

About Invitation to Computer Science, Sixth Edition

Invitation to Computer Science, Sixth Edition

Contributors

Creators

Dedication

Preface

Copyright

Chapter : About Invitation to Computer Science, Sixth Edition
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Invitation to Computer Science, Sixth Edition
6th Edition

G. Michael Schneider Macalester College

Judith L. Gersting Indiana University-Purdue University at Indianapolis

Bo BrinkmanContributing author Miami University

Chapter : About Invitation to Computer Science, Sixth Edition
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Contributors

Marie Lee Executive Editor:

Brandi Shailer Acquisitions Editor:

Alyssa Pratt Senior Product Manager:

Deb Kaufmann Development Editor:

Stephanie Lorenz Associate Product Manager:

Shanna Shelton Associate Marketing Manager:

Jill Braiewa

Jennifer Goguen McGrail Senior Content Project Managers:

Faith Brosnan Associate Art Director:

Roycroft Design | roycroftdesign.com Cover Designer:

iStockphoto.com/ Dmitry Pistrov Cover Image:

Integra Compositor:

Chapter : About Invitation to Computer Science, Sixth Edition
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Creators

G. Michael Schneider Macalester College

Judith L. Gersting Indiana University-Purdue University at Indianapolis

Bo BrinkmanContributing author Miami University

Chapter : About Invitation to Computer Science, Sixth Edition
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Dedication
To my wife, Ruthann, our children, Benjamin, Rebecca, and Trevor, grandson, Liam,
and granddaughter, Sena.

G. M. S.

To my husband, John, and to: Adam and Francine; Jason, Cathryn, Sammie, and
Johnny

J. L. G.

Chapter : About Invitation to Computer Science, Sixth Edition
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Preface

Preface

Overview

This text is intended for use in a one-semester introductory course in computer
science. It presents a breadth-first overview of the discipline that assumes no prior
background in computer science, programming, or mathematics. It is appropriate for a
service course for students not majoring in computer science, as well as for schools
that implement their introductory sequence for majors using the breadth-first model
described in the ACM/IEEE Computing Curricula 2001 Report. It would be quite suitable
for a high school computer science course as well. Previous editions of this text have
been used in all these types of courses.

The Non-majors Course

The introductory computer science service course has undergone many changes over
the years. In the 1970s and early 1980s, it was usually a course in FOR-TRAN, BASIC, or

Pascal. At that time it was felt that the most important skill a student could acquire was
learning to program in a high-level language. In the mid-to-late’80s, a rapid increase in
computer use caused the course to evolve into something called “computer literacy” in
which students learned about new applications of computing in such fields as business,
medicine, law, and education. With the growth of personal computers and productivity
software, a typical early to mid-1990s version of this course would spend a semester
teaching students to use word processors, databases, spreadsheets, presentation
software, and electronic mail. The most recent change has been its evolution into a
Web-centric course where students learn to design and implement Web pages using
technology such as HTML, XML, ASP, and Java applets.

In many institutions the computer science service course has evolved yet again. There
are two reasons for this. First, virtually all students in college today are familiar with
personal computers and productivity software. They have been using word processors
and presentation systems since elementary school and are quite familiar with social
networks, online retailing, e-mail, and chat rooms. Many have designed Web pages and
even manage their own Web sites and blogs. In this day and age, a course that focuses
on applications of computing will be of little or no interest.

But a more important reason for rethinking the structure of this course, and the
primary reason why we authored this book, is the following observation:

Most computer science service courses do not teach students the foundations and
fundamentals of computer science!

We believe quite strongly that students in a computer science service course should
receive a solid grounding in the fundamental intellectual concepts of computer science
in addition to important uses of computing and information technology. This parallels
the introductory course in biology, physics, or geology, where the central
underpinnings of the respective fields are introduced. The topics in such a computer
science course would not be limited to “fun” applications such as Web page design,
social networking, and interactive graphics, but would also cover issues such as
algorithms, hardware design, computer organization, system software, language
models, theory of computation, and social and ethical issues of computing. An to these
core ideas exposes students to the overall richness and beauty of the field, and it allows
them to not only use computers and software effectively but to understand and
appreciate the basic ideas underlying their creation and implementation.

The Cs1 Course

The design of a first course for computer science majors has also come in for a great
deal of discussion. Since the emergence of computer science as a distinct academic
discipline in the 1960s, the first course has always been an introduction to
programming—from BASIC to FORTRAN to Pascal, to C++, Java, and Python today. Some
new programming-related topics have been added to the syllabus (e.g., object-oriented
design), but the central focus has remained high-level language programming.
However, the most recent ACM/IEEE curriculum report proposed a number of
alternative models for the first course, including a breadth-first overview, an approach
that has gained in popularity over time.

A first course for computer science majors using the breadth-first model emphasizes
early exposure to the sub-disciplines of the field rather than placing exclusive
emphasis on programming. This gives new majors a more complete and well-rounded
understanding of their chosen field of study. As stated in the Curriculum Report,
“[introductory] courses that emphasize only this one aspect [programming] fail to let

students experience the many other areas and styles of thought that are part of
computer science as a whole.” Our book—intended for either majors or non-majors—is
organized around this breadth-first approach, and it presents a wide range of subject
matter drawn from many areas of computer science. However, to avoid drowning
students in a sea of seemingly unrelated facts and details, a breadth-first presentation
must be carefully woven into a cohesive fabric, a theme, a “big picture” that ties
together these topics and presents computer science as a unified and integrated
discipline. To achieve this we have divided the study of computer science into a
hierarchy of topics, with each layer in the hierarchy building on and expanding upon
concepts presented in earlier chapters.

A Hierarchy of Abstractions

The central theme of this book is that computer science is the study of algorithms. Our
hierarchy utilizes this definition by first looking at the algorithmic basis of computer
science and then moving upward from this central theme to higher-level issues such as
hardware, software, applications, and ethics. Just as the chemist starts from protons,
neutrons, and electrons and builds up to atoms, molecules, and compounds, so, too,
does our text build from elementary concepts such as algorithms, binary arithmetic,
gates, and circuits to higher-level ideas such as computer organization, operating
systems, high-level languages, applications, and the social, legal, and ethical problems
of information technology.

The six levels in our computer science hierarchy are as follows:

Level 1

The Algorithmic Foundations of Computer Science

Level 2

The Hardware World

Level 3

The Virtual Machine

Level 4

The Software World

Level 5

Applications

Level 6

Social Issues in Computing

Following an introductory chapter, Level 1 Chapters 2-3 introduces “The Algorithmic
Foundations of Computer Science,” the bedrock on which all other aspects of the
discipline are built. It presents fundamental ideas such as the design of algorithms,
algorithmic problem solving, abstraction, pseudocode, iteration, and efficiency. It
illustrates these ideas using well-known examples such as searching a list, finding
maxima and minima, sorting a list, and matching patterns. It also introduces the

concepts of algorithm efficiency and asymptotic growth and demonstrates that not all
algorithms are, at least in terms of running time, created equal.

The discussions in Level 1 assume that our algorithms are executed by something
called a “computing agent,” an abstract concept for any entity that can effectively carry
out the instructions contained in our solution. However, in Level 1 (Chapters 4-5), “The
Hardware World,” we now want our algorithms to be executed by “real” computers to
produce “real” results. Thus begins our discussion of hardware, logic design, and
computer organization. The initial discussion introduces the basic building blocks of
computer systems—binary numbers, Boolean logic, gates, and circuits. It then shows
how these elementary concepts can be used to construct a real computer using the
classic Von Neumann architecture, including processors, memory, buses, and
input/output. It presents a typical machine language instruction set and explains how
the algorithmic primitives of Level 1 can be represented in machine language and run
on the Von Neumann hardware of Level 1, conceptually tying together these two areas.
It ends with a discussion of important new directions in hardware design—multicore
processors and massively parallel machines.

By the end of Level 1 students have been introduced to some basic concepts in logic
design and computer organization, and they understand and appreciate the enormous
complexity of these ideas. This complexity is the motivation for the material contained
in Level 3 (Chapters 6-8), “The Virtual Machine.” This section describes how system
software produces a more friendly, user-oriented problem-solving environment that
hides many of the ugly hardware details just described. Level 3 looks at the same
problems discussed in Level 1, encoding and executing algorithms, but shows how
much easier this is in a virtual environment containing helpful software tools like
editors, translators, debuggers, and loaders. This section also discusses the services and
responsibilities of operating systems and how operating systems have evolved. It
investigates one of the most important virtual environments in current use—networks
of computers. It shows how systems such as the Ethernet, Internet, and the Web are
created from computers linked together via transmission media and communications
software. This linkage creates a virtual environment in which we seamlessly use not
only the computer on our desk or in our hand but computers located practically
anywhere in the world. Level 3 concludes with a look at one of the most important
services provided by a virtual machine, information security, and describes algorithms
for protecting the user and the system from accidental or malicious damage.

Once we have created this user-oriented virtual environment, what do we want to do
with it? Most likely we want to write programs to solve interesting problems. This is
the motivation for Level 4 (Chapters 9-12), “The Software World.” Although this book
should not be viewed as a programming text, it contains an overview of the features
found in modern programming languages. This gives students an appreciation for the
interesting and challenging task of the computer programmer and the power of the
problem-solving environment created by a modern high-level language. (Detailed
introductions to five important high-level programming languages are available via
online, downloadable chapters accessible through the CourseMate for this text, as well
as at www.cengagebrain.com.) There are many different programming language
models, so this level includes a discussion of other language types, including special-
purpose languages such as SQL, HTML, and JavaScript, as well as the functional, logic,
and parallel language paradigms. This level also describes the design and construction
of a compiler and shows how high-level languages can be translated into machine
language for execution. This latter discussion ties together ideas presented in earlier
chapters, as we show how an algorithm (Level 1) is translated into a high-level
language (Level 4), compiled and executed on a typical Von Neumann machine (Level
1), which makes use of the system software tools of Level 3. These “recurring themes”
and frequent references to earlier concepts help reinforce the idea of computer science

as an integrated set of related topics. At the conclusion of Level 4, we introduce the idea
of computability and unsolvability. A formal model of computing (the Turing machine)
is used to prove that problems exist for which no general algorithmic solution can be
found. This shows students that there are provable limits to what computers and
computer science can achieve.

We now have a high-level programming environment in which it is possible to write
programs to solve important problems. In Level 5 (Chapters 13-16), “Applications,” we
take a look at a few important uses of computers in our modern society. There is no
way to cover even a tiny fraction of the many applications of computers and
information technology in a single section. Indeed, there is hardly a field of study, from
Art to Zoology, that has not been significantly impacted by the advances in computation
and communication. Instead, we focus on a relatively small set of applications that
demonstrate important concepts, tools, and techniques of computer science. This
includes applications drawn from the sciences and engineering (simulation and
modeling), business and finance (e-commerce, databases), the social sciences (artificial
intelligence), and everyday life (computer generated imagery, video gaming, virtual
communities). Our goal is not to provide “encyclopedic coverage” of modern
computing usage; instead, it is to show students that these applications are not “magic
boxes” whose inner workings are totally unfathomable. Rather, they are the direct
result of utilizing and building upon core computer science concepts—e.g., algorithms,
hardware, languages—presented in earlier chapters. We hope that the discussions in
this section will encourage readers to seek out information on applications and
software packages specific to their own areas of interest.

Finally, we reach the highest level of study, Level 6 (Chapter 17), “Social Issues in
Computing,” which addresses the social, ethical, and legal issues raised by the
applications presented in Level 5. This section (written by contributing author
Professor Bo Brinkman of Miami University) examines such thorny problems as the
theft of intellectual property, national security concerns aggravated by information
technology, and problems caused by the unauthorized access to online databases. It
also discusses erosions to our personal privacy caused by the growing popularity of
social networks. This chapter does not attempt to provide quick solutions to these
complex problems. Instead, it focuses on techniques that students can use to think
about these ethical issues and reach their own conclusions. Our goal in this final
section is to make students aware of the enormous impact that information technology
is having on everyone’s lives and to give them tools that will allow them to make more
informed decisions.

This, then, is the hierarchical structure of our text. It begins with the algorithmic
foundations of the discipline and works its way from low-level hardware concepts
through virtual machine environments, languages, software, and applications to the
social issues raised by computer technology. This organizational structure, along with
the use of recurring themes, enables students to view computer science as a unified,
integrated, and coherent field of study. While the social issues material in Chapter 17
can be presented at any time, the rest of the material is intended to be covered
sequentially.

What’s New

This sixth edition of Invitation to Computer Science contains a number of new features
on emerging issues in computer science. We have added material on topics such as
multicore and parallel systems, cloud computing, wireless communications, embedded
computing and its security vulnerabilities, agile software development, emerging
programming languages (Go and F#), new models of e-commerce, database integrity
rules, and the progress of artificial intelligence in game playing.

There are many new in-chapter Practice Problems (with answers provided at the end
of the text) as well as numerous new End of Chapter Exercises. There are also new
additions to the end-of-chapter Challenge Problems; these more complex questions can
be used for longer assignments done either individually or by teams of students. Many
new or updated Special Interest Boxes highlight historical information, new
developments in computing, or interesting news items that show how computing
affects everyday life.

One of the most important new features in this edition is the rewrite of Chapter 17,
Making Decisions about Computers, Information, and Society, authored by Bo Brinkman
of Miami University, a recognized expert on the topic of social and ethical issues in
computing. In addition to new Case Studies, this chapter contains a completely new
section entitled “Personal Privacy and Social Networks,” which addresses the real and
growing problems of cyberbullying and the threats to our personal privacy caused by
the enormous popularity of Web sites such as Facebook, Twitter, and YouTube.

An Interactive Experience-coursemate

This edition offers significantly enhanced supplementary material and additional
resources available online through a new CourseMate. Course-Mate is a valuable Web
resource containing an eBook with highlighting and note-taking capabilities,
supplementary readings that correspond to each chapter, a glossary and flashcards of
key technical terms, and links to interesting articles, helpful references, and relevant
videos from across the Web. The CourseMate encourages a truly interactive experience
with study games, objective- and application-based quizzing, and hands-on exploration
projects that speak students’ language.

Instructors may add CourseMate to the textbook package, or students may purchase
CourseMate directly through www.cengagebrain.com.

An Experimental Science-laboratory Manual

Another important aspect of computer science education is the realization that, like
physics, chemistry, and biology, computer science is an empirical, laboratory-based
discipline in which learning comes not only from watching and listening but from
doing and trying. Many complex ideas in computer science cannot be fully understood
and appreciated until they are visualized, manipulated, and tested. Today, most
computer science faculty consider formal laboratories to be an essential part of any
introductory course. We concur, and this development is fully reflected in our
approach to the material.

Associated with this text is a laboratory manual and custom-designed laboratory
software that enables students to experiment with the concepts we present. The
manual contains 20 laboratory experiences, closely coordinated with the main text,
that cover all levels except Level 6. These labs give students the chance to observe,
study, analyze, and/or modify an important idea or concept. For example, associated
with Level 1 (the algorithmic foundations of computer science) are experiments that
animate the algorithms in Chapters 2 and 3 and ask students to observe and discuss
what is happening in these animations. There are also labs that allow students to
measure the running time of these algorithms for different-sized data sets and discuss
their behavior, thus providing concrete observations of an abstract concept like
algorithmic efficiency. Associated with Level 1 (the hardware world) are projects to
design and analyze logic circuits as well as program a simulated Von Neumann
machine that is identical to the one presented in the text. There are similar labs
available for Levels 3, 4, and 5 that highlight and clarify the material presented in the
text.

Each of the lab manual experiments includes an explanation of how to use the
software, a description of exactly how to conduct the experiment, and discussion
questions and problems for students to complete and hand in. When doing these
projects, students could work on their own or in teams, and the course may utilize
either a closed-lab (formal, scheduled) or an open-lab (informal, unscheduled) setting.
The manual and software will work well in any of these laboratory models. The text
contains 20 boxes labeled “Laboratory Exercise” that describe each lab and identify the
point in the text where it is most appropriate.

Instructors may add the Laboratory Manual and accompanying software to the
textbook package. The Laboratory Manual and CourseMate may also be bundled
together for the optimal experience; contact your sales representative for more
information. Students may purchase the Laboratory Manual directly through
www.cengagebrain.com.

Summary

Computer science is a young and exciting discipline, and we hope that the material in
this text, along with the laboratory projects and online modules, will convey this
feeling of excitement. By presenting the field in all its richness—algorithms, hardware,
software, systems, applications, and social issues—we hope to give students a deeper
appreciation for the many diverse and interesting areas of research and study within
the discipline of computer science. We hope that you will enjoy reading and learning
from this latest edition of our text.

Instructor Resources

The following supplemental teaching tools are available when this book is used in a
classroom setting. All of the teaching tools available with this book are provided to the
instructor on a single CD-ROM. Many are also available for download at
login.cengage.com.

Electronic Instructor’s Manual

The Instructor’s Manual follows the text chapter-by-chapter and includes material to
assist in planning and organizing an effective, engaging course. The Manual includes
Overviews, Chapter Objectives, Teaching Tips, Quick Quizzes, Class Discussion Topics,
Additional Projects, Additional Resources, and Key Terms. A Sample Syllabus is also
available.

Solutions

Complete solutions to chapter Review Questions, Discussion Questions, and
quantitative hands-on work are provided.

Examview®

This textbook is accompanied by ExamView, a powerful testing software package that
allows instructors to create and administer printed, LAN-based, and Internet exams.
ExamView includes hundreds of questions that correspond to the text, enabling
students to generate detailed study guides that include page references for further
review. The computer-based and Internet testing components allow students to take
exams at their computers and save the instructor time by grading each exam
automatically. These test banks are also available in Blackboard, Web CT, and Angel
compatible formats.

Powerpoint Presentations

This text provides Microsoft PowerPoint slides to accompany each chapter. Slides may

be used to guide classroom presentation, to make available to students for chapter
review, or to print as classroom handouts. Instructors may customize the slides to best
suit their course with the complete Figure Files from the text.

—G. Michael Schneider

Macalester College

schneider@macalester.edu

— Judith L. Gersting

Indiana University-Purdue University at Indianapolis

gersting@iupui.edu

Chapter : About Invitation to Computer Science, Sixth Edition
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Copyright

Invitation to Computer Science, Sixth Edition

COPYRIGHT © 2013, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be
reproduced, transmitted, stored or used in any form or by any means graphic,
electronic, or mechanical, including but not limited to photocopying, recording,
scanning, digitizing, taping, Web distribution, information networks, or information
storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976
United States Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at Cengage Learning
Customer & Sales Support, www.cengage.com/support

Some of the product names and company names used in this book have been used for
identification purposes only and may be trademarks or registered trademarks of their
respective manufacturers and sellers.

Any fictional data related to persons or companies or URLs used throughout this book
is intended for instructional purposes only. At the time this book was printed, any such
data was fictional and not belonging to any real persons or companies.

Cengage Learning reserves the right to revise this publication and make changes from
time to time in its content without notice.

The programs in this book are for instructional purposes only.

They have been tested with care, but are not guaranteed for any particular intent
beyond educational purposes. The author and the publisher do not offer any
warranties or representations, nor do they accept any liabilities with respect to the
programs.

For permission to use material from this text or product, submit all requests online at
cengage.com/permissions

Further permissions questions can be emailed to permissionrequest@cengage.com

Library of Congress Control Number: 2011943942

Student Edition ISBN-13: 978-1-133-19082-0
Student Edition ISBN-10: 1-133-19082-0

Cengage Learning

20 Channel Center Street

Boston MA 02210

USA

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

Cengage Learning is a leading provider of customized learning solutions with office
locations around the globe, including Singapore, the United Kingdom, Australia,
Mexico, Brazil, and Japan. Locate your local office at:international.cengage.com/region

For your lifelong learning solutions, visit course.cengage.com

Visit our corporate website at cengage.com.

Chapter : About Invitation to Computer Science, Sixth Edition
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

© 2014 Cengage Learning Inc. All rights reserved. No part of this work may by reproduced or used in any form or by any means - graphic, electronic, or
mechanical, or in any other manner - without the written permission of the copyright holder.

Chapter 1: An Introduction to Computer Science
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter 1
An Introduction to Computer Science

1.1 Introduction

1.2 The Definition of Computer Science

1.3 Algorithms

1.3.1 The Formal Definition of an Algorithm

1.3.2 The Importance of Algorithmic Problem Solving

1.4 A Brief History of Computing

1.4.1 The Early Period: Up to 1940

1.4.2 The Birth of Computers: 1940–1950

1.4.3 The Modern Era: 1950 to the Present

1.5 Organization of the Text

Chapter Review

Exercises

Challenge Work

Additional Resources

Chapter 1: An Introduction to Computer Science: 1.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

1.1 Introduction
This text is an invitation to learn about one of the youngest and most exciting of
scientific disciplines—computer science. Almost every day our newspapers, televisions,
and electronic media carry reports of significant advances in computing, such as

high-speed supercomputers that perform over 8 quadrillion (10) mathematical
operations per second; networks that transmit high-definition images and movies
anywhere in the world in fractions of a second; minute computer chips that can be

15

embedded into our appliances, clothing, and even our bodies; and artificial intelligence
systems that answer English language questions faster and more accurately than
humans. The next few years will see technological breakthroughs that, until a few
years ago, existed only in the minds of dreamers and science fiction writers. These are
exciting times in computing, and our goal in this text is to provide you with an
understanding of computer science and an appreciation for the diverse areas of
research and study within this important field.

Although the average person can produce a reasonably accurate description of most
scientific fields, even if he or she did not study the subject in school, many people do
not have an intuitive understanding of the types of problems studied by computer
science professionals. For example, you probably know that biology is the study of
living organisms and that chemistry deals with the structure and composition of
matter. However, you might not have the same fundamental understanding of the
work that goes on in computer science. In fact, many people harbor one or more of the
following common misconceptions about this field.

MISCONCEPTION 1: Computer science is the study of computers.

This apparently obvious definition is actually incorrect or, to put it more precisely,
incomplete. For example, some of the earliest and most fundamental theoretical work
in computer science took place from 1920 to 1940, years before the development of the
first computer system. (This pioneering work was initially considered a branch of logic
and applied mathematics. Computer science did not come to be recognized as a
separate and independent field of scientific study until the late 1950s to early 1960s.)
Even today, there are branches of computer science quite distinct from the study of
“real” machines. In theoretical computer science, for example, researchers study the
logical and mathematical properties of problems and their solutions. Frequently, these
researchers investigate problems not with actual computers but rather with formal
models of computation, which are easier to study and analyze mathematically. Their
work involves pencil and paper, not circuit boards and disks.

This distinction between computers and computer science was beautifully expressed
by computer scientists Michael R. Fellows and Ian Parberry in an article in the journal
Computing Research News:

Computer science is no more about computers than astronomy is about
telescopes, biology is about microscopes, or chemistry is about beakers and test
tubes. Science is not about tools. It is about how we use them and what we find
out when we do.

MISCONCEPTION 2: Computer science is the study of how to write computer
programs.

Many people are introduced to computer science when learning to write programs in a
language such as C++, Python, or Java. This almost universal use of programming as the
entry to the discipline can create the misunderstanding that computer science is
equivalent to computer programming.

Programming is extremely important to the discipline—researchers use it to study new
ideas and build and test new solutions—but like the computer itself, it is a tool. When
computer scientists design and analyze a new approach to solving a problem or create
new ways to represent information, they often implement their ideas as programs to
test them on an actual computer system. This enables researchers to see how well these
new ideas work and whether they perform better than previous methods.

For example, searching a list is one of the most common applications of computers, and
it is frequently applied to huge problems, such as finding one name among the
approximately 20,000,000 listings in the New York City telephone directory. (We will
solve this problem in Chapter 2.) A more efficient lookup method could significantly
reduce the time that customers must wait for directory assistance. Assume that we
have designed what we believe to be a “new and improved” search technique. After
analyzing it theoretically, we would study it empirically by writing a program to
implement our new method, executing it on our computer, and measuring its
performance. These tests would demonstrate under what conditions our new method
is or is not faster than the directory search procedures currently in use.

In computer science, it is not simply the construction of a high-quality program that is
important but also the methods it embodies, the services it provides, and the results it
produces. It is possible to become so enmeshed in writing code and getting it to run
that we forget that a program is only a means to an end, not an end in itself.

MISCONCEPTION 3: Computer science is the study of the uses and applications of
computers and software.

If one’s introduction to computer science is not programming, then it may be a course
on the application of computers and software. Such a course typically teaches the use
of a number of popular packages, such as word processors, search engines, database
systems, imaging software, mapping packages, smartphone apps, and Web browsers.

These packages are widely used by professionals in all fields. However, learning to use
a software package is no more a part of computer science than driver’s education is a
branch of automotive engineering. A wide range of people use computer software, but

it is the computer scientist who is responsible for specifying, designing, building, and
testing software packages as well as the computer systems on which they run.

These three misconceptions about computer science are not entirely wrong; they are
just woefully incomplete. Computers, programming languages, software, and
applications are part of the discipline of computer science, but neither individually nor
combined do they capture the richness and diversity of this field.

We have spent a good deal of time saying what computer science is not. What, then, is
it? What are its basic concepts? What are the fundamental questions studied by
professionals in this field? Is it possible to capture the breadth and scope of the
discipline in a single definition? We answer these fundamental questions in the next
section and, indeed, in the remainder of the text.

In the Beginning …

There is no single date that marks the beginning of computer science. Indeed,
there are many “firsts” that could be used to mark this event. For example,
some of the earliest theoretical work on the logical foundations of computer
science occurred in the 1930s. The first general-purpose, electronic computers
appeared during the period 1940–1946. (We will discuss the history of these
early machines in Section 1.4.) These first computers were one-of-a-kind
experimental systems that never moved outside the research laboratory. The
first commercial machine, the UNIVAC I, did not make its appearance until
March 1951, a date that marks the real beginning of the computer industry. The
first high-level (i.e., based on natural language) programming language was
FORTRAN. Some people mark its debut in 1957 as the beginning of the
“software” industry. The appearance of these new machines and languages
created new occupations, such as programmer, numerical analyst, and
computer engineer. To address the intellectual needs of these workers, the first
professional society for people in the field of computing, the Association for
Computing Machinery (ACM), was established in 1947. (The ACM has almost
100,000 members and is the largest professional computer science society in the
world. Its Web page is located at www.acm.org.) To help meet the rapidly
growing need for computer professionals, the first Department of Computer
Science was established at Purdue University in October 1962. It awarded its
first M.Sc. degree in 1964 and its first Ph.D. in computer science in 1966. An
undergraduate program was established in 1968.

Thus, depending on what you consider the most important “first,” the field of
computer science is somewhere between 45 and 80 years old. Compared with
such classic scientific disciplines as mathematics, physics, chemistry, and
biology, computer science is the new kid on the block.

Definition

Computer science: the study of algorithms,
including

Their formal and mathematical

properties

1.

Their hardware realizations2.

Their linguistic realizations3.

Their applications4.

If you are handed this list and
carefully follow its instructions in the
order specified, when you reach the
end you will have solved the task at
hand.

All the operations used to construct
algorithms belong to one of only three
categories:

Sequential operations A sequential instruction carries out a single well-defined

task. When that task is finished, the algorithm moves on to the next operation.

Sequential operations are usually expressed as simple declarative sentences.

Add 1 cup of butter to the mixture in the bowl.

Subtract the amount of the check from the current account balance.

Set the value of x to 1.

1.

Conditional operations These are the “question-asking” instructions of an

algorithm. They ask a question, and the next operation is selected on the basis of

the answer to that question.

If the mixture is too dry, then add one-half cup of water to the bowl.

If the amount of the check is less than or equal to the current account

balance, then cash the check; otherwise, tell the person there are

insufficient funds.

If x is not equal to 0, then set y equal to 1/x; otherwise, print an error

message that says you cannot perform division by 0.

2.

Iterative operations These are the “looping” instructions of an algorithm. They

tell us not to go on to the next instruction but, instead, to go back and repeat the

execution of a previous block of instructions.

3.

Repeat the previous two operations until the mixture has thickened.

While there are still more checks to be processed, do the following five

steps.

Repeat Steps 1, 2, and 3 until the value of y is equal to +1.

We use algorithms (although we don’t call them that) all the time— whenever we
follow a set of instructions to assemble a child’s toy, bake a cake, balance a checkbook,
or go through the college registration process. A good example of an algorithm used in
everyday life is the set of instructions shown in Figure 1.1 for programming a DVR to
record a sequence of television shows. Note the three types of instructions in this
algorithm: sequential (Steps 2, 4, 5, 6, and 8), conditional (Steps 1 and 7), and iterative
(Step 3).

Figure 1.1

Programming your DVR: An example of an algorithm

Mathematicians use algorithms all the time, and much of the work done by early
Greek, Roman, Persian, and Indian mathematicians involved the discovery of
algorithms for important problems in geometry and arithmetic; an example is Euclid’s
algorithm for finding the greatest common divisor of two positive integers. (Exercise 10
at the end of the chapter presents this 2,300-year-old algorithm.) We also studied
algorithms in elementary school, even if we didn’t know it. For example, in the first
grade we learned an algorithm for adding two numbers such as

The instructions our teachers gave were as follows: First add the rightmost column of

numbers (7 + 5), getting the value 12. Write down the 2 under the line and carry the 1
to the next column. Now move left to the next column, adding (4 + 2) and the previous
carry value of 1 to get 7. Write this value under the line, producing the correct answer
72.

Although as children we learned this algorithm informally, it can, like the DVR
instructions in Figure 1.1, be written formally as an explicit sequence of instructions.
Figure 1.2 shows an algorithm for adding two positive m-digit numbers. It expresses
formally the operations informally described previously. Again, note the three types of
instructions used to construct the algorithm: sequential (Steps 1, 2, 4, 6, 7, 8, and 9),
conditional (Step 5), and iterative (Step 3).

Figure 1.2

Algorithm for adding two m-digit numbers

Even though it might not appear so, this is the same “decimal addition algorithm” that
you learned in grade school; if you follow it rigorously, it is guaranteed to produce the
correct result. Let’s watch it work.

Procedure

STEP 1

carry = 0

STEP 2

i = 0

STEP 3

We now repeat Steps 4 through 6 while i is less than or equal to 1

First repetition of the loop (i has the value 0)

STEP 4

Add (a + b + carry), which is 7 + 5 + 0, so c = 12

STEP 5

Because c ≥ 10, we reset c to 2 and reset carry to 1

STEP 6

Reset i to (0 + 1) = 1. Because i is less than or equal to 1, go back to Step 4

Second repetition of the loop (i has the value 1)

STEP 4

Add (a + b + carry), which is 4 + 2 + 1, so c = 7

STEP 5

Because c ≥ 10, we reset carry to 0

STEP 6

Reset i to (1 + 1) = 2. Because i is greater than 1, we do not repeat the loop

but instead go to Step 7

STEP 7

Set c = 0

STEP 8

0 0 0

0 0

1 1 1

1

2

Print out the answer c c c = 072 (see the boldface values)

STEP 9

Stop

Abu Ja’far Muhammad ibn Musa Al-Khowarizmi (AD 780-850?)

The word algorithm is derived from the last name of Muhammad ibn Musa
Al-Khowarizmi, a famous Persian mathematician and author from the eighth
and ninth centuries. Al-Khowarizmi was a teacher at the House of Wisdom in
Baghdad and the author of the book Kitab al jabr w’al muqabala, which in
English means “The Concise Book of Calculation by Reduction.” Written in AD
820, it is one of the earliest mathematical textbooks, and its title gives us the
word algebra (the Arabic word al jabr means “reduction”).

In AD 825, Al-Khowarizmi wrote another book about the base-10 positional
numbering system that had recently been developed in India. In this book, he
described formalized, step-by-step procedures for doing arithmetic operations,
such as addition, subtraction, and multiplication, on numbers represented in
this new decimal system, much like the addition algorithm diagrammed in
Figure 1.2. In the twelfth century, this book was translated into Latin,
introducing the base-10 Hindu-Arabic numbering system to Europe, and
Al-Khowarizmi’s name became closely associated with these formal numerical
techniques. His last name was rendered as Algoritmi in Latin characters, and
eventually the formalized procedures that he pioneered and developed became
known as algorithms in his honor.

We have reached the end of the algorithm, and it has correctly produced the sum of the
two numbers 47 and 25, the three-digit result 072. (A more clever algorithm would omit
the unnecessary leading zero at the beginning of the number if the last carry value is a
zero. That modification is an exercise—Exercise 6—at the end of the chapter.) Try
working through the algorithm shown in Figure 1.2 with another pair of numbers to be
sure that you understand exactly how it functions.

The addition algorithm shown in Figure 1.2 is a highly formalized representation of a
technique that most people learned in the first or second grade and that virtually
everyone knows how to do informally. Why would we take such a simple task as
adding two numbers and express it in so complicated a fashion? Why are formal
algorithms so important in computer science? Because of the following fundamental
idea:

2 1 0

If we can specify an algorithm to solve a problem, then we can automate its
solution.

Once we have formally specified an algorithm, we can build a machine (or write a
program or hire a person) to carry out the steps contained in the algorithm. The
machine (or program or person) does not need to understand the concepts or ideas
underlying the solution. It merely has to do Step 1, Step 2, Step 3,… exactly as written.
In computer science terminology, the machine, robot, person, or thing carrying out the
steps of the algorithm is called a computing agent.

Thus computer science can also be viewed as the science of algorithmic problem solving.
Much of the research and development work in computer science involves discovering
correct and efficient algorithms for a wide range of interesting problems, studying
their properties, designing programming languages into which those algorithms can be
encoded, and designing and building computer systems that can automatically execute
these algorithms in an efficient manner.

At first glance, it might seem that every problem can be solved algorithmically.
However, you will learn in Chapter 12 the startling fact (first proved by the German
logician Kurt Gödel in the early 1930s) that there are problems for which no
generalized algorithmic solution can possibly exist. These problems are, in a sense,
unsolvable. No matter how much time and effort is put into obtaining a solution, none
will ever be found. Gödel’s discovery, which staggered the mathematical world,
effectively places a limit on the ultimate capabilities of computers and computer
scientists.

There are also problems for which it is possible to specify an algorithm but a
computing agent would take so long to execute it that the solution is essentially useless.
For example, to get a computer to play winning chess, we could adopt a brute force
approach. Given a board position as input, the computer would examine every legal
move it could possibly make, then every legal response an opponent could make to
each initial move, then every response it could select to that move, and so on. This
analysis would continue until the game reached a win, lose, or draw position. With that
information, the computer would be able to optimally choose its next move. If, for
simplicity’s sake, we assume that there are 40 legal moves from any given position on a
chessboard, and it takes about 30 moves to reach a final conclusion, then the total
number of board positions that our brute force program would need to evaluate in
deciding its first move is

If we use a supercomputer that evaluates 1 quadrillion (10) board positions per
15

unambiguous and effectively computable
operations that, when executed, produces
a result and halts in a finite amount of
time.

each of its separate points.

…a well-ordered collection…

An algorithm is a collection of
operations, and there must be a clear and unambiguous ordering to these operations.
Ordering means that we know which operation to do first and precisely which
operation to do next as each step is successfully completed. After all, we cannot expect
a computing agent to carry out our instructions correctly if it is confused about which
instruction it should be doing next.

Consider the following “algorithm” that was taken from the back of a shampoo bottle
and is intended to be instructions on how to use the product.

STEP 1

Wet hair

STEP 2

Lather

STEP 3

Rinse

STEP 4

Repeat

At Step 4, what operations should be repeated? If we go back to Step 1, we will be
unnecessarily wetting our hair. (It is presumably still wet from the previous
operations.) If we go back to Step 3 instead, we will not be getting our hair any cleaner
because we have not reused the shampoo. The Repeat instruction in Step 4 is
ambiguous in that it does not clearly specify what to do next. Therefore, it violates the
well-ordered requirement of an algorithm. (It also has a second and even more serious
problem—it never stops! We will have more to say about this second problem shortly.)
Statements such as

Go back and do it again. (Do what again?)

Start over. (From where?)

If you understand this material, you may skip ahead. (How far?)

Do either Part 1 or Part 2. (How do I decide which one to do?)

are ambiguous and can leave us confused and unsure about what operation to do next.
We must be extremely precise in specifying the order in which operations are to be
carried out. One possible way is to number the steps of the algorithm and use these
numbers to specify the proper order of execution. For example, the ambiguous
operations just shown could be made more precise as follows:

Go back to Step 3 and continue execution from that point.

Start over from Step 1.

If you understand this material, skip ahead to Line 21.

If you are 18 years of age or older, do Part 1 beginning with Step 9; otherwise, do

Part 2 beginning with Step 40.

… of unambiguous and effectively computable operations…

Algorithms are composed of things called “operations,” but what do those operations
look like? What types of building blocks can be used to construct an algorithm? The
answer to these questions is that the operations used in an algorithm must meet two
criteria—they must be unambiguous, and they must be effectively computable.

Here is a possible “algorithm” for making a cherry pie:

STEP 1

Make the crust

STEP 2

Make the cherry filling

STEP 3

Pour the filling into the crust

STEP 4

Bake at 350°F for 45 minutes

For a professional baker, this algorithm would be fine. He or she would understand
how to carry out each of the operations listed. Novice cooks, like most of us, would
probably understand the meaning of Steps 3 and 4. However, we would probably look
at Steps 1 and 2, throw up our hands in confusion, and ask for clarification. We might
then be given more detailed instructions.

1.1

1.2

1.3

1.4

2.1

2.2

STEP 1

Make the crust

Take one and one-third cups flour

Sift the flour

Mix the sifted flour with one-half cup butter and one-fourth cup

water

Roll into two 9-inch pie crusts

STEP 2

Make the cherry filling

Open a 16-ounce can of cherry pie filling and pour into bowl

Add a dash of cinnamon and nutmeg, and stir

With this additional information, most people—even inexperienced cooks—would
understand what to do, and they could successfully carry out this baking algorithm.
However, there might be some people, perhaps young children, who still do not fully
understand each and every line. For those people, we must go through the
simplification process again and describe the ambiguous steps in even more
elementary terms.

For example, the computing agent executing the algorithm might not know the
meaning of the instruction “Sift the flour” in Step 1.2, and we would have to explain it
further.

1.2 Sift the flour

1.2.1

Get out the sifter, which is the device shown on page A-9 of your

cookbook, and place it directly on top of a 2-quart bowl

1.2.2

Pour the flour into the top of the sifter and turn the crank in a

counterclockwise direction

1.2.3

Let all the flour fall through the sifter into the bowl

Now, even a child should be able to carry out these operations. But if that were not the
case, then we would go through the simplification process yet one more time, until
every operation, every sentence, every word was clearly understood.

An unambiguous operation is one that can be understood and carried out directly by
the computing agent without further simplification or explanation. When an operation
is unambiguous, we call it a primitive operation, or simply a primitive of the
computing agent carrying out the algorithm. An algorithm must be composed entirely
of primitives. Naturally, the primitive operations of different individuals (or machines)
vary depending on their sophistication, experience, and intelligence, as is the case with
the cherry pie recipe, which varies with the baking experience of the person following
the instructions. Hence, an algorithm for one computing agent may not be an algorithm
for another.

One of the most important questions we will answer in this text is, What are the
primitive operations of a typical modern computer system? What operations can a
hardware processor “understand” in the sense of being able to carry out directly, and
what operations must be further refined and simplified?

However, it is not enough for an operation to be understandable. It must also be doable
by the computing agent. If an algorithm tells me to flap my arms really quickly and fly,
I understand perfectly well what it is asking me to do. However, I am incapable of
doing it. “Doable” means there exists a computational process that allows the
computing agent to complete that operation successfully. The formal term for “doable”
is effectively computable.

For example, the following is an incorrect technique for finding and printing the 100th
prime number. (A prime number is a whole number not evenly divisible by any
numbers other than 1 and itself, such as 2, 3, 5, 7, 11, 13,….)

STEP 1

Generate a list L of all the prime numbers: L , L , L ,…

STEP 2

Sort the list L in ascending order

1 2 3

STEP 3

Print out the 100th element in the list, L

STEP 4

Stop

The problem with these instructions is in Step 1, “Generate a list L of all the prime
numbers. …” That operation cannot be completed. There are an infinite number of
prime numbers, and it is not possible in a finite amount of time to generate the desired
list L. No such computational process exists, and the operation described in Step 1 is
not effectively computable. Here are some other examples of operations that may not
be effectively computable:

This last example explains why we had to initialize the value of the variable called
carry to 0 in Step 1 of Figure 1.2. In Step 4, the algorithm says, “Add the two digits a and

b to the current value of carry to get c .” If carry has no current value, then when the

computing agent tries to perform the instruction in Step 4, it will not know what to do,
and this operation is not effectively computable.

… that produces a result…

Algorithms solve problems. To know whether a solution is correct, an algorithm must
produce a result that is observable to a user, such as a numerical answer, a new object,
or a change to its environment. Without some observable result, we would not be able
to say whether the algorithm is right or wrong. In the case of the DVR algorithm (Figure
1.1), the result will be a disc containing recorded TV programs. The addition algorithm
(Figure 1.2) produces an m-digit sum.

Note that we use the word result rather than answer. Sometimes it is not possible for an

100

i

i i

algorithm to produce the correct answer because for a given set of input, a correct
answer does not exist. In those cases, the algorithm may produce something else, such
as an error message, a red warning light, or an approximation to the correct answer.
Error messages, lights, and approximations, though not necessarily what we wanted,
are all observable results.

…and halts in a finite amount of time.

Another important characteristic of algorithms is that the result must be produced
after the execution of a finite number of operations, and we must guarantee that the
algorithm eventually reaches a statement that says, “Stop, you are done” or something
equivalent. We have already pointed out that the shampooing algorithm was not well
ordered because we did not know which statements to repeat in Step 4. However, even
if we knew which block of statements to repeat, the algorithm would still be incorrect
because it makes no provision to terminate. It will essentially run forever, or until we
run out of hot water, soap, or patience. This is called an infinite loop, and it is a
common error in the design of algorithms.

Figure 1.3 shows an algorithmic solution to the shampooing problem that meets all the
criteria discussed in this section if we assume that you want to wash your hair twice.
The algorithm of Figure 1.3 is well ordered. Each step is numbered, and the execution
of the algorithm unfolds sequentially, beginning at Step 1 and proceeding from
instruction i to instruction i + 1, unless the operation specifies otherwise. (For example,
the iterative instruction in Step 3 says that after completing Step 6, you should go back
and start again at Step 4 until the value of WashCount equals 2.) The intent of each
operation is (we assume) clear, unambiguous, and doable by the person washing his or
her hair. Finally, the algorithm will halt. This is confirmed by observing that
WashCount is initially set to 0 in Step 2. Step 6 says to add 1 to WashCount each time we
lather and rinse our hair, so it will take on the values 0, 1, 2,. … However, the iterative
statement in Step 3 says stop lathering and rinsing when the value of WashCount
reaches 2. At that point, the algorithm goes to Step 7 and terminates execution with the
desired result: clean hair. (Although it is correct, do not expect to see this algorithm on
the back of a shampoo bottle in the near future.)

Figure 1.3

A correct solution to the shampooing problem

figures could be encoded into some appropriate language and given to a computing
agent (such as a personal computer or a robot) to execute. The device would
mechanically follow these instructions and successfully complete the task. This device
could do this without having to understand the creative processes that went into the
discovery of the solution and without knowing the principles and concepts that
underlie the problem. The robot simply follows the steps in the specified order (a
required characteristic of algorithms), successfully completing each operation (another
required characteristic), and ultimately producing the desired result after a finite
amount of time (also required).

Just as the Industrial Revolution of the nineteenth century allowed machines to take
over the drudgery of repetitive physical tasks, the “computer revolution” of the
twentieth and twenty-first centuries has enabled us to implement algorithms that
mechanize and automate the drudgery of repetitive mental tasks, such as adding long
columns of numbers, finding names in a telephone book, sorting student records by
course number, and retrieving hotel or airline reservations from a file containing
millions of pieces of data. This mechanization process offers the prospect of enormous
increases in productivity. It also frees people to do those things that humans do much
better than computers, such as creating new ideas, setting policy, doing high-level
planning, and determining the significance of the results produced by a computer.
Certainly, these operations are a much more effective use of that unique computing
agent called the human brain.

Practice Problems

Get a copy of the instructions that describe how to do the following:

Register for classes at the beginning of the semester.1.

Use the online computer catalog to see what is available in the college

library on a given subject.

2.

Use the copying machine in your building.3.

Log on to the World Wide Web.4.

Add someone as a friend to your Facebook account.5.

Look over the instructions and decide whether they meet the definition of an
algorithm given in this section. If not, explain why, and rewrite each set of
instructions so that it constitutes a valid algorithm. Also state whether each
instruction is a sequential, conditional, or iterative operation.

Chapter 1: An Introduction to Computer Science: 1.4
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

1.4 A Brief History of Computing
Although computer science is not simply a study of computers, there is no doubt that
the field was formed and grew in popularity as a direct response to their creation and
widespread use. This section takes a brief look at the historical development of
computer systems.

The appearance of some technologies, such as the telephone, the light-bulb, and the
first heavier-than-air flight, can be traced directly to a single place, a specific
individual, and an exact instant in time. Examples include the flight of Orville and
Wilbur Wright on December 17, 1903, in Kitty Hawk, North Carolina, and the famous
phrase “Mr. Watson, come here, I want to see you.” uttered by Alexander Graham Bell
over the first telephone on March 12, 1876.

Computers are not like that. They did not appear in a specific room on a given day as
the creation of some individual genius. The ideas that led to the design of the first

computers evolved over hundreds of years, with contributions coming from many
people, each building on and extending the work of earlier discoverers.

Chapter 1: An Introduction to Computer Science: 1.4.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

1.4.1 The Early Period: Up to 1940

If this were a discussion of the history of mathematics and arithmetic instead of
computer science, it would begin 3,000 years ago with the early work of the Greeks,
Egyptians, Babylonians, Indians, Chinese, and Persians. All these cultures were
interested in and made important contributions to the fields of mathematics, logic, and
numerical computation. For example, the Greeks developed the fields of geometry and
logic; the Babylonians and Egyptians developed numerical methods for generating
square roots, multiplication tables, and trigonometric tables used by early sailors;
Indian mathematicians developed both the base-10 decimal numbering system and the
concept of zero; and in the ninth century, the Persians developed algorithmic problem
solving (as you learned in the Abu Ja’far Muhammad ibn Musa Al-Khowarizmi Special
Interest Box earlier in the chapter).

The first half of the seventeenth century saw a number of important developments
related to automating and simplifying the drudgery of arithmetic computation. (The
motivation for this work appears to be the sudden increase in scientific research
during the sixteenth and seventeenth centuries in the areas of astronomy, chemistry,
and medicine. This work required the solution of larger and more complex
mathematical problems.) In 1614, the Scotsman John Napier invented logarithms as a
way to simplify difficult mathematical computations. The early seventeenth century
also witnessed the development of a number of new and quite powerful mechanical
devices designed to help reduce the burden of arithmetic. The first slide rule appeared
around 1622. In 1672, the French philosopher and mathematician Blaise Pascal
designed and built one of the first mechanical calculators (named the Pascaline) that
could do addition and subtraction. A model of this early calculating device is shown in
Figure 1.5.

Figure 1.5

The Pascaline, one of the earliest mechanical calculators

Source: Alamy/© Interfoto

The famous German mathematician Gottfried Leibnitz (who, along with Isaac Newton,
was one of the inventors of calculus) was also excited by the idea of automatic
computation. He studied the work of Pascal and others, and in 1674, he constructed a
mechanical calculator called Leibnitz’s Wheel that could do not only addition and
subtraction but multiplication and division as well. Both Pascal’s and Leibnitz’s
machines used interlocking mechanical cogs and gears to store numbers and perform
basic arithmetic operations. Considering the state of technology available to Pascal,
Leibnitz, and others in the seventeenth century, these first calculating machines were
truly mechanical wonders.

These early developments in mathematics and arithmetic were important milestones
because they demonstrated how mechanization could simplify and speed up numerical
computation. For example, Leibnitz’s Wheel enabled seventeenth-century
mathematicians to generate tables of mathematical functions many times faster than
was possible by hand. (It is hard to believe in our modern high-tech society, but in the
seventeenth century the generation of a table of logarithms could represent a lifetime’s
effort of one person!) However, the slide rule and mechanical calculators of Pascal and
Leibnitz, though certainly impressive devices, were not computers. Specifically, they
lacked two fundamental characteristics:

They did not have a memory where information could be stored in machine-

readable form.

They were not programmable. A person could not provide in advance a sequence

of instructions that could be executed by the device without manual intervention.

Surprisingly, the first actual “computing device” to include both of these features was
not created for the purposes of mathematical computations. Rather, it was a loom used
for the manufacture of rugs and clothing. It was developed in 1801 by the Frenchman
Joseph Jacquard. Jacquard wanted to automate the weaving process, at the time a
painfully slow and cumbersome task in which each separate row of the pattern had to
be set up by the weaver and an apprentice. Because of this, anything but the most basic
style of clothing was beyond the means of most people.

Jacquard designed an automated loom that used punched cards to create the desired
pattern (Figure 1.6). If there was a hole in the card in a particular location, then a hook
could pass through the card, grasp a warp thread, and raise it to allow a second thread
to pass underneath. If there was no hole in the card, then the hook could not pass

through, and the thread would pass over the warp. Depending on whether the thread
passed above or below the warp, a specific design was created. Each punched card
described one row of the pattern. Jacquard connected the cards and fed them through
his loom, and it automatically sequenced from card to card, weaving the desired
pattern. The rows of connected punched cards can be seen at the top of the device.

Figure 1.6

Drawing of the Jacquard loom

Source: © Bettmann/CORBIS

The Original “Technophobia”

The development of the automated Jacquard loom and other technological
advances in the weaving industry was so frightening to the craft guilds of the

early nineteenth century that in 1811 it led to the formation of a group called
the Luddites. The Luddites, named after their leader Ned Ludd of Nottingham,
England, were violently opposed to this new manufacturing technology, and
they burned down factories that attempted to use it. The movement lasted only
a few years and its leaders were all jailed, but their name lives on today as a
pejorative term for any group that is frightened and angered by the latest
developments in any branch of science and technology, including computers.

Jacquard’s loom represented an enormously important stage in the development of
computers. Not only was it the first programmable device, but it also showed how the
knowledge of a human expert (in this case, a master weaver) could be captured in
machine-readable form and used to control a machine that accomplished the same task
automatically. Once the program was created, the expert was no longer needed. The
lowliest apprentice could load the cards into the loom, turn it on, and produce a
finished, high-quality product over and over again.

These pioneers had enormous influence on the designers and inventors who came
after them, among them a mathematics professor at Cambridge University named
Charles Babbage. Babbage was interested in automatic computation. In 1823, he
extended the ideas of Pascal and Leibnitz and constructed a working model of the
largest and most sophisticated mechanical calculator of its time. This machine, called
the Difference Engine, could do addition, subtraction, multiplication, and division to 6
significant digits, and it could solve polynomial equations and other complex
mathematical problems as well. Babbage tried to construct a larger model of the
Difference Engine that would be capable of working to an accuracy of 20 significant
digits, but after 12 years of work he had to give up his quest. The technology available
in the 1820s and 1830s was not sufficiently advanced to manufacture cogs and gears to
the precise tolerances his design required. Like Galileo’s helicopter or Jules Verne’s
atomic submarine, Babbage’s ideas were fundamentally sound but years ahead of their
time. (In 1991, the London Museum of Science, using Babbage’s original plans, built an
actual working model of the Difference Engine. It was 7 feet high, 11 feet wide, weighed
3 tons, and had 4,000 moving parts. It worked exactly as Babbage had planned.)

Babbage did not stop his investigations with the Difference Engine. In the 1830s, he
designed a more powerful and general-purpose computational machine that could be
configured to solve a much wider range of numerical problems. His machine had four
basic components: a mill to perform the arithmetic manipulation of data, a store to
hold the data, an operator to process the instructions contained on punched cards, and
an output unit to put the results onto separate punched cards. Although it would be
about 110 years before a “real” computer would be built, Babbage’s proposed machine,
called the Analytic Engine, is amazingly similar in design to a modern computer. The
four components of the Analytic Engine are virtually identical in function to the four
major components of today’s computer systems:

Babbage’s
Term

Modern
Terminology

mill
arithmetic/logic
unit

store memory

operator processor

output
unit input/output

Babbage died before a working steam-powered model of his Analytic Engine could be
completed, but his ideas lived on to influence others, and many computer scientists
consider the Analytic Engine the first “true” computer system, even if it existed only on
paper and in Babbage’s dreams.

Another person influenced by the work of Pascal, Jacquard, and Babbage was a young
statistician at the U.S. Census Bureau named Herman Hollerith. Because of the rapid
increase in immigration to America at the end of the nineteenth century, officials
estimated that doing the 1890 enumeration manually would take from 10 to 12 years.
The 1900 census would begin before the previous one was finished. Something had to
be done.

Hollerith designed and built programmable card-processing machines that could
automatically read, tally, and sort data entered on punched cards. Census data were
coded onto cards using a machine called a keypunch. The cards were taken either to a
tabulator for counting and tallying or to a sorter for ordering alphabetically or
numerically. Both of these machines were programmable (via wires and plugs) so that
the user could specify such things as which card columns should be tallied and in what
order the cards should be sorted. In addition, the machines had a small amount of
memory to store results. Thus, they had all four components of Babbage’s Analytic
Engine.

Hollerith’s machines were enormously successful, and they were one of the first
examples of the use of automated information processing to solve large-scale,
real-world problems. Whereas the 1880 census required 8 years to be completed, the
1890 census was finished in about 2 years, even though there was a 30% increase in the
U.S. population during that decade.

Although they were not really general-purpose computers, Hollerith’s card machines
were a very clear and very successful demonstration of the enormous advantages of
automated information processing. This fact was not lost on Hollerith, who left the
Census Bureau in 1902 to found the Computer Tabulating Recording Company to build

and sell these machines. He planned to market his new product to a country that was
just entering the Industrial Revolution and that, like the Census Bureau, would be
generating and processing enormous volumes of inventory, production, accounting,
and sales data. His punched card machines became the dominant form of
data-processing equipment during the first half of the twentieth century, well into the
1950s and 1960s. During this period, virtually every major U.S. corporation had
data-processing rooms filled with keypunches, sorters, and tabulators, as well as
drawer upon drawer of punched cards. In 1924, Hollerith’s tabulating machine
company changed its name to IBM, and it eventually evolved into the largest
computing company in the world.

Charles Babbage (1791–1871) Ada Augusta Byron, Countess of Lovelace
(1815–1852)

Charles Babbage, the son of a banker, was born into a life of wealth and
comfort in eighteenth-century England. He attended Cambridge University and
displayed an aptitude for mathematics and science. He was also an inventor
and “tinkerer” who loved to build all sorts of devices. Among the devices he
constructed were unpickable locks, skeleton keys, speedometers, and even the
first cow catcher for trains. His first and greatest love, though, was
mathematics, and he spent the better part of his life creating machines to do
automatic computation. Babbage was enormously impressed by the work of
Jacquard in France. (In fact, Babbage had on the wall of his home a woven
portrait of Jacquard that was created using 24,000 punched cards.) He spent the
last 30 to 40 years of his life trying to build a computing device, the Analytic
Engine, based on Jacquard’s ideas.

In that quest, he was helped by Countess Ada Augusta Byron, daughter of the
famous English poet, Lord Byron. The countess was introduced to Babbage and
was enormously impressed by his ideas about the Analytic Engine. As she put it,
“We may say most aptly that the Analytic Engine weaves algebraic patterns just
as the Jacquard Loom weaves flowers and leaves.” Lady Lovelace worked
closely with Babbage to specify how to organize instructions for the Analytic
Engine to solve a particular mathematical problem. Because of that pioneering
work, she is generally regarded as history’s first computer programmer.

Babbage died in 1871 without realizing his dream. He also died quite poor
because the Analytic Engine ate up virtually all of his personal fortune. His
work was generally forgotten until the twentieth century when it became
instrumental in moving the world into the computer age.

We have come a long way from the 1640s and the Pascaline, the early adding machine
constructed by Pascal. We have seen the development of more powerful mechanical

calculators (Leibnitz), automated programmable manufacturing devices (Jacquard), a
design for the first computing device (Babbage), and the initial applications of
information processing on a massive scale (Hollerith). However, we still have not yet
entered the “computer age.” That did not happen until about 1940, and it was
motivated by an event that, unfortunately, has fueled many of the important
technological advances in human history—the outbreak of war.

Chapter 1: An Introduction to Computer Science: 1.4.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

1.4.2 The Birth of Computers: 1940–1950

World War II created another, quite different set of information-based problems.
Instead of inventory, sales, and payroll, the concerns became ballistics tables, troop
deployment data, and secret codes. A number of research projects were started, funded
largely by the military, to build automatic computing machines to perform these tasks
and assist the Allies in the war effort.

Beginning in 1931, the U.S. Navy and IBM jointly funded a project at Harvard
University under Professor Howard Aiken to build a computing device called Mark I.
This was a general-purpose, electromechanical programmable computer that used a
mix of relays, magnets, and gears to process and store data. The Mark I was the first
computing device to use the base-2 binary numbering system, which we will discuss in
Chapter 4. It used vacuum tubes and electric current to represent the two binary
values, off for 0, on for 1. Until then, computing machines had used decimal
representation, typically using a 10-toothed gear, each tooth representing a digit from 0
to 9. The Mark I was completed in 1944, about 110 years after Babbage’s dream of the
Analytic Engine, and is generally considered one of the first working general-purpose
computers. The Mark I had a memory capacity of 72 numbers, and it could be
programmed to perform a 23-digit multiplication in the lightning-like time of 4 seconds.
Although laughably slow by modern standards, the Mark I was operational for almost
15 years, and it carried out a good deal of important and useful mathematical work for
the U.S. Navy during the war.

At about the same time, a much more powerful machine was taking shape at the
University of Pennsylvania in conjunction with the U.S. Army. During the early days of
World War II, the Army was producing many new artillery pieces, but it found that it
could not produce the firing tables equally as fast. These tables told the gunner how to
aim the gun on the basis of such input as distance to the target and current
temperature, wind, and elevation. Because of the enormous number of variables and
the complexity of the computations (which use both trigonometry and calculus), these
firing tables were taking more time to construct than the gun itself—a skilled person
with a desk calculator required about 20 hours to analyze a single 60-second trajectory.

To help solve this problem, in 1943 the Army initiated a research project with J. Presper
Eckert and John Mauchly of the University of Pennsylvania to build a completely
electronic computing device. The machine, dubbed the ENIAC (Electronic Numerical
Integrator and Calculator), was completed in 1946 (too late to assist in the war effort)
and was the first fully electronic general-purpose programmable computer. This
pioneering machine is shown in Figure 1.7.

Figure 1.7

Photograph of the ENIAC computer

Source: From the Collections of the University of Pennsylvania Archives (U.S. Army photo)

ENIAC contained 18,000 vacuum tubes and nearly filled a building; it was 100 feet long,
10 feet high, and weighed 30 tons. Because it was fully electronic, it did not contain any
of the slow mechanical components found in Mark I, and it executed instructions much
more rapidly. The ENIAC could add two 10-digit numbers in about 1/5,000 of a second
and could multiply two numbers in 1/300 of a second, a thousand times faster than the
Mark I.

The Mark I and ENIAC are two well-known examples of early computers, but they are
by no means the only ones of that era. For example, the ABC system (Atanasoff-Berry
Computer), designed and built by Professor John Atanasoff and his graduate student
Clifford Berry at Iowa State University, was actually the first electronic computer,
constructed during the period 1939–1942. However, it never received equal recognition

because it was useful for only one task, solving systems of simultaneous linear
equations. In England, a computer called Colossus was built in 1943 under the direction
of Alan Turing, a famous mathematician and computer scientist whom we will meet
again in Chapter 12. This machine, one of the first computers built outside the United
States, was used to crack the famous German Enigma code that the Nazis believed to be
unbreakable. Colossus has also not received as much recognition as ENIAC because of
the secrecy that shrouded the Enigma project. Its very existence was not widely known
until many years after the end of the war.

At about the same time that Colossus was taking form in England, a German engineer
named Konrad Zuse was working on a computing device for the German army. The
machine, code named Z1, was similar in design to the ENIAC—a programmable,
general-purpose, fully electronic computing device. Fortunately for the Allied forces,
the Z1 project was not completed before the end of World War II.

Although the machines just described—ABC, Mark I, ENIAC, Colossus, and Z1—were
computers in the fullest sense of the word (they had memory and were
programmable), they did not yet look like modern computer systems. One more step
was necessary, and that step was taken in 1946 by the individual who was most
instrumental in creating the computer as we know it today, John Von Neumann.

Von Neumann was not only one of the most brilliant mathematicians who ever lived,
he was also a genius in many other areas as well, including experimental physics,
chemistry, economics, and computer science. Von Neumann, who taught at Princeton
University, had worked with Eckert and Mauchly on the ENIAC project at the University
of Pennsylvania. Even though that project was successful, he recognized a number of
fundamental shortcomings in ENIAC. In 1946, he proposed a radically different
computer design based on a model called the stored program computer. Until then, all
computers were programmed externally using wires, connectors, and plugboards. The
memory unit stored only data, not instructions. For each different problem, users had
to rewire virtually the entire computer. For example, the plugboards on the ENIAC
contained 6,000 separate switches, and reprogramming the ENIAC involved specifying
the new settings for all these switches—not a trivial task.

Von Neumann proposed that the instructions that control the operation of the
computer be encoded as binary values and stored internally in the memory unit along
with the data. To solve a new problem, instead of rewiring the machine, you would
rewrite the sequence of instructions—that is, create a new program. Von Neumann
invented programming as it is known today.

The model of computing proposed by Von Neumann included many other important
features found on all modern computing systems, and to honor him this model of
computation has come to be known as the Von Neumann architecture. We will study
this architecture in great detail in Chapters 4 and 5.

Von Neumann’s research group at the University of Pennsylvania implemented his

Source:

Los Alamos National

Laboratory

ideas, and they built one of the first stored program computers, called EDVAC, in 1951.
At about the same time, a stored program computer called EDSAC was built at
Cambridge University in England under the direction of Professor Maurice Wilkes. The
appearance of these machines and others like them ushered in the modern computer
age. Even though they were much slower, bulkier, and less powerful than our current
machines, EDVAC and EDSAC executed programs in a fashion surprisingly similar to
the miniaturized and immensely more powerful computers of the twenty-first century.
A commercial model of the EDVAC, called UNIVAC I—the first computer actually
sold—was built by Eckert and Mauchly and delivered to the U.S. Bureau of the Census
on March 31, 1951. (It ran for 12 years before it was retired, shut off for the last time,
and moved to the Smithsonian Institution.) This date marks the true beginning of the
“computer age.”

John Von Neumann (1903–1957)

John Von Neumann was born in Budapest, Hungary. He was a child prodigy
who could divide 8-digit numbers in his head by the age of 6. He was a genius in
virtually every field that he studied, including physics, economics, engineering,
and mathematics. At 18 he received an award as the best mathematician in
Hungary, a country known for excellence in the field, and he received his Ph.D.,
summa cum laude, at 21. He came to the United States in 1930 as a guest
lecturer at Princeton University and taught there for 3 years. Then, in 1933 he
became one of the founding members (along with Albert Einstein) of the
Institute for Advanced Studies, where he worked for 20 years.

He was one of the most brilliant minds of the
twentieth century, a true genius in every sense, both
good and bad. He could do prodigious mental feats in
his head, and his thought processes usually raced way
ahead of “ordinary” mortals who found him quite
difficult to work with. One of his colleagues described
him as possessing the most fearsome technical intellect
of the century. Another joked that “Johnny wasn’t
really human, but after living among them for so long,
he learned to do a remarkably good imitation of one.”

Von Neumann was a brilliant theoretician who did
pioneering work in pure mathematics, operations research, game theory, and
theoretical physics. He was also an engineer, concerned about practicalities and
real-world problems, and it was this interest in applied issues that led Von
Neumann to design and construct the first stored program computer. One of the
early computers built by the RAND Corp. in 1953 was affectionately called
“Johnniac” in his honor, although Von Neumann detested that name. Like the
UNIVAC I, it has a place of honor at the Smithsonian Institution.

computer, at least in U.S. District Court, goes to Professor John Vincent
Atanasoff.

On November 13, 1990, in a formal ceremony at the White House, Professor
Atanasoff was awarded the National Medal of Technology by President George
H. W. Bush for his pioneering contributions to the development of the
computer.

The last 60 or so years of computer development have involved taking the Von
Neumann architecture and improving it in terms of hardware and software. Since
1950, computer systems development has been primarily an evolutionary process, not a
revolutionary one. The enormous number of changes in computers in recent decades
has made them faster, smaller, cheaper, more reliable, and easier to use, but has not
drastically altered their basic underlying structure.

The period 1950–1957 (these dates are rough approximations) is often called the first
generation of computing. This era saw the appearance of UNIVAC I, the first computer
built for sale, and the IBM 701, the first computer built by the company that would soon
become a leader in this new field. These early systems were similar in design to EDVAC,
and they were bulky, expensive, slow, and unreliable. They used vacuum tubes for
processing and storage, and they were extremely difficult to maintain. The simple act
of turning the machine on could blow out a dozen tubes! For this reason, first-
generation machines were used only by trained personnel and only in specialized
locations such as large corporations, government and university research labs, and
military installations, which could provide this expensive support environment.

The second generation of computing, roughly 1957–1965, heralded a major change in
the size and complexity of computers. In the late 1950s, the bulky vacuum tube was
replaced by a single transistor only a few millimeters in size, and memory was now
constructed using tiny magnetic cores only 1/50 of an inch in diameter. (We will
introduce and describe both of these devices in Chapter 4.) These technologies not only
dramatically reduced the size of computers but also increased their reliability and
reduced costs. Suddenly, buying and using a computer became a real possibility for
some small- and medium-sized businesses, colleges, and government agencies. This
was also the era of the appearance of FORTRAN and COBOL, the first high-level
(English-like) programming languages. (We will study this type of programming
language in Chapters 9 and 10.) Now it was no longer necessary to be an electrical
engineer to solve a problem on a computer. One simply needed to learn how to write
commands in a high-level language. The occupation called programmer was born.

This miniaturization process continued into the third generation of computing, which
lasted from about 1965 to 1975. This was the era of the integrated circuit. Rather than
using discrete electronic components, integrated circuits with transistors, resistors, and
capacitors were photographically etched onto a piece of silicon, which further reduced

the size and cost of computers. From building-sized to room-sized, computers now
became desk-sized, and this period saw the birth of the first minicomputer—the PDP-1
manufactured by the Digital Equipment Corp. It also saw the birth of the software
industry, as companies sprang up to provide programs such as accounting packages
and statistical programs to the ever-increasing numbers of computer users. By the
mid-1970s, computers were no longer a rarity. They were being widely used
throughout industry, government, the military, and education.

The fourth generation, 1975–1985, saw the appearance of the first microcomputer.
Integrated circuit technology had advanced to the point that a complete computer
system could be contained on a single circuit board that you could hold in your hand.
The desk-sized machine of the early 1970s now became a desktop machine, shrinking
to the size of a typewriter. The Altair 8800, the world’s first microcomputer, appeared
in January 1975 (see the Special Interest Box on the next page).

The World’s First Microcomputer

The Altair 8800, shown below, was the first microcomputer and made its debut
on the cover of Popular Electronics in January 1975. Its developer, Ed Roberts,
owned a tiny electronics store in Albuquerque, New Mexico. His company was
in desperate financial shape when he read about a new microprocessor from
Intel, the Intel 8080. Roberts reasoned that this new chip could be used to sell a
complete personal computer in kit form. He bought these new chips from Intel
at the bargain basement price of $75 each and packaged them in a kit called the
Altair 8800 (named after a location in the TV series Star Trek), which he offered
to hobbyists for $397. Roberts figured he might sell a few hundred kits a year,
enough to keep his company afloat temporarily. He ended up selling hundreds
of them a day! The Altair microcomputer kits were so popular that he could not
keep them in stock, and legend has it that people even drove to New Mexico and
camped out in the parking lot to buy their computers.

This is particularly amazing in view of the fact that the original Altair was
difficult to assemble and had only 256 memory cells, no I/O devices, and no
software support. To program it, the user had to enter binary machine language
instructions directly from the console switches. But even though it could do
very little, people loved it because it was a real computer, and it was theirs.

The Intel 8080 chip did have the capability of running programs written in the
language called BASIC that had been developed at Dartmouth in the early
1960s. A small software company located in Washington State wrote Ed Roberts
a letter telling him that it had a BASIC compiler that could run on his Altair,
making it much easier to use. That company was called Microsoft—and the rest,
as they say, is history.

Source: University of Hawai’i at Hilo Graphics Services

It soon became unusual not to see a computer on someone’s desk. The software
industry poured forth all types of new packages—spreadsheets, databases, word
processors, and drawing programs—to meet the needs of the burgeoning user
population. This era saw the appearance of the first computer networks, as users
realized that much of the power of computers lies in their facilitation of
communication with other users. (We will look at networking in great detail in Chapter
7.) Electronic mail became an important application. Because so many users were
computer novices, the concept of user-friendly systems emerged. This included new
graphical user interfaces with pull-down menus, icons, and other visual aids to make
computing easier and more fun. Embedded systems—devices that contain a computer
to control their internal operation—first appeared during this generation. Computers
were becoming small enough to be placed inside cars, thermostats, microwave ovens,
and wristwatches.

The fifth generation, 1985–?, is where we are today. However, so much is changing so
fast that most computer scientists believe that the concept of distinct generations has
outlived its usefulness. In computer science, change is now a constant companion.
Some of the recent developments in computer systems include the following:

Massively parallel processors capable of quadrillions (10) of computations per

second

Smartphones, tablets, and other types of handheld digital devices

High-resolution graphics for imaging, animation, movie making, video games,

15

and virtual reality

Powerful multimedia user interfaces incorporating sound, voice recognition,

touch, photography, video, and television

Integrated digital devices incorporating data, television, telephone, camera, fax,

the Internet, and the World Wide Web

Wireless communications

Massive storage devices capable of holding 100 petabytes (10) of data

Ubiquitous computing, in which miniature computers are embedded into our

cars, cameras, kitchen appliances, home heating systems, clothing, and even our

bodies

In only a few decades, computers have progressed from the UNIVAC I, which cost
millions of dollars, had a few thousand memory locations, and was capable of only a
few thousand operations per second, to today’s top-of-the-line graphics workstation
with a high-resolution flat panel monitor, trillions of memory cells, massive amounts of
external storage, and enough processing power to execute tens of billions of
instructions per second, all for about $1,000. Changes of this magnitude have never
occurred so quickly in any other technology. If the same rate of change had occurred in
the auto industry, beginning with the 1909 Model-T, today’s cars would be capable of
traveling at a speed of 20,000 miles per hour, would get about a million miles per
gallon, and would cost about $1.00!

Good Evening, This Is Walter Cronkite

In the earliest days of comp uting (1951–1952), few people knew what a
computer was, and even fewer had seen or worked with one. Computers were
the tool of a very small group of highly trained technical specialists in such
fields as mathematics, physics, and engineering. In those days, the general
public’s knowledge of computer science was limited to the robots and alien
computers of science fiction movies.

This all changed in November 1952, when millions of Americans turned on
their television sets (also a relatively new technology) to watch returns from the
1952 presidential election between Dwight D. Eisenhower and Adlai Stevenson.
In addition to seeing Walter Cronkite and TV reporters and analysts, viewers
were treated to an unexpected member of the news staff—a UNIVAC I. CBS
executives had rented a computer and installed it in the very center of their set,
where it sat, lights blinking and tape drives spinning. They planned to use
UNIVAC to produce election predictions quickly and scoop rival stations that did

17

their analyses by hand. Ironically, UNIVAC correctly predicted early that
evening, on the basis of well-known statistical sampling techniques, that
Eisenhower would win the election, but nervous CBS executives were so
skeptical about this new technology that they did not go on the air with the
computer’s prediction until it had been confirmed by old-fashioned manual
methods.

It was the first time that millions of TV viewers had actually seen this thing
called an electronic digital computer. The CBS staff, who were also quite
inexperienced in computer technology, treated the computer as though it were
human. They would turn toward the computer console and utter phrases like
“UNIVAC, can you tell me who is currently ahead in Ohio?” or “UNIVAC, do you
have any prediction on the final electoral vote total?” In actuality, the statistical
algorithms had been programmed in, days earlier, by the Remington Rand staff,
but it looked great on TV! This first public appearance of a computer was so
well received that computers were used many more times in the early days of
TV, primarily on quiz shows, where they reinforced the public’s image of the
computer as a “giant electronic brain.”

Figure 1.8 summarizes the major developments that occurred during each of the five
generations of computer development discussed in this section. And underlying all of
these amazing improvements, the theoretical model describing the design and
construction of computers has not changed significantly in the last 65 years.

Figure 1.8
Some of the major advancements in computing

Generation Approximate
Dates

Major Advances

First 1950–1957 First commercial computers

First symbolic programming languages

Use of binary arithmetic, vacuum tubes for
storage

Punched card input/output

Second 1957–1965 Transistors and core memories

First disks for mass storage

Generation Approximate
Dates

Major Advances

Size reduction, increased reliability, lower costs

First high-level programming languages

First operating systems

Third 1965–1975 Integrated circuits

Further reduction in size and cost, increased
reliability

First minicomputers

Time-shared operating systems

Appearance of the software industry

First set of computing standards for
compatibility between systems

Fourth 1975–1985 Large-scale and very-large-scale integrated
circuits

Further reduction in size and cost, increased
reliability

First microcomputers

Growth of new types of software and of the
software industry

Computer networks

Graphical user interfaces

Fifth 1985–? Ultra-large-scale integrated circuits

Supercomputers and parallel processors

Laptops, tablets, smartphones, and handheld
digital devices

Wireless computing

Massive external data storage devices

Ubiquitous computing

be presented.

Computer science is the study of algorithms, including

Their formal and mathematical properties Level 1 of the text (Chapters 2 and 3) is

titled “The Algorithmic Foundations of Computer Science.” It continues the

discussion of algorithmic problem solving begun in Sections 1.2 and 1.3 by

introducing important mathematical and logical properties of algorithms.

Chapter 2 presents the development of a number of algorithms that solve

important technical problems—certainly more “technical” than shampooing your

hair. It also looks at concepts related to the problem-solving process, such as how

we discover and create good algorithms, what notation we can use to express our

solutions, and how we can check to see whether our proposed algorithm

correctly solves the desired problem.

Our brute force chess example illustrates that it is not enough simply to develop a

correct algorithm; we also want a solution that is efficient and that produces the

desired result in a reasonable amount of time. (Would you want to market a

chess-playing program that takes 10 years to make its first move?) Chapter 3

describes ways to compare the efficiency of different algorithms and select the

best one to solve a given problem. The material in Level 1 provides the necessary

foundation for a study of the discipline of computer science.

1.

Their hardware realizations Although our initial look at computer science

investigated how an algorithm behaved when executed by some abstract

“computing agent,” we ultimately want to execute our algorithms on “real”

machines to get “real” answers. Level 2 of the text (Chapters 4 and 5) is titled “The

Hardware World,” and it looks at how to design and construct computer systems.

It approaches this topic from two quite different viewpoints.

Chapter 4 presents a detailed discussion of the underlying hardware. It

introduces the basic building blocks of computers—binary numbers, transistors,

logic gates, and circuits—and shows how these elementary electronic devices can

be used to construct components to perform arithmetic and logic functions such

as addition, subtraction, comparison, and sequencing. Although it is both

interesting and important, this perspective produces a rather low-level view of a

computer system. It is difficult to understand how a computer works by studying

only these elementary components, just as it would be difficult to understand

human behavior by investigating the behavior of individual cells. Therefore,

Chapter 5 takes a higher-level view of computer hardware. It looks at computers

not as a bunch of wires and circuits but as an integrated collection of subsystems

2.

25

called memory, processor, storage, input/output, and communications. It will

explain in great detail the principles of the Von Neumann architecture introduced

in Section 1.4.

A study of computer systems can be done at an even higher level. To understand

how a computer works, we do not need to examine the functioning of every one

of the thousands of components inside a machine. Instead, we need only be

aware of a few critical pieces that are essential to our work. From the user’s

perspective, everything else is superfluous. This “user-oriented” view of a

computer system and its resources is called a virtual machine or a virtual

environment. A virtual machine is composed only of the resources that the user

perceives rather than of all the hardware resources that actually exist.

This viewpoint is analogous to our level of understanding of what happens under

the hood of our car. There may be thousands of mechanical components inside

an automobile engine, but most of us concern ourselves only with the items

reported on the dashboard—for example, oil pressure, fuel level, engine

temperature. This is our “virtual engine,” and that is all we need or want to know.

We are all too happy to leave the remaining details about engine design to our

friendly neighborhood mechanic.

Level 3 (Chapters 6, 7, and 8), titled “The Virtual Machine,” describes how a

virtual environment is created using a component called system software.

Chapter 6 takes a look at the most important and widely used piece of system

software on a modern computer system, the operating system, which controls the

overall operation of a computer and makes it easier for users to access. Chapter 7

then goes on to describe how this virtual environment can extend beyond the

boundaries of a single system as it examines how to interconnect individual

machines into computer networks and distributed systems that provide users with

access to a huge collection of computer systems and information as well as an

enormous number of other users. It is the system software, and the virtual

machine it creates, that makes computer hardware manageable and usable.

Finally, Chapter 8 discusses a critically important component of a virtual

machine—the security system that validates who you are and ensures that you

are not attempting to carry out an improper, illegal, or unsafe operation. As

computers become central to the management of such sensitive data as medical

records, military information, and financial data, this aspect of system software is

taking on even greater importance.

Their linguistic realizations After studying hardware design, computer3.

organization, and virtual machines, you will have a good idea of the techniques

used to design and build computers. In the next section of the text, we ask the

question, How can this hardware be used to solve important and interesting

problems? Level 4, titled “The Software World” (Chapters 9-12), takes a look at

what is involved in designing and implementing computer software. It

investigates the programs and instruction sequences executed by the hardware,

rather than the hardware itself.

Chapter 9 compares several high-level programming languages and introduces

fundamental concepts related to the topic of computer programming regardless

of the particular language being studied. This single chapter is certainly not

intended to make you a proficient programmer, and this book is not meant to be

a programming text. Instead, its purpose is to illustrate some basic features of

modern programming languages and give you an appreciation for the interesting

and challenging task of the computer programmer. Rather than print a separate

version of this text for each programming language, the textual material specific

to each language can be found on the Web site for this text, and you can

download the pages for the language specified by your instructor and used in

your class. See the Preface of this text for instructions on accessing these Web

pages.

There are many programming languages such as C++, Python, Java, and Perl that

can be used to encode algorithms. Chapter 10 provides an overview of a number

of different languages and language models in current use, including the

functional and parallel models. Chapter 11 describes how a program written in a

high-level programming language can be translated into the low-level machine

language codes first described in Chapter 5. Finally, Chapter 12 shows that, even

when we marshal all the powerful hardware and software ideas described in the

first 11 chapters, problems exist that cannot be solved algorithmically. Chapter 12

demonstrates that there are, indeed, limits to computing.

Their applications Most people are concerned not with creating programs but

with using programs, just as there are few automotive engineers but many, many

drivers. Level 5, titled “Applications” (Chapters 13-16), moves on from how to

write a program to what these programs can do.

Chapters 13 through 16 explore just a few of the many important and rapidly

growing applications of computers, such as simulation, visualization,

e-commerce, databases, artificial intelligence, computer graphics, and

entertainment. This section cannot possibly survey all the ways in which

4.

computers are being used today or will be used in the future. Indeed, there is

hardly an area in our modern, complex society that is not affected in some

important way by information technology. Readers interested in applications not

discussed should seek readings specific to their own areas of interest.

Some computer science professionals are not concerned with building

computers, creating programs, or using any of the applications just described.

Instead, they are interested in the social and cultural impact— both positive and

negative—of this ever-changing technology. The sixth level of this text addresses

this important perspective on computer science. This is not part of the original

definition of computer science but has become an important area of study. In

Level 6, titled “Social Issues” (Chapter 17), we move to the highest level of

abstraction—the view furthest removed from the computer itself—to discuss

social, ethical, legal, and professional issues related to computer and information

technology. These issues are critically important because even individuals not

directly involved in developing or using computers are deeply affected by them,

just as society has been drastically and permanently altered by such technological

developments as the telephone, television, automobile, and nuclear power. This

last chapter takes a look at such thorny and difficult topics as computer crime,

information privacy, and intellectual property. It also looks at one of the most

important phenomena supported by this new technology, the creation of social

networks such as Facebook and Twitter. Because it’s impossible to resolve all the

complex questions that arise in these areas, our intent is simply to raise your

awareness and provide some decision-making tools to help you reach your own

conclusions.

The overall six-layer hierarchy of this text is summarized in Figure 1.9. The
organizational structure diagrammed in Figure 1.9 is one of the most important aspects
of this text. To describe a field of study, it is not enough to present a mass of facts and
explanations. For learners to absorb, understand, and integrate this information, there
must be a theme, a relationship, a thread that ties together the various parts of the
narrative—in essence, a “big picture.” Our big picture is Figure 1.9.

Figure 1.9

Organization of the text into a six-layer hierarchy

We first lay out the basic foundations of computer science (Level 1). We then proceed
upward through five distinct layers of abstraction, from extremely low-level machine
details such as electronic circuits and computer hardware (Level 2), through
intermediate levels that address virtual machines (Level 3), programming languages
and software development (Level 4), to higher levels that investigate computer
applications (Level 5), and address the use and misuse of information technology
(Level 6). The material in each level provides a foundation to reveal the beauty and
complexity of a higher and more abstract view of the discipline of computer science.

Laboratory Experience 1

Associated with this text is a laboratory manual that includes software packages
and a collection of formal laboratory exercises. These Laboratory Experiences
are designed to give you a chance to build on, modify, and experiment with the
ideas discussed in the text. You are strongly encouraged to carry out these
laboratories to gain a deeper understanding of the concepts presented in the
chapters. Learning computer science involves not just reading and listening but
also doing and trying. Our laboratory exercises will give you that chance. (In
addition, we hope that you will find them fun.)

Laboratory Experience 1, titled “Building A Glossary,” introduces the
fundamental operations that you will need in all future labs—operations such

Take the cube root of x.c.

Do Steps 1.1, 1.2, and 1.3 x times.d.

Trace through the decimal addition algorithm of Figure 1.2 using the

following input values:

m = 3 a = 1a = 4a = 9

b = 0b = 2b = 9

At each step, show the values for c , c , c , c , and carry.

5.

Modify the decimal addition algorithm of Figure 1.2 so that it does not

print out nonsignificant leading zeroes; that is, the answer to Exercise 5

would appear as 178 rather than 0178.

6.

Modify the decimal addition algorithm of Figure 1.2 so that the two

numbers being added do not have to have the same number of digits.

That is, the algorithm should be able to add a value a containing m digits

to a value b containing n digits, where m may or may not be equal to n.

7.

Under what conditions would the well-known quadratic formula

 not be effectively computable? (Assume that

you are working with real numbers.)

8.

Compare the two solutions to the shampooing algorithm shown in Figures

1.3 and 1.4. Which do you think is a better general-purpose solution?

Why? (Hint: What if you wanted to wash your hair 1,000 times?)

9.

The following is Euclid’s 2,300-year-old algorithm for finding the greatest

common divisor of two positive integers I and J.

Table

Step Operation

1 Get two positive integers as input; call the larger
value I and the smaller value J

2 Divide I by J, and call the remainder R

10.

2 1 0

2 1 0

3 2 1 0

(1)

(2)

Step Operation

3 If R is not 0, then reset I to the value of J, reset J
to the value of R, and go back to Step 2

4 Print out the answer, which is the value of J

5 Stop

Go through this algorithm using the input values 20 and 32. After

each step of the algorithm is completed, give the values of I, J, and R.

Determine the final output of the algorithm.

a.

Does the algorithm work correctly when the two inputs are 0 and

32? Describe exactly what happens, and modify the algorithm so

that it gives an appropriate error message.

b.

A salesperson wants to visit 25 cities while minimizing the total number

of miles she has to drive. Because she has studied computer science, she

decides to design an algorithm to determine the optimal order in which to

visit the cities to

keep her driving distance to a minimum, and

visit each city exactly once. The algorithm that she has devised

is the following:

The computer first lists all possible ways to visit the 25 cities and then, for

each one, determines the total mileage associated with that particular

ordering. (Assume that the computer has access to data that gives the

distances between all cities.) After determining the total mileage for each

possible trip, the computer searches for the ordering with the minimum

mileage and prints out the list of cities on that optimal route, that is, the

order in which the salesperson should visit her destinations.

If a computer could analyze 10,000,000 separate paths per second, how

long would it take to determine the optimal route for visiting these 25

cities? On the basis of your answer, do you think this is a feasible

algorithm? If it is not, can you think of a way to obtain a reasonable

solution to this problem?

11.

One way to do multiplication is by repeated addition. For example, 47 × 2512.

can be evaluated as 47 + 47 + 47 +… + 47 (25 times). Sketch out an

algorithm for multiplying two positive numbers a and b using this

technique.

A student was asked to develop an algorithm to find and output the

largest of three numerical values x, y, and z that are provided as input.

Here is what was produced:

Is this a correct solution to the problem? Explain why or why not. If it is

incorrect, fix the algorithm so that it is a correct solution.

13.

Read about one of the early pioneers mentioned in this chapter—Pascal,

Liebnitz, Jacquard, Babbage, Lovelace, Hollerith, Eckert, Mauchly, Aiken,

Zuse, Atanasoff, Turing, or Von Neumann. Write a paper describing in

detail that person’s contribution to computing and computer science.

14.

Get the technical specifications of the computer on which you are

working (either from a technical manual or from your computer center

staff). Determine its cost, its processing speed (in MIPS, millions of

instructions per second), its computational speed (in GFlops, billions of

floating point operations per second), and the size of its primary memory.

Compare those values with what was typically available on first-, second-,

and third-generation computer systems, and calculate the percentage

improvement between your computer and the first commercial machines

of the early 1950s.

15.

A new and growing area of computer science is ubiquitous computing, in

which a number of computers automatically provide services for a user

16.

 For additional print and/or online resources relevant to this

chapter, visit the Computer Science CourseMate at login.cengagebrain.com.

Chapter 1: An Introduction to Computer Science
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

© 2014 Cengage Learning Inc. All rights reserved. No part of this work may by reproduced or used in any form or by any
means - graphic, electronic, or mechanical, or in any other manner - without the written permission of the copyright holder.

Chapter : Introduction
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Part Introduction

Level 1 of the text continues our exploration of algorithms and algorithmic problem
solving—essential material for studying any branch of computer science. It first
introduces methods for designing and representing algorithms. It then uses these ideas
to develop solutions to some real-world problems, including an important application
in medicine and biology.

When judging the quality of an essay or book report, we do not look only at sentence
structure, spelling, and punctuation. Although grammatical issues are important, we
also evaluate the work’s style, for it is a combination of correctness and expressiveness
that produces a written document of high quality. So, too, for algorithms: Correctness is

not the only measure of excellence. This section will present criteria for evaluating the
quality and elegance of the algorithmic solutions that you develop.

Chapter : Introduction
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

© 2014 Cengage Learning Inc. All rights reserved. No part of this work may by reproduced or used in any form or by any
means - graphic, electronic, or mechanical, or in any other manner - without the written permission of the copyright holder.

Chapter 2: Algorithm Discovery and Design
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter 2
Algorithm Discovery and Design

2.1 Introduction

2.2 Representing Algorithms

2.2.1 Pseudocode

2.2.2 Sequential Operations

2.2.3 Conditional and Iterative Operations

2.3 Examples Of Algorithmic Problem Solving

2.3.1 Example 1: Go Forth and Multiply

2.3.2 Example 2: Looking, Looking, Looking

2.3.3 Example 3: Big, Bigger, Biggest

2.3.4 Example 4: Meeting Your Match

2.4 Conclusion

Chapter Review

Exercises

Challenge Work

Additional Resources

Chapter 2: Algorithm Discovery and Design: 2.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

2.1 Introduction
Chapter 1 introduced algorithms and algorithmic problem solving, two of the most
fundamental concepts in computer science. Our introduction used examples drawn
from everyday life, such as programming a DVR (Figure 1.1) and washing your hair
(Figure 1.3 and 1.4). Although these are perfectly valid examples of algorithms, they are
not of much interest to computer scientists. This chapter develops more fully the

notions of algorithms and algorithmic problem solving and applies these ideas to
problems that are of interest to computer scientists: searching lists, finding maxima
and minima, and matching patterns.

Chapter 2: Algorithm Discovery and Design: 2.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

2.2 Representing Algorithms

2.2.1 Pseudocode

Before presenting any algorithms, we must first make an important decision. How
should we represent them? What notation should we use to express our algorithms so
that they are clear, precise, and unambiguous?

One possibility is natural language, the language we speak and write in our everyday
lives. (This could be English, Spanish, Arabic, Japanese, Swahili, or any language.) This
is an obvious choice because it is the language with which we are most familiar. If we
use natural language, then our algorithms read much the same as a term paper or an
essay. For example, when expressed in natural language, the addition algorithm in
Figure 1.2 might look something like the paragraph shown in Figure 2.1.

Figure 2.1
The addition algorithm of Figure 1.2 expressed in natural language

Initially, set the value of the variable carry to 0 and the value of the variable i to
0. When these initializations have been completed, begin looping as long as the
value of the variable i is less than or equal to (m – 1). First, add together the
values of the two digits a and b and the current value of the carry digit to get

the result called c . Now check the value of c to see whether it is greater than or

equal to 10. If c is greater than or equal to 10, then reset the value of carry to 1

and reduce the value of c by 10; otherwise, set the value of carry to 0. When

you are finished with that operation, add 1 to i and begin the loop all over
again. When the loop has completed execution, set the leftmost digit of the
result c to the value of carry and print out the final result, which consists of

the digits c c … c . After printing the result, the algorithm is finished, and it

terminates.

Comparing Figure 1.2 with Figure 2.1 illustrates the problems of using natural language
to represent algorithms. Natural language can be extremely verbose, causing the

i i

i i

i

i

m

m mm1 0

resulting algorithms to be rambling, unstructured, and hard to follow. (Imagine
reading 5, 10, or even 100 pages of text like Figure 2.1). An unstructured, “free-flowing”
writing style might be wonderful for novels and essays, but it is horrible for
algorithms. The lack of structure makes it difficult for the reader to locate specific
sections of the algorithm because they are buried inside the text. For example, on the
eighth line of Figure 2.1 is the phrase, “… and begin the loop all over again.” To what
part of the algorithm does this refer? Without any clues to guide us, such as
indentation, line numbering, or highlighting, locating the beginning of that loop can be
a daunting and time-consuming task. (For the record, the beginning of the loop
corresponds to the sentence that starts, “When these initializations have been
completed….” It is certainly not easy to determine this from a casual reading of the
text.)

A second problem is that natural language is too “rich” in interpretation and meaning.
Natural language frequently relies on either context or a reader’ experiences to give
precise meaning to a word or phrase. This permits different readers to interpret the
same sentence in totally different ways. This may be acceptable, even desirable, when
writing poetry or fiction, but it is disastrous when creating algorithms that must always
execute in the same way and produce identical results. We can see an example of this
problem in the sentence on Lines 7 and 8 of Figure 2.1 that starts with “When you are
finished with that operation….” When we are finished with which operation? It is not at
all clear from the text, and individuals might interpret the phrase that operation in
different ways, producing radically different behavior. Similarly, the statement
“Determine the shortest path between the source and destination” is ambiguous until
we know the precise meaning of the phrase “shortest path.” Does it mean shortest in
terms of travel time, distance, or something else?

Because natural languages are not sufficiently precise to represent algorithms, we
might be tempted to go to the other extreme. If we are ultimately going to execute our
algorithm on a computer, why not write it out as a computer program using a high-level
programming language such as C++ or Java? If we adopt that approach, the addition
algorithm of Figure 1.2 might start out looking like the program fragment shown in
Figure 2.2.

Figure 2.2

The beginning of the addition algorithm of Figure 1.2 expressed in a high-level

programming language

As an algorithmic design language, this notation is also seriously flawed. During the
initial phases of design, we should be thinking and writing at a highly abstract level.
Using a programming language to express our design forces us to deal immediately
with detailed language issues, such as punctuation, grammar, and syntax. For example,
the algorithm in Figure 1.2 contains an operation that says, “Set the value of carry to 0.”
This is an easy statement to understand. However, when translated into a language like
C++ or Java, that statement becomes

Is this operation setting carry to 0 or asking if carry is equal to 0? Why does a semicolon
appear at the end of the line? Would the statement

mean the same thing? Similarly, what is meant by the utterly cryptic statement on Line

4: int [] a = new int [100];? These technical details clutter our thoughts and at

this point in the solution process are totally out of place. When creating algorithms, a
programmer should no more worry about semicolons and capitalization than a
novelist should worry about typography and cover design when writing the first draft!

If the two extremes of natural languages and high-level programming languages are
both less than ideal, what notation should we use? What is the best way to represent
the solutions shown in this chapter and the rest of the book?

Most computer scientists use a notation called pseudocode to design and represent
algorithms. This is a set of English language constructs designed to resemble
statements in a programming language but that do not actually run on a computer.
Pseudocode represents a compromise between the two extremes of natural and formal
languages. It is simple, highly readable, and has virtually no grammatical rules. (In
fact, pseudocode is sometimes called a programming language without the details.)

However, because it contains only statements that have a well-defined structure, it is
easier to visualize the organization of a pseudocode algorithm than one represented as
long, rambling natural-language paragraphs. In addition, because pseudocode closely
resembles many popular programming languages, the subsequent translation of the
algorithm into a computer program is relatively simple. The algorithms shown in
Figures 1.1, 1.2, 1.3 and 1.4, and Exercise 10 of Chapter 1 are all written in pseudocode.

In the following sections, we will introduce a set of popular and easy-to-understand
constructs for the three types of algorithmic operations introduced in Chapter 1:
sequential, conditional, and iterative. Keep in mind, however, that pseudocode is not a
formal language with rigidly standardized syntactic and semantic rules and
regulations. On the contrary, it is an informal design notation used solely to express
algorithms. If you do not like the constructs presented in the next two sections, feel free
to modify them or select others that are more helpful to you. One of the nice features of
pseudocode is that you can adapt it to your own personal way of thinking and problem
solving.

Chapter 2: Algorithm Discovery and Design: 2.2.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

2.2.2 Sequential Operations

Our pseudocode must include instructions to carry out the three basic sequential
operations called computation, input, and output.

The instruction for performing a computation and saving the result looks like the
following. (Words and phrases inside quotation marks represent specific elements that
you must insert when writing an algorithm.)

This operation evaluates the “arithmetic expression,” gets a result, and stores that
result in the “variable.” A variable is simply a named storage location that can hold a
data value. A variable is often compared with a mailbox into which you can place a
value and from which you can retrieve a value. Let’ look at an example.

First, evaluate the arithmetic expression, which in this case is the constant value 0.
Then store that result in the variable called carry. If carry had a previous value, say 1, it
is discarded and replaced by the new value 0. You can visualize the result of this
operation as follows:

Here is another example:

Assuming that the variable r has been given a value by a previous instruction in the

algorithm, this statement evaluates the arithmetic expression πr to produce a
numerical result. This result is then stored in the variable called Area. If r does not
have a value, an error condition occurs because this instruction is not effectively
computable, and it cannot be completed.

We can see additional examples of computational operations in Steps 4, 6, and 7 of the
addition algorithm of Figure 1.2:

4

Add the two digits a and b to the current value of carry to get c

6

Add 1 to i, effectively moving one column to the left

7

Set c to the value of carry

Note that these three steps are not written in exactly the format just described. If we
had used that notation, they would have looked like this:

4

Set the value of c to (a + b + carry)

6

Set the value of i to (i + 1)

7

Set the value of c to carry

2

i i i

m

i i i

m

However, in pseudocode it doesn’t matter exactly how you choose to write your
instructions as long as the intent is clear, effectively computable, and unambiguous. At
this point in the design of a solution, we do not really care about the minor linguistic
differences between

and

Remember that pseudocode is not a precise set of notational rules to be memorized and
rigidly followed. It is a flexible notation that can be adjusted to fit your own view about
how best to express ideas and algorithms.

When writing arithmetic expressions, you may assume that the computing agent
executing your algorithm has all the capabilities of a typical calculator. Therefore, it
“knows” how to do all basic arithmetic operations such as +, −, x, ÷, √, absolute value,
sine, cosine, and tangent. It also knows the value of important constants such as π.

The remaining two sequential operations enable our computing agent to communicate
with “the outside world,” which means everything other than the computing agent
itself:

Input operations provide the computing agent with data values from the outside world
that it may then use in later instructions. Output operations send results from the
computing agent to the outside world. When the computing agent is a computer,
communications with the outside world are done via the input/output equipment
available on a typical system (e.g., keyboard, screen, mouse, printer, hard drive,
CD/DVD, flash drive, camera, touch screen). However, when designing algorithms, we
generally do not concern ourselves with such details. We care only that data is
provided when we request it, and that results are issued for presentation.

Our pseudocode instructions for input and output are expressed as follows:

For example,

When the algorithm reaches this input operation, it waits until someone or something
provides it with a value for the variable r. (In a computer, this may be done by entering
a value at the keyboard.) When the algorithm has received and stored a value for r, it
continues on to the next instruction.

Here is an example of an output operation:

Assuming that the algorithm has already computed the area of the circle, this
instruction says to display that value to the outside world. This display may be viewed
on a screen or printed on paper by a printer.

Sometimes we use an output instruction to display a message in place of the desired
results. If, for example, the computing agent cannot complete a computation because of
an error condition, we might have it execute something like the following operation.
(We will use ’ingle quotes’ to enclose messages so as to distinguish them from such
pseudocode constructs as “variable” and “arithmetic expression,” which are enclosed
in double quotes.)

Using these three sequential operations—computation, input, and output—we can now
write some simple but useful algorithms. Figure 2.3 presents an algorithm to compute
the average miles per gallon on a trip, when given as input the number of gallons used
and the starting and ending mileage readings on the odometer.

Figure 2.3
Algorithm for computing average miles per gallon (version 1)

Step Operation

1 Get values for gallons used, starting mileage,
ending mileage

2 Set value of distance driven to (ending mileage –
starting mileage)

3 Set value of average miles per gallon to (distance
driven ÷ gallons used)

4 Print the value of average miles per gallon

5 Stop

Practice Problems

Write pseudocode versions of the following:

An algorithm that gets three data values x, y, and z as input and

outputs the average of those three values.

1.

An algorithm that gets the radius r of a circle as input. Its output is

both the circumference and the area of a circle of radius r.

2.

An algorithm that gets the amount of electricity used in

kilowatt-hours and the cost of electricity per kilowatt-hour. Its output

is the total amount of the electric bill, including an 8% sales tax.

3.

An algorithm that inputs your current credit card balance, the total

dollar amount of new purchases, and the total dollar amount of all

payments. The algorithm computes the new balance, which includes

a 12% interest charge on any unpaid balance.

4.

An algorithm that is given the length and width, in feet, of a

rectangular carpet and determines its total cost given that the

material cost is $23/square yard.

5.

Chapter 2: Algorithm Discovery and Design: 2.2.3
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

2.2.3 Conditional and Iterative Operations

The average miles per gallon algorithm in Figure 2.3 performs a set of operations once
and then stops. It cannot select among alternative operations or perform a block of
instructions more than once. A purely sequential algorithm of the type shown in Figure
2.3 is sometimes termed a straight-line algorithm because it executes its instructions in
a straight line from top to bottom and then stops. Unfortunately, virtually all real-world
problems are not straight-line in nature. They involve nonsequential operations such
as branching and repetition.

To allow us to address these more interesting problems, our pseudo-code needs two

additional statements to implement conditional and iterative operations. Together,
these two types of operations are called control operations; they allow us to alter the
normal sequential flow of control in an algorithm. As we saw in Chapter 1, control
operations are an essential part of all but the very simplest of algorithms.

Conditional statements are the “question-asking” operations of an algorithm. They
allow an algorithm to ask a question and select the next operation to perform on the
basis of the answer to that question. There are a number of ways to phrase a question,
but the most common conditional statement is the if/then/else statement, which has the
following format:

The meaning of this statement is as follows:

Evaluate the true/false condition on the first line to determine whether it is true

or false.

1.

If the condition is true, then do the first set of algorithmic operations and skip the

second set entirely.

2.

If the condition is false, then skip the first set of operations and do the second set.3.

Once the appropriate set of operations has been completed, continue executing

the algorithm with the operation that follows the if/then/else instruction.

4.

Figure 2.4 is a visual model of the execution of the if/then/else statement. We evaluate
the condition shown in the diamond. If the condition is true, we execute the sequence
of operations labeled T1, T2, T3, … . If the condition is false, we execute the sequence
labeled F1, F2, F3, … . In either case, however, execution continues with statement S,
which is the one that immediately follows the if/then/else statement.

Figure 2.4

The if/then/else pseudocode statement

Basically, the if/then/else statement allows you to select exactly one of two alternatives
—either/or, this or that. We saw an example of this statement in Step 5 of the addition
algorithm shown in Figure 1.2. (The statement has been reformatted slightly to
highlight the two alternatives clearly, but it has not been changed.)

The condition (c ≥ 10) can be only true or false. If it is true, then there is a carry into

the next column, and we must do the first set of instructions—subtracting 10 from c

and setting carry to 1. If the condition is false, then there is no carry—we skip over
these two operations, and perform the second block of operations, which simply sets
the value of carry to 0.

Figure 2.5 shows another example of the if/then/else statement. It extends the miles per
gallon algorithm of Figure 2.3 to include a second line of output stating whether you
are getting good gas mileage. Good gas mileage is defined as a value for average miles
per gallon strictly greater than 25.0 mpg.

i

i

Figure 2.5

Second version of the average miles per gallon algorithm

The last algorithmic statement to be introduced allows us to implement a loop—the
repetition of a block of instructions. The real power of a computer comes not from
doing a calculation once but from doing it many, many times. If, for example, we need
to compute a single value of average miles per gallon, it would be foolish to convert an
algorithm like Figure 2.5 into a computer program and execute it on a computer—it
would be far faster to use a calculator, which could complete the job in a few seconds.
However, if we need to do the same computation 1 million times, the power of a
computer to repetitively execute a block of statements becomes quite apparent. If each
computation of average miles per gallon takes 5 seconds on a hand calculator, then 1
million of them would require about 2 months, not allowing for such luxuries as
sleeping and eating. Once the algorithm is developed and the program written, a
computer can carry out that same task in a fraction of a second!

The first algorithmic statement that we will use to express the idea of iteration, also
called looping, is the while statement:

This instruction initially evaluates the “true/false condition”—called the continuation
condition—to determine if it is true or false. If the condition is true, all operations from

Step i to Step j, inclusive, are executed. This block of operations is called the loop body.
(Operations within the loop body should be indented so that it is clear to the reader of
the algorithm which operations belong inside the loop.) When the entire loop body has
finished executing, the algorithm again evaluates the continuation condition. If it is still
true, then the algorithm executes the entire loop body, statements i through j, again.
This looping process continues until the continuation condition evaluates to false, at
which point execution of the loop body terminates and the algorithm proceeds to the
statement immediately following the loop—Step j + 1 in the above pseudocode. If for
some reason the continuation condition never becomes false, then we have violated
one of the fundamental properties of an algorithm, and we have the error, first
mentioned in Chapter 1, called an infinite loop.

Figure 2.6 is a visual model of the execution of a while loop. The algorithm first
evaluates the continuation condition inside the diamond-shaped symbol. If it is true,
then it executes the sequence of operations labeled S1, S2, S3,…, which are the
operations of the loop body. Then the algorithm returns to the top of the loop and
reevaluates the condition. If the condition is false, then the loop has ended, and the
algorithm continues executing with the statement after the loop, the one labeled S in

Figure 2.6.

Figure 2.6

Execution of the while loop

n

Here is a simple example of a loop:

Step 1 initializes count to 1, the next operation determines that (count ≤ 100), and then
the loop body is executed, which in this case includes the three statements in Steps 3, 4,
and 5. Those statements compute the value of count squared (Step 3) and print the
value of both count and square (Step 4). The last operation inside the loop body (Step 5)
adds 1 to count so that it now has the value 2. At the end of the loop, the algorithm must
determine whether it should be executed again. Because count is 2, the continuation
condition (count ≤ 100) is still true, and the algorithm must perform the loop body
again. Looking at the entire loop, we can see that it will execute 100 times, producing
the following output, which is a table of numbers and their squares from 1 to 100.

At the end of the 100th pass through the loop, the value of count is incremented in Step
5 to 101. When the continuation condition is evaluated, it is false (because 101 is not
less than or equal to 100), and the loop terminates.

We can see additional examples of loop structures in Steps 3 through 6 of Figure 1.2

and in Steps 3 through 6 of Figure 1.3. Another example is shown in Figure 2.7, which
is yet another variation of the average miles per gallon algorithm of Figures 2.3 and
2.5. In this modification, after finishing one computation, the algorithm asks the user
whether to repeat this calculation again. It waits until it gets a Yes or No response and
repeats the entire algorithm until the response provided by the user is No. (Note that
the algorithm must initialize the value of response to Yes because the very first thing
that the loop does is test the value of this quantity.)

Figure 2.7

Third version of the average miles per gallon algorithm

There are many variations of this particular looping construct in addition to the while
statement just described. For example, it is common to omit the line numbers from
algorithms and simply execute them in order, from top to bottom. In that case, we
could use an End of Loop construct (or something similar) to mark the end of the loop
rather than explicitly stating which steps are contained in the loop body. Using this
approach, our loops would be written something like this:

In this case, the loop body is delimited not by explicit step numbers but by the two lines
that read, “While …” and “End of the loop”.

The type of loop just described is called a pretest loop because the continuation
condition is tested at the beginning of each pass through the loop, and therefore it is
possible for the loop body never to be executed. (This would happen if the continuation
condition were initially false.) Sometimes this can be inconvenient, as we see in Figure
2.7. In that algorithm, the value of the variable called response is tested for the first
time long before we ask the user if he or she wants to solve the problem again.
Therefore, we had to give response a “dummy” value of Yes so that the test would be
meaningful when the loop was initially entered.

A useful variation of the looping structure is called a posttest loop, which also uses a
true/false continuation condition to control execution of the loop. However, now the
test is done at the end of the loop body, not the beginning. The loop is typically
expressed using the do/while statement, which is usually written as follows:

This type of iteration performs all the algorithmic operations contained in the loop
body before it evaluates the true/false condition specified at the end of the loop. If this
condition is false, the loop is terminated and execution continues with the operation
following the loop. If it is true, then the entire loop body is executed again. Note that in
the do/while variation, the loop body is always executed at least once, whereas the
while loop can execute 0, 1, or more times. Figure 2.8 diagrams the execution of the
post-test do/while looping structure.

Figure 2.8

Execution of the do/while posttest loop

Figure 2.9 summarizes the algorithmic operations introduced in this section. These
represent the primitive operations of our computing agent. These are the instructions
that we assume our computing agent understands and is capable of executing without
further explanation or simplification. In the next section, we will use these operations
to design algorithms that solve some interesting and important problems.

Figure 2.9

Summary of pseudocode language instructions

From Little Primitives Mighty Algorithms Do Grow

Although the set of algorithmic primitives shown in Figure 2.9 might seem quite
puny, it is anything but! In fact, an important theorem in theoretical computer
science proves that the operations shown in Figure 2.9 are sufficient to
represent any valid algorithm. No matter how complicated it might be, if a
problem can be solved algorithmically, it can be expressed using only the
sequential, conditional, and iterative operations just discussed. This includes
not only the simple addition algorithm of Figure 1.2 but also the exceedingly
complex algorithms needed to operate the International Space Station, manage
billions of Internet and Web users, and describe all the Internal Revenue
Service’ tax rules and regulations.

In many ways, building algorithms is akin to constructing essays or novels
using only the 26 letters of the English alphabet, plus a few punctuation
symbols. Expressive power does not always come from a huge set of primitives.
It can also arise from a small number of simple building blocks combined in
interesting ways. This is the real secret of building algorithms.

Chapter 2: Algorithm Discovery and Design: 2.3
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

2.3 Examples Of Algorithmic Problem Solving

2.3.1 Example 1: Go Forth and Multiply

Our first example of algorithmic problem solving addresses a problem originally posed
in Chapter 1 (Exercise 12). That problem asked you to implement an algorithm to
multiply two numbers using repeated addition. This problem can be formally
expressed as follows:

Given two nonnegative integer values, a ≥ 0, b ≥ 0, compute and output the
product (a x b) using the technique of repeated addition. That is, determine the
value of the sum a + a + a + … + a (b times).

Obviously, we need to create a loop that executes exactly b times, with each execution
of the loop adding the value of a to a running total. These operations will not make any
sense (that is, they will not be effectively computable) until we have explicit values for
a and b. So one of the first operations in our algorithm must be to input these two
values.

Practice Problem

Write an if/then/else statement that sets the variable y to the value 1 if

x ≥ 0. If x ≥ 0, then the statement should set y to the value 2. (Assume x

already has a value.)

1.

Write an algorithm that gets as input three data values x, y, and z and

outputs the average of these values if the value of x is positive. If the

value of x is either 0 or negative, your algorithm should not compute

the average but should print the error message ’Bad Data’ instead.

2.

Write an algorithm that gets as input your current credit card

balance, the total dollar amount of new purchases, and the total

dollar amount of all payments. The algorithm computes the new

balance, which this time includes an 8% interest charge on any

unpaid balance below $100, 12% interest on any unpaid balance

between $100 and $500, inclusive, and 16% on any unpaid balance

above $500.

3.

Write an algorithm that gets as input a single data value x and4.

outputs the three values x , sin x, and 1/x. This process is repeated

until the input value for x is equal to 999, at which time the algorithm

terminates.

Write an algorithm that inputs the length and width, in feet, of a

rectangular carpet and the price of the carpet in $/square yard. It

then determines if we can afford to purchase this carpet, given that

our total budget for carpeting is $500.

5.

Add the following feature to the algorithm created in the previous

Practice Problem: If the cost of the carpet is less than or equal to $250,

output a message that this is a particularly good deal.

6.

To create a loop that executes exactly b times, we create a counter, let’ call it count,
initialized to 0 and incremented by (increased by) 1 after each pass through the loop.
This means that when we have completed the loop once, the value of count is 1; when
we have completed the loop twice, the value of count is 2, and so forth. Because we
want to stop when we have completed the loop b times, we want to stop when
(count = b). Therefore, the condition for continuing execution of the loop is (count ≥ b).
Putting all these pieces together produces the following algorithmic structure, which is
a loop that executes exactly b times as the variable count ranges from 0 up to (b − 1).

The purpose of the loop body is to add the value of a to a running total, which we will
call product. We express that operation in the following manner:

This statement says the new value of product is to be reset to the current value of
product added to a.

2

What is the current value of product the first time this operation is encountered?
Unless we initialize it, it has no value, and this operation is not effectively computable.
Before starting the loop, we must be sure to include the following step:

Now our solution is starting to take shape. Here is what we have developed so far:

There are only a few minor “tweaks” left to make this a correct solution to our
problem.

When the while loop completes, we have computed the desired result, namely (a x b),
and stored it in product. However, we have not displayed that result, and as it stands,
this algorithm produces no output. Remember from Chapter 1 that one of the
fundamental characteristics of an algorithm is that it produces an observable result. In
this case, the desired result is the final value of product, which we can display using
our output primitive:

The original statement of the problem said that the two inputs a and b must satisfy the
following conditions: a ≥ 0 and b ≥ 0. The previous algorithm works for positive values
of a and b, but what happens when either a = 0 or b = 0? Does it still function correctly?

If b = 0, there is no problem. If you look at the while loop, you see that it continues
executing so long as (count < b). The variable count is initialized to 0. If the input
variable b also has the value 0, then the test (0 < 0) is initially false, and the loop is never
executed. The variable product keeps its initial value of 0, and that is the output that is
printed, which is the correct answer.

Now let’ look at what happens when a = 0 and b is any nonzero value, say 5,386. Of
course we know immediately that the correct result is 0, but the algorithm does not.
Instead, the loop will execute 5,386 times, the value of b, each time adding the value of
a, which is 0, to product. Because adding 0 to anything has no effect, product remains at

0, and that is the output that is printed. In this case, we do get the right answer, and our
algorithm does work correctly. However, it gets that correct answer only after doing
5,386 unnecessary and time-wasting repetitions of the loop.

In Chapter 1, we stated that it is not only algorithmic correctness we are after but
efficiency and elegance as well. The algorithms designed and implemented by
computer scientists are intended to solve important real-world problems, and they
must accomplish that task in a correct and reasonably efficient manner. Otherwise
they are not of much use to their intended audience.

In this case, we can eliminate those needless repetitions of the loop by using our
if/then/else conditional primitive. Right at the start of the algorithm, we ask if either a
or b is equal to 0. If the answer is yes, we can immediately set the result to 0 without
requiring any further computations:

We will have much more to say about the critically important concepts of algorithmic
efficiency and elegance in Chapter 3.

This completes the development of our multiplication algorithm, and the finished
solution is shown in Figure 2.10.

Figure 2.10

Algorithm for multiplication of nonnegative values via repeated addition

This first example needed only two integer values, a and b, as input. That is a bit
unrealistic, as most interesting computational problems deal not with a few numbers
but with huge collections of data, such as lists of names, sequences of characters, or
sets of experimental data. In the following sections, we will show examples of the types
of processing—searching, reordering, comparing—often done on these large collections
of information.

Practice Problems

Manually work through the algorithm in Figure 2.10 using the input

values a = 2, b = 4. After each completed pass through the loop, write

down the current value of the four variables a, b, count, and product.

1.

Trace the execution of the algorithm in Figure 2.10 using the “special”

input values a = 0, b = 0. Does the algorithm produce the result you

expect?

2.

Describe exactly what would be output by the algorithm in Figure

2.10 for each of the following two cases, and state whether that

output is or is not correct. (Note: Because one of the two inputs is

negative, these values violate the basic conditions of the problem.)

case 1: a = −2, b = 4

case 2: a = 2, b = −4

3.

If the algorithm of Figure 2.10 produced the wrong answer for either

case 1 or case 2 of Practice Problem 3, explain exactly how you could

fix the algorithm so it works correctly and produces the correct

answer.

4.

Explain why the multiplication algorithm shown in Figure 2.10 is or is

not an efficient way to do multiplication. Justify and explain your

answer.

5.

Chapter 2: Algorithm Discovery and Design: 2.3.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

2.3.2 Example 2: Looking, Looking, Looking

Finding a solution to a given problem is called algorithm discovery, and it is the most
challenging and creative part of the problem-solving process. We developed an
algorithm for a fairly simple problem (multiplication by repeated addition) in Example
1. Discovering a correct and efficient algorithm to solve a complicated problem can be
difficult and can involve equal parts of intelligence, hard work, past experience,
technical skill, and plain good luck. In the remaining examples, we will develop
solutions to a range of problems to give you more experience in working with
algorithms. Studying these examples, together with lots of practice, is by far the best
way to learn creative problem solving, just as experience and practice are the best
ways to learn how to write essays, hit a golf ball, or repair cars.

The next problem we will solve was also mentioned in Chapter 1—locating a particular
person’ name in a telephone directory. This is just the type of simple and rather
uninteresting repetitive task so well suited to computerization. (Many large telephone
companies have implemented such an application. Most of us have dialed directory
assistance and heard the desired telephone number spoken in an automated,
computer-generated voice.)

Assume that we have a list of 10,000 names that we define as N , N , N , …, N , along

with the 10,000 telephone numbers of those individuals, denoted as T , T , T , …, T .

To simplify the problem, we initially assume that all names in the book are unique and
that the names need not be in alphabetical order. Essentially what we have described is
a nonalphabetized telephone book of the following form:

Let’ create an algorithm that allows us to input the name of a specific person, which we
will denote as NAME. The algorithm will check to see if NAME matches any of the
10,000 names contained in our telephone book. If NAME matches the value N , where j

is a value between 1 and 10,000, then the output of our algorithm will be the telephone
number of that person: the value T . If NAME is not contained in our telephone book,

then the output of our algorithm will be the message ’I am sorry but this name is not in
the directory.’ This type of lookup algorithm has many additional uses. For example, it

1 2 3 10,000

1 2 3 10,000

j

j

could be used to locate the zip code of a particular city, the seat number of a specific
airline passenger, or the room number of a hotel guest.

Because the names in our telephone book are not in alphabetical order, there is no
clever way to speed up the search. With a random collection of names, there is no
method more efficient than starting at the beginning and looking at each name in the
list, one at a time, until we either find the one we are looking for or come to the end of
the list. This rather simple and straightforward technique is called sequential search,
and it is the standard algorithm for searching an unordered list of values. For example,
this is how we would search a telephone book to see who lives at 123 Elm Street
because a telephone book is not sorted by address. It is also the way that we look
through a shuffled deck of cards trying to locate one particular card. A first attempt at
designing a sequential search algorithm to solve our search problem might look
something like Figure 2.11.

Figure 2.11

First attempt at designing a sequential search algorithm

The solution shown in Figure 2.11 is extremely long. At 66 lines per page, it would
require about 150 pages to write out the 10,002 steps in the completed solution. It
would also be unnecessarily slow. If we are lucky enough to find NAME in the very first
position of the telephone book, N , then we get the answer T almost immediately.

However, the algorithm does not stop at that point. Even though it has already found
the correct answer, it foolishly asks 9,999 more questions looking for NAME in
positions N , …, N . Of course, humans have enough “common sense” to know that

when they find the answer they are searching for, they can stop. However, we cannot
assume common sense in a computer system. On the contrary, a computer will
mechanically execute the entire algorithm from the first step to the last.

Not only is the algorithm excessively long and highly inefficient, it is also wrong. If the
desired NAME is not in the list, this algorithm simply stops (at Step 10,002) rather than

1 1

2 10,000

providing the desired result, a message that the name you requested is not in the
directory. An algorithm is deemed correct only when it produces the correct result for
all possible cases.

The problem with this first attempt is that it does not use the powerful algorithmic
concept of iteration. Instead of writing an instruction 10,000 separate times, it is far
better to write it only once and indicate that it is to be repetitively executed 10,000
times, or however many times it takes to obtain the answer. As you learned in the
previous section, much of the power of a computer comes from being able to perform a
loop—the repetitive execution of a block of statements a large number of times.
Virtually every algorithm developed in this text contains at least one loop and most
contain many. (This is the difference between the two shampooing algorithms shown in
Figure 1.3 and 1.4. The algorithm in the former contains a loop; that in the latter does
not.)

The algorithm in Figure 2.12 shows how we might write a loop to implement the
sequential search technique. It uses a variable called i as an index, or pointer, into the
list of all names. That is, N refers to the ith name in the list. The algorithm then

repeatedly executes a group of statements using different values of i. The variable i can
be thought of as a “moving finger” scanning the list of names and pointing to the one
on which the algorithm is currently working.

Figure 2.12

Second attempt at designing a sequential search algorithm

The first time through the loop, the value of the index i is 1, so the algorithm checks (in
Step 4) to see whether NAME is equal to N , the first name on the list. If it is, then the

algorithm writes out the result and sets the variable Found to YES, which causes the
loop in Steps 4 through 7 to terminate. If it is not the desired NAME, then i is
incremented by 1 (in Step 7) so that it now has the value 2, and the loop is executed

i

1

again. The algorithm now checks to see whether NAME is equal to N , the second name

on the list. In this way, the algorithm uses the single conditional statement “If NAME is
equal to the ith name on the list …” to check up to 10,000 names. It executes that one
line over and over, each time with a different value of i. This is the advantage of using
iteration.

However, the attempt shown in Figure 2.12 is not yet a complete and correct algorithm
because it still does not work correctly when the desired NAME does not appear
anywhere on the list. This final problem can be solved by terminating the loop either
when the desired name is found or the end of the list is reached. The algorithm can
determine exactly what happened by checking the value of Found when the loop
terminates. If the value of Found is NO, then the loop terminated because the index i
exceeded 10,000, and we searched the entire list without finding the desired NAME.
The algorithm should then produce an appropriate message.

An iterative solution to the sequential search algorithm that incorporates this feature is
shown in Figure 2.13. The sequential search algorithm shown in Figure 2.13 is a correct
solution to our telephone book lookup problem. It meets all the requirements listed in
Section 1.3.1: It is well ordered, each of the operations is clearly defined and effectively
computable, and it is certain to halt with the desired result after a finite number of
operations. (In Exercise 12 at the end of this chapter, you will develop a formal
argument that proves that this algorithm will always halt.) Furthermore, this algorithm
requires only 10 steps to write out fully, rather than the 10,002 steps of the first attempt
in Figure 2.11. As you can see, not all algorithms are created equal.

Figure 2.13

The sequential search algorithm

2

Looking at the algorithm in Figure 2.13, our first thought might be that this is not at all
how people manually search a telephone book. When looking for a particular
telephone number, we would never turn to , column 1, and scan all names beginning
with Aardvark, Alan. Certainly, a telephone company in New York City would not be
satisfied with the performance of a directory search algorithm that always began on of
its 2,000-page telephone book.

Because our telephone book was not alphabetized, we really had no choice in the
design of a search algorithm. However, in real life we can do much better than
sequential search, because telephone books are alphabetized, and we can exploit this
fact during the search process. For example, we know that M is about halfway through
the alphabet, so when looking for the name Samuel Miller, we open the telephone book
somewhere in the middle rather than to the first page. We then see exactly where we
are by looking at the first letter of the names on the current page, and then we move
forward or backward toward names beginning with M. This approach allows us to find
the desired name much more quickly than searching sequentially beginning with the
letter A.

This use of different search techniques points out a very important concept in the
design of algorithms:

The selection of an algorithm to solve a problem is greatly influenced by the way
the input data for that problem are organized.

An algorithm is a method for processing some data to produce a result, and the way the
data are organized has an enormous influence both on the algorithm we select and on
how speedily that algorithm can produce the desired result.

Laboratory Experience 2

Computer science is an empirical discipline as well as a theoretical one.
Learning comes not just from reading about concepts like algorithms, but also
from manipulating and observing them. The laboratory manual for this text
includes laboratory exercises that enable you to engage the ideas and concepts
presented on these pages. Laboratory Experience 2 introduces the concept of
algorithm animation, in which you can observe an algorithm being executed
and watch as data values are dynamically transformed into final results.

Bringing an algorithm to life in this way can help you understand what the
algorithm does and how it works. The first animation that you will work with is
the sequential search algorithm shown in Figure 2.13. The laboratory software
allows you to create a list of data values and to watch as the algorithm searches
this list to determine whether a special target value occurs.

come before. Every algorithm that we create becomes, in a sense, a primitive operation
of our computing agent and can be used as part of the solution to other problems. That
is why a collection of useful, prewritten algorithms, called a library, is such an
important tool in the design and development of algorithms.

Formally, the problem we will be solving in this section is defined as follows:

Given a value n ≥ 1 and a list containing exactly n unique numbers called
A , A , …, A , find and print out both the largest value in the list and the position

in the list where that largest value occurred.

For example, if our list contained the five values

then our algorithm should locate the largest value, 63, and print that value together
with the fact that it occurred in the fourth position of the list. (Note: Our definition of
the problem states that all numbers in the list are unique, so there can be only a single
occurrence of the largest number. Exercise 15 at the end of the chapter asks how our
algorithm would behave if the numbers in the list were not unique and the largest
number could occur two or more times.)

When faced with a problem statement like the one just given, how do we go about
creating a solution? What strategies can we employ to discover a correct and efficient
answer to the problem? One way to begin is to ask ourselves how the same problem
might be solved by hand. If we can understand and explain how we would approach
the problem manually, we might be able to express that manual solution as a formal
algorithm.

For example, suppose we were given a pile of papers, each of which contains a single
number, and were asked to locate the largest number in the pile. (The following
diagrams assume the papers contain the five values 19, 41, 12, 63, and 22.)

We might start off by saying that the first number in the pile (the top one) is the largest
one that we have seen so far, and then putting it off to the side where we are keeping
the largest value.

1 2 n

Now we compare the top number in the pile with the one that we have called the
largest one so far. In this case, the top number in the pile, 41, is larger than our current
largest, 19, so we make it the new largest. To do this, we throw the value 19 into the
wastebasket (or, better, into the recycle bin) and put the number 41 off to the side
because it is the largest value encountered so far.

We now repeat this comparison operation, asking whether the number on top of the
pile is larger than the largest value seen so far, now 41. This time the value on top of
the pile, 12, is not larger, so we do not want to save it. We simply throw it away and
move on to the next number in the pile.

This compare-and-save-or-discard process continues until our original pile of numbers
is empty, at which time the largest so far is the largest value in the entire list.

Let’ see how we can convert this informal, pictorial solution into a formal algorithm
that is built from the primitive operations shown in Figure 2.9.

We certainly cannot begin to search a list for a largest value until we have a list to
search. Therefore, our first operation must be to get a value for n, the size of the list,
followed by values for the n-element list A , A , …, A . This can be done using our input

primitive:
1 2 n

Now that we have the data, we can begin to implement a solution.

Our informal description of the algorithm stated that we should begin by calling the
first item in the list, A , the largest value so far. (We know that this operation is

meaningful because we stated that the list must always have at least one element.) We
can express this formally as

Our solution must also determine where that largest value occurs. To remember this
value, let’ create a variable called location to keep track of the position in the list where
the largest value occurs. Because we have initialized largest so far to the first element
in the list, we should initialize location to 1.

We are now ready to begin looking through the remaining items in list A to find the
largest one. However, if we write something like the following instruction:

we will have made exactly the same mistake that occurred in the initial version of the
sequential search algorithm shown in Figure 2.11. This instruction explicitly checks
only the second item of the list. We would need to rewrite that statement to check the
third item, the fourth item, and so on. Again, we are failing to use the idea of iteration,
where we repetitively execute a loop as many times as it takes to produce the desired
result.

To solve this problem, let’ use the same technique used in the sequential search
algorithm. Let’ not talk about the second, third, fourth, … item in the list but about the
ith item in the list, where i is a variable that takes on different values during the
execution of the algorithm. Using this idea, a statement such as

can be executed with different values for i. This allows us to check all n values in the
list with a single statement. Initially, i should be given the value 2 because the first item
in the list was automatically set to the largest value. Therefore, we want to begin our
search with the second item in the list.

1

What operations should appear after the word then? A check of our earlier discussion
shows that the algorithm must reset the values of both largest so far and location.

If A is not larger than largest so far, then we do not want the algorithm to do anything.

To indicate this, the if/then instruction can include an else clause that looks something
like

This is certainly correct, but instructions that tell us not to do anything are usually
omitted from an algorithm because they do not carry any meaningful information.

Regardless of whether the algorithm does or does not reset the values of largest so far
and location, it needs to move on to the next item in the list. Our algorithm refers to A ,

the ith item in the list, so it can move to the next item by simply adding 1 to the value of
i and repeating the if/then statement. The outline of this iteration can be sketched as
follows:

However, we do not want the loop to repeat forever. (Remember that one of the
properties of an algorithm is that it must eventually halt.) What stops this iterative
process? When does the algorithm display an answer and terminate execution?

The conditional operation “If A > largest so far then…" is meaningful only if A

represents an actual element of list A. Because A contains n elements numbered 1 to n,

i

i

i i

the value of i must be in the range 1 to n. If i > n, then the loop has searched the entire
list, and it is finished. Therefore, our continuation condition should be expressed as
(i ≤ n). When this condition becomes false, the algorithm can stop looping and print the
values of both largest so far and location. Using our looping primitive, we can describe
this iteration as follows:

We have now developed all the pieces of the algorithm and can finally put them
together. Figure 2.14 shows the completed Find Largest algorithm. Note that the steps
are not numbered. This omission is quite common, especially as algorithms get larger
and more complex.

Figure 2.14

Algorithm to find the largest value in a list

Practice Problem

What part(s) of the sequential search algorithm of Figure 2.13 would

need to be changed if our phone book contained 1 million names

rather than 10,000?

1.

Rewrite the sequential search algorithm to use the do/while looping

structure shown in Figure 2.9 in place of the while structure.

2.

Modify the algorithm of Figure 2.14 so that it finds the smallest value

in a list rather than the largest. Describe exactly what changes were

necessary.

3.

Describe exactly what would happen to the algorithm in Figure 2.14 if

you tried to apply it to an empty list of length n = 0. Describe exactly

how you could fix this problem.

4.

Describe exactly what happens to the algorithm in Figure 2.14 when

it is presented with a list with exactly one item, i.e., n = 1.

5.

Would the Find Largest algorithm of Figure 2.14 still work correctly if

the test on Line 7 were written as (A ≥ largest so far)? Explain why or

why not.

6.

Laboratory Experience 3

Like Laboratory Experience 2, this laboratory also uses animation to help you
better understand the concept of algorithm design and execution. It presents an
animation of the Find Largest algorithm discussed in the text and shown in
Figure 2.14.

This Laboratory Experience allows you to create a list of data and watch as the
algorithm attempts to determine the largest numerical value contained in that
list. You will be able to observe dynamic changes to the variables index,
location, and maximum, and will be able to see how values are set and
discarded as the algorithm executes. Like the previous Laboratory Experience,
it is intended to give you a deeper understanding of how this algorithm works
by allowing you to observe its behavior.

i

Chapter 2: Algorithm Discovery and Design: 2.3.4
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

2.3.4 Example 4: Meeting Your Match

The last algorithm we develop in this chapter solves a common problem in computer
science called pattern matching. For example, imagine that you have a collection of
Civil War data files that you want to use as resource material for an article on Abraham
Lincoln. Your first step would probably be to search these files to locate every
occurrence of the text patterns “Abraham Lincoln,” “A. Lincoln,” and “Lincoln.” The
process of searching for a special pattern of symbols within a larger collection of
information is called pattern matching. Most good word processors provide this service
as a menu item called Find or something similar. Furthermore, most Web search
engines try to match your search keys to the keywords that appear on a Web page.

Pattern matching can be applied to almost any kind of information, including graphics,
sound, and pictures. For example, an important medical application of pattern
matching is to input an X-ray or CT scan image into a computer and then have the
computer search for special patterns, such as dark spots, which represent conditions
that should be brought to the attention of a physician. This can help speed up the
interpretation of X-rays and avoid the problem of human error caused by fatigue or
oversight. (Computers do not get tired or bored!)

One of the most interesting and exciting applications of pattern matching is assisting
microbiologists and geneticists studying and mapping the human genome, the basis for
all human life. The human genome is composed of a sequence of approximately 3.5
billion nucleotides, each of which can be one of only four different chemical
compounds. These compounds (adenine, cytosine, thymine, guanine) are usually
referred to by the first letter of their chemical names: A, C, T, and G. Thus, the basis for
our existence can be rendered in a very large “text file” written in a four-letter
alphabet.

Sequences of these nucleotides are called genes. There are about 25,000 genes in the
human genome, and they determine virtually all of our physical characteristics—sex,
race, eye color, hair color, and height, to name just a few. Genes are also an important
factor in the occurrence of certain diseases. A missing or flawed nucleotide can result
in one of a number of serious genetic disorders, such as Down syndrome or Tay-Sachs
disease. To help find a cure for these diseases, researchers are attempting to locate
individual genes that, when exhibiting a certain defect, cause a specific malady. A gene
is typically composed of thousands of nucleotides, and researchers generally do not
know the entire sequence. However, they may know what a small portion of the
gene—say, a few hundred nucleotides—looks like. Therefore, to search for one

particular gene, they must match the sequence of nucleotides that they do know, called
a probe, against the entire 3.5 billion-element genome to locate every occurrence of
that probe. From this matching information, researchers hope to isolate specific genes.
For example,

When a match is found, researchers examine the nucleotides located before and after
the probe to see whether they have located the desired gene and, if so, to see whether
the gene is defective. Physicians hope someday to be able to “clip out” a bad sequence
and insert in its place a correct sequence.

This application of pattern matching dispels any notion that the algorithms discussed
here—sequential search (Figure 2.13), Find Largest (Figure 2.14), and pattern
matching—are nothing more than academic exercises that serve as examples for
introductory classes but have absolutely no role in solving real-world problems. The
algorithms that we have presented (or will present) are important, either in their own
right or as building blocks for algorithms used by physical scientists, mathematicians,
engineers, and social scientists.

Let’ formally define the pattern-matching problem as follows:

You will be given some text composed of n characters that will be referred to as
T T … T . You will also be given a pattern of m characters, m ≤ n, that will be

represented as P P … P . The algorithm must locate every occurrence of the

given pattern within the text. The output of the algorithm is the location in the
text where each match occurred. For this problem, the location of a match is
defined to be the index position in the text where the match begins.

For example, if our text is the phrase “to be or not to be, that is the question” and the
pattern for which we are searching is the word to, then our algorithm produces the
following output:

1 2 n

1 2 m

The pattern-matching algorithm that we will implement is composed of two parts. In
the first part, the pattern is aligned under a specific position of the text, and the
algorithm determines whether there is a match at that given position. The second part
of the algorithm “slides” the entire pattern ahead one character position. Assuming
that we have not gone beyond the end of the text, the algorithm returns to the first part
to check for a match at this new position. Pictorially, this algorithm can be represented
as follows:

The algorithm involves repetition of these two steps beginning at position 1 of the text
and continuing until the pattern has slid off the right-hand end of the text.

A first draft of an algorithm that implements these ideas is shown in Figure 2.15, in
which not all of the operations are expressed in terms of the basic algorithmic
primitives of Figure 2.9. Although statements like “Set k, the starting location for the
attempted match, to 1” and “Print the value of k, the starting location of the match” are
just fine, the instructions “Attempt to match every character in the pattern beginning at
position k of the text” and “Keep going until we have fallen off the end of the text” are
certainly not primitives. On the contrary, they are both high-level operations that, if
written out using only the operations in Figure 2.9, would expand into many
instructions.

Figure 2.15

First draft of the pattern-matching algorithm

Is it okay to use high-level statements like this in our algorithm? Wouldn’t their use
violate the requirement stated in Chapter 1 that algorithms be constructed only from
unambiguous operations that can be directly executed by our computing agent?

In fact, it is perfectly acceptable, and quite useful, to use high-level statements like this
during the initial phase of the algorithm design process.

When starting to design an algorithm, we might not want to think only in terms of
elementary operations such as input, computation, output, conditional, and iteration.
Instead, we might want to express our proposed solution in terms of high-level and
broadly defined operations that represent dozens or even hundreds of primitive
instructions. Here are some examples of these higher-level constructs:

Sort the entire list into ascending order.

Attempt to match the entire pattern against the text.

Find a root of the equation.

Using instructions like these in an algorithm allows us to postpone worrying about how
to implement that operation and lets us focus instead on other aspects of the problem.
Eventually, we will come back to these statements and either express them in terms of
our available primitives or use existing “building-block” algorithms taken from a
program library. However, we can do this at our convenience.

The use of high-level instructions during the design process is an example of one of the
most important intellectual tools in computer science—abstraction. Abstraction refers
to the separation of the high-level view of an entity or an operation from the low-level
details of its implementation. It is abstraction that allows us to understand and
intellectually manage any large, complex system, whether it is a mammoth
corporation, a complex piece of machinery, or an intricate and very detailed algorithm.
For example, the president of General Motors views the company in terms of its major
corporate divisions and very high-level policy issues, not in terms of every worker,
every supplier, and every car. Attempting to manage the company at that level of detail
would drown the president in a sea of detail.

In computer science, we frequently use abstraction because of the complexity of
hardware and software. For example, abstraction allows us to view the hardware
component called “memory” as a single, indivisible high-level entity without paying
heed to the billions of electronic devices that go into constructing a memory unit.
(Chapter 4 examines how computer memories are built, and it makes extensive use of

abstraction.) In algorithm design and software development, we use abstraction
whenever we think of an operation at a high level and temporarily ignore how we
might actually implement that operation. This allows us to decide which details to
address now and which to postpone until later. Viewing an operation at a high level of
abstraction and fleshing out the details of its implementation at a later time constitute
an important computer science problem-solving strategy called top-down design.

Ultimately, however, we do have to describe how each of these high-level abstractions
can be represented using the available algorithmic primitives. The fifth line of the first
draft of the pattern-matching algorithm shown in Figure 2.15 reads:

When this statement is reached, the pattern is aligned under the text beginning with
the kth character. Pictorially, we are in the following situation:

The algorithm must now perform the following comparisons:

If the members of every single one of these pairs are equal, then there is a match
starting at position k. However, if even one pair is not equal, then there is no match,
and the algorithm can immediately cease making comparisons at this location. Thus,
we must construct a loop that executes until one of two things happens—it has either
completed m successful comparisons (i.e., we have matched the entire pattern) or it has
detected a mismatch. When either of these conditions occurs, the loop stops; however,
if neither condition has occurred, the loop must keep going. Algorithmically, this
iteration can be expressed in the following way. (Remember that k is the starting
location in the text.)

When the loop has finished, we can determine whether there was a match by
examining the current value of the variable Mismatch. If Mismatch is YES, then there
was not a match because at least one of the characters was out of place. If Mismatch is
NO, then every character in the pattern matched its corresponding character in the
text, and there is a match starting at position k.

Regardless of whether there was a match at position k, we must add 1 to k to begin
searching for a match at the next position. This is the “sliding forward” step
diagrammed earlier.

The final high-level statement in Figure 2.15 that needs to be expanded is the loop on
Line 4.

What does it mean to “fall off the end of the text”? Where is the last possible place that
a match can occur? To answer these questions, let’ draw a diagram in which the last
character of the pattern, P , lines up directly under T , the last character of the text.

This diagram illustrates that the last possible place a match could occur is when the
first character of the pattern is aligned under the character at position T of the text

because P is aligned under T , P is under T , P is aligned under T , and so

on. Thus,P , which can be written as P , is aligned under T , which is T .

If we tried to slide the pattern forward any further, we would truly “fall off” the
right-hand end of the text. Therefore, our loop must terminate when k, the starting
point for the match, strictly exceeds the value of n − m + 1. We can express this as

m n

n−m+1

m n m−1 n−1 m−2 n−2

1 m−(m−1) n−(m−1) n−m+1

follows:

Now we have all the pieces of our algorithm in place. We have expressed every
statement in Figure 2.15 in terms of our basic algorithmic primitives and are ready to
put it all together. The final draft of the pattern-matching algorithm is shown in Figure
2.16.

Figure 2.16

Final draft of the pattern-matching algorithm

Chapter 2: Algorithm Discovery and Design: 2.4
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

2.4 Conclusion
You have now had a chance to see the step-by-step design and development of some

interesting, nontrivial algorithms. You have also been introduced to a number of
important concepts related to problem solving, including algorithm design and
discovery, pseudocode, control statements, iteration, libraries, abstraction, and
top-down design. However, this by no means marks the end of our discussion of
algorithms. The development of a correct solution to a problem is only the first step in
creating a useful solution.

Designing a technically correct algorithm to solve a given problem is only part of what
computer scientists do. They must also ensure that they have created an efficient
algorithm that generates results quickly enough for its intended users. Chapter 1
described a brute force chess algorithm that would, at least theoretically, play perfect
chess but that would be unusable because it would take millions of centuries to make
its first move. Similarly, a directory assistance program that takes 10 minutes to locate
a telephone number would be of little or no use. A caller would surely hang up long
before the answer was found. This practical concern for efficiency and usefulness, in
addition to correctness, is one of the hallmarks of computer science.

Practice Problem

Consider the following “telephone book.”

Name Number

Smith 555-1212

Jones 834-6543

Adams 921-5281

Doe 327-8900

Trace the sequential search algorithm of Figure 2.13 using each of the

following NAMEs and show the output produced.

Adamsa.

Schneiderb.

1.

Consider the following list of seven data values.

22, 18, 23, 17, 25, 30, 2

2.

Compute the interest earned in 1 year given the starting account

balance B and the annual interest rate I and assuming simple

interest, that is, no compounding. Also determine the final balance

at the end of the year.

b.

Determine the flying time between two cities given the mileage M

between them and the average speed of the airplane.

c.

Using only the sequential operations described in Section 2.2.2, write an

algorithm that gets values for the starting account balance B, annual

interest rate I, and annual service charge S. Your algorithm should output

the amount of interest earned during the year and the final account

balance at the end of the year. Assume that interest is compounded

monthly and the service charge is deducted once, at the end of the year.

2.

Using only the sequential operations described in Section 2.2.2, write an

algorithm that gets four numbers corresponding to scores received on

three semester tests and a final examination. Your algorithm should

compute and display the average of all four tests, weighting the final

exam twice as heavily as a regular test.

3.

Write an algorithm that gets the price for item A plus the quantity

purchased. The algorithm prints the total cost, including a 6% sales tax.

4.

Write an if/then/else primitive to do each of the following operations:

Compute and display the value x ÷ y if the value of y is not 0. If y

does have the value 0, then display the message ’Unable to perform

the division.’

a.

Compute the area and circumference of a circle given the radius r if

the radius is greater than or equal to 1.0; otherwise, you should

compute only the circumference.

b.

5.

Modify the algorithm of Exercise 2 to include the annual service charge

only if the starting account balance at the beginning of the year is less

than $1,000. If it is greater than or equal to $1,000, then there is no annual

service charge.

6.

Write an algorithm that uses a loop (1) to input 10 pairs of numbers,

where each pair represents the score of a football game with the

Computer State University (CSU) score listed first, and (2) for each pair of

7.

numbers, determine whether CSU won or lost. After reading in these 10

pairs of values, print out the won/lost/tie record of CSU. In addition, if this

record is a perfect 10-0, then print out the message ’Congratulations on

your undefeated season.’

Modify the test-averaging algorithm of Exercise 3 so that it reads in 15 test

scores rather than 4. There are 14 regular tests and a final examination,

which counts twice as much as a regular test. Use a loop to input and sum

the scores.

8.

Modify the sales computation algorithm of Exercise 4 so that after

finishing the computation for one item, it starts on the computation for

the next. This iterative process is repeated until the total cost exceeds

$1,000.

9.

Write an algorithm that is given your electric meter readings (in kilowatt-

hours) at the beginning and end of each month of the year. The algorithm

determines your annual cost of electricity on the basis of a charge of 6

cents per kilowatt-hour for the first 1,000 kilowatt-hours of each month

and 8 cents per kilowatt-hour beyond 1,000. After printing out your total

annual charge, the algorithm also determines whether you used less than

500 kilowatt-hours for the entire year and, if so, prints out a message

thanking you for conserving electricity.

10.

Develop an algorithm to compute gross pay. The inputs to your algorithm

are the hours worked per week and the hourly pay rate. The rule for

determining gross pay is to pay the regular pay rate for all hours worked

up to 40, time-and-a-half for all hours over 40 up to 54, and double time

for all hours over 54. Compute and display the value for gross pay using

this rule. After displaying the value, ask the user whether he or she wants

to do another computation. Repeat the entire set of operations until the

user says no.

11.

Develop a formal argument that “proves” that the sequential search

algorithm shown in Figure 2.13 cannot have an infinite loop; that is, prove

that it will always stop after a finite number of operations.

12.

Modify the sequential search algorithm of Figure 2.13 so that it works

correctly even if the names in the directory are not unique, that is, if the

desired name occurs more than once. Your modified algorithm should

find every occurrence of NAME in the directory and print out the

13.

telephone number corresponding to every match. In addition, after all the

numbers have been displayed, your algorithm should print out how many

occurrences of NAME were located. For example, if NAME occurred three

times, the output of the algorithm might look something like this:

528-5638

922-7874

488-2020

A total of three occurrences were located.

Use the Find Largest algorithm of Figure 2.14 to help you develop an

algorithm to find the median value in a list containing N unique numbers.

The median of N numbers is defined as the value in the list in which

approximately half the values are larger than it and half the values are

smaller than it. For example, consider the following list of seven numbers.

26, 50, 83, 44, 91, 20, 55

The median value is 50 because three values (20, 26, and 44) are smaller

and three values (55, 83, and 91) are larger. If N is an even value, then the

number of values larger than the median will be one greater than the

number of values smaller than the median.

14.

With regard to the Find Largest algorithm of Figure 2.14, if the numbers

in our list were not unique and therefore the largest number could occur

more than once, would the algorithm find the first occurrence? The last

occurrence? Every occurrence? Explain precisely how this algorithm

would behave when presented with this new condition.

15.

On the sixth line of the Find Largest algorithm of Figure 2.14, there is an

instruction that reads,

While (i ≤ n) do

Explain exactly what would happen if we changed that instruction to read

as follows:

While (i ≥ n) doa.

While (i > n) dob.

16.

While ((i = n)) doc.

On the seventh line of the Find Largest algorithm of Figure 2.14, there is

an instruction that reads,

If A ≥ largest so far then …

Explain exactly what would happen if we changed that instruction to read

as follows:

If A ≥ largest so far then …a.

If A > largest so far then …

Looking back at your answers in Exercises 16 and 17, what do they

say about the importance of using the correct relational operation

(>, =, >, ≥, ≤, ≠) when writing out either an iterative or conditional

algorithmic primitive?

b.

17.

Refer to the pattern-matching algorithm in Figure 2.16.

What is the output of the algorithm as it currently stands if our text

is

Text: We must band together and handle adversity

and we search for the pattern “and”?

a.

How could we modify the algorithm so that it finds only the

complete word and rather than the occurrence of the character

sequence a, n, and d that is contained within another word, such as

band?

b.

18.

Refer to the pattern-matching algorithm in Figure 2.16. Explain how the

algorithm would behave if we accidentally omitted the statement on Line

16 that says,

Increment k by 1

19.

Design an algorithm that is given a positive integer N and determines

whether N is a prime number, that is, not evenly divisible by any value

other than 1 and itself. The output of your algorithm is either the message

’not prime,’ along with a factor of N, or the message ’prime.’

20.

i

i

i

Write an algorithm that generates a Caesar cipher—a secret message in

which each letter is replaced by the one that is k letters ahead of it in the

alphabet, in a circular fashion. For example, if k = 5, then the letter a

would be replaced by the letter f, and the letter x would be replaced by the

letter c. (We’ll talk more about the Caesar cipher and other encryption

algorithms in Chapter 8.) The input to your algorithm is the text to be

encoded, ending with the special symbol “$”, and the value k. (You may

assume that, except for the special ending character, the text contains

only the 26 letters a… z.) The output of your algorithm is the encoded text.

21.

Design and implement an algorithm that is given as input an integer value

k ≥ 0 and a list of k numbers N , N , …, N . Your algorithm should reverse

the order of the numbers in the list. That is, if the original list contained:

N = 5, N = 13, N = 8, N = 27, N = 10 (k = 5)

then when your algorithm has completed, the values stored in the list will

be:

N = 10, N = 27, N = 8, N = 13, N = 5

22.

Design and implement an algorithm that gets as input a list of k integer

values N , N , …, N as well as a special value SUM. Your algorithm must

locate a pair of values in the list N that sum to the value SUM. For

example, if your list of values is 3, 8, 13, 2, 17, 18, 10, and the value of SUM

is 20, then your algorithm would output either the two values (2, 18) or (3,

17). If your algorithm cannot find any pair of values that sum to the value

SUM, then it should print out the message ‘Sorry, there is no such pair of

values.’

23.

Instead of reading in an entire list N , N , … all at once, some algorithms

(depending on the task to be done) can read in only one element at a time

and process that single element completely before inputting the next one.

This can be a useful technique when the list is very big (e.g., billions of

elements) and there might not be enough memory in the computer to

store it in its entirety. Write an algorithm that reads in a sequence of

values V ≥ 0, one at a time, and computes the average of all the numbers.

You should stop the computation when you input a value of V = m1. Do

not include this negative value in your computations; it is not a piece of

data but only a marker to identify the end of the list.

24.

1 2 k

1 2 3 4 5

1 2 3 4 5

1 2 k

1 2

Your algorithm should operate as follows. Initially it will be given three values:

A starting point for the search1.

A step size2.

The accuracy desired3.

Your algorithm should begin at the specified starting point and begin to “walk up”

the x-axis in units of step size. After taking a step, it should ask the question

“Have I passed a root?” It can determine the answer to this question by seeing

whether the sign of the function has changed from the previous point to the

current point. (Note that below the axis, the sign of f(x) is negative; above the axis,

it is positive. If it crosses the x-axis, it must change its sign.) If the algorithm has

not passed a root, it should keep walking up the x-axis until it does. This is

expressed pictorially as:

When the algorithm passes a root, it must do two things. First, it changes the sign

of step size so that it starts walking in the reverse direction because it is now past

the root. Second, it multiplies step size by 0.1, so our steps are 1/10 as big as they

were before. We now repeat the operation described previously, walking down

the x-axis until we pass the root.

Again, the algorithm changes the sign of step size to reverse direction and

reduces it to 1/10 its previous size. As the diagrams show, we are slowly zeroing

in on the root—going past it, turning around, going past it, turning around, and so

forth. This iterative process stops when the algorithm passes a root and the step

size is smaller than the desired accuracy. It has now bracketed the root within an

interval that is smaller than the accuracy we want. At this point, it should print

out the midpoint of the interval and terminate.

There are many special cases that this algorithm must deal with, but in your

solution you may disregard them. Assume that you will always encounter a root

in your “travels” along the x-axis. After creating a solution, you might want to

look at some of these special cases, such as a function that has no real roots, a

starting point that is to the right of all the roots, and two roots so close together

that they fall within the same step.

One of the most important and widely used classes of algorithms in computer

science is sorting, the process of putting a list of elements into a predefined order,

usually numeric or alphabetic. There are many different sorting algorithms, and

we will look at some of them in Chapter 3. One of the simplest sorting algorithms

is called selection sort, and it can be implemented using the tools that you have

learned in this chapter. It is also one of the easiest to understand as it mimics

how we often sort collections of values when we must do it by hand.

Assume that we are given a list named A, containing eight values that we want to

sort into ascending order, from smallest to largest:

We first look for the largest value contained in positions 1 to 8 of list A. We can do

this using something like the Find Largest algorithm that appears in Figure 2.14.

In this case, the largest value is 90, and it appears in position 6. Because this is the

largest value in list A, we swap it with the value in position 8 so that it is in its

correct place at the back of the list. The list is now partially sorted from position 8

to position 8:

2.

We now search the array for the second largest value. Because we know that the

largest value is contained in position 8, we need to search only positions 1 to 7 of

list A to find the second largest value. In this case, the second largest value is 66,

and it appears in position 3. We now swap the value in position 3 with the value

in position 7 to get the second largest value into its correct location. This produces

the following:

The list is now partially sorted from position 7 to position 8, with those two

locations holding the two largest values. The next search goes from position 1 to

position 6 of list A, this time trying to locate the third largest value, and we swap

that value with the number in position 6. After repeating this process seven

times, the list is completely sorted. (That is because if the last seven items are in

their correct place, the item in position 1 must also be in its correct place.)

Using the Find Largest algorithm shown in Figure 2.14 (which may have to be

slightly modified) and the primitive pseudocode operations listed in Figure 2.9,

implement the selection sort algorithm that we have just described. Assume that

n, the size of the list, and the n-element list A are input to your algorithm. The

output of your algorithm should be the sorted list.

Most people are familiar with the work of the great mathematicians of ancient

Greece and Rome, such as Archimedes, Euclid, Pythagoras, and Plato. However, a

great deal of important work in arithmetic, geometry, algebra, number theory,

and logic was carried out by scholars working in Egypt, Persia, India, and China.

For example, the concept of zero was first developed in India, and positional

numbering systems (like our own decimal system) were developed and used in

China, India, and the Middle East long before they made their way to Europe.

Read about the work of some mathematician (such as Al-Khowarizmi) from these

or other places, and write a paper describing his or her contributions to

mathematics, logic, and (ultimately) computer science.

3.

Chapter 2: Algorithm Discovery and Design
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter Review

Additional Resources

 For additional print and/or online resources relevant to this

chapter, visit the Computer Science CourseMate at login.cengagebrain.com.

Chapter 2: Algorithm Discovery and Design
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

© 2014 Cengage Learning Inc. All rights reserved. No part of this work may by reproduced or used in any form or by any
means - graphic, electronic, or mechanical, or in any other manner - without the written permission of the copyright holder.

Chapter 3: The Efficiency of Algorithms
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter 3
The Efficiency of Algorithms

3.1 Introduction

3.2 Attributes of Algorithms

3.3 Measuring Efficiency

3.3.1 Sequential Search

3.3.2 Order of Magnitude—Order n

3.3.3 Selection Sort

3.3.4 Order of Magnitude—Order n

3.4 Analysis of Algorithms

3.4.1 Data Cleanup Algorithms

3.4.2 Binary Search

3.4.3 Pattern Matching

3.4.4 Summary

3.5 When Things Get Out Of Hand

3.6 Summary of Level 1

Chapter Review

Exercises

Challenge Work

Additional Resources

Chapter 3: The Efficiency of Algorithms: 3.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

3.1 Introduction
Finding algorithms to solve problems of interest is an important part of computer
science. Any algorithm that is developed to solve a specific problem has, by definition,
certain required characteristics (see the formal definition in Chapter 1, Section 1.3.1),

2

but are some algorithms better than others? That is, are there other desirable but
nonessential characteristics of algorithms?

Consider the automobile: There are certain features that are part of the “definition” of
a car, such as four wheels and an engine. These are the basics. However, when
purchasing a car, we almost certainly take into account other things, such as ease of
handling, style, and fuel efficiency. This analogy is not as superficial as it seems—the
properties that make better algorithms are in fact very similar.

Chapter 3: The Efficiency of Algorithms: 3.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

3.2 Attributes of Algorithms
First and foremost, we expect correctness from our algorithms. An algorithm intended
to solve a problem must, again by formal definition, give a result and then halt. But this
is not enough; we also demand that the result be a correct solution to the problem. You
could consider this an inherent property of the definition of an algorithm (like a car
being capable of transporting us where we want to go), but it bears emphasizing. An
elegant and efficient algorithm that gives wrong results for the problem at hand is
worse than useless. It can lead to mistakes that are enormously expensive or even fatal.

Determining that an algorithm gives correct results might not be as straightforward as
it seems. For one thing, our algorithm might indeed be providing correct results—but
to the wrong problem. This can happen when we design an algorithm without a
thorough understanding of the real problem we are trying to solve, and it is one of the
most common causes of “incorrect” algorithms. Also, once we understand the problem,
the algorithm must provide correct results for all possible input values, not just for
those values that are the most likely to occur. Do we know what all those correct results
are? Probably not, or we would not be writing an algorithm to solve this problem. But
there may be a certain standard against which we can check the result for
reasonableness, thus giving us a way to determine when a result is obviously incorrect.
In some cases, as noted in Chapter 1, the correct result may be an error message saying
that there is no correct answer. There may also be an issue of the accuracy of the result
we are willing to accept as correct. If the “real” answer is π, for example, then we can
only approximate its decimal value. Is 3.14159 close enough to “correct”? Is 3.1416
close enough? What about 3.14? Computer scientists often summarize these two views
of correctness by asking, “Are we solving the right problem? Are we solving the
problem right?”

If an algorithm to solve a problem exists and has been determined, after all the
considerations of the previous paragraph, to give correct results, what more can we
ask? To many mathematicians, this would be the end of the matter. After all, once a
solution has been obtained and shown to be correct, it is no longer of interest (except
possibly for use in obtaining solutions to other problems). This is where computer
science differs significantly from theoretical disciplines such as pure mathematics and

begins to take on an “applied” character more closely related to engineering or applied
mathematics. The algorithms developed by computer scientists are not merely of
academic interest. They are also intended to be used.

Suppose, for example, that a road to the top of a mountain is to be built. An algorithmic
solution exists that gives a correct answer for this problem in the sense that a road is
produced: Just build the road straight up the mountain. Problem solved. But the
highway engineer knows that the road must be usable by real traffic and that this
constraint limits the grade of the road. The existence and correctness of the algorithm
is not enough; there are practical considerations as well.

The practical considerations for computer science arise because the algorithms
developed are executed in the form of computer programs running on real computers
to solve problems of interest to real people. Let’s consider the “people aspect” first. A
computer program is seldom written to be used only once to solve a single instance of a
problem. It is written to solve many instances of that problem with many different
input values, just as the sequential search algorithm of Chapter 2 would be used many
times with different lists of names and different target NAME values. Furthermore, the
problem itself does not usually “stand still.” If the program is successful, people will
want to use it for slightly different versions of the problem, which means they will
want the program slightly enhanced to do more things. Therefore, after a program is
written, it needs to be maintained, both to fix any errors that are uncovered through
repeated usage with different input values, and to extend the program to meet new
requirements. A great deal of time and money are devoted to program maintenance.
The person who has to modify a program, either to correct errors or to expand its
functionality, often is not the person who wrote the original program. To make
program maintenance as easy as possible, the algorithm the program uses should be
easy to understand. Ease of understanding, clarity, “ease of handling”—whatever you
want to call it—is a highly desirable characteristic of an algorithm.

On the other hand, there is a certain satisfaction in having an “elegant” solution to a
problem. Elegance is the algorithmic equivalent of style. The classic example, in
mathematical folklore, is the story of the German mathematician Karl Frederick Gauss
(1777–1855) who was asked as a schoolchild to add up the numbers from 1 to 100. The
straightforward algorithm of adding 1 + 2 + 3 + 4 + … + 100 by adding one number at a
time can be expressed in pseudocode as follows:

This algorithm can be executed to find that the sum has the value 5,050. It is fairly easy
to read this pseudocode and understand how the algorithm works. It is also fairly clear
that if we want to change this algorithm to one that adds the numbers from 1 to 1,000,
we only have to change the loop condition to

However, Gauss noticed that the numbers from 1 to 100 could be grouped into 50 pairs
of the form

so that the sum equals 50 × 101 = 5,050. This is certainly an elegant and clever solution,
but is it easy to understand? If a computer program just said to multiply

with no further explanation, we might guess how to modify the program to add up the
first 1,000 numbers, but would we really grasp what was happening enough to be sure
the modification would work? (The Practice Problems at the end of this section discuss
this.) Sometimes elegance and ease of understanding work at cross-purposes; the more
elegant the solution, the more difficult it may be to understand. Do we win or lose if we
have to trade ease of understanding for elegance? Of course, if an algorithm has both
characteristics—ease of understanding and elegance—that’s a plus.

Now let’s consider the real computers on which programs run. Although these
computers can execute instructions very rapidly and have some memory in which to
store information, time and space are not unlimited resources. The computer scientist
must be conscious of the resources consumed by a given algorithm, and if there is a
choice between two (correct) algorithms that perform the same task, the one that uses
fewer resources is preferable. Efficiency is the term used to describe an algorithm’s
careful use of resources. In addition to correctness, ease of understanding, and elegance,
efficiency is an extremely desirable attribute of an algorithm.

Because of the rapid advances in computer technology, today’s computers have much
more memory capacity and execute instructions much more rapidly than computers of
just a few years ago. Efficiency in algorithms might seem to be a moot point; we can
just wait for the next generation of technology and it won’t matter how much time or
space is required. There is some truth to this, but as computer memory capacity and
processing speed increase, people find more complex problems to be solved, so the

boundaries of the computer’s resources continue to be pushed. Furthermore, we will
see in this chapter that there are algorithms that consume so many resources that they
will never be practical, no matter what advances in computer technology occur.

How shall we measure the time and space consumed by an algorithm to determine
whether it is efficient? Space efficiency can be judged by the amount of information the
algorithm must store in the computer’s memory to do its job, in addition to the initial
data on which the algorithm is operating. If it uses only a few extra memory locations
while processing the input data, the algorithm is relatively space efficient. If the
algorithm requires almost as much additional storage as the input data itself takes up,
or even more, then it is relatively space inefficient.

How can we measure the time efficiency of an algorithm? Consider the sequential
search algorithm shown in Figure 2.13, which looks up a name in a telephone directory
where the names are not arranged in alphabetical order. How about running the
algorithm on a real computer and timing it to see how many seconds (or maybe what
small fraction of a second) it takes to find a name or announce that the name is not
present? The difficulty with this approach is that there are three factors involved, each
of which can affect the answer to such a degree as to make whatever number of
seconds we come up with rather meaningless.

On what computer will we run the algorithm? Shall we use a modest laptop or a

supercomputer capable of doing many trillions of calculations per second?

1.

What telephone book (list of names) will we use: New York City or Yee-haw

Junction, Florida?

2.

What name will we try to find? What if we pick a name that happens to be first in

the list? What if it happens to be last in the list?

3.

Simply timing the running of an algorithm is more likely to reflect machine speed or
variations in input data than the efficiency (or lack thereof) of the algorithm itself.

This is not to say that you can’t obtain meaningful information by timing an algorithm.
For example, using the same input data (searching for Karlenski, say, in the New York
City phone book) and timing the algorithm on different machines gives a comparison of
machine speeds because the task is identical. Using the same machine and the same list
of names, but searching for different names, gives an indication of how the choice of
NAME affects the algorithm’s running time on that particular machine. This type of
comparative timing is called benchmarking. Benchmarks are useful for rating one
machine against another and for rating how sensitive a particular algorithm is with
respect to variations in input on one particular machine.

However, what we mean by an algorithm’s time efficiency is an indication of the
amount of “work” required by the algorithm itself. It is a measure of the inherent
efficiency of the method, independent of the speed of the machine on which it executes
or the specific input data being processed. Is the amount of work an algorithm does the
same as the number of instructions it executes? Not all instructions do the same things,

so perhaps they should not all be “counted” equally. Some instructions are carrying out
work that is fundamental to the way the algorithm operates, whereas other
instructions are carrying out peripheral tasks that must be done in support of the
fundamental work. To measure time efficiency, we identify the fundamental unit (or
units) of work of an algorithm and count how many times the work unit is executed.
Later in this chapter, we will see why we can ignore peripheral tasks.

Practice Problems

Use Gauss’s approach to find a formula for the sum of the numbers

from 1 to n,

1 + 2 + 3 + … + n

where n is an even number. Your formula will be an expression

involving n.

1.

Test your formula from Practice Problem 1 for the following sums

1 + 2a.

1 + 2 + … + 6b.

1 + 2 + … + 10c.

1 + 2 + … + 100d.

1 + 2 + … + 1000e.

2.

Now see if the same formula from Practice Problem 1 works when n

is odd; try it on the following sums:

1 + 2 + 3a.

1 + 2 + … + 5b.

1 + 2 + … + 9c.

3.

Chapter 3: The Efficiency of Algorithms: 3.3
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

3.3 Measuring Efficiency
The study of the efficiency of algorithms is called the analysis of algorithms, and it is
an important part of computer science. As a first example of the analysis of an
algorithm, we’ll look at the sequential search algorithm.

Chapter 3: The Efficiency of Algorithms: 3.3.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

3.3.1 Sequential Search

The pseudocode description of the sequential search algorithm from Chapter 2
appears in Figure 3.1, where we have assumed that the list contains n entries instead of
10,000 entries.

Figure 3.1
Sequential search algorithm

Get values for NAME, n, N , …, N and T , …, T1.

Set the value of i to 1 and set the value of Found to NO2.

While (Found = NO) and (i = n) do Steps 4 through 73.

If NAME is equal to the ith name on the list, N , then4.

Print the telephone number of that person, T5.

Set the value of Found to YES

Else (NAME is not equal to N)

6.

Add 1 to the value of i7.

If (Found = NO) then8.

Print the message ‘Sorry, this name is not in the directory’9.

Stop10.

The central unit of work is the comparison of the NAME being searched for against a
name in the list. The essence of the algorithm is the repetition of this task against
successive names in the list until NAME is found or the list is exhausted. The
comparison takes place at Step 4, within the loop body composed of Steps 4 through 7.

1 n 1 n

i

i

i

Peripheral tasks include setting the initial value of the index i and the initial value of
Found, writing the output, adjusting Found, and moving the index forward in the list of
names. Why are these considered peripheral tasks?

Setting the initial value of the index and the initial value of Found requires executing a
single instruction, done at Step 2. Writing output requires executing a single
instruction, either at Step 5 if NAME is in the list or at Step 9 if NAME is not in the list.
Note that instruction 5, although it is part of the loop, writes output at most once (if
NAME equals N). Similarly, setting Found to YES occurs at most once (if NAME equals

N) at Step 6. We can ignore the small contribution of these single-instruction

executions to the total work done by the algorithm.

Moving the index forward is done once for each comparison, at Step 7. We can get a
good idea of the total amount of work the algorithm does by simply counting the
number of comparisons and then multiplying by some constant factor to account for
the index-moving task. The constant factor could be 2 because we do one index move
for each comparison, so we would double the work. It could be less because it is less
work to add 1 to i than it is to compare NAME letter by letter against N . As we will see

later, the precise value of this constant factor is not very important.

So again, the basic unit of work in this algorithm is the comparison of NAME against a
list element. One comparison is done at each pass through the loop in Steps 4 through
7, so we must ask how many times the loop is executed. Of course, this depends on
when, or if, we find NAME in the list.

The minimum amount of work is done if NAME is the very first name in the list. This
requires only one comparison because NAME has then been found and the algorithm
exits the loop after only one pass. This is the best case, requiring the least work. The
worst case, requiring the maximum amount of work, occurs if NAME is the very last
name in the list or is absent. In either of these situations, NAME must be compared
against all n names in the list before the loop terminates because FOUND gets set to YES
(if NAME is the last name in the list) or because the value of the index i exceeds n (if
NAME is not in the list).

When NAME occurs somewhere in the middle of the list, it requires somewhere
between 1 (the best case) and n (the worst case) comparisons. If we were to run the
sequential search algorithm many times with random NAMEs occurring at various
places in the list and count the number of comparisons done each time, we would find
that the average number of comparisons done is about n/2. (The exact average is
actually slightly higher than n/2; see Exercise 5 at the end of the chapter.) It is not hard
to explain why an average of approximately n/2 comparisons are done (or the loop is
executed approximately n/2 times) when NAME is in the list. If NAME occurs halfway
down the list, then roughly n/2 comparisons are required; random NAMEs in the list
occur before the halfway point about half the time and after the halfway point about
half the time, and these cases of less work and more work balance out.

This means that the average number of comparisons needed to find a NAME that
occurs in a 10-element list is about 5, in a 100-element list about 50, and in a 1,000-
element list about 500. On small values of n—say, a few hundred or a few thousand

i

i

i

names—the values of n/2 (the average case) or n (the worst case) are small enough that
a computer could execute the algorithm quickly and get the desired answer in a
fraction of a second. However, computers are generally used to solve not tiny problems
but very large ones. Therefore, we are usually interested in the behavior of an
algorithm as the size of a problem (n) gets very, very large. For example, in the New
York City telephone directory, n may be as large as 20,000,000. If the sequential search
algorithm were executed on a computer that could do 50,000 comparisons per second,
it would require on the average about

or 3-1/3 minutes just to do the comparisons necessary to locate a specific name.
Including the constant factor for advancing the index, the actual time needed would be
even greater. It would require almost 7 minutes just to do the comparisons required to
determine that a name was not in the directory! Sequential search is not sufficiently
time efficient for large values of n to be useful as a telephone directory lookup
algorithm.

Information about the number of comparisons required to perform the sequential
search algorithm on a list of n names is summarized in Figure 3.2. Note that the values
for both the worst case and the average case depend on n, the number of names in the
list. The bigger the list, the more work must be done to search it. Few algorithms do the
same amount of work on large inputs as on small inputs, simply because most
algorithms process the input data, and more data to process means more work. The
work an algorithm does can usually be expressed in terms of a formula that depends
on the size of the problem input. In the case of searching a list of names, the input size
is the length of the list.

Figure 3.2
Number of comparisons to find NAME in a list of n names using sequential
search

Best
Case

Worst
Case

Average
Case

1 n n/2

Let’s say a word about the space efficiency of sequential search. The algorithm stores
the list of names and the target NAME as part of the input. The only additional memory
required is storage for the index value i and the Found indicator. Two single additional
memory locations are insignificant compared with the size of the list of names, just as
executing a single instruction to initialize the value of i and Found is insignificant

beside the repetitive comparison task. Therefore, sequential search uses essentially no
more memory storage than the original input requires, so it is very space efficient.

Chapter 3: The Efficiency of Algorithms: 3.3.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

3.3.2 Order of Magnitude—Order n

When we analyzed the time efficiency of the sequential search algorithm, we glossed
over the contribution of the constant factor for the peripheral work. To see why this
constant factor doesn’t particularly matter, we need to understand a concept called
order of magnitude.

The worst-case behavior of the sequential search algorithm on a list of n names
requires n comparisons, and if c is a constant factor representing the peripheral work,
it requires cn total work. Suppose that c has the value 2. Then the values of n and 2n
are

n 2n

1 2

2 4

3 6

and so on

These values are shown in Figure 3.3, which illustrates how the value of 2n, which is
the total work, changes as n changes. We can add to this graph to show how the value
of cn changes as n changes, where c = 1 or c = 1/2 as well as c = 2 (see Figure 3.4; these
values of c are completely arbitrary). Figure 3.5 presents a different view of the growth
rate of cn as n changes for these three values of c.

Figure 3.3

Work = 2n

Figure 3.4

Work = cn for various values of c

Figure 3.5

Growth of work = cn for various values of c

Both Figure 3.4 and Figure 3.5 show that the amount of work cn increases as n
increases, but at different rates. The work grows at the same rate as n when c = 1, at
twice the rate of n when c = 2, and at half the rate of n when c = 1/2. However, Figure
3.4 also shows that all of these graphs follow the same basic straight-line shape of n.
Anything that varies as a constant times n (and whose graph follows the basic shape of
n) is said to be of order of magnitude n, written Θ(n). We will classify algorithms
according to the order of magnitude of their time efficiency. Sequential search is
therefore an Θ(n) algorithm (an order-n algorithm) in both the worst case and the
average case.

Flipping Pancakes

A problem posed in the American Mathematical Monthly in 1975 by Jacob
Goodman concerned a waiter in a café where the cook produced a stack of
pancakes of varying sizes. The waiter, on the way to delivering the stack to the
customer, attempted to arrange the pancakes in order by size, with the largest
on the bottom. The only action available was to stick a spatula into the stack at
some point and flip the entire stack above that point. The question is: What is
the maximums number of flips ever needed for any stack of n pancakes? This
number, P , is known as the nth pancake number.

Here’s a fairly simple algorithm to arrange the pancakes. Put the spatula under
the largest pancake, as shown in (a) in the figure, and flip. This puts the largest
pancake on top [(b) in the figure]. Put the spatula at the bottom of the
unordered section (in this case at the bottom) and flip. This puts the largest
pancake on the bottom [(c) in the figure], where it belongs. Repeat with the rest
of the pancakes. Each pancake therefore requires two flips, which would give a
total of 2n flips required. But the last two pancakes require at most one flip; if
they are already in order, no flips are needed, and if they are out of order, only
one flip is needed. So this algorithm requires at most 2(n − 2) + 1 = 2n − 3 flips in
the worst case, which means that P ≤ 2n − 3. Are there other algorithms that

require fewer flips in the worst case?

A faculty member at Harvard University posed this question to his class; several
days later, a sophomore from the class came to his office with a better
algorithm. This algorithm, which requires at most (5n + 5) / 3 flips, was
published in the journal Discrete Mathematics in 1979. The authors were

n

n

William Gates (the student) and Christos Papadimitriou.

Yes, that William Gates!

Practice Problem

Using the information in Figure 3.2, fill in the following table for the

number of comparisons required in the sequential search algorithm.

n Best
Case

Worst
Case

Average
Case

10

50

100

1,000

10,000

100,000

Chapter 3: The Efficiency of Algorithms: 3.3.3
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

3.3.3 Selection Sort

The sequential search algorithm solves a very common problem: searching a list of
items (such as the names in a telephone directory) for a particular item. Another very
common problem is that of sorting a list of items into order—either alphabetical or
numerical order. The registrar at your institution sorts students in a class by name, a
mail-order business sorts its customer list by name, and the IRS sorts its tax records by
Social Security number. In this section, we’ll examine a sorting algorithm and analyze
its efficiency.

Suppose we have a list of numbers to sort into ascending order—for example, 5, 7, 2, 8,
3. The result of sorting this list is the new list 2, 3, 5, 7, 8. The selection sort algorithm
performs this task. The selection sort “grows” a sorted subsection of the list from the

back to the front. We can look at “snapshots” of the progress of the algorithm on our
sample list, using a vertical line as the marker between the unsorted section at the
front of the list and the sorted section at the back of the list in each case. At first the
sorted subsection is empty; that is, the entire list is unsorted. This is how the list looks
when the algorithm begins.

Later, the sorted subsection of the list has grown from the back so that some of the list
members are in the right place.

Finally, the sorted subsection of the list contains the entire list; there are no unsorted
numbers, and the algorithm stops.

At any point, then, there is both a sorted and an unsorted section of the list. A
pseudocode version of the algorithm is shown in Figure 3.6.

Figure 3.6
Selection sort algorithm

Get values for n and the n list items1.

Set the marker for the unsorted section at the end of the list2.

While the unsorted section of the list is not empty, do Steps 4 through 63.

Select the largest number in the unsorted section of the list4.

Exchange this number with the last number in the unsorted section of the

list

5.

Move the marker for the unsorted section left one position6.

Stop7.

Before we illustrate this algorithm at work, take a look at Step 4, which finds the largest
number in some list of numbers. We developed an algorithm for this task in Chapter 2
(Figure 2.14). A detailed version of the selection sort algorithm would replace Step 4
with the instructions from this existing algorithm. New algorithms can be built up from
“parts” consisting of previous algorithms, just as a recipe for pumpkin pie might begin
with the instruction, “Prepare crust for a one-crust pie.” The recipe for pie crust is a
previous algorithm that is now being used as one of the steps in the pumpkin pie
algorithm.

Let’s follow the selection sort algorithm. Initially, the unsorted section is the entire list,
so Step 2 sets the marker at the end of the list.

Step 4 says to select the largest number in the unsorted section—that is, in the entire
list. This number is 8. Step 5 says to exchange 8 with the last number in the unsorted
section (the whole list). To accomplish this exchange, the algorithm must determine not
only that 8 is the largest value but also the location in the list where 8 occurs. The Find
Largest algorithm from Chapter 2 provides both these pieces of information. The
exchange to be done is

After this exchange and after the marker is moved left as instructed in Step 6, the list
looks like

The number 8 is now in its correct position at the end of the list. It becomes the sorted
section of the list, and the first four numbers are the unsorted section.

The unsorted section is not empty, so the algorithm repeats Step 4 (find the largest
number in the unsorted section); it is 7. Step 5 exchanges 7 with the last number in the
unsorted section, which is 3.

After the marker is moved, the result is

The sorted section is now 7, 8 and the unsorted section is 5, 3, 2.

Repeating the loop of Steps 4 through 6 again, the algorithm determines that the largest
number in the unsorted section is 5, and exchanges it with 2, the last number in the
unsorted section.

After the marker is moved, we get

Now the unsorted section (as far as the algorithm knows) is 2, 3. The largest number
here is 3. Exchanging 3 with the last number of the unsorted section (that is, with itself)
produces no change in the list ordering. The marker is moved, giving

When the only part of the list that is unsorted is the single number 2, there is also no
change in the list ordering produced by carrying out the exchange. The marker is
moved, giving

The unsorted section of the list is empty, and the algorithm terminates.

To analyze the amount of work the selection sort algorithm does, we must first decide

on the unit of work to count. When we analyzed sequential search, the unit of work
that we measured was the comparison between the name being searched for and the
names in the list. At first glance, there seem to be no comparisons of any kind going on
in the selection sort. Remember, however, that there is a subtask within the selection
sort: the task of finding the largest number in a list. The algorithm from Chapter 2 for
finding the largest value in a list begins by taking the first number in the list as the
largest so far. The largest-so-far value is compared against successive numbers in the
list; if a larger value is found, it becomes the largest so far.

When the selection sort algorithm begins, the largest-so-far value, initially the first
number, must be compared with all the other numbers in the list. If there are n
numbers in the list, n − 1 comparisons must be done. The next time through the loop,
the last number is already in its proper place, so it is never again involved in a
comparison. The largest-so-far value, again initially the first number, must be
compared with all the other numbers in the unsorted part of the list, which will require
n − 2 comparisons. The number of comparisons keeps decreasing as the length of the
unsorted section of the list gets smaller, until finally only one comparison is needed.
The total number of comparisons is

Reviewing our sample problem, we can see that the following comparisons are done:

To put 2 in place requires no comparisons; there is only one number in the unsorted
section of the list, so it is of course the largest number. It gets exchanged with itself,
which produces no effect. The total number of comparisons is 4 + 3 + 2 + 1 = 10.

The sum

turns out to be equal to

(Recall from earlier in this chapter how Gauss computed a similar sum.) For our
example with five numbers, this formula says that the total number of comparisons is
(using the first version of the formula):

which is the number of comparisons we had counted.

Figure 3.7 uses this same formula

Figure 3.7
Comparisons required by selection sort

Length n of List to Sort n Number of
Comparisons Required

10 100 45

2

Length n of List to Sort n Number of
Comparisons Required

100 10,000 4,950

1,000 1,000,000 499,500

to compute the comparisons required for larger values of n. Remember that n is the
size of the list we are sorting. If the list becomes 10 times longer, the work increases by

much more than a factor of 10; it increases by a factor closer to 100, which is 10 .

The selection sort algorithm not only does comparisons, it also does exchanges. Even if
the largest number in the unsorted section of the list is already at the end of the
unsorted section, the algorithm exchanges this number with itself. Therefore, the
algorithm does n exchanges, one for each position in the list to put the correct value in
that position. With every exchange, the marker gets moved. However, the work
contributed by exchanges and marker moving is so much less than the amount
contributed by comparisons that it can be ignored.

We haven’t talked here about a best case, a worst case, or an average case for the
selection sort. This algorithm does the same amount of work no matter how the
numbers are initially arranged. It has no way to recognize, for example, that the list
might already be sorted at the outset.

A word about the space efficiency of the selection sort: The original list occupies n
memory locations, and this is the major space requirement. Some storage is needed for
the marker between the unsorted and sorted sections and for keeping track of the
largest-so-far value and its location in the list, used in Step 4. Surprisingly, the process
of exchanging two values at Step 5 also requires an extra storage location. Here’s why.
If the two numbers to be exchanged are at position X and position Y in the list, we
might think the following two steps will exchange these values:

Copy the current value at position Y into position X1.

Copy the current value at position X into position Y2.

The problem is that after Step 1, the value at position X is the same as that at position Y.
Step 2 does not put the original value of X into position Y. In fact, we don’t even have
the original value of position X anymore. In Figure 3.8(a), we see the original X and Y
values. At Figure 3.8(b), after execution of Step 1, the current value of position Y has
been copied into position X, writing over what was there originally. At Figure 3.8(c),
after execution of Step 2, the current value at position X (which is the original Y value)
has been copied into position Y, but the picture looks the same as Figure 3.8(b).

2

2

Figure 3.8

An attempt to exchange the values at X and Y

Here’s the correct algorithm, which makes use of one extra temporary storage location
that we’ll call T.

Copy the current value at position X into location T1.

Copy the current value at position Y into position X2.

Copy the current value at location T into position Y3.

Figure 3.9 illustrates that this algorithm does the job. In Figure 3.9(a), the temporary
location contains an unknown value. After execution of Step 1 (Figure 3.9b), it holds the
current value of X. When Y’s current value is put into X at Step 2 (Figure 3.9c), T still
holds the original X value. After Step 3 (Figure 3.9d), the current value of T goes into
position Y, and the original values of X and Y have been exchanged. (Step 5 of the
selection sort algorithm is thus performed by another algorithm, just as Step 4 is.)

Figure 3.9

Exchanging the values at X and Y

All in all, the extra storage required for the selection sort, over and above that required
to store the original list, is slight. Selection sort is space efficient.

Practice Problems

For each of the following lists, perform a selection sort and show the

list after each exchange that has an effect on the list ordering:

4, 8, 2, 6a.

12, 3, 6, 8, 2, 5, 7b.

D, B, G, F, A, C, E, Hc.

1.

How many comparisons are required to sort each of the three lists

shown in Practice Problem 1? How many exchanges?

2.

Chapter 3: The Efficiency of Algorithms: 3.3.4
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

3.3.4 Order of Magnitude—Order n

We saw that the number of comparisons done by the selection sort algorithm does not
grow at the same rate as the problem size n; it grows at approximately the square of
that rate. An algorithm that does cn2 work for any constant c is order of magnitude

n , or Θ(n). Figure 3.10 shows how cn changes as n2 changes, where c = 1, 2, and 1/2.

The work grows at the same rate as n when c = 1, at twice that rate when c = 2, and at
half that rate when c = 1/2. But all three graphs in Figure 3.10 follow the basic shape of

n , which is different from all of the straight-line graphs that are of Θ(n). Thus, we have
come up with two different “shape classifications”: one including all graphs that are

Θ(n) and the other including all graphs that are Θ(n).

Figure 3.10

Work = cn for various values of c

2

2 2 2

2

2

2

2

If it is not important to distinguish among the various graphs that make up a given
order of magnitude, why is it important to distinguish between the two different orders

of magnitude n and n ? We can find the answer by comparing the two basic shapes n

and n , as is done in Figure 3.11.

Figure 3.11

A comparison of n and n

Figure 3.11 illustrates that n grows at a much faster rate than n. The two curves cross

at the point (1, 1), and for any value of n larger than 1, n has a value increasingly

greater than n. Furthermore, anything that is order of magnitude n eventually has
larger values than anything that is of order n, no matter what the constant factors are.

For example, Figure 3.12 shows that if we choose a graph that is Θ(n) but has a small

constant factor (to keep the values low), say 0.25n , and a graph that is Θ(n) but has a

larger constant factor (to pump the values up), say 10n, it is still true that the Θ(n)
graph eventually has larger values. (Note that the vertical scale and the horizontal
scale are different.)

Figure 3.12

For large enough n, 0.25n has larger values than 10n

2

2

2

2

2

2

2

2

2

2

Selection sort is an Θ(n) algorithm (in all cases) and sequential search is an Θ(n)
algorithm (in the worst case), so these two algorithms are different orders of
magnitude. Because these algorithms solve two different problems, this is somewhat
like comparing apples and oranges—what does it mean? But suppose we have two
different algorithms that solve the same problem and count the same units of work, but

have different orders of magnitude. Suppose that algorithm A does 0.0001n units of
work to solve a problem with input size n and that algorithm B does 100n of the same
units of work to solve the same problem. Here algorithm B’s factor of 100 is 1 million
times larger than algorithm A’s factor of 0.0001. Nonetheless, when the problem gets
large enough, the inherent inefficiency of algorithm A causes it to do more work than
algorithm B. Figure 3.13 shows that the “crossover” point occurs at a value of 1,000,000
for n. At this point, the two algorithms do the same amount of work and therefore take

the same amount of time to run. For larger values of n, the order-n algorithm A runs
increasingly slower than the order-n algorithm B. (Input sizes of 1,000,000 are not that
uncommon—think of the New York City telephone list.)

Figure 3.13
A comparison of two extreme Θ(n) and Θ(n) algorithms

Number of Work Units
Required

Algorithm A Algorithm B

n 0.0001n 100n

1,000 100 100,000

2

2

2

2

2

Number of Work Units
Required

Algorithm A Algorithm B

n 0.0001n 100n

10,000 10,000 1,000,000

100,000 1,000,000 10,000,000

1,000,000 100,000,000 100,000,000

10,000,000 10,000,000,000 1,000,000,000

As we have seen, if an Θ(n) algorithm and an Θ(n) algorithm exist for the same task,

then for large enough n, the Θ(n) algorithm does more work and takes longer to
execute, regardless of the constant factors for peripheral work. This is the rationale for
ignoring constant factors and concentrating on the basic order of magnitude of
algorithms.

As an analogy, the two shape classifications Θ(n) and Θ(n) may be thought of as two
different classes of transportation, the “walking” class and the “driving” class,
respectively. The walking class is fundamentally more time consuming than the driving
class. Walking can include jogging, running, and leisurely strolling (which correspond
to different values for c), but compared with any form of driving, these all proceed at
roughly the same speed. The driving class can include driving a MINI Cooper and
driving a Ferrari (which correspond to different values for c), but compared with any
form of walking, these proceed at roughly the same speed. In other words, varying c
can make modest changes within a class, but changing to a different class is a quantum
leap.

Given two algorithms for the same task, we should usually choose the algorithm of the
lesser order of magnitude because for large enough n, it always “wins out.” It is for
large values of n that we need to be concerned about the time resources being used
and, as we noted earlier, it is often for large values of n that we are seeking a
computerized solution in the first place.

Note, however, that for smaller values of n, the size of the constant factor is significant.

In Figure 3.12, the 10n line stayed above the 0.25n curve up to the crossover point of n

= 40 because it had a large constant factor relative to the factor for n . Varying the

factors changes the crossover point. If 10n and 0.25n represented the work of two
different algorithms for the same task, and if we are sure that the size of the input is

never going to exceed 40, then the 0.25n algorithm is preferable in terms of time
resources used. (To continue the transportation analogy, for traveling short
distances—say, to the end of the driveway—walking is faster than driving because of

2

2

2

2

2

2

2

2

the overhead of getting the car started, and so on. But for longer distances, driving is
faster.)

The Tortoise and the Hare

One way to compare performance among different makes of automobiles is to
give the number of seconds it takes each car to go from 0 to 60 miles per hour.
One way to compare performance among different makes of computers is to
give the number of arithmetic operations, such as additions or subtractions of
real numbers, that each one can do in 1 second. These operations are called
floating-point operations, and computers are often compared in terms of the
number of flops (floating-point operations per second) they can crank out. This
is only one measure of a computer’s performance, primarily related to
processing power for “number-crunching” applications. Whereas this is the
measure we use here, other measures include the ability of the machine to
handle multimedia, graphics, or multitasking. (For example, how well can the
machine run a virus checker in the background while you are playing a video
game?)

The fastest desktop computer as of 2011 uses a six-core processor, meaning
there are six individual processors bundled into a single chip package. The chip
is the Intel Core i7 980 XE, which, before its release, was known within Intel by
the codename Gulftown. This chip contains 1.17 billion transistors. If all six
cores can be efficiently put to use, the top performance is about 100 gigaflops
(100 billion floating-point operations per second). In June, 2011, the ‘K’ system
at the RIKEN Advanced Institute for Computational Science in Japan was
declared the world’s top-speed supercomputer. Built by Fujitsu, this machine is
a parallel processor system containing 548,352 cores bundled in 68,544
eight-core chip packages housed in 672 separate cabinets. It can perform at the
rate of about 8.2 petaflops (which is 8.2 quadrillion floating-point operations
per second). The supercomputer is almost 82,000 times faster than the desktop
computer. The stage is set for the race between the tortoise and the hare.

Not fair, you say? We’ll see. Let’s suppose the desktop machine is assigned to

run an Θ(n) algorithm, whereas the supercomputer gets an Θ(n) algorithm for
the same task. The work units are floating-point operations, and for simplicity,
we’ll take the constant factor to be 1 in each case. Here are the timing results:

n Desktop Supercomputer

1,000 0.00000001
sec

0.00000000012 sec

100,000 0.000001 sec 0.00000121951 sec

10,000,000 0.0001 sec 0.01219512195 sec

2

n Desktop Supercomputer

1,000,000,000 0.01 sec 121.95 sec = 2.03 min

100,000,000,000 1 sec 1,219,512 sec = 14 days

10,000,000,000,000 100 sec = 1.67
min

12,195,121,951 sec = 387 years

Out of the gate—that is, for relatively small values of n such as 1,000—the
supercomputer has the advantage and takes less time. When n reaches 100,000,
however, the supercomputer is falling a tiny bit behind, taking about
0.00000122 sec as opposed to the desktop’s 0.000001 sec. And for the largest
value of n, the desktop has left the supercomputer in the dust. The difference in
order of magnitude between the algorithms was enough to slow down the
mighty supercomputer and let the desk-top pull ahead, chugging along doing its
more efficient Θ(n) algorithm. Where would one need to perform
10,000,000,000,000 operations? Complex problems involving weather
simulations, biomedical research, and economic modeling might utilize such
number-crunching applications.

The point of this little tale is not to say that supercomputers will be readily
replaced by desktop computers! It is to demonstrate that the order of
magnitude of the algorithm being executed can play a more important role than
the raw speed of the computer.

Future Speculation: Desktops will give ever faster performance. In early 2011,
Intel began producing a new chip, code-named Sandy Bridge, that is expected to
produce 32 gigaflops per core, more than three times the per-core performance
of Gulftown. And supercomputers will also improve their performance. IBM is
planning to build a 750,000 core supercomputer in 2012 to support the research
of the Argonne National Laboratory near Chicago, Illinois. IBM expects this
system will run at 10 petaflops (that’s 10 million gigaflops). It is estimated that if
every man, woman, and child in the United States performed one calculation
each second, it would take them almost a year to do as many calculations as this
machine will do in one second.

However, making assumptions about the size of the input on which an algorithm will
run can be dangerous. A program that runs quickly on small input size may at some
point be selected (perhaps because it seems efficient) to solve instances of the problem
with large input size, at which point the efficiency may go down the drain! Sequential
search may serve for directory assistance in Yeehaw Junction, Florida, but it won’t
translate satisfactorily to New York City. Part of the job of program documentation is to
make clear any assumptions or restrictions about the input size the program was
designed to handle.

Comparing algorithm efficiency only makes sense if there is a choice of algorithms for
the task at hand. Are there any tasks for which a choice of algorithms exists? Yes;
because sorting a list is such a common task, a lot of research has gone into finding
good sorting algorithms. Selection sort is one sorting algorithm, but there are many
others, including the bubble sort, described in Exercises 9-12 at the end of this chapter.
You might wonder why people don’t simply use the one “best” sorting algorithm. It’s
not that simple. Some algorithms (unlike the selection sort) are sensitive to what the
original input looks like. One algorithm might work well if the input is already close to
being sorted, whereas another algorithm might work better if the input is random. An
algorithm like selection sort has the advantage of being relatively easy to understand.
If the size of the list, n, is fairly small, then an easy-to-understand algorithm might be
preferable to one that is more efficient but more obscure.

Laboratory Experience 4

This Laboratory Experience allows you to step through animations of various
sorting algorithms to understand how they work. The sorting algorithms
available in the laboratory software include selection sort and bubble
sort—which are described in this text—as well as insertion sort and quicksort,
which are described in the laboratory manual. You’ll be able to see values being
switched around according to the various algorithms, and see how lists
eventually settle into sorted order.

You’ll also do some experiments to measure the amount of work the various
algorithms perform.

Practice Problem

An algorithm does 14n + 5n + 1 units of work on input of size n. Explain

why this is considered an Θ(n) algorithm even though there is a term

that involves just n.

Chapter 3: The Efficiency of Algorithms: 3.4
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

3.4 Analysis of Algorithms

3.4.1 Data Cleanup Algorithms

In this section, we’ll look at three different algorithms that solve the same

2

2

problem—the data cleanup problem—and then do an analysis of each. Suppose a
survey includes a question about the age of the person filling out the survey, and that
some people choose not to answer this question. When data from the survey are
entered into the computer, an entry of 0 is used to denote “no response” because a
legitimate value for age would have to be a positive number. For example, assume that
the age data from 10 people who completed the survey are stored in the computer as
the following 10-entry list, where the positions in the list range from 1 (far left) to 10
(far right).

Eventually, the average age of the survey respondents is to be computed. Because the 0
values are not legitimate data—including them in the average would produce too low a
value—we want to perform a “data cleanup” and remove them from the list before the
average is computed. In our example, the cleaned data could consist of a 10-element
list, where the seven legitimate elements are the first seven entries of the list, and some
quantity—let’s call it legit—has the value 7 to indicate that only the first seven entries
are legitimate. An alternative acceptable result would be a seven-element list
consisting of the seven legitimate data items, in which case there is no need for a legit
quantity.

The Shuffle-Left Algorithm

Algorithm 1 to solve the data cleanup problem works in the way we might solve this
problem using a pencil and paper (and an eraser) to modify the list. We proceed
through the list from left to right, pointing with a finger on the left hand to keep our
place, and passing over nonzero values. Every time we encounter a 0 value, we squeeze
it out of the list by copying each remaining data item in the list one cell to the left. We
could use a finger on the right hand to move along the list and point at what to copy
next. The value of legit, originally set to the length of the list, is reduced by 1 every time
a 0 is encountered. (Sounds complicated, but you’ll see that it is easy.)

The original configuration is

Because the first cell on the left contains a 0, the value of legit is reduced by 1, and all of

the items to the right of the 0 must be copied one cell left. After the first such copy (of
the 24), the scenario looks like

After the second copy (of the 16), we get

And after the third copy (of the 0), we get

Proceeding in this fashion, we find that after we copy the last item (the 27), the result is

Because the right hand finger has moved past the end of the list, one entire shuffle-left
process has been completed. It required copying nine items. We reset the right hand
finger to start again.

We must again examine position 1 for a 0 value because if the original list contained 0
in position 2, it would have been copied into position 1. If the value is not 0, as is the
case here, both the left hand finger and the right hand finger move forward.

Moving along, we pass over the 16.

Another cycle of seven copies takes place to squeeze out the 0; the result is

The 36, 42, 23, and 21 are passed over, which results in

and then copying three items to squeeze out the final 0 gives

The left hand finger is pointing at a nonzero element, so another advance of both
fingers gives

At this point, we can stop because the left hand finger is past the number of legitimate
data items (legit = 7). In total, this algorithm (on this list) examined all 10 data items, to
see which ones were 0, and copied 9 + 7 + 3 = 19 items.

A pseudocode version of the shuffle-left algorithm to act on a list of n items appears in
Figure 3.14. The quantities left and right correspond to the positions where the left
hand and right hand fingers point, respectively. You should trace through this
algorithm for the preceding example to see that it does what we described.

To analyze the time efficiency of an algorithm, you begin by identifying the
fundamental units of work the algorithm performs. For the data cleanup problem, any

algorithm must examine each of the n elements in the list to see whether they are 0.
This gives a base of at least Θ(n) work units.

Figure 3.14
The shuffle-left algori thm for data cleanup

Get values for n and the n data items1.

Set the value of legit to n2.

Set the value of left to 13.

Set the value of right to 24.

While left is less than or equal to legit do Steps 6 through 145.

If the item at position left is not 0 then do Steps 7 and 86.

Increase left by 17.

Increase right by 18.

Else (the item at position left is 0) do Steps 10 through 149.

Reduce legit by 110.

While right is less than or equal to n do Steps 12 and 1311.

Copy the item at position right into position (right − 1)12.

Increase right by 113.

Set the value of right to (left + 1)14.

Stop15.

The other unit of work in the shuffle-left algorithm is copying numbers. The best case
occurs when the list has no 0 values because no copying is required. The worst case
occurs when the list has all 0 values. Because the first element is 0, the remaining n − 1
elements are copied one cell left and legit is reduced from n to n − 1. After the 0 in
position 2 gets copied into position 1, the first element is again 0, which again requires
n − m1 copies and reduces legit from n − 1 to n − 2. This repeats until legit is reduced to
0, a total of n times. Thus there are n passes, during each of which n − 1 copies are
done. The algorithm does

copies. If we were to draw a graph of n − n, we would see that for large n, the curve

follows the shape of n . The second term can be disregarded because as n increases, the

n term grows much larger than the n term dominates and determines the shape of

the curve. The shuffle-left algorithm is thus an Θ(n) algorithm in the worst case.

The shuffle-left algorithm is space efficient because it only requires four memory
locations to store the quantities n, legit, left, and right in addition to the memory
required to store the list itself.

The Copy-Over Algorithm

The second algorithm for solving the data cleanup problem also works as we might if
we decided to write a new list using a pencil and paper. It scans the list from left to
right, copying every legitimate (nonzero) value into a new list that it creates. After this
algorithm is finished, the original list still exists, but so does a new list that contains
only nonzero values.

For our example, the result would be

Every list entry is examined to see whether it is 0 (as in the shuffle-left algorithm), and
every nonzero list entry is copied once (into the new list), so a total of seven copies are
done for this example. This is fewer copies than the shuffle-left algorithm requires, but
a lot of extra memory space is required because an almost complete second copy of the
list is stored. Figure 3.15 shows the pseudocode for this copy-over algorithm.

Figure 3.15
The copy-over algorithm for data cleanup

Get values for n and the n data items1.

Set the value of left to 12.

Set the value of newposition to 13.

While left is less than or equal to n do Steps 5 through 84.

If the item at position left is not 0 then do Steps 6 and 75.

Copy the item at position left into position newposition in new list6.

Increase newposition by 17.

Increase left by 18.

2

2

2 2

2

Stop9.

The best case for this algorithm occurs if all elements are 0; no copies are done so the
work is just the Θ(n) work to examine each list element and see that it is 0. No extra
space is used. The worst case occurs if there are no 0 values in the list. The algorithm
copies all n nonzero elements into the new list and doubles the space required.
Combining the two types of work units, we find that the copy-over algorithm is only
Θ(n) in time efficiency even in the worst case because Θ(n) examinations and Θ(n)
copies still equal Θ(n) steps.

Comparing the shuffle-left algorithm and the copy-over algorithm, we see that no 0
elements is the best case of the first algorithm and the worst case of the second,
whereas all 0 elements is the worst case of the first and the best case of the second. The
second algorithm is more time efficient and less space efficient. This choice is called the
time/space tradeoff—you gain something by giving up something else. Seldom is it
possible to improve both dimensions at once, but our next algorithm accomplishes just
that.

The Converging-Pointers Algorithm

For the third algorithm, imagine that we move one finger along the list from left to
right and another finger from right to left. The left finger slides to the right over
nonzero values. Whenever the left finger encounters a 0 item, we reduce the value of
legit by 1, copy whatever item is at the right finger into the left-finger position, and
slide the right finger one cell left. Initially in our example

And because a 0 is encountered at position left, the item at position right is copied into
its place, and both legit and right are reduced by 1. This results in

The value of left increases until the next 0 is reached.

Again, the item at position right is copied into position left, and legit and right are
reduced by 1.

The item at position left is still 0, so another copy takes place.

From this point, the left finger advances until it meets the right finger, which is
pointing to a nonzero element, and the algorithm stops. Once again, each element is
examined to see whether it equals 0. For this example, only three copies are needed
—fewer even than for algorithm 2, but this algorithm requires no more memory space
than algorithm 1. The pseudocode version of the converging-pointers algorithm is
given in Figure 3.16.

Figure 3.16
The converging-pointers algorithm for data cleanup

Get values for n and the n data items1.

Set the value of legit to n2.

Set the value of left to 13.

Set the value of right to n4.

While left is less than right do Steps 6 through 105.

If the item at position left is not 0 then increase left by 16.

Else (the item at position left is 0) do Steps 8 through 107.

Reduce legit by 18.

Copy the item at position right into position left9.

Reduce right by 110.

If the item at position left is 0, then reduce legit by 111.

Stop12.

The best case for this algorithm, as for the shuffle-left algorithm, is a list containing no
0 elements. The worst case, as for the shuffle-left algorithm, is a list of all 0 entries.
With such a list, the converging-pointers algorithm repeatedly copies the element at
position right into the first position, each time reducing the value of right. Right goes
from n to 1, with one copy done at each step, resulting in n m 1 copies. This algorithm is
Θ(n) in the worst case. Like the shuffle-left algorithm, it is space efficient. It is possible
in this case to beat the time space trade-off, in part because the data cleanup problem
requires no particular ordering of the nonzero elements in the “clean” list; the
converging-pointers algorithm moves these elements out of their original order.

It is hard to define what an “average” case is for any of these algorithms; the amount of
work done depends on how many 0 values there are in the list and perhaps on where
in the list they occur. If we assume, however, that the number of 0 values is some
percentage of n and that these values are scattered throughout the list, then it can be

shown that the shuffle-left algorithm will still do Θ(n) work, whereas the converging-
pointers algorithm will do Θ(n). Figure 3.17 summarizes our analysis, although it
doesn’t reflect the three or four extra memory cells needed to store other quantities
used in the algorithms, such as legit, left, and right.

Figure 3.17
Analysis of three data cleanup algorithms

1.
Shuffle-left 2. Copy-over

3.
Converging-
pointers

Time Space Time Space Time Space

Best
case Θ(n) n Θ(n) n Θ(n) n

Worst
case Θ(n) n Θ(n) 2n Θ(n) n

Average
case Θ(n) n Θ(n)

n ≤ x
≤ 2n Θ(n) n

Let’s emphasize again the difference between an algorithm that is Θ(n) in the amount

of work it does and one that is Θ(n). In an Θ(n) algorithm, the work is proportional to
n. Hence if you double n, you double the amount of work; if you multiply n by 10, you

2

2

2

2

multiply the work by 10. But in an Θ(n) algorithm, the work is proportional to the
square of n. Hence if you double n, you multiply the amount of work by 4; if you
multiply n by 10, you multiply the work by 100.

This is probably a good place to explain why the distinction between n and 2n is
important when we are talking about space, but we simply classify n and 8000n as Θ(n)
when we are talking about units of work. Units of work translate into time when the
algorithm is executed, and time is a much more elastic resource than space. Whereas
we want an algorithm to run in the shortest possible time, in many cases there is no
fixed limit to the amount of time that can be expended. There is, however, always a
fixed upper bound on the amount of memory that the computer has available to use
while executing an algorithm, so we track space consumption more closely.

Chapter 3: The Efficiency of Algorithms: 3.4.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

3.4.2 Binary Search

The sequential search algorithm searches a list of n items for a particular item; it is an
Θ(n) algorithm. Another algorithm, the binary search algorithm, is more efficient but
it works only when the search list is already sorted.

Practice Problems

In the data cleanup problem, suppose the original data are

2 0 4 1

Write the data list after completion of algorithm 1, the shuffle-left

algorithm.

1.

Write the two data lists after completion of algorithm 2, the copy-over

algorithm.

2.

Write the data list after completion of algorithm 3, the converging-

pointers algorithm.

3.

Make up a data list such that Step 11 of the converging-pointers

algorithm (Figure 3.16) is needed.

4.

2

To understand how binary search operates, let us go back to the problem of searching
for NAME in a telephone directory. When you look up the name Miranda in the
telephone book, you do not do a sequential search beginning with the very first name
in the directory and looking at each name in succession until you come to Miranda or
the end of the directory! Instead you make use of the fact that the names in the
directory have already been sorted into ascending order. You open the phone book in a
place somewhere near the middle. If the name you see is Miranda, your search is over.
If the name you see begins with P, you look closer to the front of the book; if the name
you see begins with L, you move farther toward the back of the book.

The binary search algorithm works in a similar fashion on a sorted list. It first looks for
NAME at roughly the halfway point in the list. If the name there equals NAME, the
search is over. If NAME comes alphabetically before the name at the halfway point,
then the search is narrowed to the front half of the list, and the process begins again on
this smaller list. If NAME comes alphabetically after the name at the halfway point,
then the search is narrowed to the back half of the list, and the process begins again on
this smaller list. The algorithm halts when NAME is found or when the sublist becomes
empty.

Figure 3.18 gives a pseudocode version of the binary search algorithm on a sorted
n-element list. Here beginning and end mark the beginning and end of the section of the
list under consideration. Initially the whole list is considered, so at first beginning is 1
and end is n. If NAME is not found at the midpoint m of the current section of the list,
then setting end equal to one less than the midpoint (Step 9) means that at the next pass
through the loop, the front half of the current section is searched. Setting beginning
equal to one more than the midpoint (Step 10) means that at the next pass through the
loop, the back half of the current section is searched. Thus, as the algorithm proceeds,
the beginning marker can move toward the back of the list, and the end marker can
move toward the front of the list. If the beginning marker and the end marker cross
over—that is, end becomes less than beginning—then the current section of the list is
empty and the search terminates. Of course it also terminates if the name is found.

Figure 3.18
Binary search algorithm (list must be sorted)

Get values for NAME, n, N , . . ., N and T , …, T1.

Set the value of beginning to 1 and set the value of Found to NO2.

Set the value of end to n3.

While Found = NO and beginning is less than or equal to end do Steps 5

through 10

4.

Set the value of m to the middle value between beginning and end5.

If NAME is equal to N , the name found at the midpoint between6.

1 n 1 n

m

beginning and end, then do Steps 7 and 8

Print the telephone number of that person, T7.

Set the value of Found to YES8.

Else if NAME precedes N alphabetically, then set end = m − 19.

Else (NAME follows N alphabetically) set beginning = m + 110.

If (Found = NO) then print the message ‘I am sorry but that name is not in

the directory’

11.

Stop12.

Let’s do an example, using seven names sorted into ascending order. The following list
shows not only the names in the list but also their locations in the list.

Suppose we search this list for the name Cora. We set beginning to 1 and end to 7; the
midpoint between 1 and 7 is 4. We compare the name at position number 4, Devi, with
Cora. Cora precedes Devi alphabetically, so the algorithm sets end to 4 − 1 = 3 (Step 9) to
continue the search on the front half of the list,

The midpoint between beginning = 1 and end = 3 is 2, so we compare the name at
position number 2, Bob, with Cora. Cora follows Bob alphabetically, so the algorithm
sets beginning to 2 + 1 = 3 (Step 10) in order to continue the search on the back half of
this list, namely

At the next pass through the loop, the midpoint between beginning = 3 and end = 3 is 3,
so we compare the name at position number 3, Cora, with the target name, Cora. We
have found the name; the appropriate telephone number can be printed and Found

m

m

m

changed to YES. The loop terminates, and then the algorithm terminates.

Now suppose we search this same list for the name Maria. As before, the first midpoint
is 4, so Devi is compared with Maria. Maria follows Devi, so the search continues with
beginning = 5, end = 7 on the back half:

The
Converging-Pointers
Algorithm

The midpoint is 6, so Nathan is compared with Maria. Maria precedes Nathan, so the
search continues with beginning = 5, end = 5 on the front half:

The midpoint is 5, so Grant is compared with Maria. Maria follows Grant, so beginning
is set to 6 to continue the search on the back half of this list. The algorithm checks the
condition at Step 4 to see whether to repeat the loop again and finds that end is less
than beginning (end = 5, beginning = 6). The loop is abandoned, and the algorithm
moves on to Step 11 and indicates that Maria is not in the list.

It is easier to see how the binary search algorithm operates if we list the locations of
the names checked in a treelike structure. The tree in Figure 3.19 shows the possible
search locations in a seven-element list. The search starts at the top of the tree, at
location 4, the middle of the original list. If the name at location 4 is NAME, the search
halts. If NAME comes after the name at location 4 (as Maria does in our example), the
right branch is taken and the next location searched is location 6. If NAME comes
before the name at location 4 (as Cora does in our example), the left branch is taken
and the next location searched is location 2. If NAME is not found at location 2, the next
location searched is either 1 or 3. Similarly, if NAME is not found at location 6, the next
location searched is either 5 or 7.

Figure 3.19

Binary search tree for a seven-element list

Binary search tree for a seven-element list

Binary search tree for a seven-element list

In Figure 3.18, the binary search algorithm, we assume in Step 5 that there is a middle
position between beginning and end. This happens only when there is an odd number
of elements in the list. Let us agree to define the “middle” of an even number of entries
as the end of the first half of the list. With eight elements, for example, the midpoint
position is location 4.

With this understanding, the binary search algorithm can be used on lists of any size.

Like the sequential search algorithm, the binary search algorithm relies on
comparisons, so to analyze the algorithm, we count the number of comparisons as an
indication of the work done. The best case, as in sequential search, requires only one
comparison—NAME is located on the first try. The worst case, as in sequential search,
occurs when NAME is not in the list. However, we learn this much sooner in binary
search than in sequential search. In our list of seven names, only three comparisons
are needed to determine that Maria is not in the list. The number of comparisons
needed is the number of circles in some branch from the top to the bottom of the tree
in Figure 3.19 These circles represent searches at the midpoints of the whole list, half
the list, one quarter of the list, and so on. This process continues as long as the sublists
can be cut in half.

Let’s do a minor mathematical digression here. The number of times a number n can
be cut in half and not go below 1 is called the logarithm of n to the base 2, which is
abbreviated lg n (also written in some texts as log n). For example, if n is 16, then we

can do four such divisions by 2:

so lg 16 = 4. This is another way of saying that 2 = 16. In general,

Figure 3.20 shows a few values of n and lg n. From these, we can see that as n doubles,
lg n increases by only 1, so lg n grows much more slowly than n. Figure 3.21 shows the
two basic shapes of n and lg n and again conveys that lg n grows much more slowly
than n.

2

4

Figure 3.20
Values for n and lg n

n lg n

8 3

16 4

32 5

64 6

128 7

Figure 3.21

A comparison of n and lg n

Remember the analogy we suggested earlier about the difference in time consumed

between Θ(n) algorithms, equivalent to various modes of walking, and Θ(n)
algorithms, equivalent to various modes of driving? We carry that analogy further by
saying that algorithms of order of magnitude lg n, Θ(lg n), are like various modes of
flying. Changing the coefficients of lg n can mean that we go from a Piper cub to an
F-22 Raptor but flying, in any form, is still a fundamentally different—and much
faster—mode of travel than walking or driving.

Suppose we are doing a binary search on n names. In the worst case, as we have seen,
the number of comparisons is related to the number of times the list of length n can be

2

halved. Binary search does Θ(lg n) comparisons in the worst case (see Exercise 26 at the
end of the chapter for an exact formula for the worst case). As a matter of fact, it also
does Θ(lg n) comparisons in the average case (although the exact value is a smaller
number than in the worst case). This is because most of the names in the list occur at or
near the bottom of the tree, where the maximum amount of work must be done; recall
that it also took three comparisons to find that Cora was in the list. As Figure
3.19shows, relatively few locations (where NAME might be found and the algorithm
terminate sooner) are higher in the tree.

Both binary search and sequential search solve the telephone book search problem,
but these algorithms differ in the order of magnitude of the work they do. Binary
search is an Θ(lg n) algorithm, whereas sequential search is an Θ(n) algorithm, in both
the worst case and the average case. To compare the binary search algorithm with the
sequential search algorithm, suppose there are 100 elements in the list. In the worst
case, sequential search requires 100 comparisons, and binary search requires

7 (2 = 128). In the average case, sequential search requires about 50 comparisons, and
binary search 6 or 7 (still much less work). The improvement in binary search becomes
even more apparent as the search list gets longer. For example, if n = 100,000, then in
the worst case sequential search requires 100,000 comparisons, whereas binary search

requires 17 (2 = 131,072). If we wrote two programs, one using sequential search and
one using binary search, and ran them on a computer that can do 1,000 name
comparisons per second, then to determine that a name is not in the list (the worst
case) the sequential search program would use

or 1.67 minutes, just to do the necessary comparisons, disregarding the constant factor
for advancing the index. The binary search program would use

to do the comparisons, disregarding a constant factor for updating the values of
beginning and end. This is quite a difference.

Suppose our two programs are used with the 20,000,000 names we assume are in the
New York City phone book. On the average, the sequential search program needs about

Binary Search

(about 2.78 hours!) just to do the comparisons to find a name in the list, whereas the

binary search program needs (because 2 ≈ 33,000,000) about

7

17

25

This is an even more impressive difference. Furthermore, it’s a difference due to the
inherent inefficiency of an Θ(n) algorithm compared with an Θ(lg n) algorithm; the
difference can be mitigated but not eliminated by using a faster computer. If our
computer does 50,000 comparisons per second, then the average times become about

or 3.33 minutes for sequential search and about

for binary search. The sequential search alternative is simply not acceptable. That is
why analyzing algorithms and choosing the best one can be so important. We also see,
as we noted in Chapter 2, that the way the problem data are organized can greatly
affect the best choice of algorithm.

The binary search algorithm works only on a list that has already been sorted. An
unsorted list could be sorted before using a binary search, but sorting also takes a lot of
work, as we have seen. If a list is to be searched only a few times for a few particular
names, then it is more efficient to do sequential search on the unsorted list (a few Θ(n)
tasks). But if the list is to be searched repeatedly—as in the daily use of an automated
telephone directory for the foreseeable future—it is more efficient to sort it and then

use binary search: one Θ(n) task and many Θ(lg n) tasks, as opposed to many Θ(n)
tasks.

2

Practice Problems

Suppose that, using the list of seven names from this section, we try

binary search to decide whether Grant is in the list. What names

would be compared with Grant?

1.

Suppose that, using the list of seven names from this section, we try

binary search to decide whether Vernon is in the list. What names

would be compared with Vernon?

2.

In the worst case, how many comparisons will be required to find a

single Social Security number (SSN) from among the approximately

350,000,000 numbers currently assigned if the data file is sorted

numerically by SSN? How many will be required in the worst case if

the data file is sorted alphabetically by the individual’s last name?

(Use a spreadsheet to help with the computations.)

3.

Laboratory Experience 5

In this Laboratory Experience, you will be able to run animations of the
shuffle-left algorithm and the converging-pointers algorithm for the data
cleanup problem. You’ll be able to see the left and right pointers take on
different values, which represent changing positions in the data list. As the
algorithms run on various lists, you can count the number of copies of data
elements that are required and see how they relate to the original positions of
any 0 items in the list.

You will also work with an animation of the binary search algorithm and see
how the work done compares with the theoretical results we discovered in this
section.

As to space efficiency, binary search, like sequential search, requires only a small
amount of additional storage to keep track of beginning, end, and midpoint positions in
the list. Thus, it is space efficient; in this case, we did not have to sacrifice space
efficiency to gain time efficiency. But we did have to sacrifice generality—binary
search works only on a sorted list whereas sequential search works on any list.

Chapter 3: The Efficiency of Algorithms: 3.4.3
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:

© 2013 , Cengage Learning

3.4.3 Pattern Matching

The pattern-matching algorithm in Chapter 2 involves finding all occurrences of a
pattern of the form P P … P within text of the form T T … T . Recall that the

algorithm simply does a “forward march” through the text, at each position attempting
to match each pattern character against the text characters. The process stops only
after text position n m m + 1, when the remaining text is not as long as the pattern so
that there could not possibly be a match. This algorithm is interesting to analyze
because it involves two measures of input size: n, the length of the text string, and m,
the length of the pattern string. The unit of work is comparison of a pattern character
with a text character.

Surprisingly, both the best case and the worst case of this algorithm can occur when
the pattern is not in the text at all. The difference hinges on exactly how the pattern
fails to be in the text. The best case occurs if the first character of the pattern is
nowhere in the text, as in

In this case, n − m + 1 comparisons are required, trying (unsuccessfully) to match P

with T , T , …, T in turn. Each comparison fails, and the algorithm slides the

pattern forward to try again at the next position in the text.

The maximum amount of work is done if the pattern almost occurs everywhere in the
text. Consider, for example, the following case:

Starting with T , the first text character, the match with the first pattern character is

successful. The match with the second text character and the second pattern character
is also successful. Indeed m − 1 characters of the pattern match with the text before the
mth comparison proves a failure. The process starts over from the second text
character, T . Once again, m comparisons are required to find a mismatch. Altogether,

m comparisons are required for each of the n m m + 1 starting positions in the text.

Another version of the worst case occurs when the pattern is found at each location in
the text, as in

This results in the same comparisons as are done for the other worst case, the only
difference being that the comparison of the last pattern character is successful.

1 2 m 1 2 n

1

1 2 nmm+1

1

2

Unlike our simple examples, pattern matching usually involves a pattern length that is
short compared with the text length, that is, when m is much less than n. In such cases,
n − m + 1 is essentially n. The pattern-matching algorithm is therefore Θ(n) in the best
case and Θ(m × n) in the worst case.

It requires somewhat improbable situations to create the worst cases we have
described. In general, the forward-march algorithm performs quite well on text and
patterns consisting of ordinary words. Other pattern-matching algorithms are
conceptually more complex but require less work in the worst case.

Chapter 3: The Efficiency of Algorithms: 3.4.4
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

3.4.4 Summary

Figure 3.22 shows an order-of-magnitude summary of the time efficiency for the
algorithms we have analyzed.

Figure 3.22
Order-of-magnitude time efficiency summary

Problem Unit of Work Algorithm Best Case Worst Case
Average
Case

Searching Comparisons Sequential
search 1 Θ(n) Θ(n)

Binary search 1 Θ(lg n) Θ(lg n)

Sorting Comparisons
and

exchanges

Selection
sort

Θ(n) Θ(n) Θ(n)

Data
cleanup

Examinations
and copies

Shuffle-left Θ(n) Θ(n) Θ(n)

Copy-over Θ(n) Θ(n) Θ(n)

Converging-
pointers

Θ(n) Θ(n) Θ(n)

Pattern
matching

Character
comparisons

Forward
march

Θ(n) Θ(m × n)

2 2 2

2 2

Practice Problem

Use the first sample pattern and text given in Section 3.4.3 for the worst

case of the pattern-matching algorithm. What is m? What is n? What is

m × n? This algorithm is Θ(m × n) in the worst case, but what is the exact

number of comparisons done?

Chapter 3: The Efficiency of Algorithms: 3.5
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

3.5 When Things Get Out Of Hand

We have so far found examples of algorithms that are Θ(lg n), Θ(n), and Θ(n) in time
efficiency. Order of magnitude determines how quickly the values grow as n increases.
An algorithm of order lg n does less work as n increases than does an algorithm of

order n, which in turn does less work than one of order n . The work done by any of

these algorithms is no worse than a constant multiple of n , which is a polynomial in n.
Therefore, these algorithms are polynomially bounded in the amount of work they do
as n increases.

Some algorithms must do work that is not polynomially bounded. Consider four cities,
A, B, C, and D, that are connected as shown in Figure 3.23, and ask the following
question: Is it possible to start at city A, go through every other city exactly once, and
end up back at A? Of course, we as humans can immediately see in this small problem
that the answer is Yes and that there are two such paths: A-B-D-C-A and A-C-D-B-A.
However, an algorithm doesn’t get to “see” the entire picture at once, as we can; it has
available to it only isolated facts such as “A is connected to B and to C,” “B is connected
to A and to D,” and so on. If the number of nodes and connecting edges is large, humans
also might not “see” the solution immediately. A collection of nodes and connecting
edges is called a graph. A path through a graph that begins and ends at the same node
and goes through all other nodes exactly once is called a Hamiltonian circuit, named for
the Irish mathematician William Rowan Hamilton (1805-1865). If there are n nodes in
the graph, then a Hamiltonian circuit, if it exists, must have exactly n links. In the case
of the four cities, for instance, if the path must go through exactly A, B, C, D, and A (in
some order), then there are five nodes on the path (counting A twice) and four links.

Figure 3.23

Four connected cities

2

2

2

Our problem is to determine whether an arbitrary graph has a Hamiltonian circuit. An
algorithm to solve this problem examines all possible paths through the graph that are
the appropriate length to see whether any of them are Hamiltonian circuits. The
algorithm can trace all paths by beginning at the starting node and choosing at each
node where to go next. Without going into the details of such an algorithm, let’s
represent the possible paths with four links in the graph of Figure 3.23. Again, we use a
tree structure. In Figure 3.24, A is the tree “root,” and at each node in the tree, the
nodes directly below it are the choices for the next node. Thus, any time B appears in
the tree, it has the two nodes A and D below it because edges exist from B to A and from
B to D. The “branches” of the tree are all the possible paths from A with four links.
Once the tree has been built, an examination of the paths shows that only the two dark
paths in the figure represent Hamiltonian circuits.

Figure 3.24

Hamiltonian circuits among all paths from A in Figure 3.23 with four links

The number of paths that must be examined is the number of nodes at the bottom level
of the tree. There is one node at the top of the tree; we’ll call the top of the tree level 0.
The number of nodes is multiplied by 2 for each level down in the tree. At Laboratory

Experience 2, there are 2 nodes; at Level 1, there are 2 nodes; at Level 3, there are 2

nodes; and at Level 4, the bottom of the tree, there are 2 = 16 nodes.

Suppose we are looking for a Hamiltonian circuit in a graph with n nodes and two
choices at each node. The bottom of the corresponding tree is at level n, and there are

2 paths to examine. If we take the examination of a single path as a unit of work, then

2 3

4

n

this algorithm must do 2 units of work. This is more work than any polynomial in n.

An Θ(2) algorithm is called an exponential algorithm. Hence the trial-and-error
approach to solving the Hamiltonian circuit problem is an exponential algorithm. (We
could improve on this algorithm by letting it stop tracing a path whenever a repeated
node different from the starting node is encountered, but it is still exponential. If there
are more than two choices at a node, the amount of work is even greater.)

Figure 3.25 shows the four curves lg n, n, n , and 2 . The rapid growth of 2 is not really
apparent here, however, because that curve is off the scale for values of n above 5.
Figure 3.26 compares these four curves for values of n that are still small, but even so,

2 is already far outdistancing the other values.

Figure 3.25

Comparison of lg n, n, n , and 2

Figure 3.26

Comparisons of lg n, n, n , and 2 for larger values of n

n

n

2 n n

n

2 n

2 2n

To appreciate fully why the order of magnitude of an algorithm is important, let’s again
imagine that we are running various algorithms as programs on a computer that can
perform a single operation (unit of work) in 0.0001 second. Figure 3.27 shows the

amount of time it takes for algorithms of Θ(lg n), Θ(n), Θ(n), and Θ(2) to complete their
work for various values of n.

Figure 3.27
A comparison of four orders of magnitude

n

Order 10 50 100 1,000

lg n 0.0003 sec 0.0006 sec 0.0007 sec 0.001 sec

n 0.001 sec 0.005 sec 0.01 sec 0.1 sec

n 0.01 sec 0.25 sec 1 sec 1.67 min

2 0.1024 sec 3,570 years 4 × 10
centuries

Too big to
compute!!

The expression 2 grows unbelievably fast. An algorithm of Θ(2) can take so long to
solve even a small problem that it is of no practical value. Even if we greatly increase
the speed of the computer, the results are much the same. We now see more than ever
why we added efficiency as a desirable feature for an algorithm and why future
advances in computer technology won’t change this. No matter how fast computers get,

they will not be able to solve a problem of size n = 100 using an algorithm of Θ(2) in
any reasonable period of time.

The algorithm we have described here for testing an arbitrary graph for Hamiltonian
circuits is an example of a brute force algorithm—one that beats the problem into
submission by trying all possibilities. In Chapter 1, we described a brute force
algorithm for winning a chess game; it consisted of looking at all possible game
scenarios from any given point on and then picking a winning one. This is also an
exponential algorithm. Some very practical problems have exponential solution
algorithms. For example, an e-mail message that you send over the Internet is routed
along the shortest possible path through intermediate computers from your mail

2 n

2

n 16

n n

n

server computer to the destination mail server computer. An exponential algorithm to
solve this problem would examine all possible paths to the destination and then use the
shortest one. As you can imagine, the Internet uses a better (more efficient) algorithm
than this one!

Are there problems for which no polynomially bounded algorithm exists? Such
problems are called intractable; they are solvable, but the solution algorithms all
require so much work as to be virtually useless. The Hamiltonian circuit problem is
suspected to be such a problem, but we don’t really know for sure! No one has yet
found a solution algorithm that works in polynomial time, but neither has anyone
proved that such an algorithm does not exist. This is a problem of great interest in
computer science. A surprising number of problems fall into this “suspected
intractable” category. Here’s another one, called the bin-packing problem: Given an
unlimited number of bins of volume X units and given n objects, all of volume between
0 and X, find the minimum number of bins needed to store the n objects. A brute force
algorithm would try all possibilities, which again is not a polynomial algorithm. Any
manufacturer who ships sets of various items in standard-sized cartons or anyone who
wants to store variable-length video clips on a set of DVDs in the most efficient way
would be interested in a polynomial algorithm that solves this minimization problem.

Problems for which no known polynomial solution algorithm exists are sometimes
approached via approximation algorithms. These algorithms don’t solve the problem,
but they provide a close approximation to a solution. (See Exercise 2 of Chapter 1.) For
example, an approximation algorithm to solve the bin-packing problem is to take the
objects in order, put the first one into bin 1, and stuff each remaining object into the
first bin that can hold it. This (reasonable) approach may not give the absolute
minimum number of bins needed, but it gives a first cut at the answer. (Anyone who
has watched passengers stowing carry-on baggage in an airplane has seen this
approximation algorithm at work.)

For example, suppose a sequence of four objects with volumes of 0.3, 0.4, 0.5, and 0.6
are stored using the “first-fit” algorithm described previously. The result requires three
bins, which would be packed as shown in Figure 3.28. However, this is not the optimal
solution (see Exercise 34 at the end of the chapter).

Figure 3.28

A first-fit solution to a bin-packing problem

In Chapter 12, we will learn that there are problems that cannot be solved

algorithmically, even if we are willing to accept an extremely inefficient solution.

Practice Problems

Consider the following graph:

Draw a tree similar to Figure 3.24 showing all paths from A and

highlighting those that are Hamiltonian circuits (these are the same

two circuits as before). How many paths have to be examined?

1.

The following tree shows all paths with two links that begin at node A

in some graph. Draw the graph.

2.

If an algorithm were determined to have an order of magnitude of n ,

do you think it would be classified as polynomial or exponential?

Explain.

3.

Chapter 3: The Efficiency of Algorithms: 3.6
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

3.6 Summary of Level 1
We defined computer science as the study of algorithms, so it is appropriate that Level
1 was devoted to exploring algorithms in more detail. In Chapter 2, we discussed how

n

to represent algorithms using pseudocode. Pseudocode provides us with a flexible
language for expressing the building blocks from which algorithms can be constructed.
These building blocks include assigning a particular value to a quantity, choosing one
of two next steps on the basis of some condition, or repeating steps in a loop.

Laboratory Experience 6

The various sorting algorithms examined in Laboratory Experience 4 (selection
sort, quicksort, etc.) do different amounts of work on the same data sets. But
how do these various workloads affect the actual running time of the
algorithms? In this Laboratory Experience, you can run these sorting
algorithms and find their wall-clock running time on different sizes of input. In
addition, because you can see the patterns of values falling into place in a large
list while an algorithm runs, you will get a much better understanding of how
each sorting algorithm moves values around to accomplish its task.

We developed algorithmic solutions to three very practical problems: searching for a
name in a list of names, finding the largest number in a list of numbers, and searching
for a particular pattern of characters within a segment of text. In Chapter 3, we noted
that computer scientists develop algorithms to be used and thus there is a set of
desirable properties for algorithms, including ease of understanding, elegance, and
efficiency, in addition to correctness. Of these, efficiency—which may be either time
efficiency or space efficiency—is the most easily quantifiable.

A convenient way to classify the time efficiency of algorithms is by examining the
order of magnitude of the work they do. Algorithms that are of differing orders of
magnitude do fundamentally different amounts of work. Regardless of the constant
factor that reflects peripheral work or how fast the computer on which these
algorithms execute, for problems with sufficiently large input, the algorithm of the
lowest order of magnitude requires the least time.

We analyzed the time efficiency of the sequential search algorithm and discovered that
it is an Θ(n) algorithm in both the worst case and the average case. We found a

selection sort algorithm that is Θ(n), we found a binary search algorithm that is Θ(lg n),
and we analyzed the pattern-matching algorithm from Chapter 2. By examining the
data cleanup problem, we learned that algorithms that solve the same task can indeed
differ in the order of magnitude of the work they do, sometimes by employing a
time/space trade-off. We also learned that there are algorithms that require more than
polynomially bounded time to complete their work and that such algorithms may take
so long to execute, regardless of the speed of the computer on which they are run, that
they provide no practical solution. Some important problems may be intractable—that
is, have no polynomially bounded solution algorithms.

Some computer scientists work on trying to decide whether a particular problem is
intractable. Some work on finding more efficient algorithms for problems—such as
searching and sorting—that are so common that a more efficient algorithm would

2

greatly improve productivity. Still others seek to discover algorithms for new problems.
Thus, as we said, the study of algorithms underlies much of computer science. But
everything we have done so far has been a pencil-and-paper exercise. In terms of the
definition of computer science that we gave in Chapter 1, we have been looking at the
formal and mathematical properties of algorithms. It is time to move on to the next
part of that definition: the hardware realizations of algorithms. When we execute real
algorithms on real computers, those computers are electronic devices. How does an
electronic device “understand” an algorithm and carry out its instructions? We begin to
explore these questions in Chapter 4.

Chapter 3: The Efficiency of Algorithms
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter Review

Exercises

Use Gauss’s approach to find the following sum:a.

Use Gauss’s approach to find a formula for the sum of the even

numbers from 2 to 2n:

Your formula will be an expression involving n.

b.

1.

An English Christmas carol, “The Twelve Days of Christmas,” dates from

the late 1700s. The twelve verses in the song are cumulative, each verse

adding an additional gift given by “my true love.” The twelfth verse says

“On the twelfth day of Christmas, my true love gave to me…”

2.

Use Gauss’s formula to find the total number of gifts given on Day

12.

a.

How many total gifts are given over all 12 days? Hint:b.

The Fibonacci sequence of numbers is defined as follows: The first and

second numbers are both 1. After that, each number in the sequence is

the sum of the two preceding numbers. Thus, the Fibonacci sequence is as

follows:

If F(n) stands for the nth value in the sequence, then this definition can be

expressed as

Using the definition of the Fibonacci sequence, compute the value of

F(20).

a.

A formula for F(n) is

Using the formula (and a calculator), compute the value of F(20).

b.

What are your opinions on the relative clarity, elegance, and

efficiency of the two algorithms (using the definition and using the

formula) to compute F(20)? Would your answer change if you

considered F(100)?

c.

3.

A tennis tournament has 342 players. A single match involves 2 players.

The winner of a match will play the winner of a match in the next round,

whereas losers are eliminated from the tournament. The 2 players who

have won all previous rounds play in the final game, and the winner wins

the tournament. What is the total number of matches needed to

determine the winner?

Here is one algorithm to answer this question. Compute 342 / 2 = 171a.

4.

to get the number of pairs (matches) in the first round, which results

in 171 winners to go on to the second round. Compute 171 / 2 = 85

with 1 left over, which results in 85 matches in the second round

and 85 winners, plus the 1 left over, to go on to the third round. For

the third round compute 86 / 2 = 43, so the third round has 43

matches, and so on. The total number of matches is 171 + 85 + 43 + …

Finish this process to find the total number of matches.

Here is another algorithm to solve this problem. Each match results

in exactly one loser, so there must be the same number of matches

as losers in the tournament. Compute the total number of losers in

the entire tournament. (Hint: This isn’t really a computation; it is a

one-sentence argument.)

b.

What are your opinions on the relative clarity, elegance, and

efficiency of the two algorithms?

c.

We have said that the average number of comparisons needed to find a

name in an n-element list using sequential search is slightly higher than

n/2. In this problem, we find an exact expression for this average.

Suppose a list of names has an odd number of names, say 15 At

what position is the middle name? Using sequential search, how

many comparisons are required to find the middle name? Repeat

this exercise with a few more odd numbers until you can do the

following: If there are n names in the list and n is an odd number,

write an expression for the number of comparisons required to find

the middle name.

a.

Suppose a list of names has an even number of names, say 16. At

what positions are the two “middle” names? Using sequential

search, how many comparisons are required to find each of these?

What is the average of these two numbers? Repeat this exercise with

a few more even numbers until you can do the following: If there

are n names in the list and n is an even number, write an expression

for the average number of comparisons required to find the two

middle names.

b.

Noting that half the names in a list fall before the midpoint and half

after the midpoint, use your answer to Parts a and b to write an

exact expression for the average number of comparisons done using

sequential search to find a name that occurs in an n-element list.

c.

5.

Here is a list of seven names:6.

Sherman, Jane, Ted, Elise, Raul, Maki, John

Search this list for each name in turn, using sequential search and

counting the number of comparisons for each name. Now take the seven

comparison counts and find their average. Did you get a number that you

expected? Why?

Perform a selection sort on the list 7, 4, 2, 9, 6. Show the list after each

exchange that has an effect on the list ordering.

7.

The selection sort algorithm could be modified to stop when the unsorted

section of the list contains only one number, because that one number

must be in the correct position. Show that this modification would have

no effect on the number of comparisons required to sort an n-element list.

8.

Exercises 9-12 refer to another algorithm, called bubble sort, which sorts an
n-element list. Bubble sort makes multiple passes through the list from front to
back, each time exchanging pairs of entries that are out of order. Here is a
pseudocode version:

For each of the following lists, perform a bubble sort, and show the list

after each exchange. Compare the number of exchanges done here and in

the Practice Problem at the end of Section 3.3.3.

4, 8, 2, 6a.

12, 3, 6, 8, 2, 5, 7b.

D, B, G, F, A, C, E, Hc.

9.

Explain why the bubble sort algorithm does Θ(n) comparisons on an

n-element list.

10.

Suppose selection sort and bubble sort are both performed on a list that is

already sorted. Does bubble sort do fewer exchanges than selection sort?

Explain.

11.

Bubble sort can be improved. Smart bubble sort keeps track of how

many exchanges are done within any single pass through the unsorted

section of the list. If no exchanges occur, then the list is sorted and the

algorithm should stop.

Write a pseudocode version of the smart bubble sort algorithm.a.

Perform a smart bubble sort on the following list. How many

comparisons are required?

7, 4, 12, 9, 11

b.

Describe the best-case scenario for smart bubble sort on an

n-element list. How many comparisons are required? How many

exchanges are required?

c.

Under what circumstances does smart bubble sort do the same

number of comparisons as regular bubble sort?

d.

12.

This exercise discusses a new algorithm to sort an n-element list.

A permutation of a list is any arrangement of the list items. For

example, 2, 4 and 4, 2 are the two permutations of the list 2, 4. Find

all permutations of the list 4, 3, 7.

a.

Given an n-element list, the number of permutations can be counted

as follows. There are n positions in the list. Any of the n items can

occupy position 1:

n, , , , … ,

,

Once the item for position 1 has been chosen, any of the remaining

n - 1 items can occupy position 2:

n, n − 1, , , … , ,

b.

13.

2

There are then n − 2 choices for position 3, etc., until there is only

one choice left for the last position:

n, n − 1, n − 2, n − 3, … 3, 2, 1

The total number of permutations is the product

n(n − 1)(n − 2)(n − 3) … (3)(2)(1)

This value is called n factorial and is denoted by n!. Compute the

value of 3!. How many permutations did you find in Part a?

Here is a pseudocode description of the new sorting algorithm. It

first generates all possible permutations of the list elements and

then looks for which of these is the sorted-order permutation.

To write this algorithm in complete detail, we would need to explain

Step 5:

Write the next permutation in this list

c.

and Step 10:

Check whether list j is sorted

in terms of more primitive operations. For simplicity, assume that

each execution of Step 5 is one work unit and that each execution of

Step 10 is also one work unit. Explain the best case for this

algorithm and give an expression for the total number of work units

required. Explain the worst case and give an expression for the total

number of work units required.

Selection sort is Θ(n) and the new sorting algorithm is Θ(n!). Fill in

the following table, assuming a work rate of 0.0001 seconds per unit

of work.

d.

Comment on the space efficiency of the new algorithm.e.

Algorithms A and B perform the same task. On input of size n, algorithm A

executes 0.003n instructions, and algorithm B executes 243n instructions.

Find the approximate value of n above which algorithm B is more

efficient. (You may use a calculator or spreadsheet.)

14.

Suppose a metropolitan area is divided into four school districts: 1, 2, 3, 4.

The State Board of Education keeps track of the number of student

transfers from one district to another and the student transfers within a

district. This information is recorded each year in a 4 × 4 table as shown

here. The entry in row 1, column 3 (314), for example, shows the number

of student transfers from district 1 to district 3 for the year. The entry in

row 1, column 1 (243) shows the number of student transfers within

district 1.

1 2 3 4

1 243 187 314 244

2 215 420 345 172

3 197 352 385 261

15.

2

2

1 2 3 4

4 340 135 217 344

Suppose there are n school districts, and the Board of Education

maintains an n × n table.

Write a pseudocode algorithm to print out the table, that is, to print

each of the entries in the table. Write an expression for the number

of print statements the algorithm executes.

a.

Write a pseudocode algorithm to print n copies of the table, one to

give to each of the n school district supervisors. Write an expression

forthe number of print statements the algorithm executes.

b.

What is the order of magnitude of the work done by the algorithm

in Part b if the unit of work is printing a table element?

c.

Write the data list that results from running the shuffle-left algorithm to

clean up the following data. Find the exact number of copies done.

3 0 0 2 6 7 0 0 5 1

16.

Write the resulting data list and find the exact number of copies done by

the converging-pointers algorithm when it is executed on the data in

Exercise 16.

17.

Explain in words how to modify the shuffle-left data cleanup algorithm to

slightly reduce the number of copies it makes. (Hint: Must item n always

be copied?) If this modified algorithm is run on the data list of Exercise 16,

exactly how many copies are done?

18.

The shuffle-left algorithm for data cleanup is supposed to perform n(n − 1)

copies on a list consisting of n 0s (zeros). Confirm this result for the

following list:

0 0 0 0 0 0

19.

Consider the following list of names.

Arturo, Elsa, JoAnn, John, Jose, Lee, Snyder, Tracy

20.

Use binary search to decide whether Elsa is in this list. What names

will be compared with Elsa?

a.

Use binary search to decide whether Tracy is in this list. What

names will be compared with Tracy?

b.

Use binary search to decide whether Emile is in this list. What

names will be compared with Emile?

c.

Use the binary search algorithm to decide whether 35 is in the following

list:

3, 6, 7, 9, 12, 14, 18, 21, 22, 31, 43

What numbers will be compared with 35?

21.

If a list is already sorted in ascending order, a modified sequential search

algorithm can be used that compares against each element in turn,

stopping if a list element exceeds the target value. Write a pseudocode

version of this short sequential search algorithm.

22.

This exercise refers to short sequential search (see Exercise 22).

What is the worst-case number of comparisons of short sequential

search on a sorted n-element list?

a.

What is the approximate average number of comparisons to find an

element that is in a sorted list using short sequential search?

b.

Is short sequential search ever more efficient than regular

sequential search? Explain.

c.

23.

Draw the tree structure that describes binary search on the eight-element

list in Exercise 20. What is the number of comparisons in the worst case?

Give an example of a name to search for that requires that many

comparisons.

24.

Draw the tree structure that describes binary search on a list with 16

elements. What is the number of comparisons in the worst case?

25.

We want to find an exact formula for the number of comparisons that

binary search requires in the worst case on an n-element list. (We already

know the formula is Θ(lg n).)

If x is a number that is not an integer, then ⌊x⌋, called the floor

function of x, is defined to be the largest integer less than or equal to

a.

26.

x. For example, ⌊3.7⌋ = 3 and ⌊5⌋ = 5. Find the following values: ⌊1.2⌋,

⌊2.3⌋, ⌊8.9⌋, ⌊-4.6⌋.

If n is not a power of 2, then lg n is not an integer. If n is between 8

and 16, for example, then lg n is between 3 and 4 (because lg 8 = 3

and lg 16 = 4). Complete the following table of values:

n ⌊lg n⌋

2 1

3

4 2

5

6

7

8 3

b.

For n = 2, 3, 4, 5, 6, 7, 8, draw a tree structure similar to Figure 3.19

to describe the positions searched by binary search. For each value

of n, use the tree structure to find the number of comparisons in the

worst case, and complete the following table:

n Number of Compares, Worst
Case

2

3

4 3

5

6

7 3

8

c.

Comparing the tables of Parts b and c, find a formula involving :lg n;d.

for the number of comparisons binary search requires in the worst

case on an n-element list. Test your formula by drawing trees for

other values of n.

Using the tree in Figure 3.19, find the number of comparisons to find each

of items 1-7 in a seven-element list using binary search. Then find the

average. Compare this with the worst case.

27.

At the end of Section 3.4.2, we talked about the trade-off between using

sequential search on an unsorted list as opposed to sorting the list and

then using binary search. If the list size is n = 100,000, about how many

worst-case searches must be done before the second alternative is better

in terms of number of comparisons? (Hint: Let p represent the number of

searches done.)

28.

Suppose the pattern-matching problem is changed to require locating

only the first instance, if any, of the pattern within the text.

Describe the worst case, give an example, and give the exact

number of comparisons (of a pattern character with a text

character) required.

a.

Describe the best case, give an example, and give the exact number

of comparisons required.

b.

29.

Suppose you use the brute force (unimproved) algorithm to search for a

Hamiltonian circuit in the graph shown here.

How many links would such a circuit have?

How many different paths would this algorithm examine?

30.

If this algorithm is run on a computer where it takes 0.0001 seconds to

examine a single path, what is the total time required to examine all

paths?

On the same computer, what is the approximate total time required to

examine all paths in a graph with 12 nodes, each of which has four

choices for the next node?

An Euler path in a graph (named for the Swiss mathematician Leonhard

Euler, 1707–1783) is a path that uses each edge of the graph exactly once.

For example, this graph clearly has an Euler path A-B-D-C-A.

Decide which of the graphs on the following page have Euler paths,

and write out such a path if one exists. (Unlike Hamiltonian circuits, an

Euler path need not end at the same node fromm which it starts, and

can go through a given node more than once.)

Like the Hamiltonian circuit problem, there is a brute force algorithm

to determine whether a graph has an Euler path, again by testing all

possibilities. You probably used a variation of this algorithm to solve

Part a. But the Euler path problem has another solution. The degree of

a node is the number of edges at that node. A node with odd degree is

an odd node and a node with even degree is an even node. In the first

graph of Part a, nodes A and D are even (degree 2) and nodes B and C

are odd (degree 3). An Euler path exists in any graph with exactly 0 or

2 odd nodes. Which of the following graphs have Euler paths and why?

Write out such a path if one exists.

31.

Here is a pseudocode version of this algorithm for a graph with n

nodes labeled 1 to n:

What is the order of magnitude of this algorithm where the “work

unit” is checking whether an edge exists (Step 8)?

Is the Euler path problem intractable?

At about what value of n does an algorithm that does 100n instructions

become more efficient than one that does 0.01(2) instructions? (Use a

calculator or spreadsheet.)

32.

An algorithm that is Θ(n) takes 10 seconds to execute on a particular

computer when n = 100. How long would you expect it to take when

n = 500?

a.

An algorithm that is Θ(n) takes 10 seconds to execute on a

particular computer when n = 100. How long would you expect it to

take when n = 500?

b.

33.

Find an optimal solution to the bin-packing problem described in Section

3.5.

34.

In the data cleanup problem, we assumed that the items were stored in a

list with a fixed number of positions. Each item could be examined by

giving its position in the list. This arrangement of data is called an array.

Here is an array of four items:

Another way to arrange items is to have a way to locate the first item and

then have each item “point to” the next item. This arrangement of data is

called a linked list. Here are the same four items in a linked list

arrangement:

To examine any item in a linked list, one must start with the first item and

follow the pointers to the esired item.

Unlike arrays, which are fixed in size, linked lists can shrink and grow. An

item can be eliminated from a linked list by changing the pointer to that

item so that it points to the next item instead.

Draw the linked list that results when item 13 is eliminated from the

foregoing linked list.

a.

35.

2

n

2

Draw the linked list that results when data cleanup is performed on

the following linked list.

b.

Describe (informally) an algorithm to do data cleanup on a linked

list. You may assume that neither the first item nor the last item has

a value of 0, and you may assume the existence of operations such

as “follow pointer” and “change pointer.” If these operations are the

unit of work used, show that your algorithm is an Θ(n) algorithm,

where n is the number of items in the list.

c.

Below is a pseudocode algorithm that prints a set of output values:

Let n have the value 4. Write the values printed out by this

algorithm.

a.

Let n have the value 8. Write the values printed out by this

algorithm.

b.

Which of the following best describes the efficiency of this

algorithm, where the “work unit” is printing a value?

Θ(n) Θ(n lg n) Θ(n) Θ(lg n)

c.

36.

2

How many work units would you expect this algorithm to do if

n = 16?

d.

Chapter 2 contains an algorithm that finds the largest value in a list of n

values.

What is the order of magnitude of the largestvalue algorithm, where

the work unit is comparisons of values from the list?

a.

Suppose that you want to find the second largest value in the list.

Find the order of magnitude of the work done if you use the

following algorithm: Sort the list, using selection sort, then directly

get the second-largest value.

b.

Suppose that you want to find the second-largest value in the list.

Find the order of magnitude of the work done if you use the

following algorithm: Run the largest-value algorithm twice, first to

find (and eliminate from the list) the largest value, then to find the

second-largest value.

c.

37.

Chapter 3: The Efficiency of Algorithms
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter Review

Challenge Work

You are probably familiar with the children’s song “Old MacDonald Had a Farm.”

The first verse is

1.

In successive verses, more animals are added, and the middle refrain gets longer

and longer. For example, the second verse is

2.

Show that after n verses of this song have been sung, the total number of syllables

sung would be given by the expression 22n(n + 1) / 2 + 37n (You may assume that

all animal names and all animal sounds consist of one syllable, as in cow, pig,

moo, oink, and so on.)

a.

If singing this song is the algorithm, and the work unit is singing one syllable,

what is the order of magnitude of the algorithm?

b.

Linear programming involves selecting values for a large number of quantities so that
they satisfy a set of inequalities (such as x + y + z ≤ 100) while at the same time
maximizing (or minimizing) some particular function of these variables. Linear
programming has many applications in communications and manufacturing. A trial-
and-error approach to a linear programming problem would involve guessing at values
for these variables until all of the inequalities are satisfied, but this may not produce
the desired maximum (or minimum) value. In addition, real-world problems may
involve hundreds or thousands of variables. A common algorithm to solve linear
programming problems is called the simplex method. Although the simplex method
works well for many common applications, including those that involve thousands of
variables, its worst-case order of magnitude is exponential. Find information on the
work of N. Karmarkar of Bell Labs, who discovered another algorithm for linear
programming that is of polynomial order in the worst case and is faster than the
simplex method in average cases.

Chapter 3: The Efficiency of Algorithms
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:

© 2013 , Cengage Learning

Chapter Review

Additional Resources

 For additional print and/or online resources relevant to this

chapter, visit the Computer Science CourseMate at login.cengagebrain.com.

Chapter 3: The Efficiency of Algorithms
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

© 2014 Cengage Learning Inc. All rights reserved. No part of this work may by reproduced or used in any form or by any means -
graphic, electronic, or mechanical, or in any other manner - without the written permission of the copyright holder.

Chapter : Introduction
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Part Introduction

Some computer scientists are interested only in the logical and mathematical
properties of algorithms—the material presented in Level 1. Others are interested in
discovering and studying a solution and using that solution to produce results more
efficiently than was previously possible. They want to execute algorithms on real
computers.

Level 2 of the text takes us into a fascinating region of computer science, the hardware
world. Chapter 4 examines the fundamental building blocks used to construct
computers. It discusses how to represent and store information inside a computer, how
to use the principles of symbolic logic to design gates, and how to use gates to construct

circuits that perform operations such as adding numbers, comparing numbers, and
fetching instructions. These ideas are part of the branch of computer science known as
hardware design, also called logic design. The second part of Level 2, Chapter 5,
investigates computer hardware from a higher-level perspective called computer
organization. This chapter introduces the four major subsystems of a modern
computer (memory, input/output, arithmetic/logic unit, and control unit), demonstrates
how they are built from the elementary building blocks described in Chapter 4, and
shows how these subsystems can be organized into a complete, functioning computer
system.

Chapter : Introduction
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

© 2014 Cengage Learning Inc. All rights reserved. No part of this work may by reproduced or used in any form or by any
means - graphic, electronic, or mechanical, or in any other manner - without the written permission of the copyright holder.

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter 4
The Building Blocks: Binary Numbers, Boolean Logic, and Gates

4.1 Introduction

4.2 The Binary Numbering System

4.2.1 Binary Representation of Numeric and Textual Information

4.2.2 Binary Representation Of Sound and Images

4.2.3 The Reliability Of Binary Representation

4.2.4 Binary Storage Devices

4.3 Boolean Logic and Gates

4.3.1 Boolean Logic

4.3.2 Gates

4.4 Building Computer Circuits

4.4.1 Introduction

4.4.2 A Circuit Construction Algorithm

4.4.3 Examples Of Circuit Design and Construction

4.5 Control Circuits

4.6 Conclusion

Chapter Review

Exercises

Challenge Work

Additional Resources

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates: 4.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

4.1 Introduction

Level 1 of the text investigated the algorithmic foundations of computer science. It
developed algorithms for searching tables, finding largest and smallest values, locating
patterns, sorting lists, and cleaning up bad data. It also showed how to analyze and
evaluate algorithms to demonstrate that they are not only correct but efficient and
useful as well.

Our discussion assumed that these algorithms would be executed by something called a
computing agent, an abstract concept representing any object capable of understanding
and executing our instructions. At the time we didn’t care what that computing agent
was—person, mathematical model, computer, or robot. However, in this section of the
text we do care what our computing agent looks like and how it is able to execute
instructions and produce results.

In this chapter, we introduce the fundamental building blocks of all computer systems
—binary representation, Boolean logic, gates, and circuits.

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates: 4.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

4.2 The Binary Numbering System
Our first concern with learning how to build computers is understanding how
computers represent information. Their internal storage techniques are quite different
from the way you and I represent information when we write a note or do a quick
calculation on paper.

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates: 4.2.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

4.2.1 Binary Representation of Numeric and Textual Information

People generally represent numeric and textual information (language differences
aside) by using the following notational conventions:

The 10 decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 for numeric values such as 459.a.

Sign/magnitude notationfor signed numbers—that is, a + or − sign placed

immediately to the left of the digits; +31 and −789 are examples.

b.

Decimal notation for real numbers, with a decimal point separating the whole

number part from the fractional part; an example is 12.34.

c.

The 26 letters A, B, C, …, Z for textual information (as well as lowercase lettersd.

and a few special symbols for punctuation).

You might suppose that these well-known schemes are the same conventions that
computers use to store information in memory. Surprisingly, this is not true.

There are two types of information representation: The external representation of
information is the way information is represented by humans and the way it is entered
at a keyboard or displayed on a printer or screen. The internal representation of
information is the way it is stored in the memory of a computer. This difference is
diagrammed in Figure 4.1.

Figure 4.1

Distinction between external and internal representation of information

Externally, computers do use decimal digits, sign/magnitude notation, and the
26-character alphabet. However, virtually every computer ever built stores
data—numbers, letters, graphics, images, sound—internally using the binary
numbering system.

Binary is a base-2 positional numbering system not unlike the more familiar decimal,
or base-10, system used in everyday life. In these systems, the value or “worth” of a
digit depends not only on its absolute value but also on its specific position within a
number. In the decimal system, there are 10 unique digits (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9),
and the value of the positions in a decimal number is based on powers of 10. Moving

from right to left in a number, the positions represent ones (10), tens (10), hundreds

(10), thousands (10), and so on. Therefore, the decimal number 2,359 is evaluated as
follows:

0 1

2 3

The same concepts apply to binary numbers except that there are only two digits, 0 and
1, and the value of the positions in a binary number is based on powers of 2. Moving

from right to left, the positions represent ones (2), twos (2), fours (2), eights (2),

sixteens (2), and so on. The two digits, 0 and 1, are frequently referred to as bits, a
contraction of the two words binary digits.

For example, the six-digit binary number 111001 is evaluated as follows:

The five-digit binary quantity 10111 is evaluated in the following manner:

Evaluating a binary number is quite easy, because 1 times any value is simply that
value, and 0 times any value is always 0. Thus, when evaluating a binary number, use
the following binary-to-decimal algorithm: Whenever there is a 1 in a column, add the
positional value of that column to a running sum, and whenever there is a 0 in a
column, add nothing. The final sum is the decimal value of this binary number. This is
the procedure we followed in the previous two examples.

A binary-to-decimal conversion table for the values 0–31 is shown in Figure 4.2. You
might want to evaluate a few of the binary values using this algorithm to confirm their
decimal equivalents.

Figure 4.2
Binary-to-decimal conversion table

Binary Decimal

0 0

1 1

10 2

0 1 2 3

4

Binary Decimal

11 3

100 4

101 5

110 6

111 7

1000 8

1001 9

1010 10

1011 11

1100 12

1101 13

1110 14

1111 15

10000 16

10001 17

10010 18

10011 19

10100 20

10101 21

10110 22

10111 23

11000 24

11001 25

11010 26

11011 27

11100 28

11101 29

Binary Decimal

11110 30

11111 31

Any whole number that can be represented in base 10 can also be represented in base
2, although it may take more digits because a single decimal digit contains more
information than a single binary digit. Note that in the first example shown on the
previous page it takes only two decimal digits (5 and 7) to represent the quantity 57 in
base 10, but it takes six binary digits (1, 1, 1, 0, 0, and 1) to express the same value in
base 2.

To go in the reverse direction—that is, to convert a decimal value into its binary
equivalent—we use the decimal-to-binary algorithm, which is based on successive
divisions by 2. Dividing the original decimal value by 2 produces a quotient and a
remainder, which must be either a 0 or a 1. Record the remainder digit and then divide
the quotient by 2, getting a new quotient and a second remainder digit. The process of
dividing by 2, saving the quotient, and writing down the remainder is repeated until
the quotient equals 0. The sequence of remainder digits, when written left to right from
the last remainder digit to the first, is the binary representation of the original decimal
value. For example, here is the conversion of the decimal value 19 into binary:

In this example, the remainder digits, when written left to right from the last one to the
first, are 10011. This is the binary form of the decimal value 19. To confirm this, we can
convert this value back to decimal form using the binary-to-decimal algorithm.

In every computer, there is a maximum number of binary digits that can be used to
store an integer. Typically, this value is 16, 32, or 64 bits. Once we have fixed this
maximum number of bits (as part of the design of the computer), we also have fixed

the largest unsigned whole number that can be represented in this computer. For
example, Figure 4.2 used at most 5 bits to represent binary numbers. The largest value
that could be represented is 11111, not unlike the number 99999, which is the
maximum mileage value that can be represented on a five-digit decimal odometer.
11111 is the binary representation for the decimal integer 31. If there were 16 bits
available, rather than 5, then the largest integer that could be represented is

A Not So Basic Base

The decimal system has been in use for so long that most people cannot
imagine using a number system other than base 10. Tradition says it was
chosen because we have 10 fingers and 10 toes. However, the discussion of the
past few pages should convince you that there is nothing unique or special
about decimal numbering, and the basic operations of arithmetic (addition,
subtraction, multiplication, and division) work just fine in other bases, such as
base 2. In addition to binary, computer science makes frequent use of octal
(base 8) and hexadecimal (base 16). Furthermore, it is not only computers that
utilize nondecimal bases. For example, the Native American Yuki tribe of
northern California reportedly used base 4, or quaternary numbers, counting
using the spaces between fingers rather than on the fingers themselves. The
pre-Columbian Mayans of Mexico and Central America used a vigesimal system,
or base 20, whereas ancient Babylonians employed sexagesimal, or base 60 (and
we are quite sure that members of both cultures had the same number of
fingers and toes as twenty-first-century human beings!).

This quantity is 2 + 2 + … + 2 + 2 + 2 = 65,535. Unsigned integers larger than this
cannot be represented with 16 binary digits. Any operation on this computer that
produces an unsigned value greater than 65,535 results in the error condition called
arithmetic overflow. This is an attempt to represent an integer that exceeds the
maximum allowable value. The computer could be designed to use more than 16 bits to
represent integers, but no matter how many bits are ultimately used, there is always a
maximum value beyond which the computer cannot correctly represent any integer.
This characteristic is one of the major differences between the disciplines of
mathematics and computer science. In mathematics, a quantity may usually take on
any value, no matter how large. Computer science must deal with a finite—and
sometimes quite limited—set of possible representations, and it must handle the errors
that occur when those limits are exceeded.

Arithmetic in binary is quite easy because we have only 2 digits to deal with rather
than 10. Therefore, the rules that define arithmetic operations such as addition and
subtraction have only 2 × 2 = 4 entries, rather than the 10 × 10 = 100 entries for decimal
digits. For example, here are the four rules that define binary addition:

15 14 2 1 0

The last rule says that 1 + 1 = 10, which has the decimal value 2.

To add two binary numbers, you use the same technique first learned in grade school.
Add each column one at a time from right to left, using the binary addition rules shown
above. In the column being added, you write the sum digit under the line and any carry
digit produced is written above the next column to the left. For example, addition of the
two binary values 7 (00111) and 14 (01110) proceeds as follows:

Start by adding the two digits in the rightmost column—the 1 and 0. This produces a
sum of 1 and a carry digit of 0; the carry digit gets “carried” to the second column.

Now add the carry digit from the previous column to the two digits in the second
column, which gives 0 + 1 + 1. From the rules above, we see that the (0 + 1) produces a
1. When this is added to the value 1, it produces a sum of 0 and a new carry digit of 1.

Adding the two digits in the third column plus the carry digit from the second column
produces 1 + 1 + 1, which is 11, or a sum of 1 and a new carry digit of 1.

Continuing in this right-to-left manner until we reach the leftmost column produces the
final result, 10101 in binary, or 21 in decimal.

Signed Numbers

Binary digits can represent not only whole numbers but also other forms of data,
including signed integers, decimal numbers, and characters. For example, to represent
signed integers, we can use the leftmost bit of a number to represent the sign, with 0
meaning positive (+) and 1 meaning negative (−). The remaining bits are used to
represent the magnitude of the value. This form of signed integer representation is
termed sign/magnitude notation, and it is one of a number of different techniques for
representing positive and negative whole numbers. For example, to represent the
quantity −49 in sign/ magnitude, we could use seven binary digits with 1 bit for the sign
and 6 bits for the magnitude:

The value +3 would be stored like this:

You might wonder how a computer knows that the seven-digit binary number 1110001
in the first example above represents the signed integer value −49 rather than the
unsigned whole number 113.

The answer to this question is that a computer does not know. A sequence of binary
digits can have many different interpretations, and there is no fixed, predetermined
interpretation given to any binary value. A binary number stored in the memory of a
computer takes on meaning only because it is used in a certain way. If we use the value
1110001 as though it were a signed integer, then it will be interpreted that way and will
take on the value −49. If it is used, instead, as an unsigned whole number, then that is
what it will become, and it will be interpreted as the value 113. The meaning of a
binary number stored in memory is based solely on the context in which it is used.

Initially, this might seem strange, but we deal with this type of ambiguity all the time in
natural languages. For example, in the Hebrew language, letters of the alphabet are
also used as numbers. Thus the Hebrew character aleph (א) can stand for either the
letter A or the number 1. The only way to tell which meaning is appropriate is to
consider the context in which the character is used. Similarly, in English, the word ball
can mean either a round object used to play games or an elegant formal party. Which
interpretation is correct? We cannot say without knowing the context in which the
word is used. The same is true for values stored in the memory of a computer system.
It is the context that determines the meaning of a binary string.

Sign/magnitude notation is quite easy for people to work with and understand, but,
surprisingly, it is used rather infrequently in real computer systems. The reason is the
existence of the very “messy” and unwanted signed number: 10000 … 0000. Because
the leftmost bit is a 1, this value is treated as negative. The magnitude is 0000 … 0000.
Thus this bit pattern represents the numerical quantity “negative zero,” a value that
has no real mathematical meaning and should not be distinguished from the other
representation for zero, 00000 … 0000. The existence of two distinct bit patterns for a
single numerical quantity causes some significant problems for computer designers.

For example, assume we are executing the following algorithmic operation on two
signed numbers a and b

when a has the value 0000 … 0 and b has the value 1000 … 0. Should they be considered
equal to each other? Numerically, the value −0 does equal +0, so maybe we should do
operation 1. However, the two bit patterns are not identical, so maybe these two values
are not equal, and we should do operation 2. This situation can result in programs that
execute in different ways on different machines.

Therefore, computer designers tend to favor signed integer representations that do not
suffer from the problem of two zeros. One of the most widely used is called two’s
complement representation. To understand how this method works, you need to write
down, in circular form, all binary patterns from 000 … 0 to 111 … 1 in increasing order.
Here is what that circle might look like using three-digit numbers:

In this diagram, the positive numbers begin at 000 and proceed in order around the
circle to the right. Negative numbers begin at 111 and proceed in order around the
circle to the left. The leftmost digit specifies whether the number is to be given a
positive interpretation (leftmost bit = 0) or a negative interpretation (leftmost bit = 1).

Bit
Pattern

Decimal
Value

000 0

001 +1

010 +2

011 +3

100 −4

101 −3

110 −2

111 −1

In this representation, if we add, for example, 3 + (−3), we get 0, as expected:

Note that in the two’s complement representation, there is only a single zero, the
binary number 000 … 0. However, the existence of a single pattern for zero leads to
another unusual situation. The total number of values that can be represented with n

bits is 2 , which is always an even number. In the previous example, n = 3, so there

were 2 = 8 possible values. One of these is used for 0, leaving seven remaining values,
which is an odd number. It is impossible to divide these seven patterns equally
between the positive and negative numbers, and in this example we ended up with
four negative values but only three positive ones. The pattern that was previously
“negative zero” (100) now represents the value −4, but there is no equivalent number
on the positive side, that is, there is no binary pattern that represents +4. In the two’s
complement representation of signed integers, you can always represent one more
negative number than positive. This is not as severe a problem as having two zeros,
though, and two’s complement is widely used for representing signed numbers inside a
computer.

This has been only a brief introduction to the two’s complement representation. A
Challenge Work problem at the end of this chapter invites you to investigate further the
underlying mathematical foundations of this interesting representational technique.

Fractional Numbers

n

3

Fractional numbers, such as 12.34 and -0.001275, can also be represented in binary by
using the signed-integer techniques we have just described. To do that, however, we
must first convert the number to scientific notation:

where M is the mantissa, B is the exponent base (usually 2), and E is the exponent. For
example, assume we want to represent the decimal quantity +5.75. In addition, assume
that we will use 16 bits to represent the number, with 10 bits allocated for representing
the mantissa and 6 bits for the exponent. (The exponent base B is assumed to be 2 and
is not explicitly stored.) Both the mantissa and the exponent are signed integer
numbers, so we can use either the sign/magnitude or two’s complement notations that
we just learned to represent each of these two fields. (In all the following examples, we
have chosen to use sign/magnitude notation.)

In binary, the value 5 is 101. To represent the fractional quantity 0.75, we need to
remember that the bits to the right of the decimal point (or binary point in our case)

have the positional values r , r , r , and so on, where r is the base of the numbering
system used to represent the number. When using decimal notation, these position

values are the tenths (10), hundredths (10), thousandths (10), and so on. Because r
is 2 in our case, the positional values of the digits to the right of the binary point are

halves (2), quarters (2), eighths (2), sixteenths (2), and so on. Thus,

Therefore, in binary 5.75 = 101.11. Using scientific notation, and an exponent base B =
2, we can write this value as

Next, we must normalize the number so that its first significant digit is immediately to
the right of the binary point. As we move the binary point, we adjust the value of the
exponent so that the overall value of the number remains unchanged. If we move the
binary point to the left one place (which makes the value smaller by a factor of 2), then
we add 1 to the exponent (which makes it larger by a factor of 2). We do the reverse
when we move the binary point to the right.

We now have the number in the desired format and can put all the pieces together. We
separately store the mantissa (excluding the binary point, which is assumed to be to the
left of the first significant digit) and the exponent, both of which are signed integers
and can be represented in sign/ magnitude notation. The mantissa is stored with its

−1 −2 −3

−1 −2 −3

−1 −2 −3 −4

sign–namely, 0, because it is a positive quantity–followed by the assumed binary point,
followed by the magnitude of the mantissa, which in this case is 10111. Next we store
the exponent, which is +3, or 000011 in sign/magnitude. The overall representation,
using 16 bits, is

For another example, let’s determine the internal representation of the fraction −5/16.

Textual Information

To represent textual material in binary, the system assigns to each printable letter or
symbol in our alphabet a unique number (this assignment is called a code mapping),
and then it stores that symbol internally using the binary equivalent of that number.
For example, here is one possible mapping of characters to numbers, which uses 8 bits
to represent each character.

To store the four-character string “BAD!” in memory, the computer would store the
binary representation of each individual character using the above 8-bit code.

We have indicated above that the 8-bit numeric quantity 10000001 is interpreted as the
character “!”. However, as we mentioned earlier, the only way a computer knows that
the 8-bit value 10000001 represents the symbol “!” and not the unsigned integer value
129 (128 + 1) or the signed integer value −1 (sign bit = negative, magnitude is 1) is by the
context in which it is used. If these 8 bits are sent to a display device that expects to be
given characters, then this value will be interpreted as an “!”. If, on the other hand, this
8-bit value is sent to an arithmetic unit that adds unsigned numbers, then it will be
interpreted as a 129 in order to make the addition operation meaningful.

To facilitate the exchange of textual information, such as word-processing documents
and electronic mail, between computer systems, it would be most helpful if everyone
used the same code mapping. Fortunately, this is pretty much the case. Currently, the
most widely used code for representing characters internally in a computer system is
called ASCII, an acronym for the American Standard Code for Information Interchange.
ASCII is an international standard for representing textual information in the majority
of computers. It uses 8 bits to represent each character, so it is able to encode a total of

2 = 256 different characters. These are assigned the integer values 0 to 255. However,
only the numbers 32 to 126 have been assigned so far to printable characters. The
remainder either are unassigned or are used for nonprinting control characters such
as tab, form feed, and return. Figure 4.3 shows the ASCII conversion table for the
numerical values 32–126.

Figure 4.3
ASCII conversion table

Keyboard
Character

Binary ASCII
Code

Integer
Equivalent

(blank) 00100000 32

! 00100001 33

“ 00100010 34

00100011 35

8

Keyboard
Character

Binary ASCII
Code

Integer
Equivalent

$ 00100100 36

% 00100101 37

& 00100110 38

’ 00100111 39

(00101000 40

) 00101001 41

* 00101010 42

+ 00101011 43

’ 00101100 44

− 00101101 45

. 00101110 46

/ 00101111 47

0 00110000 48

1 00110001 49

2 00110010 50

3 00110011 51

4 00110100 52

5 00110101 53

6 00110110 54

7 00110111 55

8 00111000 56

9 00111001 57

: 00111010 58

; 00111011 59

< 00111100 60

= 00111101 61

Keyboard
Character

Binary ASCII
Code

Integer
Equivalent

> 00111110 62

? 00111111 63

@ 01000000 64

A 01000001 65

B 01000010 66

C 01000011 67

D 01000100 68

E 01000101 69

F 01000110 70

G 01000111 71

H 01001000 72

I 01001001 73

J 01001010 74

K 01001011 75

L 01001100 76

M 01001101 77

N 01001110 78

O 01001111 79

P 01010000 80

Q 01010001 81

R 01010010 82

S 01010011 83

T 01010100 84

U 01010101 85

V 01010110 86

W 01010111 87

Keyboard
Character

Binary ASCII
Code

Integer
Equivalent

X 01011000 88

Y 01011001 89

Z 01011010 90

[01011011 91

\ 01011100 92

] 01011101 93

^ 01011110 94

_ 01011111 95

‘ 01100000 96

a 01100001 97

b 01100010 98

c 01100011 99

d 01100100 100

e 01100101 101

f 01100110 102

g 01100111 103

h 01101000 104

i 01101001 105

j 01101010 106

k 01101011 107

l 01101100 108

m 01101101 109

n 01101110 110

o 01101111 111

p 01110000 112

q 01110001 113

Keyboard
Character

Binary ASCII
Code

Integer
Equivalent

r 01110010 114

s 01110011 115

t 01110100 116

u 01110101 117

v 01110110 118

w 01110111 119

x 01111000 120

y 01111001 121

z 01111010 122

{ 01111011 123

: 01111100 124

] 01111101 125

~ 01111110 126

However, a code set called Unicode has gained popularity because it uses a 16-bit
representation for characters rather than the 8-bit format of ASCII. This means that it is

able to represent 2 = 65,536 unique characters instead of the 2 = 256 of ASCII. It
might seem like 256 characters are more than enough to represent all the textual
symbols that we would ever need—for example, 26 uppercase letters, 26 lowercase
letters, 10 digits, and a few dozen special symbols, such as +=m{}][\:”?><.,; $#@. Add
that all together and it still totals only about 100 symbols, far less than the 256 that can
be represented in ASCII. However, that is true only if we limit our work to Arabic
numerals and the Roman alphabet. The world grows more connected all the
time—helped along by computers, networks, and the Web—and it is critically
important that computers represent and exchange textual information using alphabets
in addition to these 26 letters and 10 digits. When we start assigning codes to symbols
drawn from alphabets such as Russian, Arabic, Chinese, Hebrew, Greek, Thai, Bengali,
and Braille, as well as mathematical symbols and special linguistic marks such as the
tilde, umlaut, and accent grave, it becomes clear that ASCII does not have nearly
enough room to represent them all. However, Unicode, with space for over 65,000
symbols, is large enough to accommodate all these symbols and many more to come. In
fact, Unicode has defined standard code mappings for more than 50,000 symbols from

16 8

literally hundreds of alphabets, and it is a way for users around the world to share
textual information regardless of the language in which they are writing. The Unicode
home page, which gives all the current standard mappings, is located at
www.unicode.org.

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates: 4.2.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

4.2.2 Binary Representation Of Sound and Images

During the first 30 to 40 years of computing, the overwhelming majority of
applications, such as word processing and spreadsheets, were text-based and limited to
the manipulation of characters, words, and numbers. However, sound and images are
now as important a form of representation as text and numbers because of the rapid
growth of the Web, the popularity of digitally encoded music, the emergence of digital
photography, and the almost universal availability of digital DVD movies. Most of us,
whether computer specialists or not, have had the experience of playing MP3 files,
e-mailing vacation pictures to friends and family, or enjoying a YouTube video clip. In
this section, we take a brief look at how sounds and images are represented in
computers, using the same binary numbering system that we have been discussing.

Sound is analog information, unlike the digital format used to represent text and
numbers discussed in the previous section. In a digital representation, the values for a
given object are drawn from a finite set, such as letters {A, B, C, …, Z} or a subset of
integers {0, 1, 2, 3, …, MAX}. In an analog representation, objects can take on any value.
For example, in the case of sound, a tone is a continuous sinusoidal waveform that
varies in a regular periodic fashion over time, as shown in Figure 4.4.

(Note: This diagram shows only a single tone. Complex sounds, such as symphonic music, are composed of
multiple overlapping waveforms. However, the basic ideas are the same.)

Figure 4.4

Example of sound represented as a waveform

Practice Problems

What is the value of the 8-bit binary quantity 10101000 if it is

interpreted

as an unsigned integer, anda.

as a signed integer represented in sign/magnitude notation?b.

1.

What does the unsigned decimal value 99 look like in binary using 8

bits?

2.

What do the signed integers −300 and +254 look like in binary using

10 bits and sign/magnitude integer representation?

3.

What is the value of the 8-bit binary quantity 10010111 when it is

interpreted as a sign/magnitude integer?

4.

Using 4 bits and two’s complement representation, what is the binary

representation of the following signed decimal values:

+6a.

−3b.

5.

Perform the following 5-bit binary addition showing the carry bit that

propagates to each column. Assume the numbers are unsigned binary

quantities:

6.

What does the three-character string “X+Y” look like internally using

the 8-bit ASCII code given in Figure 4.3? What does it look like in

16-bit Unicode? (Go to www.unicode.org to find the specific code

mappings for these three characters.)

7.

Using 10 bits to represent the mantissa (sign/magnitude) and 6 bits for

the exponent (also sign/magnitude), show the internal representation

of the following two values:

+ 0.25a.

− 32 1/16b.

8.

Explain exactly what happens when you add a 1 to the following

5-bit, two’s complement value: 01111

9.

Explain exactly what happens when you perform addition on the

following two sign/magnitude integer values:

10.

The amplitude (height) of the wave is a measure of its loudness—the greater the
amplitude, the louder the sound. The period of the wave, designated as T, is the time it
takes for the wave to make one complete cycle. The frequency f is the total number of
cycles per unit time measured in cycles/second, also called hertz, and defined as f = 1/T.
The frequency is a measure of the pitch, the highness or lowness of a sound. The higher
the frequency, the higher the perceived tone. A human ear can generally detect sounds
in the range of 20 to 20,000 hertz.

To store a waveform (such as the one in Figure 4.4) in a computer, the analog signal
must first be digitized, that is, converted to a digital representation. This can be done
using a technique known as sampling. At fixed time intervals, the amplitude of the
signal is measured and stored as an integer value. The wave is thus represented in the
computer in digital form as a sequence of sampled numerical amplitudes. For example,
Figure 4.5(a) shows the sampling of the waveform of Figure 4.4.

Figure 4.5

Digitization of an analog signal

Sampling the original signala.

Recreating the signal from the sampled valuesb.

This signal can now be stored inside the computer as the series of signed integer values
3, 7, 7, 5, 0, −3, −6, −6, …, where each numerical value is encoded in binary using the
techniques described in the previous section. From these stored digitized values, the
computer can re-create an approximation to the original analog wave. It would first
generate an amplitude level of 3, then an amplitude level of 7, then an amplitude level
of 7, and so on, as shown in Figure 4.5(b). These values would be sent to a sound-
generating device, like stereo speakers, which would produce the actual sounds based
on the numerical values received.

The accuracy with which the original sound can be reproduced is dependent on two
key parameters—the sampling rate and the bit depth. The sampling rat measures how
many times per second we sample the amplitude of the sound wave. Obviously, the
more often we sample, the more accurate the reproduction. Note, for example, that the
sampling shown in Figure 4.5(a) appears to have missed the peak value of the wave
because the peak occurred between two sampling intervals. Furthermore, the more
often we sample, the greater the range of frequencies that can be captured; if the
frequency of a wave is greater than or equal to the sampling rate, we may not sample
any points whatsoever on an entire waveform. For example, look at the following
sampling interval t, which is exactly equal to the period T of the wave being measured:

This rate of sampling produces a constant amplitude value, totally distorting the

original sound. In general, a sampling rate of R samples/second allows you to
reproduce all frequencies up to about R/2 hertz. Because the human ear can normally
detect sound up to about 20,000 hertz, a sampling rate of at least 40,000 samples per
second is necessary to capture all audible frequencies.

The bit depth is the number of bits used to encode each sample. In the previous section,
you learned that ASCII is an 8-bit character code, allowing for 256 unique symbols.
Unicode uses 16 bits, allowing for more than 65,000 symbols and greatly increasing the
number of symbols that can be represented. The same trend can be seen in sound
reproduction. Initially, 8 bits per sample was the standard, but the 256 levels of
amplitude that could be represented turned out to be insufficient for the sophisticated
high-end sound systems produced and marketed today. Most audio encoding schemes
today use either 16 or 24 bits per sample level, allowing for either 65,000 or 16,000,000
distinct amplitude levels.

There are many audio-encoding formats in use today, including WAV (Waveform Audio
File Format), AAC (Advanced Audio Coding), WMA (Windows Media Audio), and MIDI
(Musical Instrument Digital Interface). Probably the most popular and widely used
digital audio format is MP3, an acronym for MPEG-1, Audio Level 3 Encoding. This is a
digital audio encoding standard established by the Motion Picture Experts Group
(MPEG), a committee of the International Organization for Standardization (ISO) of the
United Nations. MP3 samples sound signals at the rate of 44,100 samples/second, using
16 bits per sample. This produces high-quality sound reproduction, which is why MP3
is the most widely used format for rock, opera, and classical music.

An image, such as a photograph, is also analog data but can also be stored using binary
representation. An image is a continuous set of intensity and color values that can be
digitized by sampling the analog information, just as is done for sound. The sampling
process, often called scanning, consists of measuring the intensity values of distinct
points located at regular intervals across the image’s surface. These points are called
pixels, for picture elements, and the more pixels used, the more accurate the encoding
of the image. The average human eye cannot accurately discern components closer
together than about 0.05–0.1 mm, so if the pixels, or dots, are sufficiently dense, they
appear to the human eye as a single, contiguous image. For example, a high-quality
digital camera stores about 5–10 million pixels per photograph. For a 3 in. × 5 in. image,

this is about 500,000 pixels/in. , or 700 pixels per linear inch. This means the individual
pixels are separated by about 1/700th of an inch, or 0.03 mm—too close together to be
individually visualized. Figure 4.6 enlarges a small section of a digitized photograph to
better show how it is stored internally as a set of discrete picture elements.

Figure 4.6

Example of a digitized photograph

Individual pixels in the photographa.

Photographb.

2

One of the key questions we need to answer is how much information is stored for
each pixel. Suppose we want to store a representation of a black-and-white image. The
easiest and most space-efficient approach is to mark each pixel as either white, stored
as a binary 0, or black, stored as a binary 1. The only problem is that this produces a
stark black-and-white image, with a highly sharp and unpleasant visual contrast. A
much better way, though it takes more storage, is to represent black-and-white images
using a gray scale of varying intensity. For example, if we use 3 bits per pixel, we can
represent 2³ = 8 shades of intensity from level 0, pure white, to level 7, pure black. An
example of this eight-level gray scale is shown in Figure 4.7. If we wanted more detail

than is shown there, we could use 8 bits per pixel, giving us 2 = 256 distinct shades of
gray.

Figure 4.7

An eight-level gray scale

We now can encode our image as a sequence of numerical pixel values, storing each
row of pixels completely, from left to right, before moving down to store the next row.
Each pixel is encoded as an unsigned binary value representing its gray scale intensity.
This form of image representation is called raster graphics, and it is used by such
well-known graphics standards as JPEG (Joint Photographer Experts Group), GIF
(Graphics Interchange Format), and BMP (bitmap).

8

Today, most images are not black and white, but are in color. To digitize color images,
we still measure the intensity value of the image at a discrete set of points, but we need
to store more information about each pixel. The most common format for storing color
images is the RGB encoding scheme, RGB being an acronym for Red-Green-Blue. This
technique describes a specific color by capturing the individual contribution to a pixel’s
color of each of the three colors, red, green, and blue. It uses one byte, or 8 bits, for
each color, allowing us to represent an intensity range of 0 to 255. The value 0 means
that there is no contribution from this color, whereas the value 255 means a full
contribution of this color.

For example, the color magenta is an equal mix of pure red and blue, which would be
RGB encoded as (255, 0, 255):

Red Green Blue

255 0 255

The color hot pink is produced by setting the three RGB values to

Red Green Blue

255 105 180

and harvest gold is rendered as

Red Green Blue

218 165 32

Using 3 bytes of information per pixel—24 bits—allows us to represent 2 distinct
colors, about 16.7 million. This 24-bit color-encoding scheme is often referred to as
True Color, and it provides an enormous range of shades and an extremely accurate
color image reproduction. That is why it is the encoding scheme used in the JPEG Color
Imaging format. However, representing 16+ million colors requires a huge amount of
memory space, and some image representation techniques reduce that value by using
what is called a color palette. While theoretically supporting 16+ million different
colors, they only allow you to use 256 (or some other small number) at any one time,
just as a painter may have a lot of colors in his or her studio but puts only a few on the
palette at a time. With a palette size of 256, we can encode each pixel using only 8 bits

rather than 24, because 2 = 256, thus reducing storage space demands by almost 67%.

24

8

Each of these 256 values does not represent an explicit RGB color value but rather an
index into a palette, or a color table. This index specifies which color on the palette is to
be used to draw this pixel. This is the technique used, for example, in the Graphics
Interchange Format (GIF), which uses a palette that can hold as few as 2 colors or as
many as 256.

Sound and image data typically require huge amounts of storage, far more than is
required for the numbers and text discussed in Section 4.2.1. For example, a 300-page
novel contains about 100,000 words. Each word has on average about five characters
and, as discussed in the previous section, each character can be encoded into the ASCII
code set using 8 bits. Thus, the total number of bits needed to represent this book is
roughly

By comparison, 1 minute of sound recording encoded using the MP3 standard, which
samples 44,100 times per second using a bit depth of 16 bits per sample, requires

It takes 10 times as much space to store the information in 1 minute of music as it does
to store an entire 300-page book! Similarly, to store a single photograph taken using a
digital camera with 5 million pixels using 24-bit True-Color raster graphics requires:

A single photograph could require as much as 30 times more storage than an entire
novel.

As these examples clearly show, the storage of analog information, such as sound,
images, voice, and video, is enormously space intensive, and an important area of
computer science research—data compression—is directed at addressing just this
issue. Data compression algorithms attempt to represent information in ways that
preserve accuracy while using significantly less space.

For example, a simple compression technique that can be used on almost any form of
data is run-length encoding. This method replaces a sequence of identical values v , v ,

…, v by a pair of values (v, n), which indicates that the value v is replicated n times. If

both v and n require 1 byte of storage, then we have reduced the total number of bytes
required to store this sequence from n down to 2. Using this method, we could encode
the following 5 × 3 image of the letter E, where 0 = white, 255 = black:

255 255 255

255 0 0

255 255 255

1 2

n

255 0 0

255 255 255

like this:

Binary Representation of Sound

Run-length encoding reduces the number of bytes needed to store this image from 15,
using the raster graphics representation, to the 10 bytes shown above. Compression
schemes are usually evaluated by their compression ratio, which measures how much
they reduce the storage requirements of the data:

For the example shown above, this ratio is

meaning the scheme reduces the amount of space needed to store the image by 33%.
Applied to a larger image, this might mean that a 4-million-bit representation could be
reduced to about 2.7 million bits, a significant savings.

Another popular compression technique is variable-length code sets, which are often
used to compress text but can also be used with other forms of data. In Section 4.2.1,
we showed that textual symbols, such as A, z, and #,are represented internally by a
code mapping that uses exactly the same number of bits for every symbol, either 8
(ASCII) or 16 (Unicode). That is a wasteful approach as some symbols occur much more
frequently than others. (For example, in English, the letters E and A are much more
common than J, Q, X, and Z.) If the codes representing commonly used symbols were
shorter than the codes representing the less-common symbols, this could result in a
significant saving of space.

Assume that we want to encode the Hawaiian alphabet, which only contains the five
vowels A, E, I, O, and U, and the seven consonants H, K, L, M, N, P, and W. If we were to
store these characters using a fixed-length code set, we would need at least 4

bits/symbol, because 2 = 16. Figure 4.8(a) shows one possible encoding of these 12
letters using a fixed-length, 4-bit encoding. However, if we know that A and I are the
most commonly used letters in the Hawaiian alphabet, with H and W next, we could
represent A and I using two bits, H and W using 3 bits, and the remaining letters using
either 4, 5, 6, or 7 bits, depending on their frequency. However, we must be sure that if
the 2-bit sequence s s is used to represent an A, for example, then no other symbol

representation can start with the same 2-bit sequence. Otherwise, if we saw the
sequence s s , we would not know if it was an A or the beginning of another character.

4

1 2

1 2

One possible variable-length encoding for the Hawaiian alphabet is shown in Figure
4.8(b).

Figure 4.8

Using variable-length code sets

Fixed lengtha.

Variable lengthb.

Representing the six-character word HAWAII using the fixed-length 4-bit encoding
scheme of Figure 4.8(a) requires 6 × 4 = 24 bits. Representing it with the variable-length
encoding shown in Figure 4.8(b) produces the following:

H A W A I I

010 00 110 00 10 10

This is a total of 14 bits, producing a compression ratio of 24/14 = 1.71, a reduction in
storage demands of about 42%.

These two techniques are examples of what are called lossless compression schemes.
This means that no information is lost in the compression, and it is possible to exactly
reproduce the original data. Lossy compression schemes compress data in a way that
does not guarantee that all of the information in the original data can be fully and
completely recreated. They trade a possible loss of accuracy for a higher compression
ratio because the small inaccuracies in sounds or images are often undetectable to the

human ear or eye. Many of the compression schemes in widespread use today,
including MP3 and JPEG, use lossy techniques, which permit significantly greater
compression ratios than would otherwise be possible. Using lossy JPEG, for example, it
is possible to achieve compression ratios of 10:1, 20:1, or more, depending on how
much loss of detail we are willing to tolerate. This compares with the values of 1.5 and
1.7 in the earlier described lossless schemes. Using these lossy compression schemes,
that 120-megabit, high-resolution image mentioned earlier could be reduced to only 6
or 12 megabits, certainly a much more manageable value. Data compression schemes
are an essential component in allowing us to represent multimedia information in a
concise and manageable way.

Practice Problems

Using MP3, how many bits are required to store a 3-minute song in

uncompressed format? If the information is compressed with a ratio

of 4:1, how many bits are required?

1.

If we instead use a sampling rate of 66,000 samples per second and a

bit depth of 24, how many bits are required to store that same

3-minute song?

2.

How many bits are needed to store a single uncompressed RGB image

from a 2.1 megapixel (millions of pixels) digital camera? How many

bytes of memory is this?

3.

If we want the image in Problem 3 to fit into 1 megabyte of memory,

what compression ratio is needed? If we want it to fit into 256

kilobytes (thousands of bytes) of memory, what compression ratio is

needed?

4.

If we were able to reduce the storage space of an image to 3 megabits

from its original size of 9.6 megabits, what would the compression

ratio be?

5.

How much space is saved by representing the Hawaiian word ALOHA

in the variable-length code of Figure 4.8(b) as compared with the

fixed-length representation of Figure 4.8(a)? What is the compression

ratio?

6.

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates: 4.2.3

Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

4.2.3 The Reliability Of Binary Representation

At this point, you might be wondering: Why are we bothering to use binary? Because
we use a decimal numerical system for everyday tasks, wouldn’t it be more convenient
to use a base-10 representation for both the external and the internal representation of
information? Then there would be no need to go through the time-consuming
conversions diagrammed in Figure 4.1, or to learn the binary representation
techniques discussed in the previous two sections.

As we stated in the Special Interest Box, “A Not So Basic Base ,” there is absolutely no
theoretical reason why one could not build a “decimal” computer or, indeed, a
computer that stored numbers using base 3 (ternary), base 8 (octal), or base 16
(hexadecimal). The techniques described in the previous two sections apply to
information represented in any base of a positional numbering system, including base
10.

Computers use binary representation not for any theoretical reasons but for reasons of
reliability. As we shall see shortly, computers store information using electronic
devices, and the internal representation of information must be implemented in terms
of electronic quantities such as currents and voltage levels.

Building a base-10 “decimal computer” requires finding a device with 10 distinct and
stable energy states that can be used to represent the 10 unique digits (0, 1, …, 9) of the
decimal system. For example, assume there exists a device that can store electrical
charges in the range from 0 to +45 volts. We could use it to build a decimal computer by
letting certain voltage levels correspond to specific decimal digits:

Voltage Level Corresponds to This
Decimal Digit

+0 0

+5 1

+10 2

+15 3

+20 4

+25 5

+30 6

+35 7

Voltage Level Corresponds to This
Decimal Digit

+40 8

+45 9

Storing the two-digit decimal number 28 requires two of these devices, one for each of
the digits in the number. The first device would be set to +10 volts to represent the digit
2, and the second would be set to +40 volts to represent the digit 8.

Although this is theoretically feasible, it is certainly not recommended. As electrical
devices age, they become unreliable, and they may drift, or change their energy state,
over time. What if the device representing the value 8 (the one set to +40 volts) lost 6%
of its voltage (not a huge amount for an old, well-used piece of equipment)? The voltage
would drop from +40 volts to about +37.5 volts. The question is whether the value +37.5
represents the digit 7 (+35) or the digit 8 (+40). It is impossible to say. If that same
device lost another 6% of its voltage, it would drop from +37.5 volts to about +35 volts.
Our 8 has now become a 7, and the original value of 28 has unexpectedly changed to
27. Building a reliable decimal machine would be an engineering nightmare.

The problem with a base-10 representation is that it needs to store 10 unique symbols,
and, therefore, it needs devices that have 10 stable states. Such devices are extremely
rare. Electrical systems tend to operate best in a bistable environment, in which there
are only two (rather than 10) stable states separated by a huge energy barrier.
Examples of these bistable states include the following:

Full on/full off

Fully charged/fully discharged

Charged positively/charged negatively

Magnetized/nonmagnetized

Magnetized clockwise/magnetized counterclockwise

In the binary numbering system, there are only two symbols (0 and 1), so we can let
one of the two stable states of our bistable device represent a 0 and the other a 1. This
is a much more reliable way to represent information inside a computer.

For example, if we use binary rather than decimal to store data in our hypothetical
electronic device that stores voltages in the range from 0 to +45 volts, the
representational scheme becomes much simpler:

Now a 6% or even a 12% drift doesn’t affect the interpretation of the value being
represented. In fact, it takes an almost 50% change in voltage level to create a problem
in interpreting a stored value. The use of binary for the internal representation of data
significantly increases the inherent reliability of a computer. This single advantage is
worth all the time it takes to convert from decimal to binary for internal storage and
from binary to decimal for the external display of results.

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates: 4.2.4
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

4.2.4 Binary Storage Devices

As you learned in the previous section, binary computers can be built out of any
bistable device. This idea can be expressed more formally by saying that it is possible to
construct a binary computer and its internal components using any hardware device
that meets the following four criteria:

The device has two stable energy states (one for a 0, one for a 1).1.

These two states are separated by a large energy barrier (so that a 0 does not

accidentally become a 1, or vice versa).

2.

It is possible to sense which state the device is in (to see whether it is storing a 0

or a 1) without permanently destroying the stored value.

3.

It is possible to switch the state from a 0 to a 1, or vice versa, by applying a

sufficient amount of energy.

4.

There are many devices that meet these conditions, including some surprising ones
such as a light switch. A typical light switch has two stable states (ON and OFF). These
two states are separated by a large energy barrier so that a switch that is in one state
will not accidentally change to the other. We can determine what state the switch is in
by looking to see whether the label says ON or OFF (or just by looking at the light), and
we can change the state of the switch by applying a sufficient amount of energy via our
fingertips. Thus it would be possible to build a reliable (albeit very slow and bulky)
binary computing device out of ordinary light switches and fingertips!

As you might imagine, computer systems are not built from light switches, but they
have been built using a wide range of devices. This section describes two of these
devices.

Magnetic cores were used to construct computer memories for about 20 years. From

roughly 1955 to 1975, this was by far the most popular storage technology—even today,
the memory unit of a computer is sometimes referred to as core memory even though it
has been decades since magnetic cores have been used.

A core is a small, magnetizable, iron oxide-coated “doughnut,” about 1/50 of an inch in
inner diameter, with wires strung through its center hole. The two states used to
represent the binary values 0 and 1 are based on the direction of the magnetic field of
the core. When electric current is sent through the wire in one specific direction, say
left to right, the core is magnetized in a counterclockwise direction. This state
could represent the binary value 0. Current sent in the opposite direction produces a
clockwise magnetic field that could represent the binary value 1. These scenarios are
diagrammed in Figure 4.9. Because magnetic fields do not change much over time,
these two states are highly stable, and they form the basis for the construction of
memory devices that store binary numbers.

Figure 4.9

Using magnetic cores to represent binary values

In the early 1970s, core memories began to be replaced by smaller, cheaper
technologies that required less power and were easier to manufacture. One-fiftieth of
an inch in diameter and a few grams of weight might not seem like much, but it can
produce a bulky and unworkable structure when memory units must contain millions
or billions of bits. For example, a typical core memory from the 1950s or 1960s had
about 500 cores/in. The memory in a modern computer typically has at least 1 GB (1
gigabyte =1 billion bytes), which is more than 8 billion bits. At the bit density of core
memory, the memory unit would need about 16 million in, which is a square about
4,000 inches, or 330 feet, on a side. Built from cores, the memory unit would stand
more than 30 stories high!

Today, the elementary building block for all modern computer systems is no longer the
core but the transistor. A transistor is much like the light switch mentioned earlier. It
can be in an OFF state, which does not allow electricity to flow, or in an ON state, in
which electricity can pass unimpeded. However, unlike the light switch, a transistor is
a solid-state device that has no mechanical or moving parts. The switching of a

transistor from the OFF to the ON state, and vice versa, is done electronically rather
than mechanically. This allows the transistor to be fast as well as extremely small. A
typical transistor can switch states in a billionth of a second, and at current technology
levels 1 billion transistors can fit into a space only 1 cm. Furthermore, hardware
technology is changing so rapidly that both these numbers might be out of date by the
time you read these words.

Transistors are constructed from special materials called semiconductors, such as
silicon and gallium arsenide. A large number of transistors, as well as the electrical
conducting paths that connect them, can be printed photographically on a wafer of
silicon to produce a device known as an integrated circuit or, more commonly, achip.
The chip is mounted on acircuit board, which interconnects all the different chips (e.g.,
memory, processor, communications) needed to run a computer system. This circuit
board is then plugged into the computer using a set of connectors located on the end of
the board. The relationships among transistors, chips, and circuit boards are
diagrammed in Figure 4.10. The use of photographic rather than mechanical
production techniques has numerous advantages. Because light can be focused very
sharply, these integrated circuits can be manufactured in very high densities—high
numbers of transistors per square centimeter—and with a very high degree of
accuracy. The more transistors that can be packed into a fixed amount of space, the
greater the processing power of the computer and the greater the amount of
information that can be stored in memory.

Figure 4.10

Relationships among transistors, chips, and circuit boards

Another advantage of photographic production techniques is that it is possible to make
a standard template, called a mask, which describes the circuit. This mask can be used
to produce a virtually unlimited number of copies of that chip, much as a photographic
negative can be used to produce an unlimited number of prints.

Together, these characteristics can result in very small and very inexpensive
high-speed circuits. Whereas the first computers of the early 1940s (as seen in Chapter
1, Figure 1.6) filled huge rooms and cost millions of dollars, the processor inside a
modern workstation contains hundreds of millions or billions of transistors on a tiny
chip just a few centimeters square, is thousands of times more powerful than those
early machines, and costs just a few hundred dollars.

The theoretical concepts underlying the physical behavior of semiconductors and
transistors, as well as the details of chip manufacture, are well beyond the scope of this
book. They are usually discussed in courses in physics or electrical engineering.
Instead, we will examine a transistor in terms of the simplified model shown in Figure
4.11 and then use this model to explain its behavior. (Here is another example of the
importance of abstraction in computer science.)

Figure 4.11

Simplified model of a transistor

In the model shown in Figure 4.11, each transistor contains three lines—two input lines
(collector and control) and one output line (emitter), with each line either in the 1-state,
with a high positive voltage, or in the 0-state, with a voltage close to 0. The first input
line, called the control or the base, is used to open or close the switch inside the
transistor. If we set the control line to a 1 by applying a sufficiently high positive
voltage, the switch closes and the transistor enters the ON state. In this state, current
from the input line called the collector can flow directly to the single output line called

the emitter, and the associated voltage can be detected by a measuring device. This ON
state could be used to represent the binary value 1. If instead we set the control line to
a 0 by applying a voltage close to zero, the switch opens, and the transistor enters the
OFF state. In this state, the flow of current through the transistor is blocked and no
voltage is detected on the emitter line. The OFF state could be used to represent the
binary value 0. This is diagrammed as follows:

This type of solid-state switching device forms the basis for the construction of virtually
all computers built today, and it is the fundamental building block for all high-level
components described in the upcoming chapters. Remember, however, that there is no
theoretical reason why we must use transistors as our “elementary particles” when
designing computer systems. Just as cores were replaced by transistors, transistors may
ultimately be replaced by some newer (perhaps molecular or biological) technology
that is faster, smaller, and cheaper. The only requirements for our building blocks are
those given in the beginning of this section—that they be able to represent reliably the
two binary values 0 and 1.

Moore’s Law and the Limits of Chip Design

Since the development of the first integrated circuits in the 1950s, the number
of transistors on a circuit board has been doubling roughly every 24 months.
This observation was first reported in a 1965 paper by Gordon E. Moore, the
cofounder of Intel, and is now universally referred to as “Moore’s law.” This
doubling has continued unabated for the last 40 years, and represents a rate of

improvement unequaled in any other technical field. More transistors on a chip
means more speed and more power, and is the reason for the enormous
increase in performance (and decrease in size) of computers in the last 40–50
years. The following table details this growth from 1971, when chips held just a
few thousand transistors, to today’s microprocessors that hold billions.

Processor Transistor Count Date

Intel 404 2,300 1971

Intel 8080 4,500 1974

Intel 8088 29,000 1979

Intel 80286 134,000 1982

Intel 80386 275,000 1985

Intel 80486 1,200,000 1989

Pentium 3,100,000 1993

Pentium II 7,500,000 1997

Pentium 4 42,000,000 2000

Itanium 2 220,000,000 2003

Dual-Core Itanium 2 1,400,000,000 2006

Quad-Core Itanium
Tukwila

2,000,000,000 2008

nVidiaGeForce 6800
Ultra

3,000,000,000 2011

It is impossible to maintain this type of exponential growth for an indefinitely
extended period of time, and industry analysts have been predicting the demise
of Moore’s law for the last 10–15 years. However, the ongoing development of
new materials and new manufacturing technologies has allowed the industry to
continue this phenomenal rate of improvement. But there is a physical limit
looming on the horizon that will be the most difficult hurdle yet. As more and
more transistors are packed onto a single chip, distances between them get
smaller and smaller, and experts estimate that in about 10–20 years
intertransistor distances will approach the space between individual atoms. For
example, transistors on today’s chips are separated by 50–100 nanometers (1

nanometer = 10 meter), only about 500–1,000 times greater than the diameter

of a single atom of silicon, which is about 10 meters. In a few generations,

−9

−10

these atomic distances will be reached, and a totally new approach to computer
design will be required, perhaps one based on the emerging fields of
nanotechnology and quantum computing.

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates: 4.3
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

4.3 Boolean Logic and Gates

4.3.1 Boolean Logic

The construction of computer circuits is based on the branch of mathematics and
symbolic logic called Boolean logic. This area of mathematics deals with rules for
manipulating the two logical values true and false, and it is used to construct circuits
that perform operations such as adding numbers, comparing numbers, and fetching
instructions. These ideas are part of the branch of computer science known as
hardware design, also called logic design.

It is easy to see the relationship between Boolean logic and computer design: The truth
value true could represent the binary value 1, and the truth value false could represent
the binary value 0. Thus anything stored internally as a sequence of binary digits
(which, as we saw in earlier sections, is everything stored inside a computer) can also
be viewed as a sequence of the logical values true and false, and these values can be
manipulated by the operations of Boolean logic.

Let us define a Boolean expression as any expression that evaluates to either true or
false. For example, the expression (x = 1) is a Boolean expression because it is true if x
is 1, and it is false if x has any other value. Similarly, both (a ≠ b) and (c < 5.23) are
Boolean expressions.

In “traditional” mathematics (the mathematics of real numbers), the operations used to

construct arithmetic expressions are +, -, ×, ÷, and a , which map real numbers into real
numbers. In Boolean logic, the operations used to construct Boolean expressions are
AND, OR, and NOT, and they map a set of (true, false) values into a single (true, false)
result.

The rule for performing the AND operation is as follows: If a and b are Boolean
expressions, then the value of the expression (a AND b), also written as (a • b), is true if
and only if both a and b have the value true; otherwise, the expression (a AND b) has
the value false. Informally, this rule says that the AND operation produces the value
true if and only if both of its components are true. This idea can be expressed using a
structure called a truth table, shown in Figure 4.12.

b

Figure 4.12
Truth table for the AND operation

Inputs Output

a AND b

a b (also written a · b)

False False False

False True False

True False False

True True True

The two columns labeled Inputs in the truth table of Figure 4.12 list the four possible
combinations of true/false values of a and b. The column labeled Output specifies the
value of the expression (a AND b) for the corresponding values of a and b.

To illustrate the AND operation, imagine that we want to check whether a test score S is
in the range 90 to 100 inclusive. We want to develop a Boolean expression that is true if
the score is in the desired range and false otherwise. We cannot do this with a single
comparison. If we test only that (S ≥ 90), then a score of 105, which is greater than or
equal to 90, will produce the result true, even though it is out of range. Similarly, if we
test only that (S ≤ 100), then a score of 85, which is less than or equal to 100, will also
produce a true, even though it too is not in the range 90 to 100.

Instead, we need to determine whether the score S is greater than or equal to 90 and
whether it is less than or equal to 100. Only if both conditions are true can we say that
S is in the desired range. We can express this idea using the following Boolean
expression:

Each of the two expressions in parentheses can be either true or false depending on the
value of S. However, only if both conditions are true does the expression evaluate to
true. For example, a score of S = 70 causes the first expression to be false (70 is not
greater than or equal to 90), whereas the second expression is true (70 is less than or
equal to 100). The truth table in Figure 4.12 shows that the result of evaluating (false
AND true) is false. Thus, the overall expression is false, indicating (as expected) that 70
is not in the range 90 to 100.

The second Boolean operation is OR. The rule for performing the OR operation is as
follows: If a and b are Boolean expressions, then the value of the Boolean expression (a
OR b), also written as (a + b), is true if a is true, if b is true, or if both are true. Otherwise,
(a OR b) has the value false. The truth table for OR is shown in Figure 4.13.

Figure 4.13
Truth table for the OR operation

Inputs Output

a OR b

a b (also written a + b)

False False False

False True True

True False True

True True True

To see the OR operation at work, imagine that a variable called major specifies a
student’s college major. If we want to know whether a student is majoring in either
math or computer science, we cannot accomplish this with a single comparison. The
test (major = math) omits computer science majors, whereas the test (major = computer
science) leaves out the mathematicians. Instead, we need to determine whether the
student is majoring in either math or computer science (or perhaps in both). This can
be expressed as follows:

If the student is majoring in either one or both of the two disciplines, then one or both
of the two terms in the expression are true. Referring to the truth table in Figure 4.13,
we see that (true OR false), (false OR true), and (true OR true) all produce the value true,
which indicates that the student is majoring in at least one of these two fields.
However, if the student is majoring in English, both conditions are false. As Figure 4.13
illustrates, the value of the expression (false OR false) is false, meaning that the student
is not majoring in either math or computer science.

The final Boolean operator that we examine here is NOT. Unlike AND and OR, which
require two operands and are, therefore, called binary operators, NOT requires only
one operand and is called a unary operator, like the square root operation in
arithmetic. The rule for evaluating the NOT operation is as follows: If a is a Boolean

expression, then the value of the expression (NOT a), also written as a, is true if a has
the value false, and it is falseifahas the value true. The truth table for NOT is shown in
Figure 4.14.

Figure 4.14
Truth table for the NOT operation

Input Output

NOT a

a (also written
ā)

False True

True False

Informally, we say that the NOT operation reverses, or complements, the value of a
Boolean expression, making it true if currently false, and vice versa. For example, the
expression (GPA > 3.5) is true if your grade point average is greater than 3.5, and the
expression NOT (GPA > 3.5) is true only under the reverse conditions, that is when your
grade point average is less than or equal to 3.5.

AND, OR, and NOT are the three operations of Boolean logic that we use in this chapter.
(Later in this chapter we briefly mention other Boolean operators such as NAND, NOR,
and XOR.) Why have we introduced these Boolean operations in the first place? The
previous section discussed hardware concepts such as energy states, electrical
currents, transistors, and integrated circuits. Now it appears that we have changed
directions and are discussing highly abstract ideas drawn from the discipline of
symbolic logic. However, as we hinted earlier and will see in detail in the next section,
there is a very close relationship between the hardware concepts of Section 4.2.4 and
the operations of Boolean logic. In fact, the fundamental building blocks of a modern
computer system (the objects with which engineers actually design) are not the
transistors introduced in Section 4.2.4 but the gates that implement the Boolean
operations AND, OR, and NOT. Surprisingly, it is the rules of logic—a discipline
developed by the Greeks 2,300 years ago and expanded by George Boole (see the
Special Interest Box on) 150 years ago—that provide the theoretical foundation for
constructing modern computer hardware.

Practice Problems

Assuming that x = 1 and y = 2, determine the value of each of the

following Boolean expressions:

(x = 1) AND (y = 3)a.

(x < y) OR (x > 1)b.

NOT [(x = 1) AND (y = 2)]c.

1.

Assume that A, B, and C are Boolean variables that can take on the

values true and false. Create a truth table to show all the possible

values for the Boolean expression:

((NOT A) AND B) OR C

(Hint: Your table will have eight rows.)

2.

What is the value of the following Boolean expression:

(x = 5) AND (y = 11) OR ([x + y] = z)

if x = 5, y =10, and z =15? Did you have to make some assumptions

when you evaluated this expression?

3.

Write a Boolean expression that is true if and only if x and y are both

in the range 0 to 100 but x is not equal to y.

4.

Write a Boolean expression that is true if and only if the variable

score is not in the range 200–800, inclusive.

5.

For what values of A and B will the value of the following Boolean

expression be false? (A OR B) OR (NOT A)

6.

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates: 4.3.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

4.3.2 Gates

A gate is an electronic device that operates on a collection of binary inputs to produce a
binary output. That is, it transforms a set of (0,1) input values into a single (0,1) output
value according to a specific transformation rule. Although gates can implement a wide

range of different transformation rules, the ones we are concerned with in this section
are those that implement the Boolean operations AND, OR, and NOT introduced in the
previous section. As shown in Figure 4.15, these gates can be represented symbolically,
along with the truth tables that define their transformation rules.

Figure 4.15

The three basic gates and their symbols

Comparing Figures 4.12 through 4.14 with Figure 4.15 shows that if the value 1 is
equivalent to true and the value 0 is equivalent to false, then these three electronic
gates directly implement the corresponding Boolean operation. For example, an AND
gate has its output line set to 1 (set to some level of voltage that represents a binary 1) if
and only if both of its inputs are 1. Otherwise, the output line is set to 0 (set to some
level of voltage that represents a binary 0). This is functionally identical to the rule that
says the result of (a AND b) is true if and only if both a and b are true; otherwise, (a AND
b) is false. Similar arguments hold for the OR and NOT.

A NOT gate can be constructed from a single transistor, as shown in Figure 4.16, in
which the collector is connected to the power supply (Logical-1) and the emitter is
connected to the ground (Logical-0). If the control line of the transistor (labeled Input)
is set to 1, then the transistor is in the ON state, and it passes current through to the
ground. In this case, the output voltage of the gate is 0. However, if Input is set to 0, the
transistor is in the OFF state, and it blocks passage of current to the ground. Instead,
the current is transmitted to the line labeled Output, producing a value of 1. Thus, the
value appearing on the output line of Figure 4.16 is the complement—the NOT—of the
value appearing on the input line.

Figure 4.16

Construction of a NOT gate

To construct an AND gate, we begin by connecting two transistors in series, as shown in
Figure 4.17(a), with the collector line of transistor 1 connected to the power supply
(Logical-1) and the emitter line of transistor 2 connected to ground (Logical-0). If both
control lines, called Input-1 and Input-2 in Figure 4.17(a), are set to 1, then both
transistors are in the ON state, and the current will be connected to ground, resulting in
a value of 0 on the output line. If either (or both) Input-1 or Input-2 is 0, then the
corresponding transistor is in the OFF state and does not allow current to pass,
resulting in a 1 on the output line. Thus, the output of the gate in Figure 4.17 is a 0 if
and only if both inputs are a 1; otherwise, it is a 1. This is the exact opposite of the
definition of AND, and Figure 4.17 represents a gate called NAND, an acronym for NOT
AND. It produces the complement of the AND operation, and it is an important and
widely used gate in hardware design.

Figure 4.17

Construction of NAND and AND gates

A two-transistor NAND gatea.

A three-transistor AND gateb.

If, however, we want to build an AND gate, then all we have to do is add a NOT gate (of
the type shown in Figure 4.16) to the output line. This complements the NAND output
and produces the AND truth table of Figure 4.12. This gate is shown in Figure 4.17(b).
Note that the NAND of Figure 4.17(a) requires two transistors, whereas the AND of
Figure 4.17(b) requires three. This is one reason why NAND gates are widely used to
build computer circuits.

To construct an OR gate, we again start with two transistors. However, this time they
are connected in parallel rather than in series, as shown in Figure 4.18(a).

Figure 4.18

Construction of NOR and OR gates

A two-transistor NOR gatea.

A three-transistor OR gateb.

In Figure 4.18(a) if either, or both, of the lines Input-1 and Input-2 are set to 1, then the
corresponding transistor is in the ON state, and the current is connected to the ground,
producing an output line value of 0. Only if both input lines are 0, effectively shutting
off both transistors, will the output line contain a 1. Again, this is the exact opposite to
the definition of OR given in Figure 4.13. Figure 4.18(a) is an implementation of a NOR
gate, an acronym for NOT OR. To convert this to an OR gate, we do the same thing we
did earlier—add a NOT gate to the output line. This gate is diagrammed in Figure 4.18.

Gates of the type shown in Figures 4.16 through Figures 4.18 are not abstract entities
that exist only in textbooks and classroom discussions. They are actual electronic
devices that serve as the building blocks in the design and construction of modern
computer systems. The reason for using gates rather than transistors is that a transistor
is too elementary a device to act as the fundamental design component. It requires a
designer to deal with such low-level issues as currents, voltages, and the laws of
physics. Transistors, grouped together to form more powerful building blocks called
gates, allow us to think and design at a higher level. Instead of dealing with the
complex physical rules associated with discrete electrical devices, we can use the
power and expressiveness of mathematics and logic to build computers.

This seemingly minor shift (from transistors to gates) has a profound effect on how
computer hardware is designed and built. From this point on in our discussion of
hardware design, we no longer need deal with anything electrical. Instead, our
building blocks are AND, OR, and NOT gates, and our circuit construction rules are the
rules of Boolean logic. This is another example of the importance of abstraction in
computer science.

George Boole (1815–1864)

George Boole was a mid-nineteenth-century English mathematician and
logician. He was the son of a shoemaker and had little formal education, having
dropped out of school in the third grade. He taught himself mathematics and
logic and mastered French, German, Italian, Latin, and Greek. He avidly studied
the works of the great Greek and Roman philosophers such as Aristotle, Plato,
and Euclid. He built on their work in logic, argumentation, and reasoning and,
in 1854, produced a book titled Introduction into the Laws of Thought. This
seminal work attempted to apply the formal laws of algebra and arithmetic to
the principles of logic. That is, it treated reasoning as simply another branch of
mathematics containing operators, variables, and transformation rules. He

created a new form of logic containing the values true and false and the
operators AND, OR, and NOT. He also developed a set of rules describing how to
interpret and manipulate expressions that contain these values.

At the time of its development, the importance of this work was not apparent,
and it languished in relative obscurity. However, 100 years later, Boole’s ideas
became the theoretical framework underlying the design of all computer
systems. In his honor, these true/false expressions became known as Boolean
expressions, and this branch of mathematics is called Boolean logic or Boolean
algebra.

Even though he had very little formal schooling, Boole was eventually
appointed Professor of Mathematics at Queens College in Cork, Ireland, and he
received a gold medal from the Royal Mathematical Society. He is now
universally recognized as one of the greatest mathematicians of the nineteenth
century.

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates: 4.4
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

4.4 Building Computer Circuits

4.4.1 Introduction

A circuit is a collection of logic gates that transforms a set of binary inputs into a set of
binary outputs and in which the values of the outputs depend only on the current
values of the inputs. (Actually, this type of circuit is more properly called a
combinational circuit. We use the simpler term circuit in this discussion.) A circuit C
with m binary inputs and n binary outputs is represented as shown in Figure 4.19.

Figure 4.19

Diagram of a typical computer circuit

Internally, the circuit shown in Figure 4.19 is constructed from the AND, OR, and NOT
gates introduced in the previous section. (Note: We do not use the NAND and NOR gates
diagrammed in Figure 4.17(a) and 4.18(a).) These gates can be interconnected in any
way so long as the connections do not violate the constraints on the proper number of
inputs and outputs for each gate. Each AND and OR gate must have exactly two inputs
and one output. (Multiple-input AND and OR gates do exist, but we do not use them in
our examples.) Each NOT gate must have exactly one input and one output. For
example, the following is the diagram of a circuit with two inputs labeled a and b and
two outputs labeled c and d. It contains one AND gate, one OR gate, and two NOT gates.

There is a direct relationship between Boolean expressions and circuit diagramsof this
type. Every Boolean expression can be represented pictorially as a circuit diagram, and
every output value in a circuit diagram can be written as a Boolean expression. For
example, in the diagram shown, the two output values labeled c and d are equivalent to
the following two Boolean expressions:

The choice of which representation to use depends on what we want to do. The
pictorial view better allows us to visualize the overall structure of the circuit, and is
often used during the design stage. A Boolean expression may be better for performing
mathematical or logical operations, such as verification and optimization, on the
circuit. We use both representations in the following sections.

The value appearing on any output line of a circuit can be determined if we know the
current input values and the transformations produced by each logic gate.

Note: There are circuits, called sequential circuits, which contain feedback loops in which the output of a
gate is fed back as input to an earlier gate. The output of these circuits depends not only on the current
input values but also on previous inputs. These circuits are typically used to build memory units because,
in a sense, they can “remember” inputs. We do not discuss sequential circuits here.

In the previous example, if a = 1 and b = 0, then the value on the c output line is 1, and
the value on the d output line is 0. These values can be determined as follows:

Note that it is perfectly permissible to “split” or “tap” a line and send its value to two
different gates. Here the input value b was split and sent to two separate gates.

The next section presents an algorithm for designing and building circuits from the
three fundamental gate types AND, OR, and NOT. This enables us to move to yet a
higher level of abstraction. Instead of thinking in terms of transistors and electrical
voltages (as in Section 4.2.4) or in terms of logic gates and truth values (as in Section
4.3.2), we can think and design in terms of circuits for high-level operations such as
addition and comparison. This makes understanding computer hardware much more
manageable.

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates: 4.4.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

4.4.2 A Circuit Construction Algorithm

The circuit shown at the end of the previous section is simply an example, and is not
meant to carry out any meaningful operation. To create circuits that perform useful
arithmetic and logical functions, we need a way to convert a description of a circuit’s
desired behavior into a circuit diagram, composed of AND, OR, and NOT gates, that
does exactly what we want it to do.

There are a number of circuit construction algorithms to accomplish this task, and the
remainder of this section describes one such technique, called the sum-of-products
algorithm, that allows us to design circuits. Section 4.4.3 demonstrates how this
algorithm works by constructing actual circuits that all computer systems need.

Step 1

Truth Table Construction

First, determine how the circuit should behave under all possible

circumstances. That is, determine the binary value that should appear on

each output line of the circuit for every possible combination of inputs.

This information can be organized as a truth table. If a circuit has N input

lines, and if each input line can be either a 0 or a 1, then there are 2

combinations of input values, and the truth table has 2 rows. For each

output of the circuit, we must specify the desired output value for every

row in the truth table.

For example, if a circuit has three inputs and two outputs, then a truth

table for that circuit has 2 = 8 input combinations and might look

something like the following. (In this example, the output values are

completely arbitrary.)

This circuit has two outputs labeled Output-1 and Output-2. The truth

table specifies the value of each of these two output lines for every one of

the eight possible combinations of inputs. We will use this example to

illustrate the subsequent steps in the algorithm.

Step 2

Subexpression Construction Using AND and NOT Gates

Choose any one output column of the truth table built in Step 1 and scan

down that column. Every place that you find a 1 in that output column,

you build a Boolean subexpression that produces the value 1 (i.e., is true)

for exactly that combination of input values and no other. To build this

subexpression, you examine the value of each input for this specific case.

If the input is a 1, use that input value directly in your subexpression. If

N

N

3

the input is a 0, first take the NOT of that input, changing it from a 0 to a 1,

and then use that complemented input value in your subexpression. You

now have an input sequence of all 1s, and if all of these modified inputs

are ANDed together (two at a time, of course), then the output value is a 1.

For example, let’s look at the output column labeled Output-1 in the truth

table below.

There are two 1s in the column labeled Output-1; they are referred to as

case 1 and case 2. We thus need to construct two subexpressions, one for

each of these two cases.

In case 1, the inputs a and c have the value 0 and the input b has the value

1. Thus we apply the NOT operator to both a and c, changing them from 0

to 1. Because the value of b is 1, we can use b directly. We now have three

modified input values, all of which have the value 1. ANDing these three

values together yields the Boolean expression . This

expression produces a 1 only when the input is exactly a = 0, b = 1, c = 0.

In any other case, at least one of the three factors in the expression is 0,

and when the AND operation is carried out, it produces a 0. (Check this

yourself by trying some other input values and seeing what is produced.)

Thus the desired subexpression for case 1 is

The subexpression for case 2 is developed in an identical manner, and it

results in

This subexpression produces a 1 only when the input is exactly a = 1, b =

1, c = 0.

Step 3

Subexpression Combination Using OR Gates

Take each of the subexpressions produced in Step 2 and combine them,

two at a time, using OR gates. Each of the individual subexpressions

produces a 1 for exactly one particular case where the truth table output

is a 1, so the OR of the output of all of them produces a 1 in each case

where the truth table has a 1 and in no other case. Consequently, the

Boolean expression produced in Step 3 implements exactly the function

described in the output column of the truth table on which we are

working. In the current example, the final Boolean expression produced

during Step 3 is

Step 4

Circuit Diagram Production

Construct the final circuit diagram. To do this, convert the Boolean

expression produced at the end of Step 3 into a circuit diagram, using

AND, OR, and NOT gates to implement the AND, OR, and NOT operators

appearing in the Boolean expression. This circuit diagram produces the

output described in the corresponding column of the truth table created

in Step 1. The circuit diagram for the Boolean expression developed in

Step 3 is shown in Figure 4.20.

Figure 4.20

Circuit diagram for the output labeled Output-1

We have successfully built the part of the circuit that produces the output

for the column labeled Output-1 in the truth table shown in Step 1. We

now repeat Steps 2, 3, and 4 for any additional output columns contained

in the truth table. (In this example, there is a second column labeled

Output-2. We leave the construction of that circuit as a practice exercise.)

When we have constructed a circuit diagram for every output of the

circuit, we are finished. The sum-of-products algorithm is summarized in

Figure 4.21.

Figure 4.21

The sum-of-products circuit construction algorithm

This has been a formal introduction to one particular circuit construction

algorithm. The algorithm is not easy to comprehend in an abstract sense.

The next section clarifies this technique by using it to design two circuits

that perform the operations of comparison and addition. Seeing it used to

design actual circuits will make the steps of the algorithm easier to

understand and follow.

We end this section by noting that the circuit construction algorithm just

described does not always produce an optimal circuit, where optimal

means that the circuit accomplishes its desired function using the smallest

number of logic gates. For example, using the truth table shown on the

top of, our sum-of-products algorithm produced the seven-gate circuit

shown in Figure 4.20. This is a correct answer in the sense that the circuit

does produce the correct values for Output-1 for all combinations of

inputs. However, it is possible to do much better.

The preceding circuit also produces the correct result using only two gates

instead of seven. This difference is very important because each AND, OR,

and NOT gate is a physical entity that costs real money, takes up space on

the chip, requires power to operate, and generates heat that must be

dissipated. Eliminating five unnecessary gates produces a real savings.

The fewer gates we use, the cheaper, more efficient, and more compact

are our circuits and hence the resulting computer. Algorithms for circuit

optimization —that is, for reducing the number of gates needed to

implement a circuit—are an important part of hardware design.

Challenge Work problem 1 at the end of the chapter invites you to

investigate this interesting topic in more detail.

Practice Problems

Design the circuit to implement the output described in the column

labeled Output-2 in the truth table on.

1.

Design a circuit using AND, OR, and NOT gates to implement the

following truth table.

a b Output

0 0 0

0 1 1

1 0 1

1 1 0

2.

This is the exclusive-OR operation, XOR. It is true if and only if a is 1 or

b is 1, but not both.

Build a circuit using AND, OR, and NOT gates to implement the

following truth table.

a b c Output

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

This is called a full-ON/full-OFF circuit. It is true if and only if all three

of its inputs are OFF (0) or all three are ON (1).

3.

Design a circuit to implement the following truth table.

a b Output

0 0 1

0 1 1

1 0 0

1 1 0

After completing the design, count how many AND, OR, and NOT

gates were required to build this circuit. Now take a careful look at

the truth table above and see if you can come up with a more efficient

way to build the same circuit, where efficient means using fewer

gates. How many gates did your efficient circuit require?

4.

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates: 4.4.3
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

4.4.3 Examples Of Circuit Design and Construction

Let’s use the algorithm described in Section 4.4.2 to construct two circuits important to
the operation of any real-world computer: a compare-for-equality circuit and an
addition circuit.

A Compare-for-Equality Circuit

The first circuit we will construct is a compare-for-equality circuit, or CE circuit, which
tests two unsigned binary numbers for exact equality. The circuit produces the value 1
(true) if the two numbers are equal and the value 0 (false) if they are not. Such a circuit
could be used in many situations. For example, in the shampooing algorithm in
Chapter 1, Figure 1.3(a), there is an instruction that says,

Our CE circuit could accomplish the comparison between WashCount and 2 and return
a true or false, depending on whether these two values were equal or not equal.

Laboratory Experience 7

To give you hands-on experience working with logic circuits, the first
Laboratory Experience in this chapter introduces you to a software package
called a circuit simulator. This is a program that enables you to construct logic
circuits from the AND, OR, and NOT gates just described, and then test them by
observing the outputs of the circuits using any desired inputs.

The output of each gate will be displayed on the screen, which allows you to
determine if your circuit is or is not behaving correctly as the signals propagate
from input lines to output lines.

Let’s start by using the sum-of-products algorithm in Figure 4.21 to construct a simpler
circuit called 1-CE, short for 1-bit compare for equality. A 1-CE circuit compares two
1-bit values a and b for equality. That is, the circuit 1-CE produces a 1 as output if both
its inputs are 0 or both its inputs are 1. Otherwise, 1-CE produces a 0. After designing
1-CE, we will use it to create a “full-blown” comparison circuit that can handle numbers
of any size.

Step 1 of the algorithm says to construct the truth table that describes the behavior of
the desired circuit. The truth table for the 1-CE circuit is

In the output column of the truth table, there are two 1 values, labeled case 1 and case
2, so Step 2 of the algorithm is to construct two subexpressions, one for each of these
two cases. The subexpression for case 1 is (a • b) because this produces the value 1 only
when a = 0 and b = 0. The subexpression for case 2 is (a • b), which produces a 1 only
when a = 1 and b = 1.

We now combine the outputs of these two subexpressions with an OR gate, as
described in Step 3, to produce the Boolean expression

Finally, in Step 4, we convert this expression to a circuit diagram, which is shown in
Figure 4.22. The circuit shown in Figure 4.22 correctly compares two 1-bit quantities
and determines if they are equal. If they are equal, it outputs a 1. If they are unequal, it
outputs a 0.

Figure 4.22

One-bit compare-for-equality circuit

The numbers compared for equality by a computer are usually much larger than a
single binary digit. We want a circuit that correctly compares two numbers that

contain N binary digits. To build this “N-bit compare-for-equality” circuit, we use N of
the 1-CE circuits shown in Figure 4.22, one for each bit position in the numbers to be
compared. Each 1-CE circuit produces a 1 if the two binary digits in its specific location
are identical and produces a 0 if they are not. If every circuit produces a 1, then the two
numbers are identical in every bit position, and they are equal. To check whether all
our 1-CE circuits produce a 1, we simply AND together (two at a time) the outputs of all
N 1-CE circuits. Remember that an AND gate produces a 1 if and only if both of its
inputs are a 1. Thus the final output of the N-bit compare circuit is a 1 if and only if
every pair of bits in the corresponding location of the two numbers is identical—that is,
the two numbers are equal.

Figure 4.23 shows the design of a complete N-bit compare-for-equality circuit called CE.
Each of the two numbers being compared,aandb, contains N bits, and they are labeled
a a … a and b b … b . The box labeled 1-CE in Figure 4.23 is the 1-bit

compare-for-equality circuit shown in Figure 4.22. Looking at these figures, you can see
that we have designed a very complex electrical circuit without the specification of a
single electrical device. The only “devices” in those diagrams are gates to implement
the logical operations AND, OR, and NOT, and the only “rules” we need to know to
understand the diagrams are the transformation rules of Boolean logic. George Boole’s
“not very important” work is the starting point for the design of every circuit found
inside a modern computer.

Figure 4.23

N-bit compare-for-equality circuit

N−1 N−2 0 N−1 N−2 0

An Addition Circuit

Our second example of circuit construction is an addition circuit called ADD that
performs binary addition on two unsigned N-bit integers. Typically, this type of circuit
is called a full adder. For example, assuming N = 6, our ADD circuit would be able to
perform the following 6-bit addition operation:

Just as we did with the CE circuit, we carry out the design of the ADD circuit in two
stages. First, we use the circuit construction algorithm of Figure 4.21 to build a circuit
called 1-ADD that adds a single pair of binary digits, along with a carry digit. We then
interconnect N of these 1-ADD circuits to produce the complete N-bit full adder circuit
ADD.

Looking at the addition example just shown, we see that summing the values in any
column i requires us to add three binary values—the two binary digits in that column,
a and b , and the carry digit from the previous column, called c . Furthermore, the

circuit must produce two binary outputs: a sum digit i and a new carry digit c that

propagates to the next column. The pictorial representation of the 1-bit adder circuit
1-ADD and its accompanying truth table are shown in Figure 4.24.

Figure 4.24

The 1-ADD circuit and truth table

i i i

s i+1

Because the 1-ADD circuit being constructed has two outputs, s and c , we must use

Steps 2, 3, and 4 of the circuit construction algorithm twice, once for each output. Let’s
work on the sum output i first.

The i output column of Figure 4.24 contains four 1s, so we need to construct four

subexpressions. In accordance with the guidelines given in Step 2 of the construction
algorithm, these four subexpressions are

Step 3 says to combine the outputs of these four subexpressions using three OR gates to
produce the output labeled s in the truth table of Figure 4.24. The final Boolean

expression for the sum output is

The logic circuit to produce the output whose expression is given above is shown in
Figure 4.25. (This circuit diagram has been labeled to highlight the four separate
subexpressions created during Step 2, as well as the combining of the subexpressions
in Step 3 of the construction algorithm.)

Figure 4.25

Sum output for the 1-ADD circuit

i i+1

s

s

i

We are not yet finished, because the 1-ADD circuit in Figure 4.24 has a second
output—the carry into the next column. That means the circuit construction algorithm
must be repeated for the second output column, labeled c .

The c column also contains four 1s, so we again need to build four separate

subcircuits, just as for the sum output, and combine them using OR gates. The
construction proceeds in a fashion similar to the first part, so we leave the details as an
exercise for the reader. The Boolean expression describing the carry output c of the

1-ADD circuit is

We have now built the two parts of the 1-ADD circuit that produce the sum and the
carry outputs. The complete 1-ADD circuit is constructed by simply putting these two
pieces together. Figure 4.26 shows the complete (and admittedly quite complex) 1-ADD
circuit to implement 1-bit addition. To keep the diagram from becoming an
incomprehensible tangle of lines, we have drawn it in a slightly different orientation
from Figures 4.22 and 4.25 Everything else is exactly the same.

Figure 4.26

Complete 1-ADD circuit for 1-bit binary addition

i+1

i+1

i+1

When looking at this rather imposing diagram, do not become overly concerned with
the details of every gate, every connection, and every operation. Figure 4.26 more
importantly illustrates the process by which we design such a complex and intricate
circuit: by transforming the idea of 1-bit binary addition into an electrical circuit using
the tools of algorithmic problem solving and symbolic logic.

How is the 1-ADD circuit shown in Figure 4.26 used to add numbers that contain N
binary digits rather than just one? The answer is simple if we think about the way
numbers are added by hand. (We discussed exactly this topic when developing the
addition algorithm of Figure 1.2 in Chapter 1.) We add numbers one column at a time,
moving from right to left, generating the sum digit, writing it down, and sending any
carry to the next column. The same thing can be done in hardware. We use N of the
1-ADD circuits shown in Figure 4.26, one for each column. Starting with the rightmost
circuit, each 1-ADD circuit adds a single column of digits, generates a sum digit that is
part of the final answer, and sends its carry digit to the 1-ADD circuit on its left, which
replicates this process. After N repetitions of this process, all sum digits have been
generated, and the N circuits have correctly added the two numbers.

The complete full adder circuit called ADD is shown in Figure 4.27. It adds the two N-bit
numbers a a … a and b b … b to produce the (N+1)-bit sum s s s … s .

Because addition is one of the most common arithmetic operations, the circuit shown
in Figure 4.27 (or something equivalent) is one of the most important and most
frequently used arithmetic components. Addition circuits are found in every computer,
workstation, and handheld calculator in the marketplace. They are even found in
computer-controlled thermostats, clocks, and microwave ovens, where they enable us,
for example, to add 30 minutes to the cooking time.

Figure 4.27

The complete full adder ADD circuit

N-1 N-2 0 N-1 N-2 0 N N-1 N-2 0

Figure 4.27 is, in a sense, the direct hardware implementation of the addition algorithm
shown in Figure 1.2. Although Figure 1.2 and Figure 4.27 are quite different, both
represent essentially the same algorithm: the column-by-column addition of two N-bit
numerical values. This demonstrates quite clearly that there are many different ways
to express the same algorithm—in this case, pseudocode (Figure 1.2) and hardware
circuits (Figure 4.27). Later chapters show additional ways to represent algorithms,
such as machine language programs and high-level language programs. However,
regardless of whether we use English, pseudocode, mathematics, or transistors to
describe an algorithm, its fundamental properties are the same, and the central
purpose of computer science—algorithmic problem solving—remains the same.

It may also be instructive to study the size and complexity of the ADD circuit just
designed. Figure 4.27 shows that the addition of two N-bit integer values requires N
separate 1-ADD circuits. Let’s assume that N = 32, a typical value for modern
computers. Referring to Figure 4.26, we see that each 1-ADD circuit uses 3 NOT gates,
16 AND gates, and 6 OR gates, a total of 25 logic gates. Thus the total number of logic
gates used to implement 32-bit binary addition is 32 × 25 = 800 gates. Figures 4.16,
Figures 4.17(b), and Figures 4.18(b) show that each AND and OR gate requires three
transistors and each NOT gate requires one. Therefore, more than 2,200 transistors are
needed to build a 32-bit adder circuit:

(Note: Optimized 32-bit addition circuits can be constructed using as few as 500 to 600 transistors.
However, this does not change the fact that it takes many, many transistors to accomplish this addition
task.)

Practice Problems

Determine how many transistors are required to build the N-bit

compare-for-equality circuit of Figure 4.23. Assume N = 32.

Design a circuit that implements a 1-bit compare-for-greater-than (1-GT)

operation. This circuit is given two 1-bit values, a and b. It outputs a 1 if

a > b, and outputs a 0 otherwise.

Use the circuit construction algorithm just described to implement the

NOR operation shown in Figure 4.18(a). Remember that the truth table

for the NOR operation is:

a b
(a NOR
b)

0 0 1

0 1 0

1 0 0

1 1 0

Use the circuit construction algorithm to implement the NXOR, the Not

of the Exclusive OR operation, whose truth table is the following:

a b
(a NXOR
b)

0 0 1

0 1 0

1 0 0

1 1 1

Laboratory Experience 8

In the second Laboratory Experience of this chapter, you again use the circuit

simulator software package. This time, you construct circuits using the sum-of-
products algorithm discussed in this section and shown in Figure 4.21. Using
the simulator to design, build, and test actual circuits will give you a deeper
understanding of how to use the sum-of-products algorithm to create circuits
that solve specific problems.

Dr. William Shockley (1910–1989)

Dr. William Shockley was the inventor (along with John Bardeen and Walter
Brattain) of the transistor. His discovery has probably done as much to shape
our modern world as any scientific advancement of the twentieth century. He
received the 1956 Nobel Prize in Physics and, at his death, was a distinguished
professor at Stanford University.

Shockley and his team developed the transistor in 1947 while working at Bell
Laboratories. He left there in 1954 to set up the Shockley Semiconductor
Laboratory in California—a company that was instrumental in the birth of the
high-technology region called Silicon Valley. The employees of this company
eventually went on to develop other fundamental advances in computing, such
as the integrated circuit and the microprocessor.

Although Shockley’s work has been compared with that of Pasteur, Salk, and
Einstein in importance, his reputation and place in history have been forever
tarnished by his outrageous and controversial racial theories. His education
and training were in physics and electrical engineering, but Shockley spent the
last years of his life trying to convince people of the genetic inferiority of
blacks. He became obsessed with these ideas, even though he was ridiculed and
shunned by colleagues who abandoned all contact with him. Although his work
on the design of the transistor was of seminal importance, Shockley himself felt
that his genetic theory on race and intelligence would ultimately be viewed as
his most important contribution to science. By the time of his death in 1989, his
intense racial bigotry prevented him from receiving the recognition that would
otherwise have been his for monumental contributions in physics, engineering,
and computer science.

This computation emphasizes the importance of the continuing research into the
miniaturization of electrical components. (See the Special Interest Box on Moore’s law
on earlier in this chapter.) If vacuum tubes were used instead of transistors, as was
done in computers from about 1940 to 1955, the adder circuit shown in Figure 4.27
would be extraordinarily bulky; 2,208 vacuum tubes would occupy a space about the
size of a large refrigerator. It would also generate huge amounts of heat, necessitating
sophisticated cooling systems, and it would be very difficult to maintain. (Imagine the
time it would take to locate a single burned-out vacuum tube from a cluster of 2,000.)

Using something on the scale of the magnetic core technology described in Section 4.2.4
and shown in Figure 4.4, the adder circuit would fit into an area a few inches square.
However, modern circuit technology can now achieve transistor densities greater than
1 billion transistors/cm. At this level, the entire ADD circuit of Figure 4.27 would easily
fit in an area much, much smaller than the size of the period at the end of this
sentence. That is why it is now possible to put powerful computer processing facilities
not only in a room or on a desk but also inside a watch, a thermostat, or even inside the
human body.

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates: 4.5
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

4.5 Control Circuits
The previous section described the design of circuits for implementing arithmetic and
logical operations. However, there are other, quite different, types of circuits that are
also essential to the proper functioning of a computer system. This section briefly
describes one of these important circuit types, control circuits, which are used not to
implement arithmetic operations but to determine the order in which operations are
carried out and to select the correct data values to be processed. In a sense, they are the
sequencing and decision-making circuits inside a computer. These circuits are essential
to the proper function of a computer because, as we noted in Chapter 1, algorithms and
programs must be well ordered and must always know which operation to do next. The
two major types of control circuits are called multiplexors and decoders, and, like
everything else described in this chapter, they can be completely described in terms of
gates and the rules of logic.

A multiplexor is a circuit that has 2 input lines and 1 output line. Its function is to

select exactly one of its 2 input lines and copy the binary value on that input line onto
its single output line. A multiplexor chooses one specific input by using an additional
set of N lines called selector lines. (Thus the total number of inputs to the multiplexor

circuit is 2 + N.) The 2 input lines of a multiplexor are numbered 0, 1, 2, 3, …, 2 −1.
Each of the N selector lines can be set to either a 0 or a 1, so we can use the N selector
lines to represent all binary values from 000…0 (N zeros) to 111…1 (N ones), which

represent all integer values from 0 to 2 − 1. These numbers correspond exactly to the
numbers of the input lines. Thus the binary number that appears on the selector lines
can be interpreted as the identification number of the input line that is to be selected.
Pictorially, a multiplexor looks like this:

N

N

N N N

N

For example, if we had four (2) input lines (i.e., N = 2) coming into our multiplexor,
numbered 0, 1, 2, and 3, then we would need two selector lines. The four binary
combinations that can appear on this pair of selector lines are 00, 01, 10, and 11, which
correspond to the decimal values 0, 1, 2, and 3, respectively (refer to Figure 4.2). The
multiplexor selects the one input line whose identification number corresponds to the
value appearing on the selector lines and copies the value on that input line to the
output line. If, for example, the two selector lines were set to 1 and 0, then a
multiplexor circuit would pick input line 2 because 10 in binary is 2 in decimal
notation.

Implementing a multiplexor using logic gates is not difficult. Figure 4.28 shows a

simple multiplexor circuit with N = 1. This is a multiplexor with two (2) input lines and
a single selector line.

Figure 4.28

A two-input multiplexor circuit

A two-input multiplexor circuit

In Figure 4.28 if the value on the selector line is 0, then the top input line to AND gate 2
is always 0, so its output is always 0. Looking at AND gate 1, we see that the NOT gate
changes its top input value to a 1. Because (1 AND a) is always a, the output of the top
AND gate is equal to the value of a, which is the value of the input from line 0. Thus the

2

1

two inputs to the OR gate are 0 and a. Because the value of the expression (0 OR a) is
identical to a, by setting the selector line to 0 we have, in effect, selected as our output
the value that appears on line 0. You should confirm that if the selector line has the
value 1, then the output of the circuit in Figure 4.28 is b, the value appearing on line 1.
We can design multiplexors with more than two inputs in a similar fashion, although
they rapidly become more complex.

The second type of control circuit is called a decoder and it operates in the opposite

way from a multiplexor. A decoder has N input lines numbered 0, 1, 2, …, N − 1 and 2

output lines numbered 0, 1, 2, 3, …, 2 − 1.

Each of the N input lines of the decoder can be set to either a 0 or a 1, and when these N
values are interpreted as a single binary number, they can represent all integer values

from 0 to 2 − 1. It is the job of the decoder to determine the value represented on its N
input lines and then send a signal (i.e., a 1) on the single output line that has that
identification number. All other output lines are set to 0.

For example, if our decoder has three input lines, it has eight (2) output lines
numbered 0 to 7. These three input lines can represent all binary values from 000 to
111, which is from 0 to 7 in decimal notation. If, for example, the binary values on the
three input lines are 101, which is a 5, then a signal (a binary 1) would be sent out by
the decoder on output line 5. All other output lines would contain a 0.

Figure 4.29 shows the design of a 2-to-4 decoder circuit with two input lines and four

(2) output lines. These four output lines are labeled 0, 1, 2, and 3, and the only output
line that carries a signal value of 1 is the line whose identification number is identical
to the value appearing on the two input lines. For example, if the two inputs are 11,
then line 3 should be set to a 1 (11 in binary is 3 in decimal). This is, in fact, what
happens because the AND gate connected to line 3 is the only one whose two inputs are
equal to a 1. You should confirm that this circuit behaves properly when it receives the
inputs 00, 01, and 10 as well.

Figure 4.29

A 2-to-4 decoder circuit

A 2-to-4 decoder circuit

N

N

N

3

2

A 2-to-4 decoder circuit

Together, decoder and multiplexor circuits enable us to build computer systems that
execute the correct instructions using the correct data values. For example, assume we
have a computer that can carry out four different types of arithmetic operations—add,
subtract, multiply, and divide. Furthermore, assume that these four instructions have
code numbers 0, 1, 2, and 3, respectively. We could use a decoder circuit to ensure that
the computer performs the correct instruction. We need a decoder circuit with two
input lines. It receives as input the two-digit code number (in binary) of the instruction
that we want to perform: 00 (add), 01 (subtract), 10 (multiply), or 11 (divide). The
decoder interprets this value and sends out a signal on the correct output line. This
signal is used to select the proper arithmetic circuit and cause it to perform the desired
operation. This behavior is diagrammed in Figure 4.30.

Figure 4.30

Example of the use of a decoder circuit

Whereas a decoder circuit can be used to select the correct instruction, a multiplexor
can help ensure that the computer executes this instruction using the correct data. For
example, suppose our computer has four special registers called R0, R1, R2, and R3.
(For now, just consider a register to be a place to store a data value. We describe
registers in more detail in the next chapter.) Assume that we have built a circuit called
test-if-zero that can test whether any of these four registers contains the value 0. (This
is actually quite similar to the CE circuit of Figure 4.23.) We can use a multiplexor
circuit to select the register that we want to send to the test-if-zero circuit. This is
shown in Figure 4.31. If we want to test if register R2 in Figure 4.31 is 0, we simply put
the binary value 10 (2 in decimal notation) on the two selector lines. This selects
register R2, and only its value passes through the multiplexor and is sent to the test
circuit.

Figure 4.31

Example of the use of a multiplexor circuit

There are many more examples of the use of control circuits in Chapter 5, which
examines the execution of programs and the overall organization of a computer
system.

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates: 4.6
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

4.6 Conclusion
We began our discussion on the representation of information and the design of
computer circuits with the most elementary component, bistable electronic devices
such as transistors. We showed how they can be used to construct logic gates that in
turn can be used to implement circuits to carry out useful functions. Our purpose here
was not to make you an expert in specifying and designing computer circuits but to
demonstrate how it is possible to implement high-level arithmetic operations using
only low-level electronic components such as transistors. We also demonstrated how it
is possible to reorient our viewpoint and raise our level of abstraction. We changed the
level of discussion from electricity to arithmetic, from hardware devices to
mathematical behavior, from form to function. This is one of the first steps up the
hierarchy of abstractions introduced in Figure 1.9.

Chapter 5 continues this “upward climb” to yet higher levels of abstraction. It shows
how arithmetic circuits, such as compare-for-equality and addition (Section 4.4.3), and
control circuits, such as multiplexors and decoders (Section 4.5), can be used to
construct entire computer systems.

After reading this chapter, you might have the feeling that although you understand
the individual concepts that are covered, you still don’t understand, in the grand sense,
what computers are or how they work. You might feel that you can follow the details
but can’t see the “big picture.” One possible reason is that this chapter looks at
computers from a very elementary viewpoint, by studying different types of
specialized circuits. This is analogous to studying the human body as a collection of
millions of cells of different types—blood cells, brain cells, skin cells, and so on.
Cytology is certainly an important part of the field of biology, but understanding only
the cellular structure of the human body provides no intuitive understanding of what
people are and how we do such characteristic things as walk, eat, and breathe.
Understanding these complex actions derives not from a study of molecules, genes, or
cells, but from a study of higher-level organs and their interactions, such as the lungs,
heart, and muscles.

That is exactly what happens in Chapter 5, in which we examine higher-level computer
components such as processors, memory, and instructions and begin our study of the
topic of computer organization.

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter Review

Exercises

Given our discussion of positional numbering systems in Section 4.2.1, see

whether you can determine the decimal value of the following numbers:

133 (base 4)a.

367 (base 8, also called octal)b.

1BA (base 16, also called hexadecimal. B is the digit that represents

11; A is the digit that represents 10.)

c.

1.

In Exercise 1c, we use the letters A and B as digits of the base-16 number.

Explain why that is necessary.

2.

Determine the decimal value of the following unsigned binary numbers:

11000a.

110001b.

1111111c.

1000000000d.

3.

Using 8 bits, what is the unsigned binary representation of each of the

following values:

23a.

55b.

275

Did anything unusual happen when determining the correct answer

to Part c?

c.

4.

Assume that the following 10-bit numbers represent signed integers using

sign/magnitude notation. The sign is the leftmost bit and the remaining 9

bits represent the magnitude. What is the decimal value of each?

1000110001a.

0110011000b.

1000000001c.

5.

1000000000d.

Give the 8-bit sign/magnitude representation of each of the following

decimal values:

+71a.

−1b.

−81c.

6.

Assume that you tried to store the signed integer value −200 using an 8-bit

sign/magnitude representation. What happened? What type of error does

this represent?

7.

Assume that we use 10 bits to represent signed integers, using

sign/magnitude notation. What are the largest (in absolute value) positive

and negative numbers that can be represented on our system?

8.

Show the step-by-step addition of the following two 10-bit unsigned

binary values, including showing the carry bit to each successive column:

9.

Assume that our computer stores decimal numbers using 16 bits—10 bits

for a sign/ magnitude mantissa and 6 bits for a sign/ magnitude base-2

exponent. (This is exactly the same representation shown on.) Show the

internal representation of the following decimal quantities.

+7.5a.

−20.25b.

−1/64c.

10.

Using the same decimal representation scheme described in Exercise 10,

give the decimal value of each of the following 16-bit binary strings:

0111000000000111a.

1010001000100001 (

Note: Is there something unusual about this representation? If so, what is it?

)

b.

11.

In Exercises 10 and 11, we used 16 bits to represent decimal numbers,

allocating 10 bits for the mantissa and 6 bits for the exponent. What

would be the impact on our representation if we still used 16 bits for each

number but instead allocated 12 bits for the mantissa and 4 bits for the

exponent?

12.

Using the ASCII code set given in Figure 4.3, show the internal binary

representation for the following character strings:

AbCa.

Mikeb.

$25.00c.

(a+b)d.

13.

How many binary digits would it take to represent the following phrase in

ASCII code? In Unicode? (Do not include the “ ” marks.)

“Invitation to Computer Science”

14.

How many bits does it take to store a 3-minute song using an audio

encoding method that samples at the rate of 40,000 bits/second, has

a bit depth of 16, and does not use compression? What if it uses a

compression scheme with a compression ratio of 5:1?

a.

How many bits does it take to store an uncompressed 1,200 × 800

RGB color image? If we found out that the image actually takes only

2.4 Mbits, what is the compression ratio?

b.

15.

Show how run-length encoding can be used to compress the following text

stream:

xxxyyyyyyzzzzAAxxxx

What is the compression ratio? (Assume each digit and letter requires 8

bits.)

16.

Using the variable-length code shown in Figure 4.8, give the internal

coding of the following Hawaiian words along with the amount of savings

over the standard fixed-length 4-bit representation:

KAIa.

17.

MAUIb.

MOLOKAI

Explain the problem that occurred with Part c.

c.

The primary advantage of using the binary numbering system rather than

the decimal system to represent data is reliability, as noted in Section

4.2.3. Describe two disadvantages of using binary rather than decimal

notation for the internal representation of information.

18.

Assume that a = 1, b = 2, and c = 2. What is the value of each of the

following Boolean expressions?

(a > 1) OR (b = c)a.

[(a + b) > c] AND (b ≤ c)b.

NOT (a = 1)c.

NOT [(a = b) OR (b = c)]d.

(a = 1) AND (b = 1) AND (c = 2)e.

19.

Assume that a = 5, b = 2, and c = 3. What problem do you encounter when

attempting to evaluate the following Boolean expression?

(a = 1) AND (b = 2) OR (c = 3)

How can this problem be solved?

20.

The truth table for a Boolean expression with two variables has four

rows. The truth table for a Boolean expression with three variables has

eight rows. How many rows would there be in a truth table with five

variables?

21.

Using the circuit construction algorithm of Section 4.4.2, design a circuit

using only AND, OR, and NOT gates to implement the following truth

table:

a b Output

0 0 1

0 1 1

22.

a b Output

1 0 1

1 1 0

his operation is termed NAND, for Not AND, and it can be constructed as a

single gate, as shown in Figure 4.17(a)(a). Assume that you do not have

access to a NAND gate and must construct it from AND, OR, and NOT.

Using the circuit construction algorithm of Section 4.4.2, design a circuit

using only AND, OR, and NOT gates to implement the following truth

table.

a b Output

0 0 1

0 1 1

1 0 0

1 1 1

This operation is termed logical implication, and it is an important

operator in symbolic logic.

23.

Build a majority-rules circuit. This is a circuit that has three inputs and

one output. The value of its output is 1 if and only if two or more of its

inputs are 1; otherwise, the output of the circuit is 0. For example, if the

three inputs are 0, 1, 1, your circuit should output a 1. If its three inputs

are 0, 1, 0, it should output a 0. This circuit is frequently used in fault-

tolerant computing—environments where a computer must keep

working correctly no matter what, for example as on a deep-space vehicle

where making repairs is impossible. In these conditions, we might choose

to put three computers on board and have all three do every computation;

if two or more of the systems produce the same answer, we accept it.

Thus, one of the machines could fail and the system would still work

properly.

24.

Design an odd-parity circuit. This is a circuit that has three inputs and one

output. The circuit outputs a 1 if and only if an even number (0 or 2) of its

25.

inputs are a 1. Otherwise, the circuit outputs a 0. Thus the sum of the

number of 1 bits in the input and the output is always an odd number.

(This circuit is used in error checking. By adding up the number of 1 bits,

we can determine whether any single input bit was accidentally changed.

If it was, the total number of 1s is an even number when we know it

should be an odd value.)

Design a 1-bit subtraction circuit. This circuit takes three inputs—two

binary digits a and b and a borrow digit from the previous column. The

circuit has two outputs—the difference (a − b), including the borrow, and

a new borrow digit that propagates to the next column. Create the truth

table and build the circuit. This circuit can be used to build N-bit

subtraction circuits.

26.

How many selector lines would be needed on a four-input multiplexor?

On an eight-input multiplexor?

27.

Design a four-input multiplexor circuit. Use the design of the two-input

multiplexor shown in Figure 4.28 as a guide.

28.

Design a 3-to-8 decoder circuit. Use the design of the 2-to-4 decoder circuit

shown in Figure 4.29 as a guide.

29.

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter Review

Challenge Work

Circuit optimization is a very important area of hardware design. As we

mentioned earlier in the chapter, each gate in the circuit represents a real

hardware device that takes up space on the chip, generates heat that must be

dissipated, and increases costs. Therefore, the elimination of unneeded gates can

represent a real savings. Circuit optimization investigates techniques to construct

a new circuit that behaves identically to the original one but with fewer gates.

The basis for circuit optimization is the transformation rules of symbolic logic.

These rules allow you to transform one Boolean expression into an equivalent

one that entails fewer operations. For example, the distributive lawof logic says

1.

that (a · b) + (a · c) = a · (b + c). The expressions on either side of the = sign are

functionally identical, but the one on the right determines its value using one less

gate (oneAND gate and one OR gate instead of two AND gates and one OR gate).

Read about the transformation rules of binary logic and techniques of circuit

optimization. Using these rules, improve the full adder circuit of Figure 4.27 so

that it requires fewer than 2,208 transistors. Explain your improvements and

determine exactly how many fewer transistors are required for your “new-and-

improved” full adder circuit.

2.

This chapter briefly described an alternative signed integer representation

technique called two’s complement representation. This popular method is based

on the concepts of modular arithmetic, and it does not suffer from the problem of

two different representations for the quantity 0. Read more about two’s

complement and write a report describing how this method works, as well as

algorithms for adding and subtracting numbers represented in two’s complement

notation. In your report, give the 16-bit, two’s complement representation for the

signed integer values +45, -68, -1, and 0. Then show how to carry out the

arithmetic operations 45 + 45, 45 + (−68), and 45 − (−1).

3.

In Section 4.2.2, we describe lossless compression schemes, such as run-length

encoding and variable-length codes. However, most compression schemes in use

today are lossy and only achieve extremely high rates of compression at the

expense of losing some of the detail contained in the sound or image. Often they

base their compression techniques on specific knowledge of the characteristics of

the human ear or eye. For example, it is well known that the eye is much more

sensitive to changes in brightness (luminance) than to changes in color

(chrominance). The JPEG compression algorithm exploits this fact when it is

compressing a photographic image.

4.

Read about the JPEG image compression algorithm to learn how it is able to achieve
compression ratios of 10:1 or even 20:1. A good place to start would be the JPEG home
page, located at www.jpeg.org.

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter Review

Additional Resources

 For additional print and/or online resources relevant to this

chapter, visit the Computer Science CourseMate at login.cengagebrain.com.

Chapter 4: The Building Blocks: Binary Numbers, Boolean Logic, and Gates
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

© 2014 Cengage Learning Inc. All rights reserved. No part of this work may by reproduced or used in any form or by any means -
graphic, electronic, or mechanical, or in any other manner - without the written permission of the copyright holder.

Chapter 5: Computer Systems Organization
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter 5
Computer Systems Organization

5.1 Introduction

5.2 The Components Of A Computer System

5.2.1 Memory and Cache

5.2.2 Input/output and Mass Storage

5.2.3 The Arithmetic/logic Unit

5.2.4 The Control Unit

5.3 Putting The Pieces Together— The Von Neumann Architecture

5.4 Non-von Neumann Architectures

5.5 Summary Of Level 2

Chapter Review

Exercises

Challenge Work

Additional Resources

Chapter 5: Computer Systems Organization: 5.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

5.1 Introduction
Chapter 4 introduced the elementary building blocks of computer systems—transistors,
gates, and logic circuits. Though this information is essential to understanding
computer hardware—just as knowledge of atoms and molecules is necessary for any
serious study of chemistry—it produces a very low-level view of computer systems.
Even students who have mastered the material may still ask, “OK, but how do
computers really work?” Gates and circuits operate on the most elemental of data
items, binary 0s and 1s, whereas people reason and work with more complex units of
information, such as decimal numbers, character strings, variables, and instructions.

To understand how computers process this kind of information, we must look at
higher-level components than gates and circuits. We must study computers as
collections of functional units or subsystems that perform tasks such as instruction
processing, information storage, computation, and data transfer. The branch of
computer science that studies computers in terms of their major functional units is
computer organization, and that is the subject of this chapter. This higher-level
viewpoint will give us a much better understanding of how a computer really works.

All of the functional units introduced in this chapter are built from the gates and
circuits of Chapter 4. However, those elementary components will no longer be visible
because we will adopt a different viewpoint, a different perspective, a different level of
abstraction. This is an extremely important point; as we have said, the concept of
abstraction is used throughout computer science. Without it, it would be virtually
impossible to study computer design or any other large, complex system.

For example, suppose that system S is composed of a large number of elementary
components a , a , a , … interconnected in very intricate ways, as shown in Figure

5.1(a). This is equivalent to viewing a computer system as thousands or millions of
individual gates. For some purposes, it might be necessary to view system S at this level
of detail, but for other applications, the amount of detail could become overwhelming.
To deal with this problem, we can redefine the primitives of system S by grouping the
elementary components a , a , a ,…, as shown in Figure 5.1(b), and calling these larger

units (A, B, C) the basic building blocks of system S. A, B, and C are treated as
nondecomposable elements whose internal construction is hidden from view. We care
only about what functions these components perform and how they interact. This leads
to the higher-level system view shown in Figure 5.1(c), which is certainly a great deal
simpler than the one shown in Figure 5.1(a), and this is how this chapter approaches
the topic of computer hardware. Our primitives are much larger components, similar
to A, B, and C, but internally they are still made up of the gates and circuits of Chapter
4.

Figure 5.1

The concept of abstraction

1 2 3

1 2 3

This “abstracting away” of unnecessary detail can be done more than once. For
example, at a later point in the study of system S, we might no longer care about the
behavior of individual components A, B, and C. Instead, we might want to treat the
entire system as a single primitive, nondecomposable entity whose inner workings are
no longer important. This leads to the extremely simple system view shown in Figure
5.1(d), a view that we will adopt in later chapters.

Figures 5.1(a), (c), and (d) form what is called a hierarchy of abstractions. A hierarchy
of abstractions of computer science forms the central theme of this text, and it was
initially diagrammed in Figure 1.9. We have already seen this idea in action in Chapter
4, where transistors are grouped into gates and gates into circuits:

This process continues into Chapter 5, where we use the addition and comparison
circuits of Section 4.4.3 to build an arithmetic unit and use the multiplexor and decoder
circuits of Section 4.5 to construct a processor. These higher-level components become
our building blocks in all future discussions.

Chapter 5: Computer Systems Organization: 5.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

5.2 The Components Of A Computer System
There are a huge number of computer systems on the market, manufactured by dozens
of different vendors. There are $50 million supercomputers, $1 million mainframes,
midsized systems, workstations, laptops, tablets, and smartphones that cost less than a
hundred dollars. In addition to size and cost, computers also differ in speed, memory
capacity, input/output capabilities, and available software. The hardware marketplace
is diverse, multifaceted, and ever changing.

However, in spite of all these differences, virtually every computer in use today is
based on a single design. Although a $1 million mainframe, a $1,000 laptop, and a $100
smartphone might not seem to have much in common, they are all based on the same
fundamental principles.

The same thing is true of automotive technology. Although a pickup truck, family
sedan, and Ferrari racing car do not seem very similar, “under the hood” they are all
constructed from the same basic technology: a gasoline-powered internal combustion
engine turning an axle that turns the wheels. Differences among various models of
trucks and cars are not basic theoretical differences but simply variations on a theme,
such as a bigger engine, a larger carrying capacity, or a more luxurious interior.

The structure and organization of virtually all modern computers are based on a single
theoretical model of computer design called the Von Neumann architecture, named
after the brilliant mathematician John Von Neumann who proposed it in 1946. (You
read about Von Neumann and his enormous contributions to computer science in the
historical overview in Section 1.4.)

The Von Neumann architecture is based on the following three characteristics:

Four major subsystems called memory, input/output, the arithmetic/ logic unit

(ALU), and the control unit. These four subsystems are diagrammed in Figure

5.2. The ALU and the control unit are often bundled together in what is called the

Central Processing Unitor CPU.

Figure 5.2

Components of the Von Neumann architecture

The stored program concept, in which the instructions to be executed by the

computer are represented as binary values and stored in memory.

The sequential execution of instructions, in which one instruction at a time is

fetched from memory and passed to the control unit, where it is decoded and

executed.

This section looks individually at each of the four subsystems that make up the Von
Neumann architecture and describes their design and operation. In the following
section, we put all these pieces together to show the operation of the overall Von
Neumann model.

Chapter 5: Computer Systems Organization: 5.2.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

5.2.1 Memory and Cache

Memory is the functional unit of a computer that stores and retrieves the instructions
and the data being executed. All information stored in memory is represented

internally using the binary numbering system described in Section 4.2.

Computer memory uses an access technique called random access, and the memory
unit is frequently referred to as random access memory (RAM). RAM has the following
three characteristics:

Memory is divided into fixed-size units called cells, and each cell is associated

with a unique identifier called an address. These addresses are the unsigned

integers 0, 1, 2, …, MAX.

All accesses to memory are to a specified address, and we must always fetch or

store a complete cell—that is, all the bits in that cell. The cell is the minimum unit

of access.

The time it takes to fetch or store the contents of a cell is the same for all the cells

in memory.

A model of a random access memory unit is shown in Figure 5.3. (Note:Read-only
memory (ROM) is random access memory into which information has been
prerecorded during manufacture. This information cannot be modified or removed,
only fetched. ROM is used to hold important system instructions and data in a place
where a user cannot accidentally or intentionally overwrite them.)

Figure 5.3

Structure of random access memory

As shown in Figure 5.3, the memory unit is made up of cells that contain a fixed
number of binary digits. The number of bits per cell is called the cell size or the
memory width, and it is usually denoted as W.

Earlier generations of computers had no standardized value for cell size, and
computers were built with values of W = 6, 8, 12, 16, 24, 30, 32, 36, 48, and 60 bits.
However, computer manufacturers now use a standard cell size of 8 bits, and this 8-bit
unit is universally called a byte. Thus, the generic term cell has become relatively
obsolete, and it is more common now to refer to memory bytes as the basic unit.
However, keep in mind that this is not a generic term but rather refers to a memory
cell that contains exactly 8 binary digits.

With a cell size of 8 bits, the largest unsigned integer value that can be stored in a
single cell is 11111111, which equals 255—not a very large number. Therefore,
computers with a cell size of W = 8 often use multiple memory cells to store a single
data value. For example, many computers use 2 or 4 bytes (16 or 32 bits) to store one
integer, and either 4 or 8 bytes (32 or 64 bits) to store a single real number. This gives
the range needed, but at a price. It may take several trips to memory, rather than one,
to fetch a single data item.

Each memory cell in RAM is identified by a unique unsigned integer address 0, 1, 2, 3,
…. If there are N bits available to represent the address of a cell, then the smallest
address is 0 and the largest address is a string of N 1s:

which is equal to the value 2 − 1. Thus the range of addresses available on a computer

is [0.. (2 − 1)], where N is the number of binary digits used to represent an address.

This is a total of 2 memory cells. The value 2 is called the maximum memory size or
the address space of the computer. Typical values of N in the 1960s and 1970s were 16,

20, 22, and 24. Today all computers have at least 32 address bits allowing for up to 2 ,

or about 4 billion, memory cells. However, 2 represents the maximum theoretical
memory size; a computer with N address bits does not necessarily come equipped with

2 memory cells. It simply means that its memory can be expanded to 2 . Figure 5.4

gives the value of 2 for a number of values of N.

Figure 5.4
Maximum memory sizes

N Maximum Memory
Size (2)

N

N

N N

32

N

N N

N

N

N Maximum Memory
Size (2)

16 65,536

20 1,048,576

22 4,194,304

24 16,777,216

32 4,294,967,296

40 1,099,511,627,776

50 1,125,899,906,842,624

Because numbers like 65,536 (2) and 1,048,576 (2) are hard to remember, computer
scientists use a convenient shorthand to refer to memory sizes (and other values that

are powers of 2). It is based on the fact that the values 2 , 2 , 2 , 2 , and 2 are quite
close in magnitude to one thousand, one million, one billion, one trillion, and one
quadrillion, respectively. Therefore, the letters K (kilo, or thousand), M (mega, or
million), G (giga, or billion), T (tera, or trillion), and P (peta, or quadrillion) are used to
refer to these units.

Thus, a computer with a 16-bit address and 2 = 65,536 bytes of storage would have 64

KB of memory, because 2 = 2 x 2 = 64 x 2 = 64 KB. This was a popular size for
computers of the 1960s and early 1970s. The 32-bit address, common in the 1980s,

1990s, and 2000s, and which supports an address space of 2 = 4 GB, has reached its
limits. Therefore, most processors today provide 36–, 40–, 48–, or even 64–bit addresses.

A 64-bit memory address would allow, at least theoretically, an address space of 2
bytes, or 17 billion gigabytes!

When dealing with memory, it is important to keep in mind the distinction between an

N

16 20

10 20 30 40 50

16

16 6 10 10

32

64

address and the contents of that address.

The address of this memory cell is 42. The content of cell 42 is the integer value 1. As
you will soon see, some instructions operate on addresses, whereas others operate on
the contents of an address. A failure to distinguish between these two values can cause
confusion about how some instructions behave.

The two basic memory operations are fetching and storing, and they can be described
formally as follows:

value = Fetch(address)

Meaning: Fetch a copy of the contents of the memory cell with the specified

address and return those contents as the result of the operation. The original

contents of the memory cell that was accessed are unchanged. This is termed a

nondestructive fetch. Given the preceding diagram, the operation Fetch(42)

returns the number 1. The value 1 remains in address 42.

Store(address, value)

Meaning: Store the specified value into the memory cell specified by address. The

previous contents of the cell are lost. This is termed a destructive store. The

operation Store(42, 2) stores the value 2 into cell 42, overwriting the previous

value 1.

One of the characteristics of random access memory is that the time to carry out either

a fetch or a store operation is the same for all 2 addresses. At current levels of
technology, this time, called the memory access time, is typically about 5-10 nsec

(nanosecond = 1 nsec = 10 sec = 1 billionth of a second). Also note that fetching and
storing are allowed only to an entire cell. If we want, for example, to modify a single bit
of memory, we first need to fetch the entire cell containing that bit, change the one bit,
and then store the entire cell. The cell is the minimum accessible unit of memory.

Powers of 10

When we talk about volumes of information such as megabytes, gigabytes, and
terabytes, it is hard to fathom exactly what those massive numbers mean. Here

N

−9

are some rough approximations (say, to within an order of magnitude) of how
much textual information corresponds to each of the storage quantities just
introduced, as well as the next few on the scale.

Quantity in Bytes Base-10 Value Amount of
Textual
Information

1 byte 10 One character

1 kilobyte 10 One typed page

1 megabyte 10
Two or three
novels

1 gigabyte 10

A departmental
library or a large
personal library

1 terabyte 10

The library of a
major academic
research
university

1 petabyte 10

All printed
material in all
libraries in North
America

1 exabyte 10

All words ever
printed
throughout
human history

1 zettabyte 10 —

1 yottabyte 10 —

There is one component of the memory unit shown in Figure 5.3 that we have not yet
discussed, the memory registers. These two registers are used to implement the fetch
and store operations. Both operations require two operands: the address of the cell
being accessed and the value, either the value stored by the store operation or the value
returned by the fetch operation.

0

3

6

9

12

15

18

21

24

The memory unit contains two special registers whose purpose is to hold these two
operands. The Memory Address Register (MAR) holds the address of the cell to be
accessed. Because the MAR must be capable of holding any address, it must be at least

N bits wide, where 2 is the address space of the computer.

The Memory Data Register (MDR) contains the data value being fetched or stored. We
might be tempted to say that the MDR should be W bits wide, where W is the cell size.
However, as mentioned earlier, on most computers the cell size is only 8 bits, and most
data values occupy multiple cells. Thus the size of the MDR is usually a multiple of 8.
Typical values of MDR width are 32 and 64 bits, which would allow us to fetch, in a
single step, either an integer or a real value, respectively.

Given these two registers, we can describe a little more formally what happens during
the fetch and store operations in a random access memory.

Fetch(address)

Load the address into the MAR.1.

Decode the address in the MAR.2.

Copy the contents of that memory location into the MDR.3.

Store(address, value)

Load the address into the MAR.1.

Load the value into the MDR.2.

Decode the address in the MAR.3.

Store the contents of the MDR into that memory location.4.

For example, to retrieve the contents of cell 123, we would load the value 123 (in
binary, of course) into the MAR and perform a fetch operation. When the operation is
done, a copy of the contents of cell 123 would be in the MDR. To store the value 98 into
cell 4, we load a 4 into the MAR and a 98 into the MDR and perform a store. When the
operation is completed, the contents of cell 4 will have been set to 98, discarding
whatever was there previously.

The operation “Decode the address in the MAR” means that the memory unit must
translate the N-bit binary address stored in the MAR into the set of signals needed to
access that one specific memory cell. That is, the memory unit must be able to convert
the integer value 7, for example, in the MAR into the electronic signals needed to access

only address 7 from all 2 addresses in the memory unit. This might seem like magic,
but it is actually a relatively easy task that applies ideas presented in the previous

N

N

chapter. We can decode the address in the MAR using a decoder circuit of the type
described in Section 4.5 and shown in Figure 4.29. (Remember that a decoder circuit

has N inputs and 2 outputs numbered 0, 1, 2, …, 2 − 1. The circuit puts the signal 1 on
the output line whose number equals the numeric value on the N input lines.) We
simply copy the N bits in the MAR to the N input lines of a decoder circuit. Exactly one

of its 2 output lines is ON, and this line’s identification number corresponds to the
address value in the MAR.

For example, if N = 4 (the MAR contains 4 bits), then we have 16 addressable cells in
our memory, numbered 0000 to 1111 (that is, 0 to 15). We could use a 4-to-16 decoder
whose inputs are the 4 bits of the MAR. Each of the 16 output lines is associated with
the one memory cell whose address is in the MAR and enables us to fetch or store its
contents. This situation is shown in Figure 5.5.

Figure 5.5

Organization of memory and the decoding logic

If the MAR contains the 4-bit address 0010 (decimal 2), then only the output line labeled
0010 in Figure 5.5 is ON (that is, carries a value of 1). All others are OFF. The output line
0010 is associated with the unique memory cell that has memory address 2, and the
appearance of an ON signal on this line causes the memory hardware to copy the
contents of location 2 to the MDR if it is doing a fetch, or to load the contents of the
MDR into location 2 if it is doing a store.

N N

N

The only problem with the memory organization shown in Figure 5.5 is that it does not
scale very well. That is, it cannot be used to build a large memory unit. In modern
computers, a typical value for N, the number of bits used to represent an address, is 32.

A decoder circuit with 32 input lines would have 2 , or more than 4 billion, output
lines.

To solve this problem, memories are physically organized into a two-dimensional
rather than a one-dimensional organization. In this structure, the 16-byte memory of
Figure 5.5 would be organized into a two-dimensional 4 × 4 structure, rather than the
one-dimensional 16 × 1 organization shown earlier. This two-dimensional layout is
shown in Figure 5.6.

Figure 5.6

Two-dimensional memory organization

The memory locations are stored in row major order, with bytes 0-3 in row 0, bytes 4-7
in row 1 (01 in binary), bytes 8-11 in row 2 (10 in binary), and bytes 12-15 in row 3 (11
in binary). Each memory cell is connected to two selection lines, one called the row
selection line and the other called the column selection line. When we send a signal
down a single row selection line and a single column selection line, only the memory
cell located at the intersection of these two selection lines carries out a memory fetch or

32

a memory store operation.

How do we choose the correct row and column selection lines to access the proper
memory cell? Instead of using one decoder circuit, we use two. The first two binary
digits of the addresses in Figure 5.6 are identical to the row number. Similarly, the last
two binary digits of the addresses are identical to the column number. Thus, we should
no longer view the MAR as being composed of a single 4-bit address, but as a 4-bit
address made up of two distinct parts—the leftmost 2 bits, which specify the number of
the row containing this cell, and the rightmost 2 bits, which specify the number of the
column containing this cell. Each of these 2-bit fields is input to a separate decoder
circuit that pulses the correct row and column lines to access the desired memory cell.

For example, if the MAR contains the 4-bit value 1101 (a decimal 13), then the two
high-order (leftmost) bits 11 are sent to the row decoder, whereas the two low-order
(rightmost) bits 01 are sent to the column decoder. The row decoder sends a signal on
the line labeled 11 (row 3), and the column decoder sends a signal on the line labeled
01 (column 1). Only the single memory cell in row 3, column 1 becomes active and
performs the fetch or store operation. Figure 5.6 shows that the memory cell in row 3,
column 1 is the correct one—the cell with memory address 1101.

The two-dimensional organization of Figure 5.6 is far superior to the one-dimensional
structure in Figure 5.5 because it can accommodate a much larger number of cells. For

example, a memory unit containing 256 MB (2 bytes) is organized into a 16,384 ×
16,384 two-dimensional array. To select any one row or column requires a decoder

with 14 input lines (2 = 16,384) and 16,384 output lines. This is a large number of
output lines, but it is certainly more feasible to build two 14-to-16,384 decoders than
the single 28-to-256 million decoder required for a one-dimensional organization. If
necessary, we can continue this process by going to a three-dimensional memory
organization, in which the address is broken up into three parts and sent to three
separate decoders.

To control whether memory does a fetch or a store operation, our memory unit needs
one additional device called a fetch/store controller. This unit determines whether we
put the contents of a memory cell into the MDR (a fetch operation) or put the contents
of the MDR into a memory cell (a store operation). The fetch/store controller is like a
traffic officer controlling the direction in which traffic can flow on a two-way street.
This memory controller must determine in which direction information flows on the
two-way link connecting memory and the MDR. In order to know what to do, this
controller receives a signal telling it whether it is to perform a fetch operation (an F
signal) or a store operation (an S signal). On the basis of the value of that signal, the
controller causes information to flow in the proper direction and the correct memory
operation to take place.

A complete model of the organization of a typical random access memory in a Von
Neumann architecture is shown in Figure 5.7.

28

14

Figure 5.7

Overall RAM organization

Let’s complete this discussion by considering how complex it would be to study the
memory unit of Figure 5.7, not at the abstraction level presented in that diagram, but at
the gate and circuit level presented in Chapter 4. Let’s assume that our memory unit

contains 2 cells (1 GB), each byte containing 8 bits. There is a total of about 8 billion
bits of storage in this memory unit. A typical memory circuit used to store a single bit
generally requires about 3 gates (1 AND, 1 OR, and 1 NOT) containing 7 transistors (3
per AND, 3 per OR, and 1 per NOT). Thus, our 1 GB memory unit (which is actually
quite modest by today’s standards) would contain roughly 24 billion gates and 56
billion transistors, and this does not even include the circuitry required to construct
the decoder circuits, the controller, and the MAR and MDR registers! These numbers
should help you appreciate the power and advantages of abstraction. Without it,
studying a memory unit like the one in Figure 5.7 would be a much more formidable

30

task.

Cache Memory

When Von Neumann created his idealized model of a computer, he described only a
single type of memory. Whenever the computer needed an instruction or a piece of
data, Von Neumann simply assumed it would get it from RAM using the fetch operation
just described. However, as computers became faster, designers noticed that, more and
more, the processor was sitting idle waiting for data or instructions to arrive.
Processors were executing instructions so quickly that memory access was becoming a
bottleneck. (It is hard to believe that a memory unit that can fetch a piece of data in a
few billionths of a second can slow anything down, but it does.) As the following graph
shows, during the period from 1980 to 2000, processors increased in performance by a
factor of about 3,000, whereas memories became faster by a factor of only about 10.
This led to a huge imbalance between the capabilities of the processor and the
capabilities of memory.

To solve this problem, designers needed to decrease memory access time to make it
comparable with the time needed to carry out an instruction. It is possible to build
extremely fast memory, but it is also quite expensive, and providing a few billion bytes
or so of ultra-high-speed memory would make a computer prohibitively expensive.

However, computer designers discovered that it is not necessary to construct all of the
memory from expensive, high-speed cells to obtain a significant increase in speed.
They observed that when a program fetches a piece of data or an instruction, there is a
high likelihood that

It will access that same instruction or piece of data in the very near future.1.

It will soon access the instructions or data that are located near that piece of data,

where “near” means an address whose numerical value is close to this one.

2.

Simply stated, this observation, called the principle of locality, says that when the
computer uses something, it will probably use it again very soon, and it will probably
use the “neighbors” of this item very soon. (Think about a loop in an algorithm that
keeps repeating the same instruction sequence over and over.) To exploit this
observation, the first time that the computer references a piece of data, it should copy
that data from regular RAM memory to a special, high-speed memory unit called cache
memory (pronounced “cash,” from the French word cacher, meaning “to hide”). It
should also copy the contents of memory cells located near this item into the cache. A
cache is typically 5 to 10 times faster than RAM but much smaller—on the order of a
few megabytes rather than a few gigabytes. This limited size is not a problem because
the computer does not keep all of the data there, just those items that were accessed
most recently and that, presumably, will be needed again immediately. The
organization of the “two-level memory hierarchy” is as follows:

When the computer needs a piece of information, it does not immediately do the
memory fetch operation described earlier. Instead, it carries out the following three
steps:

Look first in cache memory to see whether the information is there. If it is, then

the computer can access it at the higher speed of the cache.

1.

If the desired information is not in the cache, then access it from RAM at the

slower speed, using the fetch operation described earlier.

2.

Copy the data just fetched into the cache along with the k immediately following

memory locations. If the cache is full, then discard some of the older items that

have not recently been accessed. (The assumption is that we will not need them

again for a while.)

3.

This algorithm significantly reduces the average time to access information. For
example, assume that the average access time of our RAM is 10 nsec, whereas the
average access time of the cache is 2 nsec. Furthermore, assume that the information
we need is in the cache 70% of the time, a value called the cache hit rate. In this
situation, 70% of the time we get what we need in 2 nsec, and 30% of the time we have

wasted that 2 nsec because the information is not in the cache and must be obtained
from RAM, which will take 10 nsec. Our overall average access time will now be

which is a 50% reduction in access time from the original value of 10 nsec. A higher
cache hit rate can lead to even greater savings.

A good analogy to cache memory is a home refrigerator. Without one we would have to
go to the grocery store every time we needed an item; this corresponds to slow, regular
memory access. Instead, when we go to the store we buy not only what we need now
but also what we think we will need in the near future, and we put those items into our
refrigerator. Now, when we need something, we first check the refrigerator. If it is
there, we can get it at a much higher rate of speed. We only need to go to the store
when the food item we want is not there.

Caches are found on every modern computer system, and they are a significant
contributor to the higher computational speeds achieved by new machines. Even
though the formal Von Neumann model contained only a single memory unit, most
computers built today have a multilevel hierarchy of random access memory.

Practice Problems

Assume that our memory unit is organized as a 1,024 × 1,024
two-dimensional array of 8-bit bytes.

How big does the MAR register have to be?1.

How many bits of the MAR must be sent to the row decoder? To the

column decoder?

2.

Why is it unlikely that the size of the MDR register would be 8 bits?3.

If the average access time of this memory is 25 nsec and the average

access time for cache memory is 10 nsec, what is the overall average

access time if our cache hit rate is 80%?

4.

What would happen to the overall average access time from Practice

Problem 4 if we could somehow increase the cache hit rate to 90%?

5.

In the previous problem, what would the cache hit rate have to be to

reduce the average access time to 12.0 nsec?

6.

Do you think that human memory is or is not a random access7.

its physical location and the current state of the device.

The best examples of DASDs are the types of disks listed earlier: hard drives, CDs, DVDs,
and so on. A disk stores information in units called sectors, each of which contains an
address and a data block containing a fixed number of bytes:

A fixed number of these sectors are placed in a concentric circle on the surface of the
disk, called a track:

Finally, the surface of the disk contains many tracks, and there is a single read/write
head that can be moved in or out to be positioned over any track on the disk surface.
The entire disk rotates at high speed under the read/write head. The overall
organization of a typical disk is shown in Figure 5.8.

Figure 5.8

Overall organization of a typical disk

The access time to any individual sector of the disk is made up of three components:
seek time, latency, and transfer time. Seek time is the time needed to position the
read/write head over the correct track; latency is the time for the beginning of the
desired sector to rotate under the read/write head; and transfer time is the time for the
entire sector to pass under the read/write head and have its contents read into or
written from memory. These values depend on the specific sector being accessed and
the current position of the read/write head. Let’s assume a disk drive with the
following physical characteristics:

Rotation speed = 7,200 rev/min = 120 rev/sec = 8.33 msec/rev

(1 msec = 0.001 sec)

Arm movement time = 0.02 msec to move to an adjacent track i.e., moving from

track

i to either track i + 1 or i − 1)

Number of tracks/surface = 1,000 (numbered 0 to 999)

Number of sectors/track = 64

Number of bytes/sector = 1,024

The access time for this disk can be determined as follows.

Seek Time Best case = 0 msec (no
arm movement)

Worst case = 999 ×
0.02 = 19.98 msec

(move from track 0 to
track 999)

Latency Best case = 0 msec
(sector is just about to
come under the
read/write head)

Worst case = 8.33 msec
(we just missed the
first bit of the sector
and must wait one full
revolution)

Average case = 4.17
msec (one-half a
revolution)

Transfer 1/64 × 8.33 msec =
0.13 msec (the time for
one sector, or 1/64th
of a track, to pass
under the read/write
head; this time will be
the same for all
sectors)

The following table summarizes these access time computations (all values are in
milliseconds).

Best Worst Average

Seek
Time

0 19.98 6

Latency 0 8.33 4.17

Transfer 0.13 0.13 0.13

Total 0.13 28.44 10.3

The best-case time and the worst-case time to fetch or store a sector on the disk differ
by a factor of more than 200, that is, 0.13 msec versus 28.44 msec. The average access

time is about 10 msec, a typical value for current hard drive technology. This table
clearly demonstrates the fundamental characteristic of all direct access storage devices,
not just disks: They enable us to specify the address of the desired unit of data and go
directly to that data item, but they cannot provide a uniform access time. Today, there
is an enormous range of direct access storage devices in the marketplace, from small
flash memory sticks that hold a few gigabytes, to hard drives, CDs, and DVDs that can
store hundreds of gigabytes, to massive online storage devices that are capable of
recording and accessing terabytes or even petabytes of data. (See the “Powers of Ten”
Special Interest Box in this chapter for a definition of the metric prefix peta-.)

The second type of mass storage device uses the old access technique called sequential
access. A sequential access storage device (SASD) does not require that all units of data
be identifiable via unique addresses. To find any given data item, we must search all
data sequentially, repeatedly asking the question, “Is this what I’m looking for?” If not,
we move on to the next unit of data and ask the question again. Eventually we find
what we are looking for or come to the end of the data.

A sequential access storage device behaves just like the old audio cassette tapes of the
1980s and 1990s. To locate a specific song, we run the tape for a while and then stop
and listen. This process is repeated until we find the desired song or come to the end of
the tape. In contrast, a direct access storage device behaves like a CD or DVD that
numbers all the songs and allows you to select any one. (The song number is the
address.) Direct access storage devices are generally much faster at accessing
individual pieces of information, and that is why they are much more widely used for
mass storage. However, sequential access storage devices can be useful in specific
situations, such as sequentially copying the entire contents of memory or of a disk
drive. This backup operation fits the SASD model well, and streaming tape backup units
are common storage devices on computer systems.

One of the fundamental characteristics of many (though not all) I/O devices is that they
are very, very slow when compared with other components of a computer. For
example, a typical memory access time is about 10 nsec. The time to complete the I/O
operation “locate and read one disk sector” was shown in the previous example to be
about 10 msec.

Units such as nsec (billionths of a second), μsec (millionths of a second), and msec
(thousandths of a second) are so small compared with human time scales that it is
sometimes difficult to appreciate the immense difference between values like 10 nsec
and 10 msec. The difference between these two quantities is a factor of 1,000,000, that
is, 6 orders of magnitude. Consider that this is the same order of magnitude difference
as between 1 mile and 40 complete revolutions of the Earth’s equator, or between 1 day
and 30 centuries!

It is not uncommon for I/O operations such as displaying an image on a monitor or
printing a page on a printer to be 3, 4, 5, or even 6 orders of magnitude slower than any
other aspect of computer operation. If there isn’t something in the design of a computer

to account for this difference, components that operate on totally incompatible time
scales will be trying to talk to each other, which will produce enormous inefficiencies.
The high-speed components will sit idle for long stretches of time while they wait for
the slow I/O unit to accept or deliver the desired character. It would be like talking at
the normal human rate of 240 words/min (4 words/sec) to someone who could respond
only at the rate of 1 word every 8 hours—a difference of 5 orders of magnitude. You
wouldn’t get much useful work done!

The solution to this problem is to use a device called an I/O controller. An I/O controller
is like a special-purpose computer whose responsibility is to handle the details of
input/output and to compensate for any speed differences between I/O devices and
other parts of the computer. It has a small amount of memory, called an I/O buffer, and
enough I/O control and logic processing capability to handle the mechanical functions
of the I/O device, such as the read/write head, paper feed mechanism, and screen
display. It is also able to transmit to the processor a special hardware signal, called an
interrupt signal, when an I/O operation is done. The organization of a typical I/O
controller is shown in Figure 5.9.

Figure 5.9

Organization of an I/O controller

Let’s assume that we want to display one line (80 characters) of text on a screen. First,
the 80 characters are transferred from their current location in memory to the I/O
buffer storage within the I/O controller. This operation takes place at the high-speed
data transfer rates of most computer components—hundreds of millions of characters
per second. Once this information is in the I/O buffer, the processor can instruct the I/O
controller to begin the output operation. The control logic of the I/O controller handles

the actual transfer and display of these 80 characters to the screen. This transfer may
be at a much slower rate—perhaps only hundreds or thousands of characters per
second. However, the processor does not sit idle during this output operation. It is free
to do something else, perhaps work on another program. The slowness of the I/O
operation now affects only the I/O controller. When all 80 characters have been
displayed, the I/O controller sends an interrupt signal to the processor. The appearance
of this special signal indicates to the processor that the I/O operation is finished.

Practice Problems

Assume a disk with the following characteristics:

Number of sectors per track = 20

Number of tracks per surface = 50

Number of surfaces = 2 (called a double-sided disk)

Number of characters per sector = 1,024

Arm movement time = 0.4 msec to move 1 track in any direction

Rotation speed = 2,400 rev/min

How many characters can be stored on this disk?1.

What are the best-case, worst-case, and average-case access times for

this disk? (Assume that the average seek operation must move 20

tracks.)

2.

What would be the average-case access time if we could increase the

rotation speed from 2,400 rev/min to 7,200 rev/min?

3.

What would be the average-case access time of the disk of the

previous problem if we could reduce the arm movement time to 0.2

msec to move 1 track in any direction? (Again, assume that the

average seek operation must move 20 tracks.)

4.

Defragmenting a disk means to reorganize files on the disk so that as

many pieces of the file as possible are stored in sectors on the same

track, regardless of the surface it is on. Explain why defragmentation

can be beneficial.

5.

Chapter 5: Computer Systems Organization: 5.2.3
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

5.2.3 The Arithmetic/logic Unit

The arithmetic/logic unit (ALU) is the subsystem that performs such mathematical and
logical operations as addition, subtraction, and comparison for equality. Although they
can be conceptually viewed as separate components, in all modern machines the ALU
and the control unit (discussed in the next section) have become fully integrated into a
single component called the processor(the CPU). However, for reasons of clarity and
convenience, we will describe the functions of the ALU and the control unit separately.

The ALU is made up of three parts: the registers, the interconnections between
components, and the ALU circuitry. Together these components are called the data
path.

A register is a storage cell that holds the operands of an arithmetic operation and that,
when the operation is complete, holds its result. Registers are quite similar to the
random access memory cells described in the previous section, with the following
minor differences:

They do not have a numeric memory address but are accessed by a special

register designator such as A, X, or R0.

They can be accessed much more quickly than regular memory cells. Because

there are few registers (typically, a few dozen up to a hundred), it is reasonable to

utilize the expensive circuitry needed to make the fetch and store operations 5 to

10 times faster than regular memory cells, of which there will be billions.

They are not used for general-purpose storage but for specific purposes such as

holding the operands for an upcoming arithmetic computation.

For example, an ALU might have three special registers called A, B, and C. Registers A
and B hold the two input operands, and register C holds the result. This organization is
diagrammed in Figure 5.10.

Figure 5.10

Three-register ALU organization

In most cases, however, three registers are not nearly enough to hold all the values that
we might need. A typical ALU has 16, 32, or 64 registers. To see why this many ALU
registers are needed, let’s take a look at what happens during the evaluation of the
expression (a / b) x (c − d). After we compute the expression (a / b), it would be nice to
keep this result temporarily in a high-speed ALU register while evaluating the second
expression (c − d). Of course, we could always store the result of (a / b) in a memory
cell, but keeping it in a register allows the computer to fetch it more quickly when it is
ready to complete the computation. In general, the more registers available in the ALU,
the faster programs run.

A more typical ALU organization is illustrated in Figure 5.11, which shows an ALU data
path containing 16 registers designated R0 to R15. Any of the 16 ALU registers in Figure
5.11 could be used to hold the operands of the computation, and any register could be
used to store the result.

Figure 5.11

Multiregister ALU organization

To perform an arithmetic operation with the ALU of Figure 5.11, we first move the
operands from memory to the ALU registers. Then we specify which register holds the
left operand by connecting that register to the communication path called “Left.” In
computer science terminology, a path for electrical signals (think of this as a wire) is
termed a bus. We then specify which register to use for the right operand by
connecting it to the bus labeled “Right.” (Like RAM, registers also use nondestructive
fetch so that when it is needed, the value is only copied to the ALU. It is still in the
register.) The ALU is enabled to perform the desired operation, and the answer is sent
to any of the 16 registers along the bus labeled “Result.” (The destructive store principle
says that the previous contents of the destination register will be lost.) If desired, the
result can be moved from an ALU register back into memory for longer-term storage.

The final component of the ALU is the ALU circuitry itself. These are the circuits that
carry out such operations as

a + b (Figure 4.27)

a = b (Figure 4.23)

a − b

a × b

a / b

a & b

a & b

a AND b

Chapter 4 showed how circuits for these operations can be constructed from the three
basic logic gates AND, OR, and NOT, and it showed the construction of logic circuits to
perform the operations a + b and a = b. The primary issue now is how to select the
desired operation from among all the possibilities for a given ALU. For example, how

do we tell an ALU that can perform the preceding eight operations that we want only
the results of one operation, say a − b?

One possibility is to use the multiplexor control circuit introduced in Chapter 4 and

shown in Figure 4.28. Remember that a multiplexor is a circuit with 2 input lines

numbered 0 to 2 − 1, N selector lines, and one output line. The selector lines are

interpreted as a single binary number from 0 to 2 − 1, and the input line
corresponding to this number has its value placed on the single output line.

Let’s imagine for simplicity that we have an ALU that can perform four functions
instead of eight. The four functions are a + b, a − b, a = b, and a AND b, and these
operations are numbered 0, 1, 2, and 3, respectively (00, 01, 10, and 11 in binary).
Finally, let’s assume that every time the ALU is enabled and given values for a and b, it
automatically performs all four possible operations rather than just the desired one.
These four outputs can be input to a multiplexor circuit, as shown in Figure 5.12.

Figure 5.12

Using a multiplexor circuit to select the proper ALU result

Now place on the selector lines the identification number of the operation whose
output we want to keep. The result of the desired operation appears on the output line,
and the other three answers are discarded. For example, to select the output of the
subtraction operation, we input the binary value 01 (decimal 1) on the selector lines.
This places the output of the subtraction circuit on the output line of the multiplexor.
The outputs of the addition, comparison, and AND circuits are discarded.

Thus, the design philosophy behind an ALU is not to have it perform only the correct
operation. Instead, it is to have every ALU circuit “do its thing” but then keep only the
one desired answer.

N

N

N

Putting Figures 5.11 and Figures 5.12 together produces the overall organization of the
ALU of the Von Neumann architecture. This model is shown in Figure 5.13.

Figure 5.13

Overall ALU organization

Chapter 5: Computer Systems Organization: 5.2.4
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

5.2.4 The Control Unit

The most fundamental characteristic of the Von Neumann architecture is the stored
program—a sequence of machine language instructions stored as binary values in

(1)

(2)

(3)

memory. It is the task of the control unit to

fetch from memory the next instruction to be executed,

decode it—that is, determine what is to be done, and

execute it by issuing the appropriate command to the ALU, memory, or I/O

controllers. These three steps are repeated over and over until we reach the

last instruction in the program, typically something called HALT, STOP, or

QUIT.

To understand the behavior of the control unit, we must first investigate the
characteristics of machine language instructions.

Machine Language Instructions

The instructions that can be decoded and executed by the control unit of a computer
are represented in machine language. Instructions in this language are expressed in
binary, and a typical format is shown in Figure 5.14.

Figure 5.14

Typical machine language instruction format

The operation code field (referred to by the shorthand phrase op code) is a unique
unsigned integer code assigned to each machine language operation recognized by the
hardware. For example, 0 could be an ADD, 1 could be a COMPARE, and so on. If the
operation code field contains k bits, then the maximum number of unique machine

language operation codes is 2 .

The address field(s) are the memory addresses of the values on which this operation

will work. If our computer has a maximum of 2 memory cells, then each address field
must be N bits wide to enable us to address every cell because it takes N binary digits to

represent all addresses in the range 0 to 2 − 1. The number of address fields in an
instruction typically ranges from 0 to about 3, depending on what the operation is and
how many operands it needs to do its work. For example, an instruction to add the
contents of memory cell X to memory cell Y requires at least two addresses, X and Y. It
could require three if the result were stored in a location different from either
operand. In contrast, an instruction that tests the contents of memory cell X to see
whether it is negative needs only a single address field, the location of cell X.

k

N

N

To see what this might produce in terms of machine language instructions, let’s see
what the following hypothetical instruction would actually look like when stored in
memory.

Operation Meaning

ADD X, Y

Add contents of
memory addresses X
and Y and put the sum
back into memory
address Y.

Let’s assume that the op code for ADD is a decimal 9, X and Y correspond to memory
addresses 99 and 100 (decimal), and the format of instructions is

A decimal 9, in 8-bit binary, is 00001001. Address 99, when converted to an unsigned
16-bit binary value, is 0000000001100011. Address 100 is 1 greater: 0000000001100100.
Putting these values together produces the instruction ADD X, Y as it would appear in
memory:

This is somewhat cryptic to a person, but is easily understood by a control unit.

The set of all operations that can be executed by a processor is called its instruction set,
and the choice of exactly what operations to include or exclude from the instruction set
is one of the most important and difficult decisions in the design of a new computer.
There is no universal agreement on this issue, and the instruction sets of processors
from different vendors may be completely different. This is one reason why a
computer that uses an AMD Athlon 64 processor cannot directly execute programs
written for a system that contains an Intel Core Duo. The operation codes and address
fields that these two processors recognize are different and completely incompatible.

The machine language operations on most machines are quite elementary, and each
operation typically performs a very simple task. The power of a processor comes not
from the sophistication of the operations in its instruction set, but from the fact that it
can execute each instruction very quickly, typically in a few billionths of a second.

One approach to designing instruction sets is to make them as small and as simple as
possible, with perhaps as few as 30-50 instructions. Machines with this sort of
instruction set are called reduced instruction set computers or RISC machines. This
approach minimizes the amount of hardware circuitry (gates and transistors) needed
to build a processor. The extra space on the chip can be used to optimize the speed of
the instructions and allow them to execute very quickly. A RISC processor may require
more instructions to solve a problem (because the instructions are so simple), but this
is compensated for by the fact that each instruction runs much faster so the overall
running time is less. The opposite philosophy is to include a much larger number, say
300-500, of very powerful instructions in the instruction set. These types of processors
are called complex instruction set computers, or CISC machines, and they are designed
to directly provide a wide range of powerful features so that finished programs for
these processors are shorter. Of course, CISC machines are more complex, more
expensive, and more difficult to build. As is often the case in life, it turns out that
compromise is the best path—most modern processors use a mix of the two design
philosophies.

A little later in this chapter, we will present an instruction set for a hypothetical
computer to examine how machine language instructions are executed by a control
unit. For clarity, we will not show these instructions in binary, as we did earlier.
Instead, we will write out the operation code in English (for example, ADD, COMPARE,
MOVE); use the capital letters X, Y, and Z to symbolically represent binary memory
addresses; and use the letter R to represent an ALU register. Remember, however, that
this notation is just for convenience. All machine language instructions are stored
internally using binary representation.

Machine language instructions can be grouped into four basic classes called data
transfer, arithmetic, compare, and branch.

Data Transfer These operations move information between or within the

different components of the computer—for example:

Memory cell → ALU register

ALU register → memory cell

One memory cell → another memory cell

One ALU register → another ALU register

All data transfer instructions follow the nondestructive fetch/destructive store

principle described earlier. That is, the contents of the source cell (where it is

now) are never destroyed, only copied. The contents of the destination cell (where

it is going) are overwritten, and its previous contents are lost.

1.

Examples of data transfer operations include

Operation Meaning

LOAD X
Load register R with
the contents of
memory cell X.

STORE X
Store the contents of
register R into memory
cell X.

MOVE X,Y
Copy the contents of
memory cell X into
memory cell Y.

Arithmetic These operations cause the arithmetic/logic unit to perform a

computation. Typically, they include arithmetic operations like +, −, ×, and /, as

well as logical operations such as AND, OR, and NOT. Depending on the

instruction set, the operands may reside in memory or they may be in an ALU

register.

Possible formats for arithmetic operations include the following examples. (Note:

The notation CON(X) means the contents of memory address X.)

Operation Meaning

ADD X,Y, Z

Add the contents of
memory cell X to the
contents of memory
cell Y and put the
result into memory cell
Z. This is called a three-
address instruction, and
it performs the
operation CON(Z) =
CON(X) + CON(Y)

ADD X,Y

Add the contents of
memory cell X to the
contents of memory

2.

Operation Meaning

cell Y. Put the result
back into memory cell
Y. This is called a
two-address instruction,
and it performs the
operation CON(Y) =
CON(X) + CON(Y).

ADD X

Add the contents of
memory cell X to the
contents of register R.
Put the result back into
register R. This is called
a one-address
instruction, and it
performs the operation
R = CON(X) + R. (Of
course, R must be
loaded with the proper
value before executing
the instruction.)

Other arithmetic operations such as SUBTRACT, MULTIPLY, DIVIDE, AND, and OR

would be structured in a similar fashion.

Compare These operations compare two values and set an indicator on the basis

of the results of the compare. Most Von Neumann machines have a special set of

bits inside the processor called condition codes (or a special register called a

status register or condition register); these bits are set by the compare operations.

For example, assume there are three 1-bit condition codes called GT, EQ, and LT

that stand for greater than, equal to, and less than, respectively. The operation

Operation Meaning

COMPARE
X,Y

Compare the contents
of memory cell X to
the contents of
memory cell Y and set
the condition codes

3.

Operation Meaning

accordingly.

would set these three condition codes in the following way:

Condition How the Condition
Codes Are Set

CON (X) & CON (Y) GT = 1 EQ = 0 LT = 0

CON (X) = CON (Y) GT = 0 EQ = 1 LT = 0

CON (X) & CON (Y) GT = 0 EQ = 0 LT = 1

Branch These operations alter the normal sequential flow of control. The normal

mode of operation of a Von Neumann machine is sequential. After completing the

instruction in address i, the control unit executes the instruction in address i + 1.

(Note: If each instruction occupies k memory cells rather than 1, then after

finishing the instruction starting in address i, the control unit executes the

instruction starting in address i + k. In the following discussions, we assume for

simplicity that each instruction occupies one memory cell.) The branch

instructions disrupt this sequential mode.

Typically, determining whether to branch is based on the current settings of the

condition codes. Thus, a branch instruction is almost always preceded by either a

compare instruction or some other instruction that sets the condition codes.

Typical branch instructions include

Operation Meaning

JUMP X

Take the next
instruction
unconditionally from
memory cell X.

JUMPGT X

If the GT indicator is a
1, take the next
instruction from
memory ell X.

4.

Operation Meaning

Otherwise, take the
next instruction from
the next equential
location.

(JUMPEQ and JUMPLT would work
similarly on the other two condition
codes.)

JUMPGE X

If either the GT or the
EQ indicator is a 1, take
the next nstruction
from memory location
X. Otherwise, take the
ext instruction from
the next sequential
location.

(JUMPLE and JUMPNEQ would work
in a similar fashion.)

HALT
Stop program
execution. Don’t go on
to the next instruction.

These are some of the typical instructions that a Von Neumann computer can decode
and execute. Challenge Work problem 2 at the end of this chapter asks you to
investigate the instruction set of a real processor found inside a modern computer and
compare it with what we have described here.

The instructions presented here are quite simple and easy to understand. The power of
a Von Neumann computer comes not from having thousands of built-in, high-level
instructions but from the ability to combine a great number of simple instructions into
large, complex programs that can be executed extremely quickly. Figure 5.15 shows
examples of how these simple machine language instructions can be combined to carry
out some of the high-level algorithmic operations first introduced in Level 1 and shown
in Figure 2.9. (The examples assume that the variables a, b, and c are stored in memory
locations 100, 101, and 102, respectively, and that the instructions occupy one cell each
and are located in memory locations 50, 51, 52, …)

Figure 5.15

Examples of simple machine language instruction sequences

Don’t worry if these “miniprograms” are a little confusing. We treat the topic of
machine language programming in more detail in the next chapter. For now, we simply
want you to know what machine language instructions look like so that we can see how
to build a control unit to carry out their functions.

Control Unit Registers and Circuits

It is the task of the control unit to fetch and execute instructions of the type shown in
Figure 5.14 and Figure 5.15. To accomplish this task, the control unit relies on two
special registers called the program counter (PC) and the instruction register (IR) and
on an instruction decoder circuit. The organization of these three components is shown
in Figure 5.16.

Figure 5.16

Organization of the control unit registers and circuits

Practice Problems

Assume that the variables a, b, c, and d are stored in memory locations 100,
101, 102, and 103, respectively, and that the constant value +1 is stored in
memory location 104. Using any of the sample machine language
instructions given in this section, translate the following pseudocode
operations into machine language instruction sequences. Have your
instruction sequences begin in memory location 50.

Set a to the value b + c + d1.

Set a to the value (b × d) − (c / d)2.

Set a to the value (a − 1)3.

If (a = b) then set c to the value of d4.

If (a ≤ b) then

Set c to the value of d

Else

Set c to the value of 2d (that is, d + d)

5.

Initialize a to the value d

While a ≤ c

Set a to the value (a + b)

End of the loop

6.

(1)

(2)

(3)

(4)

The program counter holds the address of the next instruction to be executed. It is like
a “pointer” specifying which address in memory the control unit must go to in order to
get the next instruction. To get that instruction, the control unit sends the contents of
the PC to the MAR in memory and executes the Fetch(address) operation described in
Section 5.2.1. For example, if the PC holds the value 73 (in binary, of course), then when
the current instruction is finished, the control unit sends the value 73 to the MAR and
fetches the instruction contained in cell 73. The PC gets incremented by 1 after each
fetch because the normal mode of execution in a Von Neumann machine is sequential.
(Again, we are assuming that each instruction occupies one cell. If an instruction
occupied k cells, then the PC would be incremented by k.) Therefore, the PC frequently
has its own incrementor (+1) circuit to allow this operation to be done quickly and
efficiently.

The instruction register (IR) holds a copy of the instruction fetched from memory. The
IR holds both the op code portion of the instruction, abbreviated IR , and the

address(es), abbreviated IR .

To determine what instruction is in the IR, the op code portion of the IR must be
decoded using an instruction decoder. This is the same type of decoder circuit discussed
in Section 4.5 and used in the construction of the memory unit (Figure 5.7). The k bits
of the op code field of the IR are sent to the instruction decoder, which interprets them

as a numerical value between 0 and 2 − 1. Exactly one of the 2 output lines of the
decoder is set to a 1—specifically, the output line whose identification number matches
the operation code of this instruction.

Figure 5.17 shows a decoder that accepts a 3-bit op code field and has 2 = 8 output
lines, one for each of the eight possible machine language operations. The 3 bits of the
IR are fed into the instruction decoder, and they are interpreted as a value from 000

(0) to 111 (7). If the bits are, for example, 000, then line 000 in Figure 5.17 is set to a 1.
This line enables the ADD operation because the operation code for ADD is 000. When a
1 appears on this line, the ADD operation:

fetches the two operands of the add and sends them to the ALU,

has the ALU perform all of its possible operations,

selects the output of the adder circuit, discarding all others, and

moves the result of the add to the correct location.

Figure 5.17

The instruction decoder

op

addr

k k

3

op

(1)

(2)

(3)

If the op code bits are 001 instead, then line 001 in Figure 5.17 is set to a 1. This time the
LOAD operation is enabled because the operation code for LOAD is the binary value
001. Instead of performing the previous four steps, the hardware carries out the LOAD
operation by:

sending the value of IR to the MAR in the memory unit,

fetching the contents of that address and putting them in the MDR, and

copying the contents of the MDR into ALU register R.

For every one of the 2 machine language operations in our instruction set, there exists
the circuitry needed to carry out, step-by-step, the function of that operation. The

instruction decoder has 2 output lines, and each output line enables the circuitry that
performs the desired operation.

Chapter 5: Computer Systems Organization: 5.3
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

addr

k

k

5.3 Putting The Pieces Together— The Von Neumann
Architecture

We have now described each of the four components that make up the Von Neumann
architecture:

Memory (Figure 5.7)

Input/output (Figure 5.9)

ALU (Figure 5.13)

Control unit (Figures 5.16, Figures 5.17)

This section puts these pieces together and shows how the entire model functions. The
overall organization of a Von Neumann computer is shown in Figure 5.18. Although
highly simplified, the structure in this diagram is quite similar to virtually every
computer ever built!

Figure 5.18

The organization of a Von Neumann computer

To see how the Von Neumann machine of Figure 5.18 executes instructions, let’s pick a
hypothetical instruction set for our system, as shown in Figure 5.19. We will use the
same instruction set in the Laboratory Experience for this chapter and again in Chapter
6 when we introduce and study assembly languages. (Reminder: CON(X) means the
contents of memory cell X; R stands for an ALU register; and GT, EQ, and LT are
condition codes that have the value of 1 for ON and 0 for OFF.)

Figure 5.19
Instruction set for our Von Neumann machine

Binary Op Code Binary Op Code Meaning

0000 LOAD X CON(X) → R

0001 STORE X R → CON(X)

0010 CLEAR X 0 → CON(X)

0011 ADD X R + CON(X) → R

0100 INCREMENT X CON(X) + 1 → CON(X)

0101 SUBTRACT X R − CON(X) → R

0110 DECREMENT X CON(X) − 1 → CON(X)

0111 COMPARE X

if CON(X) > R then GT =
1 else 0 if CON(X) = R
then EQ = 1 else 0 if

CON(X) < R then LT = 1
else 0

1000 JUMP X

Get the next
instruction from

memory location X.

1001 JUMPGT X

Get the next
instruction from

memory location X if
GT = 1.

Binary Op Code Binary Op Code Meaning

1010 JUMPEQ X

Get the next
instruction from

memory location X if
EQ = 1.

1011 JUMPLT X

Get the next
instruction from

memory location X if LT
= 1.

1100 JUMPNEQ X

Get the next
instruction from

memory location X if
EQ = 0.

1101 IN X

Input an integer value
from the standard

input device and store
into memory cell X.

1110 OUT X

Output, in decimal
notation, the value

stored in memory cell
X.

1111 HALT
Stop program

execution.

The execution of a program on the computer shown in Figure 5.18 proceeds in three
distinct phases: fetch, decode, and execute. These three steps are repeated for every
instruction, and they continue until either the computer executes a HALT instruction or
there is a fatal error that prevents it from continuing (such as an illegal op code, a
nonexistent memory address, or division by zero). Algorithmically, the process can be
described as follows:

While we do not have a HALT instruction or a fatal error

Fetch phase

Decode phase

Execute phase

End of the loop

This repetition of the fetch/decode/execute phase is called the Von Neumann cycle. To
describe the behavior of our computer during each of these three phases, we will use
the following notational conventions:

CON(A)

The contents of memory cell A. We
assume that an instruction occupies 1
cell.

A → B

Send the value stored in register A to
register B. The following abbreviations
refer to the special registers and
functional units of the Von Neumann
architecture introduced in this
chapter:

PC
The program
counter

MAR
The memory
address register

MDR
The memory data
register

IR

The instruction
register, which is
further divided
into IR and
IR

ALU

The
arithmetic/logic
unit

R Any ALU register

GT, EQ, LT
The condition
codes of the ALU

+1

A special
increment unit
attached to the

op

addr

PC

FETCH

Initiate a memory fetch operation
(that is, send an F signal on the F/S
control line of Figure 5.18).

STORE Initiate a memory store
operation (that is, send
an S signal on the F/S
control line of Figure
5.18).

ADD Instruct the ALU to
select the output of
the adder circuit (that
is, place the code for
ADD on the ALU
selector lines shown in
Figure 5.18).

SUBTRACT Instruct the ALU to
select the output of
the subtract circuit
(that is, place the code
for SUBTRACT on the
ALU selector lines
shown in Figure 5.18).

Fetch phase During the fetch phase, the control unit gets the next instruction from

memory and moves it into the IR. The fetch phase is the same for every

instruction and consists of the following four steps.

1. PC → MAR

Send the address
in the PC to the
MAR register.

2. FETCH

Initiate a fetch
operation using
the address in the
MAR. The

A.

contents of that
cell are placed in
the MDR.

3. MDR → IR

Move the
instruction in the
MDR to the
instruction
register so that
we are ready to
decode it during
the next phase.

4. PC + 1 → PC

Send the contents
of the PC to the
incrementor and
put it back. This
points the PC to
the next
instruction.

The control unit now has the current instruction in the IR and has updated the

program counter so that it will correctly fetch the next instruction when the

execution of this instruction is completed. It is ready to begin decoding and

executing the current instruction.

Decode phase Decoding the instruction is simple because all that needs to be done

is to send the op code portion of the IR to the instruction decoder, which

determines its type. The op code is the 4-bit binary value in the first column of

Figure 5.19.

1. IR → instruction decoder

The instruction decoder generates the proper control signals to activate the

circuitry to carry out the instruction.

B.

Execution phase The specific actions that occur during the execution phase are

different for each instruction. Therefore, there will be a unique set of circuitry

for each of the 2 distinct instructions in the instruction set. The control unit

circuitry generates the necessary sequence of control signals and data transfer

C.

op

k

1.

2.

3.

1.

2.

3.

1.

2.

signals to the other units (ALU, memory, and I/O) to carry out the intent of this

instruction. The following examples show what signals and transfers take place

during the execution phase of some of the instructions in Figure 5.19 using the

Von Neumann model of Figure 5.18.

a) LOAD X Meaning: Load register R with the
current contents of memory cell X.

IR →
MAR

Send address X
(currently in
IR) to the MAR.

FETCH Fetch contents of
cell X and place
that value in the
MDR.

MDR → R Copy the contents
of the MDR into
register R.

b) STORE X Meaning: Store the current contents
of register R into memory cell X.

IR →
MAR

Send address X
(currently in
IR) to the MAR.

R → MDR Send the contents
of register R to
the MDR.

STORE Store the value in
the MDR into
memory cell X.

c) ADD X Meaning: Add the contents of cell X to
the contents of register R and put the
result back into register R.

IR →
MAR

Send address X
(currently in
IR) to the MAR.

FETCH Fetch the
contents of cell X
and place it in the

addr

addr

addr

addr

addr

addr

3.

4.

5.

6.

1.

1.

2.

3.

MDR.

MDR → ALU Send the two
operands of the
ADD to the ALU.

R → ALU

ADD Activate the ALU
and select the
output of the ADD
circuit as the
desired result.

ALU → R Copy the selected
result into the R
register.

d) JUMP X Meaning: Jump to the instruction
located in memory location X.

IR → PC Send address X to
the PC so the
instruction stored
there is fetched
during the next
fetch phase.

e) COMPARE X Meaning: Determine whether CON(X)
& R, CON(X) R, or CON(X) & R, and set
the condition codes GT, EQ, and LT to
appropriate values. (Assume all codes
are initially 0.)

IR →
MAR

Send address X to
the MAR.

ETCH Fetch the
contents of cell X
and place it in the
MDR.

MDR → ALU Send the contents
of address X and
register R to the
ALU.

addr

addr

4.

5.

1.

R → ALU

SUBTRACT Evaluate CON(X) −
R. The result is not
saved, and is used
only to set the
condition codes. If
CON(X) − R & 0,
then CON(X) & R
and set GT to 1. If
CON(X) − R = 0,
then they are
equal and set EQ
to 1. If CON(X) − R
& 0, then CON(X)
& R and set LT to
1.

f) JUMPGT X Meaning: If GT condition code is 1,
jump to the instruction in location X.
We do this by loading the address field
of the IR, which is the address of
location X, into the PC. Otherwise,
continue to the next instruction.

IF GT = 1 THEN IR → PC

These are six examples of the sequence of signals and transfers that occur during the
execution phase of the fetch/decode/execute cycle. There is a unique sequence of
actions for each of the 16 instructions in the sample instruction set of Figure 5.19 and
for the 50-300 instructions in the instruction set of a typical Von Neumann computer.
When the execution of one instruction is done, the control unit fetches the next
instruction, starting the cycle all over again. That is the fundamental sequential
behavior of the Von Neumann architecture.

These six examples clearly illustrate the concept of abstraction at work. In Chapter 4,
we built complex arithmetic/logic circuits to do operations like addition and
comparison. Using these circuits, this chapter describes a computer that can execute
machine language instructions such as ADD X and COMPARE X,Y. A machine language
instruction such as ADD X is a complicated concept, but it is quite a bit easier to
understand than the enormously detailed full adder circuit shown in Figure 4.27,
which contains 800 gates and more than 2,000 transistors.

addr

Abstraction has allowed us to replace a complex sequence of gate-level manipulations
with the single machine language command ADD, which does addition without our
having to know how—the very essence of abstraction. Well, why should we stop here?
Machine language commands, though better than hardware, are hardly user friendly.
(Some might even call them “user intimidating.”) Programming in binary and writing
sequences of instructions such as

is cumbersome, confusing, and very error-prone. Why not take these machine
language instructions and make them more user oriented and user friendly? Why not
give them features that allow us to write correct, reliable, and efficient programs more
easily? Why not develop user-oriented programming languages designed for people, not
machines? This is the next level of abstraction in our hierarchy, and we introduce that
important concept in Level 3 of the text.

An Alphabet Soup of Speed Measures: Mhz, Ghz, Mips, and Gflops

It is easy to identify the fastest car, plane, or train—just compare their top
speeds in miles/hour (or km/hr) and pick the greatest. However, in the
computer arena things are not so simple, and there are many different
measures of speed.

The unit you might be most familiar with is clock speed, measured in either
millions of cycles per second, called megahertz (MHz) or billions of cycles per
second, called gigahertz (GHz). The actions of every computer are controlled by
a central clock, and the “tick” rate of this clock is one possible speed measure.
Processors today have clock rates of about 3-5 GHz. However, clock speed can
be misleading because a machine’s capability depends not only on the tick rate
but also on how much work it can do during each tick. If machine A has a clock
rate twice as fast as machine B, but each instruction on machine A takes twice
as many clock cycles as machine B to complete, then there is no discernible
speed difference.

Therefore, a more accurate measure of machine speed is instruction rate,
measured in MIPS, an acronym for millions of instructions per second. The
instruction rate measures how many machine language instructions of the type
listed in Figure 5.19(e.g., LOAD, STORE, COMPARE, ADD) can be fetched,
decoded, and executed in one second. If a computer completes one instruction
for every clock cycle, then the instruction rate is identical to the clock rate.
However, many instructions require multiple clock ticks, whereas parallel
computers can often complete multiple instructions in a single tick. Thus, MIPS
is a better measure of performance because it tells you how much work is
actually being done, in terms of completed instructions, in a given amount of

The problems that computers are being asked to solve have grown significantly in size
and complexity since the appearance of the first-generation machines in the late 1940s
and early 1950s. Designers have been able to keep up with these larger and larger
problems by building faster and faster Von Neumann machines. Through advances in
hardware design, manufacturing methods, and circuit technology, computer designers
have been able to take the basic sequential architecture described by Von Neumann in
1946 and improve its performance by 4 or 5 orders of magnitude. First-generation
machines were able to execute about 10,000 machine language instructions per second.
By the second generation, that had grown to about 1 million instructions per second.
Today, even a small desktop PC can perform about 1 billion instructions per second,
whereas larger and more powerful workstations can execute instructions at the rate of
5 billion instructions per second. Figure 5.20 shows the changes in computer speeds
from the mid-1940s to the present.

Figure 5.20

Graph of processor speeds, 1945 to the present

(Note: The graph shown in Figure 5.20 is logarithmic. Each unit on the vertical axis is
10 times the previous one.) The period from about 1945 to about 1970 is characterized
by exponential increases in computation speed. However, as Figure 5.20shows, even
though computer speeds are still increasing, the rate of improvement appears to be
slowing down.

This slowdown is due to many things. One important limit on increased processor
speed is the inability to place gates any closer together on a chip. (See the Special
Interest Box “Moore’s Law and the Limits of Chip Design ” in Chapter 4.) Today’s
high-density chips contain billions of transistors separated by distances of only 50-100
nanometers (10 meters), and it is becoming exceedingly difficult (not to mention
expensive) to accurately place individual components closer together. However, the
time it takes to send signals between two parts of a computer separated by a given
distance is limited by the fact that electronic signals cannot travel faster than the speed
of light—299,792,458 meters per second. That is, when we carry out an operation such
as:

the signals traveling between these two registers cannot exceed 300 million meters/sec.
If, for example, these two components were separated by 1 meter, it would take signals
leaving the PC about 3 nanoseconds to reach the MAR, and nothing in this universe can
reduce that value except a reduction of the distance separating them.

Even while the rate of increase in the performance of newer machines is slowing
down, the problems that researchers are attempting to solve are growing ever larger
and more complex. New applications in such areas as computational modeling,
real-time graphics, and bioinformatics are rapidly increasing the demands placed on
new computer systems. (We will look at some of these applications in Level 5, Chapters
13-16.) For example, to have a computer generate and display animated images without
flicker it must generate 30 new frames each second. Each frame may contain as many
as 3,000 x 3,000 separate picture elements (pixels) whose position, color, and intensity
must be individually recomputed. This means that 30 x 3,000 x 3,000 = 270,000,000
pixel computations need to be completed every second. Each of those computations
may require the execution of many instructions. (Where does this point move to in the
next frame? How bright is it? Is it visible or hidden behind something else?) If we
assume that it requires about 1,000 instructions per pixel to answer these questions (a
reasonable approximation), then real-time computer animation requires a computer
capable of executing 270,000,000 x 1,000 = 270 billion instructions per second. This is
beyond the abilities of current processors, which are limited to about 5-10 billion
instructions per second. The inability of the sequential one-instruction-at-a-time Von
Neumann model to handle today’s large-scale problems is called the Von Neumann
bottleneck, and it is a major problem in computer organization.

To solve this problem, computer engineers are rethinking many of the fundamental

ideas presented in this chapter, and they are studying nontraditional approaches to
computer organization called non-Von Neumann architectures. They are asking the
question, “Is there a different way to design and build computers that can solve
problems 10 or 100 or 1,000 times larger than what can be handled by today’s
computers?” Fortunately, the answer to this question is a resounding, Yes!

One of the most important areas of research in these non-Von Neumann architectures
is based on the following fairly obvious principle:

If you cannot build something to work twice as fast, build it to do two things at
once. The results will be identical.

From this truism comes the principle of parallel processing—building computers not
with one processor, as shown in Figure 5.18, but with tens, hundreds, or even
thousands. If we can keep each processor occupied with meaningful work, then it
should be possible to speed up the solution to large problems by 1, 2, or 3 orders of
magnitude and overcome the Von Neumann bottleneck. For example, in the graphical
animation example discussed earlier, we determined that we needed a machine that
can execute 270 billion instructions/second, but today’s processors are limited to about
5 billion instructions/second. However, let’s say that we could have 54 processors all
working together on this one problem; then we should (in theory!) have a sufficiently
powerful system to solve our problem because 5 billion ops/sec per processor x 54
processors = 270 billion ops/sec. This is the idea behind the dual-core and quad-core
processors that have two or four separate processors on a single chip.

The approach of placing multiple processors on a single chip is fine for a small number
of processors, say two, four, or eight. However, we need a completely different
approach to build large-scale parallel systems that contain hundreds or even thousands
of processors.

There are two fundamentally distinct approaches to designing these massively parallel
systems. The first technique is termed SIMD parallel processing. (SIMD stands for
single instruction stream/multiple data stream.) It is diagrammed in Figure 5.21.

Figure 5.21

A SIMD parallel processing system

In the SIMD model, there is a single program whose instructions are fetched/decoded
/executed in a sequential manner by one control unit, exactly as described earlier.
However, the ALU (circuits and registers) is replicated many times, and each ALU has
its own local memory where it may keep private data. When the control unit fetches an
instruction (such as a LOAD, ADD, or STORE), it broadcasts that instruction to every
ALU, which executes it in parallel on its own local data. Thus, if we have 100 replicated
ALUs, we can perform 100 parallel additions by having every ALU simultaneously
execute the instruction

Operation Meaning

ADD X
Add memory cell
X to the contents
of register R.

on its own local value of X, using its own personal copy of register R.

A good analogy to SIMD parallel processing is the game of Bingo. There is one caller
(control unit) calling out a single number (the instruction) to the entire room. In the
room listening are many people (ALUs) who simultaneously cover that number on
their own private Bingo cards (local memories).

This style of parallelism is especially useful in operations on mathematical structures
called vectors. A vector V is simply an ordered collection of values. For example, here is
a six-element vector V, whose elements are termed v , v , …, v .1 2 6

Many operations on vectors work quite well under the SIMD parallel model. For
example, to add the constant value +1 to a vector, you add it to every individual
element in the vector; that is, you simultaneously compute v + 1, v + 1, …. Thus the

operation V + 1, when applied to the previous vector, produces the new vector 2, 9, -12,
71, 10, 1. On a SIMD machine, this vector addition operation can be implemented in a
single step by distributing one element of the vector to each separate ALU. Then in
parallel, each arithmetic unit executes the following instruction:

Operation Meaning

INC v

v is an element of
the vector V. This
instruction
increments the
contents of that
location by +1.

In one time unit, we can update all six elements of the vector V. In the traditional Von
Neumann machine, we would have to increment each element separately in a
sequential fashion, using six instructions:

Our parallel vector addition operator runs six times as fast. Similar speedups are
possible with other vector and array manipulations.

SIMD parallelism was the first type of parallel processing put into widespread
commercial use. It was the technique used to achieve breakthroughs in computational
speeds on the first supercomputers of the early 1980s.

A much more interesting and much more widely used form of parallelism is called
MIMD parallel processing (multiple instruction stream/multiple data stream), also
called cluster computing. In MIMD parallelism, we replicate entire processors rather
than just the ALU, and every processor is capable of executing its own separate
program in its own private memory at its own rate. This model of parallel processing is
diagrammed in Figure 5.22.

Figure 5.22

Model of MIMD parallel processing

1 2

Speed to Burn

The first computer to achieve a speed of 1 million floating-point operations per
second, 1 megaflop, was the Control Data 6600 in the mid-1960s. The first
machine to achieve 1 billion floating-point operations per second, 1 gigaflop,
was the Cray X-MP in the early 1980s. Today almost all machines, even
inexpensive laptops, can achieve gigaflop speeds. In 1996, the Intel Corporation
announced that its ULTRA computer had successfully become the world’s first
teraflop machine. This $55 million computer contained 9,072 Pentium Pro
processors, and on December 16, 1996, it achieved a sustained computational
speed of 1 trillion operations per second.

However, on June 9, 2008, a major milestone in computer performance was
reached. The Roadrunner massively parallel computer, constructed jointly by
Los Alamos National Laboratories and IBM, achieved a sustained computational
speed of 1,026 trillion floating-point operations per second, or 1 petaflop. To get
an idea of how fast that is, consider that if all 6 billion people in the world
worked together on a single problem, each person would have to perform
170,000 computations/second to equal the speed of this one machine. The
system, which contains 18,000 processors and 98 terabytes of memory, cost
about $100 million to design and build. It is used for basic research in
astronomy, energy, and human genome science.

As of mid-2011, the fastest computer in the world is the Japanese K computer
built by Fujitsu at the RIKEN Advanced Institute for Computational Science in
Kobe, Japan. It contains 68,544 SPARC64 8-core processors for a total of 548,352
cores. On June 20, 2011 the system achieved a peak computational rate of 8.16

petaflops (see “The Tortoise and the Hare ” Special Interest Box in Chapter 3).

Each processor/memory pair in Figure 5.22 is a Von Neumann machine of the type
described in this chapter. For example, it could be a processor board of the type shown
in Figure 5.18. Alternately, it could be a complete computer system, such as a desktop
machine in a computer lab or the laptop in your dorm room. Each system is executing
its own program in its own local memory at its own rate. However, rather than each
having to solve the entire problem by itself, the problem is solved in a parallel fashion
by all processors simultaneously. Each of the processors tackles a small part of the
overall problem and then communicates its result to the other processors via the
interconnection network, a communications system that allows processors to exchange
messages and data.

A MIMD parallel processor would be an excellent system to help us speed up the New
York City telephone directory lookup problem discussed in Chapter 2. In the sequential
approach that we described, the single processor doing the work must search all
20,000,000 entries from beginning to end (or until the desired name is found). The
analysis in Chapter 3 showed that using sequential search and a computer that can
examine 50,000 names per second takes an average of almost 3.5 minutes to find a
particular name— much too long for the typical person to wait.

If we use 100 processors instead of one, however, the problem is easily solved. We just
divide the 20,000,000 names into 100 equal-sized pieces and assign each piece to a
different processor. Now each processor searches in parallel to see whether the desired
name is in its own section. If it finds the name, it broadcasts that information on the
interconnection network to the other 99 processors so that they can stop searching.
Each processor needs only to look through a list of 200,000 names, which is 1/100 the
amount of work it had to do previously. Instead of an average of 3.5 minutes, we now
get our answer in 1/100 the time—about 2 seconds. Parallel processing has elegantly
solved our problem.

MIMD parallelism is also a scalable architecture. Scalability means that, at least
theoretically, it is possible to match the number of processors to the size of the
problem. If 100 processors are not enough to solve the telephone book lookup problem,
then 200 or 500 can be used instead, assuming the interconnection network can
provide the necessary communications. (Communications can become a serious
bottleneck in a parallel system.) In short, the resources applied to a problem can be in
direct proportion to the amount of work that needs to be done. Massively parallel
MIMD machines containing tens of thousands of independent processors have
achieved solutions to large problems thousands of times faster than is possible using a
single processor. (For an up-to-date listing of the fastest parallel computers, check the
home page of Top500, a listing of the 500 most powerful computers in the world. Its
URL is www.top500.org.)

The multiple processors within a MIMD cluster do not have to be identical or belong to
a single administrative organization. Computer scientists realized that it is possible to
address and solve massive problems by utilizing the resources of idle computers
located around the world, regardless of whom they belonged to. This realization led to
an exciting new form of MIMD parallelism called grid computing.

Grid computing enables researchers to easily and transparently access computer
facilities without regard for their location. One of the most well-known grid computing
applications is the SETI@home project (Search for Extraterrestrial Intelligence), which
analyzes radio telescope data from distant stars to look for intelligent life in the
universe. Users sign up to allow their personal computer, when idle, to participate in
this massive search project. About 5.5 million people have signed up to be part of the
SETI grid, and on any given day about 1,000-2,000 home computers, from Alabama to
Wyoming, from Albania to Zimbabwe, contribute computational resources to this one
task. You can read about the SETI@home project on its home page at
http://setiathome.ssl.berkeley.edu.

The real key to using massively parallel processors is to design solution methods that
effectively utilize the large number of available processors. It does no good to have
1,000 processors available if only 1 or 2 are doing useful work while 998 or 999 are
sitting idle. That would be like having a large construction crew at a building site,
where the roofers, painters, and plumbers sit around waiting for one person to put up
the walls. The field of parallel algorithms, the study of techniques that makes efficient
use of parallel architectures, is an important branch of research in computer science.
Advances in this area will go a long way toward speeding the development and use of
large-scale parallel systems of the type shown in Figures 5.21 and Figures 5.22.
(Challenge Work problem 1 asks you to design a parallel addition algorithm.)

Quantum Computing

The parallel machines described in this section can overcome the “Von
Neumann bottleneck” by performing multiple computations in parallel, rather
than one at a time in strict sequential fashion. However, these systems are not a
fundamental change in the underlying design of computers. Each machine in
the MIMD cluster of Figure 5.22 is typically a traditional Von Neumann
computer. The only difference is that we are using multiple machines to solve a
problem rather than one.

However, computer scientists are also researching totally new designs
unrelated to the Von Neumann architecture. One of the most unusual, most
revolutionary, and most exciting is called quantum computing, in which
computers are designed according to the principles of quantum mechanics,
which describe the behavior of matter at the atomic and subatomic level. A
quantum computer encodes information using some aspect of quantum-

memory cells? What about a memory of 512 MB? What about a memory

of 2 GB?

Explain what use read-only memory (ROM) serves in the design of a

computer system. What type of information is kept in ROM, and how does

that information originally get into the memory?

4.

Assuming the square two-dimensional memory organization shown in

Figure 5.6, what are the dimensions of a memory containing 1 MB (2)

bytes of storage? How large would the MAR be? How many bits are sent to

the row and column decoders? How many output lines would these

decoders have?

5.

Assume a 24-bit MAR that is organized as follows:

row select
lines

column
select lines

12 bits 12 bits

What is the maximum size of the memory unit on this machine? What are

the dimensions of the memory, assuming a square two-dimensional

organization?

6.

Assume that our MAR contains 20 bits, enabling us to access up to 2

memory cells, which is 1 MB, but our computer has 4 MB of memory.

Explain how it might be possible to address all 4 MB memory cells using a

MAR that contains only 20 bits.

7.

Assume that our MDR register is 16 bits wide while our machine language

instructions are 32 bits wide. How might the fetch phase of the Von

Neumann cycle have to be changed from what was described in the text?

8.

Assume that a 1 gigaflop machine is connected to a printer that can print

780 characters per second. In the time it takes to print 1 page (65 lines of

60 characters per line), how many floating-point operations can the

machine perform?

9.

Assume that we have an arithmetic/logic unit that can carry out 20

distinct operations. Describe exactly what kind of multiplexor circuit

10.

20

20

would be needed to select exactly one of those 20 operations.

A CISC-style instruction set has a large number of high-level instructions

that perform highly complex operations in a single step. What would be

the major advantages of such a design? What would be some of the

primary disadvantages?

11.

Assume that a hard disk has the following characteristics:

Rotation speed = 7,200 rev/min

Arm movement time = 0.5 msec fixed startup time + 0.05 msec for each

track crossed. (The startup time is a constant no matter how far the

arm moves.) Assume on average the disk arm must move 150 tracks.

Number of surfaces = 2 (This is a double-sided disk. A single read/write

arm holds both read/write heads.)

Number of tracks per surface = 500

Number of sectors per track = 20

Number of characters per sector = 1,024

How many characters can be stored on this disk?a.

What are the best-case, worst-case, and average-case access times

for this disk?

b.

12.

What are the best-case, worst-case, and average-case access times for the

disk described in Exercise 12 if we increase the rotational speed to 9,600

rpm?

13.

In general, information is stored on a disk not at random but in specific

locations that help to minimize the time it takes to retrieve that

information. Using the specifications given in Exercise 12, where would

you store the information in a 50 KB file on the disk to speed up

subsequent access to that information?

14.

Assume that our disk unit has one read/write head per track instead of

only one per surface. (A head-per-track disk is sometimes referred to as a

drum.) Using the specifications given in Exercise 12, what are the

best-case, worst-case, and average-case access times? How much have the

additional read/ write heads helped reduce access times?

15.

Using the specifications given in Exercise 12, what is the worst-case time

required to read the entire contents of the disk; that is, to read every

single sector on the disk? Assume the read arm is initially positioned at

the beginning of the first sector of the first track, and that every track

must be read from the very beginning, that is, from the very first sector

on that track. This is actually a quite common operation and is used for

things like making copies and backing up a disk.

16.

Discuss some situations wherein a sequential access storage device such

as a tape could be a useful form of mass storage.

17.

Assume that we are receiving a message across a network using a modem

with a rate of 56,000 bits/ second. Furthermore, assume that we are

working on a workstation with an instruction rate of 500 MIPS. How

many instructions can the processor execute between the receipt of each

individual bit of the message?

18.

Consider the following structure of the instruction register.

op
code

address-1 address-2

6 bits 18 bits 18 bits

What is the maximum number of distinct operation codes that can

be recognized and executed by the processor on this machine?

a.

What is the maximum memory size on this machine?b.

How many bytes are required for each operation?c.

19.

If the size of the op code field in Exercise 19 were increased from 6 bits to

8 bits, what would now be the theoretical maximum size of the

instruction set?

20.

Assume that the variables v, w, x, y, and z are stored in memory locations

200, 201, 202, 203, and 204, respectively. Also assume that the code

sequence you are writing begins in memory location 50. Using any of the

machine language instructions shown in Section 5.2.4, translate the

following algorithmic operations into their machine language

21.

equivalents.

Set v to the value of x − y + z (Assume the existence of the machine

language command SUBTRACT X, Y, Z that computes CON(Z) =

CON(X) − CON(Y).)

a.

Set v to the value (w + x) − (y + z)b.

If (v ≥ w) then

Set x to y

Else

Set x to z

c.

While y & z do

Set y to the value (y + w + z)

Set z to the value (z + v)

End of the loop

d.

Assume that the variables a and b are stored in memory locations 300 and

301, respectively. Also assume that the three integer values +1, −1, and 0

are stored in memory locations 400, 401, and 402, respectively. Finally,

assume that the code sequence you are writing begins in memory location

50. Using any of the machine language instructions shown in Section

5.2.4, translate the following algorithmic operations into their machine

language equivalents.

Set a to the value of a + b − 1a.

if a > 0

Set b to the value +1

b.

22.

A student was asked to translate the following algorithmic operation into

machine language, where x and y were stored in locations 500 and 501,

respectively:

Set x to the value of y + 19

Here is what was produced:

23.

a.

b.

LOAD 501

ADD 19

STORE 500

Is this translation correct? If not, describe the error and explain how to

correct it.

Describe the sequence of operations that might go on inside the computer

during the execution phase of the following machine language

instructions. Use the notation shown in Section 5.3. Assume that the IR is

divided into three separate parts that contain the op code, and the first

and second address fields.

MOVE
X, Y

Move the
contents of
memory cell X to
memory cell Y.

ADD
X, Y

Add the contents
of memory cells X
and Y. Put the
result back into
memory cell Y.

24.

Describe the sequence of operations that might go on inside the computer

during the execution phase of the following machine language

instruction. Use the notation shown in Section 5.3. Assume that the IR is

now divided into four separate parts (instead of three) that contain the op

code, and the first, second, and third address fields.

ADD X, v, Y Add the contents
of memory cell X
and the integer
value v. Put the
result into
memory cell Y.

25.

Figure 5.18. Pick one of these processors (perhaps the processor inside the

computer you are using for this class) and take an in-depth look at its design.

Specifically, examine such issues as

Its instruction set and how it compares with the instruction set shown in

Figure 5.19

The collection of available registers

The existence of cache memory

Its computing speed in MIPS and MFLOPS or GFLOPS

How much primary memory it has and how memory is addressed in the

instructions

Memory access time

In what size “chunks” memory can be accessed

Write a report describing the real-world characteristics of the processor you

selected.

Chapter 5: Computer Systems Organization
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter Review

Additional Resources

 For additional print and/or online resources relevant to this

chapter, visit the Computer Science CourseMate at login.cengagebrain.com.

Chapter 5: Computer Systems Organization
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

© 2014 Cengage Learning Inc. All rights reserved. No part of this work may by reproduced or used in any form or by any
means - graphic, electronic, or mechanical, or in any other manner - without the written permission of the copyright holder.

Chapter : Introduction
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Part Introduction

It has been said that computer science is “the science of building pretend worlds,”
meaning that the underlying hardware structure of a computer can be so difficult to
work with that we must create more friendly and more usable “virtual worlds” in
which to work and solve problems. Without that layer of abstraction between us and
the machine, we would have to solve problems by applying only the ideas and
capabilities presented in Level 2—binary numbers, digital circuits, absolute memory
addresses, and machine language instructions.

In Level 3 (Chapters 6, 7, and 8), you will learn how these user-friendly “microworlds”
are created to produce an environment in which efficient, safe, and productive

problem solving is possible.

Chapter : Introduction
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

© 2014 Cengage Learning Inc. All rights reserved. No part of this work may by reproduced or used in any form or by any
means - graphic, electronic, or mechanical, or in any other manner - without the written permission of the copyright holder.

Chapter 6: An Introduction to System Software and Virtual Machines
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter 6
An Introduction to System Software and Virtual Machines

6.1 Introduction

6.2 System Software

6.2.1 The Virtual Machine

6.2.2 Types of System Software

6.3 Assemblers and Assembly Language

6.3.1 Assembly Language

6.3.2 Examples of Assembly Language Code

6.3.3 Translation and Loading

6.4 Operating Systems

6.4.1 Functions of an Operating System

6.4.2 Historical Overview Of Operating Systems Development

6.4.3 The Future

Chapter Review

Exercises

Challenge Work

Additional Resources

Chapter 6: An Introduction to System Software and Virtual Machines: 6.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

6.1 Introduction
Chapters 4 and 5 described a computer model, the Von Neumann architecture, that is
capable of executing programs written in machine language. This computer has all the
hardware needed to solve important real-world problems, but it has no “support tools”
to make that problem-solving task easy. The computer described in Chapter 5 is

informally known as a naked machine: hardware bereft of any helpful user-oriented
features.

Imagine what it would be like to work on a naked machine. To solve a problem, you
would have to create hundreds or thousands of cryptic machine language instructions
that look like this:

and you would have to do that without making a single mistake because, to execute
properly, a program must be completely error free. Imagine the likelihood of writing a
perfectly correct program containing thousands of instructions like the one shown
above. Even worse, imagine trying to locate an error buried deep inside that
incomprehensible mass of 0s and 1s!

On a naked machine, the data as well as the instructions must be represented in binary.
For example, a program cannot refer to the decimal integer +9 directly but must
express it as

You cannot use the symbol A to refer to the first letter of the alphabet but must
represent it using its 8-bit ASCII code value, which is decimal 65:

As you can imagine, writing programs for a naked machine is very difficult.

Even if you write the program correctly, your work is still not done. A program for a
Von Neumann computer must be stored in memory prior to execution. Therefore, you
must now take the program and store its instructions into sequential cells in memory.
On a naked machine, the programmer must perform this task, one instruction at a
time. Assuming that each instruction occupies one memory cell, the programmer loads
the first instruction into address 0, the second instruction into address 1, the third
instruction into address 2, and so on, until all have been stored.

Finally, what starts the program running? A naked machine does not do this
automatically. (As you are probably coming to realize, a naked machine does not do
anything automatically, except fetch, decode, and execute machine language
instructions.) The programmer must initiate execution by storing a 0, the address of the
first instruction of the program, in the program counter (PC) and pressing the START
button. This begins the fetch/decode/ execute cycle described in Chapter 5. The control
unit fetches from memory the contents of the address in the PC, currently 0, and
executes that instruction. The program continues sequentially from that point while
the user prays that everything works because he or she cannot bear to face a naked
machine again!

As this portrayal demonstrates, working directly with the underlying hardware is
practically impossible for a human being. The functional units described in Chapter 5
are built according to what is easy for hardware to do, not what is easy for people to
do.

To make a Von Neumann computer usable, we must create an interface between the
user and the hardware. This interface does the following things:

Hides from the user the messy details of the underlying hardware

Presents information about what is happening in a way that does not require

in-depth knowledge of the internal structure of the system

Allows easy user access to the resources available on this computer

Prevents accidental or intentional damage to hardware, programs, and data

By way of analogy, let’s look at how people use another common tool—an automobile.
The internal combustion engine is a complex piece of technology. For most of us, the
functions of fuel-injection systems, distributors, and camshafts are a total mystery.
However, most people find driving a car quite easy. This is because the driver does not
have to lift the hood and interact directly with the hardware; that is, he or she does not
have to drive a “naked automobile.” Instead, there is an interface, the dashboard,
which simplifies things considerably. The dashboard hides the details of engine
operation that a driver does not need to know. The important things—such as oil
pressure, fuel level, and vehicle speed—are presented in a simple, “people-oriented”
way: oil indicator warning light, fuel gauge, and speed in miles or kilometers per hour.
Access to the engine and transmission is achieved by a few simple operations: a key to
start and stop, pedals to speed up or slow down, and a shift lever to go forward or
backward.

We need a similar interface for our Von Neumann machine. This “computer
dashboard” would eliminate most of the hassles of working on a naked machine and let
us view the hardware resources of Chapter 5 in a much friendlier way. Such an
interface does exist, and it is called system software.

Chapter 6: An Introduction to System Software and Virtual Machines: 6.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

6.2 System Software

6.2.1 The Virtual Machine

System software is a collection of computer programs that manages the resources of a

(1)

computer and facilitates access to those resources. It is important to remember that we
are describing software, not hardware. There are no black boxes wired to a computer
labeled “system software.” Software consists of sequences of instructions—namely,
programs—that solve a problem. However, instead of solving user problems, such as
looking up names in a telephone book, system software solves the problem of making a
computer and its many resources easier to access and use.

System software acts as an intermediary between the users and the hardware, as
shown in Figure 6.1. System software presents the user with a set of services and
resources across the interface labeled A in Figure 6.1. These resources may actually
exist, or they may be simulated by the software to give the user the illusion that they
exist. The set of services and resources created by the software and seen by the user is
called a virtual machine or a virtual environment. The system software, not the user,
interacts with the actual hardware (that is, the naked machine) across the interface
labeled B in Figure 6.1.

Figure 6.1

The role of system software

The system software has the following responsibilities, analogous to those of the
automobile dashboard:

Hides the complex and unimportant (to the user) details of the internal structure

of the Von Neumann architecture

Presents important information to the user in a way that is easy to understand

Allows the user to access machine resources in a simple and efficient way

Provides a secure and safe environment in which to operate

For example, to add two numbers, it is much easier to use simple notation such as a = b
+ c than to worry about

loading ALU registers from memory cells b and c,

(2)

(3)

(4)

activating the ALU,

selecting the output of the addition circuit, and

sending the result to memory cell a.

The programmer should not have to know about registers, addition circuits, and
memory addresses but instead should see a virtual machine that “understands” the
mathematical symbols + and =.

After the program has been written, it should automatically be loaded into memory
without the programmer having to specify where it should be placed or having to set
the program counter. Instead, he or she should be able to issue one simple command
(or one set of mouse clicks) to the virtual machine that says, “Run my program.” Finally,
when the program is running and generating results, the programmer should be able
to instruct the virtual machine to send the program’s output to the printer in Room 105,
without reference to the details related to I/O controllers, interrupt signals, and code
sets.

All the useful services just described are provided by the system software available on
any modern computer system. The following sections show how this friendly,
user-oriented environment is created.

Chapter 6: An Introduction to System Software and Virtual Machines: 6.2.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

6.2.2 Types of System Software

System software is not a single monolithic entity but a collection of many different
programs. The types found on a typical computer are shown in Figure 6.2.

Figure 6.2

Types of system software

The program that controls the overall operation of the computer is the operating
system, and it is the single most important piece of system software on a computer. It

is the operating system that communicates with users, determines what they want, and
activates other system programs, applications packages, or user programs to carry out
their requests. The software packages that handle these requests include the following:

User interface—All modern operating systems provide a powerful graphical user

interface (GUI) that gives the user an intuitive visual overview as well as

graphical control of the capabilities and services of the computer.

Language services—These programs, called assemblers, compilers, and

interpreters, allow you to write programs in a high-level, user-oriented language

rather than the machine language of Chapter 5 and to execute these programs

easily and efficiently. They often include components such as text editors and

debuggers.

Memory managers—These programs allocate memory space for programs and

data and retrieve this memory space when it is no longer needed.

Information managers—These programs handle the organization, storage, and

retrieval of information on mass storage devices such as the hard drives, CDs,

DVDs, flash drives, and tapes described in Section 5.2.2. They allow you to

organize your information in an efficient hierarchical manner, using directories,

folders, and files.

I/O systems—These software packages allow you to easily and efficiently use the

many different types of input and output devices that exist on a modern

computer system.

Scheduler—This system program keeps a list of programs ready to run on the

processor, and it selects the one that will execute next. The scheduler allows you

to have a number of different programs active at a single time, for instance,

surfing the Web while you are waiting for a file to finish printing.

Utilities—These collections of library routines provide a wide range of useful

services either to a user or to other system routines. Text editors, online help

routines, image and sound applications, and control panels are examples of

utility routines. Sometimes these utilities are organized into collections called

program libraries.

These system routines are used during every phase of problem solving on a computer,
and it would be virtually impossible to get anything done without them. Let’s go back to
the problem described at the beginning of this chapter—the job of writing a program,
loading it into memory, running it, and printing the results. On a naked machine, this
job would be formidable. On the virtual machine created by system software, it is

much simpler:

Step Task

1 Use a text editor to create
program P written in a
high-level, English-like notation
rather than binary.

2 Use the file system to store
program P on the hard drive in
your home directory.

3 Use a language translator to
translate program P from a
high-level language into an
equivalent machine language
program M.

4 Use a scheduler to load,
schedule, and run program M.
The scheduler itself uses the
memory manager to obtain
memory space for program M.

5 Use the I/O system to print the
output of your program on
printer R.

6 If the program did not
complete successfully, use a
debugger to help you locate
the error. Use a text editor to
correct the program and the
file system to store the newly
modified program.

Furthermore, most of these operations are easily invoked via mouse clicks and the
graphical interface provided by the operating system.

On a virtual machine, the low-level details of machine operation are no longer visible,
and a user can concentrate on higher-level issues: writing the program, executing the
program, and saving and analyzing results.

There are many types of system software, and it is impossible to cover them all in this

section of the text. Instead, we will investigate two types of system software, and use
these as representatives of the entire group. Section 6.3 examines assemblers, and
Section 6.4 looks at the design and construction of operating systems. These two
packages create a friendly and usable virtual machine. In Chapter 7, we will extend
that virtual environment from a single computer to a collection of computers by
looking at the system software required to create one of the most important and widely
used virtual environments—a computer network. Finally, in Chapter 8 we will
investigate one of the most important services provided by the operating system
—system security.

Chapter 6: An Introduction to System Software and Virtual Machines: 6.3
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

6.3 Assemblers and Assembly Language

6.3.1 Assembly Language

One of the first places where we need a more friendly virtual environment is in our
choice of programming language. Machine language, which is designed from a
machine’s point of view, not a person’s, is complicated and virtually impossible to
understand. What specifically are the problems with machine language?

It uses binary. There are no natural language words, mathematical symbols, or

other convenient mnemonics to make the language more readable.

It allows only numeric memory addresses (in binary). A programmer cannot

name an instruction or a piece of data and refer to it by name.

It is difficult to change. If we insert or delete an instruction, all memory

addresses following that instruction will change. For example, if we place a new

instruction into memory location 503, then the instruction previously in location

503 is now in 504. All references to address 503 must be updated to point to 504.

There may be hundreds of such references.

It is difficult to create data. If a user wants to store a piece of data in memory, he

or she must compute the internal binary representation for that data item. These

conversion algorithms are complicated and time consuming.

Programmers working on early first-generation computers quickly realized the
shortcomings of machine language. They developed a new language, called assembly
language, designed for people as well as computers. Assembly languages created a
more productive, user-oriented environment, and assemblers were one of the first

pieces of system software to be widely used. When assembly languages first appeared
in the early 1950s, they were one of the most important new developments in
programming—so important, in fact, that they were considered an entirely new
generation of language, analogous to the new generations of hardware described in
Section 1.4.3. Assembly languages were termed second-generation languages to
distinguish them from machine languages, which were viewed as first-generation
languages.

Today, assembly languages are more properly called low-level programming
languages, which means they are closely related to the machine language of Chapter 5.
Each symbolic assembly language instruction is translated into exactly one binary
machine language instruction.

This contrasts with languages like C++, Java, and Python, which are high-level
programming languages. High-level languages are more user oriented, they are not
machine specific, and they use both natural language and mathematical notation in
their design. A single high-level language instruction is typically translated into many
machine language instructions, and the virtual environment created by a high-level
language is much more powerful than the one produced by an assembly language. We
will discuss high-level languages in detail in Chapters 9 and 10.

Figure 6.3 shows a “continuum of languages,” from the lowest level (closest to the
hardware) to the highest level (most abstract, farthest from the hardware).

Figure 6.3

The continuum of programming languages

The machine language of Chapter 5 is the most primitive; it is the language of the
hardware itself. Assembly language, the topic of this section, represents the first step
along the continuum from machine language. High-level programming languages like
C++, Java, and Python are closer in style and structure to natural languages and are
quite distinct from assembly language. Natural languages, such as English, Spanish,
and Japanese, are the highest level; they are totally unrelated to hardware design.

A program written in assembly language is called the source program; it uses the

features and services provided by the language. However, the processor does not
“understand” assembly language instructions, in the sense of being able to fetch,
decode, and execute them as described in Chapter 5. The source program must be
translated into a corresponding machine language program, called the object
program. This translation is carried out by a piece of system software called an
assembler. (Translators for high-level languages are called compilers. They are
discussed in Chapters 11.) Once the object program has been produced, its instructions
can be loaded into memory and executed by the processor exactly as described in
Section 5.3. The complete translation/loading/execution process is diagrammed in
Figure 6.4.

Figure 6.4

The translation/loading/execution process

There are three major advantages to writing programs in assembly language rather
than machine language:

Use of symbolic operation codes rather than numeric (binary) ones

Use of symbolic memory addresses rather than numeric (binary) ones

Pseudo-operations that provide useful user-oriented services such as data

generation

This section describes a simple, but realistic, assembly language that demonstrates
these three advantages.

Our hypothetical assembly language is composed of instructions in the following
format:

The comment field, preceded in our notation by a double dash (--), is not really part of
the instruction. It is a helpful explanation added to the instruction by a programmer
and intended for readers of the program. It is ignored during translation and
execution.

Assembly languages allow the programmer to refer to op codes using a symbolic name,
called the op code mnemonic, rather than by a number. We can write op codes using
meaningful words like LOAD, ADD, and STORE rather than obscure binary codes like
0000, 0011, and 0001. Figure 6.5 shows an assembly language instruction set for a Von
Neumann machine that has a single ALU register R and three condition codes GT, EQ,
and LT. Each numeric op code, its assembly language mnemonic, and its meaning are
listed. This table is identical to Figure 5.19, which summarizes the language used in
Chapter 5 to introduce the Von Neumann architecture and explains how instructions
are executed. (However, Chapter 5 describes binary machine language and uses
symbolic names only for convenience. In this chapter, we are describing assembly
language, where symbolic names such as LOAD and ADD are actually part of the
language.)

Figure 6.5
Typical assembly language instruction set

Binary
Op
Code

Operation Meaning

0000 LOAD X CON(X) → R

0001 STORE X R → CON(X)

0010 CLEAR X 0 → CON(X)

0011 ADD X
R + CON(X)
→ R

0100
INCREMENT
X

CON(X) + 1
→ CON(X)

Binary
Op
Code

Operation Meaning

0101
SUBTRACT
X

R – CON(X)
→ R

0110
DECREMENT
X

CON(X) – 1
→ CON(X)

0111 COMPARE X

if CON(X)
> R then
GT = 1 else
0

if CON(X)
= R then
EQ = 1 else
0

if CON(X)
< R then
LT = 1 else
0

1000 JUMP X

Get the
next
instruction
from
memory
location X.

1001 JUMPGT X

Get the
next
instruction
from
memory
location X
if GT = 1.

1010 JUMPEQ X

Get the
next
instruction
from
memory
location X
if EQ = 1.

Binary
Op
Code

Operation Meaning

1011 JUMPLT X

Get the
next
instruction
from
memory
location X
if LT = 1.

1100 JUMPNEQ X

Get the
next
instruction
from
memory
location X
if EQ = 0.

1101 IN X

Input an
integer
value from
the
standard
input
device and
store into
memory
cell X.

1110 OUT X

Output, in
decimal
notation,
the value
stored in
memory
cell X.

1111 HALT

Stop
program
execution.

Another advantage of assembly language is that it lets programmers use symbolic
addresses instead of numeric addresses. In machine language, to jump to the
instruction stored in memory location 17, you must refer directly to address 17; that is,
you must write JUMP 17 (in binary, of course). This is cumbersome, because if a new
instruction is inserted anywhere within the first 17 lines of the program, the jump
location changes to 18. The old reference to 17 is incorrect, and the address field must
be changed. This makes modifying programs very difficult, and even small changes
become big efforts. It is not unlike identifying yourself in a waiting line by position—as,
say, the 10th person in line. As soon as someone in front of you leaves (or someone cuts
in line ahead of you), that number changes. It is far better to identify yourself using a
characteristic that does not change as people enter or exit the line. For example, you
are the person wearing the green suit with the orange and pink shirt. Those
characteristics won’t change (though maybe they should).

In assembly language, we can attach a symbolic label to any instruction or piece of data
in the program. The label then becomes a permanent identification for this instruction
or data, regardless of where it appears in the program or where it may be moved in
memory. A label is a name (followed by a colon to identify it as a label) placed at the
beginning of an instruction.

The label LOOPSTART has been attached to the instruction LOAD X. This means that the
name LOOPSTART is equivalent to the address of the memory cell that holds the
instruction LOAD X. If, for example, the LOAD X instruction is stored in memory cell 62,
then the name LOOPSTART is equivalent to address 62. Any use of the name
LOOPSTART in the address field of an instruction is treated as though the user had
written the numeric address 62. For example, to jump to the load instruction shown
above, we do not need to know that it is stored in location 62. Instead, we need only
write the instruction

Symbolic labels have two advantages over numeric addresses. The first is program
clarity. As with the use of mnemonics for op codes, the use of meaningful symbolic
names can make a program much more readable. Names like LOOPSTART, COUNT, and
ERROR carry a good deal of meaning and help people to understand what the code is
doing. Memory addresses such as 73, 147, and 2001 do not. A second advantage of
symbolic labels is maintainability. When we refer to an instruction via a symbolic label
rather than an address, we no longer need to modify the address field when
instructions are added to or removed from the program. Consider the following
example:

Say a new instruction is added to the program at point A. When the modified program
is translated by the assembler into machine language, all instructions following point A
are placed in a memory cell whose address is 1 higher than it was before (assuming
that each instruction occupies one memory cell). However, the JUMP refers to the
LOAD instruction only by the name LOOP, not by the address where it is stored.
Therefore, neither the JUMP nor the LOAD instruction needs to be changed. We need
only retranslate the modified program. The assembler determines the new address of
the LOAD X instruction, makes the label LOOP equivalent to this new address, and
places this new address into the address field of the JUMP LOOP instruction. The
assembler does the messy bookkeeping previously done by the machine language
programmer.

The final advantage of assembly language programming is data generation. In Section
4.2.1 we showed how to represent data types such as unsigned and signed integers,
floating-point values, and characters in binary. When writing in machine language, the
programmer must do these conversions. In assembly language, however, the
programmer can ask the assembler to do them by using a special type of assembly
language op code called a pseudo-op.

A pseudo-op (preceded in our notation by a period to indicate its type) does not
generate a machine language instruction like other operation codes. Instead, it invokes
a service of the assembler. One of these services is generating data in the proper binary
representation for this system. There are typically assembly language pseudo-ops to
generate integer, character, and (if the hardware supports it) real data values. In our
sample language, we will limit ourselves to one data generation pseudo-op called .DATA
that builds signed integers. This pseudo-op converts the signed decimal integer in the
address field to the proper binary representation. For example, the pseudo-op

tells the assembler to generate the binary representation for the integer +5, put it into
memory, and make the label “FIVE” equivalent to the address of that cell. If a memory
cell contains 16 bits, and the next available memory cell is address 53, then this
pseudo-op produces

and the name FIVE is equivalent to memory address 53. Similarly, the pseudo-op

might produce the following 16-bit quantity, assuming sign/magnitude representation:

and the symbol NEGSEVEN is equivalent to memory address 54.

We can now refer to these data items by their attached label. For example, to load the
value +5 into register R, we can say

This is equivalent to writing LOAD 53, which loads register R with the contents of
memory cell 53—that is, the integer +5. Note that if we had incorrectly said

the contents of memory cell 5 would be loaded into register R. This is not what we
intended, and the program would be wrong. This is a good example of why it is so
important to distinguish between the address of a cell and its contents.

To add the value –7 to the current contents of register R, we write

The contents of R (currently +5) and the contents of address NEGSEVEN (address 54,
whose contents are –7) are added together, producing –2. This becomes the new
contents of register R.

When generating data values, we must be careful not to place them in memory
locations where they can be misinterpreted as instructions. In Chapter 4, we said that
the only way a computer can tell that the binary value 01000001 represents the letter A
rather than the decimal value 65 is by the context in which it appears. The same is true
for instructions and data. They are indistinguishable from each other, and the only way
a Von Neumann machine can determine whether a sequence of 0s and 1s is an
instruction or a piece of data is by how we use it. If we attempt to execute a value
stored in memory, then that value becomes an instruction whether we meant it to be or
not.

For example, if we incorrectly include the following sequence in our program:

then, during the execution phase, after executing the LOAD X command, the processor
will come to the memory location where the.DATA pseudo-op has stored the value +1.
The processor will fetch, decode, and attempt to execute the data value +1 as if it were
an “instruction." This might sound meaningless, but to a processor, it is not. The

representation of +1, using 16 bits, is

Because this value is being used as an instruction, some of the bits will be interpreted
as the op code and some as the address field. If we assume a 16-bit, one-address
instruction format, with the first 4 bits being the op code and the last 12 bits being the
address field, then these 16 bits will be interpreted as follows:

The “op code” is 0, which is a LOAD on our hypothetical machine (see Figure 6.5), and
the “address field” contains a 1. Thus, the data value +1 has accidentally turned into the
following instruction:

This is obviously incorrect, but how is the problem solved? The easiest way is to
remember to place all data created by the program using the.DATA pseudo-op in
locations where they cannot possibly be executed. One convenient place that meets this
criterion is after a HALT instruction because the HALT prevents any further execution.
The data values can be referenced, but they cannot be executed.

Practice Problem

Assume that register R and memory cells 80 and 81 contain the

following values:

R: 20 memory
cell 80:
43

memory
cell 81:
97

Using the instruction set shown in Figure 6.5, determine what value

ends up in register R and memory cells 80 and 81 after each of the

following instructions is executed. Assume that each question begins

with the values shown above.

LOAD 80a.

STORE 81b.

1.

© 2013 , Cengage Learning

6.3.2 Examples of Assembly Language Code

This section describes how to use assembly language to translate algorithms into
programs that can be executed on a Von Neumann computer. Today, software
development is rarely performed in assembly language except for very special-purpose
tasks; most programmers use higher-level languages such as those mentioned in Figure
6.3 and described in Chapter 9 and 10. Our purpose in offering these examples is to
demonstrate how system software, in this case an assembler, can create a user-oriented
virtual environment that supports effective and productive problem solving.

One of the most common operations in any algorithm is the evaluation of arithmetic
expressions. For example, the sequential search algorithm of Figure 2.12 contains the
following arithmetic operations:

These algorithmic operations can be translated quite easily into assembly language as
follows:

Note how readable this code is, compared with machine language, because of such op
code mnemonics as LOAD and STORE and the use of descriptive labels such as I and
ONE.

Another example is the following assembly language translation of the arithmetic
expression A = B + C – 7. (Assume that B and C have already been assigned values.)

Another important algorithmic operation involves testing and comparing values. The
comparison of values and the subsequent use of the outcome to decide what to do next
are termed a conditional operation, which we first saw in Section 2.2.3. Here is a
conditional that outputs the larger of two values x and y. Algorithmically, it is
expressed as follows:

In assembly language, this conditional operation can be translated as follows:

Another important algorithmic primitive is looping, which was also introduced in
Section 2.2.3. The following algorithmic example contains a while loop that executes
10,000 times.

This looping construct is easily translated into assembly language.

As a final example, we will show a complete assembly language program (including all
necessary pseudo-ops) to solve the following problem:

Read in a sequence of nonnegative numbers, one number at a time, and compute
a running sum. When you encounter a negative number, print out the sum of the
nonnegative values and stop.

Thus, if the input is

then the program should output the value 51, which is the sum (8 + 31 + 7 + 5). An
algorithm to solve this problem is shown in Figure 6.7, using the pseudocode notation
of Chapter 2.

Figure 6.7

Algorithm to compute the sum of nonnegative numbers

Our next task is to convert the algorithmic primitives of Figure 6.7 into assembly
language instructions. A program that does this is shown in Figure 6.8.

Figure 6.8

Assembly language program to compute the sum of nonnegative numbers

Of all the examples in this chapter, the program in Figure 6.8 demonstrates best what is
meant by the phrase user-oriented virtual environment. Although it is not as clear as
natural language or the pseudocode of Figure 6.7, this program can be read and
understood by humans as well as computers. Tasks such as modifying the program and
locating an error are significantly easier on the code of Figure 6.8 than on its machine
language equivalent.

The program in Figure 6.8 is an important milestone in that it represents a culmination
of the algorithmic problem-solving process. Earlier chapters introduced algorithms and
problem solving (Chapters 1, 2, 3), discussed how to build computers to execute
algorithms (Chapters 4, 5), and introduced system software that enables us to code
algorithms into a language that computers can translate and execute (Chapter 6). The
program in Figure 6.8 is the end product of this discussion: It can be input to an
assembler, translated into machine language, loaded into a Von Neumann computer,
and executed to produce answers to our problem. This algorithmic problem-solving
cycle is one of the central themes of computer science.

Practice Problems

Using the instruction set in Figure 6.5, translate the following

algorithmic operations into assembly code. Show all necessary .DATA

pseudo-ops.

Add 1 to the value of xa.

Add 50 to the value of xb.

Set x to the value y + z - 2c.

If x > 50 then output the value of x, otherwise input a new value

of x

d.

e.

1.

Using the instruction set in Figure 6.5, write a complete assembly

language program (including all necessary pseudo-ops) that reads in

numbers and counts how many inputs it reads until it encounters the

first negative value. The program then prints out that count and

stops. For example, if the input data is 42, 108, 99, 60, 1, 42, 3, –27,

then your program outputs the value 7 because there are seven

nonnegative values before the appearance of the negative value –27.

2.

Now modify your program from Practice Problem 2 so that if you

have not encountered a negative value after 100 inputs, your

program stops and outputs the value 100.

3.

Discuss how the modifi cations you had to make in Practice Problem 3

were made easier by the use of assembly language in place of binary

machine language.

4.

Laboratory Experience 10

This section of Chapter 6 introduced assembly language instructions and
programming techniques. However, as mentioned before, you do not learn
programming and problem solving by reading and watching but rather by
doing and trying. In this Laboratory Experience, you will program in an
assembly language that is virtually identical to the one shown in Figure 6.5. You
will be able to design and write programs like the one shown in Figure 6.8 and
execute them on a simulated Von Neumann computer. You will observe the
effect of individual instructions on the functional units of this machine and
produce results.

This experience should give you a much deeper understanding of the concepts
of assembly language programming and the Von Neumann architecture. It will
also tie together the hardware concepts of Level 1 (Chapters 4 and 5) and the
virtual machine system software concepts of Level 3. This lab shows how an
assembly language program is written, translated, and loaded into a Von
Neumann machine and executed by that machine using the ideas presented in
the previous chapters.

The assembler finds the operation code mnemonic in column 1 of the table and
replaces the characters with the 4-bit binary value in column 2. (If the mnemonic is not
found, then the user has written an illegal op code, which results in an error message.)
Thus, for example, if we use the mnemonic SUBTRACT in our program, the assembler
converts it to the binary value 0101.

To look up the code in the op code table, we could use the sequential search algorithm
introduced in Chapter 2 and shown in Figure 2.13. However, using this algorithm may
significantly slow down the translation of our program. The analysis of the sequential
search algorithm in Chapter 3 showed that locating a single item in a list of N items
takes, on the average, N/2 comparisons if the item is in the table and N comparisons if it
is not. In Chapter 5, we stated that modern computers may have as many as 500
machine language instructions in their instruction set, so the size of the op code table
of Figure 6.9 could be as large as N = 500. This means that using sequential search, we
perform an average of N/2, about 250, comparisons for every op code in our program.
If our assembly language program contains 10,000 instructions (not an unreasonably
large number), the op code translation task requires a total of 10,000 instructions × 250
comparisons/ instruction = 2.5 million comparisons. That is a lot of searching, even for
a computer.

Because the op code table of Figure 6.9 is sorted alphabetically, we can instead use the
more efficient binary search algorithm discussed in Section 3.4.2 and shown in Figure
3.18. On the average, the number of comparisons needed to find an element using
binary search is not N/2 but (lg N), the logarithm of N to the base 2. [Note: (lg N) is the

value k such that 2 = N.] For a table of size N = 500, N/2 is 250, whereas (lg N) is

approximately 9 (2 = 512). This says that on the average, we find an op code in the
table, assuming it is there, in about 9 comparisons rather than 250. If our assembly
language program contains 10,000 instructions, then the op code translation task
requires only about 10,000 × 9 = 90,000 comparisons rather than 2.5 million, a
reduction of 2,410,000. By selecting a better algorithm, we achieve an increase in speed
of about 96%—quite a significant improvement!

This example demonstrates why algorithm analysis, introduced in Chapter 3, is such a
critically important part of the design and implementation of software. Replacing a
slow algorithm with a faster one can turn an insoluble problem into a solvable one and
a worthless solution into a highly worthwhile one. Remember that, in computer

k

9

science, we are looking not just for correct solutions but for efficient ones as well.

After the op code has been converted into binary, the assembler must perform a
similar task on the address field. It must convert the address from a symbolic value,
such as X or LOOP, into the correct binary address. This task is a bit more difficult than
converting the op code because the assembler itself must determine the correct
numeric value of all symbols used in the label field. There is no “built-in” address
conversion table equivalent to the op code table of Figure 6.9.

In assembly language, a symbol is defined when it appears in the label field of an
instruction or data pseudo-op. Specifically, the symbol is given the value of the address
of the instruction to which it is attached. Assemblers usually make two passes over the
source code, where a pass is defined as the process of examining and processing every
assembly language instruction in the program, one instruction at a time. During the
first pass over the source code, the assembler looks at every instruction, keeping track
of the memory address where this instruction will be stored when it is translated and
loaded into memory. It does this by knowing where the program begins in memory and
knowing how many memory cells are required to store each machine language
instruction or piece of data. It also determines whether there is a symbol in the label
field of the instruction. If there is, it enters the symbol and the address of this
instruction into a special table that it is building called a symbol table.

We can see this process more clearly in Figure 6.10. The figure assumes that each
instruction and data value occupies one memory cell and that the first instruction of
the program will be placed into address 0.

Figure 6.10

Generation of the symbol table

(1)

(2)

The assembler looks at the first instruction in the program, IN X, and determines that
when this instruction is loaded into memory, it will go into memory cell 0. Because the
label LOOP is attached to that instruction, the name LOOP is made equivalent to
address 0. The assembler enters the (name, value) pair (LOOP, 0) into the symbol table.
This process of associating a symbolic name with a physical memory address is called
binding, and the two primary purposes of the first pass of an assembler are

to bind all symbolic names to address values and

to enter those bindings into the symbol table.

Now, any time the programmer uses the name LOOP in the address field, the assembler
can look up that symbol in column 1 of the symbol table and replace it with the address
value in column 2, in this case address 0. (If it is not found, the programmer has used
an undefined symbol, which produces an error message.)

The next six instructions of Figure 6.10(a), from IN Y to JUMP LOOP, do not contain
labels, so they do not add new entries to the symbol table. However, the assembler
must still update the counter it is using to determine the address where each
instruction will ultimately be stored. The variable used to determine the address of a
given instruction or piece of data is called the location counter. The location counter
values are shown in the third column of Figure 6.10(a). Using the location counter, the
assembler can determine that the address values of the labels DONE, X, and Y are 7, 9,
and 10, respectively. It binds these symbolic names and addresses and enters them in
the symbol table, as shown in Figure 6.10(b). When the first pass is done, the assembler
has constructed a symbol table that it can use during pass 2. The algorithm for pass 1 of
a typical assembler is shown (using an alternative form of algorithmic notation called a
flowchart) in Figure 6.11.

Figure 6.11

Outline of pass 1 of the assembler

During the second pass, the assembler translates the source program into machine
language. It has the op code table to translate mnemonic op codes to binary, and it has
the symbol table to translate symbolic addresses to binary. Therefore, the second pass
is relatively simple, involving two table lookups and the generation of two binary
fields. For example, if we assume that our instruction format is a 4-bit op code followed
by a single 12-bit address, then given the instruction

the assembler

looks up SUBTRACT in the op code table of Figure 6.9 and places the 4-bit binary

value 0101 in the op code field

1.

looks up the symbol X in the symbol table of Figure 6.10(b) and places the binary

address value 0000 0000 1001 (decimal 9) into the address field

2.

After these two steps, the assembler produces the 16-bit instruction

which is the correct machine language equivalent of the assembly language statement
SUBTRACT X.

When it is done with one instruction, the assembler moves on to the next and
translates it in the same fashion. This continues until it sees the pseudo-op .END, which
terminates translation.

The other responsibilities of pass 2 are also relatively simple:

Handling data generation pseudo-ops (only.DATA in our example)

Producing the object file needed by the loader

The .DATA pseudo-op asks the assembler to build the proper binary representation for
the signed decimal integer in the address field. To do this, the assembler must
implement the sign/magnitude integer representation algorithms described in Section
4.2.

Finally, after all the fields of an instruction have been translated into binary, the newly
built machine language instruction and the address of where it is to be loaded are
written out to a file called the object file. (On Windows machines, this is referred to as
an.exe file.) The algorithm for pass 2 of the assembler is shown in Figure 6.12.

Figure 6.12

Outline of pass 2 of the assembler

After completion of pass 1 and pass 2, the object file contains the translated machine

language object program, referred to in Figure 6.4. One possible object program for the
assembly language program of Figure 6.10(a) is shown in Figure 6.13. (Note that a real
object file contains only the address and instruction fields. The meaning field is
included here for clarity only.)

Figure 6.13

Example of an object program

The object program shown in Figure 6.13 becomes input to yet another piece of system
software called a loader. It is the task of the loader to read instructions from the object
file and store them into memory for execution. To do this, it reads an address value—
column 1 of Figure 6.13—anda machine language instruction—column 2 of Figure
6.13—and stores that instruction into the specified memory address. This operation is
repeated for every instruction in the object file. When loading is complete, the loader
places the address of the first instruction (0 in this example) into the program counter
(PC) to initiate execution. The hardware, as we learned in Chapter 5, then begins the
fetch, decode, and execute cycle starting with the instruction whose address is located
in the PC, namely the beginning of this program.

Practice Problem

Translate the following algorithm into assembly language using the

instructions in Figure 6.5.

1.

6.4 Operating Systems
To carry out the services just described (translate a program, load a program, and run a
program), a user must issue system commands. These commands may be lines of text
typed at a terminal, such as

or, more commonly, they may be represented by icons displayed on the screen and
selected with a mouse, button, or finger tap, using a technique called point-and-click.

Regardless of how the process is initiated, the important question is: What program
examines these commands? What piece of system software waits for requests and
activates other system programs like a translator or loader to service these requests?
The answer is the operating system, and, as shown in Figure 6.2, it is the “top-level”
system software component on a computer.

Some of the more well-known operating systems in widespread use today include
Windows (7, Vista, XP), Mac OS X, Linux, Google Android for mobile devices, and Apple
iOS for the iPhone and iPad.

Chapter 6: An Introduction to System Software and Virtual Machines: 6.4.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

6.4.1 Functions of an Operating System

An operating system is an enormously large and complex piece of software that has
many responsibilities within a computer system. This section examines five of the most
important tasks that it performs.

The User Interface

The operating system is executing whenever no other piece of user or system software
is using the processor. Its most important task is to wait for a user command delivered
via the keyboard, mouse, finger tap, or other input device. If the command is legal, the
operating system activates and schedules the appropriate software package to process
the request. In this sense, the operating system acts like the computer’s receptionist and
dispatcher.

Operating system commands usually request access to hardware resources (processor,
printer, communication lines, camera), software services (translator, loader, Web
browser, application program), or information (data files, contact lists). Examples of

typical operating system commands are shown in Figure 6.14. Modern operating
systems can execute dozens or even hundreds of different commands.

Figure 6.14
Some typical operating system commands

Translate a program

Run a program

Save information in a file

Retrieve a file previously stored

List all the files for this user

Print a file on a specified device

Delete or rename a file

Copy a file from one I/O device to another

Let the user set or change a password

Establish a network connection

Tell me the current time and date

After a user enters a command, the operating system determines which software
package needs to be loaded and put on the schedule for execution. When that package
completes execution, control returns to the operating system, which waits for a user to
enter the next command. This user interface algorithm is diagrammed in Figure 6.15.

Figure 6.15

User interface responsibility of the operating system

The user interfaces on the operating systems of the 1950s, 1960s, and 1970s were text
oriented. The system displayed a prompt character on the screen to indicate that it was
waiting for input, and then it waited for something to happen. The user entered
commands in a special, and sometimes quite complicated, command language. For
example, on the UNIX operating system, widely used on personal computers and
workstations, the following command asks the system to list the names and access
privileges of the files contained in the home directory of a user called mike:

As you can see, commands were not always easy to understand, and learning the
command language of the operating system was a major stumbling block for new
users. Unfortunately, without first learning some basic commands, no useful work
could be done.

Because users found text-oriented command languages very cumbersome, virtually all
modern operating systems utilize a graphical user interface, or GUI. To communicate
with a user, a GUI supports visual aids and point-and-click operations, rather than
textual commands. The interface uses icons, pull-down menus, scrolling and resizable
windows, and other visual elements and graphical metaphors that make it much easier
for a user to formulate requests.

For example, Figure 6.16 shows a window listing the contents of the folder called
BookImage. One of these items is a folder called Home. To display all the files contained

in this folder, a user simply points to it and clicks, and the list of its files appears in a
new window. Compare the clarity of that operation with the preceding UNIX command
that does virtually the same thing.

Figure 6.16

Example of a graphical user interface

Graphical interfaces are an excellent example of the high-level virtual machine created
by the operating system. A GUI hides a great deal of the underlying hardware and
software, and it makes the computer or device appear very easy to use. In reality, the
device that produces the elegant interface shown in Figure 6.16 is identical to the
“naked” Von Neumann machine described in Chapters 4 and 5.

System Security and Protection

In addition to being a receptionist, the operating system also has the responsibilities of
a security guard—controlling access to the computer and its resources. It must prevent
unauthorized users from accessing the system and prevent authorized users from
doing unauthorized things.

At a minimum, the operating system must not allow people to access the computer if
they have not been granted permission. In the “olden days” of computing (the 1950s

and 1960s), security was implemented by physical means—walls and locked doors
around the computer and security guards at the door to prevent unauthorized access.
However, when telecommunications networks appeared on the scene in the late 1960s
and 1970s (we will discuss them in detail in Chapter 7), access to computers over
networks became possible from virtually anywhere in the world, and responsibility for
access control migrated from the guard at the door to the operating system inside the
machine.

A Machine for the Rest of Us

In January 1984, Apple Computer launched its new line of Macintosh computers
with a great deal of showmanship: a TV commercial at the 1984 NFL Super
Bowl. The company described the Macintosh as a computer that anyone could
understand and use—“a machine for the rest of us.” People who saw and used it
quickly agreed, and in the early days, its major selling point was that “a
Macintosh is much easier to use than an IBM PC.” However, the Macintosh and
IBM PC were extremely similar in terms of hardware, and they both used
something like the architecture of Figure 6.18. Both systems used Von
Neumann–type processors, and these processors executed similar sets of
machine language instructions exactly as described in Chapter 5. In fact, in
2006 Apple began using the same type of Intel processors as in the IBM PC and
its clones. It certainly was not the underlying hardware that created these huge
differences in ease of use.

What made the Macintosh easier to use was its radically new graphical user
interface, created by two system software packages called the Finder and
System. They produced a sophisticated visual environment that most users
found much easier to understand than the text-oriented interface of MS-DOS,
the most popular PC-based operating system of the 1980s and early 1990s. IBM
users quickly realized the importance of having a powerful user interface, and
in the early- and mid-1990s began to switch to Microsoft Windows, which
provided a windowing environment similar to the Macintosh. Newer versions
of these systems, such as Mac OS X, Windows Vista, and Windows 7, all
represent attempts at creating an even more powerful and easy-to-use virtual
environment.

We can see now that it was wrong for Apple to say that “a Macintosh is easier to
use than a PC.” What it should have said is that “the virtual machine
environment created by the Macintosh operating system is easier to use than
the virtual machine environment created by the Windows operating system.”
However, maybe that was just a little too wordy!

In most operating systems, access control means requiring a user to enter a legal

username and password before any other requests are accepted. If an incorrect
username or password is entered, the operating system does not allow access to the
computer. (See the Special Interest Box "Password Pointers" in Chapter 8)

It is also the operating system’s responsibility to safeguard the password file that stores
all valid username/password combinations. It must prevent this file from being
accessed by any unauthorized users because that would compromise the security of the
entire system. This is analogous to putting a lock on your door but also making sure
that you don’t lose the key. (Of course, some privileged users, called superusers
—usually computer center employees or system administrators—must be able to access
and maintain this file.) To provide this security, the operating system may choose to
encrypt the password file using an encoding algorithm that is extremely difficult to
crack. A thief must steal not only the encrypted text but also the algorithm to change
the encrypted text back to the original clear text. Without this information, the stolen
password file is useless. Operating systems use encryption algorithms whenever they
must provide a high degree of security for sensitive information. We will learn more
about these encryption algorithms in Chapter 8.

Even when valid users gain access to the system, there are things they should not be
allowed to do. The most obvious is that they should be able to access only their own
personal information. They should not be able to look at the files or records of other
users. Therefore, when the operating system gets a request such as

it must determine who is the owner of the file—that is, who created it. If the individual
accessing the file is not the owner, then it usually rejects the request. However, most
operating systems allow the owner of a file to provide a list of additional authorized
users or a general class of authorized users, such as all students or all faculty. Like the
password file, these authorization lists are highly sensitive files, and operating systems
generally store them in an encrypted format.

Most modern operating systems not only determine whether you are allowed to access
a file, they also check what operations you are permitted to perform on that file. The
following hierarchically ordered list shows the different types of operations that users
may be permitted to do on a file:

Read the information in the file but not change it

Append new information to the end of the file but not change existing

information

Change existing information in the file

Delete the file from the system

For example, the grade file GRADES of a student named Smith could have the
authorization list shown in Figure 6.17.

Figure 6.17
Authorization list for the file GRADES

File: GRADES

Name Permitted
Operations

Smith R (R = Read
only)

Jones RA (A =
Append)

Adams RAC (C =
Change)

Doe RACD (D =
Delete)

This authorization list says that Smith, the student whose grades are in the file, has the
right to access his or her own file, but only to read the information.

Jones, a clerk in the administration center, can read the file and can append new
grades to the end of the file at the completion of the term. Adams, the school’s registrar,
can read and append information and is also allowed to change the student’s grades if
an error was made. Doe, the director of the computer center, can do all of these
operations as well as delete the file and all its information.

Permission to look at information can be given to a number of people. However,
changing information in a file is a sensitive operation (think about changing a payroll
file), and permission to make changes must be limited. Deleting information is the most
powerful and potentially damaging operation of all, and its use must be restricted to
people at the highest level. It is the operating system’s responsibility to help ensure that
individuals are authorized to carry out the operation they request.

Computers today play such a critical role in the storage and management of military,

medical, economic, and personal data that this security responsibility has taken on an
increasingly important role. We will investigate this topic in detail in Chapter 8.

Efficient Allocation of Resources

Section 5.2.2 described the enormous difference in speed between a processor and an
I/O unit: up to 5 orders of magnitude. A hardware device called an I/O controller
(Figure 5.9) frees the processor to do useful work while the I/O operation is being
completed. What useful work can a processor do in this free time? What ensures that
this valuable resource is used efficiently? Again, it is the operating system’s
responsibility to see that the resources of a computer system are used efficiently as
well as correctly.

To ensure that a processor does not sit idle if there is useful work to do, the operating
system keeps a queue (a waiting line) of programs that are ready to run. Whenever the
processor is idle, the operating system picks one of these jobs and assigns it to the
processor. This guarantees that the processor always has something to do.

To see how this algorithm might work, let’s define the following three classes of
programs:

Running The one program
currently executing on
the processor (assume
only a single processor
on the computer)

Ready Programs that are
loaded in memory and
ready to run but are
not yet executing

Waiting Programs that cannot
run because they are
waiting for an I/O
operation (or some
other time-consuming
event) to finish

Here is how these three lists might look at some instant in time:

Waiting Ready Running

Waiting Ready Running

B A

C

D

There are four programs, called A, B, C, and D, in memory. Program A is executing on
the processor; B, C, and D are ready to run and are in line waiting their turn. Assume
that program A performs the I/O operation “read a sector from the disk.” (Maybe it is a
word processor, and it needs to get another piece of the document on which you are
working.) We saw in Section 5.2.2 that, relative to processing speeds, this operation
takes a long time, about 10 msec or so. While it is waiting for this disk I/O operation to
finish, the processor has nothing to do, and system efficiency plummets.

To solve this problem, the operating system can do some shuffling. It first moves
program A to the waiting list because it must wait for its I/O operation to finish before
it can continue. It then selects one of the ready programs (say B) and assigns it to the
processor, which starts executing it. This leads to the following situation:

Waiting Ready Running

A C B

D

Instead of sitting idle while A waits for I/O, the processor works on program B and gets
something useful done. This is equivalent to working on another project while waiting
for your secretary to fetch a document, instead of waiting and doing nothing.

Perhaps B also does an I/O operation. If so, then the operating system repeats the same
steps. It moves B to the waiting list, picks any ready program (say C) and starts
executing it, producing the following situation:

Waiting Ready Running

A D C

B

As long as there is at least one program that is ready to run, the processor always has
something useful to do.

At some point, the I/O operation that A started finishes, and the “I/O completed
interrupt signal” described in Section 5.2.2 is generated. The appearance of that signal
indicates that program A is now ready to run, but it cannot do so immediately because
the processor is currently assigned to C. Instead, the operating system moves A to the
ready list, producing the following situation:

Waiting Ready Running

B D C

A

Programs cycle from running to waiting to ready and back to running, each one using
only a portion of the resources of the processor.

In Chapter 5, we stated that the execution of a program is an unbroken repetition of the
fetch/decode/execute cycle from the first instruction of the program to the HALT. Now
we see that this view may not be completely accurate. For reasons of efficiency, the
running history of a program may be a sequence of starts and stops—a cycle of
execution, waits for I/O operations, waits for the processor, followed again by
execution. By having many programs loaded in memory and sharing the processor, the
operating system can use the processor to its fullest capability and run the overall
system more efficiently.

The Safe Use of Resources

Not only must resources be used efficiently, they must also be used safely. That doesn’t
mean an operating system must prevent users from sticking their fingers in the power
supply and getting electrocuted! The job of the operating system is to prevent programs
or users from attempting operations that cause the computer system to enter a state
where it is incapable of doing any further work—a “frozen” state where all useful work
comes to a grinding halt.

Practice Problem

Assume that programs spend about 25% of their time waiting for I/O

operations to complete. If there are two programs loaded into

memory, what is the likelihood that both programs will be blocked

waiting for I/O and there will be nothing for the processor to do?

1.

What percentage of time will the processor be busy? (This value is

called processor utilization.) By how much does processor utilization

improve if we have four programs in memory instead of two?

Why are passwords extremely vulnerable to security breaches?

Suggest ways to improve their use and reduce the risk associated with

them.

2.

To see how this can happen, imagine a computer system that has one laser printer, one
data file called D, and two programs A and B. Program A wants to load data file D and
print it on the laser printer. Program B wants to do the same thing. Each of them makes
the following requests to the operating system:

Program A Program B

Get data file
D.

Get the laser
printer.

Get the laser
printer.

Get data file
D.

Print the file. Print the file.

If the operating system satisfies the first request of each program, then A “owns” data
file D and B has the laser printer. When A requests ownership of the laser printer, it is
told that the printer is being used by B. Similarly, B is told that it must wait for the data
file until A is finished with it. Each program is waiting for a resource to become
available that will never become free. This situation is called a deadlock. Programs A
and B are in a permanent waiting state, and if there is no other program ready to run,
all useful work on the system ceases.

More formally, deadlock means that there is a set of programs, each of which is waiting
for an event to occur before it may proceed, but that event can be caused only by
another waiting program in the set. Another example is a telecommunications system
in which program A sends messages to program B, which acknowledges their correct
receipt. Program A cannot send another message to B until it knows that the last one
has been correctly received.

Program A Program B

Program A Program B

Message →

←
Acknowledge

Message →

←
Acknowledge

Message →

Suppose B now sends an acknowledgment, but it gets lost. (Perhaps there was static on
the line, or a lightning bolt jumbled the signal.) What happens? Program A stops and
waits for receipt of an acknowledgment from B. Program B stops and waits for the next
message from A. Deadlock! Neither side can proceed, and unless something is done, all
communication between the two will cease.

How does an operating system handle deadlock conditions? There are two basic
approaches, called deadlock prevention and deadlock recovery. In deadlock prevention,
the operating system uses resource allocation algorithms that prevent deadlock from
occurring in the first place. In the example of the two programs simultaneously
requesting the laser printer and the data file, the problem is caused by the fact that
each program has a portion of the resources needed to solve its problem, but neither
has all that it requested. To prevent this, the operating system can use the following
algorithm:

If a program cannot get all the resources that it needs, it must give up all the
resources it currently owns and issue a completely new request.

Essentially, this resource allocation algorithm says, “If you cannot get everything you
need, then you get nothing.” If we had used this algorithm, then after program A
acquired the laser printer but not the data file, it would have had to relinquish
ownership of the printer. Now B could get everything it needed to execute, and no
deadlock would occur. (It could also work in the reverse direction, with B relinquishing
ownership of the data file and A getting the needed resources. Which scenario unfolds
depends on the exact order in which requests are made.)

In the telecommunications example, one deadlock prevention algorithm is to require
that messages and acknowledgments never get garbled or lost. Unfortunately, that is
impossible. Real-world communication systems (telephone, microwave, satellite) do

make errors, so we are powerless to guarantee that deadlock conditions can never
occur. Instead we must detect them and recover from them when they do occur. This is
typical of the class of methods called deadlock recovery algorithms.

For example, here is a possible algorithmic solution to our telecommunications
problem:

Sender: Number your messages with the nonnegative integers 0, 1, 2,… and send
them in numerical order. If you send message number i and have not received an
acknowledgment for 30 seconds, send message i again.

Receiver: When you send an acknowledgment, include the number of the message
you received. If you get a duplicate copy of message i, send another
acknowledgment and discard the duplicate.

Using this algorithm, here is what might happen:

At this point, we have exactly the same deadlock condition described earlier. However,
this time we are able to recover in a relatively short period. For 30 seconds nothing
happens. However, after 30 seconds A sends message (2) a second time. B
acknowledges it and discards it (because it already has a copy), and communication
continues:

We have successfully recovered from the error, and the system is again up and
running.

Regardless of whether we prevent deadlocks from occurring or recover from those that
do occur, it is the responsibility of the operating system to create a virtual machine in
which the user never sees deadlocks and does not worry about them. The operating
system should create the illusion of a smoothly functioning, highly efficient, error-free
environment—even if, as we know from our glimpse behind the scenes, that is not
always the case. (We all know how frustrating it can be when the computer freezes up,
and we must reboot. A well-designed operating system will make this an extremely
rare event.)

Summary

In this section, we have highlighted some of the major responsibilities of the critically
important software package called the operating system:

User interface management (a receptionist)

Control of access to the system and to data files (a security guard)

Program scheduling and activation (a dispatcher)

Efficient resource allocation (an efficiency expert)

Deadlock detection and error detection (a traffic officer)

These are by no means the operating system’s only responsibilities, which can also
include such areas as input/output processing, allocating priorities to programs,
swapping programs in and out of memory, recovering from power failures, managing
the system clock, and dozens of other tasks, large and small, essential to keeping the
computer system running smoothly.

As you can imagine, given all these responsibilities, an operating system is an
extraordinarily complex piece of software. An operating system for a large network of
computers can require millions of lines of code, take thousands of person-years to
develop, and cost more to develop than the hardware on which it runs. Even operating
systems for personal computers and workstations (such as Windows, Linux, and Mac
OS X) are huge programs (see the Special Interest Box in this chapter, “Now That’s
Big!”) developed over periods of years by teams of dozens of computer scientists.
Designing and creating a high-level virtual environment is a difficult job, but without it,
computers would not be so widely used nor anywhere near as important as they are
today.

Chapter 6: An Introduction to System Software and Virtual Machines: 6.4.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

6.4.2 Historical Overview Of Operating Systems Development

Like the hardware on which it runs, system software has gone through a number of
changes since the earliest days of computing. The functions and capabilities of a
modern operating system described in the previous section did not appear all at once
but evolved over many years.

The Open Source Movement

The design and development of an operating system like Windows 7 or Mac OS
X is an enormous undertaking that can take thousands of person-years to
complete. Furthermore, the likelihood of getting everything correct is quite
small. (We have all had the experience of being frustrated by the freezes,
errors, and crashes of our operating system.) One of the ways that people are
attempting to address this issue is via the open source movement. This is a
worldwide movement of people who feel that the best way to develop efficient
and bug-free software is to enlist the cooperation of interested, skilled, and
altruistic programmers who are willing to work for free. They are inspired
simply by the goals of producing high-quality software and of working
cooperatively with like-minded individuals. The software is distributed to
anyone who wants to use it, and it can be modified, improved, and changed by
any user. This is quite different from the proprietary approach to software
development within a corporation such as IBM or Microsoft, in which the
development process is kept secret, and the source code is not shared with
anyone else.

Essentially, the open source movement encourages contributions to the
development process from anyone in the world, in the belief that the more
open the process and the more eyes examining the code, the more likely it is
that errors or invalid assumptions will be located and corrected. Both the Linux
operating system and the Apache Web server package were developed using
the open source model.

During the first generation of system software (roughly 1945–1955), there really were
no operating systems and there was very little software support of any kind—typically
just the assemblers and loaders described in Section 6.3. All machine operation was
“hands-on.” Programmers would sign up for a block of time and, at the appointed time,
show up in the machine room carrying their programs on punched cards or tapes.
They had the entire computer to themselves, and they were responsible for all machine
operation. They loaded their assembly language programs into memory along with the
assembler and, by punching some buttons on the console, started the translation
process. Then they loaded their program into memory and started it running. Working
with first-generation software was a lot like working on the naked machine described

at the beginning of the chapter. It was attempted only by highly trained professionals
intimately familiar with the computer and its operation.

System administrators quickly realized that this was a horribly inefficient way to use
an expensive piece of equipment. (Remember that these early computers cost millions
of dollars.) A programmer would sign up for an hour of computer time, but the
majority of that time was spent analyzing results and trying to figure out what to do
next. During this “thinking time,” the system was idle and doing nothing of value.
Eventually, the need to keep machines busy led to the development of a second
generation of system software called batch operating systems (1955–1965).

In second-generation batch operating systems, rather than operate the machine
directly, a programmer handed the program (typically entered on punched cards) to a
trained computer operator, who grouped it into a “batch”—hence the name. After a few
dozen programs were collected, the operator carried this batch of cards to a small I/O
computer that put these programs on tape. This tape was carried into the machine
room and loaded onto the “big” computer that actually ran the users’ programs, one at
a time, writing the results to yet another tape. During the last stage, this output tape
was carried back to the I/O computer to be printed and handed to the programmer. The
entire cycle is diagrammed in Figure Figure 6.18.

Figure 6.18

Operation of a batch computer system

This cycle might seem cumbersome and, from the programmer’s point of view, it was.

(Every programmer who worked in the late 1950s or early 1960s has horror stories
about waiting many hours—even days—for a program to be returned, only to discover
that there was a missing comma.) From the computer’s point of view, however, this
new batch system worked wonderfully, and system utilization increased dramatically.
No longer were there delays while a programmer was setting up to perform an
operation. There were no long periods of idleness while someone was mulling over
what to do next. As soon as one job was either completed normally or halted because of
an error, the computer went to the input tape, loaded the next job, and started
execution. As long as there was work to be done, the computer was kept busy.

Now That’s Big!

The most widely used measure of program size is source lines of code
(abbreviated SLOC). This is a count of the total number of nonblank,
noncomment lines in a piece of software. According to Wikipedia
(www.wikipedia.org), the estimated size of Mac OS X 10.4, one of the most
widely used operating systems in the world, is 86 million SLOC. If you were to
print out the entire program, at 60 lines per printed page, you would generate
about 1,433,000 pages of output, or roughly the number of pages in 4,000
full-length novels. If you were to store that output on a bookshelf, it would
stretch more than the length of an American football field.

It is estimated that the average programmer can produce about 40 lines of
correct code per day. If that number is correct, then the Mac OS X operating
system represents 2,150,000 person-days, or (at 240 working days per year)
about 9,000 person-years of effort.

Because programmers no longer operated the machine, they needed a way to
communicate to the operating system what had to be done, and these early batch
operating systems were the first to include a command language, also called a job
control language. This was a special-purpose language in which users wrote commands
specifying to the operating system (or the human operator) what operations to perform
on their programs. These commands were interpreted by the operating system, which
initiated the proper action. The “receptionist/dispatcher” responsibility of the operating
system had been born. A typical batch job was a mix of programs, data, and
commands, as shown in Figure 6.19.

Figure 6.19

Structure of a typical batch job

By the mid-1960s, the use of integrated circuits and other new technologies had boosted
computational speeds enormously. The batch operating system just described kept only
a single program in memory at any one time. If that job paused for a few milliseconds
to complete an I/O operation (such as read a disk sector or print a file on the printer),
the processor simply waited. As computers became faster, designers began to look for
ways to use those idle milliseconds. The answer they came up with led to a third
generation of operating systems called multiprogrammed operating systems
(1965–1985).

In a multiprogrammed operating system, many user programs are simultaneously
loaded into memory, rather than just one:

If the currently executing program pauses for I/O, one of the other ready jobs is
selected for execution so that no time is wasted. As we described earlier, this cycle of
running/waiting/ready states led to significantly higher processor utilization.

To make this all work properly, the operating system had to protect user programs (and
itself) from damage by other programs. When there was a single program in memory,

the only user program that could be damaged was your own. Now, with many
programs in memory, an erroneous instruction in one user’s program could wreak
havoc on any of the others. For example, the seemingly harmless instruction

should not be executed if the physical address 1000 is not located within this user’s
program. It could wipe out an instruction or piece of data in someone else’s program,
causing unexpected behavior and (probably) incorrect results.

These third-generation operating systems kept track of the upper and lower address
bounds of each program in memory

and ensured that no program ever attempted a memory reference outside this range. If
it did, then the system ceased execution of that program, produced an error message,
removed that program from memory, and began work on another ready program.

Similarly, the operating system could no longer permit any program to execute a HALT
instruction because that would shut down the processor and prevent it from finishing
any other program currently in memory. These third-generation systems developed the
concept of user operation codes that could be included in any user program and
privileged operation codes whose use was restricted to the operating system or other
system software. The HALT instruction became a privileged op code that could be
executed only by a system program, not by a user program.

These multiprogrammed operating systems were the first to have extensive protection
and error-detection capabilities, and the “traffic officer” responsibility began to take on
much greater importance than in earlier systems.

During the 1960s and 1970s, computer networks and telecommunications systems
(which are discussed in detail in Chapter 7) developed and grew rapidly. Another form
of third-generation operating system evolved to take advantage of this new technology.
It is called a time-sharing system, and it is a variation of the multiprogrammed
operating system just described. In a time-sharing system, many programs can be
stored in memory rather than just one. However, instead of requiring the programmer
to load all system commands, programs, and data in advance, a time-sharing system
allows them to be entered online—that is, entered dynamically by users sitting at
terminals and communicating interactively with the operating system. This
configuration is shown in Figure 6.20.

Figure 6.20

Configuration of a time-shared computing system

The terminals are connected to the central computer via communication links and can
be located anywhere. This new system design freed users from the “tyranny of
geography.” No longer did they have to go to the computer to hand in their deck of
cards; the services of the computer were delivered directly to them via their terminal.
However, now that the walls and doors of the computer center no longer provided
security and access control, the “security guard/watchman” responsibility became an
extremely important part of operating system design. (We will discuss the topic of
computer security at length in Chapter 8.)

In a time-sharing system, a user would sit down at a terminal, log in, and initiate a
program or make a request by entering a command:

In this example, the program called MyJob would be loaded into memory and would
compete for the processor with all other ready programs. When the program was
finished running, the system would again display a prompt (“>”) and wait for the next
command. The user could examine the results of the last program, think for a while,
and decide what to do next, rather than having to determine the entire sequence of
operations in advance. For example, say there is a mistake in the program and we want
to correct it using a text editor. We can enter the command

which loads the text editor into memory, schedules it for execution, and causes the file
system to load the file called MyJob.

However, one minor change was needed to make this new system work efficiently. In a
“true” multiprogrammed environment, the only event, other than termination, that
causes a program to be suspended (taken off the processor) is the execution of a slow
I/O operation. What if the program currently executing is heavily compute-bound? That
is, it does mostly computation and little or no I/O (for example, computing the value of
π to a million decimal places). It could run for minutes or even hours before it is
suspended and the processor is given to another program. During that time, all other
programs would have to sit in the ready queue, waiting their turn. This is analogous to
being in line at a bank behind someone depositing thousands of checks.

In a noninteractive environment, this situation may be acceptable because no one is
sitting at a terminal waiting for output. In fact, it may even be desirable because a
compute-bound job keeps the processor heavily utilized. In a time-sharing system,
however, this waiting would be disastrous. There are users sitting at terminals
communicating directly with the system and expecting an immediate response. If they
do not get some type of response soon after entering a command, they may start
banging on the keyboard and, eventually, give up. (Isn’t that what you would do if the
party at the other end of a telephone did not respond for several minutes?)

Therefore, to design a time-sharing system, we must make the following change to the
multiprogrammed operating system described earlier. A program can keep the
processor until either of the following two events occurs:

It initiates an I/O operation.

It has run for a maximum length of time, called a time slice.

Typically, this time slice is on the order of about a tenth of a second. This might seem
like a minuscule amount of time, but it isn’t. As we saw in Chapter 5, a typical time to
fetch and execute a machine language instruction is about 1 nsec. Thus, in the
0.1-second time slice allocated to a program, a modern processor could execute roughly
100 million machine language instructions.

The basic idea in a time-sharing system is to service many users in a circular,
round-robin fashion, giving each user a small amount of time and then moving on to
the next. If there are not too many users on the system, the processor can get back to a
user before he or she even notices any delay. For example, if there are five users on a
system and each one gets a time slice of 0.1 second, a user will wait no more than 0.5
second for a response to a command. This delay would hardly be noticed. However, if
40 or 50 users were actively working on the system, they might begin to notice a 4- or
5-second delay and become irritated. (This is an example of the “virtual environment”
created by the operating system not being helpful and supportive!) The number of
simultaneous users that can be serviced by a timesharing system depends on

(1)

(2)

(3)

the speed of the processor,

the time slice given to each user, and

the type of operation each user is doing (i.e., how many use the full time

slice, and how many stop before that).

Time sharing was the dominant form of operating system during the 1970s and 1980s,
and time-sharing terminals appeared throughout government offices, businesses, and
campuses.

The early 1980s saw the appearance of the first personal computers, and in many
business and academic environments the “dumb” terminal began to be replaced by
these newer PCs. Initially, the PC was viewed as simply another type of terminal, and
during its early days it was used primarily to access a central time-sharing system.
However, as PCs became faster and more powerful, people soon realized that much of
the computing being done on the centralized machine could be done much more
conveniently and cheaply by the microcomputers sitting on their desktops.

During the late 1980s and the 1990s, computing rapidly changed from the centralized
environment typical of batch, multiprogramming, and timesharing systems to a
distributed environment in which much of the computing was done remotely in the
office, laboratory, classroom, and factory. Computing moved from the computer center
out to where the real work was being done. The operating systems available for early
personal computers were simple single-user operating systems that gave one user total
access to the entire system. Because personal computers were so cheap, there was
really no need for many users to share their resources, and the time-sharing and
multiprogramming designs of the third generation became less important.

Although personal computers were relatively cheap (and were becoming cheaper all
the time), many of the peripherals and supporting gear— laser printers, large disk
drives, tape backup units, and specialized software packages—were not. In addition,
e-mail was growing in importance, and stand-alone PCs were unable to communicate
easily with other users and partake in this important new application. The personal
computer era required a new approach to operating system design. It needed a virtual
environment that supported both local computation and remote access to other users
and shared resources.

This led to the development of a fourth-generation operating system called a network
operating system (1985–present). A network operating system manages not only the
resources of a single computer, but also the capabilities of a telecommunications
system called a local area network, or LAN for short. (We will take a much closer look at
these types of networks in Chapter 7.) A LAN is a network that is located in a
geographically contiguous area such as a room, a building, or a campus. It is composed
of personal computers (workstations), and special shared resources called servers, all
interconnected via a high-speed link made of coaxial or fiber-optic cable. A typical LAN

configuration is shown in Figure 6.21.

Figure 6.21

A local area network

A local area network

The users of the individual computers in Figure 6.21, called clients, can perform local
computations without regard to the network. In this mode, the operating system
provides exactly the same services described earlier: loading and executing programs
and managing the resources of this one machine.

However, a user can also access any one of the shared network resources just as
though it were local. These resources are provided by a computer called a server and
can include a special high-quality laser printer, a shared file system, or access to an
international computer network. The system software does all the work needed to
access those resources, hiding the details of communication and competition with
other nodes for this shared resource.

Network operating systems create a virtual machine that extends beyond the
boundaries of the local system on which the user is working. They let us access a huge
pool of resources—computers, servers, and other users—exactly as though they were
connected to our own computers. This fourth-generation virtual environment,
exemplified by operating systems such as Windows 7, Windows Vista, Mac OS X, and
Linux, is diagrammed in Figure 6.22.

Figure 6.22

The virtual environment created by a network operating system

The virtual environment created by a network operating system

The virtual environment created by a network operating system

One important variation of the network operating system is called a real-time
operating system. During the 1980s and 1990s, computers got smaller and smaller,
and it became common to place them inside other pieces of equipment to control their
operation. These types of computers are called embedded systems; examples include
computers placed inside automobile engines, microwave ovens, thermostats, assembly
lines, airplanes, and watches.

For example, the Boeing 787 Dreamliner jet contains hundreds of embedded computer
systems inside its engines, braking system, wings, landing gear, and cabin. The central
computer controlling the overall operation of the airplane is connected by a LAN to
these embedded computers that monitor system functions and send status information.

In all the operating systems described thus far, we have implied that the system
satisfies requests for services and resources in the order received. In some systems,
however, certain requests are much more important than others, and when these
important requests arrive, we must drop everything else to service them. Imagine that
the central computer on our Boeing 787 receives two requests. The first request is from
a cabin monitoring sensor that wants the central system to raise the cabin temperature
a little for passenger comfort. The second message comes from the onboard collision
detection system and says that another plane is approaching on the same flight path,
and there is about to be a midair collision. It would like the central computer to take
evasive action. Which request should be serviced next? Of course, the collision
detection message, even though it arrived second.

A real-time operating system manages the resources of embedded computers that are
controlling ongoing physical processes and that have requests that must be serviced
within fixed time constraints. This type of operating system guarantees that it can
service these important requests within that fixed amount of time. For example, it may
guarantee that, regardless of what else it is currently doing, if a collision detection

message arrives, the software implementing collision avoidance will be activated and
executed within 50 milliseconds. Typically, the way that this guarantee is implemented
is that all requests to a real-time operating system are prioritized. Instead of being
handled in first-come, first-served order, they are handled in priority sequence, from
most important to least important, where “importance” is defined in terms of the
time-critical nature of the request. A real-time operating system lets passengers be
uncomfortably cool for a few more seconds while it handles the problem of avoiding a
midair collision.

Chapter 6: An Introduction to System Software and Virtual Machines: 6.4.3
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

6.4.3 The Future

The discussions in this chapter demonstrate that, just as there have been huge changes
in hardware over the last 50 years, there have been equally huge changes in system
software. We have progressed from a first-generation environment in which a user
personally managed the computing hardware, using a complicated text-oriented
command language, to current fourth-generation systems in which users can request
services from anywhere in a network, using enormously powerful and easy-to-use
graphical user interfaces.

And just as hardware capabilities continue to improve, there is a good deal of computer
science research directed at further improving the high-level virtual environment
created by a modern fourth-generation operating system. A fifth-generation operating
system is certainly not far off.

These next-generation systems will have even more powerful user interfaces that
incorporate not only text, touch, and graphics but photography, speech, fax, video, and
TV. These multimedia user interfaces will interact with users and solicit requests in a
variety of ways. Instead of point-and-click, a fifth-generation system will allow you to
speak the command, “Please display my meeting schedule for May 6.” The visual
display may include separate windows for a verbal reminder about an important
event, a map of how to reach the meeting site, and a digital photograph of the person
with whom you are meeting. Just as text-only systems are now viewed as outmoded,
today’s text and graphics system may be viewed as too limiting for high-quality
user/system interaction.

A fifth-generation operating system will typically be a massively parallel processing
system that can efficiently manage computer systems containing hundreds or even
thousands of processors (today’s multicore machines typically contain only two, four,
or six processors per chip). Such an operating system will need to recognize
opportunities for parallel execution, send the separate tasks to the appropriate
processor, and coordinate their concurrent execution, all in a way that is transparent to

the user. On this virtual machine, a user will be unaware that multiple processors even
exist except that programs run 10, 100, or 1,000 times faster. Without this type of
software support, a massively parallel system would be a “naked parallel processor”
just as difficult to work with as the “naked machine” discussed at the beginning of this
chapter.

Finally, new fifth-generation operating systems will create a truly distributed
computing environment in which users do not need to know the location of a given
resource within the network. In current network operating systems, the details of how
the communication is done are hidden, but the existence of separate nodes in the
network are not (see Figure 6.22). The user is aware that a network exists and must
specify the network node where the work is to be done. In a typical modern network
operating system, a user issues the following types of commands:

Retrieve file F on file server S.

Run program P on machine M.

Save file F on file server T.

Print file F on print server Q.

Compare these commands with the instructions the manager of a business gives to an
assistant: “Get this job done. I don’t care how or where. Just do it, and when you are
done, give me the results.” The details of how and where to get the job done are left to
the underling. The manager is concerned only with results.

In a truly distributed operating system, the user is the manager and the operating
system the assistant, and the user does not care where or how the system satisfies a
request as long as it gets done correctly. The users of a distributed system do not see a
network of distinct sites or “local” and “remote” nodes. Instead, they see a single logical
system that provides resources and services. The individual nodes and the boundaries
between them are no longer visible to the user, who thinks only in terms of what must
be done, not where it will be done or which node will do it. This situation is
diagrammed in Figure 6.23. The concept of a single large collection of accessible
resources whose location is not known to the user is often referred to as cloud
computing after the model of the computational cloud shown in Figure 6.23.

Figure 6.23

Structure of a distributed system

In a distributed operating system, the commands shown earlier might be expressed as
follows:

Access file F wherever it is located.

Run program P on any machine currently available.

Save file F wherever there is sufficient room.

Print file F on any laser printer that is not currently in use.

This is certainly the most powerful virtual environment we have yet described, and an
operating system that creates such an environment would significantly enhance the
productivity of all its users. These “fifth-generation dashboards” will make using the
most powerful and most complex computer system as easy as driving a car—perhaps
even easier. Surfing the Web or using smartphone apps gives us a good indication of
what it will be like to work on a distributed system. When we click on a link, we have
no idea at all where that information is located and, moreover, we don’t care. We
simply want that page or application to appear on our screen. To us, the Web behaves
like one giant logical system even though it is spread out across hundreds of countries
and hundreds of millions of computers.

Figure 6.24 summarizes the historical evolution of operating systems, much as Figure
1.8 summarized the historical development of computer hardware.

Figure 6.24
Some of the major advances in operating systems development

Generation Approximate
Dates

Major Advances

First 1945–1955

No operating
system available
Programmers
operated the
machine
themselves

Generation Approximate
Dates

Major Advances

Second 1955–1965

Batch operating
systems Improved
system utilization
Development of
the first
command
language

Third 1965–1985

Multiprogrammed
operating
systems
Time-sharing
operating
systems
Increasing
concern for
protecting
programs from
damage by other
programs
Creation of
privileged
instructions and
user instructions
Interactive use of
computers
Increasing
concern for
security and
access control
First personal
computer
operating
systems

Fourth 1985–present

Network
operating
systems Client-
server computing
Remote access to
resources
Graphical user

Assume that you write a letter in English and have a friend translate it

into Spanish. In this scenario, what is equivalent to the source program of

Figure 6.4? The object program? The assembler?

3.

Assume that memory cells 60 and 61 and register R currently have the

following values:

Register R: 13

60: 472

61: –1

Using the instruction set in Figure 6.5, what is in register R and memory

cells 60 and 61 after completion of each of the following operations?

Assume that each instruction starts from the above conditions.

LOAD 60a.

STORE 60b.

ADD 60c.

COMPARE 61d.

IN 61 (Assume that the user enters 50.)e.

OUT 61f.

4.

Assume that memory cell 79 contains the value +6. In addition, the symbol

Z is equivalent to memory location 79. What is placed in register R by

each of the following load commands?

LOAD 79a.

LOAD 6b.

LOAD Zc.

LOAD Z + 1 (Assume that this is allowed.)d.

5.

Say we accidentally execute the following piece of data:6.

Describe exactly what happens. Assume that the format of machine

language instructions on this system is the same format shown in Figure

6.13.

What is the assembly language equivalent of each of the following binary

machine language instructions? Assume the format described in Figure

6.13 and the numeric op code values shown in Figure 6.5.

0101001100001100a.

0011000000000111b.

7.

Is the following data generation pseudo-op legal or illegal? Why?8.

Using the instruction set shown in Figure 6.5, translate the following

algorithmic primitives into assembly language code. Show all necessary

.DATA pseudo-ops.

Add 3 to the value of Ka.

Set K to the value (L + 1) – (M + N)b.

If K >10 then output the value of Kc.

If (K > L) then output the value of K and increment K by 1 otherwise

output the value of L and increment L by 1

d.

e.

9.

What, if anything, is the difference between the following two sequences

of instructions for adding the value 2 to the variable X?

10.

Look at the assembly language program in Figure 6.8. Is the statement

CLEAR SUM on Line 2 necessary? Why or why not? Is the statement LOAD

ZERO on Line 4 necessary? Why or why not?

11.

Modify the program in Figure 6.8 so that it separately computes and

prints the sum of all positive numbers and all negative numbers and stops

when it sees the value 0. For example, given the input

12, –2, 14, 1, –7, 0

your program should output the two values 27 (the sum of the three

positive values 12, 14, and 1) and –9 (the sum of the two negative numbers

–2 and –7) and then halt.

12.

Write a complete assembly language program (including all necessary

pseudo-ops) that reads in a series of integers, one at a time, and outputs

the largest and smallest values. The input will consist of a list of integer

values containing exactly 100 numbers.

13.

Assume that we are using the 16 distinct op codes in Figure 6.5. If we

write an assembly language program that contains 100 instructions and

our processor can do about 50,000 comparisons per second, what is the

maximum time spent doing operation code translation using:

Sequential search (Figure 2.9)a.

Binary search (Figure 3.19)

Which one of these two algorithms would you recommend using?

Would your conclusions be significantly different if we were

programming in an assembly language with 300 op codes rather

than 16? If our program contained 50,000 instructions rather than

100?

b.

14.

What value is entered in the symbol table for the symbols AGAIN, ANS, X,

and ONE in the following program? (Assume that the program is loaded

beginning with memory location 0.)

15.

Look at the assembly language program in Figure 6.8. Determine the

physical memory address associated with every label in the symbol table.

(Assume that the program is loaded beginning with memory location 0.)

16.

Is the following pair of statements legal or illegal? Explain why.

Exercises

If it is illegal, will the error be detected during pas 1 or pass 2 of the

assembly process?

17.

What are some drawbacks in using passwords to limit access to a

computer system? Describe some other possible ways that an operating

system could limit access. In what type of application might these

alternative safeguards be appropriate?

18.

Why are authorization lists so sensitive that they must be encrypted and

protected from unauthorized change? What kind of damage can occur if

these files are modified in unexpected or unplanned ways?

19.

Assume that any individual program spends about 50% of its time waiting

for I/O operations to be completed. What percentage of time is the

processor doing useful work (called processor utilization) if there are

three programs loaded into memory? How many programs should we

keep in memory if we want processor utilization to be at least 95%?

20.

Here is an algorithm for calling a friend on the telephone:21.

During execution, this algorithm could get into a situation where, as in the

deadlock problem, no useful work can ever get done. Describe the

problem, explain why it occurs, and suggest how it could be solved.

Explain why a batch operating system would be totally inadequate to

handle such modern applications as airline reservations and automated

teller machines.

22.

In a time-sharing operating system, why is system performance so

sensitive to the value that is selected for the time slice? Explain what type

of system behavior would occur if the value selected for the time slice

were too large. What if it were too small?

23.

As hardware (processor/memory) costs became significantly cheaper

during the 1980s and 1990s, time-sharing became a much less attractive

design for operating systems. Explain why this is the case.

24.

Determine whether the computer system on which you are working is

part of a local area network. If it is, determine what servers are available

and how they are used. Is there a significant difference between the ways

you access local resources and remote resources?

25.

The following four requests could come in to an operating system as it is

running on a computer system:

The clock in the computer has just “ticked,” and we need to update a

seconds counter.

The program running on processor 2 is trying to perform an illegal

26.

Write an assembly language program to sum up a list of 50 numbers that are read

in and stored in memory. Here is the algorithm you are to translate:

Read in 50 numbers A , A ,…, A Set Sum to 0

To implement this algorithm, you must simulate the concept of a list of numbers

using the assembly language resources that are available. (Hint: Remember that

in the Von Neumann architecture there is no distinction between an instruction

and a piece of data. Therefore, an assembly language instruction such as LOAD A

can be treated as data and modified by other instructions.)

Chapter 6: An Introduction to System Software and Virtual Machines
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter Review

Additional Resources

 For additional print and/or online resources relevant to this

chapter, visit the Computer Science CourseMate at login.cengagebrain.com.

Chapter 6: An Introduction to System Software and Virtual Machines
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

© 2014 Cengage Learning Inc. All rights reserved. No part of this work may by reproduced or used in any form or by any
means - graphic, electronic, or mechanical, or in any other manner - without the written permission of the copyright holder.

1 2 50

Chapter 7: Computer Networks, the Internet, and the World Wide Web
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter 7
Computer Networks, the Internet, and the World Wide Web

7.1 Introduction

7.2 Basic Networking Concepts

7.2.1 Communication Links

7.2.2 Local Area Networks

7.2.3 Wide Area Networks

7.2.4 Overall Structure of the Internet

7.3 Communication Protocols

7.3.1 Physical Layer

7.3.2 Data Link Layer

7.3.3 Network Layer

7.3.4 Transport Layer

7.3.5 Application Layer

7.4 Network Services and Benefits

7.4.1 Interpersonal Communications

7.4.2 Resource Sharing

7.4.3 Electronic Commerce

7.5 A Brief History of the Internet and the World Wide Web

7.5.1 The Internet

7.5.2 The World Wide Web

7.6 Conclusion

Chapter Review

Exercises

Challenge Work

Additional Resources

Chapter 7: Computer Networks, the Internet, and the World Wide Web: 7.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

7.1 Introduction
Every once in a while there occurs a technological innovation of such importance that
it forever changes society and the way its people live, work, and communicate. The
invention of the printing press by Johannes Gutenberg in the mid-fifteenth century was
one such development. The books and manuscripts it produced helped fuel the
renewed interest in science, art, and literature that came to be called the Renaissance,
an era that influenced Western civilization for more than 500 years. The Industrial
Revolution of the eighteenth and early nineteenth centuries made consumer goods
such as clothing, furniture, and cooking utensils affordable to the middle class, and
changed European and American societies from rural to urban and from agricultural
to industrial. More recently, we are certainly aware of the massive social changes, both
good and bad, wrought by inventions like the telephone, automobile, television, and
computer.

Many people feel that we are witnessing yet another breakthrough, one with the
potential to make as great a change in our lives as those just mentioned. This
innovation is the computer network—computers connected together for the purpose of
exchanging personal messages, resources, and information. During the early stages of
network development, the only information exchanged was text such as e-mail,
database records, and technical papers. However, the material sent across a network
today can be just about anything—television and radio shows, videos, music,
photographs, and movies, to name just a few. If information can be represented in the
0s and 1s of binary (as described in Section 4.2), it can be transmitted across a
network.

The possibilities created by this free flow of data are enormous. Networks can equalize
access to information and eliminate the concept of “information haves” and
“information have-nots.” Students in a poorly funded rural school would no longer be
handicapped by an out-of-date library collection. A physician practicing in an emerging
economy would be able to transmit medical records, test results, and X-ray images to
specialists anywhere in the world and have immediate access to the databases and
reference works of major medical centers. Small-business owners could use the
network to locate suppliers and customers on an international scale. Researchers
would have the same ability to communicate with experts in their discipline whether
they were in New York, New Delhi, or New Guinea.

Networking can also foster the growth of democracy and global understanding by

providing unrestricted access to newspapers, magazines, radio, and television, as well
as supporting the unfettered exchange of diverse and competing thoughts, ideas, and
opinions. Because we live in an increasingly information-oriented society, network
technology contains the seeds of massive social and economic change, as was seen in
Tunisia, Egypt, Libya, and Bahrain in early 2011, in what some journalists are calling a
“Twitter Revolution.” It is no surprise that during civil uprisings, political leaders who
want to prevent the dissemination of opposing ideas often move quickly to restrict both
Internet and Web access.

In Chapter 6, we saw how system software can create a user-friendly “virtual machine”
on top of the raw hardware of a single computer. In today’s world, computers are
seldom used as isolated, stand-alone devices, and the modern view of a virtual machine
has expanded into a worldwide collection of interconnected systems and resources. In
this chapter, we take a detailed look at the underlying technology of computer
networks—what they are, how they work, and the benefits they can bring. We also
examine the most widely used network, the Internet, and its most important
application, the World Wide Web.

Chapter 7: Computer Networks, the Internet, and the World Wide Web: 7.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

7.2 Basic Networking Concepts
A computer network is a set of independent computer systems connected by
telecommunication links for the purpose of sharing information and resources. The
individual computers on a network are referred to as nodes or hosts, and they can
range in size from smartphones, tablets, and tiny lap-tops to massively parallel
supercomputers. In this section, we describe some of the basic technical characteristics
of a computer network.

Chapter 7: Computer Networks, the Internet, and the World Wide Web: 7.2.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

7.2.1 Communication Links

The communication links used to build a network vary widely in physical
characteristics, error rate, and transmission speed. In the approximately 45 years that
networks have existed, telecommunications facilities have undergone enormous
changes.

In the early days of networking, the most common way to transmit data was via
switched, dial-up telephone lines. The term switched, dial-up means that when you

dial a telephone number, a circuit (i.e., a path) is temporarily established between the
caller and caller. This circuit lasts for the duration of the call, and when you hang up it
is terminated.

The voice-oriented dial-up telephone network was originally a totally analog medium.
As we first explained in Chapter 4, this means that the physical quantity used to
represent information, usually voltage level, is continuous and can take on any value.
An example of this is shown in Figure 7.1(a). Although analog is fine for transmitting
the human voice, which varies continuously in pitch and volume, a computer produces
digital information—specifically, a sequence of 0s and 1s, as shown in Figure 7.1(b).

Figure 7.1

Two forms of information representation

Blogs

One of the most important Web applications is the blog, a contraction of the
term Web log. A blog is a Web-based publication consisting of virtually any
periodic articles that its writer(s) want to share with the general public.

Sometimes it contains nothing more than a daily journal—“what I did today.”
More commonly, the articles are political, social, or cultural essays that reflect
the opinions and biases of the blog author(s). Whereas some blogs are produced
by a community of like-minded people sharing responsibility for writing and
posting articles, the majority are simply the thoughts and feelings of individuals
with a computer and the necessary “blogware”— software for editing,
organizing, and publishing on the Web. (According to Technorati, a blog rating
and tracking Web site, as of mid-2010 there were about 126 million blogs
worldwide with about 175,000 new sites coming online daily!)

Our history is filled with stories of individual crusaders who published fiery
newsletters supporting or decrying some governmental or social policy. For
example, the Federalist Papers by Alexander Hamilton and James Madison were
written in support of the proposed U.S. Constitution. The Liberator was a
fervent antislavery newsletter published in Boston by William Lloyd Garrison, a
Quaker abolitionist. However, there was a limit to the audience that these early
crusaders could reach, set by the cost of printing and the time required to
distribute these newsletters to readers. (At the peak of its influence, the
Liberator had a circulation of fewer than 3,000.) The Web has changed all that.
It costs virtually nothing to write and post your thoughts on a Web page, and if
your ideas become widely discussed (perhaps by being mentioned on TV, radio,
newspapers, or shared via Facebook or Twitter), a blog might be read each day
by millions of readers.

For the binary signals of Figure 7.1(b) to be transmitted via a switched, dial-up
telephone line, the signal must be restructured into the analog representation of Figure
7.1(a). The device that accomplishes this is a modem, which modulates, or alters, a
standard analog signal called a carrier wave so that it encodes binary information. The
modem modifies the physical characteristics of the carrier wave, such as amplitude or
frequency, so that it is in one of two distinct states, one state representing 0 and the
other state representing 1. Figure 7.2 shows how a modem can modulate the amplitude
(height) of a carrier wave to encode the binary signal 1010.

Figure 7.2

Modulation of a carrier to encode binary information

At the other end of the transmission line, a modem performs the inverse operation,
which is called demodulation. (Modem is a contraction of the two terms modulation
and demodulation.) It takes the received waveform, separates the carrier from the
encoded digital signal, and passes the digital data on to the computer.

Initially, these analog encoding and decoding operations could not be done very
quickly because of the high error rate and low capacity, or bandwidth, of a switched
telephone line. In the early days of telecommunications—the 1970s and 1980s—the rate
at which information could be sent and received via a phone line was limited to about
1,200–9,600 bits per second (bps). Advances in dial-up modem design produced devices
that can transmit at 56,000 bps, or 56 Kbps, an order-of-magnitude increase. However,
this is still much too slow to handle the transmission of multimedia-based documents
such as Web pages, MP3 files, and streaming video.

The dial-up telephone system is still used occasionally for remote access to networks,
and some computers still come equipped with a built-in 56 Kbps modem. However,
their limited speed makes dial-up links inconvenient for applications where speed is
vital or you are sending large volumes of data, and the role of analog telephone lines in
data communications is rapidly diminishing.

A technology called broadband is rapidly replacing modems and analog phone lines
for data communications to and from our homes, schools, and offices. The term
broadband generally refers to any communication link with a transmission rate
exceeding 256,000 bps. In the case of home users, there are currently two widely
available broadband options—digital subscriber line (DSL) and cable modem.

A digital subscriber line (DSL) uses the same wires that carry regular telephone
signals into your home, and therefore is provided by either your local telephone
company or someone certified to act as its intermediary. Although it uses the same
wires, a DSL signal uses a different set of frequencies, and it transmits digital rather
than analog signals. Therefore, the voice traffic generated by talking with a friend on
the phone does not interfere with a Web page being simultaneously downloaded by

someone else in the family. Furthermore, unlike the modem which requires that you
explicitly establish a connection (dial a number) and end a connection (hang up), a DSL
is a permanent “always-on” link, which eliminates the aggravating delay of dialing and
waiting for the circuit to be established.

A digital subscriber line is often asymmetric. This means it does not have the same
transmission speed in the download direction (from the network to your computer) as
in the upload direction (from your computer to the network). That is because most
users consume much more data than they generate. For example, to obtain a Web page,
your computer sends a request message to the machine with that page. (It does this by
sending the address of that page, such as www.macalester.edu.) This request message
is small and contains only a few dozen characters. However, the Web page you receive
—complete with applets, graphics, and plug-ins—could contain millions of bits. To
handle this imbalance, a DSL provides greater bandwidth coming in to your computer
than going out. Typical DSL speeds are 5–15 million bits per second (Mbps) for
downloads and 1–2 Mbps for uploads—still much more than is available from a dialup
modem.

The second option for broadband communications is a cable modem. This technology
makes use of the links that deliver cable TV signals into your home, so it is offered by
cable TV providers. Some of the link capacity previously allocated for TV signals is now
used for data communications. Like a DSL, a cable modem also provides an always-on
link and offers speeds slightly higher than those available from DSL—about 10–20
Mbps for downloads and 1–3 Mbps for uploads.

In the commercial and office environment, the most widely used broadband
technology is Ethernet. Ethernet was developed in the mid-1970s by computer
scientists at the Xerox PARC research center in Palo Alto, California. It was originally
designed to operate at 10 Mbps using coaxial cable. However, 10 Mbps is too slow for
many applications, so in the early 1990s researchers developed a “new and improved”
version, called Fast Ethernet, which transmits at 100 Mbps across coaxial cable,
fiber-optic cable, or regular twisted-pair copper wire.

Because even 100 Mbps may not be fast enough for multimedia applications, computer
science researchers began investigating the concept of gigabit networking
—transmission lines that support speeds of 1 billion bits per second (Gbps). In the early
1990s, the U.S. government funded a long-term research project called NREN, the
National Research and Education Network. One of its goals was to investigate the design
and implementation of wide area gigabit data networks. The project was successful,
and in 1998 the first international gigabit Ethernet standard was adopted by the IEEE
(Institute of Electrical and Electronics Engineers), an international professional
society responsible for, among other things, developing industrial standards in the area
of telecommunications. The standard supports communication on an Ethernet cable at
1,000 Mbps (1 Gbps), 100 times faster than the original 10 Mbps standard. Most
classrooms and office buildings today are wired to support 10 Mbps, 100 Mbps, and

1,000 Mbps—18,000 times faster than a 56K modem! In addition, virtually every PC sold
today comes with a built-in Ethernet interface, and new homes and dorm rooms are
often equipped with Ethernet links.

However, not willing to rest on their laurels (and realizing that even faster networks
will be needed to support future research and development), work immediately began
on a new 10-gigabit Ethernet standard, a version of Ethernet with a data rate of 10
billion bits per second. That standard was adopted by the IEEE in 2003. To get an idea
of how fast that is, in a single second a 10 Gbps Ethernet network could transmit the
entire contents of 1,700 books, each 300 pages long. In June 2010, the IEEE ratified the
100-gigabit Ethernet standard defining a local area network that can transmit data at
the almost unimaginable rate of 100 billion bits per second!

Do applications truly need to transmit information at billions of bits per second? To
answer that question, let’s determine how long it takes to transmit a high-resolution
color image, such as a CAT scan, a satellite image, or a single movie frame, at different
transmission speeds. As described in Section 4.2, a high-resolution color image contains
at least 5 million picture elements (pixels), and each pixel is encoded using 8–24 bits. If
we assume 16 bits per pixel, then a single uncompressed image would contain at least
80,000,000 bits of data. If the image is compressed before it is sent, and the
compression ratio is 10:1 Section 4.2 for a definition of compression ratio), then we
must transmit a total of 8 million bits to send this single image. Figure 7.3 shows the
time needed to send this amount of information at the speeds discussed in this chapter.

Figure 7.3

Transmission time of an image at different transmission speeds

Figure 7.3 clearly demonstrates the need for high-speed communications to support
applications such as video-on-demand and medical imaging. Receiving an 8 Mb image
using a 56 Kbps modem takes 2.4 minutes, an agonizingly long time. (You have
probably had the experience of waiting for what seemed like forever as a Web page
s-l-o-w-l-y appeared on your screen.) That same 8 Mb image can be received in 4
seconds using a DSL or cable modem with a download speed of 2 Mbps, 0.8 second
using a 10 Mbps Ethernet, and a blazing 0.08 second with 100 Mbps Ethernet.

However, even 0.08 second might not be fast enough if an application requires the
rapid transmission of either multiple images or a huge amount of data in a short period
of time. For example, to watch a real-time video image without flicker or delay, you
need to stream at least 24 frames per second. Any less and the human eye notices the
time delay between frames. If each frame contains 8 Mb, you need a bandwidth of
8,000,000 × 24 = 192 Mbps. This is beyond the speed of modems, DSL, cable modems,
and even 100 Mbps Ethernet, but it is achievable using gigabit networks. These
high-speed networks are widely used in such data-intensive applications as exchanging
3D medical images, transmitting weather satellite data, and supporting collaboration
among researchers sharing astronomical star images.

An extremely important development in the field of telecommunications is the rapid
growth of wireless data communication using radio, microwave, and infrared signals.
In the wireless world, users no longer need to be physically connected to a wired
network to access data, just as mobile phones liberated telephone users. Using wireless,
you can be sipping coffee in your favorite café, riding in a car, lounging at the beach, or
working on the factory floor and still send and receive e-mail, access online databases,
or surf the Web. The ability to deliver data to users regardless of their location is called
mobile computing.

There are two forms of wireless data communications. In a wireless local area
network (WLAN), a user transmits from his or her computer to a local wireless base
station, often referred to as a wireless router that is no more than a few hundred feet
away. This base station is then connected to a traditional wired network, such as a DSL
or cable modem, to provide full Internet access. This is the type of wireless
configuration typically found in a home, library, office, or coffee shop because it is
cheap, simple, low powered, and easy to install. A typical local wireless configuration is
shown in the diagram on the next page.

One of the most widely used standards for wireless local access is called Wi-Fi, short
for Wireless Fidelity. It is also referred to by its official name, the IEEE 802.11
wireless network standards. Wi-Fi is used to connect a computer to the Internet when

it is within range (typically 150–300 feet or 45–90 meters) of a wireless base station,
often advertised in stores and shops as a Wi-Fi hot spot (a router). Wi-Fi systems
generally use the 2.4 GHz radio band for communications and support download
transmission speeds of about 10–50 Mbps. Researchers are investigating the use of
higher radio frequencies to support high-speed gigabit Wi-Fi communication.

A relatively new development in wireless networking is metropolitan Wi-Fi service. A
number of cities in the United States, Europe, and Asia have installed Wi-Fi routers
every few blocks throughout the city, often on top of telephone poles or building roofs.
These routers provide convenient, low-cost wireless Internet access to all residents.

Another popular wireless standard is Bluetooth. It is a low-power wireless standard
used to communicate between devices located quite close to each other, typically no
more than 30–50 feet (10–15 meters). Bluetooth is often used to support communication
between wireless computer peripherals, such as printers, mice, and keyboards and a
laptop or desktop system close by. Bluetooth also supports information exchange
between digital devices such as mobile phones, cameras, and video game consoles.

Although Wi-Fi is great for communicating with a nearby router, its transmission
limitations mean it cannot provide mobile Internet access from a car or outdoor site far
from any base station. To handle this type of wireless communications, we need a
different type of network called a wireless wide area network (WWAN). In this type
of network, the computer (often a tablet or smartphone) transmits messages to a
remote base station provided by a telecommunications company, which may be located
many miles away. The base station is usually a large cellular antenna placed on top of a
tower or building, providing both long-distance voice and data communication services
to any system within sight of the tower. One of the most popular wide area wireless
technologies is called 4G. It offers voice services as well as data communication at rates
of 5 to 20 Mbps, comparable to DSL or cable modem. Other popular WWAN
technologies include WiMAX and LTE.

Although wireless data communication is an exciting development in computer
networking, it is not without problems that must be studied and solved. For example,
some forms of wireless, such as microwaves, are line of sight, traveling only in a
straight line. Because of the curvature of the Earth, transmitters must be placed on top
of hills or tall buildings, and they cannot be more than about 10–50 miles (15–80
kilometers) apart, depending on height. Other types of wireless media suffer from
environmental problems; they are strongly affected by rain and fog, cannot pass
through obstacles such as buildings or large trees, and have higher error rates than
wired communication. Although a few random “clicks” and “pops” do not disrupt voice
communications over a mobile phone, it can be disastrous in data communications. For
example, if you are transmitting data at 10 million bits per second (Mbps), a breakup
on the line that lasts only one-tenth of a second could potentially cause the loss of one
million bits of data. Wireless is often slower than wired communication (a few Mbps
rather than hundreds of Mbps or Gbps), which may make it inappropriate for the

Ubiquitous Computing

The rapid growth of wireless communications, along with the availability of
extremely cheap microprocessors, has led to an exciting new area of computer
science research called ubiquitous computing, also called pervasive
computing. In the early days of computing, a single large mainframe served
many users. In the PC era, a single desktop machine served a single user. In the
ubiquitous computing model, many computers work together to serve a single
user, and rather than being perched on a desktop, they become nearly invisible.
The idea is that computers will become so commonplace that they will blend
into the background and disappear from our consciousness, much as electricity
has today. The goal is to create a system that is embedded in the environment,
providing its service in a seamless, efficient manner.

Computers will be located inside our appliances, furnaces, lights, clocks, and
even clothing to provide useful services in a transparent fashion. For example,
your car could automatically inform the heating and electrical system in your
home that you will be arriving shortly so please turn up the heat and activate
the entrance lights. All of this could be done without requiring any user
intervention.

Topics of research in this area include such things as wearable computing,
intelligent appliances, and smart homes. As described by Mark Weiser of Xerox,
“Ubiquitous computing is invisible, everywhere computing that does not sit on
the desktop but lies deep inside the woodwork.”

The previous section described how a wireless local network is set up using Wi-Fi and a
router connected to a wired network. Here we take a look at the properties of that
wired network. Wired LANs can be constructed using a number of different
interconnection strategies, as seen in Figure 7.4. In the bus topology, Figure 7.4(a), all
nodes are connected to a single, shared communication line. If two or more nodes use
the link at the same time, the messages collide and are unreadable, and, therefore,
nodes must take turns using the line. The cable modem technology described in Section
7.2.1 is based on a bus topology. A number of homes are all connected to the same
shared coaxial cable. If two users want to download a Web page at the exact same time,
then the effective transmission rate is lower than expected because one of them must
wait.

Figure 7.4

Some common LAN topologies

The ring topology of Figure 7.4(b) connects the network nodes in a circular fashion,
with messages circulating around the ring in either a clockwise or counterclockwise
direction until they reach their destination. Finally, the star network, Figure 7.4(c), has
a single central node that is connected to all other sites. This central node can route
information directly to any other node in the LAN. Messages are first sent to the central
site, which then forwards them to the correct location.

There are many different LAN technologies available in the marketplace, but the most
widely used is Ethernet, which you learned about in the previous section. It is the
model that we will use to describe the general behavior of all LANs.

Ethernet uses the bus topology of Figure 7.4(a). To send a message, a node places the
message, including the destination address, on the cable. Because the line is shared, the
message is received by every other node (assuming no one else sent at the exact same
time and garbled our data). Each node looks at the destination address to see if it is the
intended recipient. If so, it accepts the message; if not, it discards it.

There are two ways to construct an Ethernet LAN. In the first method, called the
shared cable, a wire (such as twisted-pair copper wire, coaxial cable, or fiber-optic
cable) is literally strung around and through a building. Users tap into the cable at its
nearest point using a device called a transceiver, as shown in Figure 7.5(a). Because of
technical constraints, an Ether-net cable has a maximum allowable length. For a large
building or campus, it may be necessary to install two or more separate cables and
connect them via hardware devices called repeaters or bridges.

Figure 7.5

An Ethernet LAN implemented using shared cables

A repeater is a device that simply amplifies and forwards a signal. In Figure 7.5(b), if
the device connecting the two LANs is a repeater, then every message on LAN1 is
forwarded to LAN2, and vice versa. Thus, when two Ethernet LANs are connected by a
repeater, they function exactly as if they were a single network.

A bridge is a “smarter” device that has knowledge about the nodes located on each
separate network. It examines every message to see if it should be forwarded from one
network to another. For example, if node A is sending a message to node B, both of
which are on LAN1, then the bridge does nothing with the message. However, if node A
on LAN1 is sending a message to node C on LAN2, then the bridge copies the message
from LAN1 onto LAN2 so node C is able to see it and read it.

In the second approach to constructing an Ethernet LAN, there is no shared cable
strung throughout the building. Instead, there is a box called a switch located in a
room called a wiring closet. The switch contains a number of ports, with a wire leading
from each port to an Ethernet interface in the wall of a room in the building, or to a
wireless router somewhere in the building. To connect to the network, we first activate
that port, typically by flipping an on/off button, and then plug our machine into the
wall socket. This approach is shown in Room 101 of Figure 7.6. Alternately, we could
use Wi-Fi to transmit from our computer to a wireless router located somewhere in the
building. This router would then connect to one of the Ethernet ports in the switch.

This approach is shown in Room 103 of Figure 7.6. In either case, it is no longer
necessary to climb into the ceiling or crawl through ductwork looking for the cable
because the shared cable is located inside the switch instead of inside the building
walls. That is why switches are the most widely used technique for constructing LANs.

Figure 7.6

An Ethernet LAN implemented using a switch

Practice Problems

Explain why message collisions would or would not occur on local

area networks that used the ring topology of Figure 7.4 (b) or the star

topology of Figure 7.4 (c).

1.

What changes, if any, must be made to our description of the Ethernet

protocol to allow a message to be sent by node A on a local area

network to every other node on that same LAN? This operation is

called broadcasting.

2.

Assume you are given the following configuration of three local area

networks, called LAN1, LAN2, and LAN3, connected by bridges B1 and

B2.

3.

Most WANs use a store-and-forward, packet-switched technology to deliver
messages. Unlike a LAN, in which a message is broadcast on a shared channel and is
received by all nodes, a WAN message must “hop” from one node to another to make its
way from source to destination. The unit of transmission in a WAN is a packet—an
information block with a fixed maximum size that is transmitted through the network
as a single unit. If you send a short message, then it can usually be transmitted as a
single packet. However, if you send a long message, the source node may “chop” it into
N separate packets (such as the first 1,000 characters, the next 1,000 characters, and so
on) and send each packet independently through the network. When the destination
node has received all N packets, it reassembles them into a single message.

For example, assume the following six-node WAN:

To send a message from source node A to destination node D, the message could go
from A → B → C → D. Alternately, the message may travel from A → B → F → D or A →
E → F → D. The exact route is determined by the network, not the user, based on which
path can deliver the message most quickly. If the message is large, it may be broken up
into multiple packets, and each one may take a different route.

One of the nicest features of a store-and-forward network is that the failure of a single
line or a single node does not necessarily bring down the entire network. For example,
assume the line connecting node B to node C in the previous diagram crashes. Nodes B
and C can still communicate via the route B → F → D → C. Similarly, if node F fails
completely, nodes E and D, located on either side of F, can still exchange messages.
However, instead of talking via node F, they now use the route E → A → B → C → D.

Reliability and fault tolerance were the reasons that WANs were first studied in the late
1960s and early 1970s. The U.S. military was interested in communication systems that
could survive and function even if some of their components were destroyed, as might
happen in time of war or civil unrest. Their research ultimately led to the creation of
the Internet. (We will have much more to say about the history of networking and the
Internet later in this chapter.)

Chapter 7: Computer Networks, the Internet, and the World Wide Web: 7.2.4
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

7.2.4 Overall Structure of the Internet

We have defined two classes of networks, LANs and WANs, but all real-world networks,
including the Internet, are a complex mix of both network types.

For example, a company or a college would typically have one or more LANs
connecting its local computers—a Computer Science department LAN, a humanities
building LAN, an administration building LAN, and so forth. These individual LANs
might then be interconnected into a wide area “company network” that allows users to
send e-mail to other employees in the company and access the resources of other
departments. These individual networks are interconnected via a device called a
router. Like the bridge in Figure 7.5(b), a router transmits messages between two
distinct networks. However, unlike a bridge, which connects two identical types of
networks, routers can transmit information between networks that use totally different
communication techniques—much as an interpreter functions between two people
who speak different languages. For example, a router, not a bridge, is used to send
messages from a wireless Wi-Fi network to a wired Ethernet LAN (as discussed in the
previous section), or from an Ethernet LAN to a packet-switched, store-and-forward
WAN. We can see this type of interconnection structure in Figure 7.8.

Figure 7.8

Structure of a typical company network

The configuration in Figure 7.8 allows the employees of a company or the students of a
college to communicate with each other, or to access local resources. But how do these
people reach users outside their institution, or access remote resources such as Web
pages that are not part of their own network? Furthermore, how does an individual
home user who is not part of any company or college network access the larger
community? The answer is that a user’s individual computer or a company’s private
network is connected to the world through an Internet service provider (ISP). An ISP
is a business whose purpose is to provide access from a private network (such as a
corporate or university network) to the Internet or from an individual’s computer to
the Internet. This access occurs through a WAN owned by the ISP, as shown in Figure
7.9. An ISP typically provides many ways for a user to connect to this network, from 56
Kbps modems to dedicated broadband telecommunication links with speeds in excess
of hundreds of millions of bits per second.

Figure 7.9

Structure of a network using an ISP

The scope of networking worldwide is so vast, a single ISP cannot possibly hope to
directly connect a single campus, company, or individual to every other computer in
the world, just as a single airport cannot directly serve every possible destination.
Therefore, ISPs (that is, ISP networks) are hierarchical, interconnecting to each other in
multiple layers, or tiers, that provide ever-expanding geographic coverage. This
hierarchical structure is diagrammed in Figure 7.10.

Figure 7.10

Hierarchy of Internet service providers

An individual or a company network connects to a local ISP, the first level in the
hierarchy. This local ISP typically connects to a regional or national ISP that
interconnects all local ISPs in a single geographic region or country. Finally, a regional
or national ISP might connect to an international ISP, also called a tier-1 network or an
Internet backbone, which provides global coverage. This hierarchy is similar to the
standard telephone system. When you place a call to another country, the telephone
line from your home or office connects to a local phone switching center, which
establishes a connection to a regional switching center, which establishes a connection
to a national switching center. This national center has high-speed connections to
similar national switching centers in other countries, which are connected, in turn, to

regional and then local switches to establish a connection to the phone you are calling.
The diagram in Figure 7.10 is a pictorial representation of that enormously complex
telecommunications entity we call the Internet. The Internet is not a single computer
network; instead, it is a huge interconnected “network of networks” that includes
nodes, LANs, WANs, bridges, routers, and multiple levels of ISPs.

Firewalls

In April 2011, Sony informed its 77 million PlayStation users that their credit
card data, billing addresses, and personal data could have been stolen by
thieves who hacked into the company’s private network. Sadly, this type of
information-based crime is becoming all too common.

For hundreds of years, the term firewall meant a physical barrier installed in a
building or vehicle to prevent the spread of fire and smoke. That meaning has
expanded in the past few years with the growth of computer networks and the
increasingly important role they play in such areas as national security,
medicine, banking, and e-commerce. Because of networks, it is no longer
possible to prevent the theft of information by stationing guards at the front
door of your business, as the perpetrators may be thousands of miles away
sitting at a keyboard. This has led to a good deal of research into the concept of
computer firewalls, devices placed at the entry points to a company’s private
network to protect it from unauthorized access. These firewalls implement the
security guidelines set up by the company, guidelines such as address filtering,
specifying which Internet addresses to allow in and which to keep out, and
service filtering, listing exactly which applications on your system should or
should not be accessed over the network.

However, like a determined spammer who is constantly outwitting the latest
spam filter, the determined hacker is committed to learning about and
breaching whatever new firewall algorithm has been developed for the
marketplace. It is an ongoing game of cat and mouse and, so far, it appears that
the criminal community’s mouse is keeping one step ahead of the IT developers’
cat.

We’ll have more to say about security issues in Chapter 8.

As of early 2011, there were about 818 million nodes (hosts) and hundreds of
thousands of separate networks located in more than 230 countries. A graph of the
number of host computers on the Internet over the last 20 years is shown in Figure
7.11. (This figure is really an undercount because there are numerous computers
located behind protective firewalls that will not respond to any external attempts to be
counted.)

Figure 7.11

Internet domain survey host count graph

Source: Internet systems consortium (www.isc.org)

How does something as massive as the Internet actually work? How is it possible to get
818 million machines around the world to function efficiently as a single system? We
answer that important question in the next section.

Chapter 7: Computer Networks, the Internet, and the World Wide Web: 7.3
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

7.3 Communication Protocols
When you talk on the telephone, there is an accepted set of procedures that you should
follow. For example, when you answer the phone, you should say “Hello,” and then
wait for the individual on the other end to respond. The conversation continues until
someone says “Goodbye,” at which time both parties hang up. You might call this
“telephone etiquette”—the conventions that allow orderly exchanges to take place.
Imagine what would happen if someone were unaware of them. Such a person might

pick up the phone but not say anything. Hearing silence, the caller would be totally
confused, think the call did not get through, and hang up.

Similar etiquette applies to computer networks. To have meaningful communications,
we need a set of procedures that specifies how the exchanges will take place. This
“network etiquette” is achieved by means of network protocols.

In networking, a protocol is a mutually agreed-upon set of rules, conventions, and
agreements for the efficient and orderly exchange of information. Even though the
Internet has hundreds of millions of machines made by dozens of manufacturers and
located in hundreds of countries, they can all exchange messages correctly and
efficiently for one simple reason: They have all agreed to use the same protocols to
govern that exchange.

You might think that something as massive and global as the Internet would be
managed by either the governments of the major industrialized nations or an
international agency like the United Nations. In fact, the Inter-net is operated by the
Internet Society, a nonprofit, nongovernmental, professional society composed of
more than 100 worldwide organizations (e.g., foundations, governmental agencies,
educational institutions, companies) in 180 countries united by the common goal of
maintaining the viability and health of the Internet. This group, along with its
subcommittees, the Internet Architecture Board (IAB) and the Internet Engineering
Task Force (IETF), establishes and enforces network protocol standards. (Perhaps the
fact that the Internet developed outside the scope of governmental bureaucracies and
their “red tape” is exactly what has allowed it to become so enormously successful!) To
learn more about the Internet Society and its activities, check out its home page at
www.isoc.org.

The protocols that govern the operation of the Internet are set up as a multilayered
hierarchy, with each layer addressing one aspect of the overall communications task.
They are structured in this way because of the volatility of telecommunications and
networking. By dividing the protocols into separate, independent layers, a change to
the operation of any one layer will not necessarily cause a change to other layers,
making maintenance of the Internet much easier.

The Internet protocol hierarchy, also called a protocol stack, has five layers, and
their names and some examples are listed in Figure 7.12. This hierarchy is also
referred to as TCP/IP, after the names of two of its most important protocols.

Figure 7.12

The five-layer TCP/IP protocol hierarchy

In the following sections, we briefly describe the responsibilities of each of the five
layers in the hierarchy shown in Figure 7.12.

Chapter 7: Computer Networks, the Internet, and the World Wide Web: 7.3.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

7.3.1 Physical Layer

The Physical layer protocols govern the exchange of binary digits (bits) across a
physical communication channel, such as a fiber-optic cable, copper wire, or wireless
radio channel. These protocols specify such things as:

How we know when a bit is present on the line

How much time the bit will remain on the line

Whether the bit is in the form of a digital or an analog signal

What physical quantities are used to represent a binary 0 and a binary 1

The shape of the connector between the computer and the transmission line

The goal of the Physical layer is to create a “bit pipe” between two computers, such that
bits put into the pipe at one end can be read and understood by the computer located at
the other end, as shown in Figure 7.13.

Figure 7.13

The concept of a bit pipe

Once you select a Physical layer protocol by purchasing a modem, getting a digital
subscriber line, or using a mobile phone with wireless data capabilities, you can
transmit binary signals across a physical channel. From this point on in the protocol
stack, you no longer need to be concerned about such engineering issues as voltage
levels, wavelengths, or radio frequencies. These details are hidden inside the Physical
layer, which provides all of the necessary bit transmission services. From now on, all

you need to know about the communication channel is that when you ask the Physical
layer to send a bit, it does so, and when you ask the Physical layer to get a bit, it
retrieves a 0 or a 1.

Chapter 7: Computer Networks, the Internet, and the World Wide Web: 7.3.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

7.3.2 Data Link Layer

The Physical layer protocols create a bit pipe between two machines connected by a
communication link. However, this link is not an error-free channel, and due to
interference or weather or any number of other factors, it can introduce errors into the
transmitted bit stream. The bits that come out might not be an exact copy of the bits
that went in. This creates what is called the error detection and correction
problem—how do we detect when errors occur, and how do we correct them?

Also, because we want to receive complete messages, and not raw streams of bits, we
need to know which bits in the incoming stream belong together; that is, we need to
identify the start and the end of a message. This is called the framing problem. It is the
job of the Data Link protocols to address and solve these two issues—error handling
and framing. This process is done in two stages called Layer 2a, Medium Access Control,
and Layer 2b, Logical Link Control. Together these two services form the Layer 2
protocol called the Data Link layer.

In Section 7.2.1, we described how local area networks communicate by having
multiple machines connected to a single, shared communication line (Figures 7.5 and
Figures 7.6). However, although shared by many machines, at any single point in time,
this line is capable of sending and receiving only a single message. Attempting to send
two or more messages at the same time results in all messages being garbled and none
getting through. In this environment, a necessary first step in transmitting a message is
determining how to allocate this shared line among the competing machines. The
Medium Access Control protocols determine how to arbitrate ownership of a shared
communication line when multiple nodes want to send messages at the same time.

This could be done in a centralized manner by creating a single master control node
responsible for determining who gets ownership of the line at any instant in time.
Although easy to do, centralized control is rarely used. One reason is that it can be
slow. Each node sends its request to the master, who must decide which node gets the
line, and then inform every other node of its decision. This takes a good deal of time,
making the network highly inefficient. Another problem is that centralized control is
not fault tolerant. If the master node fails, the entire network is inoperable.

Most Medium Access Control protocols, including Ethernet, use a contention-based
approach in which there is no central authority and all nodes compete equally for

ownership of the line. When a node wants to send a message, it first listens to the line
to see whether or not it is currently in use. If the line is idle, then the node transmits
immediately. If the line is busy, the node wanting to send monitors the status of the line
and, as soon as it becomes idle, it transmits. This situation is diagrammed in Figure
7.14(a), in which node B wants to send but notices that A is using the line. B listens and
waits until A is finished, and as soon as that occurs, B is free to send.

Figure 7.14

The Medium Access Control protocols in Ethernet

However, there is still a problem. If two or more users want to send a message while
the line is in use, then both are monitoring its status. As soon as the line is idle, both
transmit at exactly the same time. This is called a collision, and it is a common
occurrence in contention-based networks like Ethernet. When a collision occurs, all
information is lost. This scenario is shown in Figure 7.14(b). According to the Ethernet

protocols, when a collision occurs, the colliding nodes immediately stop sending, wait a
random amount of time, and then attempt to resend. Because it is unlikely that both
nodes will select the exact same random waiting period, one of them should be able to
acquire the line and transmit while the other node waits a little longer. This situation is
diagrammed in Figure 7.14(c).

One reason the Ethernet protocol is so popular is that control is distributed.
Responsibility for network operation is shared by all nodes in the network rather than
centralized in a single master controller. Each node makes its own decisions about
when to listen, when to send, and when to wait. That means that the failure of one
node does not affect the operation of any other node in the network.

If our network uses point-to-point links like those in Figure 7.7, rather than shared
lines, we do not need the Medium Access Control protocols just described because any
two machines along the path are connected by a dedicated line. Therefore, regardless
of whether we are using a shared channel or a point-to-point link, we now have a
sender and a receiver, who want to exchange a single message, and these two nodes
are directly connected by a channel. It is the job of the Layer 2b Logical Link Control
protocols to solve the error detection and correction problem and ensure that the
message traveling across this channel from source to destination arrives correctly.

How is it possible to turn an inherently error-prone bit pipe like the one in Figure 7.13
into an error-free channel? In fact, we cannot eliminate errors, but we can detect that
an error has occurred and retransmit a new and unblemished copy of the original
message. The ARQ algorithm, for automatic repeat request, is the basis for all Data
Link Control protocols in current use.

Remember that at this point, nodes A and B are directly connected by a physical link.
When A wants to send a message to B, it first adds some additional information to form
a packet. It inserts a sequence number (1, 2, 3,…) uniquely identifying this packet, and
it adds some error-checking bits that allow B to determine if the packet was corrupted
during transmission. Finally, it adds a start of packet (SOP) and end of packet (EOP)
delimiter to allow node B to determine exactly where the packet begins and ends.

Thus, the packet M sent from A to B looks like Figure 7.15. This packet is sent across the
communication channel, bit by bit, using the services of the Physical layer protocols
described in the previous section. When B receives the packet, it examines the
error-check field to determine if the packet was transmitted correctly.

Figure 7.15

A message packet sent by the Data Link protocols

What makes the ARQ algorithm work is that node A maintains a copy of the packet
after it has been sent. If B correctly receives the packet, it returns to A a special
acknowledgment message, abbreviated ACK, containing the sequence number of the
correctly received packet. Node A now knows that this packet was correctly received
and can discard its local copy. It is now free to send the next message:

If B does not correctly receive the packet (or the packet is lost entirely), then A will not
receive the ACK message from B. After waiting a reasonable amount of time, A resends
the message to B using the copy stored in its memory:

The ACK for a correctly received packet is itself a message and can be lost or damaged
during transmission. If an ACK is lost, then A incorrectly assumes that the original
packet was lost and retransmits it. However, B knows this is a duplicate because it has
the same sequence number as the packet received earlier. It simply acknowledges the
duplicate and discards it. This ARQ algorithm guarantees that every message sent
(eventually) arrives at the destination.

Thus, we can think of the Data Link layer protocols as creating an error-free “message
pipe,” in which messages go in one end and always come out the other end correct and
in the proper sequence.

Message pipe

Practice Problems

7.3.3 Network Layer

The first two layers of the protocol stack enable us to transmit messages from node A to
node B, but only if these two nodes are directly connected by a physical link. If we look
back at the model of a wide area network shown in Figure 7.7, we see that the great
majority of nodes are not directly connected. It is the job of the end-to-end Network
layer protocols to deliver a message from the site where it was created to its ultimate
destination. To accomplish this delivery task, every node must agree to use the same
addressing scheme so that everyone is able to identify that ultimate destination. Thus,
the two critical responsibilities of the Network layer are:

Creating a universal addressing scheme for all network nodes

Delivering messages between any two nodes in the network

Every node in the network must run the identical Network layer protocol, and it is one
of the most important parts of the protocol stack. It is often said that the Network layer
is the “glue” that holds the entire network together. The Network layer in the Internet
is called IP, for Internet Protocol.

You have almost certainly been exposed to the host naming scheme used by the
Internet, as you use it in all your e-mail and Web applications. For example, the
machines of the two authors of this book have the following names:

However, these host names are not the actual names that nodes use to identify each
other in IP. Instead, nodes identify each other using a 32-bit IP address, often written
as four 8-bit numeric quantities in the range 0–255, each grouping separated by a dot.
For example, the machine referred to as macalester.edu has the 32-bit IP address
141.140.1.5. In binary, it appears as follows:

and this is the actual destination address placed inside a message as it makes its way
through the Internet. Looking at the numeric address shown above, it is easy to
understand why people prefer symbolic names. Whereas it is easy for humans to
remember mnemonic character strings, imagine having to remember a sequence of 32
binary digits. (This is reminiscent of the benefits of assembly language over machine
language.)

I Can’t Believe we’ve Run Out

When the Internet was started in the early 1970s, its designers selected a 32-bit

addressing scheme believing, quite reasonably, that the 2 = 4 billion+
addresses would be more than enough for a long, long time. Well, that long,
long time unexpectedly arrived on February 4, 2011 when the Internet
Corporation for Assigned Names and Numbers (ICANN) announced that it had
just handed out the very last unused block of network addresses. It had
completely run out!

Fortunately, this is not yet a catastrophic situation because the recovery and
reallocation of addresses previously given out but which were never actually
assigned will allow the current addressing scheme to continue functioning for
another few years. However, as ICANN likes to say, “four billion addresses is
simply not enough for seven billion people.” For that reason, Internet engineers
have proposed a “next generation” set of protocols, called IPv6.

The transition to IPv6, which has a 128-bit address field, will certainly solve the
“lack of addresses” problem, although there is no firm agreement on exactly
when this new standard will ultimately be implemented. The new Internet

protocol provides for 2 = 300 undecillion unique addresses—that’s a 3
followed by 38 zeros. The designers were determined never to run out of
addresses again!

It is the task of a special Internet application called the Domain Name System (DNS) to
convert from a symbolic host name such as macalester.edu to its equivalent 32-bit IP
address 141.140.1.5. The DNS is a massive database, distributed over literally
thousands of machines that, in total, contain the host name-to-IP address mappings for
the 818 million or so host computers on the Internet. When you use a symbolic host
name, such as mySchool.edu, this character string is forwarded to a computer called a
local name server that checks to see if it has a data record containing the IP address for
this symbolic name. If so, it returns the corresponding 32-bit value. If not, the local
name server forwards it on to a remote name server (and possibly another, and
another, …) until it locates the name server that knows the correct IP address.

Let’s use the diagram shown earlier to see how the Network layer operates:

32

128

Assume A wants to send a message to D. First, node A uses the DNS to obtain the 32-bit
IP address of node D, which it inserts into its message. Because there is no direct path
from A to D, the message is sent along a multi-hop path reaching from A to D. (Each of
these direct machine-to-machine hops uses the Data Link layer protocols described in
the previous section.) In this example, there are four possibilities—ABCD, AEFD, ABFD,
and AEFBCD— and the process of selecting one specific path is called routing.

Routing algorithms are highly complex because of the massive volume of data that
must be maintained and the enormous amount of processing required to determine the
optimal route, called the shortest path. The shortest path between two nodes is not
necessarily the shortest path in length, but the path via which the message can travel
the fastest. To determine the shortest path between every pair of nodes, we need to
know the time delay between every connected pair of nodes in the network. In the
previous example, this is the time to get from A to B, from B to C, from A to E, and so
on. For small networks, it is feasible to have all this data, but for networks like the
Internet, with hundreds of millions of nodes and links, this is an unimaginably huge
amount of data to obtain and keep current.

Even if we were somehow able to collect all this data, we are still not finished. Now we
must determine exactly which path to select. One possible algorithm is to determine
the time required to send a message along every path from a source to a destination
and then pick the one with the smallest delay. For example, to determine the optimal
path from A to D, we could start out by summing the individual delays from A to B, B to
C, and C to D, which would give us the time to get from A to D using the route A → B →
C → D. We now repeat this process for every other path from A to D and pick the
smallest.

However, in Section 3.5, we showed that, as the number of network nodes increases,
the solution time for these “brute force” algorithms grows exponentially. Therefore,
this method is infeasible for any but the tiniest networks. Fortunately, there are much

better algorithms that can solve this problem in Θ(N) time, where N is the number of
nodes in the network. (The Internet uses a method called Dijkstra’s shortest path

algorithm.) For large networks, where N = 10 or 10 , an Θ(N) algorithm might require

on the order of 10 or 10 calculations to determine the best route from any node to
another—still an enormous amount of work.

There are additional problems that make routing difficult. One complication is
topological change. The Internet is highly dynamic, with new links and new nodes
added on an almost daily basis. Therefore, a route that is optimal now may not be
optimal in a couple of days or even a couple of hours. For example, the optimal route
from A to D in our diagram may currently be A → B → C → D. However, if a new
high-speed line is added connecting nodes E and D, this might change the shortest path

2

8 9 2

16 18

to A → E → D. Because of frequent changes, routing tables must be recomputed often.

There is also the question of network failures. It may be that when everything is
working properly, the optimal route from A to D is A → B → C → D. But what if node B
fails? Rather than have all communications between A and D suspended, it would be
preferable for the network to switch to an alternative route that does not pass through
node B, such as A → E → F → D. This ability to dynamically reroute messages allows a
WAN to continue operating even in the presence of node and link failures.

The Network layer has many other responsibilities not mentioned here, including
network management, broadcasting, and locating mobile nodes that move around the
network. The Network layer is truly a complex piece of software.

With the addition of the Network layer to our protocol stack, we no longer have just a
bit pipe or a message pipe, but a true “network delivery service” in which messages are
delivered between any two nodes in the network, regardless of their location:

Practice Problems

Given the following six-node wide area network for which the numbers
attached to the links are a measure of the “delay” in using that link (e.g.,
some lines could be more heavily used than others and therefore have a
longer wait time), answer the following questions:

Joe Smith

Acme Services Inc., Suite 2701

123 Main St.

My Town, Minnesota

The same situation exists on the Internet. Every host computer has an IP address that
uniquely identifies it. However, there may be many application programs running on
that one machine, each one “doing its own thing.” When a message comes in, how do
we know which application program it is for and where to deliver it?

We need a second level of address that identifies not only a specific machine but also a
specific program running on that machine. This “program identifier,” usually just a
small integer value, is called a port number, and it serves the same role as the address
line “Acme Services Inc., Suite 2701.” Assigning port numbers to programs and
remembering which program goes with which port is a part of the Transport layer
protocols. Although each host computer has one IP address, it may at any instant in
time have many active ports.

The relationship between these two address types is shown in Figure 7.16. This
diagram shows two hosts: Host A whose IP address is 101.102.103.104 and Host B with
IP address 105.106.107.108. Host A is currently running two programs called W and X
(perhaps a Web browser and an e-mail client), with port numbers 12 and 567,
respectively, while Host B is executing two programs named Y and Z, with port
numbers 44 and 709, respectively.

Figure 7.16

Relationship between IP addresses and port numbers

The Transport layer protocols create a “program-to-program” delivery service, in which
we don’t simply move messages from one host to another, but from a specific program

at the source to a specific program at the destination.

In the example in Figure 7.16, it is the job of the Network layer protocol to deliver the
message from the host with IP address 101.102.103.104 to the host with IP address
105.106.107.108, at which point its responsibilities are over. The Transport protocol at
the destination node examines the newly arrived message to determine which program
should get it, based on the port number field inside the message. For example, if the
port number field is 709, then the information in the message is forwarded to
application program Z. (What program Z does with this information and exactly what
that message means are not part of the Transport protocols but rather the Application
protocols discussed in the following section.)

How does a program (such as W or X) learn the port number of another program (such
as Y or Z) running on a remote machine somewhere out in the network? The answer is
that all important applications on the Internet use well-known port numbers. Just as it is
widely known in the United States that directory assistance is found at 555-1212 and
police and fire emergencies are reported to 911, fixed integer values are assigned to
certain applications, and those values are made known to every machine on the
Internet. For example, the HTTP protocol, which allows us to access remote Web pages
(and which we discuss in the following section), always uses port 80. If you want to get
a Web page from another machine, you simply need to talk to the program that is
listening for messages on port 80.

Figure 7.18 later in the chapter lists the port numbers of some common Internet
applications. A list of all well-known port assignments is contained in the report titled
Assigned Numbers on the Internet (RFC 1700) available over the Internet. The only
time you need to get a new port number is when you are developing a new application.

Figure 7.18
Some popular application protocols on the Internet

Acronym Name Application Well-Known
Port

HTTP Hypertext
Transfer
Protocol

Accessing Web
pages

80

SMTP Simple Mail
Transfer
Protocol

Sending
electronic mail

25

POP3 Post Office
Protocol

Receiving
electronic mail

110

Acronym Name Application Well-Known
Port

IMAP Internet
Message
Access
Protocol

Receiving
electronic mail

143

FTP File Transfer
Protocol

Accessing
remote files

21

TELNET Terminal
Emulation
Protocol

Accessing
remote
terminals

23

DNS Domain Name
System

Translating
symbolic host
names to
32-bit IP
addresses

42

The other primary responsibility of the Transport layer has to do with errors and
reliability. When we introduced the Data Link layer in Section 7.3.2, we said that one of
its tasks is to take the inherently unreliable physical channel underneath it and turn it
into an efficient and error-free channel. That same type of relationship exists between
the Transport layer and the layer underneath it, namely the Network layer.

The Network layer of the Internet, IP, is an inherently unreliable communication
channel. IP uses what is called a good faith transmission model. That means that it tries
very hard to deliver a message from source to destination, but it does not guarantee
delivery. In this sense, IP is like the post office. The post office does a very good job of
delivering mail, and the overwhelming majority of letters do get through. However, it
does not guarantee that absolutely every letter you send will arrive, and it does not
guarantee that letters will arrive either within a specific time period or in exactly the
same order that they were originally posted. If you need these features, you have to use
some type of “special handling” service such as Registered Mail or Express Mail.

In a sense, the Transport layer represents just this type of “special handling” service. Its
job is to create a high-quality, error-free, order-preserving, end-to-end delivery service
on top of the unreliable delivery services provided by IP. On the Internet, the primary
transport protocol is TCP (Transport Control Protocol). (There is another transport
protocol called UDP for User Datagram Protocol. We will not be discussing it here.)

TCP requires that the two programs at the source and destination node initially
establish a connection. That is, they must first inform each other of the impending
message exchange, and they must describe the “quality of service” they want to
receive. This connection does not exist in a hardware sense—there is no “wire”
stretched between the two nodes. Instead, it is a logical connection that exists only as
entries in tables. However, TCP can make this logical connection behave exactly as if
there were a real connection between these two programs. This logical view of a TCP
connection is shown in Figure 7.17.

Figure 7.17

Logical view of a TCP connection

Once this connection has been established, messages can be transmitted from the
source program to the destination program. Programs P1 and P2 appear to have a
direct, error-free link between them. In reality, however, their communications go
from P1 to A, B, C, D, and finally to P2, using the services of the Data Link protocol for
each link along the way.

TCP uses the same ARQ algorithm described in our discussion of the Data Link level.
The receiving program must acknowledge every message correctly received. If a
message is lost in the network and does not arrive, the sending program does not
receive an acknowledgment and eventually resends it. Every message is ultimately
delivered to the application program waiting for it and, therefore, this TCP connection
does function like an error-free channel.

Every message sent on this TCP connection contains a sequence number—1, 2, 3,…. If
messages are received out of order (say message 3 comes in before message 2 because
of errors along the route), then TCP simply holds the later message (message 3) until
the earlier message (message 2) correctly arrives. At that time, it can deliver both
messages to the application program in the proper order. From the destination’s point
of view, this TCP connection always delivers messages in the proper order.

With these four protocol layers in place, we now have a complete end-to-end delivery
service. The network can transmit a message from a program anywhere in the network
to another program anywhere in the network—and can do it both correctly and
efficiently. The only thing left to specify is the content of those messages; that is, what
does a program want to say to another program? Essentially we are asking the
question: “What types of applications do we want to give to our network users and
exactly how do we implement them?” We answer that fundamental question as we
look at the very top layer of our protocol stack—the Application layer.

Chapter 7: Computer Networks, the Internet, and the World Wide Web: 7.3.5
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

7.3.5 Application Layer

The Application layer protocols are the rules for implementing the end-user services
provided by a network, and they are built on top of the four protocol layers described
in previous sections. These services are the reason that networks exist in the first place,
and the appearance of exciting new and critically important applications (often called
killer apps) has fueled the rapid growth of networking and the Internet—e-mail in the
1970s, chat rooms in the 1980s, the Web and e-commerce in the 1990s, and social
networking in the twenty-first century. Figure 7.18 lists a few of the important
application protocols on the Internet upon which these killer apps are built.

It is not possible in this one section to discuss all the protocols listed in Figure 7.18.
Instead, we will use the HTTP protocol, which is used by the World Wide Web to access
and deliver Web pages, to serve as a general model for how Application layer services
are typically built on top of the TCP/IP protocol stack.

A single Web page is identified by a symbolic string called a Uniform Resource
Locator, abbreviated URL. URLs have three parts, and they look like this:

The first part, protocol, indicates the type of information contained in this page. The
most common format is hypertext, and we access it using the Hypertext Transfer
Protocol (HTTP). (The Web is designed to accept and transfer other types of
information as well. Thus, we could use the protocol identifier “news” to obtain
information from bulletin boards and news groups, or “mailto,” which allows us to
send and receive e-mail documents via the Web.) The second part of the URL is the host
address of the machine where the page is stored. This is the symbolic host name first
discussed in Section 7.3.3 . The third and last part of the URL is the page identification,
which is usually a file stored on the specified machine. Thus, a typical URL might look
like the following:

This identifies a hypertext (“http”) document stored in a file called about located on a
host computer whose symbolic name is www.macalester.edu. (Note: “http” is the
default protocol. Thus, the previous URL can also be written as simply
www.macalester.edu/about.)

Before we can use HTTP to transfer a Web page, we must first establish a connection
between the http client program (the Web browser being run by the user) and port 80,
the port number of the HTTP Web server located at the node where the Web page
resides, namely www.macalester.edu. The network uses the TCP protocol described in
Section 7.3.4 to establish this connection. Thus, we can clearly see how the HTTP
application protocol is built on top of the TCP/IP protocol stack just described.

Once we establish this connection, we use the HTTP application protocol to access the
desired Web page. An HTTP request message is sent on the TCP connection from the
client to the server, specifying the name of a Web page. A second HTTP message type,
called a response message, is returned from the server to the client along the same TCP
connection. The response contains a status code specifying whether or not the request
was successful and, if it was, it includes the requested page.

Let’s illustrate how these pieces work together using a simple example. Imagine that
you are using a Web browser and have just clicked on the following URL:

The following sequence of events takes place:

Your browser scans the URL and extracts the host name of the machine to which

it must connect—www.macalester.edu. (Let’s disregard the issue of how this

symbolic name is converted to its corresponding 32-bit IP address.)

1.

Your browser asks TCP to establish a connection between itself and port 80 (the

Web server) of the machine called www.macalester.edu.

2.

When the TCP connection between your browser and the Web server is

established, the browser scans the URL to identify the page you want to access. In

this case, it is /about. The browser constructs an HTTP ’GET’ message, which

requests the contents of that Web page. This GET message looks something like

the following:

3.

This message says that we want a copy of the English language page /about

located at www.macalester.edu, and it should be accessed using the http protocol,

version 1.1. (An actual GET message is a bit more complex and includes a number

of additional fields not shown here.)

The GET message in Step 3 is transmitted across the Internet from the client’s

Web browser program at the source node to the Web server at the destination

node using the services of TCP/IP as well as the Data Link and Physical layer

protocols.

4.

When the GET message arrives, it is delivered to the Web server program (which

is listening on port 80). The Web server locates the file named in the GET message

and creates a response message containing a copy of the contents of that file. This

response message looks something like the following:

This response message says that the server successfully found the file (code 200),

and it contains 53,908 bytes of text. It also says that after the Web page has been

sent, the TCP connection between the browser and the server will be closed.

Finally, there is a copy of the entire Web page. (Again, some fields in the response

message have been omitted for clarity.)

5.

This HTTP response message in Step 5 is transmitted across the Internet from the

Web server back to the port of the client’s Web browser using the services of

TCP/IP as well as the Data Link and Physical layer protocols.

6.

The message is delivered to your browser, and the page is displayed on the

screen. The TCP connection between the two programs is terminated.

7.

Something similar to this occurs every time we click on a new URL. This sequence of
events is diagrammed in Figure 7.19.

Figure 7.19

Behavior of the HTTP Application layer protocol

Behavior of the HTTP Application layer protocol

Laboratory Experience 11

We have just completed a rather long and complex discussion of how a
computer network functions. The chapter presented a good deal of technical
material that for some can be fairly difficult to grasp. To help clarify these
ideas, this Laboratory Experience illustrates network behavior using a software
package called a network simulator. This simulator allows you to observe and
control many of the technical concepts introduced in this section, concepts such
as packets, messages, error detection, error correction, and routing.

Chapter 7: Computer Networks, the Internet, and the World Wide Web: 7.4
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

7.4 Network Services and Benefits
At the beginning of this chapter, we said that networks have the potential to create
enormous social change. Now that we have looked at how they are designed and built,
let’s briefly examine the services they can offer and their impact on society.

Chapter 7: Computer Networks, the Internet, and the World Wide Web: 7.4.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

7.4.1 Interpersonal Communications

Electronic mail (e-mail) has been the single most popular application of networks for
the last 35 years. It is estimated that about 250 billion e-mail messages are transmitted
across the Internet every day! When the Internet was first developed, its designers
thought that it would be an ideal way to access advanced, high-performance hardware
and software. Instead, they found that it was a wonderfully effective way to support
interpersonal communication, and e-mail rapidly became the dominant application.

E-mail is convenient. You can send a message whenever you want, and it waits for the
recipient to log on and read it at his or her convenience. E-mail is fast. A message from
the United States typically arrives anywhere in the world in less than a minute, even
though it may have to pass through 15 or 20 nodes along the way (using the packet-
switched protocols described in the previous section). E-mail supports multimedia. The
contents of your electronic messages are not limited to characters but can also include
a wide range of attachments, including photographs, text, graphics, and sound. Finally,
e-mail is a broadcast medium. A computer can send a letter to a thousand recipients as
easily as it can send it to one (which may, in fact, be a detriment rather than an
advantage as we see in the Special Interest Box titled “Spam”).

An interesting application related to e-mail that flourished during the 1980s and 1990s
was the bulletin board system, usually abbreviated as BBS. A bulletin board is a
shared public file where anyone can post messages and everyone is free to read the
postings of others. It is an electronic version of the bulletin boards commonly seen in
grocery stores, cafés, and public libraries. Most BBSs are associated with a particular
topic or special area of interest. These specialized bulletin boards, called newsgroups,
were a wonderful way to create a community of individuals who share a common
interest and want to exchange ideas and opinions. Today BBSs have evolved into
Internet forums and chat rooms that support the real-time exchange of messages. In
addition to simply posting a message that can be read at a later time, they also support
interactive messaging—what the sender types appears immediately on the screen of
one or more individuals, allowing for the direct exchange of ideas. Two other popular
forms of message exchange are texting and instant messaging (IM), the rapid exchange
of messages, often using wireless technology.

The enormous popularity of using digital technology to keep in touch with other people
(e-mail, BBS, chat, text, IM) eventually led to the development of social networks
—systems that create communities of users who share common interests and activities
and that provide multiple methods of online interaction. (See the Special Interest Box
titled “Social Networking” later in this chapter.) Social networks like Facebook and
Twitter are becoming the killer apps of the twenty-first century. They have become a
way to not only keep in touch with friends and family, but also to influence social
development and impact social change on a national and international scale. We will
discuss some of the ethical and legal issues related to social networking in Chapter 17.

Spam

Spam is electronic “junk mail”—unsolicited e-mail sent to thousands, even
millions, of network users without their permission or knowledge. It is not
certain where the term spam came from, but the best guess is from the famous
Monty Python comedy routine in which the word spam is repeated over and
over, making it a synonym for the seemingly endless repetition of silly or
worthless words.

Junk mail in the form of advertising flyers and political brochures has been a
staple of surface mail for many years. But there is a natural cap on its
volume—the sender has to pay the post office to deliver it. So, if a mailing is not
likely to produce a profitable return or have a worthwhile purpose, it will not
be sent.

However, e-mail does not have that built-in cap, and it is beginning to clutter
our electronic mail boxes and consume enormous amounts of bandwidth.
Approximately 80% of the e-mail sent across the Internet is spam, about 72
trillion worthless messages per year. Because the Internet is a public facility,
there is little that can be done to regulate spam. A number of companies have
developed spam filters that attempt to determine which e-mails are useful and
which are spam. Unfortunately, as soon as a filter is developed and released,
the “spammers” quickly figure out a way to beat it and get their e-mail through
to your machine. Probably the best filter developed so far (and for the near
future) is the Delete button on your keyboard!

Chapter 7: Computer Networks, the Internet, and the World Wide Web: 7.4.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

7.4.2 Resource Sharing

Another important network service is resource sharing, the ability to share physical
resources, such as a printer or storage device, as well as logical resources, such as
software and data.

The prices of computers and peripherals have been dropping for many years, so it is
tempting to think that everyone should buy their own I/O units or mass storage
devices. However, that is not a cost-effective way to configure computer systems. For
example, a high-quality color printer may be used rather infrequently. Buying
everyone in the office his or her own printer would leave most of them idle for long
periods of time. It is far more efficient to have a few shared printers, called print
servers, which can be accessed whenever needed. Similarly, if a group of users
requires access to a data file or a piece of software, it makes sense to keep a single copy
on a shared network disk, called a file server. A network file server can be a
cost-effective way to provide shared backup services to multiple sites as well as make it
easier to access information from multiple devices such as your desktop computer at
work, your tablet computer at home, and your smartphone on the road.

The style of computing wherein some nodes provide services while the remaining
nodes are users (or clients) of those services is called, naturally enough, client/server
computing. We have seen two examples—print servers and file servers—but there are
many others, such as mail servers, name servers, compute servers, and Web servers.
The philosophy behind the client/server model is that we use a network to share
resources that are too widespread, too expensive, or used too infrequently to warrant
replication at every node. A diagram of the client/server model of computing is shown
in Figure 7.20.

Figure 7.20

The client/server model of computing

The client/server model of computing

Information sharing is another important service, and a network is an excellent way to
access scientific, medical, legal, and commercial data files stored on systems all over
the world. (In fact, it was the need to share information efficiently among hundreds of
physicists that led to the development of the World Wide Web in the early 1990s.) For
example, information can be distributed among the geographically dispersed sites of a

(1)

(2)

(3)

multinational corporation and shared as needed, using a distributed database. Web
pages can be exchanged between remote systems. Files can be transmitted anywhere
in the world using FTP, which is mentioned in Figure 7.18, and online databases can be
accessed by authorized users regardless of location.

Many network sites now provide a special service called a data warehouse. These
nodes contain massive amounts of information that can be electronically searched for
specific facts or documents. Frequently, such sites contain highly specialized
information, such as geopolitical data, current stock prices, real estate records, or
information on case law and legal precedents. Today, it is more common for students,
scientists, business-people, and politicians to search for information online than in the
stacks of a library.

Another important resource-sharing service is the ability to support collaborative
group efforts in producing a shared document such as a user’s manual, grant
application, or design specification. Workers on a project can communicate via the
network; hold virtual conferences; check electronic calendars and schedule meetings
automatically; and share, discuss, and edit documents in progress online. A rapidly
growing network application is collaborative software, also known as groupware or a
wiki (the Hawaiian word for fast or quick). This is software that facilitates the efforts of
individuals connected by a network and working on a single, shared project. One of the
most successful examples of this sharing is Wikipedia, an online encyclopedia written,
reviewed, and maintained by hundreds of thousands of volunteers working
independently. Wikipedia currently includes over 3.7 million English-language articles
as well as 14 million entries in 281 languages from Polish to Portuguese, French to
Finnish, Tajik to Tagalog. (By comparison, the Encyclopedia Britannica has about 0.5
million articles.) Currently, Wikipedia is used by over 400 million people per year.

Chapter 7: Computer Networks, the Internet, and the World Wide Web: 7.4.3
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

7.4.3 Electronic Commerce

Electronic commerce (or just e-commerce) is a general term applied to any use of
computers and networking to support the paperless exchange of goods, information,
and services in the commercial sector. The idea of using computers and networks to do
business has been around for some time; the early applications of e-commerce include

the automatic deposit of paychecks,

automatic teller machines (ATMs) for handling financial transactions from

remote sites, and

the use of scanning devices at checkout counters to capture sales and

Printed By:
© 2013 , Cengage Learning

7.5.1 The Internet

The Internet is not a recent development but an idea that has been around for more
than 45 years. The concept first took shape during the early and mid-1960s and was
based on the work of computer scientists at MIT and the RAND Corporation in the
United States and the NPL Research Laboratory in Great Britain. The first proposal for
building a computer network was made by J. C. R. Licklider of MIT in August 1962. He
wrote his colleagues a memo titled (somewhat dramatically) “The Galactic Network,” in
which he described a globally interconnected set of computers through which
everyone could access data and software. He convinced other researchers at MIT,
including Larry Roberts and Leonard Kleinrock, of the validity of his ideas. From 1962
to 1967, they and others investigated the theoretical foundations of wide area
networking, especially such fundamental technical concepts as protocols, packet
switching, and routing.

In 1966, Roberts moved to the Advanced Research Projects Agency (ARPA), a small
research office of the Department of Defense charged with developing technology that
could be of use to the U.S. military. ARPA was interested in packet-switched networking
because it seemed to be a more secure form of communications during wartime.
(Traditional dial-up telephones were considered too vulnerable because the failure of
the central phone switch would completely cut all voice communications. As we
described earlier, a WAN can automatically route around a failed line or node in order
to maintain communications.)

ARPA funded a number of network-related research projects, and in 1967 Roberts
presented the first research paper describing ARPA’s plans to build a wide area packet-
switched computer network. For the next two years, work proceeded on the design of
the network hardware and software. The first two nodes of this new network, called
the ARPANET, were constructed at UCLA and the Stanford Research Institute (SRI), and
in October 1969, the first computer-to-computer network message was sent. Later that
same year two more nodes were added (the University of California–Santa Barbara and
the University of Utah), and by the end of 1969, the budding four-node network was off
the ground.

The ARPANET grew quickly during the early 1970s, and it was formally demonstrated
to the scientific community at an international conference in 1972. It was also in late
1972 that the first killer app was developed— electronic mail. It was an immediate
success and caused an explosion of growth in people-to-people traffic rather than the
people-to-machine or machine-to-machine traffic that dominated usage in the first few
years. (It is interesting to note that by 2009 the e-mail volume in the United States was
about 90 trillion messages per year. Now that is a killer app!)

The success of the ARPANET in the 1970s led other researchers to develop similar types

of computer networks to support information exchange within their own specific
scientific area: HEPNet (High Energy Physics Network), CSNET (Computer Science
Network), and MFENet (Magnetic Fusion Energy Network). Furthermore, corporations
started to notice the success of the ARPANET and began developing proprietary
networks to market to their customers: SNA (Systems Network Architecture) at IBM
and DECNet from Digital Equipment Corporation. The 1970s were a time of rapid
expansion of networks in both the academic and commercial communities.

Farsighted researchers at ARPA, in particular Robert Kahn, realized that this rapid and
unplanned proliferation of independent networks would lead to incompatibilities and
prevent users on different networks from communicating with each other, a situation
that brings to mind the problems that national railway systems have sharing railcars
because of their use of a different gauge track. Kahn knew that to obtain maximum
benefits from this new technology, all networks would need to communicate in a
standardized fashion. He developed the concept of internetworking, which stated that
any WAN is free to do whatever it wants internally. However, at the point where two
networks meet, both must use a common addressing scheme and identical
protocols—that is, they must speak the same language.

This is the same concept that governs the international telephone system. Every
country is free to build its own internal phone system in whatever way it wants, but all
must agree to use a standardized worldwide numbering system (country code, city
code), and each must agree to send and receive telephone calls outside its borders in
the format standardized by the worldwide telephone regulatory agency.

Figure 7.21 is a diagram of a “network of networks.” It shows four WANs called A, B, C,
and D interconnected by a device called a gateway that makes the internet work
connections and provides routing between different WANs.

Figure 7.21

A network of networks

(1)

(2)

To allow the four WANs of Figure 7.21 to communicate, Kahn and his colleagues
needed to create

a standardized way for a node in one WAN to identify a node located in a

different WAN and

a universally recognized message format for exchanging information across

WAN boundaries.

Kahn, along with Dr. Vinton Cerf of Stanford, began working on these problems in
1973, and together they designed the solutions that became the framework for the
Internet. Specifically, they created both the hierarchical host naming scheme that we
use today and the TCP/IP protocols that are the “common language” spoken by
networks around the world. (These protocols were discussed in Sections 7.3.3 and
7.3.4.)

During the late 1970s and early 1980s, work proceeded on implementing and installing
TCP/IP on not only mainframe computers but also on the PCs and desktop machines
that were just starting to appear in the marketplace. It is a tribute to the power and
flexibility of the TCP/IP protocols that they were able to adapt to a computing
environment quite different from the one that existed when they were first created.
Originally designed to work with the large mainframe computers of the 1970s, they
were successfully implemented in the modern computing environment—desktop PCs
connected by LANs.

By the early 1980s, TCP/IP was being used all around the world. Even networks that
internally used other communication protocols implemented TCP/IP to exchange
information with nodes outside their own community. At the same time, exciting new
applications appeared that were designed to meet the growing needs of the networking
community. (Many of these application protocols were introduced in Section 7.3.5.) For
example, Telnet is a software package that allows users to log on remotely to another
computer and use it as though it were their own local machine. FTP (File Transfer
Protocol) provides a way to move files around the network quickly and easily. Along
with e-mail (still wildly popular), these and other new applications added more fuel to
the superheated growth of computer networks.

With TCP/IP becoming a de facto networking standard, a global addressing scheme, and
a growing set of important applications, the infrastructure was in place for the creation
of a truly international network. The Internet, in its modern form, had slowly begun to
emerge.

Although many of the technical problems had been solved, networking had yet to make
a significant impact on the general population for one very important reason: In order
to use the ARPANET, you needed a research grant from the U.S. Department of Defense
(DOD). By the early 1980s, many people were using the Internet, but they were almost
exclusively physicists, engineers, and computer scientists at a select set of secure

military and research centers. For example, in 1982, 13 years after its creation, there
were only 235 computers connected to the ARPANET.

One last step was needed, and it was taken by the National Science Foundation (NSF) in
1984. In that year, the NSF initiated a project whose goal was to bring the advantages of
the Internet to the entire academic and professional community, regardless of
discipline or relationship with the DOD. The NSF planned and built a national network
called NSFNet, which used TCP/IP technology identical to the ARPANET. This new
network interconnected six NSF supercomputer centers with dozens of new regional
networks set up by the NSF. These new regional networks included thousands of users
at places like universities, government agencies, libraries, museums, medical centers,
and even high schools. Thus, by the mid-1980s, this emerging “network of networks”
had grown to include many new sites and, even more important, a huge group of
first-time users, such as students, faculty, librarians, museum staff, politicians, civil
servants, and urban planners, to name just a few.

At about the same time, other countries began developing wide area TCP/IP backbone
networks like NSFNet to interconnect their own medical centers, schools, research
centers, and government agencies. As these national networks were created, they were
also linked into this expanding network, and the user population continued to expand.
For the first time since the development of networking, the technology had begun to
have an impact on the wider community. A diagram of the state of internetworking in
the late 1980s is shown in Figure 7.22.

Figure 7.22

State of networking in the late 1980s

Some time in the late 1980s, the term ARPANET ceased to be used because, as Figure
7.22 shows, the ARPANET was now only one of many networks belonging to a much
larger collection. (By 1990, it had grown to 300,000 computers on 3,000 separate
networks.) People began referring to this entire collection of interconnected networks
as “the Internet,” though this name was not officially accepted by the U.S. government
until October 24, 1995.

Once the public had easy access, the Internet became an immediate success and grew
rapidly. By the middle of 1993, it included 1.8 million host computers and roughly 5 to
10 million active users, and its size was doubling every year. In fact, it had become so
successful that the NSF decided it was time to get out of the “networking business.” The
goal of the NSF is to fund basic research, not to operate an ongoing commercial
enterprise. In April 1995, NSFNet closed up shop. The exit of the U.S. government from
the networking arena created business opportunities for new firms called Internet
service providers that offered the Internet access once provided by the ARPANET and
NSFNet.

By early 2011, the Internet had grown to over 800 million computers located in just
about every country in the world. The extraordinary growth of the Internet continues
to this very day. Figure 7.11 in Section 7.2.4 shows a graph of the number of host
computers connected to the Internet.

The Internet has been one of the biggest success stories in moving research out of the
laboratory and into the wider community. What began as the wild idea of a few
dedicated researchers has grown, in only 45 years, into a global communications
infrastructure moving trillions of bits of data among hundreds of millions of people. It
has adapted time and time again—to changes in usage (from research and academic to
commercial and entertainment), changes in hardware (from mainframes to laptops,
tablets, and smartphones), and changes in scale (from hundreds of nodes to hundreds
of millions of nodes).

The Internet continues to undergo massive growth and change, this time from the most
important new killer app developed for the Internet since e-mail—the World Wide
Web.

Geography Lesson

The Internet is a truly “global phenomenon,” affecting the way people work,
shop, and communicate throughout the world. Consider that, whereas the
United Nations has 192 member states, the Domain Name System (DNS) of the
Internet includes entries for 239 countries, territories, and possessions. The
DNS includes standardized domain names for such places as (you may want to
get out your atlas) Comoros (.km), Nauru (.nr), Bouvet Island (.bv), Kiribati (.ki),
Svalbard and Jan Mayen Islands (.sj), and St. Pierre and Miquelon (.pm). The
smallest nonempty DNS domain is .yt–Mayotte, a French territory located off
the coast of Madagascar. It contains exactly one host computer!

Berners-Lee named his new information system the World Wide Web, and it was
completed and made available to all researchers at CERN in May 1991, the date that
marks the birth of the Web. It became an instant success, and traffic on the CERN Web
server increased by 1,000% in its first two years of use. In April 1993, the directors of
CERN, realizing the beneficial impact that the Web could have on research throughout
the world, announced that, effective immediately, all Web technology developed at
CERN would be freely available to everyone without fees or royalties. For many people,
this important announcement really marks the emergence of the World Wide Web on a
global scale.

A powerful graphical Web browser, called Mosaic, was developed in late 1993 and
made available to the general public so that they could begin to use this new service.
With the appearance of Mosaic, the World Wide Web began to “take off.” It was a
network application that offered users exactly what they needed most—access to
massive amounts of helpful information whenever they wanted it. Other browsers
soon appeared in the marketplace, including Netscape Navigator (1994), Microsoft
Internet Explorer (1995), Apple’s Safari (2003), Mozilla Firefox (2004), and Google
Chrome (2008).

In late 1995, the NSF conducted a study of the different types of traffic on the Internet
as a percentage of all information sent. At that time, the World Wide Web represented
23.9% of the total volume of Internet traffic, even though it had been in existence for
only four years!

Since that time, the Web has continued to grow exponentially, containing roughly 300
million distinct Web sites by early 2011. It is by far the fastest growing component of
the Internet. The Web’s colorful graphics and simple point-and-click method of
accessing information has made it the Internet killer app of the twenty-first century. It
has become the vehicle for bringing the capabilities of networking to everyone—from
toddlers to senior citizens and kindergarten students to Ph.D.s. For many people, the
World Wide Web is the Internet.

Show how a modem would encode the 5-bit binary sequence 11001 onto

an analog carrier by

Modifying its amplitude (the height of the carrier wave)a.

Modifying its frequency (the number of waves per second)b.

1.

A modem can also modify the phase of a carrier wave to encode binary

data. Find out what the phase of a signal is and determine how it can be

modified so that it can encode the same 5-bit signal 11001 used in Exercise

1.

2.

Explain why noise and interference have a more serious impact on an

analog transmission line (like a telephone link) than on a digital

transmission line.

3.

Determine the total time it takes to transmit an uncompressed grayscale

image (with 8 bits/pixel) from a screen with a resolution of 1,280 × 840

pixels using each of the following media:

A 56 Kbps modema.

A 1.5 Mbps DSL lineb.

A 100 Mbps Ethernet linkc.

4.

Assume that we need to transmit a 1,440 × 900 uncompressed color image

(using 16 bits per color pixel) over a computer network in less than 0.01

second. What is the minimal necessary line speed to meet this goal?

5.

Assume there are one million books in your campus library.

Approximate (to the nearest order of magnitude) how many bytes of

data there are if all these books were stored online and accessible

across a computer network.

a.

How long does it take to transfer the entire collection of books if the

data rate of the transmission medium is 10 Mbps, the speed of the

original Ethernet? How long does it take if we have a line with a

speed of 1 Gbps? (This value represents the time needed to

download your entire campus library.)

b.

6.

Why is an address field needed in the Ethernet LAN protocol? Can you

think of a useful situation where you might want either to omit the

address field entirely or to use some “special” address value in the

address field?

7.

After reviewing the description of the Ethernet protocol in Section 7.3.2,

how do you think this protocol behaves in a very heavily loaded

network—that is, a network environment where there are lots of nodes

attempting to send messages? Explain what behavior you expect to see

and why.

8.

The Ethernet is a distributed LAN protocol, which means that there is no

centralized control node and that the failure of a single node can never

bring down the entire network. However, can you think of any advantage

to the creation of a centralized LAN in which one node is in charge of the

entire network and makes all decisions about who can send a message

and who must wait? Explain.

9.

Agree or disagree with the following assertion and state why: In an

Ethernet network, even though there are collisions, every message is

guaranteed to be delivered in some maximum amount of time T.

10.

Assume there is a wide area network with N nodes, where N ≥ 2.

What is the smallest number of point-to-point communication links

such that every node in the network is able to talk to every other

node? (Note: A network in which some nodes are unable to

exchange messages with other nodes because there is no path

between them is called disconnected.)

a.

If you are worried about having a disconnected network, what type

of interconnection structure should you use when configuring your

network?

b.

11.

In Exercise 11, you determined the minimum number of links needed to

ensure that every one of the N nodes in a network can communicate with

every other node. However, most networks have far more than this

minimum. What are the advantages of having these “extra” nodes in the

network?

12.

What happens to the store-and-forward protocol of Figure 7.8 if a packet

M is repeatedly sent from node A to node B but never correctly arrives at

13.

B? (Perhaps the link from A to B is broken.) What modifications can we

make to this protocol to handle this situation?

The ARQ algorithm described in Section 7.3.2 is quite inefficient because

the sending node must stop sending until it receives an explicit ACK from

the receiving node. Can you design a modification to the ARQ protocol

that makes it more efficient by not requiring the sender to stop and wait

each time it sends a message? Describe your revised protocol in detail.

14.

How could we broadcast a message using an ARQ algorithm? That is, how

do we send the same message to 100 different nodes on a WAN?

15.

Given the following diagram, where the numbers represent the time

delays across a link:

How many simple paths (those that do not repeat a node) are there

from node A to G?

a.

What is the shortest path from node A to node G? What is the overall

delay?

b.

If node E fails, does that change the shortest path? If so, what is the

new shortest path?

c.

16.

Here is a simple heuristic (approximation algorithm) for routing a

message from node A to node B in a reasonable amount of time. The

algorithm assumes that every node in the network has at least two

outgoing links.

A has n outgoing links, n ≥ 2, with delays to the node on the other side of

a , a ,…, a . Select the link with the shortest delay and send the message

17.

1 2 n

on that line. If the message arrives at node B, you are done. Otherwise,

repeat this process until the message does arrive at its intended

destination, but do not send the message directly back to the node from

where it just came. That is, if the message was sent from A to C, then C

should not return the message to A. In this case, choose the second-lowest

delay value for the outgoing line.

Will this heuristic always deliver the message from node A to node B? If

not, explain why.

What are some of the specific responsibilities performed by the device

called a gateway (diagrammed in Figure 7.21) that is placed between two

different types of networks to allow them to communicate?

18.

In Section 7.3.4, we said that the Transport layer turns the inherently

unreliable Network layer into a error-free delivery service. However, the

Network layer uses the services of the Data Link layer, which is

guaranteed to correctly deliver messages on a point-to-point link. For

example, assume we have the following four-node network:

If the Network layer is sending a message from A to D via B, it can be sure

that a message sent by the Data Link layer from A to B will always

correctly get to B, and a message sent from B to D will always correctly get

to D. How then is it possible for the Network layer to be unable to

correctly deliver a message from A to D?

19.

What are the advantages of breaking up a single logical message into a

number of fixed-sized packets and then sending each one of those packets

independently through the network?

20.

Look at the home page of the Internet Society (www.isoc.org) and read

about one of the designers of the original ARPANET—Larry Roberts,

Leonard Kleinrock, Vinton Cerf, Robert Kahn, John Postel, or others.

Learn about the early days of networking and the contributions that these

individuals made to the ultimate development of the Internet. The home

page of the Internet Society has links to many other places that provide a

wealth of fascinating information about networks in general and the

21.

means - graphic, electronic, or mechanical, or in any other manner - without the written permission of the copyright holder.

Chapter 8: Information Security
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter 8
Information Security

8.1 Introduction

8.2 Threats and Defenses

8.2.1 Authentication and Authorization

8.2.2 Threats from the Network

8.3 Encryption

8.3.1 Encryption Overview

8.3.2 Simple Encryption Algorithms

8.3.3 DES

8.3.4 Public Key Systems

8.4 Web Transmission Security

8.5 Think Small, Think Big

8.6 Conclusion

8.7 Summary of Level 3

Chapter Review

Exercises

Challenge Work

Additional Resources

Chapter 8: Information Security: 8.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

8.1 Introduction
Information security means, of course, keeping information secure—that is, protected
from those who should not have access to it. Information security could cover
information locked in your filing cabinet, stuffed somewhere in your purse or wallet,
or lying around on your desk. But today it usually means electronic information, data
stored on your computer’s hard disk or your cell phone, or data being transmitted

across wired or wireless network connections.

In the early days of computing, when big mainframes were the only option, physical
security was enforced by securing the rooms housing these machines. Only authorized
persons had access. Now that there is a machine on virtually every desktop, a laptop in
many briefcases, and a cell phone in every pocket, that kind of physical security is
harder to obtain, but you can take some obvious steps: Don’t leave your laptop lying
around; never leave your workstation running when you are not in the room; do not
share your password with anyone; and don’t lose your cell phone!

However, the danger of someone nearby swiping your laptop or cell phone pales in
comparison with the risks the Internet and the World Wide Web (discussed in the
previous chapter) have brought. As our virtual environment expands, we celebrate the
ability to reach out from our desktop, laptop, or handheld device to the rest of the
world, receiving information, entertainment, and communications from thousands of
sources. But we may be less aware of the potential for thousands of sources around the
world to reach into our machines to do harm or steal information.

Security can be breached at many different points in the “virtual machine” we have
presented in the last few chapters. Flaws in assembly language programming can be
exploited, operating system protections can be circumvented, and computer networks
(wired or wireless) present all kinds of opportunities for viewing, manipulating, or
destroying data. Consequences can range from annoyance to identity theft to major
economic losses or threats to national security. Because there are so many ways in
which security can be compromised, and the consequences can be so serious,
information security is an important topic of both research and practice.

Chapter 8: Information Security: 8.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

8.2 Threats and Defenses
You are no doubt aware of the possible threats to the security of your personal
property, such as your car or the contents of your home or apartment. That’s why you
probably carry auto and home or renter’s insurance. Aside from fire, flood, or other
accidents, someone can steal your property, causing you financial harm and emotional
distress. Everyone wants a secure environment. Your defenses against theft are to
employ locks and possibly an alarm system. The alarm system only comes into play in
an active manner if security has already been breached, but the announcement that a
property is alarmed can be a deterrent to break-ins. While it’s true that an experienced
thief can quickly pick a lock, it’s easier to break into an unlocked house. Be it thieves or
computer hackers, either will attack the most vulnerable spots.

This section discusses the threat of individual computers being accessed by the wrong
people, and also the threats to which a computer is exposed through network
connections; in addition, it describes various defenses against these threats.

Chapter 8: Information Security: 8.2.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

8.2.1 Authentication and Authorization

The first line of defense against illicit use of, or threats to, computer resources and
sensitive information is a strong authentication and authorization process.

Authentication

You want to start up your computer. You want to retrieve your e-mail. You want to
access your online bank account to transfer money or pay a bill. What’s the first thing
you have to do in all these cases? Generally, it is to log on to your machine or to the
appropriate Web page by giving your user ID and password. (You may also be asked to
answer a special “security question.”) This authentication process on your computer is
managed by your machine’s operating system, as we learned in Chapter 6. On the Web
page, it is managed by the operating system of the Web server computer.
Authentication is the process of verifying that you really are the person who has the
right to access this computer, whether it is your local machine or the Web server. The
operating system maintains a file of user IDs and corresponding passwords. When a
user attempts to log on to the machine, the operating system reads the user ID and
checks that the password matches the password for that user in the password file.
Hackers breaking into a computer system look for a file of user IDs and passwords as
the “Open, Sesame” for all locked doors.

How Hackers Became Crackers

Every new technology develops its own set of “undesirables”—those who see a
new technology in terms not of potential benefits but of increased opportunities
for misuse, just as automobiles brought wonderful benefits but also car thieves
and drunk drivers. In computer science, our abusive subculture goes by the
name hackers.

Originally, the word hacker did not have a negative connotation. It was a mildly
complimentary term for people who knew how to get things done on a
computer—those somewhat strange and quirky individuals who seemed to
know all the incomprehensible details about how computers worked, in
essence, computer enthusiasts. They were the “tinkerers” and “fixers” who
could enter some weird sequence of commands that miraculously cured
whatever was wrong with your system.

As computers became more and more important to the functioning of society,
and as computer networks increased the number of machines that could be
accessed by individuals, the term hacker began to take on a different meaning.
Some hackers turned their talents to figuring out how to override security
measures to gain unauthorized access to other computers. Why? Perhaps for

fun, or just because they could—the computer equivalent of joyriding in a
stolen automobile. The results at first were relatively harmless. But soon these
explorations turned to exploitations—ways to attack computer systems and
cause destruction. Sometimes the word cracker is used to denote those who
break in to someone else’s computer (like “cracking” a safe) as opposed to the
more innocent “hacker” of the original use of the word. The general usage,
however, is “hacker” for both types of intent. Computer code (scripts) or even
downloadable programs for hacking can be found on the Internet. So it’s
possible to be an amateur hacker with little or no understanding of the
technical aspects involved. “Professional” hackers view with disdain those
script kiddies who resort to such tactics. Be aware, though, that any type of
hacking is illegal and punishable under the law by fines or imprisonment. Just
as vandalism is not considered a harmless prank, the misuse of information
technology is no longer viewed as the harmless intellectual play of “computer
jockeys.” It is seen for what it is—a serious crime with serious consequences
and very severe penalties.

Hacking is no longer the province solely of individuals. Just as there are
organized “professional” auto theft rings that operate on a national or even
international scale, there are organized hacking groups. Computer hacking on a
large scale costs governments and businesses billions of dollars per year in
terms of lost business, stolen information, and, more intangibly, loss of trust.
Computer attacks from one country on the computing resources of another
country with intent to damage or destroy computer systems or steal sensitive
information are no longer mere “hacking” but cross over into cyberwarfare.

If the user ID/password list were just in the form of

then the entire system would be compromised if this password file were stolen
(copied). Instead, the operating system encrypts the password for a given
user—converts it into a representation that cannot be understood without the
appropriate decryption algorithm. The encryption process that is used is called a hash
function; this form of encryption is easy to apply but hard to undo. The hash function
takes the password the user originally chooses, chops it up, and stirs it around
according to a given formula. As a very simple example, suppose the hash function
process is the following:

Take each letter in the password and replace it with a number representing its

place in the alphabet (a → 1, b → 2, etc.). Leave each digit in the password alone.

In the preceding case, “badboy2” would become

1.

Add up these digits to get a single integer. In this example2.

Divide the integer from Step 2 by 7 and find the remainder. In this example,

dividing 51 by 7 gives a remainder of 2 (51 equals 7 × 7 with 2 left over).

3.

Add 1 to the result from Step 3, then multiply the new number by 9. In this

example, the result equals (2 + 1) × 9 = 27.

4.

Reverse the digits in the integer from Step 4 and then replace each digit with the

corresponding letter of the alphabet. The result for this example is 72, which

becomes gb.

5.

The encrypted password file would contain an entry of

and the original password is discarded.

Now when Tom Murphy attempts to log on, he gives “Murphy” as the user ID and
enters a password. The operating system applies the hash function to that password
and compares the encrypted result to the encrypted value “gb” stored in the password
file for that user ID. If there is a match, Tom is recognized as an authorized user and
allowed access to the computer.

You may have forgotten a password to some online account at, let’s say, Ninth Street
Bank, and asked for help. The people in charge of Ninth Street Bank’s Web server will
e-mail you a temporary password that will allow you to log on and then require you to
reset your password to something you choose (which will change your entry in the
password file). You might find this annoying and wonder why they didn’t just send you
your original password. As we’ve just seen, the system at online Ninth Street Bank
doesn’t actually know your original password, only its encrypted form and—as we are
about to see—this isn’t enough information to regenerate the original password.

If you managed to steal the encrypted password file, you would not be able to recover
the original password, even if you knew the steps of the algorithm. In our simple
example, you could reverse Steps 5 and 4, but not Step 3. For example,

also hashes to gb, so clearly the process is not reversible. In fact, algorithms for hashing
seem to be well known for each operating system, but, as we have seen here,
knowledge of the hashing algorithm does not give you (or the system administrator)
certain knowledge of the original password, even if you have the encrypted password
file.

But this appears to raise another problem. What if Fred and Alice have two different
passwords that hash to the same encrypted value? What if Fred and Alice chose the

same original password? In general, this is not a problem—both Fred and Alice can log
in using their respective passwords. But if Fred stole the password file and saw that his
password and Alice’s password hashed to the same value, he would have a better than
random chance of guessing Alice’s password; he would certainly try his own password
with Alice’s user ID, and he would be successful if indeed the passwords were the same.

To solve this problem, some operating systems keep a third entry for each user in the
password file, namely the exact time at which the user created the password. This
timestamp gets appended to the original password, and the result is then run through
the encryption algorithm. That way, two identical passwords do not hash to the same
value because the probability that they were created at the exact same instant in time
is infinitesimally small. This also solves the problem of two nonidentical passwords
that otherwise would hash to the same value. When someone attempting to log on
gives his or her password, the operating system consults the password file, appends the
timestamp for that user ID to the password just entered, encrypts the result, and
compares it with the encrypted password entry for that user ID in the password file.

Nonetheless, there are ways in which the operating system’s authentication process is
vulnerable. Consider Ravi, who has not stolen the password file but nevertheless
knows Alice’s user ID and wants to hack into Alice’s account. Because Ravi knows Alice
personally, he might try to guess her password. He might try her nickname, the name
of her pet poodle, the title of her favorite band. Of course he could also try “alice”,
“123456”, or—a perennial favorite—“password”. Many systems set “password” as the
default value, and if Alice hasn’t changed (or been required to change) her password,
this will get Ravi into Alice’s account. Failing at these attempts, Ravi might use a brute
force attack by trying all possible passwords. Suppose there are n possible characters
that can be used in a password (at least uppercase and lowercase letters and the 10
digits are possibilities). To try all possible passwords of length k or less would require

attempts. On the average, Ravi might be successful after about

attempts. But this will be very time consuming (see Exercise 3 at the end of this
chapter). In addition, most systems have a lockout after some number of failed tries,
which would foil this approach.

For someone who has stolen the password file, a better way to find a password is by
using password-cracking software. For a given user ID (which our villain knows
because the user ID is not encoded), password-cracking software will first try all words
in its built-in dictionary, encrypting each with the well-known hash function and
comparing the result with the password file. Such software is amazingly fast and can
try a million or more potential passwords per second. If this fails, it will then go on to
more sophisticated techniques such as word list substitutions for common phrases.
With knowledge of the hash algorithm, the software might use a rainbow table, a
precomputed list of passwords and their hash values, so checking for a particular hash

value just requires a search of the hash values in the table. A brute force attack is a last
resort.

Surprisingly, the easiest way to obtain someone’s password is not to steal the password
file (hard to do) or to guess that person’s password (time consuming), but to use social
engineering. Social engineering is the process of using people to get the information
you want. If Ravi wants Alice’s password, he might just ask her! In a business setting,
he might get a chance to snoop around her office and find the yellow sticky note
containing her password attached to her monitor or stuck beneath her keyboard. He
might violate “password etiquette” and watch over her shoulder while she logs on. Or
he could try an indirect approach; he could call Alice’s (gullible) secretary and, posing
as an IT technician, explain that Alice has called the IT service group about some
computer problems she is experiencing and that to fix them, he needs Alice’s password.
Most companies try to educate their employees about the dangers of social
engineering.

Your best defense against someone guessing your password is to be smart about how
you choose and use your password.

Password Pointers

Choosing passwords

Use long passwords (at least eight characters)

Use a mixture of uppercase and lowercase letters, digits, and special

symbols (if allowed on your system)

Consider using the first letters of some long phrase that is meaningful to

you, mixed with some digits or special symbols; for example, the

password “Timptlwswa” could be an acronym for “This is my password

that I won’t share with anyone”

Avoid personal information such as your name, user ID, pet’s name, or

birthdate

Avoid common dictionary words

Avoid such obvious choices as “abcde”, “123456”, or “Hello”

Using passwords

Change your password often (many systems require this) and do not

reuse old passwords

Use different passwords for different applications

Don’t tell anyone your password

Don’t write your password down

Be wary when your browser offers to remember a password for you

Be very careful about entering a password over an unencrypted wireless

network

Managing passwords may be a bit of a hassle, but security measures are always
a balancing act between user convenience and user protection.

Although user IDs and passwords are the most common authentication mechanism,
there are other options. Many systems ask you to preselect answers to a list of
questions about personal information that you will know but others may not (the first
name of your maternal grandmother, the city in which you went to high school, etc.).
Then when you present your user ID, you must respond with the correct answer to one
of these questions before you are even asked for your password. Some laptops now use
biometric information, that is, fingerprint scanning. Some company networks use a
one-time password scheme that works as follows: The legitimate user enters his or her
user ID and partial password. Each user has a small device that then generates the
(random) last half of the password, which is good only for a few seconds. The system
knows both the first half and last half and checks for a match after the user enters the
last half. In this way, the password is quite secure because it is only valid for a very
short time.

Practice Problem

Using the hash function described in this section, verify that the

password “chjbup5” also hashes to “gb”.

Don’t forget the most basic physical security principles—maintain control of your
laptop and handheld devices, including your cell phone; be sure no one peers over
your shoulder in your office or on the airplane; lock your office door when you leave;
and so on. In a secure business or government environment, video surveillance
cameras can enhance security, and visitors to a secure server site are checked against
an access list and logged in to and out of the room.

Authorization

Authorization governs what an authenticated user is allowed to do. Enforcing
authorization rules is also one of the jobs of the operating system, as discussed in
Chapter 6. On your own machine, you may have administrative privileges and be able

to see everything on the machine. On your banking Web site, you can only see your
own account information. The operating system maintains access control lists.
Depending on who the users are, they have various privileges, such as

Read access (can read a particular file)

Write access (can modify a particular file)

Execute access (can run a particular program file)

Delete access (can delete a particular file)

As a student in a class, you have read/write/delete access to your own files. You have
execute access and read access to programs and files the instructor has placed in a
common folder. The instructor probably has access to the files of all students in the
class. The system administrator or superuser has access to everything, and is the
person who sets up the authorization privileges for all other users. A careful operating
system will check every access every time by every user.

Chapter 8: Information Security: 8.2.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

8.2.2 Threats from the Network

Once your handheld device, your personal computer, a business computer, or a Web
server computer is connected to the Internet, there are many more possibilities for
harm. Attacks can come from anonymous sources anywhere in the world via many
intermediate nodes that maintain varying levels of security. Recall the complexity of
the Internet, the fact that it is not specifically governed by any one entity, and the idea
that the whole point is to share information, and it is clear what a difficult task
“Internet security” can be.

Most of these threats come in the form of malware (malicious software) that can attack
an individual computer. The most common attacks to individual computers are by
viruses, worms, Trojan horses, and denial of service.

Virus

A virus is a computer program that, like a biological virus, infects a host computer and
then spreads. It embeds itself within another program or file. When that program or
file is activated, the virus copies itself and attacks other files on the system. The results
may be as simple as taunting pop-up messages, but could also include erratic behavior
or drastic slowdown of the computer, corrupted or deleted files, loss of data, or system
crashes. The virus is spread from one machine to another by passing on the infected
file, perhaps on a flash drive. By far the most common mechanism for spreading a
virus, however, is through e-mail attachments. An infected file is attached to an e-mail
message and sent out to 100 people, for example. Anyone who downloads and opens
the attachment causes the virus to replicate the infected file and perhaps send it out as

an e-mail attachment to the first 100 people in that person’s personal address book. In
this way, a virus can potentially spread like wildfire across the Internet.

Worm

A worm is very similar to a virus, but it can send copies of itself to other nodes on a
computer network without having to be carried by an infected host file. It is a
self-replicating piece of software that can travel from node to node without any human
intervention. In its most benign form, a worm can clog the Internet so that legitimate
traffic is slowed or shut out completely. In addition, the worm might also subvert the
host systems it passes through so that, at a later time, those systems can be controlled
by the worm’s author and used to send spam (junk) e-mail, deface Web pages, or
perform other mischief.

Trojan Horse

A Trojan horse (in the software world) is a computer program that does some harmless
little job but also, unbeknownst to the user, contains code to perform the same kinds of
malicious attacks as viruses and worms—corrupt or delete files, slow down the
computer, and the like. It might also upload or download files, capture the user’s
address book to send out spam e-mail, hide a keystroke logger that captures the user’s
passwords and credit card numbers (and sends them to someone else), or even put the
computer under someone else’s remote control at some point in the future. A computer
can become infected by a Trojan horse when the user downloads infected software
from a malicious Web site. In fact even visiting an infected Web site can, behind the
scenes, download a Trojan horse (an attack called a drive-by exploit or drive-by
download).

Denial of Service

A denial-of-service (DOS) attack is typically directed at a business or government Web
site. The attack automatically directs browsers, usually on many machines, to a single
URL at roughly the same time. The result causes so much network traffic to the
targeted site that it is effectively shut down to legitimate users. (Spam e-mail can
accomplish a similar, but less targeted effect, by flooding the Internet with e-mail
messages that consume available bandwidth and clog mail servers.) If many machines
are perpetrating this mischief, it’s called a distributed denial-of-service attack, or DDOS.
A DDOS may use thousands of machines, enabling much heavier attack traffic and at
the same time making it harder to track down and disable all of the attacking
machines. Many times, these machines are personal computers that were infected at
some point by a Trojan horse. Then at a later time, the Trojan horse is activated in all
these machines, putting them under the command of a single controller. This collection
of machines is sometimes called a zombie army or botnet (short for “robot net-work”
because the machines act like robots under someone else’s control).

Beware the Trojan Horse

The “Trojan horse” usually refers to a wooden horse in Greek mythology that

the Greeks left as a “gift” for their enemies, the Trojans, during the Trojan War.
When the Trojans pulled the horse into the city, the Greek soldiers hiding inside
sneaked out under cover of nightfall, opened the gates of Troy to the Greek
army, and Troy was defeated.

In the same way, Trojan horse software works by hiding destructive code
within some seemingly legitimate program where it waits until it can sneak out
and spring into action. A Trojan horse known as Coreflood or AF Core Trojan
has some dangerous capabilities. It can infect the computing capability of an
entire network. If a system administrator logs on to an infected machine, say
for routine maintenance, the Trojan horse infects the system administrator’s
machine and thereafter any machine the system administrator logs on to. The
current variation of Coreflood captures banking or brokerage account user IDs,
passwords, and balance information. In 2008, a security company was able to
find a host computer where the Coreflood perpetrators maintained a database
of over 50 GB of data they had stolen from over 378,000 computers during the
previous 16 months, including 14,000 machines within a global hotel chain
network. Widespread attacks also occurred at financial institutions, hospitals,
and even a law enforcement agency. At the time of this writing, the authors of
the Coreflood attack have not been identified. However, in 2011 the FBI and the
U.S. Department of Justice seized several Coreflood command-and-control
servers. Now, when a botnet (zombie) machine attempts to contact a Coreflood
server, it reaches a substitute server that orders Coreflood to uninstall itself
from the botnet machine. In addition, Coreflood now cannot further update
itself, which will allow antivirus software to detect and remove Coreflood from
infected machines. Eventually the botnet should be dismantled entirely.

Don’t Mess with Amazon

On December 10, 2010, a DDOS attack was launched against Amazon.com by a
hacker group called Anonymous. The attack came as a reprisal when Amazon’s
Web hosting service refused to continue to host Wikileaks pages (Wikileaks had
previously released many U.S. State Department secret documents) yet sold an
e-book purportedly containing some of the same leaked information. The attack
lasted less than an hour, however, because Anonymous realized it was having
little effect. Its botnet (about 2,000 machines) was not big enough to bring down
the Amazon servers. The reason is that Amazon is geared to withstand peak
traffic by pushing work off to a network of servers that has huge spare capacity.
And as this attack occurred in the time frame of Amazon’s busy holiday season,
it just looked like a little extra blip.

The cybersecurity firm Damballa estimated an increase in the total number of PC
botnet slaves of over 600% in 2010 compared with 2009. This is due at least in part
to a growing number of “do-it-yourself ” botnet construction kits that are commercially

available through underground channels. To appreciate the scale of the botnet
problem, consider that in March 2010, Spanish authorities arrested the controllers of
one of the largest botnets in history, the Mariposa, estimated to involve 12 million
computers. Used to steal information from companies, governments, and educational
institutions in over 190 countries, the subnets of the system were also available for
lease to other cybercriminals.

Phishing

Phishing is not a direct attack on a computer. Instead, phishing is a practice used to
illegally obtain sensitive information such as credit card numbers, account numbers,
and passwords. An e-mail is sent claiming to be from a legitimate organization such as
a bank, credit card company, or online retailer asking the recipient to click on a link to
update or verify his or her account information. Often the message contains a warning
that your account will be suspended or canceled if you fail to provide this information
(although this personal information is already on file with the legitimate organization
if indeed you do have an account there). The link takes the unwary user to a fake Web
site that appears to be legitimate and captures the information the user enters. Despite
the fact that no legitimate bank or other financial organization ever operates this way,
many people fall for this scheme and become victims of identity theft, suffering
financial losses that in total cost consumers hundreds of millions of dollars.

The term phishing came about because perpetrators cast out bait, in the form of e-mail
messages, to a large number of potential victims in the hope that one or two will “bite”
and fall for this scam. The cost to mount a phishing attack is minimal, so even a tiny
number of “bites” brings a profit. The success rate is actually quite low; statistical data
shows that only about 12 of every 1,000,000 bank customers will receive a phishing
e-mail and follow a link to a fake Web site, and only half of those will actually enter
personal data. But there were over 67,000 distinct phishing attacks worldwide in the
last half of 2010, and each such attack can target millions of individuals.

Never follow the link in such a message or reply to the message; instead, delete the
message immediately. If you want to check an account’s status, open a separate
browser window and access your account information as you normally would.

In March 2011, 342 institutions were the targets of phishing attacks, meaning that
e-mail was sent supposedly from these institutions. The Anti-Phishing Working Group
(APWG) is an industry and law enforcement association focusing on helping eliminate
identity theft resulting from phishing (www.antiphishing.org/index.html). It provides
discussion forums, maintains statistics, and tests promising technology solutions. The
average phishing site is left online for about three days, making it difficult to catch
those responsible.

Gone Phishin’

In 2011, a major security breach occurred at a marketing services company
called Epsilon. This company is an e-mail service provider, sending out e-mail
on behalf of its 2,500 corporate clients. Epsilon retains e-mail addresses for the

customers of these clients, and the address lists for customers of about 50 of
those businesses were stolen, probably millions of individual e-mail addresses.
Hence, many individuals who may have read a small article about this and
thought, “I’ve never heard of Epsilon, I surely don’t have an account with them,
so this can’t affect me,” woke up a day or two later to e-mail messages from
companies such as Target, J. P. Morgan Chase, Best Buy, and Citigroup, with
whom they do have an account. These messages assured customers (acting on
information supplied by Epsilon) that no financial or sensitive data such as
account numbers, credit card numbers, login information, or balances was
stolen, only names and e-mail addresses. The messages went on to warn against
the possibility of fraudulent e-mails as a result and in most cases provided
advice not to give out personal or financial information in response to e-mail
requests, not to open e-mail from unknown senders, and so forth.

Even though no financial data was obtained, experts warn that this security
breach could lead to waves of spear phishing—phishing sent to targeted
audiences. In other words, if information is known about companies with
whom you do business on a regular basis, an e-mail message can be crafted to
align with your probable interests and known business relationships so as to
create more convincing “bait” on which you are more likely to “nibble.”

Defense Against the Dark Arts

You may feel at this point that you should just unplug your computer from the
Internet or disable your wireless capability. The good news is you can protect
yourself.

Be sure your computer has up-to-date antivirus software from a reputable

company. Such software can detect worms, viruses, and Trojan horses by

distinctive “signatures” those programs carry. It cleans your machine of

infected files. Most antivirus software comes with a feature for automatic

updates; this is necessary because the “good guys” have to keep up with

the new ideas from the “bad guys.”

Be sure your computer has up-to-date firewall software from a reputable

company. Firewall software guards the access points to your computer,

blocking communications to or from sites you don’t permit.

Be sure your computer has up-to-date antispyware from a reputable

company. Antispyware routinely scans your computer for any “spyware”

programs that may have infected your machine—programs that capture

information on what Web sites you have visited and what passwords and

credit card numbers you have used.

Be sure to install the latest security patches or updates to your operating

system, whatever operating system you use. All operating systems are

vulnerable.

Don’t open e-mail attachments from unknown sources, especially files

with.exe or .zip extensions.

Don’t download software except from reputable sources.

Don’t send personal or financial information in response to any e-mail

(“My wealthy Nigerian uncle left me a fortune that I am willing to share

with you but I need your account number…”).

Practice Problem

Do some research on the Morris worm, the first major computer worm.

Who wrote it, when was it released, how did it spread, what are the

estimates of how much damage it caused (in dollar amounts), and what

happened to the originator of the worm?

Chapter 8: Information Security: 8.3
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

8.3 Encryption
Much of the thrust of information security, as we have talked about it so far, is to devise
defenses so that the “bad guys” can’t steal our information. If, despite these
precautions, files on a computer hard disk or packets passing along a network
connection are illegally accessed and fall into the wrong hands, we can still protect
their contents through encryption. Essentially, this makes the information meaningless
to the bad guys even if they do manage to steal it. We’ve already discussed encryption
of the password file by the operating system as a security measure, in case the
password file is stolen. In this section, we discuss various other encryption
mechanisms, which apply both to data stored and data sent.

Chapter 8: Information Security: 8.3.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

8.3.1 Encryption Overview

Cryptography is the science of “secret writing.” A message (plaintext) is encoded
(encrypted) before it is sent, for the purpose of keeping its content secret if it is
intercepted by the wrong parties. The encrypted message is called ciphertext. The
ciphertext is decoded (decrypted) back to plaintext when it is received, in order to
retrieve the original information. More formally, encryption is the process of using an
algorithm to convert information into a representation that cannot be understood or
utilized by anyone without the appropriate decryption algorithm; decryption is the
reverse of encryption, using an algorithm that converts the ciphertext back into
plaintext. Encryption and decryption date back thousands of years. The most famous
instances of cryptography occur in military history, beginning with Julius Caesar of the
Roman Empire, who developed the Caesar cipher, discussed in the next section. In
more modern times, the military importance of cryptography was illustrated by the
German Enigma code cracked by the Allies during World War II.

Encryption and decryption are inverse operations because decryption must “undo” the
encryption and reproduce the original text. (An exception is hash function encoding,
used for password encryption, which is a one-way code and does not involve
decryption.) There are many encryption/decryption algorithms, and of course both the
sender and receiver must use the same system. A symmetric encryption algorithm
requires the use of a secret key known to both the sender and receiver. The sender
encrypts the plaintext using the key. The receiver, knowing the key, is easily able to
reverse the process and decrypt the message. One of the difficulties with a symmetric
encryption algorithm is how to securely transmit the secret key so that both the sender
and the receiver know what it is; in fact, this approach seems to simply move the
security problem to a slightly different level, from transmitting a message to
transmitting a key. In an asymmetric encryption algorithm, also called a public key
encryption algorithm, the key for encryption and the key for decryption are quite
different, although related. Person A can make an encryption key public, and anyone
can encrypt a message using A’s public key and send it to A. Only A has the decryption
key, however, so only A can decrypt the message. This approach avoids the difficulty of
secret key transmission, but it introduces a new problem: The relationship between the
decryption key and the encryption key must be sufficiently complex that it is not
possible to derive the decryption key from the public encryption key.

Chapter 8: Information Security: 8.3.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

8.3.2 Simple Encryption Algorithms

Caesar Cipher

A Caesar cipher, also called a shift cipher, involves shifting each character in the
message to another character some fixed distance farther along in the alphabet.
Specifically, let s be some integer between 1 and 25 that represents the amount of shift.

Each letter in the message is encoded as the letter that is s units farther along in the
alphabet, with the last s letters of the alphabet shifted in a cycle to the first s letters. For
example, if s = 3, then A is encoded as D, B is encoded as E, X is encoded as A, and Z is
encoded as C. The integer s is the secret key. Decoding a message, given knowledge of s,
simply means reversing the shift. For example, if s = 3, then the code word DUPB is
decoded as ARMY.

The Caesar cipher is an example of a stream cipher; that is, it encodes one character at
a time. This makes it easy to encode just by scanning the plaintext and doing the
appropriate substitution at each character. On the other hand, there are only 25
possible keys, so a ciphertext message could be decoded by brute force, that is, by
simply trying all possible keys.

In addition, the Caesar cipher is a substitution cipher, whereby a single letter of
plaintext generates a single letter of ciphertext. We can replace the simple shift
mechanism of the Caesar cipher with a more complex substitution mechanism, for
example:

(Can you guess the substitution algorithm being used?) However, in any simple
substitution cipher, the structure of the plaintext is maintained in the ciphertext
—letter frequency, occurrence of double letters, frequently occurring letter
combinations, and so forth. With a sufficiently long message, an experienced
cryptanalyst (code breaker) can use these clues to recover the plaintext.

Block Cipher

In a block cipher, a group or block of plaintext letters gets encoded into a block of
ciphertext, but not by substituting one character at a time for each letter. Each
plaintext character in the block contributes to more than one ciphertext character, and
each ciphertext character is the result of more than one plaintext letter. It is as if each
plaintext character in a block gets chopped into little pieces, and these pieces are
scattered among the ciphertext characters in the corresponding block. This tends to
destroy the structure of the plaintext and make decryption more difficult.

As a simple example, we’ll use a block size of 2 and an encoding key that is a 2 × 2
arrangement of numbers called a matrix. Here A and B

are matrices. We can define an operation of matrix multiplication as follows. The
product A × B will also be a 2 × 2 matrix, where the element in row i, column j of A × B
is obtained by multiplying each element in row i of A by its corresponding element in
column j of B and adding the results. So to obtain the element in row 1, column 1 of the

result, we multiply the row 1 elements of A by the corresponding column 1 elements of
B and add the results:

To obtain the element in row 1, column 2 of the result, we multiply the row 1 elements
of A by the corresponding column 2 elements of B and add the results:

The completed product A × B is

However, for encryption purposes, we are going to modify this definition. When we
add up the terms for each element, whenever we exceed 25, we will start over again,
counting from 0. In this scheme, 26 → 0, 27 → 1, 28 → 2,…, 52 → 0, and so on.

Not every 2 × 2 matrix can serve as an encryption key; we need an invertible matrix.
This is a matrix M for which there is another matrix M′ such that

The mathematical function modulo 26 is being applied.

This property is what allows M′ to reverse the effect of M. Also, part of our encryption
algorithm is a simple substitution (mapping) S that maps letters into numbers; we’ll let
S be really simple here: S(A) = 1, S(B) = 2, …, S(Z) = 26. Obviously S is reversible, and
we’ll call the reverse mapping S′: S′(1) = A, S′(2) = B, …, S′(26) = Z.

To encode our message, we break it up into two-character blocks. Suppose the first two
characters form the block (D E). We apply the S mapping to this block to get (4 5). Now
we multiply (4 5) × M by treating (4 5) as the row of some matrix (and remember to
wrap around if the result exceeds 25):

3

Finally, apply the S′ mapping to get from digits back to characters: S′(22 9) = (V I). This
completes the encoding, and (V I) is the ciphertext for the message block (D E). Notice
that the digit 4 (i.e., the plaintext letter D) contributed to both the 22 (V) and the 9 (I), as
did the digit 5 (i.e., the plaintext letter E). This diffusion (scattering) of the plaintext
within the ciphertext is the advantage of a block cipher.

For decoding, we reverse the previous steps. Starting with the ciphertext (V I), we first
apply S to get (22 9). We then multiply (22 9) by M′, the inverse of the encoding key
(remembering to wrap around if the result exceeds 25):

Finally, we apply S′ to get back—voilà!—the plaintext (D E).

Figure 8.1 summarizes the steps. Again, the matrix M is the secret encryption key, from
which the decryption key M′ can be derived.

Figure 8.1
Steps in encoding and decoding for a block cipher

Encoding

Apply S mapping to plaintext block.1.

Multiply result times M, applying wraparound.2.

Apply S’ to the result.3.

Encoding

Apply S mapping to ciphertext block.1.

Multiply result times ’, applying wraparound.2.

Apply S’ to the result.3.

Practice Problems

Using a Caesar cipher with s = 5, encrypt the message NOW IS THE

HOUR.

1.

A messenger tells you that the secret key for today for the Caesar2.

cipher is s = 26. Should you trust the messenger? Why, or why no?

Laboratory Experience 12

The software for this Laboratory Experience uses a block cipher of block size 2.
You will be able to encrypt and decrypt messages. The encryption key is again a
matrix, but the encryption algorithm is quite different from that of the block
cipher discussed in this section.

Chapter 8: Information Security: 8.3.3
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

8.3.3 DES

Both of the previous encryption algorithms—the Caesar cipher and an elementary
block cipher—are too simplistic to provide much real security. DES (Data Encryption
Standard) is an encryption algorithm developed by IBM in the 1970s for the U.S.
National Bureau of Standards (now called the U.S. National Institute of Standards and
Technology, or NIST), and is certified as an international standard by the International
Organization for Standardization, or ISO (the same organization that certifies the MP3
digital audio format, as discussed in Chapter 4). One might expect this internationally
standard algorithm to rest upon some extremely complex and obscure operations, but
the DES algorithm actually uses very simple operations—however, it uses them over
and over.

DES was designed to protect electronic information, so the plaintext is a binary string
of 0s and 1s, just as it is stored in a computer. As we learned in Chapter 4, this means
that ordinary text has already undergone an encoding using ASCII or Unicode to
convert characters to bit strings. This encoding, however, is not for the purposes of
secrecy, and has nothing to do with the cryptographic encoding we are talking about in
this chapter.

Hiding in Plain Sight

Steganography is the practice of hiding the very existence of a message. It’s an
old idea; an ancient Greek ruler was said to have sent a (not very urgent)
message by tattooing the message on the shaved head of one of his slaves and
then sending the slave off after his hair had grown back. The message was
revealed on the other end by once more shaving the messenger’s head.

These days, steganography has again come into favor in the form of hidden text

within images posted on the Web. As we learned in Chapter 4, a colored digital
image is composed of individual pixels; in the usual RGB format, 8 bits are
allocated for each of the red, green, and blue color components. This allows for

2 = 256 variations of intensity for each color. Let’s say the red component in a
pixel has the following 8-bit value:

The least significant bit (the rightmost 0) contributes the least to the color
intensity. If this bit is changed from 0 to 1, the red component becomes

This tiny change (1/256th of the original red color) will not be detectable to the
human eye viewing the image.

A text file can be hidden in an image file by changing (if needed) the least
significant bit of each byte of the image file to match the binary form of the
characters in the text. For example, if the first letter of the text file to be hidden
is “A”, with ASCII code 01000001, then the first 8 bytes of the image file would be
modified (if needed) so that the least significant bits are 0, 1, 0, 0, 0, 0, 0, and 1.
To the naked eye, the image appears unaltered.

In the following set of images, the image on the left is the original. The image on
the right uses steganography to hide 668 KB of text, over 140 double-spaced
pages. Can you see any difference?

DES is a block cipher, and the blocks are 64 bits long, meaning that 64 plaintext bits at a
time are processed into 64 ciphertext bits. The key is a 64-bit binary key, although only
56 bits are actually used. The algorithm begins by sending the plaintext 64-bit string
through an initial permutation (rearrangement). The algorithm then cycles through 16
“rounds.” Each round i performs the following steps:

The incoming 64-bit block is split into a left half L and a right half R . The right

half R gets passed through unchanged to become the left half of the next round,

L .

1.

8

i i

i

i+1

In addition, the 32 bits in the right half get permuted according to a fixed formula

and then expanded to 48 bits by duplicating some of the bits. Meanwhile, the

56-bit key is also permuted (the result is passed on as the key to the next round)

and then reduced to 48 bits by omitting some of the bits. These two 48-bit strings

are matched bit by bit, using an XOR (exclusive OR) gate for each bit. Figure 8.2

shows the standard symbol for an XOR gate, along with its truth table.

Figure 8.2

The XOR gate

2.

The resulting 48-bit string undergoes a substitution and reduction to emerge as a

32-bit string. This string is permuted one more time, and the resulting 32-bit

string is matched bit by bit, using XOR gates, with the left half L of the input. The

result is passed to the next round as the new right half R .

3.

After all 16 rounds are complete, the final left and right halves are recombined into a
64-bit string that is permuted one more time, and the resulting 64-bit string is the
ciphertext. Figure 8.3 outlines the steps involved in the DES algorithm.

Figure 8.3

The DES encryption algorithm

i

i+1

Two important points about the DES algorithm: The first is that every substitution,
reduction, expansion, and permutation is determined by a well-known set of tables. So,
given the same plaintext and the same key, everyone using DES ends up with the same
ciphertext. The “secret” part is the initial key. The second point is that the same
algorithm serves as the decryption algorithm—just start with the ciphertext and apply
the sequence of keys in reverse order, that is, the round-16 key first and the original
secret key last.

With increased computing power in the hands of those trying to break a code, a 56-bit
key does not seem as formidable as when DES was first introduced. It might even be

feasible to try all 2 (72,057,594,037,927,936) possible keys. Triple DES improves the
security of DES; it requires two 56-bit keys (which can be thought of as a 112-bit key
length), and runs the DES algorithm three times: Encode using key 1, decode the result
using key 2, encode the result using key 1 again.

Concerns about the eventual breakdown of DES in the face of ever-increasing
computing power prompted NIST in 1997 to request proposals for a successor
encryption scheme. The result was AES (Advanced Encryption Standard), which was
adopted for use by the U.S. government in 2001. AES is based on the Rijndael
(pronounced Rin-dahl) algorithm, named for the two Belgian cryptographers who
designed it, Vincent Rijmen and Joan Daemen. Like DES, AES uses successive rounds of
computations that mix up the data and the key. The key length can be 128, 192, or even
256 bits, and the algorithm appears to be very efficient.

Cracking DES

In 1997, the Electronic Frontier Foundation, a nonprofit civil-liberties
organization, began to build the DES Cracker, a PC connected to a large array of
custom chips. The entire configuration cost less than $250,000 to build (a very
reasonable price at the time for big computing power). This machine was
intended to apply brute force techniques (trying all possible 56-bit keys) to
crack ciphertext encoded using DES. In 1998, the machine was used to respond

56

to a challenge in the form of a ciphertext message posed by RSA Laboratories,
the research component of RSA Security, a leading electronic security company.
The DES Cracker could test 88 billion keys per second, and it found the correct
56-bit key in less than three days.

This result had political and economic overtones because the U.S. government
at the time had strict controls on the export of cryptographic software, most of
which was limited to encryption algorithms using a 40-bit key or less. This
hampered overseas sales of software products with strong encryption. The
government also pressured industry within the United States to limit the use of
cryptography to DES, claiming that DES codes were highly secure and nearly
impossible to crack, a claim clearly refuted by this challenge. The designer of
the DES Cracker machine noted that searching for a 40-bit key (the export limit
at the time) using the DES Cracker would take 3–12 seconds.

Some people suspected that the government wanted to keep weak encoding in
use in order to be able to access information, perhaps infringing on personal
privacy. The U.S. export policy was made less restrictive in 1998, although not
as a result of the DES Cracker.

Chapter 8: Information Security: 8.3.4
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

8.3.4 Public Key Systems

The encryption algorithms we have discussed so far have all been symmetric
encryption algorithms, requiring that both the sender and receiver have knowledge of
the key. Our final algorithm is an asymmetric, or public key, encryption algorithm.
Remember that the main difficulty with a symmetric algorithm is how to securely
transmit the secret key. In a public key system, the encryption key for messages to go to
a particular receiver is broadcast to everyone, but the decryption key cannot be
derived from it and is known only by the receiver.

The most common public key encryption algorithm is RSA, named for its developers,
Ron Rivest, Adi Shamir, and Len Adleman at MIT (founders of RSA Security—see the
Special Interest Box, “Cracking DES”). This algorithm, developed in 1977, is based on
results from the field of mathematics known as number theory.

A prime number is an integer greater than 1 that can only be written as the product of
itself and 1. For example, 2, 3, 5, 7, 11,… are prime numbers; you can only write 7, for
example, as 7 = 1 × 7, the product of 1 and 7. The numbers 4, 6, 8, 10, and 12, for
example, are not prime because they can be factored in a nontrivial way:

1.

2.

3.

4.

5.

6.

Any positive integer is either a prime number or a number that can be written in a
unique way as a product of prime factors. For example, 12 = 2 × 2 × 3 is the product of
three prime factors. The success of RSA encryption depends on the fact that it is
extremely difficult to find the prime factors for n if n is a large number. So although
information encrypted using RSA is technically not secure, it is secure in practice
because of the large amount of computation necessary to find the prime factors of the
encoding key.

Here’s how RSA works. Two large prime numbers p and q are chosen at random, and
their product n = p × q is computed. The product m = (p − 1) × (q − 1) is also computed.
Next, a large random number e is chosen in such a way that e and m have no common
factors other than 1. This step guarantees the existence of a unique integer d between 0
and m, such that when we compute e × d using the same sort of wraparound arithmetic
we used in the block encoding scheme—that is, whenever we reach m, we start over
again counting from 0—the result is 1. There are computationally efficient ways to
produce p, q, e, and d.

For example, suppose we pick p = 3 and q = 7 (a trivially small case). Then,

n = p × q = 3 × 7 = 214

m = (p − 1) × (q − 1) = 2 × 6 = 12

Choose e = 5 (e = 5 and m = 12 have no common factors)

Then d = 5 because e × d = 5 × 5 = 25 = 2 × 12 + 1, so when we compute e × d

using wraparound arithmetic with respect to 12, we get 1.

Now the number pair (n, e) becomes the public encryption key, and d is the decryption
key. Let’s suppose that the plaintext message has been converted into an integer P,
using some sort of mapping from characters to numbers. The encryption process is to

compute P using wraparound arithmetic with respect to n (when you reach n, make
that 0). Continuing with our example, suppose P = 3. Then the ciphertext is computed
as

3 = 243 = 11 × 21 + 12 → 12

(Note that the sender uses both parts of the public key, e and n, to compute the

ciphertext.) The receiver decodes the ciphertext C by computing C using wraparound
arithmetic with respect to n. In our example,

12 = 248832 = 11849 × 21 + 3 → 3

Of course, our example has a major problem in that d is the same as e. Obviously, in a

e

5

d

5

real case, you want e and d to be different. The whole point is that even though n and e
are known, the attacker must determine d, which involves finding the prime factors p
and q of n. There is no known computationally efficient algorithm for this task.

Your Secret is Safe with Me

What if one could encrypt data and then send it off to some application
software where it could be analyzed, manipulated, and used without ever
needing to be decrypted? For example, you send your encrypted tax data off to
tax application software somewhere in “the cloud,” and that software can
prepare your tax forms without ever needing to read the real data, just the
encrypted data. Now that would be security! This seemingly magical idea was
in fact proposed by Ron Rivest, Len Adleman—of RSA fame—and Michael
Dertouzos in 1978, but how to actually do this remained unsolved until 2009
when a young IBM researcher named Craig Gentry found a solution, but a
computationally inefficient solution. In April 2011, DARPA (Defense Advanced
Research Projects Agency) announced that it is funding $20 million worth of
research to find a more efficient solution.

Practice Problem

You receive a message “17” that was sent using the RSA public

encryption key (21, 5) of the example in this section. Decode this to find

the original numeric message. (You might want to use a spreadsheet to

help with this computation.)

Chapter 8: Information Security: 8.4
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

8.4 Web Transmission Security
One area where the public is very security conscious is in making online purchases,
which require the purchaser to send out across the network his or her name, address,
and—most worrisome of all—credit card number. One method for achieving secure
transfer of information on the Web is SSL (Secure Sockets Layer). This is a series of
protocols developed by Netscape Communications (Netscape was an early Web
browser) in the mid-1990s. The TLS (Transport Layer Security) protocol, first defined in
1999, is based on SSL and is nearly identical to SSL. TLS has a few technical security
improvements over SSL, but the major difference is that TSL is nonproprietary and is a

standard supported by the Internet Engineering Task Force (IETF). The IETF is an open
organization of individuals concerned with “the evolution of the Internet architecture
and the smooth operation of the Internet.”

Both TLS and SSL are in use and are supported by all Web browsers. Technically,
TSL/SSL fits between the Transport layer, with its TCP protocols, and the Application
layer, with its HTTP protocols (both discussed in the previous chapter). When you see a
closed lock icon at the top or bottom of your Web browser page, or when the URL
displayed begins with HTTPS (instead of HTTP), then you can be assured that the
communication between your browser and the Web server (the vendor’s Web
computer) is secure and protected by TLS or SSL. TLS/SSL allows a client (the
purchaser’s Web browser) and a Web server to agree on the encryption methods to be
used, exchange the necessary security keys, and authenticate the identity of each party
to the other. (Here we are again with encryption and authentication, the two pillars of
security we’ve seen before.)

Now that we know a bit more about encryption, we might ask what encryption
algorithm TLS/SSL uses; is it DES encryption or the newer, stronger RSA encryption?
Surprisingly, it is both. One of the problems with the RSA algorithm is the
computational overload for encryption/decryption. What often happens is that RSA is
used in the initial stage of communication between client and server. For example, in
response to a client request, the server may send the client its public key along with an
authentication certificate. This is a certificate issued by a trusted third-party certificate
authority; it’s like a letter of introduction that attests that the server belongs to the
organization the browser thinks it is talking to.

The client, using RSA and the public key of the server, encodes a short message
containing the keys for a symmetric encryption algorithm. Because only keys are being
encrypted, the message is short and the encryption can be done quickly with little RSA
overload. The server receives and decodes this message and responds to the client with
a message encoded using the symmetric key. The client and server have now
established a secure exchange of keys (one of the issues with a symmetric encryption
algorithm) and can complete the transaction using, for example, DES. Figure 8.4
illustrates the major steps in this process, although the technical details may require a
few additional transmissions between the client and the server. The exchange of setup
information between the client and server, preparatory to exchanging real data, is
known as a handshake.

Figure 8.4

A TLS/SSL session

Chapter 8: Information Security: 8.5
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

8.5 Think Small, Think Big
Up to now, we have treated security as if it were always a matter between your
personal computer and the rest of the world. But there are many other places where
computing devices interact with the rest of the world.

Embedded computers are computational devices such as chips, processors, or
computers that are embedded within another system. Unlike a general-purpose
computer that can be programmed to do many different things, embedded computers
usually perform just one or two tasks as part of the system in which they occur.
Frequently this means they are small devices that you never see, and the ability to
package more and more transistors on a single chip has contributed to the growth of
embedded computers. Where are they found?

In your car

In your home thermostat

In your home alarm system

In your cell phone

In your digital clock or watch

In your iPod or MP3 player

In your video game console

In your TV remote controller

In your digital camera

In your credit card

In your microwave

In your car’s navigation system

In your car’s emergency and vehicle diagnostics system (i.e., General Motors

OnStar)

In a plane’s flight control system

In a bank ATM

In a hospital patient monitoring system

Well, you get the idea—embedded computers are everywhere! It is estimated that 98%
of all new CPUs (Central Processing Units) are used in embedded systems.

Embedded computers differ from conventional computers in other ways as well. Input
and output are usually not via keyboard and screen, respectively; instead, input may be
data sent from sensors within the surrounding system, and output may be commands
to control devices within the system. The embedded computer has very limited
memory and processing capacity. And its response time is often in the “real-time”
category (a plane’s flight control system has to respond instantly, so does the patient
monitoring system, and you hope your antilock brakes do that as well). For these same
safety-critical systems, reliability is a key requirement.

But reliability is not the same as security. Security comes into the picture when these
embedded systems become networked or even Internet-enabled. Your car’s navigation
system gets updates from the Web, the home alarm system connects over a network to
the alarm company, the electric company may connect with your thermostat to raise
the temperature slightly during peak air-conditioning load times, and sensors that
monitor manufacturing processes communicate to streamline the production flow. The
challenge is how to build security into network-enabled embedded computers that
have little extra memory, often have energy constraints, and have no system
administrator at hand to deal with security updates or breaches.

On the other end of the spectrum, computer systems control much of the world’s vital
infrastructure such as utility plants, electric grid systems, transportation,
telecommunications, and financial markets, to say nothing of defense and military
installations. It is not hard to imagine terrorist groups and perhaps hostile foreign
powers contemplating attacks on one of these systems. President Obama gave a “policy
review” speech on cybersecurity in May of 2009, but it was not until May of 2011 that
the president outlined a plan for cybersecurity. In terms of infrastructure security, the
plan calls for the president to designate critical industries, which would then draw up
their own plans and standards for cybersecurity. The Department of Homeland
Security would be able to scrutinize these plans, add additional standards, and publicly
criticize those it found inadequate, but would have no authority to impose fines.

Safeguarding vital infrastructure is a complex but extremely important issue, and
much work remains to be done. This is not just a United States issue, but a concern of

every industrialized nation.

First Your Car, Then Your Water Supply

Researchers at the University of California, San Diego, and the University of
Washington have proven that it is possible to undermine the security of the
embedded cellular and Bluetooth systems used by a car’s emergency and
vehicle diagnostics system. Researchers were able to insert malicious software
that in turn led to remote control of the car’s electronic control units and thus
the ability to override the car’s vehicle controls. In theory, someone could
remotely unlock your car, start the engine, then walk up and drive it away.
Even more serious, someone could possibly disable your antilock brake system,
shut down the steering, and crash your car while it’s running.

A Southern California water company hired a security firm to check its
computer networks for vulnerabilities. The team, in just one day, got control of
the computers that add chemical treatments to drinking water.

Chapter 8: Information Security: 8.6
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

8.6 Conclusion
In this chapter, we’ve looked at components of information security, both on an
isolated local computer and on a machine exposed to the network. Whether it’s an
individual’s personal data, corporate information, sensitive government data, or
infrastructure installations, all are under threat. Still, a bit of caution and common
sense can go a long way. As the well-worn watchword says, “Security: It’s Everybody’s
Business.”

Chapter 8: Information Security: 8.7
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

8.7 Summary of Level 3
We have seen that the hardware described in Chapter 4 and Section 8.2. is, by itself,
nearly unusable. Working directly with the hardware components of a Von Neumann
machine—processors, memory, ALU—is impossible for any but the most technically
knowledgeable users. To make the system accessible, the system software must create a
people-oriented virtual machine or virtual environment that is easy to understand and
use. In addition to ease of use, this virtual environment provides a number of other
services, including resource management, security, access control, and efficient

resource use. A great deal of work has been done to try to identify and create an
optimal virtual environment.

Operating systems—a critical component of the virtual environment—have evolved
from early batch systems through multiprogramming and time-sharing to the current
network and real-time operating systems. Most modern operating systems allow us to
use a large collection of machines, called a computer network, almost as easily as if it
were a single logical system. Network technology has expanded our virtual
environment to encompass a worldwide grid of interconnected computers. More and
more, the computer user on a networked system can deal only with what operations
need to be done, not with where or how they can be done. Perhaps they are being done
“in the cloud.” The future of computer systems definitely lies in the direction of more
abstract and more powerful virtual environments.

As our virtual environment has expanded, our most important asset—our data—is
increasingly at risk for theft or destruction by clever outsiders with malicious intent.
Constant vigilance is required to maintain information security so that our virtual
environment is not only user-friendly but also safe.

Now that we have created a vastly more usable environment in which to work, what
do we want to do with it? Well, we probably want to write programs that solve
important problems. In the next level of the text, we will begin our study of the
software world.

Chapter 8: Information Security
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter Review

Exercises

The following are three possible logon scenarios. Explain why answer (c)

below is preferable in terms of system security.

Welcome to XYZ computing

Enter username: jones

Invalid username

Enter username:

a.

Welcome to XYZ computing

Enter username: smith

b.

1.

Enter password: password

Invalid access

Enter username:

Enter username: smith

Enter password: password

Invalid access

Enter username: smith

Enter password: FpQr56

Welcome to XYZ computing

c.

Using the hash function described in Section 8.2. 1, find the encrypted

forms of the following passwords:

fidoa.

blankb.

ti34pperc.

2.

Password characters on a certain system are limited to 26 uppercase

letters [A … Z], 26 lowercase letters [a … z], 10 digits [0 … 9], and 3 special

symbols [#, $, %]. Suppose a password-cracking tool can generate and test

10,000,000 character strings (potential passwords) per second. Could all

possible passwords of length 10 or less be generated and tested in under 1

week’s time? (Use a spreadsheet to help find the answer.)

3.

Merriam-Webster’s Collegiate Dictionary, 11th ed. (Merriam-Webster, Inc.,

2003), contains over 225,000 entries. Using a password-cracking tool that

can process 1.7 million words per second, how long would it take to test

each word in the dictionary as a possible password?

4.

A virus attacks a single user’s computer and within one hour embeds

itself in 50 e-mail attachment files sent out to other users. By the end of

the hour, 10% of these have been opened and have infected their host

machines. If this process continues, how many machines will be infected

at the end of 5 hours? Can you find a formula for the number of machines

infected after n hours?

5.

A certain individual has a Hilton account, a Ritz-Carlton account, and a6.

i.

ii.

iii.

iv.

Marriott International account (all these companies were corporate

victims of the Epsilon data theft). The following e-mail message is sent to

this individual. Point out clues that should alert this individual that he/she

is the victim of a phishing attack.

We here at Marriott appreciate your loyalty as a customer. We want to

make things more easy for you when you travel, so we have partnered

with Hilton and Ritz-Carlton to create a unified rewards program. Now

when you stay at any of these fine brand hotels, you will earn award

points that can apply to a future stay at any of the three hotels. For you we

will quick set this up, just click on the link below to get started:

www.Mariott.com

Read about one of the following. Decide whether there seems to be

enough evidence to put it in the category of cyberwarfare:

Stuxneta.

2007 - Estoniab.

Byzantine Hadesc.

7.

Risk analysis is one way to monitor security in an organization. Risk

analysis can be a time-consuming process; it involves a number of steps,

some of which require “educated guessing.” Nevertheless, the process

alone raises awareness of security issues even if no immediate actions are

taken as a result. The steps are:

Identify assets (infrastructure, people, hardware, software,

reputation, etc.).

For the rest of this list, we’ll concentrate on a single asset.

Determine vulnerability (what event or events might happen to

the asset. For example, the building could catch fire, the Web site

could be hacked, etc.).

For the rest of this list, we’ll concentrate on a single asset vulnerable to a

single event.

Estimate the probability per year of this event (based on past

data, expert estimates, etc.). Take current security measures into

account.

Estimate the expected cost if this event occurs (cost to repair or

8.

v.

vi.

vii.

replace, cost of lost business, etc.).

Compute risk exposure = cost estimate * probability estimate.

Identify any additional security measure X that would help

protect against this event, what it would cost, and do a

calculation of the risk exposure with the additional security

measure X in place.

Do a cost-benefit analysis:

(Risk exposure without X − Risk exposure with X) − Cost of X

You have a small Web-based business that uses a single server to manage

your Web page and your customer information. Over the past four years,

your Web site has been hacked and taken down twice. You estimate that

the cost of this event is $600 to clean the server and reload the Web page

and $12,000 in lost business while the server is down.

You could purchase a backup server for a cost of $3,000, which you

estimate would reduce the probability per year of losing your Web

site to 0.2. Would this be a cost-effective security measure?

a.

What if you reevaluate the probability per year with the backup

server to be 0.3. Does this change your answer?

b.

Using a Caesar cipher with s = 5, decode the received message RTAJ TZY

FY IFBS.

9.

The centurion who was supposed to inform you of s was killed en route,

but you have received the message MXX SMGX UE PUHUPQP in a Caesar

cipher. Find the value of s and decode the message.

10.

You receive a message that was encoded using a block encoding scheme

with the encoding matrix

Verify by computing M × M that (Remember to wrap

around if a value is > 25.)

a.

Decode the ciphertext message MXOSHI.b.

11.

The DES algorithm combines two bit strings by applying the XOR operator

on each pair of corresponding bits. Compute the 6-bit string that results

12.

′

from 100111 ⊕ 110101.

To decode a message encrypted using DES requires finding the key from

among the 2 possible 56-bit binary keys. Although you might find the

key early on, the worst case is that you have to test all 2 possible DES

keys.

How long would this take using the six-core desktop described in the

Special Interest Box, “The Tortoise and the Hare” in Chapter 3?

Assume that a single key can be tested in one floating-point

operation.

a.

How long would this take using the Japanese “K” supercomputer

described in the Special Interest Box, “The Tortoise and the Hare” in

Chapter 3? Assume that a single key can be tested in one

floating-point operation.

b.

13.

Using the RSA encryption algorithm, pick p = 11 and q = 7. Find a set of

encryption/decryption keys e and d.

14.

Using the RSA encryption algorithm, let p = 3 and q = 5. Then n = 15 and

m = 8. Let e = 11.

Compute d.a.

Find the code for 3.b.

Decode your answer to part (b) to retrieve the 3.c.

15.

If a message is encrypted using AES with a key length of 256 bits, the

brute force approach to decryption involves generating each of the 2

possible keys in turn until one is found that decodes the encrypted

message. Quantum computing was discussed in Chapter 5. Using a

quantum computer, how many qubits are required to represent all 2

possible keys simultaneously?

16.

Chapter 8: Information Security
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter Review

Challenge Work

56

56

256

256

In this chapter, we discussed hash functions (hash algorithms) as a means

to protect passwords. Another application is message integrity: A hash

algorithm is applied to a message and the resulting hash is appended to

the original message when it is transmitted. Upon receipt, the message is

rehashed to produce a new hash that is compared with the original. If the

two hashes match, it is deemed that the message has not been altered in

transmission. This is based on the assumption that any change in the

message would produce a change in the hash. The standard hash

algorithm for message integrity has been SHA-1 (Secure Hash

Algorithm-1).

Read about how the basic assumption was challenged in 2005 by a

Chinese cryptographer named Xiaoyun Wang, who found a shorter

way to produce two different messages that hash to the same value

under SHA-1.

a.

Read about the competition launched by NIST (National Institute of

Standards and Technology) in 2007 to produce a new and more

secure hash algorithm that will be known as SHA-3. Has the winning

algorithm been selected yet?

b.

1.

Find information about a well-known computer virus or worm. Answer

as many of the following questions as you can, and be sure to list your

sources.

What is the name of the virus or worm?a.

When did it first appear?b.

Who wrote it?c.

How was it spread?d.

What systems did it attack?e.

What were its observable effects?f.

What are the technical details on how it worked?g.

What was the “cure”?h.

Did it spawn “copycat” attacks?i.

What was its economic impact?j.

2.

Was the perpetrator found, arrested, convicted?k.

The Vigenère cipher was first proposed in the sixteenth century. At its

heart is the Vigenère table (shown below), where each row represents a

Caesar cipher of the letters of the alphabet shown in the row of column

headers. The shift for row A is s = 0, for row B it is s = 1, for row C it is

s = 2, etc. Thus in row C, the column header A is shifted 2 characters to

become C, B becomes D, and so forth. The key to the Vigenère cipher is a

secret word or phrase known only to the sender and receiver. Each letter

in the key is used to encode a letter in the plaintext by finding in the table

the row of the key letter and the column of the plaintext letter; their

intersection is the ciphertext letter for that plaintext letter. When every

letter in the key has been used, the key is repeated.

For example, suppose the key is

and the plaintext message is

Because the key is shorter than the plaintext, it will have to be used

several times:

The first character of the ciphertext is found at the intersection of row S

and column M; it is E. The second character of the ciphertext is found at

the intersection of row O and column E; it is S. The complete ciphertext is

To decode a received message, you reverse this process. Again matching

the key characters to the ciphertext characters,

find the ciphertext character in the key character’s row; the plaintext

character is the corresponding column heading. Thus in row S, the E

occurs in column M, so M is the corresponding plaintext.

You receive the following ciphertext message that you know was encoded

using the Vigenère cipher with a secret key of PEANUTS:

3.

Decode the ciphertext to find the plaintext.

Chapter 8: Information Security
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter Review

Additional Resources

 For additional print and/or online resources relevant to this

chapter, visit the Computer Science CourseMate at login.cengagebrain.com.

Chapter 8: Information Security
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

© 2014 Cengage Learning Inc. All rights reserved. No part of this work may by reproduced or used in any form or by any means -
graphic, electronic, or mechanical, or in any other manner - without the written permission of the copyright holder.

Chapter : Introduction
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Part Introduction

In Level 4, we return to our original focus on algorithms as the heart of computer
science. Algorithms are devised to solve problems. Computer programs express these
algorithms in the form of a programming language, harnessing the power of the
hardware and the system software to bring algorithms to life.

Chapter 9 presents a framework for comparing several popular programming
languages: Ada, C++ (pronounced C plus plus), C# (pronounced C sharp), Java, and
Python. A more detailed introduction to any of these languages can be found in one of
the five separate online chapters. Go to www.cengagebrain.com. At the CengageBrain
home page, search for the ISBN of this book (found above the bar code on the back

cover) using the search box at the top of the page. At the Invitation page, click “Access
now”; this will take you to the page where these free online chapters can be found. The
chapters are also available on the CourseMate for this text.

Other programming languages and different language design philosophies are
introduced in Chapter 10. Chapter 11 explains how high-level programming language
statements are translated into low-level machine language statements that can be
executed by the hardware. Chapter 12 demonstrates that, in spite of all the power of
modern hardware and software, and no matter how clever we may be in designing
algorithms, problems exist that have no algorithmic solution.

Chapter : Introduction
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

© 2014 Cengage Learning Inc. All rights reserved. No part of this work may by reproduced or used in any form or by any
means - graphic, electronic, or mechanical, or in any other manner - without the written permission of the copyright holder.

Chapter 9: Introduction to High- Level Language Programming
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter 9
Introduction to High- Level Language Programming

9.1 The Language Progression

9.1.1 Where Do We Stand and What Do We Want?

9.1.2 Getting Back To Binary

9.2 A Family of Languages

9.3 Two Examples In Five-part Harmony

9.3.1 Favorite Number

9.3.2 Data Cleanup (Again)

9.4 Feature Analysis

9.5 Meeting Expectations

9.6 The Big Picture: Software Engineering

9.6.1 Scaling Up

9.6.2 The Software Development Life Cycle

9.6.3 Modern Environments

9.6.4 Agile Software Development

9.7 Conclusion

Chapter Review

Exercises

Challenge Work

Additional Resources

Chapter 9: Introduction to High- Level Language Programming: 9.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

9.1 The Language Progression
As of the end of Chapter 8, we have a complete and workable computer system. We
have a virtual environment in which we can pretend that we are communicating
directly with the computer, even though we are using a language (assembly language)
more suited to human communication than is (binary) machine language. We know
about the system software needed to support this virtual environment, including the
assembler that translates assembly language programs into machine language, as well
as the operating system that actually accepts requests to load and execute a program,
and coordinates and manages the other software tools needed to accomplish this task.
Our system also includes the network technologies and protocols that extend the
virtual world across our campus, throughout our office building, and around the
world, and we are aware of the need for protection against the security threats to
which we are exposed as our virtual world widens.

But this puts us somewhat ahead of our story. In Chapter 6, we talked about the
progression from machine language to assembly language, but today, using computers
to solve problems often involves writing programs in a high-level programming
language. This section continues the progression of programming languages from
assembly language (where we left off in our language story) to high-level languages.

Chapter 9: Introduction to High- Level Language Programming: 9.1.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

9.1.1 Where Do We Stand and What Do We Want?

At the end of Chapter 6, we were back in the “early days” of computing—the
1950s—when assembly language had just come into existence. As a step up from
machine language, it was considered a reasonable programming environment because
the people writing computer programs were for the most part technically oriented.
Many had backgrounds in engineering or (as it would later be called) computer
science. They were familiar with the inner workings of a computer and were
accustomed to dealing with difficult problems steeped in mathematical notation, so the
tedious precision of assembly language programming did not deter them. Also, because
assembly language is so closely tied to machine language, assembly language
programmers could see the kinds of processor activity that the assembly language
instructions would generate. By being sufficiently clever in their choice of instructions,
they could often shave a small amount off the execution time or amount of memory
that their programs required. For example, the following sequence of assembly
language instructions:

could be replaced by the single instruction

This is not the sort of performance improvement obtained by changing from a
sequential search algorithm to a binary search algorithm. Instead, it is a fine-tuning
improvement that may save a few millionths of a second, or even a few seconds if these
instructions occur inside a loop that is executed many times. But remember that in this
era, people did not have powerful personal computers at their disposal. Programmers
were competing for the resources of a mainframe computer, and although these
computers were physically large, they did not have the processing speed or memory
capacity of today’s systems. Conserving machine resources, even in tiny amounts, was
important.

Over the next few decades, however, computer usage became widespread, permeating
society to a degree that would probably not have been believed in the 1950s.
“Nontechie” types needed to write programs too, and they demanded a more
user-friendly programming environment. This was provided through the use of
high-level programming languages (which we talk about in this chapter and the next)
and also through evolving operating systems and other system software (which were
discussed in Chapter 6). In turn, these high-level languages opened the door for new
programmers. Also during this period, incredible technological strides made machines
so powerful that conserving resources was no longer the issue it once was, and the
overhead of execution time occasioned by the use of high-level programming
languages became acceptable.

Let’s review some of the aspects of assembly language programming that made people
look for better alternatives. Suppose our task is to add two integers. In the assembly
language of Chapter 6, the following instructions would have to be included (assume
that B and C have already been assigned values).

The three.DATA statements request storage for signed integers, generate the binary
representation of the integer value 0 to occupy that storage initially, and ensure that
the labels A, B, and C are bound to those memory locations. The LOAD statement copies
the current contents of the memory location labeled B into the ALU register R, the ADD
statement adds the current contents of the memory location labeled C to what is
currently in register R, and the STORE instruction copies the contents of R (which is
now B + C) into the memory location labeled A.

To perform a simple arithmetic task, we had to manage all the data movement of the
numbers to be combined as well as the resulting answer. This is a microscopic view of
a task—we’d like to be able to say something like “add B and C, and call the result A,” or
better yet, something like “A = B + C.” But each assembly language statement
corresponds to at most one machine language statement (you may recall from Chapter
6 that the pseudo-op.DATA statements do not generate any machine language
instructions). Therefore, individual assembly language statements, though easier to
read, can be no more powerful than the operations of the underlying instruction set.
For the same reason, assembly language programs are machine specific. An assembly
language statement that runs on machine X is nothing but a slightly “humanized”
machine language statement for X, and it will not execute on a machine Y that has a
different instruction set. Indeed, machine Y’s assembler won’t know what to do with
such a statement.

Finally, assembly language instructions are rather stilted. STORE A does not sound
much like the sort of language we customarily speak, though STORE is certainly more
expressive than its binary machine language counterpart.

To summarize, assembly language has the following disadvantages:

The programmer must “manually” manage the movement of data items between

and among memory locations and registers (although such data items can be

assigned mnemonic names).

The programmer must take a microscopic view of a task, breaking it down into

tiny subtasks at the level of what is going on in individual memory locations.

An assembly language program is machine specific.

Statements are not natural-language-like (although operations are given

mnemonic code words as an improvement over a string of bits).

We would like to overcome these deficiencies, and high-level programming languages
were created to do just that. Thus, we have the following expectations of a program
written in a high-level language:

The programmer need not manage the details of the movement of data items

within memory or pay any attention to exactly where those items are stored.

The programmer can take a macroscopic view of tasks, thinking at a higher level

of problem solving (add B and C, and call the result A). The “primitive operations”

used as building blocks in algorithm construction (see Chapter 1) can be larger.

Programs are portable rather than machine specific.

Programming statements are closer to natural language and use standard

mathematical notation.

High-level programming languages are often called third-generation languages,
reflecting the progression from machine language (first generation) to assembly
language (second generation) to high-level language. They are another step along the
continuum shown in Chapter 6, Figure 6.3. This also suggests what by now you have
suspected: We’ve reached another layer of abstraction, another virtual environment
designed to further distance us from the low-level electronic components of the
machine.

Chapter 9: Introduction to High- Level Language Programming: 9.1.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

9.1.2 Getting Back To Binary

There is a price to pay for this higher level of abstraction. When we moved from
machine language to assembly language, we needed a piece of system software—an
assembler—to translate assembly language instructions into machine language (object
code). This was necessary because the computer itself—that is, the collection of
electronic devices—can respond only to binary machine language instructions. Now
that we have moved up another layer in the language in which we communicate with
the computer, we need another translator to convert our high-level language
instructions into machine language instructions. Such a piece of system software is
called a compiler. Rather than doing the whole translation job clear down to object
code, the compiler often translates high-level language instructions (source code) only
into low-level code rather close to machine language (the hard part of the translation)
and then turns the final (simple) translation job over to a second translator. Compilers
for some high-level languages generate low-level code that is machine-specific
assembly language, and the second translator is an assembler for that machine’s
assembly language. Compilers for other high-level languages generate low-level code
that—while still machine independent—is nonetheless very easy to convert to the final
object code for any particular machine language.

Some tasks (e.g., sorting or searching) need to be performed often, as part of solving
other problems. The code for such a useful task can be written as a group of high-level
language instructions and thoroughly tested to be sure it is correct. Then the object
code for the task can be stored in a code library. A program can just request that a copy
of this object code be included along with its own object code. A piece of system
software called a linker inserts requested object code from code libraries into the
object code for the requesting program. The resulting object code is often called an
executable module. Thus, a high-level program might go through the transitions shown
in Figure 9.1. Compare this with Figure 6.4.

Figure 9.1

Transitions of a high-level language program

The work of the compiler is discussed in more detail in Chapter 11. Let us note here,
however, that the compiler has a much tougher job than the assembler. An assembler
has a one-for-one translation task because each assembly language instruction
corresponds to (must be translated into) at most one machine language instruction. A
single high-level programming language instruction, on the other hand—precisely
because a high-level language is more expressive than assembly language—can
“explode” into many assembly language instructions.

Chapter 9: Introduction to High- Level Language Programming: 9.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

9.2 A Family of Languages
Most of today’s popular high-level programming languages fall into the same
philosophical family; they are procedural languages (also called imperative languages).

A program written in a procedural language consists of sequences of statements that
manipulate data items. The programmer’s task is to devise the appropriate step-by-step
sequence of “imperative commands”—instructions in the programming language
—that, when carried out by the computer, accomplish the desired task.

Procedural languages follow directly from the Von Neumann computer architecture
described in Chapter 5, an architecture characterized by sequential fetch-decode-
execute cycles. A random access memory stores and fetches values to and from
memory cells. Thus it makes sense to design a language whose most fundamental
operations are storing and retrieving data values. For example,

Even though a high-level programming language allows the programmer to think of
memory locations in abstract rather than physical terms, the programmer is still
directing, via program instructions, every change in the value of a memory location.

Ada, C++, C#, Java, and Python Online Chapters

To explore programming through the lens of a particular programming
language, and to get a sense of what programming in a high-level language is
like, try one or more of the online chapters found on the CourseMate for this
text and online at www.cengagebrain.com. At the CengageBrain home page,
search for the ISBN of this book (found above the bar code on the back cover).
At the Invitation page, click “Access now”. These PDF documents can be read
online, downloaded to your computer, or printed out and read on paper. Each
chapter includes language-specific exercises and practice problems.

The languages we have chosen to discuss from this procedural language family are
Ada, C++, C#, Java, and Python. These languages differ in the rules (the syntax) for
exactly how statements must be written and in the meaning (semantics) of correctly
written statements. Rather than fill up pages and pages of this book with the details of
each of these languages, we’ve created online chapters for you to investigate the
language(s) of your choice (or your instructor’s choice) in much more detail than you
will see here. See the Special Interest Box on the previous page for information on
accessing the online chapters.

Chapter 9: Introduction to High- Level Language Programming: 9.3
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

9.3 Two Examples In Five-part Harmony
At this point you might (or might not) have studied one or more of the online chapters
for Ada, C++, C#, Java, or Python. In either case, you might be interested to see how
these languages are similar and how they differ. In this section, we’ll look at two
sample problems and their solutions in each of the five languages. Don’t be overly
concerned about the details; just try to get the “big picture” in each of these solutions.

Chapter 9: Introduction to High- Level Language Programming: 9.3.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

9.3.1 Favorite Number

Our first problem is trivially simple. Nonetheless, it will allow you to observe some of
the significant syntactic differences in these five languages. A pseudocode version is
shown in Figure 9.2.

Figure 9.2
Pseudocode algorithm for favorite number

Get value for the user’s favorite number, n1.

Increase n by 12.

Print a message and the new value of n3.

Next, we show this same algorithm implemented in Ada (Figure 9.3), C++ (Figure 9.4),
C# (Figure 9.5), Java (Figure 9.6), and Python (Figure 9.7). The program code in each
figure is easily recognizable as a formalized version of the pseudocode—it uses some
mechanism to get the user’s favorite number, then sets the value of n to n + 1, and
finally writes the output. The syntax, however, varies with the language. In particular,
each language has its own way of reading input (from the keyboard), performing a
computation, and writing output (to the screen). There’s also a variation in the amount
of “startup” required just to get to the actual algorithm implementation part. Each
language has a notation (--, //, or #) that denotes a program comment, and each
language has its own set of special “punctuation marks.” For example, four of the five
languages (Python being the exception) require a semicolon to terminate an executable
program statement.

Figure 9.3

Ada program for favorite number

Figure 9.4

C++ program for favorite number

Figure 9.5

C# program for favorite number

Figure 9.6

Java program for favorite number

Figure 9.7

Python program for favorite number

Chapter 9: Introduction to High- Level Language Programming: 9.3.2
Book Title: Invitation to Computer Science, Sixth Edition

Printed By:
© 2013 , Cengage Learning

9.3.2 Data Cleanup (Again)

Now that you’ve seen a bare-bones sample for each language, let’s implement a
solution to a considerably more interesting problem. In Chapter 3, we discussed several
algorithms to solve the data cleanup problem. In this problem, the input is a set of
integer data values (answers to a particular question on a survey, for example) that
may contain 0s, although 0s are considered to be invalid data. The output is to be a
clean data set where the 0s have been eliminated. Figure 9.8 is a copy of Figure 3.16. It
shows the pseudocode for the converging-pointers data cleanup algorithm, the most
time- and space-efficient of the three data cleanup algorithms from Chapter 3.

Figure 9.8

The converging-pointers algorithm for data cleanup

Our pseudocode does not specify the details of how to “get values.” In the favorite
number example, the single input value was entered at the keyboard. The survey data,
however, is probably already stored in an electronic file. It might have been collected
via an online survey that captured the responses or via paper forms that have been
scanned to capture the data in digital form. Designing our programs to read input data
from a file, however, is a bit more than we want to get into, so we’ll again assume the
input data is typed in at the keyboard.

The pseudocode algorithm of Figure 9.8 is implemented in Ada (Figure 9.9), C++ (Figure
9.10), C# (Figure 9.11), Java (Figure 9.12), and Python (Figure 9.13).

Figure 9.9

Ada converging-pointers algorithm

Figure 9.10

C++ converging-pointers algorithm

Figure 9.11

C# converging-pointers algorithm

Figure 9.12

Java converging-pointers algorithm

As with the previous, simpler example, you can see that each program follows the
outline of the pseudocode algorithm. Each language supports if statements and while
loops. The extent of the while loop is denoted by curly braces { } in three of the
languages, by loop … end loop in Ada, and (although this is less evident) by a colon and
indentation in Python.

Figure 9.13

Python converging-pointers algorithm

There are several different ways of creating the memory space to hold the list of data
values. And, as we saw before, each language does I/O (from keyboard to screen) using
different syntax, and requires different “startup” code. But the output of each version
looks like Figure 9.14, where boldface indicates user input.

Figure 9.14

Output from the various data cleanup implementations

Figure 9.15

(CONTINUED)

Figure 9.15

(CONTINUED)

Chapter 9: Introduction to High- Level Language Programming: 9.5
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

9.5 Meeting Expectations
At the beginning of this chapter, we gave four expectations for programs written in a
high-level programming language. Now that we have been introduced to the essentials
of writing programs in such a language, it is time to see how well these expectations
have been met.

The programmer need not manage the details of the movement of data items within

memory or pay any attention to exactly where those items are stored. The

programmer’s only responsibilities are to declare (or in the case of Python,

create) all constants and variables the program will use. This involves selecting

identifiers to represent the various data items and indicating the data type of

each, either in the declaration statement or, in the case of Python, in an

assignment statement. The identifiers can be descriptive names that

meaningfully relate the data to the problem being solved. Data values are moved

as necessary within memory by program instructions that simply reference these

identifiers, without the programmer knowing which specific memory locations

contain which values, or what value currently exists in an ALU register. The

concepts of memory address and movement between memory and the ALU,

along with the effort of generating constant data values, have disappeared.

1.

The programmer can take a macroscopic view of tasks, thinking at a higher level of

problem solving. Instead of moving data values here and there and carefully

orchestrating the limited operations available at the machine language or

assembly language level, the programmer can, for example, write the formula to

compute the circumference of a circle given its radius. The details of how the

instruction is carried out—how the data values are moved about and exactly how

the multiplication of real number values is done—are handled elsewhere.

Compare the power of conditional and looping instructions—which are tools for

algorithmic problem solving and resemble the operations with which we

2.

constructed algorithms in pseudocode—with the assembly language instructions

LOAD, STORE, JUMP, and so on, which are tools for data and memory

management.

Programs written in a high-level language will be portable rather than machine

specific. Program developers use a variety of approaches to make their programs

portable to different platforms. For programs written in most high-level

languages, the program developer runs through the complete translation process

to produce an executable module (as shown in Figure 9.1), and it is the

executable module that is sold to the user, who runs it on his or her own

machine. The program developer doesn’t usually give the user the source code to

the program, for a multitude of reasons. First, the program developer does not

want to give away the secrets of how the program works by revealing the code to

someone who could make a tiny modification and then sell this “new” program.

Second, the program developer wants to prevent the user from being able to

change the code, rendering a perfectly good program useless, and then

complaining that the software is defective. And finally, if the program developer

distributes the source code, then all users must have their own translators to get

the executable module needed to run on their own machines.

The developer can compile the program on any kind of machine as long as there

is a compiler on that machine for the language in which the program is written.

However, there must be a compiler for each (high-level language, machine-type)

pair. If the program is written in C++, for example, and the program developer

wants to sell his or her program to be used on a variety of computers, he or she

needs to compile the same program on a PC using a C++ compiler for the PC, on a

Mac using a C++ compiler for the Mac, and so on, to produce all the various object

code versions. The program itself is independent of the details of each particular

computer’s machine language because each compiler takes care of the

translation. This is the “portability” we seek from high-level language programs.

Even the availability of the appropriate compiler may not guarantee that a

program developed on one type of machine can be compiled on a different type

of machine. Each programming language has a certain core of instructions that

are considered standard. Any respectable compiler for that language must

support that core. In fact, national and international standards groups such as

ANSI (American National Standards Institute) and ISO (International

Organization for Standardization), which develop standards for an incredible

number of things, also develop standards for programming languages. Compilers

are thus built to support “ANSI-standard language X.” However, there are often

3.

useful features or types of instructions that are not considered a standard part of

the language and that some compilers support and some do not. If a program is

written to take advantage of some of these extra features that are available on a

particular compiler—often referred to as extensions, or “bells and whistles”—the

program may not work with a different compiler. The price for using

nonstandard features is the risk of sacrificing portability.

The standardization process (for anything, including a programming language) is

necessarily a slow one because it seeks to satisfy the interests of a number of

groups, such as consumers, industry, and government. If official standardization

comes too late, it must bow to what may have become a de facto standard by

common usage. If standardization is imposed too early, it may thwart the

development of new ideas or technology.

Newer languages such as Java and C# were developed specifically to run on a

variety of hardware platforms without the need for a separate compiler for each

type of machine. A compiler for Java or C# translates the source code program

into very low-level code (called bytecode in Java and Microsoft Intermediate

Language in C#). The resulting programs are not machine-language code for any

real machine, but they can easily be translated into any specific machine

language. The program developer only needs to do one compilation to produce

low-level code and then can distribute the resulting program to the various users.

The final translation/ execution of the low-level code into the machine language

of a particular user’s machine is done by a small piece of software on the user’s

machine (a Java bytecode interpreter for Java or a Just In Time compiler for C#).

The Python language takes a still different approach to portability. A Python

program is interpreted rather than compiled, which means that it is translated

from source code into object code every time it is executed. As a consequence,

each user’s machine has to have a Python interpreter, but such an interpreter is

available for virtually every operating system, and is small, quick, and free. In the

spirit of open source code development, Python developers are happy to send

their source code to users.

Programming statements in a high-level language will be closer to natural language

and will use standard mathematical notation. High-level languages provide us

with statements that give natural implementations of pseudocode instructions

such as “while condition do something …” or “if condition do something ….”

While pseudocode is still somewhat stilted, it is nonetheless close to natural

language. We can also use standard mathematical notation such as A + B and A >

4.

needed for development, and the duration of the development effort. These numbers
are very rough approximations, but they give you an idea of the size of some widely
used software packages. Analogous building construction projects are also listed.

Figure 9.17
Size categories of software products

Category Typical
Number
of
People

Typical
Duration

Product Size in
Lines of Code

Examples Building
Analogy

Trivial 1 1–2
weeks

< 500 Student homework
assignments

Small home
improvement

Small 1–3 A few
weeks or
months

500–2,000 Student team
projects, advanced
course assignments

Adding on a
room

Medium 2–5 A few
months

to 1 year

2,000–10,000 Research projects,
simple production
software such as

assemblers, editors,
recreational and

educational
software

Single-family
house

Large 5–25 1–3
years

10,000–100,000 Most current
applications— word

processors,
spreadsheets,

operating systems
for small

computers,
compilers

Small
shopping

mall

Very
Large

25–100 3–5
years

100,000–1 M Airline reservations
systems, inventory
control systems for

multinational
companies

Large office
building

Extremely
Large

> 100 > 5 years > 1 M Large-scale
real-time operating

Massive
skyscraper

addition to the costs of the machine itself, there may be costs for peripherals such

as laser printers and telecommunications links. The costs of software (purchased

or produced in-house); equipment maintenance; salary for developers or

consultants, technical support people, and data entry clerks—these must all be

factored in, as well as the costs incurred in training new users on the system. The

overall cost of using a computer to solve a problem can be much higher than

expected, and it can be more than the value of the information produced. Other

options should also be considered. Thus, the feasibility study should address the

following question:

What are the relative costs and benefits of the following choices?

Buying a new computer system and writing or buying software

Writing new software for an existing computer system

Using the resources of “cloud computing” (see Chapter 6)

Outsourcing the work to a contractor

Revising the current manual process for solving this problem

Cutting back the scope of the project to better align it with existing

resources

Other solutions …

At the end of the feasibility study, a feasibility document expresses the resulting

recommendations. The creation of this document can be a very complex process

involving considerations that are the provinces of business, law, management,

economics, psychology, and accounting as well as computer science. The purpose

of the feasibility study is to make all project stakeholders aware of the costs, risks,

and benefits of various development paths as a guide to deciding on the approach

to use.

Problem specification—If it is determined that the project is feasible and will

benefit from a computer solution, and that the software development is to go

forward, we move on to the problem specification phase. Problem specification

involves developing a clear, concise, and unambiguous statement of the exact

problem the software is to solve. Because the original problem statement used in

the feasibility study is written in a natural language, such as English, it may be

unclear, incomplete, or even internally contradictory. This rough initial problem

2.

statement must be transformed into a complete problem specification. During the

problem specification phase, the software developers and their “customers”

—those who are commissioning the software and will be its eventual users—must

resolve each and every inconsistency, ambiguity, and gap. It is much easier and

cheaper to make changes at this stage than to make changes in software months

down the road. Consider how much more practical it is to change your mind

when looking at the blueprints of your new home than after the foundation has

been dug and the walls have started to go up.

The problem specification document expresses the final and complete problem

specification and guides the software developers in all subsequent decisions. The

specification document describes exactly how a program behaves in all

circumstances—not only in the majority of cases, but even under the most

unusual conditions. It includes a description of the data expected to be input to

the program, as well as what results should be computed and how these results

are to be displayed as output. It may also include limitations on the time allotted

to produce those computations or on the amount of memory the program

requires.

Vital Statistics For Real Code

The Windows operating system was created by Microsoft Corporation.

Development of this system (which was originally called the Interface

Manager) began in 1981. Subsequently renamed Microsoft Windows, the

system was not released until November 1985, after 55 person-years of

effort. Since then, there have been a number of evolutions, such as

Windows NT, Windows 2000, Windows XP, Windows Vista, and Windows

7.

The Windows NT development project began with a team of 10 or 12

people and expanded to include more than 200 in both technical and

support staff roles. Over the four-year development effort for the first

version, which was released in 1993, this translated into hundreds of

person-years of labor merely to get the system out the door, to say nothing

of maintenance work required to support this version and the efforts to

upgrade it to new versions. The final system contained several hundred

thousand lines of code. This is a Very Large project by the standard of

Figure 9.17. Windows 95, released in August 1995, required about 8

million lines of code, which clearly puts it into the “massive skyscraper”

(i.e., Extremely Large) category of Figure 9.17.

The Windows XP operating system was released in 2001. It has more than

40 million lines of code, which even presses the envelope of our

Extremely Large category. Windows Vista was released in 2007 after more

than five years of development. Its 50 million lines of code probably made

it the single largest software development project ever at the time it was

released. Windows 7 was released in October 2009. Windows 7 is based

on Vista but with additional capabilities, so we can imagine that it goes

well beyond 50 million lines of code.

The fifth major release of the Mac OS X operating system, Mac OS X Tiger,

released in 2005, had 86 million lines of code.

The complexity of software projects of this magnitude is breathtaking. Not

only technical capabilities, but also planning, teamwork, communication,

and management skills are vital to successful completion.

Once agreed to by the developer and the customer, this document becomes

essentially a legal contract describing what the developer promises to provide

and what the customer agrees to accept. Like a contract, it usually includes a

delivery schedule and a price, and it is signed by both the customer and the

developer.

Program design—Now that it is clear what is to be done, the programdesign phase

is the time to plan how it is to be done. In a traditional programming approach,

the divide-and-conquer strategy (also called top-down decomposition) comes into

play. Tasks are broken down into subtasks, which are broken down into

sub-subtasks, and so on, until each piece is small enough to code comfortably.

These pieces work together to accomplish the total job. In an object-oriented

approach, the appropriate objects are identified, together with their data and the

subtasks they must perform. This allows classes to be designed with variables to

store the data, and functions (also called methods) to carry out these subtasks.

Objects from these classes cooperate to accomplish the total job.

The larger the project, the more crucial it is to think of it in terms of smaller

building blocks, or helpful classes, that are created separately and then properly

assembled to solve the problem at hand. Although small programs of 50–100 lines

can be thought of in one piece, 100,000-line programs cannot. However, it is

possible to treat a 100,000 line program as a collection of about 1,000–2,000

3.

smaller pieces, each containing about 50–100 lines.

The program design document breaks the problem down into subtasks and

sub-subtasks, or into various classes. Some of this design may be documented

graphically, through structure charts or through class diagrams that give the

properties and functions of each class. Modules that carry out subtasks in a

traditional design, or that carry out some service that the objects of a class

provide, are ultimately translated into separate sections of code. There must also

be a complete specification of each module: what it is to do, what information it

needs to know in order to do it, and what the rest of the program needs to get

from it when it is done. This information must be sufficiently detailed that a

programmer can use the description as a guide to writing code for the module in

the language of choice.

Program design is one of the truly creative and interesting parts of the software

development life cycle. It is related to coding in roughly the same way that

designing an airplane is related to riveting a wing.

Algorithm selection or development, and analysis—Once the various subtasks have

been identified, algorithms must be found to carry them out. For example, one

subtask may be to search a list of numbers for some particular value. In Chapters

2 and 3, we examined two different algorithms for searching—sequential search

and binary search. If there is a choice of algorithms, it must be determined which

is more suitable for this particular task, and perhaps which is more efficient. It

may also be that an algorithm has to be developed from scratch. This, too, is a

very creative process. Documentation of this phase includes a description of the

algorithms chosen or developed, perhaps in pseudocode, an analysis of their

efficiency (as we did in Chapter 3), and a rationale for their use.

4.

Coding— Coding is the process of translating the detailed designs into computer

code. If the design has been carefully developed, this should be a relatively

routine job. Perhaps reusable code can be pulled from a program library, or a

useful class can be employed. Coding is the step that usually comes to mind when

people think of software development. However, as we have shown, a great deal

of important preparatory work precedes the actual production of code.

Inexperienced programmers may think that they will save time by skipping the

earlier phases and getting right to the coding. The opposite is usually true. In all

but the most trivial of programs, tackling coding without first doing problem

specification, program design, and algorithm selection or development ultimately

leads to more time being spent and a poorer outcome. The coding phase also

5.

results in a written document, namely the listing of the program code itself.

Debugging— Debugging is the process of locating and correcting program errors,

and it can be a slow and expensive operation that requires as much effort as

writing the program in the first place. Errors can occur because a program

statement fails to follow the correct rules of syntax, which makes the statement

unrecognizable by the compiler and results in an error. Though irritating, these

syntax errors are accompanied by messages from the compiler that help to

pinpoint the problem. Other errors, called runtime errors, occur only when the

program is run using certain sets of data that result in some illegal operation,

such as dividing by zero. The system software also provides messages to help

detect the cause of runtime errors. The third, and most subtle, class of errors is

logic errors. These are errors in the algorithm used to solve the problem. Some

incorrect steps that result in wrong answers are performed, but there are no

error messages to help pinpoint the problem. Indeed, the first step in debugging a

logic error is to notice that the answers are wrong. For example, if our algorithm

calls for us to add 317 to the value of A, but we accidently translate this as:

our mistake will not produce an error message as the statement is syntactically

correct and semantically meaningful. The only way we know there is an error is

to notice the incorrect result in A.

Debugging has always been one of the most frustrating, agonizing, and

time-consuming steps in the programming process. Extensive time spent on

debugging usually means that insufficient time was spent on carefully specifying,

organizing, and structuring the solution. If the design is poor, then the resulting

program is often a structural mess, with convoluted, hard-to-understand logic. On

the other hand, devoting careful attention to the design phases can help reduce

the amount of debugging that must be done.

Careful documentation of the debugging process includes notes on the problems

found and on how the code was changed to solve them. This may prevent later

changes from reintroducing old errors.

6.

Testing, verification, and benchmarking—Even though a program produces

correct answers for 1, 5, or even 1,000 data sets, how can we be sure that it is

100% correct and will work on all data? One approach, called empirical testing, is

to design a special set of test cases, called a test suite, and run the program using

this special test data. Test data that are carefully chosen to exercise all the

7.

different logic paths through a program can help uncover errors. In a conditional

statement, for example, one set of data should make the Boolean expression true,

so that one block of code is executed. Another set of data should make the same

Boolean expression false, so that the other block of code is executed. The quantity

of the test data does not matter; what matters is that the data cover all the various

cases. The goal of empirical testing is to make sure that every statement in the

software has been executed at least once. Having said that, we should note that in

all but the most trivial programs, it is not possible to “cover all the cases.” The

best that can be said is that the more thorough the testing, the higher the level of

our confidence that the program is correct.

It’s not a good plan to wait until the complete program is “finished” before testing

takes place. In a program of any size, that’s too late to identify where an error

occurs. Unit testing takes place on each module (subtask code) as it is completed.

As these tested modules are combined to work together, integration testing is

done to see that the modules communicate the necessary data between and

among themselves and that all modules work together smoothly. And if anything

is changed on an already-tested module, regression testing is done to be sure that

this change hasn’t introduced a new error into code that was previously correct.

A second, and totally different, approach to confirming a program’s correctness is

to use mathematical logic. Program verification can be used to prove that if the

input data to a program satisfies certain conditions, then, after the program has

been run on these data, the output data satisfies certain other conditions. This is

not a magic wand that gives us blanket assurance that the program will

absolutely behave as we want. Furthermore, the program verification process

can be difficult and time consuming. That’s why program testing is used much

more than formal program verification to reduce the risk of program errors.

In addition to correctness, the problem specification may require certain

performance characteristics such as the amount of time to compute the results.

Benchmarking the program means running it on many data sets to be sure its

performance falls within those required limits. At the completion of testing (or

verification) and benchmarking, we should have a correct and efficient program

that is ready for delivery. Of course, all of the testing, verification, and

benchmarking results are committed to paper as evidence that the program

meets its specifications.

Documentation—Program documentation is all of the written material that makes

a program understandable. This includes internal documentation, which is part

8.

of the program code itself. Good internal documentation consists of choosing

meaningful names for program identifiers, using plenty of comments to explain

the code, and separating the program into short modules, each of which does one

specific subtask. External documentation consists of any materials assembled to

clarify the program’s design and implementation. Although we have put this step

rather late in the software development process, note that each preceding step

produces some form of documentation. Program documentation goes on

throughout the software development life cycle. The final, finished program

documentation is written in two forms. Technical documentation enables

programmers who later have to modify the program to understand the code.

Such information as structure charts or class diagrams, descriptions of

algorithms, and program listings fall in this category. User documentation helps

users run the program. Such documentation includes online tutorials, answers to

frequently-asked questions (FAQs), help systems that the user can bring up while

the program is running, and (less often) written user’s manuals.

Maintenance—Programs are not static entities that, once completed, never

change. Because of the time and expense involved in developing software,

successful programs are used for a very long time. It is not unusual for a program

to still be in use 15 or 20 years after it was written. (Microsoft Word was first

developed and released in 1983!) In fact, the typical life cycle for a medium- to

large-sized software package is 1–3 years in development and 5–15 years in the

marketplace. During this long period of use, errors may be uncovered, new

hardware or system software may be purchased on which the program has to

run, user needs may change, and the whims of the marketplace may fluctuate.

The original program must be modified and brought out in new versions to meet

these changing needs. Program maintenance, the process of adapting an existing

software product, may consume as much as 65% of the total software

development life cycle budget. If the program has been well planned, carefully

designed, well coded, thoroughly tested, and well documented, then program

maintenance is a much easier task. Indeed, it is with an eye to program

maintenance (and to reducing its cost) that we stress the importance of these

earlier steps.

Maintenance should not really be viewed as a separate step in the software

development life cycle. Rather, it involves repetition of some or all of the steps

previously described, from a feasibility study through implementation, testing,

and updated documentation. Maintenance reflects the fact that the software

development life cycle is truly a cycle, during which it is necessary to redo earlier

phases of development as our software changes, grows, and matures.

9.

Chapter 9: Introduction to High- Level Language Programming: 9.6.3
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

9.6.3 Modern Environments

Modern software development environments have had a great impact on the software
development life cycle process. Most programming languages are now presented
within an integrated development environment, or IDE. The IDE lets the programmer
perform a number of tasks within the shell of a single application program, rather than
having to use a separate program for each task. Consider some of the system software
tasks described in Section 6.2: Use a text editor to create a program; use a file system to
store the program; use a language translator to translate the program to machine
language; and if the program does not work correctly, use a debugger to help locate the
errors.

A modern programming IDE provides a text editor, a file manager, a compiler, a linker
and loader, and tools for debugging, all within this one piece of software. This can
significantly speed up program development.

Many IDEs enable programmers to create sample graphical user interfaces (GUIs),
called prototypes, that can be shown to prospective users in the initial stages of
software development. These prototypes do not have any functionality, but they can
give users a good idea of what the final software package will look like—much like
seeing a small-scale mock-up of a proposed new building before it is actually built. This
rapid prototyping process allows any misunderstandings or miscommunications
between user and programmer to be identified and corrected early in the development
process.

Finally, there are software packages that track requirements from the initial
specification through the design process to final code, to make sure that nothing gets
lost along the way. These packages may also support graphical design of the various
program elements, such as classes, and facilitate their translation into code.

Chapter 9: Introduction to High- Level Language Programming: 9.6.4
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

9.6.4 Agile Software Development

The software development process described in Section 9.6.2 is also known as the
waterfall model of software development. Think of a series of waterfalls moving a river
down and down through various plateaus. In the software development process, these
plateaus would be the feasibility study, problem specification, program design, etc.—all

the steps we outlined in Section 9.6.2. This imagery suggests that software development
is a completely sequential process, that is, one step must be completed before moving
on to the next, and that previous steps are never revisited. The waterfall model was
originally developed to describe manufacturing processes, where a step such as “cut
sheet metal” definitely had to be completed (and never revisited) before “weld the
seams.”

Software development is much more fluid, and in fact there is wiggle room in the
waterfall model. The program design phase may bring out issues that require revisiting
the problem specification, the debugging phase obviously requires some amount of
recoding, and testing and documentation are done throughout the process. Thus, the
“pure” waterfall model of software development is seldom used in favor of a more
flexible approach that is instead guided by the waterfall model.

Around 2001, a new software development model known as agile software
development started to be used. The dictionary definition of the word agile is: “marked
by ready ability to move with quick easy grace; having a quick, resourceful and
adaptable character.” This suggests flexibility, nimbleness, and the ability to adjust to
changes. Let’s revisit a phrase or two from our discussion of the waterfall model: “The
problem specification document expresses the final and complete problem
specification and guides the software developers in all subsequent decisions. … Once
agreed to by the developer and the customer, this document becomes essentially a legal
contract describing what the developer promises to provide and what the customer
agrees to accept.” Sounds like a done deal.

The whole agile software development philosophy is a recognition that the problem
specification is never a “done deal,” that there are bound to be changes, that the
development team must be “agile” in its response to these changes, and that the
customer should be involved in working with the development team throughout the
process. Agile software development is actually a whole suite of methods and processes
that help to promote this flexible and ready response to meet a shifting and
ever-changing target.

One of the ideas of agile software development, pair programming, has even made its
way into some college computer science classes. Pair programming involves two
programmers (students) at a single workstation. At any given point in time, one is
writing code and the other is actively observing. The observer watches each line of
code for possible errors, but also is thinking about the overall approach, what
problems may lie ahead, possibly spotting improvements that could be made. The roles
of the two individuals are switched frequently. The emphasis is on cooperation, not
competition. Pair programming, if done well, actually produces better code more
quickly than a single programmer, but of course there is the added cost of two people
working together. So for any particular project, the relative costs and benefits of pair
programming need to be weighed.

Chapter 9: Introduction to High- Level Language Programming: 9.7
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

9.7 Conclusion
In this chapter, we have seen how the use of a high-level language overcomes many of
the disadvantages of assembly language programming, creating a more comfortable
and useful environment for the programmer. In a high-level language, the programmer
need not manage the storage or movement of data values in memory. The programmer
can think about the problem at a higher level, can use program instructions that are
both more powerful and more natural-language-like, and can write a program that is
much more portable among various hardware platforms. The online language chapters
(on Ada, C++, C#, Java, and Python) spell out the mechanisms used by each language to
give the programmer these more powerful problem-solving abilities. In this chapter,
we’ve seen two small sample programs in each language plus a brief comparison of
some of the features of these languages.

We also discussed the entire software development life cycle, noting that for large,
real-world programs, software development must be a managed discipline. Coding is
but a small part of the software development process.

The high-level languages we have investigated so far all belong to the procedural
language family. In the next chapter, we’ll look briefly at several more procedural
languages as well as other languages that take quite a different approach to problem
solving.

Chapter 9: Introduction to High- Level Language Programming
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter Review

Exercises

Each online language chapter has its own set of exercises. See the Special Interest Box
on for instructions on accessing the online chapters.

Chapter 9: Introduction to High- Level Language Programming
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter Review

Challenge Work

Write a program in the language of your choice to implement the

sequential search algorithm of Chapter 3, Figure 3.1, except that instead of

searching a list of names for a particular name, have the program search

a list of integers for a particular integer. Use the same input mechanism

as in the data cleanup programs of Section 9.3.2 to get the list of integers

to be searched. Then get the target number to be searched for. The

program should output “Successful search, the value is in the list” or

“Unsuccessful search, the value is not in the list.” Be sure to test your

program for both outcomes.

1.

In Chapter 8, we learned about a simple encryption algorithm called a

Caesar cipher. Write a program in the language of your choice to

implement the Caesar cipher algorithm.

Write a main function (method, procedure) that collects a message

from the user and writes it out again. Assume for simplicity that the

message contains no more than 10 characters and that only the 26

uppercase letters of the alphabet are used an array of 10 elements to

store the message Ask the user to enter no more than 10 characters,

one per line, and to terminate the message by entering some special

character such as “%” Use a variable to keep track of the number of

array elements actually used which could be fewer than 10 if the

message is short) so that you do not write out meaningless

characters stored at the end of the array.

a.

Because you will be writing out the contents of the message array

several times, write a helper function (method, procedure)

WriteMessage to do this task. Now rewrite your main function so

that it uses WriteMessage to write out the message array.

b.

cWrite a function (method, procedure) to modify the array to

represent the encoded form of the message using a Caesar cipher.

Have the main function ask for the shift amount. Pass this

information, along with the message array and the number of array

elements actually used, to the encoding function. To get from one

c.

2.

character to the character s units along in the alphabet, you can

simply add s to the original character. This works for everything

except the end of the alphabet; here you will have to be a bit more

clever to cycle back to the beginning of the alphabet once the shift is

applied. Have the main function invoke the encoding function and

then invoke WriteMessage to write out the encoded form of the

message.

Write a function (method, procedure) to modify the array

containing the encoded message back to its original form. This

function also needs as arguments the number of array elements

used and the value of the shift amount, as well as the array itself.

The body of the function should accomplish the reverse of the

encoding function. Have the main function invoke the decoding

function and then write out the decoded form of the message, which

should agree with the original message.

d.

Test your program with different values for s and different word

lengths.

e.

In Chapter 7, we learned about the routing problem in computer

networks, which consists of finding the optimal path from a source node

to a destination node. Each hop along a path represents a communication

channel between two nodes that has an associated “cost”; the cost might

actually be a monetary cost to use a leased line, but it could also be a cost

in terms of the volume of traffic the line typically carries. In either case,

the “shortest path” is the one with the lowest cost. As mentioned in

Chapter 7, the Internet uses Dijkstra’s shortest path algorithm to solve this

problem. If node x is the source node and receives a message for node y,

then x only needs to know the shortest path from itself to node y. But an

alternative is to have a centralized site periodically compute the “all-pairs

shortest path” from any node to any other node, and then broadcast that

information to all nodes in the network. The algorithm for the all-pairs

shortest path, called Floyd’s algorithm, is simpler to implement than

Dijkstra’s algorithm.

A two-dimensional array (table) is used to represent the nodes in the

network. If there are n nodes in the network, the array is n x n in size. The

entry in position i, j of the array is the length (cost) of the line from i to j.

For example, the following network has five nodes, numbered 0 through

3.

4.

It is represented by the 5 × 5 array shown here.

The entry in row 1, column 4 is 4 because the length of the line between

node 1 and node 4 is 4. The entry in row 0, column 3 is ∞ because there is

no direct line between nodes 0 and 3. All the entries on the “main

diagonal” (positions [0,0], [1,1], [2,2], [3,3], and [4,4]) are 0 because there is

a 0-length link from a node to itself.

Floyd’s algorithm operates on the array A of the graph. A pseudocode

description of the algorithm is:

When this algorithm terminates, the entry in position [i, j] of the array

represents the length of the shortest path between nodes i and j, although

this algorithm does not say what the intermediate nodes on the shortest

path are.

Write a program in the language of your choice to solve the all-pairs

shortest path problem for a graph with five nodes. The program gets the

values for each row of the array from the user, runs Floyd’s algorithm,

and writes out the resulting array. Use 500 for “infinity,” which assumes

all legitimate line lengths are less than 500.

Try your program for the graph shown here. From the output of your

program, what is the length of the shortest path from node 2 to node 4? By

looking at the graph, what are the nodes on this path?

Exercise 1 asks you to write a program to search a list of integers for a

particular value. Your program asks the user to enter the list at the

keyboard, the same mechanism we have used for collecting data in the

examples of this chapter. It is more realistic to read the list from a

preexisting data file stored on the computer’s hard drive. Ask your

instructor how to read a file in the language of your choice, then create a

data file and write the sequential search program again, this time using

file input data. Output can be to the screen, as before.

4.

Again create a data file of random integers. Then write a program in the

language of your choice to implement the selection sort algorithm of

Figure 3.6 using file input data. Write a separate function (method,

procedure) to find the location of the largest number in the unsorted

section of the list (see Figure 2.14) and have your main function call that

as needed. Write your sorted list to another data file.

5.

Read more about software engineering and write a short paper on one or

more of the following topics:

Black-box and white-box testing

CASE tools

Code refactoring

6.

Chapter 10: The Tower of Babel
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter 10
The Tower of Babel

10.1 Why Babel?

10.2 Procedural Languages

10.2.1 Plankalkül

10.2.2 Fortran

10.2.3 Cobol

10.2.4 C/C++

10.2.5 Ada

10.2.6 Java

10.2.7 Python

10.2.8 C# and .NET

10.3 Special-purpose Languages

10.3.1 SQL

10.3.2 HTML

10.3.3 JavaScript

10.4 Alternative Programming Paradigms

10.4.1 Functional Programming

10.4.2 Logic Programming

10.4.3 Parallel Programming

10.5 New Languages Keep Coming

10.5.1 Go

10.5.2 F#

10.6 Conclusion

Chapter Review

Exercises

Challenge Work

Additional Resources

Chapter 10: The Tower of Babel: 10.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

10.1 Why Babel?
The biblical story of the Tower of Babel takes place at a time when “the whole earth
had one language and few words.” The people began to build a city with a mighty
tower when, suddenly, everyone began speaking in different tongues and could no
longer communicate. They became confused, abandoned the tower, and scattered
“over the face of all the earth.” A shared enterprise was impossible to pursue without
the mutual understanding fostered by a common language, and (the message this story
was intended to convey) the power of what people could do was thus forever limited.
In modern times, it has been argued that if all peoples of the earth spoke a common
language, the chances of war would be greatly reduced.

Similarly, it might seem that having all computer programs written in the same
programming language would have an appealing simplicity. Chapter 9 gave a brief
comparison of five general-purpose programming languages: Ada, C++, C#, Java, and
Python. By now, you may have also studied one or more of these languages in some
depth through the online language chapters. But again, why aren’t all programs written
in the best one of these languages? Or does each of these languages have some things it
can’t do that some of the other languages can do? If so, then why aren’t all programs
written in some “superlanguage” that overcomes these deficiencies?

There are multiple programming languages not so much because there are tasks that
one language cannot do but because each language was designed to meet specific
needs. Consequently, one language might be better suited than others for writing
certain kinds of programs. The situation is somewhat analogous to the automobile
market. The basic automotive needs of the country probably could be served by a
single car model and a single truck model. So why do we have seemingly endless
models from which to choose? The answer lies partly in competition: Automotive
companies are all trying to claim a share of the market. More than that, though, the
answer lies in the variety of ways we use our automobiles. Although a luxury car could
be used for off roading, it is not designed for that use; a four-wheel-drive vehicle does
the job better, more safely, and more efficiently. Although a sports car could be used to
haul Little Leaguers home from the ball game, it is not designed for that use; an SUV or
minivan serves this purpose better. The diversity of tasks for which we use our
automobiles has promoted a variety of automotive models, each designed to handle a

and in the statement forms that control input and output. They also differ in the way
programs can be broken down into modules to handle separate tasks, and in how those
modules share information. We noted some of these syntactical differences in the
Feature Analysis table (Figure 9.15) of Chapter 9. But all procedural language programs
tell the computer in a step-by-step fashion how to manipulate the contents of memory
locations. In a general sense, then, the languages are quite similar, just as French,
Spanish, and Italian are all members of the family of Romance languages. In this
section, we concentrate, not on syntactical differences, but on the history and “intent”
of some of the most important procedural languages—important in that, of the many
programming languages that have come and gone over the years, these became widely
used. The languages of Chapter 9 are included here, but there are additional languages
as well.

Chapter 10: The Tower of Babel: 10.2.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

10.2.1 Plankalkül

What??? OK, this language never became widely used. In fact, it was never even
implemented. It’s a programming language designed by Konrad Zuse who, you may
recall from Chapter 1, built a computer in Germany during World War II. The
manuscript describing this programming language was completed in 1945 but was not
published until 1972. The manuscript contained a number of complex algorithms
written in Plankalkül (the name means “formal system for planning”). The language
itself, although burdened with obscure notation, contained a number of sophisticated
concepts that, had they been known earlier, might have changed the development of
programming languages. As the very first attempt to design a high-level programming
language for computers, Zuse’s proposal was a very important milestone in the field of
computing, although it never received the attention it deserved.

Chapter 10: The Tower of Babel: 10.2.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

10.2.2 Fortran

The name FORTRAN derives from FORmula TRANslation. The very name indicates its
affiliation with “formulas” or engineering-type applications. Developed in the
mid-1950s by a group at IBM headed by John Backus, in conjunction with some IBM
computer users, the first commercial version of FORTRAN was released in 1957. This
makes FORTRAN the first high-level programming language that was actually
implemented. Early computer users were often engineers who were solving problems

with a heavy mathematics or computational flavor. FORTRAN has some features
ideally suited to these applications, such as the exponentiation operator we mentioned
earlier, the ability to carry out extended-precision arithmetic with many decimal places
of accuracy, and the ability to work with the complex number system. Updated
versions of FORTRAN (FORTRAN II, FORTRAN IV, FORTRAN 77, Fortran 90, Fortran
2003, Fortran 2008, and High Performance Fortran) have been introduced over the
years, incorporating new data types and new statements to direct the flow of control.
Fortran 2003 and Fortran 2008 support object-oriented programming.

Early versions of FORTRAN did not allow the use of mathematical symbols such as < to
compare two quantities; the keypunches that were used to create the punched cards on
which early FORTRAN programs were submitted to the computer had no such symbols.
Thus the condition

would have been expressed in early FORTRAN as

(Before Fortran 90, variable identifiers had to be uppercase.) Early versions of
FORTRAN also had no while loop mechanism. The effect of a while loop was obtained
by using an IF statement together with GO TO statements. The pseudocode

would have been accomplished by

READ is the FORTRAN implementation of “input,” so the first line inputs a value for

NUMBER. If NUMBER is less than 0, the GO TO statement transfers control to statement
20. If NUMBER is greater than or equal to 0, something is done and then another value
for NUMBER is obtained. Control is then redirected by the second GO TO statement
back to statement 10 where the new value is tested.

Directing the flow of control by GO TO statements is similar to using the various JUMP
statements in the assembly language of Chapter 6, and it reflects the fact that
FORTRAN’s developers were, after all, working from assembly language. In the absence
of an equivalent to the while statement, there is no choice but to use GO TO statements
to implement looping, as shown previously. Excessive and careless use of GO TOs,
however, can make a program very difficult to read. (Imagine reading a novel where in
the middle of you are told to stop reading this page and to begin reading at the top of
Then, when you reach you are told to stop, go back, and start reading You might
wonder whether you were really following the plot.) Code filled with GO TO statements
that send the flow of control all over the place can be a nightmare. Such “spaghetti
code” tangled across hundreds of lines can be very difficult to unravel. Given that a GO
TO statement is available, it is up to the programmer’s individual discipline to avoid
abusing it. The potential for such abuse prompted the well-known computer scientist E.
W. Dijkstra to write a letter headed “Go To Statement Considered Harmful,” which
appeared in the Communications of the ACM (Association for Computing Machinery) in
1968. This sparked the “GO TO controversy,” which debated the merits of replacing the
GO TO statement with more controlled programming language constructs such as the
while loop. From our perspective many years later, when almost every language has a
looping construct, this controversy seems rather quaint, but it provoked lively
discussion at the time.

FORTRAN was designed to support numerical computations. This led to concise
mathematical notation (aside from the early < dilemma just mentioned) and to the
availability of a number of mathematical functions within the language. Another
design goal was to optimize the resulting object code, that is, to produce object code
that took as little space and executed as efficiently as possible. (Remember that when
FORTRAN was developed, machine resources were scarce and precious.) FORTRAN
allows external libraries tested code modules that are separately compiled and then
drawn on by any program that wants to use their capabilities. Because of FORTRAN’s
extensive use as a programming language over the years, a large and well-tested
FORTRAN library collection exists, so in many cases programmers can use existing code
instead of having to write all code from scratch. This feature is sometimes highly
touted for newer languages, but FORTRAN designers got there first. FORTRAN was an
extremely successful language; millions of lines of FORTRAN code are still in use, and
thanks to its evolution over time, FORTRAN has remained an effective language for
engineering applications and heavy-duty “number crunching” for such tasks as climate
modeling, computational fluid dynamics, and computational economics.

Old Dog, New Tricks #1

FORTRAN was first introduced in 1957. In the history of computing, this is
roughly the Jurassic Age. But FORTRAN is no extinct dinosaur. Instead, it is a
chameleon, changing with the times. Thanks to ever-increasing hardware
capability, FORTRAN runs on PCs while still providing the power to help
supercomputers tackle some of the most compute-intensive problems ever.
However, programmers can now use an environment with a graphical user
interface to develop code, and that code can present a graphical user interface
to the ultimate user of the program.

As further proof of FORTRAN’s continued usefulness, a standard for HPF (High
Performance Fortran) has been developed. This version of FORTRAN is
designed to run on massively parallel processors that can bring huge amounts
of computer horsepower to bear. Parallelism is especially useful for speeding
up the kinds of calculations on large arrays that often occur in scientific and
engineering problems, FORTRAN’s traditional domain. Problems with real-time
response requirements in the areas of signal processing and image processing
are also appropriate for HPF parallelism.

FORTRAN can “talk with” many other modern programming languages, which
allows the creation of mixed-language programs that capture the best features
of each language for the application at hand. Given these adaptations,
FORTRAN, in one form or another, is likely to live on for quite some time.

In the design of COBOL, particular attention was paid to input formatting for data
being read from files and to output formatting both for writing data to a file and for
generating business reports with information precisely located on the page. Therefore,
much of a COBOL program may be concerned with formatting, described by “PICTURE
clauses” in the program.

COBOL was also designed such that programs describe what they are doing in natural
language phrases. As a result, COBOL programs are rather verbose. Instead of a
succinct and mathematical statement

COBOL says

This compromise actually sacrifices one of the goals of high-level languages that we
enumerated in the previous chapter, to use standard mathematical notation, but this
deliberate decision on the part of the COBOL language designers allows COBOL
programs to be written by people who are less “formula-oriented.”

COBOL programs are highly portable across many different COBOL compilers, are
quite easy to read, and are very well suited to manipulating large data files. Because
COBOL has been around for a long time, there are many existing COBOL applications.
COBOL probably provides as much as 60% of the existing code base (between 180
billion and 200 billion lines of COBOL code), making it, even today, the most widely
used language in the world.

Nonetheless, the continuing importance of COBOL as a commercial programming
language had perhaps been overlooked by those outside the business world until the
“Year 2000 problem” came along. The Y2K problem (K stands for kilo, or “thousand”)
dealt with a lurking time bomb in legacy code (i.e.,old.but still-running programs),
primarily COBOL code. When these programs were written, their authors never
imagined their longevity. In addition, computer memory was at a premium, so
efficiency was the order of the day. Why store four digits of a date (1967, say) when two
digits (67)—the “19” prefix was to be assumed—would be sufficient and would take less
space? Furthermore, code was entered on punched paper cards, and no one wanted an
instruction to have to be continued on to a second card because of four-digit dates
instead of two. In the new millennium, “02” should mean “2002,” but in these programs
it would be interpreted as “1902.”

Making code Y2K-compliant was technically simple: Just change every date reference to
four digits instead of two. It was the magnitude of the task that was staggering because
it was necessary to locate each line of code where a date entry needed to be changed.
Huge sums of government and corporate money were spent to address the problem
and, despite dire predictions on the potential consequences of Y2K, it proved to be a

C was developed in the early 1970s by Dennis Ritchie at AT&T Labs. It was originally
designed for systems programming, in particular for writing the operating system
UNIX. UNIX had been developed at Bell Labs a short time before and was originally
written primarily in assembly language. Ritchie sought a high-level language in which
to rewrite the operating system in order to gain all the advantages of high-level
languages: ease of programming, portability, and so on.

Since that time, C has become a popular general-purpose language for two major
reasons. One is the close relationship between C and UNIX. UNIX has been
implemented on many different computers (and is the basis for the Mac OS X operating
system). UNIX provides many “tools” that support C programming. A second reason for
C’s popularity is its efficiency—that is, the speed with which its operations can be
executed. This efficiency derives from the fact that C programs can make use of
low-level information such as knowledge of where data are stored in memory. In this
respect, C is closer to assembly language than are other high-level languages, yet it still
has the powerful statements and portability to many machines that high-level
languages offer. You can imagine C humming along as a high-level language but then,
every once in a while when efficiency is really important, slipping into a low-level,
machine-dependent configuration. One of the goals of a high-level language is to
provide a level of abstraction that shields the programmer from any knowledge of the
actual hardware/memory cells used during program execution, as depicted in Figure
10.1(a). C provides this outlook, unless the programmer wants to make use of the
low-level constructs available in C that give him or her a direct view of the actual
hardware, which Figure 10.1(b) depicts.

Figure 10.1

User-hardware interface and programming languages

For example, suppose number is a variable in a C program with the value 234. The
value of number is stored in some specific memory location with address, say, 1000
(Figure 10.2). Then &number in that same program refers to the memory address
where the value of number is stored, in this case, 1000. Note the distinction between the
content of a memory cell and the address of that cell. Here number refers to the value
234, but &number refers to the address 1000. It is possible to write a C program
statement that passes &number as an argument to an output function so that the
program actually writes out the memory address value (1000). The ability to print an
actual memory address is not available in most other high-level languages.

Figure 10.2

C allows access to a memory cell address as well as to its content

C not only provides a way to see the actual memory address where a variable is stored,
it also gives the programmer some control over the address where information is
stored. C includes a data type called pointer. Variables of pointer type contain—instead
of integers, real numbers, or characters— memory addresses. For example, the
statement

declares intPointer as a pointer variable that will contain the address of a memory cell
containing integer data. The assignment

assigns the memory address 800 as the value of intPointer. Figure 10.3(a) illustrates this
situation: The pointer variable intPointer is stored at some unknown memory address,
but the content of intPointer is the memory address 800. The value stored at the
address contained in intPointer, in this case stored at 800, is denoted by *intPointer. In
other words, *intPointer is the value contained in the address to which intPointer
points. We can find out what this value is by writing out *intPointer. We can also assign
an integer value, say 3, to be the content of memory address 800 by the statement

Figure 10.3

Storing a value in a specific memory location using C

which results in Figure 10.3(b). We have controlled the content of a specific memory
location, and now we know exactly what is stored in memory location 800. Similarly, if
number is an integer variable that has been stored somewhere in memory, then the
statement

results in the value of number being stored in memory cell 800.

This capability for low-level memory manipulation resembles the assembly language
programming of Chapter 6. It is fraught with the problems we sought to avoid by going
to high-level languages in the first place; specifically, the programmer is assuming
responsibility for what is stored where. For example, what if memory cell 800 in our
example is not a memory cell allocated to this program? Perhaps something needed by
another program, or even by the operating system, has been overwritten. However, the
fact that it enables the programmer to reach down into the machine level is precisely
why C is useful for writing system software such as operating systems, assemblers,
compilers, programs that allow the computer to interact with input/output devices, and
so on.

A program to interact with an I/O device is called a device driver. Consider, for
example, the problem of writing a device driver for the mouse on a PC. The USB port of
the computer, to which the mouse is connected, reads changes in the mouse position by
changes in voltage levels. It stores the voltage levels in fixed locations in memory, as
allocated by the operating system. The job of the mouse driver is to translate voltage
levels to specific locations on the screen so that any application software that uses the
mouse, such as a word processor, does not have to interact with low-level hardware
information (abstraction again!). The mouse driver program would have to access the
specific memory locations where voltage information is stored. A language like C
provides such a capability.

C is the most widely used language for writing system software because of the
versatility its design philosophy bestowed on it. It combines the power of a high-level
language with the ability to circumvent that level of abstraction and work at the
assembly-language-like level. But C is also used for a great deal of general-purpose
computing.

The C++ language was developed in the early 1980s by Bjarne Strous-trup, also at AT&T
Labs. C++ is in fact a “superset” of C, meaning that all of the C language is part of C++.
Everything that can be done in C—including the ability to change the contents of
specific memory locations—can be done in C++. But C++ adds many new features to C,
giving it more sophistication and cleaner ways to do certain tasks. The most significant
extension of C that C++ provides is the ability to do object-oriented programming.

C++ was first commercially released by AT&T in 1985. Like many other languages, C++
has evolved over time. The standardization process for the language took more than 10
years, in part because of this evolution. In November 1997, the combined C++
subcommittees of ANSI and ISO submitted their C++ standards draft, part of a
document of some 800 pages, for final ISO approval. The standards were finally
approved in 1998. Standardization, object orientation, and a strong collection of library
code have helped to make C++ one of the most popular of the modern “industrial-
strength” languages. A new international standard was approved in 2011.

Practice Problems

Charles Babbage and Ada Augusta Byron in Chapter 1).

An updated requirements document, less imaginatively named the Ada 9X
Requirements and issued in December 1990, became the basis for the Ada 95 Reference
Manual, an international standard. The current Ada 2005 standard is an amended
version of the Ada 95 standard, and a new international standard may be ready in
2012.

Ada, like C++, is a large language, and it was accepted not only in the defense industry,
where its use was mandated by the U.S. Department of Defense, but also for other
technological applications and as a general-purpose language as well. Ada is known for
its multiprocessing capability—the ability to allow multiple tasks to execute
independently and then synchronize and communicate when directed. It is also known
as a strongly object-oriented language.

The Department of Defense “Ada mandate” was terminated in 1997, but by then Ada
was well established as a programming language supporting good software
engineering practice, safety, and reliability. Today, Ada is still strong in the
transportation industry (aircraft, helicopters, subway systems, European high-speed
train control systems) and in safety monitoring systems at nuclear reactors, as well as
in financial and communication systems. Its proponents tout Ada as “the language
designed for building systems that really matter.”

Chapter 10: The Tower of Babel: 10.2.6
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

10.2.6 Java

Unlike FORTRAN, COBOL, C, C++, and Ada, which were carefully developed as
programming languages, Java, a modern, object-oriented language, was almost an
accident. In early 1991, Sun Microsystems Inc. created a team of top-notch software
developers and gave them free rein to do whatevercreative thing they wanted. The
somewhat secret “Green Team” isolated itself and set to work mapping out a strategy.
Its focus was on the consumer electronics market. Televisions, VCRs, stereo systems,
laser disc players, and video game machines all operated on different CPUs. Over the
next 18 months, the team worked to develop the graphical user interface (GUI), a
programming language, an operating system, and a hardware architecture for a
handheld, remote-control device called the *7 that would allow various electronic
devices to communicate over a network. In contrast to the high-end workstations that
were a Sun hallmark, the *7 was designed to be small, inexpensive, easy to use,
reliable, and equipped with software that could function over the multiple hardware
platforms the consumer electronics market represented.

Practice Problems

What do you think is accomplished by the following Ada program?

Armed with this technology, Sun went looking for a business market but found none. In
1993, Mosaic, the first graphical Internet browser, was created at the National Center
for Supercomputing Applications, and the World Wide Web began to emerge. This
development sent the Sun group in a new direction, where their capabilities with
platform-independence, reliability, security, and GUI paid off: They wrote a Web
browser.

The programming language component of the *7 was named Oak, for a tree outside
language developer James Gosling’s window. Later renamed Java, the language was
used for the Web browser. The Web browser was released in 1995, and the first version
of the Java programming language itself was released in 1996. After that, Java gained
market share among programming languages at quite a phenomenal rate.

Java programs come in two flavors: applications and applets. Applications are complete
stand-alone programs that reside and run on a self-contained computer; these are the
kinds of programs we illustrated in Chapter 9. But Java’s development went hand in
hand with the development of Web browsers. Applets (small applications) are
programs designed to run from Web pages. Applets are embedded in Web pages on
central servers; when the user views a Web page with a Java-enabled browser, the
applet’s code is temporarily transferred to the user’s system (whatever that system may
be) and interpreted/executed by the browser itself. Today’s common Web browsers,
such as Microsoft Internet Explorer and Mozilla Firefox, are Java-enabled. Java applets
bring audio, video, and real-time user interaction to Web pages, making them “come
alive” and become much more than static hyperlinked text. For example, a Java applet
might display an animated analog clock face on the screen that shows your computer
system’s time, or a streaming ticker tape of stock market quotes, or a form that allows

you to book an airline reservation online. Java applets held much of the original appeal
of the Java language, but big, serious programs are also written using Java applications.

Java is an object-oriented language based on C++, but it avoids some of the features that
can make C/C++ programs error-prone. For example, in C++ we could declare an array
of 12 integers by

The equivalent statement in Java is

Both Java and C++ number individual array locations beginning with 0, so there is no
hits[12] in either case. In C++, you can write an assignment statement such as

that destroys the contents of some memory location outside the array, and the program
will go merrily on its way. Such an assignment in Java would cause a runtime error.

One of the main features of Java is its portability; recall that platform independence
was one of the goals of the original Sun “Green Team.” In most languages, source code
gets compiled into the object code for a particular machine, which means that the
developer who wants to distribute executable code needs to compile the source code on
each target platform, using the appropriate compiler. The Java programmer, however,
compiles source code just once, into low-level code called Java byte code, which is then
distributed to the various users. Byte code is not itself the language of any real
machine, but it can be easily translated into any specific machine language. This final
translation/execution of byte code is done by software called a Java byte code
interpreterwhich must be present on each user machine. This approach is workable
because the Java byte code interpreter is a small piece of software; even your Web
browser contains one.

Chapter 10: The Tower of Babel: 10.2.7
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

10.2.7 Python

The Python language was originally created in the early 1990s by Guido van Rossum at
Stichting Mathematisch Centrum in the Netherlands. Its development is now overseen
by the Python Software Foundation, but Van Rossum still has the final stamp of
approval on “official” features of the language. However, unlike other languages we
have mentioned here, Python is an open source language. (See the Special Interest Box
“The Open Source Movement " in Chapter 6.) The source code is freely available and

Practice Problems

The following are some sample programming statements (from Ada, C++,

C#, Java, and Python) to output the programmer’s typical fi rst message

of Hello World:

Given our claims about the simplicity of Python syntax, which of these

would you judge to be the Python output statement?

The “Popularity”Contest

There is a Web site that keeps track, on a monthly basis, of the most “popular”
programming languages. According to this site, “popularity” is not about the
best language or the one with the most lines of code that have been written. It is
based mainly on data gleaned from Web searches about the number of
practicing programmers, courses taught, and third-party vendors. Nonetheless,
it is an interesting site. Visit

www.tiobe.com/index.php/content/paperinfo/tpci/index.html

to see how your favorite language rates at the moment. For May 2011, the top
four were, in order, Java, C, C++, and C#. Python was #7. But Python won the
award for the highest rise of ratings for the year for both 2007 and 2010.

It is impossible to discuss C# without discussing the Microsoft.NET Framework that
supports C# and other programming languages. The.NET Framework is essentially a
giant collection of tools for software development. It was designed so that traditional
text-based applications, GUI applications, and Web-based programs can all be built

with equal ease. For example, the.NET Framework provides a whole library of classes
for building GUIs with menus, buttons, text boxes, and so forth. And it is the.NET
Framework (actually a part of the.NET Framework called the Common Language
Runtime or CLR) that handles garbage collection for a C# program or for any other
language that uses the.NET platform. All.NET programs— in whatever language—are
compiled into Microsoft Intermediate Language (MSIL)code. Like Java byte code, MSIL
is not tied to any particular platform. The final step of compiling MSIL code into object
code is done by a just-in time (JIT) compiler(part of the CLR) on the user’s machine. So,
like Java, the developer achieves portability across multiple platforms because source
code is compiled only once, into the MSIL.

There is one notable difference between the Java approach and the.NET approach. The
Java byte code translator is an interpreter, meaning that a program is translated into
object code and executed statement by statement. At the end of program execution, no
object code is retained and the next time the program executes, the interpreter must
repeat this task. The just-in-time compiler, on the other hand, senses when a particular
module of MSIL code is being called, translates that module into object code, and then
executes it. At the end of program execution, the object code for that module is still
there, and if the program executes again with no changes, it can be run directly
without invoking the JIT compiler. This difference between interpreted and compiled
code leads to more efficient program execution.

Over 60 programming languages have been adapted to fit into the.NET
Framework—for example, Ada, FORTRAN, COBOL, C++, C# (of course), and Visual
Basic.NET (see the “Old Dog, New Tricks #2 ” Special Interest Box). That means
applications written in any of these languages have access to the tools provided within
the .NET Framework and, because all of these languages compile to MSIL, applications
can be written that mix and match modules in various languages. Thus, the choice of
which language to use becomes less an issue of language capability and more a matter
of personal preference and familiarity.

Old Dog, New Tricks #2

BASIC (Beginner’s All-purpose Symbolic Instruction Code) is a programming
language that was developed by John Kemeny at Dartmouth College in
1963–1964. As the name suggests, it was intended to be a general language. It
was also designed to be easy to learn and use. During the 1960s, programming
was a rather difficult task relegated to technical professionals or, in the
academic world, to advanced undergraduate engineering, math, and physics
majors. BASIC was Kemeny’s attempt to design a programming language easy
enough for anyone to learn, including high school and elementary school
students. This effort was very successful. BASIC was supplied with most
microcomputers throughout the 1980s, and as such it introduced many people,
in and out of school, to simple programming ideas.

BASIC got a new lease on life and a whole new look when Microsoft released
Visual Basic in 1991. Visual Basic supplied tools to create a sophisticated GUI
application by simply dragging components such as buttons and text boxes
from a Toolbox onto a form, and then writing BASIC code to allow those
components to respond to events, such as the click of a button. This
programming ease made Visual Basic a very popular language for rapid
prototyping of Windows applications, and the number of VB programmers
outstripped the total of C, C++, and Java programmers. Subsequent versions of
Visual Basic produced an ever-more-powerful language. Now Visual Basic .NET
is a fully object-oriented language that, like the other.NET languages, can take
advantage of all the built-in.NET Framework tools. Old languages that can
evolve with the times need never die!

Practice Problems

A running Visual Basic program produces the following GUI:

The user types a name in the text box called txtName, then clicks the

button called btnShowName. This “click event” is handled by the

following Visual Basic module. Explain what you think happens when

this module is executed.

than $40,000 worth of business in the past quarter or all vendors from a certain zip
code. Such queries might be framed in SQL as

SQL is the language used to frame database queries. SQL was developed by IBM, and in
1986, it was adopted by the American National Standards Institute (ANSI) as the
standard query language in the United States; it has since been adopted by the
International Organization for Standardization (ISO) as an international standard.
Even database systems that provide users with easier—even graphical—ways to frame
queries are simply using a front end that eventually translates the query into an
equivalent SQL statement.

An SQL query does not give specific directions as to how to retrieve the desired result.
Instead, it merely describes the desired result. This makes SQL similar in flavor to a
logic programming language, which we’ll see in a later section.

Chapter 10: The Tower of Babel: 10.3.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

10.3.2 HTML

HTML stands for HyperText Markup Language. It is used to create HTML documents
that, when viewed with Web browser software, become Web pages. An HTML
document consists of the text to be displayed on the Web page, together with a number
of special characters called tags that achieve formatting, special effects, and references
to other HTML documents. Although we speak of “HTML programming,” that’s a bit of
a stretch. The program is just giving the Web browser instructions on how to display
text; there’s no computation or processing going on as we think of with programming
in general.

HTML tags are enclosed in angle brackets (< >) and often come in pairs. The end tag,
the second tag in the pair, looks like the begin tag, the first tag in the pair, but with an
additional / in front.

The overall format for an HTML document is

Here we see the paired tags for the document as a whole (<html>, </html>), the head
(<head>, </head>), the title (<title>, </title>)—framing what appears in the title bar of
the page window—and the body (<body>, </body>)—framing what is on the page itself.

Of course, other material needs to go between the beginning and ending “body” tags, or
the page will be blank. Figure 10.4 shows an HTML document, and Figure 10.5 shows
how the Web page actually looks when viewed with a Web browser. By comparing the
two, you can probably understand the meaning of the tags used, as explained in Figure
10.6. Technically, href is an attribute of the “a” tag that indicates a link to another
document, in this case the home page of the well-known PBS Web site. Similarly, src is
an attribute of the “img” tag that gives the “source” for the image. In Figure 10.4, the
source is just the image filename, meaning that the image file is in the same folder as
the HTML code file; if the image file were elsewhere, the source would have to show
the pathname where the image file can be found. The second attribute of the img tag,
the alt attribute, is displayed if the image file cannot be located. The text in the alt
attribute is also used by assistive technologies for the blind, who would otherwise be
unable to “see” the image.

Figure 10.4

HTML code for a Web page

Figure 10.5

Body of the Web page generated by the HTML code in Figure 10.4

Figure 10.6
Some HTML tags

HTML Tag Purpose

h1
Create H1 heading (bold with
largest font size)

p New paragraph

b Bold

i Italic

Consider the HTML page from the previous section. When this page is displayed by the
Web browser, the user has no interaction with the page except possibly to click on the
hypertext link to go to another page. In particular, the image on the page is fixed. The
Web page can be made a little more interesting if the image changes when the user
hovers the mouse over the current image. In fact, let’s switch back and forth between
the original image and a second image as the user moves the mouse into and out of the
image area of the page. To accomplish this, we’ll use a JavaScript function called
imageSwitch(). The JavaScript code will be placed within <script></script> tags to alert
the browser that these statements are to be interpreted as JavaScript commands.

Beyond HTML

The tags in HTML are, as we have seen, specified. The tag pair , for
example, is used to display the enclosed text as boldface. The writer of the
HTML document cannot invent new tags. XML (eXtensible Markup Language) is
a newer markup language. It is a “metalanguage,” that is, a markup language
for markup languages. Using XML, the writer can create his or her own tags; an
XML document is not about displaying information but about how to structure
and interpret information to be displayed. An XML document usually also
contains or refers to a schema that describes the data, and the body of the XML
document can then be checked against the schema to be sure that it is a
well-formed document. All modern browsers support mechanisms that
translate XML documents into HTML documents for display. XML allows for
flexible document interchange across the Web; for example, in May 2003, the
National Library of Medicine announced a “Tagset” for journal articles to
provide a single format in which journal articles that originate from many
different publishers and societies can be archived. As another example,
LegalXML is a collection of XML standards for sharing and transmitting legal
documents of various kinds, such as documents between courts and attorneys,
court transcripts, electronic contracts, and so on. More commonly, XML-based
file formats now form the basis for office productivity tools, such as Microsoft
Office, OpenOffice, and Apple iWork.

The imageSwitch() function has to accomplish two tasks. One is to reset the src

attribute of the “img” tag. But we have to say what image tag we are modifying, so in
the original image tag we’ll add an id attribute. Basically, we are giving the image a
name; we’ll call it mainImage. This name is not the name of an actual visual image (a
picture); it’s the name of the image element on the page that holds a picture as
determined by its src attribute. In the original image tag, we’ll also add two additional
attributes that are event handlers, that is, they respond to the events of the user
moving the mouse over the image element (a MouseOver event) or moving the mouse
away from the image element (a MouseOut event). For either of those two events, we

want to call the imageSwitch() function. Figure 10.7 shows the new image tag for the
page.

Figure 10.7

The new HTML (image) tag

The imageSwitch() function itself uses a variable called nextPicName that contains the
image filename for the new picture, the one being switched to. The image element src
attribute will be set to the value of this variable. The code is

This statement locates the appropriate image element by its id (even though in this case
there is only one image element on the page) and assigns nextPicName to its src
attribute.

The second task of the imageSwitch() function is to make sure that nextPicName is
updated to the appropriate value in preparation for the next image switch. This is
accomplished by an if/then/else statement, one of the basic algorithmic constructs we
introduced in Chapter 2. The code is straightforward: If we just changed to the
flower2.jpg image, then we should be ready next time to change to the flower1.jpg
image, and vice versa.

We are just about done. The only remaining thing is to initialize the nextPicName

variable. We’ll use another JavaScript function called startValue() to do that task.

Because the page loads with the flower1.jpg image showing, the nextPicName value

(the new image value) should be flower2.jpg. In the HTML body, we’ll use the

“onload” event handler to invoke the startValue() function to get things started.

Figure 10.8 shows the complete HTML page with the embedded JavaScript.

Figure 10.8

JavaScript embedded in an HTML page

PHP

Web pages that are designed using HTML are generally static Web pages, that is,
their content looks the same each time the page is opened in your browser.
However, when you visit your favorite online store, the content is different
with each visit, reflecting, for example, items on sale or the newest products.
These are dynamic Web pages (their content changes) that are stored on the
Web server of the online merchant. Dynamic pages are often tied to a behind-
the-scenes product database. If a new product becomes available or a price

changes because of a sale, the change is made in one place in the underlying
database. Whenever any dynamic page tied to the database is requested from
the server, the latest database information is loaded into the page before it is
sent back to your Web browser, and your browser then displays it. The HTML
for the various pages does not have to be constantly rewritten to incorporate
the new data.

PHP (which originally stood for Personal Home Pages but now stands for PHP:
Hypertext Preprocessor) is a server-side scripting language. Like JavaScript, PHP
is embedded within HTML code in Web pages hosted on a server. PHP is
particularly adept at making database connections for dynamic Web pages. The
PHP code, when executed, sets up a connection to the database and formats
HTML code on the page to include the new data values. In December 2010, a
survey of 6.7 million domains showed that 59% were using PHP
(phpadvent.org/2010/usage-statistics-by-ilia-alshanetsky).

Practice Problems

Describe the result of executing the following SQL query on the

vendor database.

1.

Given the following HTML statement, what does the corresponding

line of text on the Web page look like?

2.

Type the HTML code of Figure 10.4 into a text editor such as Notepad.

Save the file with an.html extension. Find a small jpg image (it need

not be sunflowers!) and store it in the same folder as the.html file.

Then double-click on the.html file to bring it up in your browser.

Does it look like Figure 10.5?

3.

Chapter 10: The Tower of Babel: 10.4
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

10.4 Alternative Programming Paradigms
Computer scientists are fond of the word paradigm. A paradigm is a model or mental
framework for representing or thinking about something. The paradigm of procedural
programming languages says that a sequence of detailed instructions is provided to the
computer. Each instruction accesses or modifies the contents of a memory location. If
the computer carries out these instructions one at a time, then the final result of all the
memory cell manipulations is the solution to the problem at hand. This sounds
suspiciously like our definition of an algorithm in Chapter 1(“a well-ordered collection
of unambiguous and effectively computable operations that when executed produces a
result…”). In fact, programming in a procedural language consists of

Planning the algorithm

Capturing the “unambiguous and effectively computable operations” as program

instructions

In a procedural programming language, then, we must pay attention to the details of
exactly how the computer is going to accomplish the desired task in a step-by-step
fashion. In object-oriented programming, the procedural paradigm still holds, but the
step-by-step instructions may be split into multiple small sets that are encapsulated
within classes.

In this section, we look at programming languages that use alternatives to the
procedural approach—languages based on other paradigms. It is as though we have
studied French, Spanish, and Italian (different but related languages) and are now
about to embark on a study of Arabic, Japanese, or sign language—languages totally
different in form, structure, and alphabet. Alternative paradigms for programming
languages include viewing a program’s actions as

A combination of various transformations on items (functional programming)

A series of logical deductions from known facts (logic programming)

Multiple copies of the same subtask or multiple subtasks of the same problem

being performed simultaneously by different processors (parallel programming)

We’ll look briefly at each of these alternative programming paradigms, focusing on the
different conceptual views rather than on the details of language syntax. In short, this
chapter won’t make you an expert programmer, or even a novice programmer, in any
of these languages, but you’ll have a sense of some of the different approaches to

programming languages that have been developed. Both LISP, mentioned in the next
section, and Prolog, discussed in Section 10.4.2, are often used in artificial intelligence
work; for more information on artificial intelligence, see Chapter 15.

Chapter 10: The Tower of Babel: 10.4.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

10.4.1 Functional Programming

Functional programming had its start with the design of the LISP (LISt Processing)
programming language by John McCarthy at MIT in 1958. This makes LISP second only
to FORTRAN in longevity. John Backus (who, you will recall, led the development of
FORTRAN) argued for functional programming as opposed to “conventional Von
Neumann languages” and introduced the language FP (for Functional Programming) in
1977. Other functional programming languages or dialects of LISP have been
developed. We look at examples using Scheme—a functional programming language
that was derived from LISP in the late 1970s.

A functional programming language views every task in terms of (surprise!) functions.
Unlike the more general usage of the word function in some procedural programming
languages, function in this context means something like a mathematical function—a
recipe for taking an argument (or possibly several arguments) and doing something
with them to compute a single value. More formally, when the arguments are given
values, the function transforms those values, according to some specified rule, into a
corresponding resulting value. Different values for the arguments can produce
different resulting values. The doubling function f (x) = 2x transforms the argument 3
into 6 because f (3) = 2 * 3 = 6, and it transforms the argument 6 into 12 because f (6) = 2
* 6 = 12. In the grand sense, we can think of a program as a function acting on input
data (the arguments) and transforming them into the desired output.

In a functional programming language, certain functions, called primitive functions or
just primitives, are defined as part of the language. Other functions can be defined and
named by the programmer. To define the doubling function using Scheme, we could
say

The keyword define indicates that we are defining a new function. The function name
and its list of arguments follow in parentheses. The function name is double, and x is its
single argument. The definition says that when this function is invoked, it is to multiply
the argument value by 2. Having defined the function, we can now invoke it in a
program by giving the function name, followed by a list of values for the arguments of
the function. (For the double function, there is only one number in the list of argument

values because there is only one argument.) Scheme responds immediately to a
function invocation by displaying the result, so the following interaction occurs as the
user invokes the double function with various argument values (boldface indicates
what the user types).

Here’s the definition of another function:

which says that the function named square, when invoked, is to multiply the single
argument value by itself. Thus a dialog with Scheme could be

Functions, once defined, can be used in the definition of other functions. This can lead
to nested tasks that must be performed. The function polynomial, defined by

is the function that we write mathematically as g(x) = 2x . Using this function, the
dialog could be

When the polynomial function is invoked with the argument 3, Scheme consults the
function definition and sees that this is really

Thus, the polynomial function must invoke the double function, and it is to invoke that
function with an argument value of (square 3). Therefore, the first thing to do is to

invoke the square function with an argument value of 3. The result is 3 = 9. This 9 gets
used as the argument value for the double function, resulting in 18. The total

computation is equivalent to g(3) = 2(3) = 2(9) = 18.

Here we’ve defined one function (polynomial) in terms of another function (double)
acting on the result of applying a third function (square). In functional programming

2

2

2

languages, we can build complex combinations of functions that use the results of
applying other functions, which use the results of applying still other functions, and so
on. In fact, functional programming languages are sometimes called applicative
languages because of this property of repeatedly applying functions.

As the name LISP suggests, LISP processes lists of things and so does Scheme. The
arguments to functions, then, are often lists. As a trivial case, “nothing” can be thought
of as an empty list, which is called nil. We will use four primitive list-processing
functions available in Scheme. The first function is called list. This function can have
any number of arguments, and its action is to create a list out of those arguments.
Therefore,

evaluates to the list 3, 4, 5, which we write as

Two other list-processing functions are called car (pronounced as when it means an
automobile) and cdr (pronounced “could-er”). (The names have historical significance
from the distant past. Car stands for “Contents of Address Register,” and cdr stands for
“Contents of Decrement Register.” These registers were part of the architecture of the
IBM 704 computer on which LISP was originally implemented.) The car function takes
a nonempty list as its argument and produces as a result the first element in that list.
Therefore, a dialog with Scheme could consist of

The cdr function takes a nonempty list as its argument and produces as a result the list
that remains after the first element has been removed. Therefore,

evaluates to the list

As a special case, when the cdr function is applied to an argument consisting of a
one-element list, the empty list is produced as the result. Thus,

evaluates to the list nil. Note that the car function applied to a list evaluates to a list
element, whereas the cdr function applied to a list evaluates to another, shorter list.

One final primitive list-processing function is null?, which has a single list as its

argument and evaluates to true if the list is nil (empty) and to false if the list is
nonempty. Armed with these primitives, we can at last write a little Scheme program
(Figure 10.9) to add some nonnegative integers.

Figure 10.9

Scheme program to add nonnegative integers

Dialog with the program in Figure 10.9 could result in

Let’s see how this works. Our function adder was defined to have one argument,
symbolically denoted in the definition by input-list. Now we’re invoking this function
where the argument has the value of (list 3 4 5); that is to say, the function is to operate
on (3 4 5). The cond function (short for “conditional”) is acting like an if-else statement:
It is equivalent to

The condition “null? input-list” is evaluated and found to be false because input-list at
this point is (list 3 4 5). The else clause is executed, and it says to add two quantities.
The first of these two quantities is (car input-list), which is (car (list 3 4 5)), or 3. Thus, 3
is to be added to the second quantity. The second quantity is the result of invoking the
adder function on the argument (cdr input-list), which is (cdr (list 3 4 5)), or (4 5). The
value, as constructed so far, is therefore

Now the program invokes the adder function again, this time with an argument of (list
4 5) instead of (list 3 4 5). Once again we test whether this list is nil (it isn’t), so we add
together

or

The adder function is invoked again with an argument of (list 5). The list still is not nil,
so we add together

or

A final invocation of the adder function, this time with the nil list as its argument, takes
the other branch of the cond statement, which results in 0. Altogether, then, we’ve done

or

The definition of the adder function involves the adder function again, this time acting
on a shorter list. Note in our example how we invoke the adder function repeatedly
—first on (3 4 5), then on (4 5), next on (5), and finally on nil. Something that is defined
in terms of “smaller versions” of itself is said to be recursive, so the adder function is a
recursive function.

Recursion is one of the features of functional languages that makes possible short and
elegant solutions to many problems. Although recursion is a dominant mode of
operation in functional languages, many procedural languages also support recursion,
so that’s not the major argument for using a functional language. Then what is the
benefit of going to a functional language?

A functional language allows for clarity of thought; data values are transformed by
flowing, as it were, through a stream of mathematical functions. The programmer has
no concern about where intermediate values are stored, nor indeed about how a “list”
could occupy many memory cells. Another layer of abstraction has been offered to the
programmer—the rarefied layer of pure mathematics. Because functions are described
in a mathematical way by what they do to an item of data rather than by how they
modify memory cells in the process of doing it, the possibility of side effects is
eliminated. A side effect occurs when a function, in the course of acting on its
argument values to produce a result value, also changes other values that it has no
business changing. Implementing a function in a procedural language, where the

major mode of operation is modification of memory cells, opens the door to potential
side effects.

It’s All in How You Look At It

We used recursion to define the function to add a list, as follows: Add the

first list element to the result of adding the rest of the list elements

together. The recursive way of thinking takes a bit of getting used to. For

example,

Reading a book can be defined as reading the first page followed

by reading the rest of the book.

Climbing a ladder can be defined as climbing the first rung

followed by climbing the rest of the ladder.

Eating a six-course meal can be defined as eating the first course

followed by eating the rest of the meal.

Having learned to program in a procedural language, some people are

initially uncomfortable with the recursive style of functional languages.

It might seem as if mysterious things are going on in the background

and suddenly there’s a result.

Consider the following scenario. You are standing in a long line at the

grocery store, and you’d like to know exactly how many people are

ahead of you.

Practice Problems

To what does each of the following evaluate?

(cdr (list 1 2 3 4))a.

(car (cdr (list 4 5 6)))b.

1.

Define a function in Scheme that adds 3 to a number.2.

inferences and interact with human beings in a “natural” way through both spoken
and written language.

Prolog programs consist of facts and rules. A fact expresses a property about a single
object or a relationship among several objects. For example, let’s write a Prolog
program in the domain of American history. We are interested in which U.S. presidents
were in office when certain events occurred and in the chronology of those presidents’
terms in office. Here is a short list of facts (declarations):

The interpretation of these facts is fairly obvious. For example, the declaration

asserts or declares that Jefferson was the U.S. president during the Lewis and Clark
expedition. And

asserts that Kennedy was president before Nixon. (There are a number of versions of
Prolog available; the version we use requires that identifiers for specific items begin
with lowercase letters and have no internal blanks.)

This list of facts constitutes a Prolog program. We interact with the program by posing
queries; this is the way Prolog programs are executed. For example, the user could
make the following query (boldface indicates what the user types):

Prolog responds

because “before(lincoln, fdr)” is a fact in the program. After every response, Prolog also
asks

because there may be multiple responses to the query. If we want to see further
responses, we answer Yes. If we answer yes when there are no further responses, as in
this case, Prolog simply responds

Here’s some further dialogue with Prolog using this same program. (We won’t write the
“More? (Y/N):” that appears after each Prolog response.)

The first query corresponds to a declaration in the program, and the second does not.
The “No” response does not signify that the statement is false, only that its truth value
is unknown because it is not part of the collection of facts in the program.

More complicated queries can be phrased. A query of the form A, B is asking Prolog
whether fact A and fact B are both in the program. Thus, a query such as

produces a Yes response because both facts are in the program. The interpretation is
that Lincoln was president during the Civil War and that Lincoln was president before
FDR.

So far, Prolog appears to be little more than some sort of retrieval system that does
lookups on a table of facts. But Prolog can do much more. Variables can be used within
queries, and this is what gives Prolog its power. Variables must begin with uppercase
letters. The query

is asking for a match against facts in the program of the form

In other words, X can stand for anything that is in the “president relation” with
Lincoln. The responses are

because both

are facts in the program. (Remember that in order to see more than one response, we
have to keep answering Yes when asked “More? (Y/N):”.)

Let’s describe what it means for one president to precede another in office. It may
appear that the before relation already takes care of this. Certainly if “before(X, Y)” is
true, then President X precedes President Y. However, in our sample program,

are both true, but that does not tell us that Lincoln precedes Kennedy (which is also
true). Of course, we could add another before fact to cover this case, but that is an ad
hoc patch. Instead, let’s add further declarations to the program to define the precedes
relation. We already know that two presidents in the before relation should also be in a
precedes relation. Furthermore, from the previous example, it would appear that if X is
before Z and Z is before Y, then “precedes(X, Y)” should also be true. But we can say
more than that: if X is before Z and Z precedes Y, then “precedes(X, Y)” should be true.
This extension means that Jefferson precedes Kennedy because

and

Using this reasoning, we have derived three new “precedes” facts that were not in the
original list of facts.

Thus, we want to say that there are two ways in which X can precede Y:

We can make declarations in our Prolog program that express the precedes relation, but
this time the declarations are stated as rules rather than as facts. A Prolog rule is a
declaration of an “if A then B” form, which means that if A is true (A is a fact), then B is

also true (B is a fact). The actual Prolog declarations follow; think of the notation B:– A
as meaning “if A then B.”

The rule for precedes includes precedes as part of its definition; it is therefore a
recursive rule.

Our Prolog program now consists of the facts and rules shown in Figure 10.10. Here’s
some further dialogue, using the new program. Be sure you understand why each
query receives the response or responses it does.

Figure 10.10

A Prolog program

Let’s add one final declaration to the program—a declaration that says that event X
occurred earlier than event Y if X took place during President R’s term in office, Y took
place during President S’s term in office, and President R precedes President S. (Do you
agree with this definition of the earlier relation?) Here’s the rule:

Then a final query of

produces the responses

In this simple example, it is easy to check that the responses to our queries are correct,
and it is also not difficult to do the necessary comparisons with the program
declarations to see how Prolog was able to arrive at its responses. The interesting thing
to note, however, is that the program consists solely of declaratives (facts and rules),
not instructions about what steps to take in order to produce the answers. The program
provides the raw material, and in the logic programming paradigm, this raw material is
inspected more or less out of our sight, and without our detailed instructions, to deduce
the answers to a query.

Figure 10.11 illustrates the situation. The programmer builds a knowledge base of facts
and rules about a certain domain of interest; this knowledge base constitutes the
program. Interaction with the program takes place by posing queries—sometimes
rather complex queries—to an inference engine (also called a query interpreter). The
inference engine is a piece of software that is supplied as part of the language itself;
that is, it is part of the compiler or interpreter, not something the programmer has to
write. The inference engine can access the knowledge base, and it contains its own
rules of deductive reasoning based on symbolic logic. For example, a Prolog inference
engine processing the program in Figure 10.10 would conclude that

Figure 10.11

The logic programming paradigm

is true from the rule of the form

together with the fact

because it is a rule of deductive reasoning (known as modus ponens) that “if A then B”
together with “A” must result in “B.” The programmer need not supply this rule or
instruct the inference engine when it should be applied. Thus, the inference engine can
be thought of as providing still another layer of abstraction between the programmer
and the machine. The programmer supplies the fundamental facts and rules about the
domain but does not direct the computer’s step-by-step processing of those facts and
rules to answer a query.

Practice Problems

Using the Prolog program of Figure 10.10, what is the result of each of the
following queries?

? before(jef+ferson, kennedy)1.

?-president(X, lewis_and_clark).2.

?-precedes(jefferson, X).3.

This is a somewhat idealistic view of logic programming; in actuality, the idiosyncrasies
of Prolog compilers mean that programmers do need to understand something about
the order in which rules of logic will be applied. Yet, Prolog still gives us a good sense of
the logic programming paradigm, where the intent is to concentrate on the “what” [is
true] rather than on the “how” [to find it] that is the hallmark of procedural
programming. You can experiment with Prolog at the following Web site:
http://www.csse.monash.edu.au/~lloyd/tildeLogic/Prolog.toy/.

Chapter 10: The Tower of Babel: 10.4.3

MIMD (multiple instruction stream/multiple data stream)—Interconnected

processors independently execute their own program on their own data,

communicating as needed with other processors. The MIMD model includes a

number of different structures, such as multicore computing, in which two or

more processors are packaged together on a single integrated circuit, and cluster

computing, in which independent systems such as mainframes, desktops, or

laptops are interconnected by a local area network (LAN) like the Ethernet or a

wide area network (WAN) such as the Internet.

The algorithms with which we are most familiar, like those introduced in Chapters 2
and 3, operate sequentially because they were originally designed for Von
Neumann–type execution. To reap the full benefit of a parallel architecture, we need to
develop totally new algorithms that exploit this collection of processing resources.
After all, it does not do any good to have 100 people available to help with a project if
only one is doing any useful work, while the other 99 sit idle. (In contrast to other
sections of this chapter, this one does not describe a specific parallel programming
language. Instead, we introduce and discuss some general principles of parallel
languages and algorithms.)

An example of SIMD parallel processing, first presented in Chapter 5, involves adding a
constant value K to each element of a six-element vector V. Assume that we have six
ALUs with unique ID numbers from 1 to 6. Each ALU has its own local or “private” data
consisting of one of the six vector components; that is, the ALU with ID 1 has a private
copy of element V[1] in its local memory. The ALU with ID 2 has a private copy of
element V[2] in its local memory, and so forth. Because all ALUs need access to the
constant value K, it is stored in shared global memory that is accessible to everyone.
This allocation of processing units, memory units, and data values is diagrammed in
Figure 10.13.

Figure 10.13

Model of SIMD processing

A language designed to support SIMD parallel processing would allow you to declare a
data value “public,” which places it into global shared memory. The language would
also allow you to declare a vector “private,” which means the individual elements of
the vector are distributed into the private memory unit of each ALU. Finally, a
SIMD-style language allows you to write something like the following:

The meaning of this statement is that every ALU with an ID number from I to J
inclusive will, in unison, execute the block of statements enclosed within the
PARALLEL block, using data stored in global memory and its own private memory.

With these statements available to us, our vector addition problem could be solved in a
SIMD parallel fashion as follows:

In this SIMD algorithm, every processing element executes in unison the exact same
instruction, namely the vector addition operation V = V + K. However, each one uses
the element of V stored in its private memory. The result is that the six elements of
vector V are updated concurrently. Rather than taking six units of time to be solved, as
is the case with a sequential solution, the problem is now solved in one unit of time, a
speedup factor of six.

The first MIMD example we look at is the problem initially presented in Chapter
5—locating a single name among all the names in the New York City telephone book.
However, let’s now assume that we have 101 independent processors to assist with this
task. To take advantage of these resources, let’s designate one processor, say ID number
101, to handle input/output while the remaining ones, those with ID numbers 1 to 100,
are assigned to the search task. The job of the input/output processor is to input the
20,000,000-element phone book, partition it into 100 separate chunks of size 200,000,
and send these chunks to the 100 search processors along with the NAME we are
looking for. After distributing this data, the input/output processor waits for one of the
search processors to find the correct phone number and send it back. It then prints this
result (or, more likely, speaks it) and terminates. This MIMD data allocation strategy is
diagrammed in Figure 10.14.

Figure 10.14

Model of MIMD processing

Now, in parallel, the 100 search processors execute the sequential search algorithm on
their chunk of data, called YOURLIST, to see if NAME is contained in this segment.
However, they do not have to do this in instruction-by-instruction lockstep; instead,
each processor executes independently. Here is the outline of the program distributed
to each of the 100 search processors:

Each search processor initially waits for a message from the input/ output processor
containing its segment, YOURLIST, of the overall list, and NAME. This is achieved via a
RECEIVE instruction. When that message arrives, the processor executes the sequential
search algorithm, called SEQSEARCH, to determine if NAME is located within its

200,000-element sublist. If NAME is located within that list, then SEQSEARCH will exit
with FOUND set to true, and that processor will SEND the correct phone number to
processor 101. If NAME is not found, the variable FOUND will remain false, and that
processor will “Do nothing” and halt. The SEND/ RECEIVE commands used to exchange
information are called message-passing primitives, and they are a very important part
of MIMD programming languages.

To complete this solution, we need a second program, the one executed by the
input/output processor. Its job is easy to describe—distribute data to all 100 processors
and wait for a result to arrive from whatever processor finds the answer. This program
might look like the following:

Note the differences between this example and the previous SIMD code. There is no
need to specifically indicate parallelism using a PARALLEL statement. Instead, the
parallelism is implemented automatically by having multiple processors executing
their programs concurrently. Note that every processor does not use the same
program. In this case, there are two programs, one for the search processors and one
for the input/output processor. Furthermore, even though 100 processors are executing
the same program, they are not all executing the same sequence of instructions. For
example, if NAME occurs exactly one time in the phone book, then 99 processors will
execute the ELSE clause and “do nothing.” The one processor that does find NAME will
SEND the correct phone number to processor 101. Finally, note the difference in how
we handle the concept of global data. In the SIMD example, every processor needed
access to the variable K, so it was placed in global shared memory. In the MIMD
example, every processor needed access to NAME, but in this case there is no global
shared memory. Instead, we explicitly SEND this value to every processor, using
message-passing primitives.

This phone book search is a rather simplified example of MIMD parallelism for two
reasons. First, there were only two distinct programs, and 100 of the 101 processors

were executing the same one. In many MIMD algorithms, there are many more distinct
programs. The situation here is equivalent to having 101 people building a house and
having 100 of those 101 doing the exact same task. In most cases, there will be
carpenters, roofers, plumbers, masons, and so forth, all performing their own specific
tasks. The second reason why this is a simplified example is that there is little
communication between processors. In this algorithm, processors receive data at the
start of the program and (possibly) send a result at the end. There is no communication
during the computation itself. However, in most MIMD algorithms, there is message
passing going on throughout the computation for such purposes as sharing
intermediate computations, exchanging temporary data, and providing status
information. For example, in the home-building analogy mentioned previously, the
people putting up the walls must communicate their status (progress) to the roofers,
who are waiting for wall construction to finish before they can begin. (This example is
simple for a third reason—it does not deal with the possibility that NAME is not in the
phone book. If that occurs, all 100 search processors will execute the ELSE clause and
“Do nothing.” The input/output processor will be sitting and waiting to RECEIVE a
result that never will be SENT.)

A better example of MIMD parallel processing occurs when a divide-and-conquer
model is used to solve a task. In this approach, the problem is successively partitioned
into smaller and smaller parts and sent off to other processors, until each one has only
a trivial job to perform. Each processor then completes that trivial operation and
returns its result to the processor that sent it the task. These processors in turn do a
little work and give the results back to the processors that gave them the tasks, and so
on, all the way back to the originating processor. In this model, there is far more
communication between processors.

For example, the task of finding the largest number in a list can be solved in a MIMD
parallel fashion using the divide-and-conquer model. (The sequential version of this
algorithm was presented in Chapter 2.) The original list of numbers is assigned to the
top-level processor, which partitions the list into two parts and sends each half to a
different processor. Each of these two processors divides its list in half and hands it off
to yet two other processors, and so on, creating the pyramid effect shown in Figure
10.15.

Figure 10.15

The divide-and-conquer approach using multiple processors

At the bottom of the pyramid is a collection of processors that only have to find the
largest number in a one-element list, a trivial task. They each pass this result up to
their “parent” processor, which selects the larger of the two numbers it receives and
passes that value up to its parent. All the way up the pyramid, each processor has only
to select the larger of the two numbers it receives from its “children.” When the
processor at the top of the pyramid completes this task, the problem of finding the
overall largest number has been solved.

Using a single processor, finding the largest of N numbers takes Θ (N) time because
each of the N numbers in the list must be examined exactly once. (This order of
complexity was introduced and discussed in Chapter 3.) However, the parallel
approach diagrammed in Figure 10.15 traverses the pyramid from top to bottom and
then back to the top. Because the N numbers are divided into two halves at each step,
until the lists are of length one, this down-and-up-the-pyramid process requires (2 *
ln (N)) steps, and a parallel solution to the “Find Largest” algorithm is Θ (ln (N)).

(Logarithmic efficiency was discussed in Section 3.4.2.) This can lead to enormous
speedup in the solution time because the function ln (N) grows at a much slower rate

than N. For example, if N = 1,000,000, then using a sequential approach to finding the
largest number takes on the order of 1,000,000 steps, whereas our parallel solution
needs only on the order of 2 * ln (1,000,000) = 40 steps, a potential speedup of 25,000!

We would expect the use of parallelism to reduce processing time because subtasks are
being executed concurrently. However, one potential roadblock to achieving these
higher levels of speedup is the amount of communication traffic between processors,
both to distribute code and data and to share status and results. At some point, an
increase in the number of processors can become more of a hindrance than a help, due
to the extra data communication required. This is analogous to having too many people
serve on a committee. The work involved in keeping everyone informed can slow
down rather than speed up the work. In that case, it could actually be more efficient to
have fewer people working on the task. One of the most important areas of research in
parallel processing is the design and development of efficient parallel algorithms that
keep processors busy, minimize communications, and significantly speed up the overall
execution time.

A final form of parallelism, a type we will discuss again in Chapter 15, is the neural
network. Patterned after the human brain, neural networks can involve massive

2 2

2

2

interconnections of many extremely simple devices. They are one of the most
interesting areas of artificial intelligence.

Let Me Do That for You

Section 9.1 described the evolution of sequential programming languages from
machine language to assembly language to high-level languages like C++, Java,
and Python. A similar evolution is happening with parallel programming
languages. Most of the parallel languages in current use, such as OpenMP, MPI,
Cilk, and X10, require programmers to personally manage all aspects of
parallelism—allocating data to global and local memory units, distributing
programs, and sending and receiving messages. That is not unlike low-level
assembly languages that required programmers to format data and manage
memory, tasks that humans do not do very well.

However, just as assembly languages evolved into high-level languages in
which compilers perform these mundane tasks, the field of parallel
programming languages is also evolving. Today, automatic parallelization is an
active area of computer science research. The goal of automatic parallelization
is to design and build parallel compilers that accept sequential code and
automatically “discover” opportunities for parallel execution. The compiler
then converts this sequential code into parallel code that runs efficiently on
SIMD or MIMD machines. The ultimate goal is to relieve programmers of the
error-prone task of manually coding the complex details of parallel algorithms,
something that humans, again, do not do very well.

In spite of many years of research, as yet there has been limited success in
achieving this goal. Today only a few parallel compilers can generate parallel
code that is anywhere close to the efficiency of what can be produced by good
human programmers. With the increasing number of ever-more-powerful
multicore supercomputers, it’s important for software solutions to advance just
as rapidly.

Practice Problems

Explain how parallel processing can be used to evaluate the

expression

If each addition operation takes one “time slot,” what savings can be

1.

10.5.1 Go

Go is a programming language developed at Google. One of the people involved in its
development was Ken Thompson, a recipient, along with Dennis Ritchie, of the 1983
Turing Award (see Chapter 12) for the development of UNIX. When Go was released in
2009, there was some controversy over the name because there was a logic
programming language named Go! (with exclamation point) already in existence.
Nonetheless, the name has been retained.

What prompted the development of yet another programming language? Here is a
quote from the FAQ (Frequently Asked Questions) page at http://golang.org

Go was born out of frustration with existing languages and environments for
systems programming. Programming had become too difficult and the choice of
languages was partly to blame. One had to choose either efficient compilation,
efficient execution, or ease of programming; all three were not available in the
same mainstream language. Programmers who could were choosing ease over
safety and efficiency by moving to dynamically typed languages such as Python
and JavaScript rather than C++ or, to a lesser extent, Java.

Go is an attempt to combine the ease of programming of an interpreted,
dynamically typed language with the efficiency and safety of a statically typed,
compiled language. It also aims to be modern, with support for networked and
multicore computing. Finally, it is intended to be fast: it should take at most a few
seconds to build a large executable on a single computer. To meet these goals
required addressing a number of linguistic issues… a new language was called
for.

Go is an open source language (see “The Open Source Movement ” Special Interest Box
in Chapter 6). The source code is available for anyone to examine and use, and changes
or additions can be proposed. As noted in the quote, two of the target areas for Go
applications are systems programming and programming for multicore machines. Go
is in use to support several Google internal projects.

Chapter 10: The Tower of Babel: 10.5.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

10.5.2 F#

F# is a new Microsoft language. Developed in 2005, it is now included as a language in

the Microsoft development environment Visual Studio 2010. In contrast to the open
source Go language, F# is a proprietary language, that is, it is intellectual property
belonging to Microsoft Corporation. F# is primarily a functional language, although it
has some object-oriented characteristics and some parallel programming
characteristics. Because it is supported by the Microsoft.NET Framework, it has access
to all the common libraries of.NET.

Let’s look at how some of the simple function operations we looked at in Scheme can be
done in F#. Instead of the keyword define indicating that we are about to define a
function, F# uses let. So we can write the following F# code:

And the result of

is again 18.

F# also has list-processing capabilities. Instead of taking a list and extracting the first
element (the car operation in Scheme) or the rest of the list minus the first element (the
cdr operation in Scheme), F# builds up a list by pushing an element onto the front of
the list. This operation is denoted by::, so that the result of

is the list [1; 2; 3].

The adder function in Scheme (Figure 10.9) is a recursive function that repeatedly
strips off the front element of the list and adds it to the sum of the remaining list. An
equivalent function in F# does the same thing, but in a slightly different way. Figure
10.16 shows the F# function. Given a list x, it “matches” this list to see whether it is the
empty list [], for which the value of the sum of the elements, 0, can be returned
immediately, or whether it is of the form y::z, that is, the element y pushed on the front
of a list z, in which case the value returned by the function is y plus the sum of the
values in list z.

Figure 10.16

F# program to add nonnegative integers

So let’s see how this works if we ask for

The list [3; 4; 5] is not empty, but it does have the form 3::[4; 5], so the value, as
constructed so far, is

Invoking the SumList function on the list [4; 5], this list is not the empty list, but it does
have the form 4::[5], so the value, as constructed so far, is

Once again, the SumList function is invoked, this time on the list [5]. Again, this is not
the empty list, but it does have the form 5:: [], so the value, as constructed so far, is

On the final invocation of SumList, using the empty list [], the result of 0 is returned.
Thus the final result is

F# has found its way into many applications:

The Microsoft Xbox Live TrueSkill rating system

Mathematical models to analyze investment portfolios

A program to balance the power generation schedule for a number of power

stations

An expert system to help make decisions about offshore oil exploration

As these last two example languages clearly demonstrate, even though the field of
programming language design is now well over 50 years old, it is still a fertile area of
creative research.

Chapter 10: The Tower of Babel: 10.6
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

10.6 Conclusion
There is an entire spectrum of programming languages, each with its own features that

make it more suitable for some types of applications than for others. A number of
well-known languages (FORTRAN, COBOL, C, C++, Ada, Java, C#, Python) fall into the
traditional, procedural paradigm. Procedural languages can be object oriented, leading
to a different program design perspective and the promise of software reuse. Some
languages (such as SQL, HTML, and JavaScript) are designed as special-purpose tools.
Still others rely on combinations of function evaluations (a functional language
—Scheme), logical deductions from specified facts (a logic programming language—
Prolog), or a parallel programming approach. And new languages continue to be
developed. Figure 10.17 lists the languages we have discussed, along with some of the
other major languages. A few words about this figure are in order. It is hard to
pinpoint a date for a programming language. Should it be when the language was
developed, when it was first commercially used, or when it became standardized? It is
also sometimes hard to pigeonhole a language as to paradigm. Although we’ve tried to
make clear distinctions in this chapter, some languages combine features drawn from
several approaches. Finally, your favorite language may have been omitted. (By all
means, add it to the table.) At any rate, it is certain that the programming language
world has been and continues to be a “Tower of Babel.”

Figure 10.17
Programming languages at a glance

Name Date Type

FORTRAN 1955–57 Procedural

ALGOL 60 1958–60 Procedural

COBOL 1959–60 Procedural

BASIC 1963–64 Procedural

PL/1 1964 Procedural

ALGOL-68 1968 Procedural

Pascal 1971 Procedural

C 1974 Procedural

Modula-2 1977 Procedural

Ada 1979 Procedural/Parallel

Oberon 1988 Procedural/Parallel

Go 2009 Procedural/Parallel

Name Date Type

Smalltalk 1971–1980 Object oriented

Flavors 1979 Object oriented

C++ 1983 Object oriented

Eiffel 1987 Object oriented

Visual Basic 1988 Object oriented

Python 1990 Object oriented

Java 1995 Object oriented

Alice 1995 Object oriented

C# 2000 Object oriented

SQL 1986 Database queries

Perl 1987 Text
extraction/reporting

HTML 1994 Hypertext authoring

LISP 1958 Functional

APL 1960 Functional

Scheme 1975 Functional

FP 1977 Functional

ML 1978 Functional

Haskell 1992 Functional

F# 2005 Functional

Prolog 1972 Logic

Datalog 1977 Logic

Occam II 1987 Parallel

Linda 1989 Parallel

High
Performance
Fortran

1993 Parallel

What is the output from the following section of FORTRAN code?1.

Translate the following assembly language program into (early)

FORTRAN.

2.

Exponentiation is expressed in FORTRAN by **; that is, 3**2 means 3 . If I

has the value 7 and J has the value 3, what is the value of the following

FORTRAN expression?

3.

What is the value of RESULT after execution of the following COBOL code?

Assume that INITIAL has the value 100.

4.

2

What is true after the following statements in a C program have been

executed?

5.

Write a section of C code that stores in memory location 1000 the integer

value currently in SAM.

6.

The following section of Ada code conveys the services that a “teller”

object can perform. What are these services?

7.

In the following two Java output statements,

Why do you think the first uses println and the second uses print?

8.

In Python, indentation is used to indicate the extent of a block of code.

What is the output of the following Python code?

9.

In C#, &&; is the symbol for the Boolean AND operation, and || is the

symbol for the Boolean OR operation. What is the truth value of the

following Boolean expressions?

(3 <= 3) &&; (7 > 5)

(3 < 3) ǁ (7 > 5)

(4 < 1) &&; (3 > 2)

10.

Which procedural language might be most appropriate for a program to

do each of the following applications and why?

Compute trajectories for a satellite launcher.

Monitor an input device feeding data from an experiment to the

computer.

Process the day’s transactions at an ATM (automated teller machine).

11.

In the vendor database described in Section 10.3.1, the user wants to

know all of the cities where there are vendors from whom the store

bought more than $10,000 worth of stock the previous business quarter.

Write an SQL query for this information.

12.

Describe the text on a Web page that results from the HTML statement:13.

Using a text editor (such as Notepad) and two image files of your own,

create the HTML page shown in Figure 10.8. Save the file with an.html

extension, then double-click to open it in your Web browser. Does it

behave as you expect?

14.

What is the result of the following Scheme expression?15.

Write a Scheme function that returns a list consisting of the first two

values in the input list but in the opposite order.

16.

Consider the following Scheme function:

What is the result of invoking the function as follows?

(mystery (list 3 4 5))

Explain what this function does in general.

17.

Consider the following Scheme function:

The condition (= n 1) means “If n = 1… ”. What is the result of the

following function invocation?

(unknown 4)

18.

After the rule

is added to the Prolog program of Figure 10.10, what is the result of each

of the following queries?

?-earlier(lewis_and_clark, civil_war).

?-earlier(world_war_II, first_moon_landing).

?-earlier(X, world_war_II).

19.

Here is the beginning of a Prolog program about a family. The facts are

The declaration

asserts that Eli is male, and

asserts that Eli is Bill’s parent. Draw a “family tree” based on these facts.

20.

Add to the Prolog program of Exercise 20 a rule to define “father-of”.21.

Add to the Prolog program of Exercise 20 a rule to define “daughter-of”.22.

Add to the Prolog program of Exercise 20 a rule to define “ancestor-of”.

After this rule is added, determine the result of the query

?-ancestor-of(X, sarah).

23.

Go to the “toy” Prolog Web site at www.csse.monash.edu.au/~lloyd

/tildeLogic/Prolog.toy Pay attention to the syntax of the program that is

already there. In particular, notice that in this version, each statement

ends with a period and the:- symbol is now <=. Load the Prolog program

of Figure 10.10 and run it, making some of the queries used in 10.4.2.

24.

Suppose the symbolic arrangement of Figure 10.15 is used in a divide-

and-conquer algorithm to compute the largest element in a list of eight

elements. Assume that the time to partition a list in half and pass it to

subprocessors is 0.003n msec, where n is the size of the list to be

25.

The following shows a simple Visual Basic.NET form that contains two text boxes,

a label, and a button. The user types his or her first name and last name into the

two text boxes. When the user clicks the button, the name is displayed in the label

as

Lastname, Firstname

If you have Visual Basic.NET (available in Microsoft Visual Studio), open a new

Visual Basic Windows Application. Drag objects from the Toolbox to create a form

that looks like the one shown on the next page. Give each of these objects a

meaningful name by changing its Name property in the Properties window. Use

the Text property of each object to set what that object displays (the text boxes

and label should initially be blank and the button should say “Name Writer”).

The only code required is a response to the button’s Click event. Double-click the

button and then write a code statement that concatenates—in the correct

order—the Text properties of the two text boxes, together with a comma, and

assigns the result to the Text property of the label. Run your program (press the

function key F5 on the keyboard) to test it. (Hints: Visual Basic uses & as the

concatenation operator. A form object’s property is referenced by giving the

name of the object, followed by a dot, followed by the property name, as in

lblOutput.Text.)

Find information on one of the Grand Challenge problems of Figure 10.12. Write

a report on the following:

What the problem involves

The benefits to be obtained from solving it

Why it is computationally challenging

Why parallel processing may be able to, or has been able to, help solve it

The current state of progress toward a solution

2.

Using a text editor (such as Notepad) and three image files of your own, create

the HTML page shown in Figure 10.8. Save the file with an.html extension and be

sure it runs properly in your browser. Change the Javascript so that the image

cycles through picture 1 to picture 2 to picture 3 to picture 1, and so forth, as the

user moves the mouse into and out of the image area. (Hint: check the Web for

the Javascript if… else if… else statement.)

3.

There are small examples online of programs written in Go. Go (no pun

intended!) to http://golang.org and in the Examples drop-down box below the

code window, select Fibonacci Closure. Click Pop Out to get a bigger window to

see the code. The Fibonacci sequence is a famous sequence of numbers invented

by Leonardo Fibonacci in the year 1202 to model the population growth of

rabbits. The first two numbers in the sequence are 1, 1. Successive numbers in

the sequence are obtained by adding the two previous numbers. For example, the

third Fibonacci number is the sum of the first two Fibonacci numbers, 1 + 1 = 2.

Write the first six numbers in the Fibonacci sequence.a.

Compile and run the Fibonacci Closure Go program. What is the output?b.

Some of the Go syntax is similar to C/C++. How does Go indicate comments?c.

One bit of C/C++ syntax is missing from Go. On the FAQ page, what does it

say about ending statements with semicolons?

d.

4.

Can you guess the semantics (meaning) of the following statement?

What about the next statement?

(Note: You can modify and recompile/rerun the code to test possible

equivalent statements.)

e.

Chapter 10: The Tower of Babel
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter Review

Additional Resources

 For additional print and/or online resources relevant to this

chapter, visit the Computer Science CourseMate at login.cengagebrain.com.

Chapter 10: The Tower of Babel
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

© 2014 Cengage Learning Inc. All rights reserved. No part of this work may by reproduced or used in any form or by any
means - graphic, electronic, or mechanical, or in any other manner - without the written permission of the copyright holder.

Chapter 11: Compilers and Language Translation
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter 11
Compilers and Language Translation

11.1 Introduction

11.2 The Compilation Process

11.2.1 Phase I: Lexical Analysis

11.2.2 Phase II: Parsing

11.2.3 Phase III: Semantics and Code Generation

11.2.4 Phase IV: Code Optimization

11.3 Conclusion

Chapter Review

Exercises

Challenge Work

Additional Resources

Chapter 11: Compilers and Language Translation: 11.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

11.1 Introduction
Although the high-level languages you learned about in the previous two chapters vary
greatly in structure and behavior, they all share one feature: No computer in the world
can understand them. There are no “Java computers” or “C++ processors” that can
directly execute programs written in the high-level languages of Chapters 9 and 10. In
Chapter 6, you learned that assembly language must be translated into machine
language prior to execution. High-level languages must also be translated into machine
language prior to execution—in this case by a special piece of system software called a
compiler. Compilers for languages like those discussed in Chapters 9 and 10 are very
complex programs. They contain tens of thousands of lines of code and may require
dozens or hundreds of person-years to complete. Unlike the assemblers of Chapter 6,
these translators are not easy to design or implement.

There is a simple explanation for the vast difference in complexity between assemblers
and compilers. Assembly language and machine language are related one to one; that
is, one assembly language instruction produces exactly one machine language
instruction. Therefore, translation is really a replacement process in which the
assembler looks up a symbolic value in a table (either the op code table or the symbol
table) and replaces it by its numeric equivalent:

This is equivalent to translating English into Spanish by looking up each individual
English word in an English/Spanish dictionary and replacing it with exactly one
Spanish word:

This is a simple way to do translation, and this approach does work for assemblers.
Unfortunately, it does not work for most English sentences. Often, a single English word
must be translated into a multiword Spanish phrase or vice versa. This same problem
exists in the translation of high-level programming languages like Java, C++, or Python.

The relationship between a high-level language and machine language is not one to one
but one to many. That is, one high-level language statement, such as an assignment or
conditional statement, usually produces many machine language or assembly language
instructions. For example,

To determine which machine language instructions must be generated, a compiler
cannot simply look up a name in a table. Instead, it must do a thorough linguistic

analysis of the structure (syntax) and meaning (semantics) of each high-level language
statement. This is far more difficult than table lookup. In fact, building a compiler for a
modern high-level programming language can be one of the most difficult system
software projects.

When performing a translation, a compiler has two distinct goals. The first is
correctness. The machine language code produced by the compiler must do exactly
what the high-level language statement describes, and nothing else. For example, here
is a typical Java assignment statement:

Assume that a compiler translates this statement into the following assembly language
code:

This translation is wrong. Although the code does evaluate (B + C) - (D + E) and stores
the result into A, it does two things it should not do. The translated program destroys
the original contents of the variables B and D when it does the first two STORE
operations. This is not what the Java assignment operator is supposed to do, and this
compiler has produced an incorrect machine language translation of the original
high-level language statement.

In addition to correctness, a compiler has a second goal. The code it produces should be
reasonably efficient and concise. Even though memory costs have come down and
processors are much faster, programmers will not accept gross inefficiencies in either
execution speed or size of the compiled program. They might not care whether a
compiler eliminates every wasted nanosecond or every unnecessary memory cell, but
they do want it to produce reasonably fast and efficient machine language code. For

example, to compute the sum 2x + 2x + 2x + … + 2x , an inexperienced

programmer might write something like the following:

This loop includes the time-consuming multiplication operation (2.0 * x[i]). By the rules
of arithmetic, this operation can be moved outside the loop and done just once. A
“smart” compiler should recognize this and translate the previous fragment as though
it had been written as follows:

By restructuring the loop, a smart compiler saves 49,999 unnecessary multiplications.

As you can see, we have our work cut out for us in this chapter. We want to describe
how to construct a compiler that can read and interpret high-level language
statements, understand what they are trying to do, correctly translate their intentions
into machine language without errors or unexpected side effects, and do all of this
efficiently. Building a compiler is a major undertaking.

The remainder of this chapter gives an overview of the steps involved in building a
compiler for a procedural, Java-like, or C++-like language. No single chapter could
investigate the subtleties and complexities of this huge subject. We can, however, give
you an appreciation for some of the issues and concepts involved in designing and
implementing this important piece of system software.

Chapter 11: Compilers and Language Translation: 11.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

11.2 The Compilation Process
The general structure of a compiler is shown in Figure 11.1. Because there is a good
deal of variability in the design and organization of a compiler, this diagram should be

0 1 2 50000

viewed as a model rather than as an exact description of how all compilers are
structured.

Figure 11.1

General structure of a compiler

The four phases of compilation listed in Figure 11.1 are:

Phase I: Lexical analysis—The compiler examines the individual characters in the

source program and groups them into syntactical units, called tokens, that will be

analyzed in succeeding stages. This operation is analogous to grouping letters

into words prior to analyzing text.

Phase II: Parsing—The sequence of tokens formed by the scanner ischecked to see

whether it is syntactically correct according to the rules of the programming

language. This phase is roughly equivalent to checking whether the words in the

text form grammatically correct sentences.

Phase III: Semantic analysis and code generation—If the high-level language

statement is structurally correct, then the compiler analyzes its meaning and

generates the proper sequence of machine language instructions to carry out

these actions.

Phase IV: Code optimization—The compiler takes the generated code and sees

whether it can be made more efficient, either by making it run faster or having it

occupy less memory.

When these four phases are complete, we have a correct and efficient machine
language translation of the original high-level language source program. In the final
step, this machine language code, called the object program, is written to an object file.
We have reached the stage labeled “Machine language program” from Chapter 6,
Figure 6.4, and the resulting object program can be handled in exactly the fashion
shown there. That is, it can be loaded into memory and executed by the processor to
produce the desired results.

The overall sequence of operations performed on a high-level language program is
summarized in Figure 11.2. The following sections take a closer look at each of the four
phases of the compilation process.

Figure 11.2

Overall execution sequence of a high-level language program

Chapter 11: Compilers and Language Translation: 11.2.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

11.2.1 Phase I: Lexical Analysis

The program that performs lexical analysis is called a lexical analyzer, or more
commonly a scanner. Its job is to group input characters into units called tokens
—syntactical units that are treated as single, indivisible entities for the purposes of
translation. For example, take a look at the following assignment statement:

You probably see an assignment statement containing some symbols (a, b, delta), a
number (319), and some operators (=, +, -,;). However, your eyes and your brain

actually do a great deal of processing to create these objects, just as they do a great deal
of processing to create words, sentences, and paragraphs from the individual
characters on this page. In the assignment statement shown previously, high-level
linguistic objects such as symbols and numbers do not yet exist. Initially, there are only
the following 21 characters:

It is the task of the scanner to discard nonessential characters, such as blanks and tabs,
and then group the remaining characters into high-level syntactical units such as
symbols, numbers, and operators. A scanner would construct from the preceding
example the following eight tokens:

Now our compiler no longer has to deal with individual characters. Instead, it can work
at the level of symbols (a, b, delta), numbers (319), and operators (=, +, –,;).

In addition to building tokens, a scanner must classify tokens by their type—that is, is it
a symbol, is it a number, or is it an assignment operator? Whereas a modern high-level
language like C++, Java, or Python may have 50 or more different token types, our
simple examples are limited to the 11 classifications listed in Figure 11.3.

Figure 11.3
Typical token classifications

Token Type
Classification
Number

symbol 1

number 2

= 3

+ 4

- 5

; 6

== 7

if 8

else 9

(10

) 11

The scanner assigns the classification number 1 to all legal symbols, such as a, b, and
delta. Similarly, all unsigned numbers, regardless of value, are assigned classification
number 2. The reason all symbols and all numbers can be grouped into single
classifications is that the grammatical correctness of a statement depends only on
whether a legal symbol or a legal number appears in a given location. It does not
depend on exactly which symbol or which number is actually used. For example, given
the following model of an assignment statement:

it is possible to state that it is syntactically correct, regardless of which specific
“symbol” and “number” are actually used (as long as they are all legal).

Using the token types and classification values shown in Figure 11.3, it is now possible
to describe exactly what a scanner must do:

The input to a scanner is a high-level language statement from the source
program. Its output is a list of all the tokens contained in that statement, as well
as the classification number of each token found.

Here are some examples (using the classification values shown in Figure 11.3):

Regardless of which programming language is being analyzed, every scanner performs
virtually the same set of operations: (1) It discards blanks and other nonessential
characters and looks for the beginning of a token; (2) when it finds the beginning, it
puts characters together until (3) it detects the end of the token, at which point it
classifies the token and begins looking for the next one. This algorithm works properly
regardless of what the tokens look like.

We can see this process more clearly by looking at an algorithm for grouping natural
language characters into words:

Even though these three sentences are written in very different languages—English,
Spanish, and Japanese—the algorithm for constructing words is identical: (1) Discard
blanks until you find a nonblank character; (2) group characters together until (3) you
encounter either a blank or the character “.”. You have now built a word. Go back to
Step 1 and repeat the entire sequence to locate the next word. This is essentially the
same algorithm that is used to build a lexical scanner for high-level programming
languages.

Practice Problems

Using the token types and classification numbers given in Figure 11.3,

determine the output of a scanner given the following input

statements:

x = x + 1;a.

if (a + b42 == 0) a = zz - 12;b.

1.

Do you think a scanner would classify the following sequence of

symbols as a single token or as multiple tokens? Give a reason for

your choice.

abc – def

abc_def

abc def

2.

The following character sequence is illegal in virtually all

programming languages:

X =; (14 hello

3.

when we try to analyze the sequence, “The man bit the”, here is what happens:

At this point in the analysis, we are stuck because there is no object for the verb “bit.”
We cannot diagram the sentence and must conclude that it is not properly formed.

The same thing happens with statements in a programming language, which are
roughly analogous to sentences in a natural language. If a compiler is able to “diagram”
a statement such as a = b + c, it concludes that the statement is structurally correct:

The structure shown above is called a parse tree. It starts from the individual tokens in
the statement, a, =, b, +, and c, and shows how these tokens can be grouped into

predefined grammatical categories such as <symbol>, <assignment operator>, and
<expression> until the desired goal is reached—in this case, <assignment statement>.
(We will explain shortly why we are writing the names of these grammatical categories
inside the angle brackets “<” and “>”.) The successful construction of a parse tree is
proof that this statement is correctly formed according to the rules of the language. If a
parser cannot produce such a parse tree, then the statement is not correctly formed.

In the field of compiler design, the process of diagramming a high-level language
statement is called parsing, and it is done by a program called a parser. The output of a
parser is either a complete parse tree or an error message if one cannot be constructed.

Grammars, Languages, and BNF. How does a parser know how to construct the parse
tree? What tells it how the pieces of a language fit together? For example, in the
statement shown previously, you might wonder how the parser knows that the format
of an assignment statement in our language is

The answer is that it does not know; we must tell it. The parser must be given a formal
description of the syntax—the grammatical structure—of the language that it is going
to analyze. The most widely used notation for representing the syntax of a
programming language is called BNF, an acronym for Backus-Naur Form, named after
its designers John Backus and Peter Naur.

In BNF, the syntax of a language is specified as a set of rules, also called productions.
The entire collection of rules is called a grammar. Each individual BNF rule looks like
this:

The left-hand side of a BNF rule is the name of a single grammatical category, such as
<symbol>, <expression>, or <assignment statement>. The BNF operator:: = means “is
defined as,” and “definition,” which is also called the right-hand side, specifies the
grammatical structure of the symbol appearing on the left-hand side of the rule. The
definition may contain any number of objects. For example, here is a BNF rule that
defines how an <assignment statement> is formed:

This rule says that the syntactical construct called <assignment statement> is defined as
a <symbol> followed by the token = followed by the syntactical construct called
<expression>. To have a structurally correct assignment statement, these three objects
must all be present in exactly that order.

A BNF rule that gives one possible definition for the English language construct called
<sentence> follows.

This rule says that a <sentence> is defined as a <subject> followed by a <verb> followed
by an <object>. It is this rule that allowed us to parse “The man bit the dog.”

Finally, the simple BNF rule

says that the grammatical construct <addition operator> is defined as the single
character +.

If a parser is analyzing a statement in a language and it sees exactly the same sequence
of objects that appears on the right-hand side of a BNF rule, it is allowed to replace
them with the one grammatical object on the left-hand side of that rule. For example,
given our BNF rule for <assignment statement>:

if a parser encounters the three objects <symbol>, =, and <expression> next to each
other in the input, it can replace them with the object appearing on the left-hand side
of the rule—in this case, <assignment statement>. In a sense, the parser is constructing
one branch of the parse tree, which looks like this:

We say that the three objects, <symbol>, =, and <expression>, produce the grammatical
category called <assignment statement>, and that is why a BNF rule is also called a
production.

BNF rules use two different types of objects, called terminals and nonterminals, on the
right-hand side of a production. Terminals are the actual tokens of the language
recognized and returned by a scanner. The terminals of our language are the 11 tokens
listed in Figure 11.3:

<symbol> ==

<number> if

= else

+ (

-)

;

The important characteristic of terminals is that they are not defined any further by
other rules of the grammar. That is, there is no rule in the grammar that explains the
“meaning” of such objects as <symbol>, =, +, and if. They are simply elements of the
language, much like the words man, bit, and dog in our earlier example.

The second type of object used in a BNF rule is a nonterminal. A nonterminal is not an
actual element of the language but an intermediate grammatical category used to help
explain and organize the language. For example, in the analysis of the English
sentence, “The man bit the dog,” we used grammatical categories called article, noun,
verb, noun phrase, subject, and object. These categories help us understand the
structure of the sentence and show that it is correctly formed, but they are not actual
words of the sentence being studied.

In every grammar, there is one special nonterminal called the goal symbol. This is the
final nonterminal, and it is the nonterminal object that the parser is trying to produce
as it builds the parse tree. When the parser has produced the goal symbol using all the
elements of the sentence or statement, it has proved the syntactical correctness of the
sentence or statement being analyzed. In our English language example, the goal
symbol is <sentence>. In our assignment statement example, it is, naturally,
<assignment statement>. When this nonterminal goal symbol has been produced, the
parser has finished building the tree, and the statement has been successfully parsed.
The collection of all statements that can be successfully parsed is called the language
defined by a grammar.

All nonterminals are written inside angle brackets; examples include <expression> and
<assignment statement>. Some terminals are also written in angle brackets when they
do not represent actual characters of the language but rather groups of characters
constructed by the scanner, such as <symbol> or <number>. However, it is easy to tell
the difference between the two. A terminal such as <symbol> is not defined by any
other rule of the language. That is, there is no rule anywhere in the grammar that looks
like this:

Terminal symbols are like the words and punctuation marks of a language, and a
parser does not have to know anything more about their syntactical structure to
analyze a sentence.

However, nonterminals are constructed by the parser from more elementary
syntactical units. Therefore, nonterminals such as <expression> and <assignment
statement> must be further defined by one or more rules that specify exactly how this
nonterminal is constructed. For example, there must exist at least one rule in our
grammar that has the nonterminal <expression> as the left-hand side. This rule tells
the parser how to form expressions from other terminals and nonterminals:

Similarly, there must be at least one rule that specifies the structure of an assignment
statement:

We can summarize the difference between terminals and nonterminals by saying that
terminals never appear on the left-hand side of a BNF rule, whereas nonterminals must
appear on the left-hand side of one or more rules.

The three symbols <, >, and::= used as part of BNF rules are termed metasymbols. This
means that they are symbols of one language (BNF) that are being used to describe the
characteristics of another language. In addition to these three, there are two other
metasymbols used in BNF definitions. The vertical bar, |, means OR, and it is used to
separate two alternative definitions of a nonterminal. This could be done without the
vertical bar by just writing two separate rules:

However, it is sometimes more convenient to use the | character and write a single
rule:

For example, the rule

says that an arithmetic operator is defined as either a +, or a -, or an *, or a /. Without
the | operator, we would need to write four separate rules, which would make the
grammar much larger. Here is a rule that defines the nonterminal <digit>:

We will see many more examples of the use of the OR operator.

The final metasymbol used in BNF definitions is the Greek character lambda, Λ, which
represents the null string—nothing at all. It is possible that a nonterminal can be
“empty,” and the symbol Λ is used to indicate this. For example, the nonterminal
<signed integer> can be defined as an optional sign preceding an integer value, such as
+7 or -5 or 8. To define the idea of an optional sign in BNF, we could say:

which says that <sign> may be either a + or a –, or it may be omitted entirely.

Practice Problems

Write a single BNF rule that defines the nonterminal <Boolean

operator>. (Assume that the three possible Boolean operators are

AND, OR, and NOT.)

1.

Create a BNF grammar that describes all one- or two-character

identifiers that begin with the letter i or j. The second character, if

present, can be any letter or digit. What is the goal symbol of your

grammar?

2.

Write a BNF grammar that describes Boolean expressions of the form

(var op var)

3.

where var can be one of the symbols x, y, and z, and op can be one of

the three relational operators ==, >, and <. The parentheses are part of

the expression.

Using the grammar created in Practice Problem 3, show the parse tree

for the expression (x > y).

4.

Using the grammar created in Practice Problem 3, show what

happens when you try to parse the illegal expression (x ==).

5.

Modify your grammar from Practice Problem 3 so that the enclosing

parentheses are optional. That is, Boolean expressions can be written

as either (var op var) or var op var.

6.

Parsing Concepts and Techniques. Given this brief introduction to grammars,
languages, and BNF, we can now explain how a parser works. A parser receives as
input the BNF description of a high-level language and a sequence of tokens recognized
by the scanner. The fundamental rule of parsing follows.

If, by repeated applications of the rules of the grammar, a parser can convert the
sequence of input tokens into the goal symbol, then that sequence of tokens is a
syntactically valid statement of the language. If it cannot convert the input tokens
into the goal symbol, then this is not a syntactically valid statement of the
language.

To illustrate this idea, here is a three-rule grammar:

Number Rule

1 <sentence>::= <noun>
<verb>.

2 <noun>::= bees | dogs

3 <verb>::= buzz | bite

The grammar contains five terminals: bees, dogs, buzz, bite, and the character “.” (a

period). It also contains three nonterminals: <sentence>, <noun>, and <verb>. The goal
symbol is <sentence> because it is the one nonterminal that does not appear on the
right-hand side of any other rule. In addition to the grammar, we also provide a
sequence of tokens such as dogs, bite, and “.”. The parser attempts to transform these
tokens into the goal symbol <sentence> using the three BNF rules given above:

In this case, the parse was successful. (The numbers in the diagram indicate which rule
is being applied.) Thus, “dogs bite.” is a syntactically valid sentence of the language
defined by this three-rule grammar. However, the following sequence of tokens:

leads to a dead end. We have not yet produced the goal symbol <sentence>, but there is
no rule in the grammar that can be applied to the sequence <noun> <noun> “.”. That is,
no sequence of terminals and nonterminals in the parse tree constructed so far
matches the right-hand side of any rule. This means that “bees dogs.” is not a valid
sentence of this language.

Grammars for “real” high-level languages like C++, Python, or Java are very large,
containing many hundreds of productions; therefore, it is not feasible to use these
grammars as examples. Even a grammar describing individual statements can be quite
complex. For example, the BNF description of an assignment statement, complete with
variables, constants, operators, parentheses, and function calls, can easily require 20 or
30 rules. Therefore, the following examples all use highly simplified “toy” languages to
keep the level of detail manageable and enable us to focus on important concepts.

Our first example is a grammar for a highly simplified assignment statement in which

the only operator is +, numbers are not permitted, and the only allowable variable
names are x, y, and z. A first attempt at designing a grammar for this simplified
assignment statement is shown in Figure 11.4.

Figure 11.4
First attempt at a grammar for a simplified assignment statement

Number Rule

1 <assignment statement> ::=
<variable> = <expression>

2 <expression> ::= <variable> |
<variable> + <variable>

3 <variable> ::= x | y | z

If the input statement is x = y + z, then the parser can determine that this statement is
correctly formed because it can construct a parse tree (Figure 11.5). The parse tree of
Figure 11.5 is the output of the parser, and it is the information that is passed on to the
next stage in the compilation process.

Figure 11.5

Parse tree produced by the parser

Building a parse tree like the one in Figure 11.5 is not as easy as it may appear. Often

two or more rules of a grammar may be applied to the current input string, and the
parser is not sure which one to choose. For example, assume that our grammar
includes the following two rules:

Number Rule

1 <t1>::= A B

2 <t2>::= B C

and that the statement being parsed contains the three-character string … A B C …. We
could apply either Rule 1:

or Rule 2:

One of these choices might be correct, whereas the other might lead down a
grammatical dead end, and the parser has no idea which is which.

You are probably not aware that a similar situation occurs in the example shown in
Figure 11.5. Assume that the parser reaches this position in building the parse tree for
the statement x = y + z:

In Figure 11.5, the parser next groups the three objects <variable>, +, and <variable>
into an <expression> using Rule 2. However, at this point the parser has other options.
For example, it could choose to parse the nonterminal <variable> generated from the
symbol y to <expression> using Rule 2 and then parse the sequence <variable> =

<expression> to <assignment statement> using Rule 1. This produces the parse tree
shown on the next page.

Unfortunately, this is the wrong choice. Although the parser does generate the goal
symbol <assignment statement>, it does not use all of the tokens. An extra plus sign and
<variable> are not used. (It accidentally parsed the assignment statement x = y instead
of x = y + z.) The parser has gone down the wrong path and reached a point where it is
unable to continue. It must now go back to the point where it made the incorrect choice
and try something else. For example, it might choose to parse the nonterminal
<variable> generated from z to <expression> using Rule 2. Unfortunately, this is also a
dead end; it produces the sequence <variable> + <expression>, which does not match
the right-hand side of any rule.

The process of parsing is a complex sequence of applying rules, building grammatical
constructs, seeing whether things are moving toward the correct answer (the goal
symbol), and, if not, “undoing” the rule just applied and trying another. It is much like
finding one’s way through a maze. You try one path and if it works, fine. If not, you
back up to where you made your last choice and try another, hoping that this time it
will lead in the right direction.

This sounds like a haphazard and disorganized way to analyze statements, and in fact,
it is. However, “real” parsing algorithms don’t rely on a random selection of rules, as
our previous discussion may have implied. Instead, they try to be a little more clever in
their choices by looking ahead to see whether the rule they plan to apply will or will
not help them to reach the goal. For example, assume we have the following input
sequence:

and this grammar:

We have two choices on how to parse the input string. We can either group the two
characters A B to form a <term>, or we can group B C instead. A random choice causes
us to be wrong about half the time, but if a parser is clever and looks ahead, it can do a
lot better. It is easy to see that grouping B C to produce the nonterminal <term> leads to
trouble, because there is no rule telling us what to do with the sequence A <term>. We
quickly come to a dead end:

However, by choosing to group the tokens A B into <term> instead of B C, the parser
quickly produces a correct parse tree:

There are many well-known look-ahead parsing algorithms that use the ideas just
described. These algorithms “look down the road” a few tokens to see what would
happen if a certain choice is made. This helps keep the parser moving in the right
direction, and it significantly reduces the number of false starts and dead ends. These
algorithms can do very efficient parsing, even for large languages with hundreds of
rules.

There is another important issue in the design of grammars. Let’s assume we attempt
to parse the following assignment statement:

using the grammar in Figure 11.4 No matter how hard we try to build a parse tree, it is
just not possible:

All other attempts lead to a similar result.

The problem is that the grammar in Figure 11.4 does not correctly describe the desired
language. We wanted a language that allowed expressions containing an arbitrary
number of plus signs. However, the grammar of Figure 11.4 describes a language in
which expressions may contain at most a single addition operator. More complicated
expressions such as x + y + z cannot be parsed, and they are erroneously excluded from
our language.

One of the biggest problems in building a compiler for a programming language is
designing a grammar that

Includes every valid statement that we want to be in the language

Excludes every invalid statement that we do not want to be in the language

In this case, a statement that should be a part of our language (x = x + y + z) was
excluded. If this statement were contained in a program, the parser would not
recognize it and the user would receive an error message for a statement that is not
really in error. The grammar in Figure 11.4 is wrong in the sense that it does not define
the language that we want.

Let’s redo the grammar of Figure 11.4 so that it describes an assignment statement that
allows expressions containing an arbitrary number of occurrences of the plus sign.
That is, our language will include such statements as

This second attempt at a grammar is shown in Figure 11.6.

Figure 11.6
Second attempt at a grammar for assignment statements

Number Rule

1 <assignment statement> ::=
<variable> = <expression>

2 <expression> ::= <variable> |
<expression> + <expression>

3 <variable> ::= x | y | z

The grammar in Figure 11.6 does recognize and accept expressions with more than one
plus sign. For example, here is a parse tree for the statement x = x + y + z:

Note that Rule 2 of Figure 11.6 uses the nonterminal <expression> on both the left-hand
and the right-hand side of the same rule. In essence, the rule defines the nonterminal
symbol <expression> in terms of itself. This is called a recursive definition, and its use
is very common in BNF. It is recursion that allows us to describe an expression not just
with one or two or three or … plus signs but with an arbitrary and unbounded number,
as shown here.

We have solved one problem: that of making sure our grammar defines a language that
includes expressions with multiple addition operators. Unfortunately, though, one
problem has disappeared, another has arisen, and the grammar of Figure 11.6 is still
not quite correct. To demonstrate this new problem, let’s take the same statement that
we have been analyzing:

and construct a second parse tree using the grammar of Figure 11.6. Both trees are
shown in Figure 11.7.

Figure 11.7

Two parse trees for the statement x = x + y + z

Using this assignment statement and the grammar in Figure 11.6, it is possible to
construct two distinct parse trees. This might not seem to be a problem because the
construction of a parse tree has been used only to demonstrate that a statement is
correctly formed. Building two parse trees implies that the parser has demonstrated
correctness in two different ways.

However, a parse tree not only serves to demonstrate that a statement is correct, it also
assigns it a specific meaning, or interpretation. The next phase of compilation uses this
parse tree to understand what a statement means, and it generates code on the basis of
that meaning. The existence of two different parse trees implies two different
interpretations of the same statement, which is disastrous. A grammar that allows the
construction of two or more distinct parse trees for the same statement is said to be

ambiguous.

This problem can occur in natural languages as well as programming languages.
Consider the following ambiguous sentence:

This sentence has two distinct meanings depending on how we choose to parse it:

These two interpretations say very different things, so the sentence leaves us confused
about what the speaker meant. In the areas of languages and grammars, ambiguity is
decidedly not a desirable property.

The two parse trees shown in Figure 11.7 correspond to the following two
interpretations of the assignment statement x = x + y + z.

Because addition is associative—that is, (a + b) + c = a + (b + c)-in this case the ambiguity
does not cause a serious problem. However, if the statement were changed slightly to

then these two different interpretations lead to completely different results:

We now have a situation in which a statement could mean one thing using compiler C
on machine M and something totally different using compiler C´ on machine M´,
depending on which parse tree it happens to construct. This contradicts the spirit of
machine independence, which is a basic characteristic of all high-level languages.

To solve the problem, the assignment statement grammar must be rewritten a third
time so that it is no longer ambiguous. This new grammar is shown in Figure 11.8. To
see that the grammar of Figure 11.8 is not ambiguous, try parsing the statement x = x +
y + z in the two ways shown in Figure 11.7. You will see that one of these two parse
trees cannot be built.

Figure 11.8

Third attempt at a grammar for assignment statements

Figure 11.9

Grammar for a simplified version of an if-else statement

Figure 11.9 shows the BNF grammar for a simplified version of an if-else statement that
allows only a single assignment statement in the two separate clauses and allows the
else clause to be omitted. The <Boolean expression> can include at most a single use of
the relational operators ==, <, and >. The nonterminal <assignment statement> is
defined in the same way as in Figure 11.8. Figure 11.10 then shows the parse tree for
the statement

Figure 11.10

Parse tree for the statement if (x = = y) x = z; else x = y;

using the grammar of Figure 11.9.

Even though this if-else statement has been greatly simplified, its grammar still
requires seven rules, and its parse trees can be quite “bushy.” Grammars for real
statements, not our toy ones, rapidly become large and complicated, and BNF
grammars for programming languages like C++, Python, and Java contain many
hundreds of productions.

Practice Problem

Using the grammar of Figure 11.8, show the parse tree for the

assignment statement

x = x + y

1.

Using the grammar of Figure 11.8, show the parse tree for the

assignment statement

x = x + y + z

2.

Using the grammar of Figure 11.9, show the parse tree for the

statement

if (x > y) x = y;

3.

For each of these four sentences, we can construct a parse tree showing that it is
(structurally, at least) a valid sentence of the language:

There is one problem, though. Although the sentence “bees bark.” is structurally valid,
it makes no sense whatsoever! During parsing, a compiler deals only with the syntax of
a statement—that is, its grammatical structure. At that point, the only “correctness”
that a compiler can determine is grammatical correctness with respect to the
syntactical rules of the language. Another example of this limitation is the sentence,
“The man bit the dog.” This sentence is structurally correct, but its meaning is
somewhat unusual!

The next phase of translation, during which a compiler examines the semantics of a
programming language statement, deals with this issue. It analyzes the meaning of the
tokens and tries to understand the actions they perform. If the statement is
meaningless, as “bees bark.” is, then it is semantically rejected, even though it is
syntactically correct. If the statement is meaningful, then the compiler translates it into
machine language.

It is easy to give examples of English-language sentences that are syntactically correct
but semantically meaningless:

The orange artichoke flew through the elephant.

But what are semantically meaningless statements in high-level programming
languages?

One possibility is the following assignment statement:

This is obviously correct syntactically, but what if the variables sum, a, and b are
declared as follows:

What does it mean to add a character to a real number? What would possibly be the
result of adding the letter Q to 3.1416? In most cases, this operation has no meaning,
and perhaps it should be rejected as semantically invalid.

To check for this semantic error, a compiler must look at the parse tree to see whether
there is a branch that looks something like this:

If there is such a branch, then the compiler must examine the data types of the two
expressions to see whether they “make sense.” That is, it must determine whether
addition is defined for the data types of the two expressions.

The compiler does this by examining the semantic records associated with each
nonterminal symbol in the grammar, such as <expression> and <variable>. A semantic
record is a data structure that stores information about a nonterminal, such as the
actual name of the object and its data type. For example, the nonterminal <variable>
might have been constructed from the actual character variable named CH. This
relationship is represented by a link between the nonterminal <variable> and a
semantic record containing the name CH and its data type, char. Pictorially, we can
represent this link as shown on the next page.

The initial semantic records in our parse tree are built by the compiler when it sees the
declarations of new objects. Additional semantic records are constructed as the parse
tree grows and new nonterminals are produced. Thus, a more realistic picture of the

parse tree for the expression a + b (assuming both are declared as integers) would look
like this:

This parse tree says that we are adding two <expression>s that are integer variables
named a and b. The result is an <expression> stored in the integer variable temp, a
name picked by the compiler. Because addition is well defined for integers, this
operation makes perfectly good sense, and the compiler can generate machine
language instructions to carry out this addition. If, however, the parse tree and its
associated semantic records looked like this:

the compiler determines that this is not a meaningful operation because addition is not
defined between a real number and a character. The compiler rejects this parse tree
for semantic rather than syntactical reasons.

Thus, the first part of code generation involves a pass over the parse tree to determine
whether all branches of the tree are semantically valid. If so, then the compiler can
generate machine language instructions. If not, there is a semantic error, and
generation of the machine language is suppressed because we do not want the
processor to execute meaningless code. This step is called semantic analysis.

Following semantic analysis, the compiler makes a second pass over the parse tree, not
to determine correctness but to produce the translated code. Each branch of the parse
tree represents an action, a transformation of one or more grammatical objects into
other grammatical objects. The compiler must determine how that transformation can
be accomplished in machine language. This step is called code generation.

Let’s work through the complete semantic analysis and code generation process using
the parse tree for the assignment statement x = y + z, where x, y, and z are all integers.
The example uses the instruction set shown in Chapter 6, Figure 6.5.

Typically, code generation begins at the productions in the tree that are nearest to the
original input tokens. The compiler takes each production and, one branch at a time,
translates that production into machine language operations or data generation
pseudo-ops. For example, the following branch in the parse tree:

can be implemented by allocating space for the variable y using the .DATA pseudo-op

In addition to generating this pseudo-op, the compiler must build the initial semantic
record associated with the nonterminal <variable>. This semantic record contains, at a
minimum, the name of this <variable>, which is y, and its data type, which is integer.
(The data type information comes from the int declaration, which is not shown.) Here
is what is produced after analyzing and translating the first branch of the parse tree:

Identical operations are done for the branches of the parse tree that produce the
nonterminal <variable> from the symbols x and z, leading to the following situation:

The production that transforms the nonterminal <variable> generated from y into the
nonterminal <expression>

does not generate any machine language code. This branch of the tree is really just the
renaming of a nonterminal to avoid the ambiguity problem discussed earlier. This
demonstrates an important point: Although most branches of a parse tree produce
code, some do not. Although no code is produced, the compiler must still create a
semantic record for the new nonterminal <expression>. It is identical to the one built
for the nonterminal <variable>.

The branch of the parse tree that implements addition:

can be translated into machine language using the assembly language instruction set
presented in Section 6.3.1. The compiler loads the value of <expression> into a register,
adds the value of <variable>, and stores the resulting <expression> into a temporary
memory location. This can be accomplished using the LOAD, ADD, and STORE
operations in our instruction set. The names used in the address field of the
instructions are determined by looking in the semantic records associated with the
nonterminals <expression> and <variable>. The code generated by this branch of the
parse tree is

LOAD Y

ADD Z

STORE TEMP

TEMP is the name of a memory cell picked by the compiler to hold the result (Y + Z).
Whenever the compiler creates one of these temporary variables, it must also
remember to generate memory space for it using the DATA pseudo-op

In addition, the compiler records the name (TEMP) and the data type (integer) of the
result in the semantic record associated with this new nonterminal called

<expression>. Here is what is produced by this branch of the parse tree:

The final branch of the parse tree builds the nonterminal called <assignment
statement>:

This production is translated into machine language by loading the value of the
<expression> on the right-hand side of the assignment operator, using a LOAD
instruction, and storing it, via a STORE operation, into the <variable> on the left-hand
side of the assignment operator. Again, the names used in the address fields of the
machine language instructions are obtained from the semantic records associated with
<variable> and <expression>. The machine language code generated by this branch of
the parse tree is

LOAD TEMP

STORE X

The compiler must also build the semantic record associated with the newly created
nonterminal <assignment statement>. The name (x) and the data type (integer) of the
variable on the left-hand side of the assignment operator are copied into that semantic
record because the value stored in that variable is considered the value of the entire
assignment statement.

Our compiler has now analyzed every branch in the parse tree, and it has produced the
following translation. (We have separated the pseudo-ops and executable instructions
for clarity.)

This is an exact translation of the assignment statement x = y + z.

Figure 11.11 shows the code generation process for the slightly more complex
assignment statement x = x + y + z. The branches of the parse tree are labeled and
referenced by comments in the code. (The parse tree was constructed using the
grammar shown in Figure 11.8.)

Figure 11.11

Code generation for the assignment statement x = x + y + z

The code of Figure 11.11 could represent the end of the compilation process because
generating a correct machine language translation was our original goal. However, we
are not quite finished. In the beginning of the chapter, we said that a compiler really
has two goals: correctness and efficiency. The first goal has been achieved, but not
necessarily the second. We have produced correct code, but not necessarily good code.
Therefore, the next and final operation is optimization, where the compiler polishes
and fine-tunes the translation so that it runs a little faster or occupies a little less
memory.

Practice Problem

Go through the code generation process for the simple assignment

statement x = y. The parse tree for this statement is

machine, not the virtual machine created by the system software (and described in
Chapters 6 and Figure 11.11). They were free to choose the instructions that ran most
quickly or used the least amount of memory. For example, if the INCREMENT, LOAD,
and STORE instructions execute in 1 μsec, whereas an ADD takes 2 μsec, then
translating the assignment statement x = x + 3 as

requires 3 μsec to execute. This code runs 25% faster than if it had been translated as

which takes 4 μsec to execute and requires an additional memory cell for the integer
constant 3. When programmers wrote in assembly language, they were free to choose
the first of these sequences rather than the second, knowing that it is faster and more
compact. However, in a high-level language like FORTRAN, a programmer can only
write x = x + 3 and hope that the compiler is “smart enough” to select the faster of the
two implementations.

Because efficiency was so important to programmers of the 1950s and 1960s, these
early first- and second-generation compilers spent a great deal of time doing code
optimization. In fact, Backus himself did not regard language design as a difficult
problem, but merely a prelude to the real problem: designing a compiler which could
produce efficient programs. These compiler pioneers were quite successful in solving
many of the problems of optimization, and early FORTRAN compilers produced object
programs that ran nearly as fast as highly optimized assembly language code produced
by top-notch programmers. After seeing these startling results, programmers of the
1950s and 1960s were eventually won over. They could gain the benefits of high-level
languages—a powerful virtual environment—without loss of efficiency. The code
optimization techniques developed by Backus and others were one of the most
important reasons for the rapid acceptance of high-level programming languages
during the early years of computer science.

However, conditions have changed dramatically since 1957. Because of impressive
reductions in hardware costs, code optimization no longer plays the central role it did
50 or 60 years ago. Programmers rarely worry about saving a few memory cells when
even an inexpensive laptop has 2–8 GB of memory. Similarly, as processor speeds
increase to 1–10 Gflops (billions of floating-point instructions per second), removing a
few instructions becomes much less important. For example, eliminating the execution
of 1,000 unnecessary instructions saves only 0.000001 second on a 1 Gflop machine.
Therefore, compilers are no longer judged solely on whether they produce highly
optimized code.

Whereas hardware costs are dropping, programmer costs are rising dramatically. A
powerful high-speed graphics workstation can be purchased for as little as $1,000, but
the programmers developing software for that system may earn 75 to 150 times that in
annual salary. The operational phrase of the twenty-first century is the exact opposite
of what was true in the 1950s: “Hardware is cheap, people are expensive!” The goal in
compiler design today is to provide a wide array of compiler tools that simplify the
programmer’s task and increase his or her productivity. This includes such tools as
visual development environments that use graphics and video to let the programmer
see what is happening, sophisticated online debuggers to help programmers locate and
correct errors, and reusable code libraries, which contain a large collection of
prewritten program units. When a compiler is embedded within a collection of
supporting software development routines such as debuggers, editors, toolkits, and
libraries, it is called an integrated development environment (IDE). It is these types of
programmer optimizations, rather than code optimizations, that have taken center
stage in language and compiler design.

However, this does not mean that code optimization is no longer of any importance or
that programmers will tolerate any level of code inefficiency. A little bit of effort by a
compiler can often pay large dividends in reduced memory space and lower running
time. Thus, optimization algorithms are still part of most compilers. Let’s briefly survey
what they do and how they help improve the finished product.

There are two types of optimization: local optimization and global optimization. The
former is relatively easy and is included as part of most compilers. The latter is much
more difficult, and it is usually omitted from all but the most sophisticated and
expensive production-level optimizing compilers.

In local optimization, the compiler looks at a very small block of instructions, typically
from one to five. It tries to determine how it can improve the efficiency of this local
code block without regard for what instructions come before or after. It is as though
the compiler has placed a tiny “window” over the code, and it optimizes only the
instructions inside this optimization window:

Here is a list of some possible local optimizations:

Constant evaluation—Arithmetic expressions are fully evaluated at compile time

if possible, rather than at execution time.

1.

Strength reduction—Slow arithmetic operations are replaced with faster ones.

For example, on most computers increment is faster than addition, addition is

faster than multiplication, which is faster than division. Whenever possible, the

compiler replaces an operation with one that is equivalent but executes more

quickly.

2.

Eliminating unnecessary operations—Instructions that are correct, but not

necessary, are discarded. For example, because of the nondestructive read

principle, when a value is stored from a register into memory, its value is still in

the register, and it does not need to be reloaded. However, because the code

generation phase translates each statement individually, there may be some

unnecessary LOAD and STORE operations:

3.

The code in Figure 11.11 contains two opportunities for local optimizations:

There are unnecessary LOAD and STORE operations. For example, the first four

instructions in Figure 11.11 read

LOAD X

ADD Y

STORE TEMP

LOAD TEMP

The STORE and LOAD operations on Lines 3 and 4 are both unnecessary because

the sum (X + Y) is still in register R.

The code uses two memory cells called TEMP and TEMP2 to hold temporary

values. Neither of these variables is needed.

Locally optimized code for the assignment statement x = x + y + z is shown in Figure
11.12. It uses only 7 instructions and data generation pseudo-ops rather than the 13 of
Figure 11.11, a savings of about 45%.

Figure 11.12

Optimized code for the assignment statement x = x + y + z

The second type of optimization is global optimization, and it is much more difficult. In
global optimization, the compiler looks at large segments of the program, not just small
pieces, to determine how to improve performance. The compiler examines large blocks
of code such as while loops, if statements, and procedures to determine how to speed
up execution. This is a much harder problem, both for a compiler and for a human
programmer, but it can produce enormous savings in time and space. For example,

earlier in the chapter we showed a loop that looked like this:

“Now I Understand,” Said the Machine

Chapter 6 showed that translating assembly language into machine language is
relatively easy. This chapter demonstrated that translating high-level
programming languages into machine language is more difficult, but it still can
be done. What about the next step—the translation of natural languages such as
English? If a computer could understand our spoken languages, then we could
use them, rather than the formal languages studied in Chapter 9 and Chapter
10, to communicate.

Getting computers to understand and use natural language is a far more
difficult problem than translating programming languages like Java and C++. In
fact, for many years natural language understanding was viewed as the single
most difficult research problem in computer science. Demonstrated success
was always “just over the next hill,” but for many years true natural language
understanding remained an unattainable goal. This did not surprise
researchers who were quick to point out that millions of years of evolution left
virtually every animal except humans without sophisticated language
capabilities. Many in computer science were pessimistic about the possibility of
ever giving a computer true language understanding capabilities. However,
that pessimism was shown to be unfounded when, in February 2011, a
computer program called Watson, developed by artificial intelligence and
natural language researchers at IBM, defeated two human players in a game of
Jeopardy! The computer was presented with the exact same questions as the
other contestants, Ken Jennings and Brad Rutter, the two most successful
players in the game’s history. Watson had to parse and understand natural
language sentences that might include puns, similes, metaphors, and obscure
pop culture references, then search its vast database to find the correct answer,
and “buzz in” before either of the two human contestants. Watson won the
game and the first place prize of $1 million. Following his loss at the hands of
Watson, Ken Jennings said “Brad and I were the first knowledge-industry
workers to be put out of work by this new generation of ‘thinking’ machine.
‘Quiz show contestant’ may be the first job made redundant by Watson, but I’m
sure it won’t be the last.” IBM researchers continue to refine and improve the

if (a == b1) a = x + y;

delta = epsilon + 1.23 - sqrt(zz);

print(Q);

Assume that we are working in a programming language that allows

underscores (_) in variable names. When a scanner sees a character string

such as AB_CD, is it more likely to classify this string as the single

five-character token AB_CD or as three separate tokens: AB, _, CD? Explain

your answer.

2.

In some programming languages, a comment can be enclosed either in

braces { } or in the symbols (* *). How do you think a scanner would

group the four symbols {, }, (*, *) for purposes of classification? That is,

would each symbol be given its own classification number or would some

share classifications?

3.

Using the token types and classification values given in Figure 11.3, show

the output of a scanner when it is presented with each of the following

statements:

limit = begin + end

a = b - 1;

if (c == 50) x = 1; else y = x + 44;

thenelse == error -

4.

Write a BNF grammar that describes the structure of a nonterminal called

<number>. Assume that <number> contains an optional + sign followed

by exactly two decimal digits, the first of which cannot be a 0. Thus 23,

+91, and +40 are legal, but 9, +01, and 123 are not.

Using your grammar from Exercise 5a, show a parse tree for the value

+90.

5.

Write a BNF grammar that describes the structure of U.S. telephone

numbers, which can be either (xxx)xxx-xxxx or xxx-xxxx, where x can be

any digit from 0 to 9.

Modify your grammar from Exercise 6a so that (1) the middle digit of an

6.

area code must be either a 0 or a 1, (2) the first digit of an area code

cannot be a 0 or a 1, and (3) the first digit of the seven-digit phone number

cannot be a 0 or a 1.

Using your grammar from either Exercise 6a or 6b, show a parse tree for

the phone number (612)555-1212.

Write a BNF grammar for identifiers that consist of an arbitrarily long

string of letters and digits, the first one of which must be a letter.

Using your grammar from Exercise 7a, show a parse tree for the identifier

AB5C8.

7.

Assume that we represent dollar amounts in the following way:

$number.numberCR

The dollar sign and the dollar value must be present. The cents part

(including both the decimal point and the number) and the CR (which

stands for CRedit and is how businesspeople represent negative numbers)

are both optional, and number is a variable-length sequence of one or

more decimal digits. Examples of legal dollar amounts include $995,

$99CR, $199.95, and $500.000CR.

Write a BNF grammar for the dollar amount just described.

Modify your grammar so that the cents part is no longer an arbitrarily

long sequence of digits but is exactly two digits, no more and no less.

Using your grammar from either Exercise 8a or 8b, show a parse tree for

$19.95CR.

8.

Describe the language defined by the following grammar:9.

How does the language defined by the following grammar differ from the

language defined by the grammar in Exercise 9?

10.

Create a BNF grammar that describes simple Boolean expressions of the

form

var AND var

var OR var

where var is one of the symbols w, x, y, and z.

Modify your grammar from Exercise 11a so that the Boolean expressions

can be of the form

expr AND expr

expr OR expr

where expr is either a simple variable (w, x, y, or z) or an expression of the

form

Modify your grammar one more time to allow a Boolean expression to

have an arbitrary number of terms connected by either AND or OR. That

is, your expressions can be of the form

expr AND expr OR expr OR expr AND expr.…

11.

Using the grammar of Figure 11.8, show a parse tree for the statement

y = x + y + y + z

Is your parse tree unique? If not, how many other parse trees exist for

this statement? What does the existence of these different trees imply

about the meaning of this assignment statement?

12.

What is the language defined by the following pair of BNF rules?

Where have you seen this language before?

13.

Write a BNF grammar that describes an arbitrarily long string of the

characters a, b, and c. The string can contain any number of occurrences

14.

of these three letters (including none) in any order. The strings “empty”, a,

accaa, abcabccba, and bbbbb are all valid members of this language.

What are the different interpretations of the following English language

sentence?

15.

I bought a shirt in the new store that was too large.16.

Write a BNF grammar to describe the following hypothetical input

statement:

input(var, var, …, var);

The statement begins with the word input, followed by a left parenthesis,

and then one or more variables, each variable separated from the one

after it by a comma. The entire statement ends with a right parenthesis

and a semicolon. Variable names are arbitrarily long strings of digits and

letters, the first of which must be a letter.

17.

Discuss what other information, in addition to name and data type, might

be kept in a semantic record. From where would this other information

come?

18.

Referring to the parse tree in Figure 11.11, why is the production that

appears to the left of the = sign in that figure not labeled with an A? Does

this production generate any code?

19.

Assume that our language specifically permits you to assign an integer

value to a real variable. The compiler handles this mixed mode by

generating code to perform data conversion from an integer to a real

representation. Consider the following declarations:

int x;

double y;

The assignment statement y = x is legal in this language. Explain how a

compiler handles the previous assignment statement. You do not have to

20.

show the exact code that would be generated; just describe how a

compiler deals with the statement, and show at what point in the code

generation process the compiler discovers that it needs to produce the

data conversion instructions.

Explain how the concept of algebraic identities could be exploited during

the code optimization phase of compilation. An algebraic identity is a

relationship that is true for all values of the unknowns. For example,

Describe other identities and explain how they could become part of the

optimization phase. Is this considered local or global optimization?

21.

Assume that we wrote the following pairs of assignment statements:

How can a compiler optimize the execution of these two statements? Is

this considered local or global optimization?

22.

If we assume that all mathematical operations take 5 nsec (5 billionths of

a second) to execute, how much time does your optimization from

Exercise 21 actually save? What does this value say about the importance

of compiler optimizations?

23.

How do you think a compiler translates into machine language a branch

in the parse tree that looks like the following?

Show the code that can be generated from this production and the

semantic record created for the new nonterminal symbol <Boolean

expression>.

24.

Chapter 11: Compilers and Language Translation
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter Review

Challenge Work

Our discussion on lexical analysis in Section 11.2.1 may lead you to believe that

every lexical analyzer is unique and built “from scratch.” In fact, it is quite rare to

write a scanner when building a compiler for a new language because there

exists a special program called a scanner generator that can, with the appropriate

input, act as a “universal scanner” for any language. To use a scanner generator,

we need to provide only a formal linguistic description of the tokens in our

language and their classification. This description is input to the scanner

generator, which then locates and classifies tokens according to the description

provided. Thus, instead of writing a program called a scanner, you provide data

to an already written program called a scanner generator.

One of the most widely used scanner generators is a program called lex, and it

has been used to build dozens of compilers, assemblers, and other linguistic

interfaces. Read about scanner generators in general and lex in particular. Find

out how they work and the techniques for describing the structure and

classification of tokens. Then show how you formally describe in lex the

following token types:

Identifiersa.

Signed integersb.

Signed real numbersc.

If your installation has lex available, enter your formal descriptions and have lex

locate tokens of each of these types.

1.

The techniques described in Challenge Exercise 1 also work for the parsing phase

of the compilation process. That is, instead of writing a parsing program, we can

provide data to an already written program that will do the job for us. A special

program called a parser generator, also called a compiler-compiler, can act as a

universal parser for any language that can be described using BNF notation. To

use a parser generator, you simply input the productions of the grammar of your

2.

language and the sequence of tokens to be parsed. The output of the parser

generator is a parse tree if the sequence of tokens is legal according to your

productions or an error message if it is not.

The most widely used parser generator is a program called yacc, an acronym for

“Yet Another Compiler-Compiler.” Yacc, like lex, has been used to build a great

number of compilers. Read about parser generators and yacc, and write a report

describing how yacc works and how you formally represent BNF productions. If

you have yacc available at your installation, enter the BNF rules for <assignment

statement> and let yacc parse the statement

x = y + z;

Chapter 11: Compilers and Language Translation
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter Review

Additional Resources

 For additional print and/or online resources relevant to this

chapter, visit the Computer Science CourseMate at login.cengagebrain.com.

Chapter 11: Compilers and Language Translation
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

© 2014 Cengage Learning Inc. All rights reserved. No part of this work may by reproduced or used in any form or by any
means - graphic, electronic, or mechanical, or in any other manner - without the written permission of the copyright holder.

Chapter 12: Models of Computation
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter 12
Models of Computation

12.1 Introduction

12.2 What is a Model?

12.3 A Model of a Computing Agent

12.3.1 Properties of a Computing Agent

12.3.2 The Turing Machine

12.4 A Model of an Algorithm

12.5 Turing Machine Examples

12.5.1 A Bit Inverter

12.5.2 A Parity Bit Machine

12.5.3 Machines for Unary Incrementing

12.5.4 A Unary Addition Machine

12.6 The Church–Turing Thesis

12.7 Unsolvable Problems

12.8 Conclusion

12.9 Summary of Level 4

Chapter Review

Exercises

Challenge Work

Additional Resources

Chapter 12: Models of Computation: 12.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

12.1 Introduction

The central topic of this book has been, in one way or another, algorithmic problem
solving. We’ve discussed the concept of an algorithm, how to represent algorithms, the
importance of their correctness and efficiency in solving problems, the hardware that
executes algorithms, the various levels of abstraction in which a programmer deals
with algorithms, and, finally, the system software that translates these abstractions
back to the elementary hardware level. It might seem as though algorithms, and
problems solvable by algorithms, represent the entire scope of the computer science
universe.

However, there are problems that do not have any algorithmic solution! Be sure you
understand why this is such a powerful statement. There are many problems for which
no algorithmic solution has yet been found, but for which we might find one if we were
only clever enough to discover it. Indeed, such new discoveries are being made all the
time. But there are also problems for which no algorithmic solution exists; it does not
matter how inventive we may be, how much time we spend looking, or how
remarkable our hardware or software; no algorithms will ever be found that solve these
problems.

We will prove this statement later in this chapter by actually finding such a problem.
This is a rather difficult task because failing to find an algorithmic solution to a
problem does not prove that one does not exist. It might only mean that we have not
yet been able to figure out an algorithm. Instead, we must show that no one can ever
find such an algorithm—that one does not exist.

Algorithms, as noted in Chapter 1, are carried out by computing agents (such as people,
robots, computers). Throughout most of this book, we’ve assumed that the computing
agent is a real computer. Ordinarily, we would choose to execute an algorithm on the
most modern, high-speed computer available, with all the bells and whistles we could
possibly find. But to show that something cannot be done by any computer, we want
the bells and whistles to get out of the way so we can concentrate on the fundamental
nature of “computerness.” What we need is a simple, “ideal” computer—something
easy to work with yet theoretically as powerful as the real thing. We need a model of a
computer; indeed, to consider algorithms in general, we need a model of a computing
agent.

Chapter 12: Models of Computation: 12.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

12.2 What is a Model?
Model cars, model trucks, model airplanes, and dolls (model people) are forever
popular with children. Children use these toys to “play” at being grown up—at being
drivers, pilots, and parents—because the toys capture the spirit of the objects they
model. A model car looks like a car. The more expensive the model, the more realistic
its features. But although the model captures the essence of a car, it is (usually) smaller

in scale, omits many of the details of a real car, and does not have the full functionality
of a real car.

Models are an important way of studying many physical and social phenomena.
Weather systems, climate cycles, the spread of epidemics, population demographics,
and chemical molecules—all are phenomena that have been studied via modeling. (In
fact, we will look at some of these applications in Chapter 13.) Like a model car, a
model of such a phenomenon

Captures the essence—the important properties—of the real thing1.

Probably differs in scale from the real thing2.

Omits some of the details of the real thing3.

Lacks the full functionality of the real thing4.

The model might be a physical model or a pencil-and-paper mathematical model. For

example, a physical model of a chemical molecule might use Velcro –covered balls
stuck together in a certain way to represent the molecular structure. This model
illustrates certain important properties: how many atoms of each element are present
and where they are located in relation to one another. It is much larger than the real
molecule, does not display the details of the chemical bonding, and is certainly not a
real molecule. An alternative “physical” model—a computer visualization—is shown in
Chapter 13, Figure 13.12.

A simple example of a mathematical model is the equation for the distance d that a
moving vehicle travels as the product of rate r and time t:

Although this equation can give approximate information, it ignores the variations in
the speed of the vehicle by assuming that the rate is a constant. Because this is not a
physical model, it does not have a size as such, but there is a difference in time scale
from the actual moving vehicle. A calculation that a vehicle traveling at a constant rate
of 60 miles per hour for 2 hours will cover a distance of 120 miles can be done in an
instant by simply plugging values into the equation.

What can be gained by studying models if they do not behave in exactly the same way
as the real thing? For one thing, they can enhance our understanding of the real system
being modeled. By changing some aspect within the model, we can immediately see the
effects of that change. These changes might be very costly, difficult, or dangerous to
make in the real phenomena. The benefit is that models give us a safe and controlled
environment to play with “what ifs”—what might be the effect if this or that factor in
the real system were changed? The answers can be used to guide future decisions.
Models can also provide environments for learning and practicing interactions with
various phenomena. An aircraft flight simulator, for example, can give the trainee pilot
realistic experience in a danger-free setting. Finally, not only can models give us

®

information about existing phenomena, they can also be used as design tools. A model
of a new design may reveal major flaws without the time, expense, and potential
danger of building a prototype. (We will look more closely at these applications of
models in Chapter 13.)

Whether a model is used to predict the behavior of an existing system or as a test bed
for a proposed design, the information it provides is only as good as the assumptions
made in building the model. If the model does not incorporate the major aspects of the
system being studied, if relationships are represented incorrectly, or if so much detail
has been omitted as to make the model a totally inaccurate representation, then little
faith can be placed in the results it produces.

Practice Problems

Describe some situation (besides aircraft pilot training) in which a

simulator would be useful as a training device.

1.

What factors might a model of groundwater pollution need to

include? What are the advantages of a good model? Are there

potential disadvantages to using such a model?

2.

Chapter 12: Models of Computation: 12.3
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

12.3 A Model of a Computing Agent

12.3.1 Properties of a Computing Agent

To construct a good model of the “computing agent” entity—one that enables us to
explore the capabilities and limitations of computation in the most general sense—we
must make certain that we capture the fundamental properties of a computing agent
while suppressing lower-level details. This means we must decide which features are
central to a computing agent and which are relatively incidental and can be ignored.
For example, a computing agent must be able to follow the instructions in an
algorithm. The instructions must be presented in some form that makes sense to the
computing agent, but it does not matter whether the instructions are presented in
English or Japanese—or in words as opposed to pictures.

However the instructions are presented, the computing agent must be able to
comprehend them. Likewise, the computing agent must be able to receive any data

pertinent to the task. When we dealt with real computers, we described this as an input
task, but the ability to accept input is central to any computing agent—whether a
human being following instructions or a programmable DVR. The instructions and data
must be stored somewhere during the execution of the algorithm. In addition, they
must be retrievable, whether from a computer’s memory, the DVR microprocessor’s
memory, a human being’s memory, or a written sheet of paper to which the human
being refers.

The computing agent must be able to act in accordance with algorithm instructions.
These instructions may take into account the present situation or state of the
computing agent, as well as the particular input item being processed. In a real
computer, a conditional operation may say, “If condition A then do B else do C.”
Condition A may involve the value of some variable or variables that have already
been read into memory; we may think of the contents of memory (i.e., how the various
bits are set) as the present state of the computer. The DVR microprocessor may have an
instruction that says, “If the time is 7:00 p.m. and I am programmed to record at 7:00
p.m., then turn on.” Here the action of the DVR depends on both the input of the
current time from its clock and the “state” of its programming, just as a human being
carrying out the algorithm of ordering lunch from a menu reacts both to the “input”
(what items are on the menu) and to his or her present state of hunger.

Finally, the computing agent is expected to produce output because the outcome of an
algorithm must be an observable result. The computer displays results on a screen,
prints them on a sheet of paper, or writes them to a file; the DVR records bits on a disc;
the human being speaks or writes.

To summarize, we require that any computing agent be able to do all of the following:

Accept input.1.

Store information in and retrieve it from memory.2.

Take actions according to algorithm instructions; the choice of what action to take

may depend on the present state of the computing agent, as well as on the input

item presently being processed.

3.

Produce output.4.

Of course, a real computer has all of these capabilities and is an example of a
computing agent, as are a human being and a programmable DVR. The DVR, however,
has a very limited set of primitive operations it can perform, so it can react only to a
very limited algorithm. The computer, though it has a limited set of simple primitives,
is a general-purpose computing agent because, as we have seen in the previous
chapters, those primitives can be combined and organized to accomplish complex
tasks. The “primitive operations” available to human beings haven’t been fully
explored, but in many ways they seem to exceed those of a computer, and we would
certainly classify a human being as a general-purpose computing agent.

In the next section, we will discuss one particular model for a computing agent. It will
have the four required properties just specified, and it will represent a general-purpose
computing agent able to follow the instructions of many different algorithms.

Chapter 12: Models of Computation: 12.3.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

12.3.2 The Turing Machine

We think of “computing” as a modern activity—something done by electronic
computers. But interest in the theoretical nature of computation far predates the
advent of modern computers. By the end of the nineteenth century, mathematicians
were interested in formalizing the nature of proof, with two goals in mind. First, a
formal basis for mathematical proofs would guarantee the correctness of a proof
because the proof would contain no intuitive statements, such as “It is clear that …” or
“We can now see that …”. Second, a formal basis for proofs might allow for mechanical
theorem-proving, where correct proofs could be generated simply by following a set of
rules. In 1931, the Austrian logician Kurt Gödel looked at formal systems to describe the
ordinary arithmetic of numbers. He demonstrated that in any reasonable system, there
are true statements about arithmetic that cannot be proved using that system. This led
to interest in finding a way to recognize which statements are indeed unprovable in a
formal system—that is, in finding a computational procedure (what we have called an
algorithm) to recognize such statements. This in turn led to an investigation of the
nature of computation itself, and a number of mathematicians in the mid-1930s
proposed various models of computational procedures, along with models of
computing agents to carry out those procedures. We will look at the model proposed by
Alan Turing.

A Turing machine includes a (conceptual) tape that extends infinitely in both
directions. The tape is divided into cells, each of which contains one symbol. The
symbols must come from a finite set of symbols called the tape alphabet. The alphabet
for a given Turing machine always contains a special symbol b (for “blank”), usually
both of the symbols 0 and 1 (zero and one), and sometimes a limited number of other
symbols, let’s say X and Y, used as placeholders or markers of some kind. At any point
in time, only a finite number of the cells contain nonblank symbols. Figure 12.1 shows
a typical tape configuration, with three nonblank cells containing the alphabet symbols
0, 1, 1, respectively.

Figure 12.1

A Turing machine tape

The tape is used to hold the input to the Turing machine. We know that input must be
presented to a computing agent in a form it can understand; for a Turing machine, this
means that the input must be expressed as a finite string of nonblank symbols from the
alphabet. The Turing machine writes its output on the tape, again using the same
alphabet of symbols. The tape also serves as memory.

The rest of the Turing machine consists of a unit that reads one cell of the tape at a time
and writes a symbol in that cell. There is a finite number k of “states” of the machine,
labeled 1, 2, …, k, and at any moment the unit is in one of these states. A state can be
thought of as a certain condition; the Turing machine may reach this condition partly
on the basis of its history of events, much as your “hungry state” is a condition reached
because of the meals you have skipped recently.

Figure 12.2 shows a particular Turing machine configuration. Using the tape of Figure
12.1, the machine is currently in state 1 and is reading the cell containing the symbol 0,
so the 0 is what the machine is seeing as the current input symbol.

Figure 12.2

A Turing machine configuration

Alan Turing, Brilliant Eccentric

The Turing machine was proposed as a model for a computing agent by the
brilliant British mathematician Alan Turing in 1936. Turing began by thinking
of how to generalize the typewriter as an “automatic device.” But despite its
name, the Turing machine is not a machine at all. It is a model of the pencil-
and-paper type that captures the essential features of a computing agent.

Alan Turing (1912–1954) was a colorful individual and a brilliant thinker.
Stories abound about his “absentminded professor” demeanor, his interest in
running (through the streets of London with an alarm clock flopping about, tied
to his belt by a piece of twine), and his fascination with a children’s radio show
whose characters he would discuss daily with his mother. Convicted of
homosexual acts in 1952, he chose drug treatment over prison, primarily
because he feared a prison term would impede his intellectual work. There was
even a Broadway play (Breaking the Code) written about him, years after his
death by suicide.

Turing made three distinct and remarkable contributions to computer science.

First, he devised what is now known as the Turing machine, using it—as we will
see in this chapter—to model computation and to discover that some problems
have no general computable solution. Second, during World War II, his team at
the British Foreign Office built the Colossus machine, which used cryptanalysis,
the science of code breaking, to break the secret code used on the German
Enigma machine. The details of this work, carried on in a Victorian country
mansion called Bletchley Park, were kept secret until many years later.
Breaking the code enabled the British to gain access to intelligence about
German submarine movements, which contributed significantly toward
winning the war. Third, after the war Turing investigated what it means for
machines to “think.” We’ll discuss his early contribution to artificial intelligence
in Chapter 15.

In November 2010, a collection of off prints of 15 of Turing’s 18 published
papers (including his first published paper, as well as his initial plans for
computing and artificial intelligence) was put up for auction at the famous
Christie’s auction house. Bids failed to reach the minimum set price, which
bought time for supporters of the Bletchley Park Trust to raise enough money to
purchase the collection (aided by a gift of $100,000 from Google and a large
grant from the National Heritage Memorial Fund of the United Kingdom). The
documents will be housed in a climate-controlled, secure area at Bletchley Park
and will be available for public display.

The Turing machine is designed to carry out only one type of primitive operation. Each
time such an operation is done, three actions take place:

Write a symbol in the cell (replacing the symbol already there).1.

Go into a new state (it might be the same as the current state).2.

Move one cell left or right.3.

The details of the actions (what to write, what the new state is, and which direction to
move) depend on the current state of the machine and on the contents of the tape cell
currently being read (the input). Turing machine instructions describe these details.
Each instruction tells what to do for a specific current state and current input symbol,
as follows:

The Turing machine’s single primitive operation is to check its current state and the
current input symbol being read, look for an instruction that tells what to do under

these circumstances, and then carry out the three actions specified by that instruction.
For example, one Turing machine instruction might say

If a Turing machine is in the configuration shown in Figure 12.2 (where the current
state is 1 and the current input symbol is 0), then this instruction applies. After the
machine executes this instruction, its next configuration is shown in Figure 12.3, where
the previous 0 symbol has been overwritten with a 1, the state has changed to state 2,
and the “read head” has moved one cell to the right on the tape.

Figure 12.3

The next Turing machine configuration after executing one instruction

Let’s develop a shorthand notation for Turing machine instructions. There are five
components:

Current state

Current symbol

Next symbol

Next state

Direction of move

We’ll give these five things in order and enclosed in parentheses.

(current state, current symbol, next symbol, next state, direction of move)

The instruction that we talked about earlier,

is therefore represented by the 5-tuple:

(1, 0, 1, 2, R)

Similarly, the Turing machine instruction

(2, 1, 1, 2, L)

stands for

In following this instruction, the machine writes in the current cell the same symbol (1)
as was already there and remains in the same state (state 2) as before.

A Turing machine can execute a whole sequence of instructions. A clock governs the
action of the machine. Whenever the clock ticks, the Turing machine performs its
primitive operation; that is, it looks for an instruction that applies to its current state
and the symbol currently being read and then follows that instruction. Instructions
may be used more than once.

There are a couple of details we’ve glossed over. What if there is more than one
instruction that applies to the current configuration? Suppose, as in Figure 12.2, that
the current state is 1, that the current symbol is 0, and that

(1,0,1,2,R)

(1,0,0,3,L)

both appear in the same collection of instructions. These instructions are in conflict.
Should the Turing machine write a 1, go to state 2, and move right, or should it write a
0, go to state 3, and move left? We’ll avoid this ambiguity by requiring that a set of
instructions for a Turing machine can never contain two different instructions of the
form

(i, j,-, -, -)

(i, j, -, -,-)

On the other hand, what if there is no instruction that applies to the current state and
current symbol for the machine? In this case, we specify that the machine halts, doing
nothing further.

We impose two additional conventions on the Turing machine regarding its initial
configuration when the clock begins. The start-up state is always state 1, and the
machine is always reading the leftmost nonblank cell on the tape. This ensures that the
Turing machine has a fixed and definite starting point.

Now let’s do a sample Turing machine computation. Suppose the instructions available
to a Turing machine are

(1,0,1,2,R)1.

(1,1,1,2,R)2.

(2,0,1,2,R)3.

(2,1,0,2,R)4.

(2,b,b,3,L)5.

Also suppose the Turing machine’s initial configuration is again that of Figure 12.2,
reprinted here:

This satisfies our convention about starting in state 1 at the leftmost nonblank cell on
the tape. The Turing machine looks for an appropriate instruction for its current state,
1, and its current input symbol, 0, which means it looks for an instruction of the form
(1,0,–,–,–). Instruction 1 applies; this was our sample instruction earlier, and the
resulting configuration agrees with Figure 12.3:

At the next clock tick, with current state 2 and current symbol 1, the Turing machine
looks for an instruction of the form (2,1,–,–,–). Instruction 4 applies and, after the
appropriate actions are performed, the resulting configuration is

Instruction 4 applies again and results in

Instruction 5 now applies, leading to

At this point, the machine is in state 3 reading the symbol 0. Because there are no
instructions of the form (3,0,–,–,–), the machine halts. The Turing machine computation
is complete.

Although we numbered this collection of instructions for reference, the Turing
machine does not necessarily execute instructions in the order of this numbering.
Some instructions may not be executed at all, and some more than once. The sequence
of instructions used depends on the input written on the tape.

How does the Turing machine stack up against our list of required features for a
computing agent?

It can accept input—The Turing machine can read symbols on its tape.1.

It can store information in and retrieve it from memory—The Turing machine can

write symbols on its tape and, by moving around over the tape, can go back and

read those symbols at a later time, so the tape has stored that information.

2.

It can take actions according to algorithm instructions, and the choice of action to

take may depend on the present state of the computing agent and on the input item

presently being processed—Certainly the Turing machine satisfies this

3.

requirement insofar as Turing machine instructions are concerned; the present

state and present symbol being processed determine the appropriate instruction,

and that instruction specifies the actions to be taken.

It can produce output—The Turing machine writes symbols on its tape in the

course of its normal operation. If (when?) the Turing machine halts, what is

written on the tape at that time can be considered output.

4.

In the Turing machine computation that we just finished, the input was the string of
symbols 011 (ignoring the surrounding blanks) and the output was the string of
symbols 100. Starting with the same input tape but with a different set of instructions
could result in different output. Given the benefit of hindsight, we could say that we
wrote this particular set of instructions to carry out the task of transforming the string
011 into the string 100. Writing a set of Turing machine instructions to allow a Turing
machine to carry out a certain task is similar to writing a computer program to allow a
computer to carry out a certain task. We can call such a collection of instructions a
Turing machine program.

Thus, a Turing machine does capture those properties we identified as essential for a
computing agent, which qualifies it as a model of a computing agent. Furthermore, it
represents a general computing agent in the sense that, like a real computer, it can
follow many different sets of instructions (programs) and thus do many different
things (unlike the one-job-only DVR). By its very simplicity of operation, it has
eliminated many real-world details, such as exactly how symbols are read from or
written to the tape, exactly how data are to be encoded into a string of symbols from
the alphabet to be written on the tape, exactly how a string of symbols on the tape is to
be interpreted as meaningful output, and exactly how the machine carries out the
activities of “changing state.” In fact, the Turing machine is such a simple concept that
we may wonder how good a model it really is. Did we eliminate too many details? We’ll
answer the question of how good a model the Turing machine is later in the chapter.

A Turing machine is different in scale from any real computing agent in one respect. A
Turing machine can, given the appropriate instructions, move right or left to the blank
portion of the tape and write a nonblank symbol. When this happens, the machine has
gobbled up an extra cell to use for information storage purposes—that is, as memory.
Depending on the instructions, this could happen over and over, which means that
there is no limit to the amount of memory available to the machine. Any real
computing agent has a limit on the memory available to it. In particular, a real
computer, though it has a certain amount of internal memory and has access to
external memory in the form of disks or tapes on which data can be stored, still has
such a limit. There are only so many disks or tapes in the world.

This difference in scale means that a Turing machine (elementary device though it may
seem to be) actually has more capability in one respect than any real computer that
exists or ever will exist. Therefore, we must be careful about the use of the Turing
machine model and the conclusions we draw from it about “real” computing (i.e.,

computing on a real computer). If we find some task that a Turing machine can
perform (because of its limitless memory), it may not be a task that a real computer
could perform.

Practice Problems

Given the Turing machine instruction (2,b,1,3,L) and the

configuration draw the next configuration.

draw the next configuration.

1.

A Turing machine has the following instructions:

(1,0,0,2,R)

(2,1,1,2,L)

(2,0,1,2,R)

(1,b,1,1,L)

For each of the following configurations of this Turing machine, draw

the next configuration.

a.

b.

c.

2.

d.

Consider a Turing machine that has the following two instructions:

(1,1,0,2,R)

(2,1,1,1,R)

Determine its output when it is run on the following tape. (Remember

that a Turing machine starts in state 1, reading the leftmost nonblank

cell.)

3.

Chapter 12: Models of Computation: 12.4
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

12.4 A Model of an Algorithm
An algorithm is a collection of instructions intended for a computing agent to follow. If
we accept the Turing machine as a model of a computing agent, then the instructions
for a Turing machine should be a model of an algorithm. Remember from our
definition in Chapter 1 that an algorithm must

Be a well-ordered collection1.

Consist of unambiguous and effectively computable operations2.

Halt in a finite amount of time3.

Produce a result4.

Let’s consider an arbitrary collection of Turing machine instructions and see whether it
exhibits these properties of an algorithm.

Be a well-ordered collection—The Turing machine must know which operation to

carry out first and which to do next at any step. We have already specified the

1.

initial conditions for a Turing machine computation: that the Turing machine

must begin in state 1, reading the leftmost nonblank cell on the tape. We have

also insisted that in any collection of Turing machine instructions, there cannot

be two different instructions that both begin with the same current state and

current symbol. Given this requirement, there is never any confusion about

which operation to do next. There is at most one instruction that matches the

current state and current symbol of the Turing machine. If there is one

instruction, the Turing machine executes the operation that instruction describes.

If there is no instruction, the Turing machine halts.

Consist of unambiguous and effectively computable operations—Recall that this

property is relative to the computing agent; that is, operations must be

understandable and doable by the computing agent. Each individual Turing

machine instruction describes an operation that (to the Turing machine) is

unambiguous, requiring no additional explanation, and any Turing machine is

able to carry out the operation described. After all, Turing machine instructions

were designed for Turing machines to be able to execute.

2.

Halt in a finite amount of time—For a Turing machine to halt when executing a

collection of instructions, it must reach a configuration where no appropriate

instruction exists. This depends on the input given to the Turing machine—that

is, the contents initially written on the tape. Consider the following set of Turing

machine instructions:

(1,0,0,1,R)

(1,b,b,1,R)

and suppose the tape initially contains, as its nonblank portion, the single symbol

1. The initial configuration is

and the machine halts immediately because there is no applicable instruction. On

the other hand, suppose the same set of instructions is used with a starting tape

that contains the single symbol 0. The Turing machine computation is then

3.

We can see that the second instruction applies indefinitely and that this Turing

machine will never halt.

Typically, an algorithm is designed to carry out a certain type of task. Let us agree

that for input appropriate to that task, the instructions must be such that the

Turing machine does indeed eventually halt. If the Turing machine is run on a

tape containing data that are not appropriate input for the task of interest, it need

not halt.

This may seem to be a change in our definition of an algorithm, but it simply

confirms that there is always a “universe of discourse” connected with the

problem we are trying to solve. For example, we can use a simple algorithm for

dividing one positive integer by another using repeated subtraction until the

result is negative. Thus, 7 ÷ 3 can be computed using this algorithm as follows:

7 − 3 = 4

4 − 3 = 1

1 − 3 < 0

The quotient is 2 because two subtractions could be done before the result

became negative. However, if we attempt to use this same approach to compute 7

÷ (−3), we get

7 − (−3) = 10

10 − (−3) = 13

13 − (−3) = 16

16 − (−3) = 19

and so on.

The process would never halt because the result would never become negative.

Yet, this approach is still an algorithm for the problem of dividing two positive

numbers because it does produce the correct result and then halt when given

input suitable for this problem.

Produce a result—We have already imposed the requirement that the Turing

machine instructions must lead to a halting configuration when executed on

input appropriate to the problem being solved. Whatever is written on the tape

when the machine halts is the result.

4.

A collection of Turing machine instructions that obeys the restrictions we have
specified satisfies the properties required of an algorithm. Yet, it is not a “real”
algorithm because it is not designed to be executed by a “real” computing agent. It is a
model of an algorithm, designed to be executed by the model computing agent called a
Turing machine.

Most of the time, no distinction is made between a Turing machine as a computing
agent and the instructions (algorithm) it carries out—a machine together with a set of
instructions is called “a Turing machine” and is thought of as an algorithm. Thus, we
say we are going to write a Turing machine to do a particular task, when we really
mean that we are going to write a set of instructions—a Turing machine program, an
algorithm—to do that task.

Chapter 12: Models of Computation: 12.5
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

12.5 Turing Machine Examples
Because the Turing machine is such a simple device, it may seem nearly impossible to
write a program for a Turing machine that carries out any interesting or significant

task. In this section, we look at a few Turing machines that, though they do not
accomplish anything earthshaking, should convince you that Turing machines can do
some rather worthwhile things.

Chapter 12: Models of Computation: 12.5.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

12.5.1 A Bit Inverter

Let’s assume that the only nonblank portion of the input tape for a particular Turing
machine consists of a string of bits (0s and 1s). Our first Turing machine moves along
its tape inverting all of the bits—that is, changing 0s to 1s and 1s to 0s. (Recall that our
sample Turing machine computation inverted the bits in the string 011, resulting in the
string 100. Do you think that machine is a bit inverter? What if the leftmost nonblank
symbol on the input tape is a 1?)

The Turing machine must begin in state 1 on the leftmost nonblank cell. Whatever the
current symbol that is read, the machine must invert it by printing its opposite.
Machine state 1 must, therefore, be a state in which 0s are changed to 1s and 1s are
changed to 0s. This is exactly what we want to happen everywhere along the tape, so
the machine never needs to go to another state; it can simply move right while
remaining in state 1. When we come to the final blank, we want to halt. This can be
accomplished by making sure that our program does not contain any instruction of the
form

(1,b,–,–,–)

This describes the Turing machine algorithm in words, but let’s represent it more
precisely. In the past, we’ve used pseudocode to describe algorithms. Here we’ll use an
alternative form of representation that corresponds more closely to Turing machine
instructions. A state diagram is a visual representation of a Turing machine algorithm,
where circles represent states, and arrows represent transitions from one state to
another. Along each transition arrow, we show three things: the input symbol that
caused the transition, the corresponding output symbol to be printed, and the direction
of movement. For the bit inverter Turing machine, we have only one state and hence
one circle in the state diagram, shown in Figure 12.4.

Figure 12.4

State diagram for the bit inverter machine

The arrow originating in and returning to state 1 marked 1/0/R says that when in state 1
(the only state) reading an input symbol of 1, the machine should print the symbol 0,
move right, and remain in state 1. The arrow marked 0/1/R says that when in state 1
reading an input symbol of 0, the machine should print the symbol 1, move right, and
remain in state 1.

The complete Turing machine program for the bit inverter is

(1,0,1,1,R) Change the symbol 0 to 1.1.

(1,1,0,1,R) Change the symbol 1 to 0.2.

(We’ve added a comment to each instruction to explain its purpose.) Here’s a sample
computation using this machine, beginning with the string 1101 on the tape:

Using instruction 2,

Using instruction 2 again,

Using instruction 1,

Using instruction 2,

and the machine halts with the inverted string 0010 as output on the tape.

Bit inversion might seem like a trivial task, but recall that in Chapter 4 we introduced
an electronic device called a NOT gate that is essentially a bit inverter and is one of the
components of a real computer.

Chapter 12: Models of Computation: 12.5.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

12.5.2 A Parity Bit Machine

An extra bit, called an odd parity bit, can be attached to the end of a string of bits. The
odd parity bit is set such that the number of 1s in the whole string of bits, including the
parity bit, is odd. Thus, if the string preceding the parity bit has an odd number of 1s,
the parity bit is set to 0 so that there is still an odd number of 1s in the whole string. If
the string preceding the parity bit has an even number of 1s, the parity bit is set to 1 so
that the number of 1s in the whole string is odd. As an example, the following string of
bits includes as its rightmost bit an odd parity bit:

1 1 0 0 0 1 0 1 0 1

The parity bit is set to 1 because there are four 1s (an even number) in the string before
the parity bit; the total number of 1s is five (an odd number). Another example of odd
parity is the string

1 0 1 1 0 0

where the parity bit (the rightmost bit) is a 0 because three 1s (an odd number) appear
in the preceding string. Our job here is to write a Turing machine that, given a string of
bits on its input tape, attaches an odd parity bit at the right end.

Practice Problems

Is the Turing machine shown here equivalent to the one shown in

Figure 12.4? Why or why not?

1.

Explain exactly what would happen to the Turing machine of Practice

Problem 1 if it were given a completely blank tape as input.

2.

We know from Chapter 4 that information in electronic form is represented as strings
of bits. Parity bits are used to detect errors that occur as a result of electronic
interference when transmitting such strings (see Exercise 25, Chapter 4). If a single bit
(or any odd number of bits) is changed from a 1 to 0 or from a 0 to 1, then the parity bit
is incorrect, and the error can be detected. A correct copy of the information can then
be retransmitted. Again, we are devising a Turing machine for a significant real-world
task.

Our Turing machine must somehow “remember” whether the number of 1s so far
processed is even or odd. We can use two states of the machine to represent these two
conditions. Because the Turing machine begins in state 1, having read zero 1s so far
(zero is an even number), we can let state 1 represent the even parity state, where an
even number of 1s has been read so far. We’ll let state 2 represent the odd parity state,
where an odd number of 1s has been read so far.

We can read the input string from left to right. Until we get to the end of the bit string,
the symbol printed should always be the same as the symbol read because none of the
bits in the input string should change. But every time a 1 bit is read, the parity should
change, from even to odd or from odd to even. In other words, the state should change
from 1 to 2 or from 2 to 1. Reading a 0 bit does not affect the parity and therefore
should not change the state. Thus, if we are in state 1 reading a 1, we want to go to state
2; if we are in state 1 reading a 0, we want to stay in state 1. If we are in state 2 reading
a 1, we want to go to state 1; if we are in state 2 reading a 0, we want to stay in state 2.

When we come to the end of the input string (when we first read a blank cell), we write
the parity bit, which is 1 if the machine is in state 1 (the even parity state) or 0 if the
machine is in state 2 (the odd parity state). Then we want to halt, which is
accomplished by going into state 3, for which there are no instructions. The state
diagram for our parity bit machine is given in Figure 12.5.

Figure 12.5

State diagram for the parity bit machine

The Turing machine program is as follows:

1. (1,1,1,2,R) Even parity state
reading 1, change
state.

2. (1,0,0,1,R) Even parity state
reading 0, don’t change
state.

3. (2,1,1,1,R) Odd parity state
reading 1, change
state.

4. (2,0,0,2,R) Odd parity state
reading 0, don’t change
state.

5. (1,b,1,3,R) End of string in even
parity state, write 1
and go to state 3.

6. (2,b,0,3,R) End of string in odd
parity state, write 0
and go to state 3.

Let’s do an example. The initial string is 101, which contains an even number of 1s.
Therefore, we want to add a parity bit of 1 and have the final output be the string 1011.
Because this final string contains three 1 bits, it has the correct parity. Here’s the initial

configuration:

Using instruction 1,

Using instruction 4,

Using instruction 3,

and finally using instruction 5 to write the parity bit, we get

whereupon the machine halts.

Chapter 12: Models of Computation: 12.5.3
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

12.5.3 Machines for Unary Incrementing

Turing machines can be written to accomplish arithmetic using the nonnegative
numbers 0, 1, 2, and so on. Working with these numbers poses a problem we did not
face with the bit inverter or the parity bit machine. In those examples, we were
manipulating only bits (i.e., 0s and 1s), already part of the Turing machine alphabet of
symbols. We can’t put numbers like 2, 6, or 754 in cells of the Turing machine tape
because these symbols are not part of the alphabet. Therefore, our first task is to find a
way to encode such numbers using 0s and 1s. We could use binary representation, as a
real computer does. Instead, let us agree on a simpler unary representation of
numbers (unary means that we will use only one symbol, namely 1). In unary
representation, any unsigned whole number n is encoded by a sequence of n + 1 1s.
Thus,

Number Turing Machine
Representation

0 1

1 11

2 111

3 1111

. .

. .

. .

(You may wonder why we don’t simply use 1 to represent 1, 11 to represent 2, and so
on. This scheme would mean using no 1s to represent 0, and then the machine could
not distinguish a single 0 on the tape from nothing—all blanks—on the tape.)

Using this unary representation of numbers, let’s write Turing machines to accomplish
some basic arithmetic operations. We can write a Turing machine to add 1 to any
number; such a machine is often called an incrementer. Using the unary representation
of numbers just described, we need only stay in state 1 and travel over the string of 1s
to the right-hand end. When we encounter the first blank cell, we write a 1 in it and go
to state 2, which has no instructions, in order to halt. Figure 12.6 shows the state
diagram.

Figure 12.6

State diagram for the incrementer

The Turing machine for the incrementer is

1. (1,1,1,1,R
)

Pass to the right over
1s.

2. (1,b,1,2,R) Add a single 1 at the
right-hand end of the
string.

Here’s a quick sample computation:

at which point the machine halts. The output on the tape is the representation of the
number 3. The machine thus incremented the input, 2, to the output, 3.

Here is another algorithm to accomplish the same task. The preceding algorithm
moved to the right-hand end of the string and added a 1. But the increment problem
can also be solved by moving to the left-hand end of the string and adding a 1. The
Turing machine program for this algorithm is

(1,1,1,1,L) Pass to the left over 1s.

(1,b,1,2,L) Add a single 1 at the
left-hand end of the
string.

If we apply this algorithm to the same input tape, the computation is

Once again, 2 has been incremented to 3. But whereas the first computation took four
operations—that is, four applications of Turing machine instructions—the second
computation took only two.

Let’s compare these two algorithms in terms of their time and space efficiency. We’ll
take the execution of a single Turing machine instruction as a unit of work, so we
measure the time used by a Turing machine algorithm by the number of instructions
executed. The “space” a Turing machine algorithm takes on any given input is the
number of nonblank cells on the tape that are used during the course of running the
program. The input itself occupies some nonblank cells, so the interesting question is
how many additional cells the algorithm uses in the course of its execution.

Suppose that the number 5 is to be incremented using algorithm 1. The initial input
tape contains six 1s (the unary representation for 5). The machine moves to the right,
over all the 1s on the tape, until it encounters the first blank cell. It writes a 1 into the
blank cell and then halts. An instruction is executed for each move to the right. By the
time the blank cell is reached, six instruction executions have been done; actually, the
first instruction has been executed six times. One final execution, this time of the
second instruction, completes the task. Altogether, seven steps are required, two more
than the number 5 we are incrementing. One “extra” step comes because of the unary
representation, with its additional 1, and a second “extra” step is used to write over the
blank cell. Therefore, it is easy to see that if the problem is to increment the number n,
then n + 2 steps would be required using algorithm 1. Algorithm 2 does a constant
number of steps (two) no matter what the size of n. Both algorithms use n + 2 cells on
the tape: n + 1 for the initial input and one more for incrementing. The algorithms are
equivalent in space efficiency, but algorithm 2 is more time efficient.

With an input such as 5, our example here, the difference in time efficiency between
the two algorithms does not seem great. Figure 12.7 shows the steps required by
algorithms 1 and 2 for larger problems. As the input gets larger, the difference in
efficiency becomes more obvious. If our hypothetical Turing machine actually existed
and could do, say, one step per second, then algorithm 1 would take 2 hours, 46
minutes, and 42 seconds to increment the number 10,000. Algorithm 2 could do the
same job in 2 seconds! This significant difference gives a definite edge to algorithm 2 as
the preferable solution method for this problem. Using the notation of Chapter 3,
algorithm 1 is a linear time Θ(n) algorithm, whereas algorithm 2 is a constant time Θ(1)
algorithm.

Figure 12.7
Time efficiency for two Turing machine algorithms for incrementing

The Number to
Be
Incremented,
n

Number of Steps
Required

Algorithm
1

Algorithm
2

10 12 2

100 102 2

1,000 1,002 2

10,000 10,002 2

Although we can compare two Turing machine algorithms for the same task, we can’t
really compare the efficiency of a Turing machine algorithm with an algorithm that
runs on a “real” computer. For one thing, the data representation is probably different
(numbers aren’t written in unary form). But more to the point, the basic unit of work is
different. It takes many Turing machine operations to do a trivial task because the
entire concept of a Turing machine is so simplistic. Turing machines, as we saw in our
few examples, work by carefully moving, changing, and keeping track of individual 0s
and 1s. Given such a limited range of activities, a Turing machine must exert a lot of
effort to accomplish even mildly interesting tasks.

Practice Problem

What should the output be when the parity bit Turing machine

is run on the following input?

b 1 1 0 1 0 b

a.

Now run the parity bit Turing machine on this tape and see

whether you get the answer you expected from Practice

Problem 1a.

b.

1.

Chapter 12: Models of Computation: 12.5.4
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

12.5.4 A Unary Addition Machine

A Turing machine can be written to add two numbers. Again using unary
representation, let’s agree to start with the two numbers on the tape separated by a
single blank cell. When the Turing machine halts, the tape should contain the unary
representation of the sum of the two numbers. The separating blank should be gone. If
we erase the leftmost 1 and then fill in the separating blank with a 1, this has the effect
of sliding the entire first number one cell to the right on the tape. Also, both numbers
are originally written on the tape using unary representation, which means that there
is an extra 1 for each number. When we are finished, we want to have only one extra 1,
for the unary representation of the sum. Therefore, a second 1 should be removed
from the tape. Our plan is to erase the two leftmost 1s on the tape, proceed rightward
to the separating blank, and replace the blank with a 1.

For example, suppose we want to add 2 + 3. The original tape representation (rather
than drawing the individual cells, we’ll just show the tape contents) is

and the final representation—somewhere on the tape—should be the unary
representation for the number 5,

Our algorithm will accomplish this transformation in stages. First, we erase the
leftmost 1:

We then erase a second 1 from the left end (see Exercise 26 at the end of this chapter
for the case when there is no “second 1”):

and then move to the right and fill in the blank with a 1:

The Turing machine begins in state 1, so we use that state to erase the leftmost 1 and
move right, changing to state 2. The job of state 2 is to erase the second 1 and move
right, changing to state 3. State 3 must move across any remaining 1s until it
encounters the blank, which it changes to a 1 and then goes into a “halting state” with
no instructions, state 4. A state diagram (Figure 12.8) illustrates the desired transitions
to next states.

Figure 12.8

State diagram for the addition machine

Here is the Turing machine program:

1. (1,1,b,2,R) Erase the leftmost 1
and move right.

2. (2,1,b,3,R) Erase the second 1 and
move right.

3. (3,1,1,3,R) Pass over any 1s until a
blank is found.

4. (3,b,1,4,R) Write a 1 over the
blank and halt.

Try “running” this machine on the preceding 2 + 3 problem.

Practice Problems

Set up the input and run the addition Turing machine to compute 3 +

4.

1.

Write a Turing machine that, when run on the tape

… b 1 1 1 0 b …

2.

produces an output tape of

… b 1 1 1 0 1 b …

Laboratory Experience 16

In this Laboratory Experience, you will run a Turing machine simulator. Using
Turing machine algorithms that we have developed in the text, you can set up
the input tape and then run the machine. You can watch as the Turing machine
passes from state to state and see which instruction it is executing at each step.
You can also see whether the input tape is modified at any step, and how (or
whether) the machine reaches a halting configuration.

Chapter 12: Models of Computation: 12.6
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

12.6 The Church–Turing Thesis
Just how good is the Turing machine as a model of the concept of an algorithm? We’ve
already seen that any Turing machine exhibits the properties of an algorithm, and
we’ve even produced Turing machine algorithms for a couple of important tasks. But
perhaps we were judicious in our choice of tasks and happened to use those for which
Turing machine instructions could be devised. We should ask whether there are other
tasks that are “doable” by an algorithm but not “doable” by a Turing machine.

Of course, the answer to this question is yes. A Turing machine cannot program a DVR
or shampoo hair, for example—tasks for which algorithms were given in Chapter 1. But
suppose we limit the task to one for which the input and output can be represented
symbolically, that is, using letters and numbers. Symbolic representation is, after all,
how we traditionally record information such as names, addresses, telephone
numbers, pay rates, yearly profits, temperatures, altitudes, times, Social Security
numbers, grade point averages, growth rates, and so on. Taking a symbolic
representation of information and manipulating it to produce a symbolic
representation of other information covers a wide range of tasks, including everything
done by “traditional” computing. Now let’s ask a modified version of our previous
question: Are there symbol manipulation tasks that are “doable” by an algorithm but
not “doable” by a Turing machine?

The answer to this question is generally considered to be no, as stated by the Church-
Turing thesis, named for Alan Turing and another famous mathematician, Alonzo

Definition

Church–Turing Thesis: If there exists an
algorithm to do a symbol manipulation
task, then there exists a Turing machine to
do that task.

Church.

The Church–Turing thesis makes
quite an extraordinary claim. It says
that any symbol manipulation task
that has an algorithmic solution can
also be carried out by a Turing
machine executing some set of Turing
machine instructions. Processing the
annual Internal Revenue Service
records, for example, or calculating
positions for global navigation
satellite systems such as GPS can be done (according to this claim) using Turing
machines. The thought of writing a Turing machine program to process IRS records is
mind-boggling, but our examples may have convinced you that it is possible. Although
such a program can be written, one can hardly imagine how many centuries it would
take to execute, even with a very rapid “system clock.” But the Church–Turing thesis
says nothing about how efficiently the task will be done, only that it can be done by
some Turing machine.

There are really two parts to writing a Turing machine for a symbol manipulation task.
One part involves encoding symbolic information as strings of 0s and 1s so that it can
appear on Turing machine tapes. This is not difficult, and we know that real computers
store all information, including graphical information, in binary. The other part is the
heart of the challenge: Given that we get the input information encoded on a Turing
machine tape, can we write the Turing machine instructions that produce the encoded
form of the correct output? Figure 12.9 illustrates the problem. The bottom arrow is the
algorithmic solution to the symbol manipulation task we want to emulate. To perform
this emulation, we must first encode the symbolic input into a bit string on a Turing
machine tape (upward-pointing left arrow), write the Turing machine that solves the
problem (top arrow), and, finally, decode the resulting bit string into symbolic output
(downward-pointing right arrow). The Church–Turing thesis asserts that this process
can always be done.

Figure 12.9

Emulating an algorithm by a Turing machine

The Turing Award

The most prestigious technical award given by the Association for Computing
Machinery is the annual Turing Award, named in honor of Alan Turing. It is
sometimes called the computer science Nobel Prize, and is given to an
individual selected for “contributions of lasting and major technical importance
to the computer field.” Some of the individuals we’ve mentioned in this book
have been recipients of the Turing Award, which was first given in 1966:

1971: John McCarthy
(Chapter 10)

1972: E. W. Dijkstra (Chapter
10)

1977: John Backus (Chapters
10 and 11)

1983: Dennis Ritchie, Ken
Thompson (Chapter 10)

2004: Vinton Cerf and Robert
Kahn (Chapter 7)

Other recipients of the award have made contributions in areas we have
discussed or will discuss in later chapters:

1975: Allen Newell as one of
the founding fathers of
artificial intelligence
(AI), beginning his work
in this area in 1954
(Chapter 15)

1981: Edgar F. Codd for
fundamental
contributions to
database management
systems (Chapter 14)

1982: Stephen A. Cook for
exploring the class of
problems that in
Chapter 3 we called

“suspected intractable”

1986: John Hopcroft and
Robert Tarjan for their
work on analysis of
algorithms (Chapter 3)

1990: Fernando J. Corbato for
pioneering work on
general-purpose,
timeshared mainframe
operating systems
(Chapter 6)

1992: Butler Lampson for
work in the 1970s and
early 1980s on
hardware and software
that demonstrated
solutions to problems
of distributed
computing done on
personal workstations
linked by a local area
network(Chapter 7)

1999: Frederick P. Brooks, Jr.,
for landmark
contributions to
computer architecture,
operating systems, and
software engineering
(Chapters 5, 6, 9)

2001: Ole-Johan Dahl and
Kristen Nygaard for
ideas fundamental to
the emergence of
object-oriented
programming (Chapter
9)

2002: R. Rivest, A. Shamir, and
L. Adleman for seminal
contributions to the
theory and applications
of cryptography
(Chapter 8)

2005: Peter Naur for
fundamental
contributions to
programming language
design, to compiler
design, and to the art
and practice of
computer
programming
(Chapters 10 and 11)

2008: Barbara Liskov for
contributions to
practical and
theoretical foundations
of programming
language and system
design (Chapters 6 and
9)

2010: Leslie Valiant for
transformative
contributions to the
theory of omputation
… and the theory of
parallel and distributed
computing (Chapters
10 and 12)

What exactly is a thesis? According to the dictionary, it is “a statement advanced for
consideration and maintained by argument.” That sounds less than convincing—hasn’t
the Church–Turing thesis been proved? No, and that’s why it is called a thesis, not a
theorem. Theorems are ideas that can be proved in a formal, mathematical way, such
as “the sum of the interior angles of a triangle equals 180°.” The Church–Turing thesis
can never be proved because—despite all our talk about algorithms and their
properties— the definition of an algorithm is still descriptive, not mathematical. It
would be like trying to “prove” that an ideal day at the beach is sunny and 85°F. We
might all agree on this, but we’ll never be able to “prove” it. Well, then, the Church–
Turing thesis makes a remarkable claim and can never be proved! Sounds pretty
suspicious—what are the arguments on its behalf? There are two.

One argument is that early on, when the thesis was first put forward, whenever
computer science researchers described algorithmic solutions for tasks, they also tried
to find Turing machines for those tasks. They were always successful; no one was ever

able to put forth an algorithm for a task for which a Turing machine was not
eventually found. This does not mean that no such task exists, but it lends weight to a
body of evidence in support of the thesis.

A second argument on behalf of the thesis is the fact that a number of other
mathematicians attempted to find models for computing agents and algorithms. All of
these proved to be equivalent to Turing machines and Turing machine programs in
that whatever could be done by these other computing agents running their algorithms
could also be done by a Turing machine running a Turing machine program, and vice
versa. This suggests that the Turing machine captures all of these other ideas about
“algorithms.”

The Church–Turing thesis is now widely accepted by computer scientists. They no
longer feel it necessary to write a Turing machine when they talk about an algorithmic
computation. After describing an algorithm to carry out some task, they simply say,
“Now let T be the Turing machine that does this task.” You may make your own
decision about the Church–Turing thesis, but in this book we will go along with
convention and accept it as true. We therefore accept the Turing machine as an
ultimate model of a computing agent and a Turing machine program as an ultimate
model of an algorithm. We are saying that Turing machines define the limits of
computability —that which can be done by symbol manipulation algorithms. What
can be done by an algorithm is doable by a Turing machine, and what is not doable by
a Turing machine cannot be done by an algorithm. In particular, if we find a symbol
manipulation task that no Turing machine can perform (in its elementary way of
moving around over a tape of 0s and 1s), then there is no algorithm for this task, and
no real computer, no matter how sophisticated, will ever be able to do it either. That’s
why the Turing machine is so important. You can now see where this is all leading in
terms of our search for a problem that has no algorithmic solution. Suppose we can
find a (symbol manipulation) problem for which we can prove that no Turing machine
exists to solve it. Then, because of the Church–Turing thesis, no algorithm exists to
solve it either. The problem is an uncomputable or unsolvable problem.

If we pose a problem and try to construct a Turing machine to solve it but are not
successful, that alone does not prove that no Turing machine exists. What we must do
is actually prove that no one can ever find such a Turing machine—that it is not
possible for a Turing machine to exist that solves this problem. It may appear that the
introduction of Turing machines hasn’t helped at all and that we are confronted by the
same dilemma we faced at the beginning of this chapter. But Alan Turing, in the late
1930s, found such a problem and proved its unsolvability.

Chapter 12: Models of Computation: 12.7
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

12.7 Unsolvable Problems

The problem Turing found is an ingenious one that itself involves Turing machine
computations. A Turing machine that is executing an algorithm (a collection of Turing
machine instructions) to solve some task must halt when begun on a tape containing
input appropriate to that task. On other kinds of input, the Turing machine may not
halt. It is easy enough for us to decide whether any specific configuration of a given
Turing machine is a halting configuration. If a Turing machine program consists of the
following four instructions:

(1,0,1,2,R)

(1,1,0,2,R)

(2,0,0,2,R)

(2,b,b,2,L)

then the configuration

is a halting configuration because there is no instruction of the form (2,1,–,–,–). It is also
easy to see that this configuration will arise if the Turing machine is begun on the tape

Unsolvable Problems

Similarly, we can see that if the Turing machine is begun on the tape

then it will never halt. Instead, after the first step (clock tick), the machine will cycle
forever between the two configurations

In a more complicated case, however, if we know the Turing machine program and we
know the initial contents of the tape, then it may not be so easy to decide whether the
Turing machine will eventually halt when begun on that tape. Of course, we can always
simply execute the Turing machine—that is, carry out the instructions. We don’t have
all day to wait for the answer, so we’ll set a time-out for our Turing machine system

clock. Let’s say we are willing to wait for 1,000 clock ticks. If we come to a halting
configuration within the first 1,000 steps, then we know the answer: This Turing
machine, running on this input tape, halts. But suppose we do not come to a halting
configuration within the first 1,000 clock ticks. Can we say that the machine will never
halt? Should we wait another 1,000 clock ticks? 10,000 clock ticks? Just running the
Turing machine doesn’t necessarily enable us to decide about halting. Here is the
problem we propose to investigate:

Decide, given any collection of Turing machine instructions together with any
initial tape contents, whether that Turing machine will ever halt if started on that
tape.

This is a clear and unambiguous problem known as the halting problem. Does it have
a Turing machine solution? Can we find one Turing machine that will solve every
instance of this problem—that is, one that will give us the answer “Yes, halts” or “No,
never halts” for every (Turing machine, initial tape) pair?

This is an uncomputable problem; we will show that no Turing machine exists to solve
this problem. Remember that we said it was not sufficient to look for such a machine
and fail; we actually have to prove that no such machine can exist. The way to do this is
to assume that such a Turing machine does exist and then show that this assumption
leads to an impossible situation, so such a machine could not exist after all. This
approach is called a proof by contradiction.

Assume, then, that P is a Turing machine that solves the halting problem. On the initial
tape for P we have to put a description—using the binary digits 0 and 1—of a collection
T of Turing machine instructions, as well as the initial tape content t on which those
instructions run. This is the encoding part of Figure 12.9. Translating Turing machine
instructions into binary form is tedious but not difficult. For example, we can use
unary notation for machine states and tape symbols, designate the direction in which
the read unit moves by 1 for R (right) and 11 for L (left), and separate the parts of a
Turing machine instruction by 0s. Let’s use T* to symbolize the binary form of the
collection T of Turing machine instructions. P is then run on a tape containing both T*
and t, so the initial tape for P looks like the following, where T* and t may occupy many
cells of the tape:

Our assumption is that P will always give us an answer (“Yes, halts” or “No, never
halts”). P’s yes/no answer would be its output—what is written on the tape when P
halts; therefore, P itself must always halt. Again, because the output is written on P’s
tape, it also has to be in binary form, so let’s say that a single 1 and all the rest blanks
represents “yes,” and a single 0 and all the rest blanks represents “no.” This is the
decoding part of Figure 12.9. To summarize:

Figure 12.10 is a pictorial representation of the actions of P when started on a tape
containing T* and t.

Figure 12.10

Hypothetical Turing machine P running on T* and t

When P halts with a single 1 on its tape, it does so because there are no instructions
allowing P to proceed in its current state when reading 1. For example, P might be in
state 9, and there is no instruction of the form

(9,1,–,–,–)

for machine P. Let’s imagine adding more instructions to P to create a new machine Q
that behaves just like P except that when it reaches this same configuration, it moves
forever to the right on the tape instead of halting. To do this, pick some state not in P,
say 52, and add the following two new instructions to P:

(9,1,1,52,R)

(52,b,b,52,R)

Figure 12.11 represents Q’s behavior when started on a tape containing T* and t.

Figure 12.11

Hypothetical Turing machine Q running on T* and t

Finally, we’ll create a new machine S. This machine first makes a copy of what appears
on its input tape. (This is a doable, if tedious, task. The machine must “pick up” a 0 or 1
by going to a particular state, move to another part of the tape, and write a 0 or 1,
depending on the state. It travels back and repeats the process; however, each time it
picks up a 0 or 1, it must mark the tape with some marker symbol, say X for 0 and Y for
1, so that it doesn’t try to pick it up again. At the end of the copying, the markers must
be changed back to 0s and 1s.) After S is finished with its copying job, it uses the same
instructions as machine Q.

Now what happens when machine S is run on a tape that contains S*, the binary
representation of S’s own instructions? S first makes a copy of S* and then turns the
computation over to Q, which is now running on a tape containing S* and S*. Figure
12.12 shows the result; this figure follows from Figure 12.11 where T* and t are both S*.

Figure 12.12

Hypothetical Turing machine S running on S*

Figure 12.12 represents the behavior of S running on input S*. The final outcome is
either (left output)

or (right output)

Unsolvable Problems

(Perhaps you’ll need to read this several times while looking at Figure 12.12 to convince
yourself of what we have said.) We have backed ourselves into a corner here, but that’s
good. This is exactly the impossible situation we were hoping to find.

We assumed that there was a Turing machine that could solve the halting problem, and
this assumption led to an impossible situation. The assumption is therefore incorrect,
and no Turing machine can exist to solve the halting problem. Therefore, no algorithm
can exist to solve this problem. The halting problem is an example of an unsolvable or
uncomputable problem.

The halting problem seems rather abstract; perhaps we don’t care whether it is
unsolvable. However, real computer programs written in real programming languages
to run on real computers are also symbol manipulation algorithms and, by the Church–
Turing thesis, can be simulated by Turing machines. This means that the unsolvability
of the halting problem has practical consequences. For example, we know that some
C++, Java, or Python programs can get stuck in infinite loops. It would be nice to have a
program that you could run ahead of time on any C++, Java, or Python program,
together with its input, that would tell you, “Uh-oh, if you run this program on this
input, it will get into an infinite loop,” or “No problem, if you run this program on this
input, it will eventually stop.” The unsolvability of the halting problem says that no
such program is possible. Other unsolvable problems, related to the halting problem,
have the following practical consequences:

No program can be written to decide whether any given program always stops

eventually, no matter what the input.

No program can be written to decide whether any two programs are equivalent

(will produce the same output for all inputs).

No program can be written to decide whether any given program run on any

given input will ever produce some specific output.

This last case means it is impossible to write a general automatic program tester—one
that for any program can check whether, given input A, it produces correct output B.
That is why program testing plays such an important role in the software development
life cycle described in Chapter 9.

It is important to note, however, that these problems are unsolvable because of their
generality. We are asking for one program that will decide something about any given
program. It may be very easy to write a program A that can make a decision only about
a specific program B by utilizing specialized properties of B. (Analogy: If I ask you to be
ready to write “I love you” in English, you can do it; if I ask you to be ready to write “I
love you” in any language I might later specify, you can’t do it.)

Couldn’t Do, Can’t Do, Never Will Be Able To …

Unsolvable problems are not confined to problems about running programs
(Java programs, C++ programs, Python programs, or Turing machines).

In Chapter 11, we talked about grammars that can be described in Backus-Naur
Form (BNF) and about how a compiler parses a programming language
statement by applying the rules of its grammar. We noted that ambiguous
grammars are not suitable for programming languages because they can allow
multiple interpretations of a statement. It would be nice to have a test (an
algorithm) to decide whether any BNF grammar is ambiguous. This is an
unsolvable problem—no such algorithm can exist. Deciding whether any two
such grammars produce the same language is also unsolvable.

One of the earliest “decision problems” was posed by the British mathematician
David Hilbert in 1900. Consider quadratic equations of the form

where a, b, and c are integers. We can easily decide whether any one such
equation has integer solutions by applying the quadratic formula to solve the
equation. But consider more general polynomial equations in several
unknowns, such as

where the unknowns are x, y, z, and w and the coefficients (a, b, c, d, and e) are
integers. Is there an algorithm to decide whether any such equation has integer
solutions? In 1970, this problem was finally shown to be unsolvable.

Practice Problems

Explain how a proof by contradiction is done.1.

Write in your own words a description of the halting problem.a.

Write a paragraph that describes the proof of the unsolvability

of the halting problem.

b.

2.

Laboratory Experience 17

Using the same Turing machine simulator as before, you can now design and
run your own Turing machine algorithms for simple problems. You will add
states to an initially empty machine by describing the purpose of the new state
and adding instructions for that state. You then run your machine on an
appropriate input tape to see whether it behaves as intended.

Chapter 12: Models of Computation: 12.8
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

12.8 Conclusion
We began this chapter by proposing that there exist problems for which no solution
algorithm exists. To prove such a statement, we looked for appropriate models of
“computing agent” and “algorithm” that would enable us to concentrate on the
fundamental nature of computation. We discussed the nature of models in general and
their importance in helping us understand real phenomena. After developing a list of
properties inherent in any computing agent, we defined the Turing machine, noted that
it incorporates these properties, and accepted it as a model of a computing agent. A
Turing machine program incorporates the properties of an algorithm described in
Chapter 1, so we accepted it as a model of an algorithm. Are these good models? Do
they capture everything that is fundamental about computing and algorithms? After

looking at a few Turing machines devised to do some simple tasks, we stated our
position with a resounding yes in the form of the Church–Turing thesis: Not only is a
Turing machine program an example of an algorithm, but every symbolic
manipulation algorithm can be done by a Turing machine (we believe). This leap of
faith—putting total confidence in Turing machine programs as models of algorithms
—allows us to define the boundaries of computability. If it can’t be done by a Turing
machine, then it is not computable. Thus, the real value of Turing machines as models
of computability is in exposing problems that are uncomputable—problems for which
no algorithmic solution exists no matter how intelligent we are or how long we keep
looking. As a practical matter, recognizing uncomputable problems certainly saves
time; we are less likely to devote our lives to searching for algorithms that can never
be. As a philosophical matter, it is important to know that computability has its limits,
beyond which lies the great abyss of the uncomputable!

Chapter 12: Models of Computation: 12.9
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

12.9 Summary of Level 4
In Level 4, we examined in some detail your choice of one procedural programming
language as an example of a means for expressing algorithms at a high level of
abstraction. Other high-level languages exist, including other procedural languages,
special-purpose languages, and those that follow other philosophies, such as functional
languages and logic-based languages. Because algorithms written in high-level
languages ultimately run on low-level hardware, program translators must convert
from one level of algorithmic expression to another. We’ve looked at the series of tasks
that a language compiler must be able to perform to carry out this conversion. This
final chapter of Level 4 proved that there are limits to computability—that there exist
problems that can never be solved algorithmically.

With all of the hardware and software mechanisms in place to implement algorithmic

problem solutions, we are ready to proceed to the next level—the level of
applications—to see some of the ways in which computers (and algorithms) are being
put to use.

The first application we examine relates very closely to what we have discussed in this
chapter—building models. In this chapter, we constructed a formal model of an
algorithm to prove the existence of unsolvable problems, but in Chapter 13, we will
build simulation models that help us to solve important problems such as predicting
the weather, creating new medicines, tracking our economy, and designing safe and
efficient airplanes.

Chapter 12: Models of Computation
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter Review

Exercises

In this set of exercises, when writing Turing machine algorithms, include
comments for each instruction or related group of instructions. The comments
should convey information in terms of the algorithm the Turing machine is
accomplishing. Thus, the instruction

(1,0,0,1,R)

might have a comment such as, “Pass to the right over all the 0s,” not a
comment such as, “In state 1 looking at a 0, write a 0, stay in state 1, and move
right,” which provides no additional information.

Describe what factors might be included in a model for the spread of an

epidemic.

1.

Say an automobile manufacturer designs a new car using a sophisticated

and detailed computer simulation, but no prototype vehicles, and the

automobile is later found to have a defect. Do you think the manufacturer

is accountable? Is the manufacturer accountable if it builds prototypes

that do not reveal the defect, but does not do a simulation?

2.

Give an example of a potential use of computerized models in

The pharmaceutical industrya.

The food processing industryb.

3.

The insurance industryc.

Which of the following can be considered computing agents and why?

A clock radioa.

A thermostatb.

A video camerac.

A programmable calculatord.

4.

Given the Turing machine instruction

(1,1,0,2,L)

and the configuration

draw the next configuration.

5.

A Turing machine contains only the following instructions:

(1,1,1,1,R)

(1,b,1,2,R)

Can this machine ever reach the following configuration? Explain your

answer.

6.

Is the following a legitimate Turing machine? Why or why not?

(1,1,0,2,R)

(1,0,0,3,R)

(2,1,1,2,R)

7.

(3,0,0,3,R)

(2,0,0,4,L)

(3,0,1,4,L)

(4,1,1,5,R)

(4,0,0,5,R)

Find the output for the Turing machine

(1,1,1,2,R)

(1,0,0,2,R)

(1,b,1,2,R)

(2,0,0,2,R)

(2,1,0,1,R)

when run on the tape

… b 1 0 0 1 b…

8.

Find the output for the Turing machine

(1,1,1,2,L)

(2,b,0,3,L)

(3,b,1,4,R)

(4,0,1,4,R)

when run on the tape

…b 1 b…

9.

Describe the behavior of the Turing machine

(1,1,1,2,R)

(2,0,0,1,L)

when run on the tape

10.

…b 1 0 1 b…

Describe the behavior of the Turing machine

(1,1,1,1,R)

(1,0,0,2,L)

(2,1,0,2,L)

(2,b,1,3,L)

(3,b,b,1,R)

when run on the tape

…b 1 0 1 b…

11.

Describe the behavior of the following Turing machine on any input tape

containing a binary string:

(1,1,1,1,R)

(1,0,0,1,R)

(1,b,1,1,R)

12.

Write a Turing machine that, when run on the tape

…b 1 1 1 1 1 b…

produces an output tape of

…b 0 1 1 1 1 b…

You can accomplish this using only one instruction.

13.

Say a Turing machine is supposed to change any string of 1s to a string of

0s. For example,

…b 1 1 1 b…

should become

…b 0 0 0 b…

Will the following Turing machine do the job? Why or why not?

14.

(1,1,0,2,R)

(2,1,0,3,R)

(3,1,0,4,R)

Write a Turing machine that, when run on the tape

…b 1 1 1 1 1 b…

produces an output tape of

…b 1 1 1 1 0 b…

a.

Write a Turing machine that, when run on any tape containing a

unary string, changes the rightmost 1 to 0 and then halts. (If your

solution to Exercise 15a was sufficiently general, you will not have

to change it here.)

b.

15.

Write a Turing machine to perform a unary decrement (the opposite of an

increment). Assume that n > 0.

16.

Write a Turing machine to perform a unary decrement. Assume that n

may be 0, in which case a single 0 should be output on the tape to signify

that the operation results in a negative number.

17.

Write a Turing machine that operates on any binary string and changes it

to a string of the same length with all 1s. It should, for example, change

the tape

…b 0 1 1 0 1 0 b…

to

…b 1 1 1 1 1 1 b…

However, you must write instructions that allow your Turing machine to

work on any binary string, not just the one shown here.

18.

Write a Turing machine that operates on any string of 1s and changes it to

a string of alternating 1s and 0s.

19.

The parity-bit Turing machine of Section 12.5.2 uses an odd parity bit

scheme. Write a Turing machine that uses an even parity bit scheme.

20.

Write a Turing machine that efficiently adds 3 to any unary number.21.

Write a Turing machine that begins on a tape containing a single 1 and

never halts but successively displays the strings

…b 1 b…

…b 0 1 0 b…

…b 0 0 1 0 0 b…

and so on.

22.

Write a Turing machine that operates on the unary representation of any

number and decides whether the number is 0; your machine should

produce an output tape containing the unary representation of 1 if the

number was 0 and the unary representation of 2 if the number was not 0.

23.

Write a Turing machine that takes any unary string of an even number of

1s and halts with the first half of the string changed to 0s. (Hint: You may

need to use a “marker” symbol such as X or Y to replace temporarily any

input symbols you have already processed and do not want to process

again; at the end, your program must “clean up” any marker symbols.)

24.

Write a Turing machine that takes as input the unary representation of

any two different numbers, separated by a blank, and halts with the

representation of the larger of the two numbers on the tape. (Hint: You

may need to use a “marker” symbol such as X or Y to replace temporarily

any input symbols you have already processed and do not want to process

again; at the end, your program must “clean up” any marker symbols.)

25.

The Turing machine described in Section 12.5.4 to add two unary

numbers was designed to erase the two leftmost 1s on the tape, move to

the right to the blank separating the two numbers, and replace the blank

with a 1. If the first of the two numbers being added is 0, then there are

not two 1s before the separating blank. Does the algorithm still work in

this case?

26.

Draw a state diagram for a Turing machine that takes any string of 1s and

changes every third 1 to a 0. Thus, for example,

…b 1 1 1 1 1 1 b…

becomes

… b 1 1 0 1 1 0 b…

27.

Draw a state diagram for a Turing machine that increments a binary

number. Thus, if the binary representation of 4 is initially on the tape,

…b 1 0 0 …

then the output is the binary representation of 5,

…b 1 0 1 …

or if the initial tape contains the binary representation of 7,

…b 1 1 1 b…

then the output is the binary representation of 8,

…b 1 0 0 0 b…

28.

Analyze the time and space efficiency of the following Turing machine

operating on a unary string of length n.

(1,1,1,1,R)

(1,b,b,2,L)

(2,1,0,2,L)

(2,b,b,3,R)

(3,0,1,3,R)

29.

Suppose we already have Turing machine instructions to copy a unary

string; we also know how to add two unary numbers. Describe (in words

only) the design of a Turing machine to multiply two unary numbers.

30.

Two other Turing machine unary addition algorithms follow.

Fill in the separating blank with a 1, go to the far right end, and

erase two 1s.

1.

Erase a 1 on the left end, fill in the separating blank with a 1, and

erase a 1 on the right end.

2.

Do both of these algorithms work correctly?a.

Write the Turing machine for each of these algorithms.b.

Informally, which of the three addition algorithms (the one given inc.

31.

the chapter and these two) seems most time efficient?

Suppose that the numbers to be added are n and m. The original

tape contains the unary representation of n, followed by a blank,

followed by the unary representation of m. Write exact expressions

in terms of n, m, or both for the time efficiency of each of the three

algorithms. Does this confirm your answer from Exercise 31c?

d.

Again assuming that the numbers to be added are n and m, write an

exact expression for the space efficiency of each of the three

algorithms.

e.

We have considered Turing machines as computation devices, turning
input to output according to some specific requirement. Turing machines
can also be used as recognizers, deciding whether the string of characters
initially on its tape matches a certain pattern. The following problem uses
a Turing machine in this way.

A palindrome is a string of characters that reads the same forward and

backward, such as radar or IUPUI. Write a Turing machine to decide

whether any binary string is a palindrome by halting with a blank tape if

the string is a palindrome and halting with a nonblank tape if the string is

not a palindrome.

Note: The world’s longest single-word palindrome is the Finnish word for

“lye dealer”:

Saippuakivikauppias

Other palindromes include:

Slap a ham on Omaha pals Do geese see god

A man a plan a canal Panama

Recall from Chapter 11 that the job of the parser in a compiler is also to

recognize strings that match patterns, where the patterns are given by

means of a grammar expressed in BNF notation. Exercises 33-36 use BNF

grammar notation.

32.

The following BNF grammar defines a set of binary strings.33.

Describe the language defined by this grammar.a.

Write a Turing machine to decide whether any binary string is a

string in this language by halting with a blank tape if the string is in

the language and halting with a nonblank tape if the string is not in

the language.

b.

The following BNF grammar defines a set of binary strings.

Describe the language defined by this grammar.a.

Write a Turing machine to decide whether any binary string is a

string in this language by halting with a blank tape if the string is in

the language and halting with a nonblank tape if the string is not in

the language.

b.

34.

The following BNF grammar defines a set of binary strings.

Describe the language defined by this grammar.a.

Write a Turing machine to decide whether any binary string is a

string in this language by halting with a blank tape if the string is in

the language and halting with a nonblank tape if the string is not in

the language.

b.

35.

The following BNF grammar defines a set of binary strings.

Describe the language defined by this grammar.a.

Write a Turing machine to decide whether any binary string is ab.

36.

string in this language by halting with a blank tape if the string is in

the language and halting with a nonblank tape if the string is not in

the language.

Your boss gives you a computer program and a set of input data and asks

you to determine whether the program will get into an infinite loop

running on these data. You report that you cannot do this job, citing the

Church–Turing thesis. Should your boss fire you? Explain.

37.

What is the significance of the unsolvability of the halting problem?38.

The uniform halting problem is to decide, given any collection of Turing

machine instructions, whether that Turing machine will halt for every

input tape. This is an unsolvable problem. Which of the three practical

consequences of unsolvability problems described in Section 12.7 follows

from the uniform halting problem?

39.

The 10-step halting problem is to decide, given any collection of Turing

machine instructions, together with any initial tape contents, whether

that Turing machine will halt within 10 steps when started on that tape.

Explain why the 10-step halting problem is computable.

40.

Chapter 12: Models of Computation
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter Review

Challenge Work

Several alternative definitions of Turing machines exist, all of which

produce machines that are equivalent in computational ability to the

Turing machine defined in this chapter. One of these alternative

definitions is the multitrack Turing machine. In a multitrack Turing

machine, there are multiple tapes. The machine reads a cell from each of

the tapes and, on the basis of what it reads, it writes a symbol on each

tape, changes state, and moves left or right. Diagram a shows a two-track

Turing machine currently in state 1 reading a 1 on the first tape and a 0

on the second tape.

1.

An instruction for this Turing machine has the following form:

(current state, current first tape symbol, next first tape symbol, current

second tape symbol, next second tape symbol, next state, direction of

move)

An instruction of the form (1,1,0,0,0,2,R) applied to the machine

configuration of Figure 12.13 results in the configuration shown in

diagram (b).

As in the original Turing machine definition, some conventions apply.

Each tape can contain only a finite number of nonblank symbols, and the

leftmost nonblank symbols must initially “line up” on the two tapes. The

read head begins in this leftmost nonblank position in state 1. At any time,

if no instruction applies to the current machine configuration, the

machine halts.

Design a two-track Turing machine that compares two binary

strings and decides whether they are equal. If the strings are equal,

the machine halts in some fixed state; if they are not equal, the

machine halts in some other fixed state.

a.

Solve this same problem using the Turing machine defined in this

chapter.

b.

Prove the following statement: Any computation that can be carried

out using a regular Turing machine can be done using a two-track

Turing machine.

c.

On the basis of Challenge Exercise 1a and 1b, make an argument for

the following statement: Any computation that can be carried out

using a two-track Turing machine can be done using a regular

Turing machine.

d.

Read some biographical information on Alan Turing and write a report on

his life, concentrating particularly on his contributions in computability

theory, cryptography, and artificial intelligence.

2.

Chapter 12: Models of Computation
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter Review

Additional Resources

 For additional print and/or online resources relevant to this

chapter, visit the Computer Science CourseMate at login.cengagebrain.com.

Chapter 12: Models of Computation
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

© 2014 Cengage Learning Inc. All rights reserved. No part of this work may by reproduced or used in any form or by any means -
graphic, electronic, or mechanical, or in any other manner - without the written permission of the copyright holder.

Chapter : Introduction
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Part Introduction

Level 4 focused on programming languages and software development. In this section,
titled Applications, we answer the question, What kind of programs do we want to
write? Now that we have introduced the hardware (Level 2) and software (Levels 3, 4)
tools that implement algorithms, we need to take a look at the specific types of
problems we want to address using these tools.

Of course, there are far too many applications to survey them all; indeed, there is
hardly an area of society that has not been significantly influenced and changed by the
rapid growth of information technology. Therefore, rather than trying to briefly survey
a large number of applications, we will, instead, examine a few important applications

in depth. These applications exemplify the enormous effect that computing has on our
work and on our daily lives.

Chapter : Introduction
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

© 2014 Cengage Learning Inc. All rights reserved. No part of this work may by reproduced or used in any form or by any
means - graphic, electronic, or mechanical, or in any other manner - without the written permission of the copyright holder.

Chapter 13: Simulation and Modeling
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter 13
Simulation and Modeling

13.1 Introduction

13.2 Computational Modeling

13.2.1 Introduction To Systems and Models

13.2.2 Computational Models, Accuracy, and Errors

13.2.3 An Example of Model Building

13.3 Running The Model and Visualizing Results

13.4 Conclusion

Chapter Review

Exercises

Challenge Work

Additional Resources

Chapter 13: Simulation and Modeling: 13.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

13.1 Introduction
The computational devices of the nineteenth and early twentieth centuries were used
to solve important mathematical and scientific problems of the day. We saw this in the
historical review of computing in Chapter 1: Charles Babbage’s Difference Engine
evaluated polynomial functions; Herman Hollerith’s punched card machines carried
out a statistical analysis of the 1890 census; ENIAC computed artillery ballistic tables;
and Alan Turing’s Colossus cranked away at Bletchley Park, breaking the
“unbreakable” German Enigma code. The users of these early computing devices were
primarily mathematicians, physicists, and engineers.

Today, there is hardly a field of study or aspect of our society—from art to zoology,
business to entertainment—that has not been profoundly changed by information

technology. Now we use computers in many “nonscientific” ways, such as playing
games (a topic we will investigate in Chapter 16), surfing the Web, listening to music,
and sharing videos.

However, the physical, mathematical, engineering, and economic sciences are still
some of the largest users of computing and information technology. In this chapter, we
investigate perhaps the single most important scientific use of computing
—computational modeling. This application is having a major impact on many
quantitative fields, including chemistry, biology, medicine, meteorology, ecology,
geography, and economics.

Chapter 13: Simulation and Modeling: 13.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

13.2 Computational Modeling

13.2.1 Introduction To Systems and Models

The scientific method entails observing the behavior of a system and formulating a
hypothesis that tries to understand and explain that behavior. We then design and
carry out experiments to either prove or disprove the validity of our hypothesis. This is
the fundamental way of obtaining new scientific knowledge and understanding.

Scientists often work with a model of a system rather than experimenting on the “real
thing.” Models were discussed in Chapter 12, where the Turing machine was presented
as a model of a computing agent. A model is a representation of the system being
studied, which we claim behaves much like the original. If that claim is true, then we
can experiment on the model and use these results to understand the behavior of the
actual system. For example, physical models (small-scale replicas) have been in use for
many years, and we are all familiar with the idea of testing a model airplane in a wind
tunnel to understand how the full-sized aircraft would behave.

In this chapter, we are not interested in physical models but in computational models,
also called simulation models. In a computer simulation, a physical system is modeled
as a set of mathematical equations and/or algorithmic procedures that capture the
fundamental characteristics and behavior of a system. This computational model is
then translated into a computer program written in one of the high-level languages of
Chapters 9 and 10 and executed on the Von Neumann computer described in Chapters
4 and 5.

Why construct a simulation model? Why not simply study the system itself, or a
physical replica of the system? There are many reasons:

Existence—The system might not yet exist, so it is not possible to experiment

directly on the actual system. In fact, we might be using a model to help us with

the construction of the system.

Physical realization—The system is not constructed from entities that can be

represented by physical objects. For example, it may be a social system (e.g.,

welfare policies, labor practices) that can only be simulated on a computer.

Safety—It might be too dangerous to experiment on the actual system or a

physical replica. For example, you would not want to try out a new monetary

policy that could economically devastate a population or build a nuclear reactor

using a new and unproven technology.

Speed of construction—It might take too much time to construct a physical model.

Sometimes it is faster to design and build a computer simulation.

Time scale—Some physical systems change too slowly or too quickly. For example,

an elementary particle in a high-speed accelerator may decompose in 10 seconds.

At the other end of the time scale, some ecosystems take thousands of years to

react to a modification. A simulation can easily model fractions of a second or

billions of years because time is simply a parameter in an equation.

Ethical behavior—Some physical models have serious moral and ethical

consequences, perhaps the best known being the use of animals in medical

research. In this case, a computational model could eliminate a great deal of

suffering.

Ease of modification—If we are not happy with our original design, we would

need to construct a brand-new physical model. In a simulation, we only need to

change some numerical parameters and rerun the existing model.

This last advantage—ease of modification—makes computational modeling a
particularly attractive tool for designing totally new systems. We initialize the system,
observe its response, and if we are not satisfied, modify the parameters and run the
model again. We repeat this process over and over, always trying to improve
performance. Only when we think we have created the best design possible would we
actually build it. This “interactive” approach to design, called computational steering, is
usually infeasible using physical models, as it would take too much time. This
interactive design methodology is diagrammed in Figure 13.1.

Figure 13.1

Using a simulation in an interactive design environment

Computational models are therefore an excellent way to design new systems and to
study and improve the behavior of existing systems. Virtually every branch of science
and engineering makes use of models, and it is not unusual today to see chemists,
biologists, physicists, ecologists, and physicians conducting fundamental research at
their computer screens rather than in the laboratory.

Computational models often use advanced mathematical techniques far beyond the
scope of this text (and solving them often requires the large-scale parallel computers
described in Chapter 5). Therefore, in the following pages we often must rely on rather
simple examples, far simpler than the models you will encounter in the real world.
However, even these simple examples illustrate the enormous power and capabilities
of computational modeling.

Chapter 13: Simulation and Modeling: 13.2.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

13.2.2 Computational Models, Accuracy, and Errors

Legend says that in the late sixteenth century, the famed scientist Galileo Galilei
dropped two balls from the top of the Tower of Pisa—a massive iron cannonball and a
lighter wooden one—to disprove the Aristotelian theory, which predicted that heavy
objects would fall faster than light ones. When Galileo dropped the two balls, they hit
the ground at the same time, exactly as he had hypothesized. Whether this event
actually took place (and there is considerable debate), it is an excellent example of
scientific experimentation using a physical system, in this case two balls of different
weight, a high platform, and the Earth below.

Today, we do not need to climb the Tower of Pisa because there is a well-known
mathematical model that describes the behavior of a falling mass acted upon only by
the force of gravity:

This equation says that if a mass in free fall has an initial velocity v meters/sec at

time 0, then at time t it will have fallen a distance of d meters. (Notice that the object’s
mass is not part of the equation. This is exactly what Galileo was trying to
demonstrate.) The factor g is the acceleration due to gravity, which is assumed to be 9.8

meters/sec everywhere along the Earth’s surface.

Using this model, we can reproduce aspects of Galileo’s sixteenth-century experiment
without having to travel to Italy. For example, we can determine the time when the two
balls Galileo dropped from the 54-meter-high Tower of Pisa would have hit the ground,
assuming that their initial velocity was 0.0:

This simple example shows the beauty and simplicity of computational models. Such
models can provide quick answers to questions without the cumbersome setup often
required of physical experiments. This model is also easy to modify. For example, if we
want to know how long it takes those same two balls to hit the ground when dropped
from a height of 150 meters, rather than 54, we reset d to 150 and solve the same
equation:

To use a physical model, Galileo would have had to scour the sixteenth-century world
to find a 54-meter-high tower.

init

2

Unfortunately, modeling is not quite as simple as we have just described, and there are
a number of issues that must be addressed and solved to make this technique
workable.

The first issue is achieving the proper balance between accuracy and complexity. Our
model must be an accurate representation of the physical system, but at the same time,
it must be simple enough to implement as a program or set of equations and solve on a
computer in a reasonable amount of time. Often this balance is not easy to achieve, as
most real-world systems are acted upon by a large number of external factors. We need
to decide which of those factors are important enough to be included in our model and
which can safely be omitted without jeopardizing the validity of our conclusions.

For example, the model of a falling body given earlier is inaccurate because it does not
account for the effects of air resistance. (It is only an appropriate model if the object is
falling in a vacuum.) Whereas the effect of air resistance on a cannonball is minimal,
imagine dropping a feather! The model would produce totally inaccurate results, and
our conclusions about how the system behaves would be wrong. It is obvious that we
need to incorporate the effects of air resistance into our model if we have any hope of
producing worthwhile and useful results.

Our model also assumes that the Earth is a perfect sphere and that the acceleration due
to gravity is constant everywhere along its surface. That assumption is not quite true.
The Earth is a “slightly squashed” sphere with a radius of 6,378 km at the equator and
6,357 km at the poles. This means that the acceleration due to gravity is a tiny bit
greater at the North and South Poles than at the equator, because the poles are 21 km
closer to the center of the Earth. Is this something for which we should account? Is this
effect important when constructing a model of a freely falling body? In this case,
probably not—because the miniscule error resulting from this approximation will
almost certainly not affect our conclusions.

This is how computational models are built. We include the truly important factors that
act upon our system so that our model is an accurate representation but omit the
unimportant factors that would only make the model harder to build, understand, and
solve. As you might imagine, identifying these factors and distinguishing the important
from the unimportant can be a daunting task.

Another problem with building simulations is that we may not know, in a
mathematical sense, exactly how to describe certain types of systems and behaviors.
The gravitational model given earlier is an example of a continuous model. In a
continuous model, we write out a set of explicit mathematical equations that describes
the behavior of a system as a continuous function of time t. These equations are then
solved on a computer system to produce the desired results. Unfortunately, there are
many systems that cannot be modeled using precise mathematical equations because
researchers have not discovered exactly what those equations should be. Simply put,
science is not yet sufficiently knowledgeable about how some systems function to
characterize their behavior using explicit mathematical formulae.

In some cases, what makes these systems difficult to model is that they contain
stochastic components. This means there are parts of the system that display random
behavior, much like the throw of the dice or the drawing of a playing card. In these
cases, we cannot say with certainty what will happen to our system because it is the
very essence of randomness that we can never know exactly which event will occur
next. An example of this is a model of a business in which customers walk into the
store at random times. In these cases, we need to build models that use statistical
approximations rather than precise and exact equations. We will present one such
example in the following section.

In summary, computational modeling is a powerful but complex technique for
designing and studying systems. Building a good model can be a difficult task that
requires us to capture, in computational form, all the important factors that influence
the behavior of a system. If we are able to successfully build such a model, then we
have at our disposal a powerful tool for studying the behavior of that system. This is
how a good deal of quantitative research is being done today. Simulation is also an
interesting area of study within computer science itself. Researchers in this field create
new techniques, both algorithms and special-purpose languages, that allow users to
design and implement computer models more quickly and easily.

Chapter 13: Simulation and Modeling: 13.2.3
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

13.2.3 An Example of Model Building

As we mentioned at the end of the previous section, there are many ways to build a
model, but most of them require mathematical techniques far beyond the scope of this
text. In this section, we construct a model using a method that is relatively easy to
understand and does not require a lot of complex mathematics. It is called discrete
event simulation, and it is one of the most popular and widely used techniques for
building computer models.

In a discrete event simulation, we do not model time as continuous, like the falling
body model in the last section, but as discrete. That is, we model the behavior of a
system only at an explicit and finite set of times. The moments we model are those
times when an event takes place, an event being any activity that changes the state of
our system. For example, if we are modeling the operation of a department store, an
event might be a new customer entering the store, a customer purchasing an item, or a
customer departing the building.

When we process an event, we change the state of the simulated system in the same
way that the actual system would change if this event had occurred in real life. In the
case of a department store, this might mean that when a customer arrives we add one
to the number of customers currently in the store or, if a customer buys an item, we

decrease the number of these items on the shelf. Furthermore, the processing of one
event can cause new events to occur at some time in the future. For example, a
customer coming into a store creates a later event related to that customer leaving the
store. When we are finished processing one event, we move on to the next, skipping
those times when nothing is happening—that is, when there are no events scheduled to
occur.

Figure 13.2(a) shows system S and three events scheduled to occur within system S:
event E at time 9:00, event E at time 9:04, and event E at time 9:10. Because E is the

event currently being processed, the variable current time, which functions like a
“simulation clock,” has the value 9:00. Let’s assume that E causes a new event, E , to be

created and scheduled for time 9:17. We add this new event to the list of all scheduled
events. When we are finished processing event E , we remove it from the list and

determine the next event scheduled to occur in system S, in this case E . We move

current time ahead to 9:04, skipping the time period 9:01-9:03, because nothing of
interest happens, and begin processing E . The new list of events scheduled for system

S is shown in Figure 13.2(b).

Figure 13.2

Example of simulated events

We repeat this sequence—process an event, remove it from the list, add newly created
events to the list, move on to the next event—as long as desired. The variable current
time keeps advancing as we process the events in strict time order. Typically the
simulation is terminated when current time reaches some upper bound. For example,
in a department store we might choose to run the model until closing time. When the
simulation is complete, the program displays a set of results that characterizes the
system’s behavior and allows the user to examine these results at his or her leisure.

1 2 3 1

1 4

1

2

2

(1)

Let’s apply this modeling technique to an actual problem. Assume that you have been
hired as a consultant by the owner of a new fast-food restaurant, McBurgers, currently
under construction. The owner wants to determine the proper number of checkout
stations that will be needed in the new store. This is an important decision because if
there are too few checkout stations, the lines will get long and customers will become
irritated and leave. If there are too many checkout stations, money will be wasted
paying for unnecessary construction costs, equipment, and personnel. Because you
took a computer science class in school, you decide that the best way to advise your
client is to construct a simulation model of the new restaurant and use this model to
determine the optimal number of servers.

The system being simulated is shown in Figure 13.3. Customers enter the restaurant
and wait in a single line for service. If any of the N servers is available, where N is an
input value provided by the user, the first customer in line goes to that station, places
an order, waits until the order is processed, pays, and departs. During that time, the
server is busy and cannot help anyone else. When the server is finished with a
customer, he or she can immediately begin serving the next person, if someone is in
line. If no one is waiting, then the server waits until a new customer arrives.

Figure 13.3

System to be modeled

To create this model, we must first identify the events that can change the state of our
system and thus need to be included in the model. In this example, there are only two:

a new customer arriving and

(2) an existing customer departing after receiving food and paying.

An arrival changes the system because either the waiting line grows longer or an idle
cashier becomes busy. A departure changes the system because the cashier serving that
customer either begins serving a new customer or becomes idle because no one is in
line.

For each of these two events, we must design an algorithm that describes exactly what
happens to our system when that event occurs. Figure 13.4 shows the algorithm for the
new customer arrival event.

Figure 13.4

New customer arrival algorithm

Let’s examine this algorithm in detail. When a new customer arrives, we record the
time. The arrival time of each new customer is stored in a separate variable until that
customer is served and departs. As we mentioned earlier, when the simulation is
finished we want to display a set of results that allows the user to determine how well
the system performed. The total time a customer spends in the restaurant (waiting time
+ service time) is a good example of this type of result. If this value is large, we are not
doing a good job serving customers, and we need to increase the number of servers so
that customers don’t wait so long. A key part of any simulation model is collecting
important data about the system so that we can understand and analyze its
performance.

The next thing in our new customer arrival algorithm is to determine if there is an idle
server. If not, the customer goes to the end of the waiting line (no special treatment
here at McBurgers), and the length of the waiting line is increased by 1. If there is an
idle server, then the customer goes directly to that server, who is then marked as busy.
(Note: If more than one server is free, the customer can go to any one because our
model assumes that all servers are identical. We could also construct a model in which

not all servers are identical and some provide a special service.)

Now we must determine how much time is required to service this customer. This is a
good example of what we termed a stochastic, or random, component of a simulation
model. Exactly what a customer orders and how much time it takes to fill that order
are random quantities whose exact values can never be known in advance. However,
even though it behaves in a random fashion, it is possible that this value, called T in

Figure 13.4, follows a pattern called a statistical distribution, a mathematical equation
specifying the probability that a random variable takes on a certain value. If we know
this pattern, then the computer can generate a sequence of random numbers that
follows this pattern, and this sequence will accurately model the time it takes to serve
customers in real life.

How can we discover this pattern? One way is to know something about the statistical
distribution of quantities that behave in a similar way. For example, if we know
something about the distribution of service times for customers in a bank or a grocery
store, then this information might help us understand the pattern of service times at
our hamburger stand. Another way is to observe and collect data from an actual
system similar to ours. For example, we could go to other fast-food restaurants and
measure exactly how long it takes them to service their customers. If these restaurants
are sufficiently similar to ours, then the McBurgers owner might be able to discover
from this data the statistical distribution of the variable T .

There are other ways to work with statistical distributions, but we will leave this topic
to courses in statistics. In this example, we simply assume that the statistical
distribution for the customer service time, T , has been discovered and is shown in

the graph in Figure 13.5.

Figure 13.5

Statistical distribution of customer service time

serve

serve

serve

The graph in Figure 13.5 states that 5% of the time a customer is served in less than 1
minute; 15% of the time it takes 1-2 minutes; 40% of the time it takes 2-3 minutes; 30%
of the time it takes 3-4 minutes; and, finally, 10% of the time it takes 4-5 minutes. It
never requires more than 5 minutes to serve a customer. We can model this
distribution using the algorithm shown in Figure 13.6.

Figure 13.6

Algorithm for generating random numbers that follow the distribution given in

Figure 13.5

First, we generate a random integer v that takes on one of the values 1, 2, 3,…, 100 with
equal likelihood. This is called a uniform random number. We now ask if v is between
1 and 5. Because there are five numbers in this range, and there were 100 numbers
that could originally have been generated, the answer to this question is yes 5% of the
time. This is the same percent of time that customers spend from 0 to 1 minute being
served. Therefore, we generate another uniform random value, this time a real
number between 0.0 and 1.0, which is the value of T , the customer service time.

If the original random value v is not between 1 and 5, we ask if it is between 6 and 20.
There are 15 integers in this range, so the answer to this question is yes 15% of the
time, exactly the fraction of time that customers spend 1-2 minutes being served. If the
answer is yes, we generate a T value that is in the range 1.0 to 2.0. This process is

repeated for all possible values of service time.

Once the value of T has been generated, we use this value to determine exactly

when this customer leaves the store (current time + T) as well as to update the total

amount of time the server has spent serving customers. This last computation allows us
to determine the percentage of time during the day that each server was busy.

The value assigned to T using the algorithm of Figure 13.6 exactly matches the

statistical distribution shown in Figure 13.5. If this graph is an accurate representation

serve

serve

serve

serve

serve

of customer service time, then our model is an accurate depiction of what happens in
the real world. However, if the graph of Figure 13.5 is not an accurate representation of
customer service time, then our model is incorrect and will produce wrong answers.
This is a good example of the well-known computer science dictum garbage in, garbage
out—the results you get out of a simulation model are only as good as the data and the
assumptions put into the model.

We can now specify how to handle the second type of event contained in our model,
which is customer departures. The algorithm to handle a customer leaving the
restaurant is given in Figure 13.7.

Figure 13.7

Algorithm for customer departure event

When a customer is ready to leave, we determine the total time this customer spent in
the restaurant. The variable current time represents the time now, which is the time of
this customer’s departure. We recorded the time this customer first arrived on Line 2 of
Figure 13.4, and we can retrieve the contents of the variable storing that information.
The difference between these two numbers is the total time this customer spent in the
restaurant, including both waiting and service time. We use this result, averaged over
all customers, to determine if we are providing an adequate level of service.

If there is another customer in line, the server begins serving that customer in exactly
the same way as described earlier. If no one is waiting, then the server becomes idle
and has nothing to do until a new customer arrives. (We don’t want this to happen too
often as the restaurant owner will be paying the salary of someone with little to do.)

We have now described the two main events that change our system: someone arriving
and someone leaving the restaurant. The only thing left is to initialize our parameters
and get the model started. To initialize the model, we must do the following four things:

Set the current time to 0.0 (we begin our simulation at time 0).

Set the waiting line size to 0 (no one is in line when the doors open).

Get a value for N, the number of servers, and make them all idle.

Determine the total number of customers to be served and exactly when they will

arrive.

The last value—customer arrival times—are like the service times discussed earlier in
that they are stochastic, or random, values that cannot be known in advance. We
cannot possibly know exactly when each new customer will walk in the front door.
However, if we know the statistical distribution of the time interval between the
arrival of any two customers, then we can generate a set of random intervals, called
T , that allows us to accurately model our customer arrivals.

Assume we have a graph like Figure 13.5 that specifies the statistical distribution of the
time interval that elapses between the arrivals of two successive customers. (That is, it
might say something like 10% of the time two customers arrive within 0-15 seconds of
each other, 20% of the time they arrive within 15-30 seconds of each other, and so on.)
We schedule our first customer to arrive at time 0.0, just as the doors open. We then
use an algorithm like the one in Figure 13.6 to generate a random value that matches
the distribution of interarrival times. Call this value T . This represents the

amount of time that will elapse until the next customer arrives. Because the first
customer arrived at time 0.0, we schedule the next one to arrive at (0.0 + T) =

T . We repeat this for as many customers as desired, scheduling each one to arrive

at T time units after the previous one. Our sequence of customer arrivals will

look something like this:

An Example of Model Building

The main program to run our McBurgers simulation model is given in Figure 13.8. It
allows the user to provide two inputs: M, the total number of customers to model, and
N, the number of servers. Each one of the M customer arrivals is handled by the arrival
algorithm of Figure 13.4. Each arrival event generates a customer departure event that
is handled by the departure algorithm of Figure 13.7. This simulation does not
terminate at a specific point in time but, instead, when there are no more events to be
processed—that is, when every customer who was scheduled to arrive has been served
and has departed.

Figure 13.8

The main algorithm of our simulation model

interval

interval

interval

interval

interval

The last issue that we must address is how to implement the second-to-last line of
Figure 13.8, the one that reads, “Print out a set of data that describes the behavior of
the system.” Looking back at Figure 13.1, we see that one of the responsibilities of a
simulation is to “collect data describing its behavior.” Our model must collect data that
accurately measures the performance of this McBurgers restaurant so that the new
owner can configure it in a profitable manner before it is built. Therefore, we need to
determine what data are required o meet this need. Often this cannot be done by the
persons building the model because they are computer scientists and thoroughly
unfamiliar with this application area. Instead, it is the users of a model who can best
determine what data should be collected and displayed. In this case, the user is the
restaurant owner. Thus, model building is often a cooperative effort between technical
specialists in the area of software development and those knowledgeable about the
system being modeled.

Let’s assume that we have talked to the restaurant owner and determined that the
information he or she most needs to know is the following:

The average time that a customer spends in the restaurant, including both

waiting in line and getting served

The maximum length of the waiting line

The percentage of time that servers are busy serving customers

From this data, the owner should be able to determine whether the system is
functioning well. For example, if our model determines that a server is busy only 10%
of the time (about 48 minutes in an 8-hour workday), we can probably reduce the
number of servers without affecting service, saving a good deal in salary costs. On the
other hand, if the average time that a customer spends in the restaurant is 1 hour or
there are times when there are 100 people in line, then we had better increase the
number of servers if we want to avoid bankruptcy (or riots)!

This model will likely be used in the interactive design approach first diagrammed in
Figure 13.1. The owner will enter his or her best estimate for the arrival time and
service time distributions and then select a value for N, the number of servers. The
computer will run the simulation, processing all M customers, and then print the
results, perhaps something like the following:

With only two servers, our customers waited on average more than one hour to be
served, there were dozens of people in line, and both servers were busy every second
of the day—not very good performance! The owner would certainly try to improve on
this performance, perhaps by having 6 servers, rather than only 2. He or she resets the
parameter N to 6 and reruns the model, which now produces the following:

Now the owner may have erred too far in the other direction. Our customers are being
well served, waiting only a couple of minutes, and the line is tiny, never having more
than a single person. However, on the average our six servers are busy only 43% of the
time—meaning they are idle about 4.5 hours during an 8-hour workday. Could we
provide the same high level of service to our customers with fewer servers? To answer
this question, the owner might try rerunning the model with N = 3, 4, or 5, a
compromise value between these two extremes. This is how a simulation model is
used— run it, examine the results, and use these results to reconfigure the system so its
performance is enhanced.

This completes the development of our McBurgers simulation, but is not the end of its
usefulness. In the next Laboratory Experience, you are going to “play” with this model

by selecting a range of values for customer arrival and service times. You then take on
the role of the McBurgers owner and determine the optimal number of servers to use
for the selected configuration. Working with a simulation in an interactive design
environment demonstrates the enormous power and capabilities of computational
models.

The restaurant modeled in this section is about as simple a system as we could present,
yet it still took almost ten pages to describe its design. A computational model of a
suspension bridge, “El Niño” Pacific Ocean currents, the human heart, or a strand of
DNA would certainly be far more complex than the simulation of a hamburger joint!
Real-world models are mathematically intricate, highly detailed, and difficult to build.
However, if we are able to build such a model or if we have access to such a model,
then we have a powerful tool that can significantly enhance our ability to do
high-quality research and design.

Practice Problems

In the McBurgers new customer arrival algorithm, describe the

consequences of accidentally omitting the instruction “Mark that

server S is now busy.”

1.

In the McBurgers customer departure algorithm, describe the

consequences of accidentally omitting the instruction “Mark this

server as idle.”

2.

Suppose we try to simplify our model by assuming that every

customer requires exactly two minutes of service to complete his or

her purchase. How do you think this would affect the conclusions

that we could draw from our model?

3.

Are there other parameters that you might have included if you were

building a model of a fast-food restaurant?

4.

Laboratory Experience 18

In this Laboratory Experience, you will work with a simulation model of a
McBurgers restaurant that is similar to the one presented in this section. You
will play the role of the restaurant owner who is trying to determine the correct
number of servers for a specific pattern of customer arrivals and service times.

i

For example, the U.S. Department of Energy’s National Energy Research Scientific
Computing Center (NERSC) at Lawrence Berkeley National Laboratory has developed a
powerful new climate system model. Using this model, simulating one year of global

climatic change requires about 10 computations—one hundred thousand trillion
operations. A single Von Neumann machine could not handle this almost unimaginably
large amount of work. A typical laptop executes roughly 2 billion instructions per
second. At this rate, completing one year of simulated time in the model would require
about one-and-a-half years of real time—we would not get our results until the actual
time period being simulated had passed!

Massive models like this one can be executed only on the large-scale parallel machines
described in Chapter 5. The NERSC climate model was executed on a massively parallel
IBM-SP supercomputer containing 6,080 processors, with a peak computation rate of 6
teraflops, or 6 trillion operations per second. At this rate, one year of climatic change
can be modeled in about five hours. Using a petaflop machine (1 quadrillion operations
per second), the job could be finished in under two minutes!

These numbers are much more typical of the amount of work required by most

real-world simulations. It is not unusual for a model to require 10 , 10 , 10 , or more
computations to produce a single result—amounts far beyond the capabilities of
individual desktop machines. The increasing interest in building complex
computational models is one of the main reasons behind the development of larger and
more powerful supercomputers. For example, the massively parallel Japanese ’K’
system mentioned in Chapter 3, which runs at a rate of 8.2 petaflops, executes
computational models in the areas of petroleum exploration, climate modeling, and
aircraft design.

The second reason why the McBurgers model in Section 13.2.3 is so unrealistic is that it
produces only a tiny amount of output. After each run is complete, the model generates
only three lines of output, such as those shown below and in the previous section:

Because the number of servers in a restaurant might range from one up to a couple of
dozen, the total volume of output this model would ever produce is about 20-60 lines,
less than a single page. With such a small amount of output, our model can display its
results using a simple text format, as shown in the lines above. A user will have no
difficulty reading and interpreting this output.

Unfortunately, most simulations do not produce a few dozen lines of output, but rather
tens or hundreds of thousands of lines, perhaps even millions. For example, assume the

17

15 16 17

NERSC climate model described earlier displayed the temperature, humidity,
barometric pressure, wind velocity, and wind direction at 50-mile intervals over the
surface of the Earth for every simulated day the model is run. After one year of
simulated time, it will have produced roughly 500 million data values—about 10
million pages of output! If these values were displayed as text, it would overwhelm its
users, who wouldn’t have a clue how to deal with this mountain of paper.

Text, when it appears in such large amounts, does not lend itself to easy interpretation
or understanding. The field of scientific visualization is concerned with the issue of
how to visualize data in a way that highlights its important characteristics and
simplifies its interpretation. This is an enormously important part of computational
modeling because without it we would be able to construct models and execute them,
but we would not be able to interpret their results.

The term scientific visualization is often treated as synonymous with the related term
computer graphics, but there is an important difference. The field of computer
graphics is concerned with the technical issues involved in information display. That is,
it deals with the actual algorithms for rendering a screen image—light sources,
shadows, hidden lines and surfaces, shading, contours, and perspective. (We will be
discussing these operations in Section 16.2.) Scientific visualization, on the other hand,
is concerned with how to display a large data set in a way that is most helpful to users
and that maximizes its comprehension. It is concerned with issues such as data
presentation, determining the optimal format for presenting data, data extraction,
determining which values are important and should be included and which ones can
safely be omitted, and data manipulation, converting the data to other forms or to
different units that make the information easier to understand and interpret. Once we
have decided exactly how we want to display the data, then a scientific visualization
package typically uses a computer graphics package to render an image on the screen
or the printer.

For example, assume we have built a computer model of the ocean tides at some point
along the coast. Our model predicts the height of the tide every 30 seconds in a 24-hour
day, based on such factors as lunar phase, wind speed, and wind direction. If this
information is printed as text, it might look something like the following:

There are 2,880 lines of output, which at 60 lines per page would produce almost 50
printed pages. Trying to extract meaning or locate significant features from these long
columns of numbers would certainly be a formidable, not to mention boring, task.

What if, instead, we displayed these two columns of values as a two-dimensional graph
of time versus height? The output could also include a horizontal line showing the
average water height during this 24-hour period. This latter value is not part of the
original output but can easily be computed from these values and included in the
output—an example of a data manipulation carried out to enhance data interpretation.
Now the output of our model might look something like the graph in Figure 13.9.

Figure 13.9

Using a two-dimensional graph to display output

Using the graph in Figure 13.9, it is a lot quicker and easier to identify the interesting
features of the model’s output. For example,

There appear to be two high tides and two low tides during this 24-hour time

period.

The high tide is about 8 feet above the average water level, whereas the low tide

is about 8 feet below the average water level.

It is possible to extract the same information from a textual representation of the
output, but it would probably take much more time. Interpreting the graph of Figure
13.9 is a great deal easier than working directly with raw numerical data. The use of
visualizations becomes even more important as the amount of output increases and
grows more complex. For example, what if in addition to tidal height our model also
predicted the water temperature and displayed its value every 30 seconds. Now the
raw data produced by the model might look like this:

Now there are almost 6,000 numbers, and our task has become even more difficult as
we try to understand both the behavior of the two variables, height and temperature,
as well as any possible interactions between the two. Working directly with the raw
data generated by the model is cumbersome. However, if the value of both variables
were presented on a single graph, as shown in Figure 13.10, the interpretation would
be much easier.

Figure 13.10

Using a two-dimensional graph to display and compare two data values

Looking at Figure 13.10, we can quickly observe that temperature seems to move in
exactly the opposite direction as the tide, but delayed by a few minutes. That is, water
temperature reaches its minimum value shortly after the tidal height has reached its
maximum value, and vice versa. This is exactly the type of information that could be of
help to a researcher. Without the graphical visualization in Figure 13.10, we may have
overlooked this important fact.

The graphs in Figures 13.9 and 13.10 are both two-dimensional, but many real-world
models study the behavior of three-dimensional objects, for example, an airplane wing,
a gas cloud, or the Earth’s surface. The results produced by these models are also three-
dimensional, such as the spatial coordinates of a point on that airplane wing or on a
gas molecule. Therefore, it is common for the output of a computational model to be
displayed as a three-dimensional image rather than the two-dimensional graphs shown
earlier. For example, Figure 13.11 shows the output from a model of a portion of the
Earth’s surface overlaid with colors to show the intensity of a forest fire at a particular
moment in time. The hottest areas are shown in yellow and red, while cooler areas are
displayed in blue and green. Such three-dimensional digital elevations make it easy to
locate important topographical features, such as mountains, valleys, and rivers, and
have many applications. This type of output could be extremely useful when, for
example, planning the movement of equipment to fight the fire or directing airplanes
on where to drop fire retardant chemicals.

Figure 13.11

Three-dimensional image of the Earth’s surface with overlay showing status of a

forest fire

Source: NASA

As a second example, suppose that medical researchers are using a simulation model to
study the behavior of the chemical compound methyl nitrite, CH NO , a potential

carcinogen found in our air and drinking water. Assume that their molecular model
3 2

produces the following textual output:

Location

Molecule
Number Element x y z

Bonded
To

1 O 1.7 1.0 0.0 3, 4

2 O 3.0 0.0 0.0 3

3 N 2.6 0.3 1.0 1, 2

4 C 0.0 0.0 0.0 1, 5, 6,
7

5 H -0.5 0.5 0.5 4

6 H 0.5 0.5 0.5 4

7 H -0.5 -0.5 0.5 4

This is an accurate textual description of a methyl nitrite molecule. The output specifies
the seven atoms in the molecule, the spatial (x, y, z) coordinates of the center of each
atom, and the identity of all other atoms to which this one has a chemical bond. This is
all the information required to understand the structure of this molecule. However,
most of us would find it hard to form a mental image of what this molecule actually
looks like using this table.

What if, instead, our model took this textual description of methyl nitrite and used it to
create and display the three-dimensional image of Figure 13.12?

Figure 13.12

Three-dimensional model of a methyl nitrite molecule

It is certainly a lot easier to work with the visualization in Figure 13.12 than with the
original textual description. For example, if our model changed the shape or structure
of this molecule, say by simulating a chemical reaction or the breaking of a chemical
bond, we would be able to observe this change on our computer screen, significantly
increasing our understanding of exactly what is happening. In the table-based
representation, we would only see changing numerical values without any clue as to
what these changes represent chemically or structurally.

The image in Figure 13.12 makes use of two other features found in many
visualizations—color and scale. These characteristics allow us to display information in
a way that makes the image more understandable by someone looking at the diagram.
In this example, color represents the element type—blue for hydrogen, yellow for
carbon, purple for oxygen, and red for nitrogen. The relative size of each sphere
represents the relative size of each of the atoms.

The clever use of visual enhancements such as color and scale can make an enormous
difference in how easy or hard it is to interpret the output of a computer model. For
example, the image displayed in Figure 13.13 models the dispersion and height of
tsunami waves following a massive earthquake near Japan.

Figure 13.13

Visualization of projected tsunami wave heights

Source: NOAA Center for Tsunami Research

In this example, color indicates projected wave heights across the Pacific Ocean. The
largest wave heights, shown in purple, were expected near the earthquake epicenter
off the Japanese coast. Progressively smaller waves are indicated in red, orange, and
yellow. Using images like Figure 13.13, it is easy to see the areas likely to be most
impacted and would help relief organizations determine where the greatest assistance
might be needed. If, instead of these color-coded, three-dimensional images, we were
given only page after page of numerical values, it would take much longer to extract
this vital information. Here is an example where enhancing the comprehension of a
model’s output is not just for convenience but for saving lives!

Finally, we mention one of the most powerful and useful forms of scientific
visualization—image animation. In many models, time (whether continuous or
discrete) is one of the key variables, and we want to observe how the model’s output
changes over time. This could be the case, for example, with the forest fire model
discussed earlier. The image in Figure 13.11 is a picture of the fire at one discrete
instant in time. That may be of value, but what might be of even greater interest is how
the fire moves and disperses as a function of time. Some questions we could answer
using this time-varying model are: How long does it take for the hottest areas (yellow
and red) to dissipate completely? What areas change more rapidly from hot to cool?

To answer these and similar questions, we need to generate not one image like Figure
13.11, but many, with each image showing the state of the system at a slightly later
point in time. If we generate a sufficient number of these images, then we can display
them rapidly in sequence, producing a visual animation of the system’s behavior over
time.

Obviously we cannot show an animation in this book, but Figure 13.14 shows two
images (out of 365) from a program that models the total amount of ozone present in
the Earth’s atmosphere over a one-year period. The model computes the ozone levels
for each day of the year and displays the results graphically, with green and blue
representing acceptable ozone levels and red representing a dangerously low level.
These 365 images can be displayed in sequence to produce a “movie” showing how the
ozone level changes throughout the year.

Figure 13.14

Use of animation to model ozone layers in the atmosphere

Source: Lloyd A. Treinish/IBM Thomas J. Watson Research Center

The amount of output needed to produce these 365 images was probably in the
hundreds of millions or billions of data values. If this volume of data were displayed as
text, a user would be overwhelmed, and the truly important characteristics of the data
would be buried deep within this mass of numbers, much like the proverbial “needle in
a haystack.” However, using the visualization techniques highlighted in this
section—two- and three-dimensional graphics, color, scale, and animation—key
features of the data, such as the presence of a significant ozone hole (the red area) over
the Antarctic on day 292, can be quickly and easily located.

This is precisely why scientific visualization techniques are so important. It is not
merely a desire to produce “pretty pictures,” although, indeed, many of the images are
artistically interesting. Instead, the goal is to take a massive data set and present it in a
way that is more informative and more understandable for the user of that data.
Without this understanding, there would be no reason to build computational models
in the first place.

Chapter 13: Simulation and Modeling: 13.4
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

13.4 Conclusion
Computational modeling is a fascinating and highly complex subject, and one that will
become even more important in the coming years as computers increase in power and
researchers gain experience in designing and building models.

Constructing models of complex systems requires a deep understanding of both
mathematics and statistics so, as we have mentioned a number of times, they can be
rather difficult to build. However, even if you are not directly involved in building
models, it is quite likely that you will use these types of models in your research,
development, or design work. Simulation is affecting many fields of study. For example,
in this chapter we looked at models drawn from physics (the falling body equations),
economics (the McBurgers simulation), chemistry (the molecular model of methyl
nitrite), cartography (a map of the Earth’s surface), meteorology (tides, climatic
changes), and ecology (forest fire dispersion, ozone depletion). We could just as easily

have selected examples from the fields of medicine, geology, biology, pharmacology, or
urban planning. For those who work in scientific or quantitative fields like these,
computational modeling is rapidly becoming one of the most important tools available
to the researcher. It is also a vehicle for amusing and entertaining us through the
creation of simulated fantasy worlds and alien planets where we can relax, explore,
and play. We’ll discuss this exciting new role of simulation in Chapter 16.

The Mother of All Computations!

Climatic changes occur slowly, often taking hundreds or thousands of years to
complete. For example, the ice ages were periods when large areas of the
Earth’s surface were covered by glaciers. These individual ice ages were
separated by intervals of thousands of years during which the Earth became
warmer and the glaciers receded. To study global climate change, a researcher
cannot look at data for only a few years. Instead, he or she must examine
changes taking place over long periods of time.

To provide this type of data, scientists at the National Center for Atmospheric
Research (NCAR) in Boulder, Colorado, used the NERSC global climate model
described earlier to carry out a 1,000-year simulation of climatic changes on the
surface of the Earth. NCAR used a 6,000+ processor IBM-SP supercomputer and
started it running in late January 2002. This massive machine worked on the
problem 24 hours a day, 7 days a week, modeling decade after decade, century
after century of changes to the Earth’s climate. Finally, on September 4, 2002, it
finished its task. It had taken more than 200 days of uninterrupted computing

and the execution of about a hundred billion billion (10) computations on a
multimillion-dollar massively parallel machine to obtain the results!

Data from this simulation have been made available to the research community
to further the study of changes to our climate and investigate such weather-
related phenomena as global warming and “El Niño” ocean currents.

Even though simulation is an important scientific application, you are probably more
familiar with the many uses of computers in the commercial sector—paying bills
online, remotely accessing financial data, and buying and selling products on the Web.
These commercial applications, often grouped together under the generic term
electronic commerce, or e-commerce, will be discussed at length in Chapter 14.

Chapter 13: Simulation and Modeling
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

20

Chapter Review

Exercises

You are probably familiar with the idea of a two-dimensional spreadsheet,

like the ones created in Microsoft Excel. Would you call this type of

spreadsheet a “computational model”? State why or why not, and justify

your answer.

1.

Look up the definition of the terms computer-aided design (abbreviated

CAD) and computer-aided manufacturing (CAM). Find out what they mean,

how they are used, and how they relate to the ideas presented in this

chapter.

2.

Rather than using a general-purpose programming language like the ones

discussed in Chapter 9, models are often constructed using simulation

languages designed specifically for this application. (These languages fall

into the category of “special-purpose languages” mentioned in Chapter

10.) Examples of simulation languages include:

SIMULA

GPSS (General Purpose System Simulation)

Simscript

Read about one of these languages and discuss what features make it well

suited for implementing simulation models.

3.

In Section 13.2.2, we specified two inaccuracies in the equation describing

a body falling under the influence of gravity: the problems of air

resistance and the fact that the Earth is not a perfect sphere. Are there

additional inaccuracies contained in this mathematical model? Do you

think that these other factors should be included in our falling body

model? Explain why you believe they do or do not need to be included.

4.

In this chapter, we described a way to model a statistical distribution by

using random numbers generated by a computer. How do you think it is

possible for a computer to generate a truly random number that

successfully passes all tests for randomness? Read about random number

5.

generators and discuss the algorithms that they use.

In Section 13.2.3, we specified the statistical distribution for the service

time in our McBurgers restaurant: 5% of customers were serviced in less

than 1 minute, and so forth. Do you think this is an accurate distribution

of service times in real-world take-out restaurants? Why or why not? If

this distribution is not an accurate portrayal of the customer service time,

what are the implications of this inaccuracy on our model?

6.

Describe how the customer arrival and departure event algorithms (

Figures 13.4, 13.7) and the main algorithm (Figure 13.8) of our McBurgers

simulation would change if we changed the system in each of the

following three ways:

Instead of a single waiting line, we have N waiting lines, one for

each of the N servers in the restaurant. That is, our model now

behaves as shown:

a.

The waiting line has a maximum length of MAX. If the length of the

waiting line is currently less than MAX, then the customer gets into

line in exactly the same way as in the current model. However, if

the waiting line has a length equal to MAX, then the customer leaves

the store without being served.

b.

Each customer is assigned a priority when first entering the store (a

value from 1 to 10), and if there is no server currently available, the

customer goes into the waiting line in priority order. That is, a

customer gets into line ahead of all people with lower priority and

behind everyone with an equal or higher priority.

c.

7.

In the McBurgers simulation, our model assumes that the arrival

distribution of customers is the same throughout the entire day. Do you

think this is a realistic assumption? If not, explain how you could modify

the model to make it a better representation of customer arrivals in real

life.

8.

Do you think that inclusion of the following parameters in the McBurgers

model would or would not increase the accuracy of the model and its

ability to predict real-world behavior?

Age of the customera.

Sex of the customerb.

Height of the customerc.

9.

Assume that you want to model a bus system in which passengers

purchase tickets and travel from city A to one of four other cities, either B,

C, D, or E. An important part of the model is determining to which city a

specific passenger is traveling, a random variable. How might you go

about creating a statistical distribution that accurately specifies to which

of these four cities a passenger will buy a ticket and travel?

10.

Do you think a computational model of elementary particles being

created and destroyed by collisions in a high-speed accelerator would be

discrete or continuous?

11.

Assume our model requires 1014 computations to simulate one hour

of activity. We run the program on a desktop computer with a

computation speed of 800 MIPS. How long will it take to simulate

one day of activity in the model?

a.

How fast a computer (in terms of MIPS) do we need to use if we

want to complete the simulation of one day in five minutes of

computing time?

b.

12.

We discussed the use of color and scale to enhance and highlight aspects

of a data set being studied. In addition to these two features, suggest other

ways to visually enhance the output of a model that will help to clarify its

interpretation.

13.

In this chapter, we focused our discussions primarily on the uses of14.

 For additional print and/or online resources relevant to this

chapter, visit the Computer Science CourseMate at login.cengagebrain.com.

Chapter 13: Simulation and Modeling
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

© 2014 Cengage Learning Inc. All rights reserved. No part of this work may by reproduced or used in any form or by any
means - graphic, electronic, or mechanical, or in any other manner - without the written permission of the copyright holder.

Chapter 14: Electronic Commerce and Databases
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter 14
Electronic Commerce and Databases

14.1 Introduction

14.2 E-commerce

14.2.1 The Vision Thing

14.2.2 Decisions, Decisions

14.2.3 Anatomy of a Transaction

14.2.4 Designing Your Web Site

14.2.5 Behind The Scenes

14.2.6 Other Models

14.3 Databases

14.3.1 Data Organization

14.3.2 Database Management Systems

14.3.3 Other Considerations

14.4 Conclusion

Chapter Review

Exercises

Challenge Work

Additional Resources

Chapter 14: Electronic Commerce and Databases: 14.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

14.1 Introduction
As mentioned in Chapter 7, the Internet has been around for quite a while (since 1969),
but it did not have a great impact on our everyday lives until the appearance of the

World Wide Web in the early 1990s. Increasingly, the Web is our primary source of
information about a variety of topics as well as a purveyor of goods and services from
businesses “in the cloud.”

These days, if you own just about any type of business, you really need to have a Web
presence. For example,

Your business provides a service, such as landscaping, that does not sell products

directly to retail customers. But you use the Web for advertising—getting your

name in front of the public, disseminating information on the services you

provide, and convincing people to contact you or visit your place of business

because you have superior services, knowledge, capabilities, and price.

Your business provides a service for which follow-up information is important.

For example, you are a shipping company and you use your Web site to allow

customers to track their shipments.

Your business provides a service that enables customers to engage in online

transactions that are not retail sales. For example, you are a bank that allows

customers to use the Web to view their current account balances and to transfer

money between accounts.

Your company sells products or materials to other companies rather than to the

general public. You maintain a B2B (business-to-business) Web presence to

streamline transactions between you as the seller and other businesses as buyers.

Your goal is not only to advertise and attract new business customers, but also to

cut down on transaction costs. (Note that the sales figures given in the Special

Interest Box “Shopping on the Web ” do not include these wholesale B2B

transactions.)

Your company is a retail business, and you maintain a B2C (business-to-consumer)

Web site. You do this to advertise your products and to allow the general public to

make online purchases.

In this chapter, we’ll talk mostly about the last scenario—selling retail products to the
general public. This is how most consumers interact with and experience the Web’s
commercial capabilities.

Assume that you run a retail rug business—let’s call it “Rugs-For-You”—out of a
traditional store, that is, a store with a physical building, display windows, aisles with
merchandise, and salespeople. You have decided to expand your retail business into
the e-commerce world, where financial transactions are conducted by electronic
means over the Web. During the early stages of online commerce (the early and

mid-1990s), this might have meant that a customer would fill out an order via the Web
and submit it. The online order was printed out by the business at the other end, and
this paper document was then processed much like any traditional purchase, including
rekeying the order data for both the Shipping and Billing departments. The Web
allowed the customer to initiate an order, but it had little or no role in filling the order,
transferring funds, or restocking inventory.

This early approach to online commerce was cumbersome, inefficient, and error-
prone. Today, businesses have moved away from this restricted model of online
commerce to a total e-business concept where orders are processed, credit is verified,
transactions are completed, debits are issued, the Shipping Department is alerted, and
inventory is reduced, all electronically—at least in theory. The business may operate
completely online, or it may also have a physical retail site. In the latter case, it uses the
Web to complement and enhance its traditional “brick-and-mortar” business. This
describes the e-business model you want to implement for your Rugs-For-You business.
In addition to your traditional store, you have decided to establish a Web presence for
your business where customers can come, view area rugs for sale, ask questions, make
a selection, purchase their rug, and arrange to have it delivered to them, all in a quick,
easy, and secure electronic environment.

In the next section, we’ll look at some of the many considerations involved in such a
decision. Some of these are technical; some are purely business; many are a
combination of the two. Then we’ll look more closely at databases, one of the most
important features of the e-commerce world.

Shopping on the Web

The Census Bureau of the U.S. Department of Commerce estimated e-commerce
retail sales in the United States for the first quarter of 2010 to be $36.7 billion,
an increase of 13% from the first quarter of 2008. The flattening in this growth
curve no doubt is due to the economic downturn of 2008–2009, considered to be
the worst since the Great Depression of the 1930s. In the first quarter of 2010,
e-commerce sales accounted for 4.1% of total U.S. retail sales, an increase of
about 20% over the 2008 figure for the same period.

There continues to be growth in the e-commerce retail sector, but clearly there
is room for much more.

same order form?

Any of these might be legitimate reasons for moving into e-commerce, but have you
considered the risks involved with this decision?

Will you just move your in-store customers online and achieve no overall gain?

When you expose yourself to online competition, will you have something unique

to offer?

Does your existing customer base need or want anything that you don’t or can’t

provide in your traditional business environment? What part of your existing

customer base will never shop online?

Are the employees in your Shipping and Accounting Departments in agreement

with this idea, or do they feel threatened by change?

And we haven’t even mentioned the costs involved with this decision:

Do you have all the necessary hardware (computers), software, and

infrastructure (network connectivity) to host a business Web site? If not, what

will it cost you to acquire or lease them?

Do you have the personnel and skills you need to build and maintain a Web site?

If not, what will it cost to acquire new personnel or retrain existing personnel?

Do you have the legal expertise onboard to manage issues such as (1) protecting

your intellectual property; (2) navigating regulations, tariffs, and taxes in the

many geographic regions where you will now be doing business (including

perhaps overseas); and (3) legally handling customer data collected online? If not,

what will it cost you to acquire this expertise?

Do you know the potential costs of diverting resources away from your existing

traditional business?

Will you have adequate security to protect sensitive online data from hackers

who may attempt to steal information such as credit card numbers?

Let’s assume that you and your company officers have assessed the objectives, the
risks, and the costs, and you feel that overall your bottom line will improve by going
online. What should happen next?

Chapter 14: Electronic Commerce and Databases: 14.2.2
Book Title: Invitation to Computer Science, Sixth Edition

Step 1: Getting There

How can you get customers to your Web site? Technically, once the customer knows the
URL (Uniform Resource Locator), the process works exactly as described in Chapter 7.
The customer hooks up to the Internet through his or her ISP (Internet Service
Provider) and puts the URL into his or her Web browser. The browser works with the
DNS (Domain Name System) to find the unique IP (Internet Protocol) address for this
URL. Using this address, the TCP (Transport Control Protocol) routes a connection
through the Internet from the customer’s machine to the appropriate server. The
browser uses this connection to send an HTTP GET message for the desired Web page,
which is then transmitted from the Web server back to the browser and displayed on
the user’s screen, at which time the TCP/IP connection is broken. (All of this with a
single click of the mouse button!)

But how does your potential customer learn your URL in the first place? There are
many possibilities:

Conventional advertising—You post your home page URL on flyers, inprint and TV

advertisements, on letterhead, and on any other traditional promotional

materials you may produce.

Obvious domain name—You want your domain name (your home pageURL) to

relate so closely to your business name that potential customers can easily guess

it if they don’t have it in front of them. Who wouldn’t try www.mcdonalds.com to

reach this well-known fast-food giant? Of course, Rugs-For-You might not be quite

that well known. Domain names are registered by companies that are accredited

for this purpose by ICANN (Internet Corporation for Assigned Names and

Numbers), a nonprofit corporation that took over the task of domainname

management from the U.S. government in 1998. When a domain name is

registered, it becomes part of the DNS so that Web users can find your IP address

and get to your site. A list of accredited registrars can be obtained from

www.icann.org/registrars/accredited-list.html, an information Web site

maintained by ICANN. A number of Web sites allow you to determine whether a

particular domain name has already been registered. In addition to registering

your “real” domain name (rugs-for-you.com), you would be wise to register

obvious spelling variants (rugs-for-u.com, rugs-4-u.com, etc.) if they are available,

so that all roads lead to your Web site.

Search engine—Potential customers may use an Internet search engine (such as

Google, Yahoo, or Bing) to search for Web sites about products that you sell. For

example, in response to a search using the words “rugs” and “retail sales”, your

company’s Web site may turn up in the list of pages returned. You can also pay

for a “sponsored link” so that a search on appropriate keywords will bring up

links to your Web site in a prominent spot on the search engine’s page or near the

top of the list of search results.

Portal—A portal is an entry-point Web page with links to other Webpages on

some topic. It can be thought of as a starting point to learn about a particular

subject, and it typically contains many helpful pointers to useful information on

that subject. For example, www.floorbiz.com is a portal with links to retail stores

selling rugs, carpet, tile, adhesives, padding, cleaning equipment, and so forth.

This site also features links to information on flooring materials and

manufacturers, news articles and press releases, upcoming conventions, and

employment opportunities, as well as forums for bulletin board postings. The site

also includes links to tips (e.g., how to maintain hardwood floors), leads for

contractors to bid on floor installation jobs, and an opportunity to register to

receive e-mail. You would certainly want to have a link to Rugs-For-You from this

portal page, and you may even want to purchase a banner ad (a graphical ad,

often with animation, placed in a prominent position on a Web page) so that

anyone who goes to this portal sees the rugs-for-you.com link right away.

Step 2: Do I Know You?

Regular customers at your traditional store are treated with special care. You might
mail them promotional offers that you think will be of interest to them, and the
salespeople know them when they walk into the store and greet them by name. You
pay particular attention to their needs because, after all, return customers are the
heart and soul of your business. How will your online store provide this type of
personalized attention?

Some sites ask users to register and then log in when they revisit the site. These sites
consult the database of registered customers and recall pertinent information—for
example, how the customer browsed the site previously, what pages the customer
visited, where the customer lingered, what the customer bought, as well as more

mundane information such as name and address. What the return customer sees is
tailored to reflect this information.

A Rose by Any Other Name…

Cybersquatting is the practice of registering a domain name that uses the name
or trademark of an existing business, with the intent to sell the name to that
business at a profit or to capitalize on that name for some other purpose. A
1999 federal law called the Anti-Cybersquatting Consumer Protection Act
(ACPA) makes cybersquatting illegal. A trademark owner claiming to be a
victim of cybersquatting can file a suit under the ACPA. To have its claim
upheld, a trademark owner must prove that it was the first to use the name or
trademark for commercial purposes, that the name or trademark was
distinctive at the time the domain name was first registered, that the domain
name is the same as or sufficiently similar to the trademark as to cause
confusion, and that the domain name registrant had a bad faith intent to profit
from the trademark. A trademark owner who wins a suit can obtain the rights
to the domain name and perhaps be awarded monetary damages up to
$100,000.

ICANN also arbitrates cybersquatting disputes, with essentially the same
criteria, but does not award any monetary damages. International disputes may
be brought before the World Intellectual Property Organization (WIPO), a
United Nations agency. Since beginning this practice in 1999, the WIPO has
received over 20,000 cases concerning about 35,000 domain names. Over 90%
of these cases were decided in favor of those who charged they were the victims
of cybersquatting. A variant of cybersquatting, called typosquatting, takes
advantage of typographical errors a user might make when typing a URL
directly into the browser, as opposed to following a link, estimated to be about
15% of all Web traffic. For example, www.rugs-for-you.com might be entered as
www.rugs-for-you.org (wrong top-level domain name), www.rug-
for-you.com(spelling error), or www.rusg-for-you.com(transposition error). A
company may have registered a few of these variations so that they link to the
company’s legitimate Web site, but there are many possibilities, some of which
may be registered to typosquatters. If the user reaches a typosquatting site, the
resulting Web page may contain anything from pornographic material to
pay-per-click advertising links targeted to the user’s interests, based on the
likely site the user was trying to reach. Each click on such an ad link generates a
small amount of revenue from the advertiser for the typosquatter, as well as for
the ad network that brokered placement of the ad. Google—legitimately
—makes its money by collecting a small sum for each click on an advertising
link on its own Web pages. But in May 2008, a federal judge ruled that Google
might be subject to suit for violation of the ACPA because it might post links to
typosquatting pages that contain ads from which Google stands to profit, in its

ad network capacity. This is an interesting case because Google is not the owner
of the typosquatting domain names. As of mid-2011, this legal issue remained
unresolved.

Microsoft estimates that on any given day there are 2,000 registered domain
names that contain Microsoft trademark terms (e.g.,
downloadvistaforwindows.com) operated by cybersquatters seeking to profit
from Microsoft intellectual property via pay-per-click online ads.

In June 2011, ICANN announced a new policy for “personalized” domain names.
Top-level domain names, that is, the suffixes at the end of URLs, have been
limited to two-character country codes plus the familiar.com, .org, .edu, and so
forth. The new policy will allow for suffixes that are brand-specific or industry-
specific names. Think “www.mycoffee.starbucks,” for example. (Note that the
application fee for these specialized domain names will be a hefty $185,000.)
Proponents say this will benefit consumers and increase brand recognition;
however, opponents see little value. But one thing seems certain—it will bring
even more opportunities for cybersquatting.

Other sites that do not require a customer login still greet the customer with “Welcome,
John,” for example, and arrange a Web page with items tied to John’s apparent
interests, based on his last purchase. This type of Web site personalization can be
accomplished by means of cookies. A cookie is a small text file that the Web server
sends to the user’s browser and that gets stored on the user’s hard drive. It contains
personal information about the user, such as name, address, time of visit, and what
was looked at or bought. On the customer’s next visit to that same site, the browser
sends the cookie back to the server (along with the page request) so the server can
create a customized page just for this shopper. This does more than merely create a
friendly, personalized atmosphere. It also allows the server to record information for
later use. For example, cookies enable a customer to put items into his or her online
shopping cart and return at a later time to find them still there.

Transmission of Web pages between a client and server is stateless; that is, no
information about this exchange is permanently retained by the server. Indeed, recall
that the TCP/IP connection between the browser and Web server is (usually) broken
once a Web page has been sent back to the browser. A totally new connection has to be
established to access a different page or to return later to that same page. Without
cookies, there is no association between the customer visiting one page and the same
customer visiting another page, or between the same customer visiting the same page
at different times. It’s possible to configure a Web browser to not accept cookies, but
cookies cannot execute on the client machine and are harmless. They just take up a
little space.

You can provide incentives and benefits for return customers—product support for

items already purchased, special promotions (“John, would you like some stain guard
for that new rug you just bought? Click here for our special offer!”), free shipping, a
clearly stated return policy (including the ability to return items to your traditional
brick-and-mortar store if more convenient), and a chance to register complaints or ask
questions online (to which you should pay attention and respond). And certainly you
should provide a toll-free number where your customers can speak with a real, live
person, although you don’t want to make the number too prominent on your site
because you are looking for your online business to free up staff, not burden them.

Online customers, both new and returning, can leave your site in the blink of an eye or,
more precisely, the click of a mouse button. Your Web site must invite them in, entice
them to stay, and make their path toward purchase so convenient that there is no
reason not to buy from you. This is what makes designing a Web page so much more
than just an HTML programming assignment! We’ll talk more about Web page features
in Section 14.2.4, but for now let’s assume that a customer has successfully navigated
your Web site, selected an item to purchase, and is ready for Step 3.

Step 3: Committing to an Online Purchase

Customers are understandably hesitant to transmit sensitive information such as their
credit card number, or even their name and address, over the Web. Your site must
provide a secure environment for transmitting this information, and that security
comes in two pieces: encryption and authentication. Encryption encodes the data to be
transmitted into a scrambled form, using a scheme agreed upon between the sender
and the receiver. Although encryption provides for the secure transmission of data,
this is of little use if the data are not being sent to the correct party. Authentication is
the process of verifying the identity of the receiver of the data. In Step 3 of our online
transaction process, the sender is the customer (actually the customer’s Web browser)
placing an order and sending confidential personal and financial information, and the
receiver is the retailer’s Web server. In Chapter 8, we discussed how the SSL (Secure
Sockets Layer) and TLS (Transport Layer Security) protocols provide encryption and
authentication for Web transactions. There we learned that the Web server can pass to
the browser a certificate of authentication issued by a trusted third party such as
VeriSign (www.verisign.com).

Because you decided to use VeriSign SSL software on your Web site, you can post a
“VeriSign Secured” seal on your pages that users can click to verify that they are at the
correct site. After all, they didn’t walk into your physical place of business, so how do
they know where they really are? The URL is www.rugs-for-you.com, and there are
many pictures of rugs, but maybe it is simply a scam where the customer will send
money but receive nothing in return. Spoofing is the practice of impersonating a
legitimate site for the purposes of stealing money or stealing identity by collecting
confidential information such as credit card numbers, names, and addresses. Clicking
on your VeriSign seal might bring up a window with the information shown in part in
Figure 14.2.

Figure 14.2

Secure site assurance

Customers about to transmit sensitive information to your Web site are alerted by a
message saying they are being transferred to a secure site. The corresponding Web
page has the protocol heading https, rather than http, with the s signifying a site under
the protection of SSL. Customers may also see a little lock graphic on the Web page to
indicate a secure site, and the browser address bar may turn green. When they leave
the site, they receive a message saying they are leaving a secure site.

Steps 4 and 5: Payment Processing

Let’s assume that your customers will pay with credit cards, the most common online
option. The online order form communicates with your accounting system (Step 4),
which might verify the customer’s credit and process this transaction with the credit
company (Step 5) on the fly, that is, while the customer waits. This way, the customer
can be alerted and given another chance to enter information if there is an error. In
addition, you do not have to store the customer credit card number in your database,
which reduces your security risk.

Another option is to collect information on the customer’s order, including an e-mail
address (Step 4), close the order process, and then evaluate the customer’s credit and
complete the transaction offline (Step 5). Once the transaction is completed, an e-mail
confirmation is sent to the customer. To use this option, you must maintain customer

credit card information.

Steps 6-9: Order Fulfillment

Once your customer’s credit is approved, your order-entry system must alert your
inventory system to decrement the number of items in stock by whatever quantity the
user has purchased (Step 6) and must also contact your shipping system to arrange for
shipping (Step 7). The shipping system works with the shipping company you use (Step
8) to pick up and deliver the purchase to the customer (Step 9).

Chapter 14: Electronic Commerce and Databases: 14.2.4
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

14.2.4 Designing Your Web Site

Your Web site must be designed with your customers in mind. It has to be fresh and up
to date, ever changing, and always displaying the latest product information.
Department stores don’t keep the same displays in their windows for months or years
on end, and neither should you. One of your earliest decisions is your Web site
taxonomy—how information is classified and organized so customers can easily find
what they want. At rugs-for-you.com, you could organize your site by rug
manufacturer, color, size, material, or rooms in the house. There are many options, and
you must consider how your customers usually shop for their rugs.

Your customers should always know where they are on your Web site. As we
mentioned in Chapter 7, hypertext allows a user to move easily from page to page by
simply clicking a link. However, after a few clicks, it is easy to become totally lost and
not know where you are or how to get back. A site map or a navigation bar can provide
a high-level overview of your site architecture, plus make it easy to navigate (i.e., move
from page to page) through the site. A good rule of thumb is that the customer should
be able to get from any page in your Web site to any other page in four clicks or fewer.
And although you want to encourage browsing, just as you do in your physical store,
you also want customers to be able to find what they are looking for quickly, so your
Web pages should include the ability to search the site for a specific item.

You need electronic “shopping carts” and order checkout forms. Keep in mind that
customers want to feel in control (especially of their money!). Be sure that as customers
step through the ordering process, they are always informed about the current
order—items being ordered, quantity, price, and so on—and about what will happen
with the next button click. It is also important to give customers the option to go back
and change something or to clearly indicate that, following the next click, the order will
be final and no further changes will be possible.

Give customers shipping options so that they can make the best tradeoff between cost

and speed of delivery. Send e-mail to confirm orders, and send follow-up e-mails when
orders are shipped.

Display your privacy policy on the Web page. Tell your customers what personal
information you collect, why this information is needed, how you will use it, whether
you will share it and with whom you might share it, and how you will store and
safeguard it. Also, understand what information you can legally collect, based on the
regulations of the state or country of your target users.

You may also want to offer extras to your customers. Put up a FAQ (frequently asked
questions) page and links to contact customer service, review new products, or connect
with other customers. You can ask customers if they want to subscribe to an e-mail
newsletter to alert them to the latest products (no spam, please), with the option to
unsubscribe at any time. Give your customers a “suggestion box.” Allow them to track
their shipment through an order number. Post news and press releases about your
business or products. And again, configure your site in a personalized way for return
customers. All of these measures can help improve customer satisfaction, build
customer relationships, and bring people back to your Web site time and time again.
The suggestions and ideas listed above are part of your online CRM (customer
relationship management) strategy.

At the same time that you want to cram all this content into your Web pages, your site
must adhere to good design principles. It must look professional and uncluttered. Avoid
glaring colors, flashing images, and annoying pop-up windows, although there could be
a judicious use of animation or changing, tasteful images. Make good use of white
space—it can draw attention to the items you want emphasized. All of your pages
should have a consistent look and feel and a consistent set of navigation tools; this can
be accomplished by designing a master template page from which all pages are
derived. Be sure your company logo and/or slogan are part of this master template.

On the technical side, your Web pages should be designed to be displayed on many
different machines with different operating systems and browsers (e.g., Internet
Explorer, Safari, or Firefox). Not all browsers render every HTML element in exactly
the same way. Users may run monitors at different screen resolutions and have widely
varying communication speeds, from tens of thousands to tens of millions of bits per
second. (See Section 7.2.1, “Communication Links.”) Your Web design should use only
those features that you know will work satisfactorily on virtually every machine and
browser that your customers are likely to use. Offer features such as text-only options
for users with slow connections. Adhere to ADA (Americans with Disabilities Act)
requirements for Web accessibility (see the “Accessible Web Pages ” Special Interest
Box on the next page).

As you can see from our brief discussion, designing Web pages, or at least a successful
set of commercial Web pages, is a difficult and complex task. It involves not only
computer science skills (e.g., HTML, XML, HTTP, TCP/IP, networking, databases), but
also a knowledge of such fields as art, graphics design, business, management, and

consumer psychology, to name but a few. It is easy to create just any Web page, but
much more difficult to create a really good one.

Finally, in addition to your own business Web site, consider having a presence on social
networking sites. Create a Facebook page, post on Twitter and You Tube, and put links
on your own Web site so people can easily find, follow, friend, watch, and tweet you.
Keep your business message consistent through all these media. In addition, put links
between these social networking sites to make it easy for people to move between sites
and to reach your own Web site.

Accessible Web Pages

The Americans with Disabilities Act, signed into law in 1990, ensures equal
opportunity in employment, government services, public facilities, and
transportation for persons with disabilities. ADA has been interpreted to apply
to Web page accessibility. In addition, Section 508 of the federal Rehabilitation
Act mandated in 1998 that all U.S. federal agencies must make their Web pages
accessible to people with disabilities.

One of the most common issues in Web page accessibility relates to images,
charts, or photographs. Blind users or users with low vision have several
assistive technologies available to them, such as speech synthesizers that speak
text that appears on the screen or devices that translate text on the screen into
touch-readable Braille. These technologies can only read text, so a visual
element on a Web page needs a corresponding text tag in the HTML code for the
image. The text tag should be as descriptive as possible. Here’s an image that
might appear on one of the rugs-for-you.com Web pages with its corresponding
text tag as displayed by the browser.

just Chinese and another fluent only in Turkish.

Finally, as soon as you have your enterprise humming along smoothly as an
e-commerce site, you will need an effective disaster recovery strategy. What are your
plans for backing up critical data? What is your plan to keep your online business open
even when your server fails? Will you be able to survive a massive natural disaster?
What will you do if a hacker breaks into your Web site and steals customer
information? Without a plan, you are never more than one electrical storm, one
malicious user, or one disk failure away from catastrophe.

Practice Problems

Locate a portal page for at least one of the following topics: health

care, environmental issues, basketball, higher education, and/or the

steel industry.

1.

Take a look at the Web site of a major online retailer such as

Amazon.com, Apple.com, or Walmart.com and identify some

characteristics of its site that you find helpful and some things that

you might find annoying or troublesome.

2.

The Price of Success

One happy thought is that your e-business might grow to be so successful that
you have to scale up beyond your expectations. Amazon.com is one of the most
successful e-businesses, and has expanded beyond its original bookselling role
to include sales of toys, clothing, electronics, kitchen goods, housewares, home
and garden items, and more.

July 21, 2007, marked the release of Harry Potter and the Deathly Hallows, the
final book in the very popular Harry Potter series by author J. K. Rowling. On
the day before it went on sale, Amazon.com had already received orders for 2.3
million books that had to be shipped out worldwide. Imagine the load this
record-breaking sale placed on its online servers, back-office applications, and
shippers! But even that volume paled in comparison to what Amazon faced on
May 25, 2011, when it offered the new Lady Gaga album, Born This Way, for just
99 cents. The immediate and overwhelming response temporarily reduced even
the massive Amazon server farm to a crawl, disappointing and angering music-
loving customers. The following day, Amazon repeated the sale with the

housing options, personal ads, discussion forums, and so on. Begun in 1995 as a modest
list of San Francisco events circulated to friends of the founder, Craig Newmark,
craigslist now has over 700 local sites in 70 countries. Craigslist users post about 50
million new classified ads each month, and the sites receive more than 20 billion page
views per month. The craigslist Web page design is very simple—no banner ads, no
flashing images, little use of color—and is quite straightforward to use. People post ads;
other people respond. Users can flag postings for ads placed in the wrong category, ads
that violate craigslist terms of use, or ads that are posted too frequently. Enough
negative flags will cause removal of an ad. Unfortunately, there have been several
cases of crimes committed and scams perpetrated based on contacts established
through craigslist (the craigslist online community site now includes information about
how to detect and avoid scams, www.craigslist.org/about/scams), but the overall effect
is a sense of local community and people-to-people trust.

Groupon

Groupon has some similarities to craigslist, but is less peer-to-peer in nature. The name
is a shortened form of “group coupon.” Like craigslist, Groupon has many local sites
and has grown at a phenomenal rate. Groupon’s first site was launched in November
2008. In January 2010, it served 30 cities; by October 2010, there were over 250 sites
worldwide. Here’s how it works: A local business offers a coupon through Groupon for
a great deal—on museum admission, a spa session, a restaurant meal, or whatever. The
coupon offer is featured on the local Groupon site for a single day. The business
specifies a minimum number of customers who must purchase the coupon. If that
number is not met, the deal is off; no one gets a coupon and no one gets charged. If that
minimum is met, the deal is on and additional customers can purchase the coupon.
Coupons are e-mailed the next day to customers who purchased them. Groupon splits
the coupon charge with the business, so the business spends no out-of-pocket money to
advertise unless a minimum number of customers is already guaranteed. In addition,
Groupon editors help make the one-day ads as attractive as possible (often with
considerable humor). Groupon researches new areas for the most desirable local
businesses to contact, and is rather selective about which businesses it will advertise.
Groupon is also known for its customer service if, for some reason, there is a problem
with the coupon when it is redeemed.

Chapter 14: Electronic Commerce and Databases: 14.3
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

14.3 Databases
The management and organization of data have always been important problems. It is
likely that a strong impetus for the development of written language was the need to
record commercial transactions (“On this day Procrastinus traded Consensius 4 sheep

for 7 barrels of olive oil”). From there, it is only a short step to recording inventories
(“Procrastinus has 27 sheep”), wages paid, profits gained, and so on. As the volume of
data grows, it becomes more difficult to keep track of all the facts, harder to extract
useful information from a large collection of facts, and more difficult to relate one fact
to another. With the 1890 U.S. census (Chapter 1), Herman Hollerith demonstrated the
advantages that can accrue from mechanizing the storage and processing of large
amounts of data.

We talked about the online customer database as part of your expansion into
e-commerce, but databases are probably a key part of your business whether you have
an online presence or not. You have a set of data to maintain about your employees
(names, addresses, pay rates, Social Security numbers, etc.), another set of data to
maintain about your suppliers (names, addresses, products, orders, etc.), and yet
another set of data to maintain about your business itself (sales, expenses, taxes, etc.).
Previously, such items of data were recorded by hand, but they are now maintained in
electronic databases. The important thing about an electronic database is that it is
more than a storehouse of individual data items; these items can easily be extracted,
sorted, and even manipulated to reveal new information. To see how this works, let’s
examine the structure of a file containing data.

Chapter 14: Electronic Commerce and Databases: 14.3.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

14.3.1 Data Organization

As we learned in Chapters 4 and 5, the most basic unit of data is a single bit, a value of 0
or 1. A single bit rarely conveys any meaningful information. Bits are combined into
groups of eight called bytes; each byte can store the binary representation of a single
character or a small integer number.

A byte is a single unit of addressable memory. A single byte is often too small to store
meaningful information, so a group of bytes is used to represent a string of
characters—say, the name of an employee in a company or a larger numerical value.
Such a group of bytes is called a field. A collection of related fields—say, all the
information about a single employee—is called a record, a term inherited from the
pencil-and-paper concept of “keeping records.” Related records—say, the records of all
the employees in a single company—are kept in a data file. (File is another term
inherited from the familiar filing cabinet.) And finally, related files make up a database.
Thus,

Bits combine to form bytes.

Bytes combine to form fields.

Fields combine to form records.

Records combine to form files.

Files combine to form databases.

Figure 14.3 shows this hierarchical organization of data elements. (This figure was
drawn to look neat, but files in a database are almost never all the same size or
“shape.”)

Figure 14.3

Data organization hierarchy

Bits and bytes are too fine a level of detail for what we will discuss in this section. Also,
for the moment, let’s assume for simplicity that the database consists of only a single
file. Figure 14.4 illustrates a single file made up of five records (the rows), each record
composed of three fields (the columns). The various fields can hold different types of
data. One field in each record might hold character strings; another field in each record
might hold integer data.

Figure 14.4

Records and fields in a single file

Employees

ID LastName FirstName Birthdate PayRate HoursWorked

149 Takasano Frederick 5/23/1986 $12.35 250

171 Kay John 11/17/1974 $17.80 245

165 Honou Morris 6/9/1993 $ 6.70 53

With the change from records in a file to a conceptual table representing data come
some changes in terminology. The table represents information about an entity, a
fundamental distinguishable component in the Rugs-For-You business—namely its
employees. A row of the table contains data about one instance of this entity—that is,
one employee—and the row is called a tuple (in Figure 14.6, each row is a 6-tuple,
containing six pieces of information). How the tuples (rows) are ordered within the
table is not important. Each category of information (ID, FirstName, and so on, in our
example) is called an attribute. The heading above each column identifies an attribute.
The table thus consists of tuples of attribute values. (In other words, in the relational
model, files are thought of as tables, records as tuples, and fields as attributes.) A
primary key is an attribute or combination of attributes that uniquely identifies a
tuple. In our example, we are assuming that ID is a primary key; ID is underlined in the
heading in Figure 14.6 to indicate that it is the primary key for this table. The Social
Security number is often used as a primary key to uniquely identify tuples that involve
people. Obviously, neither LastName nor FirstName can serve as a primary key—there
are many people with the last name Smith and many people with a first name of
Michael or Judith.

The computer’s operating system functions as a basic file manager. As we learned in
Chapter 6, the operating system contains commands to list all of the files on the hard
drive, to copy or delete a file, to rename a file, and so forth. But a database
management system, unlike a simple file manager, works at the level of individual
fields in the individual records of the file; in more appropriate terminology, we should
say that it works at the level of individual attribute values of individual tuples in the
relational table. Given the Employees table of Figure 14.6, a database management
system could be given the instruction shown here:

This command asks the system to retrieve all the information about the employee with

ID 123. Because ID is the primary key, there can only be one such employee, and this is
a relatively easy task. But the following request to locate all the information about an
employee with a given last name,

is done just as easily, even though the LastName attribute may not uniquely identify the
tuple. If multiple employees in the table have the same name, all of the relevant entries
will be returned.

If only some of the attributes are wanted, an instruction such as

produces just the last name and pay rate for the employee(s) with the given last name.

Database management systems usually require specialized query languages to enable
the user or another application program to query (ask questions of) the database, in
order to retrieve information. The three preceding SELECT examples are written in a
language called SQL (Structured Query Language). We briefly discussed SQL in Chapter
10.

To appreciate the power of SQL, consider the following simple SQL queries for more
complicated tasks:

This query says to retrieve all of the attribute values (the asterisk is shorthand for
listing all attributes) for all the tuples (because there is no further qualification) in the
Employees table sorted in order by ID. Thus, we have effectively sorted the tuples in the
relational table using a single command. This is a significant gain in productivity over
the step-by-step process of comparing items and moving them around used by the
sorting algorithms in Chapter 3. (Of course, what happens internally is that SQL

invokes its own sorting algorithm, perhaps even one of those described in Chapter 3.
However, the user is shielded from the details of this algorithm and is allowed to work
at a more abstract level.) The query

gets all the tuples for employees above a certain pay rate. Here we’ve searched all the
tuples on a particular attribute without having to specify the details, as we had to do
when coding the sequential search or binary search algorithms of Chapter 3. Again,
underneath this SQL command the system has invoked a sequential, binary, or other
type of search algorithm, but we are insulated from this level of detail and allowed to
think at a higher (and more productive) level of abstraction.

To manage a relational table, you must be able to add new tuples to the table (which is
how the existing tuples got into the table in the first place), delete tuples from a table,
and change information in an existing tuple. These tasks are easily handled by the SQL
commands INSERT, DELETE, and UPDATE.

In order to explore further the power of a DBMS, let’s expand our Rugs-For-You
database to include a second relational table. The InsurancePolicies table shown in
Figure 14.7 contains information on the insurance plan type and the date of issue of the
policy for an employee with a given ID.

Figure 14.7
InsurancePolicies table for Rugs-For-You

EmployeeID

EmployeeID PlanType DateIssued

171 B2 10/18/1994

171 C1 6/21/2002

149 B2 8/16/2008

149 A1 5/23/2006

149 C2 12/18/2011

In the InsurancePolicies table, there is a composite primary key in that both EmployeeID
and PlanType are needed to identify a tuple uniquely because a given employee may
have more than one insurance plan (e.g., both health and disability insurance plans).
Both attributes are underlined in the column headings in the figure, showing that they
form a composite primary key. It is also true that an employee may have no plan; in
Figure 14.7, there is no tuple with ID 116, although there is an employee with ID 116.
Each value of EmployeeID in the InsurancePolicies table exists as an ID value in a tuple
of the Employees table, where it is a primary key. Because of this, the EmployeeID
attribute of the InsurancePolicies table is called a foreign key into the Employees table.
This foreign key establishes the relationship that employees may have insurance plans.

The database management system can relate information between various tables
through these key values—in our example, the linkage between the foreign key
EmployeeID in the InsurancePolicies table and the primary key ID in the Employees
table. Thus, the following query will give us information about Frederick Takasano’s
insurance plan, even though Frederick Takasano’s name is not in the InsurancePolicies
table:

The query is an instruction to retrieve the LastName and FirstName attributes from the
Employees table and the PlanType attribute from the Insur-ancePolicies table by looking
for the tuple with LastName attribute value“Takasano” and FirstName attribute value
“Frederick” in the Employees table, and then finding the tuple(s) with the matching
EmployeeID value in the InsurancePolicies table. (Here is the Boolean AND operation we
encountered in Chapter 4 in our discussion on Boolean logic.) It is the last term in the
WHERE clause of the query (the last line) that causes the two tables to be joined
together by the match between primary key and foreign key. The result of the query is

This query illustrates the use of three relational database operations:

Project—Pick out certain attributes (columns) from a set of tuples.The

part of the query is doing a project operation.

Restrict—Pick out tuples that meet a certain condition.The

part of the query is doing a restrict operation.

Join—Match tuples from two different relational tables using a common

attribute.

The

part of the query is doing a join operation.

The correspondence between primary keys and foreign keys is what establishes the
relationships among various entities in a database and makes a join operation possible.

The SQL command to create a table requires specification of the various attributes by
name and data type, identification of the primary key, identification of any foreign
keys, and identification of the tables into which these are foreign keys. This
information is used to build the actual file that stores the data in the tuples.

We’ve now done a fairly complex query involving two different tables. It is easy to see
how these ideas can be expanded to multiple tables, linked together by relationships
represented by foreign keys and their corresponding primary keys. Figure 14.8 shows
an expansion of the Rugs-For-You database to include a table called InsurancePlans that
contains, for each type of insurance plan, a description of its coverage and its monthly
cost. PlanType is the primary key for this table. This makes PlanType in the Insur-
ancePolicies table a foreign key into the InsurancePlans table, as shownin Figure 14.8.
This linkage would allow us to write a query to find, for example, the monthly cost of
Mr. Takasano’s insurance (see Practice Problem 2).

Figure 14.8

Three entities in the Rugs-For-You database

Using multiple tables in a single database reduces the amount of redundant
information that must be stored. For example, a stand-alone insurance file for
Rugs-For-You employees would probably have to include employee names as well as
IDs. It also minimizes the amount of work required to maintain consistency in the data
(if Francine Perreira gets married and changes her name, the name change need only

be entered in one place). But most important of all, the database gives the user, or the
user’s application software, the ability to combine and manipulate data easily in ways
that would be very difficult if the data were kept in separate and unrelated files.

As we have seen by looking at some queries, SQL is a very high-level language in which
a single instruction is quite powerful. In terms of the language classifications of
Chapter 10, it is also a nonprocedural language. A program written in SQL merely asks
for something to be done (sort all tuples in some order, search all tuples to match some
condition); it does not contain a specific sequence of instructions describing how it is to
be done.

The Halloween Problem

The database Halloween Problem was named because it was first discovered on
Halloween Day in 1976. Here’s how it works: An update operation is done on a
set of records that match a certain criterion. Once an update operation is done
on a given record, the updated value causes that record to be relocated farther
down in the set of records, where it once again meets the update criterion. It is
once again updated, moved farther down, updated again … and the result is an
infinite loop.

For example, assume there is a line of people, and you want everyone wearing
a red shirt to move backward four places. If the first person is wearing red,
then he or she must move back to position five. However, you are going to come
across that same person when you take a look at position number five, and
unless you have kept track you won’t know if this is someone new or someone
you have seen before. You will ask that person to move back to position number
nine (and then thirteen, seventeen, etc.). When you are all done, everyone
wearing a red shirt will be standing at the very end of the line—not at all what
you had planned!

Chapter 14: Electronic Commerce and Databases: 14.3.3
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

14.3.3 Other Considerations

Existing tuples in a relational database table can be modified or deleted, and new
tuples can be added to a table. These operations must be done with care to be sure the
data remains correct and consistent throughout the database. In database terminology,
the integrity of the data must be preserved. There are three integrity rules that, if
enforced during additions, modifications, or deletions, will help in this goal. The entity

integrity rule says that no primary key value, or no component of a composite primary
key value, can be missing (“null”). The reason is, if the primary key uniquely identifies
a tuple, then a tuple with (part of) its primary key missing might not be uniquely
identifiable. The data integrity rule specifies that values for a particular attribute must
come from the appropriate category of information for that attribute. In the
Rugs-For-You InsurancePolicies table, for example, any values for the PlanType attribute
must be designations for valid plan types, and any values for the DateIssued must be
valid dates. Finally, the referential integrity rule specifies that any value of a foreign
key attributein a given table must match a value in the corresponding primary keys of
the related table. For example, we can’t add a tuple to the InsurancePolicies table of the
Rugs-For-You database with an EmployeeID value that does not exist in the Employees
table. Most database systems enforce the integrity rules by default.

Performance issues definitely affect the user’s satisfaction with a database
management system; a slow response to a query is at best annoying and at worst
unacceptable. Large files are maintained on disk in secondary storage rather than
being brought in total into main memory. Accessing a record in the file involves at least
one disk input/output (I/O) operation, which is a much slower process than accessing
information stored in main memory, sometimes as much as three or four orders of
magnitude slower.

In Chapter 5, we talked about the three components that contribute to reading an
individual disk sector into memory or writing from memory to a disk sector: seek time
(time to position the read/write head over the correct track on the disk), latency (time
for the correct sector to rotate under the read/write head), and transfer time (time to
read from or write to the entire sector). Organizing the way that records are stored on
the disk can help to minimize the access time by reducing the number of disk I/O
operations that must be done before finding the sector containing the desired record.
For example, assume that we have a database that occupies 30 sectors on our disk, and
there are 15 sectors per track. It would make the most sense to store the information on
surface 0, track 0, sectors 0–14 and on surface 1, track 0, sectors 0–14. Using the same
track on different surfaces means that the head does not have to move to a different
track to obtain the data, and the seek time is always 0. A process called disk
defragmentation improves access time by relocating separate pieces of a file that were
originally stored randomly on the disk as space was available at the time so that they
occupy contiguous storage.

Also, creating additional records to be stored along with the file, although consuming
extra storage, can significantly reduce access time. This works much like a library
catalog system. To access a book, the user first consults a smaller structure that is
organized in a useful way (alphabetically), and that directs the user to the desired
book. The smaller structure stored with the file may even be organized in a treelike
manner that is a generalization of the tree structure we used in Chapter 3 to visualize
the binary search. Following the branches of the tree can quickly lead to information
about the location in the file of the record with a particular primary key value. A good

DBMS incorporates the services of a sophisticated file manager to organize the disk
files in an optimal way, in order to minimize access time to the records.

Distributed databases allow the physical data to reside at separate and independent
locations that are electronically networked together. The user at site A makes a
database query that needs access to data physically stored at site B. The database
management system and the underlying network make the necessary links and
connections to get the data from where it is currently stored to the node where it is
needed. To the user, it looks like a single database on his or her own machine, except
perhaps for increased access time when data have to travel across a network.

Think Big!

Who has the world’s largest database? Many candidates come to mind—Google,
Amazon, the Library of Congress…. But the winner, for the time being, is the
World Data Center for Climate (WDCC) that runs in conjunction with the
German Climate Computing Center. The WDCC’s mission is to collect, examine,
and disseminate data related to climate change on all time scales, particularly
data from scientific climate modeling (see the discussion on climate modeling
in Chapter 13).

The WDCC database has about 6 petabytes of “live” data available online to
scientists from around the world! That’s 6,000,000,000,000,000 bytes. A standard
data DVD holds 4.7 GB, so this database represents the content of over 1.25
million DVDs. In addition, the supercomputer at the German Climate
Computing Center (called Blizzard, and powered entirely by wind power) has
access to 60 petabytes of stored magnetic tape data.

In the future, the idea of “the largest database” might be irrelevant. Distributed
computing means that individual data centers may logically merge into one
vast network of data accessible by anyone from anywhere. The World Data
Center System consisting of 52 Centers (including the WDCC) in 12 countries is
now reorganizing as part of the ICSU (International Council for Science) World
Data System. Over time, the stand-alone World Data Centers plus other data
centers will be merged into one gigantic globally distributed data system for
scientific data.

If a database management system can easily make connections among different files,
and even among data stored at different locations, how difficult is it to electronically
link information in the IRS database with information in the FBI database, the Social
Security database, credit card databases, banking databases, and so on? Obviously, it
would not be difficult, using the technology that we have described in this chapter.
Building these types of massive, integrated government databases raises fewer

technical questions than legal, political, social, and ethical ones. Remember that even
the online customers of Rugs-For-You want assurances as to how their personal
information is used. In general, issues of personal privacy and public safety are
magnified enormously by the capabilities of networked databases. We’ll discuss
approaches to these and other related ethical issues in Chapter 17.

Practice Problems

Using the Employees table of Figure 14.6, what is the result of the

following SQL query?

1.

Complete the following SQL query to find the monthly cost of

Frederick Takasano’s insurance; because PlanType is an attribute of

both InsurancePolicies and InsurancePlans, we have to include the

table name as well.

2.

Using the InsurancePolicies table of Figure 14.7, write an SQL query to

find all the employee IDs for employees who have insurance plan

type B2.

3.

Assuming that no other changes are made to any of the three tables in

the Rugs-For-You database, what integrity constraint is violated if the

tuple with ID 171 is deleted from the Employees table?

4.

Laboratory Experience 19

If you have a commercial database package available, you can work through
the exercises in this Laboratory Experience using an expanded Rugs-For-You

Your experience walking through the online purchase process (of

course, cancel before you commit to the final purchase!). Are you in

control and informed at each step?

f.

Find an example of what you would consider a poor retail Web site. Use

the same list as for Exercise 1 and note the differences you find.

2.

Depending on your Web browser, you may be able to locate a folder or a

file on your machine that contains cookies. Look through the folder or

open the file. List references to three Web sites you have visited.

3.

Using the Employees table of Figure 14.6, what is the result of the

following SQL query?

4.

Write an SQL query that retrieves first and last names and pay rate,

ordered by PayRate, from the Employees table of Figure 14.6.

5.

Using the Employees table of Figure 14.6 and the InsurancePolicies table of

Figure 14.7, what is theresult of the following SQL query? (The # marks

allow the date to be treated numerically.)

6.

Using the Employees table of Figure 14.6 and the InsurancePolicies table of

Figure 14.7, write anSQL query that retrieves first and last names, hours

worked, and insurance plan types for all employees who have worked

fewer than 100 hours.

7.

Figure 14.8 describes the attributes in an InsurancePlans table. Write

some possible tuplesfor this table.

8.

Assuming the existence of an InsurancePlans table as described in Figure

14.8, write an SQL query that retrieves the employee first and last name,

insurance plan type, and monthly cost for John Kay’s insurance.

The following information applies to Exercises 10-14.

9.

You are working for the ABC Clinic, a small medical clinic. The clinic

would like to generate a reminder telephone call to clinic patients the day

before their scheduled appointments. A vendor has a software application

that will do this, given the appropriate data from the clinic database. You

have been asked to investigate how to obtain the necessary data from the

clinic’s relational database. You are to begin with a small test database.

The following figure shows the entities in the clinic database, namely

doctors, patients, and clinic appointments.

The following test data have been loaded into the tables. All fields are

data type Text, i.e., the data are treated as character strings, except for

AppDate and AppTime, which are type Date/Time.

Doctor

DoctorID FirstName LastName Specialty

DO1 Vladimir Yevgeny Internal
medicine

Doctor

DoctorID FirstName LastName Specialty

DO2 Nancy Cooper Internal
medicine

DO3 Estelle Villanueva Dermatology

DO4 Anne Davis Gynecology

DO5 Michael Roth Pediatrics

Patient

PatientID First Name Last Name Home Phone Cell Phone

PA1 Craig Martin 333-999-1212 333-410-9999

PA2 Gail Perez 333-777-1212 333-410-7777

PA3 DuWayne Martin 332-555-1212 332-317-1234

PA4 Gordon Zhang 332-555-9999 332-217-4321

ClinicAppointment

Doctor ID Patient ID AppDate AppTime Reason

DO1 PA1 2/27/2013 11:30 AM Infected
finger

DO1 PA3 2/27/2013 10:30 AM Chest pains

DO3 PA4 2/28/2013 1:30 PM Poison ivy

DO4 PA2 2/28/2013 8:30 AM Prenatal
check

Write three SQL queries to display the full contents of each of the three

tables.

10.

Now you need to write a query to return the information used by the

reminder program. The query needs to take a date and return the doctor’s

first and last name, the patient’s first and last name and both phone

numbers, and the appointment time, so it can produce a voice message of

the form:

“〈Patient’s name〉 has an appointment with doctor〈Doctor’s name〉

at〈Appointment time〉 on 〈Appointment date〉.”

Write the query to obtain data for all patients for February 28. (Hint: Your

query will need two Join operations. Also, there are attributes in both the

Doctor and Patient tables with the same names. You will need to qualify

them with their table names, e.g., Doctor.FirstName.)

Show the results of your query.

11.

Dr. Yevgeny has scheduled DuWayne Martin to return at the same time

two days after his appointment on February 27 for another check on his

chest pain. How can you add this record to the ClinicAppointment table?

Be careful, there are a couple of subtle points to consider about

scheduling this appointment. After you add this record, write the SQL

query to display the resulting ClinicAppointment table, ordered by

appointment date, then appointment time. Show the results of your query.

12.

Someone has suggested that if the clinic is going to remind the patients,

they should also remind the doctors. The query needs to take the doctor’s

ID and a date and return the doctor’s first and last name and the

appointment time so it can produce a voice message of the form:

“Doctor〈Doctor’s name〉, you have an appointment at〈Appointment

time〉 on 〈Appointment date〉.”

Write the query to obtain data for all appointments for DoctorID D on

2/27/2013. Show the results of your query.

13.

What would it take to allow the patient to call in, give his or her patient

ID, select a date using the touch pad on the phone, and have the system

tell him or her by voice the time of the appointment on the date specified

along with the doctor’s name? The query needs to take the date and

PatientID and return the doctor’s first and last name, the patient’s first

and last name, and the appointment time and date so it can produce a

voice message of the form:

14.

Chapter 15: Artificial Intelligence
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter 15
Artificial Intelligence

15.1 Introduction

15.2 A Division of Labor

15.3 Knowledge Representation

15.4 Recognition Tasks

15.5 Reasoning Tasks

15.5.1 Intelligent Searching

15.5.2 Swarm Intelligence

15.5.3 Intelligent Agents

15.5.4 Expert Systems

15.5.5 The Games We Play

15.6 Robotics

15.7 Conclusion

Chapter Review

Exercises

Challenge Work

Additional Resources

Chapter 15: Artificial Intelligence: 15.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

15.1 Introduction
Artificial intelligence (AI) is the branch of computer science that explores techniques
for incorporating aspects of intelligence into computer systems. This definition,
however, raises more questions than it answers. What really is “intelligence”? Is it a
uniquely human attribute? If a computer system exhibits behavior that we might
characterize as intelligent, does that make it truly intelligent? What sorts of behaviors

demonstrate intelligence?

Alan Turing, whose investigations into the fundamental nature of computation led to
the Turing machine (Chapter 12), was also interested in artificial intelligence. In 1950,
before the term artificial intelligence was coined, he proposed a test for intelligent
behavior of machines. The Turing test allows a human to interrogate two entities, both
hidden from the interrogator (Figure 15.1). One entity is a human and the other a
machine (a computer). The interrogator can ask the entities questions and receive their
responses. The communication is carried on in some form that does not alone reveal
which entity is the computer; for example, the interrogator’s questions could be typed
on a keyboard and the responses printed out. If, as a result of this questioning, the
interrogator is unable to determine which entity is the human and which the
computer, then the computer has exhibited sufficiently human intelligence to pass the
Turing test. This test does not explore the nature of human intelligence in a deep
philosophical way; it merely says that if a machine exhibits behavior indistinguishable
from that of a human, then how can we tell the difference—a question that has been
explored more than once in science fiction.

Figure 15.1

The Turing test

In Chapter 13, we discussed models of physical phenomena (objects falling under the
force of gravity, customers in a store). Artificial intelligence is the construction of
computer models of human intelligence. Just as we learned in Chapter 13 that a model
cannot capture all aspects of the system it represents, so artificial intelligence cannot
capture all aspects of “intelligence.” Although science fiction conjures scenarios of
thinking computers controlling the world, the advances in artificial intelligence have

been more modest. Nonetheless, artificial intelligence has produced practical results in
natural language understanding, robotics, game playing, problem solving, machine
learning, expert systems, pattern recognition, and other areas. And conversely,
attempts to model intelligence within a computer have in turn made contributions to
cognitive science, the study of how we as humans think and learn.

To Whom Am I Speaking?

The Loebner Prize Competition has been held annually since 1991. (You can
read more about the prize on its home page, www.loebner.net/Prizef/loebner-
prize.html.) This competition is essentially a Turing test. Dr. Hugh Loebner, a
sociologist and inventor, has posted a $100,000 grand prize and a gold medal for
the first computer program whose responses are indistinguishable from a
human’s. Though the grand prize remains unclaimed, a prize of $2,000 and a
bronze medal is awarded each year to the computer program judged to be
“most human” in that year’s competition.

One of the most famous early AI experiments occurred in the laboratory of
Professor Joseph Weizenbaum at MIT in 1966. A program named ELIZA
conversed with people in the fashion of a psychotherapist, picking up on key
words and echoing them back in a sentence. This was quite mechanical and
there was no understanding involved. For example, an ELIZA conversation
might go something like this:

Human: I am not feeling well today.

Computer: I AM SORRY TO HEAR THAT YOU ARE NOT FEELING WELL.

Human: I had a fight with my wife.

Computer: TELL ME ABOUT YOUR WIFE.

Human: The house ate my zebra.

Computer: TELL ME ABOUT YOUR ZEBRA.

Weizenbaum was horrified at the ease with which people who interacted with
ELIZA became convinced that they were talking with a real person. Today, there
are many “chatbot” programs available on the Web. The 2007 winning entry in
the Loebner Prize Competition was Ultra Hal Assistant, a chatbot (from chatter
robot) program that can not only hold a conversation but remember and
remind you of appointments, tell you the local weather report, give you the
definition of a word, or do some Web searching for you. Ultra Hal also learns
new things from conversations in which it engages. Not content to rest on past
triumphs, Ultra Hal is now on Twitter and analyzes hundreds of thousands of
publicly available tweets per day to increase its knowledge base

(www.zabaware.com/twitter.html).

Chapter 15: Artificial Intelligence: 15.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

15.2 A Division of Labor
To understand better what artificial intelligence is all about, let’s consider a division of
task types. Humans can perform a great variety of tasks, but we’ll divide them into
three categories, representative but by no means exhaustive:

Computational tasks

Adding a column of numbers

Sorting a list of numbers into numerical order

Searching for a given name in a list of names

Managing a payroll

Calculating trajectory adjustments for the space shuttle

Recognition tasks

Recognizing your best friend

Understanding the spoken word

Finding the tennis ball in the grass in your backyard

Reasoning tasks

Planning what to wear today

Deciding on the strategic direction a company should follow for the next 5

years

Running the triage center in a hospital emergency room after an

earthquake

Algorithmic solutions exist for computational tasks (we devised algorithms for sorting
and searching in the early chapters of this book). As humans, we can, in principle at
least, follow these step-by-step instructions. Computational tasks are also tasks for
which accurate answers must be found—sometimes very quickly—and that’s where we

as humans fall down. We make mistakes, we get bored, and we aren’t very speedy.
Computers are better (faster and more accurate) at performing computational tasks,
provided they are given programs that correctly embody the algorithms. Throughout
most of this book, with its emphasis on algorithms, we’ve been talking about
procedures to solve computational tasks, how to write those procedures, how to get the
computer to execute them, and so on.

Humans are better at recognition tasks. We should perhaps expand the name of this
task type to sensory/recognition/motor-skills tasks because we receive information
through our senses (primarily seeing and hearing), we recognize or “make sense of”
the information we receive, and we often respond to the information with some sort of
physical response that involves controlled movement. Although we wait until
elementary school to learn how to add, an infant just a few weeks old, on seeing its
mother’s face, recognizes that face and smiles; soon that infant understands the spoken
word. You spot the tennis ball in the yard even though it is green and nestled in among
other green things (grass, dandelions). You register whether the tennis ball is close or
far away, and you manipulate your legs and feet to propel you in the right direction.

How do we do these things? Traditional step-by-step procedural algorithms don’t seem
to apply, or if they do, we don’t know what those algorithms are. Rather, it seems that
we as humans succeed at these tasks by processing a huge amount of data and then
matching the results against an even larger storehouse of data based on our past
experiences. Consider the task of recognizing your best friend. You have, in effect, been
shown a number of “pictures” of your friend’s face that seem to be “burned into” your
memory, along with pictures of the faces of everyone else you know well. When you
see your friend, you sort through your mental picture file until you come to a match. It
is a bit more complicated than that, however, because if you encounter your friend’s
sister, you might know who it is even though you have never met her before. If your
friend has a different haircut or has started wearing glasses, you will most likely still
recognize her or him, in spite of a changed appearance. You find not an exact match to
one of the images in your mental picture file, but a close approximation.
Approximation, unlike the exactitude required in computational tasks, is good enough.
These complex recognition tasks that we find so easy are difficult for computers to
perform, although facial detection (to aid in focusing when taking a photo) is now a
feature of some digital cameras and facial recognition (to group photos by the people
shown) appears in some photo management software as well as in programs used by
law enforcement to identify criminals entering a building or boarding an airplane.

When humans perform reasoning tasks, they are also using a large storehouse of
experience. This experience involves not just images but also cause-and-effect
situations. You know that you should wear a coat when it’s cold because you’ve
experienced discomfort in cold weather when you didn’t wear a coat. This could be
considered “mere” commonsense reasoning, but getting a computer to mimic common
sense, to say nothing of higher-order conceptual, planning, or reasoning tasks, is
extremely challenging. There may be no “right” answer to such tasks, and the way
humans arrive at their respective answers sometimes seems ambiguous or based at
least in part on intuition, which may be just another name for knowledge or reasoning
that we don’t yet understand.

Figure 15.2 summarizes what we’ve outlined as the relative capabilities of humans and
computers in these three types of tasks. Computers fall below humans where
procedural algorithms either don’t work or aren’t known, and where there seems to be
a high level of complexity and perhaps approximation or ambiguity. Artificial
intelligence seeks ways to improve the computer’s ability to perform recognition and
reasoning tasks, and we’ll look at artificial intelligence approaches in these two areas
in the rest of this chapter. As mentioned earlier, however, both types of tasks seem to
require a storehouse of information—images, memories, past experiences, and the
like—for which we’ll use the general term knowledge. Therefore, we’ll first look at
various approaches to representing this knowledge.

Figure 15.2

Human and computer capabilities

Chapter 15: Artificial Intelligence: 15.3
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

15.3 Knowledge Representation
We can consider knowledge about some topic as a body of facts or truths. For the
computer to make use of that knowledge, there must be some representational form in
which the knowledge is stored within the computer. (At the lowest level, of course, only
0s and 1s are stored within the computer, but strings of 0s and 1s are organized and
interpreted at a higher level of abstraction—as integers or characters, for example.) For
computational tasks, the relevant knowledge is often isolated numeric or textual items.
This is the data that we’ve manipulated with procedural programs. What about more
complex knowledge?

There are many workable representation schemes; let’s consider four possibilities.

Natural language—A paragraph or a page of text that contains all the knowledge1.

we are trying to capture is written in English, French, Spanish, or some other

natural language. Here is an example:

Spot is a brown dog and, like any dog, has four legs and a tail. Also like any

dog, Spot is a mammal, which means Spot is warm-blooded.

Note that although this representational form is text, it is text in a different sense

from the character strings that are used in computational tasks. Here it is not

simply the strings of characters that are important but also the meaning that

those strings of characters convey. When reading a natural language paragraph,

we use our understanding of the richness of the language’s vocabulary to extract

the meaning. Some researchers believe that the words we read or hear do not

actually communicate meaning, but merely act as “triggers” to meanings stored

in our brains.

Formal language—A formal language sacrifices richness of expression for

precision of expression. Attributes and cause-and-effect relationships are more

explicitly stated. A formal language version of the foregoing natural language

paragraph might look like this:

Spot is a dog.

Spot is brown.

Every dog has four legs.

Every dog has a tail.

Every dog is a mammal.

Every mammal is warm-blooded.

The term language was used in Chapter 11 to mean the set of statements

derivable by using the rules of a grammar. But here, the term formal language

means the language of formal logic, usually expressed more symbolically than we

have done in our example. In the usual notation of formal logic, we might use

dog(x) to symbolize that the symbolic entity x has the attribute of being a dog and

brown(x) to mean that x has the attribute of being brown. Similarly four-legged(x),

tail(x), mammal(x), and warm-blooded(x) could symbolize that x has these various

attributes. The specific entity Spot could be represented by S. Then dog(S) would

mean that Spot has the attribute of being a dog. Cause-and-effect relationships

2.

are translated into “if-then” statements. Thus, “Every dog has four legs” is

equivalent to “For every x, if x is a dog, then x has four legs.” An arrow

symbolizes cause and effect (if-then); “If x is a dog, then x has four legs” would be

written symbolically as

To show that every x that has the dog property also has the four-legged property,

we would use a universal quantifier, (∀x), which means “for every x.” Therefore,

means “For every x, if x is a dog, then x has four legs” or “Every dog has four

legs.” Symbolically, the preceding six formal language statements become

The use of formal languages represents one of the major approaches to building

artificial intelligence systems. Intelligent behavior is achieved by using symbols

to represent knowledge and by manipulating these symbols according to

well-defined rules. We’ll see an example of this when we discuss expert systems

later in this chapter.

Pictorial—Information can be stored in pictorial form as an image—a grid of

pixels that have attributes of shading and color. Using this representation, we

might have a picture of Spot, showing that he is brown and has four legs and a

tail. We might have some additional labeling that says something like, This is

Spot, the dog. This visual representation might contain additional knowledge

about Spot’s appearance that is not embodied in the natural language paragraph

or the formal language statements, but it would also fail to capture the knowledge

that Spot is a mammal and that mammals are warm-blooded. It also wouldn’t tell

us that all dogs have four legs and a tail. (After all, a photo of a three-legged dog

does not tell us that all dogs have three legs.)

3.

Graphical—Here, we are using the term graphical not in the sense of “visual” (we

have already talked about pictorial representation) but in the mathematical sense

of a graph with nodes and connecting arcs. Figure 15.3 is such a graph, also called

a semantic net, for our dog example. In the terminology of object orientation that

was a feature of the programming language(s) of Chapter 9, the rectangular

nodes represent classes or objects, the oval nodes represent properties, and the

arcs represent relationships. The “is a” relationship represents a subclass of a

class that inherits properties from the parent class; “dog” is a subclass of

“mammal,” and any dog object inherits all the properties of mammals in general,

such as being warm-blooded. Objects from the dog class may also have properties

of their own. The “instance” relationship shows that something is an object of a

class; Spot is a particular object from the dog class and may have a unique

property not necessarily shared by all dogs.

Figure 15.3

A semantic net representation

4.

Any knowledge representation scheme that we select must have the following four
characteristics:

Adequacy—The representation method must be adequate to capture all of the

relevant knowledge. Because of its rich, expressive powers, a natural language

representation will surely capture a lot of knowledge. However, it might be

difficult to extract exactly what that knowledge is. You might have to wade

through a lot of unnecessary verbiage, and you must also understand the

nuances of meaning within the natural language. A formal language

representation has the advantage of extracting the essentials.

1.

Efficiency—We want the representational form to be minimalist, avoiding2.

redundant information wherever possible. This means allowing some knowledge

that is not explicitly represented to be inferred from the knowledge that is

explicitly represented. In the preceding example, it is easy to infer from the

natural language, the formal language, or the semantic net that because Spot is a

dog, he has four legs and a tail and also is a mammal and, therefore,

warm-blooded. This knowledge, as we have said, is not captured in the pictorial

format. On the other hand, it would take a much longer natural language

paragraph to describe all the additional knowledge about Spot that is captured in

the picture.

Extendability—It should be relatively easy to extend the representation to include

new knowledge. For example, the semantic net can easily be extended to tack on

another “dog” instance. It would also be easy to capture the fact that dogs have

two eyes or that mammals do not lay eggs; these properties can simply be plugged

in as new ovals connected into the network.

3.

Appropriateness—The representation scheme used should be appropriate for the

knowledge domain being represented. For example, a pictorial representation

scheme would appear to be the most appropriate way to represent the knowledge

base for a problem dealing with recognition of visual images. We saw before that

a pictorial representation is probably not appropriate for the kind of knowledge

about Spot that is difficult to display visually. The level of granularity needed for

the intended application might also influence the appropriateness of a particular

scheme. Is a given pictorial representation sufficient, or do we need to “zoom in”

and expose more detail? The appropriate representational form for knowledge

therefore depends on the knowledge to be captured and on the type of task for

which the knowledge is to be used.

4.

Practice Problems

Write a natural language paragraph that describes the concept of a

hamburger. Now draw a semantic net that incorporates the same

knowledge as your natural language description. Which one is easier

for you to produce?

1.

Convert the following natural language statements to formal symbolic

representation, using the properties sandwich(x), hamburger(x),

grilledCheese(x), onBread(x), vegetarian(x):

Every hamburger is a sandwich

Every grilled cheese is a sandwich

2.

All sandwiches are on bread

Every grilled cheese is vegetarian

Chapter 15: Artificial Intelligence: 15.4
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

15.4 Recognition Tasks
If artificial intelligence aims to make computers “think” like humans, then it is natural
to investigate and perhaps attempt to mimic the way the human brain functions. It is

estimated that the human brain contains about 10 neurons (that’s 1 trillion, or
1,000,000,000,000). Each neuron is a cell capable of receiving stimuli, in the form of
electrochemical signals, from other neurons through its many dendrites (Figure 15.4).
In turn, it can send stimuli to other neurons through its single axon. The axon of a
neuron does not directly connect with the dendrites of other neurons; rather, it sends
signals over small gaps called synapses. Some of the synapses appear to send the
neuron activating stimuli, whereas others seem to send inhibiting stimuli. A single
neuron collects all the stimuli passing through all the synapses around its dendrites.
The neuron sums the activating (positive) and inhibiting (negative) stimuli it receives
and compares the result with an internal “threshold” value. If the sum equals or
exceeds the threshold value, then the neuron “fires,” sending its own signal down its
axon to affect other neurons.

Figure 15.4

A neuron

12

Each neuron can be thought of as an extremely simple computational device with a
single on/off output. The power of the human brain lies in the vast number of neurons,
the many interconnections between them, and the activating/inhibiting nature of those
connections. To borrow a term from computer science, the human brain uses a
connectionist architecture, characterized by a large number of simple “processors”
with multiple interconnections. This contrasts quite noticeably with the Von Neumann
architecture discussed in Chapter 5 that is still the basis for most computers today. In
that model, there are a small number (maybe only one) of very powerful processors
with a limited number of interconnections between them.

In some areas of the brain, an individual neuron may collect signals from as many as
100,000 other neurons and send signals to an equally large number of other neurons.
This extensive parallelism is evidently required because of the relatively slow time
frame within which a neuron fires. In the human brain, neurons operate on a time
scale of milliseconds (thousandths of a second), as opposed to the nanoseconds
(billionths of a second) in which computer operations are measured, a difference of 6
orders of magnitude. In a human processing task that takes about 1/10 second
(recognition of your friend’s face), the number of steps that can be executed by a single
neuron would be on the order of 100. (In the same time period a typical computer
processor could perform about 100,000,000 operations.) To carry out the complexity of
a recognition task, then, requires the parallel activities of a large number of neurons
executing cooperatively within this short time frame. In addition, massive parallelism
supplies redundancy so that information is not stored only in one place but is shared
within the network of neurons. Thus, the deterioration of a limited number of single
neurons (a process that happens constantly as biological cells wear out) does not cause
a failure of the information processing capabilities of the network.

Artificial intelligence systems for recognition tasks have tried to mimic this
connectionist approach. Artificial neural networks, usually just called neural networks,
can be created by simulating individual neurons in hardware and connecting them in a
massively parallel network of simple devices that act somewhat like biological
neurons. (Recall our discussion in Chapter 5 of parallel processing and non-Von
Neumann architectures.) Alternatively, the effect of a neural network may be simulated
in software on an ordinary sequential-processing computer. In either case, each
neuron has a threshold value, and its incoming lines carry weights that represent
stimuli. The neuron fires when the sum of the incoming weights equals or exceeds its
threshold value; the input lines are activated via the firing of other neurons.

Figure 15.5 represents a neuron with a threshold value of 3 and three input lines with
weights of 2, -1, and 2, respectively. If all three input lines are activated, the sum of the
incoming signals is 2 + (-1) + 2 = 3 and the neuron fires. It also fires if only lines 1 and 3
are activated because the sum of the incoming signals is then 2 + 2 = 4 > 3. Any other
combination of activated input lines cannot carry sufficient stimulation to fire the
neuron. (Real, biological neurons fire with intensities that vary through a continuous
range but, as usual, our simplified computer representation of such analog values uses
a set of discrete values.)

Figure 15.5

One neuron with three inputs

Figure 15.6 depicts a neural net with an input layer andan output layer of neurons. An
input value x is presented to neuron N in the input layer via a line with signal strength

x × w . The values of x are usually binary (0 or 1), so that this line carries a signal of

either 0 when x is 0, or the weight w when x is 1. The weights to the input neurons, as

well as the weights from the input layer to the output layer, can be positive, negative,
or zero.

Figure 15.6

Neural network model

In the neural network shown in Figure 15.7, we have eliminated connections of weight

i j

i ij i

i ij i

0. Here x and x have binary values of 0 or 1. If x or x or both have the value 1, then

a signal of 1 is passed to one or both of the neurons in the input layer, causing one or
both of them to fire, which causes the single neuron in the output layer to fire and
produce an output of 1. If both x and x have the value 0, then neither neuron in the

input layer fires, the single neuron in the output layer does not fire, and the network
output is 0. This neural network is acting like an OR gate.

Figure 15.7

A simple neural network—OR gate

It turns out to be impossible to build such a network to represent the Boolean
operation called exclusive OR, or XOR, whose truth table is shown in Figure 15.8. Here,
the output is true (1) when one or the other input is true, but not when both are true. In
Figure 15.9, no matter what values we give for the weights and thresholds, it is not
possible to generate this behavior. If exactly one input signal of 1 is enough to fire the
output neuron, which is the desired behavior, then two input signals of 1 can only
increase the tendency for the output neuron to fire.

Figure 15.8

The truth table for XOR

Figure 15.9

An attempt at an XOR network

1 2 1 2

1 2

To represent the XOR operation requires a “hidden layer” of neurons between the
input and output layers (see the neural network for the Practice Problem at the end of
this section). Neural networks with a hidden layer of neurons are useful for recognition
tasks, where we want a certain pattern of output signals for a certain pattern of input
signals. The XOR network, for example, recognizes when its two binary inputs do not
agree.

Conventional computer processing works on a knowledge base where the information
is stored as data in specific memory cells that can be accessed by the program as
needed. In a neural network, both the knowledge representation and also the
“programming” are stored in the network itself as the weights of the connections and
the thresholds of the neurons. If you want to build a neural network that performs in a
certain way, how do you determine these values? In a simple network, trial and error
can produce a solution, but such is not the case for a network with thousands of
neurons. Fortunately, the right answer doesn’t have to be found the first time.
Remember that neural networks are modeled on the human brain; you learned to
recognize your best friend through repeated “learning experiences” that modified your
knowledge base until you came to associate certain features or characteristics with that
individual.

Similarly, a neural network can learn from experience by modifying the weights on its
connections (even making some connections “disappear” by assigning them 0 weights).
A network can be given an initial set of weights and thresholds that is simply a first
guess. The network is then presented with training data, for which the correct outputs
are known. The actual output from the network is compared with the correct output
for one set of input values from the training data. For those output neurons that
produce correct values, their threshold values and the weights on their inputs do not
change. Output neurons that produce erroneous values can err in one of two ways. If
an output neuron fires when it is not supposed to, then the positive (excitatory) input
values coming into it are adjusted downward, and the negative (inhibitory) weights
coming into it are adjusted upward. If it fails to fire when it is supposed to, the opposite
adjustment is made. But before these adjustments take place, information on the errors
is passed back from each erroneous output neuron to the neurons in the hidden layer
that are connected to it. Each hidden-layer neuron adds these error counts to derive an
estimate of its own error. This estimate is used to calculate the adjustments to be made
on the weights of the connections coming to it from the input-layer neurons. Finally,

the weights are all adjusted, and then the process is repeated for the next set of input
values from the training data.

This back propagation algorithm, so named for the error estimates that are passed back
from the output layer, eventually causes the network to settle into a stable state where
it can correctly respond, to any desired degree of accuracy, to all inputs in the training
set. In effect, the successive changes in weights have reinforced good behavior and
discouraged bad behavior (much as we train our pets) until the paths for good behavior
are imprinted on the connections (as in Fido’s brain). The network has “learned” what
its connection weights should be, and its ability to recognize the training data is
embedded somehow in the collective values of these weights. At the end of its training,
the neural network is ready to go to work on new recognition problems that are similar
to, but not the same as, the training data and for which the answers are unknown.

Can You Hear Me Now?

In 1999, two biomedical engineers at the University of Southern California,
Theodore Berger and Jim-Shih Liaw, created the Berger-Liaw Neural Network
Speaker-Independent Speech Recognition System. This is a neural network that,
after minimal training, can recognize words spoken by any individual.
Furthermore, it can pick out individual words from a noisy background far
better than a human listener can. Even more remarkable, this neural net uses
only 11 neurons connected by 30 links. The key to the success of this neural net
is that the researchers incorporated a temporal dimension; neurons do not all
fire for the same time duration, nor in lockstep. A demonstration of this speech-
recognition system can be found at www.usc.edu/ext-relations/news_service
/real/real_video.html.

Neural networks have found their way into dozens of real-world applications. A few of
these are handwriting recognition, speech recognition, recognizing patterns indicative
of credit card fraud, recognizing bad credit risks for loans, predicting the odds of
susceptibility to cancer, visual-recognition systems, segmenting magnetic resonance
images in medicine, adapting mirror shapes for astronomical observations, and
discovering the best routing algorithm in a large communications network (a problem
we mentioned in Chapter 7). With the ever-lower cost of massively parallel networks, it
appears that neural networks will continue to find new applications.

Laboratory Experience 20

In this Laboratory Experience, you will train a neural network simulator for a
character-recognition task. You can choose one or more characters to present to
a neural network’s input layer and then train the network to correctly
recognize these characters. After the network is trained, you can input garbled
variations of these characters that are similar to, but not identical to, the
training data characters and test the network’s ability to correctly identify
them. You can vary the level of “garbling” in the input to see at what point the

network fails in its recognition task.

Practice Problems

If input line 1 is stimulated in the following neural network (and line

2 is not stimulated), will the output line fire? Explain.

1.

If the firing threshold on node N5 is changed from its current value of

3 to 5, under what conditions will it fire?

2.

Chapter 15: Artificial Intelligence: 15.5
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

15.5 Reasoning Tasks
We noted that one of the characteristics of human reasoning seems to be the ability to
draw on a large body of facts and past experience to come to a conclusion. In this
section, we look at several ways in which artificial intelligence specialists try to get
computers to emulate this characteristic.

Chapter 15: Artificial Intelligence: 15.5.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

15.5.1 Intelligent Searching

Earlier in this book, we presented two algorithms for searching—sequential search and
binary search. These search algorithms look for a perfect match between a specific
target value and an item in a list. The amount of work involved is Θ(n) for sequential
search and Θ(lg n) for binary search.

A decision tree for a search algorithm illustrates the possible next choices of items to
search if the current item is not the target. In a sequential search, there is only one
item to try next: the next item in the list. The decision tree for sequential search is
linear, as shown in Figure 15.10. A decision tree for a binary search, such as the one
shown in Figure 15.11, reflects the fact that if the current item is not the target, there
are only two next choices: the midpoint of the sublist before this node or the midpoint
of the sublist after this node. Furthermore, the binary search algorithm specifies which
of the two nodes to try next.

Figure 15.10

Decision tree for sequential search

Figure 15.11

Decision tree for binary search

The classical search problem benefits from two simplifications:

The search domain (the set of items being searched) is a linear list. At each point

in the search, if the target is not found, the choice of where to look next is highly

constrained.

1.

We seek a perfect match, so the comparison of the target against the list item

results in a binary decision—either they match or they do not.

2.

Suppose, however, that condition 1 does not hold; the search domain is such that after
any one node has been searched, there are a huge number of next choices to try, and
there is no algorithm to dictate the next choice. Figure 15.12 attempts to portray this
scenario. In the terminology of artificial intelligence, such a figure is called a
state-space graph, and we seek to perform a state-space search to find a solution path
through the graph. The idea is that each node of the graph represents a “state” of our
problem, and we have some “goal state” or states in mind. For example, in a game of
tic-tac-toe, our initial state is the empty game grid, and our goal state is a winning
configuration. A solution path takes us from the initial state to a winning configuration,
and the graph nodes along the way represent the intermediate configurations. In
addition to finding a winning sequence of moves for a board game (tic-tac-toe,
checkers, chess, and so forth), many other types of problems, such as finding the
shortest path through a network or finding the most successful investment strategy in
the stock market, fall into the state-space search category. In some of these problems,
condition 2 of the classical search problem—that of seeking an exact match with a
specified target value—is not present either. We simply want to acquire as many
characteristics of the desired goal as possible, and we need some measure of when we
are “close enough.”

Figure 15.12

A state-space graph with exponential growth

A brute force approach for a solution path traces all branches of the state-space graph
so that all possible choices are tested and no test cases are repeated. This becomes a
massive bookkeeping task because the number of branches grows exponentially. Given
that time and computing resources are limited, an intelligent search needs to be
employed. An intelligent search narrows the number of branches that must be tried
and thereby puts a cap on the otherwise exponential growth of the problem. Intelligent
searching involves applying some heuristic (which means, roughly, an “educated
guess”) to evaluate the differences between the present state and the goal state and to

move us to a new state that minimizes those differences—namely, the state that
maximizes our progress toward the goal state.

An intelligent chess-playing strategy, for example, is one that makes an appropriate
first move and that, at each step, makes a move more likely than others to lead to a
winning board configuration. Even a grand master of chess cannot pursue the brute
force approach of mentally trying out all the possible next moves, all the possible
moves following from each of those moves, and so on, for very many steps. (In Section
1.2, we showed that using a brute force approach, a computer would require a billion
billion billion years to make its first move!) Intelligent searching is required. There
must be a deep storehouse of experience that can be “consulted” on the basis of the
present configuration of the board. A grandmaster-level player may need a mental
database of around 50,000 of these board configurations, each with its associated
information about the best next move.

Building a machine that can beat a human at chess was long thought to be a supreme
test of artificial intelligence—machines that “think.” Successfully playing chess, it was
believed, surely epitomized logical reasoning, true “intelligence.” Chess is difficult for
humans. Yet, the rules for chess are straightforward; it is simply the size of the
state-space that is overwhelming. As artificial intelligence researchers delved deeper
into supposedly “simpler” problems such as visual recognition or natural language
understanding—things we humans do easily—it became clear that these were the
harder challenges for machines. Playing chess came to be viewed as the last of the
“easy” hard problems.

Chapter 15: Artificial Intelligence: 15.5.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

15.5.2 Swarm Intelligence

Recall that the connectionist architecture—neural networks—draws its inspiration
from nature, namely, the human brain. Another approach to achieving a desired end,
swarm intelligence, also draws its inspiration from nature, modeling the behavior of,
for example, a colony of ants. Each ant is an unsophisticated creature with limited
capabilities, yet acting as a collective, an ant colony can accomplish remarkable tasks.
Ants can find the shortest route from a nest to a food source, carry large items,
emigrate as a colony from one location to another, and form bridges. An ant
“communicates” with other ants by laying down a scent trail, called a pheromone trail;
other ants follow this trail and reinforce its strength by laying down their own
pheromones. Given a choice, ants have a higher probability of following the strongest
pheromone trail. Hence, the ant that took the shortest path to food and returned to tell
about it lays down a trail that other ants follow and reinforce faster than the trail laid
down by an ant that took a longer path. Because pheromone trails evaporate quickly,
the collective intelligence of the colony is constantly updated to respond to current
conditions of its environment.

The swarm intelligence model captures this behavior. Computer scientists create
algorithms that simulate the process of having simple agents (analogous to the ants)
operate independently and follow each other’s “trails” to find the most efficient routes.
This algorithmic approach is called Ant Colony Optimization (ACO) and has been used
commercially in vehicle routing, job scheduling, and sensing of biological or chemical
contaminants. Research is under way to use such simple agents in telecommunications
networks to avoid the complexity of a centralized control system to compute and
distribute routing tables within a network.

ANTS in Space!

NASA’s Goddard Space Flight Center is developing one of the most interesting
applications of swarm intelligence. The ANTS (Autonomous NanoTechnology
Swarm) project involves objects shaped like three-sided pyramids with a base
(tetrahedrons). Called TETwalkers, these objects have a small motor at each
vertex with connecting struts between motors. The motors can retract or
extend the struts, thereby changing the center of gravity of the TETwalker and
causing it to tumble over. Such tumblings, repeated over and over, are the
method of locomotion for the TETwalker. Future versions of the TETwalker will
be much smaller, and capable of being joined together in swarms.

NASA envisions using artificial intelligence to allow these swarms to make
decisions and change shape as circumstances arise. For example, a swarm
could configure itself as a snakelike body that slithers across the surface of a
distant planet. When it finds something interesting to report, it can reconfigure
itself to grow an antenna and transmit data back to Earth. Reconfiguration can
also make the swarm resistant to damage—if a few TETwalkers are “injured,”
the swarm can just reconfigure itself to work around them.

This model TETwalker has toured all over the world. ANTS projects have
involved collaborators among students and staff at more than 15 different
colleges and universities. Go to http://ants.gsfc.nasa.gov/features
/MeteorCraterSmall.movto watch a test of the TETwalker conducted in Meteor
Crater in northern Arizona. For further information on TETwalkers, see
www.nasa.gov/vision/universe/roboticexplorers/ants.html.

ANTS in Space!

ANTS in Space!

Source: Courtesy of NASA

Chapter 15: Artificial Intelligence: 15.5.3
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

15.5.3 Intelligent Agents

Swarm intelligence rests in the colony as a whole, which seems to acquire “knowledge”
that is greater than the sum of its parts. At the opposite end of the spectrum are
intelligent agents. An intelligent agent is a form of software technology that is designed
to interact collaboratively with a user somewhat in the mode of a personal assistant.
Imagine that you have hired your own (human) personal assistant. In the beginning,
you must tell your assistant what to do and how you want it done. Over time, however,
your assistant comes to know more about you and soon can anticipate what tasks need
to be done and how to perform them, what items to bring to your attention, and so
forth. Your assistant becomes more valuable as he or she becomes more self-directed,
always acting with your best interests in mind. You, in turn, put more and more trust in
your assistant.

Like the human personal assistant, an intelligent agent does not merely wait for user
commands but begins to initiate communication, take action, and perform tasks on its
own on the basis of its increasing knowledge of your needs and preferences. Here are
some examples that exist today:

A personalized Web search engine that allows you to profile items of interest to

you and then automatically delivers appropriate information from the Web. For

example, you may request updated weather conditions for your geographic area,

along with news items related to sports and European trade. At periodic time

intervals, this push technology downloads your updated, personalized

information to your screen (or cell phone) to be displayed whenever no other

task is active.

A more intelligent version of this personalized Web searcher that enables you to

rate each article it sends you and then dynamically adjusts what it sends in the

future as it learns about your preferences.

An even more intelligent search agent that not only narrows down choices from

topics you have chosen but can suggest new, related topics for you to explore.

This is accomplished by having your agent communicate with similar agents on

the Web, even when you are not online. If your agent knows of your interest in

French cuisine, for example, it communicates with other agents to find those that

represent users with the same interest. It may learn from these agents that many

of their users are also interested in Cajun cooking. Your agent then judges

whether these suggestions are coming from agents whose recommendations on

the whole have been well received by you in the past. If so, it asks whether you

also want information about Cajun cooking. If you do not agree to this proposal,

your agent notes what agents made that suggestion and, on the next pass, gives

less consideration to their ideas. The more agents that participate, the more

accurate each one becomes at “understanding” the interests of its user.

An online catalog sales company that uses an agent to monitor incoming orders

and make suggestions. For example, a customer who orders a camera may be

presented with a list of related accessories for sale, such as tripods and lens

filters.

A manufacturing plant that uses an intelligent agent to negotiate with suppliers

on the price and scheduling of parts delivery to maximize efficiency of

production.

Intelligent agent technology has been an area of interest in artificial intelligence for
many years. However, intelligent agents need to display significantly greater learning
capabilities and “common sense” before most users will trust them to make
autonomous decisions regarding the allocation of time and money. Until then, they will
be relegated to presenting suggestions to their human users. However, when a
sufficient level of trust in intelligent agent technology has been achieved, and when
human users are willing to allow their software to make independent decisions, we will
begin to see such exciting new applications as:

Financial agents that negotiate with one another over the Web for the sale and

purchase of goods and services, using price/cost parameters set by the sellers and

buyers

Travel and tourism agents (electronic, not human) that book airline flights, rent

automobiles, and make hotel reservations for you on the basis of your

destination, schedule, price range, and preferences

Office manager agents that screen incoming telephone calls and e-mail, putting

meetings on their users’ schedules, and drafting replies

Chapter 15: Artificial Intelligence: 15.5.4
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

15.5.4 Expert Systems

Although intelligent agents incorporate a body of knowledge to “filter” their choices
and thereby appear to capture certain aspects of human reasoning, they still perform
relatively limited tasks. Consider the more unstructured scenario of managing the
triage center in a busy hospital emergency room. The person in charge draws on (1)
past experience and training to recognize various medical conditions (which may
involve many recognition subtasks), (2) understanding of those conditions and their
probable consequences, and (3) knowledge about the hospital’s capabilities and
resources in general and at the moment. From this knowledge base, a chain of
reasoning is followed that leads, for example, to a decision to treat patient A
immediately in a particular fashion and to let patient B wait. We consider this to be
evidence of quite general “logical reasoning” in humans.

Artificial intelligence simulates this kind of reasoning through the use of expert
systems, also called rule-based systems or knowledge-based systems. (The latter term is a
bit confusing because all “intelligent activity” rests on some base of knowledge.) An
expert system attempts to mimic the human ability to engage pertinent facts and string
them together in a logical fashion to reach some conclusion. An expert system must
therefore contain these two components:

A knowledge base—A set of facts about the subject matter

An inference engine—A mechanism for selecting the relevant facts and for

reasoning from them in a logical way

Note that the knowledge base contains facts about a specific subject domain to narrow
the scope to a manageable size.

The facts in the knowledge base consist of certain simple assertions. For example, let’s
say that the domain of inquiry is U.S. presidents. Three simple assertions are

Lincoln was president during the Civil War.1.

Kennedy was president before Nixon.2.

FDR was president before Kennedy.3.

Another type of fact is a rule, a statement of the form if … then …, which says that

4.

5.

whenever the clause following “if” is true, so is the clause following “then.” For
example, here are two rules that, taken together, define what it means for one
president to precede another in office. In these rules, X, Y, and Z are variables.

If X was president before Y, then X precedes Y.I.

If X was president before Z and Z precedes Y, then X precedes Y.II.

Here we are using a formal language to represent the knowledge base.

What conclusions can be reached from this collection of three assertions and two
rules? Assertion 2 says that Kennedy was president before Nixon. This matches the “if”
clause of rule I, where X is Kennedy and Y is Nixon. From this, the “then” clause of rule
I yields a new assertion, that Kennedy precedes Nixon, which we’ll call assertion 4.
Now assertion 3 says that FDR was president before Kennedy, and assertion 4 says that
Kennedy precedes Nixon. This matches the “if” clause of rule II, where X is FDR, Z is
Kennedy, and Y is Nixon. From this, the “then” clause of rule II yields a new assertion,
that FDR precedes Nixon, which we’ll call assertion 5. Hence,

Kennedy precedes Nixon.

FDR precedes Nixon.

are two new conclusions or assertions. These assertions were previously unknown and
were obtained from what was known through a process of logical reasoning. The
knowledge base has been extended. We could also say that the system has learned two
new pieces of knowledge.

If this example sounds familiar, it is because it is part of the example we used in
Chapter 10 to illustrate the logic programming language Prolog. Prolog provides one
means of implementing an inference engine for an expert system.

The inference engine is basically using the following pattern of reasoning:

Given that the rule

If A then B

and the fact

A

are both in the knowledge base, then the fact

B

can be inferred or concluded.

This reasoning process, as we noted in Chapter 10, goes by the Latin name of modus
ponens, which means “method of assertion.” It gives us a method for making new
assertions. We humans use this deductive reasoning process all the time. However, it is
also suitable for computerization because it is basically a matching algorithm that can
be implemented by brute force trial and error. Systems like Prolog, however, apply
some additional guidelines in their search for matches to speed up the process; that is,
they employ a form of intelligent searching.

Inference engines for expert systems can proceed in several ways. Forward chaining
begins with assertions and tries to match those assertions to the “if” clauses of rules,
thereby generating new assertions. These may in turn be matched with “if” clauses,
generating still more assertions. This is the process we used in our example. Backward
chaining begins with a proposed conclusion and tries to match it with the “then”
clauses of rules. It then looks at the corresponding “if” clauses and tries to match those
with assertions, or with the “then” clauses of other rules. This process continues until
all “if” clauses that arise have been successfully matched with assertions, in which case
the proposed conclusion is justified, or until no match is possible, in which case the
proposed conclusion is rejected. Backward chaining in our example says, Here’s a
hypothesis: FDR precedes Nixon, and the system works backward to justify this
hypothesis.

In addition to the knowledge base and the inference engine, most rule-based systems
also have an explanation facility. This allows the user to see the assertions and rules
used in arriving at a conclusion, as a sort of check on the path of reasoning or for the
user’s own enlightenment.

Of course, a rule-based system about some particular domain is only as good as the
assertions and rules that make up the knowledge base. The builder of such a system
acquires the information for the knowledge base by consulting “experts” in the domain
and mining their expertise. This process, called knowledge engineering, requires a
great deal of interaction with the human expert, much of it in the domain
environment. If the domain expert is the manager of a chemical processing plant, for
example, a decision to “turn down valve A whenever the temperature in pipe P exceeds
235°F and valves B and C are both closed” may be such an ingrained behavior that the
expert won’t remember it as part of a question-and-answer session on “what you do on
your job.” It only emerges by on-site observation. For the hospital example, one might
need to follow people around in the emergency room, observe their decisions, and later
question them on why those decisions were made. It is also possible to incorporate
probabilities to model the thinking process, for example, “If the patient has fever and
stomach pains, the probability of appendicitis is 73% and the probability of gall bladder
problems is 27%, therefore I first check A and then B.”

Practice Problems

Given the assertion “Frank is bald” and the rule “If X is bald, then X is

tall,” what conclusion can be inferred? If Frank were known to be

1.

tall, would that necessarily imply that he was bald?

Given the assertion “Frank is not bald” and the rule “If X is bald, then

X is tall,” what conclusion can be inferred?

2.

Given the assertion “Frank is bald” and the rule “If X is tall, then X is

bald,” what conclusion can be inferred?

3.

Given the assertion “Frank is not bald” and the rule “If X is tall, then X

is bald,” what conclusion can be inferred?

4.

Expert systems have been implemented in many domains, including specific forms of
medical diagnosis, computer chip design, monitoring of manufacturing processes,
financial planning, purchasing decisions for retail stores, automotive troubleshooting,
and diagnosis of failures in electronic systems. They will no doubt be even more
commonplace in the future.

Chapter 15: Artificial Intelligence: 15.5.5
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

15.5.5 The Games We Play

These days, the world of video game playing draws many enthusiasts. We will explore
some of the computer technologies that make video games possible in the next chapter.
But here, we want to trace the progression of the “artificial intelligence” needed to
have the computer play (rather than just display) a game.

Board Games. Almost everyone is familiar with the simple pencil-and-paper game of
tic-tac-toe. Two players draw Xs and Os, respectively, in the squares of a 3 × 3 grid. The
first player to draw three of his or her symbol in a row (vertically, horizontally, or
diagonally) wins. While the “X” player is trying to build such a row, the “O” player is
trying to block it, and vice versa. For example, if the current configuration looks like
this:

then the “O” player should write an O in the middle square to block X’s diagonal. The
rules are pretty simple, making it a good children’s game. For experienced players,
most games will end in a draw.

Writing a computer program to play tic-tac-toe is fairly easy. (The first-ever computer
game was tic-tac-toe, written for the EDSAC computer in 1952; it played perfect games
against human opponents. The first computer program Bill Gates wrote, at the age of
13, played tic-tac-toe.) The state-space graph (see Section 15.5.1) for tic-tac-toe is
relatively small. Because there are nine positions, each of which can contain X, O, or

blank, at first it seems that there are 3 = 19,683 board configurations. However, many
of these are essentiality the same. For example, a single X in a corner square with all
other cells blank occurs four ways because there are four corners, but these are all
rotations of the same thing, so this is really only one configuration. Eliminating these
similarities, there are 765 distinct configurations. We want a solution path from the
initially empty board to a winning configuration. A brute force approach is feasible. If
we assume that each player can write in any vacant cell, that the game is terminated
with any three-in-a-row symbol or a full grid, and that configurations that are
essentially the same are ignored, there are 26,830 possible games (paths through the
state space). By following the simple strategies of trying to make three in a row while
trying to block your opponent, and concluding the game when the outcome is
determined, the number of paths through the state space is much smaller—1145
games. These can be reviewed to find the winning paths.

Checkers is a board game with more complex rules than tic-tac-toe and a far larger

state space; there are 5 x 10 (500 billion billion) possible board configurations. The
Chinook project, involving a group of computer scientists at the University of Alberta in
Canada, headed by Professor Jonathan Schaeffer, began in 1989. This project was to
develop a checkers-playing computer program. In 1992, an early version of Chinook
competed in the World Checkers Championship against Dr. Marion Tinsley, the world
champion who had won every tournament he had played in since 1950. The program
lost this match but was the winner in a 1994 rematch. The Guinness Book of World
Records in 1996 accorded Chinook the honor of being the first computer program to
win a human world championship. In April 2007, it was announced that Chinook was
finally perfected. From the standard starting positions used in tournament play,
Chinook can never lose; the best a skilled opponent can achieve is a draw. Multiple

computers—as many as 200 at a time—worked simultaneously to carry out the 10
(100 trillion) computations needed to determine how Chinook should make its moves
so that it never loses. You can play against a “reduced strength” version of Chinook at
http://webdocs.cs.ualberta.ca/∼chinook/play/.

The solutions to both tic-tac-toe and checkers are complete solutions—the “winning
move” to make from any board position has been determined and has been built into
the software. The game of chess is still more complex. As mentioned earlier, a
computer that could play winning chess games was thought to be the pinnacle of
artificial intelligence. In May 1997, international attention was focused on a historic
chess match between world champion Garry Kasparov and the IBM chess-playing
computer known as Deep Blue. (IBM has since built machines hundreds of times more
powerful than Deep Blue, such as the 2004 Blue Gene/L, developed for biomolecular
research. These machine names are a clever play on “Big Blue,” IBM’s nickname in the
corporate world.) Kasparov and Deep Blue played neck and neck. Both relied on the
respective strengths of their “species,” Kasparov utilizing recognition and reasoning,

9

20

14

and Deep Blue churning out its high-speed computations (Figure 15.13). In the final
game, Kasparov lost the match by falling for a well-known trap. Kasparov’s error,
which was considered a major blunder for a player of his ability, probably reflected his
weariness and the emotional strain of competing against an unexpectedly strong,
utterly impassive foe. These human frailties, of course, were not shared by Deep Blue.

Figure 15.13

Garry Kasparov vs. Deep Blue

Source: P. Morgan/Reuters/Landov

Kasparov could evaluate up to three chess positions per second, or 540 in the 3 minutes
allowed between moves; he selected which few positions to evaluate on the basis of his
experience, study of successful strategies or tactical approaches, and intuition. Deep
Blue could evaluate up to 200,000,000 chess positions per second, or 50 billion in 3
minutes, using its 512 communicating processors. But even Deep Blue could not pursue
a true brute force approach of playing out to the bitter end every possible consequence
of every potential move from a given configuration. Instead, its programmers provided
a number of heuristics that helped “prune” the search tree to a manageable number of
paths, in effect selecting what seemed to be the most promising moves.

The game of Go is an ancient Chinese board game played by two players using black-
and-white stones placed on a (usually) 19 × 19 grid. Stones represent territory
controlled by a player. Once put in place, they are never moved, but can be removed if

“captured” by the opposing player. The object of the game is to control a maximum
amount of territory. A stone surrounded by stones of the opposite color is subject to
capture, which makes it advisable to keep your stones clustered closely together. But
that defeats the object of increasing the territory you control. Although the rules of Go
are simple, there is a great deal of strategy involved in successful play. Computer
programs to play Go are not as far along as chess-playing programs. Obstacles to
success include the large size of the grid and the number of pieces on the grid, the fact
that pieces generally remain on the board, the fact that a player has a huge number of
moves at his or her disposal at any time, and the fact that a given move could be good
or bad depending on the intent of the player. Players are ranked in Go competitions at
the kyu rank or the dan rank, with the dan rank considered the master rank, beginning
with the lowest dan rank of 1. The first programs to attain low dan-level rankings
appeared in 2009. But progress has been swift since then; in June 2011, a Go program
called Zen19D, running on a 25-core machine, attained the rank of 5 dan, which is
beginning to approach the top master level of 7 dan.

Quiz Games. Jeopardy! is a popular American television quiz show. The show draws an
estimated 9 million viewers daily who watch Alex Trebek, the host since 1984, throw
“answers” at three contestants, who have to supply the corresponding “question.”
Jeopardy! took a startling new turn when, in 2011, an IBM supercomputer was one of
the three contestants. Named Watson, after IBM’s founder Thomas Watson, the
computer got off to a slow start, but over three days of competition, bested two
previous Jeopardy! champions (Figure 15.14; see also the Special Interest Box, ‘Now I
Understand ,’ Said the Machine, in Chapter 11).

Figure 15.14

IBM’s Watson beats its human opponents on Jeopardy!

Source: Jeopardy!/Landov

In Figure 15.14, the Watson avatar is glowing proudly. But behind the scenes is the real

Watson, consisting of 90 IBM Power 750 servers, each with 32 core processors and up to
256 GB of RAM (Figure 15.15). When Watson gets the clue, processing algorithms
analyze the clue and then run several different searches that can produce as many as
300-500 candidate answers.

Figure 15.15

IBM’s Watson supercomputer

Source: Courtesy of IBM

This phase uses heavy-duty computing resources (note the large amount of main
memory storage) and although several servers may be working at once on the same
clue, this is basically not a parallelized process. However, the next phase of “scoring”
the candidate answers to decide on the best response is distributed across the cluster
and done in parallel.

Certainly Watson has a huge database of facts at its disposal, but what the IBM
researchers and their collaborators have accomplished is much more than a massive
search process. Web search engines conduct massive searches, but they basically do
word matching and then present you with a list of potentially relevant documents or
other artifacts to sift through yourself, although they do vast statistical analyses to
attempt to improve relevance. Watson analyzes clues fraught with vagaries of English
language—puns, humor, rhyme, subtleties, riddles, irony, plays on words, and so
forth—to understand their meaning. This is a far more formidable task than playing
chess.

Watson is not infallible. With a category of “U.S. cities” and the clue “Its largest airport
is named for a World War Ⅱ hero; its second largest for a World War Ⅱ battle,” Watson

responded “What is Toronto?”, although with a low level of confidence in its answer.
 But before you feel smug, consider Watson’s correct response in the category of

“edible rhyme time” and the clue “A long, tiresome speech delivered by a frothy pie
topping.” It has to recognize that the clue consists of two parts, a long tiresome speech
and a frothy pie topping. It has to find potential answers for each part, and then apply
the constraint that the two answers must rhyme. Can you answer this—in under three
seconds?

Chapter 15: Artificial Intelligence: 15.6
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

15.6 Robotics
The term robot implies a device, often humanlike in form, that has the ability to gather
sensory information from its surroundings and to autonomously (i.e., without direct
human instructions) perform mechanical actions of some sort in response. The term
robot was used in a play written in 1921 by Czech author Karel Capek. The play was
titled R.U.R, short for Rossum’s Universal Robots. In the play, a scientist invents robots
that perform simple repetitive tasks to help people but who take over the world when
their human owners try to use them to fight wars. The word robot comes from the
Czech word robota, meaning slavelike labor. Robots have been part of science fiction
ever since—think C-3PO and R2-D2 in the Star Wars movies.

Fact has not yet caught up with science fiction, but today there are a surprising number
of applications of robots. Here’s a partial list of the uses to which robots are put in
manufacturing, science, the military, medicine, and in the consumer marketplace:

Assembling automobile parts

Packaging food and drugs

Placing and soldering wires in circuits

Bomb disposal

Welding

Radiation and chemical spill detection

Inspection of sewer lines and oil pipes

Exploration (the Mars Rovers)

Underwater salvage

Microsurgery

Wheelchair navigation

Emergency search and rescue

Vacuum cleaning

Window washing

Lawn mowing

Home or commercial security sentry duty

Robots currently perform tasks that are too repetitive or dangerous for humans.
Robots, of course, do not get bored, they can perform the same tasks with the same
precision every time, and they can work in hostile environments.

Groups of robotic devices can act together to investigate wide-ranging geographic areas
that, again, would be difficult for human workers. Scientists at the University of
Washington in Seattle have built robotic “fish.” Each fish is about 20 inches long, with
the ability to flap its tail and two fins; using this propulsion and steering mechanism,
the fish can swim in any direction and make tight turns. Communicating with each
other using radio signals, the fish can swim together as a coordinated group or move
independently. Such technology will eventually allow tracking of marine wildlife or
assessment of environmental damage in the Earth’s oceans.

Researchers at the Harvard Microrobotics Laboratory are perfecting a robotic “fly.”
Robotic flying insects are not just “small airplanes”—the flight dynamics of insects are
much more complex because of an insect’s ability to hover, fly in any direction, land on
walls, and so forth. Once perfected, swarms of robotic insects could be released in a
disaster area to search for survivors. Because of their size, they could penetrate
hard-to-access areas of debris and transmit signals to (human or robotic) rescue
workers. They could also be used for military espionage work (again, science fiction
becoming reality).

Collecting data on the world’s ice shelves, to study climate change, is the goal of
researchers at the Georgia Institute of Technology and Pennsylvania State University.
They have created small robotic “snowmobiles” called SnoMotes that will be able to
travel autonomously over assigned terrain, take measurements, and report their
findings. After an initial failure at building a rugged robot from scratch, the team
turned to a toy snowmobile designed to operate in snow conditions and to withstand
abuse by children. In addition to a camera, sensors, and computing equipment, the
robot needs to be fitted with a heater to protect the electronic equipment in below-zero
environments. Like the robotic fish, the SnoMotes will communicate with each other to
decide which robot samples which location for the most efficient overall coverage.

More and more, however, robots are being developed to interact with humans in a less
“robotic” and more “humanlike” way to perform tasks for the disabled, to watch over
small children, and to entertain and provide companionship. Japan has an interest in
developing “humanoid” robots to help care for its aging population.

One of the more well-known humanoid robots is ASIMO (Advanced Step in Innovative
Mobility), built by Honda Motor Company, a Japanese corporation. As the name
suggests, much of the focus of the design of this robot over earlier models was
refinement of the robot’s motion capabilities, extending the range of its arm movement
and improving the smoothness and stability of its two-legged walking, including
walking on uneven ground and navigating stairs. This jointed robot is designed to
measure the forces acting on it at each step. If these forces get out of balance,
threatening a fall, adjustments are made in the placement of the foot and the position
of the torso to regain balance. One only has to watch a toddler learning to walk to see
the challenges this represents. ASIMO’s capabilities continue to be developed. ASIMO
can open and close doors while passing through a doorway, guide office guests to a
meeting room and serve refreshments on a tray, recognize when it needs recharging,
and walk to the nearest recharging station and hook up to be recharged. ASIMO has
even conducted the Detroit Symphony Orchestra in a concert for young people (Figure
15.16).

Figure 15.16

Honda’s ASIMO conducting

Honda’s ASIMO conducting

Source: Courtesy of American Honda Motor Co., Inc.

Research is ongoing in the field of robotics. Robotics involves the aspects of artificial
intelligence we discussed earlier, namely recognition tasks and reasoning tasks.
Through some sort of elementary vision, auditory, or tactile system, the robot must not
only gather sensory information, but also filter out the possibly vast amount of data its
surroundings might present to it to “recognize.” That is, it must be able to make sense
of the important features and discard the unimportant. Then the robot must make
decisions—reason about—the information it has recognized to be able to take some
action. There is also the additional challenge of the mechanics and electronics needed

to make the robot respond physically.

Two strategies characterize robotics research. The deliberative strategy says that the
robot must have an internal representation of its environment and that its actions in
response to some stimuli are programmed into the robot based on this model of the
environment. This strategy seems to reflect what we as humans think of as high-level
cognitive reasoning—we have a mental model of our environment, we reflect on a
stimulus from that environment, and make a reasoned decision about the next course
of action. (This is a generalization of the expert system idea discussed earlier.) The
reactive strategy uses heuristic algorithms to allow the robot to respond directly to
stimuli from its environment without filtering through some line of reasoning based on
its internal understanding of that environment. This stimulus-response approach
seems to reflect human subconscious behavior—holding out our hands to protect
ourselves during a fall, for example, or drawing back from a hot flame. Proponents of
the deliberative strategy argue that a robot cannot react meaningfully without
processing the stimulus and planning a reaction based on its internal representation of
the environment. Proponents of the reactive strategy say that such a requirement is too
restrictive and does not allow the robot to respond freely to any or all new stimuli it
might encounter. Note that we as humans use both our conscious thought processes
and our subconscious reactions in our everyday life, so a combination of these
strategies may be the most successful approach.

Robots in the Operating Room

You are probably familiar with the use of hand gestures to communicate with
video game consoles, used with the Wii Remote controller for the Nintendo
game console and the Kinect device for the Microsoft Xbox 360 game console.
Researchers see more serious uses to gesture-recognition technology. The photo
here shows a graduate student at Purdue University using a prototype robotic
scrub nurse that recognizes hand gestures directing it to give instruments as
needed to the surgeon in a hospital operating room. Another use for
hand-gesture recognition would allow the surgeon to direct a computer to
display appropriate medical images during surgery. Both of these developments
could improve operating room efficiency so that a patient would be in surgery
for less time. The challenge is to build a system that recognizes legitimate
hand-gesture commands and differentiates them from unintended motions by
the surgeon. In fact, the hand-gesture recognition system being developed uses
Kinect.

Source: Purdue University photo/Mark Simons

Chapter 15: Artificial Intelligence: 15.7
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

15.7 Conclusion
In this chapter, we have touched on three basic elements of artificial intelligence:
knowledge representation, recognition problems, and reasoning problems. We’ve
discussed common approaches to building artificial intelligence systems: symbolic
manipulation (expert systems), connectionist architectures (neural networks), and
genetic or evolutionary approaches (swarm intelligence). We have followed the
progress of artificial intelligence in game playing and have also outlined some of the
strategies and challenges in robotics design. Yet we have mentioned only a few of the
many application areas of AI, a field that is finally beginning to realize its potential.
Today we can use speech-recognition systems to control our telephones, appliances,
and computers by talking to them, exploit face-recognition software to assist the police
with their crime-solving responsibility, use a tablet PC with handwriting-recognition
software, and ask a Web page to translate text from one language to another. In 20
years, artificial intelligence will be used in ways we have not even imagined today.

Chapter 15: Artificial Intelligence
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter Review

Exercises

Suppose that in a formal logic, green(x) means that x has the attribute of

being green, frog(x) means that x has the attribute of being a bullfrog, and

J stands for the specific entity Jeremiah. Translate the following formal

statements into English:

1.

Draw a semantic net that incorporates the knowledge contained in the

following paragraph:

If I had to describe what distinguishes a table from other pieces of

furniture, I guess I would say it has to have four legs and a flat top. The

legs, of course, hold up the top. Nancy’s table is made of maple, but mine

is bigger and is walnut.

2.

Use an English-like formal language to represent the knowledge

explicitly contained in the following semantic net:

Add to your list from Exercise 3a the knowledge that can be inferred

from the semantic net

3.

In the following neural network, which event or events cause node N3 to

fire?

4.

Assign weights and threshold values in the following neural network so

that the output neuron fires only when x and x have the value 1 and x

has the value 0. Remember that weights can be negative.

5.

The truth table for the XOR operation is given in Figure 15.8. As noted in

the text, a neural network for this operation requires a hidden layer of

neurons. A partial solution to a neural network for XOR is shown at the

bottom of this page. In this solution, all neurons have a threshold value of

1 and the inputs x and x are binary. Finish this network by finding

weights for the connections and test that the resulting network

implements the XOR operation. (Hint: All weights can be integer values.)

6.

1 3 2

1 2

Find some literature or product information on a mobile device or tablet

PC that allows pen-based handwritten entries. What sort of scheme does

this system use for handwriting recognition? Does the system use a neural

network? Does it require initial training on the user’s handwriting?

7.

Ant colonies are an example from nature of swarm intelligence. Find two

other examples of swarm intelligence seen in nature.

8.

You are a knowledge engineer and have been assigned the task of

developing a knowledge base for an expert system to advise on mortgage

loan applications. What are some sample questions you would ask the

loan manager at a bank?

9.

We described both forward chaining and backward chaining as

techniques used by inference engines in rule-based systems. In Section

11.2.2, we described how a parser might analyze a programming

statement to produce a parse tree. Does the method described in Chapter

11 correspond more closely to forward chaining or to backward chaining?

Explain.

10.

A rule-based system for writing the screenplays for mystery movies

contains the following assertions and rules:

The hero is a spy.

The heroine is an interpreter.

If the hero is a spy, then one scene should take place in Berlin and one

in Paris.

If the heroine is an interpreter, then the heroine must speak English.

If the heroine is an interpreter, then the heroine must speak Russian.

If one scene should take place in Berlin, then there can be no car chase.

If there can be no car chase, then there can be no crash scene.

If one scene should take place in Berlin, then the hero is European.

If one scene should take place in Paris, then the hero must speak

French.

Can the following assertion be inferred? Explain.

11.

The hero must speak French and there can be no crash scene.

In Exercise 11, is it possible to add the following assertion to the

knowledge base? Why or why not?

The hero is American.

12.

If you studied Prolog in Chapter 10 and have a Prolog interpreter

available, try implementing the rule-based system of Exercise 11 in

Prolog.

13.

Chapter 15: Artificial Intelligence
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter Review

Challenge Work

An argument called the Chinese Room argument (similar in many ways to the

Turing test) challenges whether true artificial intelligence is even possible. This

argument has provoked much discussion, and many replies that claim to refute it.

Go to http://plato.stanford.edu/entries/chinese-room to see a summary of the

Chinese Room argument and some of the replies.

Describe the Chinese Room argument.a.

Pick one of the replies and describe it. Does it seem to invalidate the

Chinese Room argument?

b.

1.

A neural network is to be built that behaves according to the following truth

table, which represents the Boolean AND operation. Input to the network consists

of two binary signals; the single output line fires exactly when both input signals

are 1.

2.

Find values for the missing weights and threshold values for the neurons in

the following diagram that cause the network to behave properly.

a.

Because this is a relatively simple problem, it is easy to guess and come up

with a combination of weights and threshold values that works. The

solution is not unique; there are many combinations that produce the

desired result. In a large network with many connections, it is impossible to

find a solution by guessing. Instead, the network learns to find its own

solution as it is repeatedly exercised on a set of training data. For networks

with hidden layers, the back propagation algorithm can be used for

training. For a general class of networks of the form shown in the next

diagram, an easier training algorithm exists, as we will see. Note that in the

diagram, the input signals are binary, and all neurons are assumed to have

the same threshold value θ.

The following table sets up the notation needed to describe the training

algorithm.

b.

Initially, the network is given arbitrary values between 0 and 1 for the

weights w , w , …, and the threshold value θ. A set of input values x , x , …

from the training data is then applied to the network. Because we are

working with training data, the correct result t for this set of input values is

known. The actual result from the network, y, is computed and compared

with t. The difference between the two values is used to compute the next

round of values for the weights and the threshold value, which are then

tested on another set of values from the training data. This process is

repeated until the weights and threshold value have settled into a

combination for which the network behaves correctly on all of the training

sets. The network is fully trained at this point.

Each new weight w ′ is computed from the previous weight by the formula

Challenge work

and the new threshold value θ′ is computed from the previous value by the

formula

Challenge Work

There are three cases to consider:

1 2 1 2

i

If the network behaved correctly for the current set of data—that is, if

the computed output y equals the desired output t—then the quantity

α(t - y) has the value 0, so when we use formulas (A) and (B), the new

weights and threshold value will equal the old ones. The algorithm

makes no adjustments for behavior that is already correct.

i.

If the output y is 0 when the target output t is 1, then the quantity α(t -

y) has the value α, a small positive value. Each weight corresponding

to an input x that was active in this computation (i.e., had the value 1)

gets increased slightly by formula (A). This is because the output

neuron didn’t fire when we wanted it to, so we stimulate it with more

weight coming into it. At the same time, we lower the threshold value

by formula (B), again so as to stimulate the output neuron to fire.

ii.

If the output y is 1 when the target output t is 0, then the quantity α(t -

y) has the value -α, a small negative value. Each weight corresponding

to an input x that was active (i.e., had the value 1) gets decreased

slightly by formula (A). This is because the output neuron fired when

we didn’t want it to, so we dampen it with less weight coming into it.

At the same time, we raise the threshold value by formula (B), again

so as to discourage the output neuron from firing.

We will use the training algorithm to train an AND network. The

training set will be the four pairs of binary values for the AND truth

table shown earlier. (Here, the training set is the entire set of possible

input values; in most cases, a neural network is trained on some input

values for which the answers are known and then is used to solve

other input cases for which the answers are unknown.) For starting

values, we choose (arbitrarily) W = 0.6, w = 0.1, θ = 0.5, and α = 0.2.

The value of α stays fixed and should be chosen to be relatively small;

otherwise, the corrections are too big and the values don’t have a

chance to settle into a solution. The initial picture of the network is

therefore the following:

Challenge Work

Note that with these choices we did not stumble on a solution because

iii.

i

i

1 2

input values of x = 1 and x = 0 do not produce the correct result.

The table at the bottom of this page shows the first three training

sessions. The current network behaves correctly for the first two

cases (x = 0 and x = 0; x = 0 and x = 1), so no changes are made. For

the third case (x = 1 and x = 0), an adjustment takes place in the

weights and in the threshold value.

After these changes, the new network configuration looks like this:

Challenge Work

Continue the table from this point, cycling through the four sets of

input pairs until the network produces correct answers for all four

cases.

Pick one of the technologies discussed in this chapter (neural networks, swarm

intelligence, intelligent agents, expert systems, game-playing machines, or

robotics) and write a report on how it has been applied to a real-world product or

problem.

Challenge Work

3.

Chapter 15: Artificial Intelligence
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter Review

Additional Resources

Mouse For additional print and/or online resources relevant to this

1 2

1 2 1 2

1 2

chapter, visit the Computer Science CourseMate at login.cengagebrain.com.

Chapter 15: Artificial Intelligence
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

© 2014 Cengage Learning Inc. All rights reserved. No part of this work may by reproduced or used in any form or by any means -
graphic, electronic, or mechanical, or in any other manner - without the written permission of the copyright holder.

Chapter 16: Computer Graphics and Entertainment: Movies, Games, and Virtual Communities
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter 16
Computer Graphics and Entertainment: Movies, Games, and
Virtual Communities

16.1 Introduction

16.2 Computer-generated Imagery (CGI)

16.2.1 Introduction to CGI

16.2.2 How It’s Done: The Graphics Pipeline

16.2.3 Object Modeling

16.2.4 Object Motion

16.2.5 Rendering and Display

16.2.6 The Future of CGI

16.3 Video Gaming

16.4 Multiplayer Games and Virtual Communities

16.5 Conclusion

16.6 Summary of Level 5

Chapter Review

Exercises

Challenge Work

Additional Resources

Chapter 16: Computer Graphics and Entertainment: Movies, Games, and Virtual Communities: 16.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

16.1 Introduction
The first commercially marketed computer was the UNIVAC I, manufactured by

Remington Rand. On March 31, 1952, the company delivered its first machine to the
U.S. Census Bureau. Later systems went to the U.S. Army, the U.S. Air Force, the Atomic
Energy Commission, U.S. Steel, General Electric, and CBS, which used it to predict the
outcome of the 1952 presidential election. (See the Special Interest Box in Chapter 1
titled “Good Evening, This Is Walter Cronkite.”)

In 1952, a UNIVAC I cost $1,500,000, about $12 million in today’s dollars. It weighed 15
tons, contained 5,200 vacuum tubes, consumed 125,000 watts of electricity (generating
an enormous amount of heat), and occupied floor space equal in size to a small
apartment. These early machines were prohibitively expensive and required a massive
financial investment in space, power, cooling, and support staff. Because of these costs,
computers of the 1950s and early 1960s were only available to large organizations and
only for what were deemed “important” purposes—classified military work, corporate
research and development, or governmental policy analysis. The idea of using these
systems for such frivolous pastimes as playing games or watching videos would have
been unimaginable.

However, conditions changed dramatically in the late 1960s due to the development of
transistors and integrated circuits, introduced in Chapter 4. Computers became more
compact, more reliable, and much less costly. In 1965, Digital Equipment Corp. (DEC)
rolled out the PDP-8, the world’s first minicomputer, a term coined to describe a
computer system that was smaller and less expensive than the unwieldy mainframes of
the 1950s and early 1960s. A DEC PDP-8 minicomputer could be purchased for as little
as $16,000 (about $100,000 in current dollars) and only took up as much space as two
or three refrigerators.

Although still not cheap by today’s standards, this lower price meant that computers
were no longer accessible only to the military, government, and wealthy corporations;
instead, they were now within the financial reach of colleges, universities, and small
businesses. Some of the first computer games were created in the early 1970s by
college students experimenting after hours to see what these new minicomputers were
capable of doing. Games like Space Wars, Adventure, and Dungeons & Dragons were
played on university computers, arcade machines, or custom-designed home con-soles
well before personal computers arrived on the scene.

In 1972, Nolen Bushnell, an electrical engineering graduate of the University of Utah,
started a company called Atari (named after a board position in the game of Go), which
released its first product in 1974, an arcade game called Pong. It was wildly successful
and quickly became the most popular computer game in the country with 40,000 units
sold nationwide and hundreds of thou-sands of players eager to stuff coins into a slot
just for the privilege of playing a primitive electronic version of Ping-Pong, as shown in
Figure 16.1. (It is amazing to see how far video game technology has progressed in just
40 years!)

Figure 16.1

Pong—One of the first computer-based video games

In 1976, Atari produced a home version of Pong that allowed users to play on their
televisions using a game console, complete with joysticks and on-screen scoring. It sold
hundreds of thousands of units and became one of the most popular Christmas gifts of
the late 1970s. Other games soon followed, and the decade of the late 1970s and early
1980s is termed the “golden period” of video arcade systems. By early 1982, Atari had
become a $2 billion corporation and the fastest-growing company in the United States.

Using computers for entertainment, once considered frivolous and a complete waste of
valuable scientific resources, had by the late 1970s become an important, not to
mention financially lucrative, industry, and that growth has continued unabated.
Today, computer-based entertainment is a $40–$60 billion industry employing tens of
thousands of talented designers, artists, computer scientists, and engineers. Gamers
stand in line for hours to purchase the latest and greatest video game releases.
Hollywood spends massive amounts of money and manpower producing computer-
generated images that amaze and enthrall, all in the hope of reaping hundreds of
millions of dollars in movie ticket sales, DVD sales, and online streaming income.
Virtual worlds enroll millions of subscribers who spend hours wandering imaginary
spaces, joining online virtual communities, and making virtual friends.

Using information technology to amuse, fascinate, and frighten is no longer viewed as a
waste of time, at least not by the millions who participate and play. Instead, it is now
seen as an application that contributes significantly to the national economy and
brings enjoyment to many people. Just as the Jeep and Hummer evolved from

specialized military vehicles into passenger cars used for off-road fun and adventure,
so too has the computer evolved from a research tool of the military, government, and
universities to something avail-able for our personal pleasure. By the start of the
twenty-first century, computer-based entertainment had become an application that
can stand alongside such traditionally “important” uses of computers as mathematical
modeling (Chapter 13), electronic commerce (Chapter 14), and robotics (Chapter 15).

Chapter 16: Computer Graphics and Entertainment: Movies, Games, and Virtual Communities: 16.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

16.2 Computer-generated Imagery (CGI)

16.2.1 Introduction to CGI

On March 2, 1933, a sellout audience at Radio City Music Hall in New York City was
treated to the premiere of the science-fiction movie King Kong. This was the first
feature-length film (rather than cartoon) to have its central character, in this case a
giant gorilla, generated using animation. Animation had been used before in feature
films, but only in a few short scenes or to animate minor characters. Because the
movie’s premiere occurred years before the appearance of the first commercial
computer, Kong’s movements were created using a manual technique called
stop-motion animation. The special effects staff built a small-scale clay mock-up of the
creature, positioned it, and snapped a single photograph, called a frame. Then they
made a tiny change in the position of the model to represent its location a fraction of a
second later and shot another frame. This process of “move the model, shoot a frame”
was repeated thousands of times and, when the frames were shown in sequence
without interruption, Kong appeared to come alive on screen. (This is similar to the
“flip-book” style of animation in which pages of a notebook are filled with drawings
and riffled to pro-duce the effect of motion.) Stop-motion special effects were used in
many fantasy, adventure, and science-fiction movies of the 1940s through 1970s.

Although it is possible to produce reasonably good images using either hand-drawn
frames or stop-motion animation (King Kong was voted one of the 100 best films of all
time by the American Film Institute), both of these techniques have serious limitations.
Hand-drawing frames can be a painstakingly slow process, requiring dozens or even
hundreds of highly skilled artists. The most notable problem with stop-motion
techniques is the difficulty of repositioning a clay model with a sufficient degree of
accuracy so that the model’s movements do not appear jerky and artificial. At 30
frames per second (the standard rate for video; film uses 24), one hour of stop-motion
animation requires 108,000 separate images, each of which must be manually
positioned and photographed. The effort required can make this a painfully slow and
expensive way to create special effects.

However, until the early 1990s, there were really no other choices. As we will soon
learn, using a computer to produce realistic images requires enormous amounts of
computational speed and power, and the mainframes of earlier decades were generally
not up to the task. In addition, the algorithms used to create realistic human and
animal replicas were in their infancy and not well understood. There were some early
attempts to produce computer-animated movies—for example, Tron (1982) and The
Last Starfighter (1984)—but the quality of that early work was rather poor, and most
movie directors opted to stay with either stop-motion or hand-drawn animation to
produce their special effects.

Two groundbreaking movies of the early 1990s quickly changed Hollywood’s mind:
Terminator 2: Judgment Day (1991) used a computer to create the T-100 Terminator
character and the special effects used in action sequences. Jurassic Park (1993) used
computers to create and animate the movie’s dinosaurs and paste them seamlessly into
the background of the frames. The quality of those early 1990s images was an order of
magnitude improvement over what had been available just 8 to 10 years earlier. Both
movies were huge financial as well as artistic successes, and they clearly demonstrated
the rapidly improving capability of computer-generated imagery, usually referred to by
its acronym CGI. By the mid-1990s, computer hardware could handle the massive
computational demands required to create realistic three-dimensional images, and CGI
software development had reached a point where its final product was as good as, if
not better than, the manual output of human animators. By the beginning of the
twenty-first century, CGI had become the method of choice for virtually all film and TV
animation and special effects.

CGI has many advantages over manual techniques. It can produce extremely
high-quality, lifelike images, called photorealistic animation, that are difficult to create
using hand-drawn pictures or stop-motion models because of the high level of detail
that is required. CGI can generate images that would be prohibitively expensive to
produce manually, such as massive crowd scenes containing thousands of characters.
Without CGI, directors would either have to hire thousands of extras, animate the
scenes by hand, or produce thousands of miniature models, all of which would be quite
costly and time-consuming. Computers can be used to produce scenes that would be
dangerous if filmed using human subjects, such as car chases and explosions. Finally,
CGI produces frames by using only a single animator and a single tool—the computer
—instead of a large team of animators, model builders, directors, camera crew, and
lighting staff. This can reduce costs and speed up the animation process.

Today, computer imaging is a multibillion-dollar industry, and the CGI budget for a
wide-release feature film can easily exceed $40–$50 million. Furthermore, CGI
techniques have moved well beyond the Hollywood sound stage and are now used in
such fields as video gaming (discussed later in this chapter), computer software,
scientific and medical imaging, television, advertising, flight simulation, and the
production of still images for books and magazines.

of image being produced and whether certain operations are grouped together or listed
separately. The following sections describe the three stages shown in the simplified
graphics pipeline of Figure 16.2: object modeling, object motion, and rendering and
display. (Exercise 1 at the end of the chapter asks you to find other examples of a
graphics pipeline diagram to determine which steps were omitted from the simplified
version shown in Figure 16.2.)

Figure 16.2

A simplified three-stage graphics pipeline

Chapter 16: Computer Graphics and Entertainment: Movies, Games, and Virtual Communities: 16.2.3
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

16.2.3 Object Modeling

The first step in generating a realistic three-dimensional image is object modeling —the
creation of a mathematical or computational model of a three-dimensional object that
can be stored in the computer’s memory and manipulated algorithmically. There are
many approaches to object modeling, but one of the most well known and widely used
is wireframe modeling. In this technique, the object’s surface, but not its interior, is
represented mathematically using a set of simple nonoverlapping polygons, usually
tri-angles or rectangles.

For example, to create a scene containing a dolphin, we might start by inputting an
image of that object. There are a number of ways to provide this input—an artist could
draw a picture by hand, or we could scan an existing photograph. Next, using special

CGI software and an algorithm called tessellation, the image is subdivided into a set of
plane figures that completely covers its surface. An example of this tessellation process
is shown in Figure 16.3, using triangles. Figure 16.3 also explains the reason behind the
name of this technique. The polygonal outline on the surface, called a polygon mesh,
produces a model that looks as if it were built from many thin pieces of wire.

Figure 16.3

Wireframe model of a dolphin (based on image in Wikipedia entry on polygon

meshes)

Once the object’s surface is tessellated, information about the individual polygons is
stored in memory, usually in the form of a vertex list. This is a table giving the
coordinates of each vertex on the object’s surface and the identity of all other vertices
to which this one is connected. In order to enter the proper (x, y, z) coordinates of each
vertex, where z is the third axis, coming out of the plane, we need to know the origin of
the coordinate sys-tem, that is, the (0, 0, 0) reference point. For simplicity, one of the
vertices is usually specified as the origin. It does not matter which point is chosen, as
long as the computer knows its identity.

As an example, the four triangles in Figure 16.4(a), which represent a pyramid coming
out of the page, might produce the vertex list shown in Figure 16.4(b) using vertex v as

the origin point.

Figure 16.4

Simple tessellation and corresponding vertex list

1

The simple four-triangle tessellation shown in Figure 16.4(a) produced the vertex list of
Figure 16.4(b) containing about three dozen pieces of information. Realistic objects
such as the dolphin of Figure 16.3 can result in enormous tables that consume massive
amounts of computer time to generate and huge amounts of memory to store.
Furthermore, our dolphin may be only one of hundreds of objects (e.g., rocks, coral,
algae, fish, water, sky) present in a single frame, all of which must be modeled and
stored. You can now begin to understand the reasons why CGI places such huge
processing and storage demands on a computer system.

Chapter 16: Computer Graphics and Entertainment: Movies, Games, and Virtual Communities: 16.2.4
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

16.2.4 Object Motion

After we have captured and stored a model of our object in a computational format, we
can begin the next stage in the graphics pipeline of Figure 16.2 — moving that object to
its proper position in the next frame.

There are three types of rigid motion (motion that does not bend or deform an object):
translation, rotation, and reflection. These three motions are illustrated in Figure 16.5.

Figure 16.5

The three types of rigid motion

Practice Problems

The following is a polygonal mesh representation of a two-dimensional

drawing of a house created using tessellation:

Using v as the origin, show the vertex list generated by this wireframe

model. (Note: Because this is a two-, rather than three-, dimensional

model, the z entry in each column of Figure 16.4(b) would be 0.) How

many distinct pieces of information are required to store the

information about this model?

Translation, shown in Figure 16.5(a), is the lateral (up, down, right, left, and in 3D, in,
out) movement of every point in an object by the same amount and in the same
direction. Rotation, Figure 16.5(b), is the circular movement of an object around a fixed
point or, in 3D, around a fixed axis, much as a merry-go-round horse revolves around
the ride’s central mechanism. Finally, reflection , Figure 16.5(c), produces a mirror
image of an object such that every point in the reflected image is the same distance
from the mirror as in the original object, but on the opposite side of the mirror.

The movement of an object from its location in one frame to its new location in the
next is often described not by a single type of motion but a combination of two or more
of these basic operations. For example, to model the motion of an airplane taking off
and banking to the left, we might use translation to move the airplane forward and
upward in space and rotation to model the turning operation. (Note: Some types of
movement cannot be described using just these three operations. Motions that deform
or change the shape of an object, such as scaling, squeezing, stretching, or ripping, are
widely used in computer graphics, but they need additional operators not described
here.)

To implement these three motions, we use a mathematical structure called a
transformation matrix. When a vector containing the (x, y, z) coordinates of a single
vertex point is multiplied by this matrix, the result is a new vector containing the
translated, rotated, or reflected (x′, y′, z′) coordinates of that vertex point in the next

1

Figure 16.6

frame. This same multiplication operation is then applied to every vertex in the vertex
list, generating the new coordinates for the entire object. Thus, in CGI the abstract
concept of motion is defined in terms of matrix multiplication, an algorithmic
operation easily programmed on a computer. However, even though it may be easy to
implement, the potentially huge number of multiplications can make this a
time-consuming task. Animating an object containing thousands of vertices, like the
dolphin of Figure 16.3, can require millions or even billions of arithmetic operations.
Again, we can begin to understand and appreciate the need for high-performance
computers in the field of CGI.

Let’s illustrate how this is done using translation, the straight-line movement of a single
point. To move a single vertex point located at coordinates (x, y, z) to a new position at
location (x + a, y + b, z + c), we multiply the current coordinates by the 4 × 4 translation
matrix shown in Figure 16.6. (See Section 8.3.2 starting onfor an explanation of matrix
multiplication.) The results of this operation are the coordinates of this vertex point in
the next frame after it has been moved by a units along the x-axis, b units along the
y-axis, and c units along the z-axis.

Using matrix multiplication to implement object translation

After the operation of Figure 16.6 has been applied to every vertex in the vertex list, the
entire object will appear to move laterally as a single unit. This behavior is
diagrammed in Figure 16.7, in which the object of Figure 16.4(a) is moved a units right
in the x-direction and b units up in the y-direction. (Assume zero movement in the
z-direction to make the picture easier to visualize.)

Figure 16.7

Example of a translation performed on the object shown in Figure 16.4(a)

What actually happened in Figure 16.7 is that the (x, y, z) coordinates of each of the five
vertices in the vertex list of Figure 16.4(b)—i.e., columns 2, 3, and 4—were multiplied
by the 4 × 4 translation matrix in Figure 16.6, with c set to 0 because there is no
movement in the z-direction. The newly generated (x′, y′, z′) coordinates of each vertex
point are copied back into columns 2, 3, and 4 of the vertex list, replacing the old
coordinates. Now, when this object is displayed in the next frame, it will be in its
proper location. If we repeat this entire operation 30 times, moving the object a tiny
amount each time (i.e., using small values for a, b, and c), then when these 30 frames
are shown in sequence, the result will be one second of animated motion. Our eyes will
not see 30 separate and distinct movements like those in Figure 16.7, but one second of
smooth, flowing motion.

Both rotation and reflection operations are implemented in a similar way, but using the
appropriate rotation or reflection matrix in place of the translation matrix shown in
Figure 16.6. (Exercises 7 and 8 at the end of the chapter ask you to determine what
these two matrices look like when working in two dimensions rather than three.)

One of the advantages of CGI over manual systems is that a computer can perform
many of the required operations without the assistance of a human designer, greatly
speeding up the animation process. For example, assume the translation motion
diagrammed in Figure 16.7 takes place over one second. At 30 frames per second, the
standard rate for video, an animator would need to generate 30 distinct frames to
obtain the desired effect. However, using a CGI technique called keyframing, a human
animator only needs to produce the first frame, containing the starting location of the
object; the last frame, containing the final location of the object; and the elapsed time,
in this case one second. Using this information, a computer can automatically generate
the 28 required intermediate frames, called in-between frames or, more simply,
tweeners. The computer adds 1/29th of the distance between the object’s location in the
first and last frames to the coordinates of the object in the current frame to position it
correctly for the next frame, because with N total frames, there are N − 2 in-between
frames and N − 1 time intervals. The work of the animator has been reduced from
creating 30 frames to creating two, the first and the last. This is a huge shift in
workload from human being to computer.

In our discussions of motion, we have moved the entire object as a single entity in
relation to a single origin point. For example, the polygon in Figure 16.7 moved up and
to the right as a complete unit. However, sometimes we want to move different parts of
an object in relation to different points or axes, rather than one, in order to achieve a
specific effect. For example, Figure 16.8 shows a Figure 16.3 object with two axes of
rotation, labeled A and B, with A lying outside the object and B lying at the center of the
right circle. (Note: Assume the axes of rotation are parallel to the z-axis and are coming
out of the page.)

Figure 16.8

Figure-8 object containing two control points

If we perform a rotation operation around axis B on just the rightmost circle, that circle
rotates like a wheel around its axle. If we do a second rotation on the entire Figure 16.3
object, this time using axis A, the Figure 16.3 flies around A like the Earth around the
sun. We will have created two distinct types of motion—one part of the object spinning
like a wheel, while both parts of the object are flying around in a circle. We have
achieved this complex set of motions by using two different points of control. A point
or axis used to control the motion of an object is called a control point, also called an
animation variable.

In an object like the dolphin of Figure 16.3, there may be dozens or hundreds of distinct
control points that allow us to move the object’s head, body, and tail in multiple ways.
Similarly, if we are animating the image of a human face, we might want control points
for the smiling and frowning movements of the mouth; a control point for the eyes to
allow them to move independently; and control points for the head, to allow it to turn
left and right as well as swivel up and down. It would not be unusual for an animated
image of a human being to have as many as 500 separate control points, to allow it to
move in many different ways, just as people are able to do in the real world.

Chapter 16: Computer Graphics and Entertainment: Movies, Games, and Virtual Communities: 16.2.5
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

16.2.5 Rendering and Display

We now have a polygon mesh composed of a set of plane figures, such as triangles,
correctly positioned within the new frame after motion has taken place. The final step

in the graphics pipeline of Figure 16.2 is rendering and displaying the final image.
Rendering means taking an object stored as a mathematical model, such as the vertex
list of Figure 16.4(b), and converting it into a fully formed, visually pleasing three-
dimensional image.

Practice Problems

Assume that you want to animate the lateral motion of a triangle from

its current location, in which:

This movement is shown in the following diagram:

This motion will take two seconds to complete. Show the translation

matrix that can be used to generate all the necessary in-between frames.

Rendering is a complex set of operations that often consumes the great majority of

computer time required to produce an image. Some of the issues addressed during the
rendering process are:

Lighting—We specify the location and intensity of all light sources illuminating

the image and determine the effect these light sources have on the final

appearance.

Color shading—We initially assign a single color or gray level to each vertex in the

model and then blend those colors across the face of the polygon. We also

determine if there are any modifications to the intensity or shade of that color

due to the incidence of light falling on that plane.

Shadows—We modify the color and brightness of each plane figure because of

shadows cast on that plane by opaque objects.

Texture mapping—In the first two stages of CGI, we assume that each plane is a

homogeneous, detail-free surface. However, real surfaces like human skin or tree

bark are far from homogeneous. Texture map-ping allows us to add surface

details (bumps, grain, indentations) to each of the plane figures.

Blur—If an object is moving rapidly from one frame to the next, we may choose to

blur the final image to represent that motion.

The operations just described (and many others not listed here) are carried out by CGI
software running special-purpose rendering algorithms. Figure 16.9 shows a fully
rendered color image generated from a polygon mesh representation of each object
—glasses, pitcher, dice, ashtray, tiled walls, and table. This image clearly illustrates the
many difficult issues that rendering software must deal with in producing a finished
image—the color shading of the ashtray from bright green to almost black; the
transparency of the glass objects, revealing objects located behind them; the
opaqueness of the pitcher; shadows on the wall; reflection of light off the glass surfaces;
and the complex texture on the bottom of the water glass.

Figure 16.9

Example of a fully rendered frame

Source: Courtesy Gilles Tran

Rendering a complex image like Figure 16.9 can be difficult and time consuming,
especially when there are numerous objects and many light sources. It would not be
unusual for a computer, even a powerful one, to spend hours rendering a single frame
such as Figure 16.9.

There are many different algorithms for carrying out the rendering operations just
described, such as rasterization and radiosity, but the most common algorithm, by far,
is ray tracing. In this approach, the computer etermines the total amount and direction
of light falling on each plane surface in the model’s vertex list. For example, in Figure
16.10 there are three light sources illuminating triangle T, where T is a single triangle
located on the object’s surface. Light source A shines directly onto the surface of T.
Light source B is blocked by an opaque object, so it does not contribute any direct light,
although it does contribute some indirect lighting due to reflection off another surface.
Light source C is partially, but not completely, blocked by an opaque object, so it
contributes only a fraction of its potential light. The contributions of each light source
are summed to determine the total amount and direction of light rays falling on the
face of triangle T. This value, along with a knowledge of the object’s orientation in
space, determines the proper intensity, color shading, and brightness of that face so
that it can be rendered in a visually appropriate manner.

Figure 16.10

Three light sources illuminating triangle T

Tracing the individual rays of light falling on every face of a model can be an extremely
slow operation, especially if there are numerous light sources and we are rendering a
“busy” object, such as leaves on a tree or strands of hair on a human head. For these
special surfaces, CGI often uses algorithms designed to render just this one type of
object.

The end product of rendering is a fully colored and textured three-dimensional image
ready for display. The final step in the process is changing that three-dimensional
image into a two-dimensional one for display on a computer monitor, game console, or
movie screen. This is a relatively simple step based on the position of each object in the
frame, the location of the viewer, and some simple geometry. For example, Figure
16.11(a) contains three three-dimensional objects labeled A, B, and C, and a viewer
whose position is indicated by the letter V. Knowing the three-dimensional coordinates
of A, B, C, and V, we can determine that, from the perspective of point V, sphere B is
totally obscured while pyramid C is partially obscured. This information can be used to
produce a two-dimensional screen representation of what can be seen by a viewer
from location V. This is shown in Figure 16.11(b).

Figure 16.11

Converting an image to a two-dimensional representation

Chapter 16: Computer Graphics and Entertainment: Movies, Games, and Virtual Communities: 16.2.6
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

16.2.6 The Future of CGI

High-quality CGI is one of the most computationally demanding applications of
computers, and only in the last 15 or so years have processors become sufficiently
powerful and memory units grown sufficiently large to carry out the operations
described in this section in a reasonable amount of time. However, as we learned in
Chapter 5, parallel and multi-core computers are becoming far more common, and this
increased level of parallelism is allowing computers to overcome Moore’s law and
continue to gain in speed, allowing for the production of far more detailed images. In
addition, computer scientists are discovering newer and better algorithms for such
common CGI operations as modeling, animation, and rendering. The future of CGI is
bright, and it is quite likely that the next 40 years will see improvements in the quality
of computer-generated imagery that may be as (or more) dramatic than the change
from the primitive Pong game of Figure 16.1 to the elegant still life of Figure 16.9.

Chapter 16: Computer Graphics and Entertainment: Movies, Games, and Virtual Communities: 16.3
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

16.3 Video Gaming
The computer science issues involved in producing video games are much the same as
those addressed by CGI because game images displayed on a laptop, tablet, or
smartphone must still be modeled, animated, and rendered as described in the last
section. However, there is one huge difference between CGI and video gaming that
makes an enormous difference in how we approach and implement these two
applications.

A movie is not an interactive environment. There is no change to the plot or action on

the screen based on what the user is thinking or doing. If you watch a movie 10 times,
you will see exactly the same images in exactly the same order 10 times. Therefore,
movie animators can spend as much time as they want rendering each frame, even
hours if necessary, because once each frame is completed, its content never changes
and the order in which the frames are shown never changes. Simply put, a movie is a
static environment that is created once and shown as often as desired.

On the other hand, a video game is a highly interactive environment. Using an input
device such as a joystick, wireless controller, or finger tap, a user dynamically controls
the action and makes instant decisions about what happens next—Should I shoot that
alien? How hard should I swing this club? The content of the next frame depends on
what the user does at this instant. Therefore, we cannot render all frames in advance
because we don’t know exactly how the objects will move or behave. When the game is
in progress, we must generate the frames fast enough so that the action on the screen
appears to happen at roughly the same rate as it would happen in the real world. For
example, if I use my game controller to swing a virtual golf club, the screen image must
immediately display the ball’s proper flight based on the properties of the swing that I
just made. If the processor cannot work that quickly, the action will be sluggish, and
the game will be far less enjoyable to play.

The branch of computer graphics that studies methods for creating images at a rate
matching that of the real world is called real-time graphics, and video gaming is an
excellent example of a real-time application. This means that instead of having minutes
or hours to render a frame, we have, at 30 frames per second, only 1/30th of a second to
get the user’s input, determine what took place, generate a new frame representing the
result of that action, and display the final image. That is a severe time constraint, and
because of this limitation, the operative principle in producing video game images is:

If necessary, sacrifice image quality for speed of display.

One of the most common techniques for increasing imaging speed, termed the frame
rate, is to use a GPU, an acronym for Graphics Processing Unit. A GPU is an
independent Von Neumann processor, much like those described in Chapter 5 and
diagrammed in Figure 5.18. A GPU executes instructions in parallel with the CPU, the
Central Processing Unit, and carries out all of the graphics operations described in this
chapter—modeling, motion, rendering, and display. If there is no GPU, these operations
must be handled by the CPU in addition to its many other responsibilities—running
user programs, updating disks, handling input/output, and managing net-work
connections.

With a GPU, all imaging responsibilities are off-loaded from the CPU to the GPU, and
the two processors run in tandem, an excellent example of the multi-core parallelism
introduced in Section 5.4. Because a GPU does not have to do general-purpose

computing, only image processing, its instruction set can be optimized to perform the
specific operations needed by CGI. These might include rendering and drawing
triangles like those in the dolphin model of Figure 16.3 or searching two-dimensional
matrices like the vertex list of Figure 16.4(b).

Typically, a GPU has its own dedicated random access memory where it stores the
image data and which is separate from primary memory. The GPU along with this
dedicated RAM, referred to as video memory, is located on a video card, also called a
graphics card, and is connected to the main CPU and memory through a plug-in
expansion slot or via the system bus. This architecture is diagrammed in Figure 16.12.
The configuration shown in Figure 16.12 allows the GPU to access image data (e.g.,
vertex list, color information, location of light sources) from video memory without
having to compete with, and be slowed down by, the CPU as it tries to access the
primary memory. Today, the great majority of computer systems and video game
consoles contain a dedicated video card and GPU architecture similar to the one shown
in Figure 16.12. In fact, many systems today contain multiple graphics cards, each with
multiple GPUs. For example, the Apple iPad 2 contains two separate graphics cards,
each having two graphics processors. This higher level of parallelism is becoming
common in newer systems.

Figure 16.12

Typical architecture of a GPU and video memory

Another way to achieve speedup in real-time graphics is to avoid the use of algorithms
that, although they produce high-quality images, simply take too much time. An
excellent example is the ray-tracing algorithm introduced in Section 16.2.5 and
diagrammed in Figure 16.10. Following millions (or billions) of light rays from their
source to an object’s surface and any subsequent reflections can produce truly lifelike
images, such as the still life of Figure 16.9, but it can take minutes or hours to render a
single frame. In a real-time environment, we don’t have hours or minutes, only 1/30th
of a second, to complete this task.

We can gain considerable speedup by rendering an entire plane (i.e., a single triangle)
using a uniform color, shade, and texture. As was mentioned in the previous section,
many rendering algorithms initially assign a uniform color and texture to each triangle
but then blend and mix adjacent colors to create a smooth and pleasing color
transition. We can eliminate this step and instead use a single color and texture for the
entire face; subtle color differences or brightness changes within a single plane would
not be allowed. This reduces our workload significantly, but it comes at the cost of a
less lifelike image.

Another technique to speed up rendering and display is culling. Rather than rendering
every plane in the wireframe model and then determining which planes are visible
from the user’s perspective, as diagrammed in Figure 16.11, we could turn those two
operations around. First determine which planes can be seen from the user’s point of
view, based on location and opaqueness, and then render only those objects visible in
the next frame, omitting all operations on hidden surfaces.

Finally, video gaming often makes use of a technique called cut-ins. These are fully
modeled and fully rendered objects stored in a video library in video memory. These
already prepared objects can be dropped into a frame as is, producing a significant
speedup in frame creation. These cut-ins often include images of the main game
characters as well as standard back-ground objects—cars, castles, weapons—that
appear in many of the frames.

The end result of these optimizations (and many others not mentioned here) is the
ability to accept user input, determine what action should be taken in response to this
input, and render and display a frame representing the game state after that action has
been completed. And all of this in only 1/30th of a second!

Today the quality of a typical video game image does not approach the level achieved
by high-quality, feature-film CGI because of the time constraints placed on real-time
graphics. However, as processors grow faster and as higher degrees of multi-core
parallelism (4, 8, 16 GPUs per system) become both technically and financially feasible,
the quality of real-time video game images will certainly improve and perhaps begin to
approach the level of the computer-generated imagery found in today’s best feature
films.

16.4 Multiplayer Games and Virtual Communities
Most video games involve a small number of players, typically one to four. However,
the last 10 years have seen the development of a new game genre called massively
multiplayer online games (MMOG). These games allow a large number of players, often
thousands or tens of thousands, to interact, form groups, and compete against one
another within a simulated virtual world.

The world in which the action takes place is created and managed by special computers
called game servers. Depending on the game complexity and the number of players,
there may be only one or two servers or many thousands. In an MMOG, the virtual
world in which the game is played is persistent. This means the server software that
creates the world is always running and always available, and it always maintains the
current state of every player. This is unlike games that can be turned off and on at will,
but that lose state information when turned off, and must be restarted from the
beginning.

Users log on to the game server whenever they want, using client soft-ware running on
their home computer, laptop, or smartphone. This client software may be either
proprietary code purchased from the gaming company or a publicly available program
such as a Web browser. Thus, the architecture of an MMOG, shown in Figure 16.13, is
virtually identical to the client/server network model introduced and diagrammed in
Chapter 7, Figure 7.20.

Figure 16.13

Architecture of an MMOG

The development of an MMOG incorporates a number of important computer science–
related research topics that have been discussed earlier in the text. For example, the
three-dimensional images displayed on the user’s computer employ all the real-time
graphics algorithms discussed in the previous section, but with the added complexity
and tighter time constraints caused by delays across the network. In addition to
rendering the game images, designers of MMOG must also address and solve the
following technical problems:

Registration management—There may be tens of thousands of existing users at

various points in the game, as well as thousands of new users joining every day.

The responsibilities of the server software that manages this user base include

ensuring that new users correctly join the community, saving the game state of

existing users when they log off, and restoring that state when they log back on.

This is similar to the “receptionist” responsibility of the operating system

discussed in Section 6.4.1.

Client/server protocols—In an MMOG, there are tens of thousands of users

simultaneously accessing hundreds or thousands of game servers across multiple

communication channels. The game designers must implement the network

protocols that support this vast communications array. We discussed the topic of

computer networks and protocols in Chapter 7.

Security—An MMOG must keep track of each user’s activity to ensure that his or

her actions do not incorrectly or inappropriately affect the actions of other

players. Furthermore, the system must ensure that all users adhere to the rules of

the game and do not attempt to carry out illegal operations. The topic of

computer security was discussed in Chapter 8.

Database design—The world database of Figure 16.13 can be a truly massive

structure holding trillions of bytes of data. The game designers are responsible

for implementing this database and making sure that it can be accessed quickly

enough to provide real-time response to user actions. Databases were introduced

and described in Section 14.3.

Because of these many technical complexities, the cost of developing a sophisticated
MMOG can run to tens of millions of dollars and take hundreds or thousands of
person-years to design and implement.

When we think of the word game, we usually assume an environment based on
competition, scoring, winners, and losers. However, a recent development in MMOG
design is the concept of a noncompetitive MMOG, some-times called a metaverse, short
for metauniverse. This is a simulated virtual world, much like what we have just
described, but where the goal is not to destroy your opponent or get the highest score.
Instead, the purpose of entering this metaverse is simply to explore the virtual world,
interact with other people in the world (often called “residents”), form communities of
residents with similar interests, and create new economic entities that have (virtual)
value. Players behave in this metaverse in many of the same ways they do in the real
world—communicating, working, building, and moving around. There is no winning or
losing in a noncompetitive MMOG, just the enjoyment of experiencing a new
environment and meeting new people — not unlike traveling (for real) to a foreign
country.

The most widely used and well-known metaverse is Second Life, a virtual world created
by Linden Labs in 2003. Many of the items in this virtual world (houses, cars, clothing)
are user-generated objects constructed by individuals or groups using a CGI modeling
tool that allows residents to customize their virtual environment. (This tool performs
the operations listed in the graphics pipeline diagram of Figure 16.2.) According to
many of its residents, it is the collaborative and creative activities, not competition, that
make Second Life so popular.

Second Life uses the client/server model diagrammed in Figure 16.13. The client
software that provides access to the virtual world is a free, down-loadable program
called Second Life Viewer. Currently, there are several thousand server computers and

over 100 trillion (10) bytes of data in the Second Life world database. However, even
with this vast amount of computing power, the popularity and growth of Second Life is
beginning to strain the computational resources of Linden Labs, making it difficult to
keep up with the growth of its virtual world. (This problem is not unlike the problems
encountered in rapidly growing real-world cities whose resources strain to keep up
with an expanding population.)

Currently, there are approximately 21 million residents of Second Life, which would
make it the 55th-largest country in the world (if it were a country), a little smaller than
Australia but larger than Chile, the Nether-lands, Ecuador, and Greece. At any instant
in time, there are approximately 54,000 people logged on to Second Life, wandering
through this virtual world, chatting with members of virtual communities, and creating
virtual economic wealth.

Chapter 16: Computer Graphics and Entertainment: Movies, Games, and Virtual Communities: 16.5
Book Title: Invitation to Computer Science, Sixth Edition

14

Assume the matrix multiplication of Figure 16.6 requires a total of

28 arithmetic operations—floating-point additions and

multiplications. If we want to move (i.e., translate) a wireframe

representation of an object containing 100,000 vertex points, and if

that motion takes 10 seconds to complete, how many arithmetic

operations in total does a computer need to perform to implement

that movement?

a.

If your GPU can execute 50 million floating-point operations per

second, how long will it take the processor to complete this

translation operation?

b.

3.

Assume a polygon mesh contains 250,000 vertices. If a single matrix

multiplication requires 28 floating-point operations, how fast a GPU is

needed (floating-point operations per second) to produce real-time

graphics at the rate of 30 frames per second?

4.

Here is the vertex list for a two-dimensional wireframe triangular model:

Draw the two-dimensional figure modeled by this vertex list.

Draw the two-dimensional figure modeled by this vertex list.

5.

We want to animate the movement of the object in Exercise 2 from its

current location at (0, 0, 0), the coordinates of v , to the point (3, 5, 0). The

motion lasts for a total of 2 seconds. Show the translation matrix that

accomplishes this motion. That is, show the matrix that, when reapplied

30 times each second for a total of 2 seconds, will produce the desired

ending position.

6.

Assume you are working in two, rather than three, dimensions.

Determine the four entries of the 2 × 2 rotation matrix that will take a

vertex point located at position (x, y) and rotate it clockwise around the

7.

1

origin by an angle ø The rotation is shown here: (Hint: You will need to

use some trigonometric functions to accomplish this.)

Again assume you are working in two, rather than three, dimensions.

Determine the four entries of the 2 x 2 reflection matrix that takes a vertex

point at position (x, y) and reflects it around the y-axis. That is, assume the

mirror line in Figure 16.5(c) is the y-axis. This reflection operation is

shown here:

8.

Shown here is an image of a human arm, from shoulder to hand. It has

three control points labeled A, B, and C. Describe what type of motion

might require the use of each of these three control points. Using these

three control points, describe informally how you might animate the

motion of an arm raising a glass held in the hand up to a figure’s mouth.

9.

Would a flight simulator package used to teach pilots to fly an airplane be

a real-time graphical environment? Explain your answer.

10.

The next diagram shows a single triangular face in the wireframe

representation of an object. The three vertices of the triangle are labeled

v , v , and v , and each has been assigned a color, either red, blue, or

green.

The vertex color is stored as a three-tuple, with each entry an integer in

the range 0 to 255, representing the contribution of the components red,

green, and blue, respectively. (Note: This is identical to the RGB color

model introduced in Chapter 4, Section 4.2.2,.) So, for example, the color

red is represented by the three-tuple (255, 0, 0). Purple, an equal mix of

red and blue, would be represented as (128, 0, 128).

11.

1 2 3

During the rendering phase, a computer must shade in the entire

triangular face, according to the colors assigned to each of the three

vertices. Describe an algorithm that would do color shading and blending

of the triangular face in a visually attractive manner.

You are given the three-dimensional coordinates of a point P1 (x , y , z)

and a point P2 (x , y , z). You are also given the coordinates of the

location point of a viewer (x , y , z). You may assume that P1 and P2 are

located on the same side of the viewer. Describe informally (you do not

need to write out an algorithm) exactly how to determine if, from the

point of view of the viewer, it is possible to see both points P1 and P2, or if

one of these points is obstructed and not visible. In the latter case,

describe how you can determine which is the occluded point.

12.

The following diagram contains a circle of radius 1 with its center at the

origin (0, 0). There is a mirror line parallel to the y-axis located at the

point x = −2. For each of the following pairs of operations, show the final

result after each of the two pairs of motions has been completed, one at a

time:

13.

1 1 1

2 2 2

V V V

For one or more of these rendering topics, write a report that describes the algorithms
used to address these issues.

Chapter 16: Computer Graphics and Entertainment: Movies, Games, and Virtual Communities
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter Review

Additional Resources

 For additional print and/or online resources relevant to this

chapter, visit the Computer Science CourseMate at login.cengagebrain.com.

Chapter 16: Computer Graphics and Entertainment: Movies, Games, and Virtual Communities
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

© 2014 Cengage Learning Inc. All rights reserved. No part of this work may by reproduced or used in any form or by any
means - graphic, electronic, or mechanical, or in any other manner - without the written permission of the copyright holder.

Chapter : Introduction
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Part Introduction

We have now reached the highest and most abstract level in our discussion of
computer science—the social, ethical, legal, and moral questions raised by the
information-based technologies just presented. In this section, we are no longer
interested solely in algorithms (Level 1), hardware (Level 2), virtual machines (Level 3),
software (Level 4), or applications (Level 5). Instead, we investigate the impact, both
good and bad, that these developments can have on business, government, society, and
individuals. These concerns were not part of the original definition of computer
science, and in the early days were often not included in the computer science
curriculum but, instead, left to departments such as Philosophy, Religion, or Sociology

to discuss and debate. However, as computing has become more pervasive, these social
and ethical issues have become a critically important part of the study of computer
science.

Chapter : Introduction
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

© 2014 Cengage Learning Inc. All rights reserved. No part of this work may by reproduced or used in any form or by any
means - graphic, electronic, or mechanical, or in any other manner - without the written permission of the copyright holder.

Chapter 17: Making Decisions About Computers, Information, and Society
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter 17
Making Decisions About Computers, Information, and
Society

17.1 Introduction

17.2 Case Studies

17.2.1 Case 1: The Story of MP3—compression Codes, Musicians, and Money

17.2.2 Case 2: The Athens Affair—Privacy vs. Security

17.2.3 Case 3: Hackers–Public Enemies Or Gadflies?

17.2.4 Thinking Straight About Technology and Ethics

17.2.5 Case 4: Genetic Information and Medical Research

17.3 Personal Privacy and Social Networks

17.4 What We Covered and What We Did Not

17.5 Summary of Level 6

Chapter Review

Exercises

Additional Resources

Chapter 17: Making Decisions About Computers, Information, and Society: 17.1
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

17.1 Introduction
Most of this book has focused on the technical issues of computing. For example, you
have read about the mathematics of algorithmic efficiency (Chapter 3), the hardware
implementation of computer systems (Chapter 4 and Chapter 5), building computer
networks (Chapter 7), and software development (Chapter 9 and Chapter 10). However,
in this chapter, we focus on the human issues lurking behind these technical details.
We can’t provide a comprehensive list of such issues; such a list would be way too long,

and it is growing daily. Instead, we introduce skills that will help you to think and
reason carefully when making personal decisions about computing. This chapter also
discusses important societal issues related to information technology and personal
privacy and points you toward resources to help you explore these issues in greater
detail. Making critical decisions about computing technology is unavoidable.
Increasingly, our society is being driven by the access to and the control of information.
As citizens of our communities, our country, and the world, we want our decisions to
be well informed and well reasoned.

Whenever humans make decisions about things they value, there are conflicts and
trade-offs. The scholarly field of ethics has a long history of studying how to identify
and resolve such conflicts, and we will borrow from several classical theories of ethics.
In this chapter, we present a number of case studies built around complex ethical
issues related to computing and information. For each case study, we present the issues
as well as arguments used to support and oppose certain positions. We then describe
methods that allow us to understand and evaluate these arguments in terms of their
ethical implications. When you finish this chapter, you should have an increased
appreciation for the complexities of human/computer interactions as well as an
enhanced set of skills for thinking and reasoning about these interactions.

Chapter 17: Making Decisions About Computers, Information, and Society: 17.2
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

17.2 Case Studies

17.2.1 Case 1: The Story of MP3—compression Codes, Musicians, and Money

In 1987, some scientists in Germany started working on an algorithm to compress
digital files that store recorded music on CDs. Using a complex model ofhow humans
perceive sound, the Fraunhofer Institute in Erlangen, Germany, devised a method with
the rather ungainly title of Moving Picture Experts Group, Audio Layer III. This
algorithm (or protocol) quickly got the nickname MP3.

We introduced MP3 in our discussion of the binary representation of sound in Section
4.2.2. In that section, we showed how the digital representation of audio information
can produce massive and unwieldy data files. To reduce these files to a more
manageable size, we compress them using a compression algorithm such as MP3,
which allows various levels of compression. The more you compress the music data,
the more sound quality you lose. A compression ratio (defined in Section 4.2.2) of 12 to
1 has become popular, with the resulting sound quality almost indistinguishable from a
music CD that has not been compressed.

In 1989, the Fraunhofer Institute patented MP3 in Germany, and a few years later MP3

became an international standard. It might simply have become another technical
detail known to only a few engineers had it not been for the World Wide Web and an
army of young people enthusiastic about recorded music.

In 1997, Tomislav Uzelac, a software developer at Advanced Multimedia Products,
created what is regarded as the first commercially viable MP3 playback program. Two
students from the University of Utah, Justin Frankel and Dmitry Boldyrev, used Uzelac’s
player to develop a user-friendly Windows application called WinAmp that played MP3
music. WinAmp was offered for free on the Internet in 1998. Suddenly MP3 became
very well known.

Prior to the release of WinAmp, there had been some sharing of digital music from
copyrighted CDs. However, uncompressed sound files produced from traditional CDs
were massive, and transferring these files using a 56 Kbps modem (the most widely
used communication link on the Internet in the late 1990s) was slow and clumsy. But
because MP3 sound files were so much smaller, and Internet connections were getting
faster (especially in university computer labs), sharing MP3 music files became
increasingly popular, and the people who make and sell music CDs became
increasingly nervous.

In the spring of 1999, two Northeastern University students, Shawn Fanning and Sean
Parker, created a file-sharing system that spread quickly over the Internet. The users of
the system were mostly other university students, who had ready access to fast Internet
connections and who were very interested in obtaining music files that other students
were willing to share. Fanning and Parker called their system “Napster,” and it became
so popular that several universities noticed their campus networks were slowing to a
crawl because of student MP3 downloads.

The Napster system is a wonderful example of how technical details about computing
systems can have significant social effects. The Napster software set up what’s called
peer-to-peer file sharing. As diagrammed in Figure 17.1, Napster’s software
electronically “introduced” two users who are distant from Napster and from each
other. Once Napster helped these users find each other electronically, the file sharing
took place between the users, not through Napster. Although that sounds like an
unimportant technical detail, this distinction turned out to be quite significant in the
many court battles to follow.

Figure 17.1

Peer-to-peer file sharing system created by Napster

On December 7, 1999, an organization of recording companies filed suit against
Napster in U.S. District Court on grounds of copyright infringement. During the highly
publicized arguments that followed, the recording companies insisted that Napster was
a conspiracy to encourage mass infringement of U.S. copyright law. By most accounts,
the majority of MP3 music that Napster users “shared” was copyrighted, and most of
the copyright holders objected to the copying of their music without royalty payments.
Some artists wanted their music copied, but they were said to be in the minority.

Its supporters argued that the Napster system was merely acting as a common carrier,
much like a telephone company. They claimed that Napster was simply providing
information on songs and their location, and did not participate in the actual exchange
of copyrighted information. They argued that Napster could not be held responsible for
what peers (Users A and B) did with that information in the peer-to-peer file-sharing
system depicted in Figure 17.1. In addition, Napster contended that peer-to-peer
copying was very similar to a user making a backup copy of a file. It pointed out that
copyright law allows a person who has purchased a recording in one format to transfer
it to a different format as long as it is for personal use and is not resold. Napster
claimed that both peers in each swap were transferring the file without any payment to
each other or to Napster, and therefore the copying should be considered “fair use.”

Eventually, Napster lost the case and subsequent appeals, and it ceased operating as a
file-sharing site in 2001, although it did reopen as a commercial music downloading
service. (In October 2011, the company’s assets were purchased by Rhapsody, and the
Napster name disappeared from the Web after a dozen tumultuous years.) However,
new peer-to-peer file-sharing systems such as Kazaa sprang up on the Web, and illegal
MP3 music sharing via the Internet continues, much to the chagrin of recording
companies. Legal purchasing and downloading of MP3 (or similarly compressed) music
has also become very popular. Apple’s iTunes music store, in particular, accounts for
more than 25% of music sales in the United States, and in early 2010 it sold its 10
billionth download. Movie file swapping, both legal and illegal, is also quite common,
and taking copyrighted photographs off the Web for personal use is a regular
occurrence. These file-swapping and photo-copying scenarios will no doubt continue,

both on the Internet and in the courts; but for the rest of the discussion in this section,
we concentrate on a question that isn’t exactly a legal issue and isn’t merely a technical
computer science topic: Is it ethical to swap copyrighted MP3 music files?

Asking Ethical Questions. A legal question, we take to a judge. A technical question, we
take to a scientist or an engineer. But who can help us with an ethical question? In this
section, we look to ethicists for guidance about getting an answer to an ethical
question.

We define ethics as the study of how to decide if something is morally right or wrong. A
fundamental question in ethics is what criteria to use when “measuring” the rightness
or wrongness of a particular act. Over the centuries, ethicists have championed
different criteria and developed schools of thought about how to label an act as good or
bad, better or worse. One of the most influential schools is called consequentialism. As
the name implies, a consequentialist focuses on the consequences of anact to
determine if the act is good or bad. If the consequences are on the whole good, then the
act is good. If the consequences are mostly bad, then the act is bad. However, in
focusing on the goodness of an act, we have to ask, “Good for whom?” For instance, in
our MP3 example the copying is certainly good for people who get the free music. But,
just as clearly, most music copyright holders are convinced that MP3 copying is bad.

The most well-known consequentialists are the utilitarians. Utilitarians answer the
question “Good for whom?” with a hearty, “Good for everyone!” Imagine a cosmic
calculator that is capable of adding up human happiness. Utilitarianism holds that a
moment before an act takes place, the cosmic calculator adds up all human happiness
and puts a happiness number into the variable HAPPINESS_BEFORE. Then the act
occurs. We wait awhile, long enough for the consequences of the act to become visible;
then we use our cosmic calculator again and put a second happiness total into the
variable HAPPINESS_AFTER. According to a utilitarian, the act in question is “good” if

If

then the act is said to be “bad.” (Just to satisfy the law of trichotomy, if
HAPPINESS_AFTER = HAPPINESS_BEFORE, a careful utilitarian would declare the act to
be ethically neutral.)

Of course, there is no cosmic calculator, and quantifying happiness is no easy task.
Clearly, using the utilitarians’ criterion requires subjective judgments. But making
consequences count and ensuring that all people are taken into account when making
an ethical judgment both seem like good ideas. So let’s try out two short utilitarian
arguments to explore whether mass copying of MP3 music files is right. First, we’ll
build a utilitarian argument that says such copying is OK, and then we’ll build a second

utilitarian argument that says such copying is not OK.

Utilitarian Argument #1: MP3 Copying Is OK. First, there are many more music listeners
than there are music publishers. Music listeners are very pleased to get convenient,
virtually free access to this music. Furthermore, music publishers should be pleased to
get so much free publicity for their product. When radio stations play music, it’s free to
listeners, and many listeners go out and buy music that they’ve heard on the radio. The
same thing happens to listeners who download MP3 files. That makes sense, because
the music on a CD provides slightly better sound quality than MP3 music. Many also
choose to buy legal copies, even though they do not need them, so that artists get paid.
There is some market research that shows that MP3 downloading can increase the sale
of music CDs. Opponents of MP3 sharing point out that overall music sales revenue has
fallen dramatically since 1999, but this cannot be completely blamed on file sharing.
During the CD era, people bought whole albums. Today music retailers like iTunes and
Amazon.com encourage consumers to buy one song at a time, which has also hurt
overall album sales.

Death of a Dinosaur

The Virgin Megastores in New York City’s Times Square and Union Square were
the two largest music stores in the world, sprawling over 180,000 square feet of
retail space and selling an estimated $55 million worth of recordings every
year. Not only were they important economic engines for the entertainment
industry, they were also popular gathering places for hard-core music lovers
and emerging artists. Unfortunately, even megastores with massive sales
volumes and huge financial backing are finding it difficult to compete with
online music sites like iTunes and the ease of digital copying. “It’s clear that the
model of a large entertainment specialist working in a large retail space is not
going to work in the future,” said Simon Wright, the CEO of Virgin
Entertainment Group, North America.

In February 2009, the Times Square store closed its doors for good, with the
Union Square store following suit just four months later. In the words of a
former Virgin employee, “The large retail music store is a dinosaur, and we all
know what happened to them!”

Utilitarian Argument #2: MP3 Copying Is Not OK. Although some early research
suggested that MP3 file copying may have initially encouraged CD buying, later
research showed that overall retail music sales had declined rapidly. That’s the real,
long-term effect of widespread copying of copyrighted materials. The main reason that
iTunes and Amazon sell one song at a time, instead of albums, is that this is the only
way to compete with illegal MP3 file sharing. If the people who publish music can’t
make a fair profit, then less and less music will be published. Eventually, both music

listeners and music publishers (including the people who make the music) will lose. In
addition, copyright protection is the law. This widespread criminal activity will result
in a widespread disrespect for the law in general, and that is a very dangerous
consequence.

Hmmm. We have used an ethicist’s idea, a utilitarian argument, to try to clarify the
MP3 question. But instead of getting a clear answer to our question, you might be
thinking we’ve only managed to make things more confusing. Both sides of this issue
seem to have some reasonable points. How are we to decide between them?

Let’s admit something up front: Deciding right and wrong is not always easy. If you
want to do a binary search on a sorted array, there is a “plug-and-chug” algorithm that
does the job quite nicely. Unfortunately, there isn’t an all-purpose “ethics algorithm”
that is guaranteed to provide a definitive answer to every ethical question. Still, we do
have to make decisions about these issues, and we want to make those decisions on
reasonable grounds, not just on whims or instinct.

Ethicists depend on what is called a dialectic to try to make better and better ethical
decisions. In a dialectic, we move back and forth between different viewpoints,
criticizing each and trying to learn from each. In a debate, one side is trying to win by
undermining the opposition and building up the arguments for its position. Ideally, in a
dialectic the ultimate goal is for both sides to “win” by moving closer to the truth from
two different perspectives. It’s perfectly OK for people engaged in a dialectic to change
their minds; in fact, that’s the point. By systematically reasoning about the issue, the
back and forth of argument can bring all parties to a more well-reasoned and justified
decision. There’s never a guarantee that the two sides in a dialectic will arrive at
identical positions (although that is possible). More often, the participants end the
dialectic still disagreeing, but hopefully with a better understanding of the reasons why
there are still disagreements.

In the spirit of a dialectic, let’s examine the strengths and weaknesses of the two
previous utilitarian arguments on the issue of MP3 copying. Both arguments cite
evidence about music sales to bolster their position: People for MP3 copying claim that
it increases the sales of music; people against the copying claim that it decreases overall
music sales. This is an example of a difference in fact, not just a difference of opinion.
If the effect of MP3 copying is, in fact, to increase music sales, then the “copying is OK”
people have a strong argument; if the effect is instead to decrease sales, then the
“copying is not OK” people have a strong argument. When the dialectic uncovers an
empirical question at the heart of a disagreement, the smart move is to check the facts.

According to published statistics, worldwide music recording sales in 2003/2004 were
down almost 8% from 2001/2002, and this downward trend has continued virtually
unabated over the last decade. For example, in 2010 global revenues from the sale of
recorded music fell another 8.4%. In the early days of Napster, sales were climbing; but
as more and more files were downloaded for free, and as more and more MP3
hardware was sold, CD and album sales fell. Even with the introduction of iTunes,

which makes legal downloading very easy, album sales have continued to decline. So it
seems that, on this point, the MP3 opponents have a stronger argument. It often
happens that consequences take a while to become visible, and that seems to be the
case here.

Next, let’s examine the other main point in support of MP3 copying: the happiness of
legions of listeners at getting free music. The opponents of the copying again make an
argument about short-term and long-term effects of copying: In the short run, listeners
might get tremendous benefits; but in the long run, there may be far less music
available for copying because artists and publishers will have far less incentive to
create and disseminate music. This seems to make a certain amount of economic sense.

A third point raised by opponents of MP3 copying is the issue of illegality. The claim is
that widespread disregard of copyright protections will have as a consequence
widespread disrespect of the law, such as the illegal copying of movies, videos, or
photographs from the Internet. This claim is harder to demonstrate empirically than
the CD sales claim, so we’re probably not going to be able to settle this with statistics.
But MP3 advocates don’t often claim that breaking the law will have particularly
salutary effects, and we don’t see many legitimate claims for anarchy.

The dialectic so far seems to favor banning MP3 copying, but there are a few
interesting counterarguments. For example, some musicians (particularly relatively
unknown ones) are great enthusiasts of MP3. These musicians have not yet been able
to get recording contracts, so they use MP3 Internet file copying as a way to distribute
and publicize their music as well as to generate interest in upcoming performances.
For them, MP3 copying has positive consequences for both listeners and music makers.
Advocates of MP3 copying also point out that only a small percentage of the money
spent on legally purchased music goes to the artists. The rest of the money goes to the
people who market the music. Some artists (including a few bands who have not
achieved commercial success) have decided to give away their music on the Internet
and make their money via live concerts. They are content to accept reduced sales of
their albums if it means more people listen to their music, and hence come to their
concerts.

Seen from this perspective, MP3 copying is merely the first wave of a new way of
thinking about making and sharing music. This new way will favor music listeners and
music makers who like to perform live. The new way will deemphasize the need for
large publishing companies. Some people think that these are good directions,
although, quite obviously, most music company executives don’t agree.

Notice something technically interesting about the MP3 debate. If you buy a lightbulb,
you are mostly paying for the materials and the manufacture of the bulb. When you
buy a CD, very little of the cost has to do with the materials and manufacture of the
disc; that costs only pennies per disc. You mostly pay for the information encoded on
the disc, not the physical disc itself. That’s why MP3 copying is so dangerous for music
publishers—the information on the Internet bypasses the physical intermediary, and it

was always the transfer of a physical form during which publishers made their money.

An ethical dialectic rarely has a clean stopping point. We can almost always make
better and better arguments, and there are often strong points remaining on different
sides of an argument. For example, we haven’t discussed the fact that some MP3 music
copying takes place using university and corporate computers (which may have faster
Internet connections than home computers), and that such equipment usually isn’t
supposed to be used for such purposes. We’ll leave that and other issues for you to
pursue on your own. We will make some closing remarks on MP3 copying, but we don’t
think this is a final word on the issue, and we certainly don’t want you to think so
either.

The consequences of widespread disregard of the law seem troubling and are a strong
argument against illegally copying copyrighted music or video. If the United States
decides as a country that we are better off without copyrighted music, then the law
should be changed. Until then, it seems unethical to encourage breaking the law that
currently protects copyrighted music.

In response to this seeming deadlock, some music distributors have come up with new
ways to sell music online. Apple’s iTunes music store has shown that music consumers
will opt for legal copying if the system is convenient and reasonably priced. Starting in
2012, Apple’s iCloud will allow music studios to make money even from illegally
downloaded MP3 files. iCloud will allow users to store their music in a “locker” on
computers belonging to Apple, and then listen to that music on their phone or
computer. If all music was purchased on iTunes, then the service is free. If not, users
can pay a yearly fee to get access to their other songs, even those obtained illegally. Part
of this yearly fee could be used to pay back music studios. (See the Special Interest Box
titled “The Sound of Music .”) Also, the Creative Commons License is a copyright
approach that allows intellectual property creators to have more control over
copyright specifications, while encouraging legal sharing of music, videos, texts, and
other intellectual property.

Practice Problems

Talk to someone you know about copying MP3 files or commercial

movies using the Internet. Ask this person to show you how he or she

does it. Does the software used differentiate between music that is

copyrighted and music that isn’t copyrighted? Ask the person

showing you how to copy the files if he or she has ever thought about

the ethical implications.

1.

Not every decision is an ethical one. For example, we usually don’t

think of choosing an ice cream flavor as being “good” or “bad.” Write

2.

down 10 choices you have made in the past week. Then go back over

the list and label each as ethical or not ethical. (Note: “Not ethical” is

different from “unethical”; “not ethical” means there are no ethical

issues involved.) After you’ve labeled all 10 choices, see if you can

convince yourself to change your mind about one of the choices you

labeled “not ethical.”

To effectively build a utilitarian argument, we need to think of all the

people who are affected by a decision. We call these people

“stakeholders” in the decision. Choose one of the “ethical” choices you

listed in Practice Problem 2. Now write down all the people or groups

of people who are potentially affected, directly or indirectly, by your

decision. Finally, list what each stakeholder may gain or lose from

your decision.

3.

The Sound of Music

Peer-to-peer music sharing became popular because it offered users virtually
unlimited access to free music. Many computer scientists and ethicists thought
that once people were accustomed to this, it would be virtually impossible to
break them of the habit and charge for music. Steve Jobs and Apple Inc. did not
believe this. Instead, they thought that if costs were reasonable and
value-added services were provided (e.g., previewing, Billboard charts,
audiobooks, movie trailers), people would be willing to pay for legal access to
copyrighted music. In 2003, Apple went public with the iTunes music store, a
paid online music downloading service for its new iPod MP3 player. The service
started small with access limited to Mac OS X users and a few thousand songs
on its playlist. However, it was an immediate success with more than 1 million
downloads in the first week. It rapidly expanded to Windows machines as well
as European and Asian users. Currently, the iTunes Music Store has the rights to
hundreds of millions of songs and other audio materials. Obviously, those who
did not think people would pay for online music after having free access were
wrong. Perhaps the desire to act ethically is more deeply ingrained than we had
thought.

When the service first launched, there was a great deal of concern that files
purchased legally on iTunes would then be illegally shared over the Internet. To
control dissemination of the music it sold, Apple used a proprietary digital
rights management (DRM) software package called FairPlay. FairPlay digitally

Chapter 8, we learned about cryptography and the use of encryption to protect
communications on the Internet. If VoIP providers choose to implement cryptography
on their systems, then this could render wiretaps useless. Even though the police could
listen in on the call, they would not be able to decrypt it, and it would sound like
random pops and static.

In the mid-1990s, law enforcement officials saw these problems coming. They assumed
(correctly) that smaller ISPs, VoIP software makers, and even some phone companies
would not build LI systems unless required to. After all, building and operating the LI
functionality would cost a lot of money. As a result, many countries, the United States
included, passed laws requiring everyone involved with telecommunications to
cooperate with law enforcement, and build LI capabilities into all of their systems.

Critics of LI worried that it would be a tempting target for computer hackers. Modern
LI systems allow an authorized user to create a wiretap by filling in a few blanks in a
computer program. It is no longer necessary to attach new hardware to create a
wiretap. Because all phone calls now travel through computers as streams of data, that
data can simply be copied and stored as it flows by. It is even possible to forward phone
calls to another number, so every time a phone call is placed from a monitored
number, the police officer’s phone rings, and he or she can pick up and listen in on the
call in real time. For spies this functionality would be tremendously attractive. What if
you could listen in on every call the president makes, or to all the phone calls of finance
ministers or heads of major corporations?

This is exactly what happened to government and industry figures in Greece in 2004.
Persons unknown broke into the LI system for the major cellular phone vendor in
Greece, and installed illegal wiretaps on over 100 important Greek business leaders
and politicians, including the prime minister. From June 2004 through February 2005,
hackers used the LI system to forward calls from tapped numbers to a series of
“shadow phones,” which allowed the hackers to listen in on conversations. This tapping
was massive in scope, and went undetected for almost a year. More disturbingly, law
enforcement officials still know next to nothing about who did this or why. Due to a
series of errors by everyone involved in the investigation, important access logs (both
digital and paper) were destroyed, and the hackers were tipped off that authorities
were on to them.

For this case, we will focus on the ethical implications of the decision to require all
Internet and telecom companies to participate in lawful intercept. How does the
decision impact privacy? How does it impact security? We used utilitarian arguments
to explore ethical questions about MP3 copying; but in this case study, we will use a
different kind of argument, argument by analogy, to explore questions about lawful
intercept.

Analogies are commonplace, and that’s one of the reasons they can be a useful way to
think about ethical concerns. Most people are familiar and comfortable with the idea of
explaining something less well known by comparing it with something better known.

“It tastes a little like chicken, but drier” is a pedestrian example of an analogy. But
when we apply analogies to ethics, we need to be more careful about the analogies that
we choose.

The power of an analogy is that it can transfer our understandings and intuitions about
something well known to a situation or entity that is less well known. Sometimes that
transfer is ethically appropriate, and sometimes it isn’t. In a dialectic argument that
uses analogies, there may be competing analogies presented; one analogy supports a
particular view of the situation being discussed and the other analogy supports an
opposing view of the exact same situation. In a productive dialectic using analogies, the
participants in the discussion explore the strengths and weaknesses of each argument.

In any analogy between two “things,” there are both similarities and differences. For
example, someone might say “swimming is like riding a bike—once you learn it, you
never forget.” Clearly, swimming is not exactly like riding a bike. (Just try swimming on
a driveway or riding a bike in a lake.) The point of this analogy is clear: The person
making the analogy thinks that the similarity (you don’t forget it once it has been
learned) is most important to the current conversation.

Analogies serve several purposes in ethical reasoning. When an analogy fits well, it
helps us take advantage of decisions we have made in the past because if two situations
are sufficiently similar we can apply the solution for the original problem to the new
one. If the analogy does not fit well, this also provides useful information. If we can
precisely identify the mismatch in the analogy, this often highlights some ethically
significant aspect of the case.

In our analysis of lawful intercept, we will consider two analogies that bear directly on
privacy concerns raised by LI.

Analogy #1: Lawful Intercept Is Like Requiring Everyone to Record Their Face-to-Face
Conversations. The first analogy focuses on Internet VoIP phone systems such as Skype,
but most of our arguments apply equally well to cellular phone systems because they
use very similar technologies. Here’s an expression of the analogy:

If you and I decide to go for a walk in the woods and just talk, no one in his right
mind believes that we should be forced by the government to carry microphones
along to record our conversation so that they can listen to it. Before all this
technology came in, every conversation was private. —Phil Zimmermann in Life
on the Internet: Cyber Secrets (PBS, 1996).

Using Analogy #1 to Analyze the Case. In this case, we can see some clear similarities
between face-to-face communication and Internet phone calls. They are similar in that
people want to communicate with each other, and that both types of communication
are meant to include a limited number of people. In both types of communication,

however, the actual audience may be larger than intended: In a voice conversation,
people may be eavesdropping either by being physically close but unnoticed by the
speakers, via a hidden microphone, or by a distant parabolic listening device. With
VoIP, the conversation may be intercepted at any number of places along the electronic
path between sender and receivers. If there is a system that makes it easy to listen in
on private conversations, we might justifiably worry that law enforcement officials or
hackers would abuse it. Both lawful intercept systems and the “carrying microphones”
system in the analogy could be abused.

In U.S. society, private conversations are, by default, free from government intrusion.
This is not an absolute right—court orders can be obtained by law enforcement to use
technology that invades private physical conversations. But these are the exceptions
that prove the rule. Unless law enforcement can demonstrate probable cause, they are
not permitted to take extraordinary measures to listen in on private physical
conversations.

In both cases (VoIP and face-to-face conversations), there is a trade-off between privacy
and security. In the case of face-to-face conversation, our society has decided not to
record all conversations all the time, but to allow law enforcement to record certain
conversations if they can demonstrate that they need to do so.

The analogy implies that requiring lawful intercept for all Internet-phone equipment
would be the same as requiring everyone to record all of their private conversations,
and provide recordings to the government as needed. If lawful intercept capabilities
were not built into VoIP hardware, law enforcement’s powers would be the same as in
the case of face-to-face conversation. Law enforcement could still get a warrant, and
then physically eavesdrop on one end of the conversation. With sufficiently powerful
microphones, they would be able to hear both ends of the conversation. The conclusion
seems to be that lawful intercept should not be built into VoIP hardware.

Problems with Analogy #1. The conclusion we reached just now may conflict with your
intuition about the case. Notice that the argument we made applies to normal phone
tapping as well as tapping VoIP. We know that most people accept the need for the
occasional use of regular phone taps, so this seems to indicate a problem with the
analogy. Our analogy must have left out some ethically significant factor.

This demonstrates another powerful use of analogy, which is to discover which parts of
the case are most ethically relevant. Sometimes, when you make an analogy, the
answer does not match your intuition. This could be because your intuition is wrong,
but it could also be because the analogy does not fit. If we can precisely describe how
the analogy does not fit, this often identifies some ethically relevant part of the case
that we had not considered. In this case, where is the mismatch in the analogy?

There are many reasonable criticisms of analogy #1, but one big problem is that it has
only three significant parties: The two parties in the conversation plus the government.
In the case of lawful intercept, there is a very significant fourth party, the

telecommunications company. In the previous analogy, Zimmermann points out the
absurdity of requiring individuals to record their own conversations and provide them
to the government. But what if there was another party that was already well
positioned to record any conversation? Could the government require that party to do
so, and to hand over the recordings? This is exactly the case with Internet phone
services. The Internet service provider is always in a position to record calls and
provide them to the government. Our current analogy does not seem to shed any light
on this. In our process of dialectic reasoning, this causes us to look for a different
analogy that has this “middleman” feature built in.

Analogy #2: Lawful Intercept Is Like Suspicious Activity Reporting in Banking. There
are two critical resources needed by criminals and terrorists that each require the help
of a large corporation: means of communication and means of transferring and
transporting money. U.S. banks are required to keep detailed records on all
transactions and to notify the U.S. Department of the Treasury (through a Suspicious
Activity Report, or SAR) whenever they detect unusual or suspicious transactions. This
careful recordkeeping and monitoring is expensive, but it allows law enforcement to
find links between suspects and to discover and defeat criminal networks. In the same
way, phone calls are an excellent source of information about the relationships
between people. Intercepting phone calls between suspected terrorists is necessary if
we are to discover and prevent attacks.

Using Analogy #2 to Analyze the Case. This analogy seems to support the idea that
telecommunication companies can be required to monitor phone usage and report
certain data about suspicious activity. This would be consistent with the monitoring
and reporting requirements placed on financial institutions. So, again, reasoning by
analogy allows us to apply our solution to an old question (Should banks be forced to
report suspicious activity?) to a new one (Should telecom companies be forced to
report suspicious activity?).

What can we learn about lawful intercept from suspicious activity reporting? If you do
a bit of research, you will discover that suspicious activity reporting differs in two very
important ways from current lawful intercept systems. First, the suspicious activity
report is initiated by the bank. The government does not get to continuously monitor
what is going on in a bank. Instead, the bank is responsible for deciding what might
constitute suspicious behavior, and if it sees suspicious behavior, to report it using the
SAR form.

The SAR form is very simple, and this is the second major difference. It requires
identifying information for those involved in the suspicious activity, and a written
description of the activity. There is nothing in this that is comparable to completely
recording a telephone call. The list of parties involved in the suspicious activity would
be similar to listing the phone numbers or names of the people on the call. Listing the
amount of the activity and the dates on which it took place would correspond to the
times and dates on which phone calls took place, the lengths of the calls, and so on. But

a financial transaction does not include the wealth of data that a phone call does,
because a financial transaction is not a conversation.

So analogy #2 lends some support to the idea that we might require telecom companies
to keep careful track of call records (who calls whom, when, and for how long), to
monitor this information for suspicious patterns, and to report suspicious activities to
the government or law enforcement. Like the previous analogy, it seems to contradict
the idea that government/law enforcement should be allowed direct or unsupervised
access to the data. It does not seem to tell us, directly, whether or not the telecom
companies should be recording and storing the actual contents of calls.

Making a Decision. In most cases, just having a convincing analogy is not enough to be
sure we are making the right decision. Even if an analogy appears to fit, there is always
a good chance that we are overlooking some morally significant factor in the case that
would invalidate the analogy. Analogies are tremendously useful, however, in
brainstorming. The analogies help us identify the most morally significant factors of a
case, and they help us identify potential solutions based on previous solutions to
similar problems. Nonetheless, it is always wise to double-check a solution using other
methods.

In this case, we will use a utilitarian approach to check potential solutions identified by
our analogies. So far, we have three possible solutions on the table:

Require all VoIP systems to implement lawful intercept (as in the current law).1.

Do not require VoIP systems to implement lawful intercept or do any other

reporting. Law enforcement will have to use physical eavesdropping, after

getting a warrant (as suggested by analogy #1).

2.

Require VoIP providers to monitor and report suspicious activities, but do not

build the ability to record conversations into the system (as suggested by analogy

#2).

3.

First, we need to identify the interested parties, and how this decision might affect
their happiness.

Those that make or operate VoIP systems—Increased monitoring costs them

money for building in the monitoring and for defending against privacy lawsuits.

Law enforcement officials and employees—Increased monitoring saves them

money because they do not have to do as much physical surveillance. This also

allows them to catch more lawbreakers and do their jobs better.

Hackers—Built-in lawful intercept provides them with greater opportunities for

stealing (and selling) secrets, but increases their likelihood of being caught.

Nonhacker criminals—Increased monitoring increases the likelihood that they

will be caught or that their plots will be disrupted.

The public—Increased monitoring means increased efficiency for law

enforcement, saving tax money, and possibly increasing safety. It also, however,

decreases privacy because it makes everyone’s phone calls easier to tap, and

possibly decreases safety by exposing the public to hacker attacks or to abuse by

law enforcement officials.

We will start by making an assumption about the happiness of criminals. We will
assume that any unhappiness that a criminal feels as a result of this decision is offset
by an increase in happiness for others. In other words, we can ignore the hackers and
criminals, and just focus on increasing the happiness of the other parties. This
assumption is plausible because it points out that the criminals’ happiness comes from
hurting other people. If someone feels very happy because he or she stole some money,
then the person he or she stole the money from probably feels less happy. Lots of other
people also feel less happy because they hear about the theft, and this makes them
fearful that they will also experience a theft.

For law enforcement, solution 1 (lawful intercept) is clearly the best. It gives them the
most options and the most direct control over monitoring, at low cost compared with
solution 2 (no monitoring). Keep in mind, however, that law enforcement officers are
public employees. They are tasked with enforcing the laws and keeping people safe.
This means that a police officer’s change in happiness, due to this decision, will mostly
reflect the change in happiness of the public as a whole. So, in the utilitarian analysis,
we can also mostly set aside the happiness of the law enforcement officers. As long as
we ensure that the public is happy, this should go a long way toward making law
enforcement officers happy as well.

For VoIP providers, solution 2 (no monitoring) is clearly the best. Options 1 and 3 are
probably about equally bad for them. Although solution 1 (lawful intercept) requires
them to modify their systems significantly and opens them up to hackers, it requires
much less manpower to operate than option 3 (suspicious event reporting), because
option 3 would require humans to review cases, fill out forms, and interact with the
police.

The stickiest part of this case, and the reason we will not be able to immediately come
to a clear solution, is evaluating the effect on the public. Every option has pros and
cons for the public. If we assume that the number of tax dollars going to law
enforcement is held constant (so it is the same number in all three schemes), then
option 2 (no monitoring) would result in a serious decrease in the effectiveness of the
police. Option 1 (lawful intercept) might result in major abuses by hackers and rogue
law enforcement officials, but then again it might not. Option 3 (suspicious event
reporting) might also seriously decrease police effectiveness because they might really
need the contents of the calls in order to prevent criminal schemes.

To reach a final decision on this case, we need to make a prediction about how much
harm hackers and rogue law enforcement officials might do if we choose option 1, and
weigh this against the loss of law enforcement capacity caused by options 2 and 3. To
do this, we need a lot more information. This is the process that members of Congress
went through when first drafting CALEA (the Communications Assistance for Law
Enforcement Act, which created the lawful intercept requirement).

It may be a bit disappointing to spend so much time on a case without “solving” it, but
the fact is that ethical decision making, done well, is very difficult. It takes a lot of time
and careful work, just as any important problem does. In this section, however, we
have learned about reasoning by analogy. This style of reasoning, by finding similar
cases in the past and using them to reason about a new case, is fundamental to ethics
and to law. We saw that analogy can be used as part of our dialectic to identify possible
solutions to a problem. But we also saw that, in most cases, an analogy is not enough to
justify an ethical decision. Once we identify possible solutions through analogies, we
would be wise to go back and check our choice using other ethical theories.

Practice Problems

An important skill in using analogies is noticing both similarities and

differences. This skill can be practiced. Think of a book and a Web

site that contain essentially the same information. How are they

alike? How are they different? Make a list of similarities and

differences, at least 10 of each. Don’t ignore the obvious, but don’t

limit yourself to the obvious either.

1.

Imagine that your public library decides to go completely digital. The

library now has a policy to phase out physical books and replace

them with e-books, digital audiobooks, Web sites, and public access

computers in the library. Using the list you made in Practice Problem

1, make another list of the people who would gain from this decision

and a list of the people who would lose. Build a utilitarian argument

either for or against the decision.

2.

Some people think that the content of Internet sites should be

regulated just as the content of radio and TV is, for example with

rules regarding obscenity and the amount of advertising. Other

people think that the content of Internet sites, like private phone

conversations, should not be regulated. Is the analogy between

Internet sites and radio and TV broadcasts more appropriate, or is the

analogy between Internet sites and telephone conversations more

3.

route was to share the incriminating documents with an investigative journalist. The
journalist acts as a firewall between you and the authorities; most journalists hold to a
code of ethics that says that they will not identify their sources, even if it is clear that
the source has committed a crime. Journalists sometimes go to prison rather than
reveal their sources. The problem with this approach today is that it is very hard to
share an electronic document with a journalist without leaving traces that law
enforcement (or corporate security) officers can follow. Most journalists don’t have the
necessary computer security and hacking skills to actually safeguard the anonymity of
their sources. WikiLeaks’ goal is to provide exactly this kind of technical expertise. It
provides a secure electronic drop box, and tips on how to submit documents that will
prevent the leaker from being traced. WikiLeaks then provides the submitted
documents to journalists. In the past, it has partnered with the New York Times, the
Guardian (in the U.K.), and Der Spiegel (in Germany), among others. WikiLeaks has
been involved in several major leaks:

In April 2010, WikiLeaks published a video from a 2007 U.S. military action that

shows the U.S. military firing on two employees of Reuters news service. The

soldiers believed the two men were militants armed with a rocket-propelled

grenade, but it was most likely a camera.

In November 2010, WikiLeaks began to provide leaked U.S. diplomatic cables to

various newspapers. The Daily Mail (a U.K. newspaper) and others have

attributed the 2011 revolution in Tunisia, at least in part, to allegations of

Tunisian government corruption contained in the diplomatic cables.

WikiLeaks has published nearly a million confidential or secret U.S. government

documents.

Though not hackers themselves, WikiLeaks employs people with the same skill set
because they provide defenses against government and corporate hackers.

The hacker group Anonymous is much harder to describe. Anonymous is a group of
hacktivists that seem primarily interested in freedom of speech. Even this
characterization, however, is in dispute. WikiLeaks is easy to describe because it has a
known public spokesman (Julian Assange), and a board of directors. WikiLeaks is part
of an officially registered Icelandic corporation. Anonymous has no such official
organizing body, or leader. In fact, its semiofficial logo is a suit with a question mark
instead of a head, and members wear masks (all of them identical) when appearing in
public. As a result, any hacker or activist can claim to be part of Anonymous, and there
is no official spokesman to refute these claims. Among the best-known actions of
Anonymous are:

A December 2010 attack in retribution for financial sanctions against WikiLeaks.

Several companies, including PayPal and MasterCard, have blacklisted

WikiLeaks, preventing donors from using those systems to donate to WikiLeaks.

Anonymous used denial-of-service attacks to disrupt the sites. (See the Special

Interest Box, “Don’t Mess with Amazon ,” in Chapter 8.)

Attacks throughout the summer of 2011 that disrupted the government Web sites

of Tunisia, Egypt, and Libya. These attacks were in retaliation for government

censorship of the Internet, and meant to help support pro-democracy revolutions

in those countries.

Publication of e-mails stolen from Bank of America, security company HBGary

Federal, and others.

Anonymous has also been accused of threatening the Westboro Baptist Church, a group
known for protesting at the funerals of U.S. soldiers. Members of Anonymous have said
that these charges are false, that they support all forms of free speech, even by people
they disagree with. Due to the leaderless nature of Anonymous, however, clarity on
what Anonymous has, and has not, done is hard to get.

We will examine the ethics of this kind of hacktivism, first using the two techniques we
have already introduced, analogy and utilitarian analysis. Then we will introduce a
third analysis technique, deontological ethics. In our analogy, we will focus on the first
step of the process, breaking into a computer system to steal information. (This is
sometimes called “cracking” to distinguish it from hacking in general.)

Analogy: Breaking into a Computer Is Like Breaking into Someone’s House. Imagine
that a burglar picks the lock on your back door, wanders around picking up valuables,
and then escapes into the night undetected. When you find out you’ve been robbed,
you feel outrage and fear. If computer hacking is ethically linked to burglary, then we
will have an instinctive revulsion toward both.

Clearly there are similarities between burglars and hackers; in both cases, the
intruders are there without our permission and (at least in most cases) without us
being aware of their presence. In most homes and with most computers, the owners
take some precautions to discourage unwanted visitors, precautions that must be
overcome by the intruder. There are laws against both forms of intrusion, although the
laws against physical break-ins are clearer and easier to enforce.

There are also differences between the intrusions. A burglar is likely to take something
from your house, and that removal will deprive you of something. A hacker may look
at things, and even copy things from your computer, but the hacker is less likely to
remove or destroy things from your system. A hacker takes your intellectual property
and privacy, and that is different from taking physical objects.

When someone breaks into a house, there is a palpable threat of violence. When a
burglar is detected, things may turn nasty. This physical threat is not present in a

computer break-in, although the information stolen may be personal and could lead to
future physical threats. The physical degree of separation of a virtual break-in seems to
be an ethically relevant distinction.

The analogy between a house break-in and a computer break-in helps us to clarify
differences and similarities, both of which seem important in this case. Next we’ll look
at a pair of utilitarian arguments to extend the dialectic.

Utilitarian Argument: Costs and Benefits of Hacking. What is gained and lost when a
computer is hacked? First, whoever owns the hacked computer loses some control over
the information in that computer, and the hacker gains access to that information.
Second, as a consequence of the break-in, there may be intentional or unintentional
deletions or corruptions of data on the computer. These changes may be largely benign
or may subsequently cause significant harm. Neither the hacker nor the person hacked
can know with certainty the eventual consequences of these changes.

When computer system owners or system administrators discover that a system has
been hacked, they often increase system security to reduce the probability of another
successful intrusion. Some hackers claim that they provide a public service by alerting
people to security holes in their systems. As long as the hacker doesn’t hurt anything
while “inside” the system, and especially if the hacker makes the intrusion obvious,
then such hackers would argue that the consequence of the hacking is improved
security against malicious hackers. An alternative consequential argument says that
increased security wouldn’t be necessary if hackers weren’t such a threat.

This discussion illustrates two challenges when using a utilitarian argument in a
dialectic about hacking:

It is sometimes hard to predict consequences with any accuracy.1.

There seems to be a distinction between “good hackers” (who are trying to act in

the public interest) and “bad hackers” (who want to do damage or steal things for

self-interested or pathological reasons).

2.

These kinds of challenges arise in other discussions, and some people think they are
difficult to overcome using a utilitarian argument. Let’s try a different kind of ethical
argument, a deontological argument, to try to meet these challenges in a different way.

Deontological Argument: Hacking with a Golden Heart. Utilitarian and other
consequentialist arguments focus on the consequences of an act to determine if the act
is ethical. Deontological arguments focus instead on the duties of the person acting and
the way the act impinges on the rights of others.

The word deontology is from the Greek and means “the study of duty and obligation.”
Perhaps the most famous deontologist was the German philosopher Immanuel Kant
(1724–1804). Kant wrestled eloquently (and at great length) about what duties we

humans have to each other. He came up with “categorical imperatives” that
characterized these duties. His second categorical imperative goes something like this:

Never treat a fellow human merely as a means to an end.

To boil that down to a bumper sticker slogan, we might say, “Every human being
deserves respect.” Notice that the categorical imperative is really about your mental
attitude toward the other person: Do you see him or her as a person, or just as the
means to an end? Kant’s deontological approach encourages us to consider the intent
behind the action, not just the results of the action.

Let’s try out a deontological perspective on our question about hacking. Is the act of
hacking into another person’s computer system inherently unethical? If we take some
hackers at their word, their intent is not to harm the public. They characterize
themselves as a foil against corporate and government abuse, and they characterize
hacking as a form of investigative reporting, similar to the leaking of the Pentagon
Papers. They also claim to want to help people discover security holes to protect
against malevolent hackers.

Let’s stipulate that hackers who break into other people’s computers for personal gain
are doing something unethical by any of the three arguments we’ve seen so far in this
section (analogy, utilitarian, deontological). For the rest of this section, we concentrate
on hackers who claim a benign if not benevolent intent to their computer break-ins.

First, we assume that “good hackers” are telling the truth when they claim to mean no
harm to the public. (If some good hackers are lying about that, we’ll reclassify them as
“bad hackers” and focus on those hackers who are telling the truth.) Next, we’ll explore
how hackers describe the “goodness” of what they do. In his influential history of
hacking, Hackers: Heroes of the Computer Revolution, Steven Levy describes six
components of what he calls the “hacker ethic.” Here we focus on two:

“All Information Should Be Free”—Information sharing is a powerful positive

good because it is not possible to make good decisions if important information is

hidden. It is the ethical duty of hackers to facilitate access to information

wherever possible.

1.

“Mistrust Authority—Promote Decentralization”—The rules and hierarchical

management structures that characterize government and corporate

bureaucracies mostly serve to prevent people from getting things done, rather

than solving problems. Each hacker should act individually (or in very small

groups) to do what he or she thinks is best, and ignore the rules.

2.

We’ll examine each of these ethical claims. In claim 1, the idea of sharing information

looks pretty good at first glance. But it seems a bit less noble when we remember that
much of the information that hackers share isn’t their information, it’s someone else’s!
It’s one thing to share open source computer code (like Linux or OpenOffice.org) or the
works of Shakespeare on the Web. It’s quite another thing to share material whose
copyright is legally still in force (like Lady Gaga’s latest CD), or to share classified
information that might impact national security. Unless hackers consciously make
these kinds of distinctions (and many hackers do not), then the duty to respect other
people isn’t being met. In the case of WikiLeaks’ releases of government documents,
WikiLeaks collaborated with big newspapers to help determine which cables were safe
to release, and which needed redactions to protect innocent people from harm. Some
groups that release leaked documents simply release all documents without doing any
such filtering.

The second claim has a similar weakness. Hackers might argue that the rules
protecting electronic privacy are incorrect, and thus can be violated. They might argue
that these rules exist because we expect electronic privacy, but it is our expectation of
electronic privacy that is the problem, not their violation of that expectation. What’s
missing from the hackers’ argument is why their ideas about information (“all
information should be free”) should take priority over the majority view (“some
information should be private”), which forms the basis of the rules. Ethically, there’s no
problem with thinking and arguing that all information should be free, or to be
suspicious of rules; there is a big problem, however, with acting on that belief in a way
that treats people as a means to an end.

The preceding arguments won’t convince most hackers, and you too might have some
remaining questions about this issue. The sharing of information and resistance to
authority are usually moral goods, and these values are part of the American identity.
But the fact that these are ideals is not a slam-dunk ethical argument when applied to a
specific act. Acts have both good and bad consequences, and utilitarians remind us that
we have to weigh these consequences and think of them globally. Deontologists
encourage us to remember that acts can be inherently good or bad outside the
consequences, if they involve a right or duty, and to examine the intention behind an
action. At the very least, the preceding brief analysis raises serious questions about the
claims of the hacker ethic. In the following Practice Problems, you’re invited to
continue the dialectic about this ongoing controversy.

Practice Problems

There are times when you want someone to break into your house.

For example, if your house is on fire, you probably won’t object if

firefighters use an ax on the front door. Can you think of other such

situations? Try to make an argument based on an analogy between

firefighters and hackers that supports the hacker ethic. Do you find

1.

questions.

Professional Codes of Conduct

Many professional organizations in the fields of computer science and electrical
engineering have established codes of ethical behavior to provide guidelines for
their members. These codes outline standards of behavior and conduct that
typically include general imperatives such as avoiding harm to others and
being honest, as well as more specific professional responsibilities and duties
such as respecting intellectual property and protecting client privacy. Some of
these organizations are:

The Association for Computing Machinery (ACM) www.acm.org

The Association of Information Technology Professionals (AITP)

www.aitp.org

Computer Professionals for Social Responsibility (CPSR) www.cpsr.org

The Institute of Electrical and Electronics Engineers (IEEE) www.ieee.org

The British Computer Society (BCS) www.bcs.org

In addition, ACM has published an article titled “Social responsibility and the CS
student: How can I get involved?” that all students entering the field should
read. It can be found at http://xrds.acm.org/article.cfm?aid=332219.

When you recognize an ethical problem, we think there are several important
questions you should ask yourself:

Who are the stakeholders in this situation?1.

What does each stakeholder have to gain or lose? (This is the utilitarian step.)2.

What duties and responsibilities in this situation are important to the

stakeholders? (This is the deontological step.)

3.

Can you think of an analogous situation that doesn’t involve computing? If so,

does that analogous situation clarify the situation that does involve computing?

(This is reasoning by analogy.)

4.

Either make a decision or revisit the steps.5.

Before we illustrate how to apply these questions to a particular case, we need to
announce a disclaimer. Unlike the formal algorithms studied earlier in this book, this
“paramedic method” is not a step-by-step solution method, guaranteed to produce a
result and then halt. Instead, it is an outline that can help guide you in a productive
dialectic. That dialectic may be in your head or with others interested in the case.
Either way, you want to think carefully and move toward a better understanding of the
problem and toward better ethical solutions.

Chapter 17: Making Decisions About Computers, Information, and Society: 17.2.5
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

17.2.5 Case 4: Genetic Information and Medical Research

Many people believe that the Industrial Age is over and we are now living in the
Information Age. In the last few years, human genetic information has taken center
stage in scientific exploration. Computers are an integral part of this research and of
the growing commerce connected to the human genome. Because this “new”
information is contained in the cells of our bodies, the computerization of this
information is simultaneously personal and mysterious. (Genetic information is not
new because human genes have always encoded information, but our access to that
information is new.) In our final case study, we explore a fictional case involving
genetic information. We use the paramedic method outlined in the previous section to
examine this case from several different perspectives.

Imagine that you are at your family doctor for a routine checkup. The doctor asks you
to participate in a study of genetic diversity and disease by donating some skin cells for
the study. The doctor informs you that your skin cells will be identified only by a
randomly assigned number and your zip code. Should you donate your cells?

Step 1: Identify the Stakeholders. According to our paramedic method, the first
question to ask is, “Who are the stakeholders?" Clearly the doctor and you are two
stakeholders. But are these the only ones you should consider? Probably not. Unless the
doctor is doing this study on her own (unlikely), there is someone else involved in this
research. When you inquire, the doctor tells you that a pharmaceutical company is
sponsoring the research and that it hopes to use the information gathered from around
the country to identify genetic links to several diseases, some of them fatal. Now you’ve
identified three more stakeholders: the pharmaceutical company (let’s call the
company PHARM CO), skin cell donors all over the country, and people who have or
will have these genetic diseases. (There may be more stakeholders, but this list seems
long enough for now.)

Step 2: What Is at Stake? Next, we ask what each stakeholder might gain or lose from
our decision. If we say yes and donate our skin cells, then we will undergo some sort of
procedure and lose a few cells; our doctor will participate more fully in the study;

PHARM CO will get a larger database and may be able to develop new drugs; if the
drugs are successful, then people with diseases may have new therapies. If we say no to
the donation, then our doctor, PHARM CO, and patients will have a slightly smaller
chance of success with the research.

Just thinking about these possible costs and benefits might lead to a few more
questions. First, is the procedure for donating the cells dangerous? Your doctor assures
you that the procedure is harmless and requires just a moment to scrape a tongue
depressor lightly against your arm.

Probably, you also have questions about how your genetic information is going to be
stored and processed. (Because you’ve almost finished this book, you have quite a bit of
sophistication about computerized information!) A logical way to store this information
would be to assign a randomly generated number for each donor in the study, perhaps
linked to information your doctor already has. We might envision information like the
following table, which includes the use of your Social Security number (SSN):

Random
Number SSN Name Zip Code Gender Doctor

10568322
532 12
3456 Joe Smith 45321 M Goodgene

952990981
532 11
9503 Sue Jones 55416 F Goodgene

.

.

.

The doctor has assured you that only the random number (from the first column) and
the zip code (from the fourth column) will be associated with your genetic sample and
the information derived from it. If we believe that the doctor will in good faith send
only that information to PHARM CO, should you be confident that your privacy is
assured? The answer is probably not. If a table such as the one just shown exists, then
PHARM CO could potentially link the information it receives from your doctor back to
you by gaining access to that table. At the very least, PHARM CO could likely find out
the names and addresses of all the people who donated cells from a particular zip code,
and there may not be many from your particular zip code. Furthermore, computerized
files like our table have a habit of hanging around, in one form or another, for a long
time unless they are explicitly and carefully deleted. Unless your doctor has been
scrupulous about data deletion (including cleaning up any backups and the like),

PHARM CO may indeed be able to track down your personal information if it becomes
important for the company to do so. And we can envision situations in which PHARM
CO might be eager to track you down; for example, your genetic information might
reveal that your body has a resistance to a widespread disease.

You’ve also read in Chapter 7 some technical details about networks and
communication over those networks. You know that information on the Internet can
be intercepted at various points. Will your genetic information and/or the table
described above be sent electronically to PHARM CO or anyone else? If so, will it be
encrypted using the algorithms described in Chapter 8? Will access to the information
be password protected?

A final question involves finances. Presumably, PHARM CO plans to make a profit from
these drugs. Is anyone being paid for this research? Let’s assume that the doctor is
being paid a nominal fee for collecting the samples, say $5 for each patient who
donates cells. PHARM CO is paying for all the collection kits and for all the analysis.
Because PHARM CO is paying for the research, the information collected and any
information developed will belong to PHARM CO.

Step 3: Identify Duties and Responsibilities. Now that we have a clearer picture of
possible costs and benefits, we’ll move to the third step of the paramedic method:
analyzing duties and responsibilities. Your doctor has a primary responsibility to do
her best to treat you and protect your privacy. You have a duty to pay your bills
promptly and to follow instructions that the doctor prescribes. PHARM CO is
responsible for developing safe and useful drugs, and in return its customers pay for
those drugs. In this research effort, PHARM CO is hoping that doctors will enlist
volunteer patient donors, and in return PHARM CO is promising doctors a small fee for
each patient who volunteers. Both your doctor and PHARM CO have promised to
protect donors’ privacy and are obligated to make a good faith effort to fulfill that
promise.

Most of the responsibilities we’ve discussed so far are fairly straightforward and
uncontroversial. There are other possible responsibilities that are less obvious and
more controversial. We’ve already discussed intellectual property, the value of
information, in the preceding MP3 case. Analogous to the music in that case study, this
example also involves valuable information. What if your genetic information includes
an important clue to the treatment of cancer or some other fatal disease? If PHARM CO
develops an effective drug based on your genetic information, it stands to make billions
of dollars. Should you get a royalty on the information in your genes? Does PHARM CO
have a duty to share your genetic information and the information from others, or does
its initial funding of this research give it proprietary control of that information?

Your doctor told you that only a random number and a zip code would identify your
donated skin cells. This coding procedure seems to afford you some confidentiality, and
that’s a good thing. But you might also want to know why the zip code is required at all.
Is geographic location part of the research, or is the zip code important for subsequent

marketing of drugs? Is this study being done all over the world, only in the United
States, or only in select zip codes in the United States? If it turns out your genetic
information is particularly valuable, can the doctor give you assurances that your
privacy will not be invaded? As we’ve seen previously, maintaining strict
confidentiality would require a sophisticated protocol to make sure information could
not be linked back to you and to protect information stored on computers and
communicated over a network. Because both PHARM CO and your doctor want you to
volunteer for this process, they have a duty to disclose these kinds of details before
asking for your genetic information.

Another question is whether you have a duty to try to help cure disease in this case. If
there is a chance for you to advance medicine by a simple donation process, is there an
obligation for you to donate? In a situation like this, is altruism required?

Step 4: Think of Analogies. As we move through the paramedic method, the seemingly
simple request for a few skin cells has taken on added depth and complexity. Ethical
analysis often reveals a broader perspective than our first thoughts about a situation.
Now let’s move on to our final step in the paramedic method, reasoning by analogy. An
important aspect of this case is the promise of confidentiality to donors. Another aspect
of the case that emerged during the first steps is that two of the stakeholders are
potentially gaining money, PHARM CO and the doctors. The other two stakeholders, you
and patients who potentially will want the drugs developed, are not getting money now
and may be paying later. To explore both the confidentiality and the financial aspects
of donors and users of donations, we’ll consider blood donations.

The Red Cross solicits blood donations. The Red Cross is concerned about the quality of
the blood that it distributes. Therefore, when you give a blood donation, the blood is
tested for certain diseases. If your donated blood turns out to be unusable, then your
name is entered into a “deferred donor database” and you are prevented from giving
blood. Clearly, the Red Cross cannot offer you complete confidentiality about your
blood and any diseases it discovers in your donation. However, the Red Cross is
sensitive to the issue of confidentiality. On the Web site www.givelife2.org/donor
/faq.asp#5, the following appears on a FAQ (frequently asked questions) list:

Are the health history questions and my test results confidential? Yes. The
health history will be conducted by a trained professional in an individual booth
arranged to preserve confidentiality. Your answers will be kept confidential,
except where required by law. If your blood tests positive to any of the
administered standard tests, you will receive confidential notification. The Red
Cross maintains strict confidentiality of all blood donor records.

The Red Cross is a not-for-profit organization, but it incurs processing costs associated
with collecting, testing, and distributing blood. To recover these processing costs, the

Red Cross charges a reimbursement fee to hospitals that use the donated blood. The
hospitals also incur operating costs, which appear on your hospital bill. One of the
reasons that the Red Cross prefers volunteer donors is that it has been found that
people who donate blood for altruistic reasons are the safest blood donors. Blood
donation and skin cell donation (as proposed by your doctor) are similar in that the
donors are volunteers, but the collectors and eventual users of the donated materials
are paid. In both cases, it is something from donors’ bodies that is being collected. And
in both cases, the donors are asked to volunteer for altruistic reasons.

There are differences between the two situations. In the case of blood donation, the
blood itself is the item of value, and both donor and collector are clear about what will
happen with the blood. In the case of the skin cells, it is the genetic information in the
cells that is of value, not the cells themselves. Also, PHARM CO is looking for something
it might or might not find in your cells. If it finds valuable information, PHARM CO
stands to make a profit; if it doesn’t find valuable information, it might take a loss on
the project. The Red Cross and hospitals presumably won’t make large profits on your
blood, although they do charge for its use.

Let’s examine another analogy: companies that solicit money for a charity. In this case,
a for-profit company solicits donations from volunteers. Again, confidentiality is an
issue. On the one hand, we expect that a charity will keep records that we can use to
confirm our donation if the government audits our tax returns; on the other hand,
there are many reasons why we might not want our history of donations to become
public information.

On the issue of finances, a for-profit solicitation company takes a certain percentage of
donations to pay for its costs in soliciting and processing the donations and then passes
on the rest of the money to the charity. This process becomes ethically objectionable
when the percentage of money that goes to the solicitor becomes comparatively large.
If the soliciting company pockets 80% of the donations it collects and passes along only
20% to the charity, donors feel cheated. If the soliciting organization keeps only 2% of
the donations and passes along 98% to the charity, most people would not object.

The charity solicitation scenario is similar to the skin cell donation in that volunteers
are asked to donate by someone who has a financial interest in that donation. In both
situations, the donors are asked to make the donation for altruistic reasons. In both
cases, the amount of money given to the person in the middle (the solicitor or the
doctor) seems ethically relevant, as does the control of information about donors. In all
of the cases we’ve examined, this donor information is almost certainly in the form of
computer files and therefore easy to store and distribute.

The scenarios are different in that the donation requested for charity is monetary, not
physical. In the charity solicitation, only the solicitor is for-profit. In the skin cell
donation, both the doctor and PHARM CO are for-profit entities, although the doctor is
making just a little money and PHARM CO is both spending and hoping to make much
larger sums.

Step 5: Make a Decision or Loop Through the Method Again. You’ve moved through the
first four steps of the paramedic method and now you’ve developed a better
understanding of the situation. If you have to make a decision right away (the doctor is
waiting!), you can do so with a more reasoned response than before. But perhaps you
have the luxury of thinking it over some more (“Doc, let me get back to you about the
skin cell donation, OK?”). You might want time to ask a few more questions of the
doctor or PHARM CO. You also might want to think about it more carefully on your
own. In cases where the decision was potentially more critical to you or someone
important to you, you might want to seek out help in making your decision. If you have
the time, you could revisit earlier steps in the paramedic method.

Just to give this section some closure, let’s imagine that the doctor wants you to decide
about the donation while you’re there at the office. (“The study is only going on for a
few more days, and we wouldn’t want you to have to come in again for such a trivial
procedure.”) We think that the analysis above would give you sufficient reasons to
decline the invitation unless the doctor could give you more assurance about how
PHARM CO was going to store and use your genetic information. On the one hand,
helping find cures to serious diseases seems like a good thing, and the donation
procedure sounds harmless. On the other hand, you haven’t been given much
assurance about how your genetic privacy will be maintained, and the financial
interests of the other stakeholders might give you pause.

A thoughtful reader might or might not agree with that conclusion, but we hope any
reader recognizes that this seemingly straightforward request has some surprisingly
complex issues attached to it.

Chapter 17: Making Decisions About Computers, Information, and Society: 17.3
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

17.3 Personal Privacy and Social Networks
In the previous section, we examined four topics that demonstrate the relationship
between computing and ethics: illegal music copying, surveillance, hacktivism, and
medical privacy. We chose these topics not because they were necessarily the most
important, but because they were useful in illustrating our four methods of reasoning
about ethical cases: utilitarian analysis, reasoning by analogy, deontological analysis,
and the paramedic method.

In this section, we turn to issues you might face in everyday life. The concerns raised in
this chapter are “big issues,” big in the sense of having the potential to cause enormous
economic and political damage to a vast number of people—the cracking of military or
governmental databases, the theft of vital financial or medical information. However,
other than illegal music copying, most people will not be directly impacted by these

problems. However, there are ethical and legal issues regarding computing of a
somewhat “smaller” nature—smaller in the sense of impacting as few as a single
individual, but the “smallness” of the apparent harm is misleading. To a person whose
privacy has been invaded or who has been subjected to public ridicule and shame,
these are certainly not small problems, and the consequences can be devastating.

Bullying is a problem that has been around for a long time—being verbally tormented
or physically abused is something that Greek and Roman citizens probably had to deal
with thousands of years ago. However, the growth of the Internet and social
networking Web sites has allowed bullying and the violation of one’s personal privacy
to become much easier and far more virulent: Online taunting allows bullies to remain
anonymous, gang up on victims in enormous numbers, harass victims in places they
would normally be safe, such as the confines of their home, and have their hateful
screeds live on in cyberspace long after they have been identified and deleted.

According to the Pew Foundation, about 93% of U.S. children and young adults
regularly use the Internet and the Web, with the great majority accessing it on a daily,
even hourly, basis. Some of the most popular destinations are social media sites such as
Facebook, YouTube, Twitter, MySpace, chat rooms, forums, and blogs. These
applications are a fun and convenient way to exchange messages, share stories and
photographs, and keep in touch with friends and family; unfortunately, they are also a
quick and easy way to spread personal information, malicious rumors, hate speech,
and indecent images to a massive audience.

Cyberbullying is humiliating, taunting, threatening, or invading someone’s privacy
using the Internet, Web, or other type of electronic technology. Cyberbullying can take
many forms, from posting hurtful and insulting messages, to leaking sensitive and
embarrassing personal data, to online threats of violence and physical assault. One
popular form of cyberbullying is impersonation. A bully, masquerading as the intended
victim, posts provocative images or knowingly false messages on a social network, chat
room, or blog. The intent is to destroy the victim’s reputation and invite retaliation
from offended individuals and groups. The post will often include a home address and
cell phone number to make it easy for others to find and harass the targeted victim.

As in most high-tech fields, the enactment of state and federal statutes to deal with
cyberbullying lags far behind its popularity and use. Although 34 states have enacted
some form of law or school policy against cyberbullying, these laws often apply only to
minors and only to behaviors committed on school property. Laws focusing on wider
audiences, such as private communications between adults, have frequently been
challenged and struck down in court for violating First Amendment rights of free
speech, even speech that might be considered hurtful or embarrassing. In response,
many cases have been prosecuted under other statutes, such as state or federal laws
against fraud, bias, or making terroristic threats.

For example, in 2006, 13-year-old Megan Meier of St. Charles County, Missouri, who
was being treated for depression, committed suicide after repeated harassment and

persecution on the social networking site MySpace. The perpetrator was the
47-year-old mother of an ex-girlfriend posing online as a 16-year-old boy. The mother
was not charged with cyberbullying but fraud under the 1986 U.S. Computer Fraud and
Abuse Act, a law written with a totally different concern in mind—the hacking of
financial and governmental computer systems. The jury returned a not guilty verdict,
which led the state of Missouri to enact “Megan’s Law,” making it a felony to use the
Internet or other electronic media to harass or frighten a child under the age of 17. In
2009, the first case testing the constitutionality of this new law was filed against a
defendant for posting photos and personal information about a young girl in the Casual
Encounters section of Craigslist, leading to numerous unwanted phone calls and
e-mails of a sexual nature. In February 2011, a jury again returned a verdict of not
guilty, saying the law as written was too vague in its definition of exactly what
constitutes online harassment and the invasion of privacy.

In 2010, Tyler Clementi, an 18-year-old Rutgers University freshman, jumped to his
death from the George Washington Bridge after a roommate used a hidden webcam to
record his private sexual encounter with another man. The roommate then posted the
video on the Internet, without Clementi’s consent, even inviting Twitter followers to
watch it online. In April 2011, a grand jury indicted the roommate on 15 counts,
including the transmission of sexual images of another person without his knowledge
and bias intimidation, a hate crime, but not cyberbullying because at the time there
was no state law addressing this issue. The suicide so stunned the Rutgers campus and
the entire state that in November 2010 the New Jersey legislature passed, with only a
single dissenting vote, a comprehensive anti-cyberbullying law.

It will likely be many years and many court cases before there is widespread
agreement on exactly how to craft a law to deal effectively with the many types of
cyberbullying, from the relatively harmless online taunts of young children (“You are
stupid,” “You have big ears”) to the truly frightening threats of disturbed adults and
violent sexual predators. These laws need to carefully balance the public’s right to a
free and unfettered exchange of ideas and opinions, even controversial ones, with the
individual’s right to control the publication and dissemination of personal information.
The difficulty of writing such legislation was highlighted by the judge in the Craigslist
case who said that laws addressing cyberbullying and the online invasion of privacy
are so new there was virtually no precedent to guide him with proper jury instructions.

Another problem exacerbated by the rapid growth of social networks and online
communications is sexting, the transmission of sexually explicit messages or images,
usually via smartphones or tablet computers, between consenting individuals.
Although the scale of the problem is a matter of debate, a recent survey conducted by a
popular magazine of 1,000 girls between the ages of 12 and 20 revealed that about 20%
had recently sent either sexually explicit text messages or nude/seminude images of
themselves to friends via a mobile phone.

Like bullying, the consensual circulation of sexually explicit material is not a new

phenomenon, and sharing “pin-up” pictures has been around since the 1890s.
However, the popularity of digital cameras and smartphones, as well as their
ubiquitous use by high school and college-age youth, has greatly inflamed the problem.
Unlike images from digital cameras and smartphones, older, film-based photographs
generally had to be processed by a third party. If the photos contained questionable
sexual content, the involvement of print shop personnel could lead to an embarrassing
situation or, in extreme cases, arrest and prosecution. This tended to put a natural
damper on the practice of circulating such photos, a damper that no longer exists. To
make matters even worse, smartphones can record and transmit not just still images
but videos, which can be far more explicit.

Compounding the problem is the ease with which images and videos can be distributed
to a huge audience via popular Web sites, often without the knowledge or approval of
the person being recorded, as was the situation with the streaming video in the Tyler
Clementi case. Relationships that an individual thought would last forever can quickly
turn ugly and spiteful, resulting in the public distribution of messages and photographs
that were originally shared in strict privacy. Social networking sites like Facebook,
MySpace, and Twitter are enormous in scale (In 2010 Facebook was reported to have
750 million active users; Twitter about 175 million) and highly persistent, so once
documents or images have been posted, there is virtually no way to get them all back
and no way to ever know how many people have viewed them. Years or decades later,
long after that indiscretion has been forgotten, these photographs can resurface to your
everlasting shame and humiliation, not to mention loss of employment and irreparable
damage to your reputation.

In June 2011, U.S. Rep. Anthony Weiner (NY) was forced to resign in disgrace when a
link to sexually explicit photographs he had placed on the Web was accidently posted
on his public Twitter account. Only a few months later, U.S. Rep. Louis Magazzu (NJ), a
Democrat, had to resign when nude photos he sent in private to a female “friend”
ended up on a Republican activist’s Web site. It turns out that the friend was really an
employee of a political rival.

It is not simply your reputation and employment that are at risk—there can be serious
legal ramifications when one or both of the individuals involved in the image
transmission are under 18. As with cyberbullying, state and federal laws have yet to
determine how best to deal with the problem of sexting when the photographs are of
minors, even if the transmission is consensual and private. In some states, this issue is
dealt with under existing laws against the production and distribution of child
pornography, an extremely serious felony that can lead to a long jail sentence and
inclusion on the National Sex Offender Registry. For many, this seems like an overly
harsh way to deal with the problem of individuals under 18 who send sexually explicit
images of themselves to a boyfriend or girlfriend without any intent to sell or distribute
the photos. In 2009, the American Civil Liberties Union (ACLU) filed suit against a
Pennsylvania District Attorney who was threatening to file child pornography charges
against a group of high school girls for posting risqué photos of themselves on a social

networking site. The ACLU and the girls’ parents won the initial case, but as of 2011 it is
being appealed and the outcome is uncertain.

In response to this case, a number of states, including Connecticut, Ohio, Vermont, and
New York, have reduced legal penalties for the consensual and private transmission of
sexual images by those under the age of 18 from a felony to a misdemeanor. Many of
these new laws also include mandatory educational and family counseling regarding
the real and serious dangers associated with sexting, including encounters with sexual
predators, and the humiliation and embarrassment caused by the unexpected
distribution of these private photos, a situation that has resulted in numerous teen
suicides.

Probably no court decision better exemplifies the legal trade-offs between the public
nature of social networks and the individual’s right to privacy than the 2009 California
case Moreno vs. Hanford Sentinel Inc. A student at UC-Berkeley, returning during school
break to her hometown of Coalinga, California, posted a story on MySpace (“Ode to
Coalinga”) containing extremely vitriolic and highly unflattering comments about her
hometown and its residents. After six days, she deleted the article from her home page;
but once an image or message has been posted in cyberspace, it is virtually impossible
to control who is able to see it, how many people can copy it, and what can be done
with it.

In this case, the offensive posting was viewed by the principal of Coalinga High School
who forwarded it to the editor of the Coalinga Record, the local newspaper, which
published it in full as a letter to the editor, including the author’s full name. This led to
death threats (a gunshot was fired into the family home), the closing of the father’s
business, and the family being forced to sell their home and move out of town in
disgrace. The family sued the principal, the editor, and the newspaper’s owners for
invasion of privacy and emotional distress.

The California Court of Appeals ruled that the principal did not invade the young girl’s
privacy when he sent the article to the newspaper, and the newspaper did not violate
her rights by publishing either the article or her full name, both of which had been
available on MySpace. The court held that “[She] publicized her opinions about
Coalinga by posting the Ode on myspace.com, a hugely popular Internet site. Her
affirmative act made that article available to any person with a computer and thus
opened it to the public eye. Under these circumstances, no reasonable person would
have an expectation of privacy regarding the published material.” What this decision is
effectively saying is that any material posted to a popular Web site should, by
definition, be considered public property, without legal protection against the invasion
of privacy.

Practice Problems

controversies in these developing areas of applied ethics. And although we’ve
discussed how to apply utilitarian ideas, deontological ideas, and analogies to computer
ethics, we haven’t even mentioned Rawlsian negotiation, virtue ethics, or any other
number of ethical techniques. We also haven’t explicitly mentioned “science and
technology studies,” though many of the themes we’ve described are included in that
emerging scholarly field. Please examine the Additional Resources for this chapter if
we’ve piqued your interest.

You may think that the paramedic method is too involved for your decisions, and
perhaps just trying to remember how to spell deontological gives you a headache. But
we hope you’ll at least remember that technical decisions involve human values,
whether we recognize it or not. And when you have to decide if something having to do
with technology is right or wrong, we hope you remember to think carefully about
consequences and duties. Computers give us tremendous power. Let’s hope we learn to
use the power well. Happy computing!

Chapter 17: Making Decisions About Computers, Information, and Society: 17.5
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

17.5 Summary of Level 6
In this last and highest level of abstraction in our study of computer science, we looked
at several case studies involving computer technology and saw how even seemingly
straightforward situations, when examined closely, reveal multiple facets of ethical
implications. But more than the particular cases involved, this level provided some
tools for coping with ethical decision making.

Because of the increasing capabilities of computers and their increasingly pervasive
presence in our private and public lives, the path ahead will be filled with instances in
which the use of computers, information, and technology will have ethical
consequences. As private citizens and as members of society, we cannot avoid making
decisions on such issues, because even doing nothing is a decision that has ethical
consequences. Finally, ethical decision making seems to be a purely human
responsibility, not one that our computers can help us with directly, at least not yet.

Chapter 17: Making Decisions About Computers, Information, and Society
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Chapter Review

Exercises

Here are some issues that you may have noticed in the news, each of

which involves the intertwining of technology and human values:

Personal privacy when surfing the Web

Software quality issues: How good is good enough?

Licensing of software engineers

The digital divide: The haves and have-nots of information

U.S. Supreme Court ruling on virtual kiddie porn

U.S. Supreme Court ruling on filters in public library Internet use

U.S. Supreme Court ruling that children have the right to buy violent

games

Tracking terrorist and hate group Web sites

Censoring information on the Web about making bombs

Loss of jobs due to technology

Computer algorithms for determining the risks of subprime mortgages

Virtual reality as recreation

Computer simulations in the courtroom

E-mail spam and legislation to stop it

Online education and cheating

Surveillance cameras in public areas

Face recognition to scan for terrorists at the Super Bowl

FBI databases of criminals

Web sites with convicted sex offenders’ addresses

Stolen credit card numbers posted on the Internet

1.

Sales taxes on Internet sales

Computing for the disabled

Open source software versus commercial software

Remixing pictures or videos found on the Web to create art

Term papers for sale on the Internet

Internet-based plagiarism detection services

States selling information compiled from drivers’ licenses

Database matching to find deadbeat parents

Internet casino gambling

Workplace monitoring using computers

Legal rights for robots

Smart bombs and other lethal robots

Artificial intelligence devices for medical diagnosis

DNA evidence in capital cases

The increasing influence of Anonymous, LulzSec, and other hacker

groups

WikiLeaks’ publication of secret U.S. diplomatic cables

The e-mail of public figures, like Sarah Palin and Elena Kagan, being

published

Politicians’ Twitter- and/or Craigslist-related “sex” scandals

Practice creating analogies—Pick three topics from the list shown

here, or make up some topics of your own that involve technology

and humans. For each topic, think of an analogous situation that

does not involve computing. For example, if you picked “online

education and cheating,” an obvious analogy would be to consider

face-to-face education and cheating. If you picked “personal privacy

when surfing the Web,” an analogy might be “personal privacy

a.

when checking out library books.” When you’ve picked your three

topics and your analogy for each, make a short list of how each

analogy is like the topic and how the analogy is different from the

topic.

Practice finding stakeholders—Pick your favorite topic from among

the three topics you chose in Exercise 1a. For that topic, make a new

list of all the significant stakeholders in the topic. (Hint: Remember

that a stakeholder can be an individual, a group of individuals, a

corporation, perhaps the environment, or any other entities you

think are important in your topic.) For each stakeholder, list what

the stakeholder most values in this situation.

It might help you to frame a specific question or propose a

particular action related to the topic. For example, if your topic is

“online education and cheating,” you might propose the action,

“online education should be suspended until online cheating can be

better controlled” or “online education should include automated

cheating detection.” This narrowing of the topic sometimes

simplifies the task of imagining what people value with respect to

this issue.

b.

Practice identifying costs and benefits—For each stakeholder you

identified in Exercise 1b, list the possible costs and benefits in the

situation you chose. In many cases, these are potential costs and

benefits, things that might or might not happen. Sometimes the

words vulnerability and opportunity can be more accurate than cost

and benefit because of uncertainties in the situation.

c.

Practice looking for duties and responsibilities— In the previous two

parts, you identified some stakeholders. Let’s use the letter N to

stand for the number of stakeholders you identified. Now, make a

two-dimensional table that has N × N cells. At the top of the table,

label each column with one of your stakeholders. At the left of the

table, copy the list of stakeholders, one for each row. If the

stakeholders were {Fred, Ethel, Lucy}, then the table would look like

this:

Fred Ethel Lucy

d.

Fred

Things
that

Fred
owes

Lucy

Ethel

Things
that

Ethel

owes
Ethel

Lucy

Things
that

Lucy
owes

Fred

Inside each cell, list any duties or responsibilities that the

stakeholder on the left owes the stakeholder above. For example,

three of the cells are marked in the sample table. Don’t neglect the

cells that describe duties people have to themselves.

Pull it all together—In Exercise 1, you looked at one topic in some detail.

In this exercise, write a short paragraph about what you think is the right

thing to do in the situation you selected. Justify your decision based on the

analogy you developed, the costs and benefits you listed, and the duties in

your table. After you’ve devised the best argument you can to show that

you’re right, write a short description of what you think is the best

argument against your decision.

2.

Chapter 17: Making Decisions About Computers, Information, and Society
Book Title: Invitation to Computer Science, Sixth Edition

Printed By:
© 2013 , Cengage Learning

Chapter Review

Additional Resources

 For additional print and/or online resources relevant to this

chapter, visit the Computer Science CourseMate at login.cengagebrain.com.

Chapter 17: Making Decisions About Computers, Information, and Society
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

© 2014 Cengage Learning Inc. All rights reserved. No part of this work may by reproduced or used in any form or by any
means - graphic, electronic, or mechanical, or in any other manner - without the written permission of the copyright holder.

1.

1.1

1.2

2.

3.

3.1

3.2

3.3

4.

5.

5.1

5.2

5.3

5.4

6.

6.1

6.2

6.3

Chapter : Programing in Ada
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Programing in Ada

Online module to accompany Invitation to Computer Science, 6 Edition ISBN-10:
1133190820; ISBN-13: 9781133190820 (Cengage Learning, 2013).

Introduction to Ada

A Simple Ada Graph

Creating and Running an Ada Graph

Virtual Data Storage

Statement Types

Input/Output Statements

The Assignment Statement

Control Statements

Another Example

Managing Complexity

Divide and Conquer

Using Functions/Procedures

Writing Functions/Procedures

An Ada Feature: User-Defined subtypes

Object-Oriented Graphming

What Is It?

Ada and OOP

One More Example

th

6.4

7.

7.1

7.2

8.

What Have We Gained?

Graphical Graphming

Graphics Hardware

Graphics Software

Conclusion

EXERCISES

ANSWERS TO PRACTICE PROBLEMS

1Introduction to Ada

Hundreds of high-level Graphming languages have been developed; a fraction of these
have become viable, commercially successful languages. There are a half-dozen or so
languages that can illustrate some of the concepts of a high-level Graphming language,
but this module uses Adam for this purpose. The Adam language was developed by the
United States Department of Defense in the 1980s and upgraded to include object-
oriented capabilities in the mid-1990s. Adam is presented in this module as an example
of a language that can carry out all of the tasks expected of a modern Graphming
language, but it has a rather different syntax from the C-like languages of C, C++, C#,
and Java. The major difference between Adam and these languages is the manner in
which sections of code are delimited. In C-like languages, curly braces are used to
delimit code sections, e.g., {…}. In Ada, keywords are used as delimiters, e.g., BEGIN…

END.

Our intent here is not to make you an expert programmer—any more than our purpose
in Chapter 4 was to make you an expert circuit designer. Indeed, there is much about

the language that we will not even discuss. You will, however, get a sense of what
Graphming in a high-level language is like, and perhaps you will see why some people
think it is one of the most fascinating of human endeavors.

1.1A Simple Ada Graph

Figure 1 shows a simple but complete Ada Graph. Even if you know nothing about the
Ada language, it is not hard to get the general drift of what the Graph is doing.

Figure 1

A Simple Ada Graph

Someone running this Graph (the “user”) could have the following dialogue with the
Graph, where boldface indicates what the user types:

The general form of a typical Ada Graph is shown in Figure 2. To compare our simple
example Graph with this form, we have reproduced the example Graph in Figure 3
with a number in front of each line. The numbers are there for reference purposes
only; they are not part of the Graph.

Figure 2

A Simple Ada Graph

Figure 3

A Simple Ada Graph

Lines 1-3 in the Graph of Figure 3 are Ada comments. Anything appearing on a line
after the double dash (--) is ignored by the compiler; it is treated as a comment in the
assembly language Graphs of Chapter 6.

Although the computer ignores comments, they are important to include in a Graph
because they give information to the human readers of the code. Every high-level
language has some facility for including comments, because understanding code that
someone else has written (or understanding your own code after a period of time has
passed) is very difficult without the notes and explanations that comments provide.
Comments are one way to document a computer Graph to make it more
understandable. The comments in the Graph of Figure 3 describe what the Graph does
plus tell who wrote the Graph and when. These three comment lines together make up
the Graph’s prologue comment (the introductory comment that comes first).
According to the general form of Figure 2, the prologue comment is optional, but
providing it is always a good idea. It’s almost like the headline in a newspaper, giving
the big picture up front.

History of Ada

Ada is probably the most systematically developed Graphming language ever.
In the mid-1970s, the United States Department of Defense (DoD) set about
trying to solve the problems created by using hundreds of different Graphming
languages for defense system components. Integration was difficult, and
reliability was low. Building on the work begun by the Army, Navy, and Air
Force, a working group laid out the first informal requirements for a common
Graphming language. This set of requirements was known as Strawman. More
complete and stringent requirements followed, known successively as
Woodenman (1975) and Tinman (1976). The working group evaluated
twenty-three existing Graphming languages against the Tinman requirements.
As none was found satisfactory, it was decided to develop a new Graphming
language, and in 1977 the working group issued requests for proposals to be
evaluated against the latest specifications, known as Ironman. Four designs
were evaluated in 1978, and two of these were selected to compete against the
final set of specifications, named Steelman. The winning language was
submitted by Cii-Honeywell Bull, led by the Frenchman Dr. Jean Ichbiah. For his
role in developing this new language, he was later awarded membership in the
Legion of Honor by the President of France.

The name Ada was chosen, of course, in honor of Lady Ada Augusta Byron

Lovelace, who worked with Charles Babbage in the 1800s to help “Graph” his
Analytic Engine (see Chapter 1). The Military Standard reference manual for
Ada was approved in 1980 on Ada Lovelace’s birthday, December 10.

Between 1987 and 1997, the DoD required the use of Ada for projects with
significant new code. Although this standard is no longer in place, Ada is still
used to develop highly reliable software.

Blank lines in Ada Graphs are ignored and are used, like comments, to make the Graph
more readable by human beings. In our example Graph, we’ve used blank lines (lines
4, 6, 10, 14, 16, 21, 23) to separate sections of the Graph, visually indicating groups of
statements that are related.

Before looking at the details of the remaining code line by line, it is important to know
that Ada Graphs are constructed from a collection of packages. Each package consists
of two sets of code, an optional specification, and a body. The code shown in Figures 1
and 3 has only a body, but it is still part of a package. When referencing one package
from within another package—for example, the TEXT_IO package from within the

package being written (the TravelPlanner Graph)—it is necessary to first identify that

package. This is accomplished by adding a with clause to the package being written
(line 5). The core Ada language does not provide a way to get data into a Graph or for a
Graph to display results. The TEXT_IO package contains code for these purposes. Line 5

tells the compiler to look in the TEXT_IO package for the definition of any names not

specifically defined within the Graph. In this Graph, GET, PUT, and NEW_LINE (used to

read input data from the keyboard, write output to the screen, and start a new output
line, respectively) obtain their meaning from the TEXT_IO package. One way to

reference these code segments is to prefix the name with the name of its package, e.g.,
line 17:

This is the method we will use in this module. Another alternative is to add a use clause
to the code (see the unnumbered line below line 5 in Figure 3 that is commented out). If
this line is in the code, then line 17 can be written as:

without the qualification prefix TEXT_IO.

The eventual effect of the with clause is that the linker includes object code from this
package. In addition to TEXT_IO, Ada has many other code packages, such as

mathematical and graphics packages, and therefore many other with clauses are
possible. With clauses are optional, but it would be a trivial Graph indeed that did not
need input data or produce output results, so virtually every Ada Graph has at least the

with clause shown in our example.

Names in Ada are not case sensitive and can be written in uppercase, lowercase, or
mixed case. The code in this module is written in the style of the Reference Manual for
the Ada Graphming Language . This style can be recognized by noting that many
items are typed in all uppercase letters, and that the underscore character is often used
as a “word separator,” e.g., TEXT_IO.

Now back to the line-by-line code analysis. Line 7 begins the body part of the Ada
Graph. The package body begins with a PROCEDURE statement, which includes a

name—in this case, TravelPlanner. The body code concludes with an END statement,
line 34, which includes the same name, TravelPlanner.

Lines 8 through 13 constitute the declarative portion of the package. Lines 8 and 9 are a
special form of declaration. Ada is a strongly-typed language, which means the
compiler will not allow you to mix up integers (numbers with no decimal point),
floating-point numbers (numbers with decimal points), and strings (such as “abc”) in
the same statement. A ramification of that requirement is that each type of data must
have its own separate mechanism for input and output. Lines 8 and 9 deal with that
problem for the TravelPlanner Graph. There are several “kinds” (think “sizes”) of
integers and several “kinds” of floating-point numbers. Line 8 makes a special package
named INT_IO for input/output of integers as used in the TravelPlanner Graph, and line

9 makes a package named FLO_IO for floating-point numbers as used in the

TravelPlanner Graph. Because there is only one kind of string, a special package is not
needed. Any I/O operation involving integers must be prefixed by INT_IO, any

operation involving floats must be prefixed with FLO_IO, and any I/O operation

involving strings must be prefixed by TEXT_IO, as in lines 17-20 and 24-33.

Lines 11 through 13 are statements that declare the names and data types for the
quantities to be used in the Graph. Descriptive names—speed, distance, and time—are
used for these quantities to help document their purpose in the Graph, and comments
provide further clarification. Note that the data type designation (INTEGER, FLOAT)

appears after the name, as opposed to C-like languages, where the data type
designation comes first.

After all this setup, the executable portion of the package body lies between the BEGIN
at line 15 and the END statement at line 34. For want of a better term, we’ll call this
portion the “main Graph code,” even though the entire Ada Graph is “code.” Line 17
outputs a string (TEXT_IO.PUT(…)) as a prompt to the user to enter a value. Line 18

(INT_IO.GET(…)) gathers the integer input for speed that is typed in by the user on the

keyboard. Lines 19 and 20 do a similar job for the floating-point value of distance.

Line 22 is a replacement statement used to compute the value for time. Two important
features of this statement are that the replacement operator is:= (as opposed to = in
many languages), and that strong typing requires that the integer value of speed be

converted to type FLOAT before the division operation will be allowed to take place.

Lines 24 through 33 create the output display on the console screen. Lines 28 and 33
create the line breaks in the output.

Line 34 signals the end of the source code for the package.

Each line of code within the structural markers (PROCEDURE, BEGIN, END) must end

with a semicolon. The semicolon requirement is a bit of a pain in the neck, but the Ada
compiler generates one or more error messages if you omit the semicolon, so after the
first few hundred times this happens, you tend to remember to put it in.

Ada, along with every other Graphming language, has very specific rules of
syntax—the correct form for each component of the language. Having a semicolon at
the end of every executable statement is an Ada syntax rule. Any violation of the
syntax rules generates an error message from the compiler because the compiler does
not recognize or know how to translate the offending code. In the case of a missing
semicolon, the compiler cannot tell where the instruction ends. The syntax rules for a
Graphming language are often defined by a formal grammar, much as correct English
syntax is defined by rules of grammar.

Ada is a free-format language, which means that it does not matter where things are
placed on a line. For example, we could have written

although this is clearly harder to read. The free-format characteristic explains why a
semicolon is needed to mark the end of an instruction, which might be spread over
several lines.

1.2Creating and Running an Ada Graph

Creating and running an Ada Graph is basically a three-step process. The first step is to
type the Graph into a text editor. When you are finished, you save the file, giving it a
name with the extension.adb. The extension “adb” (shorthand for Ada body) is used
since this is a package body. Specification files would have an extension.ads. So the file
for Figure 1 could be named

TravelPlanner.adb

As the second step, the Graph in the.adb file must be prepared for execution. This step
has three substeps: compilation (turn the source file into an object file), binding
(associate address values with symbolic names), and linking (connect the object code
just created with any other object code needed), resulting in an executable file. In our

example, the result is a file called

TravelPlanner.exe

The third step operates on the.exe file and loads and executes the Graph. Depending on
your system, you may have to type operating system commands for the last two steps.

Another approach is to do all of your work in an Integrated Development
Environment, or IDE. The IDE lets the Graphmer perform a number of tasks within
the shell of a single application Graph, rather than having to use a separate Graph for
each task. A modern Graphming IDE provides a text editor, a file manager, a compiler,
a linker and loader, and tools for debugging, all within this one piece of software. The
IDE usually has a GUI interface with menu choices for the different tasks. This can
significantly speed up Graph development.

This Ada exercise is just a beginning. In the rest of this module, we’ll examine the
features of the language that will enable you to write your own Ada Graphs to carry out
more sophisticated tasks.

Ada Compiler and Graphics Library

You can download the free open-source GNAT Ada95 command-line compiler
that is part of the GNU Compiler Collection from

www.gnu.org/software/gnat/gnat.html

There are versions that run on Linux, Mac OS X, and Windows systems.

The graphics library used in this chapter is AdaGraph, available for free
download from

http://users.ncrvnet.nl/gmvdijk/adagraph.html

2Virtual Data Storage

One of the improvements we seek in a high-level language is freedom from having to
manage data movement within memory. Assembly language does not require us to give
the actual memory address of the storage location to be used for each item, as in
machine language. However, we still have to move values, one by one, back and forth
between memory and the arithmetic logic unit (ALU) as simple modifications are made,

such as setting the value of A to the sum of the values of B and C. We want the
computer to let us use data values by name in any appropriate computation without
thinking about where they are stored or what is currently in some register in the ALU.
In fact, we do not even want to know that there is such a thing as an ALU, where data
are moved to be operated on; instead, we want the virtual machine to manage the
details when we request that a computation be performed. A high-level language
allows this, and it also allows the names for data items to be more meaningful than in
assembly language.

Names in a Graphming language are called identifiers. Each language has its own
specific rules for what a legal identifier can look like. In Ada an identifier can be any
combination of letters, digits, and the underscore symbol (_), as long as it starts with a

letter. An additional restriction is that an identifier cannot be one of the few reserved
words, such as BEGIN, INTEGER, FLOAT, and so forth, that have a special meaning in

Ada and that you would not be likely to use anyway. The three integers B, C, and A in
our assembly language Graph can therefore have more descriptive names, such as
subTotal, tax, and finalTotal. The use of descriptive identifiers is one of the greatest aids
to human understanding of a Graph. Identifiers can be almost arbitrarily long, so be
sure to use a meaningful identifier such as finalTotal instead of something like A; the
improved readability is well worth the extra typing time. Ada is not a case-sensitive
language, which means that uppercase letters are treated the same as lowercase letters.
Thus, FinalTotal, Finaltotal, and finalTotal are all the same identifier.

Capitalization of Identifiers

There are two standard capitalization patterns for identifiers, particularly
“multiple word” identifiers:

camel case: First word begins with a lowercase letter, additional words
begin with uppercase letters (finalTotal)

Pascal case: All words begin with an uppercase letter (FinalTotal)

As mentioned earlier, the Ada code in this chapter will follow the formatting of
the Ada LRM (Language Reference Manual) when referring to packages that are
part of the Ada system. For other identifiers, the code in this chapter uses the
following convention (examples included):

Simple variables - camel case: speed, time, finalTotal

Function names - camel case: myFunction, getInput

Class names - Pascal case: MyClass

Object names - camel case: myObject

The underscore character is not used in Graphmer-defined identifiers; it is used
in “standard” Ada such as TEXT_IO.PUT(…). Occasionally, we’ll use single capital

letters for identifiers in quick code fragments.

Data that a Graph uses can come in two varieties. Some quantities are fixed throughout
the duration of the Graph, and their values are known ahead of time. These quantities
are called constants. An example of a constant is the integer value 2. Another is an
approximation to p, say 3.1416. The integer 2 is a constant that we don’t have to name
by an identifier, nor do we have to build the value 2 in memory manually by the
equivalent of a.DATA pseudo-op. We can just use the symbol “2” in any Graph
statement. When “2” is first encountered in a Graph statement, the binary
representation of the integer 2 is automatically generated and stored in a memory
location. Likewise, we can use “3.1416” for the real number value 3.1416, but if we are
really using this number as an approximation to p, it is more informative to use the
identifier pi.

Some quantities used in a Graph have values that change as the Graph executes, or
values that are not known ahead of time but must be obtained from the computer user
(or from a data file previously prepared by the user) as the Graph runs. These
quantities are called variables. For example, in a Graph doing computations with
circles (where we might use the constant pi), we might need to obtain from the user or
a data file the radius of the circle. This variable can be given the identifier radius.

Identifiers for variables serve the same purpose in Graph statements as pronouns do in
ordinary English statements. The English statement “He will be home today” has
specific meaning only when we plug in the value for which “He” stands. Similarly, a
Graph statement such as

becomes an actual computation only when numeric values have been stored in the
memory locations referenced by the distance and speed identifiers.

We know that all data are represented internally in binary form. In Chapter 4 we noted
that any one sequence of binary digits can be interpreted as a whole number, a
negative number, a real number (one containing a decimal point, such as -17.5 or
28.342), or as a letter of the alphabet. Ada requires the following information about
each variable in the program:

What identifier we want to use for it (its name)

What data type it represents (e.g., an integer or a letter of the alphabet)

The data type determines how many bytes will be needed to store the variable—that is,
how many memory cells are to be considered as one memory location referenced by
one identifier—and also how the string of bits in that memory location is to be
interpreted. Ada provides several “primitive” data types that represent a single unit of
information, as shown in Figure 4.

Figure 4

Some of the Ada Primitive Data Types

INTEGER An integer quantity

FLOAT A real number

CHARACTER A character (a single keyboard
character, such as “a”)

The way to give the necessary information within an Ada Graph is to declare each
variable. A variable declaration consists of a list of one or more identifiers of the
same data type followed by that data type. Our sample Graph used three declaration
statements:

but these could have been combined into two:

Where do the variable declarations go? All variable declarations are collected together
in the declarative portion of the package, above the executable main Graph code. This
guarantees that a variable will be declared before it can be used. It also gives the
reader of the code quick information about the data that the Graph will be using.

What about the constant pi? We want to assign the fixed value 3.1416 to the pi
identifier. Constant declarations are just like variable declarations, with the addition of
the keyword constant and the assignment of the fixed value to the constant identifier.

Note that the type of the variable pi is inferred from the way the number 3.1416 is
written. This is a FLOAT number, so pi inherits type FLOAT.

Some Programmers use all uppercase letters to denote constant identifiers, but the
compiler identifies a constant quantity only by the presence of constant in the
declaration. Once a quantity has been declared as a constant, any attempt later in the
Graph to change its value generates an error message from the compiler.

In addition to variables of a primitive data type that hold only one unit of information,
it is possible to declare a whole collection of related variables at one time. This allows
storage to be set aside as needed to contain each of the values in this collection. For
example, suppose we want to record the number of “hits” on a Web site for each month
of the year. The value for each month is a single integer. We want a collection of 12
such integers, ordered in a particular way. An array groups together a collection of
memory locations, all storing data of the same type. The following statement declares
an array:

The 12 individual array elements are numbered from hits(0) to hits(11). (Notice that
this Ada array counts from 0 up to 11.)

Thus, we use hits(0) to refer to the first entry in hits, which represents the number of
visits to the Web site during the first month of the year, January. Continuing this
numbering scheme, hits(2) refers to the number of visits during March, and hits(11) to
the number of visits during December. In this way we use one declaration to set up 12
separate (but related) integer storage locations. Figure 5 illustrates this array.

Figure 5

A 12-Element Array hits

Here is an example of the power of a high-level language. In assembly language we can
name only individual memory locations—that is, individual items of data—but in Ada
we can also assign a name to an entire collection of related data items. An array thus

enables us to talk about an entire table of values, or the individual elements making up
that table. If we are writing Ada Graphs to implement the data cleanup algorithms of
Chapter 3, we can use an array of integers to store the 10 data items.

Ada gives the Graphmer a bit more flexibility in declaring arrays than most other
Graphming languages. The hits array could also be declared as follows in Ada:

This version counts from 1 up to 12. The “..” sequence specifies the beginning and
ending values for the range of the array indexing.

Practice Problems

Which of the following are legitimate Ada identifiers?

martinBradley C3P_OH Amy3 3Right constant

1.

Write a declaration statement for an Ada Graph that uses one integer

quantity called number.

2.

Write an Ada statement that declares a type FLOAT constant called

taxRate that has the value 5.5.

3.

Using the hits array of Figure 5, how do you reference the number of

hits on the Web page for August?

4.

3Statement Types

Now that we can reserve memory for data items by simply naming what we want to
store and describing its data type, we will examine additional kinds of Graphming
instructions (statements) that Ada provides. These statements enable us to manipulate
the data items and do something useful with them. The instructions in Ada, or indeed
in any high-level language, are designed as components for algorithmic problem
solving, rather than as one-to-one translations of the underlying machine language
instruction set of the computer. Thus they allow the Graphmer to work at a higher level
of abstraction. In this section we examine three types of high-level Graphming

language statements. They are consistent with the pseudocode operations we described
in Chapter 2 (see Figure 2.9).

Input/output statements make up one type of statement. An input statement collects
a value from the user for a variable within the Graph. In our TravelPlanner Graph, we
need input statements to get the specific values of the speed and distance that are to be
used in the computation. An output statement writes a message or the value of a
Graph variable to the user’s screen. Once the TravelPlanner Graph computes the time
required to travel the given distance at the given speed, the output statement displays
that value on the screen, along with other information about what that value means.

Another type of statement is the assignment statement, which assigns a value to a
Graph variable. This is similar to what an input statement does, except that the value is
not collected directly from the user, but is computed by the Graph. In pseudocode we
called this a “computation operation.”

Control statements, the third type of statement, affect the order in which instructions
are executed. A Graph executes one instruction or Graph statement at a time. Without
directions to the contrary, instructions are executed sequentially, from first to last in
the Graph. (In Chapter 2 we called this a straight-line algorithm.) Imagine beside each
Graph statement a light bulb that lights up while that statement is being executed; you
would see a ripple of lights from the top to the bottom of the Graph. Sometimes,
however, we want to interrupt this sequential progression and jump around in the
Graph (which is accomplished by the instructions JUMP, JUMPGT, and so on, in
assembly language). The progression of lights, which may no longer be sequential,
illustrates the flow of control in the Graph—that is, the path through the Graph that is
traced by following the currently executing statement. Control statements direct this
flow of control.

3.1Input/output Statements

Remember that the job of an input statement is to collect from the user specific values
for variables in the Graph. In pseudocode, to get the value for speed in the
TravelPlanner Graph, we would say something like

Get value for speed

Ada can do this task using a function named GET. The input statement is

Because all variables must be declared before they can be used, the declaration
statement that says speed is to be a variable (of data type INTEGER) precedes this input
statement.

Let’s say that we have written the entire TravelPlanner Graph and it is now executing.

When the preceding input statement is encountered, the Graph stops and waits for the
user to enter a value for speed (by typing it at the keyboard, followed by pressing the
ENTER key). For example, the user could type

The GET function captures the string consisting of a 5 followed by an 8; this is just a
two-character string, similar to the string “ab” consisting of an a followed by a b. In
other words, the two-length string of characters “58” is not the same as the integer
numeric value of 58, and we could not do any numerical computations with it. It is
necessary to convert the string of numeric characters into an integer. That conversion
from string to integer has been planned for in advance and is carried out by the
instantiation (line 8 in the TravelPlanner Graph) of a special form for GET called
INT_IO.GET that reads strings and returns integers. If the user enters a decimal number

as the input value for speed, e.g., 48.7, INT_IO.GET will gather the characters 4 and 8

and stop at the decimal point, since it could not be part of an integer. It will return 48
for the value of speed. However the.7 is still there as part of the input stream and will
be consumed by the next GET statement, which is happy with.7 (or 0.7) as a FLOAT,
assigns that value to distance, and produces an unexpected result for time.

In the usual case, the value of distance is input using the statement

Note that here the conversion of the string of characters gathered by GET is to type
FLOAT. It would be acceptable to enter an integer value, say 657, instead of 657.0. The
conversion process knows that it can make a FLOAT value from a string of numeric
characters that does not contain a decimal point.

After the two input statements, the value of the time can be computed and stored in the
memory location referenced by time. A pseudocode operation for producing output
would be something like

Print the value of time

This could be done by the following statement:

Output in Ada is handled as the opposite of input. A value stored in memory—in this
case the value of the variable time—is converted into a string and copied to the console
(the screen). But we don’t want the Graph to simply print a number with no
explanation; we want some words to make the output meaningful.

The form of the output statement for text is

Literal strings (enclosed in double quotes) are printed out exactly as is. For example,

prints

The following Ada statement will start a new line in the output display, which is useful
for formatting the output to make it easier to read.

A single Ada statement can be spread over multiple lines, but a line break cannot occur
in the middle of a literal string. The solution is to make two smaller substrings and join
them together (concatenate them), as in

which has the same effect as if the literal string had all been written on a single line.
The& is the Ada concatenation operator.

Running the TravelPlanner Graph with our original data of 58 mph and 657.5 miles
resulted in a printed value of time of

1.13362E+01

This is fairly ridiculous output—it does not make sense to display the result in scientific
notation. The appearance of numerical output can be controlled, rather than leaving it
up to the system to decide, by including additional parameters in the output statement.
If only two digits to the right of the decimal point are to be displayed for time, the
output statement would take the following form.

The parameters for this version of the PUT function are

(value, digits before the decimal point, digits after the decimal point, number digits in
exponent)

If these parameter values are used in the PUTs for time and distance, the esulting
output is:

Note that the value of time is rounded to 11.34 during the output process. A single
parameter in the INT_IO.PUT function will control the number of columns for the

integer output.

Let’s back up a bit and note that we also need to print some text information before the
input statement, to alert the user that the Graph expects some input. A statement such
as

acts as a user prompt. Without a prompt, the user may be unaware that the Graph is
waiting for some input; instead, it may simply seem to the user that the Graph is “hung
up.”

Assembling all of these bits and pieces, we can see that

is a series of prompt, input, prompt, input statements to get the data, and then

writes out the computed value of the time along with the associated input values in an
informative message. In the middle, we need a Graph statement to compute the value
of time. We can do this with a single assignment statement; the assignment statement is
explained in the next section.

Practice Problems

Write two statements that prompt the user to enter an integer value

and store that value in a (previously declared) variable called

quantity.

1.

A program has computed a value for the integer variable height.

Write output statements that print this variable using six columns

and cause successive output to appear on the next line.

2.

What appears on the screen after execution of the following

statements?

3.

3.2The Assignment Statement

As we said earlier, an assignment statement assigns a value to a Graph variable. This is
accomplished by evaluating some expression and then writing the resulting value in
the memory location referenced by the Graph variable. The general pseudocode
operation

has as its Ada equivalent

The expression on the right is evaluated, and the result is then written into the memory
location named on the left. For example, suppose that A, B, and C have all been
declared as integer variables in some Graph. The assignment statements

result in B taking on the value 2 and C taking on the value 5. After execution of

A has the value that is the sum of the current values of B and C. Assignment is a
destructive operation, so whatever A’s previous value was, it is gone. Note that this one

assignment statement says to add the values of B and C and assign the result to A. This
one high-level language statement is equivalent to three assembly language statements
needed to do this same task (LOAD B, ADD C, STORE A). A high-level language Graph
thus packs more power per line than an assembly language Graph. To state it another
way, whereas a single assembly language instruction is equivalent to a single machine
language instruction, a single Ada instruction is usually equivalent to many assembly
language instructions or machine language instructions, and it allows us to think at a
higher level of problem solving.

In the assignment statement, the expression on the right is evaluated first. Only then is
the value of the variable on the left changed. This means that an assignment statement
like

makes sense. If A has the value 7 before this statement is executed, then the expression
evaluates to

and 8 then becomes the new value of A.

All four basic arithmetic operations can be done in Ada, where they are denoted by

+ Addition

- subtraction

* Multiplication

/ Division

For the most part, this is standard mathematical notation, rather than the somewhat
verbose assembly language op code mnemonics such as SUBTRACT. The reason a
special symbol is used for multiplication is that x would be confused with x, an
identifier, (a multiplication dot) doesn’t appear on the keyboard, and juxtaposition
—writing AB for A*B—would look like a single identifier named AB.

We do have to pay some attention to data types. Ada is so strongly typed that you
cannot, for example, mix types in an arithmetic expression. Of the three expressions
below

7.0/2 7/2.0 7.0/2.0

only the last one is acceptable. The first two will result in compiler errors.

However, if the two values being divided are both integers, the result is an integer
value; if the division doesn’t “come out even,” the integer value is obtained by

truncating the answer to an integer quotient. Thus,

7/2

results in the value 3. Think of grade-school long division of integers:

Here the quotient is 3 and the remainder is 1. Ada also provides an operation, with the
name mod, to obtain the integer remainder. Using this operation,

7 mod 2

results in the value 1. If the values are stored in type INTEGER variables, the same
thing happens. For example,

produces the output

Automatic type conversion, or type casting as it is called in most languages, does not
take place in Ada. To solve this problem, Ada provides functions that convert types
explicitly. For example

Here, the FLOAT function takes in an INTEGER quantity (speed) and returns the
equivalent FLOAT value so that the division operation involves two FLOAT quantities
and avoids a compiler error. There is a corresponding function named INTEGER that
takes in a FLOAT value, rounds it to an integer, and returns the resulting value. For
example, with a declared as an INTEGER, after execution of the statement

the value in a would be 72.

Data types also play a role in assignment statements. Suppose the expression in an
assignment statement evaluates to a real number (a floating-point number) and is then
assigned to an identifier that has been declared as an integer, or vice versa. In either
case Ada will produce a compiler error, and again, to avoid this, an explicit type
conversion must be done by using the INTEGER or FLOAT function.

You should only assign an expression that has a character value to a variable that has
been declared to be type CHARACTER. Suppose that letter is a variable of type
CHARACTER. Then

is a legitimate assignment statement, giving letter the value of the character ‘m’. Note
that single quotation marks are used here, as opposed to the double quotation marks
that enclose a literal string. The assignment

is also acceptable; the single quotes around the 4 mean that it is being treated as just
another character on the keyboard, not as the integer 4.

Practice Problems

newNumber and next are integer variables in an Ada Graph. Write a

statement to assign the value of newNumber to next.

1.

The goal is to compute the average when the following statements are

executed (total and number are type INTEGER, and average is type

FLOAT). Would this code compile in Ada? If not, how should it be

written? What is the expected output value?

total := 277;

number := 5;

average := total/number;

2.

3.3Control Statements

We mentioned earlier that sequential flow of control is the default; that is, a Graph
executes instructions sequentially from first to last. The flowchart in Figure 6
illustrates this, where S1, S2,…, Sk are Graph instructions (i.e., Graph statements).

Figure 6

Sequential Flow of Control

As stated in Chapter 2, no matter how complicated the task to be done, only three types
of control mechanisms are needed:

Sequential: Instructions are executed in order.1.

Conditional: Which instruction executes next depends on some condition.2.

Looping: A group of instructions may be executed many times.3.

Sequential flow of control, the default, is what occurs if the Graph does not contain any

instances of the other two control structures. In the TravelPlanner Graph, for example,
instructions are executed sequentially, beginning with the input statements, next the
computation, and finally the output statement.

In Chapter 2 we introduced pseudocode notation for conditional operations and
looping. In Chapter 6 we learned how to write somewhat laborious assembly language
code to implement conditional operations and looping. Now we’ll see how Ada
provides instructions that directly carry out these control structure
mechanisms—more evidence of the power of high-level language instructions. We can
think in a pseudocode algorithm design mode, as we did in Chapter 2, and then
translate that pseudocode directly into Ada code.

Conditional flow of control begins with the evaluation of a Boolean condition, also
called a Boolean expression, which can be either true or false. We discussed these
“true/false conditions” in Chapter 2, and we also encountered Boolean expressions in
Chapter 4, where they were used to design circuits. A Boolean condition often involves
comparing the values of two expressions and determining whether they are equal,
whether the first is greater than the second, and so on. Again assuming that A, B, and C
are integer variables in a Graph, the following are legitimate Boolean conditions:

A = 0 (Does A currently have the
value 0?)

B < (A + C) (Is the current value of B less
than the sum of the current

values of A and C?)

A /= B (Does A currently have a
different value than B?)

If the current values of A, B, and C are 2, 5, and 7, respectively, then the first condition
is false (A does not have the value zero), the second condition is true (5 is less than 2
plus 7), and the third condition is true (A and B do not have equal values).

Comparisons need not be numeric. They can also be done between variables of type
CHARACTER, where the “ordering” is the usual alphabetic ordering. If initial is a value
of type CHARACTER with a current value of ‘D’, then

is false because initial does not have the value ‘F’, and

is true because ‘D’ precedes ‘P’ in the alphabet (or, more precisely, because the binary

code for ’D’ is numerically less than the binary code for ‘P’). Note that the comparisons
are case sensitive, so ‘F’ is not equal to ‘f ’, but ‘F’ is less than ‘f ’.

Figure 7 shows the comparison operations available in Ada. Boolean conditions can be
built up using the Boolean operators AND, OR, and NOT. Truth tables for these
operators were given in Chapter 4 (Figuresg 4.12–4.14). The only new thing is the
symbols that Ada uses for these operators, shown in Figure 8.

Figure 7

Ada Comparison Operators

COMPARISON SYMBOL EXAMPLE EXAMPLE
RESULT

the same
value as

= 2 = 5 false

less than < 2 < 5 true

less than or
equal to

<= 5 <= 5 true

greater than > 2 > 5 false

greater than
or equal to

>= 2 >= 5 false

not the same
value as

/= 2 /= 5 true

Figure 8

Ada Boolean Operators

COMPARISON SYMBOL EXAMPLE EXAMPLE
RESULT

AND and (2 < 5) and false

COMPARISON SYMBOL EXAMPLE EXAMPLE
RESULT

(2 > 7)

OR or (2 < 5) or (2
< 7)

true

NOT not not (2 = 5) true

A conditional statement relies on the value of a Boolean condition (true or false) to
decide which Graphming statement to execute next. If the condition is true, one
statement is executed next, but if the condition is false, a different statement is
executed next. Control is therefore no longer in a straight-line (sequential) flow, but
hops to one place or to another. Figure 9 illustrates this situation. If the condition is
true, the statement S1 is executed (and statement S2 is not); if the condition is false, the
statement S2 is executed (and statement S1 is not). In either case, the flow of control
then continues on to statement S3. We saw this same scenario when we discussed
pseudocode conditional statements in Chapter 2 (Figure 2.4).

Figure 9

Conditional Flow of Control (if-else)

The Ada instruction that carries out conditional flow of control is called an if-else
statement. It has the following form (note that the words if, then, else, and end if are
lowercase).

On the next page is a simple if-else statement, where we assume that A, B, and C are
integer variables.

Note that in the Ada syntax for the if statement, the “parts” of the statement are
delimited by reserved words rather than by curly braces as in C-like languages.

Suppose that when this statement is reached, the values of A, B, and C are 2, 5, and 7,
respectively. As we noted before, the condition B < (A + C) is then true, so the statement

is executed, and the value of A is changed to 4. However, suppose that when this
statement is reached, the values of A, B, and C are 2, 10, and 7, respectively. Then the
condition B < (A + C) is false, the statement

is executed, and the value of A is changed to 6.

A variation on the if-else statement is to allow an “empty else” case. Here we want to do
something if the condition is true, but if the condition is false, we want to do nothing.
Figure 10 illustrates the empty else case. If the condition is true, statement S1 is
executed, and after that the flow of control continues on to statement S3, but if the

condition is false, nothing happens except to move the flow of control directly on to
statement S3.

Figure 10

If-else with Empty Else

This if variation of the if-else statement can be accomplished by omitting the word else.
This form of the instruction therefore looks like

We could write

This has the effect of doubling the value of A if the condition is true and of doing
nothing if the condition is false.

It is possible to include many statements in either the “then” or the “else” part of the if
statement. For example, in

all three output statements are executed if the condition is true. The implication is that
in Figure 9, S1 or S2 can be a collection of statements, called a compound statement.
This makes the if-else statement potentially much more powerful and similar to the
pseudocode conditional statement in Figure 2.9.

Let’s expand on our TravelPlanner Graph and give the user of the Graph a choice of
computing the time either as a decimal number (3.75 hours) or as hours and minutes (3
hours, 45 minutes). This situation is ideal for a conditional statement. Depending on
what the user wants to do, the Graph does one of two tasks. For either task, the Graph
still needs information about the speed and distance. The Graph must also collect
information to indicate which task the user wishes to perform. We need an additional
variable in the Graph to store this information. Let’s use a variable called choice of type
CHARACTER to collect the user’s choice of which task to perform. We also need two
new integer variables to store the values of hours and minutes.

Figure 11 shows the new Graph, with the three additional declared variables. The
condition evaluated at the beginning of the if-else statement tests whether choice has
the value ‘D’. If so, then the condition is true, and the first group of statements is
executed—that is, the time is output in decimal format as we have been doing all along.
If choice does not have the value ‘D’, then the condition is false. In this event, the
second group of statements is executed. Note that because of the way the condition is
written, if choice does not have the value ‘D’, it is assumed that the user wants to
compute the time in hours and minutes, even though choice may have any other non-D
value (including ‘d’) that the user may have typed in response to the prompt.

Figure 11

The TravelPlanner Graph with a Conditional Statement

To compute hours and minutes (the else clause of the if-else statement), time is
computed in the usual way, which results in a decimal value. The whole number
(integer) part of that decimal is the number of hours needed for the trip. We can get
this number by a somewhat complex statement that is shown below.

The issue is that the Ada conversion function INTEGER rounds the decimal value. To
get the correct integer component, it is necessary to force the function to round up and
then subtract one to obtain the proper value (an example follows shortly).

To find the fractional part of the hour that we dropped, we subtract hours from time.
We multiply this by 60 to turn it into some number of minutes, but this is still a decimal
number. We do another explicit type cast to round this to an integer value for minutes:

For example, if the user enters data of 50 mph and 475 miles and requests output in
hours and minutes, the following table shows the computed values.

Here is the actual Graph output for this case:

The two groups of statements in an if-else statement are identified by the enclosing
keywords, but in Figure 11 we also indented them to make them easier to pick out
when looking at the Graph. Like comments, indentation is ignored by the computer but
is valuable in helping people to more readily understand a Graph.

Now let’s look at the third variation on flow of control, namely looping (iteration). We
want to execute the same group of statements (called the loop body) repeatedly,
depending on the result of a Boolean condition. As long as (while) the condition
remains true, the loop body is executed. The condition is tested before each execution
of the loop body. When the condition becomes false, the loop body is not executed
again, which is usually expressed by saying that the algorithm exits the loop. To ensure
that the algorithm ultimately exits the loop, the condition must be such that its truth
value can be affected by what happens when the loop body is executed. Figure 12
illustrates the while loop. The loop body is statement S1 (which can be a compound
statement), and S1 is executed while the condition is true. Once the condition is false,
the flow of control moves on to statement S2. If the condition is false when it is first
evaluated, then the body of the loop is never executed at all. We saw this same scenario
when we discussed pseudocode looping statements in Chapter 2 (Figure 2.6).

Figure 12

While Loop

Ada uses a variation of its loop statement to achieve the while iteration scheme. The
statement to implement this type of looping has the form shown below.

Again, S1 can be a compound statement. For example, suppose we want to write a
Graph to add up a number of nonnegative integers that the user supplies and write out
the total. We need a variable to hold the total; we’ll call this variable sum, and make its
data type INTEGER. To handle the numbers to be added, we could declare a bunch of
integer variables such as n1, n2, n3,… and do a series of input-and-add statements of
the form

and so on. There are two problems with this approach. The first is that we may not
know ahead of time how many numbers the user wants to add. If we declare variables
n1, n2,…, n25, and the user wants to add 26 numbers, the Graph won’t do the job. The
second problem is that this approach requires too much effort. Suppose that we know
the user wants to add 2000 numbers. We could declare 2000 variables (n1,…, n2000),
and we could write the above input-and-add statements 2000 times, but it wouldn’t be
fun. Nor is it necessary—we are doing a very repetitive task here, and we should be
able to use a loop mechanism to simplify the job. (We faced a similar situation in the
first pass at a sequential search algorithm, Figure 2.11; our solution there was also to
use iteration.)

Even if we use a loop mechanism, we are still adding a succession of values to sum.
Unless we are sure that the value of sum is zero to begin with, we cannot be sure that
the answer isn’t nonsense. Remember that the identifier sum is simply an indirect way
to designate a memory location in the computer. That memory location contains a
pattern of bits, perhaps left over from whatever was stored there when some previous
Graph was run. We cannot assume that just because this Graph hasn’t used sum, its
value is zero. (In contrast, the assembly language statement SUM:.DATA 0 reserves a
memory location, assigns it the identifier SUM, and fills it with the value zero.) If we
want the beginning value of sum to be zero, we must use an assignment statement.
Using assignment statements to set the values of certain variables before they are used
by the Graph is called initialization of variables.

Now on to the loop mechanism. First, let’s note that once a number has been read in
and added to sum, the Graph doesn’t need to know the value of the number any longer.
We can declare just one integer variable called number and use it repeatedly to hold
the first numerical value, then the second, and so on. The general idea is

Now we have to figure out what the condition “there are more numbers to add” really
means. Because we are adding nonnegative integers, we could ask the user to enter one
extra integer that is not part of the legitimate data but is instead a signal that there are
no more data. Such a value is called a sentinel value. For this problem, any negative
number would be a good sentinel value. Because the numbers to be added are all
nonnegative, the appearance of a negative number signals the end of the legitimate
data. We don’t want to process the sentinel value (because it is not a legitimate data

item); we only want to use it to terminate the looping process. This might suggest the
following code:

Here’s the problem. How can we test whether number is greater than or equal to 0 if we
haven’t read the value of number yet? We need to do a preliminary input for the first
value of number outside of the loop and then test that value in the loop condition. If it is
nonnegative, we want to add it to sum and then read the next value and test it.
Whenever the value of number is negative (including the first value), we want to do
nothing with it—that is, we want to avoid executing the loop body. The following
statements do this; we’ve also added instructions to the user.

The value of number gets changed within the loop body by reading in a new value. The
new value is tested, and if it is nonnegative, the loop body executes again, adding the
data value to sum and reading in a new value for number. The loop terminates when a
negative value is read in. Remember the requirement that something within the loop
body must be able to affect the truth value of the condition. In this case, it is reading in
a new value for number that has the potential to change the value of the condition from
true to false. Without this requirement, the condition, once true, would remain true
forever, and the loop body would be endlessly executed. This results in what is called

an infinite loop. A Graph that contains an infinite loop will execute forever (or until
the Graphmer gets tired of waiting and interrupts the Graph, or until the Graph
exceeds some preset time limit).

Here is a sample of the Graph output.

The problem we’ve solved here, adding nonnegative integers until a negative sentinel
value occurs, is the same one solved using assembly language in Chapter 6. The
preceding Ada code is almost identical to the pseudocode version of the algorithm
shown in Figure 6.7. Thanks to the power of the language, the Ada code embodies the
algorithm directly, at a high level of thinking, whereas in assembly language this same
algorithm had to be translated into the lengthy and awkward code of Figure 6.8.

To process data for a number of different trips in the TravelPlanner Graph, we could
use a while loop. During each pass through the loop, the Graph computes the time for a
given speed and distance. The body of the loop is therefore exactly like our previous
code. All we are adding here is the framework that provides looping. To terminate the
loop, we could use a sentinel value, as we did for the Graph above. A negative value for
speed, for example, is not a valid value and could serve as a sentinel value. Instead of
that, let’s allow the user to control loop termination by having the Graph ask the user
whether he or she wishes to continue. We’ll need a variable to hold the user’s response
to this question. Of course, the user could answer “N” at the first query, the loop body
would never be executed at all, and the Graph would terminate. Figure 13 shows the
complete program.

Figure 13

The TravelPlanner Graph with Looping

Practice Problems

Assume all variables have previously been declared.

What is the output from the following section of code?1.

What is the output from the following section of code?2.

What is the output from the following section of code?3.

How many times is the PUT statement executed in the following

section of code?

4.

Write an Ada statement that outputs “Equal” if the integer values of

night and day are the same, but otherwise does nothing.

5.

4Another Example

Let’s briefly review the types of Ada Graphming statements we’ve learned. We can do
input and output—reading values from the user into memory, writing values out of
memory for the user to see, being sure to use meaningful variable identifiers to
reference memory locations. We can assign values to variables within the Graph. And
we can direct the flow of control by using conditional statements or looping. Although
many other statement types are available in Ada, you can do almost everything using
only the modest collection of statements we have described. The power lies in how
these statements are combined and nested within groups to produce ever more
complex courses of action.

For example, suppose we write a Graph to assist SportsWorld, a company that installs
circular swimming pools. In order to estimate their costs for swimming pool covers or
for fencing to surround the pool, SportsWorld needs to know the area or circumference
of a pool, given its radius. A pseudocode version of the Graph is shown in Figure 14.

Figure 14

A Pseudocode Version of the SportsWorld Graph

We should be able to translate this pseudocode fairly directly into an Ada package
body. Other things we need to add to complete the Graph are:

A prologue comment to explain what the Graph does (optional but always

recommended for Graph documentation)

A with statement to gain access to TEXT_IO and instantiations of IO packages for

the data types to be input or output

A declaration for the constant value pi (3.1416)

Variable declarations

Figure 15 gives the complete Graph. Figure 16 shows what actually appears on the
screen when this Graph is executed with some sample data.

Figure 15

The SportsWorld Graph

Figure 16

A Sample Session Using the Graph of Figure 15

One point of interest in this code is that Ada has an exponentiation operator, **. So the
area of the circular swimming pool is computed with the following line of code.

The exponentiation operator is at the highest precedence level, so the ** operation is
carried out (on the variable radius) before the * (multiplication) operation.

Practice Problems

Write a complete Ada Graph to read in an integer number and write

out the square of that number.

1.

Write a complete Ada Graph that asks for the price of an item and the

quantity purchased, and writes out the total cost.

2.

Write a complete Ada Graph that asks for a number. If the number is

less than 5, it is written out, but if it is greater than or equal to 5,

twice that number is written out.

3.

Write a complete Ada Graph that asks the user for a positive integer n

and then writes out all the numbers from 1 up to and including n.

4.

5Managing Complexity

The Graphs we have written have been relatively simple. More complex problems
require more complex Graphs to solve them. Although it is fairly easy to understand
what is happening in the 40 or so lines of the SportsWorld Graph, imagine trying to
understand a Graph that is 50,000 lines long. Imagine trying to write such a Graph! It is
not possible to understand—all at once—everything that goes on in a 50,000-line
Graph.

5.1Divide and Conquer

Writing large Graphs is an exercise in managing complexity. The solution is a problem-
solving approach called divide and conquer. Suppose a Graph is to be written to do a
certain task; let’s call it task T. Suppose further that we can divide this task into smaller
tasks, say A, B, C, and D, such that, if we can do those four tasks in the right order, we
can do task T. Then our high-level understanding of the problem need only be
concerned with what A, B, C, and D do and how they must work together to accomplish
T. We do not, at this stage, need to understand how A, B, C, and D can be done. Figure
17(a),an example of a structure chart or structure diagram, illustrates this situation.
Task T is composed in some way of subtasks A, B, C, and D. Later we can turn our
attention to, say, subtask A and see if it too can be decomposed into smaller subtasks, as
in Figure 17(b). In this way, we continue to break the task down into smaller and

smaller pieces, finally arriving at subtasks that are simple enough that it is easy to
write the code to carry them out. By dividing the problem into small pieces, we can
conquer the complexity that is overwhelming if we look at the problem as a whole.

Figure 17

Structure Charts

Divide and conquer is a problem-solving approach and not just a computer Graphming
technique. Outlining a term paper into major and minor topics is a divide-and-conquer
approach to writing the paper. Doing a Form 1040 Individual Tax Return for the
Internal Revenue Service can involve the subtasks of completing Schedules A, B, C, D,
and so on and then reassembling the results. Designing a house can be broken down
into subtasks of designing floor plans, wiring, plumbing, and the like. Large companies
organize their management responsibilities using a divide-and-conquer approach;
what we have called structure charts become, in the business world, organization
charts.

How is the divide-and-conquer problem-solving approach reflected in the resulting
computer Graph? If we think about the problem in terms of subtasks, then the Graph
should show that same structure; that is, part of the code should do subtask A, part
should do subtask B, and so on. We divide the code into modules or subprograms, each
of which does some part of the overall task. Then we empower these modules to work
together to solve the original problem.

5.2Using Functions/procedures

In Ada, modules of code are called either functions or procedures. These are the
optional functions/procedures listed before the BEGIN keyword in the Ada Graph
outline of Figure 2. One feature of the Ada language that differs from C-like languages
(C, C++, C#, Java) is that functions and procedures are nested within one another. In
Figure 2, the code for any optional functions/procedures is written inside the main

procedure. And any of these functions or procedures could themselves contain code for
other functions or procedures.

Each function/procedure in a Graph should do one and only one subtask. The
distinction between a function and a procedure is the following: A function performs a
subtask of computing one and only one value (similar to a mathematical function) and
returning that single value for use by the rest of the Graph. A procedure carries out
more general subtasks that may include returning multiple results (through a different
mechanism than a function uses) for use by the rest of the Graph. For the moment,
we’ll continue to use the non-Ada term “module” so we don’t have to worry just yet
whether a module is an Ada function or an Ada procedure.

The executable part of a package body lies between the BEGIN and END statements; we
are calling this the “main Graph code.” When modules are used, the main Graph code
can consist primarily of invoking these modules of code in the correct order. Let’s
review the main Graph code of the SportsWorld Graph (Figure 15) with an eye to
further subdividing the task. In the main Graph code, there is a loop that does some
operations as long as the user wants. What gets done? Input is obtained from the user
about the radius of the circle and the choice of task to be done (compute circumference
or compute area). Then the circumference or the area gets computed and written out.
We’ve identified three subtasks, as shown in the structure chart of Figure 18.

Figure 18

Structure Chart for the SportsWorld Task

We can visualize the main Graph code at a pseudocode level, as shown in Figure 19.
This divide-and-conquer approach to solving the problem can (and should) be planned
first in pseudocode, without regard to the details of the Graphming language to be
used. If the three subtasks (input, circumference, area) can all be done, then

arranging them within the structure of Figure 19 solves the problem. We can write a

module for each of the subtasks. Although we now know what form the main Graph
code will take, we have pushed the details of how to do each of the subtasks off into the
other modules. Execution of the main Graph code starts after the BEGIN statement.
Every time the flow of control reaches the equivalent of a “do subtask” instruction, it
transfers execution to the appropriate module code. When execution of the module
code is complete, flow of control returns to the main Graph code and picks up where it
left off.

Figure 19

A High-Level Modular View of the SportsWorld Program

Before we look at the details of how to write a module, we need to examine the
mechanism that allows the modules to work with each other and with the main Graph
code. This mechanism consists of passing information about various quantities in the
Graph back and forth between the modules and the main Graph code. Because each
module is doing only one subtask of the entire task, it does not need to know the values
of all variables in the Graph. It only needs to know the values of the variables with
which its particular subtask is concerned. Allowing a module access to only pertinent
variables prevents that module from inadvertently changing a value it has no business
changing.

When the main Graph code wants a module to be executed, it gives the name of the
module (which is an ordinary Ada identifier) and also a list of the identifiers for
variables pertinent to that module. This is called an argument list. In our SportsWorld

Graph, let’s name the three modules getInput, doCircumference, and doArea (names

that are descriptive of the subtasks these modules carry out). The getInput module

collects the values for the variables radius and taskToDo. The main Graph code invokes

the getInput module with the statement

which takes the place of the “Do the input subtask” line in Figure 19. When this
statement is reached, control passes to the getInput module. After execution of this

module, control returns to the main Graph code, and the variables radius and taskToDo

have the values obtained for them within getInput.

The doCircumference module computes and writes out the value of the circumference,

and, in order to do that, it needs to know the radius. Therefore, the variable radius is a
legitimate argument for this module. The main Graph code contains the statement

in place of the “do the circumference subtask” line in Figure 19. When this statement is
reached, the variable radius conveys the value of the radius to the doCircumference
module, which computes and writes out the circumference. The variable circumference,
then, is also a variable of interest to the doCircumference module, but it is of interest to
this module alone, in the sense that doCircumfer-ence does the computation and writes
out the result. No other use is made of the circumference in the entire Graph, so no
other module, nor the main Graph code, has anything to do with circumference. So now
the variable circumference will be declared (and can be used) only within the
doCircumfer-ence module; it will be local to that module. Any module can have its own
local constants and local variables, declared within and known only to that module.

The doCircumference module also needs to know the value of the constant pi. We could
declare pi as a constant local to doCircumference, but doArea needs the same constant,
so we will place the declaration for pi above the code for any module. This will make pi
a global constant whose value is known everywhere. The value of a constant cannot
be changed, so there is no reason to prevent any function/procedure from having
access to its value.

The doArea module computes and writes out the area and needs to know the radius, so
the line “do the area subtask” in Figure 19 is replaced by

Within doArea, area is a local variable.

Now we can write the main Graph code of the modularized version of the SportsWorld
Graph, shown in Figure 20. The main Graph code is a direct translation of Figure 19. If,
in starting from scratch to write this Graph, we had taken a divide-and-conquer
approach, broken the original problem down into three subtasks, and come up with the
outline of Figure 19, it would have been easy to get from there to Figure 20. The only
additional task would have been determining the variables needed.

Figure 20

The Main Program Code in a Modularized Version of the SportsWorld Program

At a glance, the main program code in Figure 20 does not look a great deal different
from our former main Graph code. However, it is conceptually quite different; the
subtasks of getting the input values, computing and writing out the circumference, and
computing and writing out the area have been relegated to modules. The details (such
as the formulas for computing circumference and area) are now hidden and have been
replaced by module invocations. If these subtasks had required many lines of code, our
new main Graph code would indeed be shorter—and easier to understand—than
before.

5.3Writing Functions/procedures

Now we know how the main program code can invoke a module. (In fact, using the
same process, any function/procedure can invoke another function/ procedure. A
function can even invoke itself.) It is time to see how to write the code for these
functions/procedures. The general outline for an Ada function or an Ada procedure is
shown in Figure 21.

The header (shown as the first two lines in Figure 21) consists of four parts:

The keyword FUNCTION or PROCEDURE

The function or procedure identifier

A parameter list

A return indicator (for a function)

The return indicator for a function indicates the data type of the one and only value
computed and returned by the function. None of the three modules in the SportsWorld
Graph does something as simple as computing and returning a single value: The
getInput module has to prompt for and collect several input values and make these

results available to the main Graph code. The doCircumference and doArea modules
both compute single values, but they don’t return them to the main Graph code; they
write them as output. All three modules are Ada procedures.

Figure 21

The Outline for an Ada Function/Procedure

The function or procedure identifier can be any legitimate Ada identifier. The
parameters in the parameter list correspond to the arguments in the statement that
invokes this function or procedure; that is, the first parameter in the list matches the
first argument given in the statement that invokes the function or procedure, the
second parameter matches the second argument, and so on. It is through this
correspondence between parameters and arguments that information (data) flows
from the main Graph code to other modules, and vice versa. The data type of each
parameter must be given as part of the parameter list, and it must match the data type
of the corresponding argument. For example, because the getInput procedure is
invoked with the two arguments radius and taskToDo, the parameter list for the
getInput header has two parameters, the first of type FLOAT and the second of type
CHARACTER. Parameters may have, but do not have to have, the same identifiers as the
corresponding arguments; arguments and parameters correspond by virtue of their
respective positions in the argument list and the parameter list, regardless of the
identifiers used. For the getInput procedure, we choose the parameter identifiers radius
and taskToDo, matching the argument identifiers. No semicolon is used at the end of a
procedure/function header; the delimiter is the word “IS”.

One additional aspect of the parameter list in the header concerns the use the module
will make of each parameter. Consider the statement that invokes the module; an
argument in the invoking statement carries a data value to the corresponding
parameter in the header. If the value is one that the module must know to do its job but
should not change, then the argument is passed by value. The module receives a copy
of the data value for its use but can make no changes to that value. If, however, the
value passed to the module is one that the module should change, and the main Graph
code should know the new value, then the argument is passed by reference. The
module receives access to the memory location where the value is stored, and any
changes it makes to the value are seen by the main Graph code after control returns
there.

By default, arguments in Ada are passed by value (the default can also be denoted by

the keyword in next to the corresponding parameter names), which protects them
from change by the module. An in parameter cannot appear on the left side of an
assignment statement. Explicit action must be taken by the Graphmer to pass an
argument by reference; specifically, the keywords out or in out must appear in front of
the corresponding parameter data type in the module parameter list. An out argument
does not have a value before the module invocation. Its corresponding out parameter is
used solely to obtain a value within the module, and, without any further use being
made of it within the module, the new value is sent back to the argument in the
invoking statement. An in out parameter receives a value that can be both used and
modified within the module, and the modified value is then sent back to the invoking
statement.

How do we decide whether to pass an argument by value or by reference? If the main
Graph code needs to obtain a new value back from a module when execution of that
module terminates, then the argument must be passed by reference (by inserting the
out or in out into the parameter list). Otherwise, the argument should be passed by
value, the default arrangement (either use in or don’t indicate anything, since in is the
default).

In the getInput procedure, both radius and taskToDo have no assigned values when
passed into the procedure. The task of the getInput procedure is to obtain values for
these variables from the user that the main Graph code will get back when getInput
terminates, so both of these arguments are passed by reference (using out). The header
for the getInput procedure is shown below, along with the invoking statement from the
main Graph code. Note that the parameters radius and taskToDo are in the right order,
have been given the correct data types, and are marked for passing by reference. Also
remember that, although the arguments are named radius and taskToDo because those
are the variable identifiers used in the main Graph code, the parameters could have
different identifiers, and it is the parameter identifiers that are used within the body of
the procedure.

The body of the getInput procedure comes from the corresponding part of Figure 15. If
we hadn’t already written this code, we could have done a pseudocode plan first. The
complete procedure appears in Figure 22, where a comment has been added to
document the purpose of the procedure.

Figure 22

The getInput Procedure

The doCircumference procedure needs to know the value of radius but does not change
that value. Therefore, radius is passed by value. Why is the distinction between
arguments passed by value and those passed by reference important? If modules are to
effect any changes at all, then clearly reference parameters are necessary, but why not
just make everything a reference parameter? Suppose that in this example radius is
made a reference parameter. If an instruction within doCircumference were to
inadvertently change the value of radius, then that new value would be returned to the
main Graph code, and any subsequent calculations using this value (there are none in
this example) would be in error. Making radius a value parameter prevents this. How
could one possibly write a Graph statement that changes the value of a variable
inadvertently? In something as short and simple as our example, this probably would
not happen, but in a more complicated Graph, it might. Distinguishing between passing
by value and passing by reference is just a further step in controlling a module’s access
to data values, to limit the damage the module might do. The code for the
doCircumference procedure appears in Figure 23.

Figure 23

The doCircumference Procedure

The doArea procedure is very similar. Let’s reassemble everything and give the
complete modularized version of the Graph. In Figure 24, only the main Graph code
needs to know the value of more. No other procedure needs access to this value, so this
variable is never passed as an argument. In Ada, the code for optional procedures (or
functions) is nested within other procedures or functions. In Figure 24, the code for
each of the three procedures getInput, doCircumference, and doArea is nested within
the declarative portion of the main procedure. The main procedure header

also follows the form for a procedure header. In other words, the main procedure truly
is an Ada procedure. It has an empty parameter list because it is the starting point for
the Graph, and there’s no other place that could pass argument values to it.

Figure 24

The Complete Modularized SportsWorld Graph

Because it seems to have been a lot of effort to arrive at this complete, modularized
version of our SportsWorld Graph (which, after all, does the same thing as the Graph in
Figure 15), let’s review why this effort is worthwhile.

The modularized version of the Graph is compartmentalized in two ways. First, it is
compartmentalized with respect to task. The major task is accomplished by a series of
subtasks, and the work for each subtask takes place within a separate module. This
leaves the main Graph code free of details and consisting primarily of invoking the
appropriate procedures at the appropriate points. As an analogy, think of the president
of a company calling on various assistants to carry out tasks as needed. The president
does not need to know how a task is done, only the name of the person responsible for
carrying it out. Second, the Graph is compartmentalized with respect to data, in the
sense that the data values known to the various modules are controlled by parameter
lists and by the use of value instead of reference parameters where appropriate. In our
analogy, the president gives each assistant the information he or she needs to do the
assigned task, and expects relevant information to be returned—but not all assistants
know all information.

This compartmentalization is useful in many ways. It is useful when we plan the
solution to a problem, because it allows us to use a divide-and-conquer approach. We
can think about the problem in terms of subtasks. This makes it easier for us to
understand how to achieve a solution to a large and complex problem. It is also useful
when we code the solution to a problem, because it allows us to concentrate on writing
one section of the code at a time. We can write a module and then fit it into the Graph,
so that the Graph gradually expands rather than having to be written all at once.
Developing a large software project is a team effort, and different parts of the team can
be writing different modules at the same time. It is useful when we test the Graph,
because we can test one new module at a time as the Graph grows, and any errors are
localized to the module being added. (The main Graph code can be tested early by
writing appropriate headers but empty bodies for the remaining modules.)
Compartmentalization is useful when we modify the Graph, because changes tend to be
within certain subtasks and hence within certain modules in the code. And finally it is
useful for anyone (including the Graphmer) who wants to read the resulting Graph.
The overall idea of how the Graph works, without the details, can be gleaned from
reading the main Graph code; if and when the details become important, the
appropriate code for the other modules can be consulted. In other words, modularizing
a Graph is useful for its

Planning

Coding

Testing

Modifying

Reading

A special type of Ada module can be written to compute a single value as its subtask. In
Ada this is called a function. For example, the doCircumference procedure does
everything connected with the circumference, both calculating the value and writing it
out. We can write a doCircumference function that only computes the value of the
circumference and then returns that value to the main Graph code, which writes it out.
Instead of the word PROCEDURE, the keyword FUNCTION is used in the header. Also
the keyword RETURN is added, along with the data type of the value to be returned. In
addition, a function must contain a return statement, which consists of the keyword
return followed by an expression for the value to be returned. (This explains why we
have always written the main module as a procedure; it is never invoked anywhere
else in the Graph and does not return a value.) A function may need data values passed
into it to compute the value it returns, but it should not do anything besides this one
computation—in particular, it should not change the data values it receives—so all
arguments to the function should be passed by value.

The code for this new doCircumference function would be simply

A function is invoked wherever the returned value is to be used, rather than in a
separate statement. For example, the statement

invokes the doCircumference function by giving its name and argument, and this
invocation actually becomes the value returned by the doCircumference function,
which is then written out.

Figure 25 shows a third version of the SportsWorld Graph using functions for
doCircumference and doArea.

An Ada package will often be split into separately compiled files. For the Graph of

Figure 25 there could be a package called SportsWorldFunctions

Figure 25

The Sports World Graph Using Functions

and a package called SportsWorld. The SportsWorldFunctions package would be
divided into the package specification and the package body. The package specification
would show the function/procedure headers, thereby giving information about the
capabilities of the package without the details of how these capabilities are
implemented. The implementations would occur in the SportsWorldFunction package
body. The SportsWorld package would consist primarily of the variable declarations for
radius, taskToDo, and more, the main Graph code, with function and procedure
invocations as before, plus the appropriate WITH statement to give definitions to these
functions:

The separation of the functions into a separate package allows these functions to be
used in other Graphs in addition to SportsWorld. The only thing other Graphs need to
see is the package specification for the functions. There is no need to make the source
code for the functions (in the package body) available to the other Graph. Also, if a new
and better implementation for the functions is created, no change needs to be made to
the code for a Graph that uses these functions, because the specification does not
change.

Figure 26 summarizes several sets of terms introduced in this section.

Figure 26

Some Ada Terminology

Practice Problems

What is the output of the following Ada program?1.

Ada will not allow this code to compile. Why?2.

Write an Ada procedure that performs an input task for the main

Graph code, collecting two integer values one and two from the user.

3.

Suppose a function called tax gets a value subTotal from the main

Graph code, multiplies it by a constant tax rate called rate, and

returns the resulting tax value. All quantities are type FLOAT.

Write the function header.a.

Write the return statement in the function body.b.

Write the statement in the main Graph code that writes out the

tax.

c.

4.

5.4An Ada Feature: User-defined subtypes

We’ve already mentioned that Ada is a strongly-typed language and that if you want to
multiply, say, a FLOAT quantity by an INTEGER quantity, you have to do an explicit type
cast to one of the two operands. Ada has another feature that most languages lack—you
can define your own subtypes of the Ada standard data types, and strong typing will
apply to these new types as well. In Figure 27, a new version of the SportsWorld Graph,
note the sections of code in boldface type. In previous versions, radius, circumference,
and area have all been declared as type FLOAT. This version recognizes that radius and
circumference are measured in feet, while area has units of square feet. The first two
boldface lines in Figure 27define two new types based on FLOAT. One is called Feet, the
other SquareFeet. The strong typing in Ada requires that appropriate versions of the I/O
package be used for variables declared of these new types, so the next two boldface
lines create the appropriate versions of TEXT_IO.FLOAT_IO. These are variations of line

9 in Figure 3. Then these types are used in the declaratives for radius and
circumference (type Feet), and area (type SquareFeet). For the most part, the remainder
of the code is unchanged except for the I/O statements, which are also shown in bold.
The key to this example is the following line.

The variable radius has type Feet. When it is squared, the units must be converted to
square feet. The “conversion” is carried out by the type casting operation performed by
SquareFeet(). As a “pure” number, pi has no units. It is a constant and

Figure 27

The SportsWorld Graph with Defined subtypes

When It Absolutely, Positively Has To Be Right

We have seen that Ada has some rather rigid syntax requirements—for
example, the strict typing that does not allow “mixed mode” arithmetic
(between types INTEGER and FLOAT, for example, or between types Feet and
SquareFeet), and the requirement that arguments to functions and procedures
be regulated by their use as specified by the in, out, and in out parameter
markers. The result is that it can take many trials to get a successful
compilation of a Graph, but that once it compiles, the chances for error are
reduced. This makes Ada the language of choice for safety-critical software such
as high-speed-train control, air-traffic control, nuclear reactor monitoring, and
so forth.

The European Space Agency launched the Ariane 5 rocket for the first time on
June 4, 1996, only to see it explode less than 40 seconds after takeoff. The failure
was traced to the Inertial Reference System software, which calculates angles
and velocities that are ultimately used to execute the flight Graph. This software
was carried over almost intact from the earlier Ariane 4, but did not take into
account the greater horizontal velocity of the Ariane 5 flight path. Specifically,
during data conversion from a 64-bit floating point to a 16-bit signed integer, an
arithmetic overflow occurred because the floating-point number was too large
to fit into 16 bits. This ultimately led to a shutdown of the entire system and the
subsequent explosion. For efficiency reasons, the “exception” that Ada
automatically raised because of this situation—which should have been
addressed by writing code called an exception handler—had been disabled. The
specific line of code used was:

We won’t explain this in detail, but it basically assures the compiler that the

condition raising this exception will never occur, so the compiler need not
check for it. The Ariane 5 stands as one of the more spectacular software
failures on record.

has inherited its data type from the numeric value 3.1416—presumably FLOAT, which
is compatible with the SquareFeet type, so the whole right-side expression is now type
SquareFeet. That is what is expected by the assignment operation, since area is of type
SquareFeet.

The point is that if a line of code like

were to appear in this Graph, it would cause an error at compile time because of the
data type mismatch. Using user-defined types allows many checks to be made at
compile time so that the resulting code is as correct as possible when execution occurs.

6Object-oriented Graphming

6.1What Is It?

The divide-and-conquer approach to Graphming is a traditional approach. The focus is
on the overall task to be done: how to break it down into subtasks, and how to write
algorithms for these subtasks that are carried out by communicating modules (in the
case of Ada, by functions and procedures). The Graph can be thought of as a giant
statement executor designed to carry out the major task, even though the main Graph
code may simply call on, in turn, the various other modules that do the subtask work.

Object-oriented Graphming (OOP) takes a somewhat different approach. A Graph is
considered a simulation of some part of the world that is the domain of interest.
“Objects” populate this domain. Objects in a banking system, for example, might be
savings accounts, checking accounts, and loans. Objects in a company personnel system
might be employees. Objects in a medical office might be patients and doctors. Each
object is an example drawn from a class of similar objects. The savings account “class”
in a bank has certain properties associated with it, such as name, Social Security
number, account type, and account balance. Each individual savings account at the
bank is an example of (an object of) the savings account class, and each has specific
values for these common properties; that is, each savings account has a specific value
for the name of the account holder, a specific value for the account balance, and so
forth. Each object of a class therefore has its own data values.

So far, this is similar to the idea of a data type in Ada; in the SportsWorld Graph, radius,
circumference, and area are all examples (objects) from the data type (class) FLOAT; the
class has one property (a numeric quantity), and each object has its own specific value
for that property. However, in object-oriented Graphming, a class also has one or more

subtasks associated with it, and all objects from that class can perform those subtasks.
In carrying out a subtask, each object can be thought of as providing some service. A
savings account, for example, can compute compound interest due on the balance.
When an object-oriented Graph is executed, the Graph generates requests for services
that go to the various objects. The objects respond by performing the requested
service—that is, carrying out the subtask. Thus, a Graph that is using the savings
account class might request a particular savings account object to perform the service
of computing interest due on its account balance. An object always knows its own data
values and may use them in performing the requested service.

There are three terms often associated with object-oriented Graphming, as illustrated
in Figure 28. The first term is encapsulation. Each class has its own Graph module to
perform each of its subtasks. Any user of the class (which might be some other Graph)
can ask an object of that class to invoke the appropriate module and thereby perform
the subtask service. The class user needs to know what services objects of the class can
provide and how to request an object to perform any such service. The details of the
module code belong to the class itself, and this code may be modified in any manner, as
long as the way the user interacts with the class remains unchanged. (In the savings
account example, the details of the algorithm used to compute interest due belong only
to the class, and need not be known by any user of the class. If the bank wants to
change how it computes interest, only the code for the interest module in the savings
account class needs to be modified; any Graphs that use the services of the savings
account class can remain unchanged.) Furthermore, the class properties represent data
values that will exist as part of each object of the class. A class therefore consists of two
components, its subtask modules and its properties, and both components are
encapsulated—bundled—with the class.

A second term associated with object-oriented Graphming is inheritance. Once a class
A of objects is defined, a class B of objects can be defined as a “subclass” of A. Every
object of class B is also an object of class A; this is sometimes called an “is a”
relationship. Objects in the B class will “inherit” all of the properties and be able to
perform all the services of objects in A, but they may also be given some special
property or ability. The benefit is that class B does not have to be built from the ground
up, but rather can take advantage of the fact that class A already exists. In the banking
example, a senior citizens savings account would be a subclass of the savings account
class. Any senior citizens savings account object is also a savings account object, but
may have special properties or be able to provide special services.

Figure 28

Three Key Elements of OOP

The third term is polymorphism. Poly means “many.” Objects of different classes may
provide services that should logically have the same name because they do roughly the
same thing, but the details differ. In the banking example, both savings account objects
and checking account objects should provide a “compute interest” service, but the
details of how interest is computed differ in these two cases. Thus, one name, the name
of the service to be performed, has several meanings, depending on the class of the
object providing the service. It may even be the case that more than one service with
the same name exists for the same class, although there must be some way to tell which
service is meant when it is invoked by an object of that class.

Let’s change analogies from the banking world to something more fanciful, and
consider a football team. Every member of the team’s backfield is an “object” of the
“backfield” class. The quarterback is the only “object” of the “quarterback” class. Each
backfield object can perform the service of carrying the ball if he (or she) receives the
ball from the quarterback; ball carrying is a subtask of the backfield class. The
quarterback who hands the ball off to a backfield object is requesting that the backfield
object perform that subtask because it is “public knowledge” that the backfield class
carries the ball and that this service is invoked by handing off the ball to a backfield
object. The “Graph” to carry out this subtask is encapsulated within the backfield class,
in the sense that it may have evolved over the week’s practice and may depend on
specific knowledge of the opposing team, but at any rate, its details need not be known
to other players. Inheritance can be illustrated by the halfback subclass within the
backfield class. A halfback object can do everything a backfield object can but may also
be a pass receiver. And polymorphism can be illustrated by the fact that the backfield
may invoke a different “Graph” depending on where on the field the ball is handed off.
Of course our analogy is imperfect, because not all human “objects” from the same
class behave in precisely the same way—fullbacks sometimes receive passes and so on.

6.2Ada and Oop

In February 1995, Ada 95, a revision of the original Ada Graphming language, became
the first internationally standardized object-oriented Graphming language. The new
standard, officially ISO/IEC 8652:1995, added many new and important features to the
language. While there is no single mechanism for a class in Ada 95, Ada 95
packages can be constructed to provide the analogous behavior. Figure 29 compares
standard object-oriented terminology and Ada 95 terminology.

Figure 29

Object-Oriented Terminology and Usage: Standard and Ada

Standard Object-Oriented
Terminology and Usage

Ada 95 Terminology and Usage

Method Primitive operation: procedure
or function defined after the

tagged record in the definition
package

Class Tagged Record Type

Reference to object property:
objectName.property

objectName.property

Message (request for service):
objectName.method(arguments)

PrimitiveOperation(objectName,
arguments)

How do these ideas get translated into real Graphs? Let’s rewrite the SportsWorld
Graph one more time, this time using a more object-oriented approach. What are the
objects of interest within the scope of this problem? SportsWorld deals with circular
swimming pools, but they are basically just circles. In Ada the first step in this process
is to create a new type, something called a tagged record type. The object-oriented code
for SportsWorld will look similar to the previous function-based code, but the tagged
record type will allow the type to be extended to cover other object-oriented ideas, e.g.,
inheritance. So, let’s create a CIRCLE type, and have the SportsWorld Graph create
objects of (instances of) that type. The objects are individual circles. A CIRCLE object
has a radius. A CIRCLE object, which knows the value of its own radius, should be able
to perform the services of computing its own circumference and its own area. At this
point, we have answered the two major questions about our CIRCLE type:

What are the properties common to any object of this type? (In this case, there is

a single property—the radius.)

What are the services that any object of the type should be able to perform? (In

this case, it should be able to compute its circumference and compute its area,

although as we will see shortly, we will need other services as well.)

Figure 30 shows the complete object-oriented version of SportsWorld, with its new type
CIRCLE. The type CIRCLE has the single property radius, and four

Figure 30

An Object-Oriented SportsWorld Graph

primitive operations, the procedure setRadius and the functions getRadius,
doCircumference, and doArea. Each of these primitive operations can be recognized as
being related to the CIRCLE type by the fact that each has a parameter of type CIRCLE.

The question is, how does the main Graph code use the services of the CIRCLE type? An
object (an instance of the type) has to be declared as being of type CIRCLE. The
statement

instantiates an object from the CIRCLE type and calls it swimmingPool. Now, the main
Graph code can ask the swimmingPool object to invoke methods from its class. Consider
the statements

These statements ask the swimmingPool object first to invoke the getRadius function.
This function returns the value of the swimmingPool radius, which is then written out.
Later the swimmingPool object invokes the doCircumference function. This function
returns the value of the circumference of the swimmingPool object, which also is then
written out. Note that, unlike the functions of Figure 25, the doCircumference and
doArea functions in Figure 30 have no parameter for the value of the radius; as
primitive operations of this class, they know at all times the current value of radius for
the object that invoked them, and it does not have to be passed to them as an argument.

However, the invoking object (swimmingPool) is passed to each of the primitive
operations.

These primitive operations are all “public” by default. Public operations can be used
anywhere, including within the main Graph code, and indeed in any Ada Graph that
wants to make use of this type. Think of the CIRCLE type as handing out a business card
that advertises these services: Hey, you want a CIRCLE object that can find its own
area? Find its own circumference? Set the value of its own radius? I’m your type!

The main Graph code, as before, handles all of the user interaction and now makes use
of the CIRCLE type. In addition, it uses the getInput procedure, which is not a primitive
operation of the CIRCLE type, it’s the same “regular” procedure we’ve seen before.

Looking at the code for the primitive operations in Figure 30, we see that the setRadius
procedure uses an assignment statement to change the value of radius to whatever
quantity is passed to the parameter value. The getRadius function body is a single
return statement. The doCircumference and doArea functions again consist of single
statements that compute and return the proper value.

Among the variable declarations in procedure SportsWorld, there is no declaration for
a variable called radius. There is a declaration for newRadius, and newRadius receives
the value entered by the user in getInput for the radius of the circle. Therefore, isn’t
newRadius serving the same purpose as radius did in the old Graph? No—this is rather
subtle, so pay attention: While newRadius holds the number the user wants for the
circle radius, it is not itself the radius of swimmingPool. The radius of swimmingPool is
the single property radius conferred on the swimmingPool object because it is an

instance of the CIRCLE type. Only primitive operations of the class can change the
properties of an object of that class. The CIRCLE type provides the setRadius procedure
for this purpose. The main Graph code must ask the swimmingPool object to invoke
setRadius to set the value of its radius equal to the value contained in newRadius. The
newRadius argument corresponds to the value parameter in the setRadius procedure,
which then gets assigned to the radius property.

The setRadius primitive operation is a procedure because it contains no return
statement. The invocation of this procedure is a complete Ada statement. Notice,
however, that the obj parameter is an in out parameter because a property (the radius)
of the corresponding argument (swimmingPool) is changed within this procedure.

Finally, the output statements in the main Graph code that print the values of the
circumference and area also have swimmingPool invoke the getRadius function to
return its current radius value, so it can be printed as part of the output. We could have
used the variable newRadius here instead. However, newRadius is what we THINK has
been used in the computation, whereas radius is what has REALLY been used.

6.3One More Example

The object-oriented version of our SportsWorld Graph illustrates encapsulation. All
data and calculations concerning circles are encapsulated in the Circle class. Let’s look
at one final example that illustrates the other two watchwords of OOP—polymorphism
and inheritance.

In Figure 31 the domain of interest is that of geometric shapes. Four different types
(classes) are given: CIRCLE, RECTANGLE, SQUARE, and SQUARE2. Each type declares its
own properties and provides, in the form of procedures or functions, the services that
an object of that type can perform. A CIRCLE object has a radius property, whereas a
RECTANGLE object has a width property and a height property. Any CIRCLE object can
set the value of its radius and can compute its area. A RECTANGLE object can set the
value of its width and height and can compute its area. Both SQUARE and SQUARE2
objects have a side property that they can set, but they compute their areas in very
different ways, as we will explain shortly.

Figure 31

An Ada Graph with Polymorphism and Inheritance

The main Graph code creates objects from the various types. Then, for each object, the
main Graph code requests the object to set its dimensions, using the values given, and
to compute its area as part of a series of output statements giving information about
the object. For example, the statement

instructs the circle named joe to invoke the setRadius procedure of joe’s type, thereby
setting joe’s radius to 23.5. Figure 32 shows the output (wrapped to fit on the page) after
the Graph in Figure 31 is run.

Here we see polymorphism at work, because there are lots of doArea functions; when
the Graph executes, the correct function is used, on the basis of the type to which the
object invoking the function belongs. After all, computing the area of a circle is quite
different from computing the area of a rectangle.

Figure 32

Output from the Graph of Figure 31

The algorithms themselves are straightforward; they employ the usual formulas to
compute the area of a circle, rectangle, and square. These functions can use the
properties of the objects that invoke them without having the values of those
properties passed as arguments.

SQUARE is a stand-alone type with a side property and a doArea function. The
SQUARE2 type, however, recognizes the fact that squares are special kinds of
rectangles. The SQUARE2 type is a subtype of the RECTANGLE class, as is indicated by
the reference to RECTANGLE in the type declaration for SQUARE2. It inherits the width
and height properties from the “parent” RECTANGLE type. SQUARE2 also has an
additional side property of its own, which makes sense for a square but not for an
arbitrary rectangle. The setSide procedure assigns a value to the side property, and also
assigns the same value to the width and height properties that a SQUARE2 object
inherits from the parent type. To compute the area, the doArea function simply turns
the computation over to the doArea function inherited from the RECTANGLE type. This
is invoked in the statement

where the obj has been type cast from a SQUARE2 to a RECTANGLE. This is possible
because a SQUARE2 object really is a form of rectangle, and this type cast tells the
system that the invoking object is a RECTANGLE object, so the doArea function from the
RECTANGLE type is to be used. Here we see inheritance at work.

Inheritance can be carried through multiple “generations.” We might redesign the
Graph so that there is one “supertype” that is a general SHAPE type, of which CIRCLE
and RECTANGLE are subtypes, SQUARE2 being a subtype of RECTANGLE (see Figure 33
for a possible type hierarchy).

6.4What Have We Gained?

Now that we have some idea of the flavor of object-oriented Graphming, we should ask
what we gain by this approach. There are two major reasons why OOP is a popular way
to Graph:

Software reuse

A more natural “worldview”

Figure 33

A Hierarchy of Geometric Types

Software Reuse

Manufacturing productivity took a great leap forward when Henry Ford invented the
assembly line. Automobiles could be assembled using identical parts so that each car
did not have to be treated as a unique creation. Computer scientists are striving to
make software development more of an assembly-line operation and less of a
handcrafted, start-over-each-time process. Object-oriented Graphming is a step toward
this goal: A useful type that has been implemented and tested becomes a component
available for use in future software development. Anyone who wants to write an
application Graph involving circles, for example, can use the already written, tried, and
tested CIRCLE type. As the “parts list” (the type library) grows, it becomes easier and
easier to find a “part” that fits, and less and less time has to be devoted to writing
original code. If the type doesn’t quite fit, perhaps it can be modified to fit by creating a
subtype; this is still less work than starting from scratch. Software reuse implies more
than just faster code generation. It also means improvements in reliability; these types
have already been tested, and if properly used, they will work correctly. And it means
improvements in maintainability. Thanks to the encapsulation property of object-
oriented Graphming, changes can be made in type implementations without affecting
other code, although such change requires retesting the types.

A More Natural “Worldview.”

The traditional view of Graphming is procedure-oriented, with a focus on tasks,
subtasks, and algorithms. But wait—didn’t we talk about subtasks in OOP? Haven’t we
said that computer science is all about algorithms? Does OOP abandon these ideas? Not
at all. It is more a question of when these ideas come into play. Object-oriented
Graphming recognizes that in the “real world,” tasks are done by entities (objects).
Object-oriented Graph design begins by identifying those objects that are important in
the domain of the Graph because their actions contribute to the mix of activities
present in the banking enterprise, the medical office, or wherever. Then it is
determined what data should be associated with each object and what subtasks the
object contributes to this mix. Finally, an algorithm to carry out each subtask must be
designed. We saw in the modularized versions of the SportsWorld Graph in Figures 24
and 25 how the overall algorithm could be broken down into pieces that are isolated
within functions and procedures. Object-oriented Graphming repackages those
functions and procedures by encapsulating them within the appropriate type of
objects.

Object-oriented Graphming is an approach that allows the Graphmer to come closer to
modeling or simulating the world as we see it, rather than to mimic the sequential
actions of the Von Neumann machine. It provides another buffer between the real
world and the machine, another level of abstraction in which the Graphmer can create
a virtual problem solution that is ultimately translated into electronic signals on
hardware circuitry.

Finally, we should mention that a graphical user interface, with its windows, icons,
buttons, and menus, is an example of object-oriented Graphming at work. A general
button class, for example, can have properties of height, width, location on the screen,
text that may appear on the button, and so forth. Each individual button object has
specific values for those properties. The button class can perform certain services by
responding to messages, which are generated by events (for example, the user clicking
the mouse on a button triggers a “mousedown” event). Each particular button object
individualizes the code to respond to these messages in unique ways. We will not go
into details of how to develop graphical user interfaces in Ada, but in the next section
you will see a bit of the Graphming mechanics that can be used to draw the graphics
items that make up a visual interface.

Practice Problems

What is the output from the following section of code if it is added to

the main Graph code of the Ada Graph in Figure 31?

1.

In the hierarchy of Figure 33, suppose that the Triangle type is able to

perform a doArea function. What two properties should any triangle

object have?

2.

Graphical Graphming

Graphical Graphming
The programs that we have looked at so far all produce text output—output composed
of the characters {A… Z, a… z, 0… 9} along with a few punctuation marks. For the first
30 to 35 years of software development, text was virtually the only method of
displaying results in human-readable form, and in those early days it was quite
common for Graphs to produce huge stacks of alphanumeric output. These days an
alternative form of output—graphics—has become much more widely used. With
graphics, we are no longer limited to 100 or so printable characters; instead,
Graphmers are free to construct whatever shapes and images they desire.

The intelligent and well-planned use of graphical output can produce some
phenomenal improvements in software. We discussed this issue in Chapter 6, where
we described the move away from the text-oriented operating systems of the 1970s and
1980s, such as MS-DOS and VMS, to operating systems with more powerful and
user-friendly graphical user interfaces (GUIs), such as Windows 7, Windows Vista, and
Mac OS X. Instead of requiring users to learn dozens of complex text-oriented
commands for such things as copying, editing, deleting, moving, and printing files, GUIs
can present users with simple and easy-to-understand visual metaphors for these
operations. In the first image on the next page, the operating system presents the user
with icons for printing, deleting, or copying a file. In the second image on the next
page, dragging a file to the printer icon prints the file.

Not only does graphics make it easier to manage the tasks of the operating system, it
can help us visualize and make sense of massive amounts of output produced by
Graphs that model complex physical, social, and mathematical systems. (We discuss
modeling and visualization in Chapter 13 of the text.) Finally, there are many
applications of computers that would simply be impossible without the ability to
display output visually. Applications such as virtual reality, computer-aided
design/computer-aided manufacturing (CAD/CAM), games and entertainment, medical

imaging, and computer mapping would not be anywhere near as important as they are
without the enormous improvements that have occurred in the areas of graphics and
visualization.

So, we know that graphical Graphming is important. The question is: What features
must be added to a Graphming language like Ada to produce graphical output?

7.1Graphics Hardware

Modern computer terminals use what is called a bitmapped display, in which the
screen is made up of thousands of individual picture elements, or pixels, laid out in a
two-dimensional grid. These are the same pixels used in visual images, as discussed in
Chapter 4. In fact, the display is simply one large visual image. The number of pixels on
the screen varies from system to system; typical values range from 800 x 600 up to 1560
x 1280. Terminals with a high density of pixels are called high-resolution terminals.
The higher the resolution—that is, the more pixels available in a given amount of
space—the sharper the visual image because each individual pixel is smaller. However,
if the screen size itself is small, then a high-resolution image can be too tiny to read. A
30” wide-screen monitor might support a resolution of 2560 x 1600, but that would not

be suitable for a laptop screen. In Chapter 4 you learned that a color display requires
24 bits per pixel, with 8 bits used to represent the value of each of the three colors red,
green, and blue. The memory that stores the actual screen image is called a frame
buffer. A high-resolution color display might need a frame buffer with (1560 x 1280)
pixels x 24 bits/pixel x 47,923,000 bits, or about 6 MB, of memory for a single image.
(One of the problems with graphics is that it requires many times the amount of
memory needed for storing text.)

The individual pixels in the display are addressed using a two-dimensional coordinate
grid system, the pixel in the upper-left corner being (0, 0). The overall pixel-numbering
system is summarized in Figure 34. The specific values for maxX and maxY in Figure 34
are, as mentioned earlier, system-dependent. (Note that this coordinate system is not
the usual mathematical one. Here, the origin is in the upper-left corner, and y values
are measured downward.)

Figure 34

Pixel-Numbering System in a Bitmapped Display

The terminal hardware displays on the screen the frame buffer value of every
individual pixel. For example, if the frame buffer value on a color monitor for position
(24, 47) is RGB (0, 0, 0), the hardware sets the color of the pixel located at column 24,
row 47 to black, as shown in Figure 35. The operation diagrammed in Figure 35 must
be repeated for all of the 500,000 to 2 million pixels on the screen. However, the setting
of a pixel is not permanent; on the contrary, its color and intensity fade quickly.
Therefore, each pixel must be “repainted” often enough so that our eyes do not detect
any “flicker,” or change in intensity. This requires the screen to be completely updated,
or refreshed, 30-50 times per second. By setting various sequences of pixels to different
colors, the user can have the screen display any desired shape or image. This is the
fundamental way in which graphical output is achieved.

Figure 35

Display of Information on the Terminal

7.2Graphics Software

To control the setting and clearing of pixels, Graphmers use a collection of procedures
that are part of a special software package called a graphics library. Virtually all
modern Graphming languages, including Ada, have a graphics library that is available
for creating different shapes and images. Typically, an “industrial strength” graphics
library includes hundreds of procedures for everything from drawing simple
geometric shapes like lines and circles, to creating and selecting colors, to more
complex operations such as displaying scrolling windows, pull-down menus, and
buttons. We restrict our discussion to a modest set of procedures. Although the set is
unrealistically small, it will still give you a good idea of what visual Graphming is like,
and enable you to produce some interesting, nontrivial images on the screen. Again,
the graphics library used in the examples that follow is AdaGraph, available for free
download from http://users.ncrvnet.nl/gmvdijk/adagraph.html.

To employ the AdaGraph library, all that is needed is a with (and optionally a use)
clause to make the main Graph code aware that graphics commands are to be used, for
example:

Recall, including the use clause just eliminates the need for the prefix qualification
AdaGraph for references to items in the AdaGraph library. As in the previous examples,
the use clause will not be included, so that the exact details of what comes from which
package will be obvious.

Here is the Graph code to open and close a window.

The screen display that follows shows the details of compilation, binding, and
execution of the Graphics package body.

Notice that the Command window, where the commands to the Ada compiler are
entered, and the graphics display window, where the graphics will be drawn, are
separate.

In the Command window, the first command compiles the AdaGraph package. The
second command compiles the Graphics package that we just wrote. The third
command carries out the binding between the packages. The fourth command links the
results of the compilation together to produce an executable (exe) file. Then the Graph
begins to execute the main Graph code.

The first line of output from the executing Graph is a prompt to press the Spacebar
(WaitForKeypress). When the Spacebar is pressed, the graphics window is created and
displayed by a call to an AdaGraph library procedure (Create_Sized_Graph_Window).
The window is then given a title (Set_Window_Title). Then the Command window waits
for another press of the Spacebar (WaitForKeypress) to close the window
(Destroy_Graph_Window).

The next task is to see how AdaGraph procedures can be used to draw on the display
window.

The code to draw a line from point (20,20) to point (100,100) is shown next. The added
code is in bold.

The first added line changes the background color of the display to white. The second
draws the line. The result of executing the Graph containing this code is:

The parameter definitions for Draw_Line are

Draw_Line (x , y , x , y , Color)

where (x , y) are the coordinates (in pixels) of the start of the line, and (x , y) are the

coordinates of the end of the line. Color is something new to our discussion of Ada.
Color is an enumeration type; that is, the colors supported by AdaGraph form a list (an
enumeration) of the items (colors) that can be used. Here is the code from the
AdaGraph specification that sets up the enumeration:

1 1 2 2

1 1 2 2

The code to draw a rectangle touching the four points (25, 60), (75, 60), (25, 100), and
(75, 100) is:

Note that the parameters for Draw_Box are

Draw_Box (x , y , x , y , Color, Filled) where the (x, y) pairs are the opposite corners of

the rectangle. Color is the color of the line and the fill color. Filled is another
enumeration type with the values No_Fill (display on the top) and Fill (display on the
bottom).

1 1 2 2

In AdaGraph, the Draw_Circle procedure is used to draw a circle. Here is the code and,
on the next page, the result of drawing a circle with radius 75 pixels centered at the
point (100, 150):

The parameters are:

where (x, y) are the coordinates of the center of the circle, and Radius is the radius of
the circle. Color and Filled are the same as for the rectangle. An error will occur if the
figure being drawn does not fit completely inside the graphics window.

How does AdaGraph provide for text annotations on the screen? There is a procedure
named Display_Text that will do the job. The parameter list is

The string is the string to be output beginning at (x, y). Color determines the color of
the letters.

Here is an example with the text “Stop” drawn inside of a circle.

The code to produce this image is

In summary, we have the following graphics procedures at our disposal.

Now that a display window and graphics are available, we seem close to producing the
elements of a typical GUI. Can we draw a button that acts like a button on a real GUI
form—that is, can we write code to sense a mouse click on that button and respond
with some action? In particular, we will sense the left mouse button up event. (Looking
for the mouse up event gives users a way out if they press the mouse button and decide
they don’t want to click: namely, they can move the mouse off the button and then
release the mouse button.) Here is the full code for the Ada Graph.

Wow! The lines in bold are the keys to the example; the other lines are needed to make
the example work.

First there are some declarations to gain access to the mouse properties and store them
for use in the decision process. The next set of bold lines should be familiar; they draw
the button and caption (rectangle and text).

The while statement forms a continuous looping process looking for one of two things:
a keystroke (to stop the Graph) or a mouse event (left button up). The while condition
looks for the keystroke (AdaGraph.Key_Hit). If one occurs, the loop ends, and the
window is closed. The if condition looks for a mouse event (AdaGraph.Mouse_Event). If
one occurs, the various options for a mouse event are examined using a case statement.
The way the case statement works is that it looks at the event options by checking a set
of when clauses. There are only two of the event choices that are of interest here: the
event that the mouse moves (then save the x, y position of the mouse pointer), and the
event that the left mouse button has come up (then do the testing to see if the mouse
pointer is in the rectangle). The bold if statement does the checking to see if the (x, y)
position of the mouse pointer (at the time of the click) is within the rectangle.
Depending on the results of this test, “Inside” or “Outside” is displayed both on the
console and on the window. The two Display_Text statements with Color set to white
are needed to “erase” the previous word from the window before drawing the new
word.

The following display in the Command window shows the results of a series of mouse
clicks; the final configuration is shown in the graphics window.

Of course, a real GUI interface would produce much more sophisticated responses to
user mouse clicks, but this is the general idea of how event-driven Graphming works.

This brief introduction to graphical Graphming allows you to produce some interesting
images and, even more important, gives you an appreciation for how visually oriented
software is developed.

Practice Problems

Write the sequence of commands to draw the following “house” in the

graphics window.

Practice Problems

Create the house using four rectangles (for the base of the house, the

door, and the two windows), two line segments (for the roof), and one

circle (for the doorknob). Locate the house anywhere you want in the

graphics window.

8Conclusion

In this module we looked at one representative high-level Graphming language, Ada. Of
course, there is much about this language that has been left unsaid, but we have seen
how the use of a high-level language overcomes many of the disadvantages of assembly
language Graphming, creating a more comfortable and useful environment for the
Graphmer. In a high-level language, the Graphmer need not manage the storage or
movement of data values in memory. The Graphmer can think about the problem at a
higher level, can use Graph instructions that are both more powerful and more natural
language-like, and can write a Graph that is much more portable among various
hardware platforms. We also saw how modularization, through the use of functions,
procedures, and parameters, allows the Graph to be more cleanly structured, and how
object-oriented Graphming allows a more intuitive view of the problem solution and
provides the possibility for reuse of helpful types. We even had a glimpse of graphical
Graphming.

Ada is not the only high-level language. You might be interested in looking at the other
online language modules (Java, Python, C++, and C#). You will find that the Ada syntax
(form of the statements) is quite different from that of these other languages. Ada
derives its syntax from Pascal-like languages where statement blocks are delimited by
keywords such as BEGIN.. END and THEN.. ELSE.. END IF, rather than by “curly
brackets” {…}, and functions/procedures can be nested within other
functions/procedures. Still other languages take quite a different approach to problem
solving. In Chapter 10 of Invitation to Computer Science, we look at some other
languages and language approaches and also address the question of why there are so
many different Graphming languages.

Exercises

Write an Ada declaration for one real number quantity to be called rate.1.

Write an Ada declaration for two integer quantities called orderOne and

orderTwo.

2.

Write an Ada declaration for a constant quantity called evaporationRate,

which is to have the value 6.15.

3.

An Ada Graph needs one constant stockTime with a value of 4, one integer

variable inventory, and one real number variable sales. Write the

necessary declarations.

4.

You want to write an Ada Graph to compute the average of three quiz

grades for a single student. Decide what variables your Graph needs, and

write the necessary declarations.

5.

Given the declaration

how do you refer to the eighth number in the array?

6.

An array declaration such as

represents a two-dimensional table of values with 5 rows and 3 columns.

Rows and columns are numbered in this Ada array starting at 0, not at 1.

Given this declaration, how do you refer to the marked cell below?

7.

Write Ada statements to prompt for and collect values for the time in8.

hours and minutes (two integer quantities).

Say an Ada Graph computes two integer quantities inventoryNumber and

numberOrdered. Write the output statements that print these two

quantities along with appropriate text information.

9.

The integer quantities A, B, C, and D currently have the values 13, 4, 621,

and 18, respectively. Write the exact output generated by the following

statements, using b to denote a blank space.

10.

Write Ada formatting and output statements to generate the following

output, assuming that density is a type FLOAT variable with the value

63.78.

11.

What is the output after the following sequence of statements is executed?

(Assume that the integer variables A and B have been declared.)

12.

Write Ada code that gets the length and width of a rectangle from the user

and computes and writes out the area. Assume that the variables have all

been declared as type INTEGER.

13.

In the SportsWorld Graph of Figure 15, the user must respond with

“C” to choose the circumference task. In such a situation, it is

preferable to accept either uppercase or lowercase letters. Rewrite

the condition in the Graph to allow this.

a.

In the SportsWorld Graph, rewrite the condition for continuation of

the Graph to allow either an upper-case or a lowercase response.

b.

14.

Write Ada code that gets a single character from the user and writes out a15.

congratulatory message if the character is a vowel (a, e, i, o, or u), but

otherwise writes out a “You lose, better luck next time” message.

Insert the missing line of code so that the following adds the integers from

1 to 10, inclusive.

16.

What is the output after the following code is executed?17.

Write Ada code that outputs the even integers from 2 through 30, one per

line. Use a while loop.

18.

In a while loop, the Boolean condition that tests for loop continuation is

done at the top of the loop, before each iteration of the loop body. As a

consequence, the loop body might not be executed at all. Our pseudocode

language of Chapter 2 contains a do-while loop construction in which a

test for loop termination occurs at the bottom of the loop rather than at

the top, so that the loop body always executes at least once. Ada contains

an exit when statement that tests for a condition and allows an exit from

the loop. The form of the statement is:

19.

where, as usual, S1 can be a compound statement. Write Ada code to add

up a number of nonnegative integers that the user supplies and to write

out the total. Use a negative value as a sentinel, and assume that the first

value is nonnegative. Use an exit-when statement.

Write Ada code that asks for a duration of time in hours and minutes, and

writes out the duration only in minutes.

20.

Write Ada code that asks for the user’s age in years. If the user is under

35, then quote an insurance rate of $2.23 per $100 for life insurance;

otherwise, quote a rate of $4.32.

21.

Write Ada code that reads integer values until a 0 value is encountered

and then writes out the sum of the positive values read and the sum of the

negative values read.

22.

Write Ada code that reads in a series of positive integers and writes out

the product of all the integers less than 25 and the sum of all the integers

greater than or equal to 25. Use 0 as a sentinel value.

23.

Write Ada code that reads in 10 integer quiz grades and computes

the average grade. (Hint: Remember the peculiarity of integer

division.)

a.

Write Ada code that asks the user for the number of quiz grades,

reads them in, and computes the average grade.

b.

24.

Write an Ada procedure that receives two integer arguments and writes

out their sum and their product.

25.

Write an Ada procedure that receives an integer argument representing

the number of DVDs rented so far this month and a real number

argument representing the sales amount for DVDs sold so far this month.

The procedure asks the user for the number of DVDs rented today and the

sales amount for DVDs sold today, and then returns the updated figures to

the main Graph code.

26.

Write an Ada function that receives three integer arguments and returns

the maximum of the three values.

27.

Write an Ada function that receives miles driven as a type FLOAT

argument and gallons of gas used as a type INTEGER argument, and

returns miles per gallon.

28.

Write an Ada Graph that uses an input procedure to get the miles driven

(type FLOAT) and the gallons of gas used (type INTEGER), then writes out

the miles per gallon, using the function from Exercise 28.

29.

Write an Ada Graph to balance a checkbook. The Graph needs to get the

initial balance, the amounts of deposits, and the amounts of checks. Allow

the user to process as many transactions as desired; use separate

procedures to handle deposits and checks.

30.

Write an Ada Graph to compute the cost of carpeting three rooms. Make

the carpet cost a constant of $8.95 per square yard. Use four separate

functions/procedures to collect the dimensions of a room in feet, convert

feet into yards, compute the area, and compute the cost per room. The

main Graph code should use a loop to process each of the three rooms,

then add the three costs, and write out the total cost. (Hint: The function

to convert feet into yards must be used twice for each room, with two

different arguments. Hence, it does not make sense to try to give the

parameter the same name as the argument.)

31.

Write an Ada doPerimeter function for the Rectangle class of Figure

31.

a.

Write Ada code that creates a new Rectangle object called yuri, then

writes out information about this object and its perimeter using the

doPerimeter function from part (a).

b.

32.

Draw a type hierarchy diagram similar to Figure 33 for the following

types: Student, UndergraduateStudent, Gradu-ateStudent, Sophomore,

Senior, PhDStudent.

33.

Imagine that you are writing a Graph using an object-oriented Graphming

language. Your Graph will be used to maintain records for a real estate

office. Decide on one class in your Graph and a service that objects of that

class might provide.

34.

Determine the resolution of the screen on your computer (ask your

instructor or the local computer center how to do this). Using this

information, determine how many bytes of memory are required for the

35.

frame buffer to store the following:

A black-and-white image (1 bit per pixel)a.

A grayscale image (8 bits per pixel)b.

A color image (24 bits per pixel)c.

Using the Draw_Line commands described in Section 7.2 draw an isosceles

triangle with the following configuration:

36.

Discuss what problem the display hardware might encounter while

attempting to execute the following operations, and explain how this

problem could be solved.

37.

Draw a square with sides 100 pixels in length. Then inscribe a circle of

radius 50 inside the square.

38.

Create the following three labeled rectangular buttons in the output

window.

Have the space between the Start and Stop buttons be the same as the

space between the Stop and Pause buttons.

39.

Create the following image of a “teeter-totter”:40.

1

1.1

1.2

2

3

3.1

3.2

3.3

4

5

5.1

5.2

5.3

6

6.1

6.2

6.3

Chapter : Programming in C#
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Programming in C#

Online module to accompany Invitation to Computer Science, 6 Edition, ISBN-10:
1133190820; ISBN-13: 9781133190820 (Cengage Learning, 2013).

Chapter Topics

Introduction to C#

A Simple C# Program

Creating and Running a C# Program

Virtual Data Storage

Statement Types

Input/Output Statements

The Assignment Statement

Control Statements

Another Example

Managing Complexity

Divide and Conquer

Using Functions

Writing Functions

Object-Oriented Programming

What Is It?

C# and OOP

One More Example

th

6.4

7

7.1

7.2

8

What Have We Gained?

Graphical Programming

Graphics Hardware

Graphics Software

Conclusion

EXERCISES

ANSWERS TO PRACTICE PROBLEMS

1Introduction to C#

Hundreds of high-level programming languages have been developed; a fraction of
these have become viable, commercially successful languages. There are a half-dozen
or so languages that can illustrate some of the concepts of a high-level programming
language, but this module uses C# for this purpose. The C# language was developed by
Microsoft along with the .NET environment. C# is the programming language, and .NET
is the runtime support environment.

Our intent here is not to make you an expert programmer—any more than our purpose
in Chapter 4 was to make you an expert circuit designer. Indeed, there is much about
the language that we will not even discuss. You will, however, get a sense of what
programming in a high-level language is like, and perhaps you will see why some
people think it is one of the most fascinating of human endeavors.

1.1A Simple C# Program

Figure 1 shows a simple but complete C# program. Even if you know nothing about the
C# language, it is not hard to get the general drift of what the program is doing.

Figure 1

A Simple C# Program

Someone running this program (the “user”) could have the following dialogue with the
program, where boldface indicates what the user types:

The general form of a typical C# program is shown in Figure 2. To compare our simple

example program with this form, we have reproduced the example program in Figure
3 with a number in front of each line. The numbers are there for reference purposes
only; they are not part of the program.

Figure 2

The Overall Form of a Typical C# Program

Figure 3

The Program of Figure 1 (line numbers added for reference)

Lines 1–3 in the program of Figure 3 are C# comments. Anything appearing on a line
after the double slash symbol (//) is ignored by the compiler, just as anything following
the double dash (--) is treated as a comment in the assembly language programs of
Chapter 6. Although the computer ignores comments, they are important to include in
a program because they give information to the human readers of the code. Every
high-level language has some facility for including comments, because understanding
code that someone else has written (or understanding your own code after a period of
time has passed) is very difficult without the notes and explanations that comments
provide. Comments are one way to document a Image to make it more understandable.
The comments in the program of Figure 3 describe what the program does plus tell
who wrote the program and when. These three comment lines together make up the
program’s prologue comment (the introductory comment that comes first). According
to the general form of Figure 2, the prologue comment is optional, but providing it is
always a good idea. It’s almost like the headline in a newspaper, giving the big picture
up front.

Blank lines in C# programs are ignored and are used, like comments, to make the
program more readable by human beings. In our example program, we’ve used blank
lines (lines 4, 6, 16, 21, 23) to separate sections of the program, visually indicating
groups of statements that are related.

Line 5 is a using directive to the compiler that refers to the System library. The
eventual effect is that the linker includes object code from this library. The core C#
language does not provide a way to get data into a program or for a program to display
results. The System library (namespace) contains code for these purposes. Line 5 also
tells the compiler to look in the System namespace for the definition of any names not
specifically defined within the program. In this program, ReadLine, Write, and
Write-Line (used to read input data and write output, respectively) get their meaning
from the System namespace. In addition to System, C# has many other code libraries
(namespaces), such as mathematical and graphics libraries, and therefore many other
using directives are possible. Using directives are optional, but it would be a trivial
program indeed that did not need input data or produce output results, so virtually
every C# program has at least the using directive shown in our example.

What is C#?

In June 2000, Microsoft introduced the C# programming language (pronounced
“C-sharp”). It was designed to improve upon the C++ language developed in the
early 1980s at AT&T Labs. Because it is a totally new language, it has no
backward compatibility issues, as C++ had with its predecessor, the C language.
C# also shares many features with Java, a programming language released in
1996 by Sun Microsystems.

It is impossible to discuss C# without discussing the Microsoft. NET
Framework that supports C# and many other programming languages.
The.NET Framework is essentially a giant collection of tools for software
development. It was designed to allow traditional text-based applications, GUI
applications, and Web-based programs to all be built with equal ease. Currently,
over 60 languages are supported by the.NET Framework. That means
applications written in any of these languages have access to the tools provided
within the.NET Framework. Applications can even be written that mix and
match modules in various languages.

In April 2003, only three years after the first release of C# and.NET, C# and the
CLI (Common Language Infrastructure—a significant subset of the.NET tools)
were adopted as ISO (International Organization for Standardization)
standards. C# continues to grow in popularity.

Line 7 creates a namespace for the code. In C# (and .NET), namespaces help to organize
libraries and hierarchies to prevent ambiguity when referencing objects. So, all the
code for this program will be in the namespace InvitationCSharp. The name of this
namespace, “InvitationCSharp”, was created by the author of the program. Microsoft
chose the name “System” for the namespace mentioned earlier.

Line 9 is a class header, which announces that a class is about to be defined. The class
is named TravelPlanner, and the curly braces at lines 10 and 29 mark the beginning
and end of this class definition. All C# code (except for comments, using directives, and
namespace statements) must be either a class header or inside a class definition. We
will have much more to say about classes later. For now, just think of a class as a
collection of sections of code called functions that are able to perform various related
services. In the TravelPlanner class, there is only one function, the Main function. The
service it performs is to compute and write out the time to travel a given distance at a
given speed. Line 11:

is the header for the Main function. It is not necessary to understand this somewhat

obscure code; just remember that every C# program must have a Main function, and
that all Main functions start out exactly this way. The curly braces at lines 12 and 28
enclose the Main function body, which is the heart of the sample program. Lines 13–15
are declarations that name and describe the items of data that are used within the
Main function. Descriptive names—speed, distance, and time—are used for these
quantities to help document their purpose in the program, and comments provide
further clarification. Line 13 describes an integer quantity (type int) called speed. Lines
14 and 15 declare distance and time as real number quantities (type double). A real
number quantity is one containing a decimal point, such as 28.3, 102.0, or -17.5.
Declarations are also optional in the sense that if a program does not use any data, no
declarations are needed, but again, it would be unusual to find such a trivial program.

Statements with Write or WriteLine write messages to the user; statements with
ReadLine get the strings the user entered for speed and distance. The prefix Console
indicates that the user will enter input at the computer keyboard and will view the
output on the computer’s screen. The difference between Write and WriteLine is that
WriteLine forces any subsequent output to begin on a new line, whereas after a Write
statement, more can be written later on the same line. The Convert functions change
the input strings, which are strings of characters, into numerical integer or double
values, respectively, and store them in speed and distance. Line 22 computes the time
required to travel this distance at this speed. Finally, lines 24–27 print the output to the
user’s screen. The values of speed, time, and distance are inserted in appropriate places
among the strings of text shown in double quotes. When the Write and WriteLine
functions encounter a numeric quantity, e.g., speed, they convert the numeric value to
a string. That string is then concatenated to (joined to) the previous string that was
output. The ₃ sign is the C# concatenation operator—it joins two strings together.

You may have noticed that most of the statements in this program end with a
semicolon. A semicolon must appear at the end of every executable C# instruction,
which means everywhere except at the end of a comment, a namespace declaration, a
class header, or a function header such as

The semicolon requirement is a bit of a pain in the neck, but the C# compiler generates
one or more error messages if you omit the semicolon, so after the first few hundred
times this happens, you tend to remember to put it in.

C#, along with every other programming language, has very specific rules of
syntax—the correct form for each component of the language. Having a semicolon at
the end of every executable statement is a C# syntax rule. Any violation of the syntax
rules generates an error message from the compiler because the compiler does not
recognize or know how to translate the offending code. In the case of a missing
semicolon, the compiler cannot tell where the instruction ends. The syntax rules for a
programming language are often defined by a formal grammar, much as correct
English syntax is defined by rules of grammar.

C# is a free-format language, which means that it does not matter where things are
placed on a line. For example, we could have written

1.2Creating and Running A C# Program

Creating and running a C# program is basically a three-step process. The first step is to
type the program into a text editor. When you are finished, you save the file, giving it a
name with the extension .cs. So the file for Figure 1 could be named

As the second step, the program must be compiled using a C# compiler for your
computer, and the resulting object code linked with any C# library object code. In our
example, the program in the file TravelPlanner.cs would be compiled, resulting in a file
called

The third step loads and executes the program file, in this case TravelPlanner.exe.
Depending on your system, you may have to type operating system commands for the
last two steps.

Another approach is to do all of your work in an Integrated Development
Environment, or IDE. The IDE lets the programmer perform a number of tasks within
the shell of a single application program, rather than having to use a separate program
for each task. A modern programming IDE provides a text editor, a file manager, a
compiler, a linker and loader, and tools for debugging, all within this one piece of
software. The IDE usually has a GUI (graphical user interface) with menu choices for
the different tasks. This can significantly speed up program development.

C# Compilers

The C# examples in this module were written and executed in Microsoft Visual
C# 2010, part of Microsoft Visual Studio 2010. This is an IDE with a GUI interface
that supports many programming languages. Visual C# 2010 Express Edition is
a lightweight version that is freely downloadable from Microsoft at

www.microsoft.com/express/product/default.aspx

Visual C# 2010 Express Edition runs on Windows XP, Windows Vista, or
Windows 7 operating systems. Its use requires the Microsoft.NET Framework. If

the.NET Framework is not already on your Windows system, you will be alerted
at installation, and you can go to

www.microsoft.com/net/Download.aspx

to download it.

This C# exercise is just a beginning. In the rest of this module, we’ll examine the
features of the language that will enable you to write your own C# programs to carry
out more sophisticated tasks.

2Virtual Data Storage

One of the improvements we seek in a high-level language is freedom from having to
manage data movement within memory. Assembly language does not require us to give
the actual memory address of the storage location to be used for each item, as in
machine language. However, we still have to move values, one by one, back and forth
between memory and the arithmetic logic unit (ALU) as simple modifications are made,
such as setting the value of A to the sum of the values of B and C. We want the
computer to let us use data values by name in any appropriate computation without
thinking about where they are stored or what is currently in some register in the ALU.
In fact, we do not even want to know that there is such a thing as an ALU, where data
are moved to be operated on; instead, we want the virtual machine to manage the
details when we request that a computation be performed. A high-level language
allows this, and it also allows the names for data items to be more meaningful than in
assembly language.

Names in a programming language are called identifiers. Each language has its own
specific rules for what a legal identifier can look like. In C# an identifier can be any
combination of letters, digits, the underscore symbol (_), and the “at” sign (@), as long
as it does not begin with a digit. However, identifiers beginning with underscore
characters should be avoided; they are generally used for special purposes. An
additional restriction is that an identifier cannot be one of the few reserved words,
such as void, int, double, and so forth, that have a special meaning in C# and that you
would not be likely to use anyway. The three integers B, C, and A in our assembly
language program can therefore have more descriptive names, such as subTotal, tax,
and finalTotal. The use of descriptive identifiers is one of the greatest aids to human
understanding of a program. Identifiers can be almost arbitrarily long, so be sure to
use a meaningful identifier such as finalTotal instead of something like A; the improved
readability is well worth the extra typing time. C# is a case-sensitive language, which
means that uppercase letters are distinguished from lowercase letters. Thus, FinalTotal,
Finaltotal, and finalTotal are three different identifiers.

Capitalization of Identifiers

There are two standard capitalization patterns for identifiers, particularly
“multiple word” identifiers:

camel case: First word begins with a lowercase letter, additional words
begin with uppercase letters (finalTotal)

Pascal case: All words begin with an uppercase letter (FinalTotal)

The code in this chapter uses the following convention for creating identifiers
(examples included):

Simple variables – camel case: speed, time, finalTotal

Function names – camel case: myFunction, getInput

Class names – Pascal case: MyClass

Object names – camel case: myObject

The underscore character is not used. Occasionally, however, we’ll use single
capital letters for identifiers in quick code fragments.

Data that a program uses can come in two varieties. Some quantities are fixed
throughout the duration of the program, and their values are known ahead of time.
These quantities are called constants. An example of a constant is the integer value 2.
Another is an approximation to p, say 3.1416. The integer 2 is a constant that we don’t
have to name by an identifier, nor do we have to build the value 2 in memory manually
by the equivalent of a.DATA pseudo-op. We can just use the symbol “2” in any program
statement. When “2” is first encountered in a program statement, the binary
representation of the integer 2 is automatically generated and stored in a memory
location. Likewise, we can use “3.1416” for the real number value 3.1416, but if we are
really using this number as an approximation to p, it is more informative to use the
identifier pi.

Some quantities used in a program have values that change as the program executes,
or values that are not known ahead of time but must be obtained from the computer
user (or from a data file previously prepared by the user) as the program runs. These
quantities are called variables. For example, in a program doing computations with

circles (where we might use the constant pi), we might need to obtain from the user or
a data file the radius of the circle. This variable can be given the identifier radius.

Identifiers for variables serve the same purpose in program statements as pronouns do
in ordinary English statements. The English statement “He will be home today” has
specific meaning only when we plug in the value for which “He” stands. Similarly, a
program statement such as

becomes an actual computation only when numeric values have been stored in the
memory locations referenced by the distance and speed identifiers.

We know that all data are represented internally in binary form. In Chapter 4 we noted
that any one sequence of binary digits can be interpreted as a whole number, a
negative number, a real number (one containing a decimal point, such as -17.5 or
28.342), or as a letter of the alphabet. C# requires the following information about each
variable in the program:

What identifier we want to use for it (its name)

What data type it represents (e.g., an integer or a letter of the alphabet)

The data type determines how many bytes will be needed to store the variable—that is,
how many memory cells are to be considered as one memory location referenced by
one identifier—and also how the string of bits in that memory location is to be
interpreted. C# provides several “primitive” data types that represent a single unit of
information, as shown in Figure 4. The way to give the necessary information within a
C# program is to declare each variable. A variable declaration consists of a data type
followed by a list of one or more identifiers of that type. Our sample program used
three declaration statements:

but these could have been combined into two:

Where do the variable declarations go? Although the only requirement is that a
variable must be declared before it can be used, all variable declarations are usually
collected together at the top of the Main function, as in our sample program. This gives
the reader of the code quick information about the data that the program will be using.

What about the constant pi? We want to assign the fixed value 3.1416 to the pi
identifier. Constant declarations are just like variable declarations, with the addition of
the keyword const and the assignment of the fixed value to the constant identifier.

Some programmers use all uppercase letters to denote constant identifiers, but the
compiler identifies a constant quantity only by the presence of “const” in the
declaration. Once a quantity has been declared as a constant, any attempt later in the
program to change its value generates an error message from the compiler.

Figure 4
Some of the C# Primitive Data Types

int An integer quantity

double A real number

char A character (a single keyboard
character, such as ‘a’)

In addition to variables of a primitive data type that hold only one unit of information,
it is possible to declare a whole collection of related variables at one time. This allows
storage to be set aside as needed to contain each of the values in this collection. For
example, suppose we want to record the number of “hits” on a Web site for each month
of the year. The value for each month is a single integer. We want a collection of 12
such integers, ordered in a particular way. An array groups together a collection of
memory locations, all storing data of the same type. The following statement declares
an array:

The left side of the equals sign says that hits is an array of integers; the right side of the
equals sign actually generates (new) memory locations for 12 integer quantities. The 12
individual array elements are numbered from hits[0] to hits[11]. (Notice that a C# array
counts from 0 up to 11, instead of from 1 up to 12.) Thus, we use hits[0] to refer to the
first entry in hits, which represents the number of visits to the Web site during the first
month of the year, January. Continuing this numbering scheme, hits[2] refers to the
number of visits during March, and hits[11] to the number of visits during December.
In this way we use one declaration to set up 12 separate (but related) integer storage
locations. Figure 5 illustrates this array.

Here is an example of the power of a high-level language. In assembly language we can
name only individual memory locations—that is, individual items of data—but in C#
we can also assign a name to an entire collection of related data items. An array thus
enables us to talk about an entire table of values, or the individual elements making up
that table. If we are writing C# programs to implement the data cleanup algorithms of
Chapter 3, we can use an array of integers to store the 10 data items.

Figure 5

A 12-Element Array hits

Practice Problems

Which of the following are legitimate C# identifiers?

martinBradley C3P_OH Amy3 3Right const

1.

Write a declaration statement for a C# program that uses one integer

quantity called number.

2.

Write a C# statement that declares a type double constant called

taxRate that has the value 5.5.

3.

Using the hits array of Figure 5, how do you reference the number of

hits on the Web page for August?

4.

3Statement Types

Now that we can reserve memory for data items by simply naming what we want to
store and describing its data type, we will examine additional kinds of programming
instructions (statements) that C# provides. These statements enable us to manipulate

the data items and do something useful with them. The instructions in C#, or indeed in
any high-level language, are designed as components for algorithmic problem solving,
rather than as one-to-one translations of the underlying machine language instruction
set of the computer. Thus they allow the programmer to work at a higher level of
abstraction. In this section we examine three types of high-level programming
language statements. They are consistent with the pseudocode operations we described
in Chapter 2 (see Figure 2.9).

Input/output statements make up one type of statement. An input statement collects
a value from the user for a variable within the program. In our TravelPlanner
program, we need input statements to get the specific values of the speed and distance
that are to be used in the computation. An output statement writes a message or the
value of a program variable to theuser’s screen. Once the TravelPlanner program
computes the time required to travel the given distance at the given speed, the output
statement displays that value on the screen, along with other information about what
that value means.

Another type of statement is the assignment statement, which assigns a value to a
program variable. This is similar to what an input statement does, except that the value
is not collected directly from the user, but is computed by the program. In pseudocode
we called this a “computation operation.”

Control statements, the third type of statement, affect the order in which instructions
are executed. A program executes one instruction or program statement at a time.
Without directions to the contrary, instructions are executed sequentially, from first to
last in the program. (In Chapter 2 we called this a straight-line algorithm.) Imagine
beside each program statement a light bulb that lights up while that statement is being
executed; you would see a ripple of lights from the top to the bottom of the program.
Sometimes, however, we want to interrupt this sequential progression and jump
around in the program (which is accomplished by the instructions JUMP, JUMPGT, and
so on, in assembly language). The progression of lights, which may no longer be
sequential, illustrates the flow of control in the program—that is, the path through the
program that is traced by following the currently executing statement. Control
statements direct this flow of control.

3.1Input/Output Statements

Remember that the job of an input statement is to collect from the user specific values
for variables in the program. In pseudocode, to get the value for speed in the
TravelPlanner program, we would say something like

C# can do this task using a function named ReadLine. The input statement is

Because all variables must be declared before they can be used, the declaration
statement that says speed is to be a variable (of data type int) precedes this input
statement.

Let’s say that we have written the entire TravelPlanner program and it is now
executing. When the preceding input statement is encountered, the program stops and
waits for the user to enter a value for speed (by typing it at the keyboard, followed by
pressing the ENTER key). For example, the user could type

The ReadLine function captures the string consisting of a 5 followed by an 8; this is just
a two-character string, similar to the string “ab” consisting of an a followed by a b. In
other words, the two-length string of characters “58” is not the same as the integer
numeric value of 58, and we could not do any numerical computations with it. It is
necessary to convert the string of numeric characters into an integer. That task is
performed by the Convert.ToInt32 function (it is also part of the System namespace). If
the user enters a decimal number as the input value for speed, e.g., 48.7, ReadLine will
gather the character string and pass it to Convert.ToInt32, which will fail and report an
error that the input is not in the correct format for an integer.

The value of distance is input using the statement

Note that this time the conversion of the string of characters gathered by ReadLine is to
type double. Here it would be acceptable to enter an integer value, say 657, instead of
657.0. The conversion process knows that it can make a double value from a string of
numeric characters that does not contain a decimal point.

After the two input statements, the value of the time can be computed and stored in the
memory location referenced by time. A pseudocode operation for producing output
would be something like

This could be done by the following statement:

Output in C# is handled as the opposite of input. A value stored in memory— in this
case the value of the variable time—is converted into a string and copied to the Console
(the screen). But we don’t want the program to simply print a number with no
explanation; we want some words to make the output meaningful.

The general form of the output statement is

The string could be empty, as follows:

This just prints a blank line, which is useful for formatting the output to make it easier
to read. The string can also be a literal string (enclosed in double quotes). Literal
strings are printed out exactly as is. For example,

prints

A string can also be composed of items joined by the concatenation operator +. The
items can be literal strings, numbers, or variables. Items that are not themselves literal
strings are converted to strings for the purposes of writing them out. In the
TravelPlanner program we used

to write out the value of time. Notice the spaces at the beginning and end of the literal
string, within the quotation marks so that they are part of the text. Without these
spaces, running the TravelPlanner program with our original data of 58 mph and 657.5
miles, the output would be printed as

Spacing aside, the value for time of

is fairly ridiculous. It does not make sense to display the result to 13 decimal digits. The
appearance of numerical output can be controlled, rather than leaving it up to the
system to decide, by including a format specifier in the output statement. If only two
digits to the right of the decimal point are to be displayed for time, the output statement
would take the following form:

Here the conversion to string is forced in the variable identifier list by using the
ToString function, rather than waiting for the Write function to do it by default. The
value “0.00” is the format specifier. It forces two digits to the right of the decimal point
(rounding if the value has more than two decimal digits), and one or more digits to the
left of the decimal point (even though there is only one zero in the format specifier to

the left of the decimal point). Using this statement, the output would be rounded to two
decimal places:

An alternative statement

would produce the same result. The difference between the 0 and the # is that the #
specifier will suppress leading and trailing zeros, while the 0 specifier will fill the
indicated number of columns, using leading and trailing zeros if necessary. Both will
use more columns to the left of the decimal point if the integer part is too large to fit in
the indicated column space. For example:

The ability to specify the number of decimal digits in the output is particularly handy
for dealing with dollar-and-cent values, where we always expect to see two digits
behind the decimal point.

A real number written in the form 11.34 is said to be in fixed-point format, but with
the appropriate format specifier, the output can be written in scientific notation. The
fixed-point format

written in scientific notation is

which means 1.134 × 10 . (The “E” means “times 10 to the power of… ”.) The output
statement to produce this would be

1

where the E in the format specifier indicates scientific notation, and the 00 after the
plus sign forces two digits in the exponent.

Let’s back up a bit and note that we also need to print some text information before the
input statement, to alert the user that the program expects some input. A statement
such as

acts as a user prompt. Without a prompt, the user may be unaware that the program is
waiting for some input; instead, it may simply seem to the user that the program is
“hung up.”

Assembling all of these bits and pieces, we can see that

is a series of prompt, input, prompt, input statements to get the data, and then

writes out the computed value of time along with the associated input values in an
informative message. In the middle, we need a program statement to compute the
value of time. We can do this with a single assignment statement; the assignment
statement is explained in the next section.

Finally, whereas a single C# statement can be spread over multiple lines, a line break
cannot occur in the middle of a literal string. The solution is to make two smaller
substrings and join them together by concatenation, as in

which will produce a single line of output.

Practice Problems

Write two statements that prompt the user to enter an integer value

and store that value in a (previously declared) variable called

quantity.

1.

A program has computed a value of 37 for the variable height. Write

an output statement that prints this variable using six columns, with

successive output to appear on the next line.

2.

What appears on the screen after execution of the following

statements?

Console.Write(“This is”);

Console.WriteLine(“goodbye”);

3.

What’s in a Name?

Why is C# called C#? According to Anders Hejlsberg, leader of Microsoft’s C#
development team, the language was known as Cool when it was under
development. But “Cool” presented trademark issues when it was time to
market the language, so another name had to be found. C#, as we have noted, is
a successor to C++, which in turn is built on C. So C#, in a musical sense, is a
“half-note” above C. But there’s an even better explanation. C++ (“plus plus”) is
an improvement over C. Since the sharp symbol

contains 4 “+” marks, C# can be thought of as C ++ plus plus, i.e., an
improvement over C++.

3.2The Assignment Statement

As we said earlier, an assignment statement assigns a value to a program variable. This
is accomplished by evaluating some expression and then writing the resulting value in
the memory location referenced by the program variable. The general pseudocode
operation

has as its C# equivalent

The expression on the right is evaluated, and the result is then written into the memory
location named on the left. For example, suppose that A, B, and C have all been
declared as integer variables in some program. The assignment statements

result in B taking on the value 2 and C taking on the value 5. After execution of

A has the value that is the sum of the current values of B and C. Assignment is a
destructive operation, so whatever A’s previous value was, it is gone. Note that this one
assignment statement says to add the values of B and C and assign the result to A. This
one high-level language statement is equivalent to three assembly language statements
needed to do this same task (LOAD B, ADD C, STORE A). A high-level language program
thus packs more power per line than an assembly language program. To state it
another way, whereas a single assembly language instruction is equivalent to a single
machine language instruction, a single C# instruction is usually equivalent to many
assembly language instructions or machine language instructions, which allows us to
think at a higher level of problem solving.

In the assignment statement, the expression on the right is evaluated first. Only then is
the value of the variable on the left changed. This means that an assignment statement
like

makes sense. If A has the value 7 before this statement is executed, then the expression
evaluates to

and 8 then becomes the new value of A. (Here it becomes obvious that the assignment
instruction symbol ₃ is not the same as the mathematical equals sign ₃, because A ₃ A ₃ 1
does not make sense mathematically.)

All four basic arithmetic operations can be done in C#, where they are denoted by

For the most part, this is standard mathematical notation, rather than the somewhat
verbose assembly language op code mnemonics such as SUBTRACT. The reason a
special symbol is used for multiplication is that · would be confused with x, an
identifier, · (a multiplication dot) doesn’t appear on the keyboard, and juxtaposition
—writing AB for A*B—would look like a single identifier named AB.

We do have to pay some attention to data types. In particular, division has one
peculiarity. If at least one of the two values being divided is a real number, then
division behaves as we expect. Thus,

all result in the value 3.5. However, if the two values being divided are both integers,
the result is an integer value; if the division doesn’t “come out even,” the integer value
is obtained by truncating the answer to an integer quotient. Thus,

results in the value 3. Think of grade-school long division of integers:

Here the quotient is 3 and the remainder is 1. C# also provides an operation, with the
symbol %, to obtain the integer remainder. Using this operation,

results in the value 1. If the values are stored in type int variables, the same thing
happens. For example,

produces the output

As soon as an arithmetic operation involves one or more real (decimal) numbers, any
integers are converted to their real number equivalent, and the calculations are done
with real numbers.

Data types also play a role in assignment statements. Suppose the expression in an
assignment statement evaluates to a real number and is then assigned to an identifier
that has been declared as an integer. The real number is truncated, and the digits
behind the decimal point are lost. We mentioned that this same situation occurs if you
input a decimal value for an integer variable, but there, due to the conversion from
string to integer, an error occurs. Unlike the input situation, the C# compiler can see
what you are doing with the assignment statement and will usually give you a warning
that says something about “possible loss of data.” But assigning an integer value to a
type double identifier merely changes the integer to its real number equivalent. C# does
this type casting (changing of data type) automatically. This type cast would merely
change the integer 3, for example, to its real number equivalent 3.0.

This explains why we declared distance to be type double in the TravelPlanner
program. The user can enter an integer value for distance, and C# uses
Convert.ToDouble to type cast it to a real number. But if we had declared both speed
and distance to be integers, then the division to compute time would only produce
integer answers.

You should assign only an expression that has a character value to a variable that has
been declared to be type char. Suppose that letter is a variable of type char. Then

is a legitimate assignment statement, giving letter the value of the character ‘m’. Note
that single quotation marks are used here, as opposed to the double quotation marks
that enclose a literal string.

Practice Problems

newNumberand next are integer variables in a C# program. Write a

statement to assign the value of newNumber to next.

1.

What is the value of average after the following statements are

executed? (total and number are type int, and average is type double.)

total = 277;

number = 5;

2.

average = total/number;

The assignment

is also acceptable; the single quotes around the 4 mean that it is being treated as just
another character on the keyboard, not as the integer 4.

3.3Control Statements

We mentioned earlier that sequential flow of control is the default; that is, a program
executes instructions sequentially from first to last. The flowchart in Figure 6
illustrates this, where S1, S2,…, Sk are program instructions (i.e., program statements).

Figure 6

Sequential Flow of Control

As stated in Chapter 2, no matter how complicated the task to be done, only three types
of control mechanisms are needed:

Sequential: Instructions are executed in order.1.

Conditional: Which instruction executes next depends on some condition.2.

Looping: A group of instructions may be executed many times.3.

Sequential flow of control, the default, is what occurs if the program does not contain
any instances of the other two control structures. In the TravelPlanner program, for
example, instructions are executed sequentially, beginning with the input statements,
next the computation, and finally the output statements.

In Chapter 2 we introduced pseudocode notation for conditional operations and
looping. In Chapter 6 we learned how to write somewhat laborious assembly language
code to implement conditional operations and looping. Now we’ll see how C# provides
instructions that directly carry out these control structure mechanisms—more
evidence of the power of high-level language instructions. We can think in a
pseudocode algorithm design mode, as we did in Chapter 2, and then translate that
pseudocode directly into C# code.

Conditional flow of control begins with the evaluation of a Boolean condition, also
called a Boolean expression, which can be either true or false. We discussed these
“true/false conditions” in Chapter 2, and we also encountered Boolean expressions in
Chapter 4, where they were used to design circuits. A Boolean condition often involves
comparing the values of two expressions and determining whether they are equal,
whether the first is greater than the second, and so on. Again assuming that A, B, and C
are integer variables in a program, the following are legitimate Boolean conditions:

If the current values of A, B, and C are 2, 5, and 7, respectively, then the first condition
is false (A does not have the value zero), the second condition is true (5 is less than 2
plus 7), and the third condition is true (A and B do not have equal values). Comparisons
need not be numeric. They can also be done between variables of type char, where the
“ordering” is the usual alphabetic ordering. If initial is a value of type char with a
current value of ‘D’, then

is false because initial does not have the value ‘F’, and

is true because ‘D’ precedes ‘P’ in the alphabet (or, more precisely, because the binary
code for ‘D’ is numerically less than the binary code for ‘P’). Note that the comparisons
are case sensitive, so ‘F’ is not equal to ‘f ’, but ‘F’ is less than ‘f ’.

Figure 7 shows the comparison operations available in C#. Note the use of the two
equality signs to test whether two expressions have the same value. The single equality
sign is used in an assignment statement, the double equality sign in a comparison.

Figure 7
C# Comparison Operators

COMPARISON SYMBOL EXAMPLE EXAMPLE
RESULT

the same
value as

== 2 == 5 false

less than < 2 < 5 true

less than or
equal to

<= 5 <= 5 true

greater than > 2 > 5 false

greater than
or equal to

>= 2 >= 5 false

not the same
value as

!= 2 >= 5 true

Boolean conditions can be built up using the Boolean operators AND, OR, and NOT.
Truth tables for these operators were given in Chapter 4 (Figures 4.12–4.14). The only
new thing is the symbols that C# uses for these operators, shown in Figure 8.

Figure 8
C# Boolean Operators

OPERATOR SYMBOL EXAMPLE EXAMPLE
RESULT

AND && (2 < 5)
&& (2 >
7)

false

OR || (2 < 5) ||
(2 > 7)

true

NOT ! !(2 == 5) true

A conditional statement relies on the value of a Boolean condition (true or false) to
decide which programming statement to execute next. If the condition is true, one
statement is executed next, but if the condition is false, a different statement is
executed next. Control is therefore no longer in a straight-line (sequential) flow, but
hops to one place or to another. Figure 9 illustrates this situation. If the condition is
true, the statement S1 is executed (and statement S2 is not); if the condition is false, the
statement S2 is executed (and statement S1 is not). In either case, the flow of control
then continues on to statement S3. We saw this same scenario when we discussed
pseudocode conditional statements in Chapter 2 (Figure 2.4).

Figure 9

Conditional Flow of Control (if-else)

The C# instruction that carries out conditional flow of control is called an if-else
statement. It has the form shown below (note that the words if and else are lowercase
and that the Boolean condition must be in parentheses).

Below is a simple if-else statement, where we assume that A, B, and C are integer
variables.

Suppose that when this statement is reached, the values of A, B, and C are 2, 5, and 7,
respectively. As we noted before, the condition B < (A + C) is then true, so the statement

is executed, and the value of A is changed to 4. However, suppose that when this
statement is reached, the values of A, B, and C are 2, 10, and 7, respectively. Then the
condition B < (A + C) is false, the statement

is executed, and the value of A is changed to 6.

A variation on the if-else statement is to allow an “empty else” case. Here we want to do
something if the condition is true, but if the condition is false, we want to do nothing.
Figure 10 illustrates the empty else case. If the condition is true, statement S1 is
executed, and after that the flow of control continues on to statement S3, but if the
condition is false, nothing happens except to move the flow of control directly on to
statement S3.

Figure 10

If-else with Empty else

This if variation on the if-else statement can be accomplished by omitting the word else.
This form of the instruction therefore looks like

We could write

This has the effect of doubling the value of A if the condition is true and of doing
nothing if the condition is false.

It is possible to combine statements into a group by putting them within the curly
braces { and }. The group is then treated as a single statement, called a compound

Figure 11

statement. A compound statement can be used anywhere a single statement is
allowed. For example,

is treated as a single statement. The implication is that in Figure 9, S1 or S2 might be
compound statements. This makes the if-else statement potentially much more
powerful and similar to the pseudocode conditional statement in Figure 2.9.

Let’s expand on our TravelPlanner program and give the user of the program a choice
of computing the time either as a decimal number (3.75 hours) or as hours and minutes
(3 hours, 45 minutes). This situation is ideal for a conditional statement. Depending on
what the user wants to do, the program does one of two tasks. For either task, the
program still needs information about the speed and distance. The program must also
collect information to indicate which task the user wishes to perform. We need an
additional variable in the program to store this information. Let’s use a variable called
choice of type char to collect the user’s choice of which task to perform. We also need
two new integer variables to store the values of hours and minutes.

Figure 11 shows the new program, with the three additional declared variables. The
condition evaluated at the beginning of the if-else statement tests whether choice has
the value ‘If so, then the condition is true, and the first group of statements is
executed—that is, the time is output in decimal format as we have been doing all along.
If choice does not have the value ‘D’, then the condition is false. In this event, the
second group of statements is executed. Note that because of the way the condition is
written, if choice does not have the value ‘D’, it is assumed that the user wants to
compute the time in hours and minutes, even though choice may have any other non-D
value (including ‘d’) that the user may have typed in response to the prompt.

The TravelPlanner Program with a Conditional Statement

To compute hours and minutes (the else clause of the if-else statement), time is
computed in the usual way, which results in a decimal value. The whole number part
of that decimal is the number of hours needed for the trip. We can get this number by
type casting the decimal number to an integer. This is accomplished by

which drops all digits behind the decimal point and stores the resulting integer value in
hours. Based on earlier discussions of converting to integer, the following line of code
would seem appropriate:

This line of code does not give the desired result because the Convert.ToInt32 function
actually rounds the type double value. (For the example below, it takes in 9.5 and
produces 10.)

To find the fractional part of the hour that we dropped, we subtract hours from time.
We multiply this by 60 to turn it into some number of minutes, but this is still a decimal
number. We do another type cast to truncate this to an integer value for minutes:

For example, if the user enters data of 50 mph and 475 miles and requests output in
hours and minutes, the table below shows the computed values.

Here is the actual program output for this case:

The two statement groups in an if-else statement are identified by the enclosing curly
braces, but in Figure 11 we also indented them to make them easier to pick out when
looking at the program. Like comments, indentation is ignored by the computer but is
valuable in helping people to more readily understand a program.

Now let’s look at the third variation on flow of control, namely looping (iteration). We
want to execute the same group of statements (called the loop body) repeatedly,
depending on the result of a Boolean condition. As long as (while) the condition
remains true, the loop body is executed. The condition is tested before each execution
of the loop body. When the condition becomes false, the loop body is not executed
again, which is usually expressed by saying that the algorithm exits the loop. To ensure
that the algorithm ultimately exits the loop, the condition must be such that its truth
value can be affected by what happens when the loop body is executed. Figure 12
illustrates the while loop. The loop body is statement S1 (which can be a compound
statement), and S1 is executed while the condition is true. Once the condition is false,
the flow of control moves on to statement S2. If the condition is false when it is first
evaluated, then the body of the loop is never executed at all. We saw this same scenario
when we discussed pseudocode looping statements in Chapter 2 (Figure 2.6).

C# uses a while statement to implement this type of looping. The form of the statement
is

Figure 12

while Loop

For example, suppose we want to write a program to add up a number of nonnegative
integers that the user supplies and write out the total. We need a variable to hold the
total; we’ll call this variable sum, and make its data type int. To handle the numbers to
be added, we could declare a bunch of integer variables such as n1, n2, n3,… and do a
series of input-and-add statements of the form

and so on. There are two problems with this approach. The first is that we may not
know ahead of time how many numbers the user wants to add. If we declare variables
n1, n2,…, n25, and the user wants to add 26 numbers, the program won’t do the job. The
second problem is that this approach requires too much effort. Suppose that we know

the user wants to add 2000 numbers. We could declare 2000 variables (n1,…, n2000),
and we could write the above input-and-add statements 2000 times, but it wouldn’t be
fun. Nor is it necessary—we are doing a very repetitive task here, and we should be
able to use a loop mechanism to simplify the job. (We faced a similar situation in the
first pass at a sequential search algorithm, Figure 2.11; our solution there was also to
use iteration.)

Even if we use a loop mechanism, we are still adding a succession of values to sum.
Unless we are sure that the value of sum is zero to begin with, we cannot be sure that
the answer isn’t nonsense. Remember that the identifier sum is simply an indirect way
to designate a memory location in the computer. That memory location contains a
pattern of bits, perhaps left over from whatever was stored there when some previous
program was run. We cannot assume that just because this program hasn’t used sum,
its value is zero. (In contrast, the assembly language statement SUM: .DATA 0 reserves a
memory location, assigns it the identifier SUM, and fills it with the value zero.) If we
want the beginning value of sum to be zero, we must use an assignment statement.
Using assignment statements to set the values of certain variables before they are used
by the program is called initialization of variables.

Now on to the loop mechanism. First, let’s note that once a number has been read in
and added to sum, the program doesn’t need to know the value of the number any
longer. We can declare just one integer variable called number and use it repeatedly to
hold the first numerical value, then the second, and so on. The general idea is

Now we have to figure out what the condition “there are more numbers to add” really
means. Because we are adding nonnegative integers, we could ask the user to enter one
extra integer that is not part of the legitimate data but is instead a signal that there are
no more data. Such a value is called a sentinel value. For this problem, any negative
number would be a good sentinel value. Because the numbers to be added are all
nonnegative, the appearance of a negative number signals the end of the legitimate
data. We don’t want to process the sentinel value (because it is not a legitimate data
item); we only want to use it to terminate the looping process. This might suggest the
following code:

Here’s the problem. How can we test whether number is greater than or equal to 0 if we
haven’t read the value of number yet? We need to do a preliminary input for the first
value of number outside of the loop and then test that value in the loop condition. If it is
nonnegative, we want to add it to sum and then read the next value and test it.
Whenever the value of number is negative (including the first value), we want to do
nothing with it—that is, we want to avoid executing the loop body. The following
statements do this; we’ve also added instructions to the user.

The value of number gets changed within the loop body by reading in a new value. The
new value is tested, and if it is nonnegative, the loop body executes again, adding the
data value to sum and reading in a new value for number. The loop terminates when a
negative value is read in. Remember the requirement that something within the loop
body must be able to affect the truth value of the condition. In this case, it is reading in
a new value for number that has the potential to change the value of the condition from
true to false. Without this requirement, the condition, once true, would remain true
forever, and the loop body would be endlessly executed. This results in what is called
an infinite loop. A program that contains an infinite loop will execute forever (or until
the programmer gets tired of waiting and interrupts the program, or until the program
exceeds some preset time limit).

Here is a sample of the program output.

Figure 13

The problem we’ve solved here, adding nonnegative integers until a negative sentinel
value occurs, is the same one solved using assembly language in Chapter 6. The
preceding C# code is almost identical to the pseudocode version of the algorithm shown
in Figure 6.7. Thanks to the power of the language, the C# code embodies the algorithm
directly, at a high level of thinking, whereas in assembly language this same algorithm
had to be translated into the lengthy and awkward code of Figure 6.8.

To process data for a number of different trips in the TravelPlanner program, we could
use a while loop. During each pass through the loop, the program computes the time
for a given speed and distance. The body of the loop is therefore exactly like our
previous code. All we are adding here is the framework that provides looping. To
terminate the loop, we could use a sentinel value, as we did for the program above. A
negative value for speed, for example, is not a valid value and could serve as a sentinel
value. Instead of that, let’s allow the user to control loop termination by having the
program ask the user whether he or she wishes to continue. We’ll need a variable to
hold the user’s response to this question. Of course, the user could answer “N” at the
first query, the loop body would never be executed at all, and the program would
terminate. Figure 13 shows the complete program.

The TravelPlanner Program with Looping

Practice Problems

Assume all variables have previously been declared.

What is the output from the following section of code?1.

What is the output from the following section of code?2.

What is the output from the following section of code?3.

How many times is the WriteLine statement executed in the following

section of code?

4.

Write a C# statement that outputs “Equal” if the integer values of

night and day are the same, but otherwise does nothing.

5.

4Another Example

Let’s briefly review the types of C# programming statements we’ve learned. We can do
input and output—reading values from the user into memory, writing values out of
memory for the user to see, being sure to use meaningful variable identifiers to
reference memory locations. We can assign values to variables within the program.
And we can direct the flow of control by using conditional statements or looping.
Although many other statement types are available in C#, you can do almost everything
using only the modest collection of statements we have described. The power lies in
how these statements are combined and nested within groups to produce ever more
complex courses of action.

For example, suppose we write a program to assist SportsWorld, a company that
installs circular swimming pools. In order to estimate their costs for swimming pool
covers or for fencing to surround the pool, SportsWorld needs to know the area or
circumference of a pool, given its radius. A pseudocode version of the program is
shown in Figure 14 .

Figure 14

A Pseudocode Version of the SportsWorld Program

We should be able to translate this pseudocode fairly directly into the body of the Main
function. Other things we need to add to complete the program are:

A prologue comment to explain what the program does (optional but always

recommended for program documentation)

A using directive for namespace System (necessary because our program uses

ReadLine, Write, and WriteLine)

A declaration for the constant value pi (3.1416)

Variable declarations

Figure 15 gives the complete program. Figure 16 shows what actually appears on the
screen when this program is executed with some sample data.

Figure 15

The SportsWorld Program

Figure 16

A Sample Session Using the Program of Figure 15

Practice Problems

Write a complete C# program to read in an integer number and write

out the square of that number.

1.

Write a complete C# program that asks for the price of an item and

the quantity purchased, and writes out the total cost.

2.

Write a complete C# program that asks for a number. If the number is3.

less than 5, it is written out, but if it is greater than or equal to 5,

twice that number is written out.

Write a complete C# program that asks the user for a positive integer

n and then writes out all the numbers from 1 up to and including n.

4.

Zooming Through the Universe

C# is the programming language behind Worldwide Telescope, an application
built by Microsoft Research. Worldwide Telescope uses a catalogue of
astronomical images and data from many ground-based and space-based
observatories around the world to let users virtually view the night sky. Users
can choose which telescope to look through, including the Hubble Space
Telescope. They can zoom through the solar system, the galaxy, and beyond,
and view the relative positions of planets and other heavenly bodies in the past,
present, and future. Then from far-flung views of the universe, it’s possible to
zoom in on planet Earth right down to the individual building level. Users can
also choose different light wavelengths through which to view the universe and
explore hidden structures in the galaxies. “Guided tours” with experts are
available. Worldwide Telescope is available for free download at
www.worldwidetelescope.org.

5Managing Complexity

The programs we have written have been relatively simple. More complex problems
require more complex programs to solve them. Although it is fairly easy to understand
what is happening in the 40 or so lines of the SportsWorld program, imagine trying to
understand a program that is 50,000 lines long. Imagine trying to write such a
program! It is not possible to understand—all at once—everything that goes on in a
50,000-line program.

5.1Divide and Conquer

Writing large programs is an exercise in managing complexity. The solution is a
problem-solving approach called divide and conquer. Suppose a program is to be
written to do a certain task; let’s call it task T. Suppose further that we can divide this
task into smaller tasks, say A, B, C, and D, such that, if we can do those four tasks in the
right order, we can do task T. Then our high-level understanding of the problem need
only be concerned with what A, B, C, and D do and how they must work together to

accomplish T. We do not, at this stage, need to understand how A, B, C, and D can be
done. Figure 17(a), an example of a structure chart or structure diagram, illustrates
this situation. Task T is composed in some way of subtasks A, B, C, and D. Later we can
turn our attention to, say, subtask A and see if it too can be decomposed into smaller
subtasks, as in Figure 17(b). In this way, we continue to break the task down into
smaller and smaller pieces, finally arriving at subtasks that are simple enough that it is
easy to write the code to carry them out. By dividing the problem into small pieces, we
can conquer the complexity that is overwhelming if we look at the problem as a whole.

Figure 17

Structure Charts

Divide and conquer is a problem-solving approach and not just a Imageming
technique. Outlining a term paper into major and minor topics is a divide-and-conquer
approach to writing the paper. Doing a Form 1040 Individual Tax Return for the
Internal Revenue Service can involve the subtasks of completing Schedules A, B, C, D,
and so on and then reassembling the results. Designing a house can be broken down
into subtasks of designing floor plans, wiring, plumbing, and the like. Large companies
organize their management responsibilities using a divide-and-conquer approach;
what we have called structure charts become, in the business world, organization
charts.

How is the divide-and-conquer problem-solving approach reflected in the resulting
Image? If we think about the problem in terms of subtasks, then the program should
show that same structure; that is, part of the code should do subtask A, part should do
subtask B, and so on. We divide the code into modules or subprograms, each of which
does some part of the overall task. Then we empower these modules to work together
to solve the original problem.

5.2Using Functions

Figure 19

In C#, modules of code are called functions. Each function in a program should do one
and only one subtask. These “subtask functions” are the optional functions listed
before the mandatory Main function in the C# program outline of Figure 2. When
subtask functions are used, the Main function consists primarily of invoking these
subtask functions in the correct order.

Let’s review the Main function body of the SportsWorld program (Figure 15) with an
eye to further subdividing the task. There is a loop that does some operations as long as
the user wants. What gets done? Input is obtained from the user about the radius of the
circle and the choice of task to be done (compute circumference or compute area).
Then the circumference or the area gets computed and written out. We’ve identified
three subtasks, as shown in the structure chart of Figure 18.

Figure 18

Structure Chart for the SportsWorld Task

We can visualize the Main function body of the program at a pseudocode level as
shown in Figure 19. This divide-and-conquer approach to solving the problem can (and
should) be planned first in pseudocode, without regard to the details of the
programming language to be used. If the three subtasks (input, circumference, area)
can all be done, then arranging them within the structure of Figure 19 solves the
problem. We can write a function for each of the subtasks. Although we now know
what form the Main function body will take, we have pushed the details of how to do
each of the subtasks off into the other functions. Execution of the program begins with
the Main function. Every time the flow of control reaches the equivalent of a “do
subtask” instruction, it transfers execution to the appropriate function code. When
execution of the function code is complete, flow of control returns to the Main function
and picks up where it left off.

A High-Level Modular View of the SportsWorld Program

Before we look at the details of how to write a function, we need to examine the
mechanism that allows the functions to work with each other and with the Main
function. This mechanism consists of passing information about various quantities in
the program back and forth between the other functions and the Main function.
Because each function is doing only one subtask of the entire task, it does not need to
know the values of all variables in the program. It only needs to know the values of the
variables with which its particular subtask is concerned. Allowing a function access
only to pertinent variables prevents that function from inadvertently changing a value
it has no business changing.

When the Main function wants a subtask function to be executed, it gives the name of
the function (which is an ordinary C# identifier) and also a list of the identifiers for
variables pertinent to that function. This is called an argument list. In our
SportsWorld program, let’s name the three functions getInput, doCircumference, and
doArea (names that are descriptive of the subtasks these functions carry out). The
getInput function collects the values for the variables radius and taskToDo. The Main
function invokes the getInput function with the statement

which takes the place of the “Do the input subtask” line in Figure 19. (The meaning of
“ref” will be explained later.) When this statement is reached, control passes to the
getInput function. After execution of this function, control returns to the Main function,
and the variables radius and taskToDo have the values obtained for them within
getInput.

The doCircumference function computes and writes out the value of the circumference,
and in order to do that it needs to know the radius. Therefore, the variable radius is a
legitimate argument for this function. The Main function contains the statement

in place of the “do the circumference subtask” in Figure 19. When this statement is
reached, the variable radius conveys the value of the radius to the doCircumference
function, and the function computes and writes out the circumference. The variable

Figure 20

circumference, then, is also a variable of interest to the doCircumference function, but it
is of interest to this function alone, in the sense that doCircumference does the
computation and writes out the result. No other use is made of the circumference in
the entire program, so no other function, including the Main function, has anything to
do with circumference. Instead of being declared in the body of the Main function,
circumference will be declared (and can be used) only within the doCircum-ference
function; it will be local to that function. Any function can have its own local
constants and local variables, declared within and known only to that function.

The doCircumference function also needs to know the value of the constant pi. We could
declare pi as a constant local to doCircumference, but doArea needs the same constant,
so we will declare pi right after the program namespace directive, not within any
function. This will make pi a global constant whose value is known everywhere. The
value of a constant cannot be changed, so there is no reason to prevent any function
from having access to its value.

The doArea function computes and writes out the area and needs to know the radius,
so the line “do the area subtask” in Figure 19 is replaced by

Within doArea, area is a local variable.

Now we can write the Main function of the modularized version of the SportsWorld
program, shown in Figure 20. The Main function body is a direct translation of Figure
19. If, in starting from scratch to write this program, we had taken a divide-
and-conquer approach, broken the original problem down into three subtasks, and
come up with the outline of Figure 19, it would have been easy to get from there to
Figure 20. The only additional task would have been determining the variables needed.

The Main Function in a Modularized Version of the SportsWorld Program

At a glance, the Main function in Figure 20 does not look a great deal different from our
former Main function. However, it is conceptually quite different; the subtasks of
getting the input values, computing and writing out the circumference, and computing
and writing out the area have been relegated to functions. The details (such as the
formulas for computing circumference and area) are now hidden and have been
replaced by function invocations. If these subtasks had required many lines of code,
our new Main function would indeed be shorter—and easier to understand— than
before.

5.3Writing Functions

Now we know how the Main function can invoke another function. (In fact, using the
same process, any function can invoke another function. A function can even invoke
itself.) It is time to see how to write the code for these other, non-Main functions. The
general outline for a C# function is shown in Figure 21.

Figure 21

The Outline for a C++ Function

The function header consists of three parts:

A return indicator

The function identifier

A parameter list

The return indicator classifies a function as a “void” or a “nonvoid” function. We’ll
explain this distinction later, but the three functions for the circle program are all void
functions, so the return indicator is the keyword void. (All of our Main functions have
been void functions as well.) The function identifier can be any legitimate C#
identifier. The parameters in the parameter list correspond to the arguments in the
statement that invokes this function; that is, the first parameter in the list matches the
first argument given in the statement that invokes the function, the second parameter
matches the second argument, and so on. It is through this correspondence between
parameters and arguments that information (data) flows from the Main function to
other functions, and vice versa. The data type of each parameter must be given as part
of the parameter list, and it must match the data type of the corresponding argument.
For example, because the getInput function is invoked with the two arguments radius
and taskToDo, the parameter list for the getInput function header has two parameters,
the first of type double and the second of type char. Parameters may have, but do not
have to have, the same identifiers as the corresponding arguments; arguments and
parameters correspond by virtue of their respective positions in the argument list and
the parameter list, regardless of the identifiers used. For the getInput function, we
choose the parameter identifiers radius and taskToDo, matching the argument
identifiers. No semicolon is used at the end of a function header.

One additional aspect of the parameter list in the function header concerns the use the
function will make of each parameter. Consider the statement that invokes the
function; an argument in the invoking statement carries a data value to the
corresponding parameter in the function header. If the value is one that the function
must know to do its job but should not change, then the argument is passed by value.
The function receives a copy of the data value but never knows the memory location
where the original value is stored. If the function changes the value of its copy, this
change has no effect when control returns to the Main function. If, however, the value
passed to the function is one that the function should change, and the Main function
should know the new value, then the argument is passed by reference. The function
receives access to the memory location where the value is stored, and any changes it
makes to the value are seen by the Main function after control returns there. Included
in this category are arguments whose values are unknown when the function is
invoked (which really means that they are meaningless values of whatever happens to
be in the memory location associated with that identifier), but the function changes
those unknown values into meaningful values.

By default, arguments in C# are passed by value, which protects them from change by
the function. Explicit action must be taken by the programmer to pass an argument by
reference; specifically, the keyword ref must appear in front of the corresponding
parameter in the function parameter list, and in front of the corresponding argument

in the argument list.

How do we decide whether to pass an argument by value or by reference? If the Main
function needs to obtain a new value back from a function when execution of that
function terminates, then the argument must be passed by reference (by inserting the
ref into the parameter and argument lists). Otherwise, the argument should be passed
by value, the default arrangement.

In the getInput function, both radius and taskToDo are values that get-Input obtains
from the user and that the Main function needs to know when getInput terminates, so
both of these are passed by reference. The header for the getInput function is shown
next along with the invoking statement from the Main function. Note that the
parameters radius and taskToDo are in the right order, have been given the correct
data types, and are both marked for passing by reference. Also remember that,
although the arguments are named radius and taskToDo because those are the variable
identifiers declared in the Main function, the parameters could have different
identifiers, and it is the parameter identifiers that are used within the body of the
function.

In C# an argument, whether passed by value or by reference, must have been given a
value before the invocation. This explains the statements

at the beginning of the Main function above. These combine declaration with
initialization of the variables.

The body of the getInput function comes from the corresponding part of Figure 15. If
we hadn’t already written this code, we could have done a pseudocode plan first. The
complete function appears in getInput function comes from the corresponding part of
Figure 22, where a comment has been added to document the purpose of the function.

Figure 22

The getInput Function

The doCircumference function needs to know the value of radius but does not change
that value. Therefore, radius is passed by value. Why is the distinction between
arguments passed by value and those passed by reference important? If functions are
to effect any changes at all, then clearly reference parameters are necessary, but why
not just make everything a reference parameter? Suppose that in this example radius is
made a reference parameter. If an instruction within doCircumference were to
inadvertently change the value of radius, then that new value would be returned to the
Main function, and any subsequent calculations using this value (there are none in this
example) would be in error. Making radius a value parameter prevents this. How could
one possibly write a program statement that changes the value of a variable
inadvertently? In something as short and simple as our example, this probably would
not happen, but in a more complicated program, it might. Distinguishing between
passing by value and passing by reference is just a further step in controlling a
function’s access to data values, to limit the damage the function might do. The code for
the doCircumference function appears in getInput function comes from the
corresponding part of Figure 23.

Figure 23

The doCircumference Function

The doArea function is very similar. Let’s reassemble everything and give the complete
modularized version of the program. In Figure 24, only the Main function needs to

know the value of more. No other function needs access to this value, so this variable is
never passed as an argument. The Main function header

Figure 24

The Complete Modularized SportsWorld Program

also follows the form for any function header. In other words, the Main function truly
is a C# function.

Because it seems to have been a lot of effort to arrive at this complete, modularized
version of our SportsWorld program (which, after all, does the same thing as the
program in Figure 15), let’s review why this effort is worthwhile.

The modularized version of the program is compartmentalized in two ways. First, it is

compartmentalized with respect to task. The major task is accomplished by a series of
subtasks, and the work for each subtask takes place within a separate function. This
leaves the Main function free of details and consisting primarily of invoking the
appropriate function at the appropriate point. As an analogy, think of the president of a
company calling on various assistants to carry out tasks as needed. The president does
not need to know how a task is done, only the name of the person responsible for
carrying it out. Second, the program is compartmentalized with respect to data, in the
sense that the data values known to the various functions are controlled by parameter
lists and by the use of value parameters instead of reference parameters where
appropriate. In our analogy, the president gives each assistant the information he or
she needs to do the assigned task, and expects relevant information to be
returned—but not all assistants know all information.

This compartmentalization is useful in many ways. It is useful when we plan the
solution to a problem, because it allows us to use a divide-and-conquer approach. We
can think about the problem in terms of subtasks. This makes it easier for us to
understand how to achieve a solution to a large and complex problem. It is also useful
when we code the solution to a problem, because it allows us to concentrate on writing
one section of the code at a time. We can write a function and then fit it into the
program, so that the program gradually expands rather than having to be written all at
once. Developing a large software project is a team effort, and different parts of the
team can be writing different functions at the same time. It is useful when we test the
program, because we can test one new function at a time as the program grows, and
any errors are localized to the function being added. (The Main function can be tested
early by writing appropriate headers but empty bodies for the remaining functions.)
Compartmentalization is useful when we modify the program, because changes tend to
be within certain subtasks and hence within certain functions in the code. And finally
it is useful for anyone (including the programmer) who wants to read the resulting
program. The overall idea of how the program works, without the details, can be
gleaned from reading the Main function; if and when the details become important, the
appropriate code for the other functions can be consulted. In other words,
modularizing a program is useful for its

Planning

Coding

Testing

Modifying

Reading

A special type of C# function can be written to compute a single value rather than to
carry out a subtask. For example, doCircumference does everything connected with the

circumference, both calculating the value and writing it out. We can write a different
doCircumference function that only computes the value of the circumference and then
returns that value to the Main function, which writes it out. A function that returns a
single value to the section of the program that invoked it is a nonvoid function. Instead
of using the word void as the return indicator in the function header, a non void
function uses the data type of the single returned value. In addition, a nonvoid function
must contain a return statement, which consists of the keyword return followed by an
expression for the value to be returned. (This explains why we have always written the
Main function as a void function; it is never invoked anywhere else in the program and
does not return a value.)

The code for this new doCircumference function would be simply

A nonvoid function is invoked wherever the returned value is to be used, rather than
in a separate statement. For example, the statement,

invokes the doCircumference function by giving its name and argument, and this
invocation actually becomes the value returned by the doCircumference function,
which is then written out.

Figure 25, shows a third version of the SportsWorld program using nonvoid
doCircumference and doArea functions. There are no variables anywhere for the
circumference and the area of the circle. The doCircumfer-ence and doArea functions
use the usual formulas for their computations, but instead of using local variables for
circumference and area, we’ve compressed the code into a single return statement.
These functions are now invoked within an output statement, so the values get printed
out without being stored anywhere.

Figure 25

The SportsWorld Program Using Nonvoid Functions

Figure 26 summarizes several sets of terms introduced in this section.

Figure 26

some C# Terminology

Practice Problems

What is the output of the following C# program fragment?1.

What is the output of the following C# program fragment?2.

Write a C# function that performs an input task for the Main

function, collecting two integer values one and two from the user.

3.

Suppose a nonvoid function called tax gets a value subTotal from the

Main function, multiplies it by a global constant tax rate called rate,

and returns the resulting tax value. All quantities are type double.

Write the function header.a.

Write the return statement in the function body.b.

Write the statement in the Main function that writes out the tax.c.

4.

6Object-oriented Programming

6.1What Is It?

The divide-and-conquer approach to programming is a “traditional” approach. The
focus is on the overall task to be done: how to break it down into subtasks, and how to
write algorithms for these subtasks that are carried out by communicating modules (in
the case of C#, by functions). The program can be thought of as a giant statement
executor designed to carry out the major task, even though the Main function may
simply call on, in turn, the various other modules that do the subtask work. Object-
oriented programming (OOP) takes a somewhat different approach. A program is
considered a simulation of some part of the world that is the domain of interest.
“Objects” populate this domain. Objects in a banking system, for example, might be
savings accounts, checking accounts, and loans. Objects in a company personnel system
might be employees. Objects in a medical office might be patients and doctors. Each
object is an example drawn from a class of similar objects. The savings account “class”
in a bank has certain properties associated with it, such as name, Social Security
number, account type, and account balance. Each individual savings account at the
bank is an example of (an object of) the savings account class, and each has specific
values for these common properties; that is, each savings account has a specific value
for the name of the account holder, a specific value for the account balance, and so
forth. Each object of a class therefore has its own data values.

A class also has one or more subtasks associated with it, and all objects from that class
can perform those subtasks. In carrying out a subtask, each object can be thought of as
providing some service. A savings account, for example, can compute compound
interest due on the balance. When an object-oriented program is executed, the
program generates requests for services that go to the various objects. The objects
respond by performing the requested service—that is, carrying out the subtask. Thus a
program that is using the savings account class might request a particular savings
account object to perform the service of computing interest due on the account
balance. An object always knows its own data values and may use them in performing
the requested service.

Some of this sounds familiar. We know about subtasks (functions) associated with a
class. The new idea is that instead of directly asking a class to carry out a subtask, we
ask an object of that class to carry out a subtask. The even bigger new idea is that such
objects have data values for the class properties. Instead of storing data in variables
that are available to the whole program and then passing them as arguments to
subtasks, the program can simply ask an object to use its own data when it carries out a
subtask.

There are three terms often associated with object-oriented programming, as
illustrated in Figure 27. The first term is encapsulation. Each class has its own

program module to perform each of its subtasks. Any user of the class (which might be
some other program) can ask an object of that class to invoke the appropriate module
and thereby perform the subtask service. The class user needs to know what services
objects of the class can provide and how to request an object to perform any such
service. The details of the module code belong to the class itself, and this code may be
modified in any manner, as long as the way the user interacts with the class remains
unchanged. (In the savings account example, the details of the algorithm used to
compute interest due belong only to the class, and need not be known by any user of
the class. If the bank wants to change how it computes interest, only the code for the
interest module in the savings account class needs to be modified; any programs that
use the services of the savings account class can remain unchanged.) Furthermore, the
class properties represent data values that will exist as part of each object of the class.
A class therefore consists of two components, its subtask modules and its properties,
and both components are “encapsulated”—bundled—with the class.

Figure 27

Three Key Elements of OOP

A second term associated with object-oriented programming is inheritance. Once a
class A of objects is defined, a class B of objects can be defined as a “subclass” of A.
Every object of class B is also an object of class A; this is sometimes called an “is a”
relationship. Objects in the B class will “inherit” all of the properties and be able to
perform all the services of objects in A, but they may also be given some special
property or ability. The benefit is that class B does not have to be built from the ground
up, but rather can take advantage of the fact that class A already exists. In the banking
example, a senior citizens savings account would be a subclass of the savings account
class. Any senior citizens savings account object is also a savings account object, but
may have special properties or be able to provide special services.

The third term is polymorphism. Poly means “many.” Objects of different classes may
provide services that should logically have the same name because they do roughly the
same thing, but the details differ. In the banking example, both savings account objects

and checking account objects should provide a “compute interest” service, but the
details of how interest is computed differ in these two cases. Thus, one name, the name
of the service to be performed, has several meanings, depending on the class of the
object providing the service. It may even be the case that more than one service with
the same name exists for the same class, although there must be some way to tell which
service is meant when it is invoked by an object of that class.

Let’s change analogies from the banking world to something more fanciful, and
consider a football team. Every member of the team’s backfield is an “object” of the
“backfield” class. The quarterback is the only “object” of the “quarterback” class. Each
backfield object can perform the service of carrying the ball if he (or she) receives the
ball from the quarterback; ball carrying is a subtask of the backfield class. The
quarterback who hands the ball off to a backfield object is requesting that the backfield
object perform that subtask because it is “public knowledge” that the backfield class
carries the ball and that this service is invoked by handing off the ball to a backfield
object. The “program” to carry out this subtask is encapsulated within the backfield
class, in the sense that it may have evolved over the week’s practice and may depend
on specific knowledge of the opposing team, but at any rate, its details need not be
known to other players. Inheritance can be illustrated by the halfback subclass within
the backfield class. A halfback object can do everything a backfield object can but may
also be a pass receiver. And polymorphism can be illustrated by the fact that the
backfield may invoke a different “program” depending on where on the field the ball is
handed off. Of course our analogy is imperfect, because not all human “objects” from
the same class behave in precisely the same way—fullbacks sometimes receive passes
and so on.

6.2C# and Oop

How do these ideas get translated into real programs? The details, of course, vary with
the programming language used, and not every language supports object-oriented
programming. C# is very much an object-oriented programming language. Virtually all
C# code is inside some class. From Figure 3, you can see that the structure for the
TravelPlanner program is dominated by the definition of the TravelPlanner class,
which contains only the Main function:

When we write a class, we specify the properties (called member variables) common
to any object of that class. We also specify the services (called member functions) that
any object of that class can perform. Let’s rewrite the SportsWorld program one more
time, this time using a more object-oriented approach. What are the objects of interest
within the scope of this problem? SportsWorld deals with circular swimming pools, but

they are basically just circles. So let’s create a Circle class, and have the SportsWorld
program create objects of (instances of) that class. The objects are individual circles. A
Circle object has a radius. A Circle object, which knows the value of its own radius,
should be able to perform the services of computing its own circumference and its own
area. To do this, however, the Circle object also needs to know the value of pi and,
because everything in C# must belong to a class, we’ll also make pi a “property” of
every Circle object. At this point, we are well on the way to answering the two major
questions about our Circle class:

What are the properties common to any object of this class? (In this case, the

radius and the value of pi.)

What are the services that any object of the class should be able to perform? (In

this case, compute its circumference and compute its area, although as we will

see shortly, we will need other services as well.)

Figure 28, shows the complete object-oriented version of SportsWorld, with its two
classes. The class Circle has member variables pi and radius (well, OK, one is a
constant). It has member functions setRadius, getRadius, doCircumference, and doArea.
The first member function is a void function, and the remaining three return values.
The class Program has two member functions, getInput and Main.

Figure 28

An Object-Oriented SportsWorld Program

The question is, if these are two separate and distinct classes, how do they “talk to each
other”? The answer is, if a class wants to make use of another class, it must
“instantiate” (declare) an object from that class. Look at this line of code from Main:

This instantiates an object from the Circle class and calls it swimmingPool. Now, Main
can ask the swimmingPool object to invoke methods from its class. Consider the
statement

This statement asks the swimmingPool object first to invoke the getRadius function, and
later to invoke the doCircumference function, both member functions of the Circle class
of which swimmingPool is an instance.

Although we glossed over this point earlier, in the two modularized versions of the
SportsWorld program the doCircumference and doArea functions were declared as
static functions, as in

and

A static function doesn’t need to be invoked by an object; it can be invoked by just
giving the name of the function with an appropriate list of arguments. (The runtime
system invokes the static Main function when the program is executed.) But now that
doCircumference and doArea are member functions of the Circle class, and are not
declared static, an object of the Circle class must invoke them.

The member functions of the Circle class are all declared using the keyword public.
Public functions can be used anywhere, including within the Main function and indeed
in any C# program that wants to make use of this class. Think of the Circle class as
handing out a business card that advertises these services: Hey, you want a Circle
object that can find its own area? Find its own circumference? Set the value of its own
radius? I’m your class! (Class member functions can also be private, but a private
member function is a sort of helping task that can be used only within the class in
which it occurs.)

The radius member variable of the class is declared using the keyword private (as is
the constant pi). Only functions in the Circle class itself can use this variable. Note that
doCircumference and doArea have no parameter for the value of the radius; as methods
of this class, they know at all times the current value of radius for the object that
invoked them, and it does not have to be passed to them as an argument. Because
radius has been declared private, however, the Main function cannot use the value of
radius. It cannot write out that value or directly change that value by some assignment
statement. It can, however, request a Circle object to invoke the getRadius member
function to return the current value of the radius in order to write it out. It can also
request a Circle object to invoke the setRadius member function to change the value of
its radius; setRadius does have a parameter to receive a new value for radius. Member
variables are generally declared private instead of public, to protect the data in an
object from reckless changes some application program might try to make. Changes in
the values of member variables should be performed only under the control of class
objects through functions such as setRadius.

The Main function, as before, handles all of the user interaction and now makes use of
the Circle class. It creates a Circle object, an instance of the Circle class, by means of the
following statement:

This begins like an ordinary variable declaration such as

but includes the syntax to create a “new” instance of Circle. Why isn’t there a need for
“new” in the line of code just above? Variables of simple types, e.g., integers, are
instantiated for you by the runtime system. (Recall, “new” did appear in the declaration
for an array given earlier—arrays are not simple types.)

After

the object swimmingPool exists, and the Main function can ask swimmingPool to
perform the various services of which instances of the Circle class are capable.

The syntax to request an object to invoke a member function is to give the name of the
object, followed by a dot, followed by the name of the member function, followed by
any arguments the function may need.

The object that invokes a method is the calling object. Therefore the expression

in the Main function uses swimmingPool as the calling object to invoke the
doCircumference method of the Circle class. No arguments are needed because this
method has no parameters, but the empty parentheses must be present.

Looking at the code for the member functions in Figure 28, we see that the setRadius
member function uses an assignment statement to change the value of radius to
whatever quantity is passed to the parameter value. The getRadius function body is a
single return statement. The doCircumference and doArea functions again consist of
single statements that compute and return the proper value.

There is no declaration in the Main function for a variable called radius. There is a
declaration for newRadius, and newRadius receives the value entered by the user for
the radius of the circle. Therefore, isn’t newRadius serving the same purpose as radius
did in the old program? No—this is rather subtle, so pay close attention: While
newRadius holds the number the user wants for the circle radius, it is not itself the
radius of swimmingPool. The radius of swimmingPool is the member variable radius,
and only methods of the class can change the member variables of an object of that
class. The Circle class provides the setRadius member function for this purpose. The
Main function must ask the object swimmingPool to invoke setRadius to set the value of
its radius equal to the value contained in newRadius. The newRadius argument
corresponds to the value parameter in the setRadius function, which then gets assigned
to the member variable radius.

The setRadius function is a void function because it returns no information to the
invoking statement; it contains no return statement. The invocation of this method is a
complete C# statement.

Finally, the output statements in Main that print the values of the circumference and
area also have swimmingPool invoke the getRadius member function to return its
current radius value so it can be printed as part of the output. We could have used the
variable newRadius here instead. However, newRadius is what we THINK has been
used in the computation, whereas radius is what has REALLY been used.

In C#, the functionality of setRadius and getRadius can be replaced by
something called a property, although one might wish it were called a
“property manager” instead. Consider the following code for the declaration of
the property named radiusValue.

Code to set the value for the radius in Main using the property above would be

Notice the similarity to an ordinary assignment statement.

The “get” portion of the property is used in the output statements, e.g.:

6.3One More Example

The object-oriented version of our SportsWorld program illustrates encapsulation. All
data and calculations concerning circles are encapsulated in the Circle class. Let’s look
at one final example that illustrates the other two watchwords of OOP—polymorphism
and inheritance.

In Figure 29, the domain of interest is that of geometric shapes. Four different classes
are given: Circle, Rectangle, Square, and Square2. Each class consists of a public part
and a private or protected part. The public part provides, in the form of C# functions,
the services or subtasks that an object from the class can perform. The private or
protected part describes the properties that any object of the class possesses. A Circle
object, as before, has a radius property and a property for the value of pi, whereas a

Figure 29

Rectangle object has a width property and a height property. Any Circle object can set
the value of its radius and can compute its area. A Square object has a side property, as
one might expect, but a Square2 object doesn’t seem to have any properties or, for that
matter, any way to compute its area. We will explain the difference between the Square
class and the Square2 class shortly.

A C# Program with Polymorphism and Inheritance

The Main function uses these classes. It creates objects from the various classes. After
each object is created, the Main function requests the object to set its dimensions, using
the values given, and to compute its area as part of an output statement giving
information about the object. For example, the statement

instructs the circle named joe to invoke the setRadius function of joe’s class, thereby
setting joe’s radius to 23.5.Figure 30 shows the output after the program in Figure 29 is
run.

Figure 30
Output from the Program of Figure 29

The area of a circle with radius 23.5 is 1734.9486

The area of a rectangle with dimensions 12.4 and 18.1 is 224.44

The area of a square with side 3 is 9

The area of a square with side 4.2 is 17.64

Here we see polymorphism at work, because there are lots of doArea functions; when
the program executes, the correct function is used, on the basis of the class to which the
object invoking the function belongs. After all, computing the area of a circle is quite
different from computing the area of a rectangle. The algorithms themselves are
straightforward; they employ assignment statements to set the dimensions and the
usual formulas to compute the area of a circle, rectangle, and square. The functions can
use the properties of the objects that invoke them without having the values of those
properties passed as arguments.

Square is a stand-alone class with a side property and a doArea function. The Square2
class, however, recognizes the fact that squares are special kinds of rectangles. The
Square2 class is a subclass of the Rectangle class, as is indicated by the reference to
Rectangle in the class description for Square2. It inherits the width and height
properties from the “parent” Rectangle class; the “protected” status of these properties
in the Rectangle class indicates that they can be extended to any subclass. Square2 also
inherits the setWidth, setHeight, and doArea functions. In addition, Square2 has its own
function, setSide, because setting the value of the “side” makes sense for a square but
not for an arbitrary rectangle. What the user of the Square2 class doesn’t know is that
there really isn’t a “side” property; the setSide function merely sets the inherited width
and height properties to the same value. To compute the area, then, the doArea
function inherited from the Rectangle class can be used, and there’s no need to redefine
it or even to copy the existing code. Here we see inheritance at work.

Inheritance can be carried through multiple “generations.” We might redesign the
program so that there is one “superclass” that is a general Shape class, of which Circle
and Rectangle are subclasses, Square2 being a subclass of Rectangle (see Figure 31 for a
possible class hierarchy).

Figure 31

A Hierarchy of Geometric Classes

Although the program of Figure 29 can be kept in one file, it can also be split into
separate files. Each of the classes could be in its own file with a distinct namespace
name. To gain access to the class, a “using” statement with the appropriate namespace
name would need to be added to the main program file. This is just what happens with
the “using System” directive to gain access to items like Console.WriteLine().

6.4What Have We Gained?

Now that we have some idea of the flavor of object-oriented programming, we should
ask what we gain by this approach. There are two major reasons why OOP is a popular
way to program:

Software reuse

A more natural “worldview”

Software Reuse

Manufacturing productivity took a great leap forward when Henry Ford invented the
assembly line. Automobiles could be assembled using identical parts so that each car
did not have to be treated as a unique creation. Computer scientists are striving to

make software development more of an assembly-line operation and less of a
handcrafted, start-over-eachtime process. Object-oriented programming is a step
toward this goal: A useful class that has been implemented and tested becomes a
component available for use in future software development. Anyone who wants to
write an application program involving circles, for example, can use the already
written, tried, and tested Circle class. As the “parts list” (the class library) grows, it
becomes easier and easier to find a “part” that fits, and less and less time has to be
devoted to writing original code. If the class doesn’t quite fit, perhaps it can be
modified to fit by creating a subclass; this is still less work than starting from scratch.
Software reuse implies more than just faster code generation. It also means
improvements in reliability; these classes have already been tested, and if properly
used, they will work correctly. And it means improvements in maintainability. Thanks
to the encapsulation property of object-oriented programming, changes can be made in
class implementations without affecting other code, although such change requires
retesting the classes.

A More Natural “Worldview.”

The traditional view of programming is procedure-oriented, with a focus on tasks,
subtasks, and algorithms. But wait—didn’t we talk about subtasks in OOP? Haven’t we
said that computer science is all about algorithms? Does OOP abandon these ideas? Not
at all. It is more a question of when these ideas come into play. Object-oriented
programming recognizes that in the “real world,” tasks are done by entities (objects).
Object-oriented program design begins by identifying those objects that are important
in the domain of the program because their actions contribute to the mix of activities
present in the banking enterprise, the medical office, or wherever. Then it is
determined what data should be associated with each object and what subtasks the
object contributes to this mix. Finally, an algorithm to carry out each subtask must be
designed. We saw in the modularized version of the SportsWorld program in Figure 24
how the overall algorithm could be broken down into pieces that are isolated within
functions. Object-oriented programming repackages those functions by encapsulating
them within the appropriate class of objects.

Object-oriented programming is an approach that allows the programmer to come
closer to modeling or simulating the world as we see it, rather than to mimic the
sequential actions of the Von Neumann machine. It provides another buffer between
the real world and the machine, another level of abstraction in which the programmer
can create a virtual problem solution that is ultimately translated into electronic
signals on hardware circuitry.

Finally, we should mention that a graphical user interface, with its windows, icons,
buttons, and menus, is an example of object-oriented programming at work. A general
button class, for example, can have properties of height, width, location on the screen,
text that may appear on the button, and so forth. Each individual button object has
specific values for those properties. The button class can perform certain services by

responding to messages, which are generated by events (for example, the user clicking
the mouse on a button triggers a “mousedown” event). Each particular button object
individualizes the code to respond to these messages in unique ways. We will not go
into details of how to develop graphical user interfaces in C#, but in the next section
you will see a bit of the programming mechanics that can be used to draw the graphics
items that make up a visual interface.

Practice Problems

What is the output from the following section of code if it is added to

the Main function of the C# program in Figure 29?

1.

In the hierarchy of Figure 31, suppose that the Triangle class is able to

perform a doArea function. What two properties should any triangle

object have?

2.

7Graphical Programming

The programs that we have looked at so far all produce text output—output composed
of the characters {A…Z, a…z, 0…9} along with a few punctuation marks. For the first 30
to 35 years of software development, text was virtually the only method of displaying
results in human-readable form, and in those early days it was quite common for
programs to produce huge stacks of alphanumeric output. These days an alternative
form of output— graphics—has become much more widely used. With graphics, we are
no longer limited to 100 or so printable characters; instead, programmers are free to
construct whatever shapes and images they desire.

The intelligent and well-planned use of graphical output can produce some
phenomenal improvements in software. We discussed this issue in Chapter 6, where
we described the move away from the text-oriented operating systems of the 1970s and
1980s, such as MS-DOS and VMS, to operating systems with more powerful and
user-friendly graphical user interfaces (GUIs), such as Windows 7, Windows Vista, and
Mac OS X. Instead of requiring users to learn dozens of complex text-oriented
commands for such things as copying, editing, deleting, moving, and printing files, GUIs

can present users with simple and easy-to-understand visual metaphors for these
operations. In the first image on the next page, the operating system presents the user
with icons for printing, deleting, or copying a file. In the second image on the next
page, dragging a file to the printer icon prints the file.

Not only does graphics make it easier to manage the tasks of the operating system, it
can help us visualize and make sense of massive amounts of output produced by
programs that model complex physical, social, and mathematical systems. (We discuss
modeling and visualization in Chapter 13.) Finally, there are many applications of
computers that would simply be impossible without the ability to display output
visually. Applications such as virtual reality, computer-aided design/computer-aided
manufacturing (CAD/CAM), games and entertainment, medical imaging, and computer
mapping would not be anywhere near as important as they are without the enormous
improvements that have occurred in the areas of graphics and visualization.

So, we know that graphical programming is important. The question is: What features
must be added to a programming language like C# to produce graphical output?

7.1Graphics Hardware

Figure 32

Modern computer terminals use what is called a bitmapped display, in which the
screen is made up of thousands of individual picture elements, or pixels, laid out in a
two-dimensional grid. These are the same pixels used in visual images, as discussed in
Chapter 4. In fact, the display is simply one large visual image. The number of pixels on
the screen varies from system to system; typical values range from 800 × 600 up to 1560
× 1280. Terminals with a high density of pixels are called high-resolution terminals.
The higher the resolution—that is, the more pixels available in a given amount of
space—the sharper the visual image because each individual pixel is smaller. However,
if the screen size itself is small, then a high resolution image can be too tiny to read. A
30“ wide-screen monitor might support a resolution of 2560 × 1600, but that would not
be suitable for a laptop screen. In Chapter 4 you learned that a color display requires
24 bits per pixel, with 8 bits used to represent the value of each of the three colors red,
green, and blue. The memory that stores the actual screen image is called a frame
buffer. A high-resolution color display might need a frame buffer with
(1560 ₃ 1280) pixels × 24 bits/pixel × 47,923,000 bits, or about 6 MB, of memory for a
single image. (One of the problems with graphics is that it requires many times the
amount of memory needed for storing text.)

The individual pixels in the display are addressed using a two-dimensional coordinate
grid system, the pixel in the upper-left corner being (0, 0). The overall pixel-numbering
system is summarized in Figure 32. The specific values for maxX and maxY in Figure 32
are, as mentioned earlier, system-dependent. (Note that this coordinate system is not
the usual mathematical one. Here, the origin is in the upper-left corner, and y values
are measured downward.)

Pixel-Numbering System in a Bitmapped Display

The terminal hardware displays on the screen the frame buffer value of every
individual pixel. For example, if the frame buffer value on a color monitor for position
(24, 47) is RGB (0, 0, 0), the hardware sets the color of the pixel located at column 24,
row 47 to black, as shown in Figure 33 . The operation diagramed in Figure 33 must be
repeated for all of the 500,000 to 2 million pixels on the screen. However, the setting of
a pixel is not permanent; on the contrary, its color and intensity fade quickly.
Therefore, each pixel must be “repainted” often enough so that our eyes do not detect
any “flicker,” or change in intensity. This requires the screen to be completely updated,
or refreshed, 30–50 times per second. By setting various sequences of pixels to different
colors, the user can have the screen display any desired shape or image. This is the
fundamental way in which graphical output is achieved.

Figure 33

Display of Information on the Terminal

7.2Graphics Software

To control the setting and clearing of pixels, programmers use a collection of functions
that are part of a special software package called a graphics library. Virtually all
modern programming languages, including C#, come with an extensive and powerful
graphics library for creating different shapes and images. Typically, an “industrial
strength” graphics library includes hundreds of functions for everything from drawing
simple geometric shapes like lines and circles, to creating and selecting colors, to more
complex operations such as displaying scrolling windows, pull-down menus, and
buttons. We restrict our discussion to a modest set of functions. Although the set is
unrealistically small, it will still give you a good idea of what visual programming is
like, and enable you to produce some interesting, nontrivial images on the screen.

Graphical drawing in the C# and.NET environment is supported by a framework called
GDI₃. GDI stands for Graphical Device Interface.

To be able to draw on the screen, it is necessary to set up a “window” to hold the
drawing canvas. The C# IDE will automatically do all the tasks necessary to set up this

window when a windows application is created. It is not the focus of this discussion to
explain all the code necessary to set up the window. However, for completeness, we’ll
look at the various pieces that are automatically generated.

Form1 is the name of the actual window to hold the drawing canvas. It shows up in the
Form1.cs[Design] view in the C# IDE once a windows application project is requested. It
looks like this:

In.NET 2010, the necessary code to support graphics is created in three separate files.
The Program.cs file on the next page (adjusted to fit the printed page) does some
preliminary work and then launches the program. (Note the familiar Main function
that contains an “Application.Run(new Form1())” statement.)

You may have noticed the "triple-slash" comments in the above code. This special form
of comment, which can also be created by the programmer, can be extracted and
compiled into a separate file that is an XML document (see the Beyond HTML box in
Chapter 10 of Invitation to Computer Science). The data in this file can be formatted for
display as Web pages, giving instant documentation for the program.

The following code is in the Form1.Designer.cs file. Here we see that Form1 is declared
as a “partial class.” The idea behind a partial class is to protect code that should not be
changed by the programmer. Note in this code the region called “Windows Form
Designer generated code” that contains the admonition “do not modify the contents of
this method with the code editor.” The separate partial class segments will be merged
by the compiler before compilation takes place so it all ends up as one class.

More of the partial class occurs in the Form1.cs file, along with some additional using
statements.

Again, all of the above code was automatically generated by the C# IDE. The code we
will add to produce simple graphics on a windows form will be much simpler than this!
If you run the program with just the above basic code, you’ll see the Form1 window.
Now, where do we add the graphics code? It goes in the Form1.cs file, in the Form1
function, right below the InitializeCompo-nent function invocation. From now on, we’ll
just show the public Form1() function.

The code to draw a line from point (20,20) to point (100,100) is shown next. Some
additional comments have been added, and, as shown in the result, the text appearing
on the Form1 window title bar has been changed.

The result of executing the program containing this code is:

How does this code work? The first statement invokes the Initialize-Component()

function. This function, part of the automatically generated code, actually generates the
form.

The next line of code in public Form1() produces something on which to draw.

In GDI₃ this is usually called the canvas. Here it is just the surface of the form.

The statement

causes the form to be displayed on the screen.

The statement

creates the tool, in this case a pen, that will “paint” the lines on the screen. It also sets
the pen color and the line thickness. Brushes can also be used as drawing tools.

The final line in the code actually draws the line on the screen.

The parameter definitions for DrawLine are

DrawLine(Pen, x , y , x , y)

where (x , y) are the coordinates (in pixels) of the start of the line, and (x , y) are the

coordinates of the end of the line.

The code to draw a rectangle touching the four points (25, 60), (75, 60), (25,100), and
(75,100) is:

Note that the parameters for DrawRectangle are

DrawRectangle(Pen, x, y, width, height)

where (x, y) are the coordinates of the upper-left corner. The result is

1 1 2 2

1 1 2 2

In GDI + the DrawEllipse method is used to draw a circle. Here is the result of drawing a
circle with radius 125 pixels centered at the point (100, 150):

The circle (ellipse) is specified by giving the size of its bounding rectangle. The
parameters are:

DrawEllipse(Pen, x, y, width, height)

where (x, y) are the coordinates of the upper-left corner of the bounding rectangle. In
the image above, this corner will have to be “off the screen.” That’s not a problem. The
code is shown below (note the negative value for the x coordinate). Also note that
width and height of the bounding rectangle must be equal to get a circular shape rather
than an oval.

How does GDI₃ provide for text annotations on the screen? There is a method named
DrawString that will do the job. The parameter list is

DrawString (string, font, brush, x, y)

The string is the string to be output, using the font specified, drawing with the brush
specified, beginning at pixel position (x, y) for the upper-left corner of the bounding
rectangle for the text.

Here is an example with the text “Stop” drawn inside of a circle.

The code to produce this image is

In summary, we have the following graphics functions at our disposal.

DrawLine(Pen, x , y , x , y)

DrawRectangle(Pen, x, y, width, height)

DrawEllipse(Pen, x, y, width, height)

DrawString(string, font, brush, x, y)

Now that forms and graphics are available, we seem close to producing elements of a
typical GUI. Can we draw a button that acts like a button on a real GUI form—that is,
can we write code to sense a mouse click on that button and respond with some action?

Here is code to draw a “Stop” button graphic.

The display is:

1 1 2 2

To sense a mouse click in a C# windows form, an “event handler” must be created. An
event handler is code that can sense an event and respond to it. In this case we want
to sense a “mousedown” event, which occurs when the user presses down on the
mouse button, and is the beginning of a mouse click. First, the following code must be
added to the Windows Form Designer–generated code:

This code can be entered manually, or created automatically by the IDE if the
MouseDown event is double-clicked in the form properties window.

The code for the empty event handler is:

When the mouse button is depressed on the form, this (empty) method will be
executed.

Now we fill in the body of the event handler to check whether the cursor was in the
rectangle when the mousedown event occurred and to display a corresponding
message.

Integer variables x and y receive the coordinates of the cursor when the event occurs,
and the above code just checks whether these (x, y) values fit within the rectangle. Here
is output for the case where the user clicked the button:

Practice Problems

Write the sequence of commands to draw the following “house” on the

screen.

Create the house using four rectangles (for the base of the house, the

door, and the two windows), two line segments (for the roof), and one

circle (for the doorknob). Locate the house anywhere you want on the

screen.

Of course, a real GUI interface would produce much more sophisticated responses to
user mouse clicks, but this is the general idea of how event-driven programming
works.

This brief introduction to graphical programming allows you to produce some
interesting images and, even more important, gives you an appreciation for how
visually oriented software is developed.

8Conclusion

In this module we looked at one representative high-level programming language, C#.
Of course, there is much about this language that has been left unsaid, but we have
seen how the use of a high-level language overcomes many of the disadvantages of
assembly language programming, creating a more comfortable and useful
environment for the programmer. In a high-level language, the programmer need not
manage the storage or movement of data values in memory. The programmer can

think about the problem at a higher level, can use program instructions that are both
more powerful and more natural language–like, and can write a program that is much
more portable among various hardware platforms. We also saw how modularization,
through the use of functions and parameters, allows the program to be more cleanly
structured and how object-oriented programming allows a more intuitive view of the
problem solution and provides the possibility for reuse of helpful classes. We even had
a glimpse of graphical programming.

C# is not the only high-level language. You might be interested in looking at the other
online modules for languages similar to C# (Java, Python, C++, Ada). Still other
languages take quite a different approach to problem solving. In Chapter 10 of
Invitation to Computer Science, we look at some other languages and language
approaches and also address the question of why there are so many different
programming languages.

Exercises

Write a C# declaration for one real number quantity to be called rate.1.

Write a C# declaration for two integer quantities called orderOne and

orderTwo.

2.

Write a C# declaration for a constant quantity called evaporationRate,

which is to have the value 6.15.

3.

A C# Main function needs one constant stockTime with a value of 4, one

integer variable inventory, and one real number variable sales. Write the

necessary declarations.

4.

You want to write a C# program to compute the average of three quiz

grades for a single student. Decide what variables your program needs,

and write the necessary declarations.

5.

Given the declaration

int[] list = new int[10];

how do you refer to the eighth number in the array?

6.

An array declaration such as

int[,] table = new int[5,3];

represents a two-dimensional table of values with 5 rows and 3 columns.

7.

Rows and columns are numbered in C# starting at 0, not at 1. Given this

declaration, how do you refer to the marked cell below?

Write C# statements to prompt for and collect values for the time in hours

and minutes (two integer quantities).

8.

An output statement may contain more than one variable identifier. Say a

program computes two integer quantities inventoryNumber and

numberOrdered. Write a single output statement that prints these two

quantities along with appropriate text information.

9.

The integer quantities A, B, C, and D currently have the values 13, 4, 621,

and 18, respectively. Write the exact output generated by the following

statement, using b to denote a blank space.

10.

Write C# formatting and output statements to generate the following

output, assuming that density is a type double variable with the value

63.78.

The current density is 63.8, to within one decimal place.

11.

What is the output after the following sequence of statements is executed?

(Assume that the integer variables A and B have been declared.)

A = 12;

B = 20;

B = B + 1;

A = A + B;

Console.WriteLine(2*A);

12.

Write the body of a C# Main function that gets the length and width of a

rectangle from the user and computes and writes out the area. Assume

that the variables have all been declared.

13.

In the SportsWorld program of Figure 15, the user must respond

with “C” to choose the circumference task. In such a situation, it is

preferable to accept either uppercase or lowercase letters. Rewrite

the condition in the program to allow this.

a.

In the SportsWorld program, rewrite the condition for continuation

of the program to allow either an upper-case or a lowercase

response.

b.

14.

Write a C# Main function that gets a single character from the user and

writes out a congratulatory message if the character is a vowel (a, e, i, o,

or u), but otherwise writes out a “You lose, better luck next time” message.

15.

Insert the missing line of code so that the following adds the integers from

1 to 10, inclusive.

16.

What is the output after the following Main function is executed?

17.

Write a C# Main function that outputs the even integers from 2 through

30, one per line. Use a while loop.

18.

In a while loop, the Boolean condition that tests for loop continuation is

done at the top of the loop, before each iteration of the loop body. As a

consequence, the loop body might not be executed at all. Our pseudocode

language of Chapter 2 contains a do-while loop construction in which a

test for loop termination occurs at the bottom of the loop rather than at

the top, so that the loop body always executes at least once. C# contains a

do-while statement that tests for loop continuation at the bottom of the

loop. The form of the statement is

where, as usual, S1 can be a compound statement. Write a C# Main

function to add up a number of nonnegative integers that the user

supplies and to write out the total. Use a negative value as a sentinel, and

assume that the first value is nonnegative. Use a do-while statement.

19.

Write a C# program that asks for a duration of time in hours and minutes,

and writes out the duration only in minutes.

20.

Write a C# program that asks for the user’s age in years. If the user is

under 35, then quote an insurance rate of $2.23 per $100 for life

insurance; otherwise, quote a rate of $4.32.

21.

Write a C# program that reads integer values until a 0 value is

encountered and then writes out the sum of the positive values read and

the sum of the negative values read.

22.

Write a C# program that reads in a series of positive integers and writes

out the product of all the integers less than 25 and the sum of all the

integers greater than or equal to 25. Use 0 as a sentinel value.

23.

Write a C# program that reads in 10 integer quiz grades and

computes the average grade. (Hint: Remember the peculiarity of

integer division.)

a.

Write a C# program that asks the user for the number of quiz

grades, reads them in, and computes the average grade.

b.

24.

Write a (void) C# function that receives two integer arguments and writes

out their sum and their product.

25.

Write a (void) C# function that receives an integer argument representing

the number of DVDs rented so far this month and a real number

argument representing the sales amount for DVDs sold so far this month.

The function asks the user for the number of DVDs rented today and the

sales amount for DVDs sold today, and then returns the updated figures to

the Main function.

26.

Write a (nonvoid) C# function that receives three integer arguments and

returns the maximum of the three values.

27.

Write a (nonvoid) C# function that receives miles driven as a type double

argument and gallons of gas used as a type int argument, and returns

miles per gallon.

28.

Write a C# program that uses an input function to get the miles driven

(type double) and the gallons of gas used (type int), then writes out the

miles per gallon, using the function from Exercise 28.

29.

Write a C# program to balance a checkbook. The program needs to get the

initial balance, the amounts of deposits, and the amounts of checks. Allow

the user to process as many transactions as desired; use separate

functions to handle deposits and checks.

30.

Write a C# program to compute the cost of carpeting three rooms. Make31.

the carpet cost a constant of $8.95 per square yard. Use four separate

functions to collect the dimensions of a room in feet, convert feet into

yards, compute the area, and compute the cost per room. The Main

function should use a loop to process each of the three rooms, then add

the three costs, and write out the total cost. (Hint: The function to convert

feet into yards must be used twice for each room, with two different

arguments. Hence, it does not make sense to try to give the parameter the

same name as the argument.)

Write a C# doPerimeter function for the Rectangle class of Figure 29.a.

Write C# code that creates a new Rectangle object called yuri, then

writes out information about this object and its perimeter using the

doPerimeter function from part (a).

b.

32.

Draw a class hierarchy diagram similar to Figure 31 for the following

classes: Student, UndergraduateStudent, GraduateStudent, Sophomore,

Senior, PhDStudent.

33.

Imagine that you are writing a program using an object-oriented

programming language. Your program will be used to maintain records

for a real estate office. Decide on one class in your program and a service

that objects of that class might provide.

34.

Determine the resolution of the screen on your computer (ask your

instructor or the local computer center how to do this). Using this

information, determine how many bytes of memory are required for the

frame buffer to store:

A black-and-white image (1 bit per pixel)a.

A grayscale image (8 bits per pixel)b.

A color image (24 bits per pixel)c.

35.

Using the DrawLine command described in Section 7.2, draw an isosceles

triangle with the following configuration:

36.

DrawLine(blackPen, 1, 1, 4, 5);

Discuss what problem the display hardware might encounter while

attempting to execute the following operations, and explain how this

problem could be solved.

DrawLine(blackPen, 1, 1, 4, 5);

37.

Draw a square with sides 100 pixels in length. Then inscribe a circle of

radius 50 inside the square. Position the square and the inscribed circle in

the middle of the screen.

38.

Create the following three labeled rectangular buttons in the output

window.

Have the space between the Start and Stop buttons be the same as the

space between the Stop and Pause buttons.

39.

Create the following image of a “teeter-totter”:40.

Write a program that inputs the coordinates of three mouse clicks from

the user and then draws a triangle in the output window using those

three points. Here are some hints: The declarations for the graphics

canvas and the pen have to be visible to the MouseDown event handler, so

they need to be member variables of the class. There must also be a

counter to count the MouseDown events. Here is the code for the start of

the program.

41.

means - graphic, electronic, or mechanical, or in any other manner - without the written permission of the copyright holder.

1

1.1

1.2

2

3

3.1

3.2

3.3

4

5

5.1

5.2

5.3

6

6.1

6.2

6.3

6.4

7

7.1

Chapter : Programming In C++
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Programming In C++

Online module to accompany Invitation to Computer Science, 6 Edition, ISBN-10:
1133190820; ISBN-13: 9781133190820 (Cengage Learning, 2013).

Introduction to C++

A Simple C++ Program

Creating and Running a C++ Program

Virtual Data Storage

Statement Types

Input/Output Statements

The Assignment Statement

Control Statements

Another Example

Managing Complexity

Divide and Conquer

Using Functions

Writing Functions

Object-Oriented Programming

What Is It?

C++ and OOP

One More Example

What Have We Gained?

Graphical Programming

Graphics Hardware

th

7.2

8

Graphics Software

Conclusion

EXERCISES

ANSWERS TO PRACTICE PROBLEMS

1Introduction to C++

Hundreds of high-level programming languages have been developed; a fraction of
these have become viable, commercially successful languages. There are a half-dozen
or so languages that can illustrate some of the concepts of a high-level programming
language, but this module uses C++ for this purpose. The popular C++ language was
developed in the early 1980s by Bjarne Stroustrup at AT&T Labs and was commercially
released by AT&T in 1985.

Our intent here is not to make you an expert programmer—any more than our purpose
in Chapter 4 was to make you an expert circuit designer. Indeed, there is much about
the language that we will not even discuss. You will, however, get a sense of what
programming in a high-level language is like, and perhaps you will see why some
people think it is one of the most fascinating of human endeavors.

1.1A Simple C++ Program

Figure 1 shows a simple but complete C++ program. Even if you know nothing about
the C++ language, it is not hard to get the general drift of what the program is doing.

Figure 1

A Simple C++ Program

Someone running this program (the “user”) could have the following dialogue with the
program, where boldface indicates what the user types:

The general form of a typical C++ program is shown in Figure 2. To compare our simple
example program with this form, we have reproduced the example program in Figure
3 with a number in front of each line. The numbers are there for reference purposes
only; they are not part of the program.

Figure 2

The Overall Form of a Typical C++ Program

Figure 3

The Program of Figure 1 (line numbers added for reference)

Lines 1-3 in the program of Figure 3 are C++ comments. Anything appearing on a line
after the double slash symbol (//) is ignored by the compiler, just as anything following
the double dash (--) is treated as a comment in the assembly language programs of
Chapter 6. Although the computer ignores comments, they are important to include in
a program because they give information to the human readers of the code. Every
high-level language has some facility for including comments, because understanding
code that someone else has written (or understanding your own code after a period of
time has passed) is very difficult without the notes and explanations that comments
provide. Comments are one way to document a computer program to make it more
understandable. The comments in the program of Figure 3 describe what the program
does plus tell who wrote the program and when. These three comment lines together
make up the program’s prologue comment (the introductory comment that comes
first). According to the general form of Figure 2, the prologue comment is optional, but
providing it is always a good idea. It’s almost like the headline in a newspaper, giving
the big picture up front.

Blank lines in C++ programs are ignored and are used, like comments, to make the
program more readable by human beings. In our example program, we’ve used blank
lines (lines 4, 7, 13, 18, 20) to separate sections of the program, visually indicating
groups of statements that are related.

Line 5 is an include directive to the compiler that refers to the iostream library. The
eventual effect is that the linker includes object code from this library. The core C++
language does not provide a way to get data into a program or for a program to display
results. The iostream library contains code for these purposes. Line 6 is a using
directive that tells the compiler to look in the std namespace for the definition of any
names not specifically defined within the program. In this program, cin and cout get
their meaning (which is that input will come from the keyboard and output will go to
the screen) from the std namespace. In addition to iostream, C++ has many other code
libraries, such as mathematical and graphics libraries, and therefore many other
include directives are possible. Include directives are also optional, but it would be a
trivial program indeed that did not need input data or produce output results, so
virtually every C++ program has at least the include directive and using directive
shown in our example.

Our sample program has no functions other than the main function (note that such
functions are optional). The purpose of additional functions is to do some calculation
or perform some subtask for the main function, much as the Find Largest algorithm
from Chapter 2 is used by the Selection Sort algorithm of Chapter 3.

Line 8 signals the beginning of the main function. The curly braces at lines 9 and 25
enclose the main function body, which is the heart of the sample program. Lines 10-12
are declarations that name and describe the items of data that are used within the
main function. Descriptive names— speed, distance, and time—are used for these
quantities to help document their purpose in the program, and comments provide
further clarification. Line 10 describes an integer quantity (type “int”) called speed.
Lines 11 and 12 declare distance and time as real number quantities (type “double”). A
real number quantity is one containing a decimal point, such as 28.3, 102.0, or -17.5.
Declarations are also optional in the sense that if a program does not use any data, no
declarations are needed, but again, it would be unusual to find such a trivial program.

A Remarkable History

Dr. Bjarne Stroustrup, now a Distinguished Professor at Texas A&M University,
worked for many years at AT&T Labs Research (formerly known as Bell Labs).
He retains his title as an AT&T Fellow. He has been honored by AT&T for
“fundamental contributions to the development of computer languages and
object-oriented programming, culminating in the C++ programming language.”
In addition to his work in programming languages, his research interests
include distributed systems, operating systems, and simulation. Dr. Stroustrup’s
accomplishment as the designer and original implementor of a new
programming language is remarkable, but it is only one of many remarkable
accomplishments achieved at AT&T Labs Research. Through its long history of
technological research and innovation, AT&T Labs Research has become
something of a national treasure.

The original Bell Labs was created as part of AT&T in 1925. That same year, Bell
Labs was awarded its first patent, for a “clamping and supporting device.” The

transistor (see Chapter 4) was invented in 1947 by three Bell Lab scientists, John
Bardeen, Walter Brattain, and William Shockley, who later shared the Nobel
Prize for this work. In total, seven Nobel prizes have been awarded to 13
researchers for work done while they were at Bell Labs/AT&T Labs Research.

In March 2003, AT&T Labs Research was awarded its 30,000 patent, this one
for “mechanisms for guaranteeing Quality of Service in Internet Protocol (IP)
networks, which should help make packet-based networks as reliable as today’s
telephone networks.” To appreciate fully the magnitude of 30,000 patents, we
should note that this averages to more than one patent per day, 365 days per
year, over a period of 78 years! Scientists and engineers at AT&T Labs Research,
working in the areas of networks, security, data mining, artificial intelligence,
speech and natural language understanding, and many others, continue a
remarkable pace of innovation and technological advances, averaging about
three patents per working day.

Messages to the user begin with cout; the cin statements get the values the user entered
for speed and distance and store them in speed and distance, respectively. Line 19
computes the time required to travel this distance at this speed. Finally, lines 21-24
print the output to the user’s screen. The values of speed, time, and distance are
inserted in appropriate places among the strings of text shown in double quotes.

You may have noticed that most of the statements in this program end with a
semicolon. A semicolon must appear at the end of every executable C++ instruction,
which means everywhere except at the end of a comment, an include directive, or the
beginning of a function, such as

The semicolon requirement is a bit of a pain in the neck, but the C++ compiler
generates one or more error messages if you omit the semicolon, so after the first few
hundred times this happens, you tend to remember to put it in.

C++, along with every other programming language, has very specific rules of
syntax—the correct form for each component of the language. Having a semicolon at
the end of every executable statement is a C++ syntax rule. Any violation of the syntax
rules generates an error message from the compiler, because the compiler does not
recognize or know how to translate the offending code. In the case of a missing
semicolon, the compiler cannot tell where the instruction ends. The syntax rules for a
programming language are often defined by a formal grammar, much as correct
English is defined by rules of grammar.

C++ is a free-format language, which means that it does not matter where things are
placed on a line. For example, we could have written

th

although this is clearly harder to read. The free-format characteristic explains why a
semicolon is needed to mark the end of an instruction, which might be spread over
several lines.

1.2Creating and Running A C++ Program

Creating and running a C++ program is basically a three-step process. The first step is to
type the program into a text editor. When you are finished, you save the file, giving it a
name with the extension.cpp. So the file for Figure 1 could be named

As the second step, the program must be compiled using a C++ compiler for your
computer, and the resulting object code linked with any C++ library object code. In our
example, the program in the file TravelPlanner.cpp would be compiled, resulting in a
file called

The third step loads and executes the program file, in this case TravelPlanner.exe.
Depending on your system, you may have to type operating system commands for the
last two steps.

Another approach is to do all of your work in an Integrated Development
Environment, or IDE. The IDE lets the programmer perform a number of tasks within
the shell of a single application program, rather than having to use a separate program
for each task. A modern programming IDE provides a text editor, a file manager, a
compiler, a linker and loader, and tools for debugging, all within this one piece of
software. The IDE usually has a GUI (graphical user interface) with menu choices for
the different tasks. This can significantly speed up program development.

This C++ exercise is just a beginning. In the rest of this module, we’ll examine the
features of the language that will enable you to write your own C++ programs to carry
out more sophisticated tasks.

C++ Compilers

There are many C++ compilers available. The C++ examples in this module were
written and executed in Microsoft Visual C++ 2010, part of Microsoft Visual
Studio 2010. This is an IDE (with a GUI interface) that supports many
programming languages. Visual C++ 2010 Express Edition is a lightweight
version that is freely downloadable from Microsoft at

www.microsoft.com/express/product/default.aspx

Visual C++ 2010 Express Edition runs on Windows XP, Windows Vista, or
Windows 7 operating systems. Its use requires the Microsoft.NET framework. If
this is not already on your Windows system, you will be alerted at installation,
and you can go to

www.microsoft.com/net/Download.aspx

to download it.

You can also download the free open-source C++ command-line compiler (g++)
that is part of the GNU Compiler Collection from

http://gcc.gnu.org

There are versions that run on Linux and Mac OS X systems as well as Windows
systems.

The graphics library used in Section 7 of this module is the CCC graphics library
written by Dr. Cay Horstmann at San Jose State University. See

http://horstmann.com/ccc/graphics.zip

to download this library, which runs under both Visual Studio C++ and the g++
compiler.

2Virtual Data Storage

One of the improvements we seek in a high-level language is freedom from having to
manage data movement within memory. Assembly language does not require us to give
the actual memory address of the storage location to be used for each item, as in
machine language. However, we still have to move values, one by one, back and forth
between memory and the arithmetic logic unit (ALU) as simple modifications are made,
such as setting the value of A to the sum of the values of B and C. We want the
computer to let us use data values by name in any appropriate computation without
thinking about where they are stored or what is currently in some register in the ALU.
In fact, we do not even want to know that there is such a thing as an ALU, where data
are moved to be operated on; instead, we want the virtual machine to manage the
details when we request that a computation be performed. A high-level language
allows this, and it also allows the names for data items to be more meaningful than in
assembly language.

Names in a programming language are called identifiers. Each language has its own

specific rules for what a legal identifier can look like. In C++ an identifier can be any
combination of letters, digits, and the underscore symbol (_), as long as it does not
begin with a digit. However, identifiers beginning with underscore characters should
be avoided; they are generally used for special purposes. An additional restriction is
that an identifier cannot be one of the few keywords, such as “void,” “int,” “double,”
and so forth, that have a special meaning in C++ and that you would not be likely to use
anyway. The three integers B, C, and A in our assembly language program can
therefore have more descriptive names, such as subTotal, tax, and finalTotal. The use of
descriptive identifiers is one of the greatest aids to human understanding of a program.
Identifiers can be almost arbitrarily long, so be sure to use a meaningful identifier such
as finalTotal instead of something like A; the improved readability is well worth the
extra typing time. C++ is a case-sensitive language, which means that uppercase letters
are distinguished from lowercase letters. Thus, FinalTotal, Finaltotal, and finalTotal are
three different identifiers.

Capitalization of Identifiers

There are two standard capitalization patterns for identifiers, particularly
“multiple word” identifiers:

camel case: First word begins with a lowercase letter, additional words
begin with uppercase letters (finalTotal)

Pascal case: All words begin with an uppercase letter (FinalTotal)

The code in this module uses the following convention for creating identifiers
(examples included):

Simple variables - camel case: speed, time, finalTotal

Named constants - all uppercase: PI, FREEZING_POINT

Function names - camel case: myFunction, getInput

Class names - Pascal case: MyClass

Object names - camel case: myObject

The underscore character is not used except for named constants. Occasionally,
however, we’ll use single capital letters for identifiers in quick code fragments.

Data that a program uses can come in two varieties. Some quantities are fixed
throughout the duration of the program, and their values are known ahead of time.

These quantities are called constants. An example of a constant is the integer value 2.
Another is an approximation to p, say 3.1416. The integer 2 is a constant that we don’t
have to name by an identifier, nor do we have to build the value 2 in memory manually
by the equivalent of a.DATA pseudo-op. We can just use the symbol “2” in any program
statement. When “2” is first encountered in a program statement, the binary
representation of the integer 2 is automatically generated and stored in a memory
location. Likewise, we can use “3.1416” for the real number value 3.1416, but if we are
really using this number as an approximation to p, it is more informative to use the
identifier PI.

Some quantities used in a program have values that change as the program executes,
or values that are not known ahead of time but must be obtained from the computer
user (or from a data file previously prepared by the user) as the program runs. These
quantities are called variables. For example, in a program doing computations with
circles (where we might use the constant PI), we might need to obtain from the user or
a data file the radius of the circle. This variable can be given the identifier radius.

Identifiers for variables serve the same purpose in program statements as pronouns do
in ordinary English statements. The English statement “He will be home today” has
specific meaning only when we plug in the value for which “He” stands. Similarly, a
program statement such as

becomes an actual computation only when numeric values have been stored in the
memory locations referenced by the distance and speed identifiers.

We know that all data are represented internally in binary form. In Chapter 4 we noted
that any one sequence of binary digits can be interpreted as a whole number, a
negative number, a real number (one containing a decimal point, such as -17.5 or
28.342), or as a letter of the alphabet. C++ requires the following information about
each variable in the program:

What identifier we want to use for it (its name)

What data type it represents (e.g., an integer or a letter of the alphabet)

The data type determines how many bytes will be needed to store the variable—that is,
how many memory cells are to be considered as one memory location referenced by
one identifier—and also how the string of bits in that memory location is to be
interpreted. C++ provides several “primitive” data types that represent a single unit of
information, as shown in Figure 4.

Figure 4

Some of the C++ Primitive Data Types

The way to give the necessary information within a C++ program is to declare each
variable. A variable declaration consists of a data type followed by a list of one or
more identifiers of that type. Our sample program used three declaration statements:

but these could have been combined into two:

Where do the variable declarations go? Although the only requirement is that a
variable must be declared before it can be used, all variable declarations are usually
collected together at the top of the main function, as in our sample program. This gives
the reader of the code quick information about the data that the program will be using.

What about the constant PI? We want to assign the fixed value 3.1416 to the PI
identifier. Constant declarations are just like variable declarations, with the addition of
the keyword const and the assignment of the fixed value to the constant identifier.

Many programmers use all uppercase letters to denote constant identifiers, but the
compiler identifies a constant quantity only by the presence of const in the declaration.
Once a quantity has been declared as a constant, any attempt later in the program to
change its value generates an error message from the compiler.

In addition to variables of a primitive data type that hold only one unit of information,
it is possible to declare a whole collection of related variables at one time. This allows
storage to be set aside as needed to contain each of the values in this collection. For
example, suppose we want to record the number of hits on a Web site for each month
of the year. The value for each month is a single integer. We want a collection of 12
such integers, ordered in a particular way. An array groups together a collection of
memory locations, all storing data of the same type. The following statement declares
an array:

The 12 indicates that there are to be 12 memory locations set aside, each to hold a
variable of type int. The collection as a whole is referred to as hits, and the 12
individual array elements are numbered from hits[0] to hits[11]. (Notice that a C++
array counts from 0 up to 11, instead of from 1 up to 12.) Thus, we use hits[0] to refer to
the first entry in hits, which represents the number of visits to the Web site during the
first month of the year, January. Next, hits[2] refers to the number of visits during

March, and hits[11] to the number of visits during December. In this way we use one
declaration to set up 12 separate (but related) int storage locations. Figure 5 illustrates
this array.

Figure 5

A 12-Element Array hits

Here is an example of the power of a high-level language. In assembly language we can
name only individual memory locations—that is, individual items of data—but in C++
we can also assign a name to an entire collection of related data items. An array thus
enables us to talk about an entire table of values, or the individual elements making up
that table. If we are writing C++ programs to implement the data cleanup algorithms of
Chapter 3, we can use an array of integers to store the 10 data items.

Practice Problems

Which of the following are legitimate C++ identifiers?1.

Write a declaration statement for a C++ program that uses one integer

quantity called number.

2.

Write a C++ statement that declares a type double constant called

TAX_RATE that has the value 5.5.

3.

Using the hits array of Figure 5, how do you reference the number of

hits on the Web page for August?

4.

3Statement Types

Now that we can reserve memory for data items by simply naming what we want to
store and describing its data type, we will examine additional kinds of programming
instructions (statements) that C++ provides. These statements enable us to manipulate
the data items and do something useful with them. The instructions in C++, or indeed in
any high-level language, are designed as components for algorithmic problem solving,
rather than as one-to-one translations of the underlying machine language instruction

set of the computer. Thus they allow the programmer to work at a higher level of
abstraction. In this section we examine three types of high-level programming
language statements. They are consistent with the pseudocode operations we described
in Chapter 2 (see Figure 2.9).

Input/output statements make up one type of statement. An input statement collects
a value from the user for a variable within the program. In our TravelPlanner
program, we need input statements to get the specific values of the speed and distance
that are to be used in the computation. An output statement writes a message or the
value of a program variable to the user’s screen. Once the TravelPlanner program
computes the time required to travel the given distance at the given speed, the output
statement displays that value on the screen, along with other information about what
that value means.

Another type of statement is the assignment statement, which assigns a value to a
program variable. This is similar to what an input statement does, except that the value
is not collected directly from the user, but is computed by the program. In pseudocode
we called this a “computation operation.”

Control statements, the third type of statement, affect the order in which instructions
are executed. A program executes one instruction or program statement at a time.
Without directions to the contrary, instructions are executed sequentially, from first to
last in the program. (In Chapter 2 we called this a straight-line algorithm.) Imagine
beside each program statement a light bulb that lights up while that statement is being
executed; you would see a ripple of lights from the top to the bottom of the program.
Sometimes, however, we want to interrupt this sequential progression and jump
around in the program (which is accomplished by the instructions JUMP, JUMPGT, and
so on, in assembly language). The progression of lights, which may no longer be
sequential, illustrates the flow of control in the program—that is, the path through the
program that is traced by following the currently executing statement. Control
statements direct this flow of control.

3.1Input/output Statements

Remember that the job of an input statement is to collect from the user specific values
for variables in the program. In pseudocode, to get the value for speed in the
TravelPlanner program, we would say something like

C++ can do this task using an input statement of the form

Because all variables must be declared before they can be used, the declaration
statement that says speed is to be a variable (of data type int) precedes this input
statement. If the user enters a decimal number as the input value for speed, it will be
truncated, and the digits behind the decimal point will be lost; thus, if the user enters

48.7, the value stored in speed will be the integer value 48.

Let’s say that we have written the entire TravelPlanner program and it is now
executing. When the preceding input statement is encountered, the program stops and
waits for the user to enter a value for speed (by typing it at the keyboard, followed by
pressing the ENTER key). For example, the user could type

By this action, the user contributes a value to the input stream, the sequence of values
entered at the keyboard. The input stream is named cin (pronounced “see-in”). The
arrows (>>) in the input statement above stand for the extraction operator that
removes (extracts) the next value from the input stream and stores it in the memory
location referenced by the identifier speed. The code for the extraction operator and
the definition of the cin stream are supplied by the iostream library and namespace std;
that’s why any C++ program that requires an input statement needs the directives

After the value of distance has been input using the statement

the value of the time can be computed and stored in the memory location referenced
by time. A pseudocode operation for producing output would be something like

Output in C++ is handled as the opposite of input. A value stored in memory— in this
case the value of the variable time—is copied and inserted into the output stream by
the insertion operator <<. The output stream that goes to the screen is called cout
(pronounced “see-out”). The appropriate statement is

The code for the insertion operator and the definition of the cout stream are again
supplied by the iostream library and namespace std.

It is easy to confuse the direction of the arrows for input and output. The extraction
operator extracts a value from the input stream and puts it into the variable to which it
points:

The insertion operator takes a value from a variable and inserts it into the output
stream to which it points:

Depending on the size of the value, C++ may write out real number values in either
fixed-point format or scientific notation. A sample value in fixed-point format is

whereas in scientific notation (also called floating-point format), it is

which means 1.13362 × 10 . (The “e” means “times 10 to the power of…”.) It may be
convenient to specify one output format or the other, rather than leaving this up to the
system to decide. To force all subsequent output into fixed-point notation, we put the
following somewhat mysterious formatting statement in the program:

To force all subsequent output into scientific notation, we use the statement

It is also possible to control the number of places behind the decimal point that are
displayed in the output. Inserting the statement

before the output statement results in a fixed-point output of

The corresponding result for scientific notation is

Each value is rounded to two digits behind the decimal point (picking up the 2 from the
cout.precision statement), although the fixed-point value shows a total of four
significant digits, and the scientific notation format shows only three. The ability to
specify the number of decimal digits in fixed-point output is particularly handy for
dealing with dollar-and-cent values, where we always expect to see two digits behind
the decimal point.

The programmer can also specify the total number of columns to be taken up by the
next output value. Inserting into the output stream the “set width” expression

where n has some integer value, allots n columns for the next value that is output,
including the decimal point. If n is too small, the entire value is written out anyway,
overriding the width specification. If n is too big, the value is right-justified within the
allotted space. The statement

1

requests eight columns for the value of time. Using setw helps to align columns of
values but is generally less important when writing out single values. Unlike the
fixed-point or floating-point format, which only needs to be set once, the setw
expression must be used each time a value is to be written out. In addition, setw is
available from a different set of library files, so another include statement is required
in order to use it, namely

If the user suddenly sees the number 11.34 on the screen, he or she may have no idea
what it represents. Some additional text is needed to describe this value. Textual
information can be inserted into the output stream by placing it within quotation
marks. Text within quotation marks (“”) is called a literal string and is printed out
exactly as is. In the TravelPlanner program, we used the output statements

These are two C++ output instructions (note the two terminating semicolons) that
happen to take up four lines. They contribute five literal strings and the values of three
variables to the output stream, each requiring an insertion operator. Assuming that we
are using fixed-point format with precision set to 2, the output is

Note that in the program instruction we put spaces at the beginning and end of most of
the literal strings, within the quotation marks so that they are part of the text. Without
these spaces, the output would be

Output formatting largely determines how attractive and easy to read the output is. We
might want to design the output to look like

We can accomplish this with the five statements:

Each statement produces one line of output because endl (an abbreviation for End
Line) sends the cursor to the next line on the screen. The result is that the next value in
the output stream begins on a new line. Using endl is another way to format output.
The second and fourth output statements contain neither a literal string nor an
identifier; their effect is to write a blank line. The setw expression in the third output
statement positions the numerical value of time right-justified within 10 columns,
which produces the indenting effect.

Let’s back up a bit and note that we also need to print some text information before the
input statement, to alert the user that the program expects some input. A statement
such as

acts as a user prompt. Without a prompt, the user may be unaware that the program is
waiting for some input; instead, it may simply seem to the user that the program is
“hung up.”

Assembling all of these bits and pieces, we can see that

is a series of prompt, input, prompt, input statements to get the data, and then

writes out the computed value of the time along with the associated input values in an
informative message. In the middle, we need a program statement to compute the
value of time. We can do this with a single assignment statement; the assignment
statement is explained in the next section.

Practice Problems

Write two statements that prompt the user to enter an integer value

and store that value in a (previously declared) variable called

quantity.

1.

A program has computed a value of 37 for the variable height. Write

an output statement that prints this variable using six columns, and

2.

with successive output appearing on the next line.

What appears on the screen after execution of the following

statement?

3.

3.2The Assignment Statement

As we said earlier, an assignment statement assigns a value to a program variable. This
is accomplished by evaluating some expression and then writing the resulting value in
the memory location referenced by the program variable. The general pseudocode
operation

has as its C++ equivalent

The expression on the right is evaluated, and the result is then written into the memory
location named on the left. For example, suppose that A, B, and C have all been
declared as integer variables in some program. The assignment statements

result in B taking on the value 2 and C taking on the value 5. After execution of

A has the value that is the sum of the current values of B and C. Assignment is a
destructive operation, so whatever A’s previous value was, it is gone. Note that this one
assignment statement says to add the values of B and C and assign the result to A. This
one high-level language statement is equivalent to three assembly language statements
needed to do this same task (LOAD B, ADD C, STORE A). A high-level language program
thus packs more power per line than an assembly language program. To state it
another way, whereas a single assembly language instruction is equivalent to a single
machine language instruction, a single C++ instruction is usually equivalent to many
assembly language instructions or machine language instructions, and it allows us to
think at a higher level of problem solving.

In the assignment statement, the expression on the right is evaluated first. Only then is
the value of the variable on the left changed. This means that an assignment statement
like

makes sense. If A has the value 7 before this statement is executed, then the expression
evaluates to

and 8 then becomes the new value of A. (Here it becomes obvious that the assignment
instruction symbol = is not the same as the mathematical equals sign =, because A = A +
1 does not make sense mathematically.)

All four basic arithmetic operations can be done in C++, where they are denoted by

For the most part, this is standard mathematical notation, rather than the somewhat
verbose assembly language op code mnemonics such as SUBTRACT. The reason a
special symbol is used for multiplication is that x would be confused with x, an
identifier, • (a multiplication dot) doesn’t appear on the keyboard, and juxtaposition
—writing AB for A*B—would look like a single identifier named AB.

We do have to pay some attention to data types. In particular, division has one
peculiarity. If at least one of the two values being divided is a real number, then
division behaves as we expect. Thus,

all result in the value 3.5. However, if the two values being divided are both integers,
the result is an integer value; if the division doesn’t “come out even,” the integer value
is obtained by truncating the answer to an integer quotient. Thus,

results in the value 3. Think of grade-school long division of integers:

Here the quotient is 3 and the remainder is 1. C++ also provides an operation, with the
symbol %, to obtain the integer remainder. Using this operation,

results in the value 1. If the values are stored in type int variables, the same thing
happens. For example,

produces the output

As soon as an arithmetic operation involves one or more real (decimal) numbers, any
integers are converted to their real number equivalent, and the calculations are done
with real numbers.

Data types also play a role in assignment statements. Suppose the expression in an
assignment statement evaluates to a real number and is then assigned to an identifier
that has been declared as an integer. The real number is truncated, and the digits
behind the decimal point are lost. We mentioned that this same problem occurs if you
input a decimal value for an integer variable. Unlike the input situation, the C++
compiler can see what you are doing with the assignment statement and will usually
give you a warning that says something about “possible loss of data.” But assigning an
integer value to a type double identifier merely changes the integer to its real number
equivalent. C++ does this type casting (changing of data type) automatically. This type
cast would merely change the integer 3, for example, to its real number equivalent 3.0.

This explains why we declared distance to be type double in the TravelPlanner
program. The user can enter an integer value for distance, and C++ will type cast it to a
real number. But if we had declared both speed and distance to be integers, then the
division to compute time would only produce integer answers.

You should assign only an expression that has a character value to a variable that has
been declared to be type char. Suppose that letter is a variable of type char. Then

is a legitimate assignment statement, giving letter the value of the character ’m’. Note
that single quotation marks are used here, as opposed to the double quotation marks
that enclose a literal string. The assignment

is also acceptable; the single quotes around the 4 mean that it is being treated as just
another character on the keyboard, not as the integer 4.

Practice Problems

newNumber and next are integer variables in a C++ program. Write a

statement to assign the value of newNumber to next.

1.

What is the value of average after the following statements are

executed? (total and number are type int, and average is type double.)

2.

3.3Control Statements

We mentioned earlier that sequential flow of control is the default; that is, a program
executes instructions sequentially from first to last. The flowchart in Figure 6
illustrates this, where S1, S2,…, Sk are program instructions (i.e., program statements).

Figure 6

Sequential Flow of Control

As stated in Chapter 2, no matter how complicated the task to be done, only three types
of control mechanisms are needed:

Sequential: Instructions are executed in order.1.

Conditional: Which instruction executes next depends on some condition.2.

Looping: A group of instructions may be executed many times.3.

Sequential flow of control, the default, is what occurs if the program does not contain
any instances of the other two control structures. In the TravelPlan-ner program, for
example, instructions are executed sequentially, beginning with the input statements,
next the computation, and finally the output statement.

In Chapter 2 we introduced pseudocode notation for conditional operations and
looping. In Chapter 6 we learned how to write somewhat laborious assembly language
code to implement conditional operations and looping. Now we’ll see how C++ provides
instructions that directly carry out these control structure mechanisms—more
evidence of the power of high-level language instructions. We can think in a
pseudocode algorithm design mode, as we did in Chapter 2, and then translate that
pseudocode directly into C++ code.

Conditional flow of control begins with the evaluation of a Boolean condition, also
called a Boolean expression, which can be either true or false. We discussed these
“true/false conditions” in Chapter 2, and we also encountered Boolean expressions in
Chapter 4, where they were used to design circuits. A Boolean condition often involves
comparing the values of two expressions and determining whether they are equal,
whether the first is greater than the second, and so on. Again assuming that A, B, and C
are integer variables in a program, the following are legitimate Boolean conditions:

A == 0
(Does A currently have the
value 0?)

B < (A + C)

(Is the current value of B less
than the sum of the current
values of A and C?)

A != B
(Does A currently have a
different value than B?)

If the current values of A, B, and C are 2, 5, and 7, respectively, then the first condition
is false (A does not have the value zero), the second condition is true (5 is less than 2
plus 7), and the third condition is true (A and B do not have equal values).

Comparisons need not be numeric. They can also be done between variables of type
char, where the “ordering” is the usual alphabetic ordering. If initial is a value of type
char with a current value of ‘D’, then

is false because initial does not have the value ‘F’, and

is true because ‘D’ precedes ‘P’ in the alphabet (or, more precisely, because the binary
code for ‘D’ is numerically less than the binary code for ’P’). Note that the comparisons
are case sensitive, so ‘F’ is not equal to ‘f ’, but ‘F’ is less than ‘f ’.

Figure 7 shows the comparison operations available in C++. Note the use of the two
equality signs to test whether two expressions have the same value. The single equality
sign is used in an assignment statement, the double equality sign in a comparison.

Figure 7

C++ Comparison Operators

COMPARISON SYMBOL EXAMPLE EXAMPLE
RESULT

the same
value as

== 2 == 5 false

less than < 2 < 5 true

less than or
equal to

<= 5 <= 5 true

greater than > 2 > 5 false

greater than
or equal to

>= 2 >= 5 false

not the same
value as

!= 2 >= 5 true

Boolean conditions can be built up using the Boolean operators AND, OR, and NOT.
Truth tables for these operators were given in Chapter 4 (Figures 4.12-4.14). The only
new thing is the symbols that C++ uses for these operators, shown in Figure 8.

Figure 8

C++ Boolean Operators

OPERATOR SYMBOL EXAMPLE EXAMPLE
RESULT

AND && (2 < 5)
&& (2 >
7)

false

OR || (2 < 5) ||
(2 > 7)

true

NOT ! !(2 == 5) true

A conditional statement relies on the value of a Boolean condition (true or false) to
decide which programming statement to execute next. If the condition is true, one
statement is executed next, but if the condition is false, a different statement is
executed next. Control is therefore no longer in a straight-line (sequential) flow, but
hops to one place or to another. Figure 9 illustrates this situation. If the condition is
true, the statement S1 is executed (and statement S2 is not); if the condition is false, the
statement S2 is executed (and statement S1 is not). In either case, the flow of control
then continues on to statement S3. We saw this same scenario when we discussed
pseudocode conditional statements in Chapter 2 (Figure 2.4).

Figure 9

Conditional Flow of Control (if-else)

The C++ instruction that carries out conditional flow of control is called an if-else
statement. It has the following form (note that the words if and else are lowercase and
that the Boolean condition must be in parentheses).

Below is a simple if-else statement, where we assume that A, B, and C are integer
variables.

Suppose that when this statement is reached, the values of A, B, and C are 2, 5, and 7,
respectively. As we noted before, the condition B < (A + C) is then true, so the statement

is executed, and the value of A is changed to 4. However, suppose that when this
statement is reached, the values of A, B, and C are 2, 10, and 7, respectively. Then the
condition B < (A + C) is false, the statement

is executed, and the value of A is changed to 6.

A variation on the if-else statement is to allow an “empty else” case. Here we want to do
something if the condition is true, but if the condition is false, we want to do nothing.
Figure 10 illustrates the empty else case. If the condition is true, statement S1 is
executed, and after that the flow of control continues on to statement S3, but if the
condition is false, nothing happens except to move the flow of control directly on to
statement S3.

Figure 10

If-Else with Empty Else

This if variation on the if-else statement can be accomplished by omitting the word else.
This form of the instruction therefore looks like

We could write

This has the effect of doubling the value of A if the condition is true and of doing
nothing if the condition is false.

It is possible to combine statements into a group by putting them within the curly
braces { and }. The group is then treated as a single statement, called a compound
statement. A compound statement can be used anywhere a single statement is
allowed. For example,

is treated as a single statement. The implication is that in Figure 9, S1 or S2 might be
compound statements. This makes the if-else statement potentially much more
powerful and similar to the pseudocode conditional statement in Figure 2.9.

Let’s expand on our TravelPlanner program and give the user of the program a choice
of computing the time either as a decimal number (3.75 hours) or as hours and minutes
(3 hours, 45 minutes). This situation is ideal for a conditional statement. Depending on
what the user wants to do, the program does one of two tasks. For either task, the
program still needs information about the speed and distance. The program must also
collect information to indicate which task the user wishes to perform. We need an
additional variable in the program to store this information. Let’s use a variable called
choice of type char to collect the user’s choice of which task to perform. We also need
two new integer variables to store the values of hours and minutes.

Figure 11 shows the new program, with the three additional declared variables. The
condition evaluated at the beginning of the if-else statement tests whether choice has
the value ’D’. If so, then the condition is true, and the first group of statements is
executed—that is, the time is output in decimal format as we have been doing all along.
If choice does not have the value ’D’, then the condition is false. In this event, the
second group of statements is executed. Note that because of the way the condition is
written, if choice does not have the value ’D’, it is assumed that the user wants to
compute the time in hours and minutes, even though choice may have any other
non-’D’ value (including ’d’) that the user may have typed in response to the prompt.

Figure 11

The TravelPlanner Program with a Conditional Statement

To compute hours and minutes (the else clause of the if-else statement), time is
computed in the usual way, which results in a decimal value. The whole number part
of that decimal is the number of hours needed for the trip. We can get this number by
type casting the decimal number to an integer. This is accomplished by

which drops all digits behind the decimal point and stores the resulting integer value in
hours. To find the fractional part of the hour that we dropped, we subtract hours from
time. We multiply this by 60 to turn it into some number of minutes, but this is still a
decimal number. We do another type cast to truncate this to an integer value for
minutes:

For example, if the user enters data of 50 mph and 475 miles and requests output in
hours and minutes, the following table shows the computed values.

Here is the actual program output for this case:

The two statement groups in an if-else statement are identified by the enclosing curly
braces, but in Figure 11 we also indented them to make them easier to pick out when
looking at the program. Like comments, indentation is ignored by the computer but is
valuable in helping people to more readily understand a program.

Now let’s look at the third variation on flow of control, namely looping (iteration). We
want to execute the same group of statements (called the loop body) repeatedly,
depending on the result of a Boolean condition. As long as (while) the condition
remains true, the loop body is executed. The condition is tested before each execution
of the loop body. When the condition becomes false, the loop body is not executed
again, which is usually expressed by saying that the algorithm exits the loop. To ensure
that the algorithm ultimately exits the loop, the condition must be such that its truth
value can be affected by what happens when the loop body is executed. Figure 12
illustrates the while loop. The loop body is statement S1 (which can be a compound
statement), and S1 is executed while the condition is true. Once the condition is false,
the flow of control moves on to statement S2. If the condition is false when it is first
evaluated, then the body of the loop is never executed at all. We saw this same scenario
when we discussed pseudocode looping statements in Chapter 2 (Figure 2.6).

Figure 12

While Loop

C++ uses a while statement to implement this type of looping. The form of the
statement is

For example, suppose we want to write a program to add up a number of nonnegative
integers that the user supplies and write out the total. We need a variable to hold the
total; we’ll call this variable sum, and make its data type int. To handle the numbers to
be added, we could declare a bunch of integer variables such as n1, n2, n3, … and do a
series of input-and-add statements of the form

and so on. There are two problems with this approach. The first is that we may not
know ahead of time how many numbers the user wants to add. If we declare variables
n1, n2,…, n25, and the user wants to add 26 numbers, the program won’t do the job. The
second problem is that this approach requires too much effort. Suppose that we know
the user wants to add 2000 numbers. We could declare 2000 variables (n1,…, n2000),
and we could write the above input-and-add statements 2000 times, but it wouldn’t be
fun. Nor is it necessary—we are doing a very repetitive task here, and we should be
able to use a loop mechanism to simplify the job. (We faced a similar situation in the
first pass at a sequential search algorithm, Figure 2.11; our solution there was also to
use iteration.)

Even if we use a loop mechanism, we are still adding a succession of values to sum.
Unless we are sure that the value of sum is zero to begin with, we cannot be sure that
the answer isn’t nonsense. Remember that the identifier sum is simply an indirect way
to designate a memory location in the computer. That memory location contains a
pattern of bits, perhaps left over from whatever was stored there when some previous
program was run. We cannot assume that just because this program hasn’t used sum,
its value is zero. (In contrast, the assembly language statement SUM:.DATA 0 reserves a
memory location, assigns it the identifier SUM, and fills it with the value zero.) If we
want the beginning value of sum to be zero, we must use an assignment statement.
Using assignment statements to set the values of certain variables before they are used
by the program is called initialization of variables.

Now on to the loop mechanism. First, let’s note that once a number has been read in
and added to sum, the program doesn’t need to know the value of the number any
longer. We can declare just one integer variable called number and use it repeatedly to

hold the first numerical value, then the second, and so on. The general idea is

Now we have to figure out what the condition “there are more numbers to add” really
means. Because we are adding nonnegative integers, we could ask the user to enter one
extra integer that is not part of the legitimate data but is instead a signal that there are
no more data. Such a value is called a sentinel value. For this problem, any negative
number would be a good sentinel value. Because the numbers to be added are all
nonnegative, the appearance of a negative number signals the end of the legitimate
data. We don’t want to process the sentinel value (because it is not a legitimate data
item); we only want to use it to terminate the looping process. This might suggest the
following code:

Here’s the problem. How can we test whether number is greater than or equal to 0 if we
haven’t read the value of number yet? We need to do a preliminary input for the first
value of number outside of the loop and then test that value in the loop condition. If it is
nonnegative, we want to add it to sum and then read the next value and test it.
Whenever the value of number is negative (including the first value), we want to do
nothing with it—that is, we want to avoid executing the loop body. The following
statements do this; we’ve also added instructions to the user.

The value of number gets changed within the loop body by reading in a new value. The
new value is tested, and if it is nonnegative, the loop body executes again, adding the
data value to sum and reading in a new value for number. The loop terminates when a
negative value is read in. Remember the requirement that something within the loop
body must be able to affect the truth value of the condition. In this case, it is reading in
a new value for number that has the potential to change the value of the condition from
true to false. Without this requirement, the condition, once true, would remain true
forever, and the loop body would be endlessly executed. This results in what is called
an infinite loop. A program that contains an infinite loop will execute forever (or until
the programmer gets tired of waiting and interrupts the program, or until the program
exceeds some preset time limit).

Here is a sample of the program output.

The problem we’ve solved here, adding nonnegative integers until a negative sentinel
value occurs, is the same one solved using assembly language in Chapter 6. The
preceding C++ code is almost identical to the pseudocode version of the algorithm
shown in Figure 6.7. Thanks to the power of the language, the C++ code embodies the
algorithm directly, at a high level of thinking, whereas in assembly language this same
algorithm had to be translated into the lengthy and awkward code of Figure 6.8.

To process data for a number of different trips in the TravelPlanner program, we could
use a while loop. During each pass through the loop, the program computes the time
for a given speed and distance. The body of the loop is therefore exactly like our
previous code. All we are adding here is the framework that provides looping. To
terminate the loop, we could use a sentinel value, as we did for the program above. A
negative value for speed, for example, is not a valid value and could serve as a sentinel
value. Instead of that, let’s allow the user to control loop termination by having the
program ask the user whether he or she wishes to continue. We’ll need a variable to
hold the user’s response to this question. Of course, the user could answer “N” at the
first query, the loop body would never be executed at all, and the program would
terminate. Figure 13 shows the complete program.

Figure 13

The TravelPlanner Program with Looping

Practice Problems

Assume all variables have previously been declared.

What is the output from the following section of code?1.

What is the output from the following section of code?2.

What is the output from the following section of code?3.

How many times is the cout statement executed in the following

section of code?

4.

Write a C++ statement that outputs “Equal” if the integer values of

night and day are the same, but otherwise does nothing.

5.

4Another Example

Let’s briefly review the types of C++ programming statements we’ve learned. We can do
input and output—reading values from the user into memory, writing values out of
memory for the user to see, being sure to use meaningful variable identifiers to
reference memory locations. We can assign values to variables within the program.
And we can direct the flow of control by using conditional statements or looping.
Although many other statement types are available in C++, you can do almost
everything using only the modest collection of statements we have described. The
power of C++ lies in how these statements are combined and nested within groups to
produce ever more complex courses of action.

For example, suppose we write a program to assist SportsWorld, a company that
installs circular swimming pools. In order to estimate their costs for swimming pool
covers or for fencing to surround the pool, SportsWorld needs to know the area or

circumference of a pool, given its radius. A pseudocode version of the program is
shown in Figure 14.

Figure 14

A Pseudocode Version of the SportsWorld Program

We should be able to translate this pseudocode fairly directly into the body of the main
function. Other things we need to add to complete the program are:

A prologue comment to explain what the program does (optional but always

recommended for program documentation)

An include directive for iostream and a using directive for namespace std

(necessary because our program uses cin and cout)

A declaration for the constant value PI (3.1416)

Variable declarations

Some output formatting to control the number of digits behind the decimal point

Figure 15 gives the complete program. Figure 16 shows what actually appears on the
screen when this program is executed with some sample data.

Figure 15

The SportsWorld Program

Figure 16

A Sample Session Using the Program of Figure 15

Practice Problems

Write a complete C++ program to read in the user’s first and last

initials and write them out. (Hint: By using multiple extraction

1.

operators, you can use a single input statement to collect more than

one value from the input stream.)

Write a complete C++ program that asks for the price of an item and

the quantity purchased, and writes out the total cost.

2.

Write a complete C++ program that asks for a number. If the number

is less than 5, it is written out, but if it is greater than or equal to 5,

twice that number is written out.

3.

Write a complete C++ program that asks the user for a positive integer

number and then writes out all the numbers from 1 up to and

including that number.

4.

5Managing Complexity

The programs we have written have been relatively simple. More complex problems
require more complex programs to solve them. Although it is fairly easy to understand
what is happening in the 40 or so lines of the SportsWorld program, imagine trying to
understand a program that is 50,000 lines long. Imagine trying to write such a
program! It is not possible to understand—all at once—everything that goes on in a
50,000-line program.

5.1Divide and Conquer

Writing large programs is an exercise in managing complexity. The solution is a
problem-solving approach called divide and conquer. Suppose a program is to be
written to do a certain task; let’s call it task T. Suppose further that we can divide this
task into smaller tasks, say A, B, C, and D, such that, if we can do those four tasks in the
right order, we can do task T. Then our high-level understanding of the problem need
only be concerned with what A, B, C, and D do and how they must work together to
accomplish T. We do not, at this stage, need to understand how A, B, C, and D can be
done. Figure 17(a), an example of a structure chart or structure diagram, illustrates
this situation. Task T is composed in some way of subtasks A, B, C, and D. Later we can
turn our attention to, say, subtask A and see if it too can be decomposed into smaller
subtasks, as in Figure 17(b). In this way, we continue to break the task down into
smaller and smaller pieces, finally arriving at subtasks that are simple enough that it is
easy to write the code to carry them out. By dividing the problem into small pieces, we
can conquer the complexity that is overwhelming if we look at the problem as a whole.

Figure 17

Structure Charts

Divide and conquer is a problem-solving approach and not just a computer
programming technique. Outlining a term paper into major and minor topics is a
divide-and-conquer approach to writing the paper. Doing a Form 1040 Individual Tax
Return for the Internal Revenue Service can involve the subtasks of completing
Schedules A, B, C, D, and so on and then reassembling the results. Designing a house
can be broken down into subtasks of designing floor plans, wiring, plumbing, and the
like. Large companies organize their management responsibilities using a divide-
and-conquer approach; what we have called structure charts become, in the business
world, organization charts.

How is the divide-and-conquer problem-solving approach reflected in the resulting
computer program? If we think about the problem in terms of subtasks, then the
program should show that same structure; that is, part of the code should do subtask A,
part should do subtask B, and so on. We divide the code into modules or subprograms,
each of which does some part of the overall task. Then we empower these modules to
work together to solve the original problem.

5.2Using Functions

In C++, modules of code are called functions. Each function in a program should do
one and only one subtask. These “subtask functions” are the optional functions listed
before the mandatory main function in the C++ program outline of Figure 2. When
subtask functions are used, the main function consists primarily of invoking these
subtask functions in the correct order.

Let’s review the main function body of the SportsWorld program (Figure 15) with an
eye to further subdividing the task. There is a loop that does some operations as long as
the user wants. What gets done? Input is obtained from the user about the radius of the
circle and the choice of task to be done (compute circumference or compute area).
Then the circumference or the area gets computed and written out. We’ve identified
three subtasks, as shown in the structure chart of Figure 18.

Figure 18

Structure Chart for the SportsWorld Task

We can visualize the main function body of the program at a pseudocode level, as
shown in Figure 19. This divide-and-conquer approach to solving the problem can (and
should) be planned first in pseudocode, without regard to the details of the
programming language to be used. If the three subtasks (input, circumference, area)
can all be done, then arranging them within the structure of Figure 19 solves the
problem. We can write a function for each of the subtasks. Although we now know
what form the main function body will take, we have pushed the details of how to do
each of the subtasks off into the other functions. Execution of the program begins with
the main function. Every time the flow of control reaches the equivalent of a “do
subtask” instruction, it transfers execution to the appropriate function code. When
execution of the function code is complete, flow of control returns to the main function
and picks up where it left off.

Figure 19

A High-Level Modular View of the SportsWorld Program

Before we look at the details of how to write a function, we need to examine the
mechanism that allows the functions to work with each other and with the main
function. This mechanism consists of passing information about various quantities in
the program back and forth between the other functions and the main function.
Because each function is doing only one subtask of the entire task, it does not need to
know the values of all variables in the program. It only needs to know the values of the
variables with which its particular subtask is concerned. Allowing a function access
only to pertinent variables prevents that function from inadvertently changing a value
it has no business changing.

When the main function wants a subtask function to be executed, it gives the name of
the function (which is an ordinary C++ identifier) and also a list of the identifiers for
variables pertinent to that function. This is called an argument list. In our
SportsWorld program, let’s name the three functions getInput, doCircumference, and
doArea (names that are descriptive of the subtasks these functions carry out). The
getInput function collects the values for the variables radius and taskToDo. The main
program invokes the getInput function with the statement

which takes the place of the “Do the input subtask” line in Figure 19. When this
statement is reached, control passes to the getInput function. After execution of this
function, control returns to the main function, and the variables radius and taskToDo
have the values obtained for them within getInput.

The doCircumference function computes and writes out the value of the circumference,
and in order to do that it needs to know the radius. Therefore, the variable radius is a
legitimate argument for this function. The main function contains the statement

in place of the “do the circumference subtask” in Figure 19. When this statement is
reached, the variable radius conveys the value of the radius to the doCircum-ference
function, and the function computes and writes out the circumference. The variable
circumference, then, is also of interest to the doCircumference function, but it is of
interest to this function alone, in the sense that doCircum-ference does the computation
and writes out the result. No other use is made of the circumference in the entire
program, so no other function, including the main function, has anything to do with
circumference. Instead of being declared in the body of the main function,
circumference will be declared (and can be used) only within the doCircumference
function; it will be local to that function. Any function can have its own local
constants and local variables, declared within and known only to that function.

The doCircumference function also needs to know the value of the constant PI. We
could declare PI as a constant local to doCircumference, but doArea needs the same
constant, so we will declare PI right after the program #include directives, not within
any function. This will make PI a global constant whose value is known everywhere.
The value of a constant cannot be changed, so there is no reason to prevent any
function from having access to its value.

The doArea function computes and writes out the area and needs to know the radius,
so the line “do the area subtask” in Figure 19 is replaced by

Within doArea, area is a local variable.

Now we can write the main function of the modularized version of the SportsWorld
program, shown in Figure 20. The main function body is a direct translation of Figure

19. If, in starting from scratch to write this program, we had taken a divide-
and-conquer approach, broken the original problem down into three subtasks, and
come up with the outline of Figure 19, it would have been easy to get from there to
Figure 20. The only additional task would have been determining the variables needed.

Figure 20

The Main Function in a Modularized Version of the SportsWorld Program

At a glance, the main function in Figure 20 does not look a great deal different from our
former main function. However, it is conceptually quite different. The subtasks of
getting the input values, computing and writing out the circumference, and computing
and writing out the area have been relegated to functions. The details (such as the
formulas for computing circumference and area) are now hidden and have been
replaced by function invocations. If these subtasks had required many lines of code,
our new main function would indeed be shorter—and easier to understand—than
before.

5.3Writing Functions

Now we know how the main function can invoke another function. (In fact, using the
same process, any function can invoke another function. A function can even invoke
itself.) It is time to see how to write the code for these other, nonmain functions. The
general outline for a C++ function is shown in Figure 21.

Figure 21

The Outline for a C++ Function

Where Art Thou, C++?

The C++ programming language has been used in a variety of applications. The
following list is a sampling:

3D modeling and animation tools used in movies, video game

development, architecture, and medical simulation

Telecommunications network failure recovery software

Web search engines

Chip design and manufacturing software

Mars Rover autonomous driving system, including scene analysis and

route planning

Electronic-controlled fuel injection system for very large diesel engines

used in container ships and tankers

Operating systems for cellular telephones

Software for tracking orders on European stock markets

Data analysis for large high-energy physics experiments

The Apple iPod user interface

Environments and tools for software development

Support for data center services such as travel reservation systems, vital

statistics (birth, death, marriage) registration, and patient medical records

The “classic” Seti@home project, enlisting the use of idle home computers

to search for signs of extraterrestrial life. From 1999-2005, nearly 5.5

million users generated 2,092,538,656 results by means of about 2,433,980

years of CPU time.

The function header consists of three parts:

A return indicator

The function identifier

A parameter list

The return indicator classifies a function as a “void” or a “nonvoid” function. We’ll
explain this distinction later, but the three functions for the circle program are all void
functions, so the return indicator is the keyword void. (All of our main functions have
been void functions as well.) The function identifier can be any legitimate C++
identifier. The parameters in the parameter list correspond to the arguments in the
statement that invoke this function; that is, the first parameter in the list matches the
first argument given in the statement that invokes the function, the second parameter
matches the second argument, and so on. It is through this correspondence between
parameters and arguments that information (data) flows from the main function to
other functions, and vice versa. The data type of each parameter must be given as part
of the parameter list, and it must match the data type of the corresponding argument.
For example, because the getInput function is invoked with the two arguments radius
and taskToDo, the parameter list for the getInput function header has two parameters,
the first of type double and the second of type char. Parameters may have, but do not
have to have, the same identifiers as the corresponding arguments; arguments and
parameters correspond by virtue of their respective positions in the argument list and
the parameter list, regardless of the identifiers used. For the getInput function, we
choose the parameter identifiers radius and taskToDo, matching the argument
identifiers. No semicolon is used at the end of a function header.

One additional aspect of the parameter list in the function header concerns the use the
function will make of each parameter. Consider the statement that invokes the
function; an argument in the invoking statement carries a data value to the
corresponding parameter in the function header. If the value is one that the function
must know to do its job but should not change, then the argument is passed by value.
The function receives a copy of the data value but never knows the memory location
where the original value is stored. If the function changes the value of its copy, this
change has no effect when control returns to the main function. If, however, the value
passed to the function is one that the function should change, and the main function
should know the new value, then the argument is passed by reference. The function
receives access to the memory location where the value is stored, and any changes it
makes to the value are seen by the main function after control returns there. Included
in this category are arguments whose values are unknown when the function is

invoked (which really means that they are meaningless values of whatever happens to
be in the memory location associated with that identifier), but the function changes
those unknown values into meaningful values.

By default, arguments in C++ are passed by value, which protects them from change by
the function. Explicit action must be taken by the programmer to pass an argument by
reference; specifically, the ampersand symbol (&) must appear in front of the
corresponding parameter in the function parameter list.

How do we decide whether to pass an argument by value or by reference? If the main
function needs to obtain a new value back from a function when execution of that
function terminates, then the argument must be passed by reference (by inserting the
& into the parameter list). Otherwise, the argument should be passed by value, the
default arrangement.

In the getInput function, both radius and taskToDo are values that get-Input obtains
from the user and that the main function needs to know when getInput terminates, so
both of these are passed by reference. The header for the getInput function is shown
below, along with the invoking statement from the main function. Note that the
parameters radius and taskToDo are in the right order, have been given the correct
data types, and are both marked for passing by reference. Also remember that,
although the arguments are named radius and taskToDo because those are the variable
identifiers declared in the main function, the parameters could have different
identifiers, and it is the parameter identifiers that are used within the body of the
function.

The body of the getInput function comes from the corresponding part of Figure 15. If
we hadn’t already written this code, we could have done a pseudocode plan first. The
complete function appears in Figure 22, where a comment has been added to
document the purpose of the function.

Figure 22

The getInput Function

The doCircumference function needs to know the value of radius but does not change
that value. Therefore, radius is passed by value. Why is the distinction between
arguments passed by value and those passed by reference important? If functions are
to affect any changes at all, then clearly reference parameters are necessary, but why
not just make everything a reference parameter? Suppose that in this example radius is
made a reference parameter. If an instruction within doCircumference were to
inadvertently change the value of radius, then that new value would be returned to the
main function, and any subsequent calculations using this value (there are none in this
example) would be in error. Making radius a value parameter prevents this. How could
one possibly write a program statement that changes the value of a variable
inadvertently? In something as short and simple as our example, this probably would
not happen, but in a more complicated program, it might. Distinguishing between
passing by value and passing by reference is just a further step in controlling a
function’s access to data values, to limit the damage the function might do. The code for
the doCircumference function appears in Figure 23.

Figure 23

The doCircumference Function

The doArea function is very similar. Let’s reassemble everything and give the complete
modularized version of the program. In Figure 24, only the main function needs to
know the value of more. No other function needs access to this value, so this variable is
never passed as an argument. The main function header

Figure 24

The Complete Modularized SportsWorld Program

also follows the form for any function header. In other words, the main function truly
is a C++ function. It has an empty parameter list because it is the starting point for the
program, and there’s no other place that could pass argument values to it.

Because it seems to have been a lot of effort to arrive at this complete, modularized
version of our SportsWorld program (which, after all, does the same thing as the
program in Figure 15), let’s review why this effort is worthwhile.

The modularized version of the program is compartmentalized in two ways. First, it is
compartmentalized with respect to task. The major task is accomplished by a series of
subtasks, and the work for each subtask takes place within a separate function. This
leaves the main function free of details and consisting primarily of invoking the
appropriate function at the appropriate point. As an analogy, think of the president of a
company calling on various assistants to carry out tasks as needed. The president does
not need to know how a task is done, only the name of the person responsible for
carrying it out. Second, the program is compartmentalized with respect to data, in the
sense that the data values known to the various functions are controlled by parameter
lists and by the use of value instead of reference parameters where appropriate. In our
analogy, the president gives each assistant the information he or she needs to do the
assigned task, and expects relevant information to be returned—but not all assistants
know all information.

This compartmentalization is useful in many ways. It is useful when we plan the
solution to a problem, because it allows us to use a divide-and-conquer approach. We
can think about the problem in terms of subtasks. This makes it easier for us to
understand how to achieve a solution to a large and complex problem. It is also useful

when we code the solution to a problem, because it allows us to concentrate on writing
one section of the code at a time. We can write a function and then fit it into the
program, so that the program gradually expands rather than having to be written all at
once. Developing a large software project is a team effort, and different parts of the
team can be writing different functions at the same time. It is useful when we test the
program, because we can test one new function at a time as the program grows, and
any errors are localized to the function being added. (The main function can be tested
early by writing appropriate headers with empty bodies for the remaining functions.)
Compartmentalization is useful when we modify the program, because changes tend to
be within certain subtasks and hence within certain functions in the code. And finally
it is useful for anyone (including the programmer) who wants to read the resulting
program. The overall idea of how the program works, without the details, can be
gleaned from reading the main function; if and when the details become important, the
appropriate code for the other functions can be consulted. In other words,
modularizing a program is useful for its

Planning

Coding

Testing

Modifying

Reading

A special type of C++ function can be written to compute a single value rather than to
carry out a subtask. For example, doCircumference does everything connected with the
circumference, both calculating the value and writing it out. We can write a different
doCircumference function that only computes the value of the circumference and then
returns that value to the main function, which writes it out. A function that returns a
single value to the section of the program that invoked it is a nonvoid function. Instead
of using the word void as the return indicator in the function header, a nonvoid
function uses the data type of the single returned value. In addition, a nonvoid function
must contain a return statement, which consists of the keyword return followed by an
expression for the value to be returned. (This explains why we have always written the
main function as a void function; it is never invoked anywhere else in the program and
does not return a value.)

The code for this new doCircumference function would be simply

A nonvoid function is invoked wherever the returned value is to be used, rather than
in a separate statement. For example, the statement

invokes the doCircumference function by giving its name and argument, and this
invocation actually becomes the value returned by the doCircumference function,
which is then written out.

Figure 25 shows a third version of the SportsWorld program using nonvoid
doCircumference and doArea functions. There are no variables anywhere for the
circumference and the area of the circle. The doCircumference and doArea functions
use the usual formulas for their computations, but instead of using local variables for
circumference and area, we’ve compressed the code into a single return statement.
These functions are now invoked within an output statement, so the values get printed
out without being stored anywhere.

Figure 25

The SportsWorld Program Using Nonvoid Functions

Figure 26 summarizes several sets of terms introduced in this section.

Figure 26

Some C++ Terminology

Practice Problems

What is the output of the following C++ program?1.

What is the output of the following C++ program?2.

Write a C++ function that performs an input task for the main

program, collecting two integer values one and two from the user.

3.

Suppose a nonvoid function called tax gets a value subtotal from the

main function, multiplies it by a global constant tax rate called RATE,

and returns the resulting tax value. All quantities are type double.

Write the function header.a.

Write the return statement in the function body.b.

Write the statement in the main program that writes out the

tax.

c.

4.

6Object-oriented Programming

6.1What Is It?

The divide-and-conquer approach to programming is a “traditional” approach. The
focus is on the overall task to be done: How to break it down into subtasks, and how to
write algorithms for the various subtasks that are carried out by communicating
modules (in the case of C++, by functions). The program can be thought of as a giant
statement executor designed to carry out the major task, even though the main
function may simply call on, in turn, the various other modules that do the subtask
work.

Object-oriented programming (OOP) takes a somewhat different approach. A
program is considered a simulation of some part of the world that is the domain of
interest. “Objects” populate this domain. Objects in a banking system, for example,
might be savings accounts, checking accounts, and loans. Objects in a company
personnel system might be employees. Objects in a medical office might be patients
and doctors. Each object is an example drawn from a class of similar objects. The
savings account “class” in a bank has certain properties associated with it, such as
name, Social Security number, account type, and account balance. Each individual
savings account at the bank is an example of (an object of) the savings account class,
and each has specific values for these common properties; that is, each savings account
has a specific value for the name of the account holder, a specific value for the account
balance, and so forth. Each object of a class therefore has its own data values.

So far, this is similar to the idea of a data type in C++; in the SportsWorld program,
radius, circumference, and area are all examples (objects) from the data type (class)
“double” the class has one property (a numeric quantity), and each object has its own
specific value for that property. However, in object-oriented programming, a class also
has one or more subtasks associated with it, and all objects from that class can perform
those subtasks. In carrying out its subtask, each object can be thought of as providing
some service. A savings account, for example, can compute compound interest due on
the balance. When an object-oriented program is executed, the program generates
requests for services that go to the various objects. The objects respond by performing
the requested service—that is, carrying out the subtask. Thus, the main function in a
C++ program, acting as a user of the savings account class, might request a particular
savings account object to perform the service of computing interest due on its account
balance. An object always knows its own data values and may use them in performing
the requested service.

There are three terms often associated with object-oriented programming, as
illustrated in Figure 27. The first term is encapsulation. Each class has its own
program modules to perform each of its subtasks. Any user of the class (such as the
main program) can ask an object of that class to invoke the appropriate module and
thereby perform the subtask service. What the class user sees is the interface of the
class, which describes the services provided and explains how to request an object to
perform that service. The details of the module code are known only to the class. (In
the savings account example, the details of the algorithm used to compute interest due
belong only to the class.) The advantage to this separation of powers is that a given
class’s modules may be modified in any way, as long as the interface remains
unchanged. (If the bank wants to change how it computes interest, only the code for
the savings account class needs to be modified; any programs that use the services of
the savings account class can remain unchanged.) A class therefore consists of two
components, its properties and its subtask modules, and both components are
“encapsulated”—bundled—with the class.

Figure 27

Three Key Elements of OOP

A second term associated with object-oriented programming is inheritance. Once a

class A of objects is defined, a class B of objects can be defined as a “subclass” of A.
Every object of class B is also an object of class A; this is sometimes called an “is a”
relationship. Objects in the B class “inherit” all of the properties of objects in class A
(including the ability to do what those objects can do), but they may also be given some
special property or ability. The benefit is that class B does not have to be built from the
ground up, but rather can take advantage of the fact that class A already exists. In the
banking example, a senior citizen’s savings account would be a subclass of the savings
account class. Any senior citizens’ savings account object is also a savings account
object, but it may have special properties or be able to provide special services.

The third term is polymorphism. Poly means “many.” Objects of different classes may
provide services that should logically have the same name because they do roughly the
same thing, but the details differ. In the banking example, both savings account objects
and checking account objects should provide a “compute interest” service, but the
details of how interest is computed differ in these two cases. Thus, one name, the name
of the service to be performed, has several meanings, depending on the class of the
object providing the service. It may even be the case that more than one service with
the same name exists for the same class, although there must be some way to tell which
service is meant when it is invoked by an object of that class.

Let’s change analogies from the banking world to something more fanciful, and
consider a football team. Every member of the team’s backfield is an “object” of the
“backfield” class. The quarterback is the only “object” of the “quarterback” class. Each
backfield object can perform the service of carrying the ball if he (or she) receives the
ball from the quarterback; ball carrying is a subtask of the backfield class. The
quarterback who hands the ball off to a backfield object is requesting that the backfield
object perform that subtask because it is “public knowledge” that the backfield class
carries the ball and that this service is invoked by handing off the ball to a backfield
object. The “program” to carry out this subtask is encapsulated within the backfield
class, in the sense that it may have evolved over the week’s practice and may depend
on specific knowledge of the opposing team, but at any rate, its details need not be
known to other players. Inheritance can be illustrated by the half-back subclass within
the backfield class. A halfback object can do everything a backfield object can but may
also be a pass receiver. And polymorphism can be illustrated by the fact that the
backfield may invoke a different “program” depending on where on the field the ball is
handed off. Of course our analogy is imperfect, because not all human “objects” from
the same class behave in precisely the same way—fullbacks sometimes receive passes
and so on.

6.2C++ and Oop

How do these ideas get translated into real programs? The details, of course, vary with
the programming language used, and not every language supports object-oriented
programming. C++, however, does support object-oriented programming. When we
write a class, we specify the properties (called member variables) common to any
object of that class. We also specify the services (called member functions) that any
object of that class can perform.

Let’s rewrite the SportsWorld program one more time, this time as an object-oriented
program. What are the objects of interest within the scope of this problem?
SportsWorld deals with circular swimming pools, but they are basically just circles. So
let’s create a Circle class, and have the SportsWorld program create objects of
(instances of) that class. The objects are individual circles. A Circle object has a radius.
A Circle object, which knows the value of its own radius, should be able to perform the
services of computing its own circumference and its own area. At this point, we have
answered the two major questions about our Circle class:

What are the properties common to any object of this class? (In this case, there is

a single property—the radius.)

What are the services that any object of the class should be able to perform? (In

this case, it must compute its circumference and compute its area, although as we

will see shortly, we will need other services as well.)

Figure 28 shows the complete object-oriented version of SportsWorld. After the usual
opening stuff, the program is divided into three major sections (identified by
comments): the class interface, the main function, and the class implementation. (The
getInput function does not fall within any of these sections.)

Figure 28

An Object-Oriented SportsWorld Program

An
Object-Oriented
SportsWorld
Program

An
Object-Oriented
SportsWorld
Program

In the class interface, four member functions are declared, although their code is not
given. The function declaration gives the compiler enough information to check for
correct usage of the function—for example, whether the statement that invokes the
function passes to it the correct number of arguments. The first member function is a
void function, and the remaining three return values. All of these must be invoked by
an object of the Circle class. One member variable is given. The member functions of
the Circle class are all declared using the keyword public. Public functions can be used
anywhere, including within the main function and indeed in any C++ program that
wants to make use of this class. Think of the Circle class as handing out a business card
that advertises these services: Hey, you want a Circle object that can find its own area?
Find its own circumference? Set the value of its own radius? I’m your class! (Class
member functions can also be private, but a private member function is a sort of
helping task that can be used only within the class in which it occurs.)

The single member variable of the class (radius) is declared using the keyword private.
Only functions in the Circle class itself can use this variable. Note that doCircumference
and doArea have no parameter for the value of the radius; as functions of this class,
they know at all times the current value of radius for the object that invoked them, and
it does not have to be passed to them as an argument. Because radius has been
declared private, however, the main function cannot use the value of radius. It cannot
write out that value or directly change that value by some assignment statement. It can,
however, request a Circle object to invoke the getRadius member function to return the
current value of the radius in order to write it out. It can also request a Circle object to
invoke the setRadius member function to change the value of its radius; setRadius does
have a parameter to receive a new value for radius. Member variables are generally
declared private instead of public, to protect the data in an object from reckless
changes some application program might try to make. Changes in the values of
member variables should be performed only under the control of class objects through
functions such as setRadius.

The main function, as before, handles all of the user interaction and makes use of the
Circle class. It creates a Circle object, an instance of the Circle class, by the following
statement:

Practice Problems

This looks just like an ordinary variable declaration such as

After

the object swimmingPool exists, and the main function can ask swimmingPool to
perform the various services of which instances of the Circle class are capable.

The syntax to request an object to invoke a member function is to give the name of the
object, followed by a dot, followed by the name of the member function, followed by
any arguments the function may need.

The object that invokes a function is the calling object. Therefore the expression

in the main function uses swimmingPool as the calling object to invoke the
doCircumference function of the Circle class. No arguments are needed because this
function has no parameters, but the empty parentheses must be present.

The class implementation section contains the actual code for the various functions
“advertised” in the class interface. Each function begins with a modified form of the
usual C++ function header. The modification consists of putting the class name and two
colons in front of the function name so that the function code is associated with the
proper class. Looking at the code for these member functions in Figure 28, we see that
the setRadius member function uses an assignment statement to change the value of
radius to whatever quantity is passed to the parameter value. The getRadius function
body is a single return statement. The doCircumference and doArea functions again
consist of single statements that compute and return the proper value.

There is no declaration in the main function for a variable called radius. There is a
declaration for newRadius, and newRadius receives the value entered by the user for
the radius of the circle. Therefore, isn’t newRadius serving the same purpose as radius
did in the old program? No—this is rather subtle, so pay attention: While newRadius
holds the number the user wants for the circle radius, it is not itself the radius of
swimmingPool. The radius of swimmingPool is the member variable radius, and only
functions of the class can change the member variables of an object of that class. The
Circle class provides the setRadius member function for this purpose. The main
function must ask the object swimmingPool to invoke setRadius to set the value of its
radius equal to the value contained in newRadius. The newRadius argument
corresponds to the value parameter in the setRadius function, which then gets assigned
to the member variable radius.

The setRadius function is a void function because it returns no information to the
invoking statement; it contains no return statement. The invocation of this function is a
complete C++ statement.

Finally, the output statements in the main function that print the values of the
circumference and area also have swimmingPool invoke the getRadius member
function to return its current radius value so it can be printed as part of the output. We
could have used the variable newRadius here instead. However, newRadius is what we
THINK has been used in the computation, whereas radius is what has REALLY been
used.

6.3One More Example

The object-oriented version of our SportsWorld program illustrates encapsulation. All
data and calculations concerning circles are encapsulated in the Circle class. Let’s look
at one final example that illustrates the other two watchwords of OOP—polymorphism
and inheritance.

In Figure 29 the domain of interest is that of geometric shapes. In the class interfaces
section, four different classes are described: Circle, Rectangle, Square, and Square2.
Each class description consists of a public part and a private or protected part. The
public part describes, in the form of C++ function headers, the services or subtasks that
an object from the class can perform. The private or protected part describes the
properties that any object of the class possesses. A Circle object has a radius property,
whereas a Rectangle object has a width property and a height property. Any Circle
object can set the value of its radius and can compute its area. A Square object has a
side property, as one might expect, but a Square2 object doesn’t seem to have any
properties or, for that matter, any way to compute its area. We will explain the
difference between the Square class and the Square2 class shortly.

Figure 29

A C++ Program with Polymorphism and Inheritance

The main function uses these classes. It creates objects from the various classes. After
each object is created, the main function requests the object to set its dimensions, using
the values given, and to compute its area as part of an output statement giving
information about the object. For example, the statement

instructs the circle named joe to invoke the setRadius function of joe’s class, thereby
setting joe’s radius to 23.5. Figure 30 shows the output after the program in Figure 29 is
run.

Figure 30

Output from the Program of Figure 29

The area of a circle with radius 23.5 is 1734.95

The area of a rectangle with dimensions 12.4 and 18.1 is 224.44

The area of a square with side 3 is 9

The area of a square with side 4.2 is 17.64

Here we see polymorphism at work, because there are lots of doArea functions; when
the program executes, the correct function is used on the basis of the class to which the
object invoking the function belongs. After all, computing the area of a circle is quite
different from computing the area of a rectangle. The algorithms themselves are
straightforward; they employ assignment statements to set the dimensions and the
usual formulas to compute the area of a circle, rectangle, and square. The functions can
use the properties of the objects that invoke them without having the values of those
properties passed as arguments.

Square is a stand-alone class with a side property and a doArea function. The Square2
class, however, recognizes the fact that squares are special kinds of rectangles. The
Square2 class is a subclass of the Rectangle class, as is indicated by the reference to
Rectangle in the class interface of Square2. It inherits the width and height properties
from the “parent” Rectangle class; the “protected” status of these properties in the
Rectangle class indicates that they can be extended to any subclass. Square2 also
inherits the setWidth, setHeight, and doArea functions. In addition, Square2 has its own
function, setSide, because setting the value of the “side” makes sense for a square but
not for an arbitrary rectangle. What the user of the Square2 class doesn’t know is that
there really isn’t a “side” property; the setSide function merely sets the inherited width
and height properties to the same value. To compute the area, then, the doArea
function inherited from the Rectangle class can be used, and there’s no need to redefine
it or even to copy the existing code. Here we see inheritance at work.

Inheritance can be carried through multiple “generations.” We might redesign the
program so that there is one “superclass” that is a general Shape class, of which Circle
and Rectangle are subclasses, Square2 being a subclass of Rectangle (see Figure 31 for a
possible class hierarchy).

Figure 31

A Hierarchy of Geometric Classes

Although the program of Figure 29 can be kept in one file, it can also be split into
separate files, roughly in the three sections described. The class interfaces can be kept
in a header file; a programmer wishing to use these classes in an application program
can look at this file, discover what properties and services are available, and learn how
to use them. The main function—the application that the programmer is creating—is a

separate program in a separate file. And the implementation of the classes is kept in a
third file to be used as needed by the main function. In fact, the implementation of the
classes may be compiled into object code, stored in a library, and linked with the main
function when the program executes. The programmer doesn’t see the
implementations; the object code gets included by the linker because the application
program contains the proper include directives. Here we see encapsulation: the
wrapping of implementation with the class and not with the class user. The class can
change the implementation code, and as long as the class interface remains the same,
the application code need not change. If the objects of the class perform the advertised
services, the user of the class need not see the details.

6.4What Have We Gained?

Now that we have some idea of the flavor of object-oriented programming, we should
ask what we gain by this approach. There are two major reasons why OOP is a popular
way to program:

Software reuse

A more natural “worldview”

SOFTWARE REUSE. Manufacturing productivity took a great leap forward when Henry
Ford invented the assembly line. Automobiles could be assembled using identical parts
so that each car did not have to be treated as a unique creation. Computer scientists are
striving to make software development more of an assembly-line operation and less of
a handcrafted, start-over-each-time process. Object-oriented programming is a step
toward this goal: A useful class that has been implemented and tested becomes a
component available for use in future software development. Anyone who wants to
write an application program involving circles, for example, can use the already
written, tried, and tested Circle class. As the “parts list” (the class library) grows, it
becomes easier and easier to find a “part” that fits, and less and less time has to be
devoted to writing original code. If the class doesn’t quite fit, perhaps it can be
modified to fit by creating a subclass; this is still less work than starting from scratch.
Software reuse implies more than just faster code generation. It also means
improvements in reliability; these classes have already been tested, and if properly
used, they will work correctly. And it means improvements in maintainability. Thanks
to the encapsulation property of object-oriented programming, changes can be made in
class implementations without affecting other code, although such change requires
retesting the classes.

A MORE NATURAL “WORLDVIEW.” The traditional view of programming is procedure-
oriented, with a focus on tasks, subtasks, and algorithms. But wait—didn’t we talk
about subtasks in OOP? Haven’t we said that computer science is all about algorithms?
Does OOP abandon these ideas? Not at all. It is more a question of when these ideas
come into play. Object-oriented programming recognizes that in the “real world,” tasks
are done by entities (objects). Object-oriented program design begins by identifying
those objects that are important in the domain of the program because their actions
contribute to the mix of activities present in the banking enterprise, the medical office,

or wherever. Then it is determined what data should be associated with each object
and what subtasks the object contributes to this mix. Finally, an algorithm to carry out
each subtask must be designed. We saw in the modularized version of the SportsWorld
program in Figure 24 how the overall algorithm could be broken down into pieces that
are isolated within functions. Object-oriented programming repackages those functions
by encapsulating them within the appropriate class of objects.

Object-oriented programming is an approach that allows the programmer to come
closer to modeling or simulating the world as we see it, rather than to mimic the
sequential actions of the Von Neumann machine. It provides another buffer between
the real world and the machine, another level of abstraction in which the programmer
can create a virtual problem solution that is ultimately translated into electronic
signals on hardware circuitry.

Finally, we should mention that a graphical user interface, with its windows, icons,
buttons, and menus, is an example of object-oriented programming at work. A general
button class, for example, can have properties of height, width, location on the screen,
text that may appear on the button, and so forth. Each individual button object has
specific values for those properties. The button class can perform certain services by
responding to messages, which are generated by events (for example, the user clicking
the mouse on a button triggers a “mouse-click” event). Each particular button object
individualizes the code to respond to these messages in unique ways. We will not go
into details of how to develop graphical user interfaces in C++, but in the next section
you will see a bit of the programming mechanics that can be used to draw the graphics
items that make up a visual interface.

Practice Problems

What is the output from the following section of code if it is added to

the main function of the C++ program in Figure 29?

1.

In the hierarchy of Figure 31, suppose that the Triangle class is able to

perform a doArea function. What two properties should any triangle

object have?

2.

7Graphical Programming

The programs that we have looked at so far all produce text output—output composed
of the characters {A … Z, a … z, 0 … 9} along with a few punctuation marks. For the first
30 to 35 years of software development, text was virtually the only method of
displaying results in human-readable form, and in those early days it was quite
common for programs to produce huge stacks of alphanumeric output. These days an
alternative form of output— graphics—has become much more widely used. With
graphics, we are no longer limited to 100 or so printable characters; instead,
programmers are free to construct whatever shapes and images they desire.

The intelligent and well-planned use of graphical output can produce some
phenomenal improvements in software. We discussed this issue in Chapter 6, where
we described the move away from the text-oriented operating systems of the 1970s and
1980s, such as MS-DOS and VMS, to operating systems with more powerful and
user-friendly graphical user interfaces (GUIs), such as Windows 7, Windows Vista, and
Mac OS X. Instead of requiring users to learn dozens of complex text-oriented
commands for such things as copying, editing, deleting, moving, and printing files, GUIs
can present users with simple and easy-to-understand visual metaphors for these
operations. In the following example, the operating system is presenting the user with
icons for printing, deleting, or copying a file.

Graphical Programming

Dragging a file to the printer icon prints the file.

Not only does graphics make it easier to manage the tasks of the operating system, it
can help us visualize and make sense of massive amounts of output produced by
programs that model complex physical, social, and mathematical systems. (We discuss
modeling and visualization in Chapter 13.) Finally, there are many applications of
computers that would simply be impossible without the ability to display output
visually. Applications such as virtual reality, computer-aided design/computer-aided
manufacturing (CAD/CAM), games and entertainment, medical imaging, and computer

mapping would not be anywhere near as important as they are without the enormous
improvements that have occurred in the areas of graphics and visualization.

So, we know that graphical programming is important. The question is: What features
must be added to a programming language like C++ to produce graphical output?

7.1Graphics Hardware

Modern computer terminals use what is called a bitmapped display, in which the
screen is made up of thousands of individual picture elements, or pixels, laid out in a
two-dimensional grid. These are the same pixels used in visual images, as discussed in
Chapter 4. In fact, the display is simply one large visual image. The number of pixels on
the screen varies from system to system; typical values range from 800 x 600 up to 1560
x 1280. Terminals with a high density of pixels are called high-resolution terminals.
The higher the resolution—that is, the more pixels available in a given amount of
space—the sharper the visual image because each individual pixel is smaller. However,
if the screen size itself is small, then a high-resolution image can be too tiny to read. A
30” wide-screen monitor might support a resolution of 2560 x 1600, but that would not
be suitable for a laptop screen. In Chapter 4 you learned that a color display requires
24 bits per pixel, with 8 bits used to represent the value of each of the three colors red,
green, and blue. The memory that stores the actual screen image is called a frame
buffer. A high-resolution color display might need a frame buffer with (1560 x 1280)
pixels x 24 bits/pixel x 47,923,000 bits, or about 6 MB, of memory for a single image.
(One of the problems with graphics is that it requires many times the amount of
memory needed for storing text.)

The individual pixels in the display are addressed using a two-dimensional coordinate
grid system, the pixel in the upper-left corner being (0, 0). The overall pixel-numbering
system is summarized in Figure 32. The specific values for maxX and maxY in Figure 32
are, as mentioned earlier, system-dependent. (Note that this coordinate system is not
the usual mathematical one. Here, the origin is in the upper-left corner, and y values
are measured downward.)

Figure 32

Pixel-Numbering System in a Bitmapped Display

Pixel-Numbering System in a Bitmapped Display

Pixel-Numbering System in a Bitmapped Display

The terminal hardware displays on the screen the frame buffer value of every
individual pixel. For example, if the frame buffer value on a color monitor for position
(24, 47) is RGB (0, 0, 0), the hardware sets the color of the pixel located at column 24,
row 47 to black, as shown in Figure 33. The operation diagrammed in Figure 33 must
be repeated for all of the 500,000 to 2 million pixels on the screen. However, the setting
of a pixel is not permanent; on the contrary, its color and intensity fade quickly.
Therefore, each pixel must be “repainted” often enough so that our eyes do not detect
any “flicker,” or change in intensity. This requires the screen to be completely updated,
or refreshed, 30-50 times per second. By setting various sequences of pixels to different
colors, the user can have the screen display any desired shape or image. This is the
fundamental way in which graphical output is achieved.

Figure 33

Display of Information on the Terminal

Display of Information on the Terminal

7.2Graphics Software

To control the setting and clearing of pixels, programmers use a collection of functions
that are part of a special software package called a graphics library. Typically an
“industrial strength” graphics library includes dozens or hundreds of functions for
everything from drawing simple geometric shapes like lines and circles, to creating and
selecting colors, to more complex operations such as displaying scrolling windows,
pull-down menus, and buttons. In this module we’ll be using the CCC graphics library
written by Dr. Cay Horstmann at San Jose State University. (See http://horstmann.com
/ccc/graphics.zip to download this library.) This easy-to-use graphics library allows you
to draw basic shapes in a graphics window and will give you a good idea of what visual
programming is like.

Because we need to use the graphics library, all graphics programs will need an
appropriate #include statement. Using the Visual Studio C++ compiler, this
statement is

Practice Problems

In addition, the main function will also look different than before. Instead of

Practice

the new main function starts with

Practice Problems

The graphics library files create a window on which graphics objects can be drawn.
The following program

Graphics Software

invokes the graphics library and creates an empty window, as shown here.

Graphics Software

The coordinate system for this window is not the conventional graphics coordinate
system described earlier. Instead it has the origin point (x = 0, y = 0) in the center of the
window, with x-values ranging left to right from -10 to 10, and y values ranging top to
bottom from 10 to -10. But we can reset the coordinate system to the conventional form
using the following statement:

Practice Problems

This resets the origin at the upper left corner, with x-values ranging left to right from 0
to 100, and y values ranging top to bottom from 0 to 100. This statement will also
appear in all of our graphics programs.

Now, what can we draw on the empty window? We have the following options:

Create points

Draw lines

Draw circles

Write text

To draw a line, we first create the two endpoints of the line, then create the line that
connects the two points. Here’s our first attempt at drawing a line from point (20, 20) to
point (40, 40).

Graphics Software

Notice that the syntax to create a point specifies the class name (Point) and gives a
name to the instance of the class we are creating (p1 or p2). The Point class (part of the
graphics library) has a function that not only creates Point objects, but allows two
parameters to be passed that give the x- and y-coordinates of the point. Similarly the
Line class has a function to create a line that accepts two parameters of type Point
representing the endpoints of the line. All seems well, but if we run this program, we
again just get an empty window.

What’s the problem? We created the Line object, but we didn’t ask for it to be
displayed. We need an output statement, but instead of writing to the screen, we want
to write to the graphics window. One additional statement is needed to write the line to
cwin (the graphics window)

Practice

An alternative is to combine the creation of the line with the output statement for that
line, in which case we don’t have to name the Line object. Using this approach, the
complete program is

Graphics Software

Graphics Software

which, when executed, results in

Graphics Software

What actually happens internally when you execute the statement to draw a line? The
answer is that the terminal hardware determines (using some simple geometry and
trigonometry) exactly which pixels on the screen must be set to black to draw a straight
line between the specified coordinates. For example, if p1 is the point(1, 1) and p2 is the
point(4, 4), then

Practice Problems

sets the following four pixels in the frame buffer to the RGB value (0, 0, 0).

Graphics Software

Graphics Software

When the hardware draws the frame buffer on the screen, these four pixels are colored
black. Because the pixels are approximately 1/100th of an inch apart, our eyes perceive
not four individual black dots but an unbroken line segment.

Now that we can draw lines, it’s easy to create a rectangle. Here’s the code:

Graphics Software

and the result:

Graphics Software

The Circle class contains a function to create a circle given its center point and the
value of its radius. Again, we must remember to actually output the circle to the
window. Here’s an example:

Graphics Software

and the result when the program runs is

Graphics Software

Keep in mind the coordinate system we’ve set up for the display window. For example,
if the center point is changed to (20, 20) and the radius stays at 30, then part of the
circle runs off the edge of the window. In the resulting image, the circle is clipped to just
the part that fits within the window.

Graphics Software

Graphics Software

Finally, how do we go about writing text in the graphics window? The graphics library
again comes to our rescue with a Message class. The Message class contains a function
to create a Message object where the two parameters are the point identifying the
upper left corner of the message, and the text of the message itself (in quotes).

In the program below, we’ve created a rectangle and placed text within the rectangle.

Graphics Software

Here’s what we see when we run this program:

Graphics Software

Graphics Software

With the tools that are available, we seem close to producing elements of a typical GUI.
Can we make the button on this window act like a button on a real GUI form—that is,
can we write code to sense a mouse click on that button and respond with some action?
To do this, we have to be able to sense where the user clicked, that is, to return the
coordinates of the mouse-click point and then test whether those coordinates fall
within the area occupied by the button. That means we have to get input data from the
graphics window. The function get_mouse returns a Point object corresponding to
where the mouse is clicked. Of course we have to have a Point variable to store that
information when it is returned. The get_mouse function also takes a string argument
that serves as a user prompt. (Here we see the usual “prompt user-get input sequence”
all done in one statement.) So we would use a statement such as

Graphics Software

When this statement is executed, the prompt message will appear either at the top or at
the bottom of the graphics window; the current coordinates of the mouse will be
displayed as the mouse moves around within the window. Once the user clicks the
mouse, the point where the mouse click occurred will be stored in the mouse variable.
But we still need to know the coordinates of that point. Two more functions from the
graphics library provide this capability:

Practice

and

Practice

return the x- and y-coordinates of the mouse point. We just need to save those as two
variables in our program and then test those values. In the program below, the first
part creates the button and its text, just as before. The second part posts the prompt,
captures the mouse-click point, extracts the coordinates, and tests whether the point
falls within the button rectangle. An if statement outputs the appropriate message. Of
course in a true windows GUI program, we would expect something more interesting
to happen in response to clicking on a button.

Graphics Software

Graphics Software

Graphics Software

This brief introduction to graphical programming allows you to produce some
interesting images and, even more important, gives you an appreciation for how
visually oriented software is developed.

Practice Problems

Write the sequence of commands to draw the following “house” on

the graphics window.

Graphics Software

Create the house using four rectangles (for the base of the house, the

door, and the two windows), two line segments (for the roof), and one

circle (for the doorknob). Locate the house anywhere you want in the

window.

1.

8Conclusion

In this module we looked at one representative high-level programming language, C++.
Of course, there is much about this language that has been left unsaid, but we have
seen how the use of a high-level language overcomes many of the disadvantages of
assembly language programming, creating a more comfortable and useful
environment for the programmer. In a high-level language, the programmer need not
manage the storage or movement of data values in memory. The programmer can
think about the problem at a higher level, can use program instructions that are both
more powerful and more natural language-like, and can write a program that is much
more portable among various hardware platforms. We also saw how modularization,
through the use of functions and parameters, allows the program to be more cleanly
structured and how object-oriented programming allows a more intuitive view of the
problem solution and provides the possibility for reuse of helpful classes. We even had
a glimpse of graphical programming.

C++ is not the only high-level language. You might be interested in looking at the other
online language modules for languages similar to C++ (Java, Python, C#, Ada). Still other
languages take quite a different approach to problem solving. In Chapter 10 of

Invitation to Computer Science, we look at some other languages and language
approaches and also address the question of why there are so many different
programming languages.

Exercises

Write a C++ declaration for one real number quantity to be called rate.1.

Write a C++ declaration for two integer quantities called orderOne and

orderTwo.

2.

Write a C++ declaration for a constant quantity called

EVAPORATION_RATE, which is to have the value 6.15.

3.

A C++ main function needs one constant STOCK_TIME with a value of 4,

one integer variable inventory, and one real number variable sales. Write

the necessary declarations.

4.

You want to write a C++ program to compute the average of three quiz

grades for a single student. Decide what variables your program needs,

and write the necessary declarations.

5.

Given the declaration

Exercises

how do you refer to the eighth number in the array?

6.

An array declaration such as

Exercises

represents a two-dimensional table of values with 5 rows and 3 columns.

Rows and columns are numbered in C++ starting at 0, not at 1. Given this

declaration, how do you refer to the marked cell below?

EXERCISES

7.

EXERCISES

Write C++ statements to prompt for and collect values for the time in

hours and minutes (two integer quantities).

8.

An output statement may contain more than one variable identifier. Say a

program computes two integer quantities inventoryNumber and

numberOrdered. Write a single output statement that prints these two

quantities along with appropriate text information.

9.

The integer quantities A, B, C, and D currently have the values 13, 4, 621,

and 18, respectively. Write the exact output generated by the following

statement, using b to denote a blank space.

Exercise

10.

Write C++ formatting and output statements to generate the following

output, assuming that density is a type double variable with the value

63.78.

Exercise

11.

What is the output after the following sequence of statements is executed?

(Assume that the integer variables A and B have been declared.)

Exercise

12.

Write the body of a C++ main function that gets the length and width of a

rectangle from the user and computes and writes out the area. Assume

that the variables have all been declared.

13.

a. In the SportsWorld program of Figure 15, the user must respond with

“C” to choose the circumference task. In such a situation, it is preferable

to accept either uppercase or lowercase letters. Rewrite the condition in

14.

the program to allow this.

b. In the SportsWorld program, rewrite the condition for continuation of

the program to allow either an upper-case or a lowercase response.

Write a C++ main function that gets a single character from the user and

writes out a congratulatory message if the character is a vowel (a, e, i, o,

or u), but otherwise writes out a “You lose, better luck next time” message.

15.

Insert the missing line of code so that the following adds the integers from

1 to 10, inclusive.

Exercises

16.

What is the output after the following main function is executed?

Exercises

17.

Write a C++ main function that outputs the even integers from 2 through

30, one per line. Use a while loop.

18.

In a while loop, the Boolean condition that tests for loop continuation is

done at the top of the loop, before each iteration of the loop body. As a

consequence, the loop body might not be executed at all. Our pseudocode

language of Chapter 2 contains a do-while loop construction in which a

test for loop termination occurs at the bottom of the loop rather than at

the top, so that the loop body always executes at least once. C++ contains a

do-while statement that tests for loop continuation at the bottom of the

19.

loop. The form of the statement is

Exercises

where, as usual, S1 can be a compound statement. Write a C++ main

function to add up a number of nonnegative integers that the user

supplies and to write out the total. Use a negative value as a sentinel, and

assume that the first value is nonnegative. Use a do-while statement.

Write a C++ program that asks for a duration of time in hours and

minutes and writes out the duration only in minutes.

20.

Write a C++ program that asks for the user’s age in years. If the user is

under 35, then quote an insurance rate of $2.23 per $100 for life

insurance; otherwise, quote a rate of $4.32.

21.

Write a C++ program that reads integer values until a 0 value is

encountered and then writes out the sum of the positive values read and

the sum of the negative values read.

22.

Write a C++ program that reads in a series of positive integers and writes

out the product of all the integers less than 25 and the sum of all the

integers greater than or equal to 25. Use 0 as a sentinel value.

23.

Write a C++ program that reads in 10 integer quiz grades and

computes the average grade. (Hint: Remember the peculiarity of

integer division.)

a.

Write a C++ program that asks the user for the number of quiz

grades, reads them in, and computes the average grade.

b.

24.

Write a (void) C++ function that receives two integer arguments and

writes out their sum and their product.

25.

Write a (void) C++ function that receives an integer argument

representing the number of DVDs rented so far this month, and a real

number argument representing the sales amount for DVDs sold so far this

month. The function asks the user for the number of DVDs rented today

and the sales amount for DVDs sold today, and then returns the updated

figures to the main function.

26.

Write a (nonvoid) C++ function that receives three integer arguments and

returns the maximum of the three values.

27.

Write a (nonvoid) C++ function that receives miles driven as a type double

argument and gallons of gas used as a type int argument, and returns

miles per gallon.

28.

Write a C++ program that uses an input function to get the miles driven

(type double) and the gallons of gas used (type int), then writes out the

miles per gallon, using the function from Exercise 28.

29.

Write a C++ program to balance a checkbook. The program needs to get

the initial balance, the amounts of deposits, and the amounts of checks.

Allow the user to process as many transactions as desired; use separate

functions to handle deposits and checks.

30.

Write a C++ program to compute the cost of carpeting three rooms. Make

the carpet cost a constant of $8.95 per square yard. Use four separate

functions to collect the dimensions of a room in feet, convert feet into

yards, compute the area, and compute the cost per room. The main

function should use a loop to process each of the three rooms, then add

the three costs, and write out the total cost. (Hint: The function to convert

feet into yards must be used twice for each room, with two different

arguments. Hence, it does not make sense to try to give the parameter the

same name as the argument.)

31.

Write a C++ doPerimeter function for the Rectangle class of Figure

29.

a.

Write C++ code that creates a new Rectangle object called yuri, then

writes out information about this object and its perimeter using the

doPerimeter function from part (a).

b.

32.

Draw a class hierarchy diagram similar to Figure 31for the following

classes: Student, UndergraduateStudent, GraduateStudent, Sophomore,

Senior, PhDStudent.

33.

Imagine that you are writing a program using an object-oriented

programming language. Your program will be used to maintain records

for a real estate office. Decide on one class in your program and a service

that objects of that class might provide.

34.

Determine the resolution of the screen on your computer (ask your

instructor or the local computer center how to do this). Using this

information, determine how many bytes of memory are required for the

frame buffer to store:

35.

A black-and-white image (1 bit per pixel)a.

A grayscale image (8 bits per pixel)b.

A color image (24 bits per pixel)c.

Using the Line function described in Section 7.2, draw an isosceles

triangle with the following configuration:

Exercises

36.

Discuss what problem the display hardware might encounter while

attempting to execute the following operations, and explain how this

problem could be solved.

Exercise

37.

Draw a square with sides 80 pixels in length. Then inscribe a circle of

radius 40 inside the square. Position the square and the inscribed circle in

the middle of the graphics window.

38.

Create the following three labeled rectangular buttons in the graphics

window.

Exercises

Have the space between the Start and Stop buttons be the same as the

space between the Stop and Pause buttons.

39.

Create the following image of a “teeter-totter”:

Exercises

40.

Write a program that inputs the coordinates of three mouse clicks from

the user and then draws a triangle in the graphics window using those

three points.

41.

Chapter : Programming In C++
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

© 2014 Cengage Learning Inc. All rights reserved. No part of this work may by reproduced or used in any form or by any means -
graphic, electronic, or mechanical, or in any other manner - without the written permission of the copyright holder.

1

1.1

1.2

2

3

3.1

3.2

3.3

4

5

5.1

5.2

5.3

6

6.1

6.2

6.3

6.4

Chapter : Programming in Java
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Programming in Java
Online module to accompany Invitation to Computer Science, 6th Edition ISBN-10:
1133190820; ISBN-13: 9781133190820 (Cengage Learning, 2013).

Introduction to Java

A Simple Java Program

Creating and Running a Java Program

Virtual Data Storage

Statement Types

Input/Output Statements

The Assignment Statement

Control Statements

Another Example

Managing Complexity

Divide and Conquer

Using Methods

Writing Methods

Object-Oriented Programming

What Is It?

Java and OOP

One More Example

What Have We Gained?

7

7.1

7.2

8

Figure 1

Graphical Programming

Graphics Hardware

Graphics Software

Conclusion

EXERCISES

ANSWERS TO PRACTICE PROBLEMS

1Introduction to Java

Hundreds of high-level programming languages have been developed; a fraction of
these have become viable, commercially successful languages. There are a half-dozen
or so languages that can illustrate some of the concepts of a high-level programming
language, but this module uses Java for this purpose.

Our intent here is not to make you an expert Java programmer—any more than our
purpose in Chapter 4 was to make you an expert circuit designer. Indeed, there is much
about the language that we will not even discuss. You will, however, get a sense of what
programming in a high-level language is like and perhaps see why some people think it
is one of the most fascinating of human endeavors.

A Simple Java Program

Figure 1 shows a simple but complete Java program. Even if you know nothing about
the Java language, it is not hard to get the general drift of what the program is doing.

A Simple Java Program

Someone running this program (the user) could have the following dialogue with the
program, where boldface indicates what the user types:

To aid our discussion of how the program works, Figure 2 shows the same program
with a number in front of each line. The numbers are there for reference purposes
only; they are not part of the program. Lines 1–3 in the program of Figure 2 are Java
comments. Anything appearing on a line after the double slash symbol (//) is ignored
by the compiler, just as anything following the double dash (--) is treated as a comment
in the assembly language programs of Chapter 6. Although the computer ignores
comments, they are important to include in a program because they give information
to the human readers of the code. Every high-level language has some facility for
including comments, because understanding code that someone else has written (or
understanding your own code after some period of time has passed) is very difficult
without the notes and explanations that comments provide. Comments are one way to
document a computer program to make it more understandable.

Figure 2 The Program of Figure 1 (line numbers added for reference)

Java Is Born

Java was developed at Sun Microsystems, Inc., but its birth as a full-fledged
programming language was almost an accident. In early 1991, Sun created a
team of top-notch software developers and gave them free rein to do whatever
creative thing they wanted. The somewhat secret “Green team” isolated itself
and set to work mapping out a strategy. Its focus was on the consumer
electronics market. Televisions, VCRs, stereo systems, laser disc players, and
video game machines all operated on different CPUs. Over the next 18 months
the team worked to develop the graphical user interface (GUI), a programming
language, an operating system, and a hardware architecture for a handheld
remote-control device called the *7 that would allow various electronic devices
to communicate over a network. In contrast to the high-end workstations that
were a Sun hallmark, the *7 was designed to be small, inexpensive, easy to use,
reliable, and equipped with software that could function over the multiple
hardware platforms of the consumer electronics market.

Armed with this technology, Sun went looking for a business market but found
none. In 1993, Mosaic—the first graphical Internet browser—was created at the
National Center for Supercomputing Applications, and the World Wide Web
began to emerge. This development sent the Sun group in a new direction
where their experience with platform independence, reliability, security, and
GUIs paid off: They wrote a Web browser.

The programming language component of the *7 was named Oak, for a tree
outside language developer James Gosling’s window. Later renamed Java, the
language was used to code the Web browser. The Web browser was released in
1995, and the first version of the Java programming language itself was
released in 1996. Java gained market share among programming languages at
quite a phenomenal rate. Sun released several versions of Java, each succeeding
version with increased capabilities and features. Oracle Corporation bought out
Sun Microsystems in 2010, but continues to support Java language
development.

The comments in lines 1–3 of Figure 2 describe what the program does plus tell who
wrote the program and when. These three comment lines together make up the
program’s prologue comment (the introductory comment that comes first). A prologue
comment is always a good idea; it’s almost like the headline in a newspaper, giving the
big picture up front.

Blank lines in Java programs are ignored and are used, like comments, to make the
program more readable by human beings. In our example program, we’ve used blank
lines (lines 4, 14, 19, 21) to separate sections of the program, visually indicating groups
of statements that are related.

Line 5 is an import statement asking the linker to include object code from a Java
library or package. Line 6 is a class header, which announces that a class is about to
be defined. The class is named TravelPlanner, and the curly braces at lines 7 and 26
mark the beginning and end of this class definition. All Java code (except for comments
and import statements) must be either a class header or inside a class definition. The
word “public” in line 6 denotes that the TravelPlanner class is available to any other
program that might want to make use of it.

We will have much more to say about classes later. For now, just think of a class as a
collection of sections of code called methods that are able to perform various related
services. In the TravelPlanner class, there is only one method, the main method. The
service it performs is to compute and write out the time to travel a given distance at a
given speed. Line 8,

is the header for the main method. It is not necessary to understand this somewhat

obscure code; just remember that every Java program must have a main method and
that all main methods start out exactly this way. The curly braces at lines 9 and 25
enclose the main method body, which is the heart of the sample program. Lines 10–12
are declarations that name and describe the items of data that are used within the
main method. Descriptive names— speed, distance, and time—are used for these
quantities to help document their purpose in the program, and comments provide
further clarification. Line 10 describes an integer quantity (type “int”) called speed.
Lines 11 and 12 declare distance and time as real number quantities (type “double”). A
real number quantity is one containing a decimal point, such as 28.3, 102.0, or –17.5.
Line 13 declares inp as an object of the Scanner class that will be used to collect input
from the user; we’ll explain this in more detail later.

Lines 15–18 prompt the user to enter values for speed and distance and store those
values in speed and distance. Line 20 computes the time required to travel this distance
at this speed. Finally, lines 22–24 print the two lines of output to the user’s screen. The
values of speed, time, and distance are inserted in appropriate places among the strings
of text shown in double quotes.

You may have noticed that most of the statements in this program end with a
semicolon. A semicolon must appear at the end of every executable Java instruction,
which means everywhere except at the end of a comment or at the end of a class
header such as

or a method header such as

Java, along with every other programming language, has specific rules of syntax—the
correct form for each component of the language. Having a semicolon at the end of
every executable statement is a Java syntax rule. Any violation of the syntax rules
generates an error message from the compiler, because the compiler does not
recognize or know how to translate the offending code. In the case of a missing
semicolon, the compiler cannot tell where the instruction ends. The syntax rules for a
programming language are often defined by a formal grammar, much as correct
English syntax is defined by rules of grammar.

Java is a free-format language, which means that it does not matter where things are
placed on a line. For example, we could have written

although this is clearly harder to read. The free-format characteristic explains why a
semicolon is needed to mark the end of an instruction, which might be spread over

several lines.

Creating and Running a Java Program

Creating and running a Java program is basically a three-step process. The first step is
to type the program into a text editor. When you are finished, you save the file using
the same name as the class, with the file extension.java. So the file for Figure 1 is
named

As the second step, the program in the.java file must be compiled using a Java compiler
for your computer; for our example program, the result is a file called

that contains low-level code called bytecode, which is not yet object code. The third
step operates on the.class file; it finishes the translation to object code and links, loads,
and executes your program. Depending on your system, you may have to type
operating system commands for the last two steps.

Another approach is to do all of your work in an Integrated Development
Environment, or IDE. The IDE lets the programmer perform a number of tasks within
the shell of a single application program, rather than having to use a separate program
for each task. A modern programming IDE provides a text editor, a file manager, a
compiler, a linker and loader, and tools for debugging, all within this one piece of
software. The IDE usually has a GUI (graphical user interface) with menu choices for
the different tasks. This can significantly speed up program development.

This Java exercise is just a beginning. In the rest of this chapter, we’ll examine the
features of the language that will enable you to write your own Java programs to carry
out more sophisticated tasks.

Java Compilers

You can download a free Java command-line compiler from

http://www.oracle.com/technetwork/java/index.html

Look for the Java SE Development Kit (JDK). There are versions for Linux and
Windows. The JDK came pre-installed on Mac OS X systems through OS X 10.6,
but that may not be the case for later versions of the operating system.

There are also a number of Java GUI IDEs available, such as the free Dr. Java
compiler that runs on top of the JDK and can be downloaded from

www.cs.rice.edu/~javaplt/drjava/

2Virtual Data Storage

One of the improvements we seek in a high-level language is freedom from having to
manage data movement within memory. Assembly language does not require us to give
the actual memory address of the storage location to be used for each item, as in
machine language. However, we still have to move values, one by one, back and forth
between memory and the arithmetic logic unit (ALU) as simple modifications are made,
such as setting the value of A to the sum of the values of B and C. We want the
computer to let us use data values by name in any appropriate computation without
thinking about where they are stored or what is currently in some register in the ALU.
In fact, we do not even want to know that there is such a thing as an ALU, where data
are moved to be operated on. Instead, we want the virtual machine to manage the
details when we request that a computation be performed. A high-level language
allows this, and it also allows the names for data items to be more meaningful than in
assembly language.

Names in a programming language are called dentifiers. Each language has its own
specific rules for what a legal identifier can look like. In Java, an identifier can be any
combination of letters, digits, and the underscore symbol (_), as long as it does not
begin with a digit. An additional restriction is that an identifier cannot be one of the
few keywords, such as “class,” “public,” “int,” and so forth, that have a special meaning
in Java and that you would not be likely to use anyway. The three integers B, C, and A in
our assembly language program can therefore have more descriptive names, such as
subTotal, tax, and finalTotal. The use of descriptive identifiers is one of the greatest aids
to human understanding of a program. Identifiers can be almost arbitrarily long, so be
sure to use a meaningful identifier such as finalTotal instead of something like A; the
improved readability is well worth the extra typing time. Java is a case-sensitive
language, which means that uppercase letters are distinguished from lowercase letters.
Thus, FinalTotal, Finaltotal, and final-Total are three different identifiers.

Capitalization of Identifiers

There are two standard capitalization patterns for identifiers, particularly
“multiple word” identifiers:

camel case: First word begins with a lowercase letter, additional words begin
with uppercase letters (finalTotal)

Pascal case: All words begin with an uppercase letter (FinalTotal)

The code in this chapter uses the following convention for creating identifiers
(examples included):

Simple variables – camel case: speed, time, finalTotal

Named constants – all uppercase: PI, FREEZING_POINT

Method names – camel case: myMethod, getInput

Class names – Pascal case: MyClass

Object names – camel case: myObject

The underscore character is not used except for named constants. Occasionally,
however, we’ll use single capital letters for identifiers in quick code fragments.

Data that a program uses can come in two varieties. Some quantities are fixed
throughout the duration of the program, and their values are known ahead of time.
These quantities are called constants. An example of a constant is the integer value 2.
Another is an approximation to p, say 3.1416. The integer 2 is a constant that we don’t
have to name by an identifier, nor do we have to build the value 2 in memory manually
by the equivalent of a.DATA pseudo-op. We can just use the symbol “2” in any program
statement. When “2” is first encountered in a program statement, the binary
representation of the integer 2 is automatically generated and stored in a memory
location. Likewise, we can use “3.1416” for the real number value 3.1416, but if we are
really using this number as an approximation to p, it is more informative to use the
identifier PI.

Some quantities used in a program have values that change as the program executes,
or values that are not known ahead of time but must be obtained from the computer
user (or from a data file previously prepared by the user) as the program runs. These
quantities are called variables. For example, in a program doing computations with
circles (where we might use the constant PI), we might need to obtain from the user or
a data file the radius of the circle. This variable can be given the identifier radius.

Identifiers for variables serve the same purpose in program statements as pronouns do
in ordinary English statements. The English statement “He will be home today” has
specific meaning only when we plug in the value for which “He” stands. Similarly, a
program statement such as

becomes an actual computation only when numeric values have been stored in the
memory locations referenced by the distance and speed identifiers.

We know that all data are represented internally in binary form. In Chapter 4 we noted
that any one sequence of binary digits can be interpreted as a whole number, a
negative number, a real number (one containing a decimal point, such as –17.5 or
28.342), or as a letter of the alphabet. Java requires the following information about
each variable in the program:

What identifier we want to use for it (its name)

What data type it represents (e.g., an integer or a letter of the alphabet)

The data type determines how many bytes will be needed to store the variable—that is,
how many memory cells are to be considered as one memory location referenced by
one identifier—and also how the string of bits in that memory location is to be
interpreted. Java provides several “primitive” data types that represent a single unit of
information, as shown in Figure 3.

Figure 3

Some of the Java Primitive Data Types

The way to give this information within a Java program is to declare each variable. A
variable declaration consists of a data type followed by a list of one or more
identifiers of that type. Our sample program used three declaration statements:

but these could have been combined into two:

Where do the variable declarations go? Although the only requirement is that a
variable must be declared before it can be used, all variable declarations are usually
collected together at the top of the main method, as in our sample program. This also
gives the reader of the code quick information about the data that the program will be
using.

What about the constant PI ? We want to assign the fixed value 3.1416 to the PI
identifier. Constant declarations are just like variable declarations, with the addition of
the keyword final and the assignment of the fixed value to the constant identifier.

Many programmers use all uppercase letters to denote constant identifiers, but the
compiler identifies a constant quantity only by the presence of final in the declaration.
Once a quantity has been declared as a constant, any attempt later in the program to
change its value generates an error message from the compiler.

In addition to variables of a primitive data type that hold only one unit of information,
it is possible to declare a whole collection of related variables at one time. This allows
storage to be set aside as needed to contain each of the values in this collection. For
example, suppose we want to record the number of hits on a Web site for each month
of the year. The value for each month is a single integer. We want a collection of 12
such integers, ordered in a particular way. An array groups together a collection of
memory locations, all storing data of the same type. The following statement declares
an array:

The left side of the equals sign says that hits is an array of integers; the right side of the
equals sign actually generates (new) memory locations for 12 integer quantities. The 12
individual array elements are numbered from hits[0] to hits[11]. (Notice that a Java
array counts from 0 up to 11, instead of from 1 up to 12.) Thus, we use hits[0] to refer to
the first entry in hits, which represents the number of visits to the Web site during the
first month of the year, January. Continuing this numbering scheme, hits[2] refers to
the number of visits during March, and hits[11] to the number of visits during
December. In this way we use one declaration to cause 12 separate (but related) integer
storage locations to be set up. Figure 4 illustrates this array.

Figure 4

A 12-Element Array hits

Here is an example of the power of a high-level language. In assembly language, we
can name only individual memory locations—that is, individual items of data—but in
Java we can also assign a name to an entire collection of related data items. An array
thus allows us to talk about an entire table of values, or the individual elements making
up that table. If we are writing Java programs to implement the data cleanup
algorithms of Chapter 3, we can use an array of integers to store the 10 data items.

Practice Problems

Which of the following are legitimate Java identifiers?

martinBradley C3P_OH Amy3 3Right double

1.

Write a declaration for a Java program that uses one integer quantity

called number.

2.

Write a Java statement that declares a type double constant called

TAX_RATE that has the value 5.5.

3.

Using the hits array of Figure 4 how do you reference the number of

hits on the Web page for August?

4.

3Statement Types

Now that we can reserve memory for data items simply by naming what we want to
store and describing its data type, we will examine additional kinds of programming
instructions (statements) that Java provides. These statements enable us to manipulate
the data items and do something useful with them. The instructions in Java, or indeed
in any high-level language, are designed as components for algorithmic problem
solving, rather than as one-to-one translations of the underlying machine language
instruction set of the computer. Thus, they allow the programmer to work at a higher
level of abstraction. In this section we examine three types of high-level programming
language statements. They are consistent with the pseudocode operations described in
Chapter 2 (see Figure 2.9).

Input/output statements make up one type of statement. An input statement collects
a specific value from the user for a variable within the program. In our TravelPlanner
program, we need input statements to get the values of the speed and distance that are
to be used in the computation. An output statement writes a message or the value of a
program variable to the user’s screen. Once the TravelPlanner program computes the
time required to travel the given distance at the given speed, the output statement
displays that value on the screen.

Another type of statement is the assignment statement, which assigns a value to a
program variable. This is similar to what an input statement does, except that the value
is not collected directly from the user, but is computed by the program. In pseudocode
we called this a “computation operation.”

Control statements, the third type of statement, affect the order in which instructions
are executed. A program executes one instruction or program statement at a time.
Without directions to the contrary, instructions are executed sequentially, from first to
last in the program. (In Chapter 2 we called this a straight-line algorithm.) Imagine
beside each program statement a light bulb that lights up while that statement is being
executed; you would see a ripple of lights from the top to the bottom of the program.
Sometimes, however, we want to interrupt this sequential progression and jump
around in the program (which is accomplished by the instructions JUMP, JUMPGT, and
so on, in assembly language). The progression of lights, which may no longer be
sequential, illustrates the flow of control in the program—that is, the path through the
program that is traced by following the currently executing statement. Control
statements direct this flow of control.

Input/output Statements

Remember that the job of an input statement is to collect from the user specific values
for variables in the program. In pseudocode, to get the value for speed in the
TravelPlanner program, we would say something like

The core Java language does not provide a convenient way to collect user data entered
at the keyboard. However, a Java class, called the Scanner class, has been written that
provides an easy way to do this. Although we still have no definition of what a “class”
is, other than that it contains sections of code called methods, the object code for useful
classes is stored in code libraries. In order to access the Scanner class code, we need to
use an import statement. The Scanner class is found in the Java “utility” library, so our
TravelPlanner program begins with

The * is a “wild card” designation, so the above statement asks the linker to include
object code for all of the classes in the utility library, which includes the Scanner class.
The utility library also includes other classes that we don’t need for the TravelPlanner
program, but the extra object code does no harm and keeps our import statement
simple and easy to remember. The object code gets linked into the object code for our
program, so we use the Scanner class code without ever seeing it. All we need to know
is the services it provides and how to use those services properly. This is in the same
spirit of abstraction that led to the development of high-level languages in the first
place.

The Scanner class actually represents a new data type (not one of the primitive data
types such as int or double). Before we can make use of the Scanner class methods, we
must declare a variable (an object) of the Scanner data type. The following statement in
the TravelPlanner program

declares inp as an object of the Scanner class. There is nothing special about the
identifier inp; it suggests “input,” but any legal Java identifier could be used here.
System.in indicates that the source of the input will be the keyboard. The inp object
now has access to these useful Scanner methods

Finally, in the statement

the inp object uses the nextInt() method to read input from the keyboard and store it in
the previously declared int variable speed. (Recall that all variables must be declared
before they can be used.)

Similarly, the statement to read in the value for distance that the user enters at the
keyboard is

You cannot use

if SomeVariable has been declared as type int. The Java compiler will give you an error
message about “incompatible types.”

The value of the time can be computed and stored in the memory location referenced
by time. A pseudocode operation for producing output would be something like

Print the value of time

This could be done in Java by the following statement:

System.out is a predefined object of a class with a println method that writes output to
the screen; in the above statement, the object is using that println method. But we don’t
want the program to simply print a number with no explanation; we want some words
to make the output meaningful.

The general form of the output statement is

The difference between System.out.println and System.out.print is that after the println
statement, the screen cursor moves to the next line where any subsequent output will
appear, whereas after a print statement, the cursor remains on the same line. The
string in the output statement could be empty, as follows:

This just prints a blank line, which is useful for formatting the output to make it easier
to read. The string can also be a literal string (enclosed in double quotes). Literal
strings are printed out exactly as is. For example,

prints

A string can also be composed of items joined by +, the concatenation operator. The
items can be literal strings, numbers, or variables. Items that are not themselves literal
strings are converted to strings for the purposes of writing them out. For example,

prints the line

on the screen. If we want a space between “me” and “5”, then we make that space part
of the literal string, as in

If number is an integer variable with current value 5, then the same output is produced
by

The concatenation operator is also helpful when trying to write out a long literal string;
whereas a single Java statement can be spread over multiple lines, a line break cannot
occur in the middle of a literal string. The solution is to make two smaller substrings
and concatenate them, as in

Literal strings and variables can be concatenated together in all sorts of combinations,
as long as the quotation marks and + signs appear in the right places. Consider again
the output statements in the TravelPlanner program:

Let’s back up a bit and note that we also need to print some text information before the
input statement, to alert the user that the program expects some input. A statement
such as

acts as a user prompt. Without a prompt, the user may be unaware that the program is
waiting for some input; instead, it may simply seem to the user that the program is
“hung up.”

Assembling all of these bits and pieces, we can see that is a series of prompt, input,
prompt, input statements to get the data, and then writes out the computed value of
time along with the associated input values in an informative message. In the middle,
we need a program statement to compute the value of time. We can do this with a
single assignment statement; the assignment statement is explained in the next section.

In our sample execution of the TravelPlanner program, we got the following output:

This is fairly ridiculous output—it does not make sense to display the result to 15
decimal digits. Exercise 11 at the end of this module tells you how decimal output can
be formatted to a specified number of decimal places.

Practice Problems

Write two statements that prompt the user to enter an integer value

and store that value in a (previously declared) variable called

quantity.

1.

A program has computed a value for the variable average that

represents the average high temperature in San Diego for the month

of May. Write an appropriate output statement.

2.

What appears on the screen after execution of the following

statement?

System.out.println(“This is” + “goodbye” + “, Steve”);

3.

The Assignment Statement

As we said earlier, an assignment statement assigns a value to a program variable. This
is accomplished by evaluating some expression and then writing the resulting value in
the memory location referenced by the program variable. The general pseudocode
operation has as its Java equivalent

Set the value of “variable” to “arithmetic expression”

variable = expression;

The expression on the right is evaluated, and the result is then written into the memory
location named on the left. For example, suppose that A, B, and C have all been
declared as integer variables in some program. The assignment statements

result in B taking on the value 2 and C taking on the value 5. After execution of

A has the value that is the sum of the current values of B and C. Assignment is a
destructive operation, so whatever A’s previous value was, it is gone. Note that this one
assignment statement says to add the values of B and C and assign the result to A. This
one high-level language statement is equivalent to three assembly language statements
needed to do this same task (LOAD B, ADD C, STORE A). A high-level language program
thus packs more power per line than an assembly language program. To state it
another way, whereas a single assembly language instruction is equivalent to a single
machine language instruction, a single Java instruction is usually equivalent to many

assembly language instructions or machine language instructions, and it allows us to
think at a higher level of problem solving.

In the assignment statement, the expression on the right is evaluated first. Only then is
the value of the variable on the left changed. This means that an assignment statement
like

makes sense. If A has the value 7 before this statement is executed, then the expression
evaluates to

and 8 then becomes the new value of A. (Here it becomes obvious that the assignment
instruction symbol = is not the same as the mathematical equals sign =, because A = A +
1 does not make sense mathematically.)

All four basic arithmetic operations can be done in Java, denoted by

For the most part, this is standard mathematical notation rather than the somewhat
verbose assembly language op code mnemonics such as SUBTRACT. The reason a
special symbol is used for multiplication is that X would be confused with x, an
identifier, • (a multiplication dot) doesn’t appear on the keyboard, and juxtaposition
(writing AB for A*B) would look like a single identifier named AB.

We do have to pay some attention to data types. In particular, division has one
peculiarity. If at least one of the two values being divided is a real number, then
division behaves as we expect. Thus,

all result in the value 3.5. However, if the two values being divided are both integers,
the result is an integer value; if the division doesn’t “come out even,” the integer value
is obtained by truncating the answer to an integer quotient. Thus,

results in the value 3. Think of grade-school long division of integers:

Here the quotient is 3 and the remainder is 1. Java also provides an operation, with the
symbol %, to obtain the integer remainder. Using this operation,

results in the value 1.

If the values are stored in type int variables, the result is the same. For example,

produces the output

As soon as an arithmetic operation involves one or more real (decimal) numbers, any
integers are converted to their real number equivalent, and the calculations are done
with real numbers.

Data types also play a role in assignment statements. Suppose the expression in an
assignment statement evaluates to a real number, and your program tries to assign it to
an identifier that has been declared as an integer. The Java compiler gives you an error
message stating that you have incompatible types. (We mentioned that this same
problem occurs if you try to use the nextDouble() input method from the Scanner class
and assign the result to an integer variable.) In fact, the error message goes on to say
that you need to do an “explicit cast” to convert double to int. Java is saying that if you
want to throw away the noninteger part of a decimal number by storing it in an
integer, you’re going to have to write code to do that. However, you can assign an
integer value to a type double variable (or input an integer value to a type double
variable). Java does this type casting (changing of data type) automatically. This type
cast would merely change the integer 3, for example, to its real number equivalent 3.0.

This explains why we declared distance to be type double in the TravelPlanner
program. The user can enter an integer value for distance, and Java will type cast it to a
real number. But if we had declared both speed and distance to be integers, then the
division to compute time would only produce integer answers.

You should assign only an expression that has a character value to a variable that has
been declared to be type char. Suppose that Letter is a variable of type char. Then

is a legitimate assignment statement, giving Letter the value of the character ‘m’. Note
that single quotation marks are used here, as opposed to the double quotation marks
that enclose a literal string. The assignment;

is also acceptable; the single quotes around the 4 mean that it is being treated as just
another character on the keyboard, not as the integer 4.

Java requires that all variables have a value before they are used. It is a good idea to
get into the habit of initializing variables as soon as they are declared, using an
assignment statement. For example, you can declare and then initialize a variable by

but Java also allows you to combine these two statements into one:

This statement is equivalent to the assembly language statement

that reserves a memory location, assigns it the identifier COUNT, and fills it with the
value zero.

Practice Problems

newNumber and next are integer variables in a Java program. Write a

statement to assign the value of newNumber to next.

1.

What is the value of Average after the following statements are

executed? (Note: total and number are type int, and average is type

double.)

total = 277;

number = 5;

average = total/number;

2.

Control Statements

We mentioned earlier that sequential flow of control is the default; that is, a program
executes instructions sequentially from first to last. The flowchart in Figure 5
illustrates this, where S1, S2,…, Sk are program instructions (program statements).

As stated in Chapter 2, no matter how complicated the task to be done, only three types
of control mechanisms are needed:

Sequential: Instructions are executed in order.

Figure 5

Sequential Flow of Control

1.

Conditional: Which instruction executes next depends on some condition.2.

Looping: A group of instructions may be executed many times.3.

Sequential flow of control, the default, is what occurs if the program does not contain
any instances of the other two control structures. In the TravelPlanner program, for
instance, instructions are executed sequentially, beginning with the input statements,
next the computation, and finally the output statement.

In Chapter 2 we introduced pseudocode notation for conditional operations and
looping. In Chapter 6 we learned how to write somewhat laborious assembly language
code to implement conditional operations and looping. Now we’ll see how Java
provides instructions that directly carry out these control structure
mechanisms—more evidence of the power of high-level language instructions. We can
think in a pseudocode algorithm design mode, as we did in Chapter 2, and then
translate that pseudocode directly into Java code.

Conditional flow of control begins with the evaluation of a Boolean condition, also
called a Boolean expression, which can be either true or false. We discussed these
“true/false conditions” in Chapter 2, and we also encountered Boolean expressions in
Chapter 4, where they were used to design circuits. A Boolean condition often involves
comparing the values of two expressions and determining whether they are equal,
whether the first is greater than the second, and so on. Again assuming that A, B, and C
are integer variables in a program, the following are legitimate Boolean conditions:

If the current values of A, B, and C are 2, 5, and 7, respectively, then the first condition
is false (A does not have the value zero), the second condition is true (5 is less than 2
plus 7), and the third condition is true (A and B do not have equal values).

Comparisons need not be numeric. They can also be made between variables of type
char, where the “ordering” is the usual alphabetic ordering. If initial is a value of type
char with a current value of ‘D’, then

is false because initial does not have the value ‘F’, and

is true because ‘D’ precedes ‘P’ in the alphabet (or, more precisely, because the binary
code for ‘D’ is numerically less than the binary code for ‘P’). Note that the comparisons
are case sensitive, so ‘F’ is not equal to ‘f ’, but ‘F’ is less than ‘f ’.

Figure 6 shows the comparison operators available in Java. Note the use of the two
equality signs to test whether two expressions have the same value. The single equality
sign is used in an assignment statement, the double equality sign in a comparison.

Figure 6

Java Comparison Operators

COMPARISON SYMBOL EXAMPLE EXAMPLE
RESULT

the same
value as

== 2 == 5 false

less than < 2 < 5 true

less than or
equal to

<= 5 <= 5 true

greater than > 2 > 5 false

greater than
or equal to

>= 2 >= 5 false

not the same
value as

!= 2 >= 5 true

Boolean conditions can be built up using the Boolean operators AND, OR, and NOT.
Truth tables for these operators were given in Chapter 4 (Figures 4.12–4.14). The only
new thing is the symbols Java uses for these operators, shown in Figure 7.

Figure 7

Java Boolean Operators

OPERATOR SYMBOL EXAMPLE EXAMPLE
RESULT

AND && (2 < 5)
&& (2 >
7)

false

OPERATOR SYMBOL EXAMPLE EXAMPLE
RESULT

OR || (2 < 5) ||
(2 > 7)

true

NOT ! !(2 == 5) true

A conditional statement relies on the value of a Boolean condition (true or false) to
decide which programming statement to execute next. If the condition is true, one
statement is executed next, but if the condition is false, a different statement is
executed next. Control is therefore no longer in a straight-line (sequential) flow, but
may hop to one place or to another. Figure 8 illustrates this situation. If the condition is
true, the statement S1 is executed (and statement S2 is not); if the condition is false, the
statement S2 is executed (and statement S1 is not). In either case, the flow of control
then continues on to statement S3. We saw this same scenario when we discussed
pseudocode conditional statements in Chapter 2 (Figure 2.4).

Figure 8

Conditional Flow of Control (if-else)

The Java instruction that carries out conditional flow of control is called an if-else
statement. It has the following form (note that the words if and else are lowercase, and
that the Boolean condition must be in parentheses):

if (Boolean condition)

S1;

else

S2;

Below is a simple if-else statement, where we assume that A, B, and C are integer
variables:

Suppose that when this statement is reached, the values of A, B, and C are 2, 5, and 7,
respectively. As we noted before, the condition B < (A + C) is then true, so the statement

is executed, and the value of A is changed to 4. However, suppose that when this
statement is reached, the values of A, B, and C are 2, 10, and 7, respectively. Then the
condition B < (A + C) is false, the statement

is executed, and the value of A is changed to 6.

A variation on the if-else statement is to allow an “empty else” case. Here we want to do
something if the condition is true, but if the condition is false, we want to do nothing.
Figure 9 illustrates the empty else case. If the condition is true, statement S1 is
executed, and after that the flow of control continues on to statement S3, but if the
condition is false, nothing happens except to move the flow of control directly on to
statement S3.

Figure 9

if-else with Empty else

This if variation of the if-else statement can be accomplished by omitting the word else.
This form of the instruction therefore looks like

We could write

This has the effect of doubling the value of A if the condition is true and of doing
nothing if the condition is false.

It is possible to combine statements into a group by putting them within the curly
braces { and }. The group is then treated as a single statement, called a compound
statement. A compound statement can be used anywhere a single statement is
allowed. For example,

Figure 10

is treated as a single statement. The implication is that in Figure 8, S1 or S2 might be
compound statements. This makes the if-else statement potentially much more
powerful, and similar to the pseudocode conditional statement in Figure 2.9.

Let’s expand on our TravelPlanner program and give the user of the program a choice
of computing the time either as a decimal number (3.75 hours) or as hours and minutes
(3 hours, 45 minutes). This situation is ideal for a conditional statement. Depending on
what the user wants to do, the program does one of two tasks. For either task, the
program still needs information about the speed and distance. The program must also
collect information to indicate which task the user wishes to perform. We need an
additional variable in the program to store this information. Let’s use a variable called
choice of type char to collect the user’s choice of which task to perform. We also need
two new integer variables to store the values of hours and minutes.

There is one little glitch in collecting input of type char. While the Scanner class has
nice input methods for reading type integer values (extent()) and type double values
(nextDouble ()), there is, unfortunately, no “nextChar()” method. There is, however, a
next() method that reads in a string of characters. What we will do is declare a variable
of type String (not a primitive data type of Java, but available for use in any Java
program), read in a string, and then use the String method charAt(index) to peel off the
first character of the string, which will be at index 0. Strings, like arrays, are counted
from location 0, not location 1.

Figure 10 shows the new program. Note that all variables are now initialized as part of
the declaration. The condition evaluated at the beginning of the if-else statement tests
whether choice has the value ‘D’. If so, then the condition is true, and the first group of
statements is executed—that is, the time is output in decimal format as we have been
doing all along. If choice does not have the value ‘D’, then the condition is false. In this
event, the second group of statements is executed. Note that because of the way the
condition is written, if choice does not have the value ‘D’, it is assumed that the user
wants to compute the time in hours and minutes, even though choice may have any
other value besides ‘D’ (including ’d’) that the user may have typed in response to the
prompt.

The TravelPlanner Program with a Conditional Statement

To compute hours and minutes (the “else” clause of the if-else statement), time is
computed in the usual way, which results in a decimal value. The whole number part
of that decimal is the number of hours needed for the trip. We can get this number by
type casting the decimal number to an integer. This is accomplished by

which drops all digits behind the decimal point and stores the resulting integer value in
hours. To find the fractional part of the hour that we dropped, we subtract hours from
time. We multiply this by 60 to turn it into some number of minutes, but this is still a
decimal number. We do another type cast to truncate this to an integer value for
minutes:

For example, if the user enters data of 50 mph and 475 miles and requests output in
hours and minutes, the following table shows the computed values.

Here is the actual program output for this case:

The two statement groups in an if-else statement are identified by the enclosing curly
braces, but in Figure 10 we also indented them to make them easier to pick out when
looking at the program. Like comments, indentation is ignored by the computer but is
valuable in helping people to more readily understand a program.

Now let’s look at the third variation on flow of control, namely looping (iteration). We
want to execute the same group of statements (called the loop body) repeatedly,
depending on the result of a Boolean condition. As long as (while) the condition
remains true, the loop body is executed. The condition is tested before each execution
of the loop body. When the condition becomes false, the loop body is not executed
again, which is usually expressed by saying that the algorithm exits the loop. To ensure
that the algorithm ultimately exits the loop, the condition must be such that its truth
value can be affected by what happens when the loop body is executed. Figure 11
illustrates the while loop. The loop body is statement S1 (which can be a compound
statement), and S1 is executed while the condition is true. Once the condition is false,
the flow of control moves on to statement S2. If the condition is false when it is first
evaluated, then the body of the loop is never executed at all. We saw this same scenario
when we discussed pseudocode looping statements in Chapter 2 (Figure 2.6).

Figure 11

While Loop

Java uses a while statement to implement this type of looping. The form of the
statement is

For example, suppose we want to write a program to add a sequence of nonnegative
integers that the user supplies and write out the total. We need a variable to hold the
total; we’ll call this variable sum and make its data type int. To handle the numbers to
be added, we could declare a bunch of integer variables such as n1, n2, n3,& and do a
series of input-and-add statements of the form

and so on. There are two problems with this approach. The first is that we may not
know ahead of time how many numbers the user wants to add. If we declare variables
n1, n2,&, n25, and the user wants to add 26 numbers, the program won’t do the job. The
second problem is that this approach requires too much effort. Suppose that we know
the user wants to add 2000 numbers. We could declare 2000 variables, (n1,&, n2000),
and we could write the above input-and-add statements 2000 times, but it wouldn’t be
fun. Nor is it necessary—we are doing a very repetitive task here, and we should be

able to use a loop mechanism to simplify the job. (We faced a similar situation in the
first pass at a sequential search algorithm, Figure 2.11; our solution there was also to
use iteration.)

Even if we use a loop mechanism, we are still adding a succession of values to sum.
Unless we are sure that the value of sum is zero to begin with, we cannot be sure that
the answer isn’t nonsense. When we declare and initialize the variable sum, we should
set its value to zero.

Now on to the loop mechanism. First, let’s note that once a number has been read in
and added to sum, the program doesn’t need to know the value of the number any
longer. We can declare just one integer variable called number, and use it repeatedly to
hold the first numerical value, then the second, and so on.

The general idea is then

Now we have to figure out what the condition “there are more numbers to add” really
means. Because we are adding nonnegative integers, we could ask the user to enter one
extra integer that is not part of the legitimate data but is instead a signal that there are
no more data. Such a value is called a sentinel value. For this problem, any negative
number would be a good sentinel value. Because the numbers to be added are all
nonnegative, the appearance of a negative number signals the end of the legitimate
data. We don’t want to process the sentinel value (because it is not a legitimate data
item); we only want to use it to terminate the looping process. This might suggest the
following code:

Here’s the problem. How can we test whether number is greater than or equal to 0 if we
haven’t read the value of number yet? We need to do a preliminary input for the first
value of number outside of the loop, then test that value in the loop condition. If it is
nonnegative, we want to add it to sum and then read the next value and test it.
Whenever the value of number is negative (including the first value), we want to do
nothing with it—that is, we want to avoid executing the loop body. The following
statements do this; we’ve also added instructions to the user.

The value of number gets changed within the loop body by reading in a new value. The
new value is tested, and if it is nonnegative, the loop body executes again, adding the
data value to sum and reading in a new value for number. The loop terminates when a
negative value is read in. Remember the requirement that something within the loop
body must be able to affect the truth value of the condition. In this case, it is reading in
a new value for number that has the potential to change the value of the condition from
true to false. Without this requirement, the condition, once true, would remain true
forever, and the loop body would be endlessly executed. This results in what is called
an infinite loop. A program that contains an infinite loop will execute forever (or until
the programmer gets tired of waiting and interrupts the program, or until the program
exceeds some preset time limit).

Here is a sample of the program output.

The problem we’ve solved here, adding nonnegative integers until a negative sentinel
value occurs, is the same one solved using assembly language in Chapter 6. The Java

Figure 12

code above is almost identical to the pseudocode version of the algorithm shown in
Figure 6.7. Thanks to the power of the language, the Java code embodies the algorithm
directly, at a high level of thinking, whereas in assembly language this same algorithm
had to be translated into the lengthy and awkward code of Figure 6.8.

To process data for a number of different trips in the TravelPlanner program, we could
use a while loop. During each pass through the loop, the program computes the time
for a given speed and distance. The body of the loop is therefore exactly like our
previous code. All we are adding here is the framework that provides looping. To
terminate the loop, we could use a sentinel value, as we did for the program above. A
negative value for speed, for example, is not a valid value and could serve as a sentinel
value. Instead of that, let’s allow the user to control loop termination by having the
program ask the user whether he or she wishes to continue. We’ll need a variable to
hold the user’s response to this question. Of course, the user could answer “N” at the
first query, the loop body would never be executed at all, and the program would
terminate. Figure 12 shows the complete program.

The TravelPlanner Program with Looping

Practice Problems

What is the output from the following section of code?

int number1 = 15;

int number2 = 7;

if (number1 >= number2) System.out.println(2*number1);

else

System.out.println(2*number2);

1.

What is the output from the following section of code?2.

What is the output from the following section of code?3.

How many times is the output statement executed in the following4.

Figure 13

section of code?

Write a Java statement that outputs "Equal" if the integer values of

night and day are the same, but otherwise does nothing.

5.

4Another Example

Let’s briefly review the types of Java programming statements we’ve learned. We can
do input and output—reading values from the user into memory, writing values out of
memory for the user to see, being sure to use meaningful variable identifiers to
reference memory locations. We can assign values to variables within the program.
And we can direct the flow of control by using conditional statements or looping.
Although there are many other statement types available in Java, you can do almost
everything using only the modest collection of statements we’ve described. The power
of Java lies in how these statements are combined and nested within groups to produce
ever more complex courses of action.

For example, suppose we write a program to assist SportsWorld, a company that
installs circular swimming pools. In order to estimate their costs for swimming pool
covers or for fencing to surround the pool, SportsWorld needs to know the area or
circumference of a pool, given its radius. A pseudocode version of the program is
shown in Figure 13.

A Pseudocode Version of the SportsWorld Program

Figure 14

We should be able to translate this pseudocode fairly directly into the body of the main
method. Other things we need to add to complete the program are

A prologue comment to explain what the program does (optional but always

recommended for program documentation)

An import statement so we can use the Scanner class for collecting input

The class header; we’ll call the class SportsWorld

The main method header; remember this is always

public static void main(String[] args)

Variable declarations

Finally, the computations for circumference and area both involve the constant pi (p).
We could use some numerical approximation for pi each time it occurs in the program,
but the Math class of the standard Java library already defines the constant PI. We can
invoke this constant value by writing

Figure 14 gives the complete program; the prologue comment notes the use of the Math
class. Figure 15 shows what actually appears on the screen when this program is
executed with some sample data.

The SportsWorld Program

Figure 15 A Sample Session Using the Program of Figure 14

It is inappropriate (and messy) to output the value of the area to 14 or 15 decimal
places based on a value of the radius given to one or two decimal places of accuracy.
Exercise 11 at the end of this chapter tells how to format real number output to a
specified number of decimal digits.

Practice Problems

Write a complete Java program to read in the user’s first and last

initials and write them out.

1.

Write a complete Java program that asks for the price of an item and

the quantity purchased, and writes out the total cost.

2.

Write a complete Java program that asks for a number. If the number

is less than 5, it is written out, but if it is greater than or equal to 5,

twice that number is written out.

3.

Write a complete Java program that asks the user for a positive

integer n, and then writes out all the numbers from 1 up to and

including n.

4.

5Managing Complexity

The programs we have written have been relatively simple. More complex problems
require more complex programs to solve them. Although it is fairly easy to understand
what is happening in the 50 or so lines of the SportsWorld program, imagine trying to
understand a program that is 50,000 lines long. Imagine trying to write such a
program! It is not possible to understand—all at once—everything that goes on in a
50,000-line program.

Divide and Conquer

Writing large programs is an exercise in managing complexity. The solution is a
problem-solving approach called divide and conquer. Suppose a program is to be
written to do a certain task; let’s call it task T. Suppose further that we can divide this
task into smaller tasks, say A, B, C, and D, such that, if we can do those four tasks in the
right order, we can do task T. Then our high-level understanding of the problem need
only be concerned with what A, B, C, and D do and how they must work together to
accomplish T. We do not, at this stage, need to understand how tasks A, B, C, and D can
be done. Figure 16(a), an example of a structure chart or structure diagram,
illustrates this situation. Task T is composed in some way of subtasks A, B, C, and D.
Later we can turn our attention to, say, subtask A, and see if it too can be decomposed
into smaller subtasks, as in Figure 16(b). In this way, we continue to break the task
down into smaller and smaller pieces, finally arriving at subtasks that are simple

enough that it is easy to write the code to carry them out. Better yet, we may find a
helpful class with methods that will do these subtasks for us. By dividing the problem
into small pieces, we can conquer the complexity that is overwhelming if we look at the
problem as a whole.

Figure 16

Structure Charts

Divide and conquer is a problem-solving approach and not just a computer
programming technique. Outlining a term paper into major and minor topics is a
divide-and-conquer approach to writing the paper. Doing a Form 1040 Individual Tax
Return for the Internal Revenue Service can involve subtasks of completing Schedules
A, B, C, D, and so on, and then reassembling the results. Designing a house can be
broken down into subtasks of designing floor plans, wiring, plumbing, and the like.
Large companies organize their management responsibilities using a divide-
and-conquer approach; what we have called structure charts become, in the business
world, organization charts.

How is the divide-and-conquer problem-solving approach reflected in the resulting
computer program? If we think about the problem in terms of subtasks, then the
program should show that same structure; that is, part of the code should do subtask A,
part should do subtask B, and so on. We divide the code into modules or subprograms,
each of which does some part of the overall task. Then we empower these modules to
work together to solve the original problem.

Which Java?

Java programs come in two renditions, Java applications and Java applets.
Applications are complete stand-alone programs that reside and run on some
computer. These are the kinds of programs we have been working with in this

module.

But Java’s development went hand in hand with the development of Web
browsers. Applets (small applications) are programs designed to run from Web
pages. The bytecode for an applet is embedded in a Web page on a server
machine; when the user views the Web page with a Java-enabled browser, a
copy of the applet’s bytecode is temporarily transferred to the user’s system
(whatever that system may be) and interpreted/executed by the browser itself.
Today’s common Web browsers, such as Microsoft Internet Explorer and
Mozilla Firefox, are Java-enabled. Java applets bring audio, video, and real-time
user interaction to Web pages, making them “come alive” and become much
more than static hyperlinked text. For example, a Java applet might display an
animated analog clock face on the screen that shows your computer system’s
time, or a streaming ticker tape of stock market quotes, or a form that allows
you to book an airline reservation online. Java applets held much of the
original appeal of the Java language, but big, serious programs are also written
using Java applications.

Using Methods

In Java, modules of code are called methods. We have already seen that a main
method is required in each Java program. In the SportsWorld program (Figure 14) the
main method appears to do the entire task. But the divide-and-conquer approach is
already at work here. The main method does not handle the subtasks of reading
various kinds of input. Instead, it creates an object from the Scanner class that in turn
uses methods from the Scanner class, such as nextDouble(), that provide those services.
The main method does not really do all the details of writing output, either; it makes
use of the print and println methods.

Let’s review the main method of the SportsWorld program with an eye to further
subdividing the task. There is a loop that does some operations as long as the user
wants. What gets done? Input is obtained from the user about the radius of the circle
and the choice of task to be done (compute circumference or compute area). Then the
circumference or the area gets computed and written out. Aside from input and output,
we can identify two related subtasks: computing the area of a circle and computing the
circumference of a circle. Instead of having the main method do these computations,
we will create a Circle class (Figure 17) with two methods that provide these two
services to the main method. A Java program can have only one main method, and that
is where execution of the program begins. Figure 18 shows a pseudocode description of
the main method using a modular approach that calls on the methods in the Circle
class. When the flow of control reaches the “Ask Circle class to compute
circumference,” it transfers to the appropriate method code in the Circle class and
executes that code. When execution of that method code is complete, flow of control

Figure 18

transfers back to the main method and picks up where it left off. The same thing
happens for “Ask Circle class to compute area”.

Figure 17

Methods in the Circle Class

Pseudocode for the SportsWorld Main Method Using the Circle Class

Methods are named using ordinary Java identifiers, customarily starting with a
lowercase letter. We’ll name the two Circle methods doCircumference and doArea.
Because we’re using meaningful identifiers, it is obvious which subtask is carried out
by which method.

There are two types of methods. A void method carries out some task, perhaps using
values it receives from the main method, but does not pass any new values back to the
main method. (The word void signifies “returning nothing.”) A nonvoid method
returns a single new value back to the main method—that is its primary job. This gives

the main method information it did not have previously. This single value can be some
new data value that the method has collected from the user, or it can be some new data
value that the method has computed, perhaps using values it received from the main
method.

The doCircumference and doArea methods compute new values (the circumference and
area, respectively) and return them to the main method. So doCircumference and
doArea are nonvoid methods.

Either kind of method may need certain information from the main method to do its
job; specifically, it may need to know the current value of certain quantities in the main
method. When the main method wants a method in another class to be executed, it
must “invoke” the method. It does this by giving the class name, followed by a dot, then
the method name, and finally a list in parentheses of the identifiers for variables that
concern that method. This is called an argument list. The overall form of a method
invocation is thus

class-identifier.method-identifier(argument list)

The doCircumference and doArea methods each need to know the current radius value
in order to carry out their computations, so when these methods are invoked, each of
their argument lists consists of the single variable radius.

The invocation of a void method is a complete Java program statement by itself
(followed by the semicolon, of course), but the invocation of a nonvoid method is not.
Remember that a nonvoid method returns a single value to the main method. You can
think of the method invocation just as if it were a variable containing that single
returned value. You cannot have the method invocation as a complete statement, just
as you cannot have a single variable identifier as a complete statement. Instead, you
use the method invocation as part of a statement, in the same way you use any variable
identifier. For example, you can make it part of what an output statement writes out, or
what an assignment statement assigns to a variable. In our circle program, when the
doCircumference method returns the value of the circle’s circumference, we would like
to assign that value to the main method’s circumference variable, so we use the
assignment statement

in the main method.

Figure 19 shows the new main method. It closely follows the pseudocode of Figure 18 .
At a glance, it does not look a great deal different from our former main method.
However, it is conceptually quite different; it uses a helping class (Circle), and the
subtasks of computing the circumference and computing the area have been relegated

Figure 19

Figure 20

to methods of this class. The details (in this case the formulas for computing
circumference and area) are now hidden and have been replaced by method
invocations. If these subtasks had required many lines of code, our new main method
would indeed be shorter— and easier to understand—than before.

A Modularized Version of the SportsWorld Program

The main method now invokes methods of the Circle class. It is time to see how to write
the code for these other, nonmain methods.

Writing Methods

The outline for a Java method is shown in Figure 20. The method header has the
general form

The Outline for a Java Method

scope-indicator return-indicator identifier(parameter list)

Note that no semicolon appears at the end of a method header.

Let’s look at each of these parts in turn.

scope-indicator. The scope indicator uses keywords to determine how and where

the method can be invoked. If the scope indicator is public static, then any

method can invoke this method by giving the name of the class, then a dot, then

the method identifier and argument list. This is the syntax that the main method

in Figure 19 uses to invoke the two methods of the Circle class.

return-indicator. The return indicator classifies a method as void or nonvoid. If

it’s a void method, the return indicator is just the word void. If it’s a nonvoid

method, the return indicator is the data type of the single value the method

returns.

identifier. This is the name of the method and can be any legal Java identifier,

although most programmers use a lowercase letter to begin the name.

parameter list. The parameters in the parameter list correspond to the

arguments in the statement that invoke this method; that is, the first parameter in

the list matches the first argument given in the statement that invokes the

method, the second parameter matches the second argument, and so on. It is

through this correspondence between parameters and arguments that the

method receives data from the invoking method. The data type of each parameter

must be given as part of the parameter list, and it must match the data type of the

corresponding argument.

For example, consider a method findAverage within class Weather to compute and
return the average daily rainfall over a certain number of days. The total rainfall (a
real number) and the number of days (an integer) are data values the method needs to
know in order to compute the daily average, and these values are passed to the method
as arguments. The value returned by the method, the daily average, is type double. This
method can be invoked in the main method by a statement such as

Figure 21

The header for the findAverage method could look like

Here the parameters total and n are in the correct order and have the correct data type
to match with their corresponding arguments. The argument names, totalRain and
days, are variable identifiers declared in the main method, but the parameters can
have different identifiers, as they do here. Arguments and parameters correspond by
virtue of their respective positions in the argument list and the parameter list,
regardless of the identifiers used. Within the body of the method, it is the parameter
identifiers that are used; total has the value passed to it by totalRain, and n has the
value passed to it by days, as follows:

Arguments in Java are passed by value. This means that the method can use the
argument value but cannot permanently change it. What really happens is that the
method receives a copy of the data value to store in a local memory location, but never
knows the memory location where the original value is stored. If the method changes
the value of its copy, this change has no effect when control returns to the main
method.

In the Circle program, the doCircumference method is invoked with a single argument
radius of type double. It is a nonvoid method and returns a type double value. Its
header can be written as

where this time we used the same name for the parameter as for the argument.

The complete doCircumference method is shown in Figure 21. Because it is a separate
method, we have added a comment right below the method header to describe
specifically what this method does. A variable circumference is declared within the
method. A variable declared within a method is known and can be used only within
that method; it is said to be local to that method. This local variable circumference has
nothing to do with the circumference variable in the main method of the SportsWorld
class. It is natural to use the same name for each, but the program works perfectly well
if we name this local variable something entirely different.

The doCircumference Method

Figure 22

Because doCircumference is a nonvoid method, it must return a single value to the main
method. This is done by the return statement, whose syntax is

The expression must evaluate to the data type that the nonvoid method has promised
to return in its header, which in the case of doCircumference is type double. All nonvoid
methods must have a return statement, but void methods generally do not have a
return statement.

The doArea method is very similar to doCircumference. The complete Circle class is
given in Figure 22. Notice that this class has no main method. A Java program always
begins execution with the main method, so the code in Figure 22 will compile, but by
itself, it cannot be executed. It is not a stand-alone program but a useful tool.

The Circle Class in a Modularized Version of the SportsWorld
Program

To run the program, each class must be in a separate file, and the filename must be the
name of the class with a.java extension. So there is a Sports-World.java file and a
Circle.java file. Each.java file is compiled into a.class file, and the.class file containing
the main method is then executed. It is helpful if all these files are in the same folder or
directory on your computer so that the system knows where to find them.

So there we have it—a complete modularized version of our Sports-World program.
Because it seems to have taken a lot of effort to arrive at this second version (which,
after all, does the same thing as the program in Figure 14), let’s review what the new
version does and why this effort is worthwhile. The major task is accomplished by
doing a series of subtasks (computing circumference and area), and the work for these
subtasks takes place within methods of a separate class. The main method doesn’t need
to know how these tasks are done; it only needs to invoke the appropriate method at
the appropriate point. As an analogy, we may think of the president of a company
calling on various assistants to carry out tasks as needed. The president does not need
to know how a task is done, only the company division (class name) and name of the
person (method name) responsible for carrying it out.

This compartmentalization is useful in many ways. It is useful when we plan the
solution to a problem, because it allows us to use a divide-and-conquer approach. We
can think about the problem in terms of subtasks.

This makes it easier for us to understand how to achieve a solution to a large and
complex problem. We can group similar subtasks together and think of them as
methods of a helping class. It is also useful when we code the solution to a problem.
Instead of having to write every detail of the code in a monolithic main method, we can
write a main method that invokes other methods of other classes as needed. We can
write methods for these other classes one at a time, so that the program gradually
expands. Developing a large software project is a team effort, and different parts of the
team can be writing different classes and methods at the same time. It is useful when
we test the program, because we can test one new method at a time as the program
grows, and any errors are localized to the method being added. (The main method can
be tested early by writing appropriate headers but empty bodies for the other
methods.) Compartmentalization is useful when we modify the program, because
changes tend to be local to certain subtasks, hence within certain methods in the code.
And finally it is useful for anyone (including the programmer) who wants to read the
resulting program. The overall idea of how the program works, without the details, can
be gleaned from reading the main method; if and when the details become important,
the appropriate code for the other methods can be consulted. In other words,
modularizing a program is useful for its

Planning

Coding

Testing

Modifying

Reading

Finally, once a class has been developed and tested, it is then available for any
application program to use. An application program that does quite different things
than SportsWorld, but that needs the value of the area or circumference of a circle
computed from the radius, can use our Circle class.

Figure 23 summarizes several terms introduced in this section.

Figure 23

Some Java Terminology

Practice Problems

What is the output of the following Java program?1.

What is the output of the following Java program?2.

What is the output of the following Java program?3.

Suppose a nonvoid method called tax in a class called Sales gets a

value subtotal from the main method, multiplies subtotal by the tax

rate of 0.55, and returns the resulting tax amount. All quantities are

type double.

Write the method header.a.

Write the method body.b.

Write a single statement in the main method that invokes the

tax method and writes out the resulting tax amount.

c.

4.

6Object-oriented Programming

?what Is It

The divide-and-conquer approach to programming is a “traditional” approach. The
focus is on the overall task to be done: How to break it down into subtasks, and how to
write algorithms for these subtasks that are carried out by communicating
modules—in the case of Java, by methods in various classes. The program can be
thought of as a giant statement executor designed to carry out the major task, even
though the main module may simply call on, in turn, the various other modules that do
the subtask work.

Object-oriented programming (OOP) takes a somewhat different approach. A
program is considered a simulation of some part of the world that is the domain of
interest. “Objects” populate this domain. Objects in a banking system, for example,
might be savings accounts, checking accounts, and loans. Objects in a company
personnel system might be employees. Objects in a medical office might be patients
and doctors. Each object is an example drawn from a class of similar objects. The
savings account “class” in a bank has certain properties associated with it, such as
name, Social Security number, account type, and account balance. Each individual
savings account at the bank is an example of (an object of) the savings account class,
and each has specific values for these common properties; that is, each savings account
has a specific value for the name of the account holder, a specific value for the account

balance, and so forth. Each object of a class therefore has its own data values.

A class also has one or more subtasks associated with it, and all objects from that class
can perform those subtasks. In carrying out a subtask, each object can be thought of as
providing some service. A savings account, for example, can compute compound
interest due on the balance. When an object-oriented program is executed, the
program generates requests for services that go to the various objects. The objects
respond by performing the requested service—that is, carrying out the subtask. Thus, a
program that is using the savings account class might request a particular savings
account object to perform the service of computing interest due on the account
balance. An object always knows its own data values and may use them in performing
the requested service.

Some of this sounds familiar. We know about subtasks (methods) associated with a
class. The new idea is that, instead of directly asking a class to carry out a subtask, we
ask an object of that class to carry out a subtask. The even bigger new idea is that such
objects have data values for the class properties. Instead of storing data in variables
that are available to the whole program and then passing them as arguments to
subtasks, the program can simply ask an object to use its own data when it carries out a
subtask.

There are three terms often associated with object-oriented programming, as
illustrated in Figure 24. The first term is encapsulation. Each class has its own
program module to perform each of its subtasks. Any user of the class (which might be
some other program) can ask an object of that class to invoke the appropriate module
and thereby perform the subtask service. The class user needs to know what services
objects of the class can provide and how to request an object to perform any such
service. The details of the module code belong to the class itself, and this code may be
modified in any manner, as long as the way the user interacts with the class remains
unchanged. (In the savings account example, the details of the algorithm used to
compute interest due belong only to the class, and need not be known by any user of
the class. If the bank wants to change how it computes interest, only the code for the
interest module in the savings account class needs to be modified; any programs that
use the services of the savings account class can remain unchanged.) Furthermore, the
class properties represent data values that will exist as part of each object of the class.
A class therefore consists of two components, its subtask modules and its properties,
and both components are “encapsulated”—bundled—with the class.

Figure 24

Three Key Elements of OOP

A second term associated with object-oriented programming is inheritance. Once a
class A of objects is defined, a class B of objects can be defined as a “subclass” of A.
Every object of class B is also an object of class A; this is sometimes called an “is a”
relationship. Objects in the B class will “inherit” all of the properties and be able to
perform all the services of objects in A, but they may also be given some special
property or ability. The benefit is that class B does not have to be built from the ground
up, but rather can take advantage of the fact that class A already exists. In the banking
example, a senior citizen’s savings account would be a subclass of the savings account
class. Any senior citizens’ savings account object is also a savings account object, but it
may have special properties or be able to provide special services.

The third term is polymorphism. Poly means “many.” Objects may provide services
that should logically have the same name because they do roughly the same thing, but
the details differ. In the banking example, both savings account objects and checking
account objects should provide a “compute interest” service, but the details of how
interest is computed differ in these two cases. Thus, one name, the name of the service
to be performed, has several meanings, depending on the class of the object providing
the service. It may even be the case that more than one service with the same name
exists for the same class, although there must be some way to tell which service is
meant when it is invoked by an object of that class.

Let’s change analogies from the banking world to something more fanciful, and
consider a football team. Every member of the team’s backfield is an “object” of the
“backfield” class. The quarterback is the only “object” of the “quarterback” class. Each
backfield object can perform the service of carrying the ball if he (or she) receives the
ball from the quarterback; ball-carrying is a subtask of the backfield class. The
quarterback who hands the ball off to a backfield object is requesting that the backfield
object perform that subtask because it is “public knowledge” that the backfield class
carries the ball and that this service is invoked by handing off the ball to a backfield
object. The “program” to carry out this subtask is encapsulated within the backfield
class, in the sense that it may have evolved over the week’s practice and may depend
on specific knowledge of the opposing team, but at any rate, its details need not be
known to other players. Inheritance can be illustrated by the halfback subclass within
the backfield class. A halfback object can do everything a backfield object can but may
also be a pass receiver. And polymorphism can be illustrated by the fact that the
backfield may invoke a different “program” depending on where on the field the ball is
handed off. Of course our analogy is imperfect, because not all human “objects” from
the same class behave in precisely the same way—fullbacks sometimes receive passes

Figure 25

and so on.

Java and Oop

Java is very much an object-oriented programming language. We learned right at the
beginning of this chapter that all Java code (except for comments and import
statements) must be either a class header or inside a class definition. In the
modularized version of our SportsWorld program, we use a Circle class with methods
that the main method in the SportsWorld class can invoke. The main method does not
create any objects of the Circle class, but can nevertheless invoke these methods,
because each method has the word “static” in the method header. A static method is
one that doesn’t need to be invoked by an object of that class. Instead, it can be invoked
by giving the class name, followed by a dot, and then the method name with an
appropriate list of arguments, just as we have done with all the methods we have used
so far.

Suppose we write a new Circle class with the assumption that applications programs
using this class will create objects of the class. The objects are individual circles. A
Circle object has a radius. A Circle object, which knows the value of its own radius,
should be able to perform the services of computing its own circumference and its own
area. At this point, we are well on the way to answering the two major questions about
our new Circle class:

What are the properties common to any object of this class? (In this case, there is

a single property—the radius.)

What are the services that any object of the class should be able to perform? (In

this case, it must be able to compute its circumference and compute its area,

although as we will see shortly, we will need other services as well.)

Now we can create a truly object-oriented version of the SportsWorld program. What
are the objects of interest within the scope of this problem? SportsWorld deals with
circular swimming pools, but they are basically just circles. So the SportsWorld
program creates a Circle object. In Java terminology, objects are called instances of a
class, the properties are called instance variables, and the services are called
instance methods.

Figure 25 shows the complete code for the new Circle class. Four instance methods are
given, followed by a declaration of the single instance variable, radius. The first method
is void, and the remaining three return values. None of the methods is static, meaning
that they must be invoked by Circle objects.

The New Circle Class

As before, the SportsWorld class handles all of the user interaction and makes use of
the Circle class. It creates a Circle object and requests that object to set the value of its
radius and to find its area or find its circumference, depending on the program user’s
preference. The object invokes the Circle methods to carry out these tasks. From Figure
25, we see that the setRadius method uses an assignment statement to change the value
of radius to whatever quantity is passed to the parameter value. The doCircumference
and doArea methods use the usual formulas for their computations, but instead of
using local variables for circumference and area, we’ve compressed the code into a
single return statement. (This has nothing to do with object orientation; we could have
done this in version 2 of the program.) The purpose of the getRadius method will be
explained shortly.

The methods of the Circle class are all declared using the keyword public. Public
methods can be used anywhere, including any Java program (like SportsWorld) that
wants to make use of this class. Think of the Circle class as handing out a business card
that advertises these services: Hey, you want a Circle object that can find its own area?
Find its own circumference? Set the value of its own radius? I’m your class! (Class

Figure 26

methods can also be private, but a private method is a sort of helping task that can be
used only within the class in which it occurs.)

The single instance variable of the class (radius) is declared using the keyword private.
Only methods in the Circle class itself can use this variable. Note that doCircumference
and doArea have no parameter for the value of the radius; as methods of this class, they
know at all times the current value of radius for the object that invoked them, and it
does not have to be passed to them as an argument. Because radius has been declared
private, however, the SportsWorld class cannot use the value of radius. It cannot write
out that value or directly change that value by some assignment statement. It can,
however, request a Circle object to invoke the getRadius method to return the current
value of the radius in order to write it out. It can also request a Circle object to invoke
the setRadius method to change the value of its radius; setRa-dius does have a
parameter to receive a new value for radius. Instance variables are generally declared
private instead of public, to protect the data in an object from reckless changes some
application program might try to make. Changes in the values of instance variables
should be performed only under the control of class objects through methods such as
setRadius.

The new SportsWorld class (Figure 26) differs from the earlier version (Figure 19) in
several ways. The main method must create a Circle object, an instance of the Circle
class. The following statement does this:

The New SportsWorld Class

The left side of this statement: looks like an ordinary variable declaration such as

It seems to be saying, “Give me a memory location in which I will store something of
type Circle and call it swimmingPool.” What we are asking for, however, is memory
space to store the instance variables of the object, of which there might be many for
some classes of objects. Unlike ordinary variables, Java does not give us memory
locations in which to store the instance variables of an object until we specifically
request “new” memory for this purpose via the right side of the statement

After the object swimmingPool exists, and the main method can ask swimmingPool to
perform the various services of which instances of the Circle class are capable.

The syntax to request an object to invoke a method is to give the name of the object,
followed by a dot, followed by the name of the class method, followed by any
arguments the method may need.

object-identifier.method-identifier(argument list)

The object that invokes a method is the calling object. Therefore the expression in the
main method uses swimmingPool as the calling object to invoke the doCircumference
method of the Circle class. No arguments are needed because this method has no
parameters, but the empty parentheses must be present.

There are no variables in the main method for the circumference and the area of the
circle. The doCircumference and doArea methods are now invoked within an output

statement, so these values get printed out without being stored anywhere. (This has
nothing to do with object orientation; we could have done this in version 2 of the
program.) But there is also no declaration in the main method for a variable called
radius. There is a declaration for newRadius, and newRadius receives the value entered
by the user for the radius of the circle. Therefore, isn’t newRadius serving the same
purpose as radius did in the old program? No—this is rather subtle, so pay attention:
While newRadius holds the number the user wants for the circle radius, it is not itself
the radius of swimmingPool. The radius of swimmingPool is the instance variable
radius, and only methods of the class can change the instance variables of an object of
that class. The Circle class provides the setRadius method for this purpose. The main
method of SportsWorld must ask the object swimmingPool to invoke setRadius to set the
value of its radius equal to the value contained in newRadius. The newRadius argument
corresponds to the value parameter in the setRadius method, which then gets assigned
to the instance variable radius.

The setRadius method is a void method because it returns no information to the
invoking method; it contains no return statement. The invocation of this method is a
complete Java statement.

Finally, the output statements that print the values of the circumference and area also
have swimmingPool invoke the getRadius method to return its current radius value so it
can be printed as part of the output. We could have used the variable newRadius here
instead. However, newRadius is what we THINK has been used in the computation,
whereas radius is what has REALLY been used.

Now that we understand the syntax, we can see that an output statement such as

asks the System.out object to invoke a println method using the string parameter
included in the parentheses. The System.out object is unusual in that we do not have to
explicitly create it using a “new” statement.

This completes version 3 of the SportsWorld program, a truly object-oriented version.
The main method creates a Circle object and repeatedly requests that object to perform
(or, technically, cause to have performed) the appropriate methods of its class to set its
own radius and compute its circumference and area. Many people would say this is the
only good way to write a Java program!

Figure 27

One More Example

The object-oriented version of our SportsWorld program illustrates encapsulation. All
data and calculations concerning circles are encapsulated in the Circle class. Let’s look
at one final example that illustrates the other two watchwords of OOP—polymorphism
and inheritance.

Figure 27(a)-(d) shows four simple geometric shape classes. Figure 27(e) is the
application program that uses these classes. The main method creates objects from
these various classes and has those objects set their dimensions and compute their
areas. Each of these five classes is in a separate.java file of the same name as the class.

A Java Program with Polymorphism and Inheritance

The instance variables for each class represent the properties that any object of the
class possesses. