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Preface

The principles used in the design, operation, and interconnections of data commu-
nication networks have been mature for well over a decade. The technology is very
pervasive and upgradesto the equipment are very frequent. Therefore, afirst course
on thetopic of computer networksisvery useful for studentsintending to profession-
ally work with this technology. Indeed, the vast mgjority of undergraduate students
majoring within and bridging the electrical engineering and computer science disci-
plines study a course on computer networks. Simultaneously, a course on probability
theory, required for such students, has generally expanded to include some material
on queues, a fundamental topic in performance analysis of data communication net-
works. Alternatively, many undergraduate degree programs within these disciplines
offer a follow up course, after probability theory, covering related topics including
gueues. However, in both these scenarios, a common observation is that queues are
not taught with a systematic development of even the elementary results. Even if the
subject hasachapter on Markov chains, the balance equationsare written in ahurried
fashion and students get afalseimpression that it isarigorous development. Two ex-
amples of additional pitfalls are the following. Students get the false impression that
they have formally derived the result that a stable queue reaches equilibrium. They
also find it obvious that the departure process of an M/M/1/oo queue is Poisson.
While many such results are indeed true, there is a dangerous tendency to believe
that the results extend to other similar but more general cases of queues and Markov
chains.

Books and formal courses on stochastic processes or queuing theory generally
dwell on the systematic development of the mathematical principles governing vari-
ous types of Markov chains to force conclusions on when such desirable results are
true and when they are not. This approach appears to be abstract, long-winded, and
even graduate studentsin applied sciences and engineering tend to feel lost in amaze.
Also, in such an approach, at the end of an abstract approach to Markov chains, sim-
ple queuesaretrivial examplesand are not treated at length. Furthermore, in both the
above approaches, only very simple examples from the application area of computer
networks are introduced. The typical student completes the course with the frus-
tration that only some formulas were given in the course. Instructors, on the other
hand, form the following erroneous opinions about students. (a) They are impatient
and do not realize the value of the mathematical principles governing even the sim-
plest of queues. (b) They don’t realize that practical systems are more complicated
variations or interconnections of simple systems and that simple systems should be
thoroughly understood first. (¢) They just want some magical formulas not only for
simple queues, but also for practical telecommunication systems they will encounter

Xiii
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in their job-related activities. (d) They don't realize that each practical application
system is different, and without acompl ete specification, it cannot be analyzed, even
if such an analysisis feasible with skills available to students.

Thisbook attemptsto strike a balance between (i) mathematical skills of incoming
students, (ii) mathematical skills that can be taught as part of this course, (iii) gen-
erdity, (iv) rigor, (v) focus, (vi) details, and (vii) model formulation for application
systems in computer networks.

Its prerequisites are well specified as follows. College mathematics including dif-
ferential and integral calculus, elementary matrix theory (but not linear algebra), and
a course on elementary probability theory. Principles of stochastic processes and ad-
vanced matrices (such as eigenval uetheory) are not assumed to be known to students.
Throughout the book, the development is motivated and illustrated by examples and
exercises in computer systems and networks. Mathematical derivations are part of
the material; however, focusis maintained by splitting the devel opment of asequence
of results into smaller tasks and discussing the role of the results in the big picture
at every step. Also, final results are prominently restated with the appropriate condi-
tions for their validity. Examples that violate the conditions and hence do not enjoy
the corresponding results areincluded. Therefore, the book is self contained and can
also serve as a reference for practicing engineers. As a consequence, only a short
bibliography of mostly unreferenced booksis included.

An additional advantage of this approach is that instructors and students can opt
for detailed coverage of some topics while summarily browsing through the math-
ematical development of others and quickly moving onto applications. That is, the
instructor can choosethe level of detail and emphasize on different sets of subtopics.
Therefore, even though the material may appear to be too vast for a one semester
course, selection of topicsis easy.

Many concepts and results of probability theory and stochastic processes are de-
veloped with the help of queues as applications. This avoids unnecessary abstract-
ness and allows treating many different types of queues that appear in computer
networks over a shorter time. This approach gives students motivation to study the
needed principles and results. Every such development uses no more than the stated
college mathematics (listed above) and principlesthus far developed in the book, ex-
cept in the final two chapters on advanced material. The book uses alternative and
simpler techniques, in many places, to avoid using results from higher (say graduate
level) mathematics. This avoids undue generality and keeps the focus on necessary
results.

The material in the book begins by describing queues and with fairly extensive
descriptions of activitiesin computer systems and networksresulting in varioustypes
of gqueues to motivate the students. Appendix A is a brief but rigorous and self
contained review of elementary probability theory with examples and exercises.

Chapter 2 is devoted to traffic models. Pareto random variable is introduced as
a model for either inter-arrival time or for service time in some computer network
gueues. The development also serves as a warm-up exercise in the use of probabil-
ity theory. Poisson and exponential random variables are systematically developed
from a practical source that emits jobs or electrons at random and with a constant



XV

rate. All their properties are developed. Simulation is introduced and the transfor-
mations from a uniformly distributed random variable to generate other important
random variables are developed. Simple concepts of parameter estimation are also
developed. Mean sguare convergence of a sequence of random variables is intro-
duced as a natural topic in estimation. This finds use later in the analysis of sample
functionsof Markov chainsand in the development of the Little'sresult. A very sim-
ple model for error-prone data channels is developed. The model is fully specified
if the bit error rate at any data transmission rate is known. It is demonstrated with a
throughput optimization example.

Chapter 3 is on equilibrium M/M/1/oo queue. Properties of Poisson and expo-
nential random variables developed in Chapter 2 are heavily used. The equilibrium
solution is systematically developed (without using any concepts from stochastic
processes). To retain interest in equilibrium solution, it is shown that if such a sys-
temisin equilibrium at some time instant, it will remain so for all the time to come.
To illustrate that we can construct practical models from simple (but not necessar-
ily practical) models, a round robin version of M/M/1/co queue with non-vanishing
piecemeal service times is introduced and all the results are systematically devel-
oped. This aso alows for a simple analysis of a data link affected by erroneous
packets which are required to be retransmitted. The Poisson nature of the departure
stream of an M/M/1/oo system is proved without using reversibility. This result is
important to studentsfor two reasons. It validates the assumption that packet arrivals
into a queue can be Poisson even if bits and hence packets arrive over nonzero time
intervals. Also, that the output stream can be fed in its entirety or through a proba-
bilistic split to another queue as Poisson inputs. That is, a feed-forward network of
M/M/1/oo queues can be analyzed with the help of results on individual M/M/1/co
gueues. The non-Poisson nature of the merged stream of customers arriving at the
waiting line of around robin schemeis aso shown. The probability density function
and the Laplace transform of the busy time periodsin an M/M/1l/co queue are sys
tematically developed. All the results on M/M/1l/oco queues are mathematically de-
veloped without using (and before introducing) the concept of stochastic processes.
Any use of the term “ average” of arandom variable refers to its expectation and is
clear from the context. As a consequence of the use of random variables only (and
not random processes), Little's result, which is on time averages, is not introduced
or used in this chapter.

Chapter 4 is on continuous time, state dependent single Markovian queues. The
definitionsand elementary concepts of stochastic processesare easily developedwith
the help of aqueue as an application example. Continuous parameter Markov chains
are introduced with the M/M/1/oo queue as an example. Balance equations for the
equilibrium state probabilities of anirreducible chain are derived by first deriving the
differential equations, just as is done for the case of M/M/1/co queue. Thisisrigor-
ous, and it also reinforcesthe concepts devel oped earlier. The conclusionisthat if the
balance equationsresult in aunique solution for the state probabilities, we have anice
Markov chain that can be in equilibrium and whose equilibrium performance figures
can be evaluated. The general development of uniqueness of solution for a positive
recurrent Markov chain is deferred to a later chapter. This decision is motivated by
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the desirability of an early introduction of arich class of application systemsin the
computer networks area. An intuitive approach to develop the results for long-term
time averages is followed by a thorough and rigorous development. Little's result
is proved for FIFO and non-FIFO systems. In addition to the usual state dependent
application exampleswith finite buffers and multiple servers, avery smple model of
analysis of a heavily loaded Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) system is devel oped. Justification for the heavily loaded assumptionis
made by arguing that theindividual stations attempt to transmit control packets when
payload packets are absent in the buffer. The model and its utility from this exam-
ple are comparable to the simplistic analysis of continuous time ALOHA to derive
the maximum possible throughput, taught in afirst course on computer networks. A
similar system for CSMA/CA wireless LANs is completely described in exercises
for students to analyze. A contention-free CSMA LAN performance analysis prob-
lem with a finite number of transmitting stations and heterogeneous arrival ratesis
similarly formulated. Its analysis and performance optimization is carried out. Other
interesting examples in computer systems and networks are also included. Illustra-
tive exercises on computer network performance analysis are listed.

Chapter 5 ison the M/G/1 queue. The recurrence equationsfor the state sequence
of the imbedded (embedded) Markov chain of an M/G/1/co queue are developed.
The uniqueness of solution to the resulting equilibrium balance equations is eas-
ily shown. The equilibrium state probabilities at departure time instants being the
same as the expected long-term time averages of state occupancies is shown with
the help of the PASTA property, which is also developed. The Pollackzec-Khinchin
mean value formula is completely derived without developing or using the corre-
sponding transform formula. The expected time averages of state occupancies for
a finite buffer M/G/1 queue are aso developed. The contention-free LAN perfor-
mance analysis problem with heterogeneous arrival rates, first studied in Chapter 4,
is generalized in the exercises here, to allow for heterogeneous packet sizes. Thisis
auseful featurein Voice Over IP (VOIP) application.

Chapter 6 is on discrete time queues. A detailed analysis of timing within and
across slots is very important to understand the various possible and impossible
events concerning arrivals to and departures from empty and full systems. The anal-
ysis leads two different Markov chains, for the states, at slot centers and slot edges,
respectively. State classification is developed with practical examplesfrom computer
systems. Existence and uniqueness of the solution of equations for equilibrium state
probabilities is shown without using advanced linear algebra or advanced matrix
theory. Interrelationships between these Markov chains are developed for students
to clearly identify the correct quantities to be used to obtain the performance fig-
ures. Interesting examples from synchronous digital systems are used to illustrate
the topic. Examples and exercises on the topic of dotted networks and sensor net-
works are also included.

Chapter 7 is on continuous time Markovian queuing networks. The case of open
gueuing networks is studied first. The Markovian nature of such systemsis pointed
out. Balance equations and traffic equations are developed. The product form solu-
tion is verified to hold. Illustrative properties and examples are included. For closed



Xvii

gueuing networks, in addition to the verification of the product form solution, convo-
[ution algorithm, performance figures, and mean value analysis are developed with
the necessary details. Illustrative properties and application problems are included.

Chapter 8 is on G/M/1 queues. The imbedded Markov chain of the G/M/1/oo
gueue is analyzed. Results are specialized to Pareto interarrival times (IAT). The
effectiveload as a function of normalized load and the Hurst parameter of the Pareto
|AT are very illustrative; the average buffer occupancies are considerably worse than
those in M/M/1/oo queues for the same load. Furthermore, these averages steeply
increase as the Hurst parameter increases towards 1. These results bring out the
bursty nature of data traffic with Pareto IAT. The derivations use no results from
outside and are fairly easy to follow, although obtaining the Laplace transform for
a Pareto |AT is somewhat lengthy. Evaluation of equilibrium state probabilities at
arrival time instants in a finite buffer G/M/1 queue is straightforward and included.
From these, packet drop rates (due to the finite buffer), expected response time, and
average gqueue size are easy to evaluate.

Chapter 9 introduces and analyzes a few bursty traffic models and their effects on
gueues. Chapter 10 introducesfluid-flow models and their analyses. Thesetopicsare
considered somewhat advanced and the treatment here does use matrix theory and
systems of ordinary differential equations. The motivation, model development, and
relationsto other models are nevertheless simple to follow, as are thefinal devel oped
results. A consciousattempt is madeto devel op the advanced mathematical results as
and when needed. Only very occasionally is a reference made to a specific advanced
result in the literature, listed in the short bibliography.

Chapter 9 is devoted to bursty traffic and corresponding queues. Principles of
smooth and bursty traffic are introduced with the help of simple probability theoretic
principles. In theliterature, exact results on queuesinput with some models of bursty
traffic have been elusive even with sophisticated mathematical tools. A tractable ap-
proximation to self-similar traffic is developed as follows. Merging numerous (the-
oretically, unbounded number of) streams of traffic with heavy-tailed IAT is known
to result in aself-similar data source. In this chapter, the heavy-tailed Pareto random
variable is approximated by a hyperexponential random variable. Merging several
such data packet streams (each with a hyperexponential | AT) resultsin a Markovian
Arrival Process (MAP) with a very large number of states. This Markov chain is
shown to sport a product form solution which is evaluated with the help of an effi-
cient algorithm. This also introduces state dependent closed queuing networks. A
gueue fed by such a packet source is analyzed. The complexity of the solution for
the queue depends only on the number of states in the Markov chain of the data
source. Matrix inversionis not required here. The complete analysis of such a queue
is based on the original work of Marcel Neuts which deals with a more general sys-
tem. Queues fed by data packet streams generated by a Markov modulated Poisson
process (MMPP) are similarly but briefly analyzed. Evaluation of results on a queue
input by an MMPP requires inversion of a square matrix with the number of rows
equal to the number of states in the MMPP. Some results are left for students to
develop and are listed in exercises. The product form solution developed here for
closed networks with stations that offer immediate service expands the applicability
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of closed networks. Some interesting application problems on the topic of cognitive
radio networks are formulated in exercises.

Thefinal chapter, Chapter 10, ison fluid flow models. Data packets are considered
to flow into a buffer at arate that can switch from one value to another over a count-
able set of rates. The output from the buffer has similar features. These rates change
in acontinuoustime Markov chain fashion. The analysistechniqueisfirst introduced
with atwo state ON-OFF Markov chain model of a packet train feeding into aleaky-
bucket with a constant draining rate. An illustrative example demonstrates all the
aspects of solution development for thistwo state Markov chain fluid input problem.
Differentia equations for the cumulative distributions of the buffer content in the
genera case of multistate Markov chain controlling the input and draining rates are
formally developed. Solution follows the earlier developed eigenval ue-eigenvector
approach. Little's result for the general case of a stable fluid flow system is sys-
tematically developed. If the number of states of the Markov chain controlling the
flow ratesis infinity, a matrix-method solution is not possible, in general. The sim-
plest case of an infinite state Markov chain controlling the flow rates is the output
of an M/M/1/oo queue feeding a constant rate leaky bucket. This is analyzed and
illustrated with a variation of the first example. Comparison of the two different but
similar systemsisvery illustrative.
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Chapter 1

Introduction

1.1 Background

A queue is an arrangement for the members of a set to appear for an activity,
completeit, and leave. Such appearances are called arrivals. The activity is called
service. The members arriving for service are called customers, even though they
may not be humans in every case. Customers may be physical devices, or even
abstract entities such as electromagnetic signals representing a data packet. The
arrangement is also called a queueing system. The word queueing is also spelled
gueuing, now-a-days. Queues occur extensively in al waks of life and in many
technological systems. They gained importancein machine shops with ademand for
quick repair turn around during World War 11. The simplest examples of queues are
those in banks with customers being served by tellers, calls appearing at telephone
exchanges, and population dynamics of, say, rabbits and foxesin a forest.

The following are some common features in a queuing system. Arrival time in-
stants are usually uncertain, with a statistically steady behavior of the time intervals
between successive arrivals. Similarly, the service times are also usually uncertain
with a statistically steady behavior. Customers may wait in a waiting line to receive
service. Inthe simplest arrangement, serviceis provided in afirst-in, first-out (FIFO)

order. In such a system, the customer receiving service is said to be at the head of
the queue and a fresh arrival joins the tail of the queue. A customer departs from a
gueue after receiving service. In another type of arrangement, serviceis provided in
parts or piecemeal with a customer typically aternating between the waiting mode
and the service mode, returning to the tail of the waiting line after a piece of service.
The customer leaves the entire system at the end of the complete service, possibly
after many time intervals of piecemeal service, separated by time intervals of wait-
ing. Queueswith last-in, first-out (LIFO) service, and service in random order are
also found in practice. An LIFO arrangement is commonly referred to as a stack (in-
stead of being called aqueue). In some applications, multiple customers may receive
service simultaneously, with the help of multiple serversin the system. There may
also be multiple waiting lines with customers moving from one queue to another.
Such systems with interacting queues are called queuing networks. In such queuing
networks, customers may move from the departing point of one queue to the tail of
another. A customer may return to the tail of the departing queueitself. A customer
may also arrive at the tail of an earlier visited queue for additional service. After
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possibly many such visits to multiple queues, a customer finally leaves the entire
network.

Individual computers and computer networks abound with queues. Statistical av-
erages of various quantitative criteria governing such queues are useful to assess the
acceptability of the performance. Their evaluations are also useful to optimize the
performance by tuning control parameters and to determine the number and qualities
of processors and other servers required to achieve an acceptable degree of perfor-
mance, in applications. Several examplesof queuing in computersand their networks
are described in the following section, to motivate a detailed study of the subject.

1.2 Queues in Computers and Computer Networks
1.2.1 Single processor systems

A computer processes jobs submitted to it by a user. Many of these jobs are
ready-made computer programs that a user initiates through a keyboard command
or by pointing the computer mouse pointer at a representative icon and clicking it.
Internally, the main monitor program, called the operating system (OS) itself keeps
the computer busy to a certain extent with housekeeping operations, even when there
isno external job to process. For example, checkingto seeif any programisinitiated
by a user is a house-keeping operation. |If a user strikes a key on the keyboard,
that information stays in a memory buffer; the fact that the computer’s attention has
been called to the data-input device (keyboard) is stored in another buffer. The OS
lets the computer to frequently check these buffers called the input ports. Input and
output (1/0) between the computer and the external devices are through organized
handshake procedures with the computer and the 1/0 device having afull knowledge
of whose turn it is to respond and how, for every step of the process. When an
external input device has submitted a request, the OS invokes one or more programs
to examine the request and processes the same.

Most individual computer systems are built around a single processor each. Such
a processor is called the Central Processing Unit (CPU). Even if the processor has
pipelined or vector processing hardware, machine instruction executions are com-
pleted one by onein such machines. However, the CPU gives attention to segments
of many different programs, in sequence. That is, whereas the machine instructions
are executed one after another, the execution of program jumps from one subse-
guence of instructions in a program to another subsequence of a different program.
The scheduling algorithm for such jumps between different programsis influenced
by avariety of factors such as which Input/Output (1/0) device becomes active dur-
ing an execution period. Even when there is no such external stimuli during atime
period, the OS changes the CPU’s attention from one program to another, with the
help of internal timers. Thisfeatureis deliberately incorporated so that the execution
of ashort programis not completely held up while the CPU completes the execution
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of avery long program.

The machine instruction execution is relatively very fast in comparison with the
usual speed at which the external requests draw the attention of the computer. There-
fore, many times, the user feels that the computer is processing all the requests si-
multaneoudy, and hence the terms* multiprogramming” and “time sharing” are used
to describe the operation of such a single computer system.

The queue in such a single computer system consists of arrivals of external jobs
or requests submitted by the user. The server isthe CPU giving piecemeal attention
to the requests. Partially processed requests are sent back to the tail of the queue,
whenever the CPU decides to change its attention to the next job in the queue. Such
processing and queuing systems are referred to by the name round robin.  More
complicated queuing systems can be formulated by accounting for the interaction of
the I/O devices and the CPU.

1.2.2 Synchronous multi-processor systems

Multiple computersare synchronously interconnected in some specialized systems
to allow parallel processing. In such systems, all activities and data movement are
controlled by a single master-clock that ticks at a constant rate. There may be other
clocks synchronized with the master-clock. There may beasingle or multiple service
points. The number of master clock cycles, also known as slots, can vary from one
invocation of a program to another. Statistical averaging of the performance metrics

are useful to assess the overall systems. In such a system, a sequence of programs
arrives and processing is FIFO, leading to a simple queue. However, the dlotted
operation requires the quantity “time” to be treated as a discrete variable.

1.2.3 Distributed operating system

In many other applications, several computers, terminals, and workstations, all
generaly referred to as clients, are connected to one or a few high performance
computers called the servers. Client machines may process many jobs themselves.
They may also ship jobs to the servers when deemed necessary. All the activities
are controlled by a loosely coupled distributed operating system (DOS). There is
no master-clock controlling the movement of customers; hencethe time variableisa
continuous one. In this configuration, jobs or requests may wait for various types of
service at multiple locations. Therefore, there are several queues in such a system.
Jobs may also visit service points repeatedly, due to the time sharing organization
mentioned earlier. The overall organization is a network of queues.

1.2.4 Data communication networks
1.2.4.1 Data transfer in communication networks

In data communication networks, computers, called host machines are intercon-
nected by a system of communication links. The interconnected system of links, not
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including the host machines, is known as the subnet. The host machines run appli-
cation programsthat require movement of data between different computers. All the
computers are independent devices and there is no single DOS controlling the com-
puters. The primary purpose is data transfer between computers which are possibly
geographically separated by hundreds or thousands of kilometers. The process of
data transfer requires running computer programs such as format conversion, proper
I/O, etc., but the applications themselves are not generally computation-intensive.
The level of cooperation is at a higher level in the sense that data transfer of every
singleitem is not atightly controlled handshake procedure. The following example
illustrates the above situation. In an ongoing data transfer, the computer receiving
datafrom an incoming datalink is generally ready for the task. However, over a par-
ticular short time interval, it may not have processed all the received data available
onitsinput ports. Several bytes of additional datamay arrivein aquick sequence. In
such acase, the newly arrived data may write over existing datain the input ports. If
the recipient computer is configured not to accept data on input ports until existing
data are processed, the newly arriving datawill simply not be entered into any input
ports and vanish! This demonstrates that such a computer network is less reliable
than atightly controlled interconnection between a single computer and its I/O de-
vices. Another source of lack of reliability isthe bit errors possibly introduced due
to noise over long data links, especially over wireless networks. Such lack of relia-
bility is taken into consideration and programs running on the computers attempt to
compensate for the same through the use of error detection, acknowledgments, and
retransmissions. These slow down the overall data transfer processes creating the
necessity of queuing. If the overall data movement is not efficient enough, queuing
delays will accumulate. The long queues necessitate very large buffersin which to
hold waiting data. This becomes impractical, even if we resign ourselves to toler-
ate longer overall delays. Therefore, data transfer in practical computer networksis
required to be very efficient.

1.2.4.2 Organization of a computer network

The overall network has a hierarchical structure with a backbone subnet made
of a small number of high data rate links. A data link connects two routers. A
router is a high speed special purpose computer, but it is not a host machine. A
router can support multiple links, going in different directions. Each link is usually
bidirectional, and can be equivalently considered to be two unidirectional linksin
opposite directions. Each router in the backbone subnet in turn feeds into different
portions of the network. Each such portion itself is an interconnection of routers
realized with the help of data links. Each of these routers feeds into one or more
local area networks (LANS). A LAN usesasingle broadcast medium through which
several host computers communi cate among themselves. One single computer on the
LAN also functionsas aLAN server to facilitate communication between the other
host computers on the LAN and the rest of the world.

In data networks, communication between host machines is not in a contiguous
stream of bits. An overall communication of alargefile is accomplished by splitting
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the file into individual data items, with each data item consisting of a stream of
severa bits. The number of bits in a data item can range from hundreds to several
thousands. Data items are transmitted from one point to the next over links. All
the data items belonging to a file to be transferred do not necessarily go through
the same sequence of links and do not appear at the eventual destination in the exact
same order of transmission at the original source. Softwarein the original source host
and the eventual destination host cooperate to reassemble data items to reconstruct
the original file. Such software at each of the hosts of the origin of the file and
the destination are called transport layer software. Thus, even the software for
the data communication over a computer network is organized in a hierarchical way
with different software modules responsible for different activities. Each layer of
the overall software appends additional bits called headers to a data item to manage
the transfer of a data file to the eventual destination. Severa headers are added
and removed in the course of the overall transfer of a data item. At the transport
layer, adata item including its header is called a transport data unit or TPDU. The
network layer is responsible for decisions on which datalink a dataitem should be
transmitted. At the network layer, adataitem is called a packet. Between the end
points of asingle link, the datalink layer (DLL) software manages error correction,
verification of successful transfer, etc. The data items in this layer are caled data
frames. The medium access control layer (MAC) manages data transfer over a
broadcast link such asaLAN. The primary problemsencountered by the MAC layer
are cooperative access of the common communication channel, managing collisions
which are unintended destructive overlapping transmission by multiple hosts, etc.

1.2.5 Queues in data communication networks

The total number of datalinksin such avast network is very small in comparison
with the number of host computers. In the case of a LAN, only one of the many
host computer can successfully transmit data over the broadcast medium at any time.
Therefore data communication over such an enormous and complicated network is
required to be very efficient. Let us now understand some of the queuing that occurs
in computer networks. A router receives dataframes on incoming links, from another
router. The network layer processes each packet very minimally and gives it to the
DLL corresponding to another link over which the packet should be retransmitted.
Following are somedetails. The DLL at the receiving router performserror detection
and keepstrack of whether or not all transmitted framesfrom the preceding router are
received. The DLL stripsthe frame header and givesthe packet to the network layer.
The network layer examines the packet header. It determines the link over which
the packet should be retransmitted (forwarded) towards the eventual destination. A
few fields of the packet header, such as the number of hops may be updated and the
packet is passed onto the DLL. The DLL introduces

e redundancy bitsfor error detection,

e serial number to track whether or not all the packets are successfully received
by the router on the other side of the forward link, and
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o frame boundary bits to determinethe start and end of aframe.

The resulting data frame is transmitted on the forward link. The entire process at
the router can be approximated to be a single FIFO queuing system. The real situ-
ation is alittle more complicated. A router uses a more involved data link protocol
over each of itslinks. As mentioned above, the activity includes using (afinite field)
serial numbering of the data frames, acknowledgments, and retransmissionsif neces-
sary. Therefore, after transmitting a data frame, the router needsto hold it in another
gueue. It can be deleted only after the router receives an explicit or implicit ac-
knowledgment from the frame receiving router. Thus, a better approximation uses
two interacting queues.

A host computer connected to a common LAN maintains data frames for trans-
mission in a queued buffer. When transmitted, a packet can collide with another, if
a different host computer also starts transmitting a packet, in an overlapping time
interval. Thuswe have multiple queues with interacting servers, in aLAN.

1.3 Queuing Models

A model of a physical system is a mathematically precise representation of the
interaction of several variables and functions governing the original system. The
spirit behind the mathematical representation is two-fold as follows. We would like
the representation to duplicate the functioning of the origina system as closely as
our knowledge of the system and our knowledge of mathematics allow usto do. We
would also like the mathematical representation to be simpleenough for usto analyze
the same, with our limited knowledge of mathematics, and evaluate the required
performance characteristics. Therefore, in most cases, these precise mathematical
models are approximations of the real characteristics of the systems being modeled.
These desirablefeaturesare often contradi ctory and thereforelead to multiple models
with a simple model on the one hand and a more accurate but complicated one on
the other, for the same physical system. A simple queuing model is a single FIFO
gueue. Such amodel may be an adequate representation for a single database server
and an acceptabl e approximate representation of a network router. Figure 1.1 shows
a usual pictoria representation of a single FIFO queue. The circle at the right is
the service area. At most one customer can be in the service area at any time. The
server isrequired to be busy, serving, if thereis at |east one customer in the system.
Customersare represented by short vertical lines. Waiting customersarein the buffer
totheleft of the servicearea. The mathematical behaviorsof thearrival timeinstants
and service time intervals for different customers are parts of the model. The arrival
time instants are equivalently represented by inter-arrival times (IATs) and thetime
instant of thefirst arrival. The amount of time a customer spendsin the entire system
is called the response time which is the sum of the waiting time and the service
time. Responsetimeis also called sojourn time. Typical performance characteristics
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FIGURE 1.1: FIFO queue representation

of interest in such a simple queue include the following. The average number of
customers found in the system. Thisis defined as follows. The number of customers
in the system is a function of the continuoustime variable. The average of thistime
varying function, over along time interval, is the required performance figure. The
averageresponsetimeisthe average of the responsetimeintervals experienced by all
the customers over the long time interval. The average waiting time and the average
service time are similarly defined. The fraction of time the server is busy is also an
important performance criterion. It correspondsto the total of the time intervals that
the server is busy, divided by the total time of the queue operation. This fraction is
known asthe utilization of the server. The number of customer positionsin awaiting
line may befinite in some application systems. In such cases, a customer attempting
to arrive is not allowed to wait in the waiting line. Such queues are known as finite
buffer queues.

David George Kendall (1918-2007) introduced a notation to represent different
classes of single waiting line queues in the year 1953. The A/B/m/k/n queue
hasinterarrival times of type A and service times of type B. The parameter m isthe
number of servers, k isthe maximum number of customersallowed to bein the queue
(including any being serviced) at any time, and n is the size of the population from
which customers arrive. Classes of A and B are distinguished by their statistical
properties.

The behavior of a queue is cumulative, in the sense that the number of customers
found at any timeinstant is affected by previous activity. Clearly, the future behavior
of the queue is affected by the the number of customers found at the current time
instant. In general, the time instant of the next arrival may depend on the past,
for example, on the time instant of the most recent arrival. Similarly, time instant
at which the customer being currently served will depart may depend on when the
time instant the previous customer departed after service. However, it turns out we
can construct simple mathematical models of 1ATs and service times wherein the
statistics of the future behavior of a queue depends only on the number of customers
in the system at the present time instant and not even on the time instants of the most
recent arrival and departure. These are developed in the chaptersto follow.

Many complicated queuing systems can be model ed with the hel p of modifications
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of simple models, or with interconnectionsof simple modelsor with both. Therefore,
it isvery important to study very simple modelsin the beginning, even if they appear
to be unredistically ideal. A study of a variety of simple models and some of their
modifications and interconnections also helps us to develop more realistic models
for physical systems. Such a study also enhances the level of our mathematical
knowledge and helps us to attempt analysis of more realistic, complicated models.
Occasiondly, it turns out that some performance characteristics of a more involved
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FIGURE 1.2: Round robin queue

model are the same as the corresponding ones for a simple model. For example,
consider around robin scheme, the model for which is obtained by using a feedback
path in the simple FIFO model. A pictorial representation is shown in Figure 1.2.
The wperating system’s timer decides when to pause the service for ajob and feed it
back to the queue's tail. The time for feedback is usually negligible in comparison
with each continuous service time intervals. Therefore, the number of customersin
the FIFO and in the corresponding round robin models are identical, all the time.
This implies that the two models have the same average number of customers and
server utilization. The following describes a few examples of models for queues for
different systems constructed by making modifications to simple models. A model
for the queue for multiple serversin aDOS with afew computation intensive servers
is shown in Figure 1.3. Job arrivals are those submitted by many client computers.
They queue up for FIFO service. Each server has its own service area. There can
be at most one customer in each service area. The DOS must use a scheduling
policy on which server to send an arriving job to, if there are multiple servers free
to serve, when an arrival comesin. In some client server systems, a client may be
allowed to submit only one job to the server and is not allowed to submit another
job until the previously submitted job is complete. In such a system, the arrivals
are functions of the number of jobsin the servers queue. In a more general system
of multiple processors, jobs queue up in front of all servers. The DOS may ship
jobs from the output of one queue to the tail of another or to the tail of the original
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FIGURE 1.3: A queuewith multiple servers

gueues. At some time, possibly after visiting several queues multiple times, a job
finally departs. Such a system is called an open queuing network and is depicted
in Figure 1.4. Alternatively, in a DOS, we can model all the processes of the DOS
as customers that move from one queue to another depending on the data received.
External programs now function as data to the DOS. In such a case, the number of
customersin the queuing network is a constant all the time. Such systems are called
closed queuing systems. The model for a queuing system is not complete without
a precise mathematical specification of the behavior of interarrival times and service
times. The model may also require a scheduling policy for system operation. The
interarrival times and service times are usually uncertain quantities; they vary from
one job to another. But they also usually possess statistically steady behavior over
along time of operation. Therefore, we use probability theoretic models for these.
In some cases, the scheduling policy can be varied to optimize some performance
criterion of the system.

1.4 Conclusion

Many real computer networks queuing models are very complicated. However,
in many cases, approximate models can be developed with the help of either the
variations of simple models or some interconnections of simple models. Examples
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Arrivals C | |

Arrivals

N

Arrivals

| oo | Departures

—— Feedback paths

FIGURE 1.4: Open queuing network
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Arrivals ———= | o o |
Arrivals ——— | o o |
Departures
. Scheduler
and server
Arrival§ ———— | o o |

FIGURE 1.5. Multiple queueswith asingle scheduler and server

Contention
medium
Arrivals ———= | o o |
Arrivals ——— | oo |
Arrivals ——= | oo | Server Suocessi
ccessful
— departures

FIGURE 1.6: Multiple queueswith contention based service
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of these were included at the beginning of this chapter to motivate a detailed study
of queuing models starting from very simple models. The next chapter deals with
the introduction and detailed analysis of simple traffic models. Simulation of these
traffic patterns is also a topic there. In addition, smple principles and procedures
of parameter estimation are included. They are very useful in the analysis of real or
simulated traffic patterns.

Many of computer networks' diverse performance metrics are statistical averages.
therefore, by and large, analyses of queues are applications of probability theory and
stochastic processes. These are functions of the behavior of time periods of internal
activitiesand external load or request patterns. Typically, requestsfor servicewait in
gueues. Therefore, queuing theoretic principles are the main set of toolsin our per-
formance analysis. Statistical averaging of the quantities affecting the performance
requiresthe study of the variations of those quantities asthey occur repeatedly. Eval-
uation of such statistical averages is facilitated by the extensive use of Probability
Theory and Random Processes, in queuing theory. Many advanced principles of
probability theory and elementary principles of random processes are easier to grasp
with the help of the applications in which they find use. They are introduced and
covered in the necessary detail, as needed, in the following chapters. A review of
Probability Theory appearsin the Appendix at the end of the book.



Chapter 2

Characterization of Data Traffic

2.1 Introduction

Datatraffic isthe sequence of movement of dataitems through a point or a phys-
ical device. A typical data item is a contiguous sequence of bits forming a data
packet. When these data items pass through a physical device, there is usually some
impediment in the form of reception, processing, and forwarding. Such an impedi-
ment results in queuing and causes time delays. In general, queues have successive
arrivals of customers as inputs. These arrivals experience possible waiting and ser-
vice before being output as successive departures. This chapter introducesimportant
random variablesthat constitute modelsfor arrival and servicedisciplines. The statis-
tical nature of arrivals can be expressed in different ways. For example, if successive
interarrival times (IATs) are independent, a specification of the initial conditionin
the form of the time instant at which the operation of the queue starts and the proba-
bility density function (pdf) of IATs are sufficient to completely describe the nature
of arrivals. The Pareto random variable for |ATs is one such model. This random
variable exhibits some important variationsin its characteristics, based on the values
of the parameters of its pdf. Its variance can be finite or infinite. Infinite variance
random variables find applications in characterizing bursty data traffic. Therefore
Pareto random variables are studied in this chapter. Since its study is a valuable
review of elements of probability theory, it isintroduced first.

The number of arrivals over a time interval is another important way of charac-
terizing the nature of arrivals. In general, this requires the specification of the initia
condition and the time instants of the start and end of the interval over which the
random variable number of arrivalsis characterized. There is an important class of
arrival disciplines for which this specification can be considerably simplified; the
initial condition of the starting time and the exact time instants constituting the time
interval over which the number of arrivals is being characterized are not important.
The only important quantity influencing the number of arrivalsisthe amount of time
in the time interval. This class of arrivals is known as Poisson arrivals, named in
honor of Simeon Denis Poisson (1781-1840), a French scientist. The IATs in a
stream of Poisson arrivals are independent and identically distributed (iid) exponen-
tial random variables. This class of random variables possess a very interesting prop-
erty known as “memorylessness.” The exponential random variable is a very useful
model for servicetimes since the memoryless property greatly simplifiestheanalysis

13
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of queues. Poisson and exponential random variables are studied in detail, following
a study of the Pareto random variable.

One of the practical problems encountered in data communication networksisthe
errorsin received data packets. Errorsare caused by noisein physical links. A smple
model of noise and its effects on hit errors and data packet errorsis introduced. A
particular advantage of this model is that if the packet error rate at a particular data
transmission rate is given, the corresponding packet error rate at a different data
transmission rate can be evaluated. This helps in optimizing the data transmission
rate.

The basic approach to simulation of a queue is to generate outcomes of random
variables corresponding to data traffic and use them in the way the queue operates.
Therefore, simulation of random variables corresponding to data traffic is funda-
mental to the simulation of queues. Computer simulation of random variables is
most commonly implemented by attempting to repeatedly generate iid outcomes of
a very simple random variable and subjecting them to the needed transformations.
Unfortunately, computers execute algorithmsin a deterministic way. Therefore, if a
simulation algorithm is run repeatedly with identical external datainput, it produces
identical results for every run. There is nothing random about this. If the external
inputs themselves form all of the extensive random data, we are not using the com-
puter to simulate; we would only be using it to operate a system, possibly aqueue, to
which random data from elsewhere are input. The best we can hopeto achieveisto
use the computer to generate a long sequence of numbers that “appear” to have the
properties of the outcome of a sequence of iid random variables. There are excellent
algorithms for this purpose. Typically they approximate the generation of iid uni-
formly distributed random variables. The length of the sequence of such generated
numbersis typically 2 — 1 where k is the number of bits in the computer word the
the algorithm uses. If the algorithm is run to generate more than 2% — 1 random num-
bers, the sequence repeats. The algorithms also accept an external input called the
seed that determines the starting point in the cyclic sequence of generated numbers.
Thus, by giving different seeds, practically different smulation trials are realized.

The next step in simulation of queuesisto generate outcomes of random variables
for different datatraffic models. Thisisusually accomplished by using mathematical
transformations of a uniformly distributed random variable (that can be simulated)
to the desired random variables. Thisisalso atopic studied in this chapter.

Finally, analysis of simulation results require an understanding of the basic prin-
ciples of parameter estimation from random samples. Only some very elementary
principles of parameter estimation are included in this chapter.
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2.2 The Pareto Random Variable

The Pareto random variableis named in honor of Vilfredo Federico Damaso Pareto
(1848-1923), a French-Italian scientist. It is characterized by a pdf which varies as
a negative power of the outcome and a value of zero for pdf for small values of the
outcome. That is, if X is Pareto, its pdf

fx(x) = (21)

pdf of a Pareto random variable;o. = 1.5 and § = 4
0.4 T T T |

0.05f

FIGURE 2.1: Density function of aPareto random variable; o« = 1.5, 6 =4

To makethisavalid pdf, we need
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7 fx(z) de = 1. (2.2)

Now, R
7 fx(x) de = v]oa:_“ dx (2.3
e [3;—““]:. (2.4)

Weneed v > 1 and w > 0 for thisintegral to befinite. Then,

/ fx(x) de = " i 7 w= D =1, (2.5
Therefore,
v=(u—1)w"! (2.6)
and
fx(@) = (u—=1) w2~ (2.7)
~t (e o

We introduce new constants, « = v — 1 > 0 and § = w > 0 in order to expressthe
density function in acommonly represented form. We have

a+1
fx(@) = (2) ez 29

x < p.

@R
]

L

An aternative common form of representation uses the Hurst parameter H instead
of «. Harold Edwin Hurst (1880-1978) was a British hydrologist. He studied long
term storage capacities of reservoirs based on empirical observations on the river
Nile. The Hurst parameter for a Pareto random variable is given by

3—a

H="7. (2.10)
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Let us evaluate the properties of the above valid density function. The cumulative

distribution function (cdf) is

B
:1—(§)$, x>0
=0, z<0

The expectation

:aga[

xa+1:|00
—a+1 3

Now, « needsto be larger than 1 for finite E[X]. Therefore, for o > 1

Blx) = 28 goen

and finally, we have

2B ifa>1
BlX] =

oo, ifa<l.

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)
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The variance Pareto random variable is evaluated as

oo

var[X| = /(x — E[X))? fx(z) dz

— 0o

= E[X?] - E?[X].

Equation (2.20) follows by expanding the squarein equation (2.19).

o0

E[X? = /xQ fx(z) dx

— 00

For E[X?] to befinite, weneed o > 2. If a > 2,

o Q—a+2 2
BIX*] = aﬁaﬂ— 2 aaf 2

Summary

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

The Pareto random variable X can have any physical dimension, such as length,
mass, time, or bits (approximating number of bits by areal number). The parameter

« isdimensionless, and 3 has the same dimension as X .

Fx(x) =

(2.25)

(2.26)
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2B ifa>1
E[X] = (2.27)
oo, ifa<1,

5 2

of —(“—_5) Jifa>2

varX| = (2.28)
00, if a <2.

Therange o € (1,2] is of interest to us. In this range, the mean is finite but the
variance is infinity. Datatraffic in present day LANs is very bursty, despite having
an overall finite average value. Modeling interarrival times between successive data
packets by a Pareto random variable with a € (1, 2] is gaining popularity. It turns
out that we can easily ssimulate Pareto random numbers, as discussed later in this
Chapter.

Example 2.1

In an Ethernet, successful packets (those that are transmitted without col-
lisions) appear as the presence or absence of a successful packet, over a time
interval. An example of such a trace is shown in Figure 2.2. Extensive exper-
iments with Ethernet traffic have led to a model in which the time intervals
between the end of one packet and the beginning of the next are Pareto
with o = 1.2 as an estimate. Let the average of such OFF times in the data
packet train be 1 millisecond (msec and ms are also used to denote millisec-
ond). Find the minimum time interval between successive packets. Find
P[X > 10msec|, i.e., the probability of finding no arrival in 10 msec since the
end of the previous packet.

Solution

E[X] = (2.29)

P E[X](aa -1 _1 msec1(.12.2 ~1) 230

= % MSeC. (2.31)

Since fx(x) = 0, forz < 3, the OFF time is always% msec or higher. Note the
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t; = time for first packet arrival to start

to = time for first packet arrival to end

t3 = |AT between packet starting points

t4 = time for the start of second packet arrival
t; = |AT between packet ending points

FIGURE 2.2: ON-OFF model of a packet train.

difference between two random variables associated with the stream of packets, the
OFF timesand the |ATs.

P[X > 10msec] =1 — Fx(10) (2.32)
1312
—1- {1 - (@) ] (2.33)
1512
- (%) ~ 0.007. (2.34)

The probability of OFF time to be larger than or equal to 10 times the mean is still
not too small! Thisisthe heavy-tailed property of thisrandom variable. Later on, we
will compare this with the probability of the same event for an exponential random
variable with the same mean.

Example 2.2

The probability density function of the time for the next bus arrival starting
at 8 AM as zero time is Pareto with « = 1.7 and # = 1. Time is measured
in minutes. At 8:05 AM, the bus had not arrived. Determine the probability
that the bus will not arrive for at least ¢ more minutes after 8:05 AM.
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Solution
Starting from equation (2.13) for P[X < z] of aPareto random variable, we have
PIX > ] = (é) x> . (2.35)
X

Let T be the absolute arrival (random) time

P[T>8:05+1 P[X>5+t
P[T>8:05+tT >8:05] = [P[T>8:05]]: ED[X>5]] (2.36)

1.7
_ (%) . (2.37)

Example 2.3

An agent in a train A is required to give a key to another agent in train B.
It is known that Train B will be parked at a station S between 3:00 PM and
4:00 PM. Train A starts from a distant point at 1 PM the same day. Its travel
time to reach station S is a Pareto random variable with a = 3 and g =1
hour. It will stop next to where train B would be in station S for a negligible
amount of time and proceed. What is the probability that the hand-over of
the key will be successful? Ignore the time for agents to walk to each other if
and the two trains stop next to each other. I

Solution
Let X be the random variable of the time in hours it takes for train A to travel to
station S. We need

3 a+l

PR2<X <3 = / (§> da. (2.39)
2

1

Thisevaluatesto £ — 5= = 42 = 0.088. I

Example 2.4

A Pareto random variable X has a = 1.5 and § = 2. We would like to
construct a new random variable for IATs in the form of the random variable
Y = X — a, with a constant a such that Y is nonnegative but its density
is nonzero starting from the outcome 0 itself. Determine a and completely
specify the probability density function of Y, its mean and variance.
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Solution

If we draw a rough figure (or even imagine one) with the density function pushed
so that it starts to be nonzero from the O point itself, we find that « = 2. Substitute
x = y + 2 in the expression for the density function. The density of Y is zero for
y < 0. More systematically,

Ply<Y <y+dyl=Ply+2< X <y+2+dz], y>0 anddy = dz.

(2.39)
Therefore, fy (y) = fx(y+2), —oo <y < co. Thatis,
2 2.5
=07 ——= , y>0 2.40
Frn =05 (25) (240
=0, y<O. (2.41)
ElY] = B[X] - 2= 20X2 9y (2.42)
1.5—-1

Variance of arandom variable does not change with trandation. Therefore,
var[Y] = var[X] = oo. (2.43)
1

2.3 The Poisson Random Variable

Let us study the traditional and “smooth” interarrival times model. The proper-
ties of this random variable can be formally derived by three simple and appealing
assumptions. Consider an electron gun shooting out electrons in a narrow beam.
This is a random phenomenon. Let us assume that the electrons’ arrival times at a
particular point follow the three randomness properties bel ow.

1. In anarrow time interval, the probability of an arrival is proportional to the
timeinterval.

2. Inanarrow time interval, the probability of two or more arrivalsis negligible
in comparison with the probability of one arrival.
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3. Numbersof arrivalsin nonoverlappingtimeintervalsare mutually independent
of one another.

Notethat (0,¢1] and (¢, t2] are nonoverlapping. As an example, if firing times of
electrons are independent and statistically steady, then these assumptions are intu-
itively appealing. Mathematically, the assumptionsimply the following.

1.

61390 P[onear(;itval in ot _ ). acongtant (2.49)
2.

Moo, s
3.

P [ky arrivalsin (t1,t2] and k2 in (to, t5]]

= P [ky arrivalsin (t1, t2]] - P [ke arrivalsin (t2, t3]] . (2.46)

From these three defining assumptions, we can derive the probability mass func-
tion (pmf), P [k arrivalsin (0, T]. The pmf will beafunction of only one parameter
value A\, whichisfound in the defining assumptions (and the time interval T').

2.3.1 Derivation of the Poisson pmf

Consider a time interval (0,77]. Divide this interval into n equal parts. Asn
increases and tends to oo, % — 0 and we have a narrow sub-interval tending to
0. Therefore, in each such sub-interval, we have one arrival with probability %
and zero arrivals with probability 1 — % Two or more arrivals occur with zero
probability. These arguments are accurate in the limit, asn — oo. The number & of
sub-intervalswith arrivalsin atotal of n sub-intervalsis binomially distributed.

Plkarrivalsin (0, T]] = P[kinT], for brevity (2.47)
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, n! AT\ [ AT "

We just need to evaluate the above limit.

QDR AT AT
PkinT] = lim ~= |1 - = L= e (2.49)
The quantity
—k
[1 — )\—T} — lasn — co. (2.50)
n
Therefore,
o (AT)E AT\
PlkinT] = lim —!(1 - 7) x
n-(n—1)-mn—-2)---(n—k+1)
[ - . (2.51)

In the last fraction, each (n — 4) in the numerator cancels with an » in the denomi-
nator, asn — oo, for any finite k. Therefore,

. ERCYHLES AT\"
PlkinT] = < nlggo(1_7) . (2.52)
Concentrate on
_ AT\ AT =37
i (1-20)" = g | (12 55) 7 59
L —\T
= [lirr(l)(1+a)a:| (2.54)
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lHm L in(14a) ¥+
[e{ age ™ )}} . (2.55)

Consider |
lim M.
a—0 a
Apply L'Hospital’srule. Thisruleis named in honor of Guillaume Francois Antoine

de L' Hospital, a French mathematician (1661-1704).

