. Find the assembly language instruction set for your computer.
a. How do the equivalent instructions for your computer compare to what you

found in this chapter?
b. How many instructions are in your instruction set?
c. Are there terms that you have not heard of before? If so, what are they?

4. Why or why would you not want to program in assembly language?

5. What instructions would you like to have in an assembly language set?

Problems

1. Develop a set of assembly language instructions that are equivalent to the Repeat/Until
instruction.

2. Develop a set of assembly language instructions that are equivalent to the Automatic
Loop instruction.

3. Develop a set of assembly language instructions that store the largest of three numbers,
A, B, and C, into D.

machine language

register

This page intentionally left blank

UNIT SEVEN

FILE PROCESSING

Chapter 19: Sequential-Access File Applications
Chapter 20: Sequential-Access File Updating

This page intentionally left blank

Chapter 19

Sequential-Access File
Applications

Overview

Processing Sequential-Access Files

The Primer Read

Designing Output Reports

Headings and Line Counters

Control-Breaks

Multiple Control-Breaks

Using Indicators for Program Control

Error Handling

Null Files

Objectives

When you have finished this chapter, you should be able to:

1. Design an output record.
2. Develop a solution to process a sequential-access file.
3. Explain the concept of page control, including headings and page breaks.
4. Explain the concept of control breaks.
5. Explain the concept of indicators.
6. Explain the concept of error handling.

Most business computer applications require some type of file processing. In many such
cases reports are generated for managers. These reports greatly aid the company’s man-
agers in making decisions for the present and future well-being of the company. Therefore,
the design of these reports should be well thought out. Some rules for good report design

399

400 � Chapter 19

are presented in this chapter. This chapter presents techniques of processing sequential
files for business applications. Such techniques include page breaks, page headings,
control-breaks, multiple control-breaks, indicators, error handling, and null files.

The solution to be developed in this chapter is for the following problem:

Problem: The vice president in charge of sales for a company needs to know
the company’s total sales during the last period. The sales are made by indi-
vidual salespeople. The output needed is a list of all individual sales and the
total sales for the company. Figure 19.1 illustrates the record data dictionary
and the record layout for this problem.

Figure 19.1 Record Data Dictionary and Record Layout for Company Sales Problem

Record Layout

1

11 8 9 11 12 14 15 17 18 37 38

1

Item Description
Field
Number

File Name: Sales
Record Data Dictionary

2

3

4

5

6

7

8

9

10

11

12

8 String

String

String

String

String

String

String

String

String

String

String

RealSales

CPhone

CZipCode

CState

CCity

CStreet

CName

SName

RN

DN

SN

DateSales Date

Salesperson #

District #

Region #

Salesperson Name

Customer Name

Customer Street

Customer City

Customer State

Customer Zip Code

Customer Phone

Sales Amount

3

3

3

20

20

10

10 2

(xxx)-xxx-xxxx14

10

2

8

Field
LengthField Name Comments

Data
Type

of
Decimals

7

2

8

3

9

4

10

5

11

6

12

57

58

Date

CStreet

SN

CCity

DN

CState

67 68 75 76 77 78 87 88 101 102 111

RN

CZipCode

SName

CPhone

CName

Sales

Last name first

Last name first

MM/DD/YY

Sequential-Access File Applications � 401

Processing
Sequential Files

endoffile (EOF)

Primer Read

Processing Sequential-Access Files

To process the records in a file by sequential access, either the While/WhileEnd or the
Repeat/Until loop is used. The processing is very similar with both of these loop struc-
tures. The While/WhileEnd loop logic structure will be used throughout this chapter and
Chapter 20.

When the user enters file data, a whole record is copied either into the computer’s
working memory or into a buffer memory. In sequential-access record processing, after
a record is read into memory, it is processed and then the next record is read. This se-
quence continues until the computer encounters the EndOfFile (EOF) marker, at which
time the processing stops. The EOF marker is a signal to the computer indicating that
there are no more records in the file. When the EndofFile marker is encountered, a sta-
tus flag, or indicator, is set internally in the computer. This indicator is then tested as a
logical data type function. The function name is EOF(LFN). The value of the
EOF(LFN) function is False until the EndofFile marker is encountered. At this time the
value of the EOF(LFN) becomes True. When the EOF(LFN) function has a value of
True, all processing of records must stop. The EndofFile is encountered during the Read
instruction. The user should not do any processing after the EOF because there are no
more records to be processed. If the EOF marker is processed as a record, the computer
will either return an error, or the last record will be processed twice since no new data
replaced the old. Therefore, within the loop, the Read cannot be the first module to be
processed. It must be processed just before the processing of the condition of the
EOF(LFN); therefore, it has to be the last module processed in the loop. This is the case
when the Read statement actually sets the EOF status flag at the time of the execution of
the Read. However, some languages look ahead for the EOF. In this case, during the ex-
ecution of the Read, the last record to be processed would be read and the status flag set
at the same time. When the language uses the look-ahead method of finding the EOF,
the primer Read is not used, and the Read statement is the first statement in the loop.
This book will present file processing using the primer Read.

The Primer Read

Since the Read must be the last module processed, the computer needs data to process
the first time through the loop. Therefore, there has to be a Read before the loop begins.
This Read is called the primer Read. It primes the loop with data just as a pump is
primed with water. Without this primer Read there would be no data to process the first
time through the loop. If the Read were at the beginning of the loop, the EOF(LFN)
would be processed as a record.

Figure 19.2 shows the Control module algorithm and flowchart for record process-
ing. Notice the primer Read just before the loop. Also, notice the use of the logical EOF
function. The condition to be processed is Not EOF(LFN). The resultant of this condition
is True when the value of the function EOF(LFN) is False, or when the end-of-file flag has
not been encountered. This is because Not False is True. When the EndofFile marker is en-
countered, the value of the function is True. The resultant of the condition, therefore, is
False since Not True is False. The loop condition is read as While Not End of File. The
three modules processed in the loop are the Calc, the Print, and the Read modules. An al-
ternative method is to incorporate these three modules into one module called the Proc
module. The Proc module would then process these three modules. In some languages this
method is preferred because of the syntax of the loop structure.

402 � Chapter 19

Algorithm

SalesControl

1. Process Init

3. While NOT EOF(1)

5. End

4. Process WrapUp

1. Process Calc

2. Process Print

3. Process Read

WhileEnd

* 2. Process Read

Flowchart

Init

Read

Calc

Print

Read

WrapUp

Proc

False

True

*

SalesControl

END

While
NOT EOF(1)

* Usually the
 primer Read is
 part of the Init
 module; however,
 it is put in the
 Control module here
 only to show the
 sequence of actions.

Figure 19.2 The Control Module Showing the Primer Read

Sequential-Access File Applications � 403

Output Reports

page break

Designing Output Reports

Output reports should be designed with the user in mind. When you are working on a
problem solution, you record the information needed on the report in the Required
Results section of the problem analysis chart. Where to place specific information within
a report depends on the user’s needs. The report should be designed so that the user can
glean all the information needed in a matter of minutes. The basic rule for developing
good reports is to plan to print only the information relevant to the person using the
report. Any very important information should be highlighted in some way, so it is eas-
ily spotted. Time is valuable, and the computer is a productivity tool. The report should
increase the productivity of the person for whom it was designed.

Within the report there are different types of lines. Heading lines are found at the
top of the report or at the top of each page. The information found in these lines includes
such items as company name, date and time of the execution of the program, program-
mer name, column headings, page number, manager’s name, and the like. Detail lines
print the specific information for each record in the file. Summary lines print informa-
tion about groups of like records; summary lines are printed during a control-break and
at the end of the report. Exception lines indicate an error in the data of the record.
Exception lines can be either printed as part of the report or as a separate report called
an exceptions report.

Report headings can also include relevant information about the company, such as
its address, the division, the department and so on; the name of the report; the date; and
any other pertinent information, such as the name of the person who will be using the re-
port, the programmer, and so on, which is listed only once on the report. Print this report
heading either on a page by itself or on the top of the first page. On the first page, as on
all succeeding pages, print the column headings. Number all pages at the top, except for
the first page with report headings. Using the Screen Design and Printer Design forms
(Figures C.7 and C.8 in Appendix C), you can design output reports. The design of re-
ports should be accomplished with the help and approval of the user.

The computer screen has 80 columns and from 24 to 26 rows. All of it can be used
for input and output and for communication with the user. The screen design form can
be used to design whatever has to be placed on the screen. Generally, the input and all
inquiries and communication with the user are printed on the screen. Reports are gener-
ally written to the printer. Printers use paper that is normally 66 lines long and anywhere
from 80 to 144 characters wide, although other paper sizes can be used. The printer
form can be used to design the output reports.

Headings and Line Counters

To implement the report design, the programmer designs a few new modules. One is the
ReportHeadings module, which writes the report heading. Another module writes the col-
umn headings. A third processes what needs to be done when one page is full and
another page is to begin, referred to as a page break. This is called a PageBreak module.

The first thing to do is to incorporate each of these modules into the structure
chart. The ReportHeadings and the primer Read are processed by the Init module. The
PageBreak module is executed by the Print module since it is part of the printing
process (see Figure 19.3).

In the Init module, the page number needs to be initialized to one and the report
headings processed. Figure 19.4b shows the algorithm and the flowchart of the Init

404
�

C
hapter 19

SalesControl

Init Calc Print Read WrapUp

PageBreak

ColumnHeadings

Read ReportHeadings

ColumnHeadings

Figure 19.3 Interactivity Chart for Sales Problem

Sequential-Access File Applications � 405

module. The sales file is opened first. Then the sales total is set equal to zero, the maxi-
mum line count (the number of lines to the bottom margin) is set equal to 60, and the
page number is set equal to 1. Next, the primer Read is processed, and finally, the report
headings are written to the printer.

In the Print module, the line count has to be tested to see if the end of the page is
encountered. If it is, then the PageBreak module is executed. Figure 19.4e shows the

Control

Init

While
NOT EOF(1)

Calc

Print

Read

False

True

WrapUp

End

FlowchartAlgorithm

Control Module

1. Process Init

1. Process Calc

2. Process Print

3. Process Read

WhileEnd

4. End

3. Process WrapUp

2. While NOT EOF(1)

Figure 19.4a Algorithm and Flowchart of Control Module for Sales Problem

406 � Chapter 19

Init

Exit

ReportHeadings

Read

PageNo � 1

MaxLineCt
� 60

SalesTotal
� 0

Open 1,
SalesFile

FlowchartAlgorithm

Init

1. Open 1, SalesFile

2. SalesTotal � 0

3. MaxLineCt � 60

4. PageNo � 1

5. Process Read

6. Process ReportHeadings

7. Exit

Figure 19.4b Algorithm and Flowchart of Init Module for Sales Problem

algorithm and the flowchart of the Print module. Every time a line is written to the printer,
it is counted in the line counter (LineCt). In the Print module, before anything can be
written to the printer, the line count must be compared to the maximum line count.
When the line count is greater than or equal to the maximum line count, then the page
break must be processed before the record is written to the printer. If it is not, the record
is written to the printer and one is added to the line count.

Each of the additional modules—the ReportHeadings, the PageHeadings, the
ColumnHeadings, and the PageBreak—must be developed. The ReportHeadings mod-
ule gets the data from the system, prints the lines of the report heading, including the

Sequential-Access File Applications � 407

Read

Exit

ReportHeadings

Write
Report

Headings

Read
Record

Exit

FlowchartAlgorithm

Read

1. Read Record

2. Exit

ReportHeadings

2. Get Date From System

6. Exit

5. Process ColumnHeadings

4. LineCt � 6

3. Write Date

1. Write Report Headings

Get
Date

Write
Date

LineCt � 6

ColumnHeadings

Figure 19.4c Algorithms and Flowcharts of Read and ReportHeadings Modules
for Sales Problem

408 � Chapter 19

ColumnHeadings

Exit

Write
Column

Headings

FlowchartAlgorithm

ColumnHeadings

3. Exit

2. Exit

2. LineCt � LineCt � 3

1. Write Column Headings
 (Including line
 space before and
 after)

Calc

1. SalesTotal �
 SalesTotal � Sales

Calc

Exit

LineCt �
LineCt � 3

SalesTotal �
SalesTotal �

Sales

Figure 19.4d Algorithms and Flowcharts of ColumnHeadings and Calc Modules
for Sales Problem

column headings, and initializes the line counter to the number of lines already used by
the ReportHeadings. See Figure 19.4c to see the order of processing. Notice that the re-
port headings are written first, and then the system date is retrieved and printed, the line
count is initialized to 6, and the column headings are written to the printer.

The page break adds one to the page counter, prints the lines of the page headings,
and reinitializes the line counter to the number of lines used by the page headings. The
PageBreak module also ejects the page, writes the PageHeadings, and processes the
ColumnHeadings module. The PageBreak module is shown in Figure 19.4f. Notice that
the page is ejected first. Next, the page number is incremented, and then the page head-
ings, which include the page number, are written. The line count is set to the number of
lines used by the page headings. Finally, the column headings are written.

The ColumnHeadings module prints the column headings and increments the line
counter by the number of lines the column headings use (see Figure 19.4d). Be sure to

Sequential-Access File Applications � 409

Print

Write
Record

Information

False

True
If

LineCt � �
MaxLineCt

FlowchartAlgorithm

Print

4. Exit

3. LineCt � LineCt � 1

2. Write Record
 Information

1.

Exit

LineCt �
LineCt � 1

PageBreak

If LineCt � � MaxLineCt
Then

Process PageBreak

Figure 19.4e Algorithm and Flowchart of Print Module for Sales Problem

include the spacer lines in the total line count. Spacer lines are lines in which nothing is
printed. These lines allow extra white space for readability.

Keep in mind the function of each module as you analyze what is processed in it.
Figure 19.4a–g shows all the algorithms and flowcharts for the sales problem, including
the headings and the page breaks.

Control-Breaks

Control-breaks are used to give subtotals for a group of similar records. For example,
the requirements for a report might be to list all sales, with totals for each salesperson
and a grand total for the company. The processing must temporarily break and write
each salesperson’s total to the printer before proceeding to the next salesperson.

In order to design a program that processes control-breaks, designate one field,
such as salesperson’s number, as the control field. The file must be previously sorted
using this field. The file must be in order of the salesperson’s number so that each
salesperson’s records will be together in the file. If the file has not been sorted by
salesperson’s number, then the control-break cannot work; that is, the program will
not process totals for each salesperson, much less compile the necessary information
for each.

control-breaks

410 � Chapter 19

Keep the value of the control field of the first record, or the first record after the
control-break occurs, in a holding variable memory location. This holding variable contains
the first value of the control field of each group of records. In the example in Figure 19.5,
the holding variable would be where the initial value of each salesperson’s number is
kept. The variable name used in the example is SNHold, meaning salesperson number
hold value. The value of the field is the same for all records for a salesperson; therefore,
only the first value has to be kept. The salesperson’s number does not change until a new
salesperson is encountered. At that time the control-break is processed and the hold value
is assigned a new value. The value of the control field of each record is compared to the
hold value, and when they are no longer equal, the control-break occurs.

The ControlBreak module processes all instructions that the computer has to fol-
low each time the value of the control field changes. The instructions for the sales exam-
ple stated previously in this chapter would include the following: Print the subtotals, add
the subtotals to the total for the company, set each subtotal to zero, and set the hold

FlowchartAlgorithm

PageBreak

6. Exit

5. Process ColumnHeadings

4. LineCt � 3

3. Write Page Headings
 (including line spacing)

2. PageNo � PageNo � 1

1. Eject Page

Exit

ColumnHeadings

LineCt � 3

Write
PageHeadings

PageBreak

Eject
Page

PageNo �
PageNo � 1

Figure 19.4f Algorithm and Flowchart of PageBreak Module for Sales Problem

Sequential-Access File Applications � 411

value to the value of the new control field. In Figure 19.5, the control break is illustrated.
The salesperson’s total is written to the printer. Next, the line count is incremented
by the number of lines it took to write the totals, including the spacer lines. Next, the
salesperson’s total is added to the company total. Finally, the salesperson’s total is set
back to zero, and the salesperson’s hold value (SNHold) is set equal to the new salesper-
son’s number.

The ControlBreak is the only new module required to process control-breaks.
However, you must make changes in other modules. In the Init module, set the totals to
zero and the hold value to the value of the control field for the first record. In the Calc
module, test for the ControlBreak. That is, test the present value of the control field
against its hold value. When the two values are not equal, the ControlBreak module will
be processed. In the WrapUp module, the control-break will be executed to process the
totals for the last value of the control field.

Notice in Figure 19.5a, the two changes in the Init module are to set the salesper-
son’s total to zero, and the salesperson’s hold value (SNHold) to the first person’s num-
ber. In the Calc module (Figure 19.5b) the hold value is compared to the current
salesperson number. When they are not equal, the record is the first record for the next
salesperson and, therefore, the control-break has to be processed. The other change in
the Calc module is that the salesperson’s total is accumulated instead of the company’s
total. The company’s total is accumulated in the ControlBreak module using the sales-
person’s total. The last change is in the WrapUp module in Figure 19.5d. The last sales-
person’s total must be written to the printer, and the company total must be updated
before the completion of the processing; therefore, the control-break must be processed
as the first instruction in the WrapUp module.

FlowchartAlgorithm

WrapUp

1. Write SalesTotal

2. Close 1

3. Print "Run Completed"

4. Exit

WrapUp

Write
SalesTotal

Close 1

Print
"Run

Completed"

Exit

Figure 19.4g Algorithm and Flowchart of WrapUp Module for Sales Problem

412 � Chapter 19

FlowchartAlgorithm

Init

1. Open 1, Sales

2. SalesTotal � 0

* 3. SalesRepTotal � 0

* 7. SNHold � SN

8. Process Headings

9. Exit

4. MaxLineCt � 60

5. PageNo � 1

6. Process Read

Init

Exit

*

* Additions to solution.
Report

Headings

SNHold
� SN

Read

PageNo
� 1

MaxLineCt
� 60

SalesRepTotal
� 0

SalesTotal
� 0

Open 1,
Sales

Figure 19.5a Revised Init Module to Add Control-Break to Sales Problem

Figure 19.5 shows all of the changes needed in the solution to the sales problem in
order to include the subtotal for each salesperson. A single asterisk indicates where ad-
ditional instructions were placed. The double asterisk indicates instructions that were
changed.

Sequential-Access File Applications � 413

FlowchartAlgorithm

Calc

* 1.

** 2. SalesRepTotal �
 SalesRepTotal
 � Sales

** Changes to solution.

3. Exit

If SNHold �� SN
Then

Process
SalesRep
ControlBreak

Exit

Calc

*

**

* Additions to solution.

SalesRepTotal
� SalesRepTotal

� Sales

SalesRep
ControlBreak

False

True
If

SNHold
�� SN

Figure 19.5b Revised Calc Module to Add Control-Break to Sales Problem

Multiple Control-Breaks

Multiple control-breaks involve subtotals on more than one field. For example, the re-
quirements of a problem might be to find the total sales for each region, for each district
within each region, and for each salesperson within each district. In this case there
would be three control fields—region, district, and salesperson. The file must be sorted
using a concatenation of the fields on which there will be a control-break, starting with
the field that encompasses the largest grouping, and ending with the field that encom-
passes the smallest grouping. This file would be sorted the following way: regions in
order within the company; districts in order within each region; salespersons in order
within each district. The programmer would sort the file on the concatenation (the com-
bining of strings by placing the first in front of the second) of the three fields, with the
largest area of sales first, the second largest second, and the smallest third. In this case,
the file would be ordered by

All instructions processed in a single control-break also would be executed in
each of the control-breaks in a multiple control-break. In the Init module, the pro-
grammer initializes all three totals to zero, and sets the hold values for all three con-
trol fields to the value of the first control field. In the Calc module, all control fields
are tested, moving from largest to smallest. The programmer designs a ControlBreak
module for each control field, with the first instruction a process block for the next
smaller group.

region + district + salesperson.

multiple control-breaks

414 � Chapter 19

Algorithm

SalesRep ControlBreak

1. Write SalesRepTotal

2. LineCt � LineCt � 4

4. SalesRepTotal � 0

3. SalesTotal � SalesTotal
 � SalesRepTotal

5. SNHold � SN

6. Exit

Flowchart

LineCt �
LineCt � 4

SalesRep
ControlBreak

SalesRepTotal
� 0

SalesTotal �
SalesTotal �

SalesRepTotal

SNHold
� SN

Write
SalesRepTotal

Exit

Figure 19.5c New Salesman ControlBreak Module to Add Control-Break to Sales
Problem

Again, using the sales file as an example, whenever the region changes, the district and
the salesperson fields also must change. This sweeping change occurs because there is no
overlap of districts between regions, or of salespersons between districts. The programmer
sets up the solution so that the largest group is processed, which then processes the next
largest group, and so forth, until the smallest group as been processed. Figure 19.6 shows the
interactivity chart of the multiple control break for the sales file discussed in this section.

Figure 19.7 shows the algorithms and flowcharts of a multiple control break for
the sales problem illustrated throughout this chapter. SNHold, DNHold, and RNHold are
the hold values for the salesperson, the district, and the region, respectively. SN, DN,
and RN are the current values of the salesperson’s number, the district number, and the
region number, respectively. Here again, the single asterisk indicates where additional
instructions were placed. The double asterisk indicates instructions that were changed.

Sequential-Access File Applications � 415

FlowchartAlgorithm

WrapUp

5. Exit

4. Print "Run
 Completed"

3. Close 1

2. Write SalesTotal

1. Process SalesRep
 ControlBreak

WrapUp

*

* Additions to solution.

SalesRep
ControlBreak

Write
SalesTotal

Print
"Run

Completed"

Close 1

Exit

Figure 19.5d Revised WrapUp Module to Add Control-Break to Sales Problem

Using Indicators for Program Control

As in other types of processing, programmers can use indicators in record processing to
change the normal course of processing. A printed date of purchase or sales may be re-
quired at the beginning of each page of a report and each time the date changes, but not
with every record. The value of the control field may be printed only when it changes
and at the start of a new page. Indicators are used to signal the computer regarding when
to print the date or the value of the control field. Indicators also are used in data valida-
tion. Data validation is done by checking the data to see that it is correct or within proper
range limits. When the computer finds an error, an indicator is set to True to indicate
that there has been an error. A programmer can then use this error indicator to signal the
computer not to process the record that contains an error.

The sales example can be modified to show how a programmer can use an indica-
tor to print the date of sales at the top of each page, as well as when the date of sales
changes. The programmer sets an indicator to True in both the PageBreak module and
the Read Module to indicate when the date is to be printed. In the Print module, the in-
dicator is tested; when it is on, the date of sales is printed. When it is off, the date of

Indicators

416
�

C
hapter 19

SalesControl

Print

PageBreak

ColumnHeadings

Read WrapUpCalcInit

Read

ColumnHeadings

ReportHeadings
Region

ControlBreak

District
ControlBreak

SalesRep
ControlBreak

SalesRep
ControlBreak

District
ControlBreak

Region
ControlBreak

District
ControlBreak

SalesRep
ControlBreak

SalesRep
ControlBreak

Figure 19.6 Interactivity Chart for Multiple Control-Breaks

Sequential-Access File Applications � 417

PageNo � 1

A

MaxLineCt
� 60

RegionTotal
� 0

DistrictTotal
� 0

SalesRepTotal
� 0

SalesTotal
� 0

Open 1,
Sales

ReportHeadings

RNHold
� RN

DNHold
� DN

SNHold
� SN

Read

AInit

FlowchartAlgorithm

Init

1. Open 1, Sales

2. SalesTotal � 0

3. SalesRepTotal � 0

4. DistrictTotal � 0

5. RegionTotal � 0

6. MaxLineCt � 60

7. PageNo � 1

8. Process Read

9. SNHold � SN

10. DNHold � DN

11. RNHold � RN

12. Process ReportHeadings

13. Exit

*

*

*

*

*

*

*

*

Additions to solution.*

Exit

Figure 19.7a Revised Init Module to Add Multiple Control-Breaks to Sales Problem

418 � Chapter 19

Algorithm

Calc

1. If RNHold �� RN

Then

Then
Process

Process

Continue

3. Exit

2. SalesRepTotal � SalesRepTotal
 � Sales

SalesRepControlBreak

DistrictControlBreak

Then

Else

Else

Else

If DNHold �� DN

If SNHold �� SN

ProcessRegion
ControlBreak

Flowchart

Calc

If
RNHold
�� RN

If
DNHold
�� DN

Region
ControlBreak

District
ControlBreak

If
SNHold
�� SN

SalesRepTotal
� SalesRepTotal

� Sales

Exit

SalesRep
ControlBreak

True

True

False

True

False

False

*
*

* Additions to solution.

Figure 19.7b Revised Calc Module to Add Multiple Control-Breaks to Sales Problem

Sequential-Access File Applications � 419

Algorithm

Region ControlBreak

1. Process DistrictControlBreak

2. Write RegionTotal

3. LineCt � LineCt � 4

4. SalesTotal �
 SalesTotal �
 RegionTotal

5. RegionTotal � 0

6. RNHold � RN

7. Exit

Flowchart

District
ControlBreak

Write
RegionTotal

Region
ControlBreak

Exit

*

*

LineCt �
LineCt � 4

SalesTotal �
SalesTotal �
RegionTotal

RegionTotal
� 0

RNHold
� RN

New module.

Figure 19.7c New Region ControlBreak Module to Add Multiple Control-Breaks to Sales
Problem

420 � Chapter 19

FlowchartAlgorithm

SalesRep
ControlBreak

District
ControlBreakDistrictControlBreak

1. Process SalesRepControlBreak

2. Write DistrictTotal

3. LineCt = LineCt � 4

4. RegionTotal �
 RegionTotal �
 DistrictTotal

5. DistrictTotal � 0

6. DNHold � DN

7. Exit

Write
DistrictTotal

LineCt �
LineCt � 4

RegionTotal �
RegionTotal �

DistrictTotal

DistrictTotal
� 0

DNHold
� DN

Exit

* *

**

* *

* New module.

The SalesRep ControlBreak
now accumulates the district
total instead of the company
total.

Figure 19.7d New District ControlBreak Module to Add Multiple Control-Breaks
to Sales Problem

sales is not printed. Figure 19.8 illustrates the use of indicators in the sales problem used
throughout this chapter.

Error Handling

For data validation (finding errors in the data records), you need a new module to be
processed from the Read module. Data validation is accomplished through the decision
structure. Usually, straight-through logic is used because all data error conditions have

Error Handling

Sequential-Access File Applications � 421

Flowchart

Write
SalesRepTotal

SalesRep
ControlBreak

LineCt �
LineCt � 4

SalesRepTotal
� 0

SNHold
� SN

* This module is new.

Exit

This is
called
rolling over
the totals.

DistrictTotal
� DistrictTotal

� SalesRepTotal

6. Exit

5. SNHold � SN

4. SalesRepTotal � 0

3. DistrictTotal � DistrictTotal
 � SalesRepTotal

2. LineCt � LineCt � 4

1. Write SalesRepTotal

*SalesRep ControlBreak

Algorithm

*

Figure 19.7e Revised Salesman ControlBreak Module to Add Multiple Control-Breaks to
Sales Problem

to be processed in order for the computer to find all errors in the record. The conditions
for data validation are provided to the programmer by the problem. When the computer
finds an error while processing the Error Validation module, a message is written to an
error report, the error indicator is set equal to True, and the processing of the Data
Validation module or Error module is continued. If any errors are found, the record with
errors is not processed, and the next record is read. This results in two reports—the reg-
ular report, which excludes the records with errors, and the error report (sometimes
called an exceptions report), which includes them. For example, a Data Validation or
Error module might check to see that the amount of a check is less than a given amount,
or that an account number is all numbers, or that a name is all letters.

After the computer reads the record in the Read module, it should process the
Error module. In the programming, use a loop structure to read until a good record or an

422 � Chapter 19

Exit

Close 1

Write
SalesTotal

Region
ControlBreak

Print
"Run

Completed"

**

WrapUp

FlowchartAlgorithm

**1. Process RegionControlBreak

5. Exit

4. Print "Run Completed"

3. Close 1

2. Write SalesTotal

WrapUp

** Change to solution.

Figure 19.7f Revised WrapUp Module to Add Multiple Control-Breaks to Sales
Problem

End-OfFile is found. Examples of the Read module and the Error module for the sales
problem are found in Figure 19.9.

Often a large portion of the processing of a record is data validation. It is an
important part of record processing because it helps eliminate problematic and costly
errors.

Null Files

Another problem that arises when you are working with files is how to deal with the
null file, or empty file. If a file is empty the computer prints an error message on the
screen and processing halts. See Figure 19.10 to see the changes a programmer makes in
the Init and the WrapUp modules to accommodate a null file. The Init module is de-
signed so a null file indicator is set to True, an error message is printed, and all process-
ing is skipped, except to close the files in the WrapUp module if an EndOfFile is
encountered after the primer Read.

null file

Sequential-Access File Applications � 423

FlowchartAlgorithm

Init

1. Open 1, Sales

2. SalesTotal � 0

3. SalesRepTotal � 0

4. DistrictTotal � 0

5. RegionTotal � 0

6. MaxLineCt � 60

7. PageNo � 1

8. DateHold � " "

9. Process Read

10. SNHold � SN

11. DNHold � DN

12. RNHold � RN

14. Exit

13. Process ReportHeadings

AInit

Open 1,
Sales

SalesTotal
� 0

SalesRepTotal
� 0

DistrictTotal
� 0

RegionTotal
� 0

MaxLineCt
� 60

PageNo � 1

A

Exit

ReportHeadings

RNHold
� RN

DNHold
� DN

SNHold
� SN

Read

DateHold � " "*

*

Addition to solution.*

Figure 19.8a Modified Init Module to Add the Indicator to the Sales Problem

424 � Chapter 19

Exit

False*

*

DateHold
� Date

DateIndicator
� True

True
If

DateHold ��
Date AND NOT

EOF(1)

Read
Record

ReadRead

1. Read Record

Else

3. Exit

Continue

DateIndicator � True
DateHold � Date

Then

2.

* Additions to solution.

If DateHold �� Date
 AND NOT EOF(1)

Algorithm Flowchart

Figure 19.8b Modified Read Module to Add the Indicator to the Sales Problem

Sequential-Access File Applications � 425

Exit

LineCt �
LineCt � 1

Write
Record

Information

DateIndicator
� False

False

True

False

True

If
DateIndicator

If
LineCt ��
MaxLineCt

*

Write
Date

W/O {CR}

PageBreak

Print

FlowchartAlgorithm

Print

1. If LineCt �� MaxLineCt

2.

Additions to solution.

If Date Indicator

4. LineCt � LineCt � 1

5. Exit

3. Write Record Information

Then

Then
Process PageBreak

Write Date W/O {CR}
DateIndicator
 � False

*

*

Figure 19.8c Modified Print Module to Add the Indicator to the Sales Problem

426 � Chapter 19

Exit

ColumnHeadings

DateIndicator
� True

LineCt
� 3

Write
PageHeadings

*

*

PageNo �
PageNo � 1

EjectPage

PageBreak

FlowchartAlgorithm

PageBreak

1. EjectPage

7. Exit

6. Process ColumnHeadings

5. DateIndicator � True

4. LineCt � 3

3. Write PageHeadings

2. PageNo � PageNo � 1

*

Additions to solution.

