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Preface

The principles used in the design, operation, and interconnections of data commu-
nication networks have been mature for well over a decade. The technology is very
pervasive and upgrades to the equipment are very frequent. Therefore, a first course
on the topic of computer networks is very useful for students intending to profession-
ally work with this technology. Indeed, the vast majority of undergraduate students
majoring within and bridging the electrical engineering and computer science disci-
plines study a course on computer networks. Simultaneously, a course on probability
theory, required for such students, has generally expanded to include some material
on queues, a fundamental topic in performance analysis of data communication net-
works. Alternatively, many undergraduate degree programs within these disciplines
offer a follow up course, after probability theory, covering related topics including
queues. However, in both these scenarios, a common observation is that queues are
not taught with a systematic development of even the elementary results. Even if the
subject has a chapter on Markov chains, the balance equations are written in a hurried
fashion and students get a false impression that it is a rigorous development. Two ex-
amples of additional pitfalls are the following. Students get the false impression that
they have formally derived the result that a stable queue reaches equilibrium. They
also find it obvious that the departure process of an M/M/1/∞ queue is Poisson.
While many such results are indeed true, there is a dangerous tendency to believe
that the results extend to other similar but more general cases of queues and Markov
chains.

Books and formal courses on stochastic processes or queuing theory generally
dwell on the systematic development of the mathematical principles governing vari-
ous types of Markov chains to force conclusions on when such desirable results are
true and when they are not. This approach appears to be abstract, long-winded, and
even graduate students in applied sciences and engineering tend to feel lost in a maze.
Also, in such an approach, at the end of an abstract approach to Markov chains, sim-
ple queues are trivial examples and are not treated at length. Furthermore, in both the
above approaches, only very simple examples from the application area of computer
networks are introduced. The typical student completes the course with the frus-
tration that only some formulas were given in the course. Instructors, on the other
hand, form the following erroneous opinions about students. (a) They are impatient
and do not realize the value of the mathematical principles governing even the sim-
plest of queues. (b) They don’t realize that practical systems are more complicated
variations or interconnections of simple systems and that simple systems should be
thoroughly understood first. (c) They just want some magical formulas not only for
simple queues, but also for practical telecommunication systems they will encounter
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in their job-related activities. (d) They don’t realize that each practical application
system is different, and without a complete specification, it cannot be analyzed, even
if such an analysis is feasible with skills available to students.

This book attempts to strike a balance between (i) mathematical skills of incoming
students, (ii) mathematical skills that can be taught as part of this course, (iii) gen-
erality, (iv) rigor, (v) focus, (vi) details, and (vii) model formulation for application
systems in computer networks.

Its prerequisites are well specified as follows. College mathematics including dif-
ferential and integral calculus, elementary matrix theory (but not linear algebra), and
a course on elementary probability theory. Principles of stochastic processes and ad-
vanced matrices (such as eigenvalue theory) are not assumed to be known to students.
Throughout the book, the development is motivated and illustrated by examples and
exercises in computer systems and networks. Mathematical derivations are part of
the material; however, focus is maintained by splitting the development of a sequence
of results into smaller tasks and discussing the role of the results in the big picture
at every step. Also, final results are prominently restated with the appropriate condi-
tions for their validity. Examples that violate the conditions and hence do not enjoy
the corresponding results are included. Therefore, the book is self contained and can
also serve as a reference for practicing engineers. As a consequence, only a short
bibliography of mostly unreferenced books is included.

An additional advantage of this approach is that instructors and students can opt
for detailed coverage of some topics while summarily browsing through the math-
ematical development of others and quickly moving onto applications. That is, the
instructor can choose the level of detail and emphasize on different sets of subtopics.
Therefore, even though the material may appear to be too vast for a one semester
course, selection of topics is easy.

Many concepts and results of probability theory and stochastic processes are de-
veloped with the help of queues as applications. This avoids unnecessary abstract-
ness and allows treating many different types of queues that appear in computer
networks over a shorter time. This approach gives students motivation to study the
needed principles and results. Every such development uses no more than the stated
college mathematics (listed above) and principles thus far developed in the book, ex-
cept in the final two chapters on advanced material. The book uses alternative and
simpler techniques, in many places, to avoid using results from higher (say graduate
level) mathematics. This avoids undue generality and keeps the focus on necessary
results.

The material in the book begins by describing queues and with fairly extensive
descriptions of activities in computer systems and networks resulting in various types
of queues to motivate the students. Appendix A is a brief but rigorous and self
contained review of elementary probability theory with examples and exercises.

Chapter 2 is devoted to traffic models. Pareto random variable is introduced as
a model for either inter-arrival time or for service time in some computer network
queues. The development also serves as a warm-up exercise in the use of probabil-
ity theory. Poisson and exponential random variables are systematically developed
from a practical source that emits jobs or electrons at random and with a constant
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rate. All their properties are developed. Simulation is introduced and the transfor-
mations from a uniformly distributed random variable to generate other important
random variables are developed. Simple concepts of parameter estimation are also
developed. Mean square convergence of a sequence of random variables is intro-
duced as a natural topic in estimation. This finds use later in the analysis of sample
functions of Markov chains and in the development of the Little’s result. A very sim-
ple model for error-prone data channels is developed. The model is fully specified
if the bit error rate at any data transmission rate is known. It is demonstrated with a
throughput optimization example.

Chapter 3 is on equilibrium M/M/1/∞ queue. Properties of Poisson and expo-
nential random variables developed in Chapter 2 are heavily used. The equilibrium
solution is systematically developed (without using any concepts from stochastic
processes). To retain interest in equilibrium solution, it is shown that if such a sys-
tem is in equilibrium at some time instant, it will remain so for all the time to come.
To illustrate that we can construct practical models from simple (but not necessar-
ily practical) models, a round robin version of M/M/1/∞ queue with non-vanishing
piecemeal service times is introduced and all the results are systematically devel-
oped. This also allows for a simple analysis of a data link affected by erroneous
packets which are required to be retransmitted. The Poisson nature of the departure
stream of an M/M/1/∞ system is proved without using reversibility. This result is
important to students for two reasons. It validates the assumption that packet arrivals
into a queue can be Poisson even if bits and hence packets arrive over nonzero time
intervals. Also, that the output stream can be fed in its entirety or through a proba-
bilistic split to another queue as Poisson inputs. That is, a feed-forward network of
M/M/1/∞ queues can be analyzed with the help of results on individual M/M/1/∞
queues. The non-Poisson nature of the merged stream of customers arriving at the
waiting line of a round robin scheme is also shown. The probability density function
and the Laplace transform of the busy time periods in an M/M/1/∞ queue are sys-
tematically developed. All the results on M/M/1/∞ queues are mathematically de-
veloped without using (and before introducing) the concept of stochastic processes.
Any use of the term “ average” of a random variable refers to its expectation and is
clear from the context. As a consequence of the use of random variables only (and
not random processes), Little’s result, which is on time averages, is not introduced
or used in this chapter.

Chapter 4 is on continuous time, state dependent single Markovian queues. The
definitions and elementary concepts of stochastic processes are easily developed with
the help of a queue as an application example. Continuous parameter Markov chains
are introduced with the M/M/1/∞ queue as an example. Balance equations for the
equilibrium state probabilities of an irreducible chain are derived by first deriving the
differential equations, just as is done for the case of M/M/1/∞ queue. This is rigor-
ous, and it also reinforces the concepts developed earlier. The conclusion is that if the
balance equations result in a unique solution for the state probabilities, we have a nice
Markov chain that can be in equilibrium and whose equilibrium performance figures
can be evaluated. The general development of uniqueness of solution for a positive
recurrent Markov chain is deferred to a later chapter. This decision is motivated by
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the desirability of an early introduction of a rich class of application systems in the
computer networks area. An intuitive approach to develop the results for long-term
time averages is followed by a thorough and rigorous development. Little’s result
is proved for FIFO and non-FIFO systems. In addition to the usual state dependent
application examples with finite buffers and multiple servers, a very simple model of
analysis of a heavily loaded Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) system is developed. Justification for the heavily loaded assumption is
made by arguing that the individual stations attempt to transmit control packets when
payload packets are absent in the buffer. The model and its utility from this exam-
ple are comparable to the simplistic analysis of continuous time ALOHA to derive
the maximum possible throughput, taught in a first course on computer networks. A
similar system for CSMA/CA wireless LANs is completely described in exercises
for students to analyze. A contention-free CSMA LAN performance analysis prob-
lem with a finite number of transmitting stations and heterogeneous arrival rates is
similarly formulated. Its analysis and performance optimization is carried out. Other
interesting examples in computer systems and networks are also included. Illustra-
tive exercises on computer network performance analysis are listed.

Chapter 5 is on the M/G/1 queue. The recurrence equations for the state sequence
of the imbedded (embedded) Markov chain of an M/G/1/∞ queue are developed.
The uniqueness of solution to the resulting equilibrium balance equations is eas-
ily shown. The equilibrium state probabilities at departure time instants being the
same as the expected long-term time averages of state occupancies is shown with
the help of the PASTA property, which is also developed. The Pollackzec-Khinchin
mean value formula is completely derived without developing or using the corre-
sponding transform formula. The expected time averages of state occupancies for
a finite buffer M/G/1 queue are also developed. The contention-free LAN perfor-
mance analysis problem with heterogeneous arrival rates, first studied in Chapter 4,
is generalized in the exercises here, to allow for heterogeneous packet sizes. This is
a useful feature in Voice Over IP (VOIP) application.

Chapter 6 is on discrete time queues. A detailed analysis of timing within and
across slots is very important to understand the various possible and impossible
events concerning arrivals to and departures from empty and full systems. The anal-
ysis leads two different Markov chains, for the states, at slot centers and slot edges,
respectively. State classification is developed with practical examples from computer
systems. Existence and uniqueness of the solution of equations for equilibrium state
probabilities is shown without using advanced linear algebra or advanced matrix
theory. Interrelationships between these Markov chains are developed for students
to clearly identify the correct quantities to be used to obtain the performance fig-
ures. Interesting examples from synchronous digital systems are used to illustrate
the topic. Examples and exercises on the topic of slotted networks and sensor net-
works are also included.

Chapter 7 is on continuous time Markovian queuing networks. The case of open
queuing networks is studied first. The Markovian nature of such systems is pointed
out. Balance equations and traffic equations are developed. The product form solu-
tion is verified to hold. Illustrative properties and examples are included. For closed
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queuing networks, in addition to the verification of the product form solution, convo-
lution algorithm, performance figures, and mean value analysis are developed with
the necessary details. Illustrative properties and application problems are included.

Chapter 8 is on G/M/1 queues. The imbedded Markov chain of the G/M/1/∞
queue is analyzed. Results are specialized to Pareto interarrival times (IAT). The
effective load as a function of normalized load and the Hurst parameter of the Pareto
IAT are very illustrative; the average buffer occupancies are considerably worse than
those in M/M/1/∞ queues for the same load. Furthermore, these averages steeply
increase as the Hurst parameter increases towards 1. These results bring out the
bursty nature of data traffic with Pareto IAT. The derivations use no results from
outside and are fairly easy to follow, although obtaining the Laplace transform for
a Pareto IAT is somewhat lengthy. Evaluation of equilibrium state probabilities at
arrival time instants in a finite buffer G/M/1 queue is straightforward and included.
From these, packet drop rates (due to the finite buffer), expected response time, and
average queue size are easy to evaluate.

Chapter 9 introduces and analyzes a few bursty traffic models and their effects on
queues. Chapter 10 introduces fluid-flow models and their analyses. These topics are
considered somewhat advanced and the treatment here does use matrix theory and
systems of ordinary differential equations. The motivation, model development, and
relations to other models are nevertheless simple to follow, as are the final developed
results. A conscious attempt is made to develop the advanced mathematical results as
and when needed. Only very occasionally is a reference made to a specific advanced
result in the literature, listed in the short bibliography.

Chapter 9 is devoted to bursty traffic and corresponding queues. Principles of
smooth and bursty traffic are introduced with the help of simple probability theoretic
principles. In the literature, exact results on queues input with some models of bursty
traffic have been elusive even with sophisticated mathematical tools. A tractable ap-
proximation to self-similar traffic is developed as follows. Merging numerous (the-
oretically, unbounded number of) streams of traffic with heavy-tailed IAT is known
to result in a self-similar data source. In this chapter, the heavy-tailed Pareto random
variable is approximated by a hyperexponential random variable. Merging several
such data packet streams (each with a hyperexponential IAT) results in a Markovian
Arrival Process (MAP) with a very large number of states. This Markov chain is
shown to sport a product form solution which is evaluated with the help of an effi-
cient algorithm. This also introduces state dependent closed queuing networks. A
queue fed by such a packet source is analyzed. The complexity of the solution for
the queue depends only on the number of states in the Markov chain of the data
source. Matrix inversion is not required here. The complete analysis of such a queue
is based on the original work of Marcel Neuts which deals with a more general sys-
tem. Queues fed by data packet streams generated by a Markov modulated Poisson
process (MMPP) are similarly but briefly analyzed. Evaluation of results on a queue
input by an MMPP requires inversion of a square matrix with the number of rows
equal to the number of states in the MMPP. Some results are left for students to
develop and are listed in exercises. The product form solution developed here for
closed networks with stations that offer immediate service expands the applicability
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of closed networks. Some interesting application problems on the topic of cognitive
radio networks are formulated in exercises.

The final chapter, Chapter 10, is on fluid flow models. Data packets are considered
to flow into a buffer at a rate that can switch from one value to another over a count-
able set of rates. The output from the buffer has similar features. These rates change
in a continuous time Markov chain fashion. The analysis technique is first introduced
with a two state ON-OFF Markov chain model of a packet train feeding into a leaky-
bucket with a constant draining rate. An illustrative example demonstrates all the
aspects of solution development for this two state Markov chain fluid input problem.
Differential equations for the cumulative distributions of the buffer content in the
general case of multistate Markov chain controlling the input and draining rates are
formally developed. Solution follows the earlier developed eigenvalue-eigenvector
approach. Little’s result for the general case of a stable fluid flow system is sys-
tematically developed. If the number of states of the Markov chain controlling the
flow rates is infinity, a matrix-method solution is not possible, in general. The sim-
plest case of an infinite state Markov chain controlling the flow rates is the output
of an M/M/1/∞ queue feeding a constant rate leaky bucket. This is analyzed and
illustrated with a variation of the first example. Comparison of the two different but
similar systems is very illustrative.
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Chapter 1

Introduction

1.1 Background

A queue is an arrangement for the members of a set to appear for an activity,
complete it, and leave. Such appearances are called arrivals. The activity is called
service. The members arriving for service are called customers, even though they
may not be humans in every case. Customers may be physical devices, or even
abstract entities such as electromagnetic signals representing a data packet. The
arrangement is also called a queueing system. The word queueing is also spelled
queuing, now-a-days. Queues occur extensively in all walks of life and in many
technological systems. They gained importance in machine shops with a demand for
quick repair turn around during World War II. The simplest examples of queues are
those in banks with customers being served by tellers, calls appearing at telephone
exchanges, and population dynamics of, say, rabbits and foxes in a forest.

The following are some common features in a queuing system. Arrival time in-
stants are usually uncertain, with a statistically steady behavior of the time intervals
between successive arrivals. Similarly, the service times are also usually uncertain
with a statistically steady behavior. Customers may wait in a waiting line to receive
service. In the simplest arrangement, service is provided in a first-in, first-out (FIFO)
order. In such a system, the customer receiving service is said to be at the head of

the queue and a fresh arrival joins the tail of the queue. A customer departs from a
queue after receiving service. In another type of arrangement, service is provided in
parts or piecemeal with a customer typically alternating between the waiting mode
and the service mode, returning to the tail of the waiting line after a piece of service.
The customer leaves the entire system at the end of the complete service, possibly
after many time intervals of piecemeal service, separated by time intervals of wait-
ing. Queues with last-in, first-out (LIFO) service, and service in random order are
also found in practice. An LIFO arrangement is commonly referred to as a stack (in-
stead of being called a queue). In some applications, multiple customers may receive
service simultaneously, with the help of multiple servers in the system. There may
also be multiple waiting lines with customers moving from one queue to another.
Such systems with interacting queues are called queuing networks. In such queuing
networks, customers may move from the departing point of one queue to the tail of
another. A customer may return to the tail of the departing queue itself. A customer
may also arrive at the tail of an earlier visited queue for additional service. After

1
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possibly many such visits to multiple queues, a customer finally leaves the entire
network.

Individual computers and computer networks abound with queues. Statistical av-
erages of various quantitative criteria governing such queues are useful to assess the
acceptability of the performance. Their evaluations are also useful to optimize the
performance by tuning control parameters and to determine the number and qualities
of processors and other servers required to achieve an acceptable degree of perfor-
mance, in applications. Several examples of queuing in computers and their networks
are described in the following section, to motivate a detailed study of the subject.

1.2 Queues in Computers and Computer Networks

1.2.1 Single processor systems

A computer processes jobs submitted to it by a user. Many of these jobs are
ready-made computer programs that a user initiates through a keyboard command
or by pointing the computer mouse pointer at a representative icon and clicking it.
Internally, the main monitor program, called the operating system (OS) itself keeps
the computer busy to a certain extent with housekeeping operations, even when there
is no external job to process. For example, checking to see if any program is initiated
by a user is a house-keeping operation. If a user strikes a key on the keyboard,
that information stays in a memory buffer; the fact that the computer’s attention has
been called to the data-input device (keyboard) is stored in another buffer. The OS
lets the computer to frequently check these buffers called the input ports. Input and
output (I/O) between the computer and the external devices are through organized
handshake procedures with the computer and the I/O device having a full knowledge
of whose turn it is to respond and how, for every step of the process. When an
external input device has submitted a request, the OS invokes one or more programs
to examine the request and processes the same.

Most individual computer systems are built around a single processor each. Such
a processor is called the Central Processing Unit (CPU). Even if the processor has
pipelined or vector processing hardware, machine instruction executions are com-
pleted one by one in such machines. However, the CPU gives attention to segments
of many different programs, in sequence. That is, whereas the machine instructions
are executed one after another, the execution of program jumps from one subse-
quence of instructions in a program to another subsequence of a different program.
The scheduling algorithm for such jumps between different programs is influenced
by a variety of factors such as which Input/Output (I/O) device becomes active dur-
ing an execution period. Even when there is no such external stimuli during a time
period, the OS changes the CPU’s attention from one program to another, with the
help of internal timers. This feature is deliberately incorporated so that the execution
of a short program is not completely held up while the CPU completes the execution



Introduction 3

of a very long program.
The machine instruction execution is relatively very fast in comparison with the

usual speed at which the external requests draw the attention of the computer. There-
fore, many times, the user feels that the computer is processing all the requests si-
multaneously, and hence the terms “multiprogramming” and “time sharing” are used
to describe the operation of such a single computer system.

The queue in such a single computer system consists of arrivals of external jobs
or requests submitted by the user. The server is the CPU giving piecemeal attention
to the requests. Partially processed requests are sent back to the tail of the queue,
whenever the CPU decides to change its attention to the next job in the queue. Such
processing and queuing systems are referred to by the name round robin. More
complicated queuing systems can be formulated by accounting for the interaction of
the I/O devices and the CPU.

1.2.2 Synchronous multi-processor systems

Multiple computers are synchronously interconnected in some specialized systems
to allow parallel processing. In such systems, all activities and data movement are
controlled by a single master-clock that ticks at a constant rate. There may be other
clocks synchronized with the master-clock. There may be a single or multiple service
points. The number of master clock cycles, also known as slots, can vary from one
invocation of a program to another. Statistical averaging of the performance metrics
are useful to assess the overall systems. In such a system, a sequence of programs

arrives and processing is FIFO, leading to a simple queue. However, the slotted
operation requires the quantity “time” to be treated as a discrete variable.

1.2.3 Distributed operating system

In many other applications, several computers, terminals, and workstations, all
generally referred to as clients, are connected to one or a few high performance
computers called the servers. Client machines may process many jobs themselves.
They may also ship jobs to the servers when deemed necessary. All the activities
are controlled by a loosely coupled distributed operating system (DOS). There is
no master-clock controlling the movement of customers; hence the time variable is a
continuous one. In this configuration, jobs or requests may wait for various types of
service at multiple locations. Therefore, there are several queues in such a system.
Jobs may also visit service points repeatedly, due to the time sharing organization
mentioned earlier. The overall organization is a network of queues.

1.2.4 Data communication networks

1.2.4.1 Data transfer in communication networks

In data communication networks, computers, called host machines are intercon-
nected by a system of communication links. The interconnected system of links, not
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including the host machines, is known as the subnet. The host machines run appli-
cation programs that require movement of data between different computers. All the
computers are independent devices and there is no single DOS controlling the com-
puters. The primary purpose is data transfer between computers which are possibly
geographically separated by hundreds or thousands of kilometers. The process of
data transfer requires running computer programs such as format conversion, proper
I/O, etc., but the applications themselves are not generally computation-intensive.
The level of cooperation is at a higher level in the sense that data transfer of every
single item is not a tightly controlled handshake procedure. The following example
illustrates the above situation. In an ongoing data transfer, the computer receiving
data from an incoming data link is generally ready for the task. However, over a par-
ticular short time interval, it may not have processed all the received data available
on its input ports. Several bytes of additional data may arrive in a quick sequence. In
such a case, the newly arrived data may write over existing data in the input ports. If
the recipient computer is configured not to accept data on input ports until existing
data are processed, the newly arriving data will simply not be entered into any input
ports and vanish! This demonstrates that such a computer network is less reliable
than a tightly controlled interconnection between a single computer and its I/O de-
vices. Another source of lack of reliability is the bit errors possibly introduced due
to noise over long data links, especially over wireless networks. Such lack of relia-
bility is taken into consideration and programs running on the computers attempt to
compensate for the same through the use of error detection, acknowledgments, and
retransmissions. These slow down the overall data transfer processes creating the
necessity of queuing. If the overall data movement is not efficient enough, queuing
delays will accumulate. The long queues necessitate very large buffers in which to
hold waiting data. This becomes impractical, even if we resign ourselves to toler-
ate longer overall delays. Therefore, data transfer in practical computer networks is
required to be very efficient.

1.2.4.2 Organization of a computer network

The overall network has a hierarchical structure with a backbone subnet made
of a small number of high data rate links. A data link connects two routers. A
router is a high speed special purpose computer, but it is not a host machine. A
router can support multiple links, going in different directions. Each link is usually
bidirectional, and can be equivalently considered to be two unidirectional links in
opposite directions. Each router in the backbone subnet in turn feeds into different
portions of the network. Each such portion itself is an interconnection of routers
realized with the help of data links. Each of these routers feeds into one or more
local area networks (LANs). A LAN uses a single broadcast medium through which
several host computers communicate among themselves. One single computer on the
LAN also functions as a LAN server to facilitate communication between the other
host computers on the LAN and the rest of the world.

In data networks, communication between host machines is not in a contiguous
stream of bits. An overall communication of a large file is accomplished by splitting
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the file into individual data items, with each data item consisting of a stream of
several bits. The number of bits in a data item can range from hundreds to several
thousands. Data items are transmitted from one point to the next over links. All
the data items belonging to a file to be transferred do not necessarily go through
the same sequence of links and do not appear at the eventual destination in the exact
same order of transmission at the original source. Software in the original source host
and the eventual destination host cooperate to reassemble data items to reconstruct
the original file. Such software at each of the hosts of the origin of the file and
the destination are called transport layer software. Thus, even the software for
the data communication over a computer network is organized in a hierarchical way
with different software modules responsible for different activities. Each layer of
the overall software appends additional bits called headers to a data item to manage
the transfer of a data file to the eventual destination. Several headers are added
and removed in the course of the overall transfer of a data item. At the transport
layer, a data item including its header is called a transport data unit or TPDU. The
network layer is responsible for decisions on which data link a data item should be
transmitted. At the network layer, a data item is called a packet. Between the end
points of a single link, the datalink layer (DLL) software manages error correction,
verification of successful transfer, etc. The data items in this layer are called data
frames. The medium access control layer (MAC) manages data transfer over a
broadcast link such as a LAN. The primary problems encountered by the MAC layer
are cooperative access of the common communication channel, managing collisions
which are unintended destructive overlapping transmission by multiple hosts, etc.

1.2.5 Queues in data communication networks

The total number of data links in such a vast network is very small in comparison
with the number of host computers. In the case of a LAN, only one of the many
host computer can successfully transmit data over the broadcast medium at any time.
Therefore data communication over such an enormous and complicated network is
required to be very efficient. Let us now understand some of the queuing that occurs
in computer networks. A router receives data frames on incoming links, from another
router. The network layer processes each packet very minimally and gives it to the
DLL corresponding to another link over which the packet should be retransmitted.
Following are some details. The DLL at the receiving router performs error detection
and keeps track of whether or not all transmitted frames from the preceding router are
received. The DLL strips the frame header and gives the packet to the network layer.
The network layer examines the packet header. It determines the link over which
the packet should be retransmitted (forwarded) towards the eventual destination. A
few fields of the packet header, such as the number of hops may be updated and the
packet is passed onto the DLL. The DLL introduces

• redundancy bits for error detection,

• serial number to track whether or not all the packets are successfully received
by the router on the other side of the forward link, and
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• frame boundary bits to determine the start and end of a frame.

The resulting data frame is transmitted on the forward link. The entire process at
the router can be approximated to be a single FIFO queuing system. The real situ-
ation is a little more complicated. A router uses a more involved data link protocol
over each of its links. As mentioned above, the activity includes using (a finite field)
serial numbering of the data frames, acknowledgments, and retransmissions if neces-
sary. Therefore, after transmitting a data frame, the router needs to hold it in another
queue. It can be deleted only after the router receives an explicit or implicit ac-
knowledgment from the frame receiving router. Thus, a better approximation uses
two interacting queues.

A host computer connected to a common LAN maintains data frames for trans-
mission in a queued buffer. When transmitted, a packet can collide with another, if
a different host computer also starts transmitting a packet, in an overlapping time
interval. Thus we have multiple queues with interacting servers, in a LAN.

1.3 Queuing Models

A model of a physical system is a mathematically precise representation of the
interaction of several variables and functions governing the original system. The
spirit behind the mathematical representation is two-fold as follows. We would like
the representation to duplicate the functioning of the original system as closely as
our knowledge of the system and our knowledge of mathematics allow us to do. We
would also like the mathematical representation to be simple enough for us to analyze
the same, with our limited knowledge of mathematics, and evaluate the required
performance characteristics. Therefore, in most cases, these precise mathematical
models are approximations of the real characteristics of the systems being modeled.
These desirable features are often contradictory and therefore lead to multiple models
with a simple model on the one hand and a more accurate but complicated one on
the other, for the same physical system. A simple queuing model is a single FIFO
queue. Such a model may be an adequate representation for a single database server
and an acceptable approximate representation of a network router. Figure 1.1 shows
a usual pictorial representation of a single FIFO queue. The circle at the right is
the service area. At most one customer can be in the service area at any time. The
server is required to be busy, serving, if there is at least one customer in the system.
Customers are represented by short vertical lines. Waiting customers are in the buffer
to the left of the service area. The mathematical behaviors of the arrival time instants
and service time intervals for different customers are parts of the model. The arrival
time instants are equivalently represented by inter-arrival times (IATs) and the time
instant of the first arrival. The amount of time a customer spends in the entire system
is called the response time which is the sum of the waiting time and the service
time. Response time is also called sojourn time. Typical performance characteristics
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FIGURE 1.1: FIFO queue representation

of interest in such a simple queue include the following. The average number of
customers found in the system. This is defined as follows. The number of customers
in the system is a function of the continuous time variable. The average of this time
varying function, over a long time interval, is the required performance figure. The
average response time is the average of the response time intervals experienced by all
the customers over the long time interval. The average waiting time and the average
service time are similarly defined. The fraction of time the server is busy is also an
important performance criterion. It corresponds to the total of the time intervals that
the server is busy, divided by the total time of the queue operation. This fraction is
known as the utilization of the server. The number of customer positions in a waiting
line may be finite in some application systems. In such cases, a customer attempting
to arrive is not allowed to wait in the waiting line. Such queues are known as finite
buffer queues.

David George Kendall (1918–2007) introduced a notation to represent different
classes of single waiting line queues in the year 1953. The A/B/m/k/n queue
has interarrival times of type A and service times of type B. The parameter m is the
number of servers, k is the maximum number of customers allowed to be in the queue
(including any being serviced) at any time, and n is the size of the population from
which customers arrive. Classes of A and B are distinguished by their statistical
properties.

The behavior of a queue is cumulative, in the sense that the number of customers
found at any time instant is affected by previous activity. Clearly, the future behavior
of the queue is affected by the the number of customers found at the current time
instant. In general, the time instant of the next arrival may depend on the past,
for example, on the time instant of the most recent arrival. Similarly, time instant
at which the customer being currently served will depart may depend on when the
time instant the previous customer departed after service. However, it turns out we
can construct simple mathematical models of IATs and service times wherein the
statistics of the future behavior of a queue depends only on the number of customers
in the system at the present time instant and not even on the time instants of the most
recent arrival and departure. These are developed in the chapters to follow.

Many complicated queuing systems can be modeled with the help of modifications
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of simple models, or with interconnections of simple models or with both. Therefore,
it is very important to study very simple models in the beginning, even if they appear
to be unrealistically ideal. A study of a variety of simple models and some of their
modifications and interconnections also helps us to develop more realistic models
for physical systems. Such a study also enhances the level of our mathematical
knowledge and helps us to attempt analysis of more realistic, complicated models.
Occasionally, it turns out that some performance characteristics of a more involved

Service
area

Waiting line

SplitMerge

Feedback

Arrivals Departures

FIGURE 1.2: Round robin queue

model are the same as the corresponding ones for a simple model. For example,
consider a round robin scheme, the model for which is obtained by using a feedback
path in the simple FIFO model. A pictorial representation is shown in Figure 1.2.
The wperating system’s timer decides when to pause the service for a job and feed it
back to the queue’s tail. The time for feedback is usually negligible in comparison
with each continuous service time intervals. Therefore, the number of customers in
the FIFO and in the corresponding round robin models are identical, all the time.
This implies that the two models have the same average number of customers and
server utilization. The following describes a few examples of models for queues for
different systems constructed by making modifications to simple models. A model
for the queue for multiple servers in a DOS with a few computation intensive servers
is shown in Figure 1.3. Job arrivals are those submitted by many client computers.
They queue up for FIFO service. Each server has its own service area. There can
be at most one customer in each service area. The DOS must use a scheduling
policy on which server to send an arriving job to, if there are multiple servers free
to serve, when an arrival comes in. In some client server systems, a client may be
allowed to submit only one job to the server and is not allowed to submit another
job until the previously submitted job is complete. In such a system, the arrivals
are functions of the number of jobs in the servers’ queue. In a more general system
of multiple processors, jobs queue up in front of all servers. The DOS may ship
jobs from the output of one queue to the tail of another or to the tail of the original
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FIGURE 1.3: A queue with multiple servers

queues. At some time, possibly after visiting several queues multiple times, a job
finally departs. Such a system is called an open queuing network and is depicted
in Figure 1.4. Alternatively, in a DOS, we can model all the processes of the DOS
as customers that move from one queue to another depending on the data received.
External programs now function as data to the DOS. In such a case, the number of
customers in the queuing network is a constant all the time. Such systems are called
closed queuing systems. The model for a queuing system is not complete without
a precise mathematical specification of the behavior of interarrival times and service
times. The model may also require a scheduling policy for system operation. The
interarrival times and service times are usually uncertain quantities; they vary from
one job to another. But they also usually possess statistically steady behavior over
a long time of operation. Therefore, we use probability theoretic models for these.
In some cases, the scheduling policy can be varied to optimize some performance
criterion of the system.

1.4 Conclusion

Many real computer networks’ queuing models are very complicated. However,
in many cases, approximate models can be developed with the help of either the
variations of simple models or some interconnections of simple models. Examples
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FIGURE 1.4: Open queuing network
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of these were included at the beginning of this chapter to motivate a detailed study
of queuing models starting from very simple models. The next chapter deals with
the introduction and detailed analysis of simple traffic models. Simulation of these
traffic patterns is also a topic there. In addition, simple principles and procedures
of parameter estimation are included. They are very useful in the analysis of real or
simulated traffic patterns.

Many of computer networks’ diverse performance metrics are statistical averages.
therefore, by and large, analyses of queues are applications of probability theory and
stochastic processes. These are functions of the behavior of time periods of internal
activities and external load or request patterns. Typically, requests for service wait in
queues. Therefore, queuing theoretic principles are the main set of tools in our per-
formance analysis. Statistical averaging of the quantities affecting the performance
requires the study of the variations of those quantities as they occur repeatedly. Eval-
uation of such statistical averages is facilitated by the extensive use of Probability
Theory and Random Processes, in queuing theory. Many advanced principles of
probability theory and elementary principles of random processes are easier to grasp
with the help of the applications in which they find use. They are introduced and
covered in the necessary detail, as needed, in the following chapters. A review of
Probability Theory appears in the Appendix at the end of the book.



Chapter 2

Characterization of Data Traffic

2.1 Introduction

Data traffic is the sequence of movement of data items through a point or a phys-
ical device. A typical data item is a contiguous sequence of bits forming a data
packet. When these data items pass through a physical device, there is usually some
impediment in the form of reception, processing, and forwarding. Such an impedi-
ment results in queuing and causes time delays. In general, queues have successive
arrivals of customers as inputs. These arrivals experience possible waiting and ser-
vice before being output as successive departures. This chapter introduces important
random variables that constitute models for arrival and service disciplines. The statis-
tical nature of arrivals can be expressed in different ways. For example, if successive
interarrival times (IATs) are independent, a specification of the initial condition in
the form of the time instant at which the operation of the queue starts and the proba-
bility density function (pdf) of IATs are sufficient to completely describe the nature
of arrivals. The Pareto random variable for IATs is one such model. This random
variable exhibits some important variations in its characteristics, based on the values
of the parameters of its pdf. Its variance can be finite or infinite. Infinite variance
random variables find applications in characterizing bursty data traffic. Therefore
Pareto random variables are studied in this chapter. Since its study is a valuable
review of elements of probability theory, it is introduced first.

The number of arrivals over a time interval is another important way of charac-
terizing the nature of arrivals. In general, this requires the specification of the initial
condition and the time instants of the start and end of the interval over which the
random variable number of arrivals is characterized. There is an important class of
arrival disciplines for which this specification can be considerably simplified; the
initial condition of the starting time and the exact time instants constituting the time
interval over which the number of arrivals is being characterized are not important.
The only important quantity influencing the number of arrivals is the amount of time
in the time interval. This class of arrivals is known as Poisson arrivals, named in
honor of Simeon Denis Poisson (1781–1840), a French scientist. The IATs in a
stream of Poisson arrivals are independent and identically distributed (iid) exponen-
tial random variables. This class of random variables possess a very interesting prop-
erty known as “memorylessness.” The exponential random variable is a very useful
model for service times since the memoryless property greatly simplifies the analysis

13
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of queues. Poisson and exponential random variables are studied in detail, following
a study of the Pareto random variable.

One of the practical problems encountered in data communication networks is the
errors in received data packets. Errors are caused by noise in physical links. A simple
model of noise and its effects on bit errors and data packet errors is introduced. A
particular advantage of this model is that if the packet error rate at a particular data
transmission rate is given, the corresponding packet error rate at a different data
transmission rate can be evaluated. This helps in optimizing the data transmission
rate.

The basic approach to simulation of a queue is to generate outcomes of random
variables corresponding to data traffic and use them in the way the queue operates.
Therefore, simulation of random variables corresponding to data traffic is funda-
mental to the simulation of queues. Computer simulation of random variables is
most commonly implemented by attempting to repeatedly generate iid outcomes of
a very simple random variable and subjecting them to the needed transformations.
Unfortunately, computers execute algorithms in a deterministic way. Therefore, if a
simulation algorithm is run repeatedly with identical external data input, it produces
identical results for every run. There is nothing random about this. If the external
inputs themselves form all of the extensive random data, we are not using the com-
puter to simulate; we would only be using it to operate a system, possibly a queue, to
which random data from elsewhere are input. The best we can hope to achieve is to
use the computer to generate a long sequence of numbers that “appear” to have the
properties of the outcome of a sequence of iid random variables. There are excellent
algorithms for this purpose. Typically they approximate the generation of iid uni-
formly distributed random variables. The length of the sequence of such generated
numbers is typically 2k − 1 where k is the number of bits in the computer word the
the algorithm uses. If the algorithm is run to generate more than 2k−1 random num-
bers, the sequence repeats. The algorithms also accept an external input called the
seed that determines the starting point in the cyclic sequence of generated numbers.
Thus, by giving different seeds, practically different simulation trials are realized.

The next step in simulation of queues is to generate outcomes of random variables
for different data traffic models. This is usually accomplished by using mathematical
transformations of a uniformly distributed random variable (that can be simulated)
to the desired random variables. This is also a topic studied in this chapter.

Finally, analysis of simulation results require an understanding of the basic prin-
ciples of parameter estimation from random samples. Only some very elementary
principles of parameter estimation are included in this chapter.
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2.2 The Pareto Random Variable

The Pareto random variable is named in honor of Vilfredo Federico Damaso Pareto
(1848–1923), a French-Italian scientist. It is characterized by a pdf which varies as
a negative power of the outcome and a value of zero for pdf for small values of the
outcome. That is, if X is Pareto, its pdf

fX(x) =


v x−u, x ≥ w

0, x < w.
(2.1)
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pdf of a Pareto random variable; α = 1.5 and β = 4

FIGURE 2.1: Density function of a Pareto random variable; α = 1.5, β = 4

To make this a valid pdf, we need
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∞∫
−∞

fX(x) dx = 1. (2.2)

Now,

∞∫
−∞

fX(x) dx = v

∞∫
w

x−u dx (2.3)

=
v

1 − u

[
x−u+1

]∞
w
. (2.4)

We need u > 1 and w > 0 for this integral to be finite. Then,

∞∫
−∞

fX(x) dx =
v

u− 1
w−(u−1) = 1. (2.5)

Therefore,

v = (u− 1) wu−1 (2.6)

and

fX(x) = (u− 1)wu−1 x−u (2.7)

=
u− 1
w

(w
x

)u

. (2.8)

We introduce new constants, α = u − 1 > 0 and β = w > 0 in order to express the
density function in a commonly represented form. We have

fX(x) =


α
β

(
β
x

)α+1

, x ≥ β

0, x < β.

(2.9)

An alternative common form of representation uses the Hurst parameter H instead
of α. Harold Edwin Hurst (1880–1978) was a British hydrologist. He studied long
term storage capacities of reservoirs based on empirical observations on the river
Nile. The Hurst parameter for a Pareto random variable is given by

H =
3 − α

2
. (2.10)
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Let us evaluate the properties of the above valid density function. The cumulative
distribution function (cdf) is

P [X ≤ x] =

x∫
β

fX(x)dx, x ≥ β (2.11)

= 1 −
(β
x

)x

, x ≥ β (2.12)

= 0, x < β. (2.13)

The expectation

E[X ] =

∞∫
−∞

x fX(x) dx (2.14)

=

∞∫
β

α

β
x

(
β

x

)α+1

dx (2.15)

= αβα

∞∫
β

x−α dx (2.16)

= αβα

[
x−α+1

−α+ 1

]∞
β

. (2.17)

Now, α needs to be larger than 1 for finite E[X ]. Therefore, for α > 1

E[X ] =
αβα

α− 1
β−α+1

and finally, we have

E[X ] =


α β
α−1 , if α > 1

∞, if α ≤ 1.
(2.18)
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The variance Pareto random variable is evaluated as

var[X ] =

∞∫
−∞

(x− E[X ])2 fX(x) dx (2.19)

= E[X2] − E2[X ]. (2.20)

Equation (2.20) follows by expanding the square in equation (2.19).

E[X2] =

∞∫
−∞

x2 fX(x) dx (2.21)

= αβα

∞∫
β

x−α+1 dx (2.22)

= αβα

[
x−α+2

−α+ 2

]∞
β

. (2.23)

For E[X2] to be finite, we need α > 2. If α > 2,

E[X2] =
αβαβ−α+2

α− 2
=

αβ2

α− 2
. (2.24)

Summary
The Pareto random variable X can have any physical dimension, such as length,
mass, time, or bits (approximating number of bits by a real number). The parameter
α is dimensionless, and β has the same dimension as X .

fX(x) =


α
β

(
β
x

)α+1

, if x ≥ β

0, if x < β,

(2.25)

FX(x) =


P [X ≤ x] = 1 −

(
β
x

)α

, if x ≥ β

0, if x < β,

(2.26)
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E[X ] =


αβ

α−1 , if α > 1

∞, if α ≤ 1,
(2.27)

var[X ] =


αβ2

α−2 −
(

αβ
α−1

)2

, if α > 2

∞, if α ≤ 2.

(2.28)

The range α ∈ (1, 2] is of interest to us. In this range, the mean is finite but the
variance is infinity. Data traffic in present day LANs is very bursty, despite having
an overall finite average value. Modeling interarrival times between successive data
packets by a Pareto random variable with α ∈ (1, 2] is gaining popularity. It turns
out that we can easily simulate Pareto random numbers, as discussed later in this
Chapter.

Example 2.1
In an Ethernet, successful packets (those that are transmitted without col-

lisions) appear as the presence or absence of a successful packet, over a time
interval. An example of such a trace is shown in Figure 2.2. Extensive exper-
iments with Ethernet traffic have led to a model in which the time intervals
between the end of one packet and the beginning of the next are Pareto
with α = 1.2 as an estimate. Let the average of such OFF times in the data
packet train be 1 millisecond (msec and ms are also used to denote millisec-
ond). Find the minimum time interval between successive packets. Find
P [X > 10msec], i.e., the probability of finding no arrival in 10 msec since the
end of the previous packet.

Solution

E[X ] =
αβ

α− 1
(2.29)

β =
E[X ](α− 1)

α
=

1 msec (1.2 − 1)
1.2

(2.30)

=
1
6

msec. (2.31)

Since fX(x) = 0, for x < β, the OFF time is always 1
6 msec or higher. Note the
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Packet

t1 = time for first packet arrival to start
t2 = time for first packet arrival to end
t3 = IAT between packet starting points
t4 = time for the start of second packet arrival
t5 = IAT between packet ending points

t2
t5

time

No packet

t4

t1
t3

t=0

FIGURE 2.2: ON-OFF model of a packet train.

difference between two random variables associated with the stream of packets, the
OFF times and the IATs.

P [X > 10 msec ] = 1 − FX(10) (2.32)

= 1 −
[
1 −

( 1
60

)1.2
]

(2.33)

=
( 1

60

)1.2

≈ 0.007. (2.34)

The probability of OFF time to be larger than or equal to 10 times the mean is still
not too small! This is the heavy-tailed property of this random variable. Later on, we
will compare this with the probability of the same event for an exponential random
variable with the same mean.

Example 2.2

The probability density function of the time for the next bus arrival starting
at 8 AM as zero time is Pareto with α = 1.7 and β = 1. Time is measured
in minutes. At 8:05 AM, the bus had not arrived. Determine the probability
that the bus will not arrive for at least t more minutes after 8:05 AM.
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Solution
Starting from equation (2.13) for P [X ≤ x] of a Pareto random variable, we have

P [X > x] =
(β
x

)α

, x > β. (2.35)

Let T be the absolute arrival (random) time

P [T > 8 : 05 + t|T > 8 : 05] =
P [T > 8 : 05 + t]
P [T > 8 : 05]

=
P [X > 5 + t]
P [X > 5]

(2.36)

=
(

5
5 + t

)1.7

. (2.37)

Example 2.3
An agent in a train A is required to give a key to another agent in train B.
It is known that Train B will be parked at a station S between 3:00 PM and
4:00 PM. Train A starts from a distant point at 1 PM the same day. Its travel
time to reach station S is a Pareto random variable with α = 3 and β = 1
hour. It will stop next to where train B would be in station S for a negligible
amount of time and proceed. What is the probability that the hand-over of
the key will be successful? Ignore the time for agents to walk to each other if
and the two trains stop next to each other.

Solution
Let X be the random variable of the time in hours it takes for train A to travel to
station S. We need

P [2 < X < 3] =

3∫
2

α

β

(
β

x

)α+1

dx. (2.38)

This evaluates to 1
8 − 1

27 = 19
216 = 0.088.

Example 2.4
A Pareto random variable X has α = 1.5 and β = 2. We would like to
construct a new random variable for IATs in the form of the random variable
Y = X − a, with a constant a such that Y is nonnegative but its density
is nonzero starting from the outcome 0 itself. Determine a and completely
specify the probability density function of Y , its mean and variance.
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Solution
If we draw a rough figure (or even imagine one) with the density function pushed
so that it starts to be nonzero from the 0 point itself, we find that a = 2. Substitute
x = y + 2 in the expression for the density function. The density of Y is zero for
y < 0. More systematically,

P [y ≤ Y < y + dy] = P [y + 2 ≤ X < y + 2 + dx], y ≥ 0 and dy = dx.

(2.39)

Therefore, fY (y) = fX(y + 2), −∞ < y <∞. That is,

fY (y) = 0.75
(

2
y + 2

)2.5

, y ≥ 0 (2.40)

= 0, y < 0. (2.41)

E[Y ] = E[X ] − 2 =
1.5 × 2
1.5 − 1

− 2 = 4. (2.42)

Variance of a random variable does not change with translation. Therefore,

var[Y ] = var[X ] = ∞. (2.43)

2.3 The Poisson Random Variable

Let us study the traditional and “smooth” interarrival times model. The proper-
ties of this random variable can be formally derived by three simple and appealing
assumptions. Consider an electron gun shooting out electrons in a narrow beam.
This is a random phenomenon. Let us assume that the electrons’ arrival times at a
particular point follow the three randomness properties below.

1. In a narrow time interval, the probability of an arrival is proportional to the
time interval.

2. In a narrow time interval, the probability of two or more arrivals is negligible
in comparison with the probability of one arrival.
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3. Numbers of arrivals in nonoverlapping time intervals are mutually independent
of one another.

Note that (0, t1] and (t1, t2] are nonoverlapping. As an example, if firing times of
electrons are independent and statistically steady, then these assumptions are intu-
itively appealing. Mathematically, the assumptions imply the following.

1.

lim
δt→0

P [ one arrival in δt ]
δt

= λ, a constant (2.44)

2.

lim
δt→0

P [ two or more arrivals in δt ]
P [ one arrival in δt ]

= 0 (2.45)

3.

P [k1 arrivals in (t1, t2] and k2 in (t2, t3]]

= P [k1 arrivals in (t1, t2]] · P [k2 arrivals in (t2, t3]] . (2.46)

From these three defining assumptions, we can derive the probability mass func-
tion (pmf), P [k arrivals in (0, T ]]. The pmf will be a function of only one parameter
value λ, which is found in the defining assumptions (and the time interval T ).

2.3.1 Derivation of the Poisson pmf

Consider a time interval (0, T ]. Divide this interval into n equal parts. As n
increases and tends to ∞, T

n → 0 and we have a narrow sub-interval tending to
0. Therefore, in each such sub-interval, we have one arrival with probability λT

n

and zero arrivals with probability 1 − λT
n . Two or more arrivals occur with zero

probability. These arguments are accurate in the limit, as n → ∞. The number k of
sub-intervals with arrivals in a total of n sub-intervals is binomially distributed.

P [k arrivals in (0, T ]] = P [k inT ], for brevity (2.47)
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= lim
n→∞

n!
k!(n− k)!

(
λT

n

)k[
1 − λT

n

]n−k

. (2.48)

We just need to evaluate the above limit.

P [k inT ] = lim
n→∞

(λT )k

k!

[
1 − λT

n

]−k[
1 − λT

n

]n
n!

nk(n− k)!
. (2.49)

The quantity

[
1 − λT

n

]−k

→ 1 as n→ ∞. (2.50)

Therefore,

P [k in T ] = lim
n→∞

(λT )k

k!

(
1 − λT

n

)n

×
[
n · (n− 1) · (n− 2) · · · (n− k + 1)

nk

]
. (2.51)

In the last fraction, each (n − i) in the numerator cancels with an n in the denomi-
nator, as n→ ∞, for any finite k. Therefore,

P [k in T ] =
(λT )k

k!
lim

n→∞

(
1 − λT

n

)n

. (2.52)

Concentrate on

lim
n→∞

(
1 − λT

n

)n

= lim
n→∞

[(
1 − λT

n

) n
−λT

]−λT

(2.53)

=
[
lim
a→0

(1 + a)
1
a

]−λT

(2.54)
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=
[
e

{
lim
a→0

1
a ln(1+a)

}]−λT

. (2.55)

Consider

lim
a→0

ln(1 + a)
a

.

Apply L’Hospital’s rule. This rule is named in honor of Guillaume Francois Antoine
de L’Hospital, a French mathematician (1661–1704).

lim
a→0

ln(1 + a)
a

= lim
a→0

1
(1 + a) · 1 (2.56)

= 1. (2.57)

Therefore,

exp
[
{ lim

a→0
(1 + a)

1
a }

]
= e (2.58)

and,

lim
n→∞

[
1 − λT

n

]n

= e−λT . (2.59)

Finally,

P [k inT ] =
(λT )k

k!
e−λT . (2.60)

This is the Poisson pmf. This pmf gives the probabilities of finding various num-
bers of possible arrivals in a given time interval, if the arrival scheme satisfies the
previously mentioned three properties.

2.3.2 Interarrival times in a Poisson sequence of arrivals

Let X be the random variable corresponding to the time for the next arrival, soon
after one arrival. Such a random variable is appropriately called the interarrival time.

P [X > t] = P [no arrivals in (0, t]] (2.61)
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= P [0 in t] =
(λt)0

0!
e−λt (2.62)

= e−λt. (2.63)

P [X ≤ t] = 1 − e−λt = FX(t). (2.64)

fX(t) =
dFX(t)
dt

(2.65)

=


λe−λt, t ≥ 0

0, t < 0, since interarrival times are nonnegative.
(2.66)

fX(t) =


λ e−λt, t ≥ 0

0, t < 0.
(2.67)

This is called the exponential density function. Therefore, we have that the inter-
arrival times are exponential random variables if the number of arrivals in a time
interval is Poisson. The Laplace transform of the exponential random variable is
derived in Appendix A; if X is exponential with the parameter λ,

LX(s) =
λ

λ+ s
. (2.68)

2.3.3 Properties of Poisson streams of arrivals

2.3.3.1 Mean of exponential random variable

fX(t) =


λe−λt, t ≥ 0

0, t < 0.
(2.69)

E[X ] =

∞∫
−∞

t fX(t) dt =

∞∫
0

λ t e−λt dt (2.70)
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=
1
λ

∞∫
0

(λt) e−(λt) d(λt) (2.71)

=
1
λ

∞∫
0

y e−y dy. (2.72)

Integrate by parts to obtain

E[X ] =
1
λ

[
−y e−y −

∫
(−e−y) dy

]∞
0

(2.73)

=
1
λ

[
−e−y

]∞
0

= − 1
λ

[
0 − 1

]
(2.74)

=
1
λ
. (2.75)

2.3.3.2 Mean of the Poisson random variable

If the random variableK is the number of Poisson arrivals with parameter λ, over
a time interval t, the expected number of arrivals is

E[K] =
∞∑

k=0

k
exp (−λt)(λt)k

k!
(2.76)

=
∞∑

k=1

exp (−λt)(λt)k

(k − 1)!
(2.77)

= λt

∞∑
k=1

exp (−λt)(λt)(k−1)

(k − 1)!
. (2.78)

Using j = k − 1, we have

E[K] = λt

∞∑
j=0

exp (−λt)(λt)j

j!
. (2.79)

The sum in the above equation is the sum of all the probabilities of a Poisson random
variables and evaluates to 1. Therefore, we have

E[K] = λt. (2.80)
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If t, over which the number of arrivals are considered is a unit time, the expected
number of arrivals is λ per unit time. Therefore, the parameter λ is also called the
rate of arrivals. Let us compare the means of the exponential and Poisson random
variables. From the Poisson mean, the average number of arrivals in a unit amount
of time is λ. From the exponential mean, the average time between arrivals is 1

λ . The
two are consistent with each other.

2.3.3.3 Variance of the exponential random variable

E[X2] =

∞∫
0

λt2 e−λt dt (2.81)

=
1
λ2

∞∫
0

(λt)2 e−λt d(λt) (2.82)

=
1
λ2

∞∫
0

y2e−y dy (2.83)

=
1
λ2

[
−y2e−y −

∫
2y(−e−y) dy

]∞
0
. (2.84)

y2e−y is 0 for y = 0 and for y = ∞. So we have,

E[X2] =
2
λ2

∞∫
0

ye−y dy (2.85)

=
2
λ2

(2.86)

from the earlier evaluation of
∞∫
0

ye−y, when we evaluated E[X ].

var[X ] = E[X2] − E2[X ] (2.87)

=
2
λ2

− 1
λ2

=
1
λ2
. (2.88)

If X is exponential with parameter λ, var[X ] = 1
λ2 .
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Example 2.5
Let the average of the OFF time random variable (X) be 1 msec (as in the
earlier Example 2.1 that used a Pareto random variable), and let X be dis-
tributed exponentially. Therefore,

P [X > 10 msec] = e−10 = 4.54 × 10−5. (2.89)

This is much smaller than the corresponding probability (0.007) obtained by
using the Pareto distribution we considered earlier.

2.3.3.4 Variance of Poisson random variable

Let NA be the number of arrivals in time T . Instead of evaluation E[N2
A] to find

var[NA], it is easier to find E[NA(NA − 1)] first, since we have k! in the expression
for P [NA = k]. We have

E[NA(NA − 1)] =
∞∑

k=0

k(k − 1)
(λT )k

k!
e−λT .

The argument of summation is 0 for k = 0 and for k = 1. Therefore,

E[NA(NA − 1)] = (λT )2 e−λT
∞∑

k=2

(λT )k−2

(k − 2)!
= (λT )2. (2.90)

E[N2
A] − E[NA] = (λT )2. (2.91)

E[N2
A] = (λT )2 + λT. (2.92)

var[NA] = E[N2
A] − E2[NA] (2.93)

= (λT )2 + λT − (λT )2 (2.94)

= λT. (2.95)

For the Poisson random variable, we see that E[NA] = var[NA] = λT .

2.3.3.5 The Z transform of a Poisson random variable

If N is the Poisson number of arrivals over a time interval t and with a rate λ,

ZN (z) =
∞∑

j=0

exp (−λt)(λt)j

j!
zj (2.96)
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=
exp (−λt)
exp (−λtz)

∞∑
j=0

exp (−λtz)(λtz)j

j!
(2.97)

= exp[−λt(1 − z)]. (2.98)

2.3.3.6 Memoryless property of the exponential random variable

Suppose we observed an arrival at t = 0, and we are waiting for the next arrival in
a Poisson stream. We have that the time for the next arrival, X , is exponential. Let
the arrival rate be λ. Suppose that at t = t1, we still have not seen the next arrival,
and we wonder “how much longer” we might have to wait. Of course, “how much
longer” is also a random variable. The distribution of this random variable may be
influenced by the fact that we have waited for t1 amount of time, without success.
Let us evaluate the conditional probability P [X > t1 + t|X > t1]. The quantity t is
the real variable corresponding to the additional wait period beyond t1. This gives,

P [X > t1 + t|X > t1] =
P [(X > t1 + t) and (X > t1)]

P [X > t1]
, t1, t > 0

(2.99)

=
P [X > t1 + t]
P [X > t1]

(2.100)

=
1 − FX(t1 + t)

1 − FX(t1)
(2.101)

=
e−λ(t1+t)

e−λt1
(2.102)

= e−λt (2.103)

which is also the same as P [X > t]. Thus, we see that P [X > t1 + t|X > t1] =
P [X > t]. That is, “how much longer” we need to wait is independent of how long
we have already waited! In other words, this scheme “forgets” how long an arrival
has not occurred. We refer to this as the memoryless property of the Poisson stream
of arrivals. This property actually helps in simplifying analysis.
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2.3.3.7 Time for the next arrival

An important use of the memoryless property is that in studying a sequence of
Poisson arrivals, we do not have to be careful to verify that an arrival occurred at
t = 0, in order to claim that time for the next arrival is exponential. At any point in
time, since how long ago the most recent arrival occurred is irrelevant, the “time for
next arrival” is always exponential with the same parameter λ.

2.3.3.8 Nonnegative, continuous, memoryless random variables

Note that in order for the variable t1 to cancel in the numerator and denominator
of

P [X > t1 + t]
P [X > t1]

,

P [X > t1] must be of the form of an exponential, i.e., abt1 . Normalizing the random
variable to make it a valid, continuous, nonnegative random variable, we find thatX
must be an exponential random variable.

2.3.3.9 Succession of iid exponential interarrival times

We found that a Poisson stream implies exponential interarrival time. Now, let us
argue the converse. Let the interarrival times be iid exponential. At any time instant
t, irrespective of when the most recent arrival occurred,

a)

P [an arrival in (t, t+ δt]] = fX(t| start observing at t)δt (2.104)

= fX(0)δt (2.105)

= λδt. (2.106)

Next, note that successive interarrival times are independent.

P [two or more arrivals in (0, δt]]

= P [one arrival in (0, δt]] ×

P [more arrivals in (0, δt], after first arrival]

≤ (P [one arrival in (0, δt])2 (2.107)

≤ (λδt)(λδt), (2.108)
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since the second arrival has even less time than δt. Therefore,

P [more than one arrival in δt]
P [one arrival in δt]

≤ λδt. (2.109)

b) In the limit,

lim
δt→0

P [more than one arrival in δt]
P [one arrival in δt]

= 0. (2.110)

c) Now consider nonoverlapping intervals, The number of arrivals in (t1, t2] is in-
dependent of those in (0, t1], due to the following.

i) interarrival times are independent, and

ii) time for next arrival from t1 is independent of when the previous arrival
occurred.

Thus a sequence of arrivals with iid exponential interarrival times satisfy all defin-
ing assumptions of a Poisson stream of arrivals. Finally, we refer to the defining as-
sumptions as “constant rate” random arrivals, and we have the equivalence between
the three types of arrival schemes depicted in Figure 2.3.

2.3.3.10 Merging two independent Poisson streams

The following derivation shows that merging two independent Poisson streams
with rates λ1 and λ2 results in a Poisson stream with the added arrival rate λ1 + λ2.
Let the observation point in Figure 2.4 be C. We are interested in

P [n arrivals in stream at C over time interval T ]. (2.111)

In order to have n arrivals, we can have j arrivals from the top input stream (with
rate λ1) and n − j arrivals from the bottom input stream (the one with rate λ2). Of
course, 0 ≤ j ≤ n. Write the probability of the joint event of j arrivals from the top
input stream and and n − j arrivals from the bottom input stream. Use the fact that
the two input streams are independent. Sum this joint probability over 0 ≤ j ≤ n.
Simplify and evaluate the sum to obtain the required probability. Hence, show that
the arrival stream at C is Poisson with rate λ1 + λ2. The required probability is

P [n at C over T ] =
n∑

j=0

e−λ1T (λ1T )j

j!
e−λ2T (λ2T )n−j

(n− j)!
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iid
exponential

IATs

Constant
rate random

arrivals

Poisson
arrivals

FIGURE 2.3: Equivalence of three types of arrival streams

composite
arrivalsmerge

λ2

λ1

at C

FIGURE 2.4: Merging two Poisson streams
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= e−(λ1+λ2)TT n
n∑

j=0

λj
1λ

n−j
2

j! (n− j)!
. (2.112)

Anticipating (λ1+λ2)n

n! as a factor in the final result, multiply and divide by this quan-
tity.

P [n at C over T ] =
e−(λ1+λ2)T [(λ1 + λ2)T ]n

n!

n∑
j=0

n!
j! (n− j)!

λj
1λ

n−j
2

(λ1 + λ2)
n

=
e−(λ1+λ2)T [(λ1 + λ2)T ]n

n!
×

n∑
j=0

n!
j! (n− j)!

(
λ1

λ1 + λ2

)j (
λ2

λ1 + λ2

)n−j

. (2.113)

In the above, λ1
λ1+λ2

and λ2
λ1+λ2

can be considered to be probability values summing
to 1. With this interpretation, the sum in the above equation is the sum of all proba-
bilities of a fictitious binomial random variable. Therefore this sum must evaluate to
1, giving us

P [n at C over T ] =
e−(λ1+λ2)T [(λ1 + λ2)T ]n

n!

showing that the resulting stream at C is Poisson with rate λ1 + λ2.
An alternative proof, based on the Z transform is much simpler. Over a time inter-

val t, let M and N be the random variable number of arrivals in the original streams
being merged. Let K be the number of arrivals in the merged stream. Clearly,
K = M +N . Therefore,

ZK(z) = ZM (z)ZN (z) (2.114)

= exp[−λ1t(1 − z)] exp[−λ2t(1 − z)] (2.115)

= exp[−(λ1 + λ2)t(1 − z)]. (2.116)

The final expression corresponds to a Poisson random variable with rate λ1 + λ2.
As an even simpler approach to show the same result, consider the probability of no
arrival at C from the time instant zero until t. Due to the memorylessness of both the
streams and due to their independence,

P [no arrival at C in (0, t]] = exp(−λ1t) exp(−λ2t) (2.117)
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= exp[−(λ1 + λ2)t] (2.118)

from which it follows that the time for the next arrival at C is exponential with rate
λ1 + λ2.

2.3.3.11 iid probabilistic routing into a fork

iid probabilistic split
at the fork point

1 − p

p

λ

Stream D

Substream E

Substream F

FIGURE 2.5: Probabilistic splitting of a Poisson stream

Let a Poisson stream of arrivals D with rate λ be split iid probabilistically into
substream E with probability p and substream F with probability 1 − p. We are
interested in

P [n arrivals in substream E over time interval T ]. (2.119)

In order for us to have n arrivals in E, there must be k ≥ n arrivals in D, before
splitting. Write the probability of observing “k ≥ n in the original stream AND only
n of these k being chosen to be routed to substream E.” That is, determine

P [(k in D over T ) AND (n ≤ k chosen for E)]. (2.120)

Then, sum the above probabilities over n ≤ k ≤ ∞ to obtain

P [n in substream E over T ] =
∞∑

k=n

e−λT (λT )k

k!
k!

n! (k − n)!
pn (1 − p)k−n

.

Again, anticipate the expression e−pλT (pλT )n

n! and take everything else inside the
sum.

P [n in substream E over T ]
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=
e−pλT (pλT )n

n!

∞∑
k=n

e−(1−p)λT (λT )k−n (1 − p)k−n

(k − n)!
. (2.121)

Use j = k − n.

P [n in substream E over T ] =
e−pλT (pλT )n

n!

∞∑
j=0

e−(1−p)λT [(1 − p)λT ]j

j!
.

The sum is the sum of all possible probabilities of a fictitious random variable and
hence evaluates to, leaving us with the Poisson pmf expression. Note that if a Poisson
stream with rate λ is split with alternate arrivals branching into two substreams, the
resulting stream is not Poisson, as shown below. The IAT Y in each substream is the
sum of two iid exponential random variables each with parameter λ.

fY (y) =

y∫
0

λe−λ(y−w)λe−λwdw (2.122)

=

y∫
0

λ2e−λydw (2.123)

= λ2ye−λy. (2.124)

Obviously, this can never be expressed as αe−αy for any constant α. Hence Y is not
exponential.

Example 2.6
At a train station ticket counter, service time is exponentially distributed with
a rate of 1 customer per minute. A customer A comes to the ticket counter
at 9:58 AM and finds only one customer in the ticket counter; he was being
served. The train is scheduled to leave at 10:00 AM. What is the probability
that A will catch the train? Ignore the time that A needs to run to the train
after purchasing the ticket.

Solution
IDTs are iid exponential with an average of 1 minute. If two IDTs take place in 2
minutes, the customer A would have purchased the ticket before 10:00 AM. This is
identical to having at least two Poisson arrivals with rate one per minute in the two
minute time interval.

P [N ≥ 2] = 1 − P [N = 0] − P [N = 1] (2.125)
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= 1 − exp (−2) − 2 exp (−2) (2.126)

≈ 0.6. (2.127)

2.4 Simulation

We would like to simulate the operation of various configurations of queuing net-
works on the computer. These activities require generating the following types of
random numbers.

1. Generalized Bernoulli random number.

2. Geometric and modified geometric random numbers.

3. Exponentially distributed random number.

4. Pareto distributed random number.

Generating a generalized Bernoulli random number allows us to switch over sev-
eral possible output links at a router. It also allows us to generate arrivals and service
completions in discrete time queuing systems. Generating an exponential random
variable allows us to generate Poisson traffic by generating a sequence of interar-
rival times. It also allows us to generate the popular exponentially distributed service
times. Generating a Pareto random variable allows us to simulate wildly fluctuating
interarrival times and service times that are observed in bursty traffic.

2.4.1 Technique for simulation

A common technique in computer simulation is to generate a sequence of iid ran-
dom numbers uniformly distributed over the real interval [0, 1) and use mathematical
transformations. Most computers have such routines that generate very good approx-
imations of iid uniformly distributed random numbers. Let us study the mathematical
transformations of U , the uniform random variable distributed over the real segment
[0, 1), to realize simulation of important distributions.

2.4.2 Generalized Bernoulli random number

A generalized Bernoulli random variable has a finite number of outcomes, each
with a nonzero probability. Let the sample space of the random experiment be B
be SB = {b1, · · · , bm}, with real valued bi Let the probabilities of these outcomes
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be p1, · · · , pm, respectively. Divide the unit interval into m parts with each part
corresponding to the required probabilities. That is, let a0 = 0, ai = ai−1+pi−1, i =
1, · · · ,m. Generate a U . Let the outcome be u. The outcome of the corresponding
generalized Bernoulli simulation is bi, if ai−1 ≤ u < ai. Figure 2.6 shows the
transformations from {pi} to {ai} and then to {bi}.

b1

b2

b3

b4

bi

bi+1

bi+2

bm−1

bm

p3 pi pmp2p1

a1

a2

a3

ai−1

1

ai

am−1

FIGURE 2.6: Transformation to generate a generalized Bernoulli random num-
ber
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2.4.3 Geometric and modified geometric random numbers

The modified geometric random variableK is nonnegative discrete and has a pmf
given by

P [K = k] = pk(1 − p), k = 0, 1, · · · . (2.128)

We use a Bernoulli random number generator whose successes are iid with

P [success] = p and (2.129)

P [failure] = 1 − p. (2.130)

Generate iid Bernoulli random numbers repeatedly until we get the first failure.
Count the number of successes observed. This is the required modified geometric
random number. The geometric random number is simply the number of Bernoulli
trials up to and including the first failure in the above approach.

2.4.4 Exponential random number

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

u

x

Transformation to generate an exponential random variable

u u+du

x
x+dx

FIGURE 2.7: Transformation to generate exponential random number; λ = 1
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Let

X =


− 1

λ ln(1 − U), 0 ≤ U < 1

0, otherwise
(2.131)

This is a deterministic function of the random variable U and results in random
variableX . The outcome u translates to the outcome of X as

x =


− 1

λ ln(1 − u), 0 ≤ u < 1

0, otherwise.
(2.132)

as depicted in Figure 2.7. The inverse function is

u =


1 − e−λx, 0 ≤ x <∞

undefined, otherwise.
(2.133)

du

dx
= λe−λx in the defined region. (2.134)

P [u < U ≤ u+ du] = P [x < X ≤ x+ dx]. (2.135)

Equivalently,

fU (u)du = fX(x) dx (2.136)

fX(x) = fU (u)
du

dx
expressed as a function of x. (2.137)

Thus,

fX(x) =


λe−λx, x ≥ 0

0, x < 0.
(2.138)

We have the needed result, i.e., if U is distributed uniformly over the real segment
[0, 1), X = − 1

λ ln(1 − U) is exponentially distributed with parameter λ. There-
fore, to generate an exponentially distributed random number, generate a uniformly
distributed random number u and subject it to the transformation − 1

λ ln(1 − u).

2.4.5 Pareto random number

fX(x) =


α
β

(
β
x

)α+1

, x ≥ β

0, x < β.

(2.139)
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We want a function x = g(u) such that when u = 0, x = β and when u → 1,
x → ∞ and with fX(x) = fU (u) du

dx . We know that fU (u) = 1 in the range of
interest. Therefore,

fX(x) =
du

dx
=
α

β

(β
x

)α+1

. (2.140)

We can formally derive the required function.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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u

x

Transformation to generate a Pareto random variable

u u+du

x

x+dx

FIGURE 2.8: Transformation for Pareto random number generation; α = 1.5
and β = 4

du

dx
=
α

β

(β
x

)α+1

(2.141)

u =
∫

α

β

(β
x

)α+1

dx (2.142)

= αβα

∫
x−α−1dx (2.143)
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= −
(β
x

)α

+ c. (2.144)

Set c = 1 to satisfy x = β when u = 0. Therefore,

(β
x

)α

= 1 − u (2.145)

x−α = β−α(1 − u) (2.146)

x = β(1 − u)−
1
α . (2.147)

x = ∞ when u = 1 is easily verified. See Figure 2.8 for the shape of the function.
Therefore, to simulate a Pareto random number with parameters α and β, generate a
u and subject it to the transformation β(1 − u)−

1
α .

2.5 Elements of Parameter Estimation

Analysis of data collected during real or simulated experiments is important. In
some situations, summary parameter values representing a data set is useful to con-
trol a queuing system or a network. A statistic is a mathematical transformation from
a sequence of observations of outcomes of one or more random variables to a single
value. Such a statistic is usually developed with the hope that the value represents a
useful parameter of the family of random variables. Such a transformation is known
as an estimator and the resulting value, the estimate. Even though the final value is
usually never exactly equal to the parameter it is supposed to be representing, the
transformation may satisfy some desirable properties. Study of such transformations
and their properties is known as mathematical statistics. A more focused topic that
deals with the development and study of transformations to represent particular pa-
rameters of random phenomena is also known as estimation theory. Estimating a
value to represent an unknown parameter is called “point estimation.” An alterna-
tive approach is to estimate a lower and an upper bound for the unknown parameter
and a probability (also called confidence limit) with which the interval contains the
unknown parameter. This is known as an interval estimate and is more applicable
for human beings to understand the quality of the estimate. Only the simplest of
principles of point estimation are introduced in this section.



Characterization of Data Traffic 43

2.5.1 Parameters of Pareto random variable

Consider a sequence of exponential interarrival time observations x1, x2, · · · , xn,
obtained as outcomes of iid trials of X . We expect the sample average

1
n

n∑
j=1

xj (2.148)

to be close to 1
λ . We refer to the above expression (2.148) as an estimate for the mean

1
λ . Likewise,

1
n

n∑
j=1

(
xj − 1

n

∑
xi

)2

(2.149)

is an estimate of the variance of X . If X is Pareto, how can we estimate the corre-
sponding parametersα and β? Note the additional difficulty if the variance is infinity.
Using ideas developed in simulation, we can transform the random variable to be of
finite variance and try to estimate α and β with the help of the sample mean and
sample variance of the transformed data. Let X be a Pareto random variable with
parameters α and β, so that

fX(x) =


α
β

(
β
x

)α+1

, x ≥ β

0, x < 0.

(2.150)

Let

y =


lnx, x ≥ β

undefined, x < β,
(2.151)

as in Figure 2.9. This severely reduces from higher values of x to lower values of y.

x = ey in the region. (2.152)

dx

dy
= ey. (2.153)

The transformation is monotonically increasing. Therefore,

fX(x)dx = fY (y)dy. (2.154)

fY (y) = fX(x)
dx

dy
, y ≥ lnβ (2.155)
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FIGURE 2.9: Transformation y = lnx to estimate parameters of Pareto
random variable

= fX(x = ey)ey (2.156)

=
α

β

βα+1

(ey)α+1
ey. (2.157)

fY (y) =


αβαe−αy, y ≥ lnβ

0, y < lnβ.
(2.158)

We can evaluate the mean and variance of Y and try to express α and β as functions
of E[Y ] and var[Y ]. However, this turns out to be complicated for an algebraic
solution. Note also that this method works even for 1 < α ≤ 2 for which var[X ] =
∞. There is an easier technique. Let X be Pareto, and so

fX(x) =


α
β

(
β
x

)α+1

, x ≥ β

0, x < 0.

(2.159)

Let y = 1
x . We know from probability theory,
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E[Y ] =

∞∫
−∞

yfX(x)dx, (2.160)

with y expressed as a function of x. We have,

E

[
1
X

]
=

∞∫
β

α

β

(β
x

)α+1 1
x
dx for Pareto random variable (2.161)

= αβα

∞∫
β

x−α−2dx (2.162)

=
αβα

−α− 1

[
x−α−1

]∞
β

(2.163)

=
αβαβ−α−1

α+ 1
(2.164)

=
α

β(α + 1)
(2.165)

=
α

β(α + 1)
, for α > 1. (2.166)

Note that this has the dimensions of 1
x . With the help of E[X ] = αβ

α−1 and E[ 1
X ] =

α
β(α+1) , we can solve for α and β. If we use estimates ofE[X ] and E[ 1

X ] in place of
true moments, we get estimates of α and β, as follows. Let the estimate of E[X ] =
µ̂ = α̂β̂

α̂−1 . Let the estimate of E[ 1
X ] = η̂ = α̂

β̂(α̂+1)
.

µ̂η̂ =
α̂2

α̂2 − 1
; α̂2µ̂η̂ − µ̂η̂ − α̂2 = 0 (2.167)

α̂2(µ̂η̂ − 1) = µ̂η̂ (2.168)

α̂ =

√
µ̂η̂

µ̂η̂ − 1
. (2.169)
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β̂ =
µ̂(α̂− 1)

α̂
. (2.170)

2.5.2 Properties of estimators

Consider a sequence of iid random variables X1, · · · , Xn, each having the same
distribution as that of X . The mean of X is estimated as the sample average

µ̂ =
1
n

n∑
i=1

Xi. (2.171)

Note that if we use the outcomes xi in the above equation, we get the numerical
value of the estimate. But if we use the upper case Xi, then µ̂ is a random variable
called the “estimator” with its own distribution and properties. This is useful in
developing the properties of the estimators. Taking expectation on both sides of the
above equations, we have

E[µ̂] = E[X ]. (2.172)

This is referred to as the “unbiased” property of the sample mean estimator. By
definition of the variance,

var[µ̂] = E
[
(µ̂)2

]
− (E[µ̂])2 (2.173)

= E

( 1
n

n∑
i=1

Xi

)2
− (E[X ])2 (2.174)

= E

( 1
n

n∑
i=1

Xi

) 1
n

n∑
j=1

Xj

− (E[X ])2 (2.175)

= E

 1
n2

n∑
i=1

n∑
j=1

XiXj

− (E[X ])2 (2.176)

=
1
n2

 n∑
i=1

n∑
j=1,j �=i

E [XiXj ] +
n∑

i=1

E[X2
i ]

− (E[X ])2 . (2.177)
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In the above, the double summation is split up into two parts. In the first
part j �= i. Under this condition, Xi and Xj are independent, so that
E[XiXj ] = E[Xi]E[Xj ] = (E[X ])2. In the second part, j = i and E[XiXj ]
becomes E[X2

i ] = E[X2] . Therefore,

var[µ̂] =
1
n2

n∑
i=1

n∑
j=1,j �=i

(E [X ])2 +
1
n2

n∑
i=1

E
[
X2

]− (E[X ])2 (2.178)

=
n (n− 1)

n2
(E [X ])2 +

E
[
X2

]
n

− (E[X ])2 (2.179)

=
n− 1
n

(E [X ])2 − n

n
(E[X ])2 +

E
[
X2

]
n

(2.180)

=
E

[
X2

]− (E [X ])2

n
(2.181)

=
var [X ]
n

. (2.182)

That is,

var[µ̂] =
σ2

n
(2.183)

where σ2 is the variance of X . As we have seen, the variance is a measure of vari-
ation around the mean. Therefore, the estimate of the sample mean improves as
more samples are used, since the variance decreases as 1

n . This is another appealing
property of the sample mean.

2.6 Sequences of Random Variables

Properties of sequences of random variables are important for parameter estima-
tion. They are also very useful in the study of long-term behavior of queues. This
section is an introduction to the topic.

DEFINITION 2.1 If a sequence of random variables Yn is such that
the sequence of expected values {E[Yn]} converges to some constant a and the
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sequence of variances {var[Yn]} converges to zero as n tends to infinity, we
say that the sequence Yn converges to a in the mean square sense.

By this definition, the sample mean sequence µ̂(n) converges to µ in the mean
square sense. The topic of parameter estimation is intimately related to the topic
of infinite sequences of random variables, since we are interested in the behavior of
estimators with large data sets. The above property is important and is stated as a
theorem below.

THEOREM 2.1

The sample average of a sequence of n > 0 iid random variables has the
same expectation as each of the original random variables. The variance of
the sample average is the variance of the original random variable divided by
n. If the variance of the iid random variables is finite, the variance of the
sample average tends to 0 as n→ ∞.

The following theorem can also be similarly proved and the proof is suggested as
an exercise.

THEOREM 2.2

Let {Y1, Y2 · · · , } be an infinite sequence of independent but not necessarily
identical random variables. Let the expectation and variance of each Yi be
finite. Let E[Yi] = ηi and let var[Yi] = σ2

i . Form the infinite sequence of the
cumulative average of the original sequence of the random variables defined by

Zn =
1
n

n∑
j=1

Yj . (2.184)

Let b be an upper bound on the variances of all Yi. That is, σ2
i ≤ b for all i.

Then, we have the following.

lim
n→∞E[Zn] = lim

n→∞
1
n

n∑
j=1

ηj (2.185)

lim
n→∞ var[Zn] = lim

n→∞
1
n2

n∑
j=1

σ2
j (2.186)

≤ lim
n→∞

nb

n2
(2.187)

= 0. (2.188)
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In some cases, the number of trials, n, itself may be the outcome of a random vari-
able. This is illustrated by the following. We observe a sequence of Poisson arrivals
with a rate λ. Let Tn be the random variable for the total time of observation up to
and including exactly at the n arrival. Let t be the independent time variable. Let
tn be the outcome of Tn. The time for the first arrival and all interarrival times are
iid. Let X be the random variable corresponding to the IAT. A good estimate for the
average IAT

Xn =
tn
n
. (2.189)

From Theorem 2.1, the above estimate is unbiased for any n and the variance of the
estimate tends to zero as n tends to infinity. But do we know that n will tend to
infinity if we let the time of observation t tend to infinity. We certainly anticipate
that we will receive an unlimited number of arrivals if we observe for an unbounded
amount of time. But there is no certainty about this event occurring. The following
analyzes such random experiments.

2.6.1 Certain and almost certain events

As an additional simple example, consider an iid sequence of tossing an unbiased
coin (with equal probability of head and tail). What is the probability of observing a
sequence of 100 heads? It is 2−100. The probability is very small, but the event is not
impossible. Likewise, if we imagine an infinite sequence of tosses and consider the
probability of all heads, the probability tends to zero. However, the event of observ-
ing all heads in a sequence of heads is not impossible; such an event occurs with zero
probability. If we imagine a sample space of innumerable people, each tossing such
an independent iid coin, a finite number of those infinite sequences of tossing may
indeed produce all heads. This is consistent with the axioms of probability. What is
the probability of not finding every one of the tosses in the infinite sequence to be
heads? This is not a certain event. But its probability is one.

DEFINITION 2.2 An event that is not certain but occurs with a proba-
bility of 1 is known as an “almost certain” or “almost sure” event.

An important event that is almost certain is the number of Poisson arrivals over
an unbounded amount of time tending to infinity. The following theorem states the
necessary conditions and proves it.

THEOREM 2.3
Let X1, X2, . . . be an infinite sequence of independent nonnegative random
variables representing the sequence of interarrival times in a sequence of pos-
sibly infinite number of arrivals over a time interval [0, ∞). Let

P [Xi → ∞] = 0, i = 1, 2, . . . (2.190)
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Then the probability of the number of arrivals being unbounded over the un-
bounded time interval is 1.

Proof
Note that equation (2.190) is satisfied for a Pareto random variable with infinite
variance also. The infinite additivity extension of the axioms of probability stated
in equation A.1 is useful and repeated below. If an infinite sequence of events
e1, e2, . . . are mutually exclusive,

P [e1 ∪ e2 ∪ · · · ] = P [e1] + P [e2] + · · · (2.191)

This in turn implies that if the infinite sequence of events e1, e2, . . . are not mutu-
ally exclusive,

P [e1 ∪ e2 ∪ · · · ] ≤ P [e1] + P [e2] + · · · . (2.192)

Since each of the infinite sequence of random variablesX1, X2, . . . satisfies

P [Xi → ∞] = 0, (2.193)

the following is true.

P [at least one Xi → ∞] = 0 + 0 + · · · (2.194)

= 0. (2.195)

That is, in the cumulative sum of interarrival times (or the total time of arrivals)
for every finite number of arrivals is finite with probability one. Therefore, as the
time interval tends to infinity, the number of arrivals increases without bounds, with
probability one. That is such an event is almost certain but not completely certain.

Returning to our discussion on observing a sequence of Poisson arrivals, the event
of an IAT X being infinity is not impossible. The probability density of the expo-
nential IAT tends to zero as the observation variable x tends to zero.

P [X > x] = exp(−λx) (2.196)

lim
x→∞P [X > x] = 0. (2.197)

That is, the probability of that IAT being infinity is zero. Therefore, in our earlier
problem of estimating the expected IAT by observing a sequence of arrivals through
unlimited amount of time, the event of observing infinite number of arrivals occurs
with probability 1, but is not a certain event. What is the expectation of a random
variable which has one almost certain event? This question is important especially



Characterization of Data Traffic 51

for the limiting random variable of a sequence of random variables. For example,
consider the number of Poisson arrivals N(t) of rate λ observed over an unbounded
interval of time starting from t = 0. What is the expectation of the limiting random
variable lim

t→∞
N(t)

t ? Use the theorem of total expectation.

lim
t→∞E[

N(t)
t

] (2.198)

= E[ lim
t→∞

N(t)
t

| lim
t→∞N(t) = ∞]P [ lim

t→∞N(t) = ∞]

+E[ lim
t→∞

N(t)
t

|N(t) does not tend to ∞ as t→ ∞]

×P [N(t) does not tend to ∞ as t→ ∞] (2.199)

= E[ lim
t→∞

N(t)
t

| lim
t→∞N(t) = ∞] × 1

+E[ lim
t→∞

N(t)
t

|N(t) does not tend to ∞ as t→ ∞] × 0 (2.200)

= E[ lim
t→∞

N(t)
t

| lim
t→∞N(t) = ∞] (2.201)

= lim
t→∞

1
t
E[N(t)] (2.202)

= lim
t→∞

1
t
λt (2.203)

= λ (2.204)

We are also interested in evaluating the variance of the estimate as t → ∞. We
know that

lim
t→∞ var[X(nt)] = lim

t→∞

∞∑
k=0

E[X
2|n(t)]P [n(t) → ∞] − (

E[X]
)2
. (2.205)

Since

lim
t→∞P [n(t) → ∞] = 1, (2.206)

the limiting variance as t tends to infinity is the same as the limiting variance as n(t)
tends to infinity which is known to be zero.
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2.7 Elements of Digital Communication and Data Link
Performance

A simple method of digital communication is through the use of two different
electromagnetic signals to represent the two bits 0 and 1. Each signal lasts for a
specific fixed time width. The types of signals can be steady voltages of opposite
polarity for the bits 0 and 1, sine waves of opposite phase, etc. Let us denote this
time width for each bit by τ . The receiving station receives an attenuated and a
slightly corrupted form of the transmitted signal. The function of the first subsystem
in the receiver equipment is to decide whether the transmitted signal segment was
a 0 or a 1. This function is known as detection. The accuracy of detection may
be close to but does not reach the perfect 100%. The bit error rate (BER) is the
expected fraction of the bits that will be assigned the wrong bit value due to noise.
It is an important performance figure of the communication link. Keeping track of
the correct beginning of the time width for a bit and ensuring that the attenuation
does not differentially affect the bits 0 and 1 are important aspects of the design of
the overall communication system. In this Section, our interest is only to develop a
simple model for the variation of the BER as a function of the data transmission rate.