. In(l4+a) 1
N L Y ! (259
— 1. (2.57)
Therefore,
exp [{ lim (14 a) }] —e (2.58)
and,
lim [1 — /\—T} =e T, (2.59)
n—o00 n
Finally,
. VAL
PlkinT] = ( k') e M. (2.60)

This is the Poisson pmf. This pmf gives the probabilities of finding various num-
bers of possible arrivals in a given time interval, if the arrival scheme satisfies the
previously mentioned three properties.

2.3.2 Interarrival times in a Poisson sequence of arrivals

Let X bethe random variable corresponding to the time for the next arrival, soon
after onearrival. Such arandom variableis appropriately called the interarrival time.

P[X > t] = Plnoarrivasin (0, t]] (2.61)
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0
— Pl0int] = (A(f') e (2.62)
=e M, (2.63)
PIX <t]=1-e=Fx(t). (2.64)
dFx(t
() = 20 (2.65)
Ae M >0
— (2.66)
0, t < 0, sinceinterarrival times are nonnegative.
Ae M t>0
fx(t) = (2.67)
0, t<0.

This is called the exponential density function. Therefore, we have that the inter-
arrival times are exponential random variables if the number of arrivals in a time
interval is Poisson. The Laplace transform of the exponential random variable is
derived in Appendix A; if X isexponential with the parameter A,

Lx(s) = 5 i - (2.68)

2.3.3 Properties of Poisson streams of arrivals

2.3.3.1 Mean of exponential random variable

Ae ™M >0
fx() = (2.69)
0, t<o.
o0 o0

E[X] = / tfx(t)dt = / Ae Mdt (2.70)
0

— 00
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1 o0
=5 / At) (2.71)
0
1 7 _
= /ye Ydy. (2.72)
0
Integrate by partsto obtain
1 [e’e]
— | -y _ _eo Y
E[X] = X [ ye /( e )dy}o (2.73)
1 o 1
— | _pTY — —
- A[ e ]0 A [0 1} (2.74)
1
=1 (2.75)

2.3.3.2 Mean of the Poisson random variable

If the random variable K isthe number of Poisson arrivalswith parameter A, over
atimeinterval ¢, the expected number of arrivalsis

exp (—At)(\t)*

M

E[K] = o (2.76)
k=0 ’

. exp (—At)(At)F
— ; = (2.77)
M Z exp ( M M) S (2.78)

Usingj = k — 1, we have
K] =Xt i M (2.79)
— !

The sum in the above equation is the sum of all the probabilities of a Poisson random
variables and evaluatesto 1. Therefore, we have

E[K] = At. (2.80)
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If ¢, over which the number of arrivals are considered is a unit time, the expected
number of arrivalsis A\ per unit time. Therefore, the parameter A is also called the
rate of arrivals. Let us compare the means of the exponential and Poisson random
variables. From the Poisson mean, the average number of arrivalsin a unit amount
of timeis A. From the exponential mean, the average time between arrivalsis % The
two are consistent with each other.

2.3.3.3 Variance of the exponential random variable

E[X? = / MZ e M dt (2.81)
i 2 At
=5 | O d(\) (2.82)
0
LT,
=2 | Ve dy (2.83)
0
= 1 [ yle Y — /2y(—e_y)dy OO. (2.84)
A2 0

y?e~Yis0fory = 0 and for y = co. Sowe have,

oo

E[X? = % / ye Y dy (2.85)
0
2
= (2.86)

from the earlier evaluation of | ye~¥, when we evaluated E[X|.
0

var[X] = E[X?] - E?[X] (2.87)
2 1 1

If X isexponential with parameter A, var[X] = 5.
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Example 2.5

Let the average of the OFF time random variable (X) be 1 msec (as in the
earlier Example 2.1 that used a Pareto random variable), and let X be dis-
tributed exponentially. Therefore,

P[X > 10msec] = e ¥ = 4.54 x 107°. (2.89)

This is much smaller than the corresponding probability (0.007) obtained by
using the Pareto distribution we considered earlier.

2.3.3.4 Variance of Poisson random variable

Let N4 be the number of arrivalsin time T'. Instead of evaluation E[N%] to find
var[N,], itiseasier tofind E[N4 (N4 — 1)] first, since we have k! in the expression
for P[N4 = k]. We have

E[NA(Na —1)] Zk —-1) )

The argument of summationis0 for £ = 0 and for k = 1. Therefore,

E[NA(N4 —1)] = (\T)? *ATi AT o = (\T)2. (2.90)
=

E[N3] - E[Na] = (AT)*. (2.91)

E[N3] = (\T)? + AT. (2.92)

var[Na] = B[N3] — E*[N4] (293

= (NT)?2 + \T — (\T)? (2.94)

= \T. (2.95)

For the Poisson random variable, we seethat E[N 4] = var[Na] = AT

2.3.3.5 The Z transform of a Poisson random variable

If IV isthe Poisson number of arrivals over atimeinterval ¢ and with arate ),

Zy(2) = i M;ﬁ (2.96)
J=0 '
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~exp(—X) =L exp (—Mtz)(Mtz)
~exp (—A\tz) j; J! (297
= exp[—At(1 — 2)]. (2.98)

2.3.3.6 Memoryless property of the exponential random variable

Supposewe observed an arrival at ¢t = 0, and we are waiting for the next arrival in
a Poisson stream. We have that the time for the next arrival, X, is exponential. Let
the arrival rate be \. Supposethat at ¢t = t;, we still have not seen the next arrival,
and we wonder “how much longer” we might have to wait. Of course, “how much
longer” is also arandom variable. The distribution of this random variable may be
influenced by the fact that we have waited for £; amount of time, without success.
Let us evaluate the conditional probability P[X > ¢+ t|X > t1]. Thequantity ¢ is
thereal variable corresponding to the additional wait period beyond ¢;. This gives,

P[(X >t +t) and (X >t1)]

P[X>t1+t|X>t1]: P[X>t1] , t1,t>0

(2.99)

P[X >t + t]
=— 2.100
P[X > t4] ( )

1—-Fx (tl + t)
=—"— 2101
1— Fx(t1) ( )

e~ A(t1+t)

= (2.102)
= e M (2.103)

which isalso the same as P[X > ¢|. Thus, weseethat P[X > t; +t|X > #1] =
P[X > t]. Thatis, “how much longer” we need to wait is independent of how long
we have aready waited! In other words, this scheme “forgets’ how long an arrival
has not occurred. We refer to this as the memoryless property of the Poisson stream
of arrivals. This property actually helpsin simplifying analysis.
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2.3.3.7 Time for the next arrival

An important use of the memoryless property is that in studying a sequence of
Poisson arrivals, we do not have to be careful to verify that an arrival occurred at
t = 0, in order to claim that time for the next arrival is exponential. At any point in
time, since how long ago the most recent arrival occurred isirrelevant, the “time for
next arrival” is always exponential with the same parameter A.

2.3.3.8 Nonnegative, continuous, memoryless random variables

Note that in order for the variable ¢; to cancel in the numerator and denominator

of
P[X>t1+7f]

P[X>t1] ’

P[X > t1] must be of the form of an exponential, i.e., a**1. Normalizing the random
variable to make it avalid, continuous, nonnegative random variable, we find that X
must be an exponential random variable.

2.3.3.9 Succession of iid exponential interarrival times

We found that a Poisson stream implies exponential interarrival time. Now, let us
argue the converse. Let the interarrival times beiid exponential. At any time instant
t, irrespective of when the most recent arrival occurred,

a)

Planarrival in (t,t + §t]] = fx(t| start observing at t)6t  (2.104)
= fx(0)dt (2.105)

= \ot. (2.106)

Next, note that successive interarrival times are independent.

P[two or more arrivalsin (0, 6¢]]
= P [onearrival in (0, dt]] x
P[morearrivalsin (0, §t], after first arrival]
< (P[onearriva in (0, 6t])? (2.107)

< (Adt)(Ad1), (2.108)
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since the second arrival has even less time than 6t. Therefore,

P[morethan one arrival in dt]

—— < Adt. 2.109
Plonearrival in 6t] ( )

b) Inthelimit,

P[morethan one arrival in dt]

5120 Plonearrival in §t] =0 (2110

c) Now consider nonoverlapping intervals, The number of arrivalsin (¢4, 2] isin-
dependent of thosein (0, ¢;], dueto the following.

i) interarrival times are independent, and

ii) timefor next arrival from ¢, is independent of when the previous arrival
occurred.

Thusasequence of arrivalswith iid exponential interarrival times satisfy all defin-
ing assumptions of a Poisson stream of arrivals. Finaly, we refer to the defining as-
sumptions as “constant rate” random arrivals, and we have the equivalence between
the three types of arrival schemes depicted in Figure 2.3.

2.3.3.10 Merging two independent Poisson streams

The following derivation shows that merging two independent Poisson streams
with rates A\; and )\, results in a Poisson stream with the added arrival rate A; + As.
Let the observation point in Figure 2.4 be C. We areinterested in

P[n arrivalsin stream at C' over timeinterval T7). (2.111)

In order to have n arrivals, we can have j arrivals from the top input stream (with
rate \;) and n — j arrivals from the bottom input stream (the one with rate \;). Of
course, 0 < j < n. Write the probability of the joint event of j arrivals from the top
input stream and and n — j arrivals from the bottom input stream. Use the fact that
the two input streams are independent. Sum this joint probability over 0 < j < n.
Simplify and evaluate the sum to obtain the required probability. Hence, show that
thearrival stream at C is Poisson with rate A; + A2. Therequired probability is

n T T J — AT T n—j
PlnaCoverT] =) < _('/\1 S e (n(i\Q.),)
=0 J: J):
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arrivals

Constant
rate random
arrivals

FIGURE 2.3: Equivalenceof threetypesof arrival streams

Al

composite
merge arrivals
ac

A2

FIGURE 2.4: Maerging two Poisson streams
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Cutae) T S~ M A~
= e_ 1 2 Tn v - (2112)
jz:; gt(n =)

Anticipating % asafactor inthefinal result, multiply and divide by this quan-
tity.

e~ AT [(\) + X)) TT" & n! MADI

7l =) On )"

PnaCoverT] =

e~ (Ai+A)T [()\1 + )\2) T]n o
n!

n n! A j( Ao )n—j
. 2.113
jz:;j!(n—j)! (/\1+)\2> A1+ A2 ( )

In the above, 12— and 22 can be considered to be probability values summing

to 1. With this interpretation, the sum in the above equation is the sum of all proba-
bilities of afictitious binomial random variable. Therefore this sum must evaluate to
1, giving us

e~ (Ai+A)T [()\1 + )\2) T]n

Plna CoverT] = '
n:

showing that the resulting stream at C' is Poisson with rate \; + )s.

An dternative proof, based on the Z transform is much simpler. Over atimeinter-
val t, let M and N be the random variable number of arrivalsin the original streams
being merged. Let K be the number of arrivals in the merged stream. Clearly,
K = M + N. Therefore,

ZK(2) = Zm(2) 2N (2) (2.114)
= exp[—A1t(1 — z)] exp[—A2t(1 — 2)] (2.115)
= exp[—(A1 + A2)t(1 — 2)]. (2.116)

The final expression corresponds to a Poisson random variable with rate A1 + As.
As an even simpler approach to show the same result, consider the probability of no
arrival at C from thetime instant zero until ¢. Due to the memorylessness of both the
streams and due to their independence,

Plnoarriva at C'in (0, t]] = exp(—A1t) exp(—Aat) (2.117)
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= exp[— (A1 + A2)t] (2.118)
from which it follows that the time for the next arrival a C' is exponential with rate

A1+ As.

2.3.3.11 iid probabilistic routing into a fork

Substream E

iid probabilistic split
at the fork point

I — p™~ gubstream F

FIGURE 2.5. Probabilistic splitting of a Poisson stream

Let a Poisson stream of arrivals D with rate A be split iid probabilistically into
substream E with probability p and substream F' with probability 1 — p. We are
interested in

P(n arrivalsin substream E over timeinterval 7. (2.119)

In order for us to have n arrivalsin E, there must be £ > n arrivalsin D, before
splitting. Write the probability of observing“k > n inthe original stream AND only
n of these k being chosen to be routed to substream E.” That is, determine

P[(kin D over T) AND (n < k chosen for E)]. (2.120)

Then, sum the above probabilitiesover n < k < oo to obtain

O AT k !
Plnin substream E over 7] = Y & k(')\T) ,(kk' ),p" (1-p

k=n

)kfn.

Again, anticipate the expression %

sum.

and take everything else inside the

Pln in substream E over T']
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e PAT (PAT)" & e~ (1=PAT (AT)F=7 (1 — )=
- TE! ) > ((kzn)!( . (2.121)
k=n

Usej=k—n.

P)\T n > (1—=p)AT
Pln in substream E over T] = < p)‘T 3 c [(1—p) AT]

J=0 4

The sum is the sum of all possible probabilities of a fictitious random variable and
hence evaluatesto, leaving us with the Poisson pmf expression. Notethat if a Poisson
stream with rate X is split with aternate arrivals branching into two substreams, the
resulting stream is not Poisson, as shown below. The IAT Y in each substream isthe
sum of two iid exponential random variables each with parameter A.

Y

fy(y) = / Ae MmN (2.122)
0
Y

= / Ne Mdw (2.123)

= Mye M, (2.124)

Obvioudly, this can never be expressed as ae~*¥ for any constant o. Hence Y is not
exponential.

Example 2.6

At a train station ticket counter, service time is exponentially distributed with
a rate of 1 customer per minute. A customer A comes to the ticket counter
at 9:58 AM and finds only one customer in the ticket counter; he was being
served. The train is scheduled to leave at 10:00 AM. What is the probability
that A will catch the train? Ignore the time that A needs to run to the train
after purchasing the ticket.

Solution

IDTs are iid exponential with an average of 1 minute. If two IDTs take place in 2
minutes, the customer A would have purchased the ticket before 10:00 AM. Thisis
identical to having at least two Poisson arrivals with rate one per minute in the two
minute time interval.

P[N >2]=1—-P[N =0]— P[N = 1] (2.125)
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=1—exp(—2)—2exp(—2) (2.126)
~ 0.6. (2.127)
[

2.4 Simulation

We would like to simulate the operation of various configurations of queuing net-
works on the computer. These activities require generating the following types of
random numbers.

1. Generalized Bernoulli random number.

2. Geometric and modified geometric random numbers.
3. Exponentially distributed random number.

4. Pareto distributed random number.

Generating a generalized Bernoulli random number allows us to switch over sev-
eral possible output links at arouter. It also allows usto generate arrivals and service
completions in discrete time queuing systems. Generating an exponential random
variable allows us to generate Poisson traffic by generating a sequence of interar-
rival times. It also allows usto generate the popular exponentially distributed service
times. Generating a Pareto random variable allows us to simulate wildly fluctuating
interarrival times and service times that are observed in bursty traffic.

2.4.1 Technique for simulation

A common techniquein computer simulation is to generate a sequence of iid ran-
dom numbersuniformly distributed over thereal interval [0, 1) and use mathematical
transformations. Most computers have such routinesthat generate very good approx-
imations of iid uniformly distributed random numbers. L et us study the mathematical
transformations of U, the uniform random variable distributed over thereal segment
[0, 1), to realize simulation of important distributions.

2.4.2 Generalized Bernoulli random number

A generaized Bernoulli random variable has a finite number of outcomes, each
with a nonzero probability. Let the sample space of the random experiment be B
be Sp = {b1,--- ,bm}, with real valued b; Let the probabilities of these outcomes
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be p1,--- , pm, respectively. Divide the unit interval into m parts with each part
corresponding to therequired probabilities. Thatis, letag = 0, a; = a;—1+pi—1,1 =
1,---,m. Generate aU. Let the outcome be u. The outcome of the corresponding
generalized Bernoulli simulation is b;, if a;_1 < u < a;. Figure 2.6 shows the
transformationsfrom {p; } to {a;} and thento {b;}.

bm ”””””””””””””””””””””””””””” ’_’7
b1 frmmm |
o . I
l l
R ° ! !
bi+1 ”””””””””””””” | |
. l l
| | |
8 B . | | |
l l l l

iiiiiiiiiiiiiiiiii o
L o | | | |
bs | | | |
: : : : :
| | | | |
l l l l l
| | | | |
l l l l l
| | | | |
by |- | | | | |
l l l l l
| | | | | |
l l l l l l
| | | | | |
l l l l l l
bl 1 1 1 1 1 1
P1 D2 I p3_| ‘ DPi ‘ 2 ‘
<= T = - o | < = o o < === =l ] ] <=
| | | | | | |
U U U U U U 1
| o | | | |
‘< ______ I | | | | | |
S I | | o
T = 1 1 1 1 1
I I I I I
: a3 1 1 1 1 1
PRI g YRR P P P P S| I I I I
| ! | | | |
! di-1 : : : :
‘<_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_>\ I I I
| | |
: aw[ 1 1 1
P Stk ki) = 1 1
I I
| Q-1 ! !
[T —>>1 :
1 1 !
e e >

FIGURE 2.6: Transformationto generate ageneralized Bernoulli random num-
ber
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2.4.3 Geometric and modified geometric random numbers

The modified geometric random variable K is nonnegative discrete and has a pmf
given by
PIK =kl =p*1—p), k=0,1,---. (2.128)

We use aBernoulli random number generator whose successes are iid with

P[success) = p and (2.129)

Plfailurg = 1 — p. (2.130)

Generate iid Bernoulli random numbers repeatedly until we get the first failure.
Count the number of successes observed. Thisis the required modified geometric
random number. The geometric random number is simply the number of Bernoulli
trials up to and including the first failure in the above approach.

2.4.4 Exponential random number

Transformation to generate an exponential random variable

7 T T T T T T T T T

ul |u+du
1
0 01 02 03 04 05 06 07 08 09 1

FIGURE 2.7: Transformation to generate exponential random number; A = 1
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Let

—+In(1-U),0<U <1
X = (2.131)

0, otherwise

This is a deterministic function of the random variable U and results in random
variable X . The outcome u trandates to the outcome of X as

—+In(l-u),0<u<1
T = (2.132)
0, otherwise.
asdepicted in Figure 2.7. Theinversefunctionis
1—6*)‘9”, 0<xr<oo
u = (2.133)
undefined, otherwise.
du g ) .
P Ae” " in the defined region. (2.134)
X
Plu<U<u+du] = Plxr < X <z+dz. (2.135)
Equivalently,
fu(w)du = fx(z)dx (2.136)
fx(@) = fu(u) Z—u expressed as afunction of z. (2.137)
X
Thus,
Ae ™ x>0
fx(z) = (2.139)
0, x < 0.

We have the needed result, i.e., if U is distributed uniformly over the real segment
[0,1), X = —5In(1 — U) is exponentially distributed with parameter X. There-
fore, to generate an exponentially distributed random number, generate a uniformly
distributed random number « and subject it to the transformation — 5 In(1 — u).

2.4.5 Pareto random number

fx(@) = B (2.139)
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We want a function x = ¢(u) such that when v = 0, x = 8 and when u — 1,
z — oo and with fx () = fu(u) 2% We know that fy(u) = 1 in the range of
interest. Therefore,

du _ a (ﬁ)aﬂ. (2.140)

fX(x)ZZEE = 5 \z

We can formally derive the required function.

Transformation to generate a Pareto random variable

30 T T T T T T T T T

25+ 1

20t 1

x 15} 1

X+dx

10F 1
X

5, 4

u |ut+du

0 1 1 1 1 1 1 1 1 1

0 01 02 03 04 05 06 07 08 09 1

u

FIGURE 2.8: Transformation for Pareto random number generation; o« = 1.5
and g =14

Z_z _ % (§)a+1 (2.141)
w= / % (g)ade (2.142)

= af” /x_a_ldx (2.143)
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o (2.144)

Set ¢ = 1 to satisfy x = 5 whenu = 0. Therefore,

(é)a —1—u (2.145)
xr

x4 =071—-u) (2.146)

z=pB(1-u)"=. (2.147)

x = oo Whenu = 1 iseasily verified. See Figure 2.8 for the shape of the function.
Therefore, to simulate a Pareto random number with parameters « and 3, generate a
u and subject it to the transformation 5(1 — u) =

2.5 Elements of Parameter Estimation

Analysis of data collected during real or simulated experiments is important. In
some situations, summary parameter values representing a data set is useful to con-
trol aqueuing system or anetwork. A statistic isamathematical transformation from
a sequence of observations of outcomes of one or more random variablesto asingle
value. Such astatistic is usually devel oped with the hope that the value represents a
useful parameter of the family of random variables. Such atransformation is known
as an estimator and the resulting value, the estimate. Even though the final valueis
usually never exactly equal to the parameter it is supposed to be representing, the
transformation may satisfy some desirable properties. Study of such transformations
and their propertiesis known as mathematical statistics. A more focused topic that
deals with the development and study of transformations to represent particular pa-
rameters of random phenomena is also known as estimation theory. Estimating a
value to represent an unknown parameter is called “point estimation.” An alterna-
tive approach is to estimate alower and an upper bound for the unknown parameter
and a probability (also called confidence limit) with which the interval contains the
unknown parameter. This is known as an interval estimate and is more applicable
for human beings to understand the quality of the estimate. Only the simplest of
principles of point estimation are introduced in this section.
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2.5.1 Parameters of Pareto random variable

Consider a sequence of exponential interarrival time observationsz1, s, - - - , 2y,
obtained as outcomes of iid trials of X. We expect the sample average

1 E T (2.148)
n 4
J=1

tobecloseto ;. Werefer to the above expression (2.148) as an estimate for the mean

1. Likewise,
1 — 1 2
" (74— 5 2) (2149

is an estimate of the variance of X. If X is Pareto, how can we estimate the corre-
sponding parameters o and 3? Notethe additional difficulty if thevarianceisinfinity.
Using ideas developed in simulation, we can transform the random variable to be of
finite variance and try to estimate « and 8 with the help of the sample mean and
sample variance of the transformed data. Let X be a Pareto random variable with
parameters o and 3, so that

a+1
s(8) ez
Ix(x) = (2.150)
0, z < 0.
Let
Inz, x> p
Y= (2.151)
undefined, z < 3,

asin Figure 2.9. This severely reduces from higher values of x to lower values of .

x = e¥ intheregion. (2.152)
du =eY. (2.153)
dy

The transformation is monotonically increasing. Therefore,
fx(@)dz = fy(y)dy. (2.154)

Iy () = fx (x)fl—z, y>lnj (2.155)
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Transformation to estimate parameters of Pareto random variables
2.6 T T T T T

! ! ! ! !

4 5 6 7 8 9 10
X —>

FIGURE 2.9: Transformation y = In x to estimate parameters of Pareto
random variable

= fX(Jj = ey)ey (2156)
a—+1
- %(i)a+1ey. (2.157)
afe” ¥, y >Inp
fr(y) = (2.158)
0, y<Ing

We can evaluate the mean and variance of Y and try to express « and 3 as functions
of E[Y] and var[Y]. However, this turns out to be complicated for an algebraic
solution. Note also that this method works even for 1 < « < 2 for which var[X] =
oo. Thereisan easier technique. Let X be Pareto, and so

a+1
fx(z) = (5) ey (2.159)

xz < 0.

IR

=

Lety = % We know from probability theory,
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oo

B[] = / yfx ()d,

— 0o

with y expressed as afunction of x. We have,

a+1
(é) 1 dx for Pareto random variable
x

= aﬁa/x_a_Qda:
B

__ap” [x_a_l}:

—a—1

Ozﬁaﬁ_o‘_l
a+1

(67

Bla+1)

, fora > 1.