Figure 19.8d Modified PageBreak Module to Add the Indicator to the Sales Problem

Sequential-Access File Applications � 427

Exit

DateHold
� Date

False

DateIndicator
� True

True

True

False

Error

ErrorIndicator
� False

Until
ErrorIndicator
� False OR

EOF(1)

If
NOT EOF(1)

AND DateHold
�� Date

Read
Record

Repeat

Read

FlowchartAlgorithm

Read

1. Repeat

2.

3. Exit

If NOT EOF(1) AND

Until ErrorIndicator � False
 OR EOF(1)

Then

DateHold �� Date

DateHold � Date
DateIndicator � True

Read Record
ErrorIndicator � False
Process Error

Figure 19.9a Modified Read Module to Add Data Error Handling to the Sales Problem

428 � Chapter 19

FlowchartAlgorithm

Error

If
NOT EOF(1)

If
�Data� Invalid

False

False
ErrorIndicator

� True

True

True

Write
Error

Message

A

B

Test all required fields

Exit

Repeat for each error check.*

2. Exit

1. If NOT EOF(1)

Error

Then

Then

*

If �Data� Invalid

ErrorIndicator
 � True
Write Error
Message

Figure 19.9b New Error Module to Add Error Handling to the Sales Problem

Sequential-Access File Applications � 429

Algorithm Flowchart

Init A

Open 1,
Sales

DateHold
� " "

ReadSalesTotal
� 0

SalesRepTotal
� 0

If
EOF(1)

True

False

Print
Error

Message

SNHold
� SN

DNHold
� DN

RNHold
� RN

ReportHeadings

Exit

A

PageNo � 1

MaxLineCt
� 60

RegionTotal
� 0

DistrictTotal
� 0

NullIndicator
� True

11. Exit

Else

Then
Print Error
 Message

NullIndicator
� True

SNHold � SN
DNHold � DN
RNHold � RN
Process ReportHeadings

10. If EOF(1)

9. Process Read

8. DateHold � " "

7. PageNo � 1

6. MaxLineCt � 60

5. RegionTotal � 0

4. DistrictTotal � 0

3. SalesRepTotal � 0

2. SalesTotal � 0

1. Open 1, Sales

Init

Figure 19.10a Modified Init Module to Handle a Null File in the Sales Problem

430 � Chapter 19

Exit

Print
"Run

Completed"

Close 1

Write
SalesTotal

Region
ControlBreak

True

FalseIf NOT
NullIndicator

WrapUp

FlowchartAlgorithm

WrapUp

1. If NOT NullIndicator

Then
Process RegionControlBreak

Write SalesTotal

2. Close 1

4. Exit

3. Print "Run Completed"

Figure 19.10b Modified WrapUp Module to Handle a Null File in the Sales
Problem

Summary

The concepts of record processing, including control-breaks, indicators, and data val-
idation, are important to both programming and applications. Control-breaks are im-
portant because many business reports call for subtotals or other intermediate results,
such as the number of customers a salesperson contacted or the number of items in an
inventory.

A good programmer designs output reports with the user in mind. Report headings,
data placement, and general organization are very important.

A programmer handles data errors, null files, or changes in processing with the use
of indicators. A finished solution should be as correct and as foolproof as possible. Data-
entry errors are made often. Even if 99% of entry records are correct, that means there is
still one error in every 100 entries. With thousands of pieces of data entered daily, there
are many errors. Indicators are used anytime the programmer needs to indicate to the
computer that another set of instructions is to be used.

For computer users in business, sequential-access processing techniques such as
those covered in this chapter are keys to productivity.

Sequential-Access File Applications � 431

New Terms

control-break

EndOfFile (EOF)

multiple control-break

null file
page break

Questions

1. Name the items to consider when designing a record. Explain each.

2. What is a page break?

3. What are control-breaks?

4. What is a null file?

5. Why is it important to consider a null file when processing files?

Problems

Using the input records and systems flowcharts developed in Chapter 11, develop a so-
lution for the following problems. Your solution should include a problem analysis
chart, an IPO chart, a data dictionary, an interactivity chart, algorithms and flowcharts
for each module, and an output report design.

1. Develop a solution to calculate the gross pay for the employees of a company. The
input records should include the following: name, address, Social Security number,
pay type rate of pay, and hours worked. The output re-
port should include all input data plus the gross pay.

2. A sales manager wants a program that lists all of the company’s customers accord-
ing to the salesperson assigned to each. She would also like the number of the sales-
person’s customers to be totaled at the end of the list. The name of the salesperson
should be printed only at the top of the page or when the processing encounters a
new salesperson. The input file contains the following data: the customer’s name,
address, telephone number, and the salesperson’s name.

3. Develop a solution for an inventory problem. The input record should include the
following: the inventory number, the department number, the store number, the
item description, the quantity, the wholesale price, the markup percentage, and
the vendor. The output report should include the input data, plus the retail price,
the total value of the item in stock (quantity * price), and the total wholesale and
retail values of the stock for each department and for each store. The company
totals should be printed at the end of the report.

(H = hourly, S = salary),

4. A sales manager would like to be able to track the clients of each of his salespeople.
He would like to know when each customer was last contacted, the outcome of the
contact (not interested, sale made, call back later, no contact made), the sale amount
if a sale was made, and the name and number of the salesperson. He would like the
list of clients to be in chronological order according to the last contact time by
salesperson. He would also like a total of sales per day per salesperson. Develop the
solution to the manager’s problem. In what order should the file be sorted?

What would you have to do if the manager also wanted a client list in alphabetical
order?

432 � Chapter 19

Chapter 20

Sequential-Access File
Updating

Overview

Creating Files

The Master File

Transaction Files

Activity Files

Backup Files

Updating the Master File Using a Transaction File

Putting It All Together

A Useful Alternative Method

Objectives

When you have finished this chapter, you should be able to:

1. Design a solution to update sequential files.
2. Explain the use of a master file.
3. Explain the use of a transaction file.
4. Explain the use of an activity file.
5. Explain the use of a backup file.

Businesses are dynamic, and so are their data-processing requirements. Therefore, the
data files used in business must be easily updated. Chapter 19 explained how to process
a sequential-access file, including data validation, but it did not explain how to update
one. This chapter explains and illustrates the technique for updating a sequential file
using a transaction file.

433

434 � Chapter 20

Updating a file means adding, deleting, or changing records to keep the informa-
tion in the file current.

1. Adding records. When new data are generated, new records have to be added
to a file. When a new employee starts work, data about that person must be
added to the personnel file; when a sale has been made, the data from the
sales receipt must be added to the sales file, and so on.

2. Deleting records. There must be a way to delete obsolete data from a file.
When a record is deleted, the user chooses one of several options about what
to do with it. These options include:
a. The record may be discarded, never to be seen again.
b. The record may be placed in an archival file, so that the information can be

retrieved at a later date, if needed.
c. The record may be placed in an activity file to show when it was deleted.

3. Changing records. Data in a record must be changed from time to time for a
variety of reasons. The data may be incorrect, or they may have changed.
When data have changed, the date and the changes themselves can go into an
activity file for future inquiries.

Files can be processed in two ways. The first method is batch processing, in
which data collected over a period of time are processed all at once without human
intervention. This is the most efficient for the computer because it doesn’t have to wait
for a person to respond. However, it is not as efficient for people since they have to wait
until a batch run is made. Because of the relatively long batch turnaround time, data that
are currently being used are frequently not up to date. The more efficient type of pro-
cessing for people is interactive processing, in which data are entered and updated at
the same time. In this case, the data in the file are as current as the data being entered at
any given time. The person communicating with the computer is interacting with it
through commands or menus.

Since sequential files are processed in order, it is inefficient to update them inter-
actively. Therefore, sequential files are best updated by batch processing. All of the
changes are put into a transaction file, which is a separate file that is periodically used to
update all the files at one time. This update may be done daily, weekly, or as often as
company policies require.

Updating Records

batch processing

interactive processing

Creating Files

Creating Files

You have to create a file before you can use it. That is, you have to design the structure
of the file and communicate it to the computer. This structure includes the layout of the
record and the kind of file—sequential or random access. The files discussed in this
chapter, as well as all other files, are designed by the methods described in Chapter 10.
Use the Record Data Dictionary and Layout Form (Appendix C, Figure C.6) to design
the structure of the record. When you create a file, you designate the fields of each
record and specify the attributes of each field, such as the name of the field, the length
of the field, the data type, and the number of decimals for numeric data. All records
have different data but the same attributes. Then you put together the record layout to
specify the way the record will look.

When you create a new file from an old one, all previous data in the file are
destroyed. Therefore, create a new file over an old one only when it is necessary, and
when you wish to delete the information in the old file.

Sequential-Access File Updating � 435

master file

transaction file

activity files

backup file

The Master File

The master file is the file in which all the data needed for processing are kept current.
Common types of master files include inventory files, payroll files, and mailing list
files. The files used in the sequential-access solutions in Chapter 20 are master data
files. The data are arranged in order of processing, and they are kept in the same order
during processing and after the updates are completed. In this chapter, the terms old
master file and new master file are used. The former means the master file before the
update, and the latter expression refers to the master file after the update.

Transaction Files

Transaction files contain all the data needed to update the master file. You construct a
transaction file by entering records that contain new data for the master file. The entries
are made as new data arise and then are sorted according to the requirements of the master
file. The records in the transaction file must be in the same order as that in the master
file since they will be used to update the master file records sequentially. That is, if the
master file is sorted in account number order, then the transaction file must be sorted in
account number order. Or if the master file is sorted according to the last name, then the
transaction file must be sorted accordingly.

Activity Files

All completed file updates are listed in an activity file (audit trail file). Each time a user
executes the update program, he will append the activity file (add new entries to the end
of the file) to show what has happened to the master file. The activity file is the only file
in a company from which the records are never deleted. It is important because it is the
only file that can tell auditors what has happened to any particular record.

Backup Files

Backup files contain the records as they were before the last file update. It is important
to keep backup files in case something happens to the current master file. Machine or
human errors that destroy part or all of a file are fairly common occurrences. If the cur-
rent master file is destroyed, the user can copy the backup file into the old master file,
rerun the update program with the last transaction file, and then start the processing
again. There are two ways to make a backup file: One is to rename the old master file
(containing the data that existed before the most recent update) as a backup; the other is
to copy a file-old, new, master, transaction, or activity—onto another auxiliary storage
medium, either disk or tape.

Updating the Master File Using a Transaction File

Figure 20.1 shows a generalized systems flowchart to update a sequential-access file.
Figure 20.2 shows a specific solution for updating a file. You design an update solution
by using the loop structure and the decision structure. Be cautious to avoid common
programming errors, such as allowing the addition of a record with a key field that

436 � Chapter 20

already exists. The key field, remember, is the field that has a unique piece of data that
is used to order the master file and the transaction file. This error can be caused by incor-
rectly entering a key in the transaction file. Entering an incorrect key can cause another
error: trying to delete or change a nonexistent record. Therefore, part of the solution
should contain checks so that any transaction records containing such errors are not
used to update the master file but instead are written to an error output report. Check

Old
Master

File
Transaction

File

New
Master

File

Backup
File

Activity
File

Exceptions
Report

Update
Program

Figure 20.1 Systems Flowchart to Update a Sequential-Access File

Sequential-Access File Updating � 437

Else

Else

Else

Else

Else

Then

Then

Then

Then

Then

Then

UpdateFile

1. While NOT EOF(MF) AND NOT EOF(TF)
If MfKey � TfKey

If TCode � "D"

Write AF Record
Read MF Record
Read TF Record

If TCode � "C"

Write AF Record
Process Change
Read TF Record
If MfKey � � TfKey

Write MF Record To HF
Read MF Record

ErrorCode � 2
Process Error
Read TF Record

Process Error

If MfKey � TfKey

Write MF Record To HF
Read MF Record

WhileEnd

Read TF Record

ErrorCode � 1

Read TF Record
Write TF Record To HF
Write AF Record

If TCode � "A"

Figure 20.2a Sequential-File Updating Through a Transaction File—Algorithm

data for errors by using an If/Then/Else instruction. When an error is found, that trans-
action record will not be processed but will be written to the error output record. See
Chapter 20 for more information about error checks.

Note: An alternative solution to the problem of updating a sequential file is presented in
the final section of this chapter and illustrated in Figure 20.4. See the discussion there.

After the data in a transaction record have been used to update the file, a new trans-
action record is read into internal memory. Likewise, after a master file record has been
updated, or found to have no changes, a new master file record is read into internal

438 � Chapter 20

3. Close Files (MF, TF, HF, AF)

4. Replace Backup File With MF

5. Replace MF With HF

6. Exit

WhileEnd

WhileEnd

While NOT EOF(MF)
Else

Else

Then

Write MF Record To HF
Read MF Record

Read TF Record
Process Error
ErrorCode � 2

Then
2. If EOF(MF)

While NOT EOF(TF)
If TCode � "A"

Write AF Record
Write TF Record To HF

Figure 20.2b Sequential-File Updating Through a Transaction File—Algorithm

memory. Through the use of transaction codes—codes that indicate to the computer
what type of transaction is to take place, whether adding the record, deleting the record,
or changing the record—and the comparison of the transaction record to the master file
record, the file is updated record by record.

The master file might contain payroll data, inventory data, or sales data. The tech-
nique of updating is the same for all sequential files and does not depend on the type of
data in a given file. The example in Figure 20.2, therefore, indicates the type of files to
be read in and used rather than using specific data. The following notes explain each of
the steps in Figure 20.2a–d.

Notes for Figure 20.2

Definitions
� MF—old master file
� TF—transaction file
� AF—activity file
� HF—new master file
� TCode—transaction code (a field in the transaction record)

“A”—add a record
“D”—delete a record
“C”—change a record

Sequential-Access File Updating � 439

Flowchart

A

False

False

FalseFalse

False True False True

True

True

True

True

Write
AF

Record
If

TCode
� "C"

Write
MF Record

To HF

Write
AF

Record

Read
MF

Record

Write
AF

Record

Read
TF

Record

Read
TF

Record

Read
MF

Record

Read
TF

Record

Read
MF

Record

Read
TF

Record

Read
TF

Record

2

2

6

5 3

1

4

A

UpdateFile

While
NOT EOF(MF) AND

NOT EOF(TF)

If
MFKey �

TFKey

If
MFKey �

TFKey

If
TCode
� "D"

If
TCode
� "A"

Error

False

True

ErrorCode � 2

Change

ErrorCode � 1

Error
Write

TF Record
To HF

If
MFKey ��

TFKey

Write
MF Record

To HF

Figure 20.2c Sequential-File Updating Through a Transaction File—Flowchart

440 � Chapter 20

False

False

False

False

True

True

True

True

2

7

10 8

9

If
EOF(MF)

While
NOT EOF(MF)

While
NOT EOF(TF)

If
TCode � "A"

Write
MF Record

To HF

Read
MF

Record
ErrorCode � 2

Error

Read
TF

Record

Write
AF

Record

Write
TF Record

To HF

11
Close
Files

MF, TF, HF, AF

Replace
Backup

File With MF

Replace
MF With

HF

Exit

Figure 20.2d Sequential-File Updating Through a Transaction File—Flowchart

Sequential-Access File Updating � 441

� MfKey—master file key field
� TfKey—transaction key field
� ErrorCode—code that indicates an error has been found: A 1 indicates an

attempt to change or delete a nonexistent record; a 2 indicates that a record
with a duplicate key is being added.

The numbers of the notes correspond to the circled numbers in the flowchart.

1. This loop continues as long as there are records in both the old master file and
the transaction file. When the EndOfFile (EOF) of either file is reached, the
processing continues at 7.

2. When the old master file key field is equal to the transaction file key field, the
only two processes that occur are changing or deleting records. When the two
fields are not equal, either the old master file record is to remain the same, or
the transaction file record is added to the master file. There may be many
records that will not have any updates made to them.

3. When the transaction code is equal to “D,” then the information is written to
the activity file, and another master file record and another transaction file
record are read. Since the record was not written to the new master file, it has
been deleted.

4. When the transaction code is equal to “C,” then the information is written to
the activity file, the master record is changed internally in the computer’s
memory (not in external memory), and then the changed master file record is
written to the new master file. Another transaction file record is then read.
This transaction file key is checked against the current master file key. If
they are equal, processing continues without reading in another master file
record. If they are not equal, then no more updating needs to be done to the
current master file record, and another one is read.

5. If the transaction file and master file keys are equal and the transaction code
does not equal either “D” or “C,” then there is an error in the transaction
record. When an error occurs, an error message is written to an error report,
and another transaction record is read.

6. When the master file key is less than the transaction file key, then nothing has
to be done to that record. The master file record is written to the new master
file, and another master file record is read.

7. When the master file key is greater than the transaction file key, then the
transaction file should be added to the master file. When the transaction code
is equal to an “A,” then the information is written to the activity file, the trans-
action record is written to the new master file, and another transaction record
is read. If the master file key is greater than the transaction file key and the
transaction code does not equal “A,” then there is an error in the transaction
record. An error message is then written to the error report, and another trans-
action record is read.

8. When an EOF occurs in either the old master file or the transaction file, the
preceding loop stops, and the program processes the remaining records on
the file that has not encountered an EOF. That is, if the EOF is encountered
on the old master file, then the remaining transaction file records are
processed; if the EOF is encountered on the transaction file, then the remaining
old master file records are processed.

9. The transaction file records are processed until the EOF on the transaction
file has been reached.

442 � Chapter 20

10. The remaining records on the transaction file must be records to be added to the
master file. When the transaction code is equal to “A,” then the information is
written to the activity file, the transaction record is written to the new master
file, and another transaction file record is read. If the transaction code is not
equal to “A,” then there is an error in the transaction file record. When an
error occurs, an error message is written to the error report, and another trans-
action file record is read.

11. The master file records are processed until the EOF on the old master file is
encountered. Since there are no more transactions to be done on the master file,
these records are simply written to the new master file and a new record is read.

12. After the EOF has been encountered on both the old master file and the trans-
action file, all files are closed. Then the data in the backup file are replaced
with the data in the old master file, and the data in the old master file are
replaced with the data in the new master file. It is then ready to be used for the
next update processing.

Putting It All Together

Figure 20.3 demonstrates a complete solution for an update to an inventory file.
The Control module (Figure 20.3b) is very simple: The Init is processed, then the
Update module, and finally the WrapUp module. The Init module of Figure 20.3c
opens the four files and reads the first record in the old master file (the inventory
file) and the transaction file.

The Update module (Figure 20.3d) contains three loops. The first loop continues
as long as there are records in both files. Either the second or third loop completes the
process of updating the inventory file. In the first loop, one module (Equal) is processed
when the transaction file key (TInvNo) is equal to the master file key (InvNo) for the cur-
rent record; another module (NotEqual) is processed when they are not equal. In the
second loop, when the end-of-file has been reached for the old master file, the remain-
ing transaction records should all be add records and are added in the Add module. If the
transaction code is not equal to “A,” then the Error module is processed. In the third
loop, the EndOfFile for the transaction file has been reached and there are no more
updates to the master file. The remaining master file records are copied to the new mas-
ter file in the NoChange module. Either the second or third loop is processed, not both.

In the Equal module (Figure 20.3e), the processes that can take place are to change
the record or to delete the record If
the transaction code equals anything else, it is an error, and the Error1 module is processed.
In the NotEqual module, when the master file key is less than the transaction file key, there
are no updates to that master file record. When it is not less than the transaction file key,
then the transaction code should be an “A” and the transaction record is added to the mas-
ter file. If it is not an “A,” then there is an error, and the Error2 module is processed.

The NoChange module (Figure 20.3f) writes the data to the new master file and reads
the next record from the old master file. The Add module writes the transaction record to the
activity file and the new master file and then reads the next record from the transaction file.

The Error2 module (Figure 20.3g) writes an error message to the output error
report and reads the next transaction file record. If there is an error in the transaction
file, that record should not be processed. The Delete module (Figure 20.3h) writes the
transaction file record to the activity file and reads the next record from the old master
file and the transaction file. The Error1 module writes an error message to the output
error report and reads the next transaction file record.

(transaction code = “D”).(transaction code = “C ”)

Example

Sequential-A
ccess File U

pdating
�

443

UpdateInventory

UpdateInit

NotEqual Equal NoChange Error2 Add

DeleteChangeError1NoChangeAddError2

WrapUp

Figure 20.3a Interactivity Chart for Inventory Problem

444 � Chapter 20

End

WrapUp

Update

Init

Flowchart

UpdateInventory

Algorithm

UpdateInventory

1. Process Init

2. Process Update

3. Process WrapUp

4. End

Figure 20.3b Algorithm and Flowchart for Control Module

Sequential-Access File Updating � 445

FlowchartAlgorithm

Init

1. Open 1, Inventory For
 Input

2. Open 2, Transaction For
 Input

3. Open 3, Activity For
 Append

4. Open 4, Temporary For
 Output

5. Read(1) Record

7. Exit

6. Read(2) Record

Init

Open 1,
Inventory
For Input

Open 2,
Transaction

For Input

Open 3,
Activity

For Append

Open 4,
Temporary
For Output

Read(1)
Record

Read(2)
Record

Exit

Figure 20.3c Algorithm and Flowchart for Init Module

446 � Chapter 20

FlowchartAlgorithm

Update

False

False

True

True

Update

While
NOT EOF(1)

AND NOT
EOF(2)

If
TInvNo�InvNo

EqualNotEqual

False

False True

True

If
EOF(1)

While
NOT EOF(1)

NoChange

Error2 Add

TrueIf
TCode � "A"

True

Exit

While
NOT EOF(2)

1. While NOT EOF(1) AND
 NOT EOF(2)

If TInvNo � InvNo

Then
Process Equal

Process NotEqual

WhileEnd

If EOF(1)

While NOT EOF(2)

If TCode � "A"

Process Add

Process Error2

2.

Then

Then

Else

Else

Else

WhileEnd

WhileEnd

3. Exit

While NOT EOF(1)
Process NoChange

Figure 20.3d Algorithm and Flowchart for Update Module

Sequential-Access File Updating � 447

Then

Then

Else

Else

Then

Then

Else

Else

Exit

AddError2

False

False

True

True

NoChange

If
TCode � "A"

If
InvNo � TInvNo

NotEqual

Flowchart

Equal

If
TCode � "D"

If
TCode � "C"

True

True

False

False

Error1 Change

Exit

Delete

Algorithm

Equal

NotEqual

1. If TCode � "D"

If TCode = "C"

Process Delete

Process Change

Process Error1

2. Exit

2. Exit

Process Add

Process Error2

Process NoChange

If TCode � "A"

1. If InvNo � TInvNo

Figure 20.3e Algorithms and Flowcharts for Equal and NotEqual Modules

448 � Chapter 20

Flowchart

NoChange

Write(4)
Record

Read(1)
Record

Exit

Exit

Read(2)
Record

Write(4)
Record

Write(3)
Record

Add

4. Exit

3. Read(2) Record

2. Write(4) Record

1. Write(3) Record

Add

Algorithm

3. Exit

2. Read(1) Record

1. Write(4) Record

NoChange

Figure 20.3f Algorithms and Flowcharts for NoChange and Add Modules

Sequential-Access File Updating � 449

Flowchart

Error2

Exit

Read(2)
Record

Write
Error

Message
(Nonexistent

InvNo)

Algorithm

3. Exit

2. Read(2) Record

1. Write Error Message
 (Nonexistent InvNo)

Error2

Figure 20.3g Algorithm and Flowchart for Error2 Module

450 � Chapter 20

FlowchartAlgorithm

DeleteDelete

Write(3)
Record

Read(1)
Record

Read(2)
Record

Exit

Exit

Read(2)
Record

2. Read(2) Record

3. Exit

Write
Error

Message
(Duplicate

InvNo)

1. Write Error Message
 (Duplicate InvNo)

Error1Error1

3. Read(2) Record

2. Read(1) Record

1. Write(3) Record

4. Exit

Figure 20.3h Algorithms and Flowcharts for Delete and Error1 Modules

The Change module (Figure 20.3i) is the most involved in that each field must be
checked to see if the data in that field need to be changed. In this solution,

or “ ” (a null field—a field with nothing in it) indicates there is
to be no change in that field. First, the transaction record is written to the activity file.
Then the master file record is changed. The updated master file record is written to the

(transaction code = “D”)

Sequential-Access File Updating � 451

True

False

True

False

True

False

True

False

False

True

FlowchartAlgorithm

Change

Quantity �
TQuantity

Price =
TPrice

Vendor �
TVendor

Markup �
TMarkup

Write(3)
Record

If
TQuantity

�� �1

If
TPrice
<> – 1

If
TMarkup
�� � 1

If
TVendor
�� " "

Read(2)
Record

If
TInvNo ��

InvNo

Exit

Write(4)
Record

Read(1)
Record

Exit

Write(4) Record
Read(1) Record

* " " indicates a null field, which is a field
 with nothing in it.

7.

5.

4.

3.

1.

2.

6. Read(2) Record

If TInvNo �� InvNo

If TMarkup �� � 1

Markup � TMarkup

*

Vendor � TVendor

If TVendor �� " "

If TPrice �� – 1

Price � TPrice

If TQuantity �� � 1

Quantity � TQuantity

Write(3) Record

Change

Figure 20.3i Algorithm and Flowchart for Change Module

new master file. The next transaction file record is read and checked to see if it is still
equal to the master file record. If it is equal, there are more changes to be made to the
master file record; if not, the next master file record is read.

In the WrapUp module (Figure 20.3j), the files are closed, the old master file is
renamed as the backup file, the new master file is renamed as the inventory file, and a
message is printed to the screen that the run is completed.

452 � Chapter 20

Exit

Print
"Run

Completed"

Rename
Temporary File

To Inventory File

Rename
Inventory File
To Backup File

Close 4

Close 3

Close 2

Close 1

WrapUp

FlowchartAlgorithm

WrapUp

1. Close 1

2. Close 2

3. Close 3

4. Close 4

8. Exit

7. Print "Run Completed"

6. Rename Temporary
 File To Inventory File

5. Rename Inventory
 File To Backup File

Figure 20.3j Algorithm and Flowchart for WrapUp Module

A Useful Alternative Method

Figure 20.4 shows an alternative solution to the sequential file update problem. The
main difference between the alternative solutions is how the update is driven. In the
other examples in this chapter, the update is driven by the key. All updates, including
adding records, changing records, and deleting records, are completed at the same time
in key order. In the alternate method, the update is driven by the type of update; that is,

Alternative Method

Sequential-Access File Updating � 453

1. Open TF, AF
2. Read TF Record
3. HCode = TCode
4. While NOT EOF(TF)

Open MF, HF
Read MF Record

Then

Then

If TCode � "A"

If MfKey � TfKey

While NOT EOF(MF) AND NOT EOF(TF) AND TCode = HCode

Then

Then

Then

Then

Then

Then

Else

Process Error1

Else

Else

Read TF Record

If MfKey � TfKey

Else

Write AF Record

Write MF Record To HF

Write MF Record To HF

Else

Else

Else

Else

Else
Read MF Record

Read TF Record

Write MF Record To HF

Write TF Record To HF
Write AF Record

Read MF Record

Read TF Record

If TCode = "D"

If MfKey �

If MfKey � TfKey

If MfKey = TfKey

If MfKey �� TfKey

If MfKey � TfKey

Read MF Record

Read MF Record

Read MF Record

Read TF Record

Read TF Record
Process Error2

Process Change

Then

Read TF Record

Write AF Record

Continue

Write MF Record To HF

Process Errors

Read MF Record

WhileEnd

WhileEnd

WhileEnd

While NOT EOF(MF)
Write MF Record To HF

6. Exit
5. Close File (TF, AF)

Close File (MF, HF)

Replace MF With HF
Replace Backup File With MF

Figure 20.4a Algorithm for Alternative Method of Sequential-Access File Update

454 � Chapter 20

True

False
While

NOT EOF(MF)
AND NOT EOF(TF)

AND TCode �
MCode

C

Read MF
Record

Open MF

True

False
B

D

E

A
While

NOT EOF(TF)

HCode � TCode

Read TF
Record

Open TF

SeqFileUpdate

Figure 20.4b Flowchart for Alternative Method of Sequential-Access File Update

Sequential-Access File Updating � 455

D

False

True

While
NOT EOF(MF)

Write
MF Record

To HF

Read
MF Record

Close
(MF, HF)

Replace
Backup
File With

MF

Replace
MF With

HF

A

B

Exit

Close
(TF, AF)

Figure 20.4c Flowchart for Alternative Method of Sequential-Access File Update

456
�

C
hapter 20

E

C

True

False
Read

MF Record

If
MfKey �� TfKey

Read
TF Record

Read
TF Record

Process
Error 3

If
MfKey � TfKey

If
MfKey � TfKey

If
MfKey � TfKey

If
MfKey � TfKey

If
MfKey � TfKey

If
MfKey � TfKey

TrueFalse

TrueFalse

TrueFalse

TrueFalse

TrueFalse

TrueFalse

TrueFalse

TrueFalse

Read
TF Record

Read
TF Record

Read
TF Record

Read
TF Record

Read
MF Record

Write
MF Record

To HF

Write
MF Record

To HF

Write
MF Record

To HF

Write
MF Record

To HF

Write
TF Record

To HF

Read
MF Record

Read
MF Record

Read
MF Record

Process
Change

Process
Error 2

Write
AF Record

Write
AF Record

Write
AF Record

Process
Error 1

If
TCode � "A"

If
TCode � "D"

Figure 20.4d Flowchart for Alternative Method of Sequential-Access File Update

all adds are completed at one time, as are the deletions and changes. When using the
alternative method, the transaction file must be sorted using the transaction code as the
primary key and the primary key of the master file as the secondary key.

Sequential-Access File Updating � 457

Summary

File updating is an essential part of working with files. The process of updating files
includes adding, deleting, and changing records. Computer users use batch processing to
update sequential files since random processing of sequential records is time-consuming
on the computer. Updating a sequential file involves the following files: a transaction file,
which contains all the updates; an activity file, which contains a record of all processes
completed on the file; a backup file, which is the master file before the last update; a new
master file, the updated master file; and, of course, the old master file, which contains
the records to be updated. Sequential file updating involves updating the master file with
the additions, deletions, and changes listed in the transaction file. After an update is com-
pleted, a new transaction file is created, and after a period of time, the user processes the
master and the transaction files together again.

New Terms

activity file

backup file

batch processing

interactive processing

master file

transaction file

Questions

1. What processes are included in updating a file?

2. State the functions of the following files:
a. old master file
b. transaction file
c. activity file
d. new master file
e. backup file

Problems

1. Develop a solution and data dictionary to update a client file given the following
master and transaction file records. (The master file is in client number order.)

Master File Record

Transaction File Record

client # name telephone address city-state zip code last call amount of last order

client # tcode name telephone address city-state zip code last call amount of last order

2. Develop a solution and data dictionary to update a book file for a library. After each
update is complete, the librarian would like a copy of all new listings. Design the
master file record and the transaction file record. The data in the master file record
should include:
a. reference number
b. author
c. title
d. publisher
e. ISBN
f. copyright date
g. number of copies
h. subject

3. Develop a solution to update the file used in problem 1 in Chapter 20, on page 413.

4. Develop a solution to update the file used in problem 3 in Chapter 20, on page 413

458 � Chapter 20

Unit Seven

Supplementary Exercises

459

Develop a complete solution, including a data dictionary, for the following problems:

1. The financial director of a private school would like a tracking system for the students
at the school.
a. Design the file. The information on the student includes: name, home address and

telephone, age, sex, class status, parent’s name (one parent), dormitory room,
tuition, room fees, board fees, book fees, computer fees, miscellaneous fees, date
of payment on each charge.

b. Design the reports needed:
Student directory
Charges
Outstanding fees
List of students by dormitory
List of students by class

c. Develop a solution using sequential-access files to output the needed reports.
d. Develop an update program.

This page intentionally left blank

461

Appendix A

Otto the Robot

You may be able to understand your own knowledge base and the knowledge base of
others around you without much trouble. You also may be able to modify your solutions
to everyday problems according to these knowledge bases. These knowledge bases are
very broad and varied. However, when you are working with a computer, the knowledge
base is defined for you and tends to be limited. You may not use any other instructions,
actions, or formats. The rules, called syntax, are defined for you. To better understand
this concept, we will move from our everyday problems to a robot called Otto.

Otto the robot has a very limited knowledge base. Otto can sit, stand, add, subtract,
and check some of his systems, among other things. His language or knowledge base is
defined by 15 actions. You must define your solutions to Otto’s problems within the lim-
itations of this knowledge base.

Assumptions

There are usually certain assumptions that need to be made when solving problems, such as
a common language. Other assumptions we will make regarding Otto are as follows:

1. Otto always starts from a sitting position with his hands and arms by his side.
2. Otto must always end his maneuvers in a sitting position. This means you

have to tell him to sit down at the end of your solution.

Simple Actions

Let’s start with a few simple actions in Otto’s knowledge base.

Action 1: Stand up. Otto will stand up from his chair to an upright position.

Action 2: Sit down. Otto will sit down. You must make sure the chair is behind him
or he will sit on the floor.

462 � Appendix A

Action 3: Take step. Otto will take one step forward.

Action 4: Turn right. Otto will turn right 90 degrees.

Problem

With these four actions in Otto’s knowledge base, let’s solve the following problem:
Write a set of numbered step-by-step instructions to make Otto walk three steps forward
and then return and sit in his chair. Use the six problem-solving steps presented in
Chapter 1 to develop the solution.

1. Identify the problem: Make Otto stand up, walk three steps forward, turn
around, walk to his chair, then turn around and sit down.

2. Understand the problem: Do you understand what he is to do? Otto’s knowl-
edge base is limited to his four actions.

3. Alternative solutions:
(a) Stand up, walk three steps forward, turn right 180 degrees and go back

to chair, and sit down.
(b) Stand up, walk three steps forward, turn left 180 degrees and go back

to chair, and sit down.
4. Select the best solution: Solution number one is the best since Otto can only

turn right.
5. Plan the solution by listing the set of instructions (Solution 1):

(a) stand up
(b) take step
(c) take step
(d) take step
(e) turn right
(f) turn right
(g) take step
(h) take step
(i) take step
(j) turn right
(k) turn right
(l) sit down

6. Test solution. Have someone test this solution to see if it works.

There are many instructions in this solution.

Repeat Action

Let’s add another action that will allow us to repeat the same action several times. This
will be the fifth action in Otto’s knowledge base.

Action 5: Repeat—[Action] x times, where x is a given number such as 3, 6, 8, and
so on.

Now, let’s rewrite the instructions in problem-solving Step 5 (Solution 2):
1. stand up (same as Instruction 1 in Solution 1)
2. repeat [take step] 3 times (same as Instructions 2–4 in Solution 1)
3. repeat [turn right] 2 times (same as Instructions 5–6 in Solution 1)

Otto the Robot � 463

4. repeat [take step] 3 times (same as Instructions 7–9 in Solution 1)
5. repeat [turn right] 2 times (same as Instructions 10–11 in Solution 1)
6. sit down (same as Instruction 12 in Solution 1)

We now have 6 numbered instructions that complete the same task as the 12 numbered
instructions did in Solution 1. Will Otto react differently? No, he will do exactly the
same thing. He will stand up, walk three steps forward, turn 180 degrees to the right,
walk back, turn 180 degrees to the right, and sit down. The actual number of actions he
takes is the same. The only difference is that to move forward he will take three steps
with only one instruction instead of requiring three instructions. We can decrease the
number of instructions even further (Solution 3):

1. stand up
2. repeat [[[take step] 3 times, [turn right] 2 times] 2 times]
3. sit down

Note: The double set of brackets used above reflect a technique called nesting. Just as
you might put one basket inside another basket (nested), you are placing repeated
instructions inside another repeated instruction. The inside set of brackets contain
instructions that are executed before the outer set of bracketed instructions.

The number of actual steps and turns Otto takes is the same. You need to decide
which set of instructions is easiest for you to read and write, and the easiest to under-
stand by someone else.

Now let’s add some more actions to Otto’s knowledge base.

Arm Actions

Action 6: Raise arms. Raises arms to a forward position perpendicular to his body.

Action 7: Lower arms. Lowers arms to a position at the side of his body.

Arithmetic Actions

Otto has one memory location that may be changed by one of the following instructions.
This memory location always starts at zero when the execution of the instruction set
begins.

Action 8: Add one. Adds one to the memory location.

Action 9: Subtract one. Subtracts one from the memory location.

Action 10: Set number to zero. Sets memory location to zero.

Conditional Actions

One thing a computer needs is the ability to make a decision given certain data. With
Otto, these tests use his memory location and sensory devices in his fingertips. Otto can
determine when his memory location is zero. He can determine if his hands are touching

464 � Appendix A

something. He can determine if his hands are touching a door because the door has a
different sensory return than anything else. These actions include three tests:

Action 11: Test—Is the number in your memory zero?

Yes, then: (one action for yes answer)

No, else: (one action for no answer)

Action 12: Test—Are you touching anything?

Yes, then: (one action for yes answer)

No, else: (one action for no answer)

Action 13: Test—Are you touching a door?

Yes, then: (one action for yes answer)

No, else: (one action for no answer)

An example of one of these tests would be (let’s say this is Instruction 15):

15. Test: Is the number in your memory zero?

Yes, then: Turn right

No: Take step

Many times there are several actions that need to take place for the yes actions
and/or the no actions, or the action requires jumping to another instruction either after or
before the present instruction. This necessitates a new transfer action.

Transfer Action

Action 14: Goto i, where i is an instruction number, either one or more actions
before or one or more actions after the present instruction. An example would be:

8. Goto 5 or

12. Goto 15

An example of a conditional action using the Goto i action is:

18. Take step.

19. Subtract one.

20. Test: Is your memory zero?

Yes, then: Goto 21

No, then: Goto 18

21. Repeat [turn right] 2 times

22. (Continue with other actions)

One More Action

You will need one more action to complete the exercises at the end of this appendix.

Action 15: Open door. Opens a door; the door will close after Otto walks through
it. There are 15 actions in Otto’s knowledge base. Remember that you must use
these actions and no other ones. Also, remember that each instruction must be

Otto the Robot � 465

written in the proper form as this is the extent of Otto’s knowledge. For example,
you must write:

Repeat [take step] 3 times,

And not:

Take 3 steps or
Repeat 3 times take step

Remember that Otto executes the instructions in the order you give them. When you use
the Goto i action, he will execute instruction i next and then continue at that point with
the execution. Let’s review the 15 actions:

Action 1: Stand up. Otto will stand up from his chair in an upright position.

Action 2: Sit down. Otto will sit down. You must make sure the chair is behind him
or he will sit on the floor.

Action 3: Take step. Otto will take one step forward.

Action 4: Turn right. Otto will turn right 90 degrees.

Action 5: Repeat—[Action] x times, where x is a given number such as 3, 6, 8, and
so on.

Action 6: Raise arms. Raises arms to a forward position perpendicular to his body.

Action 7: Lower arms. Lowers arms to a position at the side of his body.

Action 8: Add one. Adds one to the memory location.

Action 9: Subtract one. Subtracts one from the memory location.

Action 10: Set memory location to zero.

Action 11: Test—Is the number in your memory zero?

Yes, then: (one action for yes answer)

No, else: (one action for no answer)

Action 12: Test—Are you touching anything?

Yes, then: (one action for yes answer)

No, else: (one action for no answer)

Action 13: Test—Are you touching a door?

Yes, then: (one action for yes answer)

No, else: (one action for no answer)

Action 14: Goto i, where i is an instruction number, either before or after the present
instruction.

Action 15: Open door. Opens a door; the door will close after Otto walks through it.

Otto is set up to help you organize your solutions in a logical order and to realize
that the computer cannot read your mind. You must give it a complete set of instruc-
tions. One of the most frustrating things when working with a computer is that it does
exactly what it is instructed to do, not what you thought you instructed it to do.

Problems

1. How would you make Otto turn left?

2. The following three sets of instructions for Otto are incorrect. Find the problem(s)
and correct the solution.

466 � Appendix A

a. 1. Stand up
2. Take step
3. Add 1 to memory
4. Goto 2
5. Sit down

b. 1. Stand up
2. Repeat [take step] 3 times
3. If touching something

Yes, then: goto 4
No, else: goto 2

4. Turn right 2 times
5. Goto 2
6. Sit down

c. 1. Stand up
2. Take 2 steps
3. Turn
4. Take 3 steps
5. Turn
6. Take 3 steps
7. Turn
8. Take 3 steps
9. Turn

10.Take 1 step
11.Sit down

Using Otto’s 15 actions, write a set of step-by-step instructions to have Otto
complete problems 3 through 8. An Otto simulator is available at the Instructor
Resource Center. Ask your instructor to make this simulator available to you to
check your solutions.

3. Direct Otto to walk in a square that is three steps on each side. All turns are to be
right-hand turns. How many solutions are there to this problem?

4. Direct Otto to walk in a square that is three steps on each side. All turns are to be
left-hand turns.

5. Direct Otto to walk to a wall that is an unknown whole number of steps (no partial
steps) in front of Otto, and then walk back and sit down in his chair. The back of the
chair is taller than Otto and can be touched by Otto’s raised hands, when Otto is
directly in front of his chair.

6. Direct Otto to walk to a wall that is an unknown whole number of steps (no partial
steps) in front of Otto, and then walk back and sit down in his chair. The back of the
chair is shorter than Otto’s raised hands when Otto is directly in front of his chair.
Therefore, Otto’s hands cannot touch the back of the chair.

7. Write one set of instructions that will direct Otto through any maze with its
entrance and exit on the same side (see Figure A.1). The maze has no dead ends and
no intersections. From Otto’s starting position, the entrance is two steps forward.
When Otto is facing the entrance, the exit is three steps to his right. Figure A.1
shows three example mazes for you to test your solution. Do not make separate
solutions for each maze. Your solutions should allow Otto to walk through any
mazes such as those shown in Figure A.1. Test your solution with a maze that you
designed.

Otto the Robot � 467

2

3

X

2

3

X

2

3

X

Figure A.1 Example Mazes for Problem 7

2

X

2

X

2

X

Figure A.2 Example Mazes for Problem 8

9. How would you modify Otto’s knowledge base so you are able to write a solution
for the following tasks? Specify the modifications and then write the set of instruc-
tions for each of the tasks.
a. Direct Otto to walk in a triangle that has three steps on each side.
b. Direct Otto to walk to a table and pick up a book.
c. Modify your instruction set in problem 5 (to walk to the wall and back) to have

Otto detect an object in his path.

10. Design your own robot actions. What actions do you think are important for your
robot? What type of problems could your robot solve?

8. Modify your solution in Problem 7 to accommodate a change in the place of the
exit. Your solution should allow for the exit to be any place on the perimeter of the
maze. Figure A.2 shows three example mazes for you to test your solution. Again,
do not write separate solutions for each maze. Your solution should allow Otto to
walk back to his chair from any exit, such as those in Figure A.2. Test your solution
with a maze that you designed.

This page intentionally left blank

469

Appendix B

ASCII and EBCDIC Codes
for Data Representation

Character

Space

Binary
Code

Decimal
Value

EBCDIC Code
Character Binary

Code
Decimal

Value

EBCDIC Code

0
1
2
3
4
5
6
7
8
9

0100 0000
0100 1011
0100 1100
0100 1101
0100 1110
0101 0000
0101 1010
0101 1011
0101 1100
0101 1101
0101 1110
0110 1011
0110 1100
0110 1101
0110 1110
0110 1111
0111 1010
0111 1011
0111 1100
0111 1101
0111 1110
0111 1111

64
75
76
77
78
80
90
91
92
93
94

107
108
109
110
111
122
123
124
125
126
127

240
241
242
243
244
245
246
247
248
249

.
�
(
�
&
!
$
*
)
;
,

%
�
�
?
:
#
@
'

�
"

1111 0000
1111 0001
1111 0010
1111 0011
1111 0100
1111 0101
1111 0110
1111 0111
1111 1000
1111 1001

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z

1100 0001
1100 0010
1100 0011
1100 0100
1100 0101
1100 0110
1100 0111
1100 1000
1100 1001
1101 0001
1101 0010
1101 0011
1101 0100
1101 0101
1101 0110
1101 0111
1101 1000
1101 1001
1110 0010
1110 0011
1110 0100
1110 0101
1110 0110
1110 0111
1110 1000
1110 1001

1000 0001
1000 0010
1000 0011
1000 0100
1000 0101
1000 0110
1000 0111
1000 1000
1000 1001
1001 0001
1001 0010
1001 0011
1001 0100
1001 0101
1001 0110
1001 0111
1001 1000
1001 1001
1010 0010
1010 0011
1010 0100
1010 0101
1010 0110
1010 0111
1010 1000
1010 1001

193
194
195
196
197
198
199
200
201
209
210
211
212
213
214
215
216
217
226
227
228
229
230
231
232
233

129
130
131
132
133
134
135
136
137
145
146
147
148
149
150
151
152
153
162
163
164
165
166
167
168
169

Figure B.1 EBCDIC Codes

470 � Appendix B

ASCII in
Mnemonic

Binary
Code

Decimal
Code

Octal
Code

Hex
Code Remark

NUL
SOH
STX
ETX

00 00 00 00
00 00 00 01
00 00 00 10
00 00 00 11

00 00 01 00
00 00 01 01
00 00 01 10
00 00 01 11

00 00 10 00
00 00 10 01
00 00 10 10

EOT
ENQ
ACK
BEL

BS
HT
LF

VT

FF
CR
SO
SI

DLE
DC1
DC2
DC3

DC4
NAK
SYN
ETB

CAN
EM
SUB
ESC

FS
GS
RS
US

Space
!
"
#

$
%
&
'

(
)
*
�

,
-
.
�

00 00 10 11
00 00 11 00
00 00 11 01
00 00 11 10
00 00 11 11

00 01 00 00
00 01 00 01
00 01 00 10
00 01 00 11

00 01 01 00
00 01 01 01
00 01 01 10
00 01 01 11

00 01 10 00
00 01 10 01
00 01 10 10
00 01 10 11

00 01 11 00
00 01 11 01
00 01 11 10
00 01 11 11

00 10 00 00
00 10 00 01
00 10 00 10
00 10 00 11

00 10 01 00
00 10 01 01
00 10 01 10
00 10 01 11

00 10 10 00
00 10 10 01
00 10 10 10
00 10 10 11

00 10 11 00
00 10 11 01
00 10 11 10
00 10 11 11

0
1
2
3

4
5
6
7

8
9

10

11
12
13
14
15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31

32
33
34
35

36
37
38
39

40
41
42
43

44
45
46
47

000
001
002
003

004
005
006
007

010
011
012

013
014
015
016
017

020
021
022
023

024
025
026
027

030
031
032
033

034
035
036
037

040
041
042
043

044
045
046
047

050
051
052
053

054
055
056
057

00
01
02
03

04
05
06
07

08
09
0A

0B

0C
0D
0E
0F

10
11
12
13

14
15
16
17

18
19
1A
1B

1C
1D
1E
1F

20
21
22
23

24
25
26
27

28
29
2A
2B

2C
2D
2E
2F

Null, tape feed.
Start of heading; also SOM, start of message.
Start of text; also EOA, end of address.
End of text; also EOM, end of message.

End of transmission (End); shut off TWX machines.
Inquiry (Inqry); also WRU.
Acknowledge; also RU.
Ring the bell.

Backspace; also FEO, format effector.
Horizontal tab.
Line feed or line space (New line); advance paper to next
line.
Vertical tab (VTAB).

Form feed to top of next page (Page).
Carriage return to beginning line.
Shift out; changes ribbon color to red.
Shift in; changes ribbon color to black.

Data line escape.
Device control 1; turns on transmitter (reader).
Device control 2; turns on punch or auxiliary.
Device control 3; turns off transmitter (reader).

Device control 4; turns off punch or auxiliary.
Negative acknowledge; also ERR, error.
Synchronous file (SYNC).
End of transmission block; also LEM, logical end of
medium.

Cancel (Cancl).
End of medium.
Substitute.
Escape.

File separator.
Group separator.
Record separator.
Unit separator.

Apostrophe.

Hyphen.

Figure B.2 ASCII Codes (continued on pages 370–372)

ASCII and EBCDIC Codes for Data Representation � 471

ASCII in
Mnemonic

Binary
Code

Decimal
Code

Octal
Code

Hex
Code Remark

0
1
2
3

4
5
6
7

8
9
:
;

�

�
�
?

@
A
B
C

H
I
J
K

L
M
N
O

P
Q
R
S

T
U
V
W

X
Y
Z
[

]
]
ˆ
–

D
E
F
G

00 11 00 00
00 11 00 01
00 11 00 10
00 11 00 11

00 11 01 00
00 11 01 01
00 11 01 10
00 11 01 11

00 11 10 00
00 11 10 01
00 11 10 10
00 11 10 11

00 11 11 00
00 11 11 01
00 11 11 10
00 11 11 11

01 00 00 00
01 00 00 01
01 00 00 10
01 00 00 11

01 00 10 00
01 00 10 01
01 00 10 10
01 00 10 11

01 00 11 00
01 00 11 01
01 00 11 10
01 00 11 11

01 01 00 00
01 01 00 01
01 01 00 10
01 01 00 11

01 01 01 00
01 01 01 01
01 01 01 10
01 01 01 11

01 01 10 00
01 01 10 01
01 01 10 10
01 01 10 11

01 01 11 00
01 01 11 01
01 01 11 10
01 01 11 11

01 00 01 00
01 00 01 01
01 00 01 10
01 00 01 11

48
49
50
51

52
53
54
55

56
57
58
59

60
61
62
63

64
65
66
67

72
73
74
75

76
77
78
79

80
81
82
83

84
85
86
87

88
89
90
91

92
93
94
95

68
69
70
71

060
061
062
063

064
065
066
067

070
071
072
073

074
075
076
077

100
101
102
103

110
111
112
113

114
115
116
117

120
121
122
123

124
125
126
127

130
131
132
133

134
135
136
137

104
105
106
107

30
31
32
33

34
35
36
37

38
39
3A
3B

3C
3D
3E
3F

40
41
42
43

48
49
4A
4B

4C
4D
4E
4F

50
51
52
53

54
55
56
57

58
59
5A
5B

5C
5D
5E
5F Underline.

44
45
46
47

Figure B.2 (continued from page 370)

472 � Appendix B

ASCII in
Mnemonic

Binary
Code

Decimal
Code

Octal
Code

Hex
Code Remark

'
a
b
c

d
e
f
g

h
i
j
k

l
m
n
o

p
q
r
s

t
u
v
w

x
y
z
{

|
}
~
DEL

01 10 00 00
01 10 00 01
01 10 00 10
01 10 00 11

01 10 01 00
01 10 01 01
01 10 01 10
01 10 01 11

01 10 10 00
01 10 10 01
01 10 10 10
01 10 10 11

01 10 11 00
01 10 11 01
01 10 11 10
01 10 11 11

01 11 00 00
01 11 00 01
01 11 00 10
01 11 00 11

01 11 01 00
01 11 01 01
01 11 01 10
01 11 01 11

01 11 10 00
01 11 10 01
01 11 10 10
01 11 10 11

01 11 11 00
01 11 11 01
01 11 11 10
01 11 11 11

96
97
98
99

100
101
102
103

104
105
106
107

108
109
110
111

112
113
114
115

116
117
118
119

120
121
122
123

124
125
126
127

140
141
142
143

144
145
146
147

150
151
152
153

154
155
156
157

160
161
162
163

164
165
166
167

170
171
172
173

174
175
176
177

60
61
62
63

Accent grave.

64
65
66
67

68
69
6A
6B

6C
6D
6E
6F

70
71
72
73

74
75
76
77

78
79
7A
7B

7C
7D
7E
7F

Alt mode.

Delete, rub out.

Figure B.2 (continued from page 371)

473

Appendix C

Forms to Use in Problem
Solving

Given Data Required Results

Required Processing Solution Alternatives

Figure C.1 Problem Analysis Chart

474
�

A
ppendix C

Figure C.2 The Interactivity Chart

Forms to Use in Problem Solving � 475

Input Processing Module Reference Output

Figure C.3 The IPO Chart

476 � Appendix C

Algorithm Flowchart

Figure C.4 Algorithm and Flowchart (continued on page 377)

Forms to Use in Problem Solving � 477

A
nn

ot
at

io
n

Te
st

In
te

rn
al

D
oc

um
en

ta
tio

n
E

xt
er

na
l

D
oc

um
en

ta
tio

n

Figure C.4 (continued from page 376)

478
�

A
ppendix C

Item Variable Name Data Type Module Scope Pseudonyms/Module Error Checks

Figure C.5 Data Dictionary

Forms to Use in Problem Solving � 479

Record Layout

Record Data Dictionary

Field Item Description Field Name Field
Length

Data
Type

Number of
Decimals Comments

Figure C.6 Record Data Dictionary and Record Layout

480
�

A
ppendix C

01
1 2 3 4 5 6 7 8 9 02 3 4 5 6 7 8 9 0

1 – 10
1 2 3 4 5 6 7 8 9 02 3 4 5 6 7 8 9 0

11 – 20
1 2 3 4 5 6 7 8 9 02 3 4 5 6 7 8 9 0

21 – 30
1 2 3 4 5 6 7 8 9 02 3 4 5 6 7 8 9 0

31 – 40
1 2 3 4 5 6 7 8 9 02 3 4 5 6 7 8 9 0

41 – 50
1 2 3 4 5 6 7 8 9 02 3 4 5 6 7 8 9 0

51 – 60
1 2 3 4 5 6 7 8 9 02 3 4 5 6 7 8 9 0

61 – 70
1 2 3 4 5 6 7 8 9 02 3 4 5 6 7 8 9

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

0
71 – 80

1 2 3 4 5 6 7 8 9 02 3 4 5 6 7 8 9 0
1 – 10

1 2 3 4 5 6 7 8 9 02 3 4 5 6 7 8 9 0
11 – 20

1 2 3 4 5 6 7 8 9 02 3 4 5 6 7 8 9 0
21 – 30

1 2 3 4 5 6 7 8 9 02 3 4 5 6 7 8 9 0
31 – 40

1 2 3 4 5 6 7 8 9 02 3 4 5 6 7 8 9 0
41 – 50

1 2 3 4 5 6 7 8 9 02 3 4 5 6 7 8 9 0
51 – 60

1 2 3 4 5 6 7 8 9 02 3 4 5 6 7 8 9 0
61 – 70

1 2 3 4 5 6 7 8 9 02 3 4 5 6 7 8 9 0
71 – 80

COLUMN

R
O

W

Figure C.7 Screen Design

Forms to Use in Problem Solving � 481

1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Figure C.8 The Print Chart (continued on pages 381–383)

482 � Appendix C

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

6
9

7
0

7
1

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

8
1

8
2

8
3

8
4

8
5

8
6

8
7

8
8

8
9

9
0

9
1

9
2

9
3

9
4

9
5

Figure C.8 (continued from page 381)

Forms to Use in Problem Solving � 483

9
6

9
7

9
8

9
9

1
0
1

1
0
0

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

1
2
8

1
2
9

1
3
0

1
3
1

1
3
2

1
3
3

1
3
4

1
3
5

1
3
6

1
3
7

1
3
8

1
3
9

1
4
0

1
4
1

1
4
2

1
4
3

1
4
4

9
6

9
7

9
8

9
9

1
0
1

1
0
0

1
0
2

1
0
3

1
0
4

1
0
5

1
0
6

1
0
7

1
0
8

1
0
9

1
1
0

1
1
1

1
1
2

1
1
3

1
1
4

1
1
5

1
1
6

1
1
7

1
1
8

1
1
9

1
2
0

1
2
1

1
2
2

1
2
3

1
2
4

1
2
5

1
2
6

1
2
7

1
2
8

1
2
9

1
3
0

1
3
1

1
3
2

1
3
3

1
3
4

1
3
5

1
3
6

1
3
7

1
3
8

1
3
9

1
4
0

1
4
1

1
4
2

1
4
3

1
4
4

Figure C.8 (continued from page 382)

484 � Appendix C

Header:
Left Margin:

Tabs:

Footer:

Paper Size:
Page Orientation:
Justification:

Graphics to Be Used: Reminders:
 Mark Guidelines
 Mark Page Number Placement

Top Margin:

Bottom Margin:

Other Information

Right Margin:

Figure C.9 Page Planning Guide for Word Processing

Form
s to U

se in Problem
 Solving

�
485

Col.

R
ow

Figure C.10 Spreadsheet Planning Guide

486 � Appendix C

Output Requirements Input Requirements Input Format

Figure C.11 Output and Input Requirements Chart

Forms to Use in Problem Solving � 487

Control section:
navigational tools

Graphics, input/output areas,
informational areas

This is the area in which the user will input
data, read information, and receive output.

Figure C.12 The User Interface Screen Design Chart

488 � Appendix C

Class Properties Functions

Figure C.13 Class, Properties, and Functions Chart

Forms to Use in Problem Solving � 489

Class: _________________________

Property Attributes

Figure C.14 Attributes of a Class Properties Chart

490 � Appendix C

Figure C.15 Storyboard

Form
s to U

se in Problem
 Solving

�
491

Object Name Source/File Name File Type/Extension Screen Number(s) H/I/O*

*H � Hyper, I � Input, O � Output

Script

Figure C.16 Object Dictionary

This page intentionally left blank

493

Appendix D

Other Problem-Solving Tools

Problem-solving techniques using six basic tools have been presented throughout this book.
There are other tools for problem solving that have not been presented. Among these tools
are Nassi-Schneiderman charts and Warnier-Orr diagrams. Since these tools are replacement
tools for the algorithm and flowcharts, they were not presented earlier in this text.

Both Nassi-Schneiderman charts (N-S) and Warnier-Orr diagrams are used to cre-
ate structured solutions. Many people prefer one of these tools to flowcharts. Whichever
tool is chosen, the use is the same. You should plan the solution, complete the problem-
solving process, and end with a solution that is well done.

Nassi-Schneiderman Charts

Nassi-Schneiderman charts are sometimes called structured flowcharts. They are also
referred to as N-S charts. These charts consist of a stack of rectangles one on top of the
other and put together without flowlines. Processing flow always runs from the top to
the bottom of the stack of rectangles. Figure D.1 shows the four logic structures as they
would appear in an N-S chart. Note the similarity to algorithms as presented in this
book. Figure D.3 shows an example problem comparing a Warnier-Orr diagram to an
N-S chart. N-S charts fit better on one page. However, since there is no means to con-
tinue to the next page and there is no way to indicate a GoTo, the modules are required
to be short and cohesive.

Warnier-Orr Diagrams

The theory behind Warnier-Orr diagrams is similar to an interactivity chart. The differ-
ences are:

1. The Warnier-Orr diagrams are sideways.
2. There are no rectangles.
3. They use a pseudocode for the instructions.

494 � Appendix D

A Warnier-Orr diagram consists of a series of left braces, pseudocodelike instruc-
tions, and a few special symbols. The symbols include:

{ The brace is used to enclose a zero logically related set of instructions.

(0,1) A set of instructions is executed zero or one time. This is the notation
for the decision and the case structure.

(0, n) or n A set of instructions is executed zero to n times. This is the notation for
the While/WhileEnd loop structure.

(1, n) A set of instructions is executed one to n times. This is the notation for
Repeat/Until structure.

Blank or 1 A set of instructions is executed one time.

Exclusive OR. This is used with the (0,1) notation to show a selection.

Figure D.2 shows the four structures as written with Warnier-Orr diagrams. Notice
the processes are broken up into modules just as in the structure chart. Most flowchart-
ing templates have the Warnier-Orr bracket on one side. Figure D.3 shows the same
problem developed using a Warnier-Orr diagram and a Nassi-Schneiderman chart.

+

Sequential Logic Structure Decision Logic Structure

1. Instruction 1. Instruction

3. Instruction 5. Instruction

2. �condition�

4. Instruction

6. Instruction

2. Instruction

3. Instruction

4. Instruction

True False

Loop Logic Structure Case Logic Structure

1. Instruction 1. Instruction

7. Instruction

� const1:

� const2:

� const3:

otherwise:

4. Instruction

3. Instruction

5. Instruction

6. Instruction

2. Case of �variable�2. While �condition�

6. Instruction

3. Instruction

4. Instruction

5. Instruction

WhileEnd

Figure D.1 The Four Structures Using Nassi-Schneiderman Charts

Other Problem-Solving Tools � 495

Sequential Logic Structure

1. Instruction
(1)

2. Instruction
(1)

Program
Name

3. Instruction
(1)

Decision Logic Structure

Instruction

Instruction

Instruction

Instruction

�condition�
(0,1)

�

not �condition�
(0,1)

Loop Logic Structure

Instruction

Instruction

Instruction

Loop
While

�condition�
(0,n)

Case Logic Structure

Instruction

Instruction

Instruction

Instruction

�condition�
(0,1)

�condition�
(0,1)

�

Instruction

Instruction
�condition�

(0,1)

�

Figure D.2 The Four Structures Using Warnier-Orr Diagrams

496 � Appendix D

1. Initialization
(1)

5. While Age �� �1
(0, n)

12. Wrapup
(1)

15. End

1. Sum � 0

2. Counter � 0

3. Enter Age

5. Age � 21

4. While Age �� �1

9. Average � Sum�Counter

6. Sum � Sum � Age

7. Counter � Counter � 1

8. Enter Age

10. Print Counter, Average

11. End

Nassi-Schneiderman Charts

Warnier-Orr Diagrams

Calculate Average
Age

True False

2. Sum � 1
3. Counter � 0
4. Enter Age

7. Sum � Sum � Age
8. Counter � Counter � 1

10. Continue

13. Average = Sum�
 Counter
14. Print Counter,
 Average

6. Age � 21
 (0, 1)

 �

9. Not Age � 21
 (0, 1)
11. Enter Age

Figure D.3 Comparison of a Nassi-Schneiderman Chart and a Warnier-Orr Diagram

497

Appendix E

Other Functions

Mathematical Functions:

Int(x) Returns the integer part of x

MOD(x, y) Returns the whole number remainder of x/y

Round(x, n) Returns the number x rounded to n decimal places

Sqrt(x) Returns the square root of x

Other Functions:

If(condition, x, y) Returns x if condition is true, y if false

Choose(x, v0, v1, v2, v3,) Returns the value of the expression in the xth
position in the list

VLookup(x, range, column) Looks up the value x in the table at range (range
where the table is located) and then returns the
value found in column (column number in the
table starting with the left-most column as zero)

Date(year, month, day) The Julian calendar date of year, month, day

Now The Julian calendar date of today

Financial Functions:

CTerm(int, fv, pv) Returns the number of periods for the investment
of pv to grow to fv, earning the rate of int

Ddb(cost, salvage, life, period) Returns the double-declining depreciation of an
asset, during period, given cost, salvage value,
and the life of the asset

Fv(pmt, int, term) Returns the future value of term number of pay-
ments, earning int rate

Irr(guess, range) Returns the internal rate of return of the cash
flows in range, with a guess needed for calculat-
ing purposes

Npv(int, range) Returns the net present value of a series of cash
flows in range, discounted at int rate

Pmt(prin, int, term) Returns the payment needed to pay off the loan of
prin, at the int interest rate, over term number of
periods

Pv(pmt, int, term) Returns the present value of term number of pmt
payments, discounted at the int interest rate

v0 - vn

Á

498 � Appendix E

Rate(fv, pv, term) Returns the rate needed for pv to grow to fv over
term number of periods

Sln(cost, salvage, life) Returns the straight-line depreciation of an asset,
given cost, salvage value, and the life of the asset

Syd(cost, salvage, life, period) Returns the sum-of-the-years digits depreciation
of an asset, during period, given cost, salvage
value, and the life of the asset

Term(pmt, int, fv) Returns the term needed for periodic payments of
pmt to grow to fv with an interest rate of int

Statistical Functions:

Avg(range) Returns the average of the values in range

Count(range) Returns the number of values in range

CountIf(range, condition) Returns the number of x values in the range

Max(range) Returns the highest value in range

Min(range) Returns the lowest value in range

Std(range) Returns the standard deviation of the values in
range

Sum(range) Returns the summation of the values in range

Var(range) Returns the variance of the values in range

499

Glossary

Accumulating Keeping a running total by adding a current value in the form of a variable
to a previous sum to find the current total. The instruction for accumulating is Sum = Sum
+ Variable.

Accumulator Where calculations take place.
Activity diagram A UML diagram that describes the flow of control within a process or

system.
Activity file A file containing all of the updates to a master file.
Algorithmic solution A sequence of instructions to solve a problem. A computer pro-

grammer writes a solution in the form of an algorithm before coding it into a computer
language.

Algorithm A solution to a problem that can be solved through a sequence of instructions.
Annotated flowchart A flowchart with explanations written beside the symbols.
Array Sometimes called a subscripted variable; a block of memory locations in the inter-

nal memory that is assigned to one variable name. Arrays may be one-dimensional, two-
dimensional, or multidimensional.

Assembly language A three-letter representation of a machine language instruction.
Automatic-counter loop One of three types of loop instructions. The automatic-counter

loop enables the computer to repeat a set of instructions by using a variable as a counter
that starts at a beginning number that is incremented by a given number each time the
program executes the set of instructions. The loop stops when the counter is larger than a
given ending number.

Background The images used to give the rooms dimension and substance.
Backup file A file containing a master file as it was before the last update.
Base-one system A computer system in which array element numbers begin with one

rather than zero.
Base-zero system A computer system in which element numbers begin with zero rather

than one.

Batch processing Running successive sets of data through a program all at one time
without human intervention.

Behavioral diagrams A UML diagram that describes the behavior of a process.
Binary search A technique used to search for a single element in an array or a single

record in a file.
Binary tree A list that has been created to have two linked fields—one to the right and

one to the left to form a tree structure.
Breadcrumbs or breadcrumb trails A navigation system whose purpose is to give

users a way to keep track of their location within programs or documents.
Bug An error in a computer program.
Button An object built-in to a particular development platform having a graphical depic-

tion of a push button on a form used to evoke some action or event.

Calculation module A Process module that does arithmetic calculations and accumu-
lates, counts, or manipulates numeric data in some way.

Case logic structure One of the four logic structures for organizing the instructions to
the computer that make up a program. The case structure allows the computer to select
one set of instructions from among many, through data given by the user or calculated in
the solution.

Cell The intersection of a row and a column in a spreadsheet.
Cell protection A command used with spreadsheet packages to prevent the movement of

the cursor into a cell.
Character data The data set of the character data type; it includes all symbols available

on a computer.
Checkedbox List An object built-in to a particular development platform used to present

a list of items with a small checkbox next to each item so that a user can select one or
more items from the list.

Class A class is part of a solution of an object-oriented solution to a problem. A class
models the properties or characteristics of a set of objects.

Class diagram A UML diagram that describes the structure of a system with its classes,
attributes, and class relationships.

Client-server The term that refers to a relationship between two computers; one acting as
the client making requests of another program, while the server is fulfilling the request of
the client(s).

Codes Character data input by a user to direct the flow of processing, such as in the coded
options in a record.

Cohesion Relates to the functional independence of the module and to the performance of
a single task within the module.

Combobox An object built-in to a particular development platform used to present a list
of preloaded items for data selection to a user.

Command An instruction to the computer in a productivity package or an operating sys-
tem. Normally, a command is not part of a program.

Communication diagram A UML diagram that describes an object’s communication
messaging.

Component diagram A UML diagram that describes how the application may be bro-
ken up into different components and the relationship between each component.

Composite Structure diagram A UML diagram that describes the internal structure of
a class.

Concatenation Adding one piece of string data to another by placing the second piece
immediately after the first.

Constant A value in a program that cannot change during processing.
Constraint Used by database to enforce referential integrity between two tables.

500 � Glossary

Control-break A break in processing to print subtotals, or number of items, controlled
by one field in a file.

Control module The module controlling the processing of all of the subtasks in a
solution.

Coupling Techniques used to pass data from one module to another. Coupling techniques
include the use of global variables, parameters, and return values.

Data Unorganized facts.
Data type The kind of data of a variable or a constant. The three basic data types are

numeric, character, and logical.
Data Validation module Module that Checks data to make sure it is correct
Database Management System (DBMS) Software that stores large quantities of data,

organizes data, and prints reports.
Datetime Picker An object built-in to a particular development platform used to present

a small calendar so that a user can collect data/time information.
Debugging The process of correcting errors in a computer program.
Decision logic structure One of the four logic structures for organizing the instructions

to the computer that make up a program. The decision structure selects one of two sets of
instructions according to the resultant of a condition.

Decision table A programming aid to writing decision instructions for the computer; it
consists of a rectangular grid divided into four parts, which specifies all possible actions
the computer could take for each possible set of conditions.

Default value A value of a variable that is built into a program and that the computer
automatically uses unless the value is changed by the user.

Deployment diagram A UML diagram that describes the components used for the
implementation phase of a project.

Desktop publisher More versatile than a word-processing program. As a page layout
program, the user can take text from a word processor and graphics from a graphics pro-
gram and combine them into a professional-quality document.

Drag and drop Drag and drop is the ability to select a portion of a document and move it
to another part of the document or to another document.

Dynamic array An array in which the maximum number of elements can change during
processing.

Encapsulation An object surrounding all of its properties, methods, and events into a sin-
gle well-protected package.

EndOfFile (EOF) The marker in a computer solution indicating that there are no more
records to be processed.

Entity Relation Model (ERM) A model of the data that provides the designer with
three main semantic concepts: entities, relationships, and attributes.

Equation A variable that is assigned the value of an expression, another variable, or a
constant, as in A = 5 + B, A = B (where B is a variable), or A = 5, respectively.

Enumeration An enumeration consists of a set of named integer constants. It is used to
make code more readable.

Event Something that happens in the computer. Typical events include on mousedown, on
mouseup, on keydown, and on keyup.

Event-driven object-oriented programming A solution to a problem in which the
processing is controlled through events in the computer.

Expression An operation or series of operations performed on variables or constants, as
in 5 + B.

External documentation Instructions to the user in the form of manuals or other written
documents.

Glossary � 501

Field A field is one piece of data in a database table, such as a name or an address. A field
is given a name and has the same attributes for all records in a table.

File A collection of related records.
Flowchart A graphic illustration of an algorithm.
Foreign Key A relational field to another table.
Form Allows the user to see all or some of the fields of a record on the monitor.
Function A small set of instructions built into a computer language or applications that

enables the user to complete a frequently repeated task with fewer keystrokes than would
be required without the function.

Global variable A variable that can be accessed by all modules below and in line (in the
interactivity chart) with the module that declared the variable.

Graphical user interface (GUI) An interactive screen in which the user controls what
happens in a program.

Hashing A method of using a predefined algorithm to designate the record number for
fast retrieval of a given record.

Heuristic solution A solution to a problem that cannot be solved through a single
sequence of instructions.

Hierarchical Database Management System (DBMS) Organizes data in a tree-like
structure according to record types. The relationship between records is parent-child.

Hierarchy The order in which operations are performed for mathematical, relational, and
logical operations.

Identifier A synonym for variable name. It is also synonymous with module name. It
identifies the variable or the module.

If/Then/Else instruction The instruction to the computer that implements the decision
logic structure.

Incrementing The process of counting on the computer by adding a number to a previous
number. The instruction for incrementing by one is Counter = Counter + 1.

Indicator A value built into a solution by the programmer to redirect the flow of processing.
Information Organized facts.
Inheritance The ability of one object to inherit properties and functionality from another.
Inheritance A way to create a collection of attributes and behaviors for a class object that

is based on a previously created class object.
Initialization module The module containing all of the processing that has to be com-

pleted only once and at the beginning of the solution.
Input mask An input mask specifies required characters when entering data into data-

base tables. These characters are automatically entered into a field by the computer.
Instance method A method that must be associated with a particular class object and has

a this. or me. reference.
Instance of a class An object.
Interaction diagrams A UML diagram that describes the interactions between objects.
Interaction overview diagram A UML diagram that describes an overview of interac-

tions in a system.
Interactive processing Processing that involves user intervention to enter new data as

needed, usually at a keyboard.
Interactivity The interaction between classes or between screens.
Interactivity chart A chart, also called a structure chart, showing all of the subtasks, or

modules, in a program.
Internal documentation Remarks within a computer solution to explain the processing.
IPO chart Input-processing-output chart; describes the input, the output, and the pro-

cessing needed to solve a problem on the computer.

502 � Glossary

Key The field of the records that is used to order a file or search for a record.

Label An object built-in to a particular development platform used to present a label to a
user.

Linked list A list that has one field that contains the record number of the next record to
be processed.

Local variable A variable accessed by the module that declared the variable. A single
variable can be both local and global (see Chapter 4).

Logical data The data set consisting of True and False, used in making yes-and-no
decisions.

Logical file number (LFN) In record processing, a number used to reference a file.
Logical operator An operator within an expression that uses logical data as operands

and produces logical data as the resultant. The logical operators include NOT, AND,
and OR.

Logic structure A structure for organizing the instructions to the computer that make up
a program. There are four logic structures: the sequential structure, the decision structure,
the loop structure, and the case structure.

Loop logic structure One of the four logic structures for organizing the instructions to
the computer that make up a program. The loop structure enables the computer to process
the same set of instructions repeatedly.

Machine language Instructions represented by zeros and ones.
Master file The file in which all of the data needed for processing are kept current.
Mathematical operator An operator that uses numeric data as its operands and pro-

duces numeric data as the resultant. The mathematical operators include - (subtraction),
+ (addition), * (multiplication), / (division), \ (integer division), MOD (modulo division),
and ^ (power).

Module A subtask of the larger task the computer performs to complete a whole solution.
The modules include the Control, Initialization, Process, and WrapUp modules.

Multidimensional array A multidimensional block of elements with a single variable
name. Each element is designated by element numbers representing row, column, page,
and so on.

Multiple control-break A control break on more than one field.
Multiple-thread The concept of more than one process of code operating at the same

time, or asynchronously.

Navigational tools Tools including hot spots, hot objects, time, buttons of all types, and oth-
ers, used to allow a program user to move through and interact with a computer program.

Negative logic A type of decision logic in which the action the computer is to perform
follows from the False side of the instruction.

Nested If/Then/Else A type of decision structure that nests one If/Then/Else instruction
within another.

Network Database Management System (DBMS) Similar to the Hierarchical
Database Management System with the exception that one record type (sometimes called
tables) can relate to any number of other record types.

Normalizing Separating data into related database tables.
Null file A file containing no records.
Numeric data The data type that includes all numbers, integers and real numbers, and is

the only data type that can be used in calculations.

Object An item, or an instance of a class; an item on the screen when using an event-
driven object-oriented programming language.

Object diagram A UML diagram that describes a view of the structure of a modeled sys-
tem with a temporal component.

Glossary � 503

Object-Oriented Database Management System (DBMS) A DBMS that is newer on
the market. It groups data, their attributes, and procedures into complex items called
objects.

Object-oriented programming (OOP) A language that supports object-oriented prin-
ciples; a strategy of program design in which the data parts are the principal items,
instead of the process.

One-dimensional array One column of elements with a single variable name. Each
element is designated by an element number.

Operator A sign or symbol in an expression or equation telling the computer how
to process the data. The three types of operators are mathematical, relational, and
logical.

Optionbox An object built-in to a particular development platform used to present a
group of choices for the user to select from.

Packaging diagram A UML diagram that describes how the system is split into different
related groupings.

Page break A break in the process of printing to finish one page and begin another.
Parallel arrays Two or more arrays in which the data in the same element numbers are

related to each other.
Parameter A variable passed from one module to another module through the calling

sequence of the module or function. There are two types of parameters, call-by-value
parameters and call-by-reference. Call-by-value parameters cannot be changed in the
module. Call-by-reference parameters can be changed and the changed value will be
passed back to the calling module.

Pointer technique A programming technique that uses the value in one array to point to
an element in another array.

Polymorphism The ability of an object of various types to respond to method call of the
same name and act appropriately.

Property A programming method of setting and retrieving an object class field.
Positive logic A type of decision logic in which the action the computer is to perform fol-

lows from the True side of the instruction.
Primary key A unique key that is the major key for ordering a file or searching for a

record.
Primer Read The first record that is read into the internal memory before starting a pro-

cessing loop, in order to have values to process the first time through the loop.
Print module A process module that prints the results of processing.
Private access Specific privileges assigned by the programmer to restrict access to a

class’s methods or data.
Problem analysis chart A chart used to begin to break down a problem into

parts, including given data, results required, processing required, and solution
alternatives.

Process modules The modules that process the data. They include Calculation, Print,
Read, and Data Validation modules.

Program A computer solution to a problem; a set of instructions in a given computer lan-
guage that solves the problem.

Property An attribute of an object or database item. In the case of a database field, it
could contain the field type (Integer), allow null, etc.

Pseudocode A set of step-by-step instructions similar to that found in the programming
language to be used.

Public access Specific privileges assigned by the programmer for access to a class’s
methods or data.

Pushing and popping the stack Adding (pushing) and taking from (popping) a stack.

504 � Glossary

Query The way to select fields and/or records to be processed.
Query table A query table is the result of a database query. It contains selected records

and/or fields from database tables.
Queue A list in which the next value used was the first one to be added. Data are added

and used in a first-in, first-out basis.

Read module A Process module that enters data into the computer.
Record The set of data for one entity in a file or table.
Recursion Recursion occurs when a module or a function calls itself.
Register A high-speed temporary holding area built into the computer to hold instruc-

tions and data needed for the current processing.
Relational Database Management System (RDBMS) A system of tables with a com-

mon field that relates one table to another. This system is less complex, costs less, and
accommodates smaller databases.

Relational operator An operator within an expression or equation that uses numeric or
string data as operands and produces logical data as the resultant. The relational operators
include: = (equal to), � (less than), � (greater than), �= (less than or equal to), �=
(greater than or equal to), and �� (not equal to).

Repeat/Until One of three types of loop instructions; this loop logic structure tests at the
end of each loop to see if it should repeat; it repeats the instructions in the loop until the
condition is True.

Report The printed document of the records in a specific database or query table.
Results The required answers to or output from a problem.
Room Where the objects live when developing electronic games.

Schema The schema of a database is a graphic representation of the tables and their
relationships.

Screen The image on the monitor in one instance.
Script A set of instructions given to an object or a sprite.
Secondary key A key, which may or may not be unique, that is used to order a file or to

search for one or more records in a file. A secondary key is considered a minor key.
Sequence diagram A UML diagram that describes an object’s communication

sequences.
Sequential logic structure One of the four logic structures for organizing the instruc-

tions to the computer that make up a solution. The sequential structure processes the
instructions one after another in a sequence.

Sequential file updating Adding, deleting, or changing data in records in a file to keep
the records current.

Sequential search A method for locating a record in a file in which the computer starts at
the first record and continues through the file, record by record, until the needed record is
found.

Solution The set of instructions to the computer that will output the results; a computer
program before it is coded into a computer language.

Sorting Arranging data in order; the order may be numeric or alphabetical.
Sound The music or other sounds that act as a background or as effects.
Sprite Animated images that are used to represent the objects.
Stack A list in which the value to be added and the value to be used are on the same end

of the list. Data are added and used in a last-in, first-out basis.
Static array An array in which the maximum number of elements cannot change during

processing.
Static method A method that does require an object to exist.
Storyboard A design tool used to create screens.

Glossary � 505

Straight-through logic A type of decision logic that processes all decisions sequentially,
one after another.

Structural diagrams A UML diagram that describes to those components that are struc-
tural and not temporal.

Structure chart A chart, also called an interactivity chart, showing all of the subtasks, or
modules, in a program.

Subclass A class of specialized functionality that inherits is general functionality from a
super class.

Super Class A super class is a class of generalized functionality and instance variables
that can be inherited by a sub class.

Syntax The rules of setting up instructions and commands in an operating system, a pro-
gramming language, or an application program.

Systems flowchart Shows the overall flow of data throughout the entire computer sys-
tem, including all peripheral equipment.

Tab Control An object built-in to a particular development platform used to contain other
controls based on a category usually in each tab name.

Table A group of related records or entities.
Textbox An object built-in to a particular development platform used for collecting tex-

tual data from a user.
Timing diagram A UML diagram that describes an object’s interaction that has critical

temporal components.
Transaction Used by database software to make sure that all of the actions in a batch of

database actions are completed. If there is a failure of any of the actions in the batch, then
all of the actions are canceled.

Transaction file A file containing all of the updates that need to be made to a master file.
Traversal Methods of accessing data within a tree structure.
Trigger A script used by a database that runs when certain database actions occur: for

example, insert Edit or Delete.
Tutorial A program provided with a software package to help the user learn how to use

the package.
Two-dimensional array A block of elements with one variable name. Each element is

designated by element numbers designating the row and column.

UML State Machine diagram A UML diagram that describes the states within a sys-
tem and the transition states.

Use Case diagram A UML diagram that describes the functionality of a system using
actors and their process scenarios.

Variable A named memory location in the computer that is given a value that can be
changed at any time during the processing.

While/WhileEnd One of the three types of loop instructions; the loop logic structure that
tests at the beginning of the loop and repeats as long as a condition is True.

Wrapup module The module containing all of the processing that has to be completed
only once and at the end of the processing.

506 � Glossary

A
Accumulating, 151
Accumulator, 392
Activity Diagram, 59, 359
Activity File, 435
Algorithm, 5, 48, 99
Algorithm Instructions, 98, 167, 257
Algorithmic Solution, 5
Annotated Flowchart, 53
Arrays, 181, 182

Dynamic, 183
Multidimensional, 208
One-Dimensional, 184
Parallel, 185
Static, 182
Two-Dimensional, 191

Assignment Statement, 28
Assembly Language, 391
ASCII Code, 469
Automatic Counter Loop, 159

B
Back up File, 435
Binary Search, 211
Binary Trees, 287

Child, 287
Leaf, 287
Node, 287
Parent, 287
Root, 287
Traversal, 294

Bubble Sort, 242
Bug, 43

C
Case of Variable/End Case, 135
Case Logic Structure, 135
Character Data, 18
Class, 339
Class Diagrams, 57, 358
Client Server Model, 305
Codes, 137
Coding Solution, 61
Cohesion, 75
Communication Diagram, 360
Component Diagram, 362
Composite Structure Diagram, 363
Concatenation, 18
Constant, 13

Control Break, 409
Coupling, 75
Coupling Diagram, 97
Cross Tabulation, 218

D
Data, 16
Data Dictionary, 85, 97
Database Management System, 301

Attributes, 303
Constraints, 304
DBMS Tasks, 306
Entities, 303
Field, 303
Property, 303
Record, 303
Table, 303
Trigger, 304

Data Set, 17
Data Storage, 20
Data Structures, 180
Data Type, 16, 17
DBMS Models, 304

Client Server Model, 305
Entity Relation Model, 315
Hierarchical DBMS, 304
Network DBMS, 304
Object-Oriented DBMS, 304
Relational DBMS, 304, 309

Debugging, 43
Decision Logic Structure, 72, 105
Decision Table, 120
Deployment Diagram, 361
Designing an Object Oriented Program, 362
Designing an Event Driven Object Oriented

Program, 372
Designing Records, 259
Dynamic Arrays, 183

E
EBCDIC Code, 469
Element, 182
Encapsulation, 345
Entities, 303
Enumerations, 366
Environment, 387
Equation, 28
Event, 349
Event Driven Object Oriented

Programming, 348

Index

507

Expression, 28
External Documentation, 53, 98

F
Field, 256, 310
File, 21, 256

Activity File, 435
Backup File, 435
Master File, 435
Transaction File, 435

Flowchart, 50, 99
Flowchart Symbols, 98, 167, 257
Foreign Key, 311
Forms, 473
Forms Design, 323
Frequency Distribution, 214
Function, 21, 497

G
Game Development, 386
Graphic User Interface (GUI), 348

H
Hashing, 296
Heuristic Solution, 5
Hierarchy of Operations, 26
Hierarchical DBMS, 304

I
If/Then/Else instruction, 106
Identifier, 13
Incrementing, 151
Indicators, 166
Information, 16
Inheritance, 339, 341
Integer, 17
Interaction Overview Diagram, 361
Interactivity, 351
Interactivity Chart, 45, 95
Interface Design, 322, 371
Internal Documentation, 53, 98
IPO Chart, 47, 96

K
Key, 256

Primary Key, 256, 311
Secondary Key, 256, 311
Foreign Key, 311

L
Linked Lists, 265
Logic Conversion, 117
Logical Data, 18

Logical File Number (LFN), 257
Logical Operator, 25
Logic Structures, 72

Case Logic Structure, 135
Decision Logic Structure, 72
Loop Logic Structure, 72, 149
Sequential Logic Structure, 72

Loop Logic Structure, 72, 149

M
Machine Language, 392
Master File, 435
Mathematical Operator, 24
Module, 45, 74
Multidimensional Array, 208
Multiple Control Breaks, 413
Multiple Thread Events, 348

N
Nassi Schneiderman Charts, 493
Negative Logic, 108, 115
Nested If/Then/Else, 109
Nested Loops, 163
Network DBMS, 304
Normalization of Tables, 311
Null File, 422
Numeric Data, 17
Naming Convention for Constants and

Variables, 14

O
Object, 345, 387
Object-Oriented DBMS, 304
Object-Oriented Programming (OOP),

337, 338
Object Oriented Program Design, 355
One-dimensional Array, 184
Operators, 23

Logical Operators, 25
Mathematical Operators, 24
Relational Operators, 25

Operand, 23
Organizing a Solution, 43
Otto the Robot, 461

P
Packaging Diagram, 362
Page Break, 403
Parallel Arrays, 165
Parameter, 21, 79

Call by value, 80
Call by reference, 80

Pointer Technique, 213
Cross Tabulation, 218
Frequency Distribution, 214

508 � Index

Polymorphism, 345
Positive Logic, 108, 111
Primary Key, 256, 311
Primer Read, 401
Problem Analysis Chart, 44, 94
Problem Solving Steps, 3
Product, 151
Profile Diagram, 362
Program, 6
Property, 303
Pseudocode, 53, 99

Q
Query, 320
Queues, 248

R
Real Numbers, 17
Record, 256, 310
Recursion, 169
Register, 392
Relational Database Management

System, 309
Relational Operator, 25
Repeat/Until, 154
Reports, 323
Resultant, 23
Results, 6
Return Values, 84
Rules for Naming Constants

and Variables, 15

S
Schema, 318
Script, 318
Secondary Key, 256, 311
Selection Exchange Sort, 240
Sequence Diagram, 57, 358
Sequential Access File Updating and

Processing, 399, 433
Sequential Logic Structure, 72, 89
Sequential Search, 210

Shell Sort, 245
Software Development Cycle, 62
Solution, 6
Sorting, 240

Bubble Sort, 242
Selection Exchange Sort, 240
Shell Sort, 245
Sprites, 387

Stacks, 247
Pop, 247
Push, 247

State Chart, 58
State Machine Diagram, 359
Static Arrays, 182
Straight Through Logic, 108, 110
String, 18
Syntax, 43
Systems Flowcharts, 259

T
Table, 182, 310
Table Look-Up Technique, 209
Testing a Solution, 61
Timing Diagram, 360
Transaction File, 435
Two-dimensional Array, 191

U
Unified Modeling Language (UML),

55, 356
Use Case Diagrams, 55, 356

V
Variable, 13

Local Variable, 77
Global Variable, 77

W
Warnier Orr Diagrams, 493
While/WhileEnd, 152

Index � 509

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	UNIT ONE: INTRODUCTION TO PROBLEM SOLVING AND PROGRAMMING
	Chapter 1 General Problem-Solving Concepts
	Problem Solving in Everyday Life
	Types of Problems
	Problem Solving with Computers
	Difficulties with Problem Solving
	Summary
	New Terms
	Questions
	Problems

	Chapter 2 Beginning Problem-Solving Concepts for the Computer
	Constants and Variables
	Data Types
	How the Computer Stores Data
	Functions
	Operators
	Expressions and Equations
	Summary
	New Terms
	Questions
	Problems

	Chapter 3 Planning Your Solution
	Communicating with the Computer
	Organizing the Solution
	Introduction to UML (Unified Modeling Language)
	Using the Tools
	Testing the Solution
	Coding the Solution
	Software Development Cycle
	Summary
	New Terms
	Questions
	Problems

	UNIT ONE: Supplementary Exercises

	UNIT TWO: LOGIC STRUCTURES
	Chapter 4 An Introduction to Programming Structure
	Pointers for Structuring a Solution
	The Modules and Their Functions
	Cohesion and Coupling
	Local and Global Variables
	Parameters
	Return Values
	Variable Names and the Data Dictionary
	The Three Logic Structures
	Summary
	New Terms
	Questions
	Problems

	Chapter 5 Problem Solving with the Sequential Logic Structure
	Algorithm Instructions, Flowchart Symbols, and Pseudocode
	The Sequential Logic Structure
	Solution Development
	Summary
	Questions
	Problems

	Chapter 6 Problem Solving with Decisions
	The Decision Logic Structure
	Multiple If/Then/Else Instructions
	Using Straight-Through Logic
	Using Positive Logic
	Using Negative Logic
	Logic Conversion
	Which Decision Logic?
	Decision Tables
	Putting It All Together
	The Case Logic Structure
	Codes
	Putting It All Together
	Another Putting It All Together
	Summary
	New Terms
	Questions
	Problems

	Chapter 7 Problem Solving with Loops
	The Loop Logic Structure
	lncrementing
	Accumulating
	While/WhileEnd
	Putting It All Together
	Repeat/Until
	Putting It All Together
	Automatic-Counter Loop
	Putting It All Together
	Nested Loops
	Indicators
	Algorithm Instructions and Flowchart Symbols
	Recursion
	Summary
	New Terms
	Questions
	Problems

	UNIT TWO: Supplementary Exercises

	UNIT THREE: DATA STRUCTURES
	Chapter 8 Processing Arrays
	Arrays
	One-Dimensional Arrays
	Putting It All Together
	Two-Dimensional Arrays
	Putting It All Together
	Multidimensional Arrays
	Table Look-Up Technique
	The Pointer Technique
	Putting It All Together
	Summary
	New Terms
	Questions
	Problems

	Chapter 9 Sorting, Stacks, and Queues
	Sorting Techniques
	Stacks
	Queues
	Summary
	New Terms
	Questions
	Problems

	Chapter 10 File Concepts
	Beginning File Concepts
	Records as a Data Structure
	Primary and Secondary Keys
	Algorithm Instructions and Flowchart Symbols
	Systems Flowcharts
	Designing Records
	Summary
	New Terms
	Questions
	Problems

	Chapter 11 Linked Lists
	Creating Linked Lists
	Examples of Adding Data to/Deleting Data from Linked Lists
	Algorithms and Flowcharts to Add, Delete, and Access Data in a Linked List
	Summary
	New Terms
	Questions
	Problems

	Chapter 12 Binary Trees
	Creation of Binary Trees
	Accessing Data in a Binary Tree
	Traversal of Binary Trees
	Summary
	New Terms
	Questions
	Problems

	UNIT THREE: Supplementary Exercises

	UNIT FOUR: DATABASE MANAGEMENT SYSTEMS
	Chapter 13 Database Management Systems
	Why a DBMS?
	DBMS Components
	DBMS Models
	Client Server Model
	DBMS Tasks
	Summary
	New Terms
	Questions

	Chapter 14 Relational Database Management Systems
	Tables, Records, and Fields
	Normalizing Tables
	Entity Relation Model (ERM)
	Schema
	Creating Tables
	Queries
	Interface Design
	Reports
	Planning a Solution Using an RDBMS
	Summary
	New Terms
	Questions
	Problems

	UNIT FIVE: OBJECT-ORIENTED PROGRAMMING
	Chapter 15 Concepts of Object-Oriented Programming
	Object-Oriented Programming
	Graphical User Interface (GUI)
	Event-Driven Object-Oriented Programming
	Interactivity
	Summary
	New Terms
	Questions
	Problems

	Chapter 16 Object-Oriented Program Design
	Using UML as a Design Tool
	Designing an Object-Oriented Application
	Interface Design
	Summary
	New Terms
	Questions
	Problems

	UNIT SIX: INTRODUCTION TO GAME DEVELOPMENT
	Chapter 17 Introduction to Concepts of Game Development Using Object-Oriented Programming
	Game Development
	Planning the Game
	Steps to Develop a Simple Game
	Summary
	New Terms
	Questions
	Problems

	Chapter 18 Introduction to Assembly Language
	Assembly Language Versus High-Level Languages
	Assembly Language Concepts
	Some Basic Assembly Language Instructions
	Assembly Language Equivalents to the Four Logic Structures
	Summary
	New Terms
	Questions
	Problems

	UNIT SEVEN: FILE PROCESSING
	Chapter 19 Sequential-Access File Applications
	Processing Sequential-Access Files
	The Primer Read
	Designing Output Reports
	Headings and Line Counters
	Control-Breaks
	Multiple Control-Breaks
	Using Indicators for Program Control
	Error Handling
	Null Files
	Summary
	New Terms
	Questions
	Problems

	Chapter 20 Sequential-Access File Updating
	Creating Files
	The Master File
	Transaction Files
	Activity Files
	Backup Files
	Updating the Master File Using a Transaction File
	Putting It All Together
	A Useful Alternative Method
	Summary
	New Terms
	Questions
	Problems

	UNIT SEVEN: Supplementary Exercises

	APPENDIX A: Otto the Robot
	APPENDIX B: ASCII and EBCDIC Codes for Data Representation
	APPENDIX C: Forms to Use in Problem Solving
	APPENDIX D: Other Problem-Solving Tools
	APPENDIX E: Other Functions
	GLOSSARY
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	Q
	Q
	R
	S
	T
	U
	V
	W

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