2.7.1 The Gaussian noise model

The receiver calculates a single numerical value for each received signal over the
time period τ . If there is no noise, the numerical values calculated by the receiver for
the two bits 0 and 1 are design parameters known at the receiver and the BER is zero.
The effect of noise is an added value to the ideal received value for the bit. Addi-
tive noise is the result of undesirable electromagnetic activity in the communication
channel as well as thermal activity in the electronic components of the communica-
tion systems. A very good and widely applicable mathematical model for the effect
of such noise is the Gaussian noise model, named after the German mathematician
Carl Friedrich Gauss (1777–1855). The pdf of a Gaussian random variable is given
by

fX(x) =
1√

2πσ2
exp

(
− (x− η)2

2σ2

)
. (2.207)

The mean of X evaluates to η and the variance, to σ2. The nature of the Gaussian
random variable has its origin in the averaging effects of numerous independent con-
tributions, in much the same way that the Poisson random variable is a consequence
of numerous independent emissions. This comparison is only subjective and no at-
tempt to derive the pdf of a Gaussian random variable from fundamental assumptions
is made here. The random variable evaluated by the receiver corresponds to the ideal
value for the transmitted bit plus the zero mean additive noise value. In a commonly
used Symmetric Binary Communication system, these mean values for the bits 0 and
1 are of opposite signs and equal absolute value. For convenience, let the mean value
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of the bit 0 be −η and that for bit 1 be +η, where η is a positive value. Physically, η2

is proportional to the power in the received signal and σ2 is proportional to the noise
power in the received signal. The signals for both the bits transmit the same power
for the same time width τ and hence the same energy. Therefore, the pdf of the re-
ceived random variable X under the two different conditions of bit transmissions 0
and 1 are given by

fY (y|0) =
1√

2πσ2
exp

(
− (y + η)2

2σ2

)
and (2.208)

fY (y|1) =
1√

2πσ2
exp

(
− (y − η)2

2σ2

)
. (2.209)

The time varying value of the actual noise over τ (as opposed to its power) averages
to zero over a long time. Therefore, the longer the bit time τ for transmission, the
less effective the noise is in causing bit errors. This is similar to the variance of the
sample average estimator being inversely proportional to the the number of samples
used in averaging, illustrated in Section 2.5.2. The physical dimensions of the ran-
dom variables can also be scaled to let the value of η to be 1. The equivalent noise
variance, as a function of τ then translates to α2

τ for some α implicitly determined
by the transmitted signal power and noise power. The transmitted bit is a random
variable B with outcome b and a sample space of b ∈ {0, 1}. Therefore, we have
the pdf of the received random variable conditioned on transmitted bit b given by

fY (y|b) =
1√

2πα2

τ

exp
(
− (y + (−1)b))2τ

2α2

)
. (2.210)

How should the receiver decide on the transmitted bit for a received value y? The
approach is to maximize the probability of the decision being correct. Let p0 and
p1 = 1 − p0 be the probabilities with which the transmitter emits bits 0 and 1,
respectively. Assume that the sequence of emitted bits are iid. Then, if the receiver
receives y, we should maximize the a posteriori probability of b ∈ {0, 1} given by
the Bayes’ theorem. The a posteriori probability of b is

P [B = b|y] =
pbfY (y|b)

p0fY (y|1) + p1fY (y|1)
(2.211)

which is equivalent to maximizing the joint probability density

fY (y, B = b) = pbfY (y|b) (2.212)

over b ∈ {0, 1}. In a long stream of transmission, we anticipate that the numbers
of bits with values 0 and 1 are approximately equal. This is equivalent to assuming
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p0 = p1 = 1
2 . Therefore the detection algorithm at the receiver simplifies to deciding

b = 0, if y ≤ 0 and that b = 1 if y > 0. This is illustrated by plotting the two
conditional densities fY (y|b) in Figure 2.10.
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FIGURE 2.10: Gaussian densities of received signals for bits 0 and 1 with a
unit noise variance

2.7.2 Bit error rate evaluation

The BER calculation is important to assess the performance of the data link. The
receiver makes an error if bit 0 was transmitted and y > 0 and if bit 1 was transmitted
and y ≤ 0. Let eb be the probability of error. This is also the BER we are interested
in evaluating.

eb =

∞∫
y=0

1
2
fY (y|0)dy +

0∫
y=−∞

1
2
fY (y|1)dy. (2.213)

Both the above integrals are equal, due to symmetry. Therefore,

eb =

∞∫
y=o

fY (y|0)dy (2.214)
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=

∞∫
y=0

1√
2πα2

τ

exp
(
− (y + 1)2τ

2α2

)
dy. (2.215)

Substitute

v = (y + 1)
√

τ

2α2
(2.216)

in the above integral. When y = 0, v evaluates to
√

τ
2α2 .

dv = dy

√
τ

2α2
. (2.217)

Therefore,

eb =
1√
π

∞∫
√

τ
2α2

exp(−v2)dv. (2.218)

A standard integral function similar to the above is popularly used. It is defined as
the error function

erf(x) =
2√
π

x∫
v=0

exp(−v2)dv. (2.219)

For a positive x, the above can be interpreted as the probability of a Gaussian random
variableW with zero mean and a variance of 1

2 falling in a region as follows.

erf(x) = 2
1√

2π × 1
2

x∫
v=0

exp
(
− v2

2 × 1
2

)
dv (2.220)

= 2P [0 < W ≤ x]. (2.221)

We know that P [0 < W ≤ ∞] = 1
2 . Therefore, we have

erf(0) = 0 and (2.222)

erf(∞) = 1. (2.223)

2√
π

∞∫
v=x

exp(−v2)dv = 1 − erf(x) and (2.224)
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1√
π

∞∫
v=x

exp(−v2)dv =
1
2
− 1

2
erf(x). (2.225)

Returning to the bit error rate, we therefore have

eb =
1√
π

∞∫
√

τ
2α2

exp(−v2)dv (2.226)

=
1
2
− 1

2
erf

(√
τ

2α2

)
. (2.227)

We finally have the expression to assess the performance of the channel as a func-
tion of τ which is the inverse of the data rate. In reality, the probabilities of the bits
0 and 1 may not be equal, the data bits may not be iid, and there may be other in-
accuracies in our simplification. However, that the argument that noise is Gaussian
and the effect of the variance of the noise is inversely proportional to τ is a very
good approximation. Design approaches to combat noise influences the value of α2.
Since this α2 represents the effect of noise and plays a central role in using errors in
performance, let us rename it as σ2

b . The physical dimension of σ2
b is the reciprocal

of time. The final expression for BER that we shall use later is

eb =
1
2
− 1

2
erf

(√
τ

2σ2
b

)
. (2.228)

A useful result from this treatment of digital communication is that if the BER at
a particular data rate is given to us, that determines the effective σ2

b so that we can
evaluate the BER if the data rate is varied. The following example illustrates it well.
Alternatively, if we use s = 1

τ as the data transmission (s for sending) rate in bps,

eb =
1
2
− 1

2
erf

(√
1

2σ2
bs

)
. (2.229)

and σ2
b can be interpreted as the equivalent noise variance per unit transmission rate

of 1 bps.

2.7.3 Frame error rate evaluation

In the data link, the frame error rate (FER), denoted by ef can be evaluated if we
know the distribution of the number of bits in the frames and if we continue to assume
the above model of the nature of bit sequence and the effects of noise. A good model
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for the frame size is an exponential random variable, which is an approximation of
the geometric random variable. Let the data frame size K be a geometric random
variable with a pmf

P [K = k] = q(1 − q)k−1, k = 1, 2, · · · . (2.230)

The average frame size is E[K] = 1
q . A frame is erroneous if even one bit in the

packet is erroneous. Therefore, error rate is given by

ef = FER = 1 −
∞∑

k=1

(1 − eb)kq(1 − q)k−1 (2.231)

= 1 − q(1 − eb)
∞∑

k=0

[(1 − eb)(1 − q)]k (2.232)

= 1 − q(1 − eb)
1 − (1 − eb)(1 − q)

(2.233)

=
eb

1 − (1 − q)(1 − eb)
. (2.234)

Clearly, the FER, or ef , is a little higher than the BER eb. Thus, if the average frame
size is known and either the BER or FER is known at one data rate, the BER and
FER can be evaluated at other data rates.

2.7.4 Data rate optimization

Example 2.7
The BER of a wireless data link operating at 1 Mbps is known to be 10−3.

The throughput is defined as the overall bit rate calculated using all the bits
in the correctly received packets only. The average packet size is 1000 bits
per packet.

1. Determine the equivalent noise parameter, σ2
b of this datalink.

2. Plot the throughput, that is, the rate of correctly received bits as the
data rate is varied from 1

2 Mbps to 2 Mbps. What is the data transmis-
sion rate (in bps) that maximizes this throughput?

3. The energy consumed per bit is the expected energy expended by the
transmitter in order for the receiver to receive a bit correctly, without
errors. Energy of a bit transmission is proportional to the bit width.
Determine the optimal bit width to minimize the expected energy per
correctly received bit.
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Solution

1. The error function is strictly monotonically increasing. Define the inverse error
function as follows. For a positive u, if v = erf(u), the inverse function
u = erf−1(v). The domain of v for the inverse function is [0, 1], and the
range of u is [0, ∞). For a bit-width of τ and a noise parameter σ2

b , we have
the BER

eb =
1
2
− 1

2
erf

(√
τ

2σ2
b

)
. (2.235)

Rearranging,

σ2
b =

τ

2[erf−1(1 − 2eb)]2
. (2.236)

Due to the monotonicity of the error function, given a value for eb at a τ , the
value of σ2

b is easy to evaluate numerically. Indeed, the Matlab software has
a built-in function for the inverse of the error function. For τ = 10−6 second
and eb = 10−3, σ2

b evaluates to 0.10472×10−6 second or 0.1047 per Mbps.

2. The expected fraction of a bit correctly received for every transmitted bit is
simply the probability that the transmitted bit is in a correctly received data
frame. Therefore, the throughput, E[Y ], in correctly received bits per second
(“sec” is also used to denote a second of time) is the product of the transmitted
bit rate (say s for the rate of sending bits) and the probability of correctly
receiving a data frame at the receiver.

E[Y ] = s(1 − ef) (2.237)

where ef is the frame error rate FER given by equation (2.234) in Section 2.7.

ef =
eb

1 − (1 − q)(1 − eb)
, (2.238)

eb =
1
2
− 1

2
erf

(√
1

2σ2
bs

)
(2.239)

with 1
q being the average packet size in bits. We know eb from above. Figure

2.11 illustrates the variation of the throughput as a function of the data rate s.
The throughput reaches a maximum of 0.6358 Mbps at the data rate 0.7445
Mbps.

3. The expected number of bits transmitted for a correctly received bit is 1
1−ef

.
Since energy transmitted per bit is proportional to the bit-width, the expected
energy transmitted for every correctly received bit is proportional to

E[Z] =
1

s(1 − ef )
. (2.240)
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FIGURE 2.11: Throughput of an unreliable link as a function of the data rate

Clearly, the expected energy per correctly received bit is minimized at the same
data rate that maximizes the throughput.

2.8 Exercises

1. Let µ be the finite mean and σ2 be the finite variance of a Pareto random
variable. Express each of α and β as functions of the mean and the variance
only. For a mean of 1.5 msec and a variance of 0.75 msec2, find α and β.

2. In Pareto random variables, β is just a scale factor and, by using different time
units, β can always be normalized to 1. So, only α affects the behavior of the
Pareto random variable. Let β be 1 msec. Plot the variation of the variance as
a function of α, starting from close to 2, up to 10.

3. Consider a shifted Pareto random variable Y whose density function is
nonzero for y ≥ 0. The density is given by

fY (y) =
α

β

( β

y + β

)α+1

, y ≥ 0. (2.241)
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Let its mean and variance be finite and given by µ and σ2 respectively. Express
α as a function of µ and σ2 only. Express β as a function of µ and σ2 only.

4. Consider Poisson arrivals with a rate of 1 job per second. Now approximate
the arrival process so that there can be at most one arrival in each of successive
nonoverlapping narrow intervals of 0.1 sec per interval. What is the probabil-
ity of exactly one arrival in a 0.2 second time interval (in this approximated
model)?

5. A computer is processing a job whose total time requirement is exponentially
distributed with parameter µ. The operating system (OS) has started a timer
which is also exponentially distributed but with parameter α. If the job is not
completely processed by time the OS timer signals its completion, the job is
preempted for a later resumption. Let the start of the job’s processing and the
OS timer be both at time instant 0 (that is, they are started simultaneously and
a race ensues). Determine the pdf of the time instant at which the processor
will be relieved of the job, either due to completion or due to preemption by
the OS.

6. In the above physical system, what is the probability that the OS wins the
race? That is, what is the probability of that the OS timer rings before the
job’s processing is complete?

7. Consider a Poisson stream of arrivals with a rate of one arrival per 3 seconds
of time. During a time interval lasting from 0 to 1 second, exactly one arrival
occurred, at some unknown time instant t ∈ (0, 1]. Develop the probabil-
ity density function of the above arrival time instant. That is, determine the
probability density function f(t| exactly one arrival in (0, 1] ).

8. The mean and variance of a continuous, uniformly distributed random variable
have been estimated to be 12 and 64, respectively. Estimate the parameters of
the distribution.

9. In a computer center, training sessions are offered to groups of three persons
at a time. There are enough computers and enough staff to begin a training
session as soon as three persons have gathered. People arrive for training in
a Poisson process with a rate of 10 per hour. The computer center has been
operating for a long time, and it can be shown that the probabilities that 3k,
3k + 1, and 3k + 2 persons have so far arrived are all equal at the time a
person arrives (this is taken for granted here). Determine the expected time an
arriving person needs to wait before the training can start.

10. A stream of Poisson arrivals is split into two substreams with alternate arrivals
being routed to each of the two substreams. Prove that the arrival scheme in
each of the substreams is NOT Poisson, with the help of Laplace transforms.
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11. A computer system consists of a CPU and an I/O. Each of these components
is known to be an exponential server; each job goes through both the compo-
nents. A frequent user estimated the mean and variance of the total time a job
takes to be 10 second and 82 second2, respectively. CPU and I/O times are
independent. Estimate the service rates of the CPU and the I/O.

12. x1, ..., xn are the observed outcomes of a random sample from the following
uniform density function.

fX(x) =
1

b− a
, a ≤ x ≤ b (2.242)

= 0, otherwise. (2.243)

The parameters a and b are unknown. Determine estimates of a and b as func-
tions of x1, ..., xn.

13. Let X be a Pareto random variable with parameters 1 < α ≤ 2 and β > 0.
Let Y be ln(X). Determine the density function of Y .

14. Express each of α and β in the above problem as functions ofE[X ] andE[ 1
X ].

15. Write an algorithm for generating the time instants of a sequence of arrivals
starting from 0 and ending T . The IATs are iid Pareto random variables with
parameters α and β.

16. Add a segment of algorithm to the above to determine the sample mean and
sample variance of the generated IATs.

17. Over many independent and identical trials of a binomial random variable X ,
the mean was estimated to be 5.5 and the variance was estimated to be 1.7.
Estimate the parameters of this binomial random variableX .

18. A Poisson sequence of jobs with rate 1 per second arrive in front of a server.
The service requirements of jobs are independent, identical, and exponential
with an average time of 1

2 second. Consider the first k jobs arriving over a
time period starting from time t = 0. The server is free to start serving at time
t = 0. What is the probability that ALL k of them get service without any of
them having to wait for previous arrivals to complete service? Note that this
question does not require queuing theory. This can be solved with properties
of Poisson and exponential random variables.

19. A TCP connection lasts for a random amount of time X which is uniformly
distributed between 0 and a. The data packets in this connection arrive as a
Poisson stream with rate λ. Determine the probability of receiving at least one
data packet in such a TCP connection.



62 Performance Analysis of Queuing and Computer Networks

20. A TCP connection lasts for a random amount of time X with a probability
density fX(x). The data packets in this connection arrive as a Poisson stream
with rate λ. Prove that the expected number of data packets arriving during
such a TCP connection is λE[X ].

21. In a digital communication system, a sequence of two bits is transmitted as
a single symbol. Obviously, there are four different values for the symbols.
They are transmitted as the equivalents of the numerical values -1.5, -0.5, 0.5,
and 1.5, respectively. After preprocessing at the receiver, the received numeri-
cal value corresponds to the transmitted value plus the outcome of a Gaussian
random variable X which has a mean η = 0 and a variance of σ2 = 0.0169.
Develop the decision algorithm that the receiver should use. Evaluate the nu-
merical value of the probability of error that a symbol experiences through this
communication system.



Chapter 3

The M/M/1/∞ Queue

3.1 Introduction

Packet data communication progresses in a sequence of stages. Each stage consists
of a subset of the following steps: arrive, wait, process, forward, and travel a physical
distance. From the point of view of evaluation of the overall performance, each such
stage is a queuing system. This is the case, for example, in a network wherein a data
frame over a long distance link starts to appear at the input of a system. In many
such systems, arrivals can take place at arbitrary time instants so that interarrival
times (IATs) are considered to be real variables as opposed to discrete variables. It
is common for a data packet to be referred to as a data frame in the datalink layer of
the data communication protocol hierarchy.

The processing system is digital and synchronizes the forwarding activity with its
own clock. In such systems the processing time is discrete, since a digital system
processes in an integer number of bits. However, due to the very large number of
possibilities in the number of bits processed, the processing time is justifiably ap-
proximated as a real variable. Hence, such systems are modeled and analyzed as
continuous-time queuing systems.

This chapter deals with the simplest queue that is amenable for analysis. In the
process, it introduces several key aspects of queuing theory. The basic model of the
queue is as follows. Interarrival times are memoryless with rate λ. Equivalently, the
sequence of arrival time instants is Poisson. Service times are memoryless with rate
µ. There is one server and unlimited waiting room capacity, i.e., an infinite buffer.
Service order is FIFO. Figure 3.1 shows the queuing model. Figure 3.2 shows a
time plot of numbers of arrivals and departures. Figure 3.3 shows the corresponding
number of customers as a function of timeA(t) is the number of arrivals as a function
of time with t = 0 being the starting time, and D(t) is the number of customers that
have departed as of t. N(t) = A(t)−D(t) is the number of customers in the system
as a function of time. We are interested in performance figures like the average
number of customers in the system, average delay in the system (experienced by a
customer), and what fraction of time the server is busy. The first task is to find the
probability function of N(t) under the condition that the pmf is independent of time
t.

63
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Departures
Poisson

ExponentialWaiting line
service

arrival
rate = λ

rate = µ

FIGURE 3.1: The M/M/1/∞ queuing model

3.2 Derivation of Equilibrium State Probabilities

At any instant of time τ , given that the number of customers in the system is n(τ),
the future behavior of the system, that is, at all time instants t > τ , is dependent on
n(t) only. This is due to the memorylessness of the interarrival times and also of
service times. Following the time instant t, the behavior of the system is a function
of the number n(t) and any arrivals and departures after t. The time instants of
arrivals and departures after t are independent of the time instants when the most
recent arrival or the most recent departure took place, prior to t. This may not be true
of other systems studied in later chapters.

DEFINITION 3.1 The number of customers in the M/M/1/∞ queuing
system is referred to as the state of the system.

The arrival rate is denoted by λ, and the service rate, by µ. Let

Pij(δt) = P [number in system changes from i to j in δt] and (3.1)

Pn(t) = P [number in system is n at time t]. (3.2)

We will be taking limits as δt → 0, so we need to consider at most one arrival in a
time interval δt, or one departure in δt, but not both, since in any time interval, the
number of arrivals and the number of service completions are both independent and
memoryless. P [one arrival] is λδt, P [no arrival] is (1 − λδt). Similar relations hold
for departures. If n− 1 ≥ 0,



The M/M/1/∞ Queue 65

0 2 4 6 8 10 12 14
0

5

10

15

t

nu
m

be
r

Sample plot of the behavior of a stable M/M/1/∞ queue

A(t)
D(t)

FIGURE 3.2: Sample plots of cumulative numbers of arrivals and departures
as a function of time



66 Performance Analysis of Queuing and Computer Networks

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

t

nu
m

be
r

Sample plot of the behavior of a stable M/M/1/∞ queue

FIGURE 3.3: Sample plot of the number of customers remaining in the system
as a function of time



The M/M/1/∞ Queue 67

Pn(t+ δt)

= Pn(t)(1 − λδt)(1 − µδt) + Pn−1(t)λδt(1 − µδt) + Pn+1(t)(1 − λδt)(µδt).
(3.3)

For n = 0,

P0(t+ δt) = P0(t)(1 − λδt) + P1(t)(1 − λδt)µδt. (3.4)

Simplifying and ignoring terms containing (δt)2, we have

Pn(t+ δt) = Pn(t)[1 − (λ+ µ)δt] + Pn−1(t)λδt + Pn+1(t)µδt,
for n ≥ 1 (3.5)

P0(t+ δt) = P0(t)[1 − λδt] + P1(t)δtµ. (3.6)

lim
δt→0

Pn(t+ δt) − Pn(t)
δt

= −Pn(t)(λ + µ) + Pn−1(t)λ+ Pn+1(t)µ,

for n ≥ 1.
(3.7)

dPn(t)
dt

= −Pn(t)(λ + µ) + Pn−1(t)λ+ Pn+1(t)µ,

for n ≥ 1. (3.8)

lim
δt→0

P0(t+ δt) − P0(t)
δt

= −λP0(t) + µP1(t). (3.9)

dP0(t)
dt

= −λP0(t) + µP1(t). (3.10)

So, we have an unlimited number of simultaneous linear differential equations with
constant coefficients. In computer systems and networks, if the arrival and service
rates are constants, within a few seconds, several thousands of jobs would have
passed through. We subjectively anticipate that the derivatives will reduce in magni-
tude as time progresses and that the probabilities will settle down to their respective
constants and not vary with time. Therefore, we consider the steady state solution to
the set of differential equations.

DEFINITION 3.2 If dPi(t)
dt = 0, for all i in an M/M/1/∞ system at

some time t, we say that the system is in equilibrium. at that time t.

Let us see if such an equilibrium is possible in our M/M/1 system, derive a “solu-
tion” for Pi(t) = pi, for all i ≥ 0, under such assumptions, and the condition for the
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assumption to be valid. Let

pi = lim
t→∞Pi(t), i ≥ 0. (3.11)

We have

−p0λ+ p1µ = 0 (3.12)

−pn(λ+ µ) + λpn−1 + µpn+1 = 0 (3.13)

p1 =
λ

µ
p0 (3.14)

p0 =
µ

λ
p1. (3.15)

Using this and with n+ 1 = 2, we get,

−p1(λ+ µ) + λ
(µ
λ
p1

)
+ µp2 = 0 (3.16)

−p1λ+ µp2 = 0 (3.17)

p2 =
λ

µ
p1. (3.18)

Let us check if pi+1 = λ
µpi, by induction. Let pk = λ

µpk−1 for k = i. For
k = i+ 1, we have

−pk(λ+ µ) + λpk−1 + µpk+1 = 0. (3.19)

Using pk = λ
µpk−1, we have

−pk(λ + µ) + λ
(µ
λ
pk

)
+ µpk+1 = 0 (3.20)

−pkλ+ µpk+1 = 0 (3.21)

pk+1 =
λ

µ
pk. (3.22)

By induction, it follows that
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pn+1 =
λ

µ
pn, n = 0, 1, 2, . . . (3.23)

pn+1 =
(λ
µ

)2

pn−1 =
(λ
µ

)3

pn−2 . . .
(λ
µ

)n+1

p0 (3.24)

pn =
(λ
µ

)n

p0. (3.25)

Under what conditions will these equilibrium probabilities exist? Sum all these prob-
abilities,

∞∑
n=0

pn = p0

∞∑
n=0

(λ
µ

)n

. (3.26)

This sum is required to be 1. This sum exists only if λ < µ. Therefore, under λ < µ,
the system “can be” in equilibrium with

p0 =
1∑∞

n=0

(
λ
µ

)n = 1 − λ

µ
. (3.27)

We have the following result.

THEOREM 3.1
Let ρ = λ

µ for an M/M/1/∞ queue with λ being the arrival rate and µ, the
service rate. The equilibrium probabilities exist only if ρ < 1 or equivalently,
if λ < µ and are given by

pn = (1 − ρ)ρn, n = 0, 1, 2, . . . . (3.28)

Conversely, if pn = (1 − ρ)ρn, for all n = 0, 1, · · · , then, dPn(t)
dt = 0, for all n,

as can be verified by substituting in equation (3.8). The quantity ρ is known by other
names “normalized load” and “utilization.” on the server. Figure 3.4 shows a plot
of pn as a function of n, for a few different values of ρ. The ordinate at n = 0 gives
1 − ρ for each plot.

DEFINITION 3.3 Stability An M/M/1/∞ queue is said to be stable
if the arrival rate λ is strictly less than the service rate µ.
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FIGURE 3.4: pmf of the state of an M/M/1/∞ queue

Whether a system is stable or not depends only on the parameters of the system
and not on whether it is currently operating under equilibrium. Steady-state is an-
other name for equilibrium. Steady-state state probabilities is another name for the
set {p0, p1, . . . }. Why should λ < µ for stability? λ is the arrival rate, the single
parameter representing the load offered to the server. µ is the service rate, the single
parameter representing the capacity of service offered to the environment. Obvi-
ously, the load cannot exceed the capacity. If it does, the server cannot serve all the
arrivals, the queue builds up, and the number of customers will not reach statistical
steady-state. Why can λ not equal µ and expect to reach steady-state? The answer
is that the interarrival times and service times are random. If λ = µ, the server
must be attending to one of another customer constantly, with no hope for a free
moment. Unfortunately, in the beginning of operation, it is very likely that there are
zero customers for some, may be short, periods of time. The server loses these times
from logging service and can never recover from such losses. Therefore, the queue
eventually builds up even if λ = µ.

3.2.1 Operation in equilibrium

Steady state operation is an alternative expression for equilibrium operation. The
following theorem shows that if a stable M/M/1/∞ system is in equilibrium at any
time instant, it will remain so indefinitely.
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THEOREM 3.2
If an M/M/1/∞ queue is in equilibrium at a time instant t = 0, it will

continue to be in equilibrium for all t > 0 as well.

Proof
The differential equations governing the behavior of Pi(t), i = 0, 1, · · · , are

dP0(t)
dt

= −λP0(t) + µP1(t) (3.29)

dPn(t)
dt

= −Pn(t)(λ+ µ) + Pn−1(t)λ+ Pn+1(t)µ, n ≥ 1. (3.30)

Differentiating both sides of equations (3.29) and (3.30) with respect to (wrt) t, we

find that the LHS is the second derivative d2Pi(t)
dt2 . The RHS is a linear combination

of the first derivatives. All the first derivatives are known to be zero at t = 0. Using
these in the RHS of the equation with the LHS being the second derivative, we find
that all the second derivatives are also zero at t = 0. Differentiating equation (3.30)
repeatedly, we find that the derivatives of all the state probabilities of all higher
orders are also zero at t = 0.

Now, 0 ≤ Pi ≤ 1, for all i = 0, 1, · · · , and
∑∞

i=0 Pi(t) = 1 ensure that

∞∑
i=0

aiPi < B (3.31)

where ai, i = 0, 1, · · · are all finite-bounded, and B is a finite bound. This implies
that the RHS of the differential equation (4.16) is finite and bounded for every iwhich
in turn implies that the first derivative of every state probability is finite and bounded
at every t > 0. Using similar arguments over successively differentiated versions of
the differential equations show that the time functions of all state probabilities are
continuous with continuous derivatives of all orders. This allows the Taylor series
representation for every Pi(t) for every t > 0 as

Pi(t) = Pi(0) +
∞∑

j=1

1
j!
djPi(τ)
dτ j

∣∣∣
τ=0

, i = 0, 1, · · · . (3.32)

Brook Taylor (1685–1731) was an English mathematician. In the above Taylor se-
ries, the derivatives are all evaluated at time zero. From the argument above, the
derivatives are all zero at time t = 0 showing that Pi(t) = Pi(0) for all i = 0, 1, · · ·
and for all t > 0.

3.2.2 Setting the system to start in equilibrium

A clever way to start the system to be equilibrium right from the starting time in-
stant t0 is to randomly choose a number of customers in the queue at t0 by the steady
state distribution of equation (3.28). How is this different from starting a queue with



72 Performance Analysis of Queuing and Computer Networks

a known, constant number (say, zero) of customers at t = 0? The difference is ex-
plained by considering (imagining) the sample space of an unlimited number of such
queues. Let an innumerable number of queues be started at t = 0, each with an
iid number of customers generated from an ideal random number generation algo-
rithm with the equilibrium state distribution. We do not look at any actual number of
customers obtained by the random number generation algorithm. Then, at any later
point in time, at τ > 0, the state of all the queues correspond to iid equilibrium state
pmf.

On the other hand if all the queues are started with a constant number of customers
(say k) at time t = 0, then, at a time τ > t, the pmf of the state of the queues is given
by the probability values dictated by the differential equations (3.29) and (3.30) at
t = τ , and not by the equilibrium state probabilities.

3.3 Simple Performance Figures

The equilibrium state probabilities are

pn = (1 − ρ)ρn, n ≥ 0, for ρ < 1. (3.33)

p0 = (1 − ρ) itself is a performance figure, as is 1 − p0 = ρ. This condition of
no customers in the system is also known by other expressions as “idle,” “system is
empty,” and “server is free.”

p0 = P [server is free] = P [empty] (3.34)

1 − p0 = P [server is busy]. (3.35)

Note that p0 is the highest of any steady state probability! However, P [N > 0] can
be larger than p0.

pn = (1 − ρ)ρn, n ≥ 0, (3.36)

is called a modified geometric pmf and the random variableN , a modified geometric
random variable.

Expected Number in the System
The most important visible quantity is the number of customers in a system. The
average of which constitutes an equally important performance figure.

E[N ] = steady state (or equilibrium) expectation of the state (3.37)
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=
∞∑

n=0

npn (3.38)

=
∞∑

n=0

n(1 − ρ)ρn (3.39)

= (1 − ρ)ρ
∞∑

n=1

nρn−1, since the argument of sum is 0 for n = 0

= (1 − ρ)ρ
∞∑

n=1

d

dρ
ρn. (3.40)

Derivative and sum operators can be interchanged, if both exist. We will inter-
change and verify this to be true (for ρ < 1).

E[N ] = (1 − ρ)ρ
d

dρ

{ ∞∑
n=1

ρn

}
(3.41)

= (1 − ρ)ρ
d

dρ

{ ∞∑
n=0

ρn − ρ0

}
(3.42)

= (1 − ρ)ρ
d

dρ

{
1

1 − ρ
− 1

}
(3.43)

= (1 − ρ)ρ
d

dρ

( ρ

1 − ρ

)
(3.44)

= (1 − ρ)ρ
(1 − ρ) − ρ(−1)

(1 − ρ)2
(3.45)

=
ρ

1 − ρ
(3.46)

Note that we could have simplified the steps above by noting d
dρ1 = 0.

E[N ] =
ρ

(1 − ρ)
. (3.47)

This quantity is also known as the average buffer occupancy. We see that as ρ
approaches 1, the average number of customers in the system rises very steeply.
Therefore, it does not help to try to make the capacity µ close to the load. Even
though doing this would reduce the fraction of time the server is free, it severely
contributes to increasing E[N ]. Figure 3.5 shows a plot of E[N ].
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FIGURE 3.5: Average number in an M/M/1/∞ queue as a function of arrival
rate
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Variance of the Number in the System
Let us first evaluate

E[N(N − 1)] =
∞∑

n=0

n(n− 1)pn (3.48)

=
∞∑

n=0

n(n− 1)(1 − ρ)ρn (3.49)

=
∞∑

n=2

(1 − ρ)(n)(n − 1)ρn (3.50)

= (1 − ρ)ρ2
∞∑

n=2

n(n− 1)ρn−2 (3.51)

= (1 − ρ)ρ2
∞∑

n=2

d2

dρ2
ρn (3.52)

= (1 − ρ)ρ2 d
2

dρ2

∞∑
n=2

ρn (3.53)

= (1 − ρ)ρ2 d
2

dρ2

∞∑
n=0

ρn (3.54)

= (1 − ρ)ρ2 d
2

dρ2

1
1 − ρ

(3.55)

= (1 − ρ)ρ2 d

dρ

1
(1 − ρ)2

(3.56)

= (1 − ρ)ρ2 2
(1 − ρ)3

(3.57)

=
2ρ2

(1 − ρ)2
(3.58)

= E[N2] − E[N ]. (3.59)

Equation (3.50) follows since the argument of the summation is zero for n = 1 and
n = 2. Equation (3.54) follows because the second derivatives of the argument for
n = 0 and 1 are zero anyway.

E[N2] =
2ρ2

(1 − ρ)2
+

ρ

1 − ρ
(3.60)
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=
2ρ2 + ρ(1 − ρ)

(1 − ρ)2
. (3.61)

var[N ] =
2ρ2

(1 − ρ)
+
ρ(1 − ρ)
(1 − ρ)2

− ρ2

(1 − ρ)2
(3.62)

=
2ρ2 + ρ− ρ2 − ρ2

(1 − ρ)2
(3.63)

=
ρ

(1 − ρ)2
. (3.64)

3.4 Response Time and its Distribution

The total time spent by a customer in the system is called the delay or the response
time. Response time is the sum of service time and any possible waiting time. We
will develop the probability density function for the response time with the help of
Laplace transforms.

Let R be the random variable for response time and r, its outcome. Under steady
state, let a customer enter the system and find n customers already in the system. The
remaining service time of any customer under service is exponential with parameter
µ, irrespective of any amount of service time already received by that customer, due
to the memorylessness of exponential service times. Therefore, the newly entering
customer needs to wait for an addition of n iid exponential times before getting into
service. Adding the service time of the entering customer, we see the following.
The response time of a customer who enters when there are n customers in the sys-
tem is the sum of n + 1 iid exponential service times. Therefore, the conditional
transformation,

LR(s|n) =
( µ

µ+ s

)n+1

. (3.65)

Using the theorem of total expectation, we have

LR(s) =
∞∑

n=0

LR(s|n)pn (3.66)

=
∞∑

n=0

( µ

µ+ s

)n+1

(1 − ρ)ρn (3.67)

=
(1 − ρ)µ
µ+ s

∞∑
n=0

( µρ

µ+ s

)n

(3.68)
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=
µ− λ

µ+ s

1
1 − λ

µ+s

(3.69)

=
µ− λ

µ− λ+ s
. (3.70)

Recognize this as the transform of an exponential random variable. Hence, we have
the following result.

THEOREM 3.3
The response time in an equilibrium M/M/1/∞ system, R is an exponential
random variable with parameter (or rate) µ− λ. That is,

fR(r) =

 (µ− λ)e−(µ−λ)r , r ≥ 0

0, r < 0.

Finally, the performance figure expected response time is given by

E[R] =
1

µ− λ
. (3.71)

Figure 3.6 shows a plot of E[R]. For the equilibrium M/M/1/infty system,

E[N ] =
λ

µ− λ
. (3.72)

E[R] =
1

µ− λ
. (3.73)

Therefore,

E[N ] = λE[R]. (3.74)

3.5 More Performance Figures for M/M/1/∞ System

E[Ns] = Expected number of customers in service. If the server is free, no cus-
tomer is being served. If the server is busy, exactly one is under service.

E[Ns] = E[Ns|busy]P [busy] + E[Ns|empty]P [empty] (3.75)
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= 1 · ρ+ 0 · (1 − ρ) (3.76)

= ρ. (3.77)

Let the number of customers in waiting be Nw under equilibrium.

N(t) = Nw(t) +Ns(t). (3.78)

The above formula is always true. Under steady state (we drop t),

E[N ] = E[Nw] + E[Ns] (3.79)

E[Nw] = E[N ] − E[Ns] (3.80)

=
ρ

1 − ρ
− ρ (3.81)

=
ρ2

1 − ρ
. (3.82)

E[Nw] =
ρ2

1 − ρ
. (3.83)

Let Ts be the service time random variable and Tw the waiting time. We have the
following expression which is always true,

R = Tw + Ts, (3.84)

and so,

E[R] = E[Tw] + E[Ts] (3.85)

⇒ 1
µ− λ

= E[Tw] +
1
µ

(3.86)

⇒ E[Tw] =
λ

µ(µ− λ)
. (3.87)

The plots in Figure 3.6 include the expected waiting time, denoted by E[W ].
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3.6 Waiting Time Distribution

The waiting time in an M/M/1 queue is a mixed random variable. We know that
P [Tw = 0] > 0, and we have a density function for fTw(t|Tw > 0). So, the random
variable has a continuous component and a discrete component.

P [Tw = 0] = P [empty] = 1 − ρ (3.88)

P [Tw > 0] = ρ. (3.89)

The condition Tw > 0 implies N > 0. The conditional transform of waiting time,
under the condition that it is larger than zero is,

LTw (s|Tw > 0) =
∞∑

n=0

LTw (s|N = n,N > 0)P [N = n|N > 0] (3.90)

=
∞∑

n=1

LTw (s|n)
P [N = n,N > 0]

P [N > 0]
(3.91)

=
∞∑

n=1

LTw (s|n)
(1 − ρ)ρn

ρ
. (3.92)

When there is at least one customer at the time a new customer enters, the wait-
ing time for the new customer is the sum of service times of all the n customers.
Therefore,

LTw (s|n) =
( µ

µ+ s

)n

, n ≥ 1 (3.93)

LTw (s|Tw > 0) =
1 − ρ

ρ

∞∑
n=1

( µρ

µ+ s

)n−1

(3.94)

=
(1 − ρ)µ
µ+ s

1
1 − µρ

µ+s

(3.95)

=
µ− λ

µ− λ+ s
. (3.96)

Thus, under the condition that a customer waits, the waiting time is distributed
exponentially with rate µ− λ. The mixed density function of the waiting time is

fw(t) =
{

(1 − ρ)δ(t) + ρ(µ− λ)e−(µ−λ)t, t ≥ 0
0, t < 0.

(3.97)
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The function δ(t) is the Dirac delta function, named in honor of Paul Dirac (1902–
1984), a British scientist. It is defined by

δ(t) =
{

0, t > 0
0, t < 0 and (3.98)

∞∫
−∞

δ(t)dt = 1. (3.99)

The cumulative distribution function is simpler to represent;

FTw (t) =
{

1 − ρe−(µ−λ)t, t ≥ 0
0, t < 0.

(3.100)

3.7 Departures from Equilibrium M/M/1/∞ System

The properties of the stream of departing customers from an equilibrium
M/M/1/∞ system are interesting to study. If such output stream is Poisson, it sim-
plifies the analysis of a follow-up queue fed by the departures of the first queue. P. J.
Burke showed in 1966 that the output of a class of queues, including the M/M/1/∞
queue, to be Poisson, using the principle of reversibility of Markov processes. A
derivation based on simpler principles is developed below. Let us first obtain the
nature of the random variable T , the time for the next departure from an equilibrium
M/M/1/∞ queue observed from time t = 0.

THEOREM 3.4
Let an M/M/1/∞ system be known to be in equilibrium at time t = 0. Let T
be the random variable time interval for the next departure. If T is observed
(without observing any other quantity such as the number in the system), the
probability density function of T is exponential with parameter λ, the arrival
rate.

Proof
At t = 0, the random variable number of customers N has the known modified

geometric pmf pn = (1 − λ
µ )

(
λ
µ

)n

, n = 0, 1, · · · . The Laplace transform of T is

given by

LT (s) =
∞∑

n=0

pnLT (s|N = n). (3.101)

If the system is busy at t = 0, the time for the next departure is the remaining service
time of the customer being served, which is exponentially distributed with parameter
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µ. If the system is empty at t = 0, the time for the next departure is the sum of the
time for the next arrival and its service time. Therefore,

LT (s|N > 0) =
µ

µ+ s
and (3.102)

LT (s|N = 0) =
µ

µ+ s

λ

λ+ s
. (3.103)

Using these in equation (3.101), we have

LT (s) =
(
1 − λ

µ

)(
µ

µ+ s

λ

λ+ s

)
+
λ

µ

µ

µ+ s
(3.104)

which simplifies to

LT (s) =
λ

λ+ s
. (3.105)

That is, the time for the next departure starting from any time instant at which the
system is known to be in equilibrium (and not conditioned on any other observation
about the system) is exponentially distributed with parameter λ.

The above theorem can also be proved without the use of Laplace transform and
with the use of the pdf of the sum of two independent exponential random variables
with parameters λ and µ. This is encouraging but not sufficient to conclude that
the departure stream is Poisson, since we need successive interdeparture times to
be mutually independent for the departure stream to be Poisson. That is, after we
observe the time for the first departure, could the next IDT be dependent on the
observed time for the first departure? One way to show that successive IDTs are iid
is to show that the system will be found to be in equilibrium the time instant after a
departure. A simple algebraic proof follows.

LEMMA 3.1
The pmf of the number of Poisson arrivals with rate λ during a time period

that is exponentially distributed with parameter µ is modified geometric with
a success probability of λ

λ+µ .

Proof
As usual, ρ = λ

µ . At any time instant that the system is busy, the time for the next
arrival Y and the time for the next departureX are independent exponential random
variables with rates λ and µ respectively, each competing to occur before the other.

P [X ≤ Y ] =

∞∫
y=0

y∫
x=0

fxy(x, y)dxdy (3.106)

=

∞∫
y=0

y∫
x=0

µe−µxλe−λydxdy (3.107)
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=

∞∫
y=0

λe−λy

y∫
x=0

µe−µxdxdy (3.108)

=

∞∫
y=0

λe−λy[−e−µx]y0dy (3.109)

=

∞∫
y=0

λe−λy(1 − e−µy)dy (3.110)

=

∞∫
y=0

λe−λydy −
∞∫

y=0

λe−(λ+µ)ydy (3.111)

= 1 − λ

−(λ+ µ)

[
e−(λ+µ)y

]∞

0

(3.112)

= 1 − λ

λ+ µ
(3.113)

=
µ

λ+ µ
(3.114)

We will use the above property between two independent and competing expo-
nential random variables in other applications also. At any time instant the system
is busy, the probability that the next change is an arrival and not a departure is λ

λ+µ .
After k such arrivals, a departure, with a probability µ

λ+µ must occur for exactly k
arrivals before a departure. Therefore, if the system is busy, the random variable
number K of customers arriving into the system before a customer departs has the
pmf

P [K = k] =
(

λ

λ+ µ

)k
µ

λ+ µ
(3.115)

=
(

ρ

1 + ρ

)k 1
1 + ρ

(3.116)

=
ρk

(1 + ρ)k+1
, k ≥ 0. (3.117)

THEOREM 3.5
Under the same conditions as in the above Theorem 3.4, the number of cus-
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tomers in the system follows the equilibrium distribution, the time instant
after the departure.

Proof
Recall that the departure is the first one observed after starting the observation at
t = 0 and that the system was known to be in equilibrium at t = 0. Let M be
the random variable number of customers at t = 0. Let N be the random variable
number of customers the time instant after the first departure; that is, N does not
include the departing customer. Only departures are observed. Arrivals are hidden
from the observer. Let K be a random variable corresponding to the number of
arrivals during an entire or remaining service time. Since service time is memoryless,
the two have the same pmf. For the case of N = 0, the system could have had 0
customers at t = 0 followed by one arrival before the departure, or 1 customer at
t = 0 and no arrival before the departure. Therefore,

P [N = 0] = P [K = 0 after the first arrival |M = 0]P [M = 0]

+P [K = 0|M = 1]P [M = 1] (3.118)

=
1

1 + ρ
(1 − ρ) +

1
1 + ρ

(1 − ρ)ρ (3.119)

= 1 − ρ. (3.120)

For P [N = n > 0], we again have two subcases. If the system was empty at
t = 0, we need a first arrival followed by n arrivals during the service time of the
first arrival. If the system was not empty and had m customers at t = 0, we need
n+ 1−m arrivals in the remainder of the ongoing service time. The variablem can
be of any value from 1 through n+ 1. Therefore, for n > 0, we have

P [N = n] = P [N = n|M = 0]P [M = 0]

+
n+1∑
m=1

P [N = n|M = m]P [M = m] (3.121)

= P [K = n after the first arrival |M = 0]P [M = 0]

+
n+1∑
m=1

P [K = n+ 1 −m|M = m]P [M = m] (3.122)

=
(1 − ρ)ρn

(1 + ρ)n+1
+

n+1∑
m=1

ρn+1−m(1 − ρ)ρm

(1 + ρ)n+2−m
(3.123)

=
(1 − ρ)ρn

(1 + ρ)n+1

(
1 + ρ

(1 + ρ)n+1 − 1
(1 + ρ) − 1

)
(3.124)
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= (1 − ρ)ρn. (3.125)

That is, the pmf of the number of customers satisfies the equilibrium pmf of the
number of customers in the queue, for both the cases of N = 0 and N > 0.

Combining the above two theorems, we have the nice desirable result.

THEOREM 3.6

The stream of departing customers from the output of an equilibrium
M/M/1/∞ queue is Poisson with a rate equal to the arrival rate, λ.

Proof
If the system under consideration is at equilibrium at some time, we know from the
above two theorems that

1. Time for the next departure is exponential with rate λ.

2. The system is at equilibrium, at the instant following the departure.

Following the first departure time instant, the future behavior of the system is a func-
tion only of the state at that instant which is known to be in equilibrium. Therefore,
the time for the next departure is not dependent on the time for the first departure.
Also, the next interdeparture time (IDT) is exponential with rate λ. Thus, the se-
quence of IDTs are iid exponential with rate λ.

The original result of the Poisson nature of the output stream of customers from an
equilibrium M/M/1/∞ system is due to P. J. Burke, published in 1956. This property
of M/M/1/∞ queues has far reaching consequences. Over a packet communication
data link, it may be initially confusing to think that packet arrivals can be Poisson,
since each packet takes some time to flow into the receiver hardware. That is, an
arrival does not occur at a single time instant. The packets have nonzero ON time.
However, we can consider that the data packets are coming out of another M/M/1/∞
system with the packet ON time being the service time of an earlier exponential
server. Tracing these arguments to the origin of the packets, a computer simply
creates a data packet and a virtual arrival by placing a pointer to the memory segment
corresponding to a packet. This occurs in a negligible time (in comparison with other
service times). Thereafter, all the packet movements take time intervals proportional
to the data packet sizes. For hundreds and thousand of bits, the number of bits in a
packet is very well approximated by a continuous random variable. At downstream
points in a network, packets are coming out of a sequence of equilibrium M/M/1/∞
systems. We now know that such outputs for Poisson streams. At a point, a packet is
considered to have arrived just after its last bit has completed arriving. Furthermore,
at some point in a network, if packets are iid probabilistically switched to two or
more different queues, input streams into all the queues retain the Poisson property.
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3.8 Analysis of ON-OFF Model of Packet Departures

A distinction between queues in data packet communication and some other ap-
plication areas is that a data packets flows into a queue buffer over a nonzero amount
of time. Contrast this with a human being walking into a queue buffer or a physical
hardware being submitted to a repair facility. In all these cases, we consider that
the job arrives into the queue after it has completely arrived. The fact that humans
walk in with a finite speed is not of consideration here! If we assume that all the
humans walk with the same speed, the time instant the customer enters the queue is
the arrival time instant. In a similar way, consider cars modeled as points moving
through a lane on a road. Even though cars may differ slightly in their lengths, the
service time they need at an oil change facility is quite independent of their lengths.
Therefore, modeling them with an arrival time instant each is an excellent approx-
imation. However, the scenario of data bits flowing over a communication link is
different. The time taken for the data packet to flow in is proportional to the number
of bits in the packet. Again this is not due to a finite speed of propagation over a
long distance link, but due to each bit encoded as a time function of electromagnetic
quantities over a finite time-width.

In the previous section, we argued that in spite of this on-off model of packet
train, we can consider that a packet arrives when its final bit has just completed
arriving. Then the departure points constitute a Poisson stream and such a packet
stream presents itself as Poisson arrivals into any following queue. Clearly, the on
times of individual packets in such a packet train are iid exponential with the service
rate of the queue from which the packet train is departing. However, what is the
nature of the off-times? This is the subject of the present section. Consider a segment
of time containing a few packets of the packet train; see Figure 3.7, similar to Figure
2.2 of Chapter 2. The random variable X is the on-time of a packet, corresponding
to the service time in a queue whose output constitutes the packet stream. Similarly,
the random variable Y is the off-time. Y starts from the completion of the departure
of a packet to the beginning of the service time of the next packet. Since we now
know that the system is in equilibrium at the completion of every service, successive
occurrences of Y are iid. Of course, successive occurrences of X are the successive
service times and are iid. Note the following. From the beginning of Y till the end
of the nextX is the time interval between successive time instants of completions of
service of successive packets. We know this to be iid exponential with rate λ, from
the previous section. The random variable starting from the beginning of X to the
end of the next Y is composed of two components. The first component, X is the
service time which is exponential with a rate µ. At the conclusion of service, that is,
at the end ofX (which is the same time instant as the beginning of Y ), we now know
that the system is in equilibrium. Therefore, successive Y are iid. Successive time
intervals Y + X are the time intervals between successive completions of service,
known to form a Poisson sequence with rate λ. Successive intervals of X + Y must
also have the same statistical nature, simply because Y + X = X + Y . Therefore,
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FIGURE 3.7: ON-OFF model of a packet train

we have the following result.

THEOREM 3.7
If packets start leaving the system as they begin service in an equilibrium
M/M/1/∞ queue, the sequence of such points constitutes a Poisson stream
with rate λ.

Finally, what is the distribution of the random variable Y ? This is not a purely
continuous random variable. Since the system is in equilibrium at the end of a de-
parture, another packet can immediately get into service if the system is busy, which
occurs with a probability ρ. Therefore, we have

P [Y = 0] = ρ. (3.126)

In order for Y > 0, the system must be empty when at the completion of service of
one packet. This occurs with a probability (1 − ρ). If the system is empty, the time
interval for the next service to begin is exponential with rate λ. Therefore,

fY (y, Y > 0) = P [Y > 0]fY (y|Y > 0) (3.127)

= (1 − ρ)λ exp(−λy). (3.128)

The cumulative distribution of Y is easily obtained as

P [Y ≤ y] = 1 − ρ exp(−λy). (3.129)
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Therefore, Y is not exponential leading to the following cautionary statement.

THEOREM 3.8
In the ON-OFF sequence of a train of packets departing an equilibrium
M/M/1/∞ queue, the OFF time periods between successive packets are iid
but are not exponential.

3.9 Round Robin Operating System

The following is a realistic representation of the functioning of uniprocessor sys-
tems. The operation is referred to as round robin. A user typically submits many
jobs in succession and the system responses are not necessarily FIFO. The operat-
ing system (OS) has an internal timer that rings in a succession of iid exponentially
distributed random intervals. If the server is serving a customer when the OS timer
rings, the customer is sent back to the tail of the queue and the next customer in
the waiting line starts service. Typically, the average time intervals between these
rings is much less than the average service time requirement of jobs so that a job gets
swapped out of service several times. Each of the continuous time segment service is
called a piecemeal service. Due to the memoryless property of the total service time
requirement of jobs, the remaining service time of every job is also distributed iden-
tically to the total service time requirement. Time wasted for swapping the jobs in
and out of service is negligible. Therefore, the number of customers and their statis-
tical service requirements after a feedback are identical to those before the feedback.
Hence, the statistical behavior of N(t) is same as in the basic M/M/1/∞ system.

The overall (or total) service time is exponentially distributed with an average of
1
µ . Let the piecemeal service time be exponential with an average of 1/α. Typically,
1
α < 1

µ although this is not necessary for the validity of the analysis. Of course, the
feedback piecemeal service time is also memoryless. The probability of a job being
fed back is the probability that an exponential random variable with rate α is less than
another independent exponential random variable with rate µ. This is evaluated in the
proof of Lemma 3.1 to be α

α+µ . Figure 3.8 shows the queuing model for such a round
robin system. The expected number of feedback returns a customer experiences is
the expectation of the modified geometric random variable with a success probability
of α

α+µ . This expectation evaluates to α
µ . The expected number of passes through

the queue is

1 +
α

µ
=
α+ µ

µ
. (3.130)

Since each customer experiences iid number of feedback returns, the combined ar-
rival rate into the merged waiting line is simply the product of the arrival rate and
the expected number of passes a customer makes. This is given by λ(α+µ)

µ . Figure
3.9 shows the rates of customers flowing at different points in the system. The rate
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FIGURE 3.8: The round robin queuing model

of customers departing the server is the same as the combined rate of the merged
customers, λ(α+µ)

µ . Note that we do not know whether or not the combined arrival
stream of customers is Poisson, at this point of analysis. Figure 3.9 shows the system
with rates of customers at different points.

λ λ(α+µ)
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λα
µ

λ
λ(α+µ)

µ

FIGURE 3.9: Rates of customers at different points in a round robin system

The goal of this analysis is to determine the total expected waiting time of a tagged
job A whose total service requirement is known to be a real variable τ . We need to
find the expected number of passes. Figure 3.10 shows a typical total service time
interval τ composed of segments of piecemeal service times. The successive service
time segments do not occur continuously. They are laid down successively in the
figure, to illustrate the relation between the number of service time segments and
the total service time. Every time the job A passes through the server and is fed
back, it completes an iid exponential amount of time with parameter α. Therefore,
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the number of feedback returns of A is a Poisson random variable with rate α over
time τ . The number of passes job A makes through the server is one more than the
number of feedback returns, which simply includes the last pass which is not fed
back. Therefore, the expected number of passes job A makes through the server is
1 + ατ . At the outset, we do not know if the expected response times of all the
passes are the same. The following theorem establishes an important result required
to evaluate the total expected waiting time of multiple passes.

THEOREM 3.9
Let a tagged customer A enter the round robin system at t = 0 when the system
is known to be in equilibrium. Let the arrivals be Poisson, service times be
iid exponential, and feedback times be iid exponential. When the customer A
leaves the system after one pass, (either for feedback or for overall departure),
the system will again be in equilibrium.

Proof
Let there be K customers in the system just before customer A enters at t = 0. As
usual, k is the outcome of K . We know that P [K = k] = (1 − ρ)ρk. During the
time period of interest here, we know that the system has at least one customer, that
is the tagged customer A. During the one pass of service time of the customer under
service at t = 0, the number of arrivals into the system is known to be modified
geometric (due to Lemma 3.1 with a success probability of q = λ

λ+α+µ . Its Z
transform is 1−q

1−qz . By the time the tagged customer A leaves the server for the first
time, the server would have served k + 1 customers, including the customer A. The
Z transform of the number of external arrivals during this time is(

1 − q

1 − qz

)k+1

. (3.131)

Of the k customers served before A, each return to the tail of the queue for more
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service, with an iid probability of r = α
α+µ and leave the entire system with a prob-

ability of 1 − r. The Z transform of each such feedback is 1 − r − rz. The Z
transform of the sum of these k possible feedback returns is (1− r+ rz)k. Note that
any feedback of the tagged customer A itself is not included. Let the total number
of external arrivals plus the feedback returns be M . Therefore, M is the random
variable number of customers in the system when the tagged customer A leaves the
server for the first time and its Z transform conditioned on k customers being in the
system just before A entered at t = 0 is

ZM (z|k) = (1 − r + rz)k

(
1 − q

1 − qz

)k+1

. (3.132)

The unconditional transform is obtained by applying the theorem of total expectation.

ZM (z) =
∞∑

k=0

(1 − r + rz)k

(
1 − q

1 − qz

)k+1

(1 − ρ)ρk (3.133)

=
1 − q

1 − qz
(1 − ρ)

∞∑
k=0

(
1 − r + rz)(1 − q)ρ

1 − qz

)k

(3.134)

=
1 − q

1 − qz
(1 − ρ)

1

1 − (1−r+rz)(1−q)ρ
1−qz

(3.135)

=
(1 − q)(1 − ρ)

1 − qz − (1 − r + rz)(1 − q)ρ
. (3.136)

The final expression is of the form

ZM (z) =
u

v − wz
(3.137)

where u, v, and w are functions of r, q, and ρ which are, in turn, functions of λ, µ,
and α. In order for the RHS of equation (3.137) to be a valid Z transform of a pmf,
we need

w

v
= 1 − u

v
and 0 <

w

v
1. (3.138)

If these conditions are met, the resulting valid Z transform is of modified geomet-
ric pmf with a probability of success of w

v . Indeed, after some cumbersome but
otherwise simple algebra, the above conditions can be verified when the system pa-
rameters are substituted in equation (3.136) and it turns out that

w

v
=
λ

µ
. (3.139)

This completes the proof that soon after the tagged customer A leaves the server
after its first round of service, the number of customers in the system follows the
equilibrium pmf.
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The above theorem allows us to use expected response times for each round of
service for the tagged customer, to evaluate the total expected response time (or the
total expected waiting time). Using the theorem, the total expected waiting time of a
customer with a total service time requirement of τ is given by

E[W ] =
∞∑

j=1

E[W1]jP [j] (3.140)

= E[W1]E[J ] (3.141)

=
λ

(α+ µ)(µ− λ)
E[J ] (3.142)

where j is the number of passes for the customer A to complete service. From the
earlier derivation, we know that E[J ] = 1 + ατ . Therefore,

E[W ] =
λ

(α+ µ)(µ− λ)
(1 + ατ). (3.143)

Adding the total service time of τ to the total expected waiting time, we have the
following result.

THEOREM 3.10
The expected response time E[RR] of an M/M1/∞ round robin system with
external arrival rate λ, service rate µ, and exponential feedback rate α is given
by

E[RR] =
λ

(α+ µ)(µ− λ)
+

(
1 +

λα

(α+ µ)(µ − λ)

)
τ. (3.144)

Figure 3.11 shows the expected response time as a function of the service time for
the two cases. The solid line plot is for the round robin case. The external arrival rate
is 1 per unit time. The service rate, 1.2 per unit time. The feedback rate α is 5 per unit
time. The expected response time for the original M/M/1/∞ FIFO system is drawn
with a broken line. This has a large part for the expected waiting time, followed by
a slow increase due to the service time. On the other hand, the round robin constant
term is small, the expected waiting time for one pass only. Thereafter, the overall
expected response time increases much faster than the corresponding time in the
FIFO case, due to multiple passes. A few more important properties of M/M/1∞
system are developed below.

THEOREM 3.11
The sequence of merged customer arrivals into the waiting line in an equilib-
rium round robin M/M/1/∞ queue is not Poisson.
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FIGURE 3.11: Expected response time as a function of the given total service
time

Proof
As in the above treatment, let the time for feedback of a customer under service
be exponential with rate α. The time for the next arrival into the merged queue is
a function of both the overall arrivals and the feedback time. However, feedback
is possible only if there is already a customer under service. Let T be the random
variable corresponding to the time for the next arrival. IfN , the number of customers
in the system is zero, the only arrival that can enter the system is the external arrival
and in this case T is exponential with rate λ. On the other hand, if N > 0, the next
composite arrival can be either an external arrival with rate λ or a feedback arrival
with rate α. The combination is equivalent to an exponential time for arrival with
rate λ + α, for the case of N > 0. Combining the two cases, we find the pdf of the
time for next arrival

fT (t) = (1 − ρ)λ exp(−λt) + ρ(λ+ α) exp[−(λ+ α)t], t > 0, (3.145)

which is hyperexponential. Therefore, arrivals into the merged waiting line are not
Poisson.

However, the departure sequence from such a round robin system turns out to be
Poisson, as shown below.

THEOREM 3.12
Consider an equilibrium round robin system with arrival rate λ and a total ser-
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vice requirement which is iid exponential with rate µ. The feedback discipline
is more general, as follows. At the time instant a job enters the service area
for its first or successive piecemeal service, a race ensues between the overall
job completion time and a feedback time random variable T which is nonneg-
ative but otherwise arbitrarily distributed. Then, the overall output sequence
of customers leaving the entire system is Poisson with rate λ.

Proof
The time for feedback here is more general and not restricted to being an expo-
nential random variable. Nevertheless, at the time a job enters service, there is a
well defined probability that it will be fed back. At any time instant, the amount of
remaining service time required for all the customers in the system is exponential
with rate µ, irrespective of the peculiarity of the feedback mechanism. This is due
to the memorylessness of the total service time of a job. Therefore, the number of
customers at any time instant is statistically identical to that in an alternative sim-
ple M/M/1/∞ system without feedback. Therefore, the IDTs corresponding to the
overall departures still constitute a Poisson stream.

3.10 Examples

Example 3.1
Consider an M/M/1/∞ queuing system with an arrival rate of 3 per second
and a service rate of 5 per second, operating under equilibrium.

1. A customer A enters the system when the server is free. What is the
probability that another customer enters before customer A leaves the
system.

2. A customer A enters the system when the number of customers in the
system is 3. The exact service time requirement of customer A is known
to be 0.4 second. What is the expected response time of customer A?

3. Determine the probability that the number of customers in the system
does not change during a time interval of 0.1 second.

Solution

1. After A enters, there is a contest between the next arrival with a rate of 3 per
second and the departure of A with a rate of 5 per second.
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P [arrival occurs beforeAdeparts] =
3

3 + 5
=

3
8
. (3.146)

2.

E[Response time ofA] (3.147)

= 3E[service time of each of the other s] +A’s service time

= 3
sec
5

+ 0.4 sec = 1.0 second (3.148)

3. Let the S denote the event of no change in state for 0.1 second and N be the
number of customers, a random variable.

P [S] = P [S|N = 0]P [N = 0] + P [S|N > 0]P [N > 0] (3.149)

When N = 0, the only possible change in state is an arrival with a rate of 3
per second. When N > 0, an arrival or a departure changes the state, with a
total rate of 8 per second. Under each condition, the probability of the event is
the probability of an exponential random variable (with appropriate rate) being
larger than 0.1 second. Or, the probability of no Poisson arrival in 0.1 second.
Thus,

P [S] = 0.4e−0.3 + 0.6e−0.8 = 0.6. (3.150)

Example 3.2
Consider a single queue with a round robin scheme of piecemeal service. Ex-
ternal arrivals are Poisson with a rate of 1 per second. The total service
requirement of jobs are iid exponential with a rate of 2 per second. Each
single service piece is a constant time of 0.1 second. Of course, if a job com-
pletes its service before its current piece of 0.1 second ends, it makes its final
departure. At the time a job enters the service area, what is the probability
that it will be fed back (as opposed to making its final departure)?

Solution
Only the remaining service time is memoryless. Time for each piece of service is
constant. Every time a job enters the service area, irrespective of how many pieces
of service it has already received, its remaining service time is exponential with rate
2 per second.

P [feedback] = P [service time ≥ 0.1 second] (3.151)
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=

∞∫
t=0.1

2e−2tdt (3.152)

=
[
−e2t

]∞
0.1

(3.153)

= e−0.2 = 0.82 (3.154)

Example 3.3
A processor (server) uses a round robin scheme for service, with an exponential
timer of average 1 msec for each service attempt. A job is known to require
exactly 3.5 msec for its total service time. What is the expected number of
service attempts this particular job will need?

Solution
Let the time instant t = 0 when the job entered service for the first time. Thereafter,
the average number of times it will depart strictly BEFORE completing the 3.5 msec
is the average number of Poisson arrivals during a time interval 0 < T < 3.5 msec
with a rate of 1 arrival per msec. This expected number is 3.5. Thereafter, the
customer will get into service one more time and complete the required full service.
This is the reason strict inequality is used in defining T . And, the probability that the
final timer and the final completion of full service of 3.5 msec occurs exactly at the
same time is 0 and does not contribute to the expected number of rounds of service.
Thus, the expected number of service attempts is 4.5.

3.11 Analysis of Busy Times

Let a customer enter a stable and empty M/M/1/∞ queue at time t = 0. The
time interval for which the server remains continuously busy is a random variable.
Denote this by random variable by B and let t be its outcome. We are interested in
the probability distribution of B. Lajos Takacs (a mathematician born in Hungary
in 1924) and D. G. Kendall separately studied the Laplace transforms and many
properties of the busy times of the M/G/1/∞ queue. The M/G/1/∞ queue is a more
general case of queues due to the service times not being restricted to be memoryless.
The present section develops the pdf and the Laplace transform of the interdeparture
times of an equilibrium M/M/1/∞ queue through a direct approach. Let K be the
random variable number of jobs that arrive after t = 0 and let the server become free
for the first time (after t = 0), after serving the initial customer arriving at t = 0 and
exactly theK more later arrivals. Let k be the outcome ofK . We will have exactly k
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arrivals and k departures after t = 0, followed by the departure of the final customer
rendering the system empty. The property of these k arrivals and k departures (after
t = 0) is that the number of departures at any time should not exceed the number
of arrivals. Let n(i,j) be such number of combinations of i arrivals and j departures
such that j ≤ i. We have n(0,0) = 1; n(1,0) = 1; n(1,1) = 1. Indeed,

n(i,0) = 1, for 0 ≤ i. (3.155)

Now, if i arrivals and j − 1 < i − 1 departures have occurred with one of n(i,j−1)

combinations, one more departure makes it j departures. And this can occur after
one of n(i,j−1) ways of reaching i arrivals and j − 1 departures. Alternatively, after
i− 1 arrivals and j ≤ i− 1 departures, an arrival may come in resulting in i arrivals
and j departures. This can occur in one way, after one of n(i−1,j) ways of reaching
i − 1 arrivals and j departures. Therefore (as long as j < i), we have the recursive
equation

n(i,j) = n(i,j−1) + n(i−1,j), for 1 ≤ j < i. (3.156)

If j = i, after reaching i arrivals and i − 1 departures, we can have one more de-
parture. Since the i-th departure must come after i arrivals, there is no other way of
reaching i arrivals and i departures. Therefore,

n(i,i) = n(i,i−1), for 1 ≤ i. (3.157)

The probability of a departure (as opposed to an arrival) in the above sequence of
arrivals and departures is µ

λ+µ . Denote this by p. Similarly, the probability of an

arrival, rather than a departure, is λ
λ+µ . This evaluates to 1− p. Now, the probability

of exactly k arrivals following the first arrival at t = 0 and the system then becoming
empty for the first time after t = 0 is given by

P [k] = n(k,k)[p(1 − p)]kp. (3.158)

The last factor p in the above equation is due to the final (k+1)-th departure render-
ing the system empty. After t = 0, the time interval for the next event of an arrival or
a departure satisfying the above requirement is exponential with rate λ+ µ. Succes-
sive such time intervals for all of the k arrivals, k departures, followed by the final
departure (rendering the system to be empty) are all iid. The fact that some are ar-
rivals and others are departures is expressed in the joint probability of the compound
event. The Laplace transform of this total time to reach empty state, given that it
occurs after k arrivals, k departures followed by the final departure is

LB(s|k) =
(

λ+ µ

s+ λ+ µ

)2k+1

. (3.159)
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Using the theorem of total expectation and using expressions for p and 1−p in terms
of λ and µ, we have

LB(s) =
∞∑

k=0

( λ+ µ

s+ λ+ µ

)2k+1( λ

λ+ µ

)k( µ

λ+ µ

)k+1

n(k,k) (3.160)

=
∞∑

k=0

λkµk+1

(s+ λ+ µ)2k+1
n(k,k). (3.161)

3.11.1 Combinations of arrivals and departures during a
busy time period

The following Lemma gives an expression for n(k,k).

LEMMA 3.2
Let a first customer arrive into an empty queue at time t = 0. The number
of distinct ways in which i more arrivals and j departures can occur into the
queue, keeping at least one customer in the queue from the first arrival until
the last arrival or departure (whichever occurs last), is given by

n(i,j) =
(i+ j)!(i− j + 1)

(i+ 1)! j!
, for 0 ≤ j < i and (3.162)

n(k,k) =
(2k)!

k! (k + 1)!
, for i = j = k ≥ 1. (3.163)

Proof
We know that the equations (3.162) and (3.163) are true for all i ≥ 0 and j = 0,
as well as for i = j = 1. The proof technique used is induction. Assume that
the equations (3.162) and (3.163) are true for all 0 ≤ i, j ≤ m and also for the
combinations of i = m + 1 and all j satisfying 0 ≤ j ≤ l ≤ m − 1, for some l.
Evaluate n(m+1,l+1) using the known recursive equation (3.156). We have

n(m+1,l+1) = n(m+1,l) + n(m,l+1). (3.164)

Since l ≤ m − 1, we have l + 1 ≤ m and by our assumption, n(m,l+1) is known to
satisfy equation (3.162). Therefore,

n(m+1,l+1) =
(m+ 1 + l)! (m+ 1 − l + 1)

(m+ 2) l!
+

(m+ 1 + l)! (m− l − 1 + 1)
(m+ 1)! (l+ 1)!
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=
(m+ l+ 1)! (m− l + 2)

(m+ 2)! l!
+

(m+ l+ 1)! (m− l)
(m+ 1)! (l+ 1)!

(3.165)

=
(m+ l+ 1)!
(m+ 1)! l!

(m− l + 2
m+ 2

+
m− l

l + 1

)
(3.166)

=
(m+ l + 1)!

(m+ 2)! (l+ 1)!
(m2 − l2 + 3m− l + 2). (3.167)

The last factor (m2−l2+3m−l+2) is also the expansion for (m+l+2)(m−l+1).
Substituting this, we have

n(m+1,l+1) =
(m+ l + 1)! (m− l + 1)

(m+ 2)! (l+ 1)!
(3.168)

proving that equation (3.162) is true for i = m + 1 and j = l + 1 ≤ m. From
equation (3.157), we know that

n(m+1,m+1) = n(m+1,m) (3.169)

verifying that equation (3.162) is true for i = m + 1 and for all 0 ≤ j ≤ m + 1.
Increasingm+ 1 to m+ 2, equation (3.162) is true for all i ≥ m+ 2 and j = 0 and
this completes the proof by induction that equation (3.162) is valid for all i > j ≥ 0.
Equation (3.163) is merely an application of the known equation (3.157) in equation
(3.162) completing the proof of the Lemma.

3.11.2 Density function of busy times

The Laplace transform of the busy time random variable can now be completely
specified by substituting for n(k,k) from equation (3.163) in equation (3.161). It is

LB(s) =
∞∑

k=0

λkµk+1

(s+ λ+ µ)2k+1

(2k)!
k! (k + 1)!

. (3.170)

The probability density function of the busy time period B is the inverse Laplace
transform of the above series. The result is a weighted sum of the inverse transforms
of terms of the form
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( α

s+ α

)k

, k ≥ 1 (3.171)

where α = λ+µ for simpler notation. For a given k the corresponding component of
the overall density of the busy time is the pdf of the sum of k iid exponential random
variables, each with a rate α. Each such component is known as the Erlang density.
For k = 1, the Erlang density reduces to the exponential density. The following
states and proves an expression for the Erlang pdf.

LEMMA 3.3
The pdf of the nonnegative random variable X, the sum of k iid exponential
random variables, each with the rate α is,

fXk
(x) =

αk

(k − 1)!
xk−1 exp(−αx), x ≥ 0. (3.172)

Proof
The result is true for k = 1, for which X1 is the exponential random variable itself.
Proof is by induction. Let the result of equation (3.172) be true for k = n. Then, it
follows that

LXn(s) =
( α

s+ α

)n

. (3.173)

Evaluate the Laplace transform of the given expression in equation (3.172) for
fXn+1(x).

LXn+1(s) =

∞∫
x=0

αn+1

n!
xn exp(−αx) exp(−sx)dx (3.174)

=
αn+1

n!

([xn exp[−(s+ α)x]
−(s+ α)

]∞
0

−
∞∫

x=0

nxn−1 exp[−(s+ α)x]
−(s+ α)

dx

)
.

(3.175)

The first term evaluates to 0. The second term is given by
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LXn+1(s) =
α

s+ α

∞∫
x=0

αnxn−1 exp[−(s+ α)x]
(n− 1)!

dx (3.176)

=
α

s+ α
LXn(s) (3.177)

=
( α

s+ α

)n+1

. (3.178)

The above shows that if the given expression for fXn(x) in equation (3.172)
corresponds to the pdf of the sum of the n iid exponential random variables each
with rate α, then the given expression for n + 1 is the pdf of the sum of n + 1 iid
exponential random variables, each with the same rate. Since the given expression
is known to be valid for n = 1, by induction, it follows that the given expression for
fXk

(x) is the pdf of the sum of k iid exponential random variables, for every k ≥ 1.

The series expression for the pdf of the busy time is evaluated by substituting the
corresponding Erlang densities for the terms in the series expression of the Laplace
transform in equation (3.160) and also by using the expression for n(k,k).

fB(t) =
∞∑

k=0

(λ+ µ)2k+1

(2k)!
t2k exp[−(λ+ µ)t]

( λ

λ+ µ

)k( µ

λ+ µ

)k+1 (2k)!
k! (k + 1)!

(3.179)

=
(
exp[−(λ+ µ)t]

) ∞∑
k=0

λk

k!
µk+1

(k + 1)!
t2k, t ≥ 0. (3.180)

3.11.3 Laplace transform of the busy time

The infinite series expression for the Laplace transform can be simplified into a
closed form. The following theorem states and proves the result.

THEOREM 3.13

The Laplace transform of the pdf of busy times in an M/M/1/∞ queue, LB(s),
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is given by

LB(s) =
s+ λ+ µ−√

(s+ λ+ µ)2 − 4λµ
2λ

, if λ < µ. (3.181)

Proof
The proof is based on the Maclaurin series (named after the Scottish mathematician
Colin Maclaurin, 1698–1746) expansion of y = 1 −√

1 − x given by

y =
∞∑

k=0

xk

k!
dky

dxk

∣∣∣
x=0

. (3.182)

For y = 1 −√
1 − x, we have

dy

dx
=

1
2
(1 − x)−

1
2 . (3.183)

d2y

dx2
=

1
2

1
2
(1 − x)−

3
2 . (3.184)

d3y

dx3
=

1
2

1
2

3
2
(1 − x)−

5
2 . (3.185)

djy

dxj
=

1
2j

1 × 3 × 5 × · · · × (2j − 3)(1 − x)−
2j−1

2 , j ≥ 1 (3.186)

=
1
2j

1 × 2 × 3 × 4 × · · · × (2j − 3)(2j − 2)
2 × 4 × · · · × (2j − 2)

(1 − x)−
2j−1

2

(3.187)

=
1
2j

(2j − 2)! (1 − x)−
2j−1

2

2j−1(j − 1)!
, j ≥ 1 (3.188)

=
(2j − 2)! (1 − x)−

2j−1
2

22j−1(j − 1)!
, j ≥ 1. (3.189)

djy

dxj

∣∣∣
x=0

=
(2j − 2)!

22j−1(j − 1)!
, j ≥ 1 (3.190)
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and y(0) = 0. Constructing the Maclaurin series, we have

y(x) =
∞∑

j=1

[2(j − 1)]!
22j−1 (j − 1)!

xj

j!
. (3.191)

Change the index of summation to k = j − 1. We have the Maclaurin series for
y = 1 −√

1 − x given by

1 −√
1 − x =

∞∑
k=0

(2k)!
22k k!

xk+1

(k + 1)!
. (3.192)

The known series expression for the Laplace transform of the busy time in equation
(3.161) with the expression for n(k,k) substituted from equation (3.163) is

LB(s) =
∞∑

k=0

λkµk+1

(s+ λ+ µ)2k+1

(2k)!
k! (k + 1)!

(3.193)

=
s+ λ+ µ

2λ

∞∑
k=0

22k+2λk+1µk+1

22k+1(s+ λ+ µ)2k+2

(2k)!
k! (k + 1)!

(3.194)

=
s+ λ+ µ

2λ

∞∑
k=0

( 4λµ
(s+ λ+ µ)2

)k+1 (2k)!
2k+1k! (k + 1)!

. (3.195)

The summation in the above equation is recognized as the above developed Maclau-
rin series by substituting

x =
4λµ

(s+ λ+ µ)2
. (3.196)

Therefore, we have

LB(s) =
s+ λ+ µ

2λ

(
1 −

√
1 − 4λµ

(s+ λ+ µ)2

)
(3.197)
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=
s+ λ+ µ−√

(s+ λ+ µ)2 − 4λµ
2λ

(3.198)

concluding the proof.

An important conclusion from the above development is that the busy time in an
M/M/1/∞ queue is not exponentially distributed.

3.12 Forward Data Link Performance and Optimization

Wireless communication is less reliable than wire-line communication, in general.
This application illustrates the trade-offs between high data rate and effects of errors
due to noise, to maximize the throughput. A general definition of throughput of a
statistically steady system is the “rate at which finished product flows out.” Consider
a wireless network with many stations communicating among themselves in a multi-
hop fashion. Established connections between several pairs of stations are through
line of sight (LOS) and over a dedicated electromagnetic frequency spectrum. That
is, there is no contention for transmission opportunity among the stations. Each pair
of stations that can directly communicate with each other do so over separate unidi-
rectional sub-links. The two sub-links in opposite directions do not interact but the
two computers at the extremities of the link cooperate for reliable data communica-
tion over the less reliable wireless channels.

3.12.1 Reliable communication over unreliable data links

Consider the operation of a datalink between station A and station B. Station A
transmits data packets to station B. Station B examines individual data packets for
possible errors through the redundancy system incorporated in the design. Lower
data rates use larger time width per bit, therefore carry more energy, and result in
higher probabilities of being correctly received at station B. But this may result in
lower overall throughput. On the other hand, a higher data rate introduces a higher
probability of the packet being erroneously received at station B. Station B signals
errors to stationA as follows. Data packets have a fixed serial number field to distin-
guish between different packets. Due to the finite size of field, serial numbers repeat
in cycles. The serial numbers of data packets erroneously received at station B are
inferred based on those of the correctly received packets. Note that the receiver at
station B cannot detect the serial number of an erroneously received packet from
that packet itself! Information about serial numbers of erroneously received packets
is piggybacked over data packets intended for station A from station B. Station A is
required to retransmit data packets that station B did not receive correctly. There is
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also the probability of station A incorrectly receiving packets containing retransmis-
sion request in which case, after a predesigned time out period, stationB repeats the
retransmit request. The probabilities of sequences of compounding errors decrease
as the number of such erroneous events in the sequence, due to the independence of
successive erroneous events. This is the basis of reliable communication over unre-
liable communication networks. Station B also acknowledges the correct receipt of
all packets up to some serial numbers. This eliminates confusion about packets with
a serial number from two different cycles. This approach to control a data link is
called the cyclic window protocol.

In this section, we will consider a very simple model in which bit errors are evalu-
ated based on a simple binary communication system introduced in Section 2.7. All
erroneous packets are assumed to be detected. Pauses in transmission due to incom-
plete receipt of all packets in a cyclic window are ignored by implicitly assuming a
large length of the cyclic window.

3.12.2 Problem formulation and solution

A transreceiver is the combination of equipment at one end of the bidirectional
communication system over the two sub-links of the data link. A forward data link
from transreceiver A to transreceiver B generates packets at a rate of λ packets per
unit time. Packet sizes are geometric with an average packet size of 1

q bits per packet,
but are very well approximated by the exponential random variable for the sake of
queue analysis. The data rate s is the adjustable and it affects the packet error rate
as well as the queue performance by altering the reception time for packets. The
average transmission time at transmitter A is 1

qs time units per packet. The average
packet service rate in the transmission queue is qs. The iid bit errors and corre-
sponding iid packet errors are characterized by the Gaussian noise model of Section
2.7. The bit error rate (BER) for the present data link is known to be a given be
for the given data rate. All packet errors at the receiver B are detected. Station B
requests retransmissions and station A complies with the request, after some delay.
Station B manages its own data rates. In our present model, the the delay between
the time instant that station B detects an error and the time instant that station A re-
transmits is beyond our control and is not subject to optimization. Errors in requests
for retransmissions are also possible. In such a case, station B repeats requests for
retransmission after a time-out period. Retransmissions from station A to B are also
subject to errors, and we consider these in the performance. Although the packet size
of a transmission and its retransmission are identical, we approximate all transmis-
sions and retransmissions as iid packet sizes and arriving at the transmitter queue of
A is a Poisson stream.

Representative figures for the parameters are as follows. The BER is known to be
10−3 for a bit rate of 1 Mbps. The average packet size is 103 bits. The following
problems are required to be solved.

1. Determine the maximum packet transmission rate in packets per second that
the system can handle, as a function of the bit transmission rate s with s in the
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range of 0.5 Mbps to 2 Mbps.

2. Use a packet transmission rate of 300 packets per second. Consider only the
cumulative delay of a packet due to waiting and transmission at the queue of
transmitter A, possibly multiple times due to errors. Ignore all other compo-
nents of delays such as the delay in B communicating detected errors to A,
etc. (assume that these are not variable as we vary s). Determine the optimal
value of the data rate s that minimizes the expected total delay.

Solution

1. From Section 2.7 and Example 2.7, on page 57, we have that σ2
b = 0.1047 per

Mbps. The combined transmission rate at transmitter A due to original and all
retransmissions is

λ

1 − ef
(3.199)

where ef is a function of the data rate s. For the queue to be stable, we need

λ

1 − ef
< qs or (3.200)

λ < (1 − ef )qs. (3.201)

Interestingly, the maximum of these allowable packet rates occurs when
s(1 − ef) is a maximum, identical to the case of throughput maximization
in Example 2.7 studied in Section 2.7. Figure 3.12 shows a plot of the maxi-
mum packet rate in a second of time as a function of bit rate in Mbps, for the
given system parameters.

2. The expected response time in the transmitter queue for one pass is given by

E[R| pass ] =
1

qs− λ
1−ef

. (3.202)

The expected number of passes is 1
1−ef

. Therefore, the total expected delay in
the queue at the transmitter A only is

E[R] =
1

(1 − ef)qs− λ
. (3.203)

Again, the expected response time is minimized by maximizing the throughput
(1 − ef). Figure 3.13 shows a plot of the total expected response time at
transmitter A as a function of the transmission data rate. The minimum total
expected response time is 0.003 seconds.
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3.13 Exercises

In the following exercises, unless otherwise specified, all the queues have unlim-
ited buffer sizes and are assumed to be in equilibrium.

1. In a queue with Poisson arrivals with a rate of 4 jobs per second, there are
two jobs. Job A is the first and B is second, with a service time requirement
of 0.15 and 0.2 seconds, respectively. At time zero, A begins its job service.
Specify the probability mass function of the number of arrivals from time zero
until job B completes service.

2. The check-in queue at the Fly By Night Airlines is M/M/1/∞ under equilib-
rium with an arrival rate of 10 customers per hour and a service rate of 15
customers per hour. Mr. Red Eye knows that he can spend no more than 15
minutes in the check-in queuing system so as to run and catch the flight. De-
termine the value of probability that he will catch the flight.

3. In a stable M/M/1/∞ system operating under equilibrium with λ = 3 per
second, what is the minimum service rate to satisfy P [No one is waiting] ≥
0.64?

4. In a steady state M/M/1/∞ queue, the average number of customers in the
system is 4.5 and the expected response time is 1 sec. Determine the arrival
and service rates in the queue.

5. Determine the pmf of the number of customers waiting in an equilibrium
M/M/1/∞ queue.

6. What is the probability density of time spent in state 2 of an equilibrium
M/M/1/∞ system with an arrival rate of 7 jobs per msec and a service rate
of 10 jobs per msec?

7. Consider a steady state M/M/1/∞ system with an arrival rate 2 per second and
service rate 3 per second. Determine P [N ≤ E[N ]] where N is the random
variable corresponding to the number of customers in the system.

8. In a standard M/M/1/∞ system, the boss of the server wants the server to be
busy at least 80% of the time as well as satisfyN < 2 at least 36% of the time.
Are both possible? Justify.

9. In an M/M/1/∞ unstable queue that has already been operating for an unlim-
ited time, λ = 2/sec and µ = 1/sec. Completely specify the nature of the
departure stream.

10. In a queuing system, the expected service time is 1 sec. The system is empty
(server is free) with a probability 0.3. If the system is not empty, the expected
waiting time is 2 sec. Determine the expected response time of a customer.
Note that this queue need not be an M/M/1/∞ system.
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11. In a steady state M/M/1/∞ queue with λ = 1 and µ = 2, a customer finds
out that if he enters the system, he will have to wait (that is, there IS a waiting
line). Under this condition, determine the probability that the length of waiting
line is 2 or less.

12. A stream of Poisson arrivals with a rate of 10 per second is split with an iid
probability of p and 1 − p. The sub-stream with p is fed to a queue with an
exponential service rate of 8 per jobs second. The other sub-stream is fed to
another queue with an exponential server with a rate 5 per second. Determine
the set of p over which the entire network is stable.

13. Repeat the above exercise with the numbers 8 and 5 respectively replaced by
20 and 3.

14. Consider our standard stable M/M/1/∞ queuing system with nonzero param-
eters λ and µ. We know the probability that a job does wait to begin service is
nonzero; indeed it is 1−P0 = ρ. If a job is known to wait for a nonzero amount
of time, determine its probability density of waiting time (this is a conditional
density under the condition that the waiting time is known to be nonzero).

15. Individual jobs in a stream of Poisson arrivals with a rate of 10 jobs per second
are routed to one of the two queuing systems as follows. A job is routed with
probability 0.4 to a queue with a service rate of 8 jobs per second. Else, it is
routed to a queue with a service rate of 14 jobs per second. Both queues have
exponential service times and unlimited waiting room capacities. Systemati-
cally determine the expected response times in the individual queuing systems
as well as the overall expected response time of a job in the complete system.

16. A processor (server) uses a round robin scheme for service, with an expo-
nential timer of average 1 msec for each service attempt. External arrivals are
Poisson with a rate of one in 10 milliseconds. The overall service requirements
for jobs is exponential with an average of 8 milliseconds. A job is known to
require exactly 3.5 msec for its total service time. Determine its total expected
response time.

17. In a round robin scheme, the interrupt to feedback a job being serviced occurs
after a time interval that is uniformly distributed between 0.2 and 0.8 msec.
from the time instant of the start of every service segment. The total service
time requirement of jobs is iid exponential with an average of 4 msec. Arrivals
are Poisson with a rate of 200 jobs per second. Determine the feedback prob-
ability of a job (a) when it enters service, (b) when a job has spent 0.2 msec in
service, and (c) when a job has spent 0.5 msec in service.

18. Consider the following round robin scheme. External arrivals are Poisson with
a rate of 3 job per msec and require an exponential service time with a rate of 8
per msec (that is the average service time requirement is 1

8 msec). Whenever a
job gets into service, the system starts an exponentially distributed timer with
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a rate of 24 per msec (that is, the average time of the timer is 1
24 msec). If the

timer completes before the job completes its service, the job is returned (sent
back, or fed back) to the tail of the queue with an unlimited buffer size.

(a) Determine the feedback probability of a job entering the service area.

(b) If the total service requirement of a particular job is known to be an
exact amount of time, τ msec, determine the expected number of returns
(feedbacks) from the server to the tail of the queue that this job will
experience.

(c) For this particular job, determine the total expected waiting time expe-
rienced in all of its passes through the waiting line, as a function of τ .
Evaluate the expected response time of this job.