- Bla+1)

45

(2.160)

(2.161)

(2.162)

(2.163)

(2.164)

(2.165)

(2.166)

Note that this has the dimensions of L. With the help of E[X] = ;“—f’l and E[+] =
o2, wecan solvefor o and 3. If we use estimates of E[X] and E[+-] in place of

Bla+1)’

true moments, we get estimates of o and 3, as follows. Let the estimate of E[X| =

ji= 22 Letthe estimate of F[L] = j = -9

(2.167)

(2.168)

(2.169)
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=0 (2.170)

2.5.2 Properties of estimators

Consider a sequence of iid random variables X1, - - - , X,;, each having the same
distribution asthat of X. The mean of X isestimated as the sample average

1 n
1= — X;. 2.171
p==> (2.171)

i=1

Note that if we use the outcomes z; in the above equation, we get the numerical
value of the estimate. But if we use the upper case X, then /i is arandom variable
called the “estimator” with its own distribution and properties. This is useful in
developing the properties of the estimators. Taking expectation on both sides of the
above equations, we have

E[j] = E[X]. (2.172)

This is referred to as the “unbiased” property of the sample mean estimator. By
definition of the variance,

va(jil = E |(#)°] - (E[a)* (2.173)

- (B[X])? (2.174)

= E <% zn:XZ) (% f:XJ) — (E[X])? (2.175)
i=1 j=1
—FE (% i Zn:XiXJ) — (E[X])? (2.176)
i=1 j=1

- (Z Y B +ZE[X3]) - (BIX))?. (2177)
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In the above, the double summation is split up into two parts. In the first
pat j # 4. Under this condition, X; and X; are independent, so that
E[X;X,] = E[X;|EX,] = (E[X])?. In the second part, j = i and E[X,;X;]
becomes E[X?] = E[X?] . Therefore,

n

varlfi] = % SN (EXD+ % Y E[X?] - (E[X)? (2179

i=1 j=1,j7#i i=1
_ % (Bx])?+ 2 [52] — (E[X]) (2179)
= (BIX) - 2 B+ e [52] (2150
_ E[x?] —n (E[X]) (2.181)
_var TEX]' (2.182)
That is,
var(ji] = %2 (2.183)

where o2 isthe variance of X. Aswe have seen, the variance is a measure of vari-
ation around the mean. Therefore, the estimate of the sample mean improves as
more samples are used, since the variance decreases as % Thisis another appealing
property of the sample mean.

2.6 Sequences of Random Variables

Properties of sequences of random variables are important for parameter estima-
tion. They are also very useful in the study of long-term behavior of queues. This
section is an introduction to the topic.

DEFINITION 2.1 If a sequence of random wvariables Yy, is such that
the sequence of expected values {E[Y,]} converges to some constant a and the
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sequence of variances {var[Yy]} converges to zero as n tends to infinity, we
say that the sequence Y, converges to a in the mean square sense.

By this definition, the sample mean sequence [i(n) convergesto x in the mean
square sense. The topic of parameter estimation is intimately related to the topic
of infinite sequences of random variables, since we are interested in the behavior of
estimators with large data sets. The above property is important and is stated as a
theorem below.

THEOREM 2.1

The sample average of a sequence of n > 0 iid random wvariables has the
same expectation as each of the original random variables. The variance of
the sample average is the variance of the original random variable divided by
n. If the variance of the iid random variables is finite, the variance of the
sample average tends to 0 as n — oco.

The following theorem can also be similarly proved and the proof is suggested as
an exercise.

THEOREM 2.2

Let {Y1, Y2 -+, } be an infinite sequence of independent but not necessarily
identical random wvariables. Let the expectation and variance of each Y; be
finite. Let E[Y;] = n; and let varlY;] = 2. Form the infinite sequence of the
cumulative average of the original sequence of the random variables defined by

1 n
Zn=—Y Y. 2.1
: n; i (2.184)

Let b be an upper bound on the variances of all Y;. That is, o2 < b for all i.
Then, we have the following.

: 1
Jim B(Z,) = lim — Zl n (2.185)
]:
) - 1 n )
nl;rréo var(Zy,| = nlirr;o s Zaj (2.186)
j=1
b
< lim = (2.187)
n—oo M,
=0. (2.188)

[
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In some cases, the number of trials, n, itself may be the outcome of a random vari-
able. Thisisillustrated by the following. We observe a sequence of Poisson arrivals
with arate \. Let T,, be the random variable for the total time of observation up to
and including exactly at the n arrival. Let ¢ be the independent time variable. Let
t,, be the outcome of T,,. The time for the first arrival and all interarrival times are
iid. Let X be the random variable corresponding to the IAT. A good estimate for the
average AT

X, ==, (2.189)
n

From Theorem 2.1, the above estimate is unbiased for any n and the variance of the
estimate tends to zero as n tends to infinity. But do we know that n will tend to
infinity if we let the time of observation ¢ tend to infinity. We certainly anticipate
that we will receive an unlimited number of arrivalsif we observe for an unbounded
amount of time. But there is no certainty about this event occurring. The following
analyzes such random experiments.

2.6.1 Certain and almost certain events

As an additional simple example, consider an iid sequence of tossing an unbiased
coin (with equal probability of head and tail). What is the probability of observing a
sequence of 100 heads? Itis2~ 1%, The probability isvery small, but the event is not
impossible. Likewise, if we imagine an infinite sequence of tosses and consider the
probability of all heads, the probability tends to zero. However, the event of observ-
ing all headsin a sequence of headsis not impossible; such an event occurswith zero
probability. If we imagine a sample space of innumerable people, each tossing such
an independent iid coin, a finite number of those infinite sequences of tossing may
indeed produce all heads. Thisis consistent with the axioms of probability. What is
the probability of not finding every one of the tosses in the infinite sequence to be
heads? Thisis not a certain event. But its probability is one.

DEFINITION 2.2 An event that is not certain but occurs with a proba-
bility of 1 is known as an “almost certain” or “almost sure” event. I

An important event that is almost certain is the number of Poisson arrivals over
an unbounded amount of time tending to infinity. The following theorem states the
necessary conditionsand provesit.

THEOREM 2.3

Let X1, Xo,... be an infinite sequence of independent nonnegative random
variables representing the sequence of interarrival times in a sequence of pos-
sibly infinite number of arrivals over a time interval [0, co). Let

P[X7 — oo] =0,2=1,2,... (2190)
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Then the probability of the number of arrivals being unbounded over the un-
bounded time interval is 1.

Proof

Note that equation (2.190) is satisfied for a Pareto random variable with infinite
variance also. The infinite additivity extension of the axioms of probability stated
in equation A.1 is useful and repeated below. If an infinite sequence of events
e1, ea, ... aremutualy exclusive,

PleyUes U] = Plea] + Plea] + -+ (2.191)
Thisinturn impliesthat if the infinite sequence of eventsey, ey, ... are not mutu-
aly exclusive,
PletUea U] < Pley| + Plea] + - . (2.192)
Since each of the infinite sequence of random variables X, Xo, ... satisfies
P[X; — o] =0, (2.193)
thefollowing istrue.
Platleastone X; — oo] =0+0+--- (2.194)
=0. (2.195)

That is, in the cumulative sum of interarrival times (or the total time of arrivals)
for every finite number of arrivalsis finite with probability one. Therefore, as the
timeinterval tends to infinity, the number of arrivalsincreases without bounds, with
probability one. That is such an event is almost certain but not completely certain. [

Returning to our discussion on observing a sequence of Poisson arrivals, the event
of an IAT X being infinity is not impossible. The probability density of the expo-
nential AT tendsto zero as the observation variable = tendsto zero.

P[X > z] = exp(—Az) (2.196)

lim P[X > 2] =0. (2.197)
That is, the probability of that IAT being infinity is zero. Therefore, in our earlier
problem of estimating the expected IAT by observing a sequence of arrivals through
unlimited amount of time, the event of observing infinite number of arrivals occurs
with probability 1, but is not a certain event. What is the expectation of a random
variable which has one almost certain event? This question is important especially
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for the limiting random variable of a sequence of random variables. For example,
consider the number of Poisson arrivals N (t) of rate A observed over an unbounded

interval of time starting from ¢ = 0. What is the expectation of the limiting random

variable lim N(t) > Use the theorem of total expectation.

Jlim E[@] (2.198)
= E[flim @Lhm N(t) = oo]P[tlim N(t) = <]
+E[flim @W(t) does not tend to co ast — oo
x P[N (t) does not tend to co ast — oo (2.199)
— B{jim t(t) |Jim N(£) = o] x 1
. N(®)
+E[fhm T'N(t) doesnot tendto oo ast — oo] x 0 (2.200)
= E[flim @Lhm N(t) = o] (2.201)
.1
= thm ;E[N(t)] (2.202)
.1
= lim At (2.203)
= A (2.204)

We are also interested in evaluating the variance of the estimate ast — oo. We
know that

oo

lim var{X(n,)] = lim > B[X[n(t)] P[n(t) — oc] — (B[X])".(2.205)
k=0
Since
flirgo Pln(t) — oo] =1, (2.206)

the limiting variance as ¢ tendsto infinity is the same as the limiting variance as n(t)
tends to infinity which is known to be zero.



52 Performance Analysis of Queuing and Computer Networks

2.7 Elements of Digital Communication and Data Link
Performance

A simple method of digital communication is through the use of two different
electromagnetic signals to represent the two bits 0 and 1. Each signal lasts for a
specific fixed time width. The types of signals can be steady voltages of opposite
polarity for the bits 0 and 1, sine waves of opposite phase, etc. Let us denote this
time width for each bit by 7. The receiving station receives an attenuated and a
dlightly corrupted form of the transmitted signal. The function of the first subsystem
in the receiver equipment is to decide whether the transmitted signal segment was
a0oral. Thisfunction is known as detection. The accuracy of detection may
be close to but does not reach the perfect 100%. The bit error rate (BER) is the
expected fraction of the bits that will be assigned the wrong bit value due to noise.
It is an important performance figure of the communication link. Keeping track of
the correct beginning of the time width for a bit and ensuring that the attenuation
does not differentially affect the bits 0 and 1 are important aspects of the design of
the overall communication system. In this Section, our interest is only to develop a
simple model for the variation of the BER as a function of the datatransmission rate.

2.7.1 The Gaussian noise model

The receiver calculates a single numerical value for each received signal over the
time period 7. If thereis no noise, the numerical values calculated by the receiver for
thetwo bits0 and 1 are design parameters known at the receiver and the BER is zero.
The effect of noise is an added value to the ideal received value for the bit. Addi-
tive noise is the result of undesirable electromagnetic activity in the communication
channel aswell asthermal activity in the electronic components of the communica-
tion systems. A very good and widely applicable mathematical model for the effect
of such noise is the Gaussian noise model, named after the German mathematician
Carl Friedrich Gauss (1777-1855). The pdf of a Gaussian random variable is given

by

2
The mean of X evaluates to i and the variance, to o2. The nature of the Gaussian
random variable hasits origin in the averaging effects of numerousindependent con-
tributions, in much the same way that the Poisson random variable is a consequence
of numerous independent emissions. This comparison is only subjective and no at-
tempt to derive the pdf of a Gaussian random variable from fundamental assumptions
ismade here. The random variable evaluated by the receiver correspondsto theideal
value for the transmitted bit plus the zero mean additive noise value. In a commonly
used Symmetric Binary Communication system, these mean valuesfor the bits 0 and
1 are of opposite signs and equal absolute value. For convenience, let the mean value
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of the bit 0 be —» and that for bit 1 be 4+, wheren isapositive value. Physically, n?
is proportional to the power in the received signal and o2 is proportional to the noise
power in the received signal. The signals for both the bits transmit the same power
for the same time width 7 and hence the same energy. Therefore, the pdf of the re-
ceived random variable X under the two different conditions of bit transmissions 0
and 1 are given by

2

Fy(y[0) = \/;?exp <—%> and (2.208)
_ 2

Fr i) = = exp <—%) (2.200)

Thetime varying value of the actual noise over  (as opposed to its power) averages
to zero over along time. Therefore, the longer the bit time 7 for transmission, the
less effective the noise isin causing bit errors. Thisis similar to the variance of the
sample average estimator being inversely proportional to the the number of samples
used in averaging, illustrated in Section 2.5.2. The physical dimensions of the ran-
dom variables can also be scaled to let the value of n to be 1. The equivalent noise
variance, as a function of = then trandates to “72 for some o implicitly determined
by the transmitted signal power and noise power. The transmitted bit is a random
variable B with outcome b and a sample space of b € {0, 1}. Therefore, we have
the pdf of the received random variable conditioned on transmitted bit b given by

exp (— W) . (2.210)

202

RO —
\/2m -
How should the receiver decide on the transmitted bit for a received value y? The
approach is to maximize the probability of the decision being correct. Let py and
p1 = 1 — pgo be the probabilities with which the transmitter emits bits 0 and 1,
respectively. Assume that the sequence of emitted bits areiid. Then, if the receiver
receives y, we should maximize the a posteriori probability of b € {0, 1} given by
the Bayes theorem. The a posteriori probability of b is

oy fy (y[b)
P[B =b|y| = 2.211
B =W = R I + s D) @2
which is equivalent to maximizing the joint probability density
fy(y, B ="0)=pyfy(ylb) (2.212)

over b € {0, 1}. In along stream of transmission, we anticipate that the numbers
of bits with values 0 and 1 are approximately equal. Thisis equivalent to assuming
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Po =p1 = % Thereforethe detection algorithm at the receiver simplifiesto deciding
b=0,ify <Oandthatd = 1if y > 0. Thisisillustrated by plotting the two
conditional densities fy (y|b) in Figure 2.10.

pdf of received signals for bits 0 and 1
0.5 .

0.451 1

0.4}

0.35

0.3f

0.251

£, (ylb)

0.2f

0.151

0.1f

0.051

(=)

FIGURE 2.10: Gaussian densities of received signals for bits 0 and 1 with a
unit noise variance

2.7.2 Bit error rate evaluation

The BER calculation is important to assess the performance of the datalink. The
receiver makesan error if bit 0 wastransmitted and y > 0 andif bit 1 wastransmitted
and y < 0. Let ¢, be the probability of error. Thisis also the BER we are interested
in evaluating.

0o 0

o= [ iy [ i 213

y=0 Yy=—00

Both the above integrals are equal, due to symmetry. Therefore,

v = [ Frtw)dy (2.214)
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Substitute

T

in the aboveintegral. Wheny = 0, v evaluatesto /5.

e

Therefore,

oo

eb:ﬁ / exp(—v?)dv.
Vaz
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(2.215)

(2.216)

(2.217)

(2.218)

A standard integral function similar to the above is popularly used. It is defined as

the error function

erf(x) = % / exp(—v?)dv.
v=0

(2.219)

For apositive x, the above can beinterpreted as the probability of a Gaussian random
variable W with zero mean and a variance of % falling in aregion asfollows.

1 [ 2
erf(z) = 22— / exp (—U—1> dv
\/ 27TX%'U:O 2X§

=2P[0 < W < a].
We know that P[0 < W < oc] = 1. Therefore, we have

ef(0)=0 and

(2.220)

(2.221)

(2.222)

(2.223)

(2.224)
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17 s 11
N / exp(—v*)dv = 5~ ierf(z). (2.225)

Returning to the bit error rate, we therefore have

o0

ep = \/LE /T exp(—v?)dv (2.226)
1 1 | T

Wefinally have the expression to assess the performance of the channel asafunc-
tion of 7 which isthe inverse of the data rate. In redlity, the probabilities of the bits
0 and 1 may not be equal, the data bits may not be iid, and there may be other in-
accuracies in our simplification. However, that the argument that noise is Gaussian
and the effect of the variance of the noise is inversely proportional to 7 is a very
good approximation. Design approachesto combat noise influences the value of a2.
Since this o? represents the effect of noise and plays a central rolein using errorsin
performance, let us renameit as o7. The physical dimension of o7 is the reciprocal
of time. Thefinal expression for BER that we shall use later is

1 1 T
RNy AN 222
=57 3% ( 20—5) (2.228)

A useful result from this treatment of digital communication is that if the BER at
a particular data rate is given to us, that determines the effective o7 so that we can
evaluate the BER if the datarate is varied. The following exampleillustratesit well.
Alternatively, if weuse s = } as the datatransmission (s for sending) rate in bps,

11 1
= cef| /= |. 2.22
=3 2er< 2053> (2:229)

and o7 can be interpreted as the equivalent noise variance per unit transmission rate
of 1 bps.

2.7.3 Frame error rate evaluation

Inthe datalink, the frame error rate (FER), denoted by e can be evaluated if we
know the distribution of the number of bitsin theframesand if we continueto assume
the above model of the nature of bit sequence and the effects of noise. A good model
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for the frame size is an exponential random variable, which is an approximation of
the geometric random variable. Let the data frame size K be a geometric random
variable with a pmf

PIK=kl=q1-¢" ! k=1,2,---. (2.230)

The average frame size is E[K] = % A frame s erroneous if even one bit in the
packet is erroneous. Therefore, error rateis given by

ef =FER=1- i(l —ep)Fq(1 — )1 (2.231)
k=1
—1—q(l—ep) Y [(1—ep)(1—q)]" (2.232)
k=0
_ q(1 —ep)
el P gt s (2.233)
c (2.234)

T1-0-g(-e)

Clearly, the FER, or ey, isalittle higher than the BER e;,. Thus, if the average frame
size is known and either the BER or FER is known at one data rate, the BER and
FER can be evaluated at other data rates.

2.7.4 Data rate optimization

Example 2.7

The BER of a wireless data link operating at 1 Mbps is known to be 1073,
The throughput is defined as the overall bit rate calculated using all the bits
in the correctly received packets only. The average packet size is 1000 bits
per packet.

1. Determine the equivalent noise parameter, o7 of this datalink.

2. Plot the throughput, that is, the rate of correctly received bits as the
data rate is varied from % Mbps to 2 Mbps. What is the data transmis-
sion rate (in bps) that maximizes this throughput?

3. The energy consumed per bit is the expected energy expended by the
transmitter in order for the receiver to receive a bit correctly, without
errors. Energy of a bit transmission is proportional to the bit width.
Determine the optimal bit width to minimize the expected energy per
correctly received bit.
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Solution

1. Theerror functionisstrictly monotonically increasing. Definetheinverseerror

function as follows. For a positive u, if v = erf(u), the inverse function
u = erf~'(v). The domain of v for the inverse function is [0, 1], and the
range of u is[0, oo). For abit-width of 7 and a noise parameter o7, we have

the BER
1 1 [T

[erf (1 — 2e))2°

Due to the monotonicity of the error function, given avalue for e, a a, the
value of o} is easy to evaluate numerically. Indeed, the Matlab software has
abuilt-in function for the inverse of the error function. For 7 = 10~ second
and e, = 1073, o7 evaluatesto 0.10472x 10~ second or 0.1047 per Mbyps.

Rearranging,

o = 5 (2.236)

. The expected fraction of a bit correctly received for every transmitted bit is

simply the probability that the transmitted bit is in a correctly received data
frame. Therefore, the throughput, E[Y], in correctly received bits per second
(“sec” isalso used to denote asecond of time) isthe product of the transmitted
bit rate (say s for the rate of sending bits) and the probability of correctly
receiving a data frame at the receiver.

ElY] = s(1—ey) (2.237)
where e isthe frame error rate FER given by equation (2.234) in Section 2.7.

er = i
TT1- 090 —e)

1 1
- Sed < /ng> (2.239)

with 1 being the average packet size in bits. We know e;, from above. Figure
211 iTI ustrates the variation of the throughput as a function of the data rate s.
The throughput reaches a maximum of 0.6358 Mbps at the data rate 0.7445
Mbps.

(2.239)

N~

€p =

. The expected number of bits transmitted for a correctly received bit is ﬁ

Since energy transmitted per bit is proportional to the bit-width, the expected
energy transmitted for every correctly received bit is proportional to
1
EZl= ———. 2.240
2= (2.240)
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Throughput as a function of transmission rate

0.8 : .
BER = 0.001 at 1 Mbps
Average packet size = 1000 bits |

0.7f

Throughput in correctly received Mbps

0.745
0.5 1 15 2
Transmission rate in Mbps

! !

FIGURE 2.11: Throughput of an unreliable link asafunction of the datarate

Clearly, the expected energy per correctly received bit is minimized at the same
datarate that maximizes the throughpuit.

Exercises

1. Let u be the finite mean and o2 be the finite variance of a Pareto random

variable. Express each of « and 3 as functions of the mean and the variance
only. For amean of 1.5 msec and a variance of 0.75 msec?, find o and 3.

In Pareto random variables, 8 isjust a scale factor and, by using different time
units, 3 can always be normalized to 1. So, only « affects the behavior of the
Pareto random variable. Let 3 be 1 msec. Plot the variation of the variance as
afunction of «, starting from close to 2, up to 10.

Consider a shifted Pareto random variable Y whose density function is
nonzero for y > 0. The density is given by

« ﬁ a+1
fr(y) = 3 (er—ﬂ) . y>0. (2.241)
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L et itsmean and variance be finite and given by 1 and o2 respectively. Express
a asafunction of 1 and o2 only. Express 3 as afunction of i and o2 only.

Consider Poisson arrivals with arate of 1 job per second. Now approximate
the arrival process so that there can be at most one arrival in each of successive
nonoverlapping narrow intervals of 0.1 sec per interval. What is the probabil -
ity of exactly one arrival in a 0.2 second time interval (in this approximated
model)?

A computer is processing ajob whose total time requirement is exponentially
distributed with parameter n. The operating system (OS) has started a timer
which is also exponentially distributed but with parameter «. If the job is not
completely processed by time the OS timer signals its completion, the job is
preempted for a later resumption. Let the start of the job’s processing and the
OS timer be both at time instant O (that is, they are started simultaneously and
a race ensues). Determine the pdf of the time instant at which the processor
will be relieved of the job, either due to completion or due to preemption by
the OS.

In the above physical system, what is the probability that the OS wins the
race? That is, what is the probability of that the OS timer rings before the
job’s processing is complete?

. Consider a Poisson stream of arrivals with arate of one arrival per 3 seconds

of time. During atime interval lasting from 0 to 1 second, exactly one arrival
occurred, at some unknown time instant ¢ € (0, 1]. Develop the probabil-
ity density function of the above arrival time instant. That is, determine the
probability density function f(¢| exactly one arrival in (0, 1] ).

. Themean and variance of acontinuous, uniformly distributed random variable

have been estimated to be 12 and 64, respectively. Estimate the parameters of
the distribution.

. In acomputer center, training sessions are offered to groups of three persons

at atime. There are enough computers and enough staff to begin a training
session as soon as three persons have gathered. People arrive for training in
a Poisson process with a rate of 10 per hour. The computer center has been
operating for a long time, and it can be shown that the probabilities that 3k,
3k + 1, and 3k + 2 persons have so far arrived are all equal at the time a
person arrives (thisistaken for granted here). Determine the expected time an
arriving person needs to wait before the training can start.

A stream of Poisson arrivalsis split into two substreams with alternate arrivals
being routed to each of the two substreams. Prove that the arrival scheme in
each of the substreamsis NOT Poisson, with the help of Laplace transforms.
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A computer system consists of a CPU and an 1/0. Each of these components
is known to be an exponential server; each job goes through both the compo-
nents. A frequent user estimated the mean and variance of the total time ajob
takes to be 10 second and 82 second?, respectively. CPU and I/O times are
independent. Estimate the service rates of the CPU and the I/O.

x1, ..., x, are the observed outcomes of a random sample from the following
uniform density function.

Ix(z) = ,a<x<b (2.242)

=0, otherwise. (2.243)

The parameters a and b are unknown. Determine estimates of a and b as func-
tionsof x1, ..., z,.

Let X be a Pareto random variable with parameters1 < o« < 2and 6 > 0.
LetY beln(X). Determinethe density function of Y.

Expresseach of a and /3 in the above problem as functions of E[X] and E[+-].

Write an algorithm for generating the time instants of a sequence of arrivals
starting from 0 and ending 7. The IATs areiid Pareto random variables with
parameters o and 3.

Add a segment of algorithm to the above to determine the sample mean and
sample variance of the generated IATSs.

Over many independent and identical trials of abinomial random variable X,
the mean was estimated to be 5.5 and the variance was estimated to be 1.7.
Estimate the parameters of this binomial random variable X .

A Poisson sequence of jobs with rate 1 per second arrive in front of a server.
The service requirements of jobs are independent, identical, and exponential
with an average time of % second. Consider the first & jobs arriving over a
time period starting fromtime ¢ = 0. The server isfreeto start serving at time
t = 0. What is the probability that ALL % of them get service without any of
them having to wait for previous arrivals to complete service? Note that this
guestion does not require queuing theory. This can be solved with properties
of Poisson and exponential random variables.

A TCP connection lasts for a random amount of time X which is uniformly
distributed between 0 and a. The data packets in this connection arrive as a
Poisson stream with rate A. Determine the probability of receiving at least one
data packet in such a TCP connection.
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20. A TCP connection lasts for a random amount of time X with a probability

21.

density fx (z). The data packetsin this connection arrive as a Poisson stream
with rate \. Prove that the expected number of data packets arriving during
such aTCP connectionis AE[X].

In a digital communication system, a sequence of two hits is transmitted as
a single symbol. Obvioudly, there are four different values for the symbols.
They are transmitted as the equivalents of the numerical values-1.5, -0.5, 0.5,
and 1.5, respectively. After preprocessing at the receiver, the received numeri-
cal value corresponds to the transmitted value plus the outcome of a Gaussian
random variable X which hasamean n = 0 and avariance of 02 = 0.0169.
Develop the decision algorithm that the receiver should use. Evauate the nu-
merical value of the probability of error that a symbol experiencesthroughthis
communication system.



Chapter 3

The M/M/1/~ Queue

3.1 Introduction

Packet datacommunication progressesin a sequence of stages. Each stage consists
of asubset of thefollowing steps: arrive, wait, process, forward, and travel aphysical
distance. From the point of view of evaluation of the overall performance, each such
stageis aqueuing system. Thisisthe case, for example, in a network wherein adata
frame over a long distance link starts to appear at the input of a system. In many
such systems, arrivals can take place at arbitrary time instants so that interarrival
times (1ATS) are considered to be real variables as opposed to discrete variables. It
is common for a data packet to be referred to as a data frame in the datalink layer of
the data communication protocol hierarchy.

The processing system is digital and synchronizesthe forwarding activity with its
own clock. In such systems the processing time is discrete, since a digital system
processes in an integer number of bits. However, due to the very large number of
possibilities in the number of bits processed, the processing time is justifiably ap-
proximated as a real variable. Hence, such systems are modeled and analyzed as
continuous-time queuing systems.

This chapter deals with the simplest queue that is amenable for analysis. In the
process, it introduces several key aspects of queuing theory. The basic model of the
gueueis asfollows. Interarrival times are memoryless with rate A. Equivalently, the
sequence of arrival time instants is Poisson. Service times are memoryless with rate
. Thereis one server and unlimited waiting room capacity, i.e., an infinite buffer.
Service order is FIFO. Figure 3.1 shows the queuing model. Figure 3.2 shows a
time plot of numbers of arrivals and departures. Figure 3.3 shows the corresponding
number of customersasafunction of time A(¢) isthe number of arrivalsasafunction
of time with ¢ = 0 being the starting time, and D(t) is the number of customers that
havedeparted asof ¢t. N (t) = A(t) — D(t) isthe number of customersin the system
as a function of time. We are interested in performance figures like the average
number of customersin the system, average delay in the system (experienced by a
customer), and what fraction of time the server is busy. The first task is to find the
probability function of N (¢) under the condition that the pmf is independent of time
t.

63
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Poisson
arrival — | o o | Departures
rate = \

Waiting line  Exponential
service
rate = p

FIGURE 3.1: TheM/M/l/oo queuing model

3.2 Derivation of Equilibrium State Probabilities

At any instant of time 7, given that the number of customersin the systemisn(7),
the future behavior of the system, that is, at all time instants¢ > 7, is dependent on
n(t) only. Thisis due to the memorylessness of the interarrival times and also of
service times. Following the time instant ¢, the behavior of the system is afunction
of the number n(t) and any arrivals and departures after ¢. The time instants of
arrivals and departures after ¢ are independent of the time instants when the most
recent arrival or the most recent departure took place, prior to ¢. Thismay not be true
of other systems studied in later chapters.

DEFINITION 3.1 The number of customers in the M/M/1/00 queuing
system is referred to as the state of the system. I

Thearrival rateis denoted by A, and the servicerate, by p. Let

P;;(8:) = P[number in system changesfromi tojin¢d,] and (3.1)
P, (t) = P[number in system isn at timet]. (3.2

We will be taking limitsas §; — 0, so we need to consider at most one arrival in a
time interval §;, or one departurein ;, but not both, since in any time interval, the
number of arrivals and the number of service completions are both independent and
memoryless. Plonearrival] is Ad;, P[no arrival] is (1 — Ad;). Similar relations hold
for departures. If n — 1 > 0,
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Sample plot of the behavior of a stable M/M/1/e queue
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FIGURE 3.2: Sample plotsof cumulative numbers of arrivals and departures
as afunction of time
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Sample plot of the behavior of a stable M/M/1/e- queue
6 T T T T T

number

t

FIGURE 3.3: Sample plot of the number of customers remaining in the system
as afunction of time
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Pn(t + 51‘)

= Pu(t)(1 — A0e)(1 — 18;) + Pt (E)AGe(1 — p6;) + Pyt (£)(1 — A8:) (1)
(3.3)

Forn =0,
Simplifying and ignoring terms containing (;)2, we have

Pn(t + (St) = Pn(t)[l — (/\ + /.L)(St] + Pn_l(t))\ét + Pn,+1(t)u5t,

forn >1 (3.5
Polt +6:) = Po(t)[1 — A8e] + Py (£)6p. (3.6)
Jim T ‘5;2 —LaD) b (At 1) + Pa (A + Pasa (D
forn > 1.
(3.7)
D) — PO+ 1)+ Paa O+ Pas (1
forn > 1. (3.8)
im 2EH0) = R®) _yp oy e, (3.9)
6¢—0 (St
W) \pote) + uPr (0. (3.10)

dt

So, we have an unlimited number of simultaneous linear differential equations with
constant coefficients. In computer systems and networks, if the arrival and service
rates are constants, within a few seconds, several thousands of jobs would have
passed through. We subjectively anticipate that the derivativeswill reduce in magni-
tude as time progresses and that the probabilities will settle down to their respective
constants and not vary with time. Therefore, we consider the steady state solution to
the set of differential equations.

DEFINITION 3.2 If “C® — 0, for all i in an M/M/1/00 system at

some time t, we say that the system is in equilibrium. at that time t. I

Let usseeif such an equilibrium is possible in our M/M/1 system, derive a*“ solu-
tion” for P;(t) = p;, forall ¢ > 0, under such assumptions, and the condition for the
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assumption to bevalid. Let

pi = lim P(t), i > 0. (3.11)
We have

—poA +pip =0 (3.12)
—Pu(A+ 1) + Apn—1 + ppnt1 =0 (3.13)

A
P1= —Po (3.14)

W
po =51 (3.15)

Using thisand withn + 1 = 2, we get,

—p1(A+p) +A(§p1) + pp2 =0 (3.16)
—p1A+up2 =0 (3.17)

A
P2 = —D1. (3.18)

I

Let us check if p;1; = ﬁpi, by induction. Let p, = %pk,l for k = i. For
k =1+ 1, wehave

—pk(/\ + u) + A\pr_1 + upr+1 = 0. (319)

Using pi, = ﬁpk,l, we have

—pr(A+p) + A(%Pk) + pupr41 =0 (3.20)
—prA + ppr+1 =0 (3.22)

A
Dk+1 = ;pz« (3.22)

By induction, it follows that
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Pn+1 = %pn; n=20,1,2,... (323)
Pt = (%)me = (2)3@172 . (%)HHPO (3.24)
Pn = (%)npo. (3.25)

Under what conditionswill these equilibrium probabilitiesexist? Sum all these prob-
abilities,

ipn Zpoi(i)n- (3.26)
n=0 n=0 H

Thissumisrequiredto be 1. Thissumexistsonly if A < u. Therefore, under A < p,
the system “can be” in equilibrium with

(3.27)

We have the following result.

THEOREM 3.1

Let p = % for an M/M/1/00 queue with X\ being the arrival rate and p, the
service rate. The equilibrium probabilities exist only if p < 1 or equivalently,
if A< p and are given by

pn=(1—-p)p", n=0,1,2,.... (3.28)

0
) n dP,(t
Conversely, if p,, = (1 — p)p", fordln =0,1,---, then, dt( ) = 0, for al n,

as can be verified by substituting in equation (3.8). The quantity p is known by other
names “normalized load” and “utilization.” on the server. Figure 3.4 shows a plot
of p,, asafunction of n, for afew different values of p. The ordinate at n = 0 gives
1 — p for each plot.

DEFINITION 3.3 Stability = An M/M/1/00 queue is said to be stable
if the arrival rate X is strictly less than the service rate p.
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pmf of the equilibrium number of customers
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FIGURE 3.4: pmf of the state of an M/M/1/oo queue

Whether a system is stable or not depends only on the parameters of the system
and not on whether it is currently operating under equilibrium. Steady-state is an-
other name for equilibrium. Steady-state state probabilities is another name for the
set {po, p1,.-. - Why should A < p for stability? ) isthe arrival rate, the single
parameter representing the load offered to the server. i isthe servicerate, the single
parameter representing the capacity of service offered to the environment. Obvi-
oudly, the load cannot exceed the capacity. If it does, the server cannot serve all the
arrivals, the queue builds up, and the number of customers will not reach statistical
steady-state. Why can A\ not equal 1 and expect to reach steady-state? The answer
is that the interarrival times and service times are random. If A = u, the server
must be attending to one of another customer constantly, with no hope for a free
moment. Unfortunately, in the beginning of operation, it is very likely that there are
zero customersfor some, may be short, periods of time. The server loses these times
from logging service and can never recover from such losses. Therefore, the queue
eventually buildsup even if A = p.

3.2.1 Operation in equilibrium

Steady state operation is an aternative expression for equilibrium operation. The
following theorem shows that if a stable M/M/1/oo system isin equilibrium at any
time instant, it will remain so indefinitely.
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THEOREM 3.2
If an M/M/1/ queue is in equilibrium at a time instant t = 0, it will
continue to be in equilibrium for all t > 0 as well.

Proof
The differential equations governing the behavior of P;(¢),i =0, 1,--- , are

d]?.?ft) = —APy(t) + pPy(t) (3.29)
dpcrllt(t) = —Pu(t)A + ) + Pact (DA + Poga (), n> 1. (3.30)

Differentiating both sides of equations (3. 29) and (3.30) with respect to (wrt) ¢, we

find that the LHS is the second derivative dtQ“) The RHS is alinear combination
of the first derivatives. All the first derivatives are known to be zero at t = 0. Using
these in the RHS of the equation with the LHS being the second derivative, we find
that all the second derivatives are also zero at t = 0. Differentiating equation (3.30)
repeatedly, we find that the derivatives of al the state probabilities of all higher
ordersareaso zeroat t = 0.

Now,0 < P, < 1,forali=0,1,---,and Y ;2 Pi(t) = 1 ensurethat

> a;P,<B (3.31)

wherea;, i = 0, 1,--- aredl finite-bounded, and B is afinite bound. Thisimplies
that the RHS of the differential equation (4.16) isfinite and bounded for every i which
in turn impliesthat thefirst derivative of every state probability isfinite and bounded
at every t > 0. Using similar arguments over successively differentiated versions of
the differential equations show that the time functions of all state probabilities are
continuous with continuous derivatives of all orders. This allows the Taylor series
representation for every P;(¢) for every t > 0 as

> 1d
27 =

Brook Taylor (1685-1731) was an English mathematician. In the above Taylor se-
ries, the derivatives are all evaluated at time zero. From the argument above, the
derivativesare all zero at time ¢t = 0 showing that P;(¢) = P;(0) forali=0,1,---
andfor al t > 0.

;=01 (3.32)

=

3.2.2 Setting the system to start in equilibrium

A clever way to start the system to be equilibrium right from the starting time in-
stant ¢, isto randomly choose a number of customersin the queueat ¢, by the steady
state distribution of equation (3.28). How is this different from starting a queue with
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a known, constant number (say, zero) of customersat ¢ = 0? The differenceis ex-
plained by considering (imagining) the sample space of an unlimited number of such
gueues. Let an innumerable number of queues be started at ¢ = 0, each with an
iid number of customers generated from an ideal random number generation algo-
rithm with the equilibrium state distribution. We do not look at any actual number of
customers obtained by the random number generation algorithm. Then, at any later
pointintime, at = > 0, the state of all the queues correspond to iid equilibrium state
pmf.

Ontheother hand if all the queuesare started with a constant number of customers
(say k) attimet = 0, then, at atime 7 > ¢, the pmf of the state of the queuesis given
by the probability values dictated by the differential equations (3.29) and (3.30) at
t = 7, and not by the equilibrium state probabilities.

3.3 Simple Performance Figures

The equilibrium state probabilities are

pn=(1—=p)p", n>0, forp < 1. (333)

po = (1 — p) itsdlf is a performance figure, asis 1 — py = p. This condition of
no customersin the system is also known by other expressions as “idle,” “system is
empty,” and “server isfree”

po = P[server isfreg] = Plempty] (3.34)
1 — po = PJ[server isbusy]. (3.35)

Note that py is the highest of any steady state probability! However, P[N > 0] can
be larger than py.

is called amodified geometric pmf and the random variable N, amodified geometric
random variable.

Expected Number in the System
The most important visible quantity is the number of customersin a system. The
average of which constitutes an equally important performancefigure.

E[N] = steady state (or equilibrium) expectation of the state (3.37)
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_ i - (3.38)
n=0

= n(l-p)p" (3.39)
n=0

= (1—p)pY_np""', sincethe argument of sumisOforn =0

n=1
Z di (3.40)

Derivative and sum operators can be interchanged, if both exist. We will inter-
change and verify thisto be true (for p < 1).

{i pn} (3.41)
=(1-p)p di{i P —po} (3.42)
{

P n=0
d 1
=1 =plp p\i=p 1} (3.43)
T ey (349
PP \T=, :
(1—p)—p(-1)
=(1- 3.45
(= Po—1—p (3.45)
__F (3.46)
I—-p
Note that we could have smplified the steps above by noting =~ 4 51 =0.
_ P
E[N] = . (3.47)

(1-p)

This quantity is also known as the average buffer occupancy. We see that as p
approaches 1, the average number of customers in the system rises very steeply.
Therefore, it does not help to try to make the capacity . close to the load. Even
though doing this would reduce the fraction of time the server is free, it severely
contributesto increasing E[N]. Figure 3.5 shows aplot of E[N].
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Expected number in the system
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FIGURE 3.5: Average number in an M/M/1/oo queue as a function of arrival
rate
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Variance of the Number in the System
Let usfirst evaluate

EIN(N—=1)] =Y n(n—1)p, (3.48)
n=0
=Y nn-1)1-p)p" (3.49)
n=0
=> (1=p)n)(n—1)p" (3.50)
n=2
=(1=pp*> n(n—1)p"> (351)
n=2
=(1 2y~ 352
= (1—p)p ; " (352)
2 d2 S
=-0r"5 HZZQP" (3.53)
2 d2 - n
=(1-p)p e nz:%p (3.54)
2 1
= (1 — p)de—me (355)
d 1
=(1-p)p° PPACEE (3.56)
2
_ o 2
=1=plp E (3:57)
2 2
= " Pk (3.58)
= E[N?] — E[N]. (3.59)

Equation (3.50) follows since the argument of the summation is zero for n = 1 and
n = 2. Equation (3.54) follows because the second derivatives of the argument for
n = 0 and 1 are zero anyway.

2
E[N?] = (12_”p)2 + ﬁ (3.60)
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_ 20+ p(1—p)

oo (3.61)
= R - (362
_ 2 lef’__ p/’; — 7 (3.63)

= _pp)2 . (3.64)

3.4 Response Time and its Distribution

Thetotal time spent by a customer in the system is called the delay or the response
time. Response time is the sum of service time and any possible waiting time. We
will develop the probability density function for the response time with the help of
Laplace transforms.

Let R be the random variable for response time and r, its outcome. Under steady
state, let acustomer enter the system and find n customersaready in the system. The
remaining service time of any customer under serviceis exponential with parameter
1, irrespective of any amount of service time already received by that customer, due
to the memorylessness of exponential service times. Therefore, the newly entering
customer needsto wait for an addition of n iid exponential times before getting into
service. Adding the service time of the entering customer, we see the following.
The response time of a customer who enters when there are n customersin the sys-
tem is the sum of n + 1 iid exponential service times. Therefore, the conditional
transformation,

Lr(sln) = (H ’jr S)"“. (3.65)

Using the theorem of total expectation, we have

Lr(s) =Y Lr(sln)pn (3.66)
n=0

= Z(Miﬁs)nﬂ(l —p)p" (3.67)
n=0

_(A-pu i( pp )” (3.69)
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p—A 1
= )
pts1— 2
I
Cp—A+s

77

(3.69)

(3.70)

Recognize this as the transform of an exponential random variable. Hence, we have

the following result.

THEOREM 3.3

The response time in an equilibrium M/M/1/00 system, R is an exponential

random variable with parameter (or rate) p — A. That is,

fr(r) =

(1 — Ne= = >0
0, r <0.

Finally, the performancefigure expected response time is given by

1

BIR] = ——.

Figure 3.6 shows aplot of E[R]. For the equilibrium M/M/1/in fty system,

A
E[N] = m
1
E[R] = m
Therefore,
E[N] = AE[R]

(3.71)

(3.72)

(3.73)

(3.74)

3.5 More Performance Figures for M/M/1/cc System

E[N,] = Expected number of customersin service. If the server is free, no cus-

tomer is being served. If the server is busy, exactly one is under service.

E[Ns] = E[N;|busy] P[busy] + E[N|empty] P[empty]

(3.75)
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Expected response time and expected waiting time
T T

25

20 b

E[R], E[W]

10

18

FIGURE 3.6: Expected response time for an M/M/1/oo queue as a function of
arrival rate
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=1-p+0-(1-p) (3.76)

— ) 3.77)

L et the number of customersin waiting be N, under equilibrium.

N(t) = Ny (t) + No(t). (3.78)

The above formulais awaystrue. Under steady state (we drop ¢),

E[N] = E[N,] + E[N,] (3.79)
E[Ny] = E[N] = E[N] (3.80)
- 1% —p (3.81)
P

_
-1 (3.82)

02
ENu) = 1. (383

Let T be the service time random variable and T, the waiting time. We have the
following expression which is always true,

R= T’w + Te; (384)
and so,
E[R) = E[T,,] + E[T}] (3.85)
1 1
~ E[T,)] A (3.87)
TPV '

The plotsin Figure 3.6 include the expected waiting time, denoted by E[W].
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3.6 Waiting Time Distribution

The waiting time in an M/M/1 queue is a mixed random variable. We know that
P[T,, = 0] > 0, and we have adensity function for fr,, (¢|T%, > 0). So, the random
variable has a continuous component and a discrete component.

P[T, =0] = Plempty] =1 —p (3.88)
P[T, > 0] = p. (3.89)

The condition T, > 0 implies N > 0. The conditional transform of waiting time,
under the condition that it is larger than zeroiis,

(s|To > 0) ZET (s|N =n,N > 0)P[N =n|N >0] (3.90)

n=0
=n,N > (]
= . 1
nzlﬁTw sfn) = [N> 0 (3.91)
=3 s, @m%. (3.92)
n=1

When there is at least one customer at the time a new customer enters, the wait-
ing time for the new customer is the sum of service times of al the n customers.
Therefore,

BOA"
La, (sln) = (Hs) nz1 (3.99)
p n—1
Ty 3.94
7, (/T > 0) nzl(ws) (3.94)
_(=pp_ 1 (3.95)
n+s 1_u+e
I
- (3.96)

Thus, under the condition that a customer waits, the waiting time is distributed
exponentially with rate ;» — A. The mixed density function of the waiting timeis

fult) = {(()1 — p)O(t) + p(p — N)e= =M1, i i 8 (3.97)
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The function §(t) is the Dirac delta function, named in honor of Paul Dirac (1902—
1984), a British scientist. It is defined by

5(t) = {o, (Zo ad (3.98)

/ S(tydt = 1. (3.99)
The cumulative distribution function is simpler to represent;

1= pe= =Nt >0
Fr,(t) = {0, 20, (3.100)

3.7 Departures from Equilibrium M/M/1/cc System

The properties of the stream of departing customers from an equilibrium
M/M/l/oo system are interesting to study. If such output stream is Poisson, it sSim-
plifies the analysis of afollow-up queue fed by the departures of the first queue. P. J.
Burke showed in 1966 that the output of a class of queues, including the M/M/1/co
gueue, to be Poisson, using the principle of reversibility of Markov processes. A
derivation based on simpler principles is developed below. Let us first obtain the
nature of the random variable T', the time for the next departure from an equilibrium
M/M/1/co queue observed fromtimet = 0.

THEOREM 3.4

Let an M/M/1/0 system be known to be in equilibrium at timet = 0. Let T
be the random variable time interval for the next departure. If T is observed
(without observing any other quantity such as the number in the system), the
probability density function of T is exponential with parameter X\, the arrival
rate.

Proof
At t = 0, the random variable number of customers N has the known modified
geometric pmf p,, = (1 — ﬁ) (ﬁ) ,n=20,1, ---. TheLaplace transform of T is
given by

Lr(s) = an[,T(s|N =n). (3.101)

n=0
If the systemisbusy at ¢ = 0, thetimefor the next departureisthe remaining service
time of the customer being served, which is exponentially distributed with parameter
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w. If the system is empty at t = 0, the time for the next departure is the sum of the
time for the next arrival and its servicetime. Therefore,

_ M
Lr(s|N >0) = it and (3.102)
Lo(s|N =0y = H_ 2 (3.103)
r Y p4sA+s '
Using these in equation (3.101), we have
A I A A i
=(1-Z z 1
Lr(s) ( /i) <u+s)\+s)+uu+s (3.104)
which smplifiesto
A
= . 3.105
Lr(s) A+s ( )

That is, the time for the next departure starting from any time instant at which the
system is known to be in equilibrium (and not conditioned on any other observation
about the system) is exponentially distributed with parameter .

The above theorem can also be proved without the use of Laplace transform and
with the use of the pdf of the sum of two independent exponential random variables
with parameters A and p. This is encouraging but not sufficient to conclude that
the departure stream is Poisson, since we need successive interdeparture times to
be mutually independent for the departure stream to be Poisson. That is, after we
observe the time for the first departure, could the next IDT be dependent on the
observed time for the first departure? One way to show that successive IDTs areiid
is to show that the system will be found to be in equilibrium the time instant after a
departure. A simple algebraic proof follows.

LEMMA 3.1
The pmf of the number of Poisson arrivals with rate A during a time period
that is exponentially distributed with parameter p is modified geometric with

a success probability of /\4/\—u'

Proof

Asusud, p = ﬁ At any time instant that the system is busy, the time for the next
arrival Y and the time for the next departure X are independent exponential random
variables with rates \ and y. respectively, each competing to occur before the other.

oo Yy

PX V)= [ [ foov)dsdy (3.106)
y=0 =0
oo Y

= / / pe M e =N dady (3.107)

y=0z=0
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e} Yy

= //\B_M’ / pe P dxdy (3.108)
y=0 =0
= / e N[ —eHT)Y dy (3.109)
y=0
= [ Xe (1 —eM)dy (3.110)
y=0
= / e Ny — / Ae~ ATy gy (3.111)
y=0 y=0
S R N, PRV (3.112)
—(A+n) o
A
=1- " 3.113
pp (3.113)
H (3.114)

T A tu

We will use the above property between two independent and competing expo-
nential random variables in other applications also. At any time instant the system
is busy, the probability that the next changeis an arrival and not a departureis ﬁ
After k such arrivals, a departure, with a probability ﬂ“_—u must occur for exactly k
arrivals before a departure. Therefore, if the system is busy, the random variable
number K of customers arriving into the system before a customer departs has the

pmf

A b I
PIK=Fk=-—2— 3.115
[ ] <)\+,u> A+p ( )

k
:<L> Lt (3.116)
14+p/) 14p
pk

—_ P k> 117
TE TR (417
I

THEOREM 3.5
Under the same conditions as in the above Theorem 3.4, the number of cus-
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tomers in the system follows the equilibrium distribution, the time instant
after the departure.

Proof

Recall that the departure is the first one observed after starting the observation at
t = 0 and that the system was known to be in equilibrium at ¢t = 0. Let M be
the random variable number of customersat ¢ = 0. Let NV be the random variable
number of customers the time instant after the first departure; that is, N does not
include the departing customer. Only departures are observed. Arrivals are hidden
from the observer. Let K be a random variable corresponding to the number of
arrivalsduring an entire or remaining servicetime. Since servicetimeismemoryless,
the two have the same pmf. For the case of N = 0, the system could have had O
customers at t = 0 followed by one arrival before the departure, or 1 customer at
t = 0 and no arrival before the departure. Therefore,

P[N = 0] = P[K = 0 &fter thefirst arrival |M = 0]P[M = 0]

+P[K =0|M = 1]P[M = 1] (3.118)
- (1-p)+ ! (1-p) (3.119)
= m -p m —pP)p .
=1-p. (3.120)

For PIN = n > 0], we again have two subcases. If the system was empty at
t = 0, we need afirst arrival followed by n arrivals during the service time of the
first arrival. If the system was not empty and had m customers at ¢ = 0, we need
n + 1 —m arrivalsin the remainder of the ongoing servicetime. The variable m can
be of any value from 1 throughn + 1. Therefore, for n > 0, we have

P[N =n] = P[N = n|M = 0]P[M = 0]

n+1
+ > P[N =n|M =m]P[M =m] (3.121)
m=1

= P[K = n dfter thefirst arrival |M = 0]P[M = 0]
n+1

+> P[K=n+1-m|M=m]P[M=m] (3122)
m=1

n+1 _
1 n n+l—m 1 m
etV ( f)” (3.123)
(1 p)n+1 — (1 p)n+2 m

_ (1=p)p" (I+p) -1
~tre () o
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=1 -=p)p". (3.125)

That is, the pmf of the number of customers satisfies the equilibrium pmf of the
number of customersin the queue, for both the casesof N = 0and NV > 0.

Combining the above two theorems, we have the nice desirable result.

THEOREM 3.6

The stream of departing customers from the output of an equilibrium
M/M/1/c queue is Poisson with a rate equal to the arrival rate, \.

Proof
If the system under consideration is at equilibrium at some time, we know from the
above two theorems that

1. Timefor the next departureis exponential with rate \.

2. The system isat equilibrium, at the instant following the departure.

Following thefirst departure time instant, the future behavior of the systemisafunc-
tion only of the state at that instant which is known to be in equilibrium. Therefore,
the time for the next departure is not dependent on the time for the first departure.
Also, the next interdeparture time (IDT) is exponentia with rate A. Thus, the se-
guence of IDTsareiid exponential with rate \. I

Theoriginal result of the Poisson nature of the output stream of customersfrom an
equilibrium M/M/1/oco system isdueto P. J. Burke, published in 1956. This property
of M/M/1/oo queues has far reaching consequences. Over a packet communication
data link, it may be initially confusing to think that packet arrivals can be Poisson,
since each packet takes some time to flow into the receiver hardware. That is, an
arrival does not occur at a single time instant. The packets have nonzero ON time.
However, we can consider that the data packets are coming out of another M/M/1/co
system with the packet ON time being the service time of an earlier exponential
server. Tracing these arguments to the origin of the packets, a computer simply
creates adatapacket and avirtual arrival by placing apointer to the memory segment
corresponding to a packet. Thisoccursin anegligibletime (in comparison with other
servicetimes). Thereafter, all the packet movementstake time intervals proportional
to the data packet sizes. For hundreds and thousand of bits, the number of bitsin a
packet is very well approximated by a continuous random variable. At downstream
pointsin anetwork, packets are coming out of a sequence of equilibrium M/M/1/co
systems. We now know that such outputs for Poisson streams. At a point, apacket is
considered to have arrived just after its last bit has completed arriving. Furthermore,
at some point in a network, if packets are iid probabilistically switched to two or
more different queues, input streamsinto all the queues retain the Poisson property.
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3.8 Analysis of ON-OFF Model of Packet Departures

A digtinction between queues in data packet communication and some other ap-
plication areasis that a data packets flows into a queue buffer over a nonzero amount
of time. Contrast this with a human being walking into a queue buffer or a physica
hardware being submitted to a repair facility. In all these cases, we consider that
the job arrives into the queue after it has completely arrived. The fact that humans
walk in with a finite speed is not of consideration here! If we assume that all the
humans walk with the same speed, the time instant the customer enters the queueis
the arrival time instant. In a similar way, consider cars modeled as points moving
through alane on aroad. Even though cars may differ dlightly in their lengths, the
service time they need at an oil change facility is quite independent of their lengths.
Therefore, modeling them with an arrival time instant each is an excellent approx-
imation. However, the scenario of data bits flowing over a communication link is
different. The time taken for the data packet to flow in is proportional to the number
of bits in the packet. Again thisis not due to a finite speed of propagation over a
long distance link, but due to each bit encoded as atime function of electromagnetic
guantities over afinite time-width.

In the previous section, we argued that in spite of this on-off model of packet
train, we can consider that a packet arrives when its final bit has just completed
arriving. Then the departure points congtitute a Poisson stream and such a packet
stream presents itself as Poisson arrivals into any following queue. Clearly, the on
times of individual packetsin such a packet train areiid exponential with the service
rate of the queue from which the packet train is departing. However, what is the
nature of the off-times? Thisisthe subject of the present section. Consider a segment
of time containing afew packets of the packet train; see Figure 3.7, similar to Figure
2.2 of Chapter 2. The random variable X is the on-time of a packet, corresponding
to the service time in a queue whose output constitutes the packet stream. Similarly,
the random variable Y isthe off-time. Y starts from the completion of the departure
of a packet to the beginning of the service time of the next packet. Since we now
know that the system isin equilibrium at the completion of every service, successive
occurrences of Y areiid. Of course, successive occurrences of X are the successive
service times and are iid. Note the following. From the beginning of Y till the end
of thenext X isthetime interval between successive time instants of completions of
service of successive packets. We know this to be iid exponential with rate A\, from
the previous section. The random variable starting from the beginning of X to the
end of the next Y is composed of two components. The first component, X is the
service time which is exponential with arate . At the conclusion of service, that is,
at theend of X (which isthe sametimeinstant as the beginning of Y'), we now know
that the system is in equilibrium. Therefore, successive Y areiid. Successive time
intervals Y + X are the time interval s between successive completions of service,
known to form a Poisson sequence with rate . Successive intervalsof X + Y must
also have the same statistical nature, simply becauseY + X = X + Y. Therefore,
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t; = timefor first packet arrival to start

to = timefor first packet arrival to end

t3 = |AT between packet starting points

t4 = timefor the start of second packet arrival
t5 = |AT between packet ending points

Packet Packet
, start end
, Nopacket .
I =l Packet-- =

FIGURE 3.7: ON-OFF model of apacket train

we have the following result.

THEOREM 3.7

If packets start leaving the system as they begin service in an equilibrium
M/M/1/< queue, the sequence of such points constitutes a Poisson stream
with rate .

Finally, what is the distribution of the random variable Y'? This is not a purely
continuous random variable. Since the system is in equilibrium at the end of a de-
parture, another packet can immediately get into serviceif the system is busy, which
occurs with a probability p. Therefore, we have

PlY =0] = p. (3.126)

In order for Y > 0, the system must be empty when at the completion of service of
one packet. This occurs with a probability (1 — p). If the system is empty, the time
interval for the next service to beginis exponential with rate \. Therefore,

fy(y, Y >0)=P[Y > 0]fy(y]lY >0) (3.127)

= (1 - p)rexp(—Ay). (3.128)
The cumulative distribution of Y is easily obtained as

PlY <y]=1- pexp(—Ay). (3.129)
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Therefore, Y is not exponential leading to the following cautionary statement.

THEOREM 3.8

In the ON-OFF sequence of a train of packets departing an equilibrium
M/M/1/x queue, the OFF time periods between successive packets are iid
but are not exponential.

3.9 Round Robin Operating System

Thefollowing is a realistic representation of the functioning of uniprocessor sys-
tems. The operation is referred to as round robin. A user typically submits many
jobs in succession and the system responses are not necessarily FIFO. The operat-
ing system (OS) has an internal timer that rings in a succession of iid exponentially
distributed random intervals. If the server is serving a customer when the OS timer
rings, the customer is sent back to the tail of the queue and the next customer in
the waiting line starts service. Typicaly, the average time intervals between these
ringsis much less than the average service time requirement of jobs so that ajob gets
swapped out of service several times. Each of the continuoustime segment serviceis
called a piecemeal service. Due to the memoryless property of the total servicetime
reguirement of jobs, the remaining service time of every job is also distributed iden-
tically to the total service time requirement. Time wasted for swapping the jobs in
and out of serviceis negligible. Therefore, the number of customers and their statis-
tical servicerequirements after afeedback are identical to those before the feedback.
Hence, the statistical behavior of N (¢) is same asin the basic M/M/1/co system.
The overall (or total) servicetime is exponentialy distributed with an average of

Let the piecemeal service time be exponential with an average of 1/a. Typically,

< = although thisis not necessary for the validity of the analysis. Of course, the
feedback piecemeal servicetime is also memoryless. The probability of ajob being
fed back isthe probability that an exponential random variablewith rate o islessthan
another independent exponential random variablewithrate . Thisisevaluatedinthe
proof of Lemma3.1to be <. Figure 3.8 showsthe queuing model for such around
robin system. The expected number of feedback returns a customer experiencesis
the expectatlon of the modified geometric random variable with a success probability

Q IHV; =

of —&—. This expectation evaluates to 2. The expected number of passes through
the queue is
L aoote (3.130)
p jz

Since each customer experiences iid number of feedback returns, the combined ar-
rival rate into the merged waiting line is smply the product of the arrival rate and
the expected number of passes a customer makes. Thisis given by Matw) Figure
3.9 shows the rates of customers flowing at different pointsin the system. The rate
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<— Feedback
Probability p = ¢
External yp -+
Poisson arrivals
Rate = )\ Merge = | | Spﬁlit Departures
Waiting line  Exponentia

_ service
Combined rate = o + p

FIGURE 3.8: Theround robin queuing model

of customers departing the server is the same as the combined rate of the merged
customers, M“}—f”) Note that we do not know whether or not the combined arrival

stream of customersis Poisson, at this point of analysis. Figure 3.9 showsthe system
with rates of customers at different points.

Matp
A (:l) | o o | | Y
Ma+pu)

FIGURE 3.9: Ratesof customersat different pointsin around robin system

Thegoal of thisanalysisisto determinethetotal expected waiting time of atagged
job A whose total service requirement is known to be areal variable 7. We need to
find the expected number of passes. Figure 3.10 shows a typical total service time
interval — composed of segments of piecemeal service times. The successive service
time segments do not occur continuously. They are laid down successively in the
figure, to illustrate the relation between the number of service time segments and
the total service time. Every time the job A passes through the server and is fed
back, it completes an iid exponential amount of time with parameter a. Therefore,
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SN

FIGURE 3.10: Individua service time segments placed successively

the number of feedback returns of A is a Poisson random variable with rate o over
time 7. The number of passes job A makes through the server is one more than the
number of feedback returns, which simply includes the last pass which is not fed
back. Therefore, the expected number of passes job A makes through the server is
1 + ar. At the outset, we do not know if the expected response times of al the
passes are the same. The following theorem establishes an important result required
to evaluate the total expected waiting time of multiple passes.

THEOREM 3.9

Let a tagged customer A enter the round robin system at t = 0 when the system
s known to be in equilibrium. Let the arrivals be Poisson, service times be
itd exponential, and feedback times be iid exponential. When the customer A
leaves the system after one pass, (either for feedback or for overall departure),
the system will again be in equilibrium.

Pr oof

Let there be K customersin the system just before customer A entersat ¢ = 0. As
usual, k is the outcome of K. We know that P[K = k] = (1 — p)p*. During the
time period of interest here, we know that the system has at least one customer, that
isthe tagged customer A. During the one pass of service time of the customer under
service a t = 0, the number of arrivals into the system is known to be modified

geometric (due to Lemma 3.1 with a success probability of ¢ = m Its Z

transformis 1 L q‘l By the time the tagged customer A leaves the server for the first
time, the server would have served k + 1 customers, including the customer A. The
Z transform of the number of external arrivals during thistimeis

- k+1
( 14 ) . (3.131)
1—gqz

Of the k& customers served before A, each return to the tail of the queue for more
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service, with aniid probability of r = —2-- and leave the entire system with a prob-
ability of 1 — r. The Z transform of each such feedback is1 — » — rz. The Z
transform of the sum of these k possible feedback returnsis (1 — r +rz)*. Note that
any feedback of the tagged customer A itself is not included. Let the total number
of external arrivals plus the feedback returns be M. Therefore, M is the random
variable number of customersin the system when the tagged customer A leavesthe
server for thefirst time and its Z transform conditioned on & customers being in the
system just before A enteredat ¢t = 0 is

k+1
Zy(zlk) = (1 — 7 +r2)* (f:qi) . (3.132)

Theunconditional transformis obtained by applying the theorem of total expectation.

© k41
1-¢q
M (z) kZ:O( r+rz) (1 — qz) (L—=p)p (3.133)
_logq, N (lortra-gp\
= 1—qz(1 P)Z( 1— g (3.134)
k=0
_1—q 1
R EPH ey, (3.135)
1—gqgz
(1-¢)(1-p)
B : 3.136
l—qz—(1—r+rz)(1—q)p ( )
Thefinal expression is of the form
u
Zu(2) = (3.137)
v — w2z

where u, v, and w are functions of r, ¢, and p which are, in turn, functions of A, ,
and «. Inorder for the RHS of equation (3.137) to be avalid Z transform of a pmf,
we need w u w
—=1——and0 < —1. (3.138)
v v v

If these conditions are met, the resulting valid Z transform is of modified geomet-
ric pmf with a probability of success of *. Indeed, after some cumbersome but
otherwise simple algebra, the above conditions can be verified when the system pa-
rameters are substituted in equation (3.136) and it turns out that

w_A (3.139)

This completes the proof that soon after the tagged customer A leaves the server
after its first round of service, the number of customers in the system follows the
equilibrium pmf.



92 Performance Analysis of Queuing and Computer Networks

The above theorem allows us to use expected response times for each round of
service for the tagged customer, to evaluate the total expected response time (or the
total expected waiting time). Using the theorem, the total expected waiting time of a
customer with atotal service time requirement of 7 is given by

E[W] =Y E[Wi]jPj] (3.140)
j=1
= E[W1]E[J] (3.141)
= +E[.}] (3.142)
ENCEIDITEDY '

where j is the number of passes for the customer A to complete service. From the
earlier derivation, we know that E[J] = 1 + «. Therefore,

_x
(+p)(p—A)

Adding the total service time of 7 to the total expected waiting time, we have the
following result.

E[W] = 1+ ar). (3.143)

THEOREM 3.10
The expected response time E[RR] of an M/M1/co round robin system with
external arrival rate A\, service rate p, and exponential feedback rate o is given

by
A Aa
B8 = i+ () e

[

Figure 3.11 shows the expected response time as a function of the service time for
thetwo cases. Thesolid line plot isfor the round robin case. The external arrival rate
is1 per unittime. Theservicerate, 1.2 per unit time. Thefeedback rate o is5 per unit
time. The expected response time for the original M/M/1/co FIFO system is drawn
with abroken line. This has a large part for the expected waiting time, followed by
a slow increase due to the service time. On the other hand, the round robin constant
term is small, the expected waiting time for one pass only. Thereafter, the overall
expected response time increases much faster than the corresponding time in the
FIFO case, due to multiple passes. A few more important properties of M/M/1co
system are devel oped below.

THEOREM 3.11
The sequence of merged customer arrivals into the waiting line in an equilib-
rium round robin M/M/1/00 queue is not Poisson.
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Comparison between E[R] for round robin and FIFO operation
18 T T T T T T
Round robin

16
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! ! !
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0 05 1 15 2 25 3 35
service time

FIGURE 3.11: Expected response time as a function of the given total service
time

Pr oof

As in the above treatment, let the time for feedback of a customer under service
be exponentia with rate «. The time for the next arrival into the merged queue is
a function of both the overall arrivals and the feedback time. However, feedback
is possible only if there is already a customer under service. Let T be the random
variable corresponding to thetimefor thenext arrival. If IV, the number of customers
in the system is zero, the only arrival that can enter the system is the external arrival
and in this case T' is exponential with rate A\. On the other hand, if N > 0, the next
composite arrival can be either an external arrival with rate A or a feedback arrival
with rate «. The combination is equivalent to an exponential time for arrival with
rate A + «, for the case of N > 0. Combining the two cases, we find the pdf of the
time for next arrival

fr(t) = (1 = p)Xexp(=At) + p(A + o) exp[—(A + a)t], t >0, (3.145)

which is hyperexponential. Therefore, arrivals into the merged waiting line are not
Poisson.

However, the departure sequence from such a round robin system turns out to be
Poisson, as shown below.

THEOREM 3.12
Consider an equilibrium round robin system with arrival rate X and a total ser-
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vice requirement which is iid exponential with rate p. The feedback discipline
is more general, as follows. At the time instant a job enters the service area
for its first or successive piecemeal service, a race ensues between the overall
job completion time and a feedback time random variable T which is nonneg-
ative but otherwise arbitrarily distributed. Then, the overall output sequence
of customers leaving the entire system is Poisson with rate \.

Pr oof

The time for feedback here is more general and not restricted to being an expo-
nential random variable. Nevertheless, at the time a job enters service, there is a
well defined probability that it will be fed back. At any time instant, the amount of
remaining service time required for all the customers in the system is exponential
with rate p, irrespective of the peculiarity of the feedback mechanism. Thisis due
to the memorylessness of the total service time of a job. Therefore, the number of
customers at any time instant is statistically identical to that in an aternative sim-
ple M/M/1/co system without feedback. Therefore, the IDTs corresponding to the
overall departures still constitute a Poisson stream.

3.10 Examples

Example 3.1
Consider an M/M/1/0c0 queuing system with an arrival rate of 3 per second
and a service rate of 5 per second, operating under equilibrium.

1. A customer A enters the system when the server is free. What is the
probability that another customer enters before customer A leaves the
system.

2. A customer A enters the system when the number of customers in the
system is 3. The exact service time requirement of customer A is known
to be 0.4 second. What is the expected response time of customer A7

3. Determine the probability that the number of customers in the system
does not change during a time interval of 0.1 second.

Solution

1. After A enters, thereis a contest between the next arrival with arate of 3 per
second and the departure of A with arate of 5 per second.
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Plarrival occurs beforeAdeparts = —— = g (3.146)

E[Responsetime of A] (3.147)
= 3E[service time of each of the other §] + A’s servicetime
= 3%0 + 0.4 sec = 1.0 second (3.148)

3. Let the S denote the event of no change in state for 0.1 second and NV be the
number of customers, arandom variable.

P[S] = P[S|N = 0]P[N = 0] + P[S|N > 0]P[N > 0] (3.149)

When N = 0, the only possible change in state is an arrival with arate of 3
per second. When N > 0, an arrival or a departure changes the state, with a
total rate of 8 per second. Under each condition, the probability of the eventis
the probability of an exponential random variable (with appropriaterate) being
larger than 0.1 second. Or, the probability of no Poisson arrival in 0.1 second.
Thus,

P[S] = 0.4¢7%3 +0.6e7 9% = 0.6. (3.150)

[

Example 3.2

Consider a single queue with a round robin scheme of piecemeal service. Ex-
ternal arrivals are Poisson with a rate of 1 per second. The total service
requirement of jobs are iid exponential with a rate of 2 per second. Each
single service piece is a constant time of 0.1 second. Of course, if a job com-
pletes its service before its current piece of 0.1 second ends, it makes its final
departure. At the time a job enters the service area, what is the probability
that it will be fed back (as opposed to making its final departure)?

Solution

Only the remaining service time is memoryless. Time for each piece of serviceis
constant. Every time a job enters the service area, irrespective of how many pieces
of service it has aready received, its remaining service time is exponential with rate
2 per second.

Plfeedback] = P[servicetime > 0.1 second)] (3.151)
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oo

= / 2e~ 2t dt (3.152)
t=0.1
= [—th] (3.153)
0.1
=e 02 =0.82 (3.154)

[

Example 3.3

A processor (server) uses a round robin scheme for service, with an exponential
timer of average 1 msec for each service attempt. A job is known to require
exactly 3.5 msec for its total service time. What is the expected number of
service attempts this particular job will need? I

Solution

Let thetimeinstant ¢ = 0 when the job entered service for the first time. Thereafter,
the average number of timesit will depart strictly BEFORE completing the 3.5 msec
is the average number of Poisson arrivals during atime interval 0 < 7 < 3.5 msec
with arate of 1 arrival per msec. This expected number is 3.5. Thereafter, the
customer will get into service one more time and compl ete the required full service.
Thisisthereason strict inequality isused in defining T'. And, the probability that the
final timer and the final completion of full service of 3.5 msec occurs exactly at the
sametimeis 0 and does not contribute to the expected number of rounds of service.
Thus, the expected number of service attemptsis4.5. I

3.11 Analysis of Busy Times

Let a customer enter a stable and empty M/M/1l/co queue at timet = 0. The
time interval for which the server remains continuously busy is a random variable.
Denote this by random variable by B and let ¢ be its outcome. We are interested in
the probability distribution of B. Lajos Takacs (a mathematician born in Hungary
in 1924) and D. G. Kendall separately studied the Laplace transforms and many
properties of the busy times of the M/G/1/oc queue. The M/G/1/co queueisamore
general case of queues due to the service times not being restricted to be memoryless.
The present section devel ops the pdf and the L aplace transform of the interdeparture
times of an equilibrium M/M/1/oo queue through a direct approach. Let K be the
random variable number of jobsthat arrive after ¢ = 0 and let the server become free
for thefirst time (after ¢ = 0), after serving theinitial customer arrivingat ¢ = 0 and
exactly the K morelater arrivals. Let k& bethe outcomeof K. We will have exactly &
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arrivalsand k departures after ¢t = 0, followed by the departure of the final customer
rendering the system empty. The property of these k arrivals and &k departures (after
t = 0) is that the number of departures at any time should not exceed the number
of arrivals. Let n(; ;) be such number of combinations of 7 arrivals and j departures
such that] S 7. We ha\/en(070) = ]., 'I’L(Lo) = ]., n(l,l) =1. Indeed,

ngoy =1, for0<i. (3.155)

Now, if 7 arrivalsand j — 1 < i — 1 departures have occurred with one of n; ;_1)
combinations, one more departure makes it j departures. And this can occur after
one of n; ;1) waysof reaching i arrivalsand j — 1 departures. Alternatively, after
¢ — larrivalsand j < i — 1 departures, an arrival may comein resulting in ¢ arrivals
and j departures. This can occur in one way, after one of n(;_, ;) ways of reaching
1 — 1 arrivalsand j departures. Therefore (aslong as j < ), we have the recursive
eguation

N(ij) = N(ij—1) T N(i—1,5)s forl1 <j <. (3.156)

If j = i, after reaching ¢ arrivals and ¢ — 1 departures, we can have one more de-
parture. Since the i-th departure must come after  arrivals, there is no other way of
reaching ¢ arrivals and ¢ departures. Therefore,

N(ii) = N(ii—1)> forl <i. (3157)

The probability of a departure (as opposed to an arrival) in the above sequence of
arrivals and departures is F"M Denote this by p. Similarly, the probability of an

arrival, rather than a departure, is ﬁ Thisevaluatesto 1 — p. Now, the probability
of exactly k arrivalsfollowing thefirst arrival at ¢ = 0 and the system then becoming
empty for thefirst time after t = 0 is given by

P[] = ng i [p(1 = p))"p. (3.158)

Thelast factor p in the above equation isdueto thefinal (k + 1)-th departure render-
ing the system empty. After ¢t = 0, thetimeinterval for the next event of an arrival or
adeparture satisfying the above requirement is exponential with rate A 4 ;1. Succes-
sive such time intervals for al of the k arrivals, k& departures, followed by the fina
departure (rendering the system to be empty) are all iid. The fact that some are ar-
rivals and others are departuresis expressed in the joint probability of the compound
event. The Laplace transform of this total time to reach empty state, given that it
occurs after k arrivals, k departures followed by the final departureis

2k+1
Atp ) (3.159)

cato = (531
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Using the theorem of total expectation and using expressionsfor p and 1 — p interms
of A and i, we have

i)(sii_-/:u)Qk—i_l()\i/z)k(ﬁ)k+ln(k7’€) (3.160)

)\k k+1

- Z m (k) - (3.161)
=0

3.11.1 Combinations of arrivals and departures during a
busy time period

Thefollowing Lemmagives an expression for n;, 1) -

LEMMA 3.2

Let a first customer arrive into an empty queue at time t = 0. The number
of distinct ways in which i more arrivals and j departures can occur into the
queue, keeping at least one customer in the queue from the first arrival until
the last arrival or departure (whichever occurs last), is given by

nooo G-+ 1)
(h3) = (i +1)! 4!

, for0<j<iand (3.162)

(2K)!

MR = 3T (R D fori=j=k=>1 (3.163)

Proof

We know that the equations (3.162) and (3.163) are truefor all + > 0 and j = 0,
aswell asfori = j = 1. The proof technique used is induction. Assume that
the equations (3.162) and (3.163) are true for al 0 < ¢, 5 < m and aso for the
combinations of i = m + 1 and al j satisfying0 < j <1 < m — 1, for some .
Evaluate n,,+1,+1) using the known recursive equation (3.156). We have

N(m+1,041) = M(m41,0) T N(m,i+1)- (3.164)

Sincel < m — 1, wehavel + 1 < m and by our assumption, 7, ;41) is known to
satisfy equation (3.162). Therefore,

Cm+14+ D) (m4+1-1+1)  (m+1+D)'(m—1—-1+1)
MmLl4) = (m+2)1! (m+ 1)1 ([ + 1)
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Al m—14+2)  (m+ 141 m =)

(m + 2)11! (m+ DI+ 1)! (3169
_(mAl+ ) m =142 m—l
- (m+1)!l!( m+ 2 l+1) 2180

T m+ 2+ 1)

Thelast factor (m? —12+3m—1+2) isalsotheexpansionfor (m+1+2)(m—1+1).
Substituting this, we have

_(mAl+ 1) (m—1+1)
mt L) = T T (1 1)!

(3.168)

proving that equation (3.162) istruefori = m+1andj =1+ 1 < m. From
equation (3.157), we know that

N(m+1,m+1) = N(m+1,m) (3169)

verifying that equation (3.162) istruefori = m + 1 andforal 0 < j < m + 1.
Increasingm + 1 tom + 2, equation (3.162) istruefor all > m + 2 and j = 0 and
this completes the proof by induction that equation (3.162) isvalidforal i > j > 0.
Equation (3.163) is merely an application of the known equation (3.157) in equation
(3.162) completing the proof of the Lemma. 1

3.11.2 Density function of busy times

The Laplace transform of the busy time random variable can now be completely
specified by substituting for n;, ;) from equation (3.163) in equation (3.161). It is

- AP it (2k)!
. 3.170

Z) (s 4+ X4 p)? 1kl (k+1)! ( )
The probability density function of the busy time period B is the inverse Laplace
transform of the above series. Theresult is aweighted sum of the inverse transforms
of terms of the form
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k
(Si‘a) L k> (3.171)
wherea = A+ p for smpler notation. For agiven & the corresponding component of
the overall density of the busy timeisthe pdf of the sum of £ iid exponential random
variables, each with arate . Each such component is known as the Erlang density.
For k£ = 1, the Erlang density reduces to the exponential density. The following
states and proves an expression for the Erlang pdf.

LEMMA 3.3
The pdf of the nonnegative random variable X, the sum of k iid exponential
random variables, each with the rate « is,

fx,(x) = 2" exp(—ax), x>0. (3.172)

Proof

Theresult istruefor £ = 1, for which X is the exponential random variable itself.
Proof is by induction. Let the result of equation (3.172) be true for £ = n. Then, it
follows that

Lx,(5) = (== )n. (3.173)

Evaluate the Laplace transform of the given expression in equation (3.172) for

an+1 (J))

x® n+1
Lx,..(5) = / an' x" exp(—ax) exp(—sz)dz (3.174)
20 '

x

a1l [(ramexpl—(s + a)z]1e [ na"Lexp|—(s + a)a
<[ pl=(s el _/ col-to de)

(3.175)

Thefirst term evaluatesto 0. The second term is given by
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o« T aran Lexp[—(s + a)7]
L, (s) = P / 1) d (3.176)
z=0
a
= Ly, (5) (3.177)
o n+1
— (Ha) . (3.1789)

The above shows that if the given expression for fx, (x) in equation (3.172)
corresponds to the pdf of the sum of the n iid exponential random variables each
with rate «, then the given expression for n + 1 is the pdf of the sum of » + 1 iid
exponential random variables, each with the same rate. Since the given expression
isknownto bevalid for n = 1, by induction, it follows that the given expression for
fx, (x) isthe pdf of the sum of % iid exponentia random variables, for every k > 1. I

The series expression for the pdf of the busy time is evaluated by substituting the
corresponding Erlang densities for the termsin the series expression of the Laplace
transform in equation (3.160) and also by using the expression for n, 1.

oo N 2k+1 1 .
o :Zwtzkexp[_(/\+u)t](>\iu)k( W )k+ . (2k)!

27 (2k)! Py Ik + 1)
(3.179)

oo +1
- (exp O\ + )] )Z% ko> 0. (3.180)

3.11.3 Laplace transform of the busy time

The infinite series expression for the Laplace transform can be simplified into a
closed form. The following theorem states and proves the result.

THEOREM 3.13
The Laplace transform of the pdf of busy times in an M/M/1/0 queue, L5(s),
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is given by

ﬁB(S) =

Pr oof

SHA+p—/(s+ A+ )2 —4
2 ’

ifA < (3.181)

The proof is based on the Maclaurin series (named after the Scottish mathematician
Colin Maclaurin, 1698-1746) expansionof y =1 — /1 — z given by

oo
T

Fory=1-+1—x,wehave

dy
dx

&y

dx?

&y

da3

Py

dad

dly
d:L'j =0 o

y = Fﬁ R (3.182)
1 1
sA—o)%. (3.183)
11 3
551—2)7% (3.184)
113 5

2j

%1><3x5><-.-><(2j—3)(1—x)* 2, j>1  (3.186)

11x2x3x4dx---x (2] —3)(2j —2) 21
- x

92j 2x 4% x(2f—2)
(3.187)
5 a2
27—2) .oy (3.190)

@iy 2
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and y(0) = 0. Constructing the Maclaurin series, we have
— 20 -1 a7
y(x) = G-I a7 (3.192)

Change the index of summationto & = j — 1. We have the Maclaurin series for

y=1—+/1—x given by

k+1

(3.192)

1l—x= i

k=0 +1)!

l\D

The known series expression for the Laplace transform of the busy timein equation
(3.161) with the expression for ny, ;) substituted from equation (3.163) is

> s (2k)!

Lp(s) = kz:(:) (5t A+ )2 B (k+ 1))

(3.193)

s+ At i 22kH2)\kH1 (2k)! (3.194)
2 = 22K (5 + A+ )R 2 kL (R + 1) '

_ 5+A+u Mg \RL (2R

The summation in the above equation is recognized as the above developed Maclau-
rin series by substituting

A p

Therefore, we have

_stHA+pf _ A p
Lp(s) = o (1 \/1 GErtar /\+M)2> (3.197)
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A — N1 )7 —4n
_stAtn \/(Z;r + 1) [ (3.198)

concluding the proof. I

An important conclusion from the above development is that the busy time in an
M/M/1/oc queueis not exponentially distributed.

3.12 Forward Data Link Performance and Optimization

Wireless communicationisless reliable than wire-line communication, in general.
This application illustrates the trade-offs between high datarate and effects of errors
due to noise, to maximize the throughput. A general definition of throughput of a
statistically steady system is the “rate at which finished product flows out.” Consider
awireless network with many stations communicating among themselvesin amulti-
hop fashion. Established connections between several pairs of stations are through
line of sight (LOS) and over a dedicated electromagnetic frequency spectrum. That
is, there is no contention for transmission opportunity among the stations. Each pair
of stations that can directly communicate with each other do so over separate unidi-
rectional sub-links. The two sub-links in opposite directions do not interact but the
two computers at the extremities of the link cooperate for reliable data communica-
tion over the less reliable wireless channels.

3.12.1 Reliable communication over unreliable data links

Consider the operation of adatalink between station A and station B. Station A
transmits data packets to station B. Station B examinesindividual data packets for
possible errors through the redundancy system incorporated in the design. Lower
data rates use larger time width per bit, therefore carry more energy, and result in
higher probabilities of being correctly received at station B. But this may result in
lower overall throughput. On the other hand, a higher data rate introduces a higher
probability of the packet being erroneously received at station B. Station B signals
errorsto station A asfollows. Data packets have afixed serial number field to distin-
guish between different packets. Due to the finite size of field, serial numbers repeat
in cycles. The serial numbers of data packets erroneously received at station B are
inferred based on those of the correctly received packets. Note that the receiver at
station B cannot detect the serial number of an erroneously received packet from
that packet itself! Information about serial numbers of erroneously received packets
is piggybacked over data packetsintended for station A from station B. Station A is
required to retransmit data packets that station B did not receive correctly. Thereis
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also the probability of station A incorrectly receiving packets containing retransmis-
sionrequest in which case, after apredesigned time out period, station B repeatsthe
retransmit request. The probabilities of sequences of compounding errors decrease
as the number of such erroneous eventsin the sequence, due to the independence of
successive erroneous events. Thisis the basis of reliable communication over unre-
liable communication networks. Station B also acknowledgesthe correct receipt of
all packets up to some serial numbers. This eliminates confusion about packets with
a serial number from two different cycles. This approach to control a data link is
called the cyclic window protocol.

In this section, we will consider avery simple model in which bit errors are evalu-
ated based on a simple binary communication system introduced in Section 2.7. All
erroneous packets are assumed to be detected. Pauses in transmission due to incom-
plete receipt of all packetsin a cyclic window are ignored by implicitly assuming a
large length of the cyclic window.

3.12.2 Problem formulation and solution

A transreceiver is the combination of equipment at one end of the bidirectional
communication system over the two sub-links of the datalink. A forward data link
from transreceiver A to transreceiver B generates packets at arate of A packets per
unit time. Packet sizes are geometric with an average packet size of % bits per packet,
but are very well approximated by the exponential random variable for the sake of
gueue analysis. The data rate s is the adjustable and it affects the packet error rate
as well as the queue performance by alteri ng the reception time for packets. The
average transmission time at transmitter A i is -2 tl me units per packet. The average
packet service rate in the transmission queue |s gs. The iid bit errors and corre-
sponding iid packet errors are characterized by the Gaussian noise model of Section
2.7. The hit error rate (BER) for the present data link is known to be a given b,
for the given datarate. All packet errors at the receiver B are detected. Station B
reguests retransmissions and station A complies with the request, after some delay.
Station B manages its own data rates. In our present model, the the delay between
the time instant that station B detects an error and the time instant that station A re-
transmitsis beyond our control and is not subject to optimization. Errorsin requests
for retransmissions are also possible. In such a case, station B repeats requests for
retransmission after a time-out period. Retransmissions from station A to B are also
subject to errors, and we consider these in the performance. Although the packet size
of atransmission and its retransmission are identical, we approximate all transmis-
sions and retransmissions as iid packet sizes and arriving at the transmitter queue of
A is aPoisson stream.

Representative figures for the parameters are as follows. The BER is known to be
103 for a bit rate of 1 Mbps. The average packet size is 10? bits. The following
problems are required to be solved.

1. Determine the maximum packet transmission rate in packets per second that
the system can handle, as afunction of the bit transmission rate s with s in the
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range of 0.5 Mbpsto 2 Mbps.

Use a packet transmission rate of 300 packets per second. Consider only the
cumulative delay of a packet due to waiting and transmission at the queue of
transmitter A, possibly multiple times due to errors. Ignore all other compo-
nents of delays such as the delay in B communicating detected errorsto A,
etc. (assume that these are not variable as we vary s). Determine the optimal
value of the datarate s that minimizesthe expected total delay.

Solution

1. From Section 2.7 and Example 2.7, on page 57, we have that o7 = 0.1047 per

Mbps. The combined transmission rate at transmitter A dueto original and all

retransmissionsis
A

1—€f

(3.199)

where e isafunction of the datarate s. For the queue to be stable, we need

< gsor (3.200)
1-— €f

A< (1—ef)gs. (3.201)

Interestingly, the maximum of these allowable packet rates occurs when
s(1 — ey) is amaximum, identical to the case of throughput maximization
in Example 2.7 studied in Section 2.7. Figure 3.12 shows a plot of the maxi-
mum packet rate in a second of time as a function of bit rate in Mbps, for the
given system parameters.

The expected response time in the transmitter queue for one passis given by

E[R| pass] = — (3.202)
qS - 17€f

The expected number of passesis ﬁ Therefore, the total expected delay in
the queue at the transmitter A only is

1

T e

(3.203)

Again, the expected response timeis minimized by maximizing the throughput
(1 — es). Figure 3.13 shows a plot of the total expected response time at
transmitter A as a function of the transmission data rate. The minimum total
expected response time is 0.003 seconds.
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3.13 Exercises

In the following exercises, unless otherwise specified, al the queues have unlim-
ited buffer sizes and are assumed to be in equilibrium.

1.

10.

In a queue with Poisson arrivals with a rate of 4 jobs per second, there are
two jobs. Job A isthefirst and B is second, with a service time requirement
of 0.15 and 0.2 seconds, respectively. At time zero, A beginsits job service.
Specify the probability mass function of the number of arrivalsfrom time zero
until job B completes service.

The check-in queue at the Fly By Night Airlinesis M/M/1/oo under equilib-
rium with an arrival rate of 10 customers per hour and a service rate of 15
customers per hour. Mr. Red Eye knows that he can spend no more than 15
minutes in the check-in queuing system so as to run and catch the flight. De-
termine the value of probability that he will catch the flight.

In a stable M/M/1/co system operating under equilibrium with A\ = 3 per
second, what is the minimum service rate to satisfy P[No one is waiting] >
0.64?

In a steady state M/M/1/co queue, the average number of customers in the
system is 4.5 and the expected response time is 1 sec. Determine the arrival
and servicerates in the queue.

Determine the pmf of the number of customers waiting in an equilibrium
M/M/1/oo queue.

What is the probability density of time spent in state 2 of an equilibrium
M/M/l/oo system with an arrival rate of 7 jobs per msec and a service rate
of 10 jobs per msec?

Consider a steady state M/M/1/co system with an arrival rate 2 per second and
service rate 3 per second. Determine P[N < E[N]] where N is the random
variable corresponding to the number of customersin the system.

In a standard M/M/1/oo system, the boss of the server wants the server to be
busy at least 80% of thetime aswell assatisfy N < 2 at least 36% of thetime.
Are both possible? Justify.

In an M/M/1/co unstable queue that has already been operating for an unlim-
ited time, A\ = 2/sec and . = 1/sec. Completely specify the nature of the
departure stream.

In a queuing system, the expected servicetime is 1 sec. The system is empty
(server isfree) with a probability 0.3. If the system is not empty, the expected
waiting time is 2 sec. Determine the expected response time of a customer.
Note that this queue need not be an M/M/1/oo system.
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12.

13.

14.

15.

16.

17.

18.
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In a steady state M/M/1/oo queue with A = 1 and ¢ = 2, a customer finds
out that if he enters the system, he will have to wait (that is, there IS awaiting
line). Under this condition, determinethe probability that the length of waiting
lineis2 or less.

A stream of Poisson arrivals with a rate of 10 per second is split with an iid
probability of p and 1 — p. The sub-stream with p is fed to a queue with an
exponential service rate of 8 per jobs second. The other sub-stream is fed to
another queue with an exponential server with arate 5 per second. Determine
the set of p over which the entire network is stable.

Repeat the above exercise with the numbers 8 and 5 respectively replaced by
20 and 3.

Consider our standard stable M/M/1/oo queuing system with nonzero param-
eters A and .. We know the probability that ajob doeswait to begin serviceis
nonzero; indeeditis1— Py = p. If ajobisknownto wait for anonzero amount
of time, determineits probability density of waiting time (thisis a conditional
density under the condition that the waiting time is known to be nonzero).

Individual jobsin astream of Poisson arrivalswith arate of 10 jobs per second
are routed to one of the two queuing systems as follows. A job is routed with
probability 0.4 to a queue with a service rate of 8 jobs per second. Else, it is
routed to a queue with a service rate of 14 jobs per second. Both queues have
exponential service times and unlimited waiting room capacities. Systemati-
cally determine the expected response timesin theindividual queuing systems
aswell asthe overall expected response time of ajob in the complete system.

A processor (server) uses a round robin scheme for service, with an expo-
nential timer of average 1 msec for each service attempt. External arrivals are
Poisson with arate of onein 10 milliseconds. The overall service requirements
for jobs is exponential with an average of 8 milliseconds. A job is known to
require exactly 3.5 msec for itstotal servicetime. Determineitstotal expected
responsetime.

In around robin scheme, the interrupt to feedback ajob being serviced occurs
after a time interval that is uniformly distributed between 0.2 and 0.8 msec.
from the time instant of the start of every service segment. The total service
time requirement of jobsisiid exponential with an average of 4 msec. Arrivals
are Poisson with a rate of 200 jobs per second. Determine the feedback prob-
ability of ajob (a) when it enters service, (b) when ajob has spent 0.2 msecin
service, and (c) when ajob has spent 0.5 msec in service.

Consider the following round robin scheme. External arrivals are Poisson with
arate of 3 job per msec and require an exponential servicetimewith arate of 8
per msec (that isthe average servicetime requirement is % msec). Whenever a
job getsinto service, the system starts an exponentially distributed timer with
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arate of 24 per msec (that is, the averagetime of the timer is 2—14 msec). If the
timer completes before the job completesits service, the job is returned (sent
back, or fed back) to the tail of the queue with an unlimited buffer size.

(a) Determine the feedback probability of ajob entering the service area.

(b) If the total service requirement of a particular job is known to be an
exact amount of time, 7 msec, determine the expected number of returns
(feedbacks) from the server to the tail of the queue that this job will
experience.

(c) For this particular job, determine the total expected waiting time expe-
rienced in all of its passes through the waiting line, as a function of .
Evaluate the expected response time of thisjob.

19. A stream of Poisson arrivals with a rate of 10 jobs per second enters an FIFO
gueue with an exponential service time with rate of 18 jobs per second. A
customer leaving this first queue is required to leave the entire system with a
probability of 0.3 or enter a second FIFO queue of exponential service time
with arate of 10 jobs per second. Both queues have unlimited waiting room
capacities. Systematically determine the expected response times in the indi-
vidual queuing systems as well as the overall expected response time of a job
in the complete system.

20. A computer is composed of a CPU and an /O unit. The service time of every
job submitted to the CPU is exponentially distributed with a rate of 10 jobs
per second. Following the CPU service, not al jobs require an |/O operation;
ajob requires an 1/0O operation with a probability of 0.2. If an I/O operationis
required the job is routed to another queue with an exponential service time of
rate 2 1/O jobs per second.

(@) What is the density function of the total service time (CPU plus /O, if
any) required by arandom job input to the CPU?

(b) A job input to the CPU is found to require a total time of 0.2 seconds.
What is the probability that it used an 1/O operation?

(c) The computer center charges each user adollar amount equal to
A=2C+3I (3.204)

where C and I are CPU servicetime and I/O service time in seconds, re-
spectively. Determine the expected value and the variance of the random
variable A.

21. When aparticular customer joins an M/M/1/oo queue with arrival and service
rates A and p respectively, there are exactly n customers in the system. At
the time of joining the queue, this new customer wishes to leave the system
within atimeinterval ¢ in order to make it to a previously made appointment.
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Derive a mathematical expression for the probability that the customer will
not be late for the appointment.

A WAN router has three incoming data links A, B, and C, and three cor-
responding outgoing data links «, /3, and . Each of these six links can be
considered to be a unidirectional link. That is, there is no feedback. Packet
arrivals at the three incoming links are independent and Poisson. All the pack-
ets are of iid (independent identically distributed) exponential number of bits
with an average of 1000 bits. All the incoming packets on incoming links A,
B, and C are merged and fed into the router processor which processes at a
constant rate of 1 million bits per second. Every processed packet is imme-
diately transferred to the queuing buffer at the required outgoing link. Each
outgoing link transmits packets at a constant rate of 2 million bits per second.
Processing at every queueis FIFO.

The entire system is a feed-forward network of four M/M/1/co queues. The
arrival rates (in number of packets per second) and iid proportions of packets
to betransferred to the different outgoing links are given in Table 3.1. System-
atically evaluate the average delay experienced by a random packet arrival in
the entire router system.

TABLE 3.1: Characteristics of data packets at the router
Incoming | Arrival | Outgoing | Outgoing | Outgoing
link rate toa to s toy
A 100 0 04 0.6
B 200 0.7 0 0.3
C 300 0.2 0.8 0

A user isfaced with having to decide which of the two waiting lines he should
enter his job. The two waiting lines are in front of two computers S; and
S». Both computers have iid exponential service times with service rates of
2 jobg/minute and 3 jobg/minute respectively. In addition to the jobs being
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served by the two systems, S; and S, have 2 and 3 jobs waiting in front of
them, respectively. If the user wantsto decide based on the minimum expected
time for him to leave after service, which station should he enter?

24. The pmf of the number of £ arrivalsand & + 1 departuresin astable M/M/1/co
gueuefor it to reach the empty statusfor the first time after a customer arrives
into the empty queueis obtained from equations (3.158) and (3.163) as

AE R+ (2k)!

Plk] = O+ ) 2Rl (k+ D)

(3.205)

(@) Provethat thisisavalid pmf.
(b) Evaluate its expectation.

25. Evaluate E[B], the expectation of the busy timein an M/M/L/co queue.






Chapter 4

State Dependent Markovian Queues

4.1 Introduction

In the previous chapter, we studied the M/M/1/oo system with constant arrival and
service rates. In many applications, the arrival and service rates can change over
time. If the changes are at arbitrary time instants, we cannot conduct a general anal-
ysis. However, if arrival and service rates are functions of the number of customers
only, we can analyze the system. Additionally, we can also deal with several other
logical combinations of situations affecting the arrival and service rates. We find
many practical applications that fall within this category. The principles of contin-
uous parameter Markov chains are essential to the analysis of such state dependent
gueues. In addition to state dependent queues, Markov chains have many other ap-
plications within the realm of computer networks. A Markov chain is a special case
of the more general stochastic process.

4.2 Stochastic Processes

In our M/M/L/oo queue, consider the state of the system N (¢) at timet. Atagiven
time instant, the number in the system is an integer. If we continuously observe
the number in the system over along time, we get a nonnegative stepped function
that increases by one at arrival time instant and decreases by one at departure time
instants. Such time plots of N (¢) are called sample functions. If we observe another
gueue with identical parameters, we will find a different sample function. Thus, the
“ensemble’ of all possible N(¢) observationsis a larger set than a sample space of
just arandom variable. We refer to N (¢) as a random process or stochastic process.
Figure 4.1 shows an example sample function (only for a segment of time). The
z-axisistime, and the y-axisis the number in the system.

DEFINITION 4.1 Random or Stochastic Process A random process
X(t) is a parameterized random variable such that (a) for different values of
the parameter t, we get different random wvariables and (b) an element of the

115
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Sample plot of the behavior of a stable M/M/1/e queue
6 T T T T T

number

t

FIGURE 4.1: Examplesample function segment in an M/M/1/co system

sample space of the random process is a “sample function,” an observation
over all possible values of t. Although t is generally the time variable, the
parameter of a random process can be other real-valued quantities. I

We will see many examples. The value taken by the random variable X (¢) at a
giventimet = 7 is caled the state of the process at 7. A random process can have
a continuous or discrete state, and a continuous or discrete parameter. More com-
plicated mixed state random processes also appear in applications. The state of a
random process can also be a vector. Even simple queues, such asan M/M/1/co sys-
tem, provide very illustrative examples of random processes. Indeed, it is preferable
to use queues as application examples with the help of which to introduce the topic
of stochastic processes.

Example 4.1

In M/M/1/00 systems, N (t) is a continuous parameter discrete state stochas-
tic process. Observe the system from some arbitrary starting time instant
t = 0. Assign serial numbers to arriving customers starting with customer
number ¢ = 1 for the “oldest” existing customer in the queue. If the system is
empty at ¢ = 0, the first observed arrival is assigned customer number ¢ = 1.
In this system, N;, the number of customers in the system soon after the
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departure of the i** job is a discrete parameter discrete state process. R;, the
response time of the i*" job, is a discrete parameter continuous state process.
R(t), the response time of the arrival following the continuous time variable
t is a continuous parameter continuous state process. Note that the above
processes can also be defined for an unstable system.

4.2.1 Markov process

In general, stochastic processes can be very abstract and very complicated. One
reason for thisis the possible statistical dependency of the various random variables
at various values of these parameter values. However, most of the application sys-
tems we will study are well modeled by a very interesting and considerably simple
class of stochastic processes. It is called the Markov process, in honor of Andrei
Andreyovich Markov, the Russian mathematician (1856—1922) who originally de-
fined and studied it. The following discussion motivates the study of such processes.
Consider N (t) in an M/M/1/co system. The number of customers at ¢ is strongly
statistically dependent on the number of customers a little amount of time before ¢,
say at ¢t — 7. Therefore, N(¢) and N (¢ — 7) are dependent. However, if we know
the number at ¢ — 7 to be n(¢ — 7), the number at ¢ depends only on n(¢t — 7), and
the number of arrivals and departures in the intervening period 7. These in turn do
not depend on any event that occurred beforet — 7, since the times for arrivals and
departures are memoryless. Therefore, given N(¢t — 7) = n(t — 7), the random
variable N (t) doesnot dependon N (t — 7 — &) for £ > 0. Such processes are known
as Markov processes.

DEFINITION 4.2 Markov Process Lett >ty >tg_1 > th—m. If

PIX(t) < 2(O1X (t) = 2(tr), X (tem1) = 2(tem1), -+ X (trrn) = 2(tx—m)]

= P[X(t) < ()| X (tr) = z(tx)], (4.1)

we say that X (t) is a Markov process. Elaborating, the most recent known
observation affects the future distributions. If we have many observations,
other than the most recent of these observations, the earlier observations do
not influence the distributions of the random variables at future times.

Therestriction on X (¢) in the above definition is quite stringent. Condition (4.1)
isrequiredto be satisfied for all m > 1, foral ¢, t, tg—1,. .., tk—m, andforal z(t),
(te)y x(tk—1)s- s (th—m)-

DEFINITION 4.3 Markov chain If the set of states of a Markov
process is countable, the stochastic process is called a Markov chain.

Therefore, N (¢) in an M/M/1/o0o queueis a continuous parameter Markov chain.
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4.3 Continuous Parameter Markov Chains

Markov processes may be of continuous or discrete parameter and of continuous
or discrete state. In this chapter, continuous parameter Markov chains are studied.
Discrete parameter Markov chains are studied in Chapter 6.

4.3.1 Time intervals between state transitions

Let X (¢) be a continuous parameter Markov chain. Given X (t1) = k, what is
thetime, ¢t; + 7, a which the state changes from k to anything else? Thistimeisa
random variable. Given X (¢1) = k, the past events are irrelevant. So, when exactly
the state reached the value & prior to ¢; isirrelevant. That is, given X (¢1) = k,
future state changesforget the past. Since we know that only the exponential random
variable is continuous and memoryless, time for state change must be exponential.
Of course, the parameter of the exponential density may depend on the exact state k,
at which the chain is, before the state transition. We have the very important result.

THEOREM 4.1
Times between successive state changes in a continuous parameter Markov
chain are all mutually independent exponential random variables.

The rate of the exponential random variable corresponding to how long the chain
stays in the same state before changing the state can, of course depend on the state.
In addition, it can depend on the parameter value too. In many applications, these
rates are not functions of the time constituting the parameter variable. Such chains
are identified as homogeneous as formally defined below.

DEFINITION 4.4 Homogeneous Markov chain A Markov chain is
said to be homogeneous if every state transition rate is invariant with time. I

4.3.2 State transition diagrams

We represent a continuous parameter Markov chain as a directed graph with nodes
representing states, and directed arcs, possible state transitions. If the chain is ho-
mogeneous, the transition rates are invariant with time and they are written next to
each arc. Only transition arcs with nonzero rates of transitions are included in the
diagram. For the M/M/L/oc case, such agraphis shown in Figure 4.2. We associate
a numerical value with each arc, or transition, as follows. Irrespective of how long
the chain has been in state ¢, the time for it to changeto i + 1 isexponential with rate
A. Similarly, the time for state change from i + 1 to ¢ is exponential with rate .

If a state of a Markov chain can be reached from another state through possibly
a sequence of one or more nonzero rate transitions, we say that the latter state is
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FIGURE 4.2: The state transition diagram of an M/M/1/oco queue

reachable from the former state. In general, a subset of states may not be reachable
from another subset, even though the former subset is reachable from the latter. If a
chain does not have such peculiarities, its analysis will be simple. There are many
applications whose Markov chains satisfy this smplifying property. It is formally
defined below.

DEFINITION 4.5 Irreducible Markov chain A Markov chain is said
to be irreducible if every state can be reached from every other state and from
itself through a finite number of transitions, each transition being of nonzero
transition rate.

Unless otherwise stated the Markov chains we will study are homogeneous and
irreducible.

4.3.3 Development of balance equations

The above M/M/1/oo queuing system is just one example of a Markov chain. In
general, aMarkov chain has a countable set of states that can be conveniently num-
beredas O, 1, 2, --- . A Markov chain may also contain a finite number of states.
Over continuoustime, a state transition is observed only if the system changes from
a state to any other state. Therefore, the chain may have possible transitions from
every state to every other state. Let the transition rate from state ¢ to state j be «;;.
For convenience, define quantities cv;; = 0.

A fundamental topic in the study of Markov chainsis the evaluation of probabil-
ities of different states at a given time instant. Many performance figures of appli-
cation systems are functions of these state probabilities. The following derivation
develops differential equations for the state probabilities as functions of time, just
as in the case of M/M/Uoo system. Let P;(t) be the probability that the system is
instate ¢ at time ¢, ¢ = 0, 1,.... Forany 7 > 0, the statistical behavior of the
chain following time ¢ given the state at ¢ + 7 depends only on the state at ¢ and on
nothing else. Consider the state at time ¢ + d;, where 0, is a positive infinitessimal
time interval. Consider the probability that the chain isin a particular state i at time
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t+d;. Over thetimeinterval [¢, t+d;), we need to consider at most one state change,
since the probability of more than one change is negligible in comparison with the
probability of one change. If the chainis at state 5 at time ¢, the probability that the
chain will move to state ¢ in d; is the conditional probability «;;d;. If the chainisin
state at timet, the probability that it will stay in state i for §; moretime periodisthe
probability that none of the possible changes from state ¢ occurs. This probability is
> e o @ikdr. Using the theorem of total probability, we obtain the probability that
thechainisin state i at timet + 0; as

Pyt +6,) = Pi(t) (1 ~5y aik) +3° Pi(t)aide. 4.2)
k=0 j=0
Rearranging, we have
Pi(t+0;) — Pi(t S S :
( + ;) () :—Pi(t)Zaik—i—ZPj(t)aﬁ, ZZO,].,'-‘. (43)
t k=0 j=0

The limit of the above LHS as d; — 0 isthe derivative “:() we have an additional

equation specifying that the state probabilities must sum to one. That is,

i P(t)=1. (4.4)
=0

As in the case of M/M/Ll/oco systems, we will be especially interested in the steady
state solution to the set of differential equations and in the conditions under which
such steady state is possible.

DEFINITION 4.6 Equilibrium A continuous parameter Markov chain
is said to be in equilibrium at time T if the time derivatives of all its state
probabilities are zero at time 7. That is, if
dP;(t )
#:Oatt:TfOTallz:O,l,---. (4.5)

[

Note that this definition is identical to the definition of equilibrium in the case of
M/M/1/oo queue. If equilibrium is possible for aMarkov chain, the above equations
(4.3) and (4.4) must be satisfied with time invariant state probabilities p; replacing
P;(t), respectively for i = 0, 1, - - -. Therefore, we have the following result.

THEOREM 4.2
If the equations

o0 o0
piz:aq;k—z:pjajizo, 1=20,1,--- and (4.6)
k=0 Jj=0
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> pi=1 (4.7)
i=0
possess a unique solution for pg, p1, -+, then that solution is the set of equi-

librium state probabilities for the Markov chain.

COROLLARY 4.1
If the balance equations (4.6) and (4.7) do not sport any solution, the Markov
chain can never be in equilibrium.

Clearly, the set of equations (4.6) alone does not have a unique solution since any
solution multiplied by a constant is also a solution.

COROLLARY 4.2
If equilibrium state probabilities exist for a chain,

1. every state has a nonzero equilibrium probability and

2. lim p; =0.
Proof
As mentioned earlier, since nothing is said about the chain, it is assumed to beirre-
ducible and the result holds for irreducible chains. Rearrange the balance equations
as

pizam :ijaji; i=0,1,--- and (4.8)
k=0 Jj=0
> pi=1. (4.9)
i=0

The quantity p; does not appear on the RHS of equation (4.8), since a;; = 0. AsS
a consequence of equation (4.9), at least one of the equilibrium state probabilities
is nonzero. Due to irreducibility, this state must have a transition to at least one of
the other states. The equilibrium state probability of such alatter state must also be
nonzero, dueto the following reason. Equation (4.8) expressesevery state probability
as apositive weighted sum of equilibrium probabilities of all other states from which
there is atransition to the state in question. Continuing this argument further, since
every state is so reachable from every other state through a sequence of transitions,
every equilibrium state probability must be nonzero.

To prove the second part, we know that p; > 0 for al i. Define b; to be the
maximum of the infinite tail sequence of p;, p;+1, - - - . Since al the probabilities are
nonzero and the sum of all of themis one, we have

b, = max{p;, Pi+1, -} (4.10)
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<> v (4.12)
j=t
i—1
<1-> p; (4.12)
j=0
1—1
lim b; < lim 1—) p; (4.13)
1— 00 71— 00 J:O
<0 (4.14)
=0, (4.15)

since b; is nonnegative. The limit of b;, the maximum of the tail sequence of a
nonnegative sequence of probabilities tends to zero. Therefore, the limit of the tail
sequence itself must tend to zero, completing the proof.

DEFINITION 4.7 Stability A Markov chain is said to be stable if there
erists a solution to its balance equations.

Notethat aMarkov chain can be stable but not in equilibrium at some time instant.
Stability is a property of the chain. Whether or not a chain is in equilibrium at a
particular time instant depends on the operating condition of the chain at that time
instant.

THEOREM 4.3

If a chain is in equilibrium at a time instant t = 0, it will continue to be in
equilibrium for all t > 0 as well.

Proof
The differential equations governing the behavior of P;(t),i =0, 1,--- , are

Pi 00 e} .
d dt(t) :ij(t)aji —Pi(t)Zaik, ZZO, 1,--- . (416)
j=0 k=0

The proof isidentical to the proof of Theorem 3.2 which is concerned with an iden-
tical property of M/M/1/oco queue. The only differenceis that the present arguments
are made about the above differential equations (4.16) and not about the differential
equationsin (3.29).
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FIGURE 4.3: Globa balancing around state n in an M/M/1/oo state diagram

4.3.4 Graphical method to write balance equations

Let the time invariant equilibrium state probabilities be denoted by pi, k =
0, 1,.... Equations (4.6) for the equilibrium state probabilities are easily written
by examining the state transition diagram of the Markov chain, as follows. The re-
sulting equations are called the balance equations since they equate some quantities
going into and out of a state. This is demonstrated with the help of Figure 4.3, the
state transition diagram of an M/M/L/oco system. The product of the equilibrium
probability of a state and the rate of an outgoing arc is the unconditional rate of the
arc; thisisajoint rate and not a conditional rate conditioned on the chain being inthe
state. One equation for the equilibrium probability of a state is obtained by equat-
ing the sum of the joint rates going out of a state to that coming into the state. The
resulting equation around state n > 0 is

Pn(A+ 1) = po1A + P (4.17)

for the M/M/1/oo queue. Since this approach bal ances the sum of the unconditional
rates of incoming and outgoing arcs across a boundary between one state and all
other states, it is called global balancing around that state. We have one global
balance equation around each state.

Writing asimilar equation across a boundary partitioning the set of states into two
sets leads to alinear combination of several of the original global balance equations.
This approach leads to an equation between the equilibrium probabilities of a few
states only. Thisis demonstrated in Figure 4.4, in which each local balance equation

is between the equilibrium probabilities of only two states. The resulting equation
between statesn andn + 1 is

PnA = Pntift, 1> 0. (4.18)

These equations are equivalent to equations obtained in Chapter 3 for the analysis
of M/M/loo system.
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FIGURE 4.4: Local balancing between statesn and n + 1 in an M/M/l/oo state
diagram

4.4 Markov Chains for State Dependent Queues
4.4.1 State dependent rates and equilibrium probabilities

State dependent queues are applications of general Markov chains. In many appli-
cations, the assumptions of constant arrival rate and unlimited waiting line room of
the M/M/1/oc may be unrealistic. In real-life situations, the arrival rate may be less
if the number of customersin the system islarge. Shrewd market vendors also know
to be deliberately slow in service if the number of customersis small, to give the
appearance of credibility due to implicit validation from waiting customers. Later
on, we will also introduce very specific applications wherein state dependent arrival
and service rates arise due to the peculiarity of the system, such as multiple servers,
finite size waiting room, etc. Let

e )\; = Arriva rate when there are ¢ customersin the system.
e 1i; = Servicerate when there are ¢ customersin the system.

If the system’s buffer capacity isfinite, let m be the maximum number of customers
possible in the system. If the buffer capacity is unlimited, m — oco. For finite m, if
Am # 0, some arrivals see a full buffer. Note that ;1o = 0, for every case (even for
the state independent M/M/1/co case). The state transition diagram of the Markov
chainisshownin Figure4.5. Using balance equations,

P1H1 = Poo (4.19)
A
Pn= " paa (4.20)
Hn
Ancidn_
e (4.21)

Mo hn—1
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FIGURE 4.7: Loca baancing across a boundary between statesn and n + 1
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M1 An_2 A
= fnolfns2 A0, (4.22)
Mnfbn—1 """ H1

Recadll that
PosP1, " 5 Pns

are the equilibrium probabilities of states
0,1,---,n,---,

respectively. Each state probability is thus expressed as a function of pg and the
arrival and service rates. We solvefor py by using

M
> pn=1. (4.23)
n=0

That is,

po{l + f: H AH} =1 (4.24)

ne1i=1 Hi

A useful result from eguation (4.24) isthat since all the probabilities can be expressed
as afunction of one unknown py, the balance equations have at most one solution. If
equating the sum of all probabilitiesto oneresultsin py = 0, the system is unstable
and the balance equations have no solution. If the resulting pg > 0, then the balance
equations have a unique solution.

Example 4.2

A simple state dependent system can hold no more than two customers in-
cluding any under service. The arrival and service rates are \yg = 7, A\; = 2,
Ao =0, up = 3, and py = 6. Analyze it.

Solution
3p1 - 7p0; (425)
7
p1 = 3P0, (4.26)
6p2 = 2p1, (4.27)
2 7
P2 = —P1 = =Po, (4.28)



Sate Dependent Markovian Queues 127

7 7
Po + zpo+ =po = 1, (4.29)
3 9
9
-2 4.
Po 375 ( 30)
21
P1= oo (4.31)
7
P2 =g (4.32)
I

4.4.2 General performance figures

We can define many more expectations of quantities about the state dependent
case, than in the simple case of the M/M/1/oo queue. Performance figures specific
to applications examples are common in the case of state dependent queues. The
following defines some general performance figures.

4.4.2.1 Throughput

The general definition of throughput of any system is the rate of production of
successful output. In the state independent equilibrium M/M/1/oo queue, throughput
is A\, same as the arrival rate. If we have a finite buffer state-dependent case and if
Am # 0, somearrivalsexperienceafull buffer. They areturned away without service
and let into the waiting line. The most common model is to treat them as lost and
that they will not “wait outside” or affect future arrival rates. If we excludelost jobs,
throughput is also the rate at which customers “enter” the system, those that are not
turned away. Therefore, the throughput is

M —1
Y =E[Y]= mei = Z Pidi. (4.33)
i=1 =0

4.4.2.2 Blocking probability

Blocking probability is simply the probability that an attempted arrival seesafull
buffer and is turned away. Note that this is not the fraction of jobs turned away. In
fact, if m isfinite and \,,, = 0, there will be no lost jobs. The emphasisis on “an
attempted” arrival, in defining py, the blocking probability. If an arrival attempts, the
probability that it will be lost is the same as the probability that the buffer is full.
Hencea Pb = Pm-

4.4.2.3 Expected fraction of lost jobs

Thisis defined as the ratio of the rate of lost jobs to the rate of attempted arrivals.
That is,



128 Performance Analysis of Queuing and Computer Networks

AmPm

A (4.34)

If the attempted arrival rate is zero whenever the buffer is full, the expected fraction
of lost jobsis zero.

4.4.2.4 Expected number of customers in the system

M
The expected number of customersinthesystemis E[N] = > np,.

n=1

4.4.2.5 Expected response time

The expected response time of a customer that enters a system is a function of
the state of the Markov chain at the time the customer enters the system. Let the
states of the system be 0, 1, 2, ---. Let R be the response time random variable.
Let E[R]i] denotes the conditional response time of a customer known to enter the
system when the state of the system is . Using the theorem of total expectation, we
have the expected response time given by

E[R] = E[Rlila;, (4.35)

=0

where a; is the probability that an arrival sees state i. In the case of the simple
M/M/1/oc system, the evaluation of E[R] in equation (4.35) issimple sincefor every
condition 4, the response time is the sum of ¢ + 1 iid service times. In a general
Markov chain, the total response time of a customer is not so easily decomposed
into known components. Therefore, even though the final expectation is a smple
expression of the conditional expectations, E[R]|i], in equation (4.35) may not be
easy to evaluate. Also, note that the states of the chain have been assumed to be
the natural numbers. In general, the state may not be identical to the number of
customers; the state may include additional information such as from which server
a customer is getting service. It is still possible to map such a set of states into
the set of nonnegative integers and the number of customersin the system can be a
more general function of the state, as opposed to being the state itself. Thisaspect is
illustrated in some examples later.

In addition to the difficulty in evaluating expected response time, there is another
concern about performancefigures. In practical applications, we areinterested in the
performancefigures of the one sample function of the Markov process corresponding
to the operation of the physical system. The performance figures defined above are
the ensembl e expectations. We may anticipate that the expectations over the sample
space of all possible sample functionswould be the same as the required “time aver-
ages’ of the one sample function that the physical system experiences. We need to
examine such hypotheses through a formal analysis of long-term average behaviors
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and their expectations. To evaluate the expected response time performance figure
defined above, we will develop and use a general and a powerful result known as
the Little's theorem (also known as Little's result and Little's law). The result was
published in 1961 by John D. C. Little. It is applicable to long-term time averages
and this is another reason to study the long-term behavior of a sample function of a
Markov chain.

4.5 Intuitive Approach for Time Averages

Let the time variable start from zero and progress without bounds. In reality, we
have only one sample function for the stochastic process of the physical system rep-
resented by the Markov chain. We imagine an ensemble of an innumerable number
of sample function satisfying the definition of the sample space for the chain. In
many cases, the evaluation of expectations over the sample space appears simpler
than the evaluation of averages of corresponding quantities about the one sample
function being observed, over the infinite time interval. Therefore, we would like to
develop general results of the following nature. The averages over time of the sample
function of a“nice” Markov chain tends to the corresponding expectations of the en-
semble of al sample functions of the Markov chain. An important point to note here
isthat the “ average over time of the sample function” is arandom variable and not a
constant, since averaging is taken over the time variable and no expectation over the
ensemble of the Markov chain is taken. However, intuitively, it appears reasonable
that as we let time increase without bounds, the averages over an infinite amount of
time, convergesto the ensembl e expectations of the corresponding random variables.

A mathematical examination of such hypothesisis tricky, because we would be
comparing a limiting random variable to a constant. What does it mean to say that
a limiting random variable tends to a constant? As discussed in Section 2.6.1, even
the average of an infinite sequence of iid random variables with afinite variance is
not certain to converge to the expectation of the origina random variable; but there
is a probability of 1 that the limiting average is the expectation. Similarly, in the
same Section 2.6.1, the number of Poisson arrivals is shown to tend to infinity with
probability 1, asthetime of observation of the Poisson arrivalstendsto infinity. Such
principles and methods are used in the rigorous analysis of the statistical behavior
of the sample function of a Markov chain. The following lists important results
with some intuitive justification. They provide an overview and a guided tour of the
formal analysisin the following sections. The analysisis generally conducted for an
infinite state chain. Specializing resultsfor afinite state chain is usually simple.
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1. We dready know that in an irreducible and stable chain, all the equilibrium

probabilities, p; are strictly larger than zero. Furthermore, we know that

lim p; = 0. (4.36)

11— 00

Asthe continuoustime variable increases without bounds, the limiting number
of state transitions observed in a sample function tends to infinity with proba-
bility 1. The reason for thisis similar to the reason for the number of Poisson
arrivals of a constant rate to tend to infinity with probability 1, as the timein-
terval of observation tends to infinity. The only differenceis that in the case
of the sample function of a Markov chain, the rate of the exponential random
variable of the time for every transition is dependent on the state. However,
each such rate is finite, since, from every state, there must be transitions with
nonzero rates for the chain to be irreducible.

The expected fraction of total time spent in every state (due to multiple tran-
sitions into the state), ¢;, tends to the equilibrium probability p; of the statein
guestion, as time of observation tends to infinity. This is an important result
and is not difficult to prove. As a consequence and since every equilibrium
state probability is also nonzero, we have the following.

(@) The expected amount of time spent in every state tendsto infinity, as the
observation time tends to infinity, with probability 1.

(b) The number of transitionsinto and out of every state tendsto infinity, as
the time of observation tendsto infinity, with probability 1.

(c) Note that even though the expected amount of time spent in every state
tends to infinity, the expected long-term fraction of time spent in state s
tends to zero as the state index ¢ tendsto infinity.

The rate of arrival of customersisnonzeroin at least in one state of the chain;
else we would have no arrivals at al! Since the expected amount of time that
the chain spendsin each state tends to infinity with probability 1, the number
of customer arrivalstendsto infinity, astime of observation tends to infinity.

Using similar arguments, the number of departures of customers tends to in-
finity with probability 1, as the observation time tends to infinity.

We can now consider the limiting variances of many such averages. Note that
between successive entries of the chain into any particular state, the behaviors
of the chain areiid. Therefore, we have the following.

(8) Theamount of time spent by the chain in a state during multiple visitsto
the state areiid.

(b) Therate of a customer arrival, the rate of a customer departure, whether
or not an arrival occurs, whether or not a departure occurs, the response
time of a customer entering during a particular state, are independent
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during successive visits to a state and are also correspondingly identical
during successive visits to a state.

7. Asaconsequence, the properties of cumulative averages of infinite sequences
of iid random variables are applicable. These properties are that if X; areiid,
with afinite expectation n and variance o2, the following are satisfied.

1"’1,
Pllim =Y X;=n=1 and 4.37
[”gg‘)”i:o Ul (4.37)
1 n
lim var[~= > X,;] = 0. 4.38
A Vel 2 il =0 (439

8. Some random variables are defined for every time instant of the chain. Exam-
ples of these random variables are the state of the chain itself and the number
of customers in the system. Note that the number of customers need not be
equal to the state. We will make the assumption that the number of customers
in the system tends to infinity, as the integer variable state tends to infinity.
This is just a mapping from the state to the number of customers. This will
be true in every application system we will consider. Let Y (¢) be a random
variable for every t. Thelong-term time average of Y (¢) is defined as

t

lim L Y (r)dr. (4.39)

t—oo ¢ 7=0
In the case of Markov chains, the sample function Y (¢) changes values (by
jumping) only when the state changes. Therefore, it is piecewise constant.
The above integral is equivalent to weighted averaging, with the weights be-
ing the time intervals during which the state does not change. Note that these
time periods are statistically repetitive as the chain repeatedly visits the same
states. The application of these propertiesto the various quantities of the sam-
ple function will lead to the following properties.

(@) The overall observed arrival rate in the sample function convergesto its
ensemble expectation with probability one. The variance of the same
overal observed ar