19. A stream of Poisson arrivals with a rate of 10 jobs per second enters an FIFO
queue with an exponential service time with rate of 18 jobs per second. A
customer leaving this first queue is required to leave the entire system with a
probability of 0.3 or enter a second FIFO queue of exponential service time
with a rate of 10 jobs per second. Both queues have unlimited waiting room
capacities. Systematically determine the expected response times in the indi-
vidual queuing systems as well as the overall expected response time of a job
in the complete system.

20. A computer is composed of a CPU and an I/O unit. The service time of every
job submitted to the CPU is exponentially distributed with a rate of 10 jobs
per second. Following the CPU service, not all jobs require an I/O operation;
a job requires an I/O operation with a probability of 0.2. If an I/O operation is
required the job is routed to another queue with an exponential service time of
rate 2 I/O jobs per second.

(a) What is the density function of the total service time (CPU plus I/O, if
any) required by a random job input to the CPU?

(b) A job input to the CPU is found to require a total time of 0.2 seconds.
What is the probability that it used an I/O operation?

(c) The computer center charges each user a dollar amount equal to

A = 2C + 3I (3.204)

where C and I are CPU service time and I/O service time in seconds, re-
spectively. Determine the expected value and the variance of the random
variable A.

21. When a particular customer joins an M/M/1/∞ queue with arrival and service
rates λ and µ respectively, there are exactly n customers in the system. At
the time of joining the queue, this new customer wishes to leave the system
within a time interval t in order to make it to a previously made appointment.
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Derive a mathematical expression for the probability that the customer will
not be late for the appointment.

22. A WAN router has three incoming data links A, B, and C, and three cor-
responding outgoing data links α, β, and γ. Each of these six links can be
considered to be a unidirectional link. That is, there is no feedback. Packet
arrivals at the three incoming links are independent and Poisson. All the pack-
ets are of iid (independent identically distributed) exponential number of bits
with an average of 1000 bits. All the incoming packets on incoming links A,
B, and C are merged and fed into the router processor which processes at a
constant rate of 1 million bits per second. Every processed packet is imme-
diately transferred to the queuing buffer at the required outgoing link. Each
outgoing link transmits packets at a constant rate of 2 million bits per second.
Processing at every queue is FIFO.

The entire system is a feed-forward network of four M/M/1/∞ queues. The
arrival rates (in number of packets per second) and iid proportions of packets
to be transferred to the different outgoing links are given in Table 3.1. System-
atically evaluate the average delay experienced by a random packet arrival in
the entire router system.

TABLE 3.1: Characteristics of data packets at the router

Incoming Arrival Outgoing Outgoing Outgoing
link rate to α to β to γ

A 100 0 0.4 0.6

B 200 0.7 0 0.3

C 300 0.2 0.8 0

23. A user is faced with having to decide which of the two waiting lines he should
enter his job. The two waiting lines are in front of two computers S1 and
S2. Both computers have iid exponential service times with service rates of
2 jobs/minute and 3 jobs/minute respectively. In addition to the jobs being
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served by the two systems, S1 and S2 have 2 and 3 jobs waiting in front of
them, respectively. If the user wants to decide based on the minimum expected
time for him to leave after service, which station should he enter?

24. The pmf of the number of k arrivals and k+1 departures in a stable M/M/1/∞
queue for it to reach the empty status for the first time after a customer arrives
into the empty queue is obtained from equations (3.158) and (3.163) as

P [k] =
λkµk+1(2k)!

(λ+ µ)2k+1k! (k + 1)!
. (3.205)

(a) Prove that this is a valid pmf.

(b) Evaluate its expectation.

25. Evaluate E[B], the expectation of the busy time in an M/M/1/∞ queue.





Chapter 4

State Dependent Markovian Queues

4.1 Introduction

In the previous chapter, we studied the M/M/1/∞ system with constant arrival and
service rates. In many applications, the arrival and service rates can change over
time. If the changes are at arbitrary time instants, we cannot conduct a general anal-
ysis. However, if arrival and service rates are functions of the number of customers
only, we can analyze the system. Additionally, we can also deal with several other
logical combinations of situations affecting the arrival and service rates. We find
many practical applications that fall within this category. The principles of contin-
uous parameter Markov chains are essential to the analysis of such state dependent
queues. In addition to state dependent queues, Markov chains have many other ap-
plications within the realm of computer networks. A Markov chain is a special case
of the more general stochastic process.

4.2 Stochastic Processes

In our M/M/1/∞ queue, consider the state of the systemN(t) at time t. At a given
time instant, the number in the system is an integer. If we continuously observe
the number in the system over a long time, we get a nonnegative stepped function
that increases by one at arrival time instant and decreases by one at departure time
instants. Such time plots of N(t) are called sample functions. If we observe another
queue with identical parameters, we will find a different sample function. Thus, the
“ensemble” of all possible N(t) observations is a larger set than a sample space of
just a random variable. We refer to N(t) as a random process or stochastic process.
Figure 4.1 shows an example sample function (only for a segment of time). The
x-axis is time, and the y-axis is the number in the system.

DEFINITION 4.1 Random or Stochastic Process A random process
X(t) is a parameterized random variable such that (a) for different values of
the parameter t, we get different random variables and (b) an element of the
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FIGURE 4.1: Example sample function segment in an M/M/1/∞ system

sample space of the random process is a “sample function,” an observation
over all possible values of t. Although t is generally the time variable, the
parameter of a random process can be other real-valued quantities.

We will see many examples. The value taken by the random variable X(t) at a
given time t = τ is called the state of the process at τ . A random process can have
a continuous or discrete state, and a continuous or discrete parameter. More com-
plicated mixed state random processes also appear in applications. The state of a
random process can also be a vector. Even simple queues, such as an M/M/1/∞ sys-
tem, provide very illustrative examples of random processes. Indeed, it is preferable
to use queues as application examples with the help of which to introduce the topic
of stochastic processes.

Example 4.1

In M/M/1/∞ systems, N(t) is a continuous parameter discrete state stochas-
tic process. Observe the system from some arbitrary starting time instant
t = 0. Assign serial numbers to arriving customers starting with customer
number i = 1 for the “oldest” existing customer in the queue. If the system is
empty at t = 0, the first observed arrival is assigned customer number i = 1.
In this system, Ni, the number of customers in the system soon after the
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departure of the ith job is a discrete parameter discrete state process. Ri, the
response time of the ith job, is a discrete parameter continuous state process.
R(t), the response time of the arrival following the continuous time variable
t is a continuous parameter continuous state process. Note that the above
processes can also be defined for an unstable system.

4.2.1 Markov process

In general, stochastic processes can be very abstract and very complicated. One
reason for this is the possible statistical dependency of the various random variables
at various values of these parameter values. However, most of the application sys-
tems we will study are well modeled by a very interesting and considerably simple
class of stochastic processes. It is called the Markov process, in honor of Andrei
Andreyovich Markov, the Russian mathematician (1856–1922) who originally de-
fined and studied it. The following discussion motivates the study of such processes.
Consider N(t) in an M/M/1/∞ system. The number of customers at t is strongly
statistically dependent on the number of customers a little amount of time before t,
say at t − τ . Therefore, N(t) and N(t − τ) are dependent. However, if we know
the number at t − τ to be n(t − τ), the number at t depends only on n(t − τ), and
the number of arrivals and departures in the intervening period τ . These in turn do
not depend on any event that occurred before t − τ , since the times for arrivals and
departures are memoryless. Therefore, given N(t − τ) = n(t − τ), the random
variableN(t) does not depend onN(t−τ−ξ) for ξ > 0. Such processes are known
as Markov processes.

DEFINITION 4.2 Markov Process Let t > tk > tk−1 > · · · tk−m. If

P [X(t) ≤ x(t)|X(tk) = x(tk), X(tk−1) = x(tk−1), · · · , X(tk−m) = x(tk−m)]

= P [X(t) ≤ x(t)|X(tk) = x(tk)], (4.1)

we say that X(t) is a Markov process. Elaborating, the most recent known
observation affects the future distributions. If we have many observations,
other than the most recent of these observations, the earlier observations do
not influence the distributions of the random variables at future times.

The restriction on X(t) in the above definition is quite stringent. Condition (4.1)
is required to be satisfied for allm ≥ 1, for all t, tk, tk−1, . . . , tk−m, and for all x(t),
x(tk), x(tk−1), . . . , x(tk−m).

DEFINITION 4.3 Markov chain If the set of states of a Markov
process is countable, the stochastic process is called a Markov chain.

Therefore,N(t) in an M/M/1/∞ queue is a continuous parameter Markov chain.
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4.3 Continuous Parameter Markov Chains

Markov processes may be of continuous or discrete parameter and of continuous
or discrete state. In this chapter, continuous parameter Markov chains are studied.
Discrete parameter Markov chains are studied in Chapter 6.

4.3.1 Time intervals between state transitions

Let X(t) be a continuous parameter Markov chain. Given X(t1) = k, what is
the time, t1 + τ , at which the state changes from k to anything else? This time is a
random variable. Given X(t1) = k, the past events are irrelevant. So, when exactly
the state reached the value k prior to t1 is irrelevant. That is, given X(t1) = k,
future state changes forget the past. Since we know that only the exponential random
variable is continuous and memoryless, time for state change must be exponential.
Of course, the parameter of the exponential density may depend on the exact state k,
at which the chain is, before the state transition. We have the very important result.

THEOREM 4.1
Times between successive state changes in a continuous parameter Markov
chain are all mutually independent exponential random variables.

The rate of the exponential random variable corresponding to how long the chain
stays in the same state before changing the state can, of course depend on the state.
In addition, it can depend on the parameter value too. In many applications, these
rates are not functions of the time constituting the parameter variable. Such chains
are identified as homogeneous as formally defined below.

DEFINITION 4.4 Homogeneous Markov chain A Markov chain is
said to be homogeneous if every state transition rate is invariant with time.

4.3.2 State transition diagrams

We represent a continuous parameter Markov chain as a directed graph with nodes
representing states, and directed arcs, possible state transitions. If the chain is ho-
mogeneous, the transition rates are invariant with time and they are written next to
each arc. Only transition arcs with nonzero rates of transitions are included in the
diagram. For the M/M/1/∞ case, such a graph is shown in Figure 4.2. We associate
a numerical value with each arc, or transition, as follows. Irrespective of how long
the chain has been in state i, the time for it to change to i+1 is exponential with rate
λ. Similarly, the time for state change from i+ 1 to i is exponential with rate µ.

If a state of a Markov chain can be reached from another state through possibly
a sequence of one or more nonzero rate transitions, we say that the latter state is
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FIGURE 4.2: The state transition diagram of an M/M/1/∞ queue

reachable from the former state. In general, a subset of states may not be reachable
from another subset, even though the former subset is reachable from the latter. If a
chain does not have such peculiarities, its analysis will be simple. There are many
applications whose Markov chains satisfy this simplifying property. It is formally
defined below.

DEFINITION 4.5 Irreducible Markov chain A Markov chain is said
to be irreducible if every state can be reached from every other state and from
itself through a finite number of transitions, each transition being of nonzero
transition rate.

Unless otherwise stated the Markov chains we will study are homogeneous and
irreducible.

4.3.3 Development of balance equations

The above M/M/1/∞ queuing system is just one example of a Markov chain. In
general, a Markov chain has a countable set of states that can be conveniently num-
bered as 0, 1, 2, · · · . A Markov chain may also contain a finite number of states.
Over continuous time, a state transition is observed only if the system changes from
a state to any other state. Therefore, the chain may have possible transitions from
every state to every other state. Let the transition rate from state i to state j be αij .
For convenience, define quantities αii = 0.

A fundamental topic in the study of Markov chains is the evaluation of probabil-
ities of different states at a given time instant. Many performance figures of appli-
cation systems are functions of these state probabilities. The following derivation
develops differential equations for the state probabilities as functions of time, just
as in the case of M/M/1/∞ system. Let Pi(t) be the probability that the system is
in state i at time t, i = 0, 1, . . . . For any τ > 0, the statistical behavior of the
chain following time t given the state at t + τ depends only on the state at t and on
nothing else. Consider the state at time t + δt, where δt is a positive infinitesimal
time interval. Consider the probability that the chain is in a particular state i at time
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t+δt. Over the time interval [t, t+δt), we need to consider at most one state change,
since the probability of more than one change is negligible in comparison with the
probability of one change. If the chain is at state j at time t, the probability that the
chain will move to state i in δt is the conditional probability αjiδt. If the chain is in
state i at time t, the probability that it will stay in state i for δt more time period is the
probability that none of the possible changes from state i occurs. This probability is∑∞

k=0 αikδt. Using the theorem of total probability, we obtain the probability that
the chain is in state i at time t+ δt as

Pi(t+ δt) = Pi(t)
(
1 − δt

∞∑
k=0

αik

)
+

∞∑
j=0

Pj(t)αjiδt. (4.2)

Rearranging, we have

Pi(t+ δt) − Pi(t)
δt

= −Pi(t)
∞∑

k=0

αik +
∞∑

j=0

Pj(t)αji, i = 0, 1, · · · . (4.3)

The limit of the above LHS as δt → 0 is the derivative dPi(t)
dt . We have an additional

equation specifying that the state probabilities must sum to one. That is,

∞∑
i=0

Pi(t) = 1. (4.4)

As in the case of M/M/1/∞ systems, we will be especially interested in the steady
state solution to the set of differential equations and in the conditions under which
such steady state is possible.

DEFINITION 4.6 Equilibrium A continuous parameter Markov chain
is said to be in equilibrium at time τ if the time derivatives of all its state
probabilities are zero at time τ . That is, if

dPi(t)
dt

= 0 at t = τ for all i = 0, 1, · · · . (4.5)

Note that this definition is identical to the definition of equilibrium in the case of
M/M/1/∞ queue. If equilibrium is possible for a Markov chain, the above equations
(4.3) and (4.4) must be satisfied with time invariant state probabilities pi replacing
Pi(t), respectively for i = 0, 1, · · · . Therefore, we have the following result.

THEOREM 4.2
If the equations

pi

∞∑
k=0

αik −
∞∑

j=0

pjαji = 0, i = 0, 1, · · · and (4.6)
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∞∑
i=0

pi = 1 (4.7)

possess a unique solution for p0, p1, · · · , then that solution is the set of equi-
librium state probabilities for the Markov chain.

COROLLARY 4.1
If the balance equations (4.6) and (4.7) do not sport any solution, the Markov
chain can never be in equilibrium.

Clearly, the set of equations (4.6) alone does not have a unique solution since any
solution multiplied by a constant is also a solution.

COROLLARY 4.2
If equilibrium state probabilities exist for a chain,

1. every state has a nonzero equilibrium probability and

2. lim
i→∞

pi = 0.

Proof
As mentioned earlier, since nothing is said about the chain, it is assumed to be irre-
ducible and the result holds for irreducible chains. Rearrange the balance equations
as

pi

∞∑
k=0

αik =
∞∑

j=0

pjαji, i = 0, 1, · · · and (4.8)

∞∑
i=0

pi = 1. (4.9)

The quantity pi does not appear on the RHS of equation (4.8), since αii = 0. As
a consequence of equation (4.9), at least one of the equilibrium state probabilities
is nonzero. Due to irreducibility, this state must have a transition to at least one of
the other states. The equilibrium state probability of such a latter state must also be
nonzero, due to the following reason. Equation (4.8) expresses every state probability
as a positive weighted sum of equilibrium probabilities of all other states from which
there is a transition to the state in question. Continuing this argument further, since
every state is so reachable from every other state through a sequence of transitions,
every equilibrium state probability must be nonzero.

To prove the second part, we know that pi > 0 for all i. Define bi to be the
maximum of the infinite tail sequence of pi, pi+1, · · · . Since all the probabilities are
nonzero and the sum of all of them is one, we have

bi = max{pi, pi+1, · · · } (4.10)
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≤
∞∑

j=i

pj . (4.11)

≤ 1 −
i−1∑
j=0

pj . (4.12)

lim
i→∞

bi ≤ lim
i→∞

1 −
i−1∑
j=0

pj (4.13)

≤ 0 (4.14)

= 0, (4.15)

since bi is nonnegative. The limit of bi, the maximum of the tail sequence of a
nonnegative sequence of probabilities tends to zero. Therefore, the limit of the tail
sequence itself must tend to zero, completing the proof.

DEFINITION 4.7 Stability A Markov chain is said to be stable if there
exists a solution to its balance equations.

Note that a Markov chain can be stable but not in equilibrium at some time instant.
Stability is a property of the chain. Whether or not a chain is in equilibrium at a
particular time instant depends on the operating condition of the chain at that time
instant.

THEOREM 4.3

If a chain is in equilibrium at a time instant t = 0, it will continue to be in
equilibrium for all t > 0 as well.

Proof
The differential equations governing the behavior of Pi(t), i = 0, 1, · · · , are

dPi(t)
dt

=
∞∑

j=0

Pj(t)αji − Pi(t)
∞∑

k=0

αik, i = 0, 1, · · · . (4.16)

The proof is identical to the proof of Theorem 3.2 which is concerned with an iden-
tical property of M/M/1/∞ queue. The only difference is that the present arguments
are made about the above differential equations (4.16) and not about the differential
equations in (3.29).
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FIGURE 4.3: Global balancing around state n in an M/M/1/∞ state diagram

4.3.4 Graphical method to write balance equations

Let the time invariant equilibrium state probabilities be denoted by pk, k =
0, 1, . . . . Equations (4.6) for the equilibrium state probabilities are easily written
by examining the state transition diagram of the Markov chain, as follows. The re-
sulting equations are called the balance equations since they equate some quantities
going into and out of a state. This is demonstrated with the help of Figure 4.3, the
state transition diagram of an M/M/1/∞ system. The product of the equilibrium
probability of a state and the rate of an outgoing arc is the unconditional rate of the
arc; this is a joint rate and not a conditional rate conditioned on the chain being in the
state. One equation for the equilibrium probability of a state is obtained by equat-
ing the sum of the joint rates going out of a state to that coming into the state. The
resulting equation around state n > 0 is

pn(λ + µ) = pn−1λ+ pn+1µ (4.17)

for the M/M/1/∞ queue. Since this approach balances the sum of the unconditional
rates of incoming and outgoing arcs across a boundary between one state and all
other states, it is called global balancing around that state. We have one global
balance equation around each state.

Writing a similar equation across a boundary partitioning the set of states into two
sets leads to a linear combination of several of the original global balance equations.
This approach leads to an equation between the equilibrium probabilities of a few
states only. This is demonstrated in Figure 4.4, in which each local balance equation
is between the equilibrium probabilities of only two states. The resulting equation

between states n and n+ 1 is

pnλ = pn+1µ, n ≥ 0. (4.18)

These equations are equivalent to equations obtained in Chapter 3 for the analysis
of M/M/1/∞ system.
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FIGURE 4.4: Local balancing between states n and n+1 in an M/M/1/∞ state
diagram

4.4 Markov Chains for State Dependent Queues

4.4.1 State dependent rates and equilibrium probabilities

State dependent queues are applications of general Markov chains. In many appli-
cations, the assumptions of constant arrival rate and unlimited waiting line room of
the M/M/1/∞ may be unrealistic. In real-life situations, the arrival rate may be less
if the number of customers in the system is large. Shrewd market vendors also know
to be deliberately slow in service if the number of customers is small, to give the
appearance of credibility due to implicit validation from waiting customers. Later
on, we will also introduce very specific applications wherein state dependent arrival
and service rates arise due to the peculiarity of the system, such as multiple servers,
finite size waiting room, etc. Let

• λi = Arrival rate when there are i customers in the system.

• µi = Service rate when there are i customers in the system.

If the system’s buffer capacity is finite, letm be the maximum number of customers
possible in the system. If the buffer capacity is unlimited, m → ∞. For finite m, if
λm �= 0, some arrivals see a full buffer. Note that µ0 = 0, for every case (even for
the state independent M/M/1/∞ case). The state transition diagram of the Markov
chain is shown in Figure 4.5. Using balance equations,

p1µ1 = p0λ0 (4.19)
...

pn =
λn−1

µn
pn−1 (4.20)

=
λn−1λn−2

µnµn−1
pn−2 (4.21)



State Dependent Markovian Queues 125

0 1

µ1 µ2

λ0 λ1

n−1 n n+1

µn−1 µn µn+1 µn+2

λn−2 λn−1 λn λn+1

FIGURE 4.5: State transition diagram of a state dependent queue
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FIGURE 4.7: Local balancing across a boundary between states n and n+ 1
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=
λn−1λn−2 · · ·λ0

µnµn−1 · · ·µ1
p0. (4.22)

Recall that
p0, p1, · · · , pn, · · ·

are the equilibrium probabilities of states

0, 1, · · · , n, · · · ,

respectively. Each state probability is thus expressed as a function of p0 and the
arrival and service rates. We solve for p0 by using

M∑
n=0

pn = 1. (4.23)

That is,

p0

{
1 +

M∑
n=1

n∏
i=1

λi−1

µi

}
= 1. (4.24)

A useful result from equation (4.24) is that since all the probabilities can be expressed
as a function of one unknown p0, the balance equations have at most one solution. If
equating the sum of all probabilities to one results in p0 = 0, the system is unstable
and the balance equations have no solution. If the resulting p0 > 0, then the balance
equations have a unique solution.

Example 4.2
A simple state dependent system can hold no more than two customers in-
cluding any under service. The arrival and service rates are λ0 = 7, λ1 = 2,
λ2 = 0, µ1 = 3, and µ2 = 6. Analyze it.

Solution

3p1 = 7p0, (4.25)

p1 =
7
3
p0, (4.26)

6p2 = 2p1, (4.27)

p2 =
2
6
p1 =

7
9
p0, (4.28)
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p0 +
7
3
p0 +

7
9
p0 = 1, (4.29)

p0 =
9
37
, (4.30)

p1 =
21
37
, (4.31)

p2 =
7
37
. (4.32)

4.4.2 General performance figures

We can define many more expectations of quantities about the state dependent
case, than in the simple case of the M/M/1/∞ queue. Performance figures specific
to applications examples are common in the case of state dependent queues. The
following defines some general performance figures.

4.4.2.1 Throughput

The general definition of throughput of any system is the rate of production of
successful output. In the state independent equilibrium M/M/1/∞ queue, throughput
is λ, same as the arrival rate. If we have a finite buffer state-dependent case and if
λm �= 0, some arrivals experience a full buffer. They are turned away without service
and let into the waiting line. The most common model is to treat them as lost and
that they will not “wait outside” or affect future arrival rates. If we exclude lost jobs,
throughput is also the rate at which customers “enter” the system, those that are not
turned away. Therefore, the throughput is

Y = E[Y ] =
M∑
i=1

piµi =
m−1∑
i=0

piλi. (4.33)

4.4.2.2 Blocking probability

Blocking probability is simply the probability that an attempted arrival sees a full
buffer and is turned away. Note that this is not the fraction of jobs turned away. In
fact, if m is finite and λm = 0, there will be no lost jobs. The emphasis is on “an
attempted” arrival, in defining pb, the blocking probability. If an arrival attempts, the
probability that it will be lost is the same as the probability that the buffer is full.
Hence, pb = pm.

4.4.2.3 Expected fraction of lost jobs

This is defined as the ratio of the rate of lost jobs to the rate of attempted arrivals.
That is,
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λmpm

E[Y ] + λmpm
. (4.34)

If the attempted arrival rate is zero whenever the buffer is full, the expected fraction
of lost jobs is zero.

4.4.2.4 Expected number of customers in the system

The expected number of customers in the system is E[N ] =
M∑

n=1
npn.

4.4.2.5 Expected response time

The expected response time of a customer that enters a system is a function of
the state of the Markov chain at the time the customer enters the system. Let the
states of the system be 0, 1, 2, · · · . Let R be the response time random variable.
Let E[R|i] denotes the conditional response time of a customer known to enter the
system when the state of the system is i. Using the theorem of total expectation, we
have the expected response time given by

E[R] =
∞∑

i=0

E[R|i]ai, (4.35)

where ai is the probability that an arrival sees state i. In the case of the simple
M/M/1/∞ system, the evaluation ofE[R] in equation (4.35) is simple since for every
condition i, the response time is the sum of i + 1 iid service times. In a general
Markov chain, the total response time of a customer is not so easily decomposed
into known components. Therefore, even though the final expectation is a simple
expression of the conditional expectations, E[R|i], in equation (4.35) may not be
easy to evaluate. Also, note that the states of the chain have been assumed to be
the natural numbers. In general, the state may not be identical to the number of
customers; the state may include additional information such as from which server
a customer is getting service. It is still possible to map such a set of states into
the set of nonnegative integers and the number of customers in the system can be a
more general function of the state, as opposed to being the state itself. This aspect is
illustrated in some examples later.

In addition to the difficulty in evaluating expected response time, there is another
concern about performance figures. In practical applications, we are interested in the
performance figures of the one sample function of the Markov process corresponding
to the operation of the physical system. The performance figures defined above are
the ensemble expectations. We may anticipate that the expectations over the sample
space of all possible sample functions would be the same as the required “time aver-
ages” of the one sample function that the physical system experiences. We need to
examine such hypotheses through a formal analysis of long-term average behaviors
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and their expectations. To evaluate the expected response time performance figure
defined above, we will develop and use a general and a powerful result known as
the Little’s theorem (also known as Little’s result and Little’s law). The result was
published in 1961 by John D. C. Little. It is applicable to long-term time averages
and this is another reason to study the long-term behavior of a sample function of a
Markov chain.

4.5 Intuitive Approach for Time Averages

Let the time variable start from zero and progress without bounds. In reality, we
have only one sample function for the stochastic process of the physical system rep-
resented by the Markov chain. We imagine an ensemble of an innumerable number
of sample function satisfying the definition of the sample space for the chain. In
many cases, the evaluation of expectations over the sample space appears simpler
than the evaluation of averages of corresponding quantities about the one sample
function being observed, over the infinite time interval. Therefore, we would like to
develop general results of the following nature. The averages over time of the sample
function of a “nice” Markov chain tends to the corresponding expectations of the en-
semble of all sample functions of the Markov chain. An important point to note here
is that the “average over time of the sample function” is a random variable and not a
constant, since averaging is taken over the time variable and no expectation over the
ensemble of the Markov chain is taken. However, intuitively, it appears reasonable
that as we let time increase without bounds, the averages over an infinite amount of
time, converges to the ensemble expectations of the corresponding random variables.

A mathematical examination of such hypothesis is tricky, because we would be
comparing a limiting random variable to a constant. What does it mean to say that
a limiting random variable tends to a constant? As discussed in Section 2.6.1, even
the average of an infinite sequence of iid random variables with a finite variance is
not certain to converge to the expectation of the original random variable; but there
is a probability of 1 that the limiting average is the expectation. Similarly, in the
same Section 2.6.1, the number of Poisson arrivals is shown to tend to infinity with
probability 1, as the time of observation of the Poisson arrivals tends to infinity. Such
principles and methods are used in the rigorous analysis of the statistical behavior
of the sample function of a Markov chain. The following lists important results
with some intuitive justification. They provide an overview and a guided tour of the
formal analysis in the following sections. The analysis is generally conducted for an
infinite state chain. Specializing results for a finite state chain is usually simple.
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1. We already know that in an irreducible and stable chain, all the equilibrium
probabilities, pi are strictly larger than zero. Furthermore, we know that

lim
i→∞

pi = 0. (4.36)

2. As the continuous time variable increases without bounds, the limiting number
of state transitions observed in a sample function tends to infinity with proba-
bility 1. The reason for this is similar to the reason for the number of Poisson
arrivals of a constant rate to tend to infinity with probability 1, as the time in-
terval of observation tends to infinity. The only difference is that in the case
of the sample function of a Markov chain, the rate of the exponential random
variable of the time for every transition is dependent on the state. However,
each such rate is finite, since, from every state, there must be transitions with
nonzero rates for the chain to be irreducible.

3. The expected fraction of total time spent in every state (due to multiple tran-
sitions into the state), qi, tends to the equilibrium probability pi of the state in
question, as time of observation tends to infinity. This is an important result
and is not difficult to prove. As a consequence and since every equilibrium
state probability is also nonzero, we have the following.

(a) The expected amount of time spent in every state tends to infinity, as the
observation time tends to infinity, with probability 1.

(b) The number of transitions into and out of every state tends to infinity, as
the time of observation tends to infinity, with probability 1.

(c) Note that even though the expected amount of time spent in every state
tends to infinity, the expected long-term fraction of time spent in state i
tends to zero as the state index i tends to infinity.

4. The rate of arrival of customers is nonzero in at least in one state of the chain;
else we would have no arrivals at all! Since the expected amount of time that
the chain spends in each state tends to infinity with probability 1, the number
of customer arrivals tends to infinity, as time of observation tends to infinity.

5. Using similar arguments, the number of departures of customers tends to in-
finity with probability 1, as the observation time tends to infinity.

6. We can now consider the limiting variances of many such averages. Note that
between successive entries of the chain into any particular state, the behaviors
of the chain are iid. Therefore, we have the following.

(a) The amount of time spent by the chain in a state during multiple visits to
the state are iid.

(b) The rate of a customer arrival, the rate of a customer departure, whether
or not an arrival occurs, whether or not a departure occurs, the response
time of a customer entering during a particular state, are independent
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during successive visits to a state and are also correspondingly identical
during successive visits to a state.

7. As a consequence, the properties of cumulative averages of infinite sequences
of iid random variables are applicable. These properties are that if Xi are iid,
with a finite expectation η and variance σ2, the following are satisfied.

P [ lim
n→∞

1
n

n∑
i=0

Xi = η] = 1 and (4.37)

lim
n→∞ var[

1
n

n∑
i=0

Xi] = 0. (4.38)

8. Some random variables are defined for every time instant of the chain. Exam-
ples of these random variables are the state of the chain itself and the number
of customers in the system. Note that the number of customers need not be
equal to the state. We will make the assumption that the number of customers
in the system tends to infinity, as the integer variable state tends to infinity.
This is just a mapping from the state to the number of customers. This will
be true in every application system we will consider. Let Y (t) be a random
variable for every t. The long-term time average of Y (t) is defined as

lim
t→∞

1
t

∫ t

τ=0

Y (τ)dτ. (4.39)

In the case of Markov chains, the sample function Y (t) changes values (by
jumping) only when the state changes. Therefore, it is piecewise constant.
The above integral is equivalent to weighted averaging, with the weights be-
ing the time intervals during which the state does not change. Note that these
time periods are statistically repetitive as the chain repeatedly visits the same
states. The application of these properties to the various quantities of the sam-
ple function will lead to the following properties.

(a) The overall observed arrival rate in the sample function converges to its
ensemble expectation with probability one. The variance of the same
overall observed arrival rate tends to zero.

(b) Similar results are true for the overall departure rate, the number of cus-
tomers, and the response time of a customer entering the system.

The above properties allow us to use the results based on the ensemble expectations
for time averaged performance figures. There is one exception, though. The expected
response time is not easy to evaluate using ensemble expectations only, since the
expected response time of a customer known to enter when the chain is in a particular
state is not easy to evaluate, in general. That is, E[R|i] in equation (4.35) can be
very difficult to evaluate in many applications. This difficulty is overcome with the
help of a result based on time averages, known as the Little’s result. The above
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properties of the Markov chains about the convergences of long-term time averages
to the corresponding ensemble averages is required for the application of the Little’s
result, developed in a subsequent Section 4.7.

4.6 Statistical Analysis of Markov Chains’ Sample Func-
tions

Consider an irreducible and stable continuous time (parameter) Markov chain with
states 0, 1, · · · . Let it possess a unique solution of equilibrium state probabilities p0,
p1, · · · , for its balance equations. Let the arrival rate of customers be λi when the
system is in state i. Similarly, let µi be the rate at which a customer leaves when
the system is in state i. Since the number of customers in the system may not be
identical to the state itself, let ni be the number of customers in the system, when
the state is i. Let n0 = 0 and n∞ = ∞, without loss of generality. This study is
centered around the following questions. Is there an overall arrival rate? If yes, what
is it? What is the expectation of its long-term time average? Similar questions arise
for the time average number of customers in the system and average response time
of customers who complete service. Note that quantities such as “long-term time
average” are random variables and have their corresponding expectations. To clarify
this, consider the sample space of all possible outcomes of an equilibrium queue.
The sample space consists of a continuum of iid sample functions. Each sample
function is a function of time, that is, the state as a function of time. When we
pick an outcome of the random process, we pick an entire sample function over time
t = [0, ∞). If we pick one sample function and observe it at time t, we observe the
random variable corresponding to the equilibrium state of the chain. If we evaluate
the time average of the state, the number of arrivals, or the expected response time of
customers who completed service up to a time t, we still have only random variables.

We will study time averages of functions of the continuous time variable such as
the average number of customers over a time interval. The number of customers is
defined for all time instants and hence averaging over the time interval is applicable
and useful. On the other hand, the random variable response time is defined for every
customer. The average response time that is useful in applications is the average
over a number of customers. Hence we have two types of long-term averages. Since
we will be using these two lengthy expressions, the following abbreviations and
definitions are used. We generally study the system over the time (parameter) interval
t ∈ [0, ∞). The averages will be taken over this time interval, even if the averaging
is over a number of observations as opposed to over the continuous time variable.
The definitions below make this clear.

DEFINITION 4.8 The expectation of the long-term average of a ran-
dom process, X(t) that is defined for every time instant and taken over the
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continuous time (or parameter) is denoted and given by

E∞[X(t)] = lim
t→∞

1
t

∫ t

τ=0

X(τ)dτ. (4.40)

DEFINITION 4.9 Let n(t) be the number of occurrences of random vari-
ables Yj , j = 1, . . . n(t) over the time interval [0, t). Consider the expectation
of the long-term average of a sequence of random variables Yn(t) occurring
over the entire time interval t ∈ [0, ∞). The expectation of the average of
all these random variables is the “expected long-term average over number”
of observations. It is denoted and given by

E∞[Yn(t)] = lim
t→∞

1
n(t)

n(t)∑
j=1

Yj . (4.41)

In both the above cases, note that the limit on the RHS is taken as the time t→ ∞.
Let us now consider the long-term operation of a Markov chain, over a time inter-

val t ∈ [0, T ), with T → ∞. Let Ti be the total amount of time spent by the chain
in state i during t ∈ [0, T ), possibly in several disjoint time periods. These Ti are
random variables; however,

∞∑
i=0

Ti = T. (4.42)

Let qi be the expectation of the long-term fraction of time the chain spends in state
i. That is,

qi = lim
T→∞

E[
Ti

T
] = lim

T→∞
1
T
E[Ti]. (4.43)

Let Di be the number of times the system departs from state i for some other state
over the time interval T . Similarly, letAi be the expected number of times the system
enters state i from some other state. These entries into a state and departures from
a state are not to be confused with customer arrivals and customer departures. The
expected numbers of entries into and departures from a state over a continuous time
interval can differ by at most one. Let ∆i = Ai − Di. Thus, ∆i ∈ {−1, 0, 1}.
We also have an even more restricted condition. Among all the states, ∆i is zero
for all except, perhaps, two. This is due to the fact that only the states at t = 0
and t = T can have nonzero ∆ values. Any time the chain reaches state i, the
chain is attempting to leave the state i with a combined rate of the sum of rates of
all outgoing arcs from state i in the state transition diagram. Therefore, the chain
continuously stays in that state i for an expected amount of time given by 1P∞

j=0 αij
.

Successive entries to the state result in the same expected amount of time of stay
since the behavior of the chain depends only on the fact that the chain is in state i



134 Performance Analysis of Queuing and Computer Networks

and nothing else of the past. Therefore, the expectation of the total amount of time
spent in state i over a time interval T is

qiT = E[Di]
1∑∞

j=0 αij
or (4.44)

E[Di] = qiT

∞∑
j=0

αij , i = 0, 1, · · · . (4.45)

Of the departures from state i causing the system to enter various different states, the
expected number of times the system enters state j is proportional to αij . Summing
up all such entries into state j we have

E[Aj ] = T
∞∑

k=0

qkαkj , j = 0, 1, · · · . (4.46)

We know that
E[Ai] = E[Di] + E[∆i] (4.47)

and the absolute value of ∆i is no more than 1. Therefore,

lim
T→∞

1
T
E[Ai] = lim

T→∞
1
T
E[Di] + lim

T→∞
1
T
E[∆i] (4.48)

= lim
T→∞

1
T
E[Di] i = 0, 1, · · · . (4.49)

Using the above in equations (4.45) and (4.46), we have

qi

∞∑
j=0

αij =
∞∑

k=0

qkαki. (4.50)

Since the expected fractions of time of occupancies of different states by the system
sum to one, we also have

∞∑
i=0

qi = 1. (4.51)

Equations (4.50) and (4.51) for q0, q1, · · · are exactly the same as the balance equa-
tions for the equilibrium state probabilities pi, i = 0, 1, · · · . Therefore, we have the
following result.

THEOREM 4.4
If the balance equations for the equilibrium state probabilities of a continuous
parameter Markov chain possess a unique solution, the long-term expected
fractions of time occupancies of different states respectively correspond to their
equilibrium state probabilities.
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It is very important to note that the above Theorem 4.4 does not assume the condi-
tion that the system is known to be in equilibrium at any time instant. It does assume
that the balance equations possess a unique solution. Therefore, we have

E[ lim
t→∞

1
t
Ti] = qi = pi, (4.52)

the equilibrium state probability.

DEFINITION 4.10 Let the chain be in equilibrium and observed starting
from some arbitrary time instant t = 0. The random variable Ai(t) is defined
as the total number of customer arrivals that enter the system while the chain
is in state i, during the time period [0, t). The random variable A(t) =∑∞

i=0Ai(t) is the total number of all arrivals of customers up to and including
time instant t. The quantity A(t) is the random variable corresponding to the
observed arrival rate up to and including time t. That is,

A(t) =
A(t)
t
. (4.53)

The number of customers in the system at a time instant is a random variable
N(t). The time average number of customers up to and including time instant
t is another random variable defined as

N(t) =
1
t

∫ t

τ=0

N(τ)dτ. (4.54)

Let D(t) be the integer random variable corresponding to the number of cus-
tomers who have completed their response time and departed by time instant
t. The average rate of departure over [0, t) is

D(t) =
D(t)
t
. (4.55)

Individual customers experience a response time which is a random variable.
Let i = 1, 2, · · · be the serial numbers of customers arriving in sequence,
starting from the observation time instant of t = 0. Let Rl(i) be the response
time of the l-th of the subsequence of arrivals counted during the times that
the state of the chain is i. Let Ri be the random variable response time of
customer i. The average of response times of all the customers who have
completed their response times and departed by time instant t is a random
variable defined as

R(t) =
1

D(t)

D(t)∑
j=1

Rj . (4.56)

Over a time of observation t = [0, T ), let Ti be the random variable corre-
sponding to the total amount of time spent in state i.
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THEOREM 4.5
Let K(t) be the random variable number of state transitions over a time

period of operation given by t. As the real (nonrandom) variable time tends
to infinity, each of the random variables, the number of state transitions of
the chain, numbers of arrivals, the number of departures, and the number of
state transitions of the Markov chain tend to infinity, with probability one.
That is,

P [ lim
t→∞K(t) = ∞] = 1 (4.57)

P [ lim
t→∞Ai(t) = ∞] = 1, i = 0, 1, · · · (4.58)

P [ lim
t→∞A(t) = ∞] = 1 (4.59)

P [ lim
t→∞D(t) = ∞] = 1, (4.60)

Here is some elaboration about the meaning of the statement. It implies that
the total number of arrivals seen as the observation time tends to infinity can be
finite as opposed to being infinity. However that such an event of observing only a
finite number of arrivals over an infinite time period occurs with zero probability.
Alternatively, the number of arrivals increasing without bounds as time increases
without bounds is almost certain, but not certain, as defined in Section 2.6.1.

Proof
The proof is based on the simple fact that the probability of an exponential random
variable taking an outcome of infinity is zero. The sample space of an exponential
random variable is [0, ∞). Let the rate of the exponential random variable be α.
Consider the probability

P [X ≥ x] = exp(−αx) (4.61)

so that
P [X → ∞] = 0. (4.62)

The infinite additivity extension of the axioms of probability stated in equation A.1 is
useful and repeated below. If an infinite sequence of events e1, e2, . . . are mutually
exclusive,

P [e1 ∪ e2 ∪ · · · ] = P [e1] + P [e2] + · · · . (4.63)

This in turn implies that if the infinite sequence of events e1, e2, . . . are not mutu-
ally exclusive,

P [e1 ∪ e2 ∪ · · · ] ≤ P [e1] + P [e2] + · · · . (4.64)
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Therefore, if each of the infinite sequence of random variablesX1, X2, . . . satisfies

P [Xi → ∞] = 0, (4.65)

then the following is true.

P [at least one Xi → ∞] = 0 + 0 + · · · (4.66)

= 0. (4.67)

Clearly, at some particular states of the Markov chain, the arrival rates of cus-
tomers may be zero. The departure rate of customers is definitely zero at state zero,
during which there are no customers to depart. However, the chain is irreducible and
hence at every state, there is a nonzero rate of change to one or more of some other
states. Therefore, the probability of the chain spending an infinite amount of time is
zero for every state, based on equation (4.62). Therefore, as the amount of time of
operation of the chain tends to infinity, the probability of the number of transitions
tending to infinity is 1. That is

P
[

lim
t→∞N(t) = ∞

]
= 1. (4.68)

From equation (4.52), we know that the expected amount of time the chain spends in
every state, E[Ti] tends to infinity as time of operation tends to infinity. Therefore,
the expected total amount of time the chain spends in all the states that have nonzero
arrival rates also tends to infinity. Similarly, the expected total amount of time the
chain spends in all the states that have nonzero departure rates tends to infinity. Dur-
ing all of the infinite time periods with nonzero arrival rates, the number of arrivals
during each state tends to infinity with probability one, for the same reason that every
exponential time period for the next arrival has zero probability of being infinity. The
argument for the probability of infinite number of departures is identical, completing
the proof.

Consider Poisson arrivals with a rate β over a random time period X with a pdf
fX(x) whose expectation is finite and given by E[X ]. The expected number of
arrivals, E[J ], over the time X is given by the theorem of total expectation as

E[J ] =
∫ ∞

x=0

E[J |X = x]fX(x)dx (4.69)

=
∫ ∞

x=0

βxfX(x)dx (4.70)

= βE[X ]. (4.71)

The arrival rates can be state dependent. The expectation of the total number of
arrivals during all of the time periods of state i is λiE[Ti]. Therefore,

E[ lim
t→∞A(t)] = E[ lim

t→∞
A(t)
t

] (4.72)
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= lim
t→∞

∞∑
i=0

λi
E[Ti]
t

(4.73)

=
∞∑

i=0

λipi. (4.74)

That is, the expectation of the long-term arrival rate, which is a limit, exists and is
given by the ensemble expectation of the arrival rates. Similarly, we have

E[ lim
t→∞D(t)] =

∞∑
i=0

µ(i)pi. (4.75)

Consider the average response time now.

E

 lim
t→∞

1
D(t)

D(t)∑
j=1

Rj

 = E

 lim
t→∞

1
A(t)

A(t)∑
j=1

Rj

 (4.76)

since A(t) and D(t) both tend to infinity with probability 1, as t tends to infinity.
Rearrange the order of Rj in the summation by grouping the response times corre-
sponding to arrivals occurring during different states. We have,

E

 lim
t→∞

1
D(t)

D(t)∑
j=1

Rj

 = E

 lim
t→∞

∞∑
i=0

Ai(t)
A(t)

1
Ai(t)

Ai(t)∑
l=1

Rl(i)

 . (4.77)

All the Rl(i) have the same expectationE[R|i]. We know that

lim
t→∞

Ai(t)
t

= λipi

with probability 1 and (4.78)

lim
t→∞

A(t)
t

=
∞∑

i=0

λipi

with probability 1. (4.79)

Using these, we have

E

 lim
t→∞

1
D(t)

D(t)∑
j=1

Rj

 =
∞∑

i=0

λipi∑∞
j=0 λjpj

E[R|i] (4.80)

with probability one. Also, the inner average in equation (4.77) given by
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1
Ai(t)

Ai(t)∑
l=1

Rl(i)

is an average of iid random variables with a finite expectation and a finite variance.
Therefore, when this average is taken in the limit, the variance of the limiting random
variable

lim
t→∞

1
D(t)

D(t)∑
j=1

Rj

is zero. Another byproduct of the above derivation is that ai, the probability that an
arriving customer sees state i in equation (4.35) evaluates to the intuitively satisfying

ai =
λipi∑∞

j=0 λjpj
.

Finally, note thatN(t) = A(t)−D(t) at every time instant t. WhereasA(t) andD(t)
are cumulative, monotonically nondecreasing, and generally increase as t increases,
N(t) is the number of customers and it fluctuates. The equilibrium probability and
the expected fraction of time the system sees an infinite number of customers is 0,
from Corollary 4.2. Therefore, we have

E

[
lim

t→∞
1
t
N(t)

]
= E

[
lim

t→∞
1
t
(A(t) −D(t))

]
(4.81)

= 0. (4.82)

Each of the above random variables are cumulative averages of independent (but
not necessarily identical) random variables. From Theorem 2.2 in Chapter 2, their
limiting variances are all zero. The foregoing discussion is formally stated in the
following theorem.

THEOREM 4.6

Let a continuous time state dependent queue be an irreducible Markov chain
with a unique solution for balance equations and let it function in equilibrium
starting from time t = 0. Let ni be the number of customers in the system
when the state of the system is i. Let n0 = 0 and n∞ = ∞.

1. The number of arrivals, the number of transitions, and the number of
departures each tends to infinity, with probability one, as time tends to
infinity.
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2. The random variables corresponding to long-term averages of the arrival
rate, departure rate, response time, the state S(t), and the number of
customers satisfy the following properties.

(a) Their expectations correspond to their respective ensemble expecta-
tions. That is,

lim
t→∞E[A(t)] = E

[
lim

t→∞
1
t
A(t)

]
=

∞∑
i=0

λipi (4.83)

lim
t→∞E[D(t)] = E[ lim

t→∞
1
t
D(t)] =

∞∑
i=0

µipi (4.84)

lim
t→∞E[S(t)] = E[ lim

t→∞
1
t
S(t)] =

∞∑
i=0

ipi (4.85)

lim
t→∞E[N(t)] = E[ lim

t→∞
1
t

∫ t

τ=0

N(τ)] =
∞∑

i=0

nipi (4.86)

lim
t→∞E[R(t)] = E[ lim

t→∞
1

D(t)

D(t)∑
j=1

Rj ] =
∞∑

i=0

E[R|i]ai (4.87)

(b)

lim
t→∞E[A(t)] = lim

t→∞E[D(t)] so that (4.88)

∞∑
i=0

λipi =
∞∑

i=0

µipi (4.89)

(c) The limiting variances are all zero.

In other words, the random variables of overall arrival rate, departure rate, the
state, and response time corresponding to the averages over the time variables are all
statistically steady. Their limits exist with probability one. Their limiting expecta-
tions respectively converge to corresponding ensemble averages. All their limiting
variances converge to zero. These properties together are referred to as the ergodicity
property of Markov chains. They are favorable to the applicability of a result con-

necting the overall time averages of arrival rate of customers, number of customers
in the system, and the response time. This is known as the Little’s result. A par-
ticular motivation to develop and use the Little’s result is that while the equilibrium
probabilities, the expected number in the system, the expected arrival rates are sim-
ple to evaluate, the expected response time is not, in general, due to the difficulty of
evaluating E[R|i].
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FIGURE 4.8: Use of time plots of arrivals and departures to derive Little’s result

4.7 Little’s Result

A surprisingly generalized equation connecting the long-term averages of the ar-
rival rate, number of customers in a system, and their response time holds. The result
holds for any enclosure with statistically steady input and output of integer numbers
of customers. Let us first concentrate on the FIFO case. Relaxing this assumption is
easy, as we will see later.

4.7.1 FIFO case

Study a typical plot of arrivals A(t) and departuresD(t) plotted in Figure 4.8. In
Figure 4.8, each horizontal bar is the response time of some job. Therefore, the total
area between the two plotsA(t) andD(t), denoted by S(t) is the sum of all response
times of all jobs.

S(t) = total area = A(t)R(t).

Therefore, the total area is also the integral of N(t) = A(t) −D(t) over time up to
t. So,
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S(t) =
∫ t

0

N(t)dt = tN(t) (4.90)

whereN(t) is the average number of customers in the system up to time t. We know
that

lim
t→∞

A(t) −D(t)
t

= 0 (4.91)

with probability one.

S(t) = A(t)R(t) = tN(t) and (4.92)

N(t) =
A(t)
t
R(t) = λ(t)R(t). (4.93)

For every sample function of an FIFO queue for which limits for N(t), λ(t), and
R(t) exist as t → ∞, we have that the average number in the system equals the
average arrival rate multiplied by the average response time. In the case of state
dependent queues whose behavior are governed by equilibrium Markov chains, we
know that these limits exist with probability one. We know that the expectations of
long-term averages are the same as the expectations of the ensemble or the sample
space. Therefore, for an FIFO equilibrium state dependent queuing system, we have

E[N ] = λE[R] (4.94)

where λ is the overall arrival rate, E[R] is the expected response time of a customer,
and E[N ] is the expected number of customers in the system. We also know that the
variance of the long-term averages of the arrival rate, the number in the system, and
the response time of customers are zero.

4.7.2 Non-FIFO case

Let ai and di be the arrival and departing time instants respectively, of the ith

job. The only difference in the sample functions of Figure 4.8 is that the order of
departing customers may be different. However, the total area

∑
i(di − ai) is the

same even if the order of departure time instants is different. All other arguments
stay the same. This result is indeed powerful.

Little’s result implicitly assumes that all the customers are statistically identical so
that all of them have the same expected response time. In some cases, it may not be
advisable to make such an assumption. An illustrative example is the following case
of noninteracting systems enclosed in an imaginary box merely for the sake of ap-
plying Little’s result. Consider two independent M/M/1/∞ queues being fed by two
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independent arrival streams of customers with arrival rates λ1 and λ2, respectively.
Let the expected response times be E[R1] and E[R2], different for the two systems.
Now, enclose the two in a box. Let the arrival streams come from a single stream
with rate λ1 +λ2, probabilistically split into two substreams of rates λ1 and λ2. Ap-
plying Little’s result to this large box will give us an overall expected response time
of

λ1E[R1] + λ2E[R2]
λ1 + λ2

. (4.95)

The above is not strictly erroneous, but we can get better performance figures for the
two individual queues, instead of clubbing them into a single stream and evaluating
an overall expectation.

Example 4.3
Into a restaurant, customers come in at the rate of 100 per hour to attempt
dining. Customers wait in a separate lounge to be seated and this takes
quite some time, occasionally. As a consequence, on the average, 10% of the
customers that come in leave without dining. Customers who eventually dine
take an average of 40 minutes in the dining hall. The dining hall has a capacity
of 20% in excess of the average number of customers dining at any time.

Determine the capacity of the dining hall, in terms of the number of cus-
tomers that can be simultaneously dining.

Solution
The arrival rate into the dining hall is 90% of the total arrival rate and it is 90 cus-
tomers per hour. The average time spent by a customer in the dining hall is 40
minutes = 2

3 hour. Applying Little’s result, we get the average number of customers

in the dining hall as 60. The capacity is 1.2 times the average number and it is 72.
Many other performance figures of state-dependent queues, such as average num-

ber of busy servers, average service time, average waiting time, etc., depend on the
peculiarity of construction of the physical systems. Some very important and illus-
trative examples of these are studied next.

4.8 Application Systems

4.8.1 Constant rate finite buffer M/M/1/k system

λi = λ, i = 0, · · · , k − 1 (4.96)
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FIGURE 4.9: The M/M/1/k state transition diagram

λk = λ, but arrivals at state k are lost. (4.97)

µi = µ, i = 1, · · · , k (4.98)

µ0 = 0, of course. (4.99)

Let ρ = λ
µ .

n∏
i=1

λi−1

µi
=

(λ
µ

)n

, n = 1, 2, · · · , k, (4.100)

1 +
k∑

n=1

n∏
i=1

λi−1

µi
=

m∑
n=0

(λ
µ

)n

=
1 − ρk+1

1 − ρ
, (4.101)

p0 =
1 − ρ

1 − ρk+1
. (4.102)

As expected, ρ ≥ 1 is also possible and we still get nonzero state probabilities. From
equation (4.22),

pn = ρn 1 − ρ

1 − ρk+1
. (4.103)

As a special case, if ρ = 1,

pn =
1

k + 1
, n = 0, · · · , k. (4.104)

Performance figures
Load

P [busy] = 1 − p0 (4.105)
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= 1 − 1 − ρ

1 − ρk+1
(4.106)

=
ρ− ρk+1

1 − ρk+1
(4.107)

pb = P [blocking] = ρk 1 − ρ

1 − ρk+1
(4.108)

Throughput

E[Y ] =
k−1∑
i=0

λpi = (1 − pk)λ, from the input side (4.109)

=
k∑

i=1

µpi = (1 − p0)µ at the output side (4.110)

=
ρ− ρk+1

1 − ρk+1
µ =

1 − ρk

1 − ρk+1
λ. (4.111)

Fraction of lost jobs
In this case, the rate of attempted arrivals is constant at λ. The expected number of
lost jobs in a unit time is λpk. Therefore, fraction of lost jobs is

λpk

λ
= pk, (4.112)

pk =
ρk − ρk+1

1 − ρk+1
. (4.113)

Expected number in the system

E[N ] = n (4.114)

=
k∑

n=1

npn (4.115)

=
(1 − ρ)

1 − ρk+1

k∑
n=1

nρn (4.116)

=
(1 − ρ)ρ
1 − ρk+1

d

dρ

k∑
n=1

ρn (4.117)
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=
(1 − ρ)ρ
1 − ρk+1

d

dρ
ρ

k−1∑
k=0

ρk (4.118)

=
(1 − ρ)ρ
1 − ρk+1

d

dρ

[
ρ
1 − ρk

1 − ρ

]
(4.119)

=
ρ[1 − (k + 1)ρk + kρk+1]

(1 − ρ)(1 − ρk+1)
. (4.120)

The final expression is obtained by simply differentiating as required and simplify-
ing.

Expected response time
This is obtained by applying the Little’s result.

E[R] =
E[N ]
E[Y ]

(4.121)

=
ρ[1 − (k + 1)ρk + ρk+1]

(1 − ρ)(1 − ρk+1)
× 1

1−ρk

1−ρk+1λ
(4.122)

=
1

µ− λ
× 1 − (k + 1)ρk + kρ(k+1)

1 − ρk
. (4.123)

4.8.2 Forward data link with a finite buffer

Let us generalize the forward data link analysis of Section 3.12 further with a
finite buffer at the receiver queue. The transmitter queue at station A has unlimited
buffer but the receiver queue at station B has a finite buffer and packets are dropped
at the receiver queue in station B if too many packets come in during a short time.
Let the receiver queue at station B have room for only k packets, including any
packet under service. The overall input at the receiver queue in station B continues
to be Poisson due to the Poisson nature of departures from the M/M/1/∞ transmitter
queue in station A. All other aspects and representative parameters are the same as
in Section 3.12. Let pb be the probability of blocking (or dropping) at the receiver
queue. This blocking probability is a function of several parameters and will remain
unknown until later in the analysis. The probability of a packet entering the receiver
queue and it being correct (nonerroneous) is

pc = (1 − pb)(1 − ef ) (4.124)

since blocking and packet errors are not influenced by one another. Expected number
of transmissions per correct receipt of a packet is

1
(1 − pb)(1 − ef )

. (4.125)
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The combined arrival rate of packets for transmission and all retransmissions at the
transmitter A is

λ

(1 − pb)(1 − ef )
. (4.126)

This is also the “attempted” arrival rate at the receiver B. Note that this emphasizes
that there is no packet loss in the propagation channel. The propagation channel
may only add noise. Any packet loss is due only to the finite buffer at the receiver.
Once the receiver successfully receives and processes the packet, any packet error
due to added noise during propagation is detected. The time for receiving a bit is the
bit-width y and the average number of bits in the packet is 1

q . Therefore, the service
rate at the receiver queue is q

y packets per unit time. The normalized attempted load
in the receiver queue is

ρ =
λy

q(1 − pb)(1 − ef )
. (4.127)

From equation (4.108) giving the probability of blocking for a finite buffer M/M/1
queue, we have

pb = ρk 1 − ρ

1 − ρk+1
. (4.128)

If we substitute for ρ from equation (4.127) into equation (4.128) for pb we obtain
a nonlinear equation for the unknown pb in terms of all other quantities about the
system. The expected response time for one pass can be obtained by using the Little’s
result. The overall expected response time including possible multiple passes is

E[R] =
E[R| one pass ]
(1 − pb)(1 − ef)

. (4.129)

The overall objective is to minimize the expected response time as a function of the
control parameter, which is the bit-width y. The corresponding mathematical expres-
sions are algebraically cumbersome. Clearly, this is a nonlinear optimization over
one variable y. Numerical techniques using commercial software such as Matlab are
fairly straightforward to implement.

4.8.3 M/M/∞ or immediate service

Imagine that we have an unlimited number of servers, each with an iid service rate
µ, and a constant arrival rate of λ. Therefore, anytime a customer arrives, its service
will begin instantaneously. We are interested in finding the probability mass function
of the number of customers in the system. The departure rate is state dependent and
is nµ where n is the state, since all the busy servers (as many as the number of
customers) will be outputting a job each at a rate of µ. The arrival rate is constant, λ.
The state transition diagram is shown in Figure 4.10. From the balance equations,

nµpn = λpn−1, n ≥ 1, (4.130)
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FIGURE 4.10: State diagram of an M/M/∞ queue

pn =
λ

nµ
pn−1 =

λ2

n(n− 1)µ2
pn−2 = · · · =

λn

n!µn
p0 (4.131)

pn =
ρn

n!
p0. (4.132)

Summing all the state probabilities,

∞∑
n=0

pn = p0

∞∑
n=0

ρn

n!
= p0e

ρ = 1. (4.133)

Hence,

p0 = e−ρ (4.134)

pn =
e−ρρn

n!
. (4.135)

That is, the number in the system is Poisson distributed with the dimensionless
parameter ρ.

Performance Figures

E[N ] = n = ρ (4.136)

from the expectation of the Poisson random variable.

P [ empty system ] = p0 = e−ρ. (4.137)

4.8.4 Parallel servers

By now it should be clear that in most cases, the important step is to write the
correct state transition diagram. Using this, the state probabilities can be evaluated
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FIGURE 4.12: State transition diagram for the parallel server case

from first principles, without using the general formulas. The second step is to for-
mulate and evaluate interesting performance figures peculiar to the applications. Let
us consider m parallel servers with a capacity k in the system including those under
service. Each server’s service rate is µ. Arrival rate is λ. Customers wait in a single
line until a server is free. If more than one server is free when a customer gets a
chance to get into service mode, the customer chooses one at random. Alternatively,
under the same circumstances, the management uses a random scheduling algorithm
to assign one of the free servers to the customer. The queuing system is shown in
Figure 4.11. The state transition diagram is in Figure 4.12.

λn = λ, n = 0, 1, 2, · · ·k − 1, (4.138)

λk = λ, but such customers will be lost, (4.139)

µi = iµ, i = 1, · · · ,m, (4.140)

µn = mµ,m < n ≤ k, (4.141)
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pi =
λ

iµ
pi−1, i = 1, · · · ,m, (4.142)

pn =
λ

mµ
pn−1, n = m, · · · , k. (4.143)

The solutions for these equations with
∑∞

j=0 pj = 1 are cumbersome and are not
particularly illustrative. Let us just note that they can be easily evaluated for any
given numerical values of the parameters and proceed.

Performance Figures

P [all servers are free] = p0. (4.144)

P [all servers are busy] =
k∑

k=m

pk. (4.145)

E[number of busy servers] =
m∑

i=1

ipi +m

k∑
i=m+1

pi. (4.146)

E[Nw] =
k∑

i=m+1

(i−m)pi, (4.147)

the expected number in waiting.
Throughput

E[Y ] = λ(1 − pk). (4.148)

Expected response time

E[R] =
E[N ]
E[Y ]

. (4.149)

For average waiting time, E[Tw], we have two ways

E[Tw] = E[R] − 1
µ
. (4.150)

Also, we can apply Little’s result to an imaginary box around the waiting line and
obtain

E[Tw] =
E[Nw]
E[Y ]

. (4.151)

Fraction of time a server is busy
If k servers are busy at a time instant, all combinations of k servers are equally

probable since
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1. a server is chosen at random by the customer if more than one is available to
choose from and

2. service times at all the servers are iid.

Therefore,

P [a particular server busy|k are busy] =
k

m
, k ≤ m (4.152)

P [ busy ] = P [a particular server busy]
(4.153)

=
m∑

j=1

j

m
pj +

j∑
j=m+1

pj . (4.154)

The mathematical expression for the blocking probability in an M/M/m/m queue
is known as Erlang’s B formula. The expression for the probability that an arriving
customer waits in an M/M/m/m queue is known as Erlang’s C formula. These ex-
pressions were originally derived by Agner Krarup Erlang, a Danish scientist (1878–
1929), for (and extensively used in) traditional telephone systems. These derivations
are left as exercises listed at the end of this chapter.

Example 4.4
Poisson arrivals with rate 28 per second enter a single queue for processing by
one of two iid exponential servers, each with service rate 20 jobs per second.
If a job arrives when the system is empty, it chooses one of the servers at
random. The total number of jobs that the entire system can hold is only 3
(including any under service). Arrivals to a full system are lost. Evaluate the
expected response time of a job that got admitted into the system.

Solution
The state diagram has states 0, 1, 2, and 3 only, with constant arrival rate of 28. The
rate from state 1 to 0 is 20. The rate from 2 to 1 as well as from 3 to 2 is 40. Writing
balance equations,

28p0 = 20p1 (4.155)

p1 = 1.4p0 (4.156)

28p1 = 40p2 (4.157)

p2 = 0.7p1 = (0.7)1.4p0 (4.158)
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28p2 = 40p3 (4.159)

p3 = 0.7p2 = (0.7)21.4p0 (4.160)

p0[1 + 1.4 + (0.7)1.4 + (0.7)21.4] = 1 (4.161)

p0 =
1

4.066
(4.162)

E[N ] =
1

4.066
[1.4 + (0.98)2 + (0.686)3] (4.163)

= 1.3325. (4.164)

The effective arrival rate (rate of admitted jobs), η is given by

η = λ(1 − p3) = 23.28 (4.165)

E[R] =
E[N ]
η

= 0.057 seconds. (4.166)

4.8.5 Client-server model

The system and the “customers” are defined as follows. The k client machines de-
pend on a central server for some service. Each client machine can be in two modes:
local, during which the client has no service request pending at the server. During
the local mode, a client is working on other things or preparing to send a request to
the server. The “local mode” time is modeled as an exponential random variable.
Note that the mean local mode time can depend on the person sitting at the client
machine. However, to keep the details simple, and to illustrate the concepts better,
clients are all iid. The second mode in which each client can be is the “request”
mode, after sending a request for the server’s function. These requests are queued up
in front of the server. Finally, each client can send only one request at a time and can
have only one request for service pending at the server. Service time requirements
for the client’s requests are iid exponential with parameter µ. The physical nature
of the function of the system is depicted in Figure 4.13. The buffer capacity at the
server needs to be only m. There is no waiting line at any client machine.

The state transition diagram for the Markov chain is shown in Figure 4.14. For
a given set of numerical values, obtaining the equilibrium probabilities and perfor-
mance figures is straightforward, as in other cases. The most important performance
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FIGURE 4.14: State transition diagram for the client-server queue

figure is the expected response time in the the server queue which can be evaluated
with the help of Little’s result.

Example 4.5
Balking is the phenomenon in which a customer arrival rate reduces when a
longer waiting line is seen. Let us consider another simple numerical example
to illustrate it. We have two identical servers and an additional waiting room
for only one more customer.

Arrival rates:

• λ0 = λ1, the arrival rate when there is no waiting.

• λ2 < λ1, indicating balking.

• λ3, λ4, · · · = 0

Let us use λ0 = λ1 = 2, λ2 = 1, µ = 1. Analyze the system.

Solution
Note that the system is always stable due to a finite buffer. That is, the “effective”
λ3 = 0 meaning that even if customers attempt to arrive when the system is full, they
get lost. Writing balance equations

2p0 = p1 ⇒ p1 = 2p0, (4.167)
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2p1 = 2p2 ⇒ p2 = p1 = 2p0, (4.168)

p2 = 2p3 ⇒ p3 =
p2

2
= p0, (4.169)

p0 + p1 + p2 + p3 = p0 + 2p0 + 2p0 + p0 = 1. (4.170)

Therefore,

p0 =
1
6

(4.171)

p1 =
2
6

(4.172)

p2 =
2
6

(4.173)

p3 =
1
6
. (4.174)

Performance figures:

Throughput =
N−1∑
i=0

λipi (4.175)

=
1
6
(2 · 1 + 2 · 2 + 1 · 2) (4.176)

=
4
3
. (4.177)

Throughput is also given by:

N∑
i=1

µipi =
1
6
(1 · 2 + 2 · 2 + 2 · 1) (4.178)

=
4
3

(4.179)

n = E[number in system] (4.180)

=
N∑

i=1

ipi (4.181)

=
1
6
(1 · 2 + 2 · 2 + 3 · 1) (4.182)
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=
3
2

E[R] =
n

Throughput
(4.183)

=
9
8
. (4.184)

Example 4.6
A single exponential server with a service rate of 10 jobs per second is input
with the following peculiar process of jobs. Single Poisson arrivals occur with
a rate of 3 jobs per second. Additionally and independently, pairs of jobs
arrive with a Poisson distribution of 1 pair per second. There is room for only
4 jobs including any being served. If a pair of jobs arrives when the system
already has 3 jobs, one of them (at random) enters the system and the other
gets lost. Arrivals to a full buffer are lost. Develop the state transition rates
of the Markov chain for the above system. Let p0, ..., p4 be the steady state

probabilities of the corresponding states. Determine the following as functions
of p0, ..., p4.

1. The fraction of lost jobs.

2. Among the successful jobs, the ratio of individually arriving jobs to jobs
arriving in pairs.

Solution
The transition rates ri,j from state i to state j are as follows. All the numerical values
for rates are in number of jobs per second.

ri,i+1 = 3, for i = 0, 1, 2. (4.185)

ri,i+2 = 1, for i = 0, 1, 2. (4.186)

ri,i−1 = 10, for i = 1, 2, 3, 4. (4.187)

r3,4 = 3 + 1 = 4. (4.188)

All other rates are zero. The rate r3,4 has two components. The component of 3 is
due to single arrivals when the state is 3. The component of 1 is due to a pair arriving
when the state is 3 and one of the pair being lost due to buffer full condition. When
the state is 3, jobs are lost with a rate of 1 due to pairs of jobs arriving with a rate



156 Performance Analysis of Queuing and Computer Networks

1 and one of the pair being lost. When the state is 4, individual job arrivals are lost
at a rate of 3. Both jobs of pairs of arrivals at the rate of 1 pair are also lost making
the loss rate 5 when the state is 4. Therefore, the total rate of lost jobs is p3 + 5p4.
Rate of attempted arrivals is always three plus one pair, that is a total of five jobs per
second. Therefore, fraction of lost jobs is

p3 + 5p4

5
. (4.189)

Rate of successful jobs among the individual arrivals is 3 − 3p4. Rate of successful
jobs among pairs of arrivals is 2 − p3 − 2p4. The required ratio is

3 − 3p4

2 − p3 − 2p4
. (4.190)

Example 4.7 Sluggish operating system
A computer system has a Poisson job arrival stream with rate λ. Payload jobs
have iid exponential service time with rate µ and arrive into an unlimited size
buffer. Whenever there are no payload jobs, the operating system executes
internal jobs. There are two equivalent ways to model this. In the first, the
system continuously executes such internal jobs. Whenever a payload job
arrives, the system completes its housekeeping operations before attending
to the payload job. This takes an exponential amount of time with rate α.
Upon completion of a payload job, if the buffer has any other payload job,
the system attends to it and does not take up internal jobs. Alternatively,
the internal jobs are modeled as requiring iid exponential times with rate α
and the system executes them one after another until a payload job arrives.
Once such a payload job arrives, the remaining time to complete its current
internal job is exponential with rate α. Both modes are equivalent from the
point of view of the payload jobs.

1. Draw the state transition diagram of the Markov chain.

2. Verify that the following pmf satisfies the balance equations. Let P [n, s]
be the equilibrium probability of n external customers in the system with
the external customer at the head of the queue being serviced. Similarly,
let P [n, b] be the equilibrium probability of n external customers in the
system with the server executing the internal system job; b stands for
blocked. Show that the pmf is of the form

P [n, s] =
(1 − ρ)(1 − v)ρ

ρ− v

(
ρn − vn

)
(4.191)
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FIGURE 4.15: State transition diagram for the sluggish operating system queue

P [n, b] = (1 − ρ)(1 − v)vn (4.192)

where n ≥ 1 is the number of external customers in the system, ρ = λ
µ ,

and v = λ
λ+α . Note that P [0] = P [0, b] and P [0, s] = 0.

3. Solve the balance equations and obtain the above equilibrium pmf. Use
Z transform.

4. What is the value of α for which the system collapses to the standard
M/M/1/∞ queue? Verify that the results for this case corresponds to
those of the M/M/1/∞ queue.

5. Show that the expected number of payload jobs in the system is

E[N ] =
ρ+ v − 2ρv

(1 − ρ)(1 − v)
. (4.193)

6. Specialize the result for the case when α = µ.

Solution

1. Consider the time just before and after an arrival into an empty buffer. Just be-
fore the arrival, the system is executing internal job. After an arrival the system
takes an exponential amount of time with rate α to start servicing the external
customer. During this time, potentially, any number of additional external cus-
tomers can arrive. Therefore, it is necessary to distinguish between whether or
not an external customer is being serviced for every number of customers in
the system. Of course, when the system is empty of external customers, there
is only one combination. The state diagram is shown in Figure 4.15. For every
number of customers n > 0, there are two states; n with s indicating that a
customer is being serviced and b indicating that the customer at the head of
the queue is blocked since the system has still not recovered from internal job
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it was executing before all the external customers in the system arrived. From
any state (n, b), there is an arc with rate α to state (n, s) corresponding to the
completion of the system job and starting servicing the external customer at
the head of the queue. The rest of the state transitions are straightforward.

2. From the equations for the given pmf, P [0] = (1 − ρ)(1 − v) and P [1, s] =
(1 − ρ)(1 − v)ρ. Balancing around state 0 in Figure 4.15, we have

P [0]λ = P [1, s]µ (4.194)

as the balance equation. Substituting the given values of P [0] and P [1, s]
above, the balance equation is verified to hold. Around any state (n, b), n ≥ 0,
the balance equation is

P [n, b](λ+ α) = P [n− 1, b]λ, n = 1, 2, . . . . (4.195)

The given pmf expression P [n, b] = (1 − v)vn with v = λ
λ+α satisfies this

balance equation. Now, balance across a line between states corresponding to
n and n+ 1. The resulting balance equation is

(P [n, s] + P [n, b])λ = P [n+ 1, s]µ, n = 1, 2, . . . or (4.196)

P [n, s] + P [n, b] = ρP [n+ 1, s], n = 1, 2, . . . . (4.197)

From the given pmf for P [n, s] and P [n, b] respectively in equations (4.191)
and (4.192), we have

P [n, s] + P [n, b] = (1 − ρ)(1 − v)
(ρn+1 − ρvn

ρ− v
+ vn

)
(4.198)

= (1 − ρ)(1 − v)
(ρn+1 − vn+1

ρ− v

)
. (4.199)

The final expression is the same as for P [n + 1, s] as seen from equation
(4.191).

3. The rate α = ∞ lets the system collapse to the standard M/M/1/∞ queue.

4.

E[N ] =
∞∑

n=0

n
(
P [n, s] + P [n, b]

)
(4.200)

=
∞∑

n=0

nP [n+ 1, s] from earlier

=
∞∑

n=1

n
(1 − ρ)(1 − v)

ρ− v
(ρn+1 − vn+1)
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=
ρ(1 − v)
ρ− v

∞∑
n=1

(1 − ρ)ρn
∞∑

n=1

(1 − v)vn (4.201)

=
ρ(1 − v)
ρ− v

ρ

1 − ρ
− v(1 − ρ)

ρ− v

v

1 − v
(4.202)

=
ρ+ v − 2ρv
1 − ρ)(1 − v)

. (4.203)

5. For α = µ, we have

v =
λ

λ+ µ
, (4.204)

1 − v =
µ

λ+ µ
, and (4.205)

1 − ρ =
µ− λ

µ
. (4.206)

Using these in E[N ], we obtain

E[N ] =
µ

µ− λ
− µ− λ

µ
(4.207)

=
ρ

1 − ρ
(2 − ρ) (4.208)

=
ρ

1 − ρ
+ ρ. (4.209)

The final expression points out that the expected number in the system is more
than the corresponding quantity in the simple M/M/1/∞ system. This is an-
ticipated since the service of some packets are delayed due to sluggishness of
the server when an arrival occurs into an empty buffer. Indeed, whenever the
system is called upon to start serving a payload customer which arrives when
there are no other payload customers, the system delays starting service by an
average time of 1

µ during which an average of λ
µ additional payload customers

arrive. This is the additional part ofE[N ] over and above that in a conventional
M/M/1/∞ system.
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4.9 Medium Access in Local Area Networks

4.9.1 Heavily loaded channel with a contention based trans-
mission protocol

Consider the following very simple model of continuous time Medium Access.
Many computers communicate data packets over a single cable channel. At any
time, at most one computer can be successfully transmitting a packet onto the cable.
Therefore, the following carrier sense, collision detection (CSMA/CD) scheme is
used. The totality of all channel access attempts, including reattempts, by all the
computers together, is a Poisson process with a constant rate of α attempts per unit
time, all the time. This rate is not decreased, even if one transmitter is successfully
transmitting. At any instant of time, the channel is in one of the following states.

• Free state F : In this state, the channel is not being used by any attempted
access. Any arrival of an attempt to access when the channel is in this state will
change the state. The combined rate of attempted access to take the channel
away from this free state is α.

• Contention followed by collision state C: This is a short but random time pe-
riod. A transmitter (say transmitter A) senses the channel, finds it free, and
starts transmitting. Another transmitter,B, may start transmitting a short time
afterA started transmission, before the electromagnetic signal fromA reaches
B. If no other transmitter starts transmitting within a short random period (ex-
ponential with an average of 1

γ time units) afterA starts, there will be no more
collisions for this transmission fromA. This is because, after the short random
time is complete, the electromagnetic signal from station Awould be available
all over the channel for others to sense and note that the channel is busy. After
A starts, the short exponential timer with rate γ competes with any other trans-
mission that can start with a rate α. Therefore, the probability of the original
transmission being successful is γ

α+γ . The probability that it will collide with
another transmission is α

α+γ . Therefore, the rate of changing to the contention

and collision state from state F is α2

α+γ . The rate of changing from state F to
a successful transmission state is αγ

α+γ . The start of the original transmission
from transmitter A that is destined to meet with a collision renders the system
to be in contention followed by collision state C. The residence time of state
C is exponential with a rate γ.

• Recovery state R: Following a collision, both transmitters detect collision,
abort transmission, and recover. The time period between the instant a colli-
sion is detected and the instant the channel becomes free again is modeled as
an exponential random variable with rate δ.

• Successfully transmitting state T : After the first transmitter starts transmitting
and if no other transmitter starts during the short contention period, the orig-
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inal transmission will continue successfully; after the contention time, every
other transmitter is able to sense and detect an ongoing transmission. As ar-
gued above, the rate of attempted transmission when the channel is free is α.
Once a transmission starts, other possible transmissions are attempted with the
rate of α until the contention period ends. Therefore, the proportion of orig-
inal attempts escaping collision is γ

α+γ . The proportion of original attempts
leading to collision is α

α+γ . The rate of change from the free state to the suc-
cessful transmission state is αγ

α+γ . Once in this successful transmission state,
the remaining time of transmission is memoryless with rate µ.

4.9.1.1 Consequences of modeling approximations

In reality the small time period of contention and recovery may not be accurately
exponential. There is a small probability of the transmission beginning and ending
before the contention period ends. However, the successful throughput contributed to
this is very small. Also, the contention followed by collision state is fictitious. This
state is defined to occur right when the first transmitter starts and given that it will
lead to a collision, as if the system knows ahead of time that a collision is guaranteed
to occur! But we do account for the probability of this event occurring. In any case,
the model is for performance evaluation only. There is no suggestion to change the
details of operation to suit the model. The inaccuracies in the model will be reflected
in the accuracy of the results. Fortunately, the inaccuracy of the model does not lead
to inconsistencies which might otherwise render the entire analysis useless.

T

F

µ

γ

αγ
α+γ

C

δ

α2

α+γ

R

FIGURE 4.16: State transition diagram for the saturated MAC system
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4.9.1.2 Analysis steps

1. Draw a complete state diagram of the Markov chain for the system. The state
transition diagram is given in Figure 4.16.

2. Let PF , PC , PT , and PR be the equilibrium probabilities of corresponding
states. Solve for and obtain expressions for them as functions of α, µ, γ, and
δ.

3. Determine the throughput, that is, the rate of successful packet transmission.

4. Plot the throughput as a function of α when all other parameters are constants.

5. Determine expressions for other important performance figures such as the
expected number of channel sensing per successful transmission, and the ex-
pected number of collisions per successful transmission.

The state diagram is very simple. Balancing around states F , C, R, and T , re-
spectively, we obtain

µPT =
αγ

α+ γ
PF or (4.210)

PT =
αγ

µ(α+ γ)
PF , (4.211)

γPC =
α2

α+ γ
PF or (4.212)

PC =
α2

γ(α+ γ)
PF , and (4.213)

δPR = γPC or

PR =
γ

δ
PC =

α2

δ(α+ γ)
PF . (4.214)

Summing all the probabilities, we have

PF

(
1 +

αγ

µ(α + γ)
+

α2

γ(α+ γ)
+

α2

δ(α+ γ)

)
= 1. (4.215)

When the state of the chain is T , a packet is being successfully output at a rate of µ.
Therefore, the conditional throughput is µ when the state is T and zero during other
states. That is, the throughput in packets per unit time, denoted by E[Y ] is given by

E[Y ] = µPT =
αγ

α+ γ
PF (4.216)
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=
1

1
γ + 1

α + 1
µ + α

γ2 + α
γδ

. (4.217)

The throughput is maximized by differentiatingE[Y ] wrt α, equating it to zero, and
evaluating α. Equivalently, we can minimize

1
α

+ α

(
1

γ2 + 1
γδ

)
(4.218)

wrt α. The result is easily evaluated as

α = γ

√
δ

γ + δ
(4.219)

maximizes the throughput. The maximum throughput is obtained by substituting

γ
√

δ
γ+δ for α in E[Y ]. We obtain

maxE[Y ] =
1

1
γ + 2

γ

√
γ+δ

δ + 1
µ

. (4.220)

Over Ethernet, the maximum time over which a newly started transmission can re-
sult in a collision is about 50 microseconds. Therefore, maximum time for all the
transmitters to detect a collision is 100 microseconds Similarly, after a collision, a
noise burst is sent by the first station that senses a collision to warn all others. This
also lasts for about 50 microseconds. Using these as nominal values in our model
and also an average transmission time of 1 millisecond for a packet, we have the
following rates in millisecond−1 units.

γ = 20, (4.221)

δ = 20, and (4.222)

µ = 1. (4.223)

The optimal α = 20√
2
14.1421 per millisecond. The maximum possible throughput

is 1
1.05+0.1

√
2

= 0.8393 packet per millisecond. This is a small reduction from the
maximum of 1 packet per millisecond, since the average transmission of a packet
takes 1 millisecond. Figure 4.17 shows a plot of the variation of the throughput as a
function of α.

4.9.2 A simple contention-free LAN protocol

A LAN has m transmitters connected to it. Packets arrive into the ith buffer as a
Poisson stream at a rate λi. All packets in all the buffers are iid and each requires an
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FIGURE 4.17: Throughput as a function of sensing rate α

exponentially distributed transmission time with rate µ. At the end of a transmission,
the packet includes the identification of the transmitting node that gets the right to
transmit. The identity of the transmitter for this purpose is selected randomly with
a probability qi for transmitter i. All the transmitters use the same random number
generating algorithms and successively selected transmitters are iid. It is possible
that the next transmitter picked by a transmitting station is itself, in which case, it
transmits the next packet. When it is transmitter i’s turn to transmit, if it does not
have any payload packet to transmit, it transmits a dummy packet whose transmission
time is iid as other packets. This dummy packet includes the identification of the next
transmitter.

The above description is idealized. But it has the advantage of a very well defined
service time distribution that is independent of the states of the different queues.
What is the time interval between successive attempts for transmission at a station
i? When transmitter i gets a chance, it spends an exponential time with rate µ.
Thereafter, the number of transmissions at different stations before i is scheduled
again is modified geometric with a probability of success 1 − qi. Including its
first transmission, the number of transmissions Ki between successive chances for
transmitter i has the pmf

P [Ki = k] = (1 − qi)k−1qi, k = 1, . . . . (4.224)

Each of the Ki transmissions takes an iid exponential time with rate µ. The Laplace
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transform of the total time between successive chances for transmission at transmitter
i is

LTi(s) =
∞∑

k=1

(1 − qi)k−1qiµ
k

(µ+ s)k
. (4.225)

Evaluating the geometric sum in the equation above, we obtain the result that Ti

is exponential with rate qiµ. This result is analogous to the response time in an
M/M/1/∞ queue evaluating to an exponential distribution. We now have the follow-
ing result. Let each transmitter transmit a payload packet with rate µ when it gets
a chance to transmit. If it does not have a payload packet when it gets a chance to
transmit, let it transmit a dummy packet with rate µ. Then the equivalent service rate
of transmitter i is µii = qiµi.

However, a transmitter queue in such a network is not a perfect M/M/1/∞ queue
for the following reason. When the empty queue of a transmitter receives a new
arrival, its service does not begin immediately, but only after a memoryless time with
the rate µqi. But as long as the buffer has packets to transmit, successive packets are
transmitted contiguously, with a memoryless time of the same rate between their
starting time instants. The operation of the queue of such a transmitter is identical to
that of the sluggish operating system in which the average delay due to sluggishness
is the same as the average service time of payload customer. Using the result from
equation (4.209), we have

E[Ni] =
λi

µqi − λi
+

λi

µqi
, i = 1, 2, . . . ,m (4.226)

where λi is the rate of packet arrivals into the buffer of the ith transmitter, qi is the
probability with which a transmitter will be scheduled for transmission, and µ is the
common rate of transmission completion whenever any transmitter is transmitting.
Denote λi

µqi
by ρi. The expected response time of a random payload packet entering

the LAN at a randomly chosen transmitter is minimized by minimizing the expec-
tation of the sum of the number of payload packets in all the transmitters. This is a

consequence of the Little’s result and the fact that the overall throughput
m∑

i=1

λi is a

constant. We have

E[N ] =
m∑

i=1

ρi

(
1

qi − ρi
+

1
qi

)
. (4.227)

The design of the LAN requires the determination of the probability values, qi,
which will minimize E[N ].
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Optimization
The m probabilities q1, . . . , qm are required to sum to 1. Use

qm = 1 −
m−1∑
j=1

qj . (4.228)

We have

E[N ] =
m−1∑
i=1

ρi

(
1

qi − ρi
+

1
ρi

)
+ ρm

(
1

1 −
m−1∑
j=1

qj − ρm

+
1

1 −
m−1∑
j=1

qj

)
.

(4.229)

In order to obtain the optimal probabilities {qi}, take the partial derivatives of E[N ]
wrt qi, i = 1, 2, . . . ,m− 1 and equate each to zero. We have

∂E[N ]
∂qi

= ρi

(
−1

(qi − ρi)2
+

−1
q2i

)

+ρm

(
1

(1 −
m−1∑
j=1

qj − ρm)2
+

1

(1 −
m−1∑
j=1

qj)2

)
,

i = 1, 2, . . . ,m− 1 (4.230)

= 0. (4.231)

The condition for vanishing partial derivatives simplifies to

ρi

(
1

(qi − ρi)2
+

1
q2i

)
= ρm

(
1

(qm − ρm)2
+

1
q2m

)
, i = 1, 2 . . . ,m− 1

(4.232)

which implies that the LHS evaluates to the same quantity for every i. Denote this
by a constant c. We have

ρi

(
1

(qi − ρi)2
+

1
q2i

)
= c, i = 1, 2 . . . ,m. (4.233)
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This leads to the interesting optimization problem of finding a c whose inverse func-
tions will give us q1, . . . , qm that will add to one. As qi decreases from 1 to ρi, the
quantity c shoots up without bounds. The domain of feasible solutions is given by

ρi < qi < 1 i = 1, . . . ,m and (4.234)

m∑
i=1

qi = 1. (4.235)

Define m functions

ci(qi) = ρi

(
1

(qi − ρi)2
+

1
q2i

)
, i = 1, 2 . . . ,m. (4.236)

The function ci(qi) is a strictly monotonically decreasing function of qi in the open
interval domain of ρi < qi ≤ 1. Define the function

qi = gi(c) (4.237)

as the inverse function of ci(qi). That is, for every given c, the quantity qi is given
by the unique value of qi for which ci in the equation (4.236) takes the given value
of c. Clearly, gi(c) = qi is also strictly monotonically decreasing in the open
interval range of ρi < qi ≤ 1. Following is a brute-force method to evaluate the
optimal solution for the transmission probabilities qi. Evaluate and store an array
for each ci(qi) as a function of qi over a range from qi = 1 through a value close
to qi = ρi, with a fine grain size of increments in qi. Invert the arrays so that each
qi is a function of ci. Sweep the range of c. For each c, evaluate the corresponding
values of qi, with linear interpolation, if necessary. Find the value of c correspond-
ing to the values of qi summing to a value closest to one. One of the exercises
at the end of this chapter suggests the study of a mathematical optimization approach.

Implementation details
There are two ways to generate the identity of the next station to transmit. In the first
method, all the stations generate pseudorandom numbers with an identical algorithm
and an identical seed. In this case, every transmitter knows the identity of the next
station scheduled for transmission. If a transmitter gets a chance to transmit when it
is empty, it still needs to transmits a dummy or a control packet so that the sequence
of transmitting stations is not disturbed. In the second method, every transmitter that
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gets a chance to transmit, includes in its transmitted packet, the randomly selected
identification of the station for the next transmission. This is a token passing scheme,
except that the sequence is not only random, but possibly with skewed probabilities.

Instead of transmitting dummy packets as suggested above, a transmitter with an
empty buffer may be designed to transmit useful control packets. These can be used
to exchange messages about currently estimated load at the transmitter transmitting
the control packet. Other transmitters can use such parameter values to update their
probability evaluations. This adaptive method to update the parameters whenever
necessary is very powerful.

Another very useful feature can be incorporated to sign in transmitters that want
to connect to the LAN. When a transmitter scheduled for transmission does not have
any payload packet to transmit, it can transmit a short “beacon” signal which is
understood to be an invitation for an alien transmitter to ask for permission to join the
LAN, within a prespecified time period. This facility is contention based, since more
than one alien stations can contend to join. Conventions for handling contentions
would have to be designed.

A useful closed form approximation to the above solution (which is by search or
mathematical programming) can be determined as follows. The composite service
time is determined by accounting for sluggishness caused by dummy or control
packets of size iid to payload packets. Now, let the dummy packet simply pass the
token to the next transmitter in a short packet that takes a negligible time to transmit.
This reduces the delay caused by sluggishness. Following through, in the analysis
of the individual queues with the composite service time, neglect the entire effect of
the already reduced sluggishness. Each queue then becomes an M/M/1/∞ system
with arrival rate λi and a composite service time with a rate µqi. This model lends
itself to simple analysis.

Optimization of the M/M/1/∞ approximation
The resulting objective function for minimization is

E[N ] =
m∑

i=1

E[Ni] (4.238)

=
m∑

i=1

ρi

qi − ρi
(4.239)

=

(
m−1∑
i=1

ρi

qi − ρi

)
+

ρm

(1 −
m−1∑
j=1

qj) − ρm

. (4.240)

Evaluate the partial derivatives of E[N ] wrt qi and equate each partial derivative to
0.
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∂E[N ]
∂qi

=
−ρi

(qi − ρi)2
+

ρm

(1 −
m−1∑
j=1

qj − ρm)2
(4.241)

=
−ρi

(qi − ρi)2
+

ρm

(qm − ρm)2
, i = 1, . . . ,m (4.242)

= 0, i = 1, . . . ,m (4.243)

This implies that

ρ1

(q1 − ρ1)2
=

ρ2

(q2 − ρ2)2
= · · · =

ρm

(qm − ρm)2
=

1
b2

(4.244)

where b is an unknown constant. Equivalently,

qi − ρi√
ρi

= b, i = 1, . . . ,m. (4.245)

Summing all the probabilities and equating the sum to 1, we have

m∑
i=1

qi = b

m∑
i=1

√
ρi +

m∑
i=1

ρi = 1. (4.246)

Therefore,

b =
1 −

m∑
i=1

ρi

m∑
i=1

√
ρi

and (4.247)

qi =
1 −

m∑
j=1

ρj

m∑
j=1

√
ρj

√
ρi + ρi. (4.248)
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4.10 Exercises

1. Determine the expectation of the time spent during a continuously busy time
period in an M/M/1/∞ queue. Do not use results on its pdf or on its Laplace
transform derived in Chapter 3.

2. Consider a general Markov chain and two of the balance equations written
by enclosing each of states i and j, respectively inside a boundary. Add the
two equations and simplify by canceling identical terms on the two sides of
the resulting equation. Could the resulting equation have been obtained by
writing a single equation after observing the state transition diagram of the
chain? Generalize the result. Also, show that if the chain has finite number
of states, the number of linearly independent balance equations can be at most
the number of states minus one.

3. In a real-time computing system, the processor attends to only one request at
a time, and additional requests are not allowed to wait in a line. That is, if
a request A comes in when the processor is busy, A gets lost (and will not
return later). Requests are attempted as a Poisson process with a rate of 1
per millisecond. Service requirements of requests are iid exponential with an
average of 2 milliseconds of time. Determine the probability that the processor
is busy, under equilibrium.

4. (a) Formulate the Little’s result for the service area of a single queue.

(b) Formulate the Little’s result for the “waiting customers” in a single
queue.

5. A computer network has a dual processor server for computation intensive
jobs. Jobs appear from clients in a Poisson stream with a constant rate of 1
job per millisecond and wait in a common FIFO waiting line with unlimited
buffer capacity. If both the processors are available for serving a job at the
head of the line, one of the two processors is scheduled to serve, with equal
probabilities. Service times in each processor is iid exponential with a rate of
1 job per millisecond.

(a) Draw the Markov chain for the above system.

(b) Evaluate the numerical value of p0, the probability of zero customers in
the system under equilibrium.

(c) Evaluate the fraction of time each processor is busy, as a function of p0.

6. A special purpose computer laboratory has two identical computers. Students
arrive in a Poisson stream; each student uses a computer for an exponential
amount of time and leaves. There is a common waiting line. If any computer
is free for use, the students’ arrival rate is 10 per hour. If both computers
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are occupied, the arrival rate is 5 per hour. If there is anyone waiting, no more
students arrive. The average time a student uses a computer is 15 minutes if no
one is waiting, and it is 5 minutes if anyone is waiting. Develop the complete
Markov chain for the queuing system including all transition parameters.

7. Consider an M/M/1/7 system (finite buffer) with λ = 5 per second and
µ = 5 per second. Determine the average response time, throughput, and
the variance of the number of customers in the system. Also determine the
probability that an arriving customer finds the system full.

8. A queuing system with Poisson arrivals of rate λ = 1 has a capacity of 3
customers in the system. That is, if there are three customers in the system
including any being serviced, the arrival rate into the system is 0. The service
is exponential. If there is only one customer in the system, the service rate is
2. If there are two or more customers in the system, the server works harder
and the service rate goes up to 3. Draw the complete rate transition diagram;
fill in the values of the parameters. Calculate the probability that the system is
empty.

9. In a state dependent M/M/1 queuing system with unlimited buffer, the arrivals
are Poisson with the rate being inversely proportional to “one plus the number
of customers in the system.” That is

λ(i) =
λ0

i+ 1
, i = 0, 1, ..., . (4.249)

The service time is exponential with a state independent (constant) µ. Answer
the following.

(a) Is there a maximum value for λ0 to ensure stability?

(b) Assuming that the parameters imply stability, what is p0, the probability
that the system is empty?

(c) Under stability, what is the expected response time (time spent in the
entire system) of an incoming job?

10. Consider the following state dependent M/M/1 system with unlimited buffer.
Customers balk. That is, the arrival rate reduces as the number of customers
in the system increases, and is given by λ(0) = λ and

λ(n) =
λ(n− 1)

α
, n = 1, . . . , (4.250)

with α > 0. The service rate is a constant µ. What is the condition for the
stability of the system?

11. In an office, there are three incoming telephone lines and only two operators
who only receive calls (but never make a call). Call durations are iid expo-
nential with an average of one minute per call. If both operators are busy with
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calls and a third call comes in, the caller waits for an operator to finish earlier
call and pick up. If there are 3 callers (with one waiting as the phone rings),
and a fourth caller rings, he hears a busy tone and “gets lost.” Call arrivals are
Poisson with a rate of 1 call in 2 minutes.

Find the probability that both operators are busy and the third line is ringing.
Assume that a free operator picks up a ringing phone immediately.

12. Consider two independent parallel exponential servers with rates 3 and 1, re-
spectively. Arrivals are Poisson with rate 2. If both servers are free, an arriving
customer prefers the server with higher service rate. The capacity of the entire
system is only 3 customers. Are the arrival and service rates dependent only
on the number of customers in the system? Write the complete rate transition
diagram for the system. Fill in the values of all rates of state transitions. Eval-
uate important performance figures including the expected fractions of times
that the servers are busy.

13. We have an unlimited buffer in a single server FIFO queue with Poisson ar-
rivals of rate 1 job per minute. The strange boss of the server insists that the
server should take breaks (and not serve) for all time periods when there are
exactly 2 customers in the system. Other than this peculiarity, the service time
is exponential with a constant rate of 2 jobs per minute. Is the system stable? If
yes, find the equilibrium probability mass function of the number of customers
in the system.

14. Consider a single queuing system with a capacity of two customers. Interar-
rival times are exponential with an average of 0.2 hour. However, each arrival
brings in one customer with a probability of 0.7 or two customers together
(holding hands) with a probability of 0.3. Arrivals to a buffers-full system are
lost. Indeed, if two simultaneous arrivals come in and find room only for one
customer, both arrivals get lost. Two simultaneous arrivals join the waiting
line in a random order. Server takes one customer at a time and the service
time is exponential with a rate of 10 customers per hour. Write the state tran-
sition diagram including the rates of each arc. Determine the probability that
the system is empty. Evaluate the probability that

(a) a single customer is lost.

(b) an arriving couple is lost.

15. Consider a PC lab with only three computers. Customers for use form a Pois-
son arrival stream with a rate of 6 arrivals per hour. When a customer arrives,
he/she chooses a computer at random (if one or more computers are available)
and uses it for an exponentially distributed time with an average of 20 minutes.
If an arriving customer finds no free computer, he/she gets lost. Determine the
fraction of time a computer is free without any customer using it.
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16. A bank office has two tellersA andB and a single waiting line with a capacity
for two customers (totally, there can be only four customers in the entire sys-
tem). Arrivals to a full buffer are lost. Arrivals are Poisson with a rate of 12
per hour. Servers are iid exponential, each with a rate of 10 per hour. At the
time of entering service, a customer always chooses serverA instead of server
B if both are free (available). Otherwise, the customer is required to go to the
free server. Draw the complete Markov chain for the system, including all arcs
with their nonzero transition rates.

17. Poisson arrivals with a rate of 28 per second enter a single queue for processing
by one of two iid exponential servers, each with a service rate of 20 jobs per
second. If a job arrives when the system is empty, it chooses one of the servers
at random. The total number of jobs that the entire system can hold is only 3
(including any under service). Arrivals to a full system are lost. Evaluate the
expected response time of a job that got admitted into the system.

18. In a continuous time Markov chain, αij is the rate with which the state of the
system changes from state i to state j, after the system has entered the state
i. Recall that αii = 0. Once the system enters state i, what is the probability
that the state to which the system will change is j (whenever the state change
occurs)?

19. In our usual speech sounds, there are three distinct states, V for voiced as
in vowels, U for unvoiced as in fricatives such as in the syllables “f” and
“s,” and S for silence that occurs between words and for short times before
plosive sounds such as during the pressure build up to say syllables like “p”
and “t.” A good model for the sequence of such states is a continuous time
Markov chain with the average transition times from one state to another
given in milliseconds in the following matrix. The rows are for V , U , and S in
order from top to bottom, and the columns, similarly in order from left to right.

 0 50 70
60 0 15
40 30 0

 . (4.251)

Note that the state of this Markov chain is not a random variable (since a
random variable is required to take numerical values for outcomes). It is a
Markov chain of three non-numerical states. This model is useful to determine
the effective bit rate necessary to code speech for transmission, etc. Answer
the following.

(a) Draw the Markov chain with correct values and dimensions on the arcs.

(b) Let the equilibrium state probabilities be pv, pu, and ps. Write the three
global balance equations for the same.

(c) Write any set of a minimum number of equations that uniquely determine
the equilibrium state probabilities.
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(d) Express the same set of equations in the above part in a matrix form.

(e) Find the inverse of the coefficient matrix.

(f) With the help of the inverse, find the equilibrium state probabilities.

(g) Over a long time interval T , what is the expected number of times the
state moves into V ? Note that the answer to this is not pvT . Give similar
results for U and S.

(h) With the help of a computer program, simulate an equilibrium sequence
of 30 states. Plot a straight line with segments marked by notches. The
distance between successive notches should correspond to the time inter-
vals of the states. Write the state names above each interval. You can use
a computer program to generate this plot.

20. Consider a two iid processor, continuous time, Markovian, single queuing sys-
tem with room for up to 3 jobs including any under service. Attempted arrival
rate is λ. Service rate of each processor is µ. If both the processors are free, the
next job arrival is routed to whichever processor has been free for the longer
time. These times are measured from the most recent time instants when the
processors became free, respectively. Develop the complete Markov chain of
the system, including all transition rates.

21. Consider a two processor, continuous time, Markovian, single queuing system
with room for up to 3 jobs including any under service. Attempted arrival rate
is 5 per second. Service rate of processorA is 3 per second and of processorB
is 1 per second. Therefore, when both processors are free, the next job arrival
is routed to processor A for service. Draw the state transition diagram. Let
p2, p3 be the probabilities of finding 2, 3 jobs, respectively. Let pA be the
probability of finding exactly one job in the system, being served by processor
A. Similarly, pB is the probability of finding exactly one job in the system,
being served by processor B. Of course, p0 = 1 − (pA + pB + p2 + p3).

Determine the throughput flowing through each (separately) of the processors,
as functions of pA, pB , p2, and p3

22. Into a single queue with unlimited buffer size, customers always arrive in pairs
but line up one after another in the waiting line for service. One of an arriving
pair joins the line ahead of the other, by a random choice. The single server
takes up one customer at a time from the head of the queue and serves. Each
customer leaves immediately upon completion of his/her service (that is, with-
out waiting for the completion of the partner’s service). Arrivals of pairs are
Poisson with a rate of 1 pair per hour. Service times of individual customers
are independent and identically distributed exponential random variables with
a mean of 0.25 hour for each customer (and not for a pair). Determine the
expected response time of an individual customer.

23. In an office shared by two people A and B, at any time, both are quiet or only
one is talking (both do not talk at the same time). When it is quiet, A will
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start talking after an exponentially distributed time with an average time of 2
minutes. Likewise, when it is quiet, B will start talking after an exponentially
distributed time with an average of 3 minutes. The lengths of times that each
person talks (during their respective talk bursts ) are also independent expo-
nential with average times of 20 seconds and 50 seconds, respectively. Draw
the complete Markov chain for the different states in the office. Over a long
time, what is the expected fraction of the time that each person is talking?

24. A single server, single queue has a capacity of only 2 customers. Customers
arrive ONLY as couples and both members of a couple try to join the queue
one after another, in a random order. Arrivals to full buffer are lost. When
a couple arrives, if there is room for only one customer, one member of the
couple enters and the other leaves (is lost). Customers are served one at a time.
Poisson arrivals of couples is at the rate of 1 couple per time unit. Service time
is exponential with a rate of 1 customer (not couple) per unit time.

(a) Draw the Markov chain for the above system.

(b) Evaluate the numerical values of the equilibrium probabilities of all the
states.

(c) What is the probability that one member of an arriving couple will have
to leave without service?

25. A wireless transmitter cannot detect a collision of its own transmission be-
cause it cannot simultaneously receive a different transmission while it is trans-
mitting. Any attempted simultaneous reception will be saturated with its own
transmission. Since collisions cannot be detected, a collided transmission can-
not be aborted. In the approach generally used for reliable communication, the
receiver transmits a short acknowledgment immediately after successfully re-
ceiving a packet. If the transmitter does not receive such an acknowledgment,
it knows that its transmission failed due to collision. The time for an acknowl-
edgment is counted as part of the packet transmission, as another simple but
very good approximation. Approaches to reduce the incidence of collisions
are known as collision avoidance approaches.

The following is a simple model (approximation of real life operation) for a
wireless LAN operating with a CSMA/CA (carrier sense multiple access with
collision avoidance) protocol. There are 10 wireless transreceivers (nodes)
which are all within the reception ranges of one another (hence the term LAN).
The packet sizes are all iid exponential with an average time of 1

µ = 1 mil-
lisecond (ms). We assume that a packet attempted for transmission multiple
times has statistically iid transmission times, even though the successive times
must be the very same (ignoring minor differences due to acknowledgments).
In this exercise, every transmitter senses the channel with a statistical regular-
ity, whenever it is not transmitting. The average time between such sensing by
a single transmitter is 1

α , a parameter for optimization. A transmitter sends a
dummy (or control) packet when it gets a chance to transmit but does not have
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the payload packet. This eliminates the dependency of the model on buffer
lengths. The average time at the end of which a newly started transmission
will be successfully sensed is 1

δ , a physical parameter of the system. All time
periods are modeled as exponentially distributed.

We are now ready to describe the Markov chain governing the operation of the
above wireless LAN. When the wireless medium (channel) is in the free state
(F ), the rate at which the state will change to a newly beginning transmission
(S) is 10α. During the state S, 9 other transmitters are racing to start what they
“think” will be a new transmission, but what might turn out to be a collision,
with a combined rate of 9α. However, the physical time period of possible
contention may end before any of these 9 transmitters actually start and cause
a collision. This contention time period ends after an exponential time period
with an average of δ time units. If the contention time period ends before one
of the other 9 transmitters start and cause a collision, the state of the chain
will change to T , a successfully transmitting state. If one of the 9 transmitters
causes a collision, two simultaneous transmissions will continue in a state C2

with a rate of 2µ. At the end of this period of two simultaneous transmissions,
one of the two will continue in a state C1 and complete with a rate of µ, when
the channel will finally become free again. On the other hand, if the system had
moved to the successfully transmitting state T , the transmission will continue
and complete with a rate µ , when the channel will again become free.

(a) Draw the complete state transition diagram of the resulting Markov
chain. Include the rate parameters for each transition arc.

(b) Solve for the equilibrium state probabilities.

(c) Express the throughput (rate of successfully transmitted packets) as a
function of α and δ.

(d) An optimum α is one that maximizes the throughput. Determine the op-
timum α as a function of δ. Evaluate the optimum α for a representative
numerical value of δ.

26. Develop the equilibrium pmf of the Markov chain in the sluggish operating
system from first principles; use Z transform.

27. In the analysis of a simple contention-free protocol in Section 4.9.2, the indi-
vidual queues are mathematically identical to the sluggish operating system.
A simple brute-force optimization was suggested. Analyze the following opti-
mization algorithm and examine if it is guaranteed to converge to the optimal
probabilities. First, it is required to determine the value of qi for a given c.
Replace the function ci(qi) by f(q) for convenience. For a given c, we need q
satisfying

c = f(q). (4.252)
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Manipulate the above as

f(q) − c+ q = q. (4.253)

Analytically examine whether or not the following fixed-point algorithm

q(0) = 1 (4.254)

q(n+ 1) = f [q(n)] − c− q(n), n = 0, 1, 2, . . . (4.255)

will converge to the required q. Next, we need a procedure to start from some
particular c(0) and evaluate the optimal probabilities. Define y(c) as the sum
of all corresponding probabilities a function of {qi}. That is

y(c) =
m∑

i=1

gi(c). (4.256)

We want y(c) to converge to 1 and we need the corresponding value of c.
Analytically examine the following algorithm for convergence to the optimal
probabilities. The starting point, c(0) below, is selected to be the minimum of
the values of ci obtained by using qi = 1, for the different i.

c(0) = min{c : qi = 1, i = 1, . . . ,m} (4.257)

c(n+ 1) = y[c(n)] − 1 + c(n). n = 0, 1, . . . (4.258)

28. Derive Erlang’s B formula.

29. Derive Erlang’s C formula.





Chapter 5

The M/G/1 Queue

5.1 Introduction

The state independent M/M/1/∞ and the many cases of state dependent M/M/1
queues are very easily represented as continuous time Markov chains. If the inter-
arrival times or the service times are not memoryless, the number of customers in
the queue is not a continuous time Markov chain. In these cases, the distribution of
time for the next arrival or departure depends not only on the number in the system
at that time, but also on how long ago the previous arrival or departure took place.
The M/G/1 system, the present topic, allows for a general service time distribution,
instead of the more restrictive exponential service time. Arrivals are restricted to
be Poisson, with rate λ, as usual. Let the mean and variance of the service time
distribution be 1

µ and σ2
s , respectively. The M/G/1 system has many practical appli-

cations. The following examples are cited here as a motivational introduction. The
service time may be a constant, or uniformly distributed. It may be a combination
of two or more exponentially distributed times as follows. If service is conducted in
two successive stages of exponential times, Y1 and Y2, the composite service time
distribution is called hypoexponential. However, this is an applicable case of M/G/1
system only if no more than one customer is allowed to be present in the combined
service area of the two service stations at any time. Likewise, if service is rendered
by one of a few possible exponential servers with different service rates, the compos-
ite service time is not exponential, but hyperexponential. If the service is exponential
with rate µ1 with probability P1 and exponential with rate µ2 with probability P2,
the overall hyperexponential service time Y has the density function

fY (y) =


P1µ1e

−µ1y + P2µ2e
−µ2y, y ≥ 0

0, y < 0.
(5.1)

Again, no more than one customer may be in the service area for this model to be
valid.

Following is the plan of study in this chapter. In order to analyze the M/G/1/∞
queue, we consider the number of customers at a sequence of points in time that
allow us to construct a discrete parameter Markov process. The sequence of points
are the time instants of customer departures. The state of the system can be expressed
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using recurrence equations connecting the current state with the previous state and
the number of arrivals over a service time. The state transition diagram possesses
nonzero probability transitions from a state to itself and to every larger state. The
expectation of the long-term time average of different states are shown to be the
same as the corresponding equilibrium state probabilities at departure time instants.
The expected number in the system is evaluated by taking the second moment of the
recurrence equations, simplifying individual terms, and manipulating the equations.
A few simple performance figures are easily evaluated. Straightforward application
examples are constructed with the help of popular pdfs for service times. The case
of a stable system but with infinite variance of the service time is briefly dealt with.

The finite buffer M/G/1/k system is also studied in this chapter. The correspond-
ing finite state transition diagram is easily obtained by modifying the one for the
M/G/1/∞ system. A simple algorithm to evaluate the equilibrium state probabilities
for the finite buffer case is available. However, the state probabilities at arbitrary time
instants are not the same as those at the departure time instants for the two largest
states. The required expectations of time averages are evaluated for use in the Little’s
result for expected response time. The buffer size is not always explicitly included in
referring to an M/G/1 queue. Whether the buffer size is finite or not is unambiguous
from the context.

5.2 Imbedded Processes

The stochastic process N(t), the number of customers in an M/G/1/∞ system,
with the continuous time parameter, is not Markov simply because the distribution
of time for the next departure is not exponential. However, the time for the next
arrival is always exponential. If we observe the state of the system only at departure
time instants, the only uncertainty about future observations is the number of arrivals
which depend on the arrival rate and “whole” service times as opposed to “fractions”
of service times. This overcomes the problem of keeping track of the fraction of
completed service time. Therefore, we define a new stochastic process Ni as the
number in the system “soon after” the departure of the i-th job from the system. The
qualifier “soon after” is used to indicate that the departing job is not included in the
count; thus Ni is the number in the system exactly at the time instant of the i-th
departure, not including the departing job. The discrete parameter random process
Ni is called an imbedded stochastic process, observed only at certain times. Now-
a-days, imbedded processes are also being called embedded processes. Since this
Markov process is also a discrete state Markov process, we call it a discrete parameter
Markov chain. The subject of discrete parameter Markov chains is studied in detail
in Chapter 6. However, the required properties of the imbedded discrete parameter
Markov chain corresponding to M/G/1 queues are fairly simple and are proved in this
chapter. This helps to reinforce some concepts during the generalization in Chapter
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6. When do we start counting the number in the M/G/1/∞ system? We can consider
the system that has been operating for any amount of time. However, the serial
numbers of the jobs can be relative. We can start counting with any departure as the
first departure.

5.3 Equilibrium and Long Term Operation of M/G/1/∞
Queue

5.3.1 Recurrence equations for state sequence

Let Ni, the number of customers soon after the i-th job departs, be zero. In this
particular case, the next departure occurs after the arrival of the next, (i + 1)-th,
job and soon after whenever it completes its service. Soon after the (i + 1)-th job
departs, the number “left” in the system is the number of arrivals during the service
time of the (i + 1)-th job, in this case of Ni = 0. Let Ai+1 be the random variable
corresponding to the number of arrivals during the service time of the (i+ 1)-th job.
The randomness of this quantity arises from two features: the randomness of the
Poisson arrivals in any given time interval and the randomness of the amount of time
itself, the service time of the (i+ 1)-th job.

The state Ni+1 = Ai+1, if Ni = 0. If Ni �= 0, after the i-th job leaves, we
have Ni left. To this, the number of arrivals, Ai+1, is added during the service time
of (i + 1)-th job. When the (i + 1)-th job leaves, the number is reduced by one.
Therefore, Ni+1 = Ni − 1 + Ai+1 if Ni �= 0. The distinction between the two
cases of Ni = 0 and Ni �= 0 is the following. If Ni = 0, the (i + 1)-th arrival is
not counted as part of Ni+1 since the (i + 1)-th arrival does not come in during the
service time of any job. The combined recursion equation is

Ni+1 =
{
Ni − 1 +Ai+1, Ni > 0
Ai+1, Ni = 0. (5.2)

Given the random variable Ni, the random variable Ni+1 depends only on Ni and
not on Ni−1, Ni−2, etc. The probability distribution of the random variable Ai+1

depends only on the arrival rate and the pdf of the iid service time distribution. Thus,
Ai+1 is independent of i. Therefore, the discrete parameter stochastic process Ni is
a Markov process. Let

a(j) = P [j arrivals during the complete service time of any job],
for j = 0, 1, 2, · · · . (5.3)

These probabilities are invariant to the serial number of the customer during whose
service times, the j arrivals occur. Figure 5.1 shows the state transition diagram of
the imbedded Markov chain for the M/G/1/∞ queue. This is a discrete parameter
Markov chain. There are some important differences between the state transition di-
agrams of continuous and discrete parameter Markov chains. The values associated
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with the transition arcs in the case of a discrete parameter Markov chain are condi-
tional probabilities called the state transition probabilities. We have the restriction
that the sum of transition probabilities of all the arcs originating from any state eval-
uate to one. Also, in the case of a discrete parameter Markov chain, two successive
states observed in a sequence of observations can be the same. Therefore, we can
have a transition from a state back to itself, with nonzero probability, in a discrete
parameter Markov chain. Recall the following in the case of continuous parame-
ter Markov chains. The values associated with transition arcs are nonnegative rates
but otherwise arbitrary (there is no sum requirement). There can be no nonzero rate
transition arc from a state back to itself.

Using the above recurrence equations (5.3) in our present discrete parameter
Markov chain, we have

a0 a0 a0 a0 a0

a1 a1 a1 a1 a1

a2 a2 a2 a2210 3 4 5

a5

a0

a1

a3

a4

a4 a4

a3a3a2

a2

a3 a3

a0

FIGURE 5.1: The state transition diagram of the imbedded Markov chain for
the M/G/1/∞ queue

P [Ni+1 = n|Ni = 0] = a(n), n = 0, 1, 2, · · · (5.4)

P [Ni+1 = n|Ni = k > 0] = a(n−k+1), n = k − 1, k, k + 1, · · · . (5.5)

Using the theorem of total probabilities, we have

P [Ni+1 = n] = a(n)P [Ni = 0] +
n+1∑
k=1

a(n−k+1)P [Ni = k], for n = 0, 1, · · · .
(5.6)

We are interested in the expectation of Ni.

DEFINITION 5.1 An M/G/1/∞ queue is in equilibrium at the obser-
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vation point i + 1, if a valid sequence of probabilities exists for {P [Ni = n],
n = 0, 1, 2, · · · } and if

P [Ni+1 = n] = P [Ni = n], for all n = 0, 1, · · · . (5.7)

5.3.2 Analysis of equilibrium operation

Is it enough if the system is in equilibrium at some particular i? The following
theorem answers favorably.

THEOREM 5.1

Let an M/G/1/∞ queue be in equilibrium at some i+ 1. Then the system is
guaranteed to be in equilibrium at every j > i+ 1.

Proof
From equation (5.6), we have

P [Ni+1 = n] = a(n)P [Ni = 0] +
n+1∑
k=1

a(n−k+1)P [Ni = k], for n = 0, 1, · · · .
(5.8)

Since the system is in equilibrium at i+ 1, we have

P [Ni+1 = n] = P [Ni = n], for all n = 0, 1, · · · . (5.9)

Substituting P [Ni+1 = n] in place of P [Ni = n] for all correspondingn on the RHS
of equation (5.8), we obtain

P [Ni+1 = n] = a(n)P [Ni+1 = 0]+
n+1∑
k=1

a(n−k+1)P [Ni+1 = k], for n = 0, 1, · · · .
(5.10)

But, we know that the RHS of equation (5.10), evaluates to P [Ni+2 = n] by chang-
ing i to i+ 1 in equation (5.6). Therefore, substituting P [Ni+2 = n] for the RHS in
equation (5.10), we find that

P [Ni+1 = n] = P [Ni+2 = n], for all n = 0, 1, · · · (5.11)

implying that the system is in equilibrium at i + 2. That is, if the system is in
equilibrium at some index i+ 1, it will be in equilibrium at i+ 2. By induction, we
find that the system is in equilibrium at i+ 2, i+ 3, i+ 4, · · · .
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DEFINITION 5.2 If there exists a valid solution of a sequence of prob-
abilities {P [N = n], n = 0, 1, 2, . . . } for the following equations,

P [N = n] = a(n)P [N = 0] +
n+1∑
k=1

a(n−k+1)P [N = k]

for n = 0, 1, · · · and (5.12)

∞∑
n=0

P [N = n] = 1, (5.13)

we say that the system is stable. The above equations (5.12) and (5.13) are
known as the balance equations.

Redefine the equilibrium probabilities with simpler symbols since the parameter
value is irrelevant. That is, let P [N = n] = Pn for all n. Then, the above equation
(5.12) takes the form

Pn = a(n)P0 +
n+1∑
k=1

a(n−k+1)Pk, for n = 0, 1, · · · . (5.14)

= a(n)P0 +
n−1∑
k=1

a(n−k+1)Pk + a(1)Pn + a(0)Pn+1 (5.15)

where
0∑

k=1

(·) is defined to be zero as a convention. Express Pn+1 as a function of

P0, . . . , Pn. We obtain

P1 =
1
a(0)

(1 − a(0))P0 and (5.16)

Pn+1 =
1
a(0)

(
(1 − a(1))Pn − a(n)P0 −

n−1∑
k=1

a(n−k+1)Pk

)
,

for all n = 1, 2, · · · . (5.17)

In equation (5.14), a(n), the probability of n arrivals during a complete service time is
strictly positive for everyn ≥ 0. This follows from the probabilities of all numbers of
Poisson arrivals being nonzero during a complete service time. The only exception
is if the service time is zero, which is a trivial degenerate case. Therefore, from
equation (5.14), every Pn, n ≥ 1 must be nonzero, if P0 > 0. Equations (5.16)
uniquely determine P1 as a multiple of P0. Equation (5.17) uniquely determines
every Pn, n > 1 as a linear combination of P0, · · · , Pn−1. These in turn imply that
if P0 = 0, every other Pn, n ≥ 1 must also be zero in the equations for equilibrium
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state probabilities. That is, the equilibrium condition is not possible with P0 =
0. Furthermore, the above also implies that every equilibrium state probability Pn,
n > 0 is a multiple of P0. Hence, in order for all the probabilities to sum to 1, if
equilibrium is possible, P0 is uniquely determined by the equation (5.14). Therefore,
we have the following result.

THEOREM 5.2
If a sequence of equilibrium state probabilities exist for the imbedded Markov
chain of an M/G/1/∞ queue, the following are true.

1. All the equilibrium state probabilities are strictly positive. That is, Pn >
0, for all n = 0, 1, · · · .

2. If the value of P0 is known, the sequence of other equilibrium state prob-
abilities Pn, n = 1, 2, · · · is easily obtained. Each Pi is a linear combi-
nation of P0, · · · , Pi−1 as in equations (5.16) and (5.17).

3. As a consequence of item 2 above,
∞∑

n=0
Pn can be expressed as a multiple

of P0. The value of P0 is uniquely determined by equating the sum
∞∑

n=0
Pn to 1. If the evaluated P0 is zero because the sum evaluates to

infinity, the system cannot be in equilibrium.

Therefore, the balance equations (5.12) and (5.13) determine if the system is sta-
ble, and if it is stable, possess a unique solution for the equilibrium state probabilities.

5.3.3 Statistical behavior of the discrete parameter sample
function

We can modify the balance equation to be in a more concise generic form as
follows. In equations (5.4) and (5.5), let

P [Ni+1|Ni = 0] = a(n) (5.18)

be denoted by p0n. Similarly, let

P [Ni+1|Ni = k > 0] = a(n−k+1), n ≥ k − 1 (5.19)

= 0, n < k − 1 (5.20)

be denoted by pkn. We then have the balance equation (5.14) equivalently repre-
sented by

Pj =
∞∑

k=0

Pipij . (5.21)
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If we observe one sample function of an M/G/1/∞ queue at departure time instants
for a long time, what is the statistical behavior of the relative occurrences of different
states? In Chapter 4, the following is shown about a continuous parameter Markov
chain for which equilibrium is possible: The long-term expected fractions of times
of occupancies of different states are the same as the equilibrium state probabilities.
Does a similar result hold for the discrete parameter imbedded Markov chain of a
stable M/G/1/∞ queue? The following favorably answers the question. The system
need not be in equilibrium at the beginning of the observation, but the equations for
equilibrium probabilities must have a unique valid probability sequence as a solution.
That is, the system must be stable. The solution need not be known. Let such a
system be observed from serial number or the customer parameter observation epoch
1 onwards, up to and including epoch n.

The expected time between successive departures is never more than the sum of
the expected interarrival time and the expected service time. The interarrival time has
a finite variance (for a nonzero and finite arrival rate). We assume that the service
time random variable also has a finite variance and that the expected number of
service completions over a time period t→ ∞, also tends to infinity, with probability
1. Therefore, in the following arguments, n, the number of state observations at
departure points is let to tend to infinity. We now know that this event occurs with
probability one, as t→ ∞.

Let Ni be the random variable number of observations of state i during the run of
n contiguous observations; as usual, ni is the outcome of Ni. Note the following.

∞∑
i=0

ni = n, so that (5.22)

∞∑
i=0

Ni = n and (5.23)

∞∑
i=0

E[Ni] = n. (5.24)

The above simply points out that the sum of the numbers of observations of differ-
ent states is the same as the total number of observations. The same is true about
their expectations, by simply taking expectations on both sides of the equations. In
an infinite run of the system, after the chain visits state i for the first time, due to
the Markov property, the behavior of the chain is statistically identical between suc-
cessive visits to a state i. Therefore, after the first visit, the number of observations
between successive visits to a state are iid. That is, in an infinitely large number of
observations, the number of different observations between successive occurrences
of state i are iid. Therefore, as n→ ∞, the limiting random variable

lim
n→∞

Ni

n
(5.25)

has a limiting expectation and its variance is zero. Denote the expected value of the
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limit by

ri = E

[
lim

n→∞
Ni

n

]
. (5.26)

The quantity ri is called the expectation of the long-term average number of times
that the chain is found to be in state i. Note the expression “expectation of the
average.” Here the average is taken over all the observations and the expectation is
taken over the probability space of all the sequences of possible observations. The
objective is to show that the sequence {rj , j = 0, 1, · · · } is the same as the sequence
of equilibrium state probabilities {Pj , j = 0, 1, · · · }. In order to accomplish this,
we consider the behavior of the numbers of times the M/G/1/∞ queue sees a change
in state to and from state i.

Let E[Li] be the expected number of entries into state i the chain makes from
other states. That is, if the chain remains in state i during the next observation after
entering it during one observation, the second occupation of state i by the chain is
not considered to be an entry into state i from other states. Similarly, let E[Mi] be
the expected number of exits the chain makes from state i to some other states during
the run. The number of times the chain enters (from some other states) and exit (to
some other states) can differ by at most one during a run. This is identical to a person
leaving an office room and entering it from other office rooms in a building during a
time period. Since the person is required to be inside a room in order to leave it and
must be outside the room in order to enter it, the numbers of times of leaving and
entering can differ by at most one. The two quantities are equal if the person is found
to be in the same state (inside or outside the particular office room) at the beginning
and end of the observation period. Let

∆i = E[Li] − E[Mi], i = 0, 1, · · · and (5.27)

∆i ∈ {−1, 0 1}. (5.28)

The limits lim
n→∞

E[Li]
n and lim

n→∞
E[Mi]

n exist due to arguments similar to those used

for the limit lim
n→∞

E[Ni]
n . Therefore,

lim
n→∞

∆ti
n

= 0 and (5.29)

lim
n→∞

E[Li]
n

= lim
n→∞

E[Mi]
n

, i = 0, . . . . (5.30)

After every observation that showed state j, the chain will move to a state k with a
probability pjk . Events following successive visits to state j are iid. Therefore, the
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expected number of times the chain leaves state j for some other state is

E[Nj ]
∑
∀k �=j

pjk = E[Nj ](1 − pkk). (5.31)

This is the same as E[Mj ], the definition of the expected number of times the chain
makes a state transition from state j to some other state. Therefore,

E[Mi] = E[Nj ]
∑
∀k �=j

pjk = E[Nj](1 − pkk). (5.32)

The expected number of times the chain enters state j from some other state because
of leaving some other state during the course of n observations is∑

∀i�=j

E[Ni]Pij (5.33)

which is the same as E[Lj], the definition of the expected number of times the chain
makes a state transition from some other state i to state j. Therefore,

E[Lj] =
∑
∀i�=j

E[Ni]pij . (5.34)

If we divide both sides of the two equations (5.31) and (5.33) by n and take limits as
n→ ∞, we can equate the RHS of the resulting equations. We have

lim
n→∞

E[Nj ]
n

(1 − pjj) = lim
n→∞

∑
∀i�=j

E[Ni]
n

pij or (5.35)

rj(1 − pjj) =
∑
∀i�=j

rjpij , j = 0, 1, · · · (5.36)

rj =
∞∑

i=0

rjpij , j = 0, 1, · · · . (5.37)

Equation (5.37) for j = 0, 1, · · · is identical to the balance equation (5.21) for the
equilibrium state probabilities. Therefore, rj = Pj , the equilibrium state probability
for j = 0, 1, · · · . This important result is stated as a theorem below.

THEOREM 5.3
Let the variance of service times of a stable M/G/1/∞ be finite. Let the system
operate for an unlimited amount of time t ∈ [0, ∞). Consider the number
of state transitions in the imbedded Markov chain of the system. Then, the
long-term expectation of the number of observations of a state j, expressed as
a fraction of the total number of observations is the same as the equilibrium
probability of the state j. This is true for all states.
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5.3.4 Statistical behavior of the continuous time stochastic
process

The analysis in the above Section 5.3.3 dealt with the numbers of observations
of different states at the observation time instants of customer departures. In order
to apply Little’s result, we need the expectation of the time average of customers in
the system, taken over the continuous time variable. This section studies the behav-
ior of the number in the queue over the continuous time variable. This continuous
parameter stochastic chain is not Markov. Over t ∈ [0, ∞), let na be the total num-
ber of arrivals observed starting from time zero, up to and including time instant t.
Similarly, let nd be the number of departures in the same time interval. Over [0, t),
compare nd(j), the number of times state j is observed at (soon after) departure time
instant to na(j), the number of times state j is observed just before an arrival occurs.
That is, nd(j) is the number of times the state changes from j + 1 to j over the
continuous time interval. Similarly, na(j) is the number of times the state changes
from j to j + 1 over the continuous time interval. Over any time interval, these two
numbers can differ by at most one. Recall that over any nonzero time period, the
probability of two simultaneous Poisson arrivals is zero. If P [service time = 0] > 0,
two simultaneous departures can occur. We order the departures as occurring one
after another, in the order in which they arrived. Therefore, a state change from j+2
to j is considered as two state changes, j+2 to j+1 soon after which another change
occurs from state j + 1 to j. Let

δj = na(j) − nd(j). (5.38)

As time t tends to infinity, we know from the analysis of the imbedded Markov chain
that na, nd, nd(j) tend to infinity with probability one. The difference na − nd is
the number of customers left in the queue at the final time instant t. Let

n(t) = na − nd. (5.39)

From the imbedded process analysis above, we know that the expectation of the long-
term average number of observing state j is the equilibrium probability pj of state j
at the departure process. We also know that

lim
j→∞

pj = 0, (5.40)

since
∑∞

j=0 = 1. Therefore, the number of customers in the system, n(t) = na−nd

is finite with probability one, even as time t tends to infinity. Recall that na(j) and
nd(j) can differ by at most one. Therefore, we have

E

[
lim

n→∞
na(j)
na

]
= E

[
lim

n→∞
nd(j) − δ(j)
nd + n(t)

]
(5.41)
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= E

[
lim

n→∞
nd(j)
nd

]
(5.42)

= pj , (5.43)

the equilibrium probability of state j in the imbedded process. The limit

E

[
lim

n→∞
na(j)
na

]
(5.44)

is often called the state probability at arrival time instants. of state j analogous to
the departure time instant probability of state j obtained from the imbedded process.
The next section develops the result that these arrival time instant probabilities are
also the expected long-term time averages of state occupancies. These time averages
are useful in the application of the Little’s result to evaluate the expected response
time.

5.3.5 Poisson arrivals see time averages

We still do not have the expected time averages of different state occupancies over
the limiting continuous time period! We would like to evaluate these expectations
as functions of state probabilities at departure time instants, which have also been
shown to be the expected long-term proportions of the number of arrivals that see the
different states. It turns out that the expected long-term time average of the number
of customers in the system evaluate to these expected long-term proportions of the
arrivals seeing the different states. This property is known as “Poisson Arrivals See
Time Averages” or PASTA. A general statement including sufficient conditions and
a simple proof are given below.

Conditions for PASTA
Consider a continuous time stochastic (not necessarily Markov) chain N(t) with
states 0, 1, 2, · · · . The ensemble of the stochastic process consists of innumer-
able sample functions each of which is a plot of the state n(t), as a function of the
continuous time variable over t ∈ [0, ∞). We would like to separately examine
the time plot of the chain being in each state. Therefore, define Ui(t) as the binary
random process that takes a value 1 whenever the chain is in state i and takes a value
0 whenever the chain is not in state i. As usual, ui(t) is a sample function of the two
state random process Ui(t).

It is not necessary for the chain to be in equilibrium in any sense, but the following
are assumed to be satisfied about long-term time averages.

1. The expected long-term time average of each state exists as a limit, for each
state i. That is

E

[
lim

t→∞
1
t

∫ t

x=0

Ui(x)dx
]

= qi (5.45)
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exists. Note that the averaging is over the time variable and the expectation is
over the sample space of the random process Ui(t). Of course, the sequence
{q0, q1, q2, · · · } is a pmf.

2. The random variable corresponding to the limiting long-term time average of
each state, i, converges to the corresponding expectation with probability one.
That is, the random variable

lim
t→∞

1
t

∫ t

x=0

Ui(x)dx = qi (5.46)

with probability one.

3. The variance of the random variable corresponding to the limiting long-term
time average of each state, i, evaluates to zero. That is,

var

[
lim

t→∞
1
t

∫ t

x=0

Ui(x)dx
]

= 0. (5.47)

Other than the above conditions, the stochastic chain N(t) is general. Consider a
sequence of Poisson time instants with any finite and nonzero rate λ. In particular,
the time instants of when Ui(t) change from 0 to 1 as well as from 1 to 0 can depend
on the sequence of the Poisson time instants. Let Mi(t) be the random variable
number of Poisson points that see state i of the stochastic chain N(t), over the time
interval t ∈ [0, t). We also have

M(t) =
∞∑

i=0

Mi(t) (5.48)

as the total number of Poisson points over the same time interval t ∈ [0, t).
The above notation and conditions are detailed, but simple; they make it easy to

prove the PASTA theorem.

THEOREM 5.4
Under the above conditions for PASTA, the following is true.

1. The limiting expectation

E

[
lim

t→∞
Mi(t)
t

]
(5.49)

exists and evaluates to λqi, for every state i.

2. The limiting random variable

lim
t→∞

Mi(t)
t

(5.50)

converges to λqi with probability one, for every state i.
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3. The limiting variance

var
[

lim
t→∞

Mi(t)
t

]
= 0 (5.51)

for every state i.

Proof
Consider the function ui(t). This function fluctuates between 0 and 1. Consider
the cumulative number of Poisson events (arrivals) over all the time segments during
which ui(t) = 1. Due to the memorylessness of the times between successive ar-
rivals, the expected number of arrivals in each segment corresponding to ui(t) = 1
depends only on the time interval for which ui(t) = 1. This is true even if the time
instants of ui(t) changing to 1 or 0 are dependent on the Poisson arrivals. The num-
ber of arrivals in the multiple mutually exclusive segments during which ui(t) = 1
are mutually independent. Therefore, the number of Poisson events (arrivals) during
all of the cumulative time intervals corresponding to ui(t) = 1 is simply the number
of Poisson events over the entire sum of all time intervals for which Ui(t) = 1. The
expectation of this number is proportional to the cumulative amount of time intervals
for which Ui(t) = 1. Therefore, we have

lim
t→∞

E[Mi(t)]
t

= λE

[
lim

t→∞
1
t

∫ t

x=0

Ui(x)dx
]

(5.52)

= λqi. (5.53)

That is, the long-term time average of the expected number of Poisson arrivals during
state i of the stochastic chainN(t) is the same as the product of the rate of the Poisson
events and the expected long-term time average of occupancy of state i ofN(t), even
ifN(t) is not a Markov chain. Over an unbounded amount of time, the time averages
of random numbers of Poisson events converge to their respective expectations with
probability one. Their variances vanish to zero. Therefore, the three statements of
the theorem are valid.

A minor manipulation of the above result gives us

lim
t→∞

E[Mi(t)]
E[M(t)]

=
qi

∞∑
j=0

qj

(5.54)

= qi. (5.55)

In the case of the M/G/1/∞ queue, recall that Mi(t) are the number of Poisson
arrivals “seeing” state i which we proved to be the same as the number of departures
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seeing state i over the long-term time averages, in equations (5.41) through (5.43).
The above Theorem 5.4 shows that this number of Poisson arrivals seeing state i is
the same as the time average of the occupancy of state i by N(t), in the sense of the
expected long-term time average. Therefore, we finally have the following needed
result.

THEOREM 5.5
The equilibrium state probabilities of the imbedded Markov chain for a sta-
ble M/G/1/∞ queue are the same as the expectation of the long-term time
averages of corresponding state occupancies by its continuous time stochastic
chain.

In the next section, the expectation of the imbedded Markov chain is developed
without any intermediate evaluation of the state probabilities.

5.4 Derivation of the Pollaczek-Khinchin Mean Value
Formula

The objective here is to derive the expected number of customers in a stable
M/G/1/∞ system under equilibrium. From the development in Section 5.3.1, the
recurrence relations of an M/G/1/∞ system are

Ni+1 =


Ai+1, if Ni = 0

Ni − 1 +Ai+1, if Ni > 0
. (5.56)

Define

u(Ni) =


0, if Ni ≤ 0

1, if Ni > 0
. (5.57)

The distinction between the random variable u(Ni) and its outcome u(ni) is implicit.
We have

Ni+1 = Ni − u(Ni) +Ai+1. (5.58)

Square both sides and take expectations. We have

E[(Ni+1)2] = E[N2
i ] + E[u2(Ni)] + E[A2

i+1] − 2E[Niu(Ni)]
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−2E[u(Ni)Ai+1] + 2E[NiAi+1]. (5.59)

The individual terms on the right-hand side of equation (5.59) are evaluated as fol-
lows.

E[N2
i+1] = E[N2

i ] under equilibrium, (5.60)

E[u2(Ni)] = E[u(Ni)], (5.61)

since u2(Ni) = u(Ni). We have

E[u(Ni)] =
∞∑

Ni=0

P [Ni]u(Ni) (5.62)

= 1 − P [Ni = 0] (5.63)

= P [server is busy]. (5.64)

E[Number in service area] = 0 · P [Ni = 0] + 1 · P [Ni > 0] (5.65)

= 1 · P [server is busy]. (5.66)

We know from Section 5.3.5 that the equilibrium state probabilities correspond to
their respective expected long-term time averages. Therefore, Little’s result is appli-
cable with P [Ni] as time average state occupancies. Applying Little’s result to the
service area, we obtain

E[Number in service area] = λE[service time] (5.67)

=
λ

µ
(5.68)

= ρ. (5.69)
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Therefore, we have the result

P [busy] = ρ, (5.70)

the normalized load, for M/G/1/∞ queue also. Continuing with further simplification
of various terms, we have

E[Niu(Ni)] = E[Ni], (5.71)

since Niu(Ni) = Ni. Next,

E[u(Ni)Ai+1] = E[u(Ni)]E[Ai+1], (5.72)

since Ni and Ai+1 are independent. Therefore,

E[u(Ni)Ai+1] = ρE[Ai+1]. (5.73)

In order to obtainE[Ai+1], recall equation (5.58) from which we get the expectation
of Ni as

E[Ni+1] = E[Ni] − E[u(Ni)] + E[Ai+1]. (5.74)

Under equilibrium, E[Ni+1] = E[Ni] and therefore, the above equation simplifies
to

0 = −E[u(Ni)] + E[Ai+1] or (5.75)

E[Ai+1] = E[u(Ni)] = ρ. (5.76)

Using this in equation (5.73), we have

E[u(Ni)Ai+1] = E[u(Ni)]E[Ai+1] (5.77)
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= ρ · ρ (5.78)

= ρ2. (5.79)

Realize that A is a random variable representing the number of arrivals during a
service time. Also, define T to be the random variable representing the service time
of the system. Therefore,

E[A(A − 1)] =
∫ ∞

t=0

E[A(A − 1)|T = t]fT (t)dt (5.80)

=
∫ ∞

t=0

∞∑
k=0

k(k − 1)
e−λt(λt)k

k!
fT (t)dt (5.81)

=
∫ ∞

t=0

fT (t)(λt)2
∞∑

k=2

e−λt(λt)k−2

(k − 2)!
dt (5.82)

=
∫ ∞

t=0

fT (t)(λt)2dt (5.83)

= λ2

∫ ∞

t=0

fT (t)t2dt (5.84)

= λ2E[T 2]. (5.85)

Now,

E[T 2] = Var(T ) +
1
µ2

(5.86)

= σ2
s +

1
µ2
. (5.87)

Therefore, we have

E[A(A− 1)] = λ2

(
σ2

s +
1
µ2

)
or (5.88)
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E[A2] − E[A] = λ2σ2
s + ρ2 (5.89)

E[A2] = λ2σ2
s + ρ2 + ρ. (5.90)

We need to substitute appropriate values for the different terms in equation (5.59)
and reproduced below.

E[(Ni+1)2] = E[N2
i ] + E[u2(Ni)] + E[A2

i+1] − 2E[Niu(Ni)]

−2E[u(Ni)Ai+1] + 2E[NiAi+1]. (5.91)

Under equilibrium,E[(Ni+1)2] = E[N2
i ]. Also, denote the equilibriumE[Ni] by

E[N ]. Using this and substituting for other terms, we have

0 = ρ+ E[A2
i+1] − 2E[Ni] − 2ρ2 + 2E[Ni]ρ or (5.92)

2E[Ni](1 − ρ) = ρ− 2ρ2 + E[A2
i+1] (5.93)

= ρ− 2ρ2 + λ2σ2
s + ρ2 + ρ or (5.94)

E[N ] =
λ2σ2

s + 2ρ− ρ2

2(1 − ρ)
. (5.95)

The mean number in the system depends only on the arrival rate, the service rate,
and σ2

s , the variance of the service time. It does not depend on other characteristics of
the service time distribution. Therefore, two different service time distributions but
with correspondingly equal means and variances will yield the same mean number in
the system (for the same λ and µ, of course). The expression forE[N ] in the equation
(5.95) is known as the Pollaczek-Khinchin mean value formula. Felix Pollaczek
(1892–1981) was an Austrian-French scientist. Aleksandr Yakovlevich Khinchin
(1894–1959) was a Russian mathematician. They developed the expression for the
expected buffer occupancy in the early nineteen thirties through the use of Laplace
and Z transforms. Their expression for the transform of the pmf of the number
in the system is known as the Pollaczek-Khinchin transform formula. The present
approach to directly derive the expression for the mean number in the systems is
due to D. G. Kendall, 1951. The mean value formula gives the mean number in the
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system at departure time instants. As shown in Section 5.3.4, the equilibrium state
probabilities at departure time instants are also the expected fractions of time the
system is in the corresponding states. Therefore, the Pollaczek-Khinchin mean value
formula is also the expected number of customers of the continuous time stochastic
process of the M/G/1/∞ queue.

5.4.1 Performance figures

The most important figures are P0 = 1 − ρ, load = P [busy] = ρ, and the mean
response time E[R] = E[N ]

λ from Little’s result, in addition to the mean number in
the system. The mean number in the waiting line is obtained by applying Little’s
result to the waiting line only. The expected waiting time is the difference between
the expected response time and the expected service time. Hence,

E[NW ] = λ
(
E[R] − 1

µ

)
(5.96)

= λE[R] − ρ (5.97)

is the mean number in the waiting line. To examine the mean number and mean
response times, we can vary λ from 0 to µ for any specified variance. Note that
for any µ > 0, the variance of service time can be as low as 0, as is the case for a
constant service time, or as high as desired (∞, as is the case of a Pareto distributed
service time).

5.5 Application Examples

Interesting examples are obtained not only for specific service time distributions
but also for practical combinations of these. In each case, the task of performance
evaluation is straightforward once we have the variance of service time.

5.5.1 M/D/1/∞: Constant service time

The variance σ2
s = 0 and the mean number in the system reduces to

E[N ] =
ρ(2 − ρ)
2(1 − ρ)

. (5.98)

5.5.2 M/U/1/∞: Uniformly distributed service time

If the service time is uniformly distributed over a continuous time segment (a, b),
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µ =
2

a+ b
and (5.99)

σ2
s =

(b− a)2

12
(5.100)

from standard evaluation. These can be substituted in the Pollaczek-Khinchin mean
value formula.

5.5.3 Hypoexponential service time

Let the service be in two independent exponential stages with rates µ1 and µ2.
Let there be at most one job allowed in the service area enclosing both the service
stages. Then the service time is the sum of two independent, exponential random
variables. From standard probability theory, the variance of a sum of independent
random variables is the sum of their individual variances. Of course, the expectation
of sum of random variables is the sum of their individual expectations - even if they
are not independent. Therefore, for a sum of two independent exponential random
variables with rates µ1 and µ2,

E[Y ] =
1
µ1

+
1
µ2

(5.101)

σ2
Y =

1
µ2

1

+
1
µ2

2

. (5.102)

These are used to evaluate the performance figures.

5.5.4 Hyperexponential service time

In some cases, whenever a job enters service mode, one of two different exponen-
tial processors may be allocated for service. Again, at most one customer can be in
service area, for M/G/1 system results to be valid. Let the probability of allocating a
server with rate µ1 be P1 and, similarly, µ2 and P2. Since there are only two servers,
P1 + P2 = 1. From the theorem of total expectation,

E[Y i] = P1E[Y i|server 1] + P2E[Y i|server 2] (5.103)

E[Y ] =
P1

µ1
+
P2

µ2
(5.104)

E[Y 2] =
2P1

µ2
1

+
2P2

µ2
2

(5.105)
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σ2
Y =

2P1

µ2
1

+
2P2

µ2
2

−
(P1

µ1
+
P2

µ2

)2

. (5.106)

These are used in the Pollaczek-Khinchin mean value formula for performance figure
calculations.

5.6 Special Cases

5.6.1 Pareto service times with infinite variance

Performance figures of the M/G/1/∞ queue in which service times are Pareto but
with finite variance follows the development so far. If the expectation of service times
is finite but its variance is infinite, the continuous time periods between successive
departures have finite mean and infinite variance. However, the probability that a
service time extends without bounds, to infinity, is zero. Therefore, the probability
that the number of transitions of the corresponding imbedded discrete parameter
Markov chain tends to infinity as the time period of operation tends to infinity is one.
Therefore, as long as the expected service time is less than the expected interarrival
time, all the properties of the Markov chain, including the Pollaczek-Khinchin mean
value formula are valid. Substituting ∞ for the variance of service time distribution
in the Pollaczek-Khinchin mean value formula, the expected number in the system is
found to be ∞. This is an illustrative case of a stable Markov chain with unbounded
expected state.

5.6.2 Finite buffer M/G/1 system

Consider a finite buffer queue with at most k positions for customers, including
any under service. Arrivals are Poisson with rate λ. Arrivals to a full buffer are
lost. Service times are iid. The expectation of service times is finite (and positive)
but otherwise unrestricted; this also implies that the probability of a service time
extending without bounds is zero. The variance of service times can be infinity. The
discrete parameter imbedded Markov chain operates with an unbounded number of
transitions with probability one, as the continuous time of operation extends without
bounds, to infinity.

The state diagram of the imbedded Markov chain is shown in Figure 5.2. Observa-
tions are soon after a departure. Therefore, the possible state of k is never observed in
the imbedded chain, but is observed in the continuous time stochastic process N(t).
The balance equations across a boundary drawn between states n and n+1 expresses
pn+1, the equilibrium probability of state n + 1 as a function of those of states 0,
1, · · · , n. Therefore, every one of the finite number of state probabilities can be
expressed as a function of p0, and p0 can then be evaluated through normalization.
Thus, the evaluation of equilibrium state probabilities of the imbedded Markov chain
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FIGURE 5.2: The state transition diagram of an M/G/1/k queue

is simple.
The arguments about the numbers of times the chain sees a change from state i to

i− 1 and from i− 1 to i can differ by at most one over any time interval is definitely
valid for all i ≤ k− 1. The PASTA property that the ratio of expected times spent in
two states is the same as the ratio of expected numbers of arrivals in those respective
states is also valid. Therefore, qi, the long-term expected fractions of time spent in
state i by the continuous time stochastic process is the same as the equilibrium state
probabilities of the discrete parameter Markov chain, for j = 0, . . . , k − 1. That is

qi = pi, i = 0, . . . , k − 1. (5.107)

During the continuous time periods that the stochastic process is in state k − 1,
if an arrival occurs, the state changes to k. Further arrivals are lost until a departure
takes place. Therefore, the long term expected fractions of times spent in states k−1
and k add up to pk. The component qk of pk is easily evaluated by equating the
two different evaluations of the throughput carried out by observing the arriving and
departing customers. At the departure point, throughput is the service rate multiplied
by the probability that the system is busy. That is,

E[Y ] = (1 − p0)µ. (5.108)

At the arrival point, customers are lost whenever the state of the continuous time
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stochastic process is k. During all other time periods, the arrival rate is λ. Therefore,
the throughput is also given by

E[Y ] = (1 − qk)λ. (5.109)

Comparing equations (5.108) and (5.109), we have

(1 − qk)λ = (1 − p0)µ or (5.110)

qk =
p0 + ρ− 1

ρ
and (5.111)

qk−1 = pk−1 − qk (5.112)

= pk−1 − p0 + ρ− 1
ρ

. (5.113)

From this, it is simple to show that

E[N(t)] = E[N ] + qk (5.114)

whereE[N ] is the equilibrium expectation of the finite state imbedded Markov chain
for the finite buffer system.

5.7 Exercises

1. In a computer system, jobs arrive in a Poisson stream with a rate of 20 per
second. A job can be serviced by one of three computers in the service area.
Each of these computers takes a constant amount of time to service a job.
There can be at most one job in the service area. A job is serviced by the first
processor for 0.05 second with a probability of 0.2, or by the second processor
for 0.03 second with a probability of 0.3, or by the third processor for 0.02
second with a probability of 0.5. Determine the service rate and the variance
of service time. Is the queuing system stable?

2. Consider the following queuing system. The arrival stream is Poisson dis-
tributed with a rate of 4 jobs per second. The service times are exponentially
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distributed with rates 3 and 5 jobs per second. An arriving job is routed to
the first processor (with rate 3) with a probability p, and to the other processor
with a probability (1− p). At any time, at most one processor is allowed to be
busy. Determine the expected response time of a random job as a function of
p.

3. A computer is composed of a CPU and an I/O unit. The service time of every
job submitted to the CPU is exponentially distributed with a rate of 10 jobs
per second. Following the CPU service, not all jobs require an I/O operation;
a job requires an I/O operation with a probability of 0.2. If an I/O operation is
required, its service time is exponentially distributed with a rate of 2 I/O jobs
per second.

(a) What is the density function of the total time (CPU plus I/O, if any)
required by a random job input to the CPU?

(b) A job input to the CPU is found to require a total time of 0.2 second.
What is the probability that it used an I/O operation?

(c) The computer center charges each user a dollar amount equal to

A = 2C + 3I (5.115)

where C and I are CPU time and I/O time in seconds, respectively. De-
termine the expected value and the variance of the random variable A.

(d) A job arrives at the CPU and finds two jobs in the waiting line for the
CPU and one being serviced by the CPU. What is the expected time for
the arriving job to enter the CPU and begin being serviced?

4. In an M/G/1/∞ queuing system, the processor service time is a constant (de-
terministic) equal to 1 second for each job. The Poisson arrival rate is 0.5 job
per second. Determine the steady state probability of finding three or more
jobs in the system (including the one being serviced).

5. A computer server has its own internal jobs in addition to those submitted by
external clients into a single queue. It devotes only 65% of its time to the
client jobs. This implies that for every millisecond of time spent on client
jobs, the server is busy for a total of 100

65 millisecond. The jobs submitted by
clients have exponential time requirement with an average of 3 milliseconds.
However, 20% of the jobs are erroneous and the server spends exactly 0.2
millisecond on each of these defective jobs. Arrivals from all the clients put
together are Poisson with a rate of one job in 8 milliseconds. Evaluate the
expected number of client jobs in the system and their average response time.

6. A computer system is made of a CPU followed by an I/O device. Each is
an exponential server with service rates of 20 per second and 10 per second
respectively. There are two ways of organizing the system. In the first, there
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is only one queue in front of the CPU. After a job is serviced by the CPU and
the I/O device, the CPU starts on the next job.

In the second organization, there is a queue in front of the CPU and a queue in
front of the I/O device. So, as soon as the CPU completes servicing a job, it is
sent to the queue in front of the I/O and the CPU begins servicing the next job
(if there is one) in its queue. Determine the improvement in the overall average
response time of the second organization over the first form of organization.
The Poisson arrival rate of jobs to the system is 4 per second.

7. Consider a finite buffer data link queue which can hold at most 2 packets in-
cluding any being transmitted. Packets arrive in a Poisson process with a rate
of 1000 packets per second. Successive packet transmission times are indepen-
dent and identical, but not exponentially distributed. A packet’s transmission
time is exactly 300 microseconds with a probability of 0.4 and exactly 700
microseconds with a probability of 0.6. Answer the following.

(a) During the complete service time a random packet, determine each of
the probabilities of (a) no arrival, (b) one arrival, (c) two arrivals, and (d)
more than two arrivals.

(b) Develop the discrete parameter Markov chain of the system. The state of
the system is defined as the number of packets in the system at the time
of a packet departure (the number does not include the departing packet).

(c) Let xi be the steady state probability of finding i packets in the system.
Write a set of equations in a matrix form the solution of which will give
us all the xi.

8. A computer is made of a CPU whose service time is exponentially distributed
with an average of 1 sec followed by an I/O whose service time is uniformly
distributed between 0 and 2 seconds. Jobs queue up in front of CPU only and
until a job completes its I/O, the CPU does not take in the next job. The CPU
and I/O service times are statistically independent of each other. Arrivals are
Poisson with a rate of one job in 4 secs. Determine the average response time
of a job (i.e., the sum of waiting, CPU, and I/O times).

9. In an M/G/1/∞ queuing system, the arrival rate is 10 per second. The service
time is uniformly distributed between 0.03 and 0.06 second. Find the average
response time and the average waiting time a job will experience.

10. Consider a queuing system which has only one waiting line at the entry point.
Arrivals at this entry point are Poisson with rate of 1 job per second. The
first stage of processing of a job is done by a processor S1 which consumes
a uniformly distributed amount of time between 0 and 0.2 second. After this
first stage, the job is sent to one of two processors S2 or S3 with probabilities
0.4 and 0.6 respectively, for final processing. The service times in S2 and S3

are both independent and exponential with service rates 3 per second and 5
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per second, respectively. Again note that there is only one waiting line at the
entry point and until a job completes service in ( S1 AND ( S2 OR S3 )), all
other jobs wait in the waiting line. Determine the average response time in the
queuing system.

11. In a computer system, jobs that complete CPU service leave in a Poisson
stream with rate 10 jobs per second and queue up for I/O. The I/O service
times are iid and each service time is 0 with probability 0.5 and a constant
0.05 second, with probability 0.5 (that is, all the jobs queue up, but half of
them find that they do not require I/O, when they get to I/O service point).
Service times for the jobs are mutually independent of one another.

(a) Determine the expected response time of the I/O queuing system.

(b) What is the expected response time of a corresponding M/M/1 system
with the same arrival and service rates? If this equals the expected re-
sponse time of the above original I/O system, is the output process of the
original I/O system Poisson?

12. In a simple computer system, only one job can be under service. “Service”
consists of CPU time followed by I/O time. There is unlimited waiting room.
Job arrivals are Poisson with a rate of 1 per second. CPU times are iid expo-
nential with rate 2 jobs per second. I/O times are iid uniform from 0 to some
T . What is the value of T for each of the following possible cases.

(a) An incoming job finds the system busy with probability 0.75.

(b) Overall expected response time is 3 seconds.

13. In an M/D/1 system under equilibrium, determine the cumulative distribution
function of the interdeparture time between successive jobs leaving the system.
Sketch the function.

14. In a steady state M/G/1 system, service time is uniformly distributed between
0 and b seconds. The arrival rate is 0.4 jobs per second. The expected time for
the next departure, under the condition that the server is free is known to be 3
seconds. Determine the expected number of customers in the waiting line (not
including the customer in service).

15. In a steady state queuing system, the service time is composed of a uniformly
distributed preprocessing time between 0 and 1 millisecond followed by an in-
dependent exponentially distributed CPU time with an average of 3 millisec-
onds. The preprocessor is never functioning when the CPU is busy. Arrival
rate is 100 jobs per second. Systematically determine the expected number of
customers in the waiting line (not including any under service).

16. In a steady state M/G/1 system, service time is uniformly distributed between
0 and b second. The arrival rate is 0.4 job per second. The expected time for
the next departure, under the condition that the server is free is known to be
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3 seconds. Systematically determine the expected number of customers in the
waiting line (not including the customer in service).

17. In a computer server, the CPU followed by I/O together constitute a single
service area. Poisson job arrivals are at the rate of one job per second. If a job
runs without any error, its CPU time is exactly 100 milliseconds. and its I/O
time is exactly 300 milliseconds. If the job is erroneous, its CPU time is 50
milliseconds. and its I/O time is 100 milliseconds. The system is found to be
empty 70% of the time. Let Y be the service time random variable. Determine
the variance of Y .

18. Consider a stable M/G/1/∞ queuing system with an arrival rate of λ. The
service time is uniformly distributed between a and b. Determine P1, the
steady state probability of finding one customer in the system, as a function of
λ, a, and b.

19. Consider a sluggish M/G/1/∞ queue with a hyperexponential service time
composed of a mixture of m exponential times with rates αi and correspond-
ing mixing probabilities hi. The Poisson arrival rate of payload packets is λ.
Whenever the queue becomes free of payload packets, the server gets busy
with its internal jobs whose service times are iid as the payload packets.

(a) Determine the probability that a payload packet arrives when the server
is executing its internal job.

(b) Between the time instant that the server becomes free of payload jobs
and the time instant that a new payload job arrives, the server completely
executes a random number K internal jobs. A payload packet arrives
during its execution of the (K + 1)th internal job. Develop the pmf of
this random variableK .

(c) Determine the probability distribution of the time remaining for comple-
tion of an internal job, after a payload job arrives. This time amount
quantifies the sluggishness of the server.

(d) Develop an expression for the equilibrium expected number of payload
packets in the system, which is different from the Pollaczek-Khinchin
mean value formula, due to the sluggish server.

20. Analyze the following extension of the simple contention-free LAN protocol
studied in Section 4.9.2. Let the payload packet sizes in different transmitters
be different, with rates µi instead of a common µ. If a transmitter does not
have any payload packets in its buffer at the time it gets a chance to transmit, it
transmits a token packet, of size iid to its payload packets. The payload packet
arrival rate at transmitter i is λi. The algorithm to give the right for transmis-
sion to a transmitter selects one through a random experiment with probabili-
ties, q1, . . . , qm. A useful feature of this LAN organization is that even within
one transmitter, there may be multiple heterogeneous queues. For example in
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voice over IP (VOIP) communication packet arrival rates and packet sizes for
voice packets are usually different from the corresponding parameters for data
packets.

(a) Evaluate the exact mean and variance of the time interval that transmitter
i experiences between its successive chances for transmitting.

(b) Optimize the set of probabilities {qi} that minimize the expected number
in the entire LAN. Recall that each transmitter operates in a sluggish
mode due to the transmission of dummy or control packets, whenever
there are no payload packets.





Chapter 6

Discrete Time Queues

6.1 Introduction

The interarrival times and service times of many queues in real computer networks
are modeled as continuous (as opposed to discrete) random variables. Section 3.1
describes some justification and data networks applications for such a model. Many
other computer systems, small scale computer networks, and some wireless networks
are organized with complete synchronization. In such wireless networks, nodes syn-
chronize their activities with the clock of one node. Channel requests, grants, data
transmissions, and receptions all proceed in predetermined fixed time intervals. Data
frames are necessarily of fixed sizes. Analysis and performance evaluation of such
systems are crucial, especially since these systems have limited resources. A proper
understanding and modeling of timing and synchronization is required to correctly
analyze such discrete time queues. Identification of when a data packet cannot enter
due to a full buffer is important. Making assumptions with regard to synchroniza-
tion issues also influences when exactly the last customer has left the system and
the buffer is empty. Analysis and performance evaluation of discrete time queues
is based on discrete parameter Markov chain models. The structure and operation
of simple discrete parameter Markov chains are easy to visualize. Development of
their statistical properties, however, require a careful study of the possible variations
in the nature of interconnections (state transitions) and probabilities of transitions.
Nevertheless, the final results are simple to comprehend.

6.2 Timing and Synchronization

In discrete time systems, progression of activities is controlled by a clock. The
clock divides time into a succession of equal intervals or slots (see Figure 6.1). These
activities persist for a nonzero, finite amount of continuous time within a slot, and
are simple enough that they will be completed in a small amount of time. An exam-
ple of such an activity is the transmission of a packet in a wireless communication
system. The end points of a slot are called slot edges. At the beginning of a slot, data
and physical components are ready to execute an activity. By the end of a slot, the

209
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activity is complete. Even if some activity is complete before the end of the slot, the
next activity cannot start until the beginning of the successive slot. Thus, the discrete
time model is not an approximation to continuous time operation, but arises due to
the strictly digital nature of the operation. In the analysis of discrete time queuing
systems, the details of the activities that take place within a slot and of the service re-
ceived by the customers are unimportant. Only the numbers of customers in various
positions within the system at different times are relevant. The positions of different
customers should never change within the body (the open interval) of a slot in order
to ensure that no activity is interrupted.

Arrival and departure events are the most common causes of changes that take
place in a queuing system. Even movement of a customer within a queue is a de-
parture from one buffer position and an arrival into another position. We make a
distinction between an arrival and an arrival event (compare departure and depar-
ture event). An arrival event is the occurrence of one or more simultaneous arrivals.
There is at most one arrival event per slot. Arrival and departure events (including
movement of customers from one position to another) do not persist over a continu-
ous time period, but instead are changes in the system that take place instantaneously
at slot edges. Throughout this chapter, unless otherwise stated, it is assumed that an
arrival occurs during an infinitesimal time period soon after the slot edge and a depar-
ture, during an infinitesimal time period just before a slot edge. Figure 6.1 illustrates
this terminology. This type of system is referred to as an early arrival system (EAS).
This model is consistent with the movement of data in digital systems, for example,
in shift registers. Any activity between successive slot edges belongs to that slot.

solt edges slot centers
arrival

departuretime

FIGURE 6.1: Slot arrival and departure instances

Hence, the slot edge is a natural choice of epoch to make observations. However, the
numbers of customers in various positions do not change during the continuous time
period starting from soon after a slot edge and ending just before the next slot edge.
Therefore, counting the numbers at slot centers leads to another choice of the epoch.
In a practical scenario, the slot center represents the point in the slot where arrivals
are guaranteed to have fully entered the system. Compare this to the slot edge, which
represents the point in a slot at which a departure is guaranteed to have completely
left the system and no arrivals have begun entering the system. The number of cus-
tomers varies depending on whether the count is made at the slot edge or at the slot
center.



Discrete Time Queues 211

As an illustration of the difference between counting at slot edges versus counting
at slot centers, let a system be empty at the beginning of slot 0, as in Figure 6.2 (the
numbers on the time axis indicate the slot to the right of the numbers, in this figure).
Let there be four successive packet arrivals in slots 1 through 4, and three successive
departures in slots 2 through 4. The system has 1, 2, 2, 2, 1 packets at the centers
of slots 1 through 5, respectively. At the beginning edges of slots 1 through 5 there
are 0, 1, 1, 1, 1 packets in the system, respectively. At the ending edges of slots 1
through 5 there are 1, 1, 1, 1, 1 packets. The sequences of numbers of packets at
the beginning edges of slots and ending edges of slots are the same except for one
discrepancy: the ending edge of a slot is the beginning edge of the next slot. From

time
0 1 2 3 4 5 6 7 8 9 10

arrival

departure

FIGURE 6.2: A plot of 4 arrivals and 3 departures

the previous example, it is evident that the number in the system at any given slot
depends on whether the count is made at slot edges or at slot centers. The following
section develops methods to evaluate the probabilities for possible changes in the
number of packets between successive observations in discrete time queues.

6.3 State Transitions and Their Probabilities

In simple discrete time queues, the state of the system at any time is the number
of customers. An example of a customer is one of the packets in a store and for-
ward queue obtaining or waiting for service. The possible set of state transitions is
unambiguously determined by the epoch at which the state is evaluated. An empty
state corresponds to zero customers, and the full state corresponds to the maximum
number of customers possible in the system. Particular attention should be paid to
the impossible transitions from empty and full states. The properties dictating these
transitions are simple. Obviously, a customer cannot leave from an empty buffer and
a customer cannot enter a full buffer. If the state is evaluated at the slot center, then
between the present epoch and the next, any possible departure occurs before any
possible arrival. On the other hand, if the state is evaluated at slot edges, then any
possible departure occurs after any possible arrival, between the present epoch and
the next. Therefore, if the observations are at slot edges, then, between successive
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observations, the following hold. First, a customer can enter into an empty buffer
and depart from the system after the slot of service. Second, a customer cannot enter
a full buffer. In contrast, if observations are at slot centers, then, between successive
observations, the following hold. First, a customer can enter into an empty buffer but
cannot leave. Second, a customer can depart from a full buffer and another customer
can enter.

The sets of events triggering possible transitions for a system which can have at
most one arrival and at most one departure between the present and the next epoch
are listed in Table 6.1∗. Elements in a row correspond to possible transitions. The
second and third rows correspond to the cases of two different epochs. The symbol
nb denotes the size of the buffer. The event A denotes an arrival, and A denotes no
arrival. Likewise, D and D denote a departure and no departure, respectively. The
symbol · denotes logical AND, and + denotes logical OR. The variable i in the table
has the range 0 < i < nb. The probability of each transition is evaluated from the

TABLE 6.1: Events triggering various state transitions

Transition 0→0 0→1 i→i+1 i→i i→i−1 nb→nb−1 nb→nb

Center A A D·A D·A+D·A D·A D·A D+D·A

Edge A+A·D A·D A·D A·D+A·D A·D D D

probability of the compound event required for the execution of the transition. These
transition probabilities are functions of the arrival and service completion probabili-
ties.

We use p = [pij ] to denote the one step transition probabilities from state i to state
j, if observations are made at slot centers. If observations are made at slot edges, we
use q = [qij ] for transition probabilities from state i to state j.

Example 6.1

In a slotted LAN (local area network), a transmitter functions as a discrete
time queue. In this example, the buffer has two positions (for two packets)

∗Tables 6.1, 6.2, 6.3, and 6.4 are reproduced (with copyright permission) from the article G. R. Dattatreya
and L. N. Singh, “Relationships among different models for discrete-time queues,” WSEAS Transactions
on Systems, volume 4, issue 8, August 2005, pp. 1183–1190.
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only, including for any packet under service. Arrivals enter the system and join
the queue. Service consists of transmitting a packet at the head of the queue
over the outgoing physical medium. Due to contentions for transmission,
transmission is not always successful during an attempt. The probability of
one arrival in a slot is a and the probability of no arrival is 1 − a. If a
packet is present in the service mode in the queuing system, the probability
of its service completion during the present slot is s. Probabilities of arrivals
and service completions in successive slots are independent among themselves
and independent of one another. An attempted arrival to a full buffer gets
lost. In other words, such an arrival is not admitted into the system and this
event does not affect future arrival probabilities. These arrival and service
processes are also known as memoryless, since their past history does not
affect the probabilities of their future occurrences.

For a = 0.3 and s = 0.6, the resulting transition probability matrix for
counting at slot centers is given by:

p =

0.70 0.30 0.00
0.42 0.46 0.12
0.00 0.42 0.58

 . (6.1)

The state transition diagram for the above LAN when the system is observed
at slot centers is given in Figure 6.3. The transition probability matrix for
counting at slot edges is:

q =

0.88 0.12 0.00
0.42 0.46 0.12
0.00 0.60 0.40

 . (6.2)

The state transition diagram for the above LAN when the system is observed
at slot edges is given in Figure 6.4.

0 1 2

a

s(1 − a)

(1 − s)a

s(1 − a)

1 − a sa + (1 − s)(1 − a) 1 − s + sa

FIGURE 6.3: State diagram for Example 6.1. Observations are at slot centers
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0 1 2

1 − a + as

a(1 − s)

(1 − a)s

as + (1 − a)(1 − s)

a(1 − s)

s

1 − s

FIGURE 6.4: State diagram for Example 6.1. Observations are at slot edges

Example 6.2
A slight modification to the above Example 6.1 is to allow at most two packets
to arrive during one time slot. Let the probability of one arrival in a slot be
0.3 and the probability of two arrivals, 0.1. In addition, the capacity of the
system is increased to hold a maximum of three packets. All other aspects
are the same as in Example 6.1. If two arrivals attempt to arrive in a slot and
there is room for only one of them in the buffer, one of the two at random
will be admitted and the other one will be dropped.

The arrival and departure events for different state transitions in this ex-
ample are a little more involved than those in Table 6.1. The approach for
computing the transition probabilities is similar, however. Let the events in
which one and two arrivals occur be A1 and A2, respectively. Tables 6.2
through 6.4 give the transition probabilities for the possible transitions. The
resulting transition probability matrix for counting at slot centers is given by:

p =


0.60 0.30 0.10 0.00
0.36 0.42 0.18 0.04
0.00 0.36 0.42 0.22
0.00 0.00 0.36 0.64

 . (6.3)

The state transition diagram for the above LAN when the system is observed
at slot centers is given in Figure 6.5. The state transition probability matrix
for counting at slot edges is:

q =


0.78 0.18 0.04 0.00
0.36 0.42 0.18 0.04
0.00 0.36 0.48 0.16
0.00 0.00 0.60 0.40

 . (6.4)

The state transition diagram for the above LAN when the system is observed
at slot edges is given in Figure 6.6.

Performance analysis of such discrete time queues require the foundations of anal-
ysis of discrete parameter Markov chains, just as we needed to understand the anal-
ysis of continuous parameter Markov chains to evaluate performances of continuous
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TABLE 6.2: Events triggering state transitions from state 0 given 2
possible arrivals per slot

Transition 0 → 0 0 → 1 0 → 2

Center A1A2 A1 A2

Edge A1 · A2 +A1 ·D A1 ·D +A2 ·D A2 ·D

TABLE 6.3: Events triggering state transitions from state i given 2
possible arrivals per slot

Transition i→ i− 1 i→ i i→ i+ 1 i→ i+ 2

Center D ·A1 · A2 D ·A1 · A2 +D · A1 D ·A1 +D ·A2 D · A2

Edge A1 · A2 ·D A1 · A2 ·D +A1 ·D A1 ·D +A2 ·D A2 ·D

TABLE 6.4: Events triggering state transitions from state nb and
nb − 1 given 2 possible arrivals per slot

Transition nb − 1 → nb nb → nb − 1 nb → nb

Center D · (A1 +A2) +D ·A2 D ·A1 · A2 D +D · (A1 +A2)

Edge (A1 +A2) ·D D D
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FIGURE 6.5: State diagram for Example 6.2. Observations are at slot centers
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FIGURE 6.6: State diagram for Example 6.2. Observations are at slot edges

time queues. The following sections develop the required foundations of discrete
parameter Markov chains. A cursory glance at the entire development may give the
impression that it is long-winded. Important properties are developed one small step
at a time that allows us to concentrate on only a small number of aspects. These
results are successively integrated for the final result that helps us to examine simple
conditions on the Markov chain for the existence of equilibrium and for the evalua-
tion of equilibrium state probabilities.

6.4 Discrete Parameter Markov Chains

In many applications of discrete time queues, the probabilities of arrivals and de-
partures in the future depend only on the present situation or condition in the system
and that the present condition that can be specified from a countable set. In many
cases, the present condition can be as simple as the number of customers in the sys-
tem at the time of observation. In other cases, the present condition specification
may need to include, for example, which servers are busy. We call the description
of the present condition as the present or current “state.” In such systems, the future
behavior of the system is not influenced by the past, except that it depends on the
present state. That is, the current state is sufficient to describe the future statistical
behavior of the states, as time slots progress. How the current state was reached is
irrelevant for occurrences of future states, if the current state is known. The appropri-
ate mathematical model to represent the behavior of such systems is that of a Markov
chain.
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In Section 4.2, a stochastic process is defined as a parameterized random vari-
able. In the present study of discrete time queues, the parameter is the sequence
of integers representing the progression of time slots. The random variable is the
state of the system, represented by integers. The state may be a vector of discrete
random variables. We therefore have a discrete parameter, discrete state stochas-
tic process, also called a discrete parameter stochastic chain. Consider the following
further restrictions on the nature of such stochastic chains. If the states at some of the
parameter values (slots) are known, the conditional distribution of states at a larger
parameter value depends only on the largest value of the parameter value for which
the state is known. If this restriction is true for the entire stochastic chain, we call the
chain a Markov chain, with a discrete parameter, in this case. We have already seen
the specific discrete parameter Markov chain in Chapter 5. We have also seen them
in Examples 6.1 and 6.2. The following is a formal definition, to begin a systematic
study of the topic.

DEFINITION 6.1 Let X(i) be a discrete state stochastic process, that
is, a parameterized discrete random variable, with the parameter i taking in-
teger values. The discrete sample space can be, for example, all nonnegative
integers. Let i > ik > ik−1 > ik−2 · · · . If

P [X(i) ≤ x(i)|X(ik) = x(ik), X(ik−1) = x(ik−1), · · · ] (6.5)

= P [X(i) ≤ x(i)|X(ik) = x(ik)]

is true for all possible x(i) and for all possible i > ik > ik−1 > ik−2 · · · , we
say that X(i) is a discrete parameter Markov chain.

A simple example of a Markov chain is a store, process, and forward queue in a
discrete time data packet communication system. Let us say that soon after every
slot, a packet attempts to arrive with a probability a. If there is at least one packet in
the system, the packet at the head of the queue (the oldest arrival among the packets
present) successfully completes processing and departs the system with a probability
s. The arrival and successful probabilities depend on the current number of packets
in the system, but do not depend on other aspects of past behavior. Successful de-
partures are forwarded on one of the outgoing communication links. In this case, the
current state is adequately described by the number of packets in the system (includ-
ing any at the transmission head) at the current time instant. The future behavior,
that is, the probabilities of finding various numbers of packets at future time instants,
depend only on the number of packets at the current observation. These future prob-
abilities do not depend on, for example, whether or not the current state was reached
as a consequence of an arrival or departure. In the present example, if we imagine
that there is no limit on the number of packets the communication system buffer can
hold waiting for service, the analysis gets simplified. Therefore, we allow a Markov
chain to have a countably infinite number of states, in general. Particular examples
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can have limited finite buffers, of course. Examples 6.1 and 6.2 are illustrative cases
of finite buffer systems.

The number of packets in a discrete time queue changes from one observation to
the next; it is also possible for the number to remain the same between two such suc-
cessive observations. The change is caused by possible arrivals and successful com-
pletions (departures). If the number of packets forms the state of the Markov chain
representing the stochastic behavior of the queue, the probability of the number of
packets at the (i+ 1)th observation depends only on the exact number of packets at
the ith observation and the probabilities of arrivals and of successful completions.
For the state of the Markov chain to be the number of packets in the system only,
the probabilities of arrivals and successful completions following the ith observation
should be independent of how the state at the ith observation was reached. These
arrival and departure probabilities, following the ith observation, can depend on the
exact state found at the ith observation. For example, if the system has a finite buffer
in which to hold a limited number of already arrived packets waiting for service, any
attempted packet arrival would be dropped, if there is no departure between the ith
and the (i+1)th observations. Such dropped packets are also called lost and they do
not surreptitiously wait outside the buffer to make more attempts for arriving later. In
other words, lost packets do not influence the probabilities of arrivals following their
loss. This is certainly the scenario in data communication systems. The probabilities
of successful completions also can depend on the current state. As an example, if
the system has multiple packet servers (processors and transmitters), the probabili-
ties of departure depend on whether or not more than one server is busy trying to
complete packet service. The probability corresponding to a change in state from k
at the ith observation to a state l at the (i+ 1)th observation is known as a transition
probability. In general, in discrete parameter Markov chains, the state k can be a
discrete vector. The transition probability is a function of the current state and the
next state. It (the transition probability) can also be a function of the parameter i, the
index of progression of slots. The dependency or otherwise on the parameter i give
us two classes of Markov chains developed below. The symbol pkl(i) is convenient
to represent the transition probability from the state k at the ith observation to the
state l at the next, (i+ 1)th observation. Such transition probabilities are also called
one step transition probabilities to emphasize that k and l represent states before and
after one transition starting at the observation index i and not multiple transitions.

6.4.1 Homogeneous Markov chains

The dependency of the transition probabilities on the parameter corresponding to
the index of progression of slots is clearly the more general of the two cases. The
following definition distinguishes between the two cases.

DEFINITION 6.2 If the transition probabilities of a Markov chain are
completely invariant to the parameter values, the Markov chain is said to be
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homogeneous. If the chain is not homogeneous, it is said to be inhomoge-
neous.

A simple way to bring about the inhomogeneous generality is to let the probabil-
ities of packet arrivals and packet processing speeds to be functions of time. Since
time is divided into discrete slots, this translates to the transition probabilities being
dependent on the slot-index parameter. A more illustrative real-life example follows.

Example 6.3

A popular car dealer’s service shop has the following policy. Cars needing ser-
vice should be dropped before 7:00 AM on weekdays; any car dropped before
7:00 AM including even those dropped on the previous evening are logged in
as incoming at 7:00 AM. At 5:00 PM every weekday, service completions are
logged. Repaired cars can be picked up only after 5:00 PM. Of course, any car
picked up on the day or days after service completion are not in the register
of internal service shop. The service shop is closed during weekends. Car
owners plan to have serviced cars for the weekends. Also, cars breaking down
during weekends would be brought in first thing Monday morning. Therefore,
it is common for more cars to be logged in for repair on Monday and Friday
mornings, than on Wednesdays, for example. As a consequence, the shop
allocates more repair personnel during early and late weekdays than during
the midweek.

The above example illustrates two features. One, that we can construct
a discrete time queuing system with a progression of slots, each slot lasting
from 7:00 AM through 5:00 PM the same day, and only for weekdays. The
nights and weekends are squeezed out from our progression of slots. Also
note that the arrivals and departures occur at slot edges in these progression
of slots with any departure occurring before any arrival. The second feature
of this example is the time varying nature of arrival and service completion
probabilities of numbers of cars. These time varying arrival and departure
probabilities in turn render the Markov chain transition probabilities to be
functions of the slot index. That is, pkl(i) explicitly depends on i.

The above is an example of inhomogeneous Markov chains. In contrast, in simple
packet communication system, the arrival and service completion probabilities are
not functions of the slot index parameter. They are functions of the current state,
though. Therefore, they are homogeneous Markov chains. In the study of homoge-
neous Markov chains, i is dropped from the symbol pkl(i). The symbol pkl com-
pletely represents the one step transition probability from the state k to the state l,
starting at any observation slot index. Inhomogeneous Markov chains are difficult
to specify, since transition probabilities are required to be specified for all param-
eter values, i, possibly different for each i. They are also difficult to analyze for
the reason that even average quantities are time (slot index) varying. The concepts
and definitions of homogeneity apply to both finite state and countably infinite state
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Markov chains. Unless otherwise stated, any Markov chain considered in this chap-
ter is assumed to be homogeneous.

6.4.2 Chapman-Kolmogorov equations

In a homogeneous Markov chain, if the current state is known, the transition prob-
abilities specify the probabilities of observing different possible states after a tran-
sition. However, if the current state is uncertain and if only the probabilities with
which the current state takes the possible values are given, how can the probabilities
of the next state be evaluated? Let the states of the Markov chain be 0, 1, · · · , nb

where nb can be finite or infinite. Let pij be the transition probability from state i
to state j, the elements of the transition probability matrix p. The definition of a
matrix is extended to include infinite rows and columns. We should be careful to not
conduct invalid or ambiguous operations on such infinite size matrices. Inverse is an
example operation that is invalid for infinite size matrices. These transition probabil-
ities are also called one-step transition probabilities. Let P (t) = P0(t), · · · , Pnb

(t)
be the probabilities of observing different states at slot number t. The probability
that the state is j at slot index t+ 1 is given by the theorem of total probabilities

Pj(t+ 1) =
nb∑
i=0

Pi(t)pij . (6.6)

In matrix notation, we have

P (t+ 1) = P (t)p. (6.7)

The above equations in any form are known as the Chapman-Kolmogorov equations,
in honor of the British scientist Sydney Chapman (1888–1970)and the Russian math-
ematician Andrey Nikolaevich Kolmogorov (1903–1987). Applying these again, we
obtain

P (t+ 2) = P (t+ 1)p = P (t)p2. (6.8)

Extending this, the so called n-step transition probabilities evaluate to the elements
of pn. That is if the current state is i, the probability of state j after n slots is given
by the ij-th element of the matrix pn.

6.4.3 Irreducible Markov chains

In many practical Markov chains, especially in those with a finite set of states, each
state is repeatedly visited. The number of slots between successive visits to a state is
a random variable, in general. However, even in some practical Markov chains, there
may be some undesirable states that may be visited a few times before the chain set-
tles into repeatedly visiting (with random number of slots between successive visits)
every state in a proper subset of the original set of states. In some other improperly
designed practical systems, the chain may settle into an undesirable proper subset of
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states, after switching in. Proper definitions and a study of some simple properties
help the understanding of these issues and better design techniques.

DEFINITION 6.3 In a (homogeneous, by default) Markov chain, starting
from any state, at a particular slot, if every other state as well as itself can
be reached, each in a finite number of transitions, and each with nonzero
probability, we say that the Markov chain is irreducible. If a Markov chain is
not irreducible, it is called reducible.

As in the case of homogeneous and inhomogeneous Markov chains, it is illustra-
tive to consider a specific example of the more complex system, a homogeneous but
reducible Markov chain, in this case.

Example 6.4

A computer CPU (central processing unit) and its DMA (direct memory ac-
cess) hardware access, mutually exclusively, the RAM (random access memory
unit) through a common bus. The hardware that controls which of the sub-
systems will access the RAM during a clock period (slot) has two flip-flops C
for CPU and D for DMA. During a slot, if a flip-flop shows a Boolean value 1,
it allows its corresponding device to access the RAM. In practice, the device
that will access the RAM during a slot is actually decided in the previous slot
and the hardware enters this information into the flip-flops during the previ-
ous slot itself, so that the flip-flops can memorize it for the current slot. The
control hardware and the two flip-flops C and D together form a four-state
synchronous sequential machine. Obviously, for the successful operation of
the entire system, only three states, CD ∈ {00, 01, 10}, are valid. If the
probabilities of attempted accesses by the CPU and the DMA are constant
over time (that is over a sequence of slots), and the control hardware has an
unchanging way of arbitration if both devices attempt to access the RAM, we
obtain a desirable Markov chain with three states with CD ∈ {00, 01, 10}.
The state diagram for this chain is shown in Figure 6.7

However, when the system is started with a fresh power-up (also called
switching-in), each of the the flip-flops C and D may find itself in the state 1,
for several successive slots. Clearly, a proper design of the control hardware
must ensure that if CD = 11 during any slot, the states of the flip-flops are
driven to one of the desirable states, 00 for example, in the next slot. The
corresponding Markov chain for the sequence of states of the flip-flops will
then have four states CD ∈ {00, 01, 10 11}. A transition from the state 11
to state 00 occurs with a probability 1. There will be no transitions from any
of the states 00, 01, and 10, to the state 11. This four state Markov chain is
a reducible Markov chain, since starting from any state, including from state
11, the state 11 cannot be reached at all. After any possible switching-in
transients, the Markov chain settles into the irreducible subchain with states
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00, 01, and 10.

00 01

1011

FIGURE 6.7: State diagram for the properly designed DMA hardware

It is worth noting that if the control hardware is improperly designed, we
can have a transition from state 11 back to itself with probability 1, in the
final product. In such a case, if the state at the switching-in time turns out
to be the undesirable state 11, the hardware will never get out of it! Figure
6.8 shows the state diagram of such a chain. Not only is it reducible, but it
is also composed of two completely disjoint chains.

00 01

1011

FIGURE 6.8: State diagram for an improperly designed DMA hardware

If a Markov chain is made of multiple irreducible chains, the study of the entire
chain is usually split up into studies of its individual irreducible subchains. There-
fore, unless otherwise specified, Markov chains in our study are irreducible.
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6.5 Classification of States

6.5.1 Aperiodic states

DEFINITION 6.4 In a homogeneous and irreducible discrete parameter
Markov chain, starting from a particular state, say A, it may be possible to
return to itself (state A), for the first time, only after i1, · · · , in slots, each
with a nonzero probability. If this set of integers {i1, · · · , in} has its highest
common factor m > 1, we say that state A is a periodic state with period
m. If the highest common factor is one, we say that the state is aperiodic.
Aperiodic states may also be called periodic with period 1.

The behavior of the sequence of states visited has a peculiar property, if the
Markov chain has one or more periodic states. It is illustrated with the help of the
following example.

Example 6.5

Consider a simple computer system’s hardware executing a machine language
program. A machine instruction is fetched during the first clock period (slot)
and executed during the succeeding slots. After the completion of execution of
one instruction, the next instruction to be executed is fetched and the process
continues. Register mode instructions take exactly one slot for execution, after
the fetch slot. In the memory access addressing mode, the hardware requires
three successive slots for execution, beyond the fetch. The three slots are used
for evaluating the effective address, executing the operation and a memory
read or memory write operation. Only one memory operation is allowed,
either read or store, but not both. Therefore, the three operations in the
three slots mentioned above are not always in the same succession. In any
case, these result in a total of two slots for fetch and execute of a register mode
instructions and four slots for a memory mode instruction. Let us assume that
in the long run of the computer, the sequence of instructions encountered
for execution is an independent and identically distributed sequence of the
two types. Let the probability of a memory mode instruction be 0.3. The
Markov chain for the sequence of states experienced by the control hardware
has four states, 0, 1, 2, 3. During the state 0, the instruction is fetched. If the
instruction is register mode, the states change from 0 to 1, and then back to
0. For a memory mode instruction, the states change from 0, 1, 2, 3, and back
to 0, in this sequence. The state transition diagram for the Markov chain is
in figure 6.9.

We see that the number of slots required for the chain to return to state 0
for the first time (starting from state 0, of course) can be 2 or 4, even numbers,
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FIGURE 6.9: State diagram for the periodic chain of Example 6.5

with a common factor of 2. Due to this property, we say that the state 0 is
periodic. It is important to note that an exact sequence of states visited can
be, for example, 4, 6, 8, 12, 16, · · · . These numbers do have a common factor.
To determine periodicity of a state, we collect all possible numbers of slots
after which the chain can return for the first time to the state in question with
nonzero probabilities, and examine them for a common factor larger than 1.

It is illustrative to point out the following. In a chain, a state B may return to
itself for the first time only after certain numbers of slots i1, · · · , in with nonzero
probabilities. However, if the collection of these numbers do not have a common
integer factor m > 1, then state B is not periodic. The following modification to the
above example illustrates this.

Example 6.6

In the previous Example 6.5, let the memory mode instruction check for the
presence of an interrupt and require an additional slot to ready the hardware
for interrupt service, if it finds an interrupt upon checking. Let the probability
that the hardware finds an interrupt, when checked for, be a constant 0.1. The
resulting Markov chain now has five states as shown in Figure 6.10. Therefore,
starting from state 0, the chain can return to state 0, for the first time, after
2, 4, or 5 slots. State 0 in this new Markov chain is aperiodic.

What are the consequences of a periodic state? By and large, we are interested
in the behavior of a Markov chain in the long run, that is, after the chain has been
in operation for a large number of slots. We subjectively anticipate that the Markov
property renders the influence caused by the exact state at some starting slot to drop
down as the slots progress. If the chain is homogeneous, irreducible, and aperi-
odic, after a large number of slots, the probability of being in any particular state
is nonzero, irrespective of the starting state. This property does not hold for chains
with periodic states. In Example 6.5, if the starting state at slot 0 is 0, then the proba-
bility that the chain is in state 0 is 0 for each slot numbered 2j + 1, representing odd
numbers, however large.

Does the above peculiarity hold for the previous Example 6.5, even though the
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FIGURE 6.10: State diagram for the aperiodic chain of Example 6.6

chain can return to state 0 for the first time only after 2, 4, or 5 slots? The answer is
no and the justification follows. Assume that the chain with five states in the previous
Example 6.5 is at state 0 during slot 0. The chain can return to state 0, possibly after
many such returns, at slot numbers 2, 4, 5, 6 = 2+4, 7 = 2+5, 8 = 4+4, 9 = 4+5,
etc. That is, after any number of slots beyond three!

In other words, if the number of slots required for the first return to state A in two
different ways are positive integers i1 and i2 with no common factor larger than 1,
there exists a positive integer i such that for all integers j > i, the chain can return
to state A. The value of i is given by j = k1i1 + k2i2, for some positive integers
k1 and k2. That is, for every slot beyond a large enough number of slots, the chain
can return to an aperiodic state with nonzero probability. How does the periodicity
or otherwise of a state affect other states in a chain? The following theorem answers
the question.

THEOREM 6.1
If one state of an irreducible chain is periodic with a period n, all other states
are also periodic and with the same period n.

Proof
Note that a period of 1 corresponds to aperiodicity. Let state k be known to be
periodic with period n. Consider a different state l. Let l be periodic with a period
m �= n. Therefore, it must be possible to transition from l to k with nA transitions,
return to k as many as n times each taking i × n transitions, and transition back to
l in nB transitions. The total number of transitions for this way of returning to l is
nA + in+ nB transitions. Since l is periodic with a period m, the above number of
transitions must also be j × m for some j. That is, for all i, the following integer
equality must hold.

nA + ni+ nB = j ×m, i = 1, · · · . (6.9)

This is possible only if m is an integer factor of n. If we now consider the chain
transitioning from k to l, returning to l many times and transitioning back to state l,
similar to the above conclusion, we find that n is an integer factor of m. Combining
the two results, m = n, concluding the proof.
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6.5.2 Transient and recurrent states

We now study the long term repetitiveness or otherwise of states.

DEFINITION 6.5 In a chain, starting from the state k, if the probability
of eventually returning to it is less than one, state k is said to be a transient
state.

DEFINITION 6.6 In a chain, starting from the state k, if the probability
of eventually returning to it is exactly one, state k is said to be a recurrent
state.

Clearly, a state can be either transient or recurrent, but not both. In a reducible
Markov chain, the chain may leave a subset of states and never return to any of
them. Reducible Markov chains are studied by first splitting the chain into multiple
irreducible chains. Of course, each irreducible split chain contains all the states
that can be visited from one another and from themselves. Therefore, the following
discussion assumes a single irreducible chain.

LEMMA 6.1
An irreducible finite Markov chain has no transient states.

Proof
Let the number of states in the finite state irreducible chain be m. Due to the ir-
reducibility, the probability of visiting state k from any state in m transitions is
nonzero, since there exists a sequence of transitions m long or shorter from any
state to state k. Therefore the probability of not visiting state k in m slots is strictly
less than 1. Let b < 1 be the upper bound on the probability of not visiting state k
in m slots. The upper bound is taken over all possible starting states in the sequence
of m transitions. The exact value of b and its evaluation are irrelevant here. Now,
consider a sequence of transitions, starting from state k. The sequence is made of n
successive runs each run composed of m transitions. Therefore, at the end of n×m
transitions, the chain would have completed n such rounds. As n increases, the prob-
ability of not visiting state k is bounded from above by a product of b with itself, n
times. That is

P [no revisits to state k in n rounds of m transitions in each round] ≤ bn. (6.10)

Clearly, as n tends to infinity, the limit of the RHS of the above equation (6.10) is
zero. That is, the probability that the chain never returns to a state is 0. This is true
of all the states in the chain. Hence a finite irreducible chain has no transient states.

The following gives an additional description of why and how a state in only an
infinite chain can be transient. Let a state k of an infinite state irreducible chain be
transient. Let tk < 1 be the probability that the chain will ever visit state k at least
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once starting from itself. Since successive attempts to return are iid, after visiting k
every time, the pmf of M , the number of additional visits to k, after being in k is
modified geometric with a success probability of tk. That is,

P [M = m] = tmk (1 − tk). (6.11)

That is, after some number of trials the chain never returns to state k. The meaning
of this needs to be clearly understood. If we imagine a sample function of the entire
infinite sequence of state transitions, after some number of returns to state k, the
chain never returns. If we imagine the entire infinite sequences of an innumerable
number of iid but different realizations of sample functions of the same ensemble
Markov chain, the number of returns is distributed modified geometrically. However,
there is no limit on the exact number of returns to state k; only that the probability
of the exact number of returns decreases exponentially, as the exact number under
consideration increases. The expectation of this distribution is

E[M ] =
tk

1 − tk
. (6.12)

Now, imagine examining the entire infinite sequence of transitions of one realization.
If we examine the sample function one transition at a time, we never know whether
or not the chain has already made its final visit to state k. But suppose we examine
all the remaining infinite sequence of transitions and find that the chain has already
made its final visit to state k. As the slots progress beyond the final visit, the states
visited by the chain must tend to a set of states such that the product of transition
probabilities from any state in this set to state k decreases and tends to zero, in order
to make the probability of return to state k tend to zero. Due to irreducibility, there is
always a sequence of transitions from every state to state k. Therefore, the only way
by which the product of the transition probabilities of the sequence of transitions can
tend to zero is if the number of transitions in the sequence tends to infinity.

DEFINITION 6.7 The symbol �s(k,n)� denotes the largest of the serial
numbers of states visited by an irreducible chain starting from state k and
running n transitions for n slots.

If state k is transient and if we know that the chain will not return to state k after
it has been in k,

lim
n→∞�s(k,n)� denoted by �s(k,∞)� = ∞. (6.13)

But, as emphasized earlier, we do not know for certainty that the chain will not return
to k. We only know that the pmf of the number of visits is modified geometric. That
is, the number of visits in an endless run of transitions can be infinity, but that such an
event occurs with zero probability. The difference between an impossible event and
an event that occurs with zero probability is that, for example, in an infinite run of iid
trials, an event with zero probability can occur a finite number of times. However,
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even in an infinite run of iid trials, an impossible event never occurs. We now have
the conclusion:

LEMMA 6.2
If k is a transient state in an irreducible chain,

P [�s(k,∞)� = ∞] = 1. (6.14)

That is, the probability of the state of the chain running away to infinity is
one.

We can now prove the following important theorem easily.

THEOREM 6.2
In an irreducible chain, if one state is transient, all others states are also
required to be transient.

Proof
Let state k be transient. Consider the probability that the state of the chain runs
away, starting from another state j, that is, P [�s(j,∞)� = ∞]. Now consider two
mutually exclusive conditions once the chain starts making state transitions for an
infinite number of slots, after visiting state j. The first condition, called conditionA,
is that the chain makes at least one visit to the state k. The second condition, called
condition B, is that the chain makes no visits whatsoever, to state k. Since the chain
is irreducible, P [A] > 0 and clearly, P [B] = 1 − P [A] < 1. Using the theorem of
total probability, we have

P

[
�s(j,∞)� = ∞

]
=

P

[
�s(j,∞)� = ∞|A

]
P [A] + P

[
�s(j,∞)� = ∞|B

]
(1 − P [A]).

(6.15)

Due to the Markov property, if the chain visits state k, its behavior after that is
independent of the earlier state j and depends only on state k. Therefore, we can
replace the first occurrence of j on the RHS of the above equation (6.15) by k. That
is,

P

[
�s(j,∞)� = ∞

]
= P

[
�s(k,∞)� = ∞

]
P [A] + P

[
�s(j,∞)� = ∞|B

]
(1 − P [A])

(6.16)

= tkP [A] + P

[
�s(j,∞)� = ∞|B

]
(1 − P [A]) (6.17)
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≤ tkP [A] + 1 − P [A] (6.18)

< 1. (6.19)

The inequality (6.18) follows by substituting an upper bound of 1 for the probability

P

[
�s(j,∞)� = ∞|B

]
. The inequality (6.19) follows because tk < 1 due to state k

being known to be transient.
Although obvious, the converse is stated below due to its importance.

COROLLARY 6.1
If one state of an irreducible chain is recurrent, all other states of the chain
are also recurrent.

These lead to the following definitions.

DEFINITION 6.8 A chain with all transient states is called a transient
chain. A chain with all recurrent states is called a recurrent chain.

It turns out that there is a further distinction within the class of recurrent states.
This is based on the finiteness or otherwise of the expected number of slots between
successive visits to a state. Let Rij be the random number of slots the chain takes to
make a first visit to state j, after it has visited state i. Let E[Rij ] = rij .

DEFINITION 6.9 A state i is called positive recurrent or recurrent non-
null if rii is finite. A state j is called recurrent null or null recurrent if
rjj = ∞.

LEMMA 6.3
If one state of an irreducible chain is null recurrent, all other states of the
chain are also null recurrent.

Proof
Let state k of an irreducible chain be null recurrent. Therefore,

rkk = ∞. (6.20)

Now consider the behavior of the chain after visiting another state j. Between suc-
cessive visits to state j, the chain may pass through state k at least twice (event A)
or pass through it at most once (event B). Events A and B are mutually exclu-
sive. Clearly, due to irreducibility, P [A] > 0. Also, in the first condition of passing
through k at least twice, as the chain visits intermediate states, its follow-up behavior
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depends only on successively visited states. Using the theorem of total expectation,
we have

rjj = E[Rjj |A]P [A] + E[Rjj |B]P [B] (6.21)

≥ (E[Rjk] + E[Rkk] + E[Rkj ])P [A] (6.22)

≥ (rjk + rkk + rkj)P [A] (6.23)

≥ ∞ (6.24)

= ∞. (6.25)

The following converse obviously holds.

COROLLARY 6.2

If one state in an irreducible chain is positive recurrent, all other states are
also positive recurrent.

The above results are concisely stated in the following very important theorem.
Recall that a chain with a periodicity of one is also called an aperiodic chain.

THEOREM 6.3

All the states of an irreducible discrete parameter Markov chain are of the
same type. They all have the same period. Furthermore, exactly one of the
following three statements is true:

1. all the states are transient, or

2. all the states are null recurrent, or

3. all the states are positive recurrent.

The terms stability and positive recurrence are used interchangeably in Markov
chains. In computer networks, data rates are very high and systems operate for a
very large number of slots before the system parameters change. Therefore, many
such practical applications are very well served by positive recurrent Markov chain
models. The next section develops properties of the equilibrium operation of chains.
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6.6 Analysis of Equilibrium Markov Chains

In Section 5.3.1, a preliminary equilibrium analysis of a special class of discrete
parameter Markov chains is studied. The analysis there is made simple due to the
structure of the state transition diagram for which we could easily show the existence
of a unique solution for equilibrium state probabilities. This section develops similar
results for a general class of discrete parameter Markov chains. The development in
the present section reinforces some concepts introduced in Section 5.3.1. But it is
not a repetition; new concepts and results are required and are developed. We start
with Chapman-Kolmogorov equations (6.6) and (6.7) developed in Section 6.4.2 and
reproduced below, with a slight modification in the notation.

Pj(i+ 1) =
∞∑

i=0

Pi(i)pij . (6.26)

Pj(t + 1), j = 0, 1, · · · are the state probabilities at the slot i + 1. The one step
transition probabilities of the homogeneous Markov chain are pij . The buffer size
nb corresponding to the largest numbered state is replaced by the more general ∞.
In matrix notation, we have

P (i+ 1) = P (i)p. (6.27)

Expressions for the elements of the product of two matrices are obvious extensions
with limits as the number of states tends to infinity. However, we should be careful
to avoid invalid or ambiguous operations on infinite size matrices.

DEFINITION 6.10 A discrete parameter Markov chain is said to be in
equilibrium at slot i + 1 if all the state probabilities at slot i + 1 are corre-
spondingly equal to those at slot i.

THEOREM 6.4
If a chain is in equilibrium at slot i + 1, it will be in equilibrium for all the
slots j > i+ 1 also.

Proof
Since P (i + 1) is known to be the same as P (i), use P (i + 1) in place of P (i) on
the RHS of equation (6.27) to yield

P (i+ 1) = P (i+ 1)p. (6.28)

But, the RHS of (6.28) evaluates to P (i + 2), as per Chapman-Kolmogorov equa-
tions. Hence we find P (i+ 2) = P (i+ 1) or that the chain is in equilibrium at slot
i+ 2. By induction, the chain is found to be in equilibrium at any slot j > i+ 1.
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6.6.1 Balance equations

The above property of equilibrium initiates interest in exploring conditions under
which a chain can be in equilibrium. An obvious necessary condition for the exis-
tence of equilibrium state probabilities is that the Chapman-Kolmogorov equations
(6.27) possess a solution when P (i + 1) and P (i) are both replaced by candidate
equilibrium state probability vector P . If the system is in equilibrium, the slot index
parameter for P is irrelevant and hence dropped. A necessary condition is that the
sum of all such candidate equilibrium state probabilities evaluate to one. That is

∞∑
j=0

Pj = 1. (6.29)

DEFINITION 6.11 For an irreducible chain with a transition probability
matrix p,

∞∑
i=0

Pipij = Pj (6.30)

∞∑
j=0

Pj = 1 (6.31)

are known as balance equations for the equilibrium state probabilities P =
[P0 P1 · · · ].

DEFINITION 6.12 If the balance equations for an irreducible chain have
no valid solution, the chain is said to be unstable. A chain is said to be stable
if it is not unstable.

Henceforth we will refer to any valid solution to the set of balance equations (6.30)
and (6.31) as equilibrium state probabilities, even though we have not yet shown
that the balance equations of a stable Markov chain produce a unique set of state
probabilities corresponding to the equilibrium state probabilities. The required result
is shown in Theorem 6.9.

THEOREM 6.5
The state probabilities obtained by solving the balance equations (6.30) and

(6.31) for stable and irreducible Markov chain are all strictly positive. That
is, Pi > 0, for all i = 0, 1, · · · .

Proof
At least one of the probabilities, say Pi, must satisfy Pi > 0 in order for the sum of
all the probabilities to be 1. The balance equations are modified below to express Pj
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on the LHS to be a function of all other state probabilities on the RHS.

Pj(1 − pjj) =
∑
∀i�=j

Pipij (6.32)

Note that for an irreducible chain, pjj < 1. Since the chain is irreducible, there
must be a nonempty set of states Si such that for each state j ∈ Si, pij > 0. From
equation (6.32), the equilibrium probabilities of all the states in Si must be larger
than zero. Considering such successive state transitions from states in Si to other
states, and in turn all states reachable through a finite number of transitions from
the original state i, we find that the state probabilities of all such states reachable
from i must have nonzero equilibrium state probabilities. Due to irreducibility, all
the states in the chain are so reachable from i. Hence, every statem of an irreducible
and stable chain must satisfy Pm > 0.

The balance equations can be graphically visualized with the help of the state tran-
sition diagram of a chain. Construct a boundary around state j in the state transition
diagram. The RHS of equation (6.30) is the sum of the products of the equilibrium
state probabilityPj and the probabilities of all transition arcs going out of state j into
all other states including to itself. This is so due to the sum of the transition prob-
abilities of all the arcs originating from the state j. The LHS of the same equation
(6.30) is the sum of similar products of the equilibrium state probabilities and cor-
responding transition probabilities of all transition arcs coming from all states into
state j, including from itself. This is the reason for calling them the balance equa-
tions. The equation is often referred to as balancing between state j and all other
states, or balancing across the boundary around state j. We obtain one such equation
for every state. If we add two such equations, we get an equation corresponding to
balancing across a boundary enclosing the two particular states. This is very similar
to the balance equations and their graphical equivalents for the case of continuous
parameter Markov chains studied in Section 4.3.4.

If we have a finite chain with nb + 1 states in the chain, it is now easy to see that
the last of the equations in (6.30) can be obtained by summing all other equations
in the same set. Equivalently, any equation in the set can be obtained by adding all
other equations in the set of equations (6.30). That is, for a finite chain, the set of
equations (6.30) contains at least one redundant equation. Any redundant equation
is a linear combination (in this case a simple sum) of all other equations. Therefore
if we eliminate one redundant equation from the set of nb + 1 equations (6.30) and
use the other nb equations in the set with the remaining equation (6.31), we have as
many linear equations, nb + 1, as the number of states in the chain. A set of k linear
equations in k unknowns has at least one solution. Therefore, for a finite chain, the
balance equations will have at least one solution. Therefore, we have the following
simple result.

THEOREM 6.6

Every irreducible finite state chain is stable.
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The study of a chain with infinite number of states is more involved. The following
apply to both finite and infinite state chains, unless otherwise stated.

DEFINITION 6.13 In a discrete parameter Markov chain, the long term
time average of the expectation of the number of visits to state j starting from
state i is denoted by vij and is defined as

vij

= lim
n→∞

1
n
E[number of visits to j in slots 1, 2, · · · , n|state at slot 0 = i].

(6.33)

If a state j is transient, the expected number of repeated visits made to state j after
the first visit to state j is the expectation of a modified geometric distribution, as in
equation (6.12). Thus, starting from any state, the expected number of repeated visits
made to a transient state during an infinite slot run (n → ∞) of the chain is finite
and we have the following result.

LEMMA 6.4

In an irreducible chain, the long term time average of the expected number
of visits to a transient state, starting from any state is zero.

LEMMA 6.5

If state j of an irreducible Markov chain is recurrent null, the expectation of
the long term time average of the number of visits to state j starting from any
state i is zero.

Proof
Construct a sequence of random variablesK0, K1, K2, · · · . Here,K0 is the number
of slots for the chain to visit j for the first time, after being in state i at slot zero.
The random variable Kl represents the number of slots for the jth visit of the chain
to state j, starting from state j at some slot. Clearly, K1, K2, · · · are iid. For a
null-recurrent state j, E[Kl] = ∞, for all l = 1, 2, · · · . Let the random variable
number of number of visits made to state j up to and including n slots be denoted by
M . Due to the iid nature of Kl, we have

E[Kl]E[M ] ≤ n (6.34)

E[M ] ≤ n

E[Kl]
. (6.35)
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Therefore,

vij = lim
n→∞

1
n
E[M ] (6.36)

≤ lim
n→∞

1
n

n

E[Kl]
(6.37)

≤ 1
E[Kl]

(6.38)

= 0. (6.39)

LEMMA 6.6
If states i and j of an irreducible Markov chain are positive recurrent, the

long term time average of the expected number of visits to state j starting from
state i satisfies all of the following.

1. It is nonzero.

2. It is independent of the starting state i.

3. It is given by the reciprocal of the expected number of slots between suc-
cessive visits to the state in question, state j. That is, it is given by
1

rjj
.

Proof
K0,K1, · · · , andM are as defined in the proof of the above Lemma 6.5. In this case,
due to the positive recurrence of of states i and j, the expectationsE[Kl] are all finite
andK1,K2, · · · , are iid. Over n slots, E[K0] slots are spent for the first visit. Of the
remaining n−E[K0] slots, for an expected numberE[M ] visits, the total number of
slots is E[K0] + E[M ]E[Kl]. This number of slots is limited by n. The difference,
if any is less than E[M ]. Let the difference be a fraction a times E[Kl]. Therefore,

n = E[K0] + (E[M ] + a)E[Kl]. (6.40)

Using this in the definition of vij , we have

vij = lim
n→∞

1
n
× n− E[K0] − aE[K1]

E[K1]
(6.41)

=
1

E[K1]
(6.42)

=
1
rjj

. (6.43)
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The final expression results due to the original definition and notation of rjj for the
expected number of slots between successive visits of the chain to state j.

Combining the three Lemmas 6.4, 6.5 above, and 6.6, we have the following im-
portant result.

THEOREM 6.7
For an irreducible chain, vij , the long term time average of the expected

number of visits made to a state j, starting from any state i exists and is
independent of i.

We can now concentrate on computing this limit for a chain given its one-step
transition probabilities.

THEOREM 6.8
In any irreducible Markov chain,

lim
n→∞

1
n

n∑
k=1

(pn)ij =
1
rjj

= vjj . (6.44)

That is, the above limit exists and evaluates to the long term time average of
the expected number of visits to state j, independent of the starting state i.
Note that this theorem statement is not restricted to aperiodic chains.

Proof
The quantity (pn)ij is the ij-th element of the matrix pn. This ij-th element there-
fore corresponds to the n-step transition probability that the chain is in state j at slot
n, starting from state i at slot 0. In other words, starting from slot 0, the chain is
in state j during slot n with a probability (pn)ij . The expectation of the number of
visits the chain makes to state j over slots 1 through n, again, starting from state i
at slot 0 is obtained by summing the probabilities with which a visit is made at each
slot, given by

n∑
k=1

(pn)ij . (6.45)

From Theorem 6.7, the long term average of the quantity in expression (6.45) exists
and is independent of the starting state i. Furthermore, such a long term average is
zero for transient and null recurrent chains and is given by vjj for positive recurrent
chains. Therefore, we have

lim
n→∞

1
n

n∑
k=1

(pn)ij =
1
rjj

= vjj . (6.46)

The quantity vjj is zero for transient and recurrent null chains.
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The following theorem is important because it helps constructively helps us to
evaluate the equilibrium state probabilities.

THEOREM 6.9
Let 0, · · · , nb be the states of an irreducible Markov chain. The number of

states, nb + 1 can be finite or infinite. If qi, i = 1, · · · , nb is a sequence of
numbers satisfying

nb∑
i=1

qi = 1 and (6.47)

qj =
nb∑

k=1

qkpjk, j = 1, · · · , nb, (6.48)

also written as
q = qp, (6.49)

then qj = vjj , j = 1, · · · , nb, are the equilibrium probabilities of the states
and the Markov chain turns out to be positive recurrent. That is, the balance
equations of a positive recurrent Markov chain possess a unique solution and
it corresponds to the equilibrium state probabilities.

Proof
Starting from the balance equations (6.49) that are known to be true for equilibrium
state probabilities, we know that

q = qpk, k = 1 · · · . (6.50)

Summing and taking the average of all these equations for k = 1 · · · , we have

q = lim
n→∞

1
n

∞∑
k=1

qpk. (6.51)

Expressing the above equation for each component qj , we have

qj = lim
n→∞

1
n

∞∑
k=1

∞∑
i=0

qi(pk)ij (6.52)

=
∞∑

i=0

qi lim
n→∞

1
n

∞∑
k=1

(pk)ij . (6.53)

We know that

lim
n→∞

1
n

∞∑
k=1

qi(pk)ij = vjj (6.54)
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and that it is independent of the starting state i, for each of the three types of chains.
Therefore,

qj =
∞∑

i=0

qivjj (6.55)

= vjj

∞∑
i=0

qi (6.56)

= vjj . (6.57)

The conclusion is that if a valid probability vector q exists for the solution to the
balance equations, it is unique.

The above result has many direct implications listed below.

1. The only possible solution q to the balance equations satisfy qi ≥ 0 for every
i = 0, 1, · · · .

2. The only possible reason the balance equations the balance equations of a
chain have no solution at all is that q = 0 is the only solution for q = qp.
From the above, the solution for qi is nonnegative for every i = 0, 1, · · · .
Any solution for q = qp other than q = 0 can be normalized so that the
probabilities sum to one and will become a valid solution for both parts of the
balance equation.

3. If any valid solution can be obtained for the balance equations, the chain is
stable and solution corresponds to strictly positive equilibrium state probabil-
ities.

4. If it can be shown that no solution exists for a set of balance equations, the
chain is either transient or null recurrent.

Example 6.7
Let πc = [πc(1), . . . , πc(nb)]T be the vector of equilibrium probabilities at
the slot center. Similarly, πe = [πe(1), . . . , πe(nb)]T represents the vector of
equilibrium probabilities at slot edges. Solution for the balance equations
results in the following equilibrium state probabilities. For the system in
Example 6.1,

πc = [0.521277 0.37234 0.106383]T , (6.58)

πe = [0.744681 0.212766 0.0425532]T . (6.59)

For Example 6.2,

πc = [0.264826 0.294251 0.253383 0.18754]T , (6.60)
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πe = [0.441377 0.26973 0.213877 0.0750159]T . (6.61)

6.6.2 Time averages

Consider a positive recurrent chain that is in equilibrium. Let the equilibrium state
probabilities be Pj , j = 0, 1, · · · . Consider the sample space, the set of all possible
outcomes of the random process. The sample space is also called the ensemble of the
random experiment. Each outcome is a sample function and is an infinite sequence of
exact observations of states. If we pick a random sample function from the ensemble
(the sample space) of all possible infinite sequences at slot 0 and consider its state,
the probability of observing state j is Pj , the equilibrium state probabilities. If we
observe many different sample functions at slot 0, their state probabilities are iid.
The expected value of the state is the expectation of the random process or of the
ensemble. Due to equilibrium, the expectation at any slot is independent of the slot
index. Let X denote the equilibrium state of the chain observed at any single slot.
The sample space of X is the set of states 0, 1, · · · . Its expectation is given by

E[X ] =
∞∑

j=0

jPj . (6.62)

Now, consider observing one sample function from the ensemble, for slots 0, 1, · · · ,
indefinitely. What is the long term average of the expectation of states over this
infinite sequence of states? We know that the long term time average of the expected
number of visits made to state j is vjj = Pj , the equilibrium probability of state j
and that it is independent of the starting state i. Let X(k) be the random variable
state at slot k. We know that X(0) = i is observed. Denote the the long term time
average of the expectation of the state by E[X ]. The bar over the entire expectation
indicates that the expectation is taken over the time average.

E[X ] = lim
n→∞

1
n

n∑
k=1

E[X(k)|X(0) = i]

= lim
n→∞

1
n

n∑
k=1

∞∑
j=0

jP [X(k) = j|X(0) = i] (6.63)

=
∞∑

j=0

j lim
n→∞

1
n

n∑
k=1

P [X(k) = j|X(0) = i]. (6.64)

We know that the inside limit in the above equation (6.64) is the long term time
average of the expected number of visits to state j. It is given by vjj = Pj and that



240 Performance Analysis of Queuing and Computer Networks

it is independent of the starting state i. Using this in equation (6.64), we have

E[X ] =
∞∑

j=0

jPj (6.65)

= E[X ]. (6.66)

Note also that in equation (6.63), since the limit exists, the expectation can be taken
after time averaging over the infinite sequence of slots. Hence, we have

E[X ] = E[X ] = E[X]. (6.67)

What is the variance of the long term time average of states? The behavior of the
chain is repetitive between successive visits to a state, say to state i, the starting state.
Therefore, as the number of slots tends to infinity, the numbers of visits to every state
between successive states is an iid sequence. As the number of slots tend to infinity,
if the number of visits to state i tends to infinity, the variance of the state tends to
zero. If the number of visits to state i does not tend to infinity, the variance of the
state for the finite average over the number of visits to state i is finite. However, we
know that the probability of the number of visits to state i tending to infinity is 1.
And the number of visits to state i not tending to infinity occurs with zero probability.
Therefore, the overall variance is the same as under the condition that the number
of visits to state i tends to infinity. Therefore, the variance of the long term time
average of the state sequence is zero. The two properties about the expectation and
the variance of the long term time average of states is stated in the following theorem.

THEOREM 6.10
The following results hold for a positive recurrent chain.

1. The expectation of the long term time average of the states is the expected
state.

2. The variance of the long term time average of the states is zero.

6.6.3 Long term behavior of aperiodic chains

The previous subsection considered only long term time averages. This subsec-
tion studies the evolution of Markov chains starting from some state at slot 0. We
consider only the special case of positive recurrent aperiodic chains. These have the
most interesting behavior of evolving towards equilibrium starting from any state, as
slots progress. Therefore, for the remainder of this subsection, the qualifications of
positive recurrence and aperiodicity are assumed without explicit mention.

DEFINITION 6.14 f
(n)
ij is the probability that the chain visits state j

for the first time at slot n, since visiting state i at slot 0.
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We can use f (n)
ij to determine the probability that the chain is in state j at slot n,

starting from state i at slot 0, irrespective of other possible visits to state j during
slots 1, · · · , n− 1. We know that (pn)ij is the probability of the chain being in state

j at slot n, starting from state i at slot 0. For simpler notation, denote (pn)ij by p(n)
ij .

The chain can be in state j for the first time during slot k and then again in state j at
slot n, k = 1, 2, .. n − 1. The probability of visiting state j for the first time during
slot k and then being in state j again at slot n is given by fk

ijp
(n−k)
jj . These constitute

mutually exclusive events over k = 1, 2, · · · , n. Therefore,

p
(n)
ij =

n∑
k=1

f
(k)
ij p

(n−k)
jj . (6.68)

Take the Z transform of the sequence on both sides with respect to the slot number
n. This is not the Z transform of a probability mass function, but of the sequence of
probabilities over the progression of slots. Since the probabilities are bounded from
above by 1, the transform exists for all fractional real parts of the complex variable
z. Denote the Z transform of the sequence {p(n)

ij , n = 0, 1 · · · } by Pij(z) and of

the sequence {f (n)
ij , n = 0, 1 · · · } by Fij(z). We have

Pij(z) =
∞∑

n=0

p
(n)
ij zn (6.69)

= p
(0)
ij +

∞∑
n=1

n∑
k=1

f
(k)
ij p

(n−k)
jj zn. (6.70)

The range of sum in the two dimensional plane can be seen to be identical to an
inner sum with n varying from k to ∞ and an outer sum with n varying from k to
∞. Therefore,

Pij(z) = p
(0)
ij +

∞∑
k=1

f
(k)
ij zk

∞∑
n=k

p
(n−k)
jj zn−k (6.71)

= p
(0)
ij +

∞∑
k=1

f
(k)
ij zk

∞∑
l=0

p
(l)
jj z

l (6.72)

= p
(0)
ij + Fij(z)Pjj(z). (6.73)

The quantity pij is the probability of reaching state j in zero transitions (slots) start-

ing from state i. Therefore, p(0)
ii = 1 for all i and p(0)

ij = 0 for all i �= j. Therefore,
we have

Pii(z) = 1 + Fii(z)Pii(z) (6.74)
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=
1

1 − Fii(z)
. (6.75)

In order to evaluate lim
n→∞ p

(n)
jj , construct a new sequence defined by

w0 = p
(0)
jj (6.76)

wn = p
(n)
jj − p

(n−1)
jj , n > 0. (6.77)

We have

p
(n)
jj =

n∑
k=0

wk (6.78)

so that

lim
n→∞ p

(n)
jj =

∞∑
k=0

w(n). (6.79)

The Z transform of {wn} is given by

W (z) = Pjj(z) − zPjj(z) = Pjj(z)(1 − z) (6.80)

from elementary properties of the Z transform in Section A.11. Using this in equa-
tion between the Z transforms Pii(z) and Fii(z) in equation (6.75), we have

W (z) = Pii(z)(1 − z) =
1 − z

1 − Fii(z)
. (6.81)

We know that

lim
z→1

W (z) =
∞∑

k=0

w(n). (6.82)

Evaluating this limit, we have

lim
z→1

W (z) = lim
z→1

1 − z

1 − Fii(z)
(6.83)

= lim
z→1

1
dFjj(z)

dz

. (6.84)

The quantity f (n)
ii is the probability that the first return to state i takes n slots.

Hence, the expectation of the pmf f (n)
ii is the expected number of slots between

successive returns of the chain to state i which we know to be the reciprocal of
the equilibrium state probability Pi of the state i, from equations (6.43) and (6.57).
The expectation can also be obtained with the help of the Z transform of {f (n)

jj } as
follows.

dFii(z)
dz

=
∞∑

n=1

f
(n)
ii nzn−1. (6.85)
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If we evaluate the above derivative at z = 1, we get the needed expectation. Obtain-
ing the expectation and equating it the reciprocal of the equilibrium probability of
state i, we have

dFii(z)
dz

∣∣∣∣∣
z=1

=
1
Pi
.

Combining equations (6.87), (6.84), and (6.86), we have

lim
n→∞ p

(n)
jj = lim

z→1
W (z) (6.86)

= lim
z→1

1
dFjj(z)

dz

= Pi, (6.87)

the equilibrium state probability of state i. Now,

lim
n→∞ p

(n)
ij = lim

n→∞ f
(k)
ij p

(n−k)
jj (6.88)

from equation (6.68). The probability of being in state j in the limit, after a run of an
unlimited number of transitions (one transition per slot), given that the state at slot i
was i is given from equation (6.68) by

lim
n→∞ p

(n)
ij = lim

n→∞

n∑
k=1

f
(k)
ij p

(n−k)
jj . (6.89)

In the limit, for every k in the sum, p(n−k)
ij tends to Pj , the equilibrium state proba-

bility of j, from equation (6.87). So,

lim
n→∞ p

(n)
ij = lim

n→∞Pj

n∑
k=1

f
(k)
ij . (6.90)

The sum in the above equation is the sum of the probabilities of first time visits to
state j being at various slots 1, 2, · · · , after being in state i at slot 0. For our positive
recurrent aperiodic chain, this sum is 1, since the chain is guaranteed to visit state j.
Therefore, we have

lim
n→∞ p

(n)
ij = lim

n→∞Pj . (6.91)

The above development shows that a positive recurrent aperiodic chain will evolve
towards equilibrium as the number of slots progress, irrespective of the state at any
earlier slot. The result is formally stated in the following theorem known as the
ergodic theorem for Markov chains.

THEOREM 6.11
Let a positive recurrent aperiodic Markov chain be at an arbitrary state to
begin with and operate for an unbounded number of transitions. In the limit,
as the number of transitions tends to infinity, the the probability distribution
of states tends to its equilibrium distribution.



244 Performance Analysis of Queuing and Computer Networks

6.6.4 Continuous parameter Markov chains

In Chapter 4, the continuous parameter irreducible chain was defined. Balance
equations for the equilibrium state probabilities were developed as the steady state
solution to the differential equations. We also proved that if the balance equations
have a unique solution, the long term time average of the state occupancies satisfy the
same balance equations. We did not show the uniqueness of equilibrium state prob-
abilities, if such a set exists, for a general case. Neither did we address the question
of whether or not a Markov chain evolves towards equilibrium, if operated for a long
time (as the parameter value tends to infinity). Both these aspects are best examined
with the help of the results on discrete parameter Markov chains which are devel-
oped above in this chapter. Continuous parameter Markov chains have no distinction
of periodicity. Corresponding to every irreducible continuous parameter chain, there
is an irreducible, aperiodic discrete parameter Markov chain with identical balance
equations. The approach to show this is simply to normalize state transition rates to
correspond to probability values. To accommodate for any necessary difference as
opposed to a factor, we can introduce transitions from a state back to itself in the
discrete parameter chain being constructed. Since transition arcs from a state to it-
self occurs identically on both sides of the balance equations, such newly introduced
transitions do not change the balance equations.

Consider an irreducible continuous parameter Markov chain with states 0, 1, · · · .
Let the transition rate from a state i to state j be αij . Of course αii = 0 for all i. Let

βi =
∞∑

j=0

αij (6.92)

be the total rate with which the chain is leaving state i for some other state, given
that the chain is in state i. Let

γ = δ + max{β0, β1, · · · } (6.93)

where δ is a rate of transition. The value of δ is strictly positive but otherwise ar-
bitrary, in principle. In practice, visualizing a small rate (in comparison with other
rates) helps. Now, define transition probabilities by normalizing all the rates with
respect to γ. That is, define

pij =
αij

γ
, ∀j �= i, and i = 0, 1, · · · (6.94)

pii = 1 − βi

γ
, i = 0, 1, · · · . (6.95)

The above transition probabilities ensure that for every transition in the original con-
tinuous parameter chain, there is a corresponding transition with nonzero transition
probability. Furthermore, the introduction of δ above ensures that there is a transition
from every state to itself. Therefore the chain is aperiodic. The balance equations
for the original continuous parameter Markov chains are equivalent to those for the
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newly constructed discrete parameter Markov chain. That is, both the chains have
correspondingly identical equilibrium state probabilities. Furthermore, due to the
aperiodicity of the discrete parameter chain, the corresponding continuous parame-
ter chain evolves to equilibrium as the number of transitions tends to infinity. We
know from the earlier result of Theorem 4.5 that as time of operation tends to infin-
ity, the number of transitions of an irreducible continuous parameter chain tends to
infinity with probability one. Hence we have the following result.

THEOREM 6.12
If an irreducible continuous parameter chain is stable, there is a unique set of
strictly positive equilibrium state probabilities associated with it. If the chain
is stable and allowed to run for a long time (that is, as the parameter value
increases without bounds), the state probabilities evolve and converge to their
equilibrium probabilities.

This also proves that the original stable M/M/1/∞ queue reaches equilibrium, if it
is operated for an unbounded amount of time.

6.7 Performance Evaluation of Discrete Time Queues

6.7.1 Throughput

Throughput† is the rate of the number of successful service completions, per slot.
In general, different throughput occur conditioned on different states due to state de-
pendent arrivals or services, or both. Even in the simple Example 6.1, throughput
appears to be zero when the buffer is full, if evaluated at the input. The through-
put appears to be zero under the empty system condition, if evaluated at the out-
put. Throughput is commonly evaluated by first evaluating conditional throughput,
i.e., the throughput of the system given that the system is in a particular state. The
weighted average of the state dependent throughput gives the overall throughput.

In general, a queuing system may receive simultaneous multiple arrivals soon after
a slot edge as in Example 6.2. In other applications, simultaneous multiple departures
may be allowed just before a slot edge if the system has multiple servers. Let aij be
the probability of j arrivals being admitted when the state of the system is i at the
arrival instant. Since the number of arrivals that can be admitted into the buffer
cannot exceed the number of vacant positions in the buffer,

aij = 0, i+ j > nb. (6.96)

†Some parts in this section are rewritten (with copyright permission) from material appearing in the
article G. R. Dattatreya and L. N. Singh, “Relationships among different models for discrete-time queues,”
WSEAS Transactions on Systems, volume 4, issue 8, August 2005, pp. 1183–1190.
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Also,

nb−i∑
j=0

aij = 1, i = 0, ..., nb − 1 and (6.97)

anb0 = 1. (6.98)

Similarly, let sij be the probability of j departures given that the state of the system
is i at the time of departure (i.e., at the slot center).

sij = 0, j > i, (6.99)

since there cannot be more departures than there are customers in the system. Of
course,

i∑
j=0

sij = 1. (6.100)

In practice, the probabilities of arrivals that are actually admitted into the system
are state dependent, and the same is true for departure probabilities. Furthermore, the
state transition diagram of such a Markov will have arcs (or arrows) between non-
adjacent states. Consequently, calculation of both aij and sij requires some care and
thought. The throughput, nonetheless, can be easily expressed in general form as

E[Y ] =
nb−1∑
i=0

πe(i)
[nb−i∑

j=1

j aij

]
(6.101)

if evaluated by considering customers admitted into the system. If evaluated by
considering all the departures, the same throughput is evaluated as

E[Y ] =
nb∑
i=1

πc(i)
[ i∑

j=1

j sij

]
. (6.102)

The throughput of the system in Example 6.1 evaluates to 0.2872 packet per slot. For
Example 6.2, it evaluates to 0.4411 packet per slot.

6.7.2 Buffer occupancy

The buffer occupancy is the time average of the number of customers in the system
and is a very important performance criterion. Buffer occupancy is denoted byE[N ]
and is evaluated as the weighted average of the buffer occupancies at different states.
The weights are the equilibrium probabilities of different states in the system. Again,
we have two different Markov chains giving us two different sets of steady state
probabilities requiring some resolution. The expected numbers of customers at the
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slot center and at the slot edges are clearly two distinct quantities representing the
physical averages of the number of customers observed at the two different epochs.
Hence,

E[Nc] =
nb∑
i=1

i πc(i) and (6.103)

E[Ne] =
nb∑
i=1

i πe(i). (6.104)

For Example 6.2, E[Nc] = 1.3636 and E[Ne] = 0.9225. These results lead us
to the following questions. Which is the more useful quantity? Which (if either)
represents the true time average of buffer occupancy? Finally, which should be used
in the Little’s result to evaluate the average response time? In reality, the overall time
average of the number of customers is

1
τ

∫ τ

t=0

E[N(t)]dt (6.105)

where E[N(t)] is the expected number of customers at the real variable time t and
(0, τ ] is the time period of one slot. However, in our ideal discrete time queue, ar-
rivals occur within an infinitesimal amount of time after the slot edge and departures
occur during an infinitesimal time before a slot edge. Thus, E[Nc] is the expected
number of customers for the entire slot time not including the slot edge points. The
E[Ne] is the expected number of customers for only an infinitesimal time period
during a slot and hence, its contribution vanishes in the above integral. A byproduct
of this discussion is that the differenceE[Nc]−E[Ne] is the average number of cus-
tomers that leave the system just before a slot edge. Of course, the same difference
also represents the average number of customers that arrive soon after a slot edge.
Hence,

E[Nc] − E[Ne] = E[Y ]. (6.106)

For Example 6.2, E[Nc] = 1.3636, E[Ne] = 0.9225 and the difference 0.4411
equals E[Y ] in number of packets per slot.

6.7.3 Response time

The average response time is the expected number of slots spent by a customer
in the system, and is denoted by E[R]. This is easily evaluated by using the Little’s
result,

E[R] =
E[N ]
E[Y ]

, (6.107)

provided we have the correct values for E[N ] and E[Y ]. Little’s result establishes a
relationship among “time averages” of the number in the system, number of arrivals
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per slot, and the average response time of customers. As stated in the previous sec-
tion, E[Nc] is the true time average of the number of customers in the system and
hence, should be used in the Little’s result. Therefore,

E[R] =
E[Nc]
E[Y ]

=
E[Ne]
E[Y ]

+ 1. (6.108)

6.7.4 Relationship between πc and πe

The treatment in the previous section identifies the role and the physical interpre-
tations of the various quantities in the two different Markov chains (one depicting
number of customers at slot centers, and the other at slot edges). Since both Markov
chains represent the same system, it is possible to work with just one Markov chain,
as long as correct interpretations are used and accounted for. In view of this obser-
vation, explicit relationships between both Markov chains are now developed. For
simplicity, it is assumed that at most one arrival with probability a, and at most one
service completion with probability s are allowed. The results, however, may be
easily extended to allow for bulk arrivals and departures. Note that the number of
customers at a slot center is governed by the number at the preceding slot edge and
any intervening arrival. Similarly, the number of customers at a slot edge is governed
by the number at the preceding slot center and any intervening departure. Hence,

πc(0) = πe(0)(1 − a), (6.109)

πc(i) = πe(i− 1)a+ πe(i)(1 − a), (6.110)

πc(nb) = πe(nb) + πe(nb − 1)a, and (6.111)

πe(0) = πc(0) + πc(1)s, (6.112)

πe(i) = πc(i)(1 − s) + πc(i+ 1)s, (6.113)

πe(nb) = πc(nb)(1 − s), (6.114)

where 0 < i < nb in equations (6.110) and (6.113).
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6.8 Applications

Example 6.8
A discrete time packet transmitter has a capacity of 3 packets including
any under service. If a packet is under service, the transmitter attempts to
transmit it with a probability of 0.6. If attempted, the probability of collision
requiring reattempt is 0.3. At most one packet can arrive at the queue, with
a probability of 0.8, in any slot. Express each πe(i) as a function of one or
more πc(j) and other required parameters.

Solution
If there is at least one packet in the system, the probability of a service com-
pletion, s, is the product of the probability of attempt, 0.6, and the probability
of success if attempted, (1 − 0.3). This evaluates to 0.42. If the system has
at least one packet, the probability of no service completion, (1 − s) is 0.58.

πe(0) = πc(0) + 0.42πc(1), (6.115)

πe(i) = 0.58πc(i) + 0.42πc(i+ 1), i = 0, 1, 2 (6.116)

πe(3) = 0.58πc(3). (6.117)

Example 6.9
Evaluate the important performance figures of the system in Example 6.2.

Solution
Familiarization with the details of the original statement of Example 6.2 and
the calculations so far in successive examples on this system are helpful at
this juncture. We know from equations (6.60) and (6.61) that the equilibrium
state probabilities for the the states 0, 1, 2, and 3 of the system are

πc = [0.264826 0.294251 0.253383 0.18754]T , (6.118)

πe = [0.441377 0.26973 0.213877 0.0750159]T (6.119)
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at the slot centers and slot edges, respectively. Evaluation of the probability
that an attempted arrival will be dropped is illustrative. The conditional
probability that a random attempted arrival will be dropped is evaluated as
follows. If the state is 3, any attempted arrival will definitely be dropped.
If the state is 2 and the attempted arrival is part of a pair of simultaneous
arrivals, one it will be dropped with a probability of 0.5. A random attempted
arrival is a singleton with a probability of

P [singleton | at least one attempt]

=
P [singleton and at least one attempt]

P [at least one attempt]
(6.120)

=
P [singleton]

P [at least one attempt]
(6.121)

=
0.3

0.1 + 0.3
(6.122)

= 0.75. (6.123)

Similarly, the probability that an attempted arrival is one of a pair evaluates
to

P [one of a pair | at least one attempt] = 0.25 (6.124)

P [drop | attempt ] = π2(3) + πe(2) × 0.25 × 0.5 (6.125)

= 0.0750159 + 0.213877× 0.25 × 0.5 (6.126)

= 0.101750525. (6.127)

The expected number of attempted arrivals in a slot is (0.3 + 0.1 × 2) = 0.5.
The (actual) throughput is easier to evaluate by examining the output since
only one departure is possible and occurs with a probability s = 0.6 whenever
the system is not empty at the slot center. Therefore,

E[Y ] = (1 − 0.264826)× 0.6 (6.128)
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= 0.4411044. (6.129)

The expected loss of packets per slot is not necessarily the same as the prob-
ability of drop! It should be evaluated as an expectation:

E[packet loss per slot] = P [lose 1] + 2P [lose 2] (6.130)

= 0.3πe(3) + 0.1πe(2) + 2 × 0.1πe(3) (6.131)

= 0.5πe(3) + 0.1πe(2) (6.132)

= 0.5 × 0.0750159 + 0.1 × 0.213877 (6.133)

= 0.03750795 + 0.0213877 (6.134)

= 0.05889565. (6.135)

As a check, adding the expected loss of packets per slot and the throughput
gives

E[packet loss per slot] + E[Y ]

= 0.05889565 + 0.4411044 (6.136)

= 0.50000005 (6.137)

which is the expected number of attempted arrivals per slot, correct to seven
decimal places. The above illustrates the importance of representing the in-
termediate probabilities accurate to a sufficient number of decimal places. A
difference between inaccurate representations of two small probabilities can be
disastrous to the accuracy and consistency of the overall results. The expected
number of packets at slot centers represents that time average occupancy.

E[Nc] =
3∑

n=0

nπc(n) which evaluates to (6.138)
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= 1.363637. (6.139)

Using Little’s result, the expected response time evaluates to

E[R] =
1.363637
0.4411044

(6.140)

= 3.09 slots. (6.141)

The expected response time is represented above with only two decimal places.
The evaluation of state probabilities at slot centers using those at slot edges
is illustrative in this example, due to the possibility of two arrivals in a slot.
We have

πc(0) = πe(0)P [no arrival] (6.142)

= 0.441377× 0.6 (6.143)

= 0.2648262 (6.144)

πc(1) = πe(0)P [1 arrival] + πe(1)P [0 arrival] (6.145)

= 0.441377× 0.3 + 0.26973× 0.6 (6.146)

= 0.294251 (6.147)

πc(2) = πe(0)P [2 arrivals] + πe(1)P [1 arrival]

+πe(2)P [0 arrivals] (6.148)

= 0.441377× 0.1 + 0.26973× 0.3

+0.213877× 0.6 (6.149)

= 0.2533829 (6.150)
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πc(3) = πe(1)P [2 arrivals]

+πe(2)P [attempt one or two] + πe(3) (6.151)

= 0.26973× 0.1 + 0.213877× 0.4 + 0.0750159 (6.152)

= 0.1875397. (6.153)

The resulting state probabilities at slot centers are consistent with those
originally obtained and given in equation (6.118), correct to several decimal
places.

6.8.1 The general Geom/Geom/m/k queue

In this system, there is one waiting line and m servers. The maximum number
of customers the system can hold, including any under service, is called the buffer
capacity and it is k. Arrivals to a full buffer are lost. During a slot, at most one arrival
occurs, and with probability p. Service completion probability during a slot is s. We
observe the number in the system at slot edges.

6.8.1.1 Transition probabilities

The first task in analyzing the system is the determination of transition probabili-
ties. This system illustrates that the changeover to discrete time can introduce many
possible combinations of situations. In the following, the variable l is the reduction
in the number in the system during the time between successive observations. Thus,
l is the number of departures minus the number of arrivals. Therefore, l can range
from −1 to m. If there is an arrival, the number of departures is l + 1. If there is
no arrival, the number of departures is l. Let an,n−l, n, n − l ∈ {0, · · · , n}, be the
one-step transition probability from the state n to the state n− l. The various cases
and their corresponding transition probabilities are listed below.

case i) n < m, 0 ≤ l ≤ n.

an,n−l = p

(
n+ 1
l + 1

)
sl+1(1 − s)n−l + (1 − p)

(
n
l

)
sl(1 − s)n−l

(6.154)

case ii) m ≤ n < k, 0 ≤ l < m.

an,n−l = p

(
m
l + 1

)
sl+1(1 − s)m−l−1 + (1 − p)

(
m
l

)
sl(1 − s)m−l

(6.155)
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case iii) m ≤ n < k, l = m.

an,n−l = (1 − p)sm (6.156)

case iv) n = k, 0 ≤ l ≤ m.

an,n−l =
(
m
l

)
sl(1 − s)m−l (6.157)

case v) n < m, l = −1.

an,n+1 = p(1 − s)n+1 (6.158)

case vi) m ≤ n < k, l = −1.

an,n+1 = p(1 − s)m (6.159)

All other aij = 0. That is, if a combination of aij is not covered by any of the
above cases, such a transition from state i to state j is impossible, and aij = 0.

6.8.1.2 Equilibrium state probabilities

The Markov chain for this system has a convenient property. There is only one arc
from state n− 1 to state n. The several arcs from state k to others are all multiplied
by Pk, the steady state probability of state k. Thus

Pk−1ak−1,k = Pk(1 − akk) (6.160)

Pk−1 =
Pk

ak−1,k
. (6.161)

Similarly, the balance equation across a boundary between states n− 1 and n is

Pn−1an−1,n =
k∑

i=n

Pi

n−1∑
j=0

aij . (6.162)

The above equations can be used recursively to evaluate all the probabilities from
Pk−1, · · · , P0 as multiples of Pk. Summing

∑k
i=0 Pi = 1 yields actual steady state

probabilities. Evaluation of performance figures is a straightforward application of
the corresponding techniques developed earlier. Equations(6.161) and (6.162) above
can use Pk = 1. After all probabilities are calculated they can all be multiplied by a
factor to ensure

∑k
i=0 Pi = 1.

The following example is a variation of the the above general Geom/Geom/m/k
queue. In Example 6.10, the two servers are not identical.
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Example 6.10

In a discrete time queuing system with room for 3 customers (including
any under service), the arrival process is geometric with probability of
an arrival being 0.3 in any slot. There are two servers, A and B. Both
servers have independent geometric service times. However, the probability
of service completion in a slot is 0.5 for server A and 0.4 for server B.
Therefore, if both servers are free, the customer about the get service
prefers server 1. Develop the complete state transition diagram of the
system with all transition probabilities. The number of customers in the
state diagram should be counted at the center of the slot. Analyze the system.

Solution
This is an illustrative example with many possible state transitions. Since
there is a preference of one server over the other, we need to keep track
of which server the packet is at, if there is only one packet in the system.
State 1a denotes the condition that the system has only one packet and that
it is with server A. Similarly, the state 1b denotes the condition that the
system has only one packet and that it is with server B. Clearly, there is no
transition from state 0 to state 1b because a packet arriving into an empty
system always chooses server A. The combination of Boolean conditions for
various state transitions are complicated. But a systematic enumeration of
various mutually exclusive conditions will help in correct evaluation of the
state transition probabilities. The final state transition diagram is drawn in
Figure 6.11. The equilibrium state probabilities can be obtained by solving
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FIGURE 6.11: State diagram for the Markov chain in Example 6.10
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the simultaneous equations. Let them be p0, p1a, p1b, p2, and p3. All the
performance figures can be obtained from the state transition diagram and
the equilibrium state probabilities.

The probability that the system is empty at a slot edge is given by

q0 = p0 + 0.35p1a + 0.28p1b + 0.14p2. (6.163)

The coefficients of the probabilities on the RHS of the above equation (6.163)
are obtained directly from the state transition diagram. The probability that
the system is full at a slot edge is useful to evaluate the throughput. This is
given by

q3 = 0.45p3. (6.164)

Now, the throughput is easily evaluated as

E[Y ] = 0.3(1 − q3) (6.165)

where the 0.3 is due to the probability of an arrival in a slot; an arrival occurs
with probability 0.3, as long as the system is not full at slot edges. We can
also evaluate the throughput of each server, separately.

E[Ya] = 0.5(1 − p0 − p1b) and (6.166)

E[Yb] = 0.4(1 − p0 − p1a). (6.167)

Finally the probability that a packet is serviced by server A is given by

E[Ya]
E[Ya] + E[Yb]

. (6.168)

6.8.2 Slotted crossbar

A very simple example that clearly illustrates the advantages of considering the
two different Markov chains and selecting the one that is better suited for the prob-
lem at hand is the “Output Queuing in a Space-Division Packet Switch,” or crossbar
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switch.‡ The slotted system has N input lines and N output lines. Packets appear at
the inputs of each line with an independent and identical probability p. Each packet
is required to be forwarded to one of the output lines. For each packet, all the des-
tination lines are equally likely. The output queued system functions as follows. At
the beginning of a slot, the hardware for the output line under consideration (which
is referred to as line A) quickly scans all the input lines, picks the packets meant for
the output lineA, and drops all those packets into a queuing buffer (also called buffer
A here). The server of this queue forwards exactly one packet, if one or more are
available in the buffer. The forwarded packet departs from the buffer at the end of
the slot. Therefore, every packet spends at least one slot in the crossbar. One of the
quantities under study is the number of packets left over at the end of the slot, for a
large N . These are the packets that spend longer than the minimum one slot of life
time in the crossbar. The number of arrivals during a slot into the buffer A is very
well approximated as a Poisson random variable with a mean number of p. All such
arrivals can be considered to be dropped instantaneously into the buffer right at the
beginning of the slot, since the packets spend all of the slot in the system, and one
packet leaves the system at the end of the slot, irrespective of the exact time instant
during the slot that the packet is dropped into the buffer. Let the probability of k of
these arrivals be ak.

A discrete parameter Markov chain for the number of packets left at the end of
the slot can be constructed. Then the state is the “packets in the waiting line.” The
transition probabilities in their Markov chain are

qij = aj−i+1, if i > 0 and j ≥ −1 (6.169)

q00 = a0 + a1 (6.170)

q0j = aj+1, if j > 0. (6.171)

The Markov chain at the slot center can also be formulated easily. The following
are the transition probabilities,

pij = aj−i+1, if i > 0 and j ≥ −1 (6.172)

p0j = aj , j ≥ 0. (6.173)

The transition probabilities in equations (6.172) and (6.173) correspond exactly to
those in the standard M/G/1/∞ queuing system All the necessary quantities such as
the equilibrium probabilities of the number of packets in the system, their expected
number, the expected response time (including the exact one slot service time), etc.

‡Some parts in this and the next subsection are rewritten (with copyright permission) from material ap-
pearing in the article G. R. Dattatreya and L. N. Singh, “Relationships among different models for discrete-
time queues,” WSEAS Transactions on Systems, volume 4, issue 8, August 2005, pp. 1183–1190.
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are readily obtained by using p as the arrival rate, and a constant of 1 slot for service
time with zero variance, in the widely available results for the standard M/G/1/∞
queuing system. The expected number of customers in an M/G/1/∞ queue with a
constant service time of one unit and an arrival rate of p per unit time is given by the
Pollaczek-Khinchin mean value formula in equation (5.95).

E[Nmg1] = p+
p2

2(1 − p)
. (6.174)

The above expected number corresponds to the expected number in the discrete time
system in the body of the slot, since the M/G/1 Markov chain is identical to the
Markov chain at the slot center. At the slot edges, the expected number momentarily
dips by the throughput p and hence

E[Ne] =
p2

2(1 − p)
. (6.175)

Using the results in equations (6.112) and (6.113), we obtain

πe(0) = πc(0) + πc(1) (6.176)

πe(i) = πc(i+ 1), for i > 0, (6.177)

where πc(i) corresponds to equilibrium probabilities of the M/G/1 system and πe(i)
corresponds to equilibrium probabilities of the number in the waiting line of the
crossbar system.

6.8.3 Late arrival systems

In our discrete time system studied so far in this chapter, a packet is required to be
in service for at least one slot. This is typical of every synchronous, electronic hard-
ware. A peculiar alternative is called a late arrival system (LAS). In LAS, any arrival
occurs just before the slot edge and any departure occurs soon after the slot edge.
This can easily be accommodated in our Markov chain at the slot center by simply
disallowing an arrival when the buffer is full. All other aspects of the Markov chain
and performance evaluations remain the same as in our development. LAS systems
can allow for instantaneous service completion, and such systems are referred to as
LAS-IA (immediate access). LAS systems which enforce that an arriving packet
must wait for a minimum of one slot, even if the service facility is free, are referred
to as LAS-DA (delayed access). The distinction between LAS-IA and LAS-DA sys-
tems manifests itself in the definition of the service time probabilities.
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6.9 Conclusion

This chapter introduced the proper use of timing and synchronization to help with
the formulation of Markov chains for slotted systems. In such systems, the state can
be observed at two distinct epochs during a slot. This possibility leads to two distinct
Markov chains that represent the same physical system. These Markov chains, one
observed at slot centers and the other at slot edges, are interrelated. Indeed, the
steady state probabilities of one of these chains can be determined with the help of
those of the other chain. This is a useful feature, since expectations from both chains
can be used to evaluate the common performance figures.

The mathematical properties of homogeneous and irreducible discrete parameter
Markov chains are developed. These properties provide us with the following impor-
tant constructive results. Unstable systems possess no solution for the corresponding
balance equations. Stable systems have a unique solution for their balance equations.
A stable aperiodic Markov chain evolves to its equilibrium operation as the number
of slots of operation increases without bounds. These results also used to develop the
following properties of irreducible and stable continuous parameter Markov chains.
There is no distinction of periodicity or otherwise for continuous parameter Markov
chains. Their balance equations possess a unique solution. They evolve towards
equilibrium operation as the time of their operation increases without bounds.

The performance figures of discrete time queuing systems, including throughput,
buffer occupancy and expected response time are developed using the equilibrium
probabilities from the appropriate Markov chains. The methods developed are ap-
plied to illustrative examples. The approach used here is quite simple to follow and
easily extended to more complex scenarios. The end result is a systematic, coherent
method for performance analysis of slotted systems.

6.10 Exercises

1. If we split a long speech signal into slots in which each slot is “talk” or “silent,”
we get the following model. If a slot is talk, the next slot continues to be talk
with a probability of 0.7. If a slot is silent, the next slot continues to be silent
with a probability 0.4. What is the average fraction of time used for talk?

2. An M/M/1/1 system is a two state continuous time Markov chain with a free
state F lasting for an exponentially distributed time with rate λ and a busy state
B, with rate µ. Construct a discrete parameter Markov chain as follows. We
observe the system state at discrete time instants separated by iid exponential
time intervals with rate α. Prove that the resulting transition probabilities are
as follows. Probability of transition from F toB is λ

λ+µ+α and the probability
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of transition from B to F is µ
λ+µ+α .

3. Now, consider the same continuous time system as in the above problem. That
is, an M/M/1/1 system is a two state continuous time Markov chain with a free
state F lasting for an exponentially distributed time with rate λ and a busy
state B, with rate µ. Construct a different discrete parameter Markov chain as
follows. We observe the state at time instants separated by a constant amount
of time τ . Try to formulate the resulting discrete parameter Markov chain.
You may stop at reasonably developed mathematical expressions for the state
transition probabilities.

4. A discrete time packet transmitter functions over time slots of equal time in-
terval T . The system has buffer for only two packets, including any being
transmitted. At most one customer can arrive during a slot. However, the
probabilities of arrival are state dependent. The arrival probability is 0.5 if the
state is 0 at the time of arrival. It is 0.3 if the state is 1 at the time of arrival.
Service completion is iid with a probability of completion of 0.4 in any slot.

(a) Draw the complete Markov chain of the number of packets in the system,
observed at the slot center.

(b) Evaluate the equilibrium probabilities of the different states.

5. Show that, in general, two arbitrary states of a Markov chain cannot be merged
into one. That is, in the contemplated merged chain, the transition probabilities
from the merged state may depend on the state from which the chain entered
the merged state, rendering the state sequence “non-Markov.”

6. Starting from an arbitrary Markov chain with transition probabilities pij , split
a particular state k into two states k1 and k2 so that the resulting chain is
Markov and equivalent to the original chain. Are the transition probabilities
into and out of each of the states k1 and k2 uniquely determined from pij?
If not develop the relations that the transition probabilities in the new chain
satisfy.

7. From the solution to the above problem, develop the conditions that the tran-
sition probabilities pij of a Markov chain should satisfy such that a particular
pair of states i and j can be merged into one state resulting in an equivalent
Markov chain to the original.

8. Consider a discrete time packet buffer with a total buffer space for N packets
including any under service. Arrivals are Bernoulli with a probability a for
an arrival. Service completion is Bernoulli with a probability of completion
of s. Let P0 be the steady state probability of finding 0 customers at the slot
center. Determine Pb, the probability that an attempted arrival will be lost, as
a function of P0, N , a, and s.
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9. A discrete time packet transmitter has a buffer for only 3 packets including
any under transmission. Multiple packets can simultaneously attempt to arrive
soon after a slot edge. The buffer will allow arrivals up to its capacity only
and the others will get lost. Number of attempted arrivals in a slot is Poisson
distributed with a mean number of 0.7 in a slot. At most one packet com-
pletes service during a slot, with an iid probability 0.8 in a slot. Answer the
following.

(a) Let P0, P1, P2, and P3 be the equilibrium state probabilities at slot cen-
ters. Find the throughput as a function of P0, P1, P2, and P3.

(b) What is the probability that all the attempted arrivals will be dropped at
the time of one or more attempted arrivals? Again, answer this in terms
of the algebraic quantities P0, P1, and P2.

10. Consider a Geom/Geom/1/3 (one server with buffer size of two including any
being serviced) queuing system with arrival probability = 0.6 and service com-
pletion probability = 0.4. Completely draw the Markov chain of the system.
Calculate the equilibrium state probabilities at slot centers, the average number
of jobs in the system, and the average throughput.

11. Consider a discrete time packet transmission system. The station has a buffer
with a capacity of three packets including any under service. There can be at
most one arrival to a buffer with a probability of 0.4. If a packet arrives in a
slot, or if there is already a packet in the transmitter of the station transmission
is attempted with a probability 0.7, during a slot. If a transmission is attempted,
it fails (due to collisions) with a probability 0.1 requiring reattempt. Draw the
Markov chain for the state of the transmitter, at slot centers.

12. Consider an equilibrium discrete time packet transmitter system with a capac-
ity to hold 3 packets including any packet/s under transmission. Arrivals are
iid with at most one arrival occurring with a probability of 0.6. The transmitter
can transmit up to two packets simultaneously. During any slot, the transmitter
attempts to transmit one packet with a probability of 0.5 and two packets with
a probability of 0.2. If there are i packets in the system and the transmitter
attempts to transmit j > i packets, then i packets will be transmitted.

(a) Draw the complete Markov chain at slot centers, including transition
probability values.

(b) Let P0, · · · , P3 be the equilibrium probabilities of the four states at slot
centers. Determine the throughput of the transmitter as a function of
these P0, · · · , P3, by observing the successful departures for various con-
ditions.

(c) Determine Q0, · · · , Q3, the equilibrium state probabilities at slot edges,
as functions of P0, · · · , P3.
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13. Two independent Bernoulli arrival streams are merged. Their slot edges are
synchronized. Note that two arrivals can appear simultaneously. When such
an event occurs, one of the two at random is considered to be the first of the
two arrivals. Under such a condition, the interarrival times has a sample space
of all nonnegative integers. Determine the pmf of such IAT.

14. A heavily loaded closed queuing system consists of a CPU with a queue and
an I/O with another queue. The degree of multiprogramming is two. This
means the number of jobs in the system is always two. That is, whenever
one of the two jobs depart from inside, an external job from the ever heavily
loaded external queue enters the system to ensure that two jobs are present
in the system all the time. The jobs can be distributed any way in the two
queuing stations. The service times of the CPU and the I/O are independent
of each other and both memoryless discrete time random variables. If a job
is being serviced by the CPU during a time instant, it has a probability 0.5 of
completing service at the end of the discrete time instant. Similarly, if a job
is being serviced by the I/O during a time instant, it has a probability 0.2 of
completing service by the end of the discrete time instant. This completely
determines a discrete parameter Markov chain for the number of jobs in the
CPU queuing system (any being serviced plus any waiting). Obviously, the
states of the Markov chain are 0, 1, or 2 only. Determine the steady state
probabilities of these states.

15. In a computer system, a bus (a resource) is used by three devices, CPU ,
I/O1, and I/O2. Only one device can use the bus at a time, of course. Time
is measured in discrete units called clock periods. During a free clock period,
the devices attempt to access the bus mutually exclusively with probabilities of
0.6, 0.2, and 0.1, respectively, for the CPU , I/O1, and I/O2. Once a device
grabs the bus, it can continue to have it for as long as it needs. During any
clock period a device has the bus, it opts to have it for one more clock period
(irrespective of how long it has had it) with the following probabilities 0.1, 0.4,
and 0.6 respectively for CPU , I/O1, and I/O2. Determine the utilization of
the bus by each of the three devices.

16. Consider a homogeneous discrete parameter Markov chain with states 0, 1, 2,
and 3 and the following transition probability matrix.


0.1 0.2 0.4 0.3
0.0 0.3 0.0 0.7
0.3 0.4 0.2 0.1
0.0 0.5 0.0 0.5

 (6.178)

Determine if the chain is irreducible. Determine if the state 0 is transient.

17. In a digital system, a hardware piece is invoked by an arriving data, in discrete
clock periods. Every clock period, a job may come in with a probability 0.5.
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Jobs are independent. No more than one job can appear in a clock period. If
an arriving job finds the hardware busy, it can wait in a queue buffer of waiting
room size 1 job only (so, no more than 2 jobs can be in the system at any
time). If an arriving job finds the waiting room buffer full, it is “lost” and
will not return later. The service time is one clock period with a probability
0.8 and two clock periods with probability 0.2. Draw a clear and complete
state transition diagram; identify the events (arrival and/or departure) on every
transition arc. Fill in numerical values of probabilities for all arcs.

18. In a discrete time queuing system with room for 3 packets (including any under
service), the arrival process is as follow. The probability of one arrival is 0.3
in any slot. The probability of two arrivals in a slot is 0.1. No more than
two arrivals can occur in a slot. Arrivals to a full system get lost. If two
arrivals come in and there is room only for one packet, one of the arrivals
enters the system and the other gets lost. The service rate is iid Bernoulli
with a probability of service completion of 0.6 during any slot. Develop the
complete transition probability diagram including the probabilities of all arcs.

19. Consider a slotted packet switched crossbar with three lines. A line does not
communicate with itself. The probability of a packet arrival is iid Bernoulli
0.3 on any line. Possible destinations are equally likely. Packets come in
soon after the beginning of a slot and leave just before the end. Number of
packets is counted at the slot edges. The output queues have a buffer of size 3
(including the packet being served). Draw the complete Markov chain of one
of the queuing systems. Determine and write the probability values on the arcs
of the transition diagram.

20. There is a sequence of two discrete time Geom/Geom/1 queuing systems with
the number of customers counted at the center of the slot. Both the queues
have room for only one customer each (that is no waiting room). Arrivals to
the first queue are lost if the first queue is full. The output of the first queue
feeds to a second queue. If the output from the first queue finds the second
queue full, it leaves the system at that point. The probability of an attempted
arrival to the first queue is p. The probability of service completion in a slot is
s in each station. Develop a clear state transition diagram for the Markov chain
representing the system. Clearly write down ALL the transition probabilities.

21. Consider a discrete time switching element. It has two input lines (top and
bottom) and two output lines. Each input port has room for only one packet.
A packet at an input port has either destination with equal probabilities. The
iid probability of an input at the top is p and at the bottom is q. Outputs are not
blocked and they move out freely. If only one input port has a packet, it gets
transmitted without any clash. If both the input ports have packets, both of
them get transmitted only if they have different output ports as destinations. If
both have the same required destination, one of the input packets is chosen at
random for transmission and the other one stays in the buffer. Properly define
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the state of the system (state is checked at the edge of a slot). Develop a clear
state transition diagram for the Markov chain including the expressions for
ALL the state transition probabilities.

22. A parallel computation system has 3 processors, 2 memory modules and func-
tions in a slotted mode in which a processor can access at most one memory
module for a number of successive slots. Similarly, a memory module can
serve at most one processor at a time. During every slot, a free processor at-
tempts to access a memory module (either module will do) with a probability
0.4. If a processor has a memory module in its control, it releases it at the end
of the slot with a probability 0.7. Draw the Markov chain of the number of
busy memory modules, at the slot center.

23. Consider a discrete time packet buffer with a total space for two packets. Pack-
ets arrive to a buffer according to a Bernoulli process, with p being the prob-
ability of a packet arriving in a time slot. Packets are transmitted from the
buffer only if the buffer contains two packets. If there are two packets in the
buffer, then, with probability s2, both packets will be transmitted, and with
probability s1 only one packet will be transmitted (s1 + s2 = 1).

(a) Draw the state diagram, clearly labeling the transition probabilities.

(b) Write the set of equations to solve for the steady state probabilities P0,
P1, ....

(c) Find the throughput of the system, as functions of assumed steady state
probabilities P0, P1, · · · .

24. Analyze an equilibrium Geom/Geom/1/∞ queue with an arrival probability of
a and a service completion probability of s. Specifically, prove the following.
The departure process is iid Bernoulli, the same as the arrival process. Use the
following approach.

(a)

P0 =
s− a

s
(6.179)

Pn =
s− a

s(1 − s)

(
(1 − s)a
(1 − a)s

)n

, for n > 0. (6.180)

(b)

Qn = (1 − ρ)ρn, for n ≥ 0 where (6.181)

ρ =
a(1 − s)
s(1 − a)

. (6.182)

(c) The probability of a departure from the queue is a.

(d) Following a departure, the state distribution in the next slot is the equi-
librium.
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(e) Following a slot in which there is no departure, the state distribution is
the equilibrium distribution.

(f) Hence, the departure process from the queue is the same as the arrival
process.

25. The purpose of a wireless sensor network is to transfer as many data packets as
possible to a central base station. Consider an intermediate store and forward
node of such a network, operating in a slotted (discrete time) mode.

The node can be in receive (packet arrival) or transmit (service) mode, but
not both, during a slot. The buffer can hold at most two packets including
any under service. If the node is in receive mode, one packet arrives with a
probability of 0.7. At most one arrival is possible in a slot. When the node
is in transmit mode, it successfully transmits a packet, if there is at least one
packet in the buffer. The node operates in receive or transmit mode, with
probabilities. These probabilities are independent in successive slots. But they
can be dependent on the state of the system during a slot. The designer’s job
is to assign probabilities for optimal operation (maximum throughput). Let
q0, q1, and q2 be the operating probabilities that the system is in receive mode
when there are 0, 1, or 2 packets in the system, respectively. Clearly, (1− q0),
(1 − q1), and (1 − q2) are the corresponding operating probabilities that the
system is in transmit mode. Obviously, the activity for the following slot is
decided based on the state at the slot edge. Your ultimate task is to find the
optimal values for q0, q1, and q2. Do this by systematically answering the
following.

(a) Draw the complete state transition diagram. Assume that the system state
is observed at slot edges. Include all the state transition probabilities. If
you can find out optimal values for some of q0, q1, and q2, you can use
them here, after stating them.

(b) Determine the equilibrium state probabilities. These can be functions of
variable or optimal values of q0, q1, and q2.

(c) Determine the optimal values for q0, q1, and q2, that maximize the
throughput of the node.

26. A slotted wireless communication node cannot receive and transmit simulta-
neously to prevent interference between the two activities. If the node is in a
field of other wireless nodes, both its reception and transmission links may be
disabled during some slots, to allow other nodes in the field to function. If the
reception link is open, at most one arrival can come in with iid probabilities.
If the transmission link is open and if the buffer has at least one packet, the
packet at the head of the buffer will be definitely transmitted. There are no
collisions due to static TDMA scheduling. During any clock period, in addi-
tion to any external arrival, at most one packet may be internally generated at
the node and placed in the queue for eventual transmission.
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Consider such a wireless node with unlimited buffer space. Let

r = P [reception link is open] (6.183)

a = P [exactly one arrival | reception link is open] (6.184)

g = P [exactly one packet is generated in the node] (6.185)

t = P [transmission link is open]. (6.186)

Characterize the packet arrival process (not including the generated packets).
That is, are the successive external packet arrivals iid in successive slots? Draw
the Markov chain at slot edges. Determine the equilibrium state probabilities
and condition for stability. Determine the throughput. What is the packet
transmission process? Are successive packet transmissions iid in successive
slots?

27. Study the following slotted LAN. There arem transmitting stations connected
to the LAN. Each has a buffer of unlimited size. The buffer of station i re-
ceives at most one payload packet arrival in each slot. During successive slots,
packets arriving at the ith buffer for transmission are iid as a Bernoulli random
variable, with a probability ai. All the stations are equipped with an identical
random number generation algorithm with an identical starting seed. There-
fore, they successively generate identical random numbers. During a slot, sta-
tion i is picked for transmission with a probability qi. Successive generation
of the identity of the station for transmission are iid. All the stations know
which transmitter’s turn it is for transmission, during every slot. Therefore,
there is no collision. When a station is scheduled for transmission, and it has
no packets to transmit, it stays silent for the duration of the slot, or transmits
a control packet. Both are equivalent for the performance analysis. Determine
the set of probability values {q1, . . . , qm} that minimizes the overall expected
response time of payload packets through the LAN.

In practice, the optimal probabilities can be rounded off to rational numbers
so as to make each probability, multiplied by a particular reasonable integer
valueK , return integers. The nodes can then be scheduled for transmission in
a periodic fashion with K as the period of the cycle. The resulting schedule
will not be optimal for two reasons. First, of course, is due to the approxi-
mation of the probabilities. The second is the deterministic (as opposed to iid
probabilistic) nature of the suggested scheduling. However, this deterministic
and cyclic scheduling has the advantage of the ability to turn on and off the
transmission circuit as and when necessary to reduce battery usage.



Chapter 7

Continuous Time Queuing Networks

7.1 Introduction

Single queues are useful models in many applications wherein one or more servers
attend to customers in a single waiting line. They are also useful building blocks in
more comprehensive systems of queues; a single queue may be a component in a
large network.
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FIGURE 7.1: Open queuing network
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In this chapter, we will study networks of queues with exponential servers and
Poisson external arrivals. The queues are interconnected as follows. A stream of
customers leaving a queue is split into substreams and fed back to the entry points of
possibly all the queues. Splitting is probabilistic and splits of successive customers
are mutually independent. In practice, some scheduler realizes and implements the
transfer of jobs from service completing queues to tails of queues. There are two
classes of such networks. In the first class, there is at least one entry point and at
least one exit point in the entire network as follows. Customers from outside the
network arrive as independent Poisson streams at the entry points of the queues.
They depart from the network at exit points. If the system is in equilibrium, the
overall rate of entry must equal the overall departure rate. Such networks which field
external traffic of customers are called open queuing networks. Figure 7.1 shows the
general structure of such a system. In a practical application network, it is typical
for a job originating at one point to process a little and either ship the rest to another
server or trigger an additional job. Generally, the completion of a job in such a
network requires attention at several points in the network and the job cycles through
a random number of stations, with possible repetitions. Memoryless models and
probabilistic switching are good approximations for such applications. Development
of such a model for a practical application and specifying its parameters can be a
comprehensive case study, and it is usually very application dependent. We will only
develop the analysis, after an application system has been modeled as a network and
its parameters have been specified.

In the second class of queuing networks, there are no arrivals to or departures from
outside the network. A constant number of customers circulate within the different
queues. These are called closed queuing networks. A closed queuing network may
be thought of as an appropriate model of a computer network that admits a constant
number of jobs when there are always jobs waiting outside the system to fill up
these limited positions, as and when completed jobs depart. Alternatively, we can
imagine the network to be running a fixed set of processes like the operating system’s
procedures. All external jobs are viewed only as data for these procedures to run.
This way, we have a constant number of jobs floating around in the network. Both
open and closed networks find applications in performance modeling of computer
and data networks.

7.2 Model and Notation for Open Networks

There arem exponential servers (with rates µi) in front of each of which customers
form a waiting line. Each waiting line with its corresponding server is also called
a station or a node of the network. The queue at each station, i, receives a Poisson
stream of customers from outside the network, with a rate λi. These are appropriately
called external arrivals. Customers leaving a station i are routed to the tails of various
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stations with probability qij for the station j and with probability si towards the
overall departure or destination point. The stream of external arrivals to station i and
and the streams of customers fed back from various stations are merged at the tail of
the queue of station i. The sum of the probabilities of routing a customer completing
service at station i through various branches must evaluate to 1. That is,

si +
m∑

j=1

qij = 1, i = 1, . . . ,m. (7.1)

Figure 7.2 shows the connections, splitting probabilities, and rates of customers mov-
ing through various arcs around a single queue within the open network.

si

qim qik

λi θi

θjqji

θkqki θmqmi

qijqi1θ1q1i

µi

FIGURE 7.2: Input streams and distributing the output stream for one queue

We assume that the network is connected. That is, an external customer entering
any station can eventually pass through all the stations, with nonzero probabilities.
If the network is not connected, it can be split into two or more nonoverlapping
networks that do not interfere with one another. In such a case, each of the connected
networks can be studied separately, as we do here. The state of the system is defined
as a vector of nonnegative integers corresponding to the ordered set of numbers of
customers in each station. The vector state n = (n1, . . . , ni, . . . , nm), where ni

is the number of customers in station i. We use the lower case ni to represent the
random variable as well as its outcome. The exact usage will be clear from the
context. We define a unit vector corresponding to each station as follows.

vi = (0, . . . , 0, 1, 0, . . . , 0) (7.2)

with a 1 in the i-th position and zeros in all other positions represents the state with
a single customer in the i-th station and no other customer anywhere else. Clearly,

n =
m∑

i=1

nivi (7.3)
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where the multiplication of a vector by a scalar results in a vector with each compo-
nent of the vector being the product of the original component and the scalar multi-
plier.

Why is the the stochastic process n(t) Markovian? The next change from a state
n(t) to another occurs whenever there is an arrival into or a service completion from
any station. A service completion from a station being routed back to the waiting
line of the same station does not change the number of customers in any station.
How an arrival or a departure is routed is independent of the past. Therefore, the
composite random variable time for any state change is memoryless. Also, the prob-
ability distributions of possible changes depends only on the present state. Hence,
n(t) is a continuous parameter Markov chain. If the network is stable, we know from
the properties of Markov chains (Theorem 6.12) that the equilibrium state probabil-
ities are the unique solution of the balance equations. Let p(n) be the equilibrium
probability of the network being in state n.

7.3 Global Balance Equations

Consider the equilibrium operation of the network. Let the current state be n.
Following are the possible cases of events that can cause a state transition from a
state n to some other state, and their rates of occurrences.

1. An external arrival into the queue of station i changes the network state. The
rate of such a state change is λi.

2. A customer completing service from station i and leaving the entire network
causes a change in the network state. The rate of service completion at sta-
tion i is µi, provided that the station has at least one customer in its queue.
Therefore, it is helpful to introduce a step function of an integer argument,

u(k) = 0, if k ≤ 0 and (7.4)

= 1, if k ≥ 1. (7.5)

A service-completing customer departs the entire network (as opposed to be-
ing fed back to one or another station) with a probability si. Therefore the rate
of occurrence of such a state transition is µiu(ni)si. The factor u(ni) accounts
for the possibility of such a transition only if ni > 0.

3. A customer completing service at a station i joining the queue of a different
station j, due to feedback, also causes a change in the network state. In order
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to ensure that the rate of a customer being fed back to the same queue is not
used in the state transition rate, the following Kronecker delta function, δij , is
used. Leopold Kronecker was a German mathematician.

δij = 1, if i = j and

= 0, if i �= j. (7.6)

The rate such a transition is µiu(ni)qij(1 − δij). As in the above case, the
factor u(ni) ensures that the rate is nonzero only if ni > 0. The last factor
(1 − δij) evaluates to zero if i = j.

Summing the above rates, the overall conditional rate of change of state from state
n, given that the network is in state n, is therefore given by the expression

m∑
i=1

λi +
m∑

i=1

µiu(ni)si +
m∑

i=1

m∑
j=1

µiu(ni)qij(1 − δij)

=
m∑

i=1

λi +
m∑

i=1

µiu(ni)

si +
m∑

j=1

qij − qii

 (7.7)

=
m∑

i=1

[λi + µiu(ni)(1 − qii)]. (7.8)

At any instant of time during an equilibrium operation of the network, the uncon-
ditional rate of the state changing from state n is given by the above expression
multiplied by the equilibrium probability of the network being in that state, p(n).
This unconditional rate is denoted by α(n) and evaluates to

α(n) = p(n)
m∑

i=1

[λi + µiu(ni)(1 − qii)]. (7.9)

At any instant of time, the network state may change from some other state to state
n, as follows.

1. An external arrival into station i when the network state is (n − vi) is one
such, provided ni > 0. This occurs with a rate λiu(ni).

2. An overall departure from station i when the network state is (n+vi) changes
the state to n. This occurs with a rate µisi.

3. When the network state is (n + vi − vj), a departure from station i routed to
station j changes the state to state n, provided i �= j and ni > 0. From earlier
arguments, we know that this occurs with a rate µiqiju(nj)(1 − δij).

For each of these rates to be effective, the state of the network should be in the cor-
respondingly required state under equilibrium. The unconditional rate of change of
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the network state from any other state into state n is denoted by β(n) and evaluates
to

β(n) =
m∑

i=1

p(n − vi)λiu(ni) +
m∑

i=1

p(n + vi)µisi

+
m∑

i=1

m∑
j=1

p(n + vi − vj)µiqiju(nj)(1 − δij) (7.10)

=
m∑

i=1

p(n − vi)λiu(ni) +
m∑

i=1

p(n + vj)µisi

+
m∑

i=1

m∑
j=1

p(n + vi − vj)µiqiju(nj) −
m∑

i=1

p(n)µiqiiu(ni).

(7.11)

The global balance equations are obtained by equating the rates of transitioning
into and out of every possible state n. This results in one equation for every state, as
follows.

α(n) = β(n).

Substituting for α(n) from equation (7.9) and for β(n) from equation (7.11), the
global balance equations for the Markov chain of the open queuing network are

p(n)
m∑

i=1

[λi + µiu(ni)(1 − qii)]

=
m∑

i=1

p(n − vi)λiu(ni) +
m∑

i=1

p(n + vj)µisi

+
m∑

i=1

m∑
j=1

p(n + vi − vj)µiqiju(nj) −
m∑

i=1

p(n)µiqiiu(ni).

(7.12)

If the network is stable, the above equations possess a unique probability mass func-
tion p(n) for the vector state variable n. That is, the above equations will be valid
for all n, if and only if p(n) is the correct equilibrium state probabilities for all n.
However, the equations do not appear to be easy to solve for p(n). Fortunately, the
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solution is quite simple and was obtained by J. R. Jackson in the year 1957 by guess-
ing it and verifying that the guessed solution satisfies every one of the global balance
equations. The guessed solution is known as the product form solution. The fol-
lowing is a development of the product form candidate solution and the verification
of its validity. The rate of customers flowing through each station’s queue is deter-
mined first through the development of traffic equations. These rates are functions
of the arrival rates and the feedback proportions only, provided the network is stable.
Their determination also makes it easy to specify conditions for stability of the entire
network.

7.4 Traffic Equations

At the tail of the queue of every station, several streams of customers merge. Let
θi be the combined rate of customers flowing through each station i. The rate θi

is composed of the rate of external arrivals, λi and the rates of fed back customer
streams. The traffic output rate from station j is θj . The component of this rate
being fed back to station i is θjqji. Summing all the components of customer rates
entering station i, we have the m equations

θi = λi +
m∑

j=1

qjiθj , i = 1, . . . ,m. (7.13)

The abovem equations are known as the traffic equations.

THEOREM 7.1
The traffic equations (7.13) possess a unique solution for {θi, i = 1, · · · ,m}.

Proof
The idea behind the proof is to construct a fictitious discrete parameter Markov chain
in which the stations of the network are states and data movement links in the net-
work are state transition arcs of the Markov chain. Also, a new state, state 0, is
introduced corresponding to a point from where all the external arrivals originate
and to which all the network departures come in. Since the network is connected, the
resulting Markov chain is irreducible. Introduce the following auxiliary quantities.

θ0 =
m∑

k=1

λk, (7.14)

w0j =
λj∑m

k=1 λk
=
λj

θ0
, j = 1, · · · ,m, (7.15)
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wi0 = si, and (7.16)

w00 = 0. (7.17)

Of course, wij = qij , when i ≥ 1 and j ≥ 1 are true. We know that the sum of
fractions of throughput routed for overall departure from the network must equal the
sum of all external arrival rates. That is,

m∑
j=1

θjsj =
m∑

j=1

λj = θ0. (7.18)

We are now ready to manipulate the traffic equations to a form corresponding to the
balance equations of a finite state irreducible Markov chain. Using w0iθ0 from equa-
tion (7.15) for λi in the traffic equation (7.13), we obtain the following alternative
form for the traffic equation.

θi = w0iθ0 +
m∑

j=1

qjiθj and (7.19)

θ0 =
m∑

j=0

wj0θj . (7.20)

In order to express the above traffic equations in a compact form, define auxiliary
variables

wij = qij , j = 1, · · · ,m and i = 1, · · · ,m. (7.21)

This leads to

θi =
m∑

j=0

wjiθj , i = 0, · · · ,m. (7.22)

Let a =
∑m

j=1 θj and define

xi =
θi

a
(7.23)

so that the traffic equations now take the form

xi =
m∑

j=0

wjixj and (7.24)

m∑
j=0

xj = 1. (7.25)

Equations (7.24) and (7.25) together have an identical form as the balance equations
of a Markov chain. The square matrix {wij} has the form of the transition probability
matrix of an irreducible Markov chain. Therefore equations (7.24) and (7.25) possess
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a unique solution for x0, through xm. The θi values are easily obtained from x0,
through xm as follows.

θ0 = x0a = λ. (7.26)

Therefore, the required normalized factor

a =
λ

x0
, (7.27)

with the help of which all other θi are obtained as

θi = xia. (7.28)

This completes the proof.
In order for the entire network to be stable, every station is required to be stable.

That is θi

µi
< 1, i = 1, . . .m is the required condition for the stability of the entire

network. Therefore, given a network with all the arrival and service rates and all the
splitting probabilities, the traffic equations can be solved and the stability of each
station can be examined. The entire network is stable if all the stations are stable.
Denote the normalized load in station i by

ρi =
θi

µi
, for i = 1, · · · ,m. (7.29)

7.5 The Product Form Solution

The vector states of the network at two slightly different time instants are definitely
dependent on each other, since the state at the later of the two time instants is strongly
influenced by the state at the earlier time instant. However, if we freeze the time at
some particular instant during equilibrium operation of the network, could the ran-
dom variable number of customers in the different stations appear to be statistically
independent? In other words, can the state probability distributions of the numbers
of customers in the different stations at one time instant during equilibrium operation
be independent? We do not know from the analysis so far. Nevertheless, we can con-
sider such a simple candidate solution for the equilibrium state probabilities of the
entire network state. If we are able to verify the validity of such a candidate solution,
we will then know that we have “caught” the correct solution. This is true since such
a Markov chain has at most one solution for equilibrium state probabilities. If there
is no solution, the system is unstable and cannot be in equilibrium. Such a candidate
solution is known as a product form solution, since the independence hypothesis al-
lows us to multiply marginal solutions to obtain the candidate solution for the vector
state. The candidate solution for the marginal equilibrium probabilities of a station
is “guessed” to be the same as for a round robin M/M/1/∞ system. Such a candi-
date marginal solution for the equilibrium state probability of finding ni customers
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in station i is

P (ni) = (1 − ρi)ρni

i , for all ni ≥ 0 and for i = 1, · · · ,m. (7.30)

Note that the upper case P is used to distinguish this candidate solution from the
unknown correct solution. Adding or subtracting 1 from ni, the following hold,
respectively.

P (ni + 1) = ρiP (ni), for all ni ≥ 0, for i = 1, and (7.31)

P (ni − 1) =
1
ρi
P (ni), for all ni ≥ 1, for i = 1, . . . ,m. (7.32)

The candidate product form solution for the vector state n is

P (n) =
m∏

i=1

P (ni) (7.33)

=
m∏

i=1

[(1 − ρi)ρni

i ]. (7.34)

Therefore, we have

P (n − vi) =
1
ρi
P (n), for ni > 0 (7.35)

=
1
ρi

m∏
k=1

[(1 − ρk)ρnk

k ], for ni > 0. (7.36)

P (n + vi) = ρiP (n), and (7.37)

= ρi

m∏
k=1

[(1 − ρk)ρnk

k ]. (7.38)

P (n + vi − vj) =
ρi

ρj
P (n), for nj > 0 (7.39)

=
ρi

ρj

m∏
k=1

[(1 − ρk)ρnk

k ], for nj > 0. (7.40)
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7.6 Validity of Product Form Solution

THEOREM 7.2
The product form probability mass function is the correct solution for the
equilibrium vector state probabilities of a stable open queuing network.

Proof
We use product form expressions for each of P (n−vi), P (n+vi), and P (n+vi−
vj) from equations (7.38) through (7.40) in equation (7.11) to evaluate the “product
form rate” of changing to state n. To distinguish this from the unknown correct
transition rate, we use B(n) in place of β(n).

B(n) =
m∑

i=1

1
ρi

(
m∏

k=1

[(1 − ρk)ρnk

k ]

)
λiu(ni) +

m∑
i=1

ρi

(
m∏

k=1

[(1 − ρk)ρnk

k ]

)
µisi

+
m∑

i=1

m∑
j=1

ρi

ρj

(
m∏

k=1

[(1 − ρk)ρnk

k ]

)
µiqiju(nj)

−
m∑

i=1

(
m∏

k=1

[(1 − ρk)ρnk

k ]

)
µiqiiu(ni). (7.41)

Take the common factor
∏m

k=1[(1 − ρk)ρnk

k ] out. Use ρi = θi

µi
for every i. We have

B(n) =

(
m∏

k=1

[(1 − ρk)ρnk

k ]

)( m∑
i=1

µi

θi
λiu(ni) +

m∑
i=1

θisi

+
m∑

i=1

m∑
j=1

θi

θj
µjqiju(nj) −

m∑
i=1

µiqiiu(ni)
)
. (7.42)

The second sum on the RHS in the above equation (7.42) is the sum of the rates of de-
partures from all the stations that are leaving the entire network. Under equilibrium,
this sum is the same as the sum of all the external arrival rates. That is

m∑
i=1

θisi =
m∑

j=1

λj . (7.43)

We can interchange the two summation signs in the double summation in equation
(7.42). With these manipulations, we have



Continuous Time Queuing Networks 279

B(n) =

(
m∏

k=1

[(1 − ρk)ρnk

k ]

)( m∑
i=1

µi

θi
λiu(ni) +

m∑
i=1

λi

+
m∑

j=1

µj

θj
u(nj)

m∑
i=1

θiqij −
m∑

i=1

µiqiiu(ni)
)
. (7.44)

The inner summation
∑m

i=1 θiqij in above expression evaluates to θj − λj through
the application of the traffic equations (7.13), after reversing the roles of i and j in
the traffic equations. Continue with the simplification of the expression for B(n);
note that the indices of summations are dummy variables. We have

B(n) =

(
m∏

k=1

[(1 − ρk)ρnk

k ]

)( m∑
i=1

µi

θi
λiu(ni) +

m∑
j=1

λj

+
m∑

j=1

µj

θj
u(nj)(θj − λj) −

m∑
i=1

µiqiiu(ni)
)

(7.45)

=

(
m∏

k=1

[(1 − ρk)ρnk

k ]

)( m∑
j=1

λj +
m∑

j=1

µju(nj) −
m∑

i=1

µiqiiu(ni)
)
(7.46)

=

(
m∏

k=1

[(1 − ρk)ρnk

k ]

)
m∑

j=1

[λj + µju(nj)(1 − qjj)]. (7.47)

Now, the same candidate product form expression from equation (7.34) is substituted
in equation (7.9) to evaluate the the rate at which the chain is changing its state from
n to some other state. This rate is denoted by A(n) instead of α(n), to distinguish
the product form rate from the correct rate.

A(n) =
( m∏

i=1

[(1 − ρi)ρni

i ]
) m∑

i=1

[λi + µiu(ni)(1 − qii)]. (7.48)

We see that A(n) = B(n) for every possible vector state n. This shows that if
we use the candidate product form solution in place of unknown equilibrium state
probabilities in the global balance equations, we find that the rate of transitioning into
a state is the same as the rate of transitioning out of the state, respectively for every
state. Since the global balance equations are known to support a unique solution for
equilibrium state probabilities, this completes the proof that the product form state
probabilities are indeed the correct equilibrium state probabilities.
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Example 7.1
The number of stations m = 3. The service rates are given in a vector form

µ = [µ1, µ2, µ3]T = [20, 25, 15]T per millisecond each. (7.49)

The external arrival rates are similarly given by

λ = [λ1, λ2, λ3]T = [0.8, 1.2, 2.0]T per millisecond each. (7.50)

The feedback probabilities are given in the following matrix form

q =

0.1 0.6 0.2
0.3 0.4 0.2
0.5 0.1 0.3

 . (7.51)

1. Solve the traffic equations.

2. Examine the network for stability.

3. Find the probability that all the servers are free.

4. Find the total expected number of customers in the entire network.

5. Find the one pass response time in each station.

6. Find the expected response time, in the entire network, of arrivals from
each of the three external arrival streams.

7. Find the expected response time of a random arrival into the entire
network.

Solution
The traffic equations take the form

λi = θi −
m∑

j=1

qjiθj or (7.52)

λ =
(

I − qT

)
θ or (7.53)

θ =
(

I − qT

)−1

λ (7.54)

θ =

 0.9 −0.3 0.5
−0.6 0.6 −0.1
−0.2 −0.2 0.7

−1

λ (7.55)
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θ =

3.7037 2.8704 3.0556
4.0741 4.9074 3.6111
2.2222 2.2222 3.3333

0.8
1.2
2.0

 (7.56)

=

12.5185
16.3704
11.1111

 . (7.57)

The loads on the servers are obtained below.

ρi =
θi

µi
(7.58)

ρ1 =
θ1
µ1

(7.59)

=
12.5185

20
(7.60)

= 0.6259. (7.61)

Similarly,

ρ2 =
16.3704

25
(7.62)

= 0.6548 and (7.63)

ρ3 =
11.1111

15
(7.64)

= 0.7407. (7.65)

From the marginal distribution of the numbers of customers in each queue, we have

E[ni] =
ρi

1 − ρi
. (7.66)

Evaluating these expectations, we have

E[n1] = 1.6733, (7.67)

E[n2] = 1.8970, and (7.68)

E[n3] = 2.8571. (7.69)
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The expected number of customers in the entire network is the sum of the above
which evaluates to 6.4274. The network is connected in the sense that a customer
entering any station can eventually pass through all the stations, with nonzero prob-
ability. Assume the following. All external traffic arrival streams originate from a
single Poisson stream of iid jobs. This original stream is probabilistically split into
three input streams with rates λ1, λ2, and λ3.

Therefore, in order to evaluate the expected response time of a customer entering
the network, we can use the Little’s result with the combined arrival rate and the
combined number in the network. The combined arrival rate into the network is
0.8 + 1.2 + 2.0 = 4.0 per millisecond. The expected response time of a customer
entering the network is

E[R] =
6.4274

4.0
= 1.6069 per millisecond. (7.70)

The above assumes that all the customers are iid, even those that initially enter
different stations when they arrive from outside the network. An item in the exer-
cises illustrates the evaluation of expected response time of the different classes of
customers that initially enter the network at different points.

7.7 Development of Product Form Solution for Closed
Networks

Continuous time Markovian Open Queuing Networks and their product form so-
lution are fairly simple to understand. They lay useful groundwork for the present
study of closed queuing networks. As mentioned earlier, in a closed queuing net-
work, there are no external arrivals. A constant number of customers trapped in the
network. They pass around the queues, as servers complete their services. The gen-
eral structure of the network, the nature of customers completing service at a station,
and the feedback mechanism are the same as in open networks. The mutually inde-
pendent exponential service times and probabilistic switching ensure that the system
is Markovian. Such networks were originally studied by W. J. Gordon and G. F.
Newell in 1967.

In the following study of closed queuing networks, we use the upper case M
for the total number of stations in the entire network, since a variable m number
of stations will be used in iterative algorithms to evaluate performance figures. The
symbolN is used to represent the constant number of customers trapped in the entire
network. Since there are no external arrivals, λi = 0, i = 1, . . . ,M . Similarly,
si = 0, i = 1, . . . ,M . Therefore,

M∑
j=1

qij = 1, i = 1, . . . ,M. (7.71)
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If there is a path from one subnetwork of the network to another but not the other
way round, all the customers from the first subnetwork will eventually leave the first
subnetwork and settle in the second network. Then the first subnetwork becomes de-
generate with no customers. Eliminate such subnetworks after each of them is empty.
The remaining network may be partitioned into subnetworks such that customers in
each subnetwork will stay there indefinitely but customers can move through all the
stations within the subnetwork. We select one such subnetwork for study. The se-
lected network has M stations and N customers are in the network. Each of the N
customers can move through all the stations with nonzero probability.

In the original global balance equations of open networks, if we substitute λi = 0
and si = 0, we obtain corresponding global balance equations for closed networks.
The rate of change of state from state n in this case is obtained by modifying equation
(7.9). The resulting rate is denoted by αc(n). The subscript c denotes that the rate is
for a closed network.

αc(n) = p(n)
M∑
i=1

µiu(ni)(1 − qii). (7.72)

The rate of state change from some other state into state n is similarly obtained by
modifying equation (7.11). The resulting rate, denoted by βc(n) is

βc(n) =
M∑
i=1

M∑
j=1

p(n + vi − vj)µiqiju(nj) −
M∑
i=1

p(n)µiqiiu(ni).

(7.73)

The global balance equation for state n is obtained by equating αc(n) and βc(n),
which results in

p(n)
M∑
i=1

µiu(ni)(1 − qii) =
M∑
i=1

M∑
j=1

p(n + vi − vj)µiqiju(nj)

−
M∑

i=1

p(n)µiqiiu(ni). (7.74)

This equation is valid for every pair of valid states (n + vj − vi) and n that can
participate in a state transition. The traffic equations are

θi =
M∑

j=1

qjiθj , i = 1, . . . ,M (7.75)

where θi is the rate at which customers flow through station i. There is no constant
term at all in any of the M linear equations. So, if θ = [θ1, . . . , θM ] is a solution
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to the traffic equations, then aθ = [aθ1, . . . aθM ] is also a solution for any positive
constant a.

Notice that the traffic equations (7.75) have a form identical to the balance equa-
tions of an M state discrete parameter Markov chain. The matrix q has the form
of a transition probability matrix of an irreducible chain. In the case of the discrete
parameter Markov chain, an additional equation with the all θi summing to 1 gives
us a unique solution. Alternatively, setting any particular θi to a known constant is
one such equation results in a unique solution for θ.

Following is the strategy used to develop and verify the validity of the product
form solution. Assume that a valid θ satisfying equation (7.75) and note that the
constants in the state probabilities adjust to the θ used. Note that θi > µi does
not imply that any station is unstable. The actual throughput in all the stations are
proportional to their respective θi values. The physical dimension of θi is customers
per unit time; the proportionality constant is dimensionless. The system is stable
due to a constant number of customers in the network. Borrowing ideas from open
networks, a candidate product form solution is

P (n) =

∏M
i=1

[
θi

µi

]ni

G(N,M)
, ni = 1, . . . ,M (7.76)

where
∑M

i=1 ni = N . The constant G(N,M) is used to normalize to ensure that
the sum of all state probabilities is 1. The quantity S(N,M) is defined as the set
of all possible states. The number of possible states is the same as the number of
combinations of distributingN identical objects intoM bins. A simple way to derive
this number is to imagine havingN +M − 1 items in which M − 1 are boundaries
andN are objects to be separated by the boundaries. This task is the same as picking
N items to be the objects from a line-up of N +M − 1 items. Thus, the number of
states in S(N,M) is

(
N +M − 1

N

)
=

(
N +M − 1
M − 1

)
. (7.77)

This number can be large even for modestM andN . Therefore, evaluatingG(N,M)
can pose a computational challenge. Let us show that P (n) is invariant to the choice
of the arbitrary proportionality constant in θi. We have

G(N,M) =
∑

n∈S(N,M)

M∏
j=1

( θj

µj

)nj

. (7.78)

Therefore,

P (n) =

∏M
i=1

(
θi

µi

)ni

∑
n∈S(N,M)

∏M
j=1

(
θj

µj

)nj
. (7.79)
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Multiply the numerator and the denominator by aN , where a is an arbitrary constant.

P (n) =
aN

∏M
i=1

(
θi

µi

)ni

aN
∑

n∈S(N,M)

∏M
j=1

(
θj

µj

)nj
. (7.80)

For every set of nk, k = 1, . . . ,M , we have
∑M

k=1 nk = N . Hence,

P (n) =

∏M
i=1

(
a θi

µi

)ni

∑
n∈S(N,M)

∏M
j=1

(
aθj

µj

)nj
(7.81)

which implies that replacing θi, by aθi, i = 1, . . . ,M , does not change the state
probabilities. Now, let us verify that the product form candidate is the valid solution
to the global balance equations. As in the case of open networks, an expression for
the equilibrium probability of state in βc(n) is first obtained for the product form
candidate solution. From the definition of the product form candidate solution in
equation (7.76), we have

P (n + vi − vj) =
θi

µi

µj

θj
P (n)u(nj). (7.82)

Using this in the expression for βc(n), we obtain Bc(n), the rate of change of state
from any other state to state n, for the product form candidate solution.

Bc(n) =
M∑
i=1

M∑
j=1

θi

µi

µj

θj
P (n)µiqiju(nj) −

m∑
i=1

P (n)µiqiiu(ni). (7.83)

Cancel µi in the double summation; interchange the order of the two summations in
the double summation; change the dummy variable of i in the last summation to j.
We have

Bc(n) = P (n)
M∑

j=1

µj

θj
u(nj)

M∑
i=1

qijθi − P (n)
M∑

j=1

µjqjju(nj). (7.84)

The inner sum evaluates to θj from traffic equations (7.75). Therefore,
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Bc(n) = P (n)
M∑

j=1

µj(1 − qjj)u(nj). (7.85)

The rate of change of state from state n to any other state for the product form
candidate solution is obtained by simply substituting the product form state pmf,
P (n) in αc(n) to obtain Ac(n). This takes the form

Ac(n) = P (n)
M∑

j=1

µj(1 − qjj)u(nj).

Comparing equations (7.85) and (7.86), we find that for every state of the closed
network, the rate of change of state from and to the state are equal, if we use the
product form candidate solution. Since we know that the global balance equations
have a unique solution for the state pmf, the product form candidate must be the valid
equilibrium pmf.

The problem of obtaining the above valid product form solution reduces to com-
puting the normalizing valueG(N,M). We will study two computationally efficient
techniques to evaluate the product form solution. The first one develops G(N,M)
recursively, by generating a matrix of g(n,m), n = 0, . . . , N , m = 0, . . . ,M . The
lowercase g(n,m) is just to show that it is a variable that takes the final value of
G(N,M) when n = N and m = M . The procedure is called convolution algorithm
since the form of expression appears like a convolution sum. It was developed by
Jeffrey P. Buzen in 1973. It turns out that all performance figures can be constructed
from the matrix g(n,m), n = 0, . . . , N ; m = 1, . . . ,M in a computationally effi-
cient way.

The second computationally efficient approach to obtain the product form perfor-
mance figures is the mean value analysis (MVA) which is a development of perfor-
mance expressions from convolution algorithms. The final form of the MVA avoids
the execution of the convolution algorithm.

7.8 Convolution Algorithm

When N = 0, there is no customer in any station and that is the only state

p(n) = 1 (7.86)

=

∏m
i=1

(
θi

µi

)0

g(0,m)
(7.87)
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=
1

g(0,m)
. (7.88)

Hence, g(0,m) = 1 for any m ≥ 1. For n > 0, if there is only one station, m = 1.
Then all the n customers are in it and

P (n) = 1 =
ρn
1

g(n, 1)
. (7.89)

Therefore,

g(n, 1) = ρn
1 , for n = 0, 1, . . . , N, (7.90)

g(0,m) = 1, for m = 1, 2, . . . ,M (7.91)

form the basis for iteration. Now,

g(n,m) =
∑

n∈S(n,m)

m∏
i=1

ρni

i . (7.92)

Decompose the sum into two portions. The first is the set of all states in which
nm = 0. The second is the set of all states with nm > 0. We have

g(n,m) =
∑

n∈S(n,m)

nm=0

m−1∏
i=1

ρni

i +
∑

n∈S(n,m)

nm>0

[
m∏

i=1

ρni

i

]
. (7.93)

The first sum is g(n,m − 1) by simply comparing its mathematical form to that of
g(n,m − 1). In the second sum, since nm > 0, every term has a factor ρm which
can be taken out. Then the rest of the ni can be distributed over m stations in every
possible way. Thus,

g(n,m) = g(n,m− 1) + ρm

∑
n∈S(n−1,m)

[
m∏

i=1

ρni

i

]
(7.94)
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where ni in the second sum satisfy
∑M

i=1 ni = n−1. This second sum is no different
from g(n− 1,m). So

g(n,m) = g(n,m− 1) + ρmg(n− 1,m) (7.95)

is the procedure to evaluate all necessary values of g(n,m), n = 0, . . . , N ; m =
1, . . . ,M . The computational complexity is MN . The results can be entered into a
tabular form called the convolution matrix. To simplify the calculations even more,
we can choose θ1 = µ1, so that ρ1 = 1.

7.9 Performance Figures from the g(n,m) Matrix

Evaluation of p(ni ≥ n) turns out to be crucial to the evaluation of many perfor-
mance figures. The key idea in evaluating p(ni ≥ n) is to recognize that the possible
states are those with n in station i and N − n customers distributed over all stations
including station i. In the argument of summation, ρn

i is a common factor that can
be taken out. Therefore,

p(ni ≥ n) =
∑

n∈S(N,M)

ni≥n

M∏
j=1

(ρj)nj

G(N,M)
(7.96)

=
ρn

i

G(N,M)

∑
n∈S(N−n,M)

M∏
j=1

ρ
nj

j ,

with nj ≥ 0 and
M∑

j=1

nj = N − n (7.97)

= ρn
i

G(N − n,M)
G(N,M)

. (7.98)

7.9.1 Marginal state probabilities

We can use the above to obtain the marginal state probabilities as

p(ni = n) = p(ni ≥ n) − p(ni ≥ n+ 1) (7.99)

= ρn
i

G(N − n,M) − ρiG(N − n− 1,M)
G(N,M)

. (7.100)
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7.9.2 Average number in a station

This quantity is also known as the average buffer occupancy. Let E[ni(N)] be
the expected number in station i.

E[ni(N)] =
N∑

n=1

np(ni = n) (7.101)

= p(ni = 1) + . . . + p(ni = N)
+ p(ni = 2) + . . . + p(ni = N)

. . .
+ p(ni = N).

(7.102)

The above decomposition clearly shows that p(ni ≥ n) should be included once for
each n = 1, . . . , n, in a sum. The expression can be changed to

E[ni(N)] =
N∑

n=1

p(ni ≥ n) (7.103)

=
N∑

n=1

ρn
i

G(N − n,M)
G(N,M)

. (7.104)

7.9.3 Throughput in a station

Let E[Yi(N)] be the throughput in the ith station

E[Yi(N)] =
N∑

n=1

µip(ni = n) (7.105)

= µip(ni ≥ 1) (7.106)

= θi
G(N − 1,M)
G(N,M)

. (7.107)

An important observation here is that we finally found the actual throughput in a
station i, starting from the relative throughput θi. Furthermore, observe that the
missing proportionality factor between θi and E[Yi(N)] is independent of i, scaling
all relative θ’s by the same factor, as required.

7.9.4 Utilization in a station

This is simply

Ui(N) = p(ni > 0) (7.108)
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θ3

µ2 = 2

0.4

0.6
θ2θ1

µ3 = 1
2

N =4

µ1 =1

FIGURE 7.4: The network for Example 7.2

= p(ni ≥ 1) (7.109)

= ρi
G(N − 1,M)
G(N,M)

. (7.110)

7.9.5 Expected response time in a station

E[Ri] =
N∑

n=1

ρn
i

G(N − n,M)
θiG(N − 1,M)

(7.111)

from Little’s result.

Example 7.2
Obtain the convolution matrix for the closed queuing network given in Fig-

ure 7.4. The service rates given in the network figure are in customers per
millisecond. Calculate all performance figures.

Solution

θ1 = 1 (by choice), (7.112)
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θ2 = 0.6, (7.113)

θ3 = θ2 = 0.6, (7.114)

ρ1 = 1, (7.115)

ρ2 =
0.6
2

= 0.3, and (7.116)

ρ3 =
0.6
0.5

= 1.2. (7.117)

The convolution matrix is developed in Table 7.1. The product form solution for the

TABLE 7.1: Convolution matrix for Example 7.2

n m = 1 m = 2 m = 3

ρ1 = 1 ρ2 = 0.3 ρ3 = 1.2

0 1 1 1

1 1 1 + 0.3 · 1 = 1.3 1.3 + 1.2 · 1 = 2.5

2 1 1 + 0.3 · 1.3 = 1.39 1.39 + 1.2 · 2.5 = 4.39

3 1 1 + 0.3 · 1.39 = 1.417 1.417 + 1.2 · 4.39 = 6.685

4 1 1 + 0.3 · 1.417 = 1.4251 1.4251 + 1.2 · 6.685 = 9.4472

network is

p(n1, n2, n3) =
ρn1
1 ρn2

2 ρn3
3

g(N,M)
(7.118)

=
0.3n21.2n3

9.4472
, 0 ≤ n2 + n3 ≤ 4. (7.119)
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The total number of states we have is

(
N +M − 1
M − 1

)
=

(
6
2

)
(7.120)

=
6!

2!4!
(7.121)

= 15. (7.122)

Ui(N) = ρi
G(3, 3)
G(4, 3)

(7.123)

U1(4) =
6.685
9.4472

(7.124)

= 0.7071 (7.125)

U2(4) = 0.2121 (7.126)

U3(4) = 1.2 · 0.7071 (7.127)

= 0.8485. (7.128)

E[Y1(4)] = θ1
G(3, 3)
G(4, 3)

= 0.7071 (7.129)

E[Y2(4)] = θ2 · 0.7071 = 0.4243 (7.130)

E[Y3(4)] = θ3 · 0.7071 = 0.4243 (7.131)

E[n1(4)] =
G(3, 3) +G(2, 3) +G(1, 3) +G(0, 3)

9.4472
(7.132)

=
6.685 + 4.39 + 2.5 + 1

9.4472
(7.133)

= 1.5428. (7.134)

E[n2(4)] =
4∑

n=1

0.3nG(4 − n, 3)
G(4, 3)

(7.135)
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= 0.3 · 0.7071 + 0.32 4.39
9.4472

+ 0.33 2.5
9.4472

+ 0.34 1
9.4472

= 0.2619. (7.136)

E[n3(4)] =
1.2 · 6.685 + 1.22 · 4.39 + 1.23 · 2.5 + 1.24 · 1

9.4472
(7.137)

= 2.1946. (7.138)
4∑

k=1

E[nk(4)] = 1.5428 + 0.2619 + 2.1946 = 3.9993. (7.139)

E[R1] =
E[n1(4)]
E[Y1(4)]

=
1.5428
0.7071

= 2.1819 milliseconds (7.140)

E[R2] =
E[n2(4)]
E[Y2(4)]

=
0.2619
0.4243

= 0.6173 millisecond (7.141)

E[R3] =
E[n3(4)]
E[Y3(4)]

=
2.1946
0.4243

= 5.1723 milliseconds. (7.142)

7.10 Mean Value Analysis

The performance figures can be evaluated in a different way starting from interme-
diate results obtained through the use of the convolution algorithm. The key principle
is another decomposition, called the arrival theorem, which allows us to avoid gen-
erating the convolution matrix altogether. We will first state and prove this theorem.
Application of this theorem first to a network of cyclic queues and then to individual
stations in the cyclic network develops the mean value analysis for cyclic networks.
In a cyclic network, the output of one queue is completely fed to the input of an-
other, until the last queue outputs into the input of the first queue. This situation is
simpler due to two reasons. The throughput is the same value in every queue. We
can identify a fictitious quantity, average response time as the round trip time from
any point back to itself after going through all the queues, once each. We will then
extend the mean value analysis (MVA) to noncyclic closed queues. The following
arrival theorem is valid for the general case of the network, that is, including non-
cyclic networks. Mean value analysis was developed by Stephen S. Lavenberg and
Martin Reiser in 1980.
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7.10.1 Arrival theorem

THEOREM 7.3 Arrival theorem
In a closed queuing network,

E[Ri(N)] =
1
µi

(
1 +E[ni(N − 1)]

)
. (7.143)

This relates the average response time in station i with N customers in the
network to the average number in the station i, if the entire network had only
N − 1 customers.

Proof

E[ni(N)] =
N∑

n=1

ρn
i

G(N − n,M)
G(N,M)

(7.144)

from performance figures based on convolution algorithm. Separate the n = 1 and
other terms

ni(N) = ρi
G(N − 1,M)
G(N,M)

+
1

G(N,M)

N∑
n=2

ρn
i G(N − n,M). (7.145)

Change the variable of summation in the second part to j = n− 1. Then

E[ni(N)] = ρi
G(N − 1,M)
G(N,M)

+
ρi

G(N,M)

N−1∑
j=1

ρj
iG(N − j − 1,M)

(7.146)

= Ui(N) + ρi
G(N − 1,M)
G(N,M)

N−1∑
j=1

ρj
i

G(N − j − 1,M)
G(N − 1,M)

(7.147)

= Ui(N)
[
1 +E[ni(N − 1)]

]
. (7.148)

From Little’s result,

E[Ri(N)] =
E[ni(N)]
E[Yi(N)]

(7.149)

=
E[ni(N)]
µiUi(N)

(7.150)

E[Ri(N)] =
1
µi

[
1 +E[ni(N − 1)]

]
(7.151)

proving the arrival theorem.
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7.10.2 Cyclic network

The average response time in the entire network, from a point back to itself is the
sum of average response times in each station, in a cyclic network. Let E[Y (N)] be
the common throughput. If we know the value of E[ni(N − 1)], we can get

E[Ri(N)] =
1
µi

[
1 +E[ni(N − 1)]

]
(7.152)

from the arrival theorem. From E[Ri(N)], i = 1, . . . ,M , we can get the average
response time of a customer from a point back to itself in the cyclic network, as

M∑
i=1

E[Ri(N)]. (7.153)

Now, apply Little’s result to the entire network, to obtain

E[Y (N)] =
N∑M

i=1E[Ri(N)]
. (7.154)

Finally, we can get

E[ni(N)] = E[Y (N)]E[Ri(N)] (7.155)

by applying Little’s result to the individual stations. Thus, starting from
E[ni(N − 1)], we have been able to get all of E[Ri(N)], E[Yi(N)], and E[ni(N)],
i = 1, . . . ,M . For N = 1, E[ni(N − 1)] = E[ni(0)] = 0, i = 1, . . . ,M . We
use n as the variable to write a clearer algorithm below. N is the final number of
customers in the entire network for which performance figures are required.

7.10.2.1 MVA for cyclic queues

Step 1: Set E[ni(0)] = 0, i = 1, . . . ,M .

Loop steps 2 through 4 for n = 1, 2, . . . , N .

Step 2:

E[Ri(n)] =
1
µi

[
1 +E[ni(n− 1)]

]
, i = 1, . . . ,M (7.156)

Step 3:

E[Y (n)] =
n∑M

i=1 E[Ri(n)]
(7.157)

Step 4:

E[ni(n)] = E[Y (n)]E[Ri(n)], i = 1, . . . ,M (7.158)
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FIGURE 7.5: Observation of traffic in a reference queue

7.10.3 Noncyclic closed networks

The main difference between a cyclic and a more general network is the following.
In a cyclic network, throughput in all the stations is the same. Also, in a cyclic net-
work, we can identify a point to which every customer returns after cycling through
every station exactly once between successive returns to the point.

In the case of a noncyclic network, we can still identify a single point, at the output
of a station j whose θj = 1 and consider its movement. Enclose the entire queuing
system system in a box. Pull the traffic lane that comes from station j out of the box
and feed it back. See Figure 7.5. We thus have a short segment for observation of
traffic, outside the box. The throughput in this observation segment is θj = 1.

Now, successive appearances of the same customer (any single identified cus-
tomer) outside the box can be considered as a sojourn through the network and an
average response time is associated with this traversal of a customer through the net-
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work. How do we identify the average response times in individual stations during
one sojourn through the entire network? Note that between successive appearances
of the marked or the identified customer in the observation lane outside the network,
the customer has passed through station j exactly once. And that the throughput
θj = 1. Therefore, during this period of one sojourn through the network, for the
one pass through station j, the marked customer would pass through station i as
many times as θi

θj
= θi times, on the average. This is due to θi’s being relative

throughput made of the same set of iid customers cycling through the closed net-
work. The expected value of the total time spent in station i during these averages of
θi passes is θiRi(n). Therefore, the expected time between successive appearances
of a customer at the observation segment is

E[R(n)] =
M∑
i=1

θiE[Ri(n)]. (7.159)

The actual throughput in the network, at the observation point is now determined by
applying the Little’s result to the box at the observation segment.

E[Y (n)] =
n

E[R(n)]
(7.160)

=
n∑M

i=1 θiRi(n)
. (7.161)

We know thatE[Y (n)] is also the exact throughput through station j, so E[Yj(n)] =
E[Y (n)]. This gives us the factor by which each relative throughput θi should be
multiplied to obtain E[Yi(n)].

E[Yi(n)] = θi
E[Yj(n)]

θj
(7.162)

= θiE[Yj(n)] (7.163)

= θiE[Y (n)]. (7.164)

Now, we apply the Little’s result to individual stations and determine their respective
expected number of customers.

E[ni(n)] = E[Yi(n)]E[Ri(n)] (7.165)

= E[Y (n)]θiE[Ri(n)]. (7.166)

We use n as a variable that increases from 1 to N in the following algorithm.
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7.10.3.1 MVA for noncyclic networks

Step 1: Solve traffic equation with θj = 1 for any particularly selected j. ni(0) = 0,
i = 1, . . . ,M .

Loop steps 2 through 4 for n = 1, . . . , N .

Step 2:

E[Ri(n)] =
1
µi

[
1 +E[ni(n− 1)]

]
(7.167)

Step 3:

E[Yj(n)] = E[Y (n)] (7.168)

=
n∑M

k=1 θkE[Rk(n)]
(7.169)

Step 4:

E[ni(n)] = E[Y (n)]θiE[Ri(n)] (7.170)

This concludes the MVA statement.

Example 7.3
Solve Example 7.2 with the help of mean value analysis.

Solution
From Example 7.2, we have N = 4, θ1 = 1, θ2 = 0.6, µ1 = 1, θ3 = 0.6, µ2 = 2.0,
µ3 = 0.5. Execution of Steps 2 through 4 of the MVA for n = 1, 2, 3, and 4:

n = 1 :

Step 2:

E[R1(1)] =
1
1
(1 + 0) = 1 (7.171)

E[R2(1)] =
1

2.0
(1 + 0) = 0.5 (7.172)

E[R3(1)] =
1

0.5
(1 + 0) = 2 (7.173)

Step 3:

E[Y1(1)] =
1

1 · 1 + 0.6 · 0.5 + 0.6 · 2 = 0.4 (7.174)
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Step 4:

E[n1(1)] = 0.4 · 1 · 1 = 0.4 (7.175)

E[n2(1)] = 0.4 · 0.6 · 0.5 = 0.12 (7.176)

E[n3(1)] = 0.4 · 0.6 · 2 = 0.48 (7.177)

Verification:
∑

i

E[ni(1)] = 1 (7.178)

n = 2 :

Step 2:

E[R1(2)] =
1
1
(1 + 0.4) = 1.4 (7.179)

E[R2(2)] =
1
2
(1 + 0.12) = 0.56 (7.180)

E[R3(2)] =
1

0.5
(1 + 0.48) = 2.96 (7.181)

Step 3:

E[Y1(2)] =
2

1 · 1.4 + 0.6 · 0.56 + 0.6 · 2.96
= 0.5695 (7.182)

Step 4:

E[n1(2)] = 0.5695 · 1 · 1.4 = 0.7973 (7.183)

E[n2(2)] = 0.5695 · 0.6 · 0.56 = 0.1914 (7.184)

E[n3(2)] = 0.5695 · 0.6 · 2.96 = 1.0114 (7.185)

Verification:
3∑

i=1

E[ni(2)] = 2.0001 (7.186)

n = 3 :

Step 2:

E[R1(3)] =
1
1
(1 + 0.7973) = 1.7973 (7.187)
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E[R2(3)] =
1
2
(1 + 0.1914) = 0.5965 (7.188)

E[R3(3)] =
1

0.5
(1 + 1.0114) = 4.0228 (7.189)

Step 3:

E[Y1(3)] =
3

1 · 1.7973 + 0.6 · 0.5965 + 0.6 · 4.0228
(7.190)

= 0.6567 (7.191)

Step 4:

E[n1(3)] = 0.6567 · 1 · 1.7973 = 1.1803 (7.192)

E[n2(3)] = 0.6567 · 0.6 · 0.5965 = 0.2347 (7.193)

E[n3(3)] = 0.6567 · 0.6 · 4.0228 = 1.5851 (7.194)

Verification:
3∑

i=1

E[ni(3)] = 3.0000 (7.195)

n = 4 :

Step 2:

E[R1(4)] =
1
1
(1 + 1.1803) = 2.1803 milliseconds (7.196)

E[R2(4)] =
1
2
(1 + 0.2347) = 0.6174 millisecond (7.197)

E[R3(4)] =
1

0.5
(1 + 1.5851) = 5.1702 milliseconds (7.198)

Step 3:

E[Y1(4)] =
4

1 · 2.1803 + 0.6 · 0.6174 + 0.6 · 5.1702
(7.199)

= 0.7076 (7.200)
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Step 4:

E[n1(4)] = 0.7076 · 1 · 2.1803 = 1.5428 (7.201)

E[n2(4)] = 0.7076 · 0.6 · 0.6174 = 0.2621 (7.202)

E[n3(4)] = 0.7076 · 0.6 · 5.1702 = 2.1950 (7.203)

Verification:
3∑

i=1

E[ni(4)] = 3.9999 (7.204)

The above results, obtained by using the MVA agree with those by using the convo-
lution algorithm approach, except for round off errors in lower significant decimals.

7.11 Conclusion

Markovian queuing networks are useful performance models for networked sys-
tems of computers. The individual computers function in round robin mode. In
open networks, an overall externally arriving job may require service in more than
one computer. As an example, compilation and preliminary processing may be done
in one computer, intensive computation in another, database accesses in a third and
input-output in the fourth. A job may move around these computers until completely
processed. The equilibrium solution turns out to be a simple product form of indi-
vidual solutions.

Closed networks do not have external arrivals but have a constant number of cus-
tomers moving around form one queue to another. The development of product form
solution is quite simple. The constant factor in the product form solution of equi-
librium state probabilities and/or the final performance figures are evaluated with ef-
ficient computational algorithms. The convolution algorithm evaluates the constant
in an iterative fashion. The intermediate results obtained during iterations are useful
in evaluating the performance figures. The mean value analysis algorithm directly
evaluates the performance figures.

7.12 Exercises

1. This exercise is a continuation of Example 7.1. Answer the following.
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(a) At some time instant, the state of the system is known to be (0, 0, 0).
Determine the rate of change of state, from this state.

(b) The system is in equilibrium but there is no information about the state
at time t = 0. Under this condition, determine the rate of change of state
from state 0 to any other state.

(c) The system is in equilibrium. What is the rate of change of state leading
a to a transition to state (0, 0, 0)?

(d) Answer the above questions for the state (2, 0, 1).

(e) If we imagine all the customers to be iid and originate from a single ex-
ternal point source where they are split into different streams to be fed
to different stations, they have the same overall expected response time.
However, we can alternatively imagine that the streams entering the dif-
ferent stations from outside are of different classes. Let customers exter-
nally arriving directly to station i be called class i customers. It seems
that the different classes of customers experience different expected over-
all expected response times, because of the differences between their ac-
tivity in the first queues they enter. This is in spite of all the customers
in a station experiencing iid service times, irrespective of their classes.
Evaluate the conditional expected response time of a customer, given that
the customer belongs to class i. Hint: Evaluate the expected numbers of
passes a customer from class i makes through each station. To do this,
formulate traffic equations for only class i customers.

2. Consider a continuous time Markovian open queuing network with our usual
notation. Assume that the traffic equations have been solved and that θi, i =
1, · · · ,M are known. Answer the following questions. Your answers should
be reasonably simplified functions of λ, T , {θi}, and {µi}.

(a) Over a large (deterministic) time interval T , what is the expected number
of distinct jobs passing through the entire network?

(b) In the same time interval, what is the expected total number of every
repetition of every job passing through station i?

(c) What is the total number of all such passes of all the jobs in all the sta-
tions, in the time T ?

(d) Note that all the jobs are statistically identical. What is the expected
number of passes a particular job goes through station i?

(e) Determine the expected amount of time a job spends in station i.

(f) From the previous answer, determine the expected amount of time a job
spends in the entire network.

3. In an open queuing network with two processors, µ1 = 1 and µ2 = 2. The
quantity λ = λ0

2 where λ0 corresponds to an arrival rate below which the
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network will be stable. λs1 = 0.6. The feedback probabilities are rij , and the
corresponding matrix is given below.[

0.3 0.4
0.5 0.3

]
(7.205)

Find the steady state probability that the two stations will have equal number
of customers in them.

4. Consider a closed queuing network with two queues. Each queue has a single
server. The service time of a customer in Queue 1 is exponentially distributed
with an average time of 1 second. The service time of a customer in Queue 2
is exponentially distributed with an average service time of 6 seconds. Cus-
tomers departing from Queue 2 are directly fed back into Queue 1. Customers
departing from Queue 1 return to Queue 1 with probability 1

2 and are fed into
Queue 2 with probability 1

2 . There are a total of 2 customers in the system.

(a) Draw the queuing diagram for the system.

(b) Find the steady state probability that there is one customer in each of the
queues.

(c) Find the fraction of time that a customer spends in each of the queues.

(d) Find the throughput of each queue.

5. A network made of a CPU and an I/O has exactly four total processes (jobs)
all the time. The CPU takes an average of 2 msec to complete a process. 60%
of the processes coming out of the CPU are routed back to the CPU itself.
The I/O unit takes an average of 10 msec to complete a process. 30% of the
processes coming out of the I/O are routed back to itself. The entire system is
a continuous time closed Markovian network. Determine the exact throughput
and the expected numbers of processes in each queue. Use any systematic
method.

6. Consider the results of the mean value analysis (MVA) with our standard no-
tation for a closed queuing network, developed with θ1 = 1 and other θ values
satisfying the traffic equations. How do we obtain the G(N,M) for the net-
work from the MVA results?

7. Consider a closed queuing network with a total of n = 2 customers and two
processors having rates µ1 = 1 and µ2 = 2. 40% of traffic from the first
processor is fed back to the same queue. 70% of traffic from the second pro-
cessor is fed back to itself. Determine the expected number of customers in
each station.

8. A sensor network has two processors that wait idly in a queue A until called
for service by a request. Request arrivals are Poisson with a rate of one in 10
ms (milli second). If there is no idle processor when a request comes in, the
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request vanishes with no service. If there is at least one idle processor, the
service request picks the processor at the head of queue A for work. 40% of
the requests need a remote database transaction; the processor from the sensor
network chosen for this request accesses the database in a FIFO Markovian
queue B; average time for each database access is 20 ms. At the end of the
database transaction the original request is completed and the processor re-
turns to queue A. The remaining 60% of the original requests make the chosen
processor go through a Markovian queue C for an output device with an av-
erage service time of 30 ms, at the end of which, the processor returns to the
original queue A.

The entire system is a continuous time closed Markovian network of three
FIFO queues and two tokens (each token is a processor that goes around the
network).

(a) Write the complete queuing network diagram. Identify the relative traffic
rate at each queue.

(b) List every possible joint state for the system. Determine the steady state
probability of each such state.

(c) Determine the probability that a random request will vanish without get-
ting service, due to no processor being available.

9. An internal revenue service IRS electronic tax filing server services three dif-
ferent tax filing data input lines as follows. The data lines wait in an FIFO
waiting line for the server to transfer them to the service queue. The server
polls the waiting line queue to see if there is any data line in that queue, at
average time intervals of 100 milli seconds (msec). If any data line is waiting,
the server picks only one line and places it in its service queue. During the tax
season, the data lines in the waiting line always have one tax return to file.

The service queue functions as follows. Each data line needs an average of 40
msec of the server’s service time to complete one tax return filing. The server
gives piece meal round robin service for the data lines in its service queue,
with an average of 10 msec for each piece of service. After one tax return is
completely filed, that data line will be placed back in its waiting line. All the
time periods above are exponentially distributed with the specified averages.

(a) Develop the Markovian closed queuing network model for the IRS server
with two queues. One queue is where the data lines wait for the server
to poll them. The other is the round robin service queue. Enter every
required numerical parameter in the queuing network diagram.

(b) Evaluate the numerical values of all the joint state probabilities. Do this
by a direct method, without using the Convolution Algorithm or MVA.

(c) Determine the average number of tax returns filed through these three
lines in one hour.
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(d) In order to fend off complaints from people that the data lines do not
respond, IRS needs to publish the fraction of time that each data line is
in the waiting line for the server to pick up. Determine the ratio of the
average time spent in the waiting queue to the total average time spent in
the IRS system by a tax line.

10. In an industrial facility, there are M different embedded systems that monitor
the status (for the sake of emergency response) of N different but statistically
independent and identical manufacturing units. The manufacturing units are
virtually shipped around through the FIFO queues of the different embedded
systems as follows. When an embedded system is servicing a manufacturing
unit, it requests, receives, and processes some particular sensory data. De-
pending on the results, it then virtually ships the serviced manufacturing unit
to one of the M embedded systems, (including itself). This statistically repet-
itive process goes on endlessly.

In a particular case study, we have N = 3 manufacturing units and M = 3
embedded monitoring systems. Call the corresponding queues as 1, 2, and
3. The entire system is well approximated to be Markovian as follows. The
service rates in the queues are 3, 2, and 4 per second, respectively. 20% of jobs
leaving queue 1 are shipped to queue 2 and the remaining to queue 3. 40% of
the jobs leaving queue 2 are shipped to queue 1 and the remaining to queue 3.
30% of the jobs leaving queue 3 are shipped to queue 1 and the remaining to
queue 2. Homeland Security requires the industry to report on the average rate
at which the manufacturing units are examined by each of the three monitoring
systems.

(a) Draw the queuing network diagram. Include all the parameter values.

(b) Evaluate the relative throughput in each of the three queues.

(c) Systematically determine the exact throughput in every queue.

(d) Finally, determine the rate at which each manufacturing unit passes
through each queue, in order to report these figures to Homeland Se-
curity.





Chapter 8

The G/M/1 Queue

8.1 Introduction

Consider an unlimited size buffer single server queue with iid exponential service
times of rate µ. Interarrival times are iid, but are not necessarily exponential. In the
literature, such queues are denoted by GI/M/1/∞. The subscript I emphasizes that
the interarrival times are iid. It is not uncommon to drop the subscript I with the
understanding that unless otherwise stated, IATs are iid. We will follow this simpler
notation. G/M/1 queues appear in applications in which the interarrival times cannot
be approximated as memoryless. As an example, packets may arrive periodically
and the packet sizes may vary in a way that it can be approximated by an exponential
random variable. Erratic arrivals such as with a Pareto IAT and exponential packet
sizes also constitutes a G/M/1 queue. This chapter studies the G/M/1/∞ queue.
Analysis of finite buffer G/M/1 queue is simple and is briefly treated. The important
application example with Pareto interarrival times is included.

8.2 The Imbedded Markov Chain for G/M/1/∞ Queue

Let X be the random variable corresponding to the iid IATs, with a pdf fX(x).
The arrival rate is the reciprocal of the expected IAT and is denoted by λ. That is,

λ =
1

E[X ]
. (8.1)

At an arbitrary time instant t, the future statistical behavior of the queue depends not
only on the number of customers in the system but also on when the most recent
arrival occurred. Equivalently, number of customers and the probability distribution
of time for the next arrival (starting from the current time instant t), are sufficient to
describe the future statistical behavior of the system. The requirement of the time
since the previous arrival or the time till the next arrival, arises due to the IAT be-
ing not memoryless. Therefore, as in the case of the M/G/1 queue of Chapter 5,

307
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the stochastic process N(t), the number of customers as a function of the continu-
ous time parameter, is not a Markov chain. However, just before every arrival time
instant, the time period remaining for the next arrival is zero and there is no uncer-
tainty about it. Therefore, if we observe the system at arrival time instants only, the
number of customers (not including the arriving one) is sufficient to describe the
future statistical behavior of the system. In between two successive arrivals, only
service completions cause changes in the number of customers. Since service times
are memoryless, remaining time for service is not required to characterize the future
statistical behavior of the system. Thus, the discrete parameter stochastic process
corresponding to the sequence of numbers of customers in the system at arrival time
instants is a Markov chain. As mentioned above, the arriving customer is not in-
cluded in the count of the number of customers. Therefore, at arrival time instants,
the number of customers can be any nonnegative integer, including zero. Such a
Markov chain is called an imbedded or an embedded Markov chain. Note that a
different imbedded Markov chain is constructed for an M/G/1 queue in Chapter 5.

Let Ni be the random variable number of customers at the ith arrival time instant.
LetKi be the number of customers who successfully completed service and departed
the system, between the arrival time instants of the ith and the (i+ 1)th customers.
Let ni and ki be their respective outcomes. After the arrival of the ith customer and
before any departure, there are ni + 1 customers in the system, including the ith
arrival. Therefore, 0 ≤ ki ≤ ni + 1. The recursive relation between the current and
the next state random variables is

Ni+1 = Ni + 1 −Ki. (8.2)

The outcome variables have a similar relation

ni = ni + 1 − ki, ki = 0, 1, . . . , ni + 1. (8.3)

Now, consider the sequence of departures starting from after the ith arrival has oc-
curred, and before the next, (i + 1)th arrival. The departures time instant based on
successive iid exponential service times are identical to those of Poisson events, as
long as there are customers available in the system for departures. That is, the prob-
ability of exactly ki < ni + 1 departures occurring is the probability of exactly ki

Poisson events occurring over the random time intervalX . Therefore,

P [Ki = k] = P [ki Poisson events with rate µ in X ], k = 0, 1, . . . , ni. (8.4)

It is possible that all the available ni + 1 customers depart and some time is left
over before the random time interval X expires. Figure 8.1 illustrates this situation.
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no jobs
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time
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FIGURE 8.1: Illustration of left over time after all departures, during one IAT

That is, if there were more customers available for departing, one or more additional
customers may have departed, after the departure of the ni +1 customers. Therefore,

P [Ki = ni + 1] = P [ni + 1 or more Poisson events with rate µ in X ]. (8.5)

Let ak be the probability of exactly k Poisson events during the random time interval
X . Also, denote this probability by P [k in X ]. It is evaluated using the mixed form
of the theorem of total probability in equation (A.70), as follows.

ak = P [k in X ] (8.6)

=

∞∫
0

P [k in x]fX(x)dx (8.7)

=

∞∫
0

exp(−µx)(µx)k

k!
fX(x)dx. (8.8)

The probability of k departures from the G/M/1/∞ queue is ak, if k ≤ ni. Using
equation (8.5), the probability of ni +1 departures from the G/M/1/∞ queue is given
by
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P [ni + 1 departures] =
∞∑

j=ni+1

aj (8.9)

= 1 −
ni∑

j=0

aj. (8.10)

We are now ready to develop the state transition probabilities of the discrete param-
eter Markov chain corresponding to the G/M/1/∞ queue. Let an observation of the
system yield m customers. Under this condition, we are interested in the probability
of observing n customers during the next observation time instant. Starting from m
customers just before an arrival, up tom+1 customers can leave before the next ob-
servation. That is, the state can change from m to any in the set {m+ 1, m, . . . , 0}.
The next state n = m+ 1 corresponds to no departures. That is,

P [Ni+1 = m+ 1|Ni = m] = a0. (8.11)

The next state n = 0 corresponds to all them+1 customers departing withinX and
possibly some time left over. From equation (8.9),

P [Ni+1 = 0|Ni = m] =
∞∑

k=m+1

ak. (8.12)

For any other n, that is, for 1 ≤ n ≤ m + 1, we have m + 1 − n departures. This
includes n = m+1 used in equation (8.11). The corresponding transition probability
is

P [Ni+1 = n|Ni = m] = am+1−n, n = 0, . . . ,m. (8.13)

The two-dimensional array q of transition probabilities have rows for m =
0, 1. . . . ,∞ and columns for n = 0, 1. . . . ,∞.
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q =



( ∞∑
j=1

aj

)
a0 0 · · ·

( ∞∑
j=2

aj

)
a1 a0 0 · · ·

( ∞∑
j=3

aj

)
a2 a1 a0 0 · · ·

· · · · · · ·
· · · · · · ·
· · · · · · ·( ∞∑

j=m+1

aj

)
am am−1 · · · a1 a0 0 · · ·

· · · · · · ·
· · · · · · ·
· · · · · · ·



. (8.14)

0 1 m−1 m

b1

a0 a0 a0 a0 a0 a0

a1 a1 a1 a1

b3 am−2
am−1

ambm

a3

b2 a2 a2 a2 a2 a2
2

a3

bm+1

FIGURE 8.2: State transition diagram for the imbedded Markov chain of the
G/M/1/∞ queue

The state transition diagram is shown in Figure 8.2. There is a nonzero probabil-
ity path from every state to every other state. There is also a single arc from every
state to itself. Therefore, the Markov chain is irreducible and aperiodic. Let us as-
sume that the system is stable in which case all the equilibrium state probabilities,
p0, p1, p2, . . . are nonzero. We will derive the condition for stability later. The
balance equations are easily written around every state n as follows. The uncondi-
tional probability of leaving any state n (including leaving to return to itself in one
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transition) is pn. The unconditional probability of entering state n from state m is
pmqmn. The unconditional probability of reaching state n from any state is summed
and equated to the probability of leaving state n below.

pn =
∞∑

m=0

pmqmn. (8.15)

Examining the nth column of the transition probability array in equation (8.14), we
have

pn = pn−1a0 + pna1 + pn+1a2 + pn+2a3 + · · · , n = 1, 2, . . . . (8.16)

For comparison, pn+1 evaluates to

pn+1 = pna0 + pn+1a1 + pn+2a2 + pn+3a3 + · · · . (8.17)

The index of all the states for which the equilibrium probabilities appear in the above
two equations are correspondingly increased by one each, position by position, in the
equation for pn+1. This suggests the candidate solution

pn+1 = αpn, n = 0, 1, 2, . . . (8.18)

for some unknown α satisfying 0 < α < 1. Indeed, if we use equation (8.18) in
equation (8.17), every pj is replaced by αpj−1. Canceling the common factor α in
every term on both sides, we get the equation (8.16). With this procedure, the balance
equation (8.16) for every n = 1, 2, . . . is finally reduced to

pn = αnp0 (8.19)

= αn−1p1 (8.20)

= αn−1p0a0 + αn−1p1a1 + αn−1p2a2 + αn−1p3a3 + · · · , for n = 1, 2, . . . .

(8.21)
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Equating the RHS of the two equations (8.20) and (8.21) and cancelingαn−1 on both
sides, we have

p1 = p0a0 + p1a1 + p2a2 + p3a3 + · · · . (8.22)

That is, the use of the candidate solution in equation (8.18) reduces every balance
equation for pn, n > 1 to the known balance equation for p1. Therefore, the
candidate solution (8.18) is a valid solution. We can now substitute the corresponding
function of α from equation (8.18) for every pj in equation (8.22) and attempt to
solve for α.

8.3 Analysis of the Parameter α

Equation (8.18) leads to

pn = (1 − α)αn, n = 0, 1, 2, . . . . (8.23)

Using this equation (8.23) in (8.22), we obtain the following equation for α.

(1 − α)α =
∞∑

j=0

(1 − α)αjaj or (8.24)

α =
∞∑

j=0

αjaj . (8.25)

The above equation (8.25) can have more than one solution. If we substitute α = 1,
the RHS evaluates to the sum of all the probabilities aj which is 1, corresponding to
the LHS also. Note that α = 0 is not a solution since the RHS has the term a0 > 0
with no factor of α in it. Define two functions of α as follows.

y1(α) = α (8.26)

y2(α) =
∞∑

j=0

αjaj . (8.27)
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FIGURE 8.3: Plot of y2(α) for a stable Markov chain case

For stability of the imbedded Markov chain, α < 1 is required to ensure that the sum
of probabilities following equation (8.23) is one. Therefore, the solution α should
satisfy

y2(α) < 1. (8.28)

We have

y2(0) = a0 > 0 and (8.29)

y2(1) = 1. (8.30)

Also y2(α) has positive terms only with high powers of α. Therefore, as α increases
from zero, the derivative of y2(α) is strictly monotonically increasing. Figures 8.3,
8.4, and 8.5 illustrate the three categories of possible cases. Let the equation y2(α) =
y1(α) have a solution at α < 1. This corresponds to Figure 8.3.
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The plot of y2(α) cuts the plot of y1(α) at α < 1 from above. Since it cuts
y1(α) from above, the derivative of y2(α) is less than 1 at the point that it cuts the
y1(α) plot. The plot of y2(α) continues to increase with increasing derivative. It
evaluates to 1 for α = 1. Therefore, the plot of y2(α) cuts the plot of y1(α) at α = 1
from below. Thereafter, the RHS shoots up faster than α due to the high degree
polynomial in equation (8.25). The conclusion is that if the equation y2(α) = y1(α)
has a solution at α < 1, the derivative of y2(α) is larger than 1 at α = 1.

If equation y2(α) = y1(α) has no solution at any α < 1, the plot of y2(α) still
meets the plot of y1(α) at α = 1. But in this case, the plot of y2(α) only touches the
plot of y1(α) tangentially at α = 1. This is illustrated in Figure 8.4. The derivative
of y2(α) at α = 1 is one.
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FIGURE 8.4: Plot of y(α) for equal arrival and service rates

In the third possible category of plots, shown in Figure 8.5, there is no solution
with α < 1 and the plot of y2(α) cuts the plot of y1(α) from above at α = 1. In this
case, the derivative of y2(α) at α = 1 is less than 1.

The conclusion from the above analysis of the three categories is that if there is
no solution for the equation y2(α) = y1(α) at any α < 1, the derivative of y2(α)
evaluated at α = 1 is less than or equal to 1. Finally, due to the strict monotonicity
of the derivative of y2(α), note that y2(α) cannot fluctuate around the plot of y1(α)
and cut it in more than two points. Combining the above arguments, the necessary
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FIGURE 8.5: Plot of y2(α) for an unstable Markov chain case

and sufficient condition for the stability of the imbedded Markov chain is that

d

dα
y2(α)

∣∣∣
α=1

> 1. (8.31)

An alternative approach to arguing for the same conclusion is to point out that the
RHS is a sum of powers of α with strictly positive coefficients. Each component is
convex and hence the sum is also a convex function of α; therefore, y2(α) cannot cut
y1(α) at more than two points.

The definition of y2(α) uses aj which are in turn functions of the pdf of the interar-
rival times X . The following evaluates y2(α) directly from the pdf of X . Substitute
expressions for aj from equation (8.8) in the RHS of equation (8.25). We have

∞∑
j=0

αjaj =
∞∑

j=0

αj

∞∫
0

exp(−µx)(µx)j

j!
fX(x)dx. (8.32)

Interchange the order of summation and integration to obtain
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∞∑
j=0

αjaj =
∫

exp(−µx)fX(x)
( ∞∑

j=0

(αµx)j

j!

)
dx. (8.33)

Recognize that the summation is the Maclaurin series for the exponential.

∞∑
j=0

αjaj =

∞∫
0

exp[−µx(1 − α)]fX(x)dx (8.34)

The integral above is the Laplace transform of fX(x) evaluated at s = µx(1 − α).
Therefore, we have

y2(α) =
∞∑

j=0

αjaj = LX [µ(1 − α)]. (8.35)

Using this in the equation (8.25) to evaluate α, we have

α = LX [µ(1 − α)]. (8.36)

8.3.1 Stability criterion in terms of the parameters of the
queue

In the equation

α =
∞∑

j=0

αjaj = LX [µ(1 − α)], (8.37)

aj is the probability that j but not j + 1 or a larger number of service times can be
fit into the interarrival random variable X . Let K be the random variable number
of service times that can be fit into an interarrival time random variable X . The
expected number of service times that can be fit into X is obtained by using the
property of Z transforms, that is

E[K] =
d

dα

∞∑
j=0

αjak

∣∣∣
α=1

. (8.38)
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Therefore,

E[K] =
d

dα
LX [µ(1 − α)]

∣∣∣
α=1

(8.39)

=
dLX [µ(1 − α)]
d[µ(1 − α)]

d[µ(1 − α)]
dα

∣∣∣
α=1

(8.40)

= −µ d
ds

LX(s)
∣∣∣
s=0

. (8.41)

Therefore, the stability condition reduces to

E[K] > 1. (8.42)

We know that

d

ds
LX(s) =

d

ds

∞∫
0

exp(−sx)fX(x)dx (8.43)

=
d

ds

∞∑
i=0

(−sx)i

i!
fX(x)dx. (8.44)

Interchange the order of differentiation and summation to obtain

d

ds
LX(s) =

∞∑
i=1

∞∫
0

−(−s)i−1xi

(i− 1)!
fX(x)dx. (8.45)

Evaluate the above expression at s = 0; the first term in the summation does not
have the factor s. All other terms have a factor of s and vanish. Therefore,

d

ds
LX(s)

∣∣∣
s=0

= −
∞∫
0

xfX(x)dx (8.46)

= −E[X ]. (8.47)
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The above result is a standard way to evaluate the expectation of a continuous non-
negative random variable with the help of the Laplace transform. Using this in equa-
tion (8.41), we finally have

E[K] = −µ
(
−E[X ]

)
> 1 (8.48)

as the stability condition. Equivalently,

µE[X ] > 1 or (8.49)

µ > λ (8.50)

as the condition for the stability of the imbedded Markov chain. The final form is the
familiar stability condition for the M/M/1/∞ queue and for the imbedded Markov
chain of the M/G/1/∞ queue. Even though the condition µ > λ may appear to be
intuitively obvious, the confirmation of it comes as a consequence of the original
condition α < 1.

Example 8.1
The interarrival time in an M/G/1/∞ queue is the sum of independent

exponential random variables with rates λ1 = 2
3 and λ2 = 2 per millisecond.

Figures 8.3, 8.4, and 8.5 show the plots of y1(α) and y2(α) respectively for
each case

1. µ = 1 per millisecond,

2. µ = 0.5 per millisecond, and

3. µ = 0.25 per millisecond.

8.3.2 Determination of α

If a given system is stable, the next task in an application is the determination of α.
Let us refer to the implicit parameter α of a stable M/G/1∞ queue as “the effective
load.” Define

y(α) = y1(α) − y2(α). (8.51)
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The function y(α) is well behaved. The following is a simple numerical algorithm
to evaluate α so that y(α) is close to zero by at least a given δ.

1. Set α0 = 0, y0 = y(0), α1 = 0.5, y1 = y(0.5), and d = 1.

2. Loop through steps (2a) and (2b) with i = 2, 3, . . . if error d > δ

(a)

αi+1 = αi − αi − αi−1

yi − yi−1
yi (8.52)

(b)

d = |y(αi+1)|. (8.53)

If d ≤ δ stop.
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FIGURE 8.6: Illustration of numerical solution for α

Example 8.2
Figure 8.6 shows a plot with four iterations in the evaluation of α for the case
of Example 8.1.
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8.4 Performance Figures in G/M/1/∞ Queue

8.4.1 Expected response time

If the continuous time stochastic process N(t) corresponding to the G/M/1/∞
queue is in equilibrium, evaluation of the expected response time of an arriving cus-
tomer is simple. This can be carried out with the help of the imbedded Markov chain
itself, since the response time of a customer starts at the time instant of its arrival. If
there are n customers at the time of arrival of a new customer, the response time of
this new customer is the sum of n + 1 iid exponential random variables, each with
rate µ. That is, the conditional expected response time is

E[R|n] =
n+ 1
µ

. (8.54)

The unconditional expected response time is

E[R] =
1
µ

∞∑
i=0

(n+ 1)(1 − α)αn (8.55)

=
1

µ(1 − α)
. (8.56)

The final form is obtained with manipulation as is done for the case of the M/M/1/∞
queue in Chapter 3.

8.4.2 Expected number in the system

This is easily obtained with the help of Little’s result.

E[N ] = λE[R] (8.57)

=
ρ

1 − α
. (8.58)

The last expression is obtained by using the expression for E[R] from equation
(8.56).
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8.5 Finite Buffer G/M/1/k Queue

The transition probability matrix gets modified as follows. The number of rows
and columns each range from 0 through k. If the system has k customers at the time
of an attempted arrival, the arrival gets lost and does not enter the queue. Thereafter,
until the next arrival time instant, there are only k customers, some or all of which
can depart. Therefore, the last row of the transition probability matrix is identical
to the previous row. The solution for equilibrium probabilities is not too involved.
Indeed, is fairly simple to manipulate the equations for the matrix to be transformed
to a lower triangular matrix. Every equilibrium state probability pi of the imbedded
Markov chain can be expressed as a linear combination of pi+1 . . . , pk. Therefore,
every equilibrium state probability can be expressed as a function of the unknown
pk, which is finally evaluated by equating the sum of all the probabilities to one. The
resulting algorithm to compute the equilibrium state probabilities is very simple.
P [drop] is at the arriving time instant and it is pk. Therefore, the throughput is

E[Y ] = λ(1 − pk). (8.59)

At the time an arrival occurs, the remaining service time of a customer under
service is exponential with µ due to the memorylessness of service times. Therefore,
the expected response timeE[R] is easily obtained by summing the expected service
time of the new arrival and those of all the customers in the system at the time of
arrival, as follows.

E[R|i] =
i+ 1
µ

and (8.60)

E[R] =
1
µ

k−1∑
i=0

(i+ 1)pi. (8.61)

Using Little’s result, the expected number in the system is given by

E[N ] = E[Y ]E[R]. (8.62)
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8.6 Pareto Arrivals in a G/M/1/∞ Queue

The Pareto pdf with a finite mean and infinite variance exhibits a heavy tail and
can be used to model interarrival times of bursty traffic. Such a pdf is given by

fT (t) =

{(
γ
β

)(
β
t

)γ+1

if t ≥ β

0 if t < β
(8.63)

with 1 < γ ≤ 2 and β > 0. The symbol γ is used in the exponent instead of
the α introduced in Chapter 2. This is because α is commonly used to represent
the effective load of a G/M/1/∞ queue, as in Section 8.5. The Hurst parameter
H = 3−γ

2 . We know that

α =

∞∫
0

e−µ(1−α)tfT (t)dt. (8.64)

The above equation (8.64) can be rewritten as

α =
∫ β

0

e−µ(1−α)tfT (t)dt+
∫ ∞

β

e−µ(1−α)tfT (t)dt

= 0 +
∫ ∞

β

e−µt+µtα(
γ

β
)(
βγ+1

tγ+1
)dt

= γβγ

∫ ∞

β

e−µt+µtα

tγ+1
dt. (8.65)

The solution to equation (8.65) is not readily apparent. Since β is just the scaling
factor, we can set β = 1. Furthermore, let x = µ(1 − α)t. Therefore, dt = dx

µ(1−α) .
With this change of variables, the above equation becomes

α = γ

∫ ∞

µ(1−α)

e−x[
x

µ(1−α)

]γ+1

dx

µ(1 − α)

= γ [µ(1 − α)]γ
∫ ∞

µ(1−α)

e−xx−γ−1dx. (8.66)

On integrating by parts, we have

α = γ [µ(1 − α)]γ
{[−e−xx−γ

γ

]∞
µ(1−α)

− 1
γ

∫ ∞

µ(1−α)

e−xx−γdx

}
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= γ [µ(1 − α)]γ
{[

1
γeµ(1−α) [µ(1 − α)]γ

]
− 1
γ

∫ ∞

µ(1−α)

e−xx−γdx

}
.

(8.67)

On integrating by parts again, we get

α = γ [µ(1 − α)]γ
{

1
γeµ(1−α) [µ(1 − α)]γ

− 1
γ

[ −1
(γ − 1)exxγ−1

]∞
µ(1−α)

+
1

γ(γ − 1)

∫ ∞

µ(1−α)

e−xx−γ+1dx

}

= γ [µ(1 − α)]γ
{

1
γeµ(1−α) [µ(1 − α)]γ

− 1
γ(γ − 1)eµ(1−α) [µ(1 − α)]γ−1

+
1

γ(γ − 1)

∫ ∞

µ(1−α)

e−xx−γ+1dx

}
. (8.68)

We integrate by parts the third time to get

α = γ [µ(1 − α)]γ
{

1
γeµ(1−α) [µ(1 − α)]γ

− 1

γ(γ − 1)eµ(1−α) [µ(1 − α)]γ−1

+
[ −1
γ(γ − 1)(γ − 2)exxγ−2

]∞
µ(1−α)

− 1
γ(γ − 1)(γ − 2)

∫ ∞

µ(1−α)

e−xx−γ+2dx

}

= γ [µ(1 − α)]γ
{

1
γeµ(1−α) [µ(1 − α)]γ

− 1
γ(γ − 1)eµ(1−α) [µ(1 − α)]γ−1

+
1

γ(γ − 1)(γ − 2)eµ(1−α)[µ(1 − α)]γ−2

− 1
γ(γ − 1)(γ − 2)

∫ ∞

µ(1−α)

e−xx−γ+2dx

}

= γ [µ(1 − α)]γ
{

1
γeµ(1−α) [µ(1 − α)]γ

− 1

γ(γ − 1)eµ(1−α) [µ(1 − α)]γ−1

+
1

γ(γ − 1)(γ − 2)eµ(1−α)[µ(1 − α)]γ−2
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− 1
γ(γ − 1)(γ − 2)

[∫ ∞

0

e−xx−γ+2dx

−
∫ µ(1−α)

0

e−xx−γ+2dx

]}
. (8.69)

Now, 0 ≤ −γ + 2 < 1. That is, −γ + 2 > −1. Therefore, the integral terms
in equation (8.69) can be expressed as (complete or incomplete) gamma functions.
Therefore, we can rewrite equation (8.69) as follows.

α = γ [µ(1 − α)]γ

{
1

γeµ(1−α) [µ(1 − α)]γ
− 1
γ(γ − 1)eµ(1−α) [µ(1 − α)]γ−1

+
1

γ(γ − 1)(γ − 2)eµ(1−α)[µ(1 − α)]γ−2

− 1
γ(γ − 1)(γ − 2)

[Γ(−γ + 3) − Γ∗(−γ + 3, µ(1 − α))]
}

(8.70)

where

Γ∗(−γ + 3, µ(1 − α)) = Γ(−γ + 3)P (−γ + 3, µ(1 − α)) and (8.71)

P (−γ + 3, µ(1 − α)) is the incomplete gamma function.
Equation (8.70) can be solved numerically to yield the profile of α curves for

different values of the Hurst parameterH and the normalized load ρ. The curves are
plotted in Figure 8.7†. Regardless of the value ofH , for low values of ρ, the effective
load α < ρ. In other words, for low values of ρ, the effective load (α) in the queue
by incoming packets is lower than the real load ρ. For H = 0.5 and H = 0.6, α < ρ
over most of the normal operating range of the queue (i.e., ρ < 0.75). However, for
high values of H , that is, for H = 0.9 and H = 0.99, α < ρ only for very low
values of ρ. As ρ increases, the effective load observed by the incoming traffic is
considerably higher than ρ. This implies that a G/M/1/∞ queue with Pareto traffic
arrivals saturates at relatively low values of ρ, for high values ofH . This is illustrated
by examining E[N ] as a function of ρ and α. Figure 8.8 plots the expected number
of customers as a function of the normalized load ρ for various values of H . The
solid line to the extreme right and closest to the ρ axis corresponds to ρ = α or the
expected number in an M/M/1/∞ queue. The plots in Figure 8.8 are obtained as

†Figures 8.7 and 8.8 are reproduced (with copyright permission) from the article G. R. Dattatreya and S.
S. Kulkarni, “Performance of communication networks fielding bursty traffic,” Annual Review of Com-
munications, volume 57, November 2004, pp. 1259–1273.
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follows. The expected number of customers (packets) in the system, expressed as a
function of α and ρ is given in Section 8.4 as

E[N ] =
ρ

1 − α
. (8.72)

The values of α corresponding to the values of ρ (over closely spaced intervals,
0 < ρ < 1) are computed with equation (8.70) for H = 0.5, 0.6, 0.7, 0.8, 0.9,
and 0.99. Then, for each such computed α, the corresponding expected number of
customers is computed with equation (8.72) and plotted. The resulting plots show
that for low values of H (that is, for H = 0.5, 0.6, and 0.7), the load curves are
similar to those observed in an M/M/1/∞ queuing system. For H = 0.9, saturation
occurs at barely 60−70% of the load. In general, as H increases, the corresponding
load threshold at which saturation occurs, diminishes rapidly.

8.7 Exercises

1. A constant bit rate (CBR) data source outputs a packet after every 3 mil-
liseconds. The packet transmission system is a contention-based medium ac-
cess system with an overall total time period for successful transmission being
exponentially distributed with an average of 2 milliseconds. Determine the
following performance figures during equilibrium operation of the queuing
system.

(a) Expected response time.

(b) Expected queue length.

(c) Probability there is at least one packet in the system immediately after
the time instant a packet departs.

2. Repeat Exercise 1 with the following difference. After every time period of 3
milliseconds, at most one packet arrives with a probability 0.8. Packet arrivals
during successive time instants separated by 3 milliseconds are iid.

3. Determine the equilibrium state probabilities for a G/M/1/∞ system with a
shifted Pareto IAT at customer arrival time instants. For the α = 1.2, an
expected IAT of 2 milliseconds, and an exponential service time with an ex-
pectation of 1 millisecond, compare the expected response times of G/M/1/∞
queues with shifted and unshifted Pareto IATs.

4. Develop an algorithm to evaluate the equilibrium state probabilities of a fi-
nite buffer G/M/1/k queue at arrival time instants. Determine the expected
response time, the expected number in the system, and the probability that
an attempted arrival will be dropped. Apply the results to Exercise (1) with
k = 8.
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Chapter 9

Queues with Bursty, MMPP, and
Self-Similar Traffic

9.1 Introduction

The intensity of data traffic arriving at a point can be specified in various ways
such as bits per second, packets per unit time, ordered pair of ON time for a packet
and OFF time between successive packets, or, the total number of bits or packets
received over a given large time interval. Unless otherwise specified, there is the
implicit notion that these intensity figures do not change from one time interval to
the next, and that the quantities in successive intervals are independent, over mean-
ingful ranges of times. The observed traffic in some types of data networks appears
to violate this property. Packets may arrive in clusters, with occasional packets
present between clusters separated by appreciable time intervals. These occasional
packets may not allow us to model the incoming traffic with intermittent time peri-
ods of arrivals. Furthermore, the variance in the amount of traffic may not decrease
rapidly as the length of the time interval used for averaging. Therefore, averaging
the arrivals over a long time interval to include several packet clusters in the inter-
val does not help us in realizing stable values for intensities. Traffic exhibiting such
characteristics is referred to as bursty traffic. The two causes of traffic burstiness are
(1) unbounded variance, and (2) long range dependence (LRD) in interarrival times,
described below.

In classical teletraffic theory, telephone traffic has been modeled traditionally with
Poisson call arrivals and exponential service times. Since Poisson processes have
elegant analytical properties, they have been employed widely in queuing analysis
of telecommunication systems. However, data traffic in some types of data networks
such as in the Ethernet depict vastly different statistical characteristics in compari-
son with voice traffic in telecommunication networks. These patterns conform to the
above subjective definition of burstiness. The burstiness spans several time scales,
with a high variance in burst sizes and in the time interval between bursts. Further-
more, the sequence of interarrival times of data packets shows strong autocorrela-
tions. The autocorrelation function decays slowly giving rise to what is known as
long range dependence (LRD). These traffic characteristics cannot be modeled ad-
equately using Poisson processes. Therefore, researchers have suggested that some
cases of network traffic be modeled using processes known as self-similar processes
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that capture the properties of burstiness and LRD. Further justification of this sugges-
tion stems from observations on the World Wide Web (WWW) data traffic. Studies
of such data traffic show that the WWW document size distributions, caching algo-
rithms of the web browser and user preferences in following the displayed links have
a significant impact on the nature of the generated data traffic. The super imposition
of many file transfers in a local area network, with the above dynamics influencing
each such transfer, contributes to traffic self-similarity. Statistical analysis of some
variable bit rate (VBR) video sample traffic have also shown considerable burstiness
and LRD.

In this chapter, we develop many properties of burstiness, LRD and self-similarity
from first principles, to gain a comprehensive understanding of the subject. This
chapter is organized as follows. A clear distinction between smooth and bursty traffic
is brought out in Section 9.2. The properties of self-similarity are developed and
a particular self-similar process, the fractional Brownian motion (FBM) process is
studied in Section 9.3. Robert Brown (1773–1858) was a British Botanist who
observed the movement of pollen and fine dust particles and the original Brownian
motion is named in his honor. The driver process of FBM is the fractional Gaussian
noise (FGN) process. The profile of the autocorrelation sequence of the discrete
time FGN process is developed from first principles and the problems in generating
such a process are identified.

FBM is the most commonly employed example of a self-similar process. Its range
includes negative values. There are also additional difficulties in attempts to directly
use self-similar processes as exact models of traffic input to queues. A large number
of traffic streams, each with Pareto IATs, when merged, is known to approximate
self-similarity. Each Pareto IAT can be further approximated as a hyperexponential
random variable. We study a composite traffic source created by merging several iid
substreams, in each of which IATs are hyperexponential and packet sizes are expo-
nential. This composite traffic source is Markovian with a surprisingly large number
of states and provides an excellent model for bursty traffic. This traffic model is
shown to form a closed queuing network in which the service discipline in each
queue is “immediate service.” This is an example of a closed queuing network with
state-dependent service rates. An efficient product form solution for the equilibrium
state probabilities of this composite traffic source is developed. The analysis of a
queue input by such traffic is conducted. The equilibrium state probabilities of the
number of packets in such queues is evaluated. The entire analysis and performance
evaluation is computationally efficient. Matrix inversion corresponding to the com-
posite traffic source is not required.

Markov modulated Poisson process (MMPP) is another related model for a bursty
traffic source. In this model, the arrival rate of packets switches between states ac-
cording to a Markov chain. Analysis of queues input by MMPP is very similar to the
one input by the earlier described composite traffic source with merged substreams.
This analysis is also carried out.
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9.2 Distinction between Smooth and Bursty Traffic

Let λ be the arrival rate of traffic (in bytes per unit time). Then, λτ is the average
amount of traffic (in bytes) received in the time interval τ . Let Xi(τ) be the fluctu-
ation around the mean λτ . Therefore, Xi(τ) + λτ represents the amount of traffic
received in the ith interval of successive, equal, and nonoverlapping time intervals,
each time interval being τ long. We concentrate our attention on Xi(τ), the varia-
tion around the mean, and refer to this variation itself as the traffic. Therefore, in the
following discussion, unless otherwise specified, random processes are zero mean.

The quantity Xi(τ)
τ is the traffic arrival rate averaged over the ith such interval. We

now form larger nonoverlapping time intervals, with each interval made of k such
original intervals. Consider the cumulative traffic received over k such successive
time intervals. Let Yi(kτ) be the traffic received in the ith of such aggregated, larger
intervals. Then, Yi(kτ)

kτ is the time average of the traffic rate received in the ith

aggregated interval. The dimensions of both Xi(τ)
τ and Yi(kτ)

kτ are “bytes per second.”

Case 1: Smooth Traffic Let Xi(τ) be an independent, identically distributed se-
quence of random variables indexed by i. The function var denotes the variance of
the argument random variable. Let

var[Xi(τ)] = σ2(τ). (9.1)

Yi(kτ) =
k+l−1∑

j=l

Xj(τ) for some l. (9.2)

From Probability theory,

var[
Xi(τ)
τ

] =
σ2(τ)
τ2

(9.3)

and
var[Yi(kτ)] = kσ2(τ). (9.4)

Then,

var[
Yi(kτ)
kτ

] =
kσ2(τ)
k2τ2

=
σ2(τ)
kτ2

. (9.5)

Therefore,

var[
Yi(kτ)
kτ

] =
var[Xi(τ)

τ ]
k

. (9.6)

In the above equation, both Xi(τ)
τ and Yi(kτ)

kτ are random variables corresponding
to the traffic received per unit time. However, Yi(kτ) is the traffic averaged over an
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interval k times the size of the interval used to average Xi(τ). Since the amounts of
traffic received over successive intervals are assumed to be independent in this case,
the fluctuations over the different (smaller) intervals tend to cancel out to quite some
extent when considering the traffic aggregated over many such intervals. Hence we
observe the 1

k type of drop in the variance of Yi(kτ)
kτ , in comparison with the variance

of Xi(τ)
τ . This phenomenon is observed widely in practice. That is, as the time

period for averaging increases, the averaged (or blurred) observations tend to exhibit
smaller variance (smaller by a factor proportional to the linear scale of blurring),
and appear smooth. However, if data traffic defies this principle up to long intervals
of time averaging, it is said to be bursty. Thus, for bursty data traffic, the variance
of the corresponding Yi(kτ)

kτ does not decrease linearly with k, but decreases much
more slowly. We deal with such a case of bursty traffic in the following discussion.

Case 2: Bursty Traffic If the components of {Xi(τ)} are statistically correlated
(as opposed to being statistically independent) in a particular way, the cancellation
of fluctuations can get decelerated as follows. Consider the autocorrelation sequence
formed from the sequenceXi(τ). We denote this by RX(k, τ). That is,

RX(k, τ) = E [Xi(τ)Xi+k(τ)] , k = 0, 1, . . . . (9.7)

If the parameters representing the traffic are invariant to the time index i of the traffic
segment, E[Xi(τ)Xi+k(τ)] is not a function of i. In addition, from equation (9.7),

RX(k, τ) = RX(−k, τ). (9.8)

Note that if {Xi(τ)} is an independent sequence,

RX(0, τ) = σ2
X(τ) and (9.9)

RX(k, τ) = 0, ∀k �= 0. (9.10)

From elementary probability theory, we know that

−σ2
X(τ) ≤ RX(k, τ) ≤ σ2

X(τ), k = 0, 1, . . . . (9.11)

In some cases of dependent sequences, RX(k, τ) may be nonzero up to k = m,
for a small integer m. In some other cases, RX(k, τ) may decay as an exponential
function of k. In these two cases, if we average Xi(τ) over many intervals, the
variance diminishes rapidly as the number of intervals used for aggregation increases.
On the other hand, for some profiles of RX(k, τ), the variance of the data averaged
over many intervals can decrease very slowly as demonstrated below. The variance
of Yi(kτ)

kτ is evaluated as follows.

var[
Yi(kτ)
kτ

] =
1

k2τ2
var[Yi(kτ)]
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=
1

k2τ2
E

{
[Yi(kτ)]

2
}
, (9.12)

since Yi(kτ) is zero mean.

var

[
Yi(kτ)
kτ

]
=

1
k2τ2

E


[

k∑
i=1

Xi(τ)

]2
 (9.13)

=
1

k2τ2
E


[

k∑
i=1

Xi(τ)

] k∑
j=1

Xj(τ)

 (9.14)

=
1

k2τ2

k∑
j=1

k∑
l=1

E[Xj(τ)Xl(τ)] (9.15)

=
1

k2τ2

k∑
j=1

k∑
l=1

RX(j − l, τ) (9.16)

For different values of j and l, the structure of RX(j − l, τ) is easily visualized with
the help of the autocorrelation matrix, as follows. Let RX(j − l, τ) be denoted by
aj−l for simpler notation. Then, as j and l each vary independently over 1, · · · , k,
we have the double summation in equation (9.16) is given by the sum of all elements
in the k × k matrix 

a0 a1 · · ak−1

a1 a0 a1 a2 · · ak−2

a2 a1 a0 a1 ak−3

· · · ·
· · ·

ak−1 · · · a0


. (9.17)

The elements on the main diagonal are all a0. On both the diagonals immediately
above and below the main diagonal, each element is a1. Similarly, on both the diag-
onalsm levels above and below the main diagonal, each element is am. The number
of elements in each of the two diagonalsm levels above and below the main diagonal
is k−m. The number of times a0 occurs in the sum of all the elements in the matrix
is the number of elements on the main diagonal, that is k times. The number of times
am occurs in the sum of all the elements in the matrix is 2(k−m). Adding all these,
the sum of all the elements in the matrix is given by

ka0 + 2
k−1∑
m=1

(k −m)am. (9.18)
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Substituting RX(m, τ) for am, we have

var

[
Yi(kτ)
kτ

]
=

1
k2τ2

[
kRX(0, τ) + 2

k−1∑
m=1

(k −m)RX(m, τ)

]

=
σ2(τ)
kτ2

+
2

k2τ2

k−1∑
l=1

(k − l)RX(l, τ). (9.19)

If the second term (the summation) on the right side of equation (9.19) is zero, then

var

[
Yi(kτ)
kτ

]
=
σ2(τ)
kτ2

(9.20)

corresponding to the iid sequenceXi(τ). IfRX(k, τ) decays rapidly (exponentially),
then the second term on the right side of equation (9.19) is also bounded by an
exponentially decaying function of k. This set of conditions corresponds to smooth
traffic. However, if RX(k, τ) are positive and large for k > 0, from equation (9.19),
we observe that the variance of Yi(kτ)

kτ will be much larger than in the case of smooth

traffic. The argument cannot be extended to make RX(k,τ)
σ2(τ) = 1, k > 0, since this

would render Xi(τ) to be identical and fully correlated for all values of k, with no
variations at all. If we want to extend this property for large values of k, then RX(k,τ)

σ2(τ)

should decay slowly, for example, as k−α with 0 < α < 1.
Similarly, we can study the effects and required properties of variations and cor-

relations for an arbitrarily sized window of averaging. That is, instead of examining
the statistical properties of the sequence Yi(kτ) over a time window of size kτ with
an integer k, we can examine the statistical properties of Yi(δτ), with a positive real
δ. In an abstract model, we can let τ → 0, resulting in traffic that arrives as a contin-
uous function of time. This is in contrast to the earlier described model in which we
studied increments in traffic received over successive, equal time intervals.

9.3 Self-Similar Processes

The above discussion suggests that if RX(k, τ) are positive and large for k > 0,
then

var

[
Yi(kτ)
kτ

]
� 1

k
var

[
Xi(τ)
τ

]
. (9.21)

If this property is realized, the averaged traffic that is received will still exhibit con-
siderable variations (burstiness) over a large range of time scales and will not appear
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smoother as the time scale increases. These ideas can be quantified using the con-
cepts of self-similar processes originally studied by Benoit B. Mandelbrot in the
1960s.

DEFINITION 9.1 Let Z(t) be a stochastic process and consider any t0
and δ, (δ > 0). If the processes Z(t0 + τ)−Z(t0) and δ−H [Z(t0 + δτ)−Z(t0)]
have the same finite joint distributions, we say that the stochastic process
Z(t) is self-similar with the parameter H. Mandelbrot’s definition is valid for
H ≥ 0.

The concept of self-similarity is used by Mandelbrot to describe naturally occur-
ring fractals. Self-similar processes exhibit structural similarities in their statistics
over a large number of different time scales. That is, even if the time scale of mea-
surement is changed, the statistics of the process remain similar, (not identical). In
this section, we enunciate some of the properties and consequences of the above def-
inition in our special case of data traffic. As mentioned earlier, it is convenient to
restrict Z(t) to be a zero mean process. Any required mean value can be added at
convenient points of mathematical (and correspondingly physical) transformations.
In addition, we consider stationary increments.

9.3.1 Fractional Brownian motion

An example family of self-similar stochastic processes is the fractional Brownian
motion (FBM).

DEFINITION 9.2 Y (t) is an FBM process with parameter 0.5 ≤ H < 1,
if the increment Y (t+ t0) − Y (t0) is a stationary Gaussian process with zero
mean and variance t2H . The parameter H is the Hurst parameter introduced
in Chapter 2.

By stationarity, we mean that Y (t + t0) − Y (t0) in the above definition is not a
function of t0. Using the notation N (η, σ2) for a Gaussian random variable with
a mean η and variance σ2, we can express the rate of the FBM averaged over an
interval δ as

Y (t+ δ) − Y (t)
δ

= δH−1N (0, 1). (9.22)

Therefore,

d

dt
Y (t) = lim

δ→0

Y (t+ δ) − Y (t)
δ

= lim
δ→0

δH−1N (0, 1). (9.23)

Since 0.5 ≤ H < 1, δH−1 → ∞ as δ → 0. That is, the variance of the instanta-
neous rate of variation of the FBM is unbounded.



336 Performance Analysis of Queuing and Computer Networks

9.3.2 Discrete time fractional Gaussian noise and its prop-
erties

The above degeneracy is usually stated as “FBM is not mean square differen-
tiable.” However, its increments over any time interval δ > 0 have finite vari-
ances. We can construct a time series (or a sequence of Gaussian random variables)
corresponding to FBM increments over successive nonoverlapping δ. The incre-
ments Vi(δ) = a[Y (iδ) − Y ((i − 1)δ)] of the FBM process aY (t) have variance
σ2(δ) = a2δ2H . Let a = 1

δ . The sequence Vi(δ) constitutes the discrete fractional
Gaussian noise (FGN) process. Consider the autocorrelation sequence of Vi(δ).

RV (k, δ) = E

[(
Y ((k + 1)δ) − Y (kδ)

δ

)(
Y (δ) − Y (0)

δ

)]
. (9.24)

We make use of the algebraic identity

(a− b)(c− d) =
1
2
[
(a− d)2 − (a− c)2 + (b− c)2 − (b− d)2

]
.

The identity is easy to prove by expanding the RHS. Rewrite equation (9.24) as
follows.

RV (k, δ)

= E

[
1

2δ2
(
(Y ((k + 1)δ) − Y (0))2 − (Y ((k + 1)δ) − Y (δ))2

+(Y (kδ) − Y (δ))2 − (Y (kδ) − Y (0))2
)]

=
1

2δ2
[var[Y ((k + 1)δ) − Y (0)] − var[Y ((k + 1)δ) − Y (δ)]

+var[Y (kδ) − Y (δ)] + var[Y (kδ) − Y (0)]]

=
a2

2δ2
[|δ(k + 1)|2H − |δk|2H + |δ(k − 1)|2H − |δk|2H

]
=

a2

2δ2−2H

[|k + 1|2H − 2|k|2H + |k − 1|2H
]
. (9.25)

Therefore, the normalized autocorrelation sequence of Vi(δ) is

rV (k, δ)

=
RV (k, δ)
var[Vi(δ)]

=
a2

2δ2−2H

[|k + 1|2H − 2|k|2H + |k − 1|2H
]

a2δ2H

=
1

2δ2
[|k + 1|2H − 2|k|2H + |k − 1|2H

]
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∼
[
H(2H − 1)

δ2

]
k2H−2, k → ∞. (9.26)

The final limiting form of rV (k, δ) in equation (9.26) can be verified by using

L’Hospital’s rule twice to evaluate the limit of δ2rV (k,δ)
H(2H−1)k

2H−2 as 1
k → 0. The

normalized autocorrelation coefficients rV (k, δ) in equation (9.26) is not infinite
summable over k = 1, 2, . . . .

9.3.3 Problems in generation of pure FBM

In the literature, FBM is, almost exclusively, the only self-similar process studied
in detail. Most publications in literature on FBM-based self-similar traffic model the
cumulatively arriving bursty traffic as a sample path of the continuous time FBM
process. Continuous time FGN is the derivative of FBM and forms its driver pro-
cess. Continuous time FGN has unbounded instantaneous variance. The continuous
time FBM process can be discretized over nonoverlapping windows. The increments
form an FGN sequence with finite variance. The cumulative addition of successive
random variables in such an FGN sequence is a discretized FBM sequence. Many re-
search publications report the realization of bursty traffic through the approximation
of continuous time FGN.

In order to satisfy self-similarity, discretized FGN must follow the autocorrelation
function specified in equation (9.25) in the previous subsection. Note that as δ → 0,
rV (k) = ∞, ∀k, in equation (9.25). Therefore, continuous time FGN is not suitable
for generating self-similar traffic. The autocorrelations given in equation (9.25) are
nonsummable over the infinite range of k, even for δ > 0.

Markovian approximations to bursty traffic are more likely to lead to exact analy-
sis and practical interpretations. In order to retain the desirable properties of bursti-
ness, traffic models with correlations lasting sufficient time periods should be cho-
sen. Markov modulated Poisson process is one popular class of traffic models. In
this family, an independent continuous time Markov chain controls the rate of Pois-
son packet emissions. Different states of the Markov chain emit packets at different
rates.

9.4 Hyperexponential Approximation to Shifted Pareto
Interarrival Times

The Pareto random variable is a commonly used one in the family of random
variables with heavy tailed distributions. Its probability density function (pdf) is
given by

fX(x) =
α

β

(
β

y

)α+1

(9.27)
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for y ≥ β and zero otherwise. The parameter β is a positive scale factor and has
the units of the random variable. The parameter α controls the tail profile. For
1 < α ≤ 2, the expectation is finite and the variance is infinite, corresponding to
the heavy tail requirement. The Pareto pdf can be shifted so that it is nonzero for all
positive y, resulting in the random variable Y whose pdf is

fY (y) =
α

β

(
β

y + β

)α+1

, y ≥ 0 and (9.28)

= 0, y < 0. (9.29)

The complementary cumulative distribution function (ccdf) of Y is given by

Fc(y) = P [Y > y] (9.30)

=
(

β

y + β

)α

, y ≥ 0 and (9.31)

= 0, y < 0. (9.32)

The first and second order statistics of this shifted Pareto random variable are

E[Y ] =
β

α− 1
and (9.33)

var[Y ] = ∞ (9.34)

for 1 < α ≤ 2. A heavy tailed shifted Pareto random variable may be approx-
imated by a weighted sum of exponential pdfs. The resulting pdf is known as a
hyperexponential pdf and for large y, it decays as a negative exponential, as y in-
creases. Therefore, it is not really heavy tailed. The advantage of a hyperexponential
pdf over a single exponential pdf is the following. The hyperexponential pdf has
a steep fall for small values of y corresponding to the high rate components of the
hyperexponential pdf. For large values of y, the low rate components of the hyperex-
ponential pdf dominate. This approximates the slower fall off rate of the Pareto pdf
profile for large y, while maintaining the exponential property, essential for Markov
modeling. The formulation of the optimization criterion and numerical evaluation
of the parameters of the approximation problem are not the topics of this chapter.
A general suggestion is to minimize the integral of the squared difference between
the cumulative distribution functions of the shifted Pareto random variable Y and a
candidate hyperexponential random variable. For the remainder of the chapter, we
assume that the interarrival time (IAT) random variable X for a single stream of
packets (called a packet source) has the following hyperexponential density with m
exponential components.

fX(x) =
m∑

i=1

piαi exp(−αix), x ≥ 0 and (9.35)
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= 0, x < 0. (9.36)

The parameters αi are different from the tail profile parameter α used for the Pareto
family above. Without loss of generality the m element set of {α1, . . . , αm} may
be ordered in some meaningful way such as in an increasing order. This hyperexpo-
nential pdf represents the IAT in one of the packet sources. Each packet completely
arrives in an instant of time and successive packet arrivals are separated by indepen-
dent and identically distributed (iid) X .

9.5 Characterization of Merged Packet Sources

Let k iid packet sources be merged to form a composite arrival process. Each
component packet source follows the hyperexponential IAT described in the above
section. At any time instant, each of the packet sources operates as follows. There
is a selected component from the set of m exponential components of the hyperex-
ponential pdf. All the packet sources are competing to emit the next packet, with
their respectively chosen rate of the exponential components. Soon after a packet ar-
rives, the next composite IAT is influenced by the following. The most recent arrival
was due to a packet emission from one of the sources. This particular source now
chooses one of the m exponential components for its next packet emission IAT, with
probabilities pi. All other sources are operating at their current rates. Therefore,
the composite packet arrival stream follows a Markov chain. Its characteristics are
developed below. This Markov chain is referred to as the environment chain. At any
time instant, each packet source is in one of m states, corresponding to the chosen
component of its hyperexponential pdf. All the sources that have chosen the same
exponential component have some similarity. Therefore, let ki denote the number of
individual packet sources that are in state imeaning that they all have chosen the i-th
component of the hyperexponential pdf. Let k denote the m-element vector as

k = (k1, . . . , km). (9.37)

Clearly,

ki ≥ 0, i = 1, . . . ,m and
m∑

i=1

ki = k, (9.38)

where k is the number of individual packet sources. Let vi be a unit vector repre-
senting the i-th exponential component as follows. The vector vi has zeros at each
of the m possible positions, except at position i at which the value is 1. Therefore,

k =
m∑

i=1

kivi. (9.39)
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The number of possible states in the environment chain is easily evaluated as the
number of ways in which k indistinguishable objects can be distributed into m dis-
tinguishable bins. Place the k objects and m − 1 barriers in a line. These m − 1
barriers separate the k objects into m distinguishable bins. All the possible arrange-
ments can be realized by designating different combinations of the m − 1 items as
barriers and the remaining k items as the objects in a line-up of the k+m− 1 items.
Therefore the number of such combinations is

(
k +m− 1

k

)
=

(
k +m− 1
m− 1

)
(9.40)

=
(k +m− 1)!
k! (m− 1)!

. (9.41)

As an example, if 25 individual packet sources are merged and if each individual
packet source has a 10-component hyperexponential IAT, the number of states in the
resulting environment Markov chain of the composite packet source is 52,451,256.

9.6 Product Form Solution for the Traffic Source
Markov Chain

In order to specify the behavior of the environment chain, the state transition rates
of the chain are required. Their equilibrium probabilities are also useful character-
istics. The large number of states motivates a quest for a computationally efficient
algorithm to evaluate the equilibrium state probabilities. This section analyzes the
environment chain and shows that the equilibrium state probabilities follows a prod-
uct form of a network of m immediate service queues. A convolution algorithm is
developed for an efficient evaluation of the equilibrium probabilities.

Let a particular individual packet source in state i emit the next packet. The rate at
which this event occurs is kiαi, since ki is the number of individual packet sources
in state i, each competing to emit a packet with a rate αi. Once such a packet is
emitted, the source that emitted it then independently chooses the next rate with a
probability mass function (pmf) p1, . . . , pm for rates corresponding to α1, . . . , αm.
If a rate αj is chosen, the vector state changes from k before the packet emission
to k − vi + vj , after the packet emission. We can imagine these state changes with
the help of m bins containing k objects changing their bin occupying configuration.
When the above change takes place, an object moves from the i-th bin to the j-th bin.
At any instant of time, each of the objects in the i-th bin is attempting to leave the
bin with a rate αi. As the first object leaves, it selects one of the m bins to reenter,
with a pmf p1, . . . , pm. Thus, the movement of k objects in the system is identical
to a closed network of m queues. The service discipline in each of these m queues
is “immediate service” with an exponential service time of rate αi for the bin (or the
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queue) i. When an object leaves a bin (queue), its selection of the next bin (queue)
to reenter is independent of everything else. Such a network of queues is known to
possess a product form for its equilibrium state probabilities. The following analysis
evaluates the product form solution and establishes this result as well. The object
leaving bin i can reenter the same bin i. At every time instant an object leaves a
bin, a data packet is emitted by the composite packet source. Since a data packet is
emitted even if an object leaves and reenters the same bin, we have that data packets
are emitted whenever the source chain changes state, as well as with a particular rate
during the time interval that the source chain stays in the same state. The rates of
change of states and data packet emissions are evaluated as follows.

Let an individual source in state i emit the next packet. The rate at which this event
occurs is kiαi. The probability that the source that emitted a packet will choose j as
its next state is simply pj . Therefore, the rate of change of state from k to k−vi+vj

is pjkiαi. A data packet is emitted from this environment chain at the time instant of
a state change. If i = j, the environment does not change state but a data packet is
emitted. Therefore, the rate of packet emission during the time the environment chain
resides in a state k and before it changes to some other state is pikiαi. During the
time the environment chain is in state k, the total rate with which the chain changes
to some other state is

m∑
i=1

kiαi(1 − pi) =
m∑

i=1

kiαi

m∑
j=1
j �=i

pj . (9.42)

The factor 1− pi on the left hand side (LHS) is due to the fact that if a packet source
in state i emits a packet and reenters state i, the overall environment chain does not
change state. Consider the rates of change from state k − vi + vj with j �= i to
k. Such a change requires that a packet source at state j emit a packet and that the
source change its state to i. This change is possible only if ki − 1 ≥ 0 or ki ≥ 1.
If i �= j and ki ≥ 1, clearly, kj < k. The rate of this event conditioned on the
environment chain being in state k − vi + vj is

pi(kj + 1)αju(ki). (9.43)

The function u(ki) is the unit step function defined as

u(l) = 1, if l ≥ 1 and (9.44)

= 0, otherwise. (9.45)

The factor u(ki) is used in expression (9.43) to ensure that the rate is zero if ki = 0,
since this latter condition renders the state k − vi + vj invalid. Let P [k] be the
equilibrium probability that the environment chain is in state k. The global balance
equation around state k is

P [k]
m∑

i=1

m∑
j=1
j �=i

pjkiαi
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=
m∑

i=1

m∑
j=1
j �=i

P [k − vi + vj ]pi(kj + 1)αju(ki). (9.46)

The factor u(ki) on the RHS of the above equation (9.46) is redundant and can be
eliminated since P [k − vi + vj ] = 0 if ki = 0. There is one such global balance
equation for every possible vector state.

A potential candidate for solution satisfies

P [k − vi + vj ]pi(kj + 1)αj

= P [k]pjkiαi, for all j �= i, (9.47)

and for every valid combination of k and k − vi + vj . Equivalently,

P [k − vi + vj ] =
pjkiαi

pi(kj + 1)αj
P [k] (9.48)

=
pj

(kj+1)αj

pi

kiαi

P [k]. (9.49)

This suggests a candidate product form solution

P [k] =
1
h

m∏
i=1

(
1
ki!

(
pi

αi

)ki
)
. (9.50)

The constant h is used to ensure that the sum of the probabilities of the finite state
environment chain evaluates to 1. The physical dimension of h is (timek). The next
step is to verify that the above product form solution satisfies the global balance
equations for all valid combinations of k and kvi + vj . If ki ≥ 1, we have from the
candidate product form solution,

P [k − vi + vj ] =
1
h

m∏
i=1

(
1
ki!

(
pi

αi

)ki
) pj

(kj+1)αj

pi

kiαi

= P [k]
pjkiαi

pi(kj + 1)αj
. (9.51)

Using this on the RHS of the global balance equation, the RHS of equation (9.46)
evaluates to

m∑
i=1

m∑
j=1
j �=i

P [k]
pjkiαi

pi(kj + 1)αj
pi(kj + 1)αj . (9.52)

Canceling pi(kj +1)αj on the numerator and the denominator, the RHS of the global
balance equation (9.46) simplifies to

m∑
i=1

m∑
j=1
j �=i

P [k]kiαi, (9.53)
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which is the LHS of the global balance equation (9.46). This successfully concludes
the verification of the validity of the product form solution given in equation (9.50)
for the equilibrium state probabilities of the environment Markov chain.

9.6.1 Evaluation of h, the Constant in the Product Form
Solution

In order for all the state probabilities of the environment chain to sum to 1, we
have

h =
∑
∀k

m∏
i=1

1
ki!

(
pi

αi

)ki

. (9.54)

The approach to evaluate h is the typical decomposition of the sum in the above
equation (9.54), resulting in a convolution algorithm for closed queuing networks
with state-dependent service rates. Define h(i, j) as the constant for i individual
packet sources and for j components in the hyperexponential pdf of the IAT of each
packet source. The idea is to develop

h = h(k,m) (9.55)

with an iterative algorithm which evaluates h(i, j) from smaller values of i and j all
the way through i = k and j = m.

h = h(k,m) (9.56)

=
∑
∀k

m∏
i=1

1
ki!

(
pi

αi

)ki

(9.57)

=
k∑

j=0

∑
k∈S(k,m)

km=j

m∏
i=1

1
ki!

(
pi

αi

)ki

(9.58)

=
k∑

j=0

1
j!

(
pm

αm

)j ∑
∀k∈S(k−j,m−1)

m−1∏
i=1

1
ki!

(
pi

αi

)ki

(9.59)

=
k∑

j=0

1
j!

(
pm

αm

)j

h(k − j,m− 1). (9.60)

The above iteration starts as follows. If k = 0, we have no packet sources and only
one state in the environment. Therefore,

h(0, j) = 1, j = 1, . . .m. (9.61)
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On the other hand, if m = 1 all the i objects are in the same bin resulting again in
only one state. Therefore,

h(i, 1) =
1
i!

(
p1

α1

)i

, i = 1, . . . k. (9.62)

Note that the convolution algorithm uses a computational decomposition only and
does not change the network configuration. Therefore, even though we use only one
station for the case of evaluating h(i, 1) in equation (9.62), p1 should not be changed
to 1. The iterations continue with

h(i1, j1) =
i1∑

i=0

1
i!

(
pj1

αj1

)j

h(i1 − i, j1 − 1) (9.63)

up to and including i1 = k and j1 = m. The algorithm generates a matrix with k
rows and m columns. The top row and the leftmost column are filled with the help
of equations (9.61) and (9.62), respectively. Filling any entry at the current position
(i1, j1) in the matrix requires all the elements up to and including row i1 of the
column to the left of the current entry. The complexity of the algorithm is O(k2m).
This concludes the computationally efficient evaluation of the normalization constant
h. If we need all the equilibrium state probabilities, the convolution algorithm to
evaluate h is redundant for the following reason. All the unnormalized equilibrium
state probabilities evaluated through the use of equation (9.50) without the factor 1

h
will sum to h.

9.7 Joint Markov Chain for the Traffic Source and
Queue Length

The topic of this section is the analysis of an FIFO queue that is fed by a Markovian
data traffic of the type discussed in the previous section. We can be a little more
general and consider the following Markov chain for the packet sources. Consider
a continuous parameter irreducible Markov chain with l states and in equilibrium.
The states are numbered 1, . . . , l for convenience. This Markov chain controls the
generation of data packets to be fed into the queue; it is called the environment
chain, as its special case is, in the previous section. Whenever the environment chain
changes its state, it emits a data packet into the queue. In addition, during a time
interval that the environment chain is residing in a state, and before it changes to
any other state, it generates data packets with iid exponential IAT. The rate of such
IATs are, of course, a function of the state of the environment, in general. Clearly,
the environment Markov chain developed in the previous section for data packet
generation due to merged streams is a special case of this general environment chain.
The only differences may be that the state transition rates of the previous environment
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chain follows a particular structure. Data packets require iid exponential service
time with a rate µ. Let bii be the cumulative rate of packet generation when the
environment is in state i. This cumulative rate has the following components. Let
aii = biiqii be the rate of packet generation while the environment chain is in state
i, not including any rate caused by the chain changing its state. In keeping with
the properties of the composite traffic source developed in the previous section, we
assume that aii > 0, i = 1, . . . , l. Let aij = biiqij be the rate with which the
environment changes its state from state i to state j, j �= i. As a consequence, biiqij
is the additional rate of packet generation when the environment chain is in state i,
since it emits a packet whenever it changes its state to j. The motivation for this
terminology is now clear; each row of the matrix Q = [qij ] is a pmf and the entire
matrix Q is a stochastic matrix. Note that qii > 0, i = 1, . . . , l. The reason for
emphasizing this is that in the case of the transition rates of a continuous parameter
Markov chain, the diagonal entries are restricted to be zero. In particular, for the
environment chain of the previous section, qii > 0 for every i. The entries bij are
defined to be zeros, if j �= i. This completes the definition of a matrix B = [bij ] with
strictly positive entries on the main diagonal and entries of zeros everywhere else.
Define a normalized matrix by dividing all its entries of B by the packet service rate
µ, as follows.

C =
1
µ

B. (9.64)

We also have the following.

A = BQ and (9.65)
1
µ

A = CQ. (9.66)

The joint system of the environment and the number of packets in the queue is a
Markov chain. Let the state of this joint chain be denoted by (j, n) corresponding
to j being the state of the environment and n, the number of packets in the queue;
j = 1, . . . , l and n = 0, 1, . . . ,. Let Pj,n be the equilibrium probability of state
(j, n). The following are the state transition rates. The symbol (., .) → (., .) denotes
the transition rate from the state specified on the left side of the arrow to the state
specified on the right side of the arrow.

(i, n) → (j, n+ 1) = aij , i = 1, . . . l; j = 1, . . . , l;
and n = 0, . . . , (9.67)

(i, n+ 1) → (i, n) = µ, i = 1, . . . l;n = 0, . . . . (9.68)

All other transition rates are zeros. The following develops the global balance equa-
tion around each of the states. Each LHS corresponds to the unconditional rate of
the chain leaving a particular state. This is obtained by multiplying the equilibrium
probability of the state in question by the sum of all outgoing transition rates from
the state. The RHS of each equation corresponds to the unconditional rate of enter-
ing the state corresponding to the state on the LHS. This is obtained by summing the
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product of the equilibrium probability of a state from which there is a transition to
the state on the LHS and the rate of the corresponding transition. Balance around
state (j, 0). There is only one state (j, 1) from which there is a transition to state
(j, 0). We have

Pj,0

l∑
i=1

aji = Pj,1 µ. (9.69)

Balance around state (j, n+1), n ≥ 0. There are transitions from the state (j, n+1),
i = 1, . . . , l to each of the states (i, n+ 2), with rates aji, correspondingly. There is
one more transition from the state (j, n+ 1), to the state (j, n), with a rate µ. There
is a transition from each of the states (i, n) to the state (j, n + 1), i = 1, . . . , l with
rates aij , correspondingly. There is a transition from the state (j, n+ 2) to the state
(j, n+ 1), with a rate µ. We have

Pj,n+1

(
µ+

l∑
i=1

aji

)
=

l∑
i=1

Pi,naij + Pj,n+2µ, (9.70)

for j = 1, . . . , l and n ≥ 0. Normalize all the equations by dividing each by µ.
Substitute ciiqij for aij

µ , i = 1, . . . , l and j = 1, . . . , l. We have, for n = 0, from
equation (9.69),

Pj,0

l∑
i=1

aji

µ
= Pj,1 or (9.71)

Pj,0

l∑
i=1

cjjqji = Pj,1 or (9.72)

Pj,0cjj = Pj,1 or (9.73)

Pj,1 = Pj,0cjj , j = 1, . . . , l. (9.74)

Similarly, the equations obtained by balancing around states with the number of
packets in the queue n > 0 are manipulated. From equation (9.70), we have

Pj,n+2 = Pj,n+1

(
1 +

l∑
i=1

aji

µ

)
−

l∑
i=1

Pi,n
aij

µ
(9.75)

= Pj,n+1

(
1 +

l∑
i=1

cjjqji

)− l∑
i=1

Pi,nciiqij (9.76)

= Pj,n+1(1 + cjj) −
l∑

i=1

Pi,nciiqij (9.77)
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for j = 1, . . . , l and n ≥ 0. The above equations can be represented in compact
matrix form, with the help of the following notation. Let Pn be a row vector

Pn = [P1,n . . . Pl,n], n ≥ 0 (9.78)

and I, the identity matrix. We have

P1 = P0C (9.79)

Pn+2 = Pn+1(I + C) − PnCQ, n ≥ 0. (9.80)

The above equations can be used to recursively generate the sequence of vectors,
{P1,P2, . . . } starting from P0. Note that P1 is a matrix multiple of P0, followed
by P2 being a matrix linear combination of P0 and P1, etc. Therefore, each Pn is
eventually a matrix multiple of P0.

The joint Markov chain of the environment and the queue is irreducible. We know
from the theory of Markov chains that there exists a strictly positive solution for the
equilibrium probabilities to the balance equations which is unique except for a single
normalization factor. If the system is stable, the normalization factor is uniquely
determined by

l∑
j=1

∞∑
n=0

Pj,n = 1. (9.81)

If the system is not stable, the only solution that allows convergence of the sum of
all the probabilities requires all of them to be zero. In this case, of course, the prob-
abilities cannot sum to one. If we find a strictly positive solution for the equilibrium
probabilities such that the sum of all the probabilities converges to one, then that is
the only solution.

If the system is stable, we have additional equations based on the equilibrium state
probabilities of the environment chain. Let the row vector

S = [s1 . . . sl] (9.82)

be the known equilibrium state probabilities of the environment chain. The matrix
CQ is the known matrix of the state transition rates of the l (finite) state continuous
parameter Markov chain. The quantities qii can be ignored in the state transition
diagram of the environment Markov chain, since a continuous parameter Markov
chain shows a state transition only when the state changes to some other state; a state
change back to itself does not show any change in the timed sequence of states. How-
ever, the parameters qii play a role in emitting a packet whenever the state changes
back to itself. Therefore they should not be completely eliminated from consid-
eration. The equilibrium state probabilities of the environment chain satisfies the
following matrix balance equation.

SC = SCQ. (9.83)
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It is easy to see that the effects of qii cancel on both sides of the above equation
(9.83). Together with the condition that

l∑
j=1

sj = 1, (9.84)

the matrix balance equation (9.83) uniquely determines S. If the environment chain
satisfies the conditions of the merged packet sources with each individual packet
source possessing iid hyperexponential pdf, S is obtained from the product form
results of the previous section. In any case, we assume that S is known. The en-
vironment chain functions independently. The function of the queue is affected by
the behavior of the environment chain. If we sum the joint probabilities of queue
occupancies, we recover the marginal equilibrium probability of the state of the en-
vironment chain. That is,

∞∑
n=0

Pi,n = si, i = 1, . . . , l. (9.85)

In matrix form this is equivalent to

∞∑
n=0

Pn = S. (9.86)

9.8 Evaluation of Equilibrium State Probabilities

The following principles and results from the matrix theory are helpful.

DEFINITION 9.3 A matrix is said to be positive if all its entries are
strictly positive. A nonnegative matrix is similarly defined. Let A and B
be matrices of identical sizes. If every entry of A is strictly less than the
corresponding entry of B we denote it with

A < B. (9.87)

Similar notation is also used for loose inequality. A positive diagonal matrix
has strictly positive entries on its main diagonal and zero entries everywhere
else.

DEFINITION 9.4 A square matrix A is said to be convergent if
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lim
n→∞An = 0. (9.88)

LEMMA 9.1
If the matrix A is convergent, the matrix (I −A) is invertible and the inverse
is given by

(I − A)−1 =
∞∑

n=0

An. (9.89)

Proof
The proof is very simple. Since A is convergent, we know that An is finite for every
n, including as n→ ∞. Consider

(I − A)
n∑

i=0

Ai =
n∑

i=0

Ai −
n∑

i=0

Ai+1 (9.90)

= I +
n∑

i=1

An −
n+1∑
i=1

An (9.91)

= I − An+1. (9.92)

Taking limits as n→ ∞ on both sides, we have

(I − A)
∞∑

i=0

Ai = I lim
n→∞ An+1 (9.93)

= I. (9.94)

Therefore,

∞∑
i=0

Ai = (I − A)−1. (9.95)
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In order to evaluate the equilibrium state probabilities of the joint Markov chain
of the environment and the queue length, we seek a solution of the form

Pn = S(I − R)Rn, n = 0 . . . (9.96)

with nonnegative and convergent matrix R that also results in a nonnegative S(I −
R). If such a matrix R exists, equation (9.96) is the unique solution for the equi-
librium probabilities of the joint Markov chain of the environment and the number
of packets in the queue. The task at hand is to develop an algorithm for evaluating
a such a matrix R, if it exists, or show that such a matrix does not exist. Substitute
the candidate solution from equation (9.96) in the balance equations. We need R to
satisfy

S(I − R)R = S(I − R)C and (9.97)

S(I − R)Rn+2 = S(I − R)Rn+1(I + C) − S(I − R)RnCQ, n ≥ 0.
(9.98)

Rearranging equation (9.98), we need R to satisfy

S(I − R)Rn
(
R2 − R(I + C) + CQ

)
= 0. (9.99)

We can attempt to obtain a matrix R that satisfies

R2 − R(I + C) + CQ = 0 (9.100)

in addition to earlier specified requirements. So far, we have used the balance equa-
tions connecting Pn+2 and other probability vectors, with n ≥ 0 only. Expand the
first balance equation (9.97) above. We have

SR − SR2 = SC − SRC (9.101)

= SCQ − SRC (9.102)

since we know that SC = SCQ. Rearranging equation (9.102), we have
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S
(
R2 − R(I + C) + CQ

)
= 0 (9.103)

verifying that if R satisfies the quadratic equation (9.100), then it also satisfies the
remaining balance equation (9.97). In an attempt to develop an algorithm to evaluate
R, rearrange the required equation (9.100) for R as

R = (R2 + CQ)(I + C)−1. (9.104)

The matrix R is required to be nonnegative and convergent. We can initiate a com-
putational procedure with R(0) = 0 to begin with, use it on the RHS of the equation
(9.104) and evaluate the LHS as its next matrix in an iterative procedure. Clearly, the
components of R will remain nonnegative. Let us examine the behavior of such an
iterative procedure is defined below.

R(0) = 0 (9.105)

R(n) = (R2
(n−1) + CQ)(I + C)−1, n = 1, . . . . (9.106)

9.8.1 Analysis of the sequence R(n)

LEMMA 9.2
The sequence {R(n)} is monotonically nondecreasing.

Proof
The proof is by induction. We know that

R(1) = CQ(I + C)−1 ≥ R(0) = 0. (9.107)

Assume that R(n) ≥ R(n−1). Denote the entries of R2
(n) by

(
R2

(n)

)
ij

and evaluate

them.

(
R2

(n)

)
ij

=
m∑

k=1

(
R(n)

)
ik

(
R(n)

)
kj

(9.108)

≥
(
R(n−1)

)
ik

(
R(n−1)

)
kj

(9.109)
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simply because all the corresponding entries are nonnegative and nondecreasing, and
because the inequality is preserved after addition and multiplication. Therefore, we
have

R2
(n) ≥ R2

(n−1). (9.110)

Now, it is easy to simplify R(n+1) − R(n) as

R(n+1) − R(n) = (R2
(n+1) − R2

(n))((I + C)−1 (9.111)

≥ 0 (9.112)

thus showing that the monotonically nondecreasing property carries on for every as
n to n+ 1.

LEMMA 9.3
The sequence is R(n) is bounded from above.

Proof
Again, proof is by induction.

R(1) = CQ(I + C)−1 (9.113)

SR(1) = SC(I + C)−1 (9.114)

< S. (9.115)

Equation (9.114) above follows due to SCQ = SC . In our application system, S
is the row vector of equilibrium probabilities of an irreducible finite state chain and
hence has strictly positive entries. Also, the matrix C is a positive diagonal matrix.
Now let

SR(n) < S. (9.116)

Then,
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SR2
(n) = SR(n)R(n) (9.117)

< SR(n) (9.118)

< S. (9.119)

Use this in the evaluation of SR(n+1).

SR(n+1) = S(R2
(n) + CQ)(I + C)−1 (9.120)

< S(I + C)(I + C)−1 (9.121)

< S (9.122)

thus proving that

SR(n) < S for every n ≥ 1. (9.123)

Now, every entry in S is strictly positive. Therefore, in the evaluation of SR(n),
every entry in R(n) contributes to the sum. Since every entry in R(n) is nonnegative,
this effectively establishes a bound on every entry in R(n). The following is the
algebraic elaboration of the same argument.

smin = min{s1, . . . , sm} (9.124)

denotes the minimum entry in S. At this point, we are interested in establishing any
(finite) bound for R(n). Starting from the componentwise inequalities in SR(n) <
S, we can reduce the values on the LHS and increase the values on the RHS

m∑
i=1

si(R(n))ij < S or (9.125)

smin

m∑
i=1

(R(n))ij < 1 or (9.126)
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smin(R(n))ij < 1 or (9.127)

(R(n))ij <
1

smin
or (9.128)

R(n) <
1

smin
. (9.129)

The last inequality bounds every entry of the matrix R(n) by the quantity on the

RHS.
We have shown that the sequence of matrices {R(n)} is monotonically nonde-

creasing and bounded from above by a finite constant. From the dominated theorem
of convergence in the theory of sequences, the above establishes the following result.

LEMMA 9.4
The sequence of matrices {R(n)} is a convergent sequence. Denote the limiting
matrix by R. We have

lim
n→∞R(n) = R. (9.130)

Together with the inequality (9.123), that is,

SR(n) < S, (9.131)

we have

SR ≤ S. (9.132)

The strict inequality in (9.131) is replaced by the loose inequality in the above
(9.132) for the following reason. As the index n of the sequence {R(n)} progresses,
the strict inequality of (9.131) is true for every n. However, it is not clear if the
difference between the corresponding elements of S and SR(n) can or cannot be
made as small as desired by making n sufficiently large. That is, it is not clear if the
strict inequality is maintained in the limit as n tends to infinity. Therefore, all we can
say from the above arguments is that

S(I − R) ≥ 0. (9.133)
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The book by Marcel Neuts listed in the Short Bibliography treats queues input by a
more general class of Markovian arrivals than the one we have at hand. Neuts shows
that the algorithm in equations (9.105) and (9.106) produces a sequence of R(n) that
converges to what is known as the “minimal nonnegative solution” R and that R
satisfies the additional property

S(I − R) > 0. (9.134)

We state it below as a theorem, for our special case, without proof (of the conver-
gent property of R).

THEOREM 9.1
The sequence of matrices, {R(n)}, generated in equations (9.105) and (9.106),
satisfies the following properties.

1. Every matrix R(n) ≥ 0, n = 0, . . . .

2. The sequence {R(n)} converges to a limiting matrix R.

3. The limiting matrix R is a convergent matrix. That is

lim
n→∞Rn = 0 and (9.135)

(I − R)−1 =
∞∑

n=0

Rn. (9.136)

4. The vector S(I − R) is strictly positive.

9.9 Queues with MMPP Traffic and Their Performance

The environment emitting the packets is different in this system. The environment
is a finite chain with l states and transitions rates ciiqijµ from state i to state j, as
in the earlier case. However, packets are not emitted when the environment chain
changes state. Therefore, qii = 0, since there is no event that signal a transition from
state i back to itself. The equilibrium probability row vector S follows SC = SCQ.
The environment does emit packets in a Poisson stream with rate diiµ as long as the
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environment chain is in state l. D is a diagonal matrix with entries dii. When the
environment chain changes state, the rate of Poisson packet arrivals changes.

The resulting matrix balance equations are

P1 = P0[D + C(I − Q)] (9.137)

Pn+2 = Pn+1[I + D + C(I − Q)] + PnD, n ≥ 0. (9.138)

As in the earlier case, seek a solution of the form

Pn = S(I − R)R (9.139)

with a nonnegative and convergent R which should also lead to

I − R > 0. (9.140)

Following the earlier approach, substituting the candidate solution in the balance
equations (9.137) and (9.138), we obtain

S(I − R)Rn

(
R2 − R

(
I + D + C(I − Q) + D

))
= 0. (9.141)

We can further restrict the candidate solution to satisfy

R2 − R

(
I + D + C(I − Q) + D

)
= 0. (9.142)

The above class of problems is included in the book by Marcel Neuts (listed in
the Short Bibliography and referenced earlier). The algorithm proposed and proved
there to obtain the minimal nonnegative solution for R is

R(0) = 0 (9.143)

R(n+1) = (R2
(n) + D)

(
I + D + C(I − Q) + D

)−1

, n = 0, 1, . . . .

(9.144)
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In this case of MMPP, inverting the matrix

I + D + C(I − Q) + D (9.145)

restricts the number of states of the environment chain that the computational proce-
dure can handle.

9.10 Performance Figures

The simple mathematical structure of the resulting equilibrium state probabilities
in both of the different cases of the environment Markov chain leads to easy evalua-
tion of performance figures. Some of these are suggested in the exercises.

9.11 Conclusion

Poisson traffic with a constant rate is considered to be smooth since the number
of arrivals averaged over even reasonably short time periods tends to be close to its
expectation. As the time period of averaging increases, the variance of the number
of arrivals decreases inversely proportional to the time of averaging. Data traffic
patterns in which the amounts of traffic received in successive constant time periods
are positively correlated and in which these correlations persist and do not decay
exponentially tend to be bursty. Self-similar traffic is known to be a limiting case of
burstiness, in some sense. Merging a large number of independent traffic sources in
which each source exhibits a heavy tailed distribution for interarrival time is known
to result in a composite traffic source with properties close to self-similarity. Such
an aggregation of individual traffic sources results in long range dependence. It is
easy to see this cause-effect relationship, as follows. Among the k individual traffic
sources, at any instant of time, each source will emit a data packet, after some time.
These times for packet emission are not memoryless since all the interarrival times
are heavy tailed. Soon after a particular source emits a packet, it implicitly resets
its timer to start a new independent heavy tailed interval for its next packet emis-
sion. However, all other sources are still in the process of elapsing their respective
times for their next packet emission. Since these time intervals are heavy tailed, the
dependency also intuitively lasts for longer time intervals.

Fractional Brownian motion (FBM) is the most understood and most useful self-
similar process. FBM being a Gaussian process with fluctuations on both sides of the
zero is not particularly suitable for traffic modeling. The derivative of the FBM is the
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continuous fractional Gaussian noise (FGN) and has infinite instantaneous variance.
The increments of the FBM over successive nonoverlapping intervals is called the
discrete time FGN. The autocorrelation sequence of the discrete time FGN is not
infinite summable.

A Markovian bursty data traffic model with a large number of states is developed
as follows. Let successive packets in a data packet stream be separated by anm com-
ponent hyperexponential interarrival times. The hyperexponential pdf approximates
a heavy tailed pdf. Let k independent sources of such packet streams be merged. This
merged traffic approximates self-similar traffic. In exact representation, the merged
packet traffic results in a Markov chain with a very large number of states. This
Markov chain is elegantly analyzed by first showing that it satisfies a product form
of a closed network ofm state dependent queues and then evaluating the equilibrium
state probabilities with an efficient algorithm.

The behavior of a single Markovian queue with such composite data traffic is
analyzed. The analysis of a single FIFO queue input by an MMPP is similar to that
input by the composite large Markovian bursty traffic. Its results are briefly pointed
out.

9.12 Exercises

1. Develop the expressions for the important performance figures of the two
Markovian bursty traffic models studied in this chapter.

2. A two state environment Markov chain generates exponential size data pack-
ets. The rate of packet generation is controlled by the state of the environment.
As long as the environment is in state 1, no packets are generated. If the state of
the environment is 2, packets are generated at the rate of 1 per ms. In addition,
a packet is generated at every time instant when the state of the environment
changes. The average time the environment stays in state 1 is 2 ms, and in
state 2, it is 3 ms. Packets enter an FIFO queue buffer with unlimited waiting
line.

(a) What is the maximum average service time below which the system is
stable?

(b) Numerically determine the R matrix for the case of the normalized load
ρ = 0.7.

(c) Compute and plot the expected response time in the queue as a function
of the average service time, for the range of 0.1 < ρ < 0.9.

3. Repeat Exercise 2 for the case when there are no packet arrivals at the time
instants of state changes in the environment chain.
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4. Four iid traffic substreams are merged and fed to an FIFO queue. The IAT
between packets in each substream is hyperexponential with rates of 1, 2, and
3 per ms, respectively. Their corresponding mixing probabilities are 0.1, 0.3,
and 0.6. All the packets require iid exponential service time with a rate µ.
Solve the following with the help of computer programs.

(a) Develop the state space and the corresponding state transition rates of the
packet arrival system.

(b) Determine the equilibrium state probabilities of the packet arrival chain
withe the help of two different techniques.

i. The traditional method of matrix inversion

ii. The convolution algorithm for the product form solution

(c) Determine the minimum µ above which the queue is stable.

(d) Let ρ be the normalized load of the queue, which is a function of µ. Plot
the expected number in the queue over 0.1 < ρ < 0.9.

(e) Compare the plot of the expected number in the above exercises with that
of an M/M/1/∞ queue.

(f) Plot the ratio of the expected numbers in the above two Exercises.

5. Investigate the problem of fitting a hyperexponential pdf for a shifted Pareto
IAT. Recall the following about the Fourier series expansion of a periodic func-
tion. The coefficients of the different harmonics are not changed if we try to
fit a finite number of harmonics for the original periodic function. Attempt to
formulate an optimization problem to fit a hyperexponential pdf to a shifted
Pareto pdf with a similar property. That is the rates of the exponential func-
tions should be independent of the number of exponential functions used for
the hyperexponential approximation. If this is successful, we can find such
“optimal rates” of exponential functions one after another and stop after some
number of components. For a given number of components with a given set
of rates of exponential functions, solve the problem of determination of the
corresponding mixing probabilities.

6. This chapter has introduced closed queuing networks with immediate service,
a category of networks with stated-dependent service rates. These principles
are useful in the channel allocation problem of cognitive radio networks in
which multiple groups of users intelligently share a common set of radio chan-
nels.

Each of a set of N channels can be in one of several functionalities.

(a) Channel under testing to determine quality. There are two categories of
usable channels. High (H) quality, and acceptable (A) quality. Chan-
nels required to be tested go through an FIFO queue. Each test takes an
exponential amount of time. On testing, if a channel is found to be in
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one of two quality states, it is moved to the corresponding idle queue. If
the channel quality is found to be unacceptable, it is moved back to the
testing queue for testing again, when it gets its turn in the FIFO testing
waiting line again.

(b) If the quality testing is successfully complete, a channel is sent to one of
the two idle (H orA) queues, in each of which, channels wait in an FIFO
queue for allocation to a user.

(c) When a request is made for a particular type (H or A) of channel, if the
idle queue for that type of channel has at least one channel, the chan-
nel at the head of the queue is allocated. If not, the request disappears.
Requests for a particular type of channel allocation come in after iid ex-
ponential times with a particular rate.

(d) There are two categories of users: primary (P ) and secondary (S). There-
fore, there are four categories of channels being used. The four combi-
nations are the two types of usable channel qualities and the two types
of users. The two different qualities use different bit rates for transmis-
sion and therefore have different average service times, even if the packet
sizes are the same. Primary users have higher priority and therefore can
hold onto the chancel for longer durations. Secondary users are required
to use an allocated for shorter duration so they can squeeze in some com-
munication inbetween the requirements of the primary users.

(e) Once a channel is released by the user, it is either sent for testing to the
quality testing queue or to the corresponding idle queue, based on the
recommendation of the user that used it for the most recent connection.

Include additional interesting conditions that may allow the primary users to
have a higher priority than the secondary users. Develop the Markovian queu-
ing network diagram and include the necessary interconnections. Indicate
which interconnections in the queuing network are necessary and why other
interconnections do not exist. Indicate the type of service in each queue. Note
that the service discipline in queues in which channels are used for data com-
munication is immediate service. Supply some meaningful physical values
for rates and switching probabilities. Develop the algorithm for the evalua-
tion of equilibrium state probabilities and performance figures. Evaluate the
probability that a primary user finds no free channel when it needs one.

7. Investigate other ways of organizing the operation of a cognitive radio net-
work. As one example, let there be Nc number of channels and Np number
of primary users. Let the number of secondary users be uncertain, but assume
some statistically regular way in which secondary users request channels.

8. Prove that the equilibrium number of customers in an M/G/∞ queue is a Pois-
son pmf. Guess the parameter of this Poisson distribution before deriving it.
Investigate whether or not a closed queuing network in which one or more
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stations have immediate service but with nonexponential service times has a
product form solution. Any and all other FIFO queues in the network have
memoryless service times. Note that a product form for the equilibrium state
probabilities by itself does not imply that the continuous time stochastic chain
of the network’s vector state must be Markov.





Chapter 10

Analysis of Fluid Flow Models

10.1 Introduction

We have studied several Markov chain models of queuing systems to represent
and analyze computer network performance problems. In these models, packets have
been assumed to appear instantaneously. The departure time instant of a packet from
a queue is considered to be the time instant when the entire packet including the
last bit has just completed leaving the system. In the case of the simplest M/M/1/∞
queue in equilibrium, departure time instants are shown to be Poisson. In reality, data
packets begin to flow out of the system when the first bit is serviced and continues
to flow out for a nonzero amount of time until the last bit has departed. This is
easily visualized in the case of a transmitter whose purpose is to move the packet
from the system to the surroundings. If we have a sequence of queues, such as the
output of the transmitter being fed to a remote receiver, the data packets arriving into
the receiver also take a nonzero amount of time for arrival. That is, a packet starts
arriving when the first bit starts arriving and continues until the last bit has completed
arriving. As mentioned above, if we mark the end of the arrival time interval as the
time instant of the packet arrival, the arrival time instants have been shown to be
a Poisson stream, if the arrivals came from the departures of a previous M/M/1/∞
queue under equilibrium.

In some practical systems, the server need not wait for all of the packet to start
servicing it. If the server is free at the time a packet starts arriving, or if the server
becomes available to service a packet midway through its arrival time interval, the
server can start servicing the packet before it has completed its entire arrival time
interval. Such data arrival and departures are henceforth referred to as fluid arrivals
and departures. In the case of a single server, the total service time for a packet
is usually modeled as a time interval that is proportional to the total time for the
complete arrival of the packet. In some systems, the total time for service may be
less than the total time of arrival. An illustrative example is that of a high speed
transmitter which can pump out a packet on an outgoing datalink at a rate higher
than the rate at which the packet flowed into the transmitter queue. In a particular
application example, let the transmitter (server) start acting on (servicing) a packet
only after it has completely arrived. Then the effect of higher fluid service rate in
comparison with the fluid arrival rate is easily visualized as less time for servicing
a packet than its fluid arrival time interval. The rate of flowing in here is not the

363
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number of packets arriving over a unit time interval; it is the rate at which the bits
of a packet flow in within a packet. In such a system, the average inactive time
interval between the end of a packet arrival and the start of the next packet arrival
is less than the corresponding time interval at the output. Consider such a system
which is empty at some point and a packet starts flowing in. The transmitter cannot
function at its full rate simply because bits are not flowing in at a rate that it can
transmit. Neither can it predict the perfect time delay after which it should start
transmitting so as to complete the transmission exactly at the time instant that the
packet arrival completes. So, what is the purpose of having a high speed transmitter?
There are two reasons. The first is that if there are packets that have completed
arrival, the transmitter can pump it out at its high rate without having to slow down
in the middle for the arrival to catch up. The second reason is that fluid packets
may be able to simultaneously arrive from different sources and multiplexed into the
buffer. Then it may be necessary to transmit fluid bits at a rate higher than the fluid
arrival rate of one of the arrival streams.

If the fluid transmission rate is lower than fluid arrival rate, we have what is called
a “leaky bucket.” Such a system may be used to “regulate” traffic. This effectively
stretches packets so that if a burst of packets arrived over a short time period, the
output is pumped slowly resulting in smoothing out the fluctuations in short time
arrival rates. The simplest fluid flow system is such a leaky bucket which drains fluid
bits at a constant rate. The input is a two state Markov chain in which no fluid is
input during one of the states and fluid is pumped at a higher rate than transmission
rate in the other state. The next section analyzes such a system.

10.2 Leaky Bucket with Two State ON-OFF Input

The Markovian fluid input process has two states, ON and OFF. Let the random
variable corresponding to the OFF state be 1 and that for the ON state, 2. During the
ON state, 2, the environment pumps bits at a bit rate of γ. Of course, during the OFF
state, state 1, the environment does not pump bits at all, that is, it pumps with a rate
of zero. At any time instant the environment is in the OFF state, the time required to
switch over to the ON state is exponentially distributed with rate α. Similarly, during
the ON state, the environment will switch over to the OFF state after an exponential
time with a rate β. This leads to the following equilibrium probabilities for the
environment Markov chain pumping fluid into the buffer.

p1 =
β

α+ β
and (10.1)

p2 =
α

α+ β
. (10.2)
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We refer to the fluid input system as the Markov chain or simply the chain. The
fluid flows into a buffer, and it is drained or transmitted out by the transmitter. The
transmitter empties the bits at a constant rate of η bits per unit time, provided the
buffer has bits to transmit. Let x(t) be the real variable amount of bits in the buffer
at any time instant t. Let X(t) be the corresponding random process. The objective
is to evaluate the equilibrium probability distribution of the random variableX , pro-
vided that the system is stable. The condition for stability is intuitively seen as the
requirement that the overall average rate of pumping in is less than the capacity of
the transmitter to pump out. This is easily evaluated as follows. The ON and OFF
states strictly alternate. The average amount of fluid pumped in during one ON time
period is γ

β , over an average time period of 1
β . This is followed by an OFF time

period with lasting an average time of 1
α . Therefore, the overall average pumping-in

rate is

γ
β

1
β + 1

α

(10.3)

per unit time. The capacity to transmit bits out of the buffer is η bits per unit time.
Therefore the condition for stability is given by

γ
β

1
β + 1

α

< η or (10.4)

αγ

α+ β
< η. (10.5)

Within the class of stable systems, if the transmission rate η is higher than the
pumping-in rate γ, the buffer will be empty all the time. The transmitter will function
to drain the incoming bits. Since the incoming bit rate is less than the transmitter’s
capacity, the transmitter works at a lower rate of γ and empties the bits as they come
into the buffer. This is a very simple case in which the buffer content is always zero.
Therefore, we assume η > γ. In this case, as the bits flow in, the transmitter drains
at a lower rate and a portion of the bits flowing in accumulate in the buffer. When the
system switches to the state zero, the bits stop flowing in but the transmitter continues
to drain the bits at its capacity.

10.2.1 Development of differential equations for buffer con-
tent

In the nondegenerate case being studied, γ > η, the buffer content increases by a
constant rate of γ−η > 0 when the state of the fluid input process is ON. The buffer
content decreases with rate η during the OFF state, provided there is some fluid (bits)
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to drain. The randomness in the fluid amount is a consequence of the randomness in
the ON-OFF process only.

Let Fi(X ≤ x, t) be the joint probability that the state is i ∈ {1, 2} and that the
buffer content is at most x at time instant t. Consider the time interval [t, t+dt]. Let

dt = dt1 + dt2 (10.6)

where a state change, if any during dt, takes place at some t + dt1. Given that the
state of the chain at t is 1, the probability of no state change in the environment
is (1 − αdt). Under this condition, the buffer simply drains ηdt amount of bits.
On the other hand, if the state is 2 at t, a state change to state 1 can take place in
dt with a probability βdt. In this case, the amount of fluid (bits) change from the
original amount x for the duration dt1 is positive and given by (γ − η)dt1. During
the following infinitesimal time interval dt2, the buffer content decreases by ηdt.
Therefore, over dt, the net change in x is γdt1 − ηdt. The probability of the state
of the chain being 1 and that X ≤ x at t + dt is evaluated by considering different
possibilities at t and the changes that need to take place in order to reach the desired
condition. We have

F1(x, t+ dt) = F1(x+ ηdt, t)(1 − αdt) + F2(x− γdt1 + ηdt, t)βdt.
(10.7)

Rearranging, we have

F1(x, t+ dt) − F1(x+ ηdt, t)
dt

= −αF1(x + ηdt, t) + βF2(x− γdt1 + ηdt, t). (10.8)

Add and subtract F1(x, t) in the numerator of the LHS of the above equation (10.8).
This results in

F1(x, t+ dt) − F1(x, t)
dt

+
F1(x, t) − F1(x+ ηdt, t)

dt

= −αF1(x+ ηdt, t) + F2(x− γdt1 + ηdt, t)β. (10.9)

As dt → ∞, the first ratio clearly evaluates to the partial derivative ∂F1(x, t)
dt . To

evaluate the limit of the second ratio, note that at any time instant that the state is



Analysis of Fluid Flow Models 367

1, there is no fluid flow into the buffer and the transmitter drains at a rate of η.
Therefore, when the state is 1,

dx

dt
= −η or (10.10)

ηdt = −dx and (10.11)

dt = −dx
η
. (10.12)

Using these in equation (10.9), we have

∂F1(x, t)
∂t

− η
F1(x, t) − F1(x− dx, t)

dx

= −αF1(x+ ηdt, t) + βF1(x− γdt1 + ηdt, t). (10.13)

Evaluating the limits, we obtain the following partial differential equation

∂F1(x, t)
∂t

− η
∂F1(x, t)

∂x
= −αF1(x, t) + βF2(x, t). (10.14)

We are interested in the equilibrium cdf, that is under the condition that the cdf
Fi(x, t) that does not vary with time. If such a solution is possible,

∂Fi(x, t)
dt

= 0 (10.15)

and the parameter t in Fi(x, t) need not be explicitly written since Fi(x, t) does not
vary with time. The derivatives of Fi(x) wrt x are not any more partial, again due
to only one independent variable x. Using these simplifications and rearranging, we
have

dF1(x)
dx

=
α

η
F1(x) − β

η
F2(x). (10.16)

The above equation (10.16) is dimensionally correct. The rate η is in number of bits
per unit time and x is in bits. The rates α and β are simply in “per unit time.” The
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development of a similar differential equation for the joint probability of the state of
the chain being 2 and X ≤ x at the time instant t+ dt is similarly carried out. If the
state is 2 at t and it does not change over the next dt, the change in the fluid amount
is (γ − η)dt. If the state at t is 1 and it changes to 2 after dt1, the change in fluid
amount over dt > dt1 is γdt1 − ηdt. We have

F2(x, t+ dt) = F2(x− γdt+ ηdt, t)(1 − βdt) + F1(x− γdt1 + ηdt, t)αdt,
(10.17)

or,

F2(x, t+ dt) − F2(x− γdt+ ηdt, t)
dt

= −βF2(x− γdt+ ηdt, t) + αF1(x− γdt1 + ηdt, t). (10.18)

To evaluate the limits as dt → ∞, add and subtract F2(x, t) to the numerator of the
ratio on the LHS of the above equation (10.18).

F2(x, t+ dt) − F2(x, t)
dt

+
F2(x, t) − F2(x− γdt+ ηdt, t)

dt

= αF1(x− γdt1 + ηdt, t) − βF2(x − γdt+ ηdt, t). (10.19)

The limit of the first ratio on the LHS of (10.19) evaluates to ∂F2(x, t)
dt . In order to

evaluate the limit of the second ratio, observe that in state 2, the rate of increase of
fluid is

dx

dt
= γ − η or (10.20)

(γ − η)dt = dx and (10.21)

dt =
dx

γ − η
. (10.22)

Using these in equation (10.19), simplifying, and carrying out the limit in the re-
maining parts of the equation, we have

∂F2(x, t)
∂t

+ (γ − η)
dF2(x, t)

∂x
= αF1(x, t) − βF2(x, t). (10.23)



Analysis of Fluid Flow Models 369

As in the earlier case, we are interested in the equilibrium cdf, that is under the
condition that the cdf Fi(x, t) that does not vary with time. If such a solution is
possible,

∂F2(x, t)
∂t

= 0 (10.24)

and the parameter t in Fi(x, t) need not be explicitly written since Fi(x, t) do not
vary with time. Using these simplifications and rearranging, we have

dF2(x)
dx

=
α

γ − η
F1(x) − β

γ − η
F2(x). (10.25)

The two final equations connecting F1(x) and F2(x) are

dF1(x)
dx

=
α

η
F1(x) − β

η
F2(x) and (10.26)

dF2(x)
dx

=
α

γ − η
F1(x) − β

γ − η
F2(x). (10.27)

We finally have a set of two coupled linear first order ordinary differential equations
with constant coefficients. They are differential equations due to the presence of
derivatives. They are coupled since each cannot be separately solved. They are lin-
ear, since, if we can find two solutions yi(x) and zi(x) forFi(x), then ayi(x)+bzi(x)
is also a solution for Fi(x). Similar comments hold for linearly combining multiple
individual sets of solutions. The differential equations are “ordinary” since there are
no partial derivatives and all the derivatives are with respect to the same independent
variable x. They have constant (but different) coefficients multiplying all the func-
tions Fi(x) and their derivatives. We are required to solve the equations and produce
F1(x) and F2(x) as functions of x for solutions. Examining the equations, we see
that the functional dependency on x of Fi(x) and their derivatives must be the same
if the equations (10.26) and (10.27) are to hold for all x. This provides a hint that
any solution for F1(x) and F2(x) must have a variation with respect to x of the form

Fi(x) = exp (vx). (10.28)

Note that the same form of variation wrt x is used for both i = 1 and i = 2, that
is, the same v. Substituting this form into the original differential equation allows
us to verify its validity, and more importantly, to evaluate the unknown constant v.
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When we substitute the equation (10.28) in the original differential equations, the
functional variation exp (−vx) cancels out and we get algebraic equations for the
unknown v. We may get multiple values for v, each of which satisfies the set of
algebraic equations. In this case, the general solution will be a linear combination
of all such solutions. These constants are evaluated if enough initial conditions are
known about the nature of the system described by the differential equations. In our
case, this additional information is that Fi(x) are joint cdfs. Therefore,

lim
x→∞F1(x) = p1 =

β

α+ β
and (10.29)

lim
x→∞F2(x) = p2 =

α

α+ β
. (10.30)

Other conditions such as conservation of throughput at the flow-in and flow-out
points are also initial conditions.

Recall that the entire derivation has been carried out for x > 0, so that the trans-
mitter drains the buffer with its full capacity. In the final solution for Fi(x), we do
know that Fi(X) = 0 for x < 0. Therefore, Fi(0) will automatically give us the
joint probability of the the environment’s chain being in state i and the buffer being
empty.

The above general method is better illustrated with a numerical example in which
the clutter due to parameters α, β, γ, and η is eliminated without changing the struc-
ture of the differential equations. This allows us to concentrate on the solution ap-
proach.

Example 10.1
A lone teenage customer is enjoying the wireless access point in an Internet

cafe all for his own laptop computer on a lazy Saturday afternoon. The
cafe has installed numerous wireless devices to monitor their equipment.
It is not clear why the cafe did not use Ethernet connections for at least
their non-mobile equipment. These wireless devices do not use the Internet
access point but generate electromagnetic noise that interferes with data
communication between the laptop and the access point. Therefore, the
laptop transmitter uses a smaller bit transmission rate than the rate of input
bits into the transmitter buffer, to combat noise. Packets come into its buffer
for transmission at the rate of 1000 packets per second. The average number
of bits in a packet is 500. The bit rate with which a packet flows into the
buffer 1.5 Mbps (megabits per second). The bit transmission rate of the
transmitter is 1 Mbps. Successive packets do not flow in continuously as
there is a time period for acknowledgment followed by a possible delay for the
next packet to start flowing in. State the approximations necessary to model
this as a simple Markovian fluid flow system. Determine the equilibrium cdf
of the number of bits left over in the transmitter buffer. If the transmitter
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expends 10 mW of power during the time it is transmitting bits and 2 mW
when it is not, evaluate the average power consumption by the transmitter.

Solution
The number of bits in packets is approximated as a continuous random vari-
able with an iid exponential distribution. Time intervals of OFF periods
between successive packets coming into the buffer are also modeled as id ex-
ponential random variables. This is consistent with the given condition that
successive packets do not arrive with zero gap of time period between them.

The average ON time of an incoming packet is

1
β

=
500 bits
1.5 Mbps

or (10.31)

β = 3 per ms. (10.32)

The packet arrival rate is the reciprocal of the average time between the
starting points of two successive packets. Therefore, the average OFF time is
the reciprocal of the packet arrival rate minus the average ON time. That is,

1
α

=
(
1 − 1

3

)
ms or (10.33)

α = 1.5 per ms. (10.34)

The arriving bit rate within a packet is γ = 1.5 Mbps or 1.5 kilo bits per
millisecond. The bit transmission rate is η = 1 Mbps or 1 kilo bits per
millisecond. With these, we have time in milliseconds and the amount of bits
(fluid) in kilo bits The required parameters in the differential equations are

α

η
= 1.5 (10.35)

β

η
= 3 (10.36)

α

γ − η
= 3 and (10.37)

β

γ − η
= 6. (10.38)

Using these in the differential equations, we have
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F ′
1 = 1.5F1 − 3F2 and (10.39)

F ′
2 = 3F1 − 6F2. (10.40)

In the above, the common argument x of the functions is omitted for simplic-
ity. Also, the prime superscript denotes the derivative wrt x. These differen-
tial equations are represented in matrix notation as

F ′ = AF . (10.41)

The matrix A contains the parameters.

A =
[

1.5 −3
3 −6

]
. (10.42)

We seek a solution of the form

F = B exp(vx) (10.43)

where B is an unknown column vector and v is an unknown value. The above
form for the solution uses a constant multiplied by the exponential function
for each unknown function Fi(x). The constants may turn out to be different
for F1(x) and F2(x) but the exponential function exp(vx) is common to both
the functions. Substituting the candidate solution in the vector differential
equation (10.41), we have

vB exp(vx) = AB exp(vx), (10.44)

vB = AB or (10.45)

(A − vI)B = 0. (10.46)

We now clearly see that the problem of solving the differential equations has
been reduced to solving the algebraic problem of determining v and B in
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equation (10.46). The quantity v is called the eigenvalue of the matrix A
and the vector B is called the eigenvector corresponding to the eigenvalue.
There may be multiple eigenvalues and corresponding multiple eigenvectors.
Equation (10.46) has a nonzero solution for B only if the determinant of
A − vI,

∣∣∣∣∣1.5 − v −3
3 −6 − v

∣∣∣∣∣ = (v − 1.5)(v + 6) + 9 = 0. (10.47)

Solving the quadratic equation for v, we have v = 0 or v = −4.5. For v =
0, the corresponding eigenvector B is determined by substituting v = 0 in
equation (10.46) and solving the set of linear simultaneous equations for b1
and b2. The RHS of the matrix equation (10.46) is a column vector of zeros.
There are two consequences of this. The first is that any equation can be
expressed as a linear combination of all others. The second is that we will
not be able to obtain unique values for b1 and b2. In this case of only two
unknowns, we obtain

1.5b1 − 3.0b2 = 0 or (10.48)

b2 =
1
2
b1. (10.49)

Since we will be using the two solutions with the different v values in a linear
combination, one of the values for b1 and b2 can be chosen arbitrarily (but
nonzero), for each different case of v. For the case of v = 0, let b2 = 1 so that
b1 = 2.

For the eigenvalue v = −4.5, the eigenvector B is given by

6b1 − 3b2 = 0 or (10.50)

b2 = 2b1. (10.51)

Let b1 = 1 and b2 = 2 for this case of v = −4.5. The general solution given
by the linear combination

F = c1

[
2
1

]
+ c2

[
1
2

]
exp(−4.5x). (10.52)
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There is no exponential function of x multiplying the first column vector,
since the first eigenvalue is 0. How do we evaluate c1 and c2 for our particular
problem? We do it with the help of the so called “initial conditions” for the
differential equations, known about the system. We know that each of F1(x)
and F2(x) is a joint cdf. The marginal cdf of the buffer content X is simply
the sum of F1(x) and F2(x). Adding these functions with their unknown
constants, we have

FX(x) = F1(x) + F2(x) (10.53)

= 3c1 + 3c2 exp(−4.5x). (10.54)

The unknown constant c1 is easily evaluated by using the fact that the cdf
FX(x) tends to 1 as x tends to infinity. We obtain c1 = 1

3 . To evaluate c2,
equate the known throughput flowing into the buffer to the throughput flowing
out of the transmitter; the latter is a function of FX(x) and this facilitates
the evaluation of c2. The throughput flowing in is simply the rate of incoming
bits while a packet is being pumped in multiplied by the probability that a
packet is flowing in. This is given by

E[Yin] =
γα

α+ β
(10.55)

=
1.5 × 1.5
1.5 + 3

(10.56)

=
1
2
. (10.57)

The throughput flowing out of the transmitter is η whenever the transmitter
is transmitting bits. This occurs with a probability of [1−FX(0)]. Therefore,

E[Yout] = η[1 − FX(0)] (10.58)

= 1 × [1 − 3c1 − 3c2 exp(0)] (10.59)

= −3c2. (10.60)

Equating E[Yin] and E[Yout], we have
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1
2

= −3c2 or (10.61)

c2 = −1
6
. (10.62)

Putting them all together, we have

F (x) =

 2
3

1
3

−
 1

6

2
6

 exp(−4.5x). (10.63)

The marginal cumulative distribution of the buffer content only is given by

FX(x) = 1 − 1
2

exp(−4.5x). (10.64)

This is the required cdf of the number of bits left over in the buffer. The
probability that the buffer is empty is

FX(0) = 1
2 . (10.65)

The conditional pdf of the buffer content given that the it is not empty is

fX(x|X > 0) =
d

dx
FX(x|X > 0) (10.66)

=
d

dx

P [0 < X ≤ x]
P [X = 0]

(10.67)

=
d

dx

FX(x) − P [X = 0]
P [X = 0]

(10.68)

=
d

dx

1
2 − 1

2 exp(−4.5x)
1
2

(10.69)

= 4.5 exp(−4.5x) (10.70)
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which is seen as a valid pdf. The expected buffer content is evaluated by using
the theorem of total expectation as

E[X ] = E[X |X > 0]P [X > 0] + E[X |X = 0]P [X = 0] (10.71)

=
1

4.5
× 1

2
(10.72)

=
1
9

kilo bits. (10.73)

The physical dimension is supplied in the above final answer as it has been
identified to be kilo bits earlier. From the above performance figures, the
transmitter is transmitting bits half the time and is quiet the rest. Therefore,
the average power consumption is the simple average of 10 mW and 2 mW,
that is 6 mW.

10.2.2 Stability condition

In general the solutions for v can be complex numbers. The system is stable if at
least one of the solutions for v has a negative real part. If not, the exponential function
will be monotonically increasing for all of the positive x domain. Let us establish
this for the general set of parameters. The determinant equation to determine v is

∣∣∣∣∣ α
η − v −β

η
α

γ−η − β
γ−η − v

∣∣∣∣∣ = 0. (10.74)

Evaluating the determinant and simplifying, we obtain

v2η(γ − η) + v[ηβ − α(γ − η)] = 0 (10.75)

the solutions for which are v = 0 and

v =
α(γ − η) − ηβ

η(γ − η)
(10.76)

=
α

η
− β

γ − η
. (10.77)

We have two conclusions from the above. The first is that one of the two solutions for
v is always zero, so that the cdf has only one exponential variation as x varies. The
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original condition for stability intuitively developed in equation (10.5) is identical
to the nonzero solution for v in equation (10.77) being strictly negative. Therefore,
stability and v ≤ 0 are equivalent.

10.3 Little’s Result for Fluid Flow Systems

The result developed in this section is applicable to any stable fluid flow system
and not just for the two state fluid input system of Section 10.2. Consider a fluid
buffer system with an overall fluid input rate (wrt time) of E[Yin]. Let the system be
stable so thatE[Yin] equals the rateE[Yout] of the fluid transmitted or drained out of
the system. Let E[X ] be the expected amount of fluid in the buffer. We can associate
a response time for every vanishingly small (infinitesimal) amount of fluid dx. Start
observing the system at time zero. Let g(t) be a sample function of the cumulative
amount of fluid that has flowed in up to time t starting from time instant zero. Let
h(t) be a sample function of the cumulative amount of fluid that has flowed out of
the system, up to time t from the starting time instant of zero.

The function g(t) is monotonically nondecreasing since fluid can only flow-in
in nonnegative increments over any time interval. Similarly, h(t) is monotonically
nondecreasing. The amount of fluid that has so far departed the system cannot be
more than the amount of fluid that has been input up to that time instant. Therefore,

g(t) ≥ h(t). (10.78)

Figure 10.1 shows an illustrative time plot of fluid flow-in and flow-out functions.
The plots are for a system more general than a fluid flow system whose input and
output rate are controlled by a discrete state Markov chain. This is seen in the non-
linear rise of fluid amount entering the system over some segments of time. If the
rates are constants over different segments of the time variable, the rates would be
constant over each such segments. Had such been the case, the amount of fluid
received (and drained) would be made of broken straight line segments. This nonlin-
ear changes are used in the plots merely to show the generality of the Little’s result.
In Figure 10.1, there is no confusion about which segments correspond to g(t) and
which segments to h(t), since, h(t) ≤ g(t). The amount of fluid remaining in the
system at time instant t is

x(t) = g(t) − h(t), (10.79)

the height of the ordinate segment intercepting the top and bottom curves. The fluid
flow-in rate, averaged up to time instant t is
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g(t)

h(t)

time t

g(t)

h(t)

r(t)

x(t)

FIGURE 10.1: Amount of fluid as a function of time to develop Little’s result

y(t) =
1
t

t∫
τ=0

g(τ). (10.80)

The time averaged amount of fluid remaining in the buffer, averaged from the time
instant zero to t, is denoted by x(t) and given by

x(t) =
1
t

t∫
τ=0

x(τ). (10.81)

Let the fluid-flow system be FIFO in the first and simple case, in the sense that
the FIFO property applies to every vanishingly small amount of fluid entering the
system. Then the response time of every fluid element dx entering the system around
the time instant t is the length of the abscissa drawn from g(t) to up to the point that
the abscissa intersects the curve h(·). Denote this response time by r(t) representing
the response time of the fluid element entering the system at t. This is illustrated by
studying the inverse functions of g(t) and h(t). Let u represent the nondecreasing
amount fluid that flows as t increases. Figure 10.2 shows the plots of time taken for
a given amount of fluid to flow-in, w(u), and flow out, z(u).

w(u) = time taken for total amount u of fluid to flow in (10.82)
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amount of fluid u

w(u)

z(u)

z(u)

w(u)

FIGURE 10.2: Time as a function of amount of fluid to develop Little’s result

z(u) = time taken for total amount u of fluid to flow out (10.83)

z(u) ≥ w(u). (10.84)

Both these functions are strictly monotonically increasing and can have jump dis-
continuities. Indeed, they do, if the rates of flow are controlled be a discrete state
Markov chain. When the fluid flow-in stops for a time period, the time taken for the
flowed in fluid to increase jumps up by the length of the time segment during which
no fluid flows in. In order for the functions w(u) and z(u) to be uniquely defined,
they are defined to be left continuous, to reflect the reality that time progresses in the
positive direction only. That is,

lim
|ε|→0

w(u− |ε|) = w(u) and (10.85)

lim
|ε|→0

z(u− |ε|) = z(u). (10.86)

These definitions around discontinuities do not change the integrals enclosed by the



380 Performance Analysis of Queuing and Computer Networks

two curves, to be evaluated in two different ways. Now, the response time of the
fluid element that enters the system after u amount of fluid has entered is easily
represented by

r(u) = z(u) − w(u), (10.87)

the length of the ordinate intercepted by the curves w(u) and r(u).
Now, Little’s result is developed by simply evaluating the integral enclosed by

the two curves in two different ways and equating them. As in the development of
the original Little’s result for queues represented by discrete state Markov chains in
Section 4.7, we assume that the system is stable and that the instantaneous difference
h(t)− g(t) is finite with probability one so that the effect of this difference vanishes
when we average the integrals over either t → ∞ or u → ∞. For stable Markovian
systems, we have seen that this is true (with probability one and in the means square
sense), in Section 4.6. Therefore, if the sample functions g(t) and h(t) satisfy this
condition, evaluate the time average amount of fluid in the system over an infinite
time interval and equate it to the expected value of the equilibrium random variable
X . We have

E[X ] = lim
t→∞

1
t

∞∫
τ=0

[g(τ) − h(τ)]dτ. (10.88)

Similarly, evaluate the average of response times of all the fluid elements entering
after u amount of fluid has entered. Equate this to the expected response time of a
random fluid element entering the system. We have

E[R] = lim
u→∞

1
u

∞∫
v=0

[w(v) − z(v)]du. (10.89)

The variable v in the above equation (10.89) is the dummy variable of integration.
Now, u(t) in the above equation (10.89) is the amount of fluid that has flowed in up
to time t which is given by

u(t) = g(t) (10.90)

and as t → ∞, so does u. Take the ratio of the two equations for E[X ] and E[R].
We have
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E[X ]
E[R]

=
lim

t→∞
1
t

∞∫
τ=0

[g(τ) − h(τ)]dτ

lim
u→∞

1
u

∞∫
v=0

[w(v) − z(v)]du
(10.91)

= lim
t→∞

g(t)
t

∞∫
τ=0

[g(τ) − h(τ)]dτ

∞∫
v=0

[w(v) − z(v)]du
. (10.92)

As noted earlier, the integrals in the numerator and denominator are the same since
they are the areas enclosed by the same curves. They both tend to infinity with
only a finite difference between them (with probability one) as time tends to infinity.
Therefore, we have

E[X ]
E[R]

= lim
t→∞

g(t)
t

(10.93)

= E[Y ],

resulting in our familiar Little’s result

E[X ] = E[Y ]E[R]. (10.94)

Let all the fluid elements dx be statistically identical at the entering point. The fluid
element departing the system just after a particular amount u departed at a time
instant z(u) in Figure 10.2 can be considered to be statistically the same as the fluid
element that entered just after u amount of fluid entered the system, that is, just after
a time w(u). These interchanges of fluid elements are causal in the sense, that the
fluid element leaving the system is interchanged for one that has already entered the
system. This points out that the Little’s result is valid for non-FIFO fluid systems, in
the same way that it is valid for queues with discrete customers. If a fluid system is
composed of two isolated systems in which fluid elements entering at two different
points are never in the same chamber, then, the Little’s result should be applied
differently to the two isolated systems. In such an example, all the fluid elements are
not statistically identical.
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10.4 Output Process of Buffer Fed by Two State ON-
OFF chain

If γ ≤ η, the output process is exactly the same as the input process and the buffer
content is always zero. The following assumes the interesting case of γ > η. The
output process, that is the transmitted fluid is either flowing with a rate η bits per unit
time or no fluid is flowing out. The latter is the same as fluid flow output with rate
zero. It is possible for the input state to be 1 (OFF) and the output flowing to drain
any remaining fluid in the buffer. However, whenever the output flow rate is zero,
the input state must be OFF or 1. At any time instant the output rate is zero, the time
for the output to start flowing is the same as the remaining time for the input chain
to change to state 2, which is an exponential random variable with rate α. Therefore,
the OFF time periods of the output process is exponential with rate α. The time
interval corresponding to a continuous flow out, or the ON times, is more difficult to
characterize.

A simplification arises when we note that as long as the input process is ON, the
buffer content can only be increasing, and never stay constant or decrease. Indeed,
the rate of increase is γ − η and this lasts for an exponential time period with a rate
β. At the end of an input flow ON-time period, the amount of fluid increase (during
the most recent ON time) is exponential with an average of γ − ηβ fluid bits. We
can now consider the ON period of the output flow to be composed of alternating
time segments during which the buffer content increases and decreases. When an
output flow ON time period starts, the input state must also have been just turned
ON. Over the next exponential time period with an average of 1

β the buffer content
increases by one “random fluid unit,” with an average of γ − ηβ fluid bits. When
the input process turns OFF, the buffer content empties these “random fluid units”
with a constant rate of η, until all of the buffer content is emptied or until the input
process is turned ON again, whichever occurs first.

The above description allows us to construct an interesting Markov chain corre-
sponding to the number of “random fluid units” the buffer has at any time instant.
The discrete state of such a Markov chain changes only when the number of such
“random fluid units” increases or decreases by one. The state transition diagram for
such a Markov chain is shown in Figure 10.3. The state is an ordered pair (m, n)
with m ∈ {1, 2} corresponding to the state of the fluid input process Markov chain.
The nonnegative integer n represents the number of integer “random fluid units,” last
seen by the buffer. The expression “last seen by the buffer” indicates that the number
changes only when the content completes increasing or decreasing the number by
one; recall that the amount of fluid is really a continuous variable and it continuously
changes as long as there is some fluid in the buffer. In the state (1, 0) of this compos-
ite Markov chain, the buffer content is zero and the input state is 1 (OFF). The only
way the state can change is when the input state changes to 2 (ON), and the com-
posite state change is to the state (2, 0). When the input state reverts to 1 (OFF), the
buffer content is exactly one random fluid unit so that the composite state changes to
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FIGURE 10.3: State transition diagram of the equivalent Markov chain for the
buffer content fed by a two state ON-OFF fluid input

(1, 1). Whenever the state is (1, n), the buffer is draining fluid at a continuous rate of
η. Since each “random fluid unit” is made of exponentially distributed fluid content
with an average of γ−η

β fluid bits, the rate at which the buffer is emptying “random

fluid units” is βη
γ−η . During the time periods that the composite state is (2, n) exist-

ing “random fluid units” are not being drained. The buffer is merely transmitting the
η portion of the γ rate with which the input process is pumping and this difference
in the incoming rate can only cause an increase (by one) in the number of “random
fluid units,” when the input process changes to state 1 or OFF. This interpretation of
the fluid flow system allows a simpler solution to the problem of characterizing the
busy period of the fluid transmitter. Suppose we consider the condition that during a
busy time period of the fluid transmitter, the system received exactly k “random fluid
units” before completely emptying. We know from Section 3.11 that for the standard
M/M/1/∞ queue with λ and µ as arrival and service rates, the Laplace transform of
the conditional busy time is

LB(s|k) =
(

λ+ µ

s+ λ+ µ

)2k+1

(10.95)

where k = 0, 1, 2, . . . is the number of additional arrivals during the busy time,
once the system gets busy with a first arrival. We know that the probability of the
number of these additional arrivals being k is given by

P [k] = (2k)!
k!(k+1)!

λkµk+1

(s+λ)k(s+µ)k+1 (10.96)

from equation (3.158), Section 3.11. We need to make a few modifications to the
above conditional transform. Of course we should replace the λ and µ by α and
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βη
γ−η , respectively. The reason is that α is the rate at which the time interval for the

start of the next arrival of the “random time unit” is progressing. The rate βη
γ−η is

the rate at which “random fluid units” are being emptied, whenever, the transmitter
is doing nothing other than transmitting existing amount of fluid in the buffer. We
need an additional modification. During this entire time interval, there are k + 1
iid exponentially distributed random time intervals during which the input process is
pumping in extra “random fluid units” and the transmitter is disabled from transmit-
ting existing buffer content, in favor of draining part of the input currently flowing in.
Each of these k + 1 additional time periods is exponential with rate β. The Laplace
transform can be finally expressed in an infinite series form with the help of the the-
orem of total probabilities, as the integer index of summation k increases from 0 to
∞. The infinite sum can be expressed in a closed form expression with the help of
an identity, also developed in Section 3.11 given in equation (3.192). The following
is a slightly modified version of that identity.

∞∑
k=0

(2k)!ak+1

k!(k + 1)!
=

1 −√
1 − 4a
4

. (10.97)

Details are left out for Exercise 4.

10.5 General Fluid Flow Model and its Analysis

The environment feeding fluid bits into the buffer is a continuous time stable
Markov chain with states 0, 1, 2, . . . (possibly infinite number of states). The rate
of transition from state i to state j is αij . As usual, we use αii = 0 for convenience.
The equilibrium state probabilities of this chain are s0, s1, s2, . . . , respectively. The
random process X(t) denotes the amount of fluid left in the buffer at time instant t.
Its outcome is x(t). When the chain is in state i, the environment is pumping fluid
bits at a rate of γi ≥ 0 bits per unit time. In the same state, the transmitter has a
capacity to drain bits at a rate of ηi ≥ 0. Thus the transmission capacity is also a
function of the state of the environment chain. The actual rate of draining the fluid
can be different from the capacity to drain. It depends on whether or not the buffer
has any fluid to drain, in addition to the fluid being pumped in. If γi ≥ ηi, the rate of
draining in state i is the same as its capacity to drain, ηi. However, if γi < ηi, and if
the buffer has no fluid left to drain, the rate of draining is simply the rate of fluid in-
put into the buffer, that is γi itself. On the other hand, if γi < ηi and the buffer has a
nonzero amount of fluid to drain, the rate of draining is the capacity of draining, that
is, ηi. If γi > ηi, the amount of fluid increases by a rate γi −ηi whenever the state of
the environment is i. If γi < ηi, the amount of fluid does not decrease whenever the
state of the environment is i. If x(t) = 0 and the state of the chain is i with γi < ηi

the transmitter adjusts its rate of draining to γi, which is less than its capacity. It is
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possible to translate {γi, ηi} to ignore the portions of rates of pumping in and out
that do not contribute to change in bugger content. We prefer not to do this in order
to preserve the original throughput.

The random process X(t) is of continuous state, except that, in general,

P [X(t) = 0] > 0 (10.98)

so that X(t) does have a discrete component. Let N(t) denote the discrete state of
the environment chain. The joint random process of {X(t), N(t)} is Markov due to
the following reason. Given the state at t to be X(t) = x(t) and N(t) = n(t), the
future behavior of X(t) depends only on x(t) and the behavior of the Markov chain
N(t).

LetX(t) > 0. We are interested in the probability thatX < x at time t+dt and the
state of the environment chain is i. Denote this probability by the cdf Fi(x, t+ dt).
This combination of x and i at t+dt can result from a variety of combinations of the
buffer content and state at t, as follows. Let j �= i at t and let dt = dt1 + dt2 with
positive infinitesimals dt1 and dt2. Let the state of the chain change from j to i at
t+dt1. The increase in buffer content from t till t+dt1 is at the rate (γj −ηj). From
t+ dt1 till t+ dt, the rate of increase in the buffer content is (γi − ηi). One way for
the buffer content to be ≤ x and the state i at time instant t+ dt is for the system to

be at state j and
(
x − (γj − ηj)dt1 − (γi − ηi)dt2

)
at time t and the chain’s state

change to i at t+dt1. Alternatively, the system can be at state i and
(
x−(γi−ηi)dt

)
followed by no change in the chain’s state during dt. The probability of change from
state j to state i in dt is αjidt. The probability of no change from state i during dt is

(1 −
∞∑

j=0

αijdt). The total probability Fi(x, t + dt) is obtained by using the above

quantities and the theorem of total probability.

Fi[x, t+ dt] =
∞∑

j=0

αjidtFj [x− (γj − ηj)dt1 − (γi − ηi)dt2, t]

+

1 −
∞∑

j=0

αijdt

Fi[x− (γi − ηi)dt, t]. (10.99)

In both the above summations, j �= i is effectively realized due to αii = 0. Rear-
ranging and dividing by dt, we have

Fi[x, t+ dt] − Fi[x− (γi − ηi)dt, t]
dt
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=
∞∑

j=0

(
αjiFj [x− (γj − ηj)dt1 − (γi − ηi)dt2, t]

−αijFi[x− (γi − ηi)dt, t]
)

(10.100)

Add and subtract Fi(x, t) in the numerator of the LHS of the above equation
(10.100).

Fi[x, t+ dt] − Fi(x, t)
dt

+
Fi(x, t) − Fi[x− (γi − ηi)dt, t]

dt

=
∞∑

j=0

(
αjiFj [x− (γj − ηj)dt1 − (γi − ηi)dt2, t]

−αijFi[x− (γi − ηi)dt, t]
)
. (10.101)

As dt→ ∞, the first ratio on the LHS of equation (10.101) evaluates to ∂Fi[x, t]
∂t . To

evaluate the second ratio, observe the following. When the environment is in state i
and we have x > 0 at t, the rate of increase of fluid content

dx

dt
= γi − ηi or (10.102)

(γi − ηi)dt = dx and (10.103)

dt =
dx

γi − ηi
. (10.104)

Using these in the above equation, we have

∂Fi[x, t]
∂t

+ (γi − ηi)
Fi[x, t] − Fi[x− dx, t]

dx

=
∞∑

j=0

(
αjiFj [x− (γj − ηj)dt1 − (γi − ηi)dt2, t] − αijFi[x− (γi − ηi)dt, ]

)
.

(10.105)

Letting the other infinitesimals tend to zero, we have

∂Fi[x, t]
∂t

+ (γi − ηi)
dFi(x, t)

dx
=

∞∑
j=0

(
αjiFj(x, t) − αijFi(x, t)

)
, i = 0, 1, . . . .
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(10.106)

Once again, we are interested in equilibrium distribution of Fi(x, t). Therefore,

∂Fi[x, t]
∂t

= 0 (10.107)

and we are left with a set of coupled linear ordinary differential equations with con-
stant coefficients. If we have a finite number of states in the Markov chain controlling
the fluid input and output rates, the resulting differential equations can be solved by
the eigenvalue eigenvector method as in the case of the two state Markov chain envi-
ronment, studied in Section 10.2. If the number of states of the environment Markov
chain is unlimited, the eigenvalue eigenvector method is not directly applicable. The
equations will then need to be manipulated in ways that are specific to the nature
of γi, ηi, and αij . An important simple special case of infinite state environment is
dealt with in the next section.

10.6 Leaky Bucket Fed by M/M/1/∞ Queue Output

The output of an M/M/1/∞ queue can be considered to be an ON-OFF fluid flow
system with fluid flow output at a constant rate during all of the service time of a
packet. The output flow rate when the M/M/1/∞ queue is empty is zero. Let this flow
output process form an ON-OFF input flow process to another system for us to study.
First of all, we need to characterize the Markov chain of this flow-in process. Even
though this is an ON-OFF flow-in process, it turns out that it is not a two state Markov
process. While this statement may be surprising at a cursory glance, we have already
proved it Section 3.11; the time period during which an equilibrium M/M/1/∞ queue
remains busy is not exponential. The only Markovian system associated with this
input process is the infinite state Markov chain corresponding to the state of the
M/M/1/∞ queue. An appropriate system to study in this context is the following.
We have the Markov chain of the M/M/1/∞ queue that supplies data to the fluid
buffer system. The M/M/1/∞ system itself has a packet arrival rate of λ packets
per unit time and a packet service rate of µ per unit time. As usual, denote λ

µ by
ρ. Whenever the queue is busy, it pumps in data at the rate of γ bits per unit time.
The average service time for a packet is 1

µ so that the average number of fluid bits in
a packet is γ

µ . The fluid transmitter drains at a constant rate of η bits per unit time
whenever the buffer content is nonzero. If η, the capacity to drain is larger than γ the
input rate of pumping, the output process is identical to the input process and there
is nothing more to analyze. Therefore, assume that η < γ so that the leaky bucket is
draining fluid bits at the same rate of η bits per unit time whenever the input queue
is busy as well as whenever the leaky bucket buffer is nonempty. The throughput of
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the M/M/1/∞ queue is λγ
µ bits per unit time. Therefore, the stability condition for

the fluid buffer is that

η >
λγ

µ
. (10.108)

We assume that the stability condition is satisfied.
The differential equations for the equilibrium buffer contentX are obtained by the

specialization of the general case and reduce to

−ηF ′
0 = µF1 − λF0 and (10.109)

(γ − η)F ′
i = λF(i−1) + µF(i+1) − (λ+ µ)Fi, i ≥ 1 (10.110)

where i is the state of the M/M/1/∞ queue whose output forms the fluid input pro-
cess. We seek solutions of the form

Fi(x) = ai exp(−vx) (10.111)

where the set {v, {1, a1, a2, a3, . . . }} is one solution. We need to obtain as many
different sets of solutions as there may be and use a linear combination of all the
solutions. Note that a0 in the above sequence {ai} is preset to 1. By using known
properties about the system, we should develop expressions for all the parameters of
the final solution in terms of the known system parameters, λ, µ, γ, and η. Note that
equation (10.111) uses (−vx) instead of (vx) used in earlier treatment; this is due to
the fact that the cdf cannot be exponentially increasing without bounds. Substituting
equation (10.111) into the differential equations (10.109) and (10.110), we obtain

ηv = µa1 − λ and (10.112)

−(γ − η)vai = λai−1 + µai+1 − (λ+ µ)ai, i ≥ 1. (10.113)

We know that v = 0 is always a possible solution since its substitution into the above
equations (10.112) and (10.113) result in the balance equations for the Markov chain
of the fluid-input system, except that the quantities ai are not required to sum to
1 and also that a0 has been chosen to be 1. Using the results for the equilibrium
state probabilities of the M/M/1/∞ queue, we have one solution for the algebraic
equations to be
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{v, {1, a1, a2, a3, . . . }} = {0, {1, ρ, ρ2, ρ3, . . . }}. (10.114)

For all the v �= 0 cases, we have the following. From equation (10.112)

v =
µa1 − λ

η
. (10.115)

Add all the equations of the form (10.113) for i = 1, 2, 3 . . . and rearrange. We
obtain

(γ − η)v
∞∑

i=1

ai = µa1 − λ. (10.116)

The RHS of equations (10.112) and (10.116) are equal. Therefore, equating their
LHS, we find

(γ − η)v
∞∑

i=1

ai = ηv or (10.117)

∞∑
i=1

ai =
η

γ − η
. (10.118)

Let us seek a solution of the form

ai = a1r
i−1, i = 1, 2 . . . . (10.119)

We need to find every possible value of r which is accepted by the equations and
the corresponding sequence of {ai} for each r. Summing all the terms of the above
sequence {a1, a2, a3 . . . }, we have

∞∑
i=1

ai =
a1

1 − r
. (10.120)

(10.121)

Comparing equations (10.118) and (10.120), we have
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a1 =
(1 − r)η
γ − η

. (10.122)

Substituting for a1 from equation (10.122) in equation (10.115) and simplifying, we
obtain

v =
(1 − r)µ
γ − η

− λ

η
or (10.123)

λ+ µ− (γ − η)v =
rηµ+ γλ

η
. (10.124)

Now, rearrange equation (10.113) to

µai+1 − [λ+ µ− (γ − η)v]ai + λai−1 = 0, i ≥ 1. (10.125)

Using equation (10.124) in (10.125), we have

µai+1 − rηµ + γλ

η
ai + λai−1 = 0, i = 1, 2, . . . . (10.126)

Now, use the general form of one solution proposed in equation (10.119) in the above
equation (10.126).

µa1r
i − rηµ + γλ

η
a1r

i−1 + λa1r
i−2 = 0, i = 2, 3, . . . . (10.127)

The reason for not including i = 1 in the above equation (10.127) is that we still do
not know the relation between a1 and a0 = 1. Cancel the common factor a1r

i−2.
We obtain the quadratic equation

µr2 − rηµ + γλ

η
r + λ = 0. (10.128)

The quadratic equation can have at most two different roots giving us a possible
maximum of two more sets of solutions (in addition to the set corresponding to v =
0). So, there are at most two solutions (in addition to v = 0). Manipulating the
quadratic equation (10.128), we find that the quadratic terms cancel and it indeed
simplifies to a simple equation in r whose solution is given by
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r =
η

γ
. (10.129)

Using this solution, the other unknowns a1 and v are easily evaluated to be

a1 =
η

γ
= r and (10.130)

v =
µ

γ
− λ

η
. (10.131)

Comparing the above with the stability condition in equation (10.108), we find that
v > 0. The complete sequence of {ai} now evaluate to

ai = ri, i = 0, 1, 2, . . . . (10.132)

=

(
η

γ

)i

, i = 0, 1, 2, . . . . (10.133)

The solution for Fi(x) for this case of v is

Fi(x) =

(
η

γ

)i

exp
[
−
(µ
γ
− λ

η

)
x

]
i = 0, 1, . . . . (10.134)

The general solution is obtained as a linear combination of the first solution with
v = 0 resulting from equation (10.114) and the above in equation (10.134). The
resulting general solution is

Fi(x) = c1ρ
i + c2

(
η

γ

)i

exp
[
−
(µ
γ
− λ

η

)
x

]
(10.135)

where c1 and c2 are the unknown constants to be determined from the initial condi-
tions of the system. As x→ ∞, we know that

Fi(∞) = (1 − ρ)ρi. (10.136)
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This leads to

c1 = 1 − ρ. (10.137)

The marginal cdf FX(x) is obtained by summing all the Fi(x) and is given by

FX(x) = 1 + c2
1

1 − η
γ

exp
[
−
(µ
γ
− λ

η

)
x

]
(10.138)

= 1 + c2
γ

γ − η
exp

[
−
(µ
γ
− λ

η

)
x

]
. (10.139)

The M/M/1/∞ system is busy for a fraction λ
µ of time, during which bits are pumped

in at a rate of γ. Therefore, throughput observed entering the fluid flow system is

E[Yin] =
λγ

µ
. (10.140)

The throughput observed at the fluid transmitter output is at a rate of η whenever
X > 0. The fraction of time when the transmitter is actively draining fluid is given
1 − FX(0). Substituting expressions for the required quantities, we have

E[Yout] = η

(
1 − 1 − c2

γ

γ − η

)
(10.141)

= −c2 ηγ

γ − η
. (10.142)

Equating E[Yin] and E[Yout] we obtain

λγ

µ
= −c2 ηγ

γ − η
or (10.143)

c2 = −λ(γ − η)
µη

. (10.144)

Substituting the value for c2 in FX(x) and simplifying, we finally have

Fi(x) = (1 − ρ)ρi − λ

µ

(
η

γ

)i−1

exp
[
−µη − λγ

γη
x

]
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i = 0, 1, . . . and (10.145)

FX(x) = 1 − λγ

µη
exp

[
µη − λγ

γη
x

]
. (10.146)

Operating on these functions, we also obtain

P [X > 0] =
λγ

µη
< 1 (from stability condition) (10.147)

fX [x|X > 0] =
µη − λγ

γη
exp

[
µη − λγ

γη
x

]
, and (10.148)

E[X ] =
λ

µ

γ2

µη − λγ
. (10.149)

Example 10.2

In Example 10.1, consider each ON state as pumping in a packet over a
continuous time. We had an exponential OFF time period between two such
successive fluid bursts. Instead, let such packets come out of a previous
M/M/1/∞ queue. That is, the fluid input system in this present example
is similar to that in is Example 10.1 with the following exception. The fluid
input chain is the output of a previous M/M/1/∞ queue as opposed to being
a two state chain. Compare the expected values of the equilibrium fluid
content in the buffer for Example 10.1 and the present example.

Solution
The packet arrival rate is λ = 1 per ms. Average packet service time 1

µ =
1
β = 1

3 ms. Bit rate in an arriving packet γ = 1.5 Mbps. Bit rate of the leaky
bucket η = 1Mbps. Substituting this in equation (10.149), we obtain

E[X ] =
3.375

9
kilo bits. (10.150)

The expected fluid amount in Example 10.1 is 1
9 kilo bits. We see that the

expected fluid amount in the case of the buffer fed by an M/M/1/∞ queue is
more than three times that for the case of the buffer fed by a two state chain.
One reason for this difference is that the two state input process allows the
buffer time to drain between successive bursts of input which is not always
the case with the input flowing from the output of the M/M/1/∞ queue.
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10.7 Exercises

1. In the two state ON-OFF fluid flow input and constant rate fluid transmission
system, evaluate the average time period for which a continuous transmission
lasts. Do not use its Laplace transform.

2. In Example 10.1, the access point has additional facilities to monitor the qual-
ity of the wireless channel and change the bit transmission rate to suit the
quality. During a reasonably long time period, the transmitter keeps switch-
ing between two rates, 1 Mbps and 2 Mbps. The average time duration of
transmission with 1 Mbps lasts for 10 ms and the average duration of trans-
mission with 2.048 Mbps lasts for 15 ms. Again, approximate this to retain
the Markovian nature and determine the cdf of buffer content and average off
times between two transmission streams.

3. Consider optimizing the performance of the system similar to the one in Ex-
ample 10.1. Suppose we know that the bit error rate at one particular trans-
mission rate. Erroneous packets need retransmission. Also, we can increase
the transmission power to combat noise. However, this increases the battery
consumption. Let the battery power be a constant plus a term proportional to
transmission power. Study this problem and investigate the relative effects of
power increase versus transmission rate decrease for reliable communication
over the noisy channel.

4. Complete the derivation of a closed form expression for the Laplace transform
for the busy time period of the transmitter in the case of the two state ON-OFF
input and constant rate transmission fluid flow system. Use the numerical
figures of Example 10.1 and determine the values of the Laplace transform
for s = 0, and a few other positive values. Use these numerical figures to
investigate the feasibility of a function of the form

L(s) =
ψ

ψ + s
(10.151)

to represent the Laplace transform of the busy time. Hence show that the
time periods of continuous output flow in our two state input system is not an
exponential random variable.

5. Up to three simultaneous transport connections may be active at a router. Each
transport connections feeds data packets for a time duration all of which can
be approximated to be a fluid flow at a constant bit rate during the time period
of the transport connection. Each transport connection lasts for an average of
1 second and pumps in data at a rate of 1 Mbps for its duration. The average
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OFF time between successive ON times of each of the three possible connec-
tions is 2 seconds. The three possible connections appear from three different
datalinks and are iid. The router drains data at a constant rate of 2 Mbps, pro-
vided its buffer has data and/or receiving data to be transmitted. Evaluate the
equilibrium statistics of the buffer content.

6. In the above problem, let there be two identical outgoing links. At least one
outgoing link is active all the time. Two outgoing links are active for an aver-
age continuous time duration of 3 seconds and not active for an average time
duration of 2 seconds. Evaluate the statistics of the router buffer content in this
case. Of course, the entire system is a Markovian fluid flow system.

7. Develop the state transition diagram of the joint Markov chain for the output
of an M/M/1/∞ queue feeding fluid bits into a constant rate leaky bucket. The
state is an ordered pair of the number of packets in the M/M/1/∞ queue and the
random number of “integer fluid units.” The latter quantity, the integer random
number of fluid bits increases by one when the buffer content is increasing
and the environment completes pumping a full fluid packet. It attempts to
decrease by one when the environment is not pumping in and the leaky bucket
successfully completes pumping out the equivalent of one full fluid packet.
Solve for the equilibrium state probabilities of this Markov chain and obtain
an expression for the cdf of the fluid buffer content. Compare this answer with
that developed in Section 10.6.

8. Chapter 9 developed a Markov chain with a large number of states by merging
several iid substreams each with hyperexponential IATs. In the course of an-
alyzing that Markov chain of a nonfluid packet source, Chapter 9 introduced
closed queuing networks with stated-dependent (immediate service) service
rates. A corresponding convolution algorithm to develop the equilibrium state
probabilities is also developed there. The packets arrived instantaneously in
such a traffic model.

Investigate the above model, but with fluid packet arrival. Each subsource has
ON times that are iid exponential and OFF times that are iid hyperexponential.
Multiple fluid flows from multiple substreams are allowed.





Appendix A

Review of Probability Theory

A.1 Random Experiment

A random experiment consists of choosing, at random, an element from a known
set of elements. Each possible element is referred to as an outcome. The exact out-
come chosen cannot be predicted or determined with certainty, prior to the selection.
However, if a sequence of such experiments is conducted, the relative frequencies of
occurrences of the different outcomes tends to follow some statistical regularity.

Reasons for the inability to exactly predict the outcome to be chosen in a random
experiment can be many. For instance, the mechanism for selecting the exact element
may be hidden or unknown to the experimenter or the experimenting device. The
entire set of possible outcomes is known as the sample space and is denoted by S.
Subsets of the sample space S are known as events. In a random experiment, if an
outcome a occurs, then any event containing a also occurs. What we mean by the
statement “eventA occurred” is that one outcome in the set of outcomesA, occurred.

In order to illustrate the terms defined above, consider a simple example of
a random experiment in which a six-sided die is rolled. This is clearly a ran-
dom experiment since we cannot predict exactly which numbered face will be
on top after rolling. There are six possible outcomes and the sample space is
S = {1, 2, 3, 4, 5, 6}. An example of an event, A, is finding an even number af-
ter a roll, and so A = {2, 4, 6} in this case. It is useful to construct a probabilistic
model for a random experiment, which allows us to determine the chance or proba-
bility of a particular outcome or event. Probabilistic models are valuable when long
sequences of repetitions of a random experiment exhibit patterns.

A.2 Axioms of Probability

The probability value of a possible event from a sample space satisfies certain
properties or axioms. These axioms are useful in proving and deriving many in-
teresting results. Let A and B be two events from the sample space S. Let their
probabilities be denoted by P [A] and P [B], respectively. The assigned probabilities,
P [A] and P [B] are required to satisfy the following three axioms:

397
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1. P [A] ≥ 0 for everyA ⊂ S.

2. P [S] = 1.

3. If A and B are mutually exclusive (i.e., either A can occur or B can occur,
but not both at the same time), then P [A ∪ B] = P [A] + P [B]. This is also
extended to the union of an infinite sequence of mutually exclusive events.
That is, if an infinite sequence of events e1, e2, . . . are mutually exclusive,

P [e1 ∪ e2 ∪ · · · ] = P [e1] + P [e2] + · · · . (A.1)

This extension of the axioms is known as the infinite additivity axiom.

The symbol ∪ denotes the set theoretic union. In other words, P [A∪B] may be read
as P [A or B].

The meaning of the term statistical regularity mentioned above is the following. If
a random experiment is conducted a large number of times, say n times, and if out-
comes of these experiments are not influenced by one another, the number of times
an event A occurs, nA ≈ nP [A]. That is, the relative frequency of the occurrence
of an event and the probability of the event are approximately equal for large n. The
axiomatic theory of probability is not concerned with the assignment of probabilities
to the outcomes of a random experiment. In many application areas, some funda-
mental assumptions about the randomness of the underlying physical phenomenon
can be made. These correspond to simple and intuitive assignment of probability
values to events that may be hidden from the eventual observations. The observable
outcomes of a practical random experiment are the results (functions) of such hidden
compound experiments. The axiomatic probability theory helps us to evaluate the
probability values of the outcomes of the observable random experiment, starting
from the assumed probability values of outcomes of the simpler hidden experiments.

A.2.1 Some useful results

Following are some simple consequences of the axioms of probability.

THEOREM A.1

1. P [A] ≤ 1 for every A ⊂ S.

2. P [A ] = 1 − P [A].

3. P [∅] = 0. The null event is the empty set denoted be ∅ and has zero
probability.

4. P [A ∪B] = P [A] + P [B] − P [A ∩B].
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5. If A ⊆ B, then P [A] ≤ P [B].

The symbol ∅ above denotes the null set, also known as the impossible event. The
symbol ∩ denotes the set intersection operator. The expression P [A∩B] is also read
as P [A and B]. The symbols + and · are also used to denote set theoretic union and
intersection, respectively. In addition, sometimesA·B is written asAB when there is
no confusion. The bar above an event, e.g., Ā denotes the set theoretic complement,
with respect to S. That it, Ā contains all the elements in S except for all those in A.

A.2.2 Conditional probability and statistical independence

In some cases, the probability of an event is influenced (either increased or de-
creased) by the probability of another event. Representation and study of the influ-
ence of an occurred event on the occurrence of subsequent events is facilitated by
defining conditional probabilities.

DEFINITION A.1 The conditional probability, P [C|D] (read as the prob-
ability of event C given event D) is defined as

P [C|D] =
P [C ∩D]
P [D]

, (A.2)

when P [D] �= 0. The conditional probability, P [C|D] is the probability that
the event C will occur, given that the event D has occurred.

Although P [C|D] is not defined if P [D] = 0, we know that P [C ∩ D] = 0 if
P [D] = 0. Therefore, it is convenient to define both P [C|D]P [D] and P [D]P [C|D]
as zeros. The occurrence of a particular event may or may not influence the probabil-
ity of another particular event occurring. It is useful to recognize if two given events
do, or, do not, influence the occurrence of each other.

DEFINITION A.2 Two events A and B are said to be statistically
independent (or independent) if P [A ∩B] = P [A]P [B].

If events C and D are independent and P [D] > 0, the conditional probability
p[C |D] evaluates to P [C]. The extension of the concept of independence to many
events requires careful attention.

DEFINITION A.3 All the events in a set of events A1, · · · , Ak are said
to be mutually independent if the probability of the joint occurrence of every
subset of these events evaluates to the product of probabilities of the all the
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events in the subset under consideration.

It is a straightforward matter to verify that the conditional probability definition
satisfies the axioms of probability. That is, we have

THEOREM A.2

1. P [C|D] ≥ 0,

2. P [S|D] = 1,

3. if C ∩ E = ∅, then P [(C ∪ E)|D] = P [C|D] + P [E|D].

In the above Theorem A.2, C, D, and E are arbitrary events and P [D] > 0.

A.3 Random Variable

In general, the sample space can consist of arbitrary outcomes. For example, in
a simple random experiment in which a coin is tossed, the outcomes are either the
head or the tail of the coin. However, we frequently encounter random experiments
in which the possible outcomes are real numbers. The key point is that the outcome
of a random experiment need not be a real number, or even a number for that matter.
In order to deal with different types of outcomes, and operations on outcomes, the
idea of a random variable is introduced.

DEFINITION A.4 A random variable is a function that maps every
outcome of a sample space to a unique real number.

Thus, the values taken by a random variable are all real numbers, and the transfor-
mation is a means of giving a numerical value to an outcome.

Example A.1
A random variable that has only two outcomes in its sample space called

a Bernoulli random variable, named after Jacob Bernoulli (1654–1705). A
random variable that has more than two, but a finite number of outcomes is
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known as a generalized Bernoulli random variable. Consider a random exper-
iment in which a coin is tossed twice in a row. The outcome of each toss is
either a head (H) or a tail (T ). The sample space, S = {HH,HT, TH, TT }.
Define the random variable X as the total number of heads in the two
coin tosses. Thus, X assigns each outcome of this random experiment to
one of the values in the set {0, 1, 2}. For instance, the outcome HH has
a corresponding value of x = 2. If the probability all outcomes in S are
equal, P [X = 2] = P [HH ] = 0.25, P [X = 1] = P [HT ] + P [TH ] = 0.5, and
P [X = 0] = P [TT ] = 0.25.

The random variable in Example A.1 has a finite set of outcomes, and the probabil-
ities of individual outcomes of the random variable are nonzero. However, this is not
always the case. For example, suppose we conduct a random experiment in which we
measure the height of every person that walks into a classroom on a college campus.
Let Y be the random variable representing the maximum height among them. Clearly
this is a random experiment, since we cannot predict with certainty what value Y
will have. Moreover, the range of Y is a real set that we will assume to be in the set
[1.20, 2.20] meters. This set is not countable. It is possible for the probability of ev-
ery specific height value to be zero and yet for P [1.5 meter < Y < 1.7 meter] > 0.
To accommodate such “distributed” probability, we make use of the cumulative dis-
tribution function defined below.

A.3.1 Cumulative distribution function

DEFINITION A.5 The cumulative distribution function (cdf) of a ran-
dom variable is

FX(x) = P [X ≤ x], −∞ < x <∞. (A.3)

The symbol X represents the random variable and x represents the real valued
argument. Note that FX(x) is defined for every finite x even if some intervals
over x are impossible events. We know that if A ⊆ B, then P [A] ≤ P [B]. As a
consequence, the following properties of the cdf are easy to prove.

THEOREM A.3

1. FX(x) is a nondecreasing function of x.
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2. FX(−∞) = 0.

3. FX(∞) = 1.

4. FX(x) is a continuous from the right. That is, FX(x+) defined as

FX(x+) = lim
ε→0

FX(x+ |ε|) (A.4)

exists and evaluates to FX(x) for every x.

Example A.2
A biased die has six faces numbered 0 through 5 with probabilities of occur-
rence corresponding to 0.25, 0.1, 0.3, 0.18, 0.05, and 0.12, respectively. Such
a die is called biased due to the unequal probabilities of occurrences of its
different faces. Let X be the random variable corresponding to the number
on the face that shows up in a toss of the die. Determine the cdf of X .

Solution
The cdf is obtained by adding successive probabilities starting from 0. That is, if
i ≤ x < i+ 1,

FX(x) =
i∑

k=0

P [X = k]. (A.5)

In the above example, as the argument x increases, the event X ≤ x includes a
larger set of outcomes. As x crosses from x < 0 to x = 0, the outcome 0, occurring
with a nonzero probability leads to a jump discontinuity in FX(x) at x = 0 (and
also at x = 1, 2, 3, 4, 5). That is, P [X < x] = 0 but P [X ≤ 0] = 0.25. Thus, the
loose inequality in FX(x) = P [X ≤ x] leads to the property, mentioned above , that
FX(x) is a right continuous function. But, in the above example, the left limit,

lim
ε→0

FX(0 − |ε|) (A.6)

and the right limit
lim
ε→0

FX(0 + |ε|) (A.7)

are not equal.

A.3.2 Discrete random variables and the probability mass
function

Random variables are classified into three categories, discrete, continuous, and
mixed.
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DEFINITION A.6 A discrete random variable is one with nonzero prob-
abilities for a countable set of outcome values only. That is, the probability
of any event not containing one or more of the above outcome values is zero.

The cdf of a discrete random variable has discontinuities at a countable set of
values. The above Example A.2 on page 402 of the biased die is an example of
a discrete random variable. In general, the set of outcomes of a discrete random
variable, each with a nonzero probability, can have a countably infinite number of
elements. As an example, consider a random variable that selects every positive
integer with a nonzero probability given by

P [X = k] = p(1 − p)k−1, k = 1, 2, . . . , (A.8)

where p is a probability value. This random variable is called a geometric random
variable. The definition of a discrete random variable allows for a discrete random
variable to take on fractional (i.e., noninteger) values as outcomes with nonzero prob-
abilities. However, most discrete random variables that we will encounter have only
integer outcome values with nonzero probabilities. Many of these discrete random
variables are further limited to only natural numbers, i.e., {0, 1, 2, . . . , }. Unless oth-
erwise specified, it is assumed that any outcome of a discrete random variable that
is not a natural number, occurs with probability zero. An alternative approach to
characterizing a discrete random variable is through the definition of the probability
mass function (pmf), denoted as PX(k) (or Pk or pk, if there is no ambiguity). The
probability mass function is simply the probability values for every outcome. For a
nonnegative integer random variable, it is

pk = PX(k) = P [X = k], k = 0, 1, 2, . . . . (A.9)

A.3.3 Continuous random variables and the probability den-
sity function

The second category of random variables is the continuous random variable,
which has a continuous cdf. Indeed, the cdf of a continuous random variable is
continuous everywhere. Therefore

P [X = x] = P [X ≤ x] − P [X < x] = 0 (A.10)

since FX(x) = P [X ≤ x] is continuous at every x. A very useful approach to char-
acterizing a continuous random variable is through the definition of the probability
density function (pdf), developed as follows. Consider the change in the cdf of X
over an infinitesimal interval of its argument

P [x < X ≤ x+ dx] = FX(x+ dx) − FX(x). (A.11)
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DEFINITION A.7 The probability density function of a continuous ran-
dom variable X is

fX(x) = lim
dx→0

P [x < X ≤ x+ dx]
dx

(A.12)

=
dFX(x)
dx

. (A.13)

The density function is commonly denoted by fX(x) as above, or by pX(x). Since
FX(x) is continuous for a continuous random variable, the left limit and the right
limit exist for fX(x), although they may be unequal. If the limits are unequal, the
density will have finite jump discontinuities. Since the cdf is monotonically nonde-
creasing, the density function is positive and,

∞∫
∞
fX(x)dx = 1. (A.14)

A.3.4 Mixed random variables

The third category of random variables is the mixed type. Such a mixed random
variable has well defined nonzero values of dFx(x)

dx over at least one nonzero interval.
In addition, the mixed random variable has at least one specific outcome value with a
nonzero probability. Thus, the mixed random variable is a “mixture” of a continuous
and a discrete random variables. Hence, the cdf of a mixed random has a countable
set of discontinuities, as well as at least one segment over which the cdf is contin-
uous. A practical example of mixed random variables occurs in queuing systems..
Consider the time interval a customer spends in the waiting line, before getting ser-
vice from a bank teller. Time is modeled as a continuous variable, the waiting time
random variable has a continuous part. However, at least occasionally, a customer
may find a teller to be free to immediately serve a customer as the customer enters
the bank. That is, there is a nonzero probability of this occurring. Thus the waiting
time random variable has a continuous part and a discrete part and hence, it is of the
mixed type.

Example A.3

A random variableX has P [X ≤ a] = 0 and P [X > b] = 0, with b > a. In the
interval (a, b], the probability that any event (c, d] satisfying a < x ≤ d ≤ b
occurs is proportional to the length of the segment d− c. The latter property
is referred to as the uniform distribution. Evaluate the density function of this
random variable.
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Solution
Clearly X is a continuous random variable since P [X = x] = 0 for each point
in −∞ < x < ∞. Since P [X < a] = 0 and P [X = a] = 0, FX(a) = 0.
Since P [X > b] = 0, FX(b) = 1. Now, P [X ≤ x] = α(x − a), where α is a
proportionality constant. So, P [X ≤ b] = α(b− a) = 1. Therefore, α = 1

b−a .

FX(x) =
x− a

b− a
, x ∈ [a, b], (A.15)

fX(x) =
dFX(x)
dx

, (A.16)

=
1

b− a
, x ∈ (a, b), (A.17)

fX(x) =
{

0, x < a
0, x > b.

(A.18)

Note that the above specification of fX(x) does not include x = a and x = b,
at which there are jump discontinuities. The density values at these points can be
specified to be left continuous or right continuous, without affecting the original
problem specification.

A.4 Conditional pmf and Conditional pdf

The probability mass function maps the outcomes to probability values. Hence
the conditional pmf, conditioned on eventA is written as

PX [X = k|A] =
P [k ∩A]
P [A]

, (A.19)

if P [A] �= 0, whereX is a discrete random variable and k are the discrete outcomes.

Example A.4
In the biased die random experiment of Example A.2, on page 402, consider
the following situation. The die is thrown and the outcome is known to be a
prime number. What is the conditional pmf given this information?

Solution

P [X = k |K is prime] =
P [(X = k) ∩ (X ∈ {1, 2, 3, 5})]

P [X ∈ {1, 2, 3, 5}] (A.20)
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= 0, for k = 0, 4, (A.21)

=
P [X = k]

0.7
, for k ∈ {1, 2, 3, 5}. (A.22)

If X is a continuous random variable, P [X ∈ A|B] is defined only if P [B] �= 0.
But the event B can be a single outcome of another continuous random variable,
such as the the event Y = y, in which case P [Y = y] = 0 and the corresponding
conditional probability P [X ∈ A | Y = y] is undefined. To extend the concept of
conditional probabilities to continuous random variables, we develop the of condi-
tional density. Let X and Y be continuous random variables. Consider,

P [x < X ≤ x+ dx, y < Y ≤ y + dy], (A.23)

which is called the joint probability of the two random variables X and Y being in
the rectangular infinitesimal neighborhood defined by (x, x + dx], and (y, y + dy].

DEFINITION A.8 The function

fXY (x, y) = lim
dy→0

lim
dx→0

P [x < X ≤ x+ dx, y < Y ≤ y + dy]
dxdy

, (A.24)

is called the joint density of the ordered pair of random variables (X,Y ), at
the ordered pair of outcomes (x, y). The functions, fX(x) and fY (y) are
called marginal densities.

The conditional probability

P [x < X ≤ x+ dx | y < Y ≤ y + dy] (A.25)

=
P [x < X ≤ x+ dx, y < Y ≤ y + dy]

P [y < Y ≤ y + dy]
. (A.26)

Consider

lim
dx→0

lim
dy→0

P [x < X ≤ x+ dx | y < Y ≤ y + dy]
dx

(A.27)

= lim
dx→0

lim
dy→0

(
P [x<X≤x+dx,y<Y≤y+dy]

dxdy

)
(

P [y<Y ≤y+dy]
dy

) (A.28)
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=
fXY (x, y)
fY (y)

, (A.29)

if fY (y) �= 0.

DEFINITION A.9 fXY (x,y)
fY (y) is defined as the conditional density of X

under the condition that y is the outcome of the random variable Y . It is de-
fined for all y at which fY (y) �= 0. It is denoted by fX(x|y) or fX(x|Y = y).

Note that this definition is valid in spite of P [Y = y] = 0, as long as fY (y) �= 0.
Instead of the condition being on a different random variable from X , applications
arise in which the condition is an event of the random variable X , such as X ∈ A
for some event A. If this situation arises,

fX(x|X ∈ A) =
d

dx

P [X ≤ x,X ∈ A]
P [X ∈ A]

. (A.30)

It is straightforward to verify the following property.

THEOREM A.4
Conditional densities satisfy all the properties of a pdf.

A.5 Expectation, Variance, and Moments

In the previous section, we studied how the behavior of a random variable can
be represented using the cdf or pdf functions. In many cases, however, we are only
interested in summary information about a random variable. The simplest number
representing information about a random variable is the expected value, which is
also know by other names, such as the mean, the average, the centroid, and the first
moment.

DEFINITION A.10 The expected value of a continuous random variable,
X, is defined as

E[X ] =
∫ ∞

−∞
xfX(x)dx. (A.31)
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If X is a discrete random variable, the expected value or expectation of X is
defined as

E[X ] =
∑
∀k

xkP [X = xk]. (A.32)

Notice that in the case of a continuous random variable, we make use of the pdf of
the random variable and integrate for computing the expectation. In the case of a
discrete random variable, this pdf is replaced by the pmf of the random variable and
the integral by the sum. It is straightforward to obtain the expectation of a mixed
random variable, one with a continuous and a discrete part.

Example A.5
A discrete random variable N has the sample space of all natural numbers.
We know that

P [N = 0] = 0.1,

P [N = i] =
a

bi
, for i > 0, (A.33)

and that E[N ] = 3. Determine a and b.

Solution

∞∑
i=0

P (N = i) = 0.1 +
∞∑

i=1

a

bi
(A.34)

= 0.1 +
a

b

∞∑
i=0

(
1
b

)i

(A.35)

= 0.1 +
a

b

1
1 − 1

b

, b > 1 (A.36)

= 0.1 +
a

b− 1
(A.37)

= 1. (A.38)

E[N ] = a
∞∑

i=1

i

(
1
b

)i

(A.39)
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= a

∞∑
i=0

i

(
1
b

)i

(A.40)

=
a

b

∞∑
i=0

i

(
1
b

)i−1

. (A.41)

Let 1
b = x. We have

E[N ] =
a

b

∞∑
i=0

ixi−1 (A.42)

=
a

b

∞∑
i=0

d

dx
xi (A.43)

=
a

b

d

dx

∞∑
i=0

xi (A.44)

=
a

b

d

dx

1
1 − x

(A.45)

=
a

b

1
(1 − x)2

(A.46)

= a
1
b(

1 − 1
b

)2

=
ab

(b− 1)2
. (A.47)

Substituting the given values, we have

a

b− 1
= 0.9 and (A.48)

ab

(b− 1)2
= 3. (A.49)

Divide one by the other.

b− 1
b

=
0.9
3

= 0.3. (A.50)

b =
10
7
.
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a = 0.9 (b− 1)

=
27
70
.

It is important to understand that the above definition of the expectation in
equations (A.31) and (A.32) is not a special case of the definition of E[g(X)] where
g(X) is a function of the random variable X . Indeed, if g(x) is a well defined
function of x, then g(X) is a random variable with its own cdf and its expectation
follows Definition (A.10). The evaluation of E[g(X)] is an interesting problem and
it is dealt with in Theorem A.13. on page 427.

DEFINITION A.11 The nth moment of a continuous random variable,
X, is defined as

M(n) =
∫ ∞

−∞
xnfX(x)dx. (A.51)

If X is a discrete random variable, then the nth moment is given by

M(n) =
∑
∀k

xn
kP [X = xk]. (A.52)

It is clear by this definition that the mean of a random variable is identical to the
first moment. We can also calculate the moments centered around the mean or first
moment of the random variable. These moments are referred to as central moments
and are defined below.

DEFINITION A.12

Mc(n) =
∫ ∞

−∞
(x− E[X ])nfX(x). (A.53)

If X is a discrete random variable, then

Mc(n) =
∑
∀k

(xk − E[X ])nP [X = xk]. (A.54)
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The second central moment of a random variable has a special significance, and
is referred to as the variance of that random variable. The variance is an important
indicator of the extent to which the occurrences of outcomes of a random variable
deviate from the mean. Commonly used notation for the variance of a random vari-
able X include var[X ] and σ2

X . The positive square root of the variance is known as
the standard deviation.

Example A.6

Evaluate the mean and variance of a single throw of the biased die experiment
of Example A.2.

Solution
Let the random variable be K .

E[K] = 0 × 0.25 + 1 × 0.1 + 2 × 0.3 + 3 × 0.18
+4 × 0.05 + 5 × 0.12

= 2.04. (A.55)

Using the mean obtained above, we have

var[K] = 0.25(−2.04)2 + 0.1(−1.04)2 + 0.3(0.04)2

+0.18(0.96)2 + 0.05(1.96)2 + 0.12(2.96)2 (A.56)

= 2.5584. (A.57)

A.5.1 Conditional expectation

In section A.4, the notion of conditional probability was introduced. In the
previous section, the expectation of a random variable was defined. A natural
progression would be to establish the expectation of a random variable under a
specified condition. Therefore, in this section we present the conditional expectation
of a random variable. Building on the definition of expectation and conditional
probability, it is clear that the conditional expectation of a continuous random
variable, X , conditioned on Y should follow

DEFINITION A.13

E[X |Y = y] =
∫ ∞

−∞
xfX(x|Y = y)dx. (A.58)
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If X is a discrete random variable, then

E[X |Y = y] =
∑
∀k

xkP [X = xk|Y = y]. (A.59)

A.6 Theorems Connecting Conditional and Marginal
Functions

We will start with probability masses to develop the theorem of total probability.
The results can be extended to densities and expectations. Let K and M be discrete
random variables taking all possible integer values, with k and m being their corre-
sponding outcome variables. The marginal probability P [K = k] can be obtained
by summing the joint probabilities P [K = k, M = m] over all possible outcomes
m. That is,

P [K = k] =
∞∑

m=−∞
P [K = k, M = m]. (A.60)

Note that the argument of the summation above is nonzero only for m satisfying
P [M = m] > 0. From the definition of conditional probability, the joint proba-
bility can be expressed as the product of corresponding conditional probability and
conditioning probability as follows.

P [K = k, M = m] = P [K = k|M = m]P [M = m], (A.61)

for each m for which P [M = m] �= 0. Let P [K = k|M = m]P [M = m] be
defined as zero if P [M = m] = 0. Using equation(A.61) in the earlier summation
of equation (A.60), we have

THEOREM A.5 Total probability
Let K and M are discrete random variables with the set of integers as the

sample space each. Then P [K = k, M = m] = 0 for that m.

P [K = k] =
∞∑

m=−∞
P [K = k|M = m]P [M = m]. (A.62)
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We can derive the equivalent of the theorem of total probability for continuous
random variables, by simply recognizing that the probability of a random variableX
being in the infinitesimal interval (x, x + dx] is the product of the density and the
infinitesimal interval, as follows.

P [x < X ≤ x+ dx] = fX(x)dx. (A.63)

Using the above equation (A.63) and the arguments used in deriving the theorem of
total probability, we have,

fX(x)dx = P [x < X ≤ x+ dx] (A.64)

=
∑
∀dy

P [x < X ≤ x+ dx, y < Y ≤ y + dy]

=
∑
∀dy

(
P [x < X ≤ x+ dx|y < Y ≤ y + dy]

P [y < Y ≤ y + dy]
dy

dy
)
. (A.65)

In the above, as dy → 0, the summation becomes an integral. Also, the condi-
tion y < Y ≤ y + dy becomes Y = y and the quantity P [y<Y ≤y+dy]

dy becomes
fY (y). Note that although P [Y = y] = 0, since y is a continuous random variable,
Y = y is not an impossible event. Indeed, when we conduct a random experiment
corresponding to a continuous random variable, we do observe a particular y whose
probability was 0. There is nothing inconsistent about actually realizing an outcome
whose probability is zero, in a random experiment. Indeed, the probability of every
outcome of a continuous random variable is zero. Yet, when a random experiment is
conducted, we are guaranteed that one such outcome will occur. Therefore, we have

fX(x)dx =

∞∫
y=−∞

P [x < X ≤ x+ dx|Y = y]fY (y)dy (A.66)

=

∞∫
y=−∞

fX(x|Y = y)dxfY (y)dy. (A.67)

Again, the integral above should be carried out over the range of y for which
fX(x|Y = y) is defined, which is the range of y over which fY (y) is nonzero.
However, as long as the integrand is recognized as 0 for all y for which fY (y) = 0,
the integral can be carried out over y ∈ (−∞, ∞). Canceling dx on both sides, we
have
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THEOREM A.6 Total density

fX(x) =

∞∫
y=−∞

fX(x|Y = y)fY (y)dy. (A.68)

Mixed forms of the above theorems straightforward to develop. They are

fX(x) =
∑
∀k

fX(x|K = k)P [K = k] and (A.69)

P [K = k] =

∞∫
y=−∞

P [K = k|Y = y]fY (y)dy. (A.70)

In each of the above equations (A.69) and (A.70), one random variable is contin-
uous and the other is discrete. That is, each of the random variables by itself is not
mixed.

Consider fX(x|Y = y). This is the density function of the random variable X
under the condition that Y was observed to take on the outcome y. If we leave the
random variable Y as the condition in the conditional density, instead of letting Y
take the outcome y, we get fX(x|Y ). Notice that this density is a random variable!
That is, for every x, we get a random variable. Suppose we take the expectation of
X under the condition of the random variable Y , as

E[X |Y ] =

∞∫
x=−∞

xfX(x|Y )dx. (A.71)

E[X |Y ] is also a random variable, a deterministic function of the random variable
Y . And we can evaluate the expectation of E[X |Y ] as

E
(
E[X |Y ]

)
=

∞∫
y=−∞

 ∞∫
x=−∞

xfX(x|Y = y)dx

 fY (y)dy (A.72)

=

∞∫
x=−∞

∞∫
y=−∞

xfXY (x, y)dy dx (A.73)

=

∞∫
x=−∞

xfX(x)dx (A.74)
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= E[X ]. (A.75)

Thus, we have the useful

THEOREM A.7 Total expectation

E[X ] = E
(
E[X |Y ]

)
. (A.76)

If we have one or both of X and Y as discrete random variables, the above the-
orem of total expectation can be derived by properly using probability values and
summations instead of integrals. Another important observation is that to use the
theorem of total expectation, we do not need to be concerned about the range of y
for which the P [Y = y] = 0 (in the discrete case) or fY (y) = 0 (in the continuous
case). The expectations automatically take care of such singularities.

A.7 Sums of Random Variables

A.7.1 Sum of two discrete random variables

Let K and L be random variables, the sample space for each being the set of all
(positive and negative) integers. Let M = K + L.

P [M = m] = P [K + L = m]
(A.77)

=
∞∑

k=−∞
P [K = k, L = m− k]

=
∞∑

k=−∞
P [L = m− k|K = k]P [K = k]. (A.78)

Note that the last expression corresponds to the theorem of total probability. If
K and L are independent, the above expression for the pmf of the sum can be
simplified. In this case, the condition K = k is irrelevant in the above conditional
probability. Hence, we have
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THEOREM A.8

For two independent integer valued random variables M and K,

P [M = m] =
∞∑

k=−∞
P [L = m− k]P [K = k]. (A.79)

The above sum is called the convolution sum.

If the sample space of K or L is a limited range of integers, further simplification
is possible. For example, let K and L be nonnegative integer random variables. In
such a case, P [K = k] is zero for k < 0 and P [L = m − k] is 0 for k > m.
Therefore,

P [M = m] =
m∑

k=0

P [L = m− k]P [K = k]. (A.80)

A.7.2 Sum of two continuous random variables

Let X and Y be continuous random variables and let Z = X + Y . For a given z,
the outcomes x and y can vary as follows. One of x and y, say x can be any value
and then y is required satisfy y = z − x. The pdf of Z is derived below, with the
help of the theorem of total density.

fZ(z) =

∞∫
x=−∞

fZ(z|X = x)fX(x)dx. (A.81)

In the above equation (A.81), given the outcome x for X , in order for Z to take on
the outcome z, Y is required to take on the outcome z− x. Therefore, fZ(z|X = x)
in the above is the same as fY (z − x|X = x). Substituting the latter for the former
in the equation (A.81), we obtain

fZ(z) =

∞∫
x=−∞

fY (z − x|X = x)fX(x)dx. (A.82)

If X and Y are independent, a further simplification ensues:

THEOREM A.9

For two independent continuous random variables X and Y and Z = X+Y ,

fZ(z) =
∫ ∞

x=−∞
fY (z − x)fX(x)dx. (A.83)
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The right hand side (RHS) in equation (A.83) is called the convolution
integral.

In addition to independence, if X and Y are nonnegative, fX(x) = 0 for x < 0
and fY (z − x) = 0 for x > z and

fZ(z) =
∫ z

x=0

fY (z − x)fX(x)dx. (A.84)

An alternative approach to deriving the density of the sum of two continuous random
variables is to consider the cdf of Z which can be obtained by double integrating the
joint density fXY (x, y) over the region −∞ < y ≤ z − x and −∞ < x <∞.

Example A.7
Obtain the pmf and cdf of the sum of the numbers that show up when two

independent and identically distributed (iid) biased dice of Example A.2 on
page 402 are tossed.

Solution
Since the maximum outcome of each die is 5, we have

P [M = m] =
min{m, 5}∑

k=0

P [L = m− k]P [K = k], m = 0, · · · , 10. (A.85)

Substituting the values the probabilities of outcomes in the single die throwing
experiment of Example A.2, we have P [M = 0] through P [M = 10] given by
0.0625, 0.05, 0.16, 0.15, 0.151 0.178, 0.0864, 0.09, 0.0457, 0.012, and 0.0144,
respectively. The pmf is plotted in Figure A.1, and the cdf in Figure A.2.

A.8 Bayes’ Theorem

Bayes’ theorem is a useful and powerful result that relates conditional probabilities
of random variables. Thomas Bayes (1702–1761) was a British mathematician. We
shall first develop Bayes’ theorem for two events A and B. Consider,

P [A|B] =
P [A ∩B]
P [B]

(A.86)

=
P [B|A]P [A]

P [B]
. (A.87)
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In the above equation (A.87), P [A] is called the a priori or the prior probability. It
is the probability of the event A before the random experiment resulting in the event
B is conducted. The quantity P [A | B] is called the a posteriori or the posterior
probability. It is the probability of the event A after observing the event B.

A partition partition of the sample space S is a set of mutually exclusive events
whose union is S itself. Using the theorem of total probability for P [B] in equation
(A.87) produces the following result.

THEOREM A.10
Bayes’ theorem for a discrete partition:

P [Aj |B] =
P [B|Aj ]P [Aj ]

n∑
i=1

P [B|Ai]P [Ai]
, for any j ∈ {1, · · · , n}. (A.88)

A simple application of Bayes’ theorem is elegantly demonstrated in the following
famous puzzle.

Example A.8 Bertrand’s box paradox
Joseph Louis Francois Bertrand (1822–1900) was a French mathematician.
There are three identical looking boxes. In one of them, there are two gold
coins. In another, two silver coins. In the third, a gold and a silver coin. A
box is chosen at random and one of the two coins is picked from it, at random,
without finding out about the other coin. The picked coin is found to be gold.
What is the probability that the other coin in the same box is also gold?

Solution
The reason for this problem being called a paradox, although an apparent one, is that
one can jump to the conclusion that the other coin in the chosen box is gold or silver,
with equal probability. If we actually conduct a large number of iid experiments, the
observed frequency of the “other coin” being gold turns out to be not close to half.
However, the resolution of the apparent paradox is simple, if we systematically apply
the principles of probability, as follows.

Let C1 be the random variable for the first pick of the coin from a box, and C2,
for the second pick. Let the outcomes of gold correspond to 1 and that of silver, to
0. LetB be the random variable corresponding to the box chosen. The sample space
of B = {0, 1, 2}, where each of the numbers 0, 1, and 2 corresponds to the possible
number of gold coins in the box. Now,

P [C2 = 1 | C1 = 1] = P [B = 2 | C1 = 1] (A.89)
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=
P [C1 = 1 | B = 2]P [B = 2]
2∑

i=0

P [C1 = 1|B = i]P [B = i]
. (A.90)

The RHS of equation (A.90) is the result of applying the Bayes’ theorem to the RHS
of equation (A.90). Substituting numerical values, we have

P [C2 = 1 | C1 = 1] =
1 × 1

3

(0 × 1
3 ) + (1

2 × 1
3 ) + (1 × 1

3 )
(A.91)

=
2
3
. (A.92)

One can also use simple intuition and the following subjective argument to point
out that the probability in question is larger than 1

2 . After all, if the first coin picked
turns out to be gold, it immediately increases the chance that the box selected has
both its coins gold! Therefore, there is a higher than even chance, a posteriori, that
the second coin is also gold.

Bayes’ theorem may be applied to problems in which we have a combination of
discrete and continuous random variables. For instance, we can use the theorem of
total probability for finding the conditional pmf. Then we obtain

THEOREM A.11
Bayes’ theorem for a continuous conditioning random variable:

P [K = k|X = x] =
fX(x|K = k)P [K = k]∑

∀i

fX(x|K = i)P [K = i])
. (A.93)

Equation (A.93) is extensively used in digital communication. Using the theorem
of total density for finding the conditional pdf, Bayes’ theorem takes the following
form.

THEOREM A.12
Bayes’ theorem for the a posteriori density:

fX(x|Y = y) =
fY (y|X = x)fX(x)∫∞

−∞ fY (y|X = z)fX(z)dz
. (A.94)
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A.9 Function of a Random Variable

Let the the real valued function y of a real valued variable x be uniquely defined by
y = g(x). That is, for every given value of x there is a uniquely specified value of y.
If x is considered as the outcome of a random variableX , the function g(x) induces
a transformed random variable Y = g(X). The random experiment corresponding
to the random variable Y is easily described as follows. Conduct the random exper-
iment to generate the outcome x of X . Find the corresponding value of y from the
transformation y = g(x). Then y is the outcome of Y . If the cdf of X is known, the
determination of the pdf, pmf, or cdf of the new random variable Y is very useful.

The cases of discrete functions are dealt with first. Among the continuous func-
tions, a strictly monotonically increasing function is the simplest and dealt with
next. Strictly monotonically decreasing functions require a little modification and
are treated next. In the very general case, the random variable may possess some
discrete points for outcomes with nonzero probability and a continuous part. The
function may map to constants over segments of the real line as well as increase
and decrease over other segments. Although the case of increasing and decreasing
functions are commonly encountered, the very general case is not commonly en-
countered. However, regardless of how complicated a function of a random variable
is, the expectation of the function can be directly evaluated without evaluating the
pdf, pmf, or the cdf of the function of the random variable.

A.9.1 Discrete function of a random variable

A.9.1.1 Discrete function of a discrete random variable

Let the sample space of a random variable X be {x1, · · · , xn, · · · , } and let
y = g(x) be the transformation. Note that the corresponding random variable Y
is discrete even if y = g(x) is a continuous function. If X is discrete, xi maps to yi

for every i and if yi �= yj for every i �= j, then the pmf of Y is given by

P [Y = yi] = P [X = xi]. (A.95)

Now, consider a transformation y = g(x) in which two or more different xi values
can map to the same yj . That is, given a yj , the inverse transformation may not be
unique. Let the set aj contain all and only those values of xi that map to yj . Then,
the pmf of Y is easily written as

P [Y = yj ] = P [X ∈ aj ] =
∑

∀xi∈aj

P [X = xi]. (A.96)
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FIGURE A.3: A monotonic transformation of a random variable

A.9.1.2 Discrete function of a continuous random variable

In this case, the above transformation y = g(x) results in each aj being composed
of segments of the real line x. Therefore,

P [Y = yj ] =
∫

x∈aj

fX(x)dx. (A.97)

A.9.2 Strictly monotonically increasing function

Let X be a continuous random variable and y = g(x) be defined for all x over
which the pdf fX(x) is nonzero and let g(x) be strictly monotonically increasing in
that region. Let x = h(y) be the inverse function. Due to the monotonicity of g(x),
the function h(y) is also uniquely defined in its region. Figure A.3 illustrates this.

Consider an infinitesimal strip along the real line y between y and y + dy with a
positive dy. The probability of Y being in this strip is the same as the probability of
X being in the strip bounded by x = h(y) and x + dx = h(y + dy). The quantity
dx is positive since dy is positive and y = g(x) is strictly monotonically increasing.
Therefore,

P [y < Y ≤ y + dy] = P [x < h(y) ≤ x+ dx] (A.98)

can be expressed as

fY (y)dy = fX(h(y))dx and (A.99)
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fY (y) = fY (y)
dx

dy
(A.100)

= fY (y)
dh(y)
dy

. (A.101)

The reason for substituting dh(y)
dy in place of dx

dy is that the final result should be
expressed as a function of y only.

A.9.3 Strictly monotonically decreasing function

Now, if g(x) is strictly monotonically decreasing, the only change in the above
arguments is that for dy > 0, we know that dx < 0. Therefore, equation (A.98)
changes to

P [y < Y ≤ y + dy] = P [x+ dx < h(y) ≤ x]. (A.102)

We know that dy > 0 since we simply consider varying the independent variable y
from a lower value to to a higher value. Therefore,

fY (y) = fY (y)

∣∣∣∣∣dxdy
∣∣∣∣∣ (A.103)

= fY (y)

∣∣∣∣∣ ddyh(y)

∣∣∣∣∣ (A.104)

takes care of both the cases of strictly monotonic functions.

A.9.4 The general case of a function of a random variable

In general, the function y = g(x) can increase and decrease. In such a case, the
real line of y should be split into segments such that in each segment, the function is
strictly monotonic. If g(x) is a constant b over a segment of the real line x, P [Y = b]
can be nonzero, even ifX is a continuous random variable. Irrespective of the nature
of g(x), a very important result facilitates the evaluation of the direct expectation of
a function of a random variable.

Let u, v, and w are integer parameters. Let X be a random variable with a con-
tinuous part and a discrete part that take values a1, a2, · · · , am wherem need not be
finite. Let

P [X = ai] = pi, i = 1, · · · , u and (A.105)
m∑

i=1

pi = p. (A.106)
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Let f(x) be the function representing the continuous part of X . Note that f(x) is
positive and must integrate to 1 − p. Therefore f(x) is not a valid pdf by itself. But,

P [x < X ≤ x+ dx] = f(x)dx if ai /∈ (x, x+ dx] is true for all i = 1, · · · ,m and
(A.107)

P [x < X ≤ x+ dx] = f(x)dx + pj, if aj ∈ (x, x+ dx]. (A.108)

Consider y = g(x), a uniquely defined function for every x. The function g(x)
may tend to positive or negative infinity at specified discrete points of the real line
x. But we exclude the such points from being any of the set {a1, · · · am}. This
ensures that the random variable Y takes finite values with probability 1. That is, the
transformation of the random variable, g(X) is very general, but not pathological.
The first task is to identify the set of points on the real line y each of which is an
outcome of Y with nonzero probability. Clearly, y = g(ai), i = 1, · · ·m are such
points. It is possible for two or more distinct ai values mapping to the same value.
That is, g(ai) = g(aj) is possible even if i �= j. Considering all this, let b1, · · · , bk
be the real numbers such that for every i = 1, · · · ,m,

g(ai) = bj for some j. (A.109)

However, b1, · · · , bv are not the only points on the real line y which are outcomes of
Y with nonzero probabilities. There may be segments of the real line x over which
the function g(x) is constant. The function f(x) integrated over each such segment
can produce a nonzero probability. Including all these points, let the totality of all
the points, each of which is an outcome of Y with nonzero probability be c1, · · · , cn.
Let

P [Y = ci] = qi, i = 1, · · · , n. (A.110)

Again, n can be infinite. Figure A.4 shows such a transformation g(x). Now consider
only those portions of the real line x over which there are no discrete points with
nonzero probability forX and there is no segment for which g(x) is a constant. Over
each segment of the subset of x under consideration now, g(x) is either increasing
with dy

dx = dg(x)
dx > 0 or g(x) is decreasing with dy

dx = dg(x)
dx < 0. This excludes

single points at each of which dg(x)
dx = 0 as well. Let the resulting subset of the real

line x be represented by a set of several segments R = {r1, · · · , rm} over each of
which dg(x)

dx > 0 and a set of several segments S = {s1, · · · , sn} over each of which
dg(x)

dx < 0.
For a given value of y in the subset of the real line under consideration, there

may be several, k, values of x satisfying g(xi) = y, i = 1, · · · , k. Denote these
different functions by y = gi(xi). Denote each solution for x from gi(x) by the
inverse transformation hi(y). That is, if g(xi) = y, then hi(y) = xi. Some of these
values may be in R and others in S. Nevertheless, the probability of Y being in the
strip between y and y + dy is given by

P [y < Y ≤ y + dy] =
k∑

i=1

P [X ∈ strip bounded by xi and xi + dx]. (A.111)
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The peculiar notation is because dx can be positive or negative. In either case, we
know that

P [y < Y ≤ y + dy] =
k∑

i=1

f(hi(y))|dx| (A.112)

ξ(y)dy =
k∑

i=1

f(hi(y))|dx| (A.113)

where ξ(y) is the continuous part of the density function of Y . In order for the left
hand side (LHS) of the above equation (A.113) to be a probability, dy is required to
be positive. This just implies that we are varying the independent variable y in an
increasing fashion. This allows us to express

ξ(y) =
k∑

i=1

f(hi(y))

|dgi(xi)
dxi

|
(A.114)

where dgi(xi)
dxi

is expressed as a function of x. This is the continuous part. The
discrete part, pmf, is given by {ai} with probabilities pi.

The summary conclusion is the following. If the random variable X has discrete
component at x = ai with a probability pi, The random variable Y has a discrete
part at g(ai) with a probability pi. If the random variable has only a continuous part
in x ∈ (u, v) and g(x) is a constant w for x ∈ (u, v), this contributes a discrete
probability value of

v∫
u

fX(x)dx (A.115)

for Y at y = w. If g(x) is strictly monotonic over an interval x ∈ (s, t), this
contributes

fX

(
g−1(y)

)
|dg(x)

dx |
(A.116)

(expressed as a function of y) to the continuous part of the pdf of Y . All the con-
tributions due to all the parts are added to get the final continuous part pdf and the
discrete part pmf of Y .

The above arguments are useful to evaluate the expectation of the random variable
Y . The discrete part at x = ai with a probability pi contributes g(ai)pi to the
expectation. The continuous part in x ∈ (u, v) with g(x) is a constant w for x ∈
(u, v), contributes

w

v∫
u

fX(x)dx =

v∫
u

g(x)fX(x)dx (A.117)
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to the expectation. Each segment of x over which g(x) is monotonic contributes

∫
y
fX

(
g−1(y)

)
|dg(x)

dx |
dy =

t∫
s

g(x)fX(x)|dx| (A.118)

since y = g(x), dg(x) = dy, and dy is required to be positive in the integration on
the LHS of the above equation (A.118. The quantity |dx| is similarly recognized as
dx itself, since dx is positive while the integration is carried out on the RHS of the
above equation. Thus, we have the following important result.

THEOREM A.13
Let Y be a random variable, a function of X such that y = g(x) is uniquely

specified for every x. If X is a continuous random variable, we have

E[Y ] =
∫ ∞

x=−∞
g(x)fX(x)dx. (A.119)

If X is a discrete random variable, we have

E[Y ] =
∞∑

i=0

g(i)P [X = i]. (A.120)

Let X have a continuous part and a discrete part with outcomes a1, · · · , an

possessing nonzero probabilities p1 · · · , pn, respectively. The parameter n can

be finite or infinite. Let p =
n∑

i=1

pi. Let f(x) be the nonnegative function of x

representing the probability density portion of X. That is,

P [x < X ≤ x+ dx] = f(x)dx (A.121)

if (x, x+ dx] includes none of aj and

P [x < X ≤ x+ dx] = f(x)dx + pj, if aj ∈ (x, x+ dx]. (A.122)

Note that ∫ ∞

−∞
f(x)dx = 1 − p. (A.123)

Then we have

E[Y ] =
n∑

i=1

g(ai)pi +
∫ ∞

−∞
g(x)f(x)dx. (A.124)
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A.10 The Laplace Transform L
An equivalent way to represent all the properties of a nonnegative continuous ran-

dom variable is the Laplace transform LX(s) of the pdf of X . It is named after
Pierre-Simon Laplace (1749–1827). It is a function of a complex variable s. Some
properties of combinations of random variables, especially sums of independent ran-
dom variables, are easily developed using the Laplace transform. The Laplace trans-
form is usually defined for functions that are more general than the pdf of a nonneg-
ative continuous random variable. Our interest is more restricted and the following
definition reflects it.

DEFINITION A.14 The Laplace transform of a continuous nonnegative
random variable X is represented by LX(s) and is defined as

LX(s) =
∫ ∞

0

fX(x)e−sxdx = E[e−sX ] (A.125)

where s is a complex variable.

It is easy to show that such a transformation exists for every s with a positive real
part. Furthermore, the representation is unique in the sense that given a transform
LX(s), the corresponding density fX(x) can be completely recovered from LX(s).
This result is not proved here.

Example A.9

Evaluate the Laplace transform of an exponentially distributed random
variable X with a rate µ.

Solution

fX(x) =
{
µe−µx, x ≥ 0
0, x < 0. (A.126)

LX(s) =
∫ ∞

0

e−sxµe−µxdx (A.127)

= µ

∫ ∞

0

e−(µ+s)xdx (A.128)

=
µ

−(µ+ s)

[
e−(µ+s)x

]∞
0
. (A.129)
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For every s whose real part is larger than −µ,

lim
x→∞ e−(µ+s)x = 0. (A.130)

Therefore,

LX(s) =
µ

µ+ s
, (A.131)

if X is exponential with rate µ. Conversely, if LY (s) = α
α+s , we know from unique-

ness that

fY (y) =
{
αe−αy, y ≥ 0
0, y < 0. (A.132)

The most common use of Laplace transforms in probability theory is in the addi-
tion of two independent random variables. Let X and Y be continuous nonnegative
random variables. Let Z = X + Y .

LZ(s) = E[e−sZ ] (A.133)

= E[e−s(X+Y )] (A.134)

=
∫ ∞

0

∫ ∞

0

e−s(x+y)fX,Y (x, y)dxdy. (A.135)

In the above, fX,Y (x, y) is the joint density of the two random variables, also written
as fXY (x, y) and f(x, y) when there is no ambiguity.

P [(x < X ≤ x+ dx) and (y < Y ≤ y + dy)]

= fX,Y (x, y)dxdy. (A.136)

If X and Y are independent, we know (from probability theory, or from a little
thought on the above equation), fX,Y (x, y) = fX(x)fY (y). Therefore, if X and Y
are independent,

LZ(s) =
∫ ∞

0

∫ ∞

0

e−sxe−syfX(x)fY (y)dxdy (A.137)
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=
[∫ ∞

0

e−sxfX(x)dx
][∫ ∞

0

e−syfY (y)dy
]
. (A.138)

That is,
LZ(s) = LX(s)LY (s). (A.139)

This general result is stated as a theorem below.

THEOREM A.14
The Laplace transform of the sum of two independent continuous nonnegative
random variables is the product of their individual Laplace transforms.

A.11 The Z Transform

The Z transform is defined for a discrete random variableX whose sample space
is a subset of the set of natural numbers. The transform is a function of the entire
pmf sequence of the random variable. In general, the Z transform is defined for
sequences whose domain is the entire set of all negative and nonnegative integers.
Also, unlike the pmf sequence, a general sequence for which the Z transform can
be defined can also take on negative values and need not sum to one. However, our
interest will be limited to the domain of nonnegative integers and pmf sequences
which are nonnegative and sum to 1. In this sense, our definition of the Z transform
is a restricted one. As a consequence, some important properties of the Z transform
are simpler to develop. The uses of the Z transform are in the manipulation of the
interaction of discrete random variables, similar to the uses of the Laplace transforms
of continuous random variables.

DEFINITION A.15 Let X be a random variable with a sample space
of integers 0, 1, · · · , and denote P [X = i] by pi. The Z transform of X is
denoted by ZX(z) and defined by

ZX(z) =
∞∑

i=0

piz
i (A.140)

where z is a complex variable, r(cos θ +
√−1 sin θ), with r ≥ 0. Since

∞∑
i=0

|pi| = 1 the infinite series ZX(z) converges for all |r| < 1. Therefore, the

above definition of ZX(z) is restricted for the cases of |r| < 1.

If the domain of a discrete random variable is a proper subset of the set of natural
numbers, the above definition is nevertheless applicable by substituting zeros for the
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probabilities of impossible outcomes. Some important properties of the ZX(z) are
established below.

THEOREM A.15

The Z transform of a random variable is unique. That is, given a ZX(z),
the pmf of X can be completely recovered.

Proof
Note that

ZX(z) = p0 + p1z + p2z
2 + · · · + piz

i · · · . (A.141)

If ZX(z) is differentiated i times, all the terms with indices j < i in the above series
will vanish; the i-th term will remain with no factor of z. All the terms with indices
j > i will be present with a factor of zk, k ≥ 1. Therefore, the quantity pi alone can
be recovered by evaluating the differentiated function at z = 0. Formally,

p0 = ZX(0) (A.142)

p1 =
dZX(z)
dz

evaluated at z = 0 (A.143)

...

pi =
1
i!
diZX(z)
dzi

evaluated at z = 0 (A.144)

...

If a discrete random variable is modified by adding or subtracting an integer, an-
other random variable results. If the resulting random variable does not have any
negative number as its outcome, the definition and properties of the Z transform
hold. It is easy to show the following.

THEOREM A.16

Let X be a discrete random variable and Y = X + 1. Then

ZY (z) = zZX(z). (A.145)

Similarly, if P [X = 0] = 0 and if W = X − 1, we have

ZW (z) = z−1ZX(z). (A.146)
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The following theorem is also easy to establish.

THEOREM A.17
Let X be a discrete random variable. Then,

E[X ] =
dZX(z)
dz

evaluated at z = 1 and (A.147)

E[X(X − 1)] =
d2ZX(z)
dz2

evaluated at z = 1. (A.148)

Finally, considerW , the sum of two independent discrete random variablesX and
Y . The Z transform of W can be obtained as the product of the Z transforms of X
and Y as the following theorem shows.

THEOREM A.18
If X and Y are independent discrete random variables and if W = X + Y ,

ZW (z) = ZX(z)ZY (z). (A.149)

Proof
By definition,

ZW (z) = E[zW ] (A.150)

= E[zX+Y ] (A.151)

= E[zXzY ]. (A.152)

In the above, zX is a random variable, a function of X alone; similarly, zY is a
function of Y alone. Since X and Y are independent, the random variables zX and
zY are also not influenced by one another; that is, they are independent. Therefore,
continuing from the above equation, we have

ZW (z) = E[zXzY ] (A.153)

= E[zX ]E[zY ] (A.154)
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= ZX(z)ZY (z) (A.155)

which proves the theorem.

Example A.10
Evaluate the mean and variance of the sum of the numbers resulting in the
two biased die experiment of Example A.7.

Solution
Let the random variables corresponding to the two throws of the die be X and Y .
Let the sum be W .

ZX(z) = 0.25 + 0.1z + 0.3z2 + 0.18z3 + 0.05z4 + 0.12z5 (A.156)

ZY (z) = 0.25 + 0.1z + 0.3z2 + 0.18z3 + 0.05z4 + 0.12z5 (A.157)

ZW (z) = (0.25 + 0.1z + 0.3z2 + 0.18z3 + 0.05z4 + 0.12z5)2 (A.158)

In order to evaluate the expectation, differentiate once.

dZW (z)
dz

= 2(0.25 + 0.1z + 0.3z2 + 0.18z3 + 0.05z4 + 0.12z5)

×(0.1 + 0.6z + 0.54z2 + 0.2z3 + 0.6z4). (A.159)

Evaluate the above derivative at z = 1 to obtain

E[W ] = 2 × 1 × (0.1 + 0.6 + 0.54 + 0.2 + 0.6) (A.160)

= 2 × 2.04 = 4.08. (A.161)

In order to evaluate the variance, differentiate ZW (z) twice.

d2ZW (z)
dz2

= 2(0.1 + 0.6z + 0.54z2 + 0.2z3 + 0.6z4)2

+2(0.25 + 0.1z + 0.3z2 + 0.18z3 + 0.05z4 + 0.12z5)

×(0.6 + 1.08z + 0.6z2 + 2.4z3). (A.162)

Evaluate the above second derivative to obtain

E[W (W − 1)] = 2 × (2.04)2
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+2 × 1 × (0.6 + 1.08 + 0.6 + 2.4) (A.163)

= 2 × (2.04)2 + 9.36 (A.164)

E[W 2] − E[W ] = 2 × (2.04)2 + 9.36 (A.165)

Var[W ] = E[W 2] − (E[W ])2 (A.166)

= E[W ] + 2 × (2.04)2 + 9.36 − (E[W ])2 (A.167)

= 2.04 + 9.36 − (2.04)2 (A.168)

= 7.3184. (A.169)

A.12 Exercises

1. The instructor of a class announces that the numerical score in a midterm test,
approximated as a real number, has a triangular density function spread be-
tween 30 and 95. The density function peaks at 80, and a score of 70 is a pass.
A student only knows his/her performance in terms of a pass/fail result. At the
end of the semester, the top 10% of the students are awarded a scholarship.

(a) Determine the peak value of the density function.

(b) Determine the mean and variance of the score.

(c) Given that a student passed, what is the probability that he/she will be
awarded a scholarship?

2. Evaluate the mean and variance of the sum of two iid biased-dice random
experiment in Example (A.7), without using the Z transform.

3. A simple a microprocessor-based control system has three interrupting devices
A, B, and C. The microprocessor checks for interrupts frequently, once every
10 milliseconds (msec). The device A has priority over the other two devices,
and B has priority over C. This means that if all the devices are interrupting,
only A is serviced. If only B and C are interrupting, only B will be served.
If only C is interrupting, it will be served. The devices A, B, and C generate
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interrupts statistically independently with probabilities of 0.1, 0.4, and 0.6,
respectively. Their respective interrupt service times are 5, 3, and 2 msecs.
Unserviced interrupts are lost. There is no queuing at all.

Determine each of the probabilities with which the microprocessor services
A, B, or C after it checks. Also determine the average time spent on interrupt
service during a 10 msec time period.

4. The function GX(x) = 1 − FX(x) is called the complementary cumulative
distribution function (ccdf) and also by the name of the tail distribution func-
tion. It is also commonly denoted by Fc(x) when the random variable under
consideration is obvious. Prove that the expectation of a nonnegative random
variable is the integral of its ccdf over the nonnegative real line.

5. Prove that the expectation of the sum of two random variables is the sum of
their individual expectations. Do not assume that the two random variables
are independent. Do this for the two cases of continuous and discrete random
variables.

6. Prove that the variance of the sum of two independent random variables is the
sum of the variances of the individual random variables.

7. From the Parade weekly news magazine. Consider a TV game show in which
the host shows the participant three identical doors and tells her that behind one
of them is a sports car and behind the others are a goat each. The participant
should try to guess the door with the car. The participant picks one. The host
opens a different door that shows a goat. The host then gives a chance for the
participant to switch the choice to the remaining door. The question is, at that
time, what are the probabilities of finding the car in each of the two closed
doors? This will help the participant to determine if she should switch the
doors if given a chance.

Remember that any time anyone has to choose between two or more identical
choices (to the knowledge of the person making the choice), one is picked “at
random.”

8. This problem is based on a fictional story titled “The curious prisoner and the
warden.” There were three prisoners A, B, and C, in different cells. They
knew that one of them had already been chosen at random to be executed the
next morning. Prisoner A went to the warden and said “I know you are not
allowed to tell me which one of us will be executed. But I do know that one of
the other two will not be executed. Will you please tell me which of the other
two will not be executed?” The warden reflected for a moment and obliged the
prisoner A with a true answer. Did this change A’s calculation of the proba-
bility that he would be executed? And according to A’s calculations, what is
the probability that the other candidate (other than the survivor as disclosed by
the warden) would be executed?
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Instead of checking with the warden, let us say that A found a true document
that he was not supposed to have access to. And let us say that the document
implied that a particular prisoner from {B, C} will be alive following the next
day. Now repeat the same calculations as above and compare.

9. Prove the Markov inequality. That is, for any nonnegative random variableX ,
with an expectation η and for any α > 0, show that

P [X ≥ α] ≤ η

α
. (A.170)

10. Prove the Chebyshev inequality. That is, for any random variable with an
expectation of η and variance of σ2, and for any ε > 0, show that

P [|X − η| ≥ ε] ≤ σ2

ε2
. (A.171)

This is named after Pafnuty Chebyshev (1821–1894), a Russian mathemati-
cian.
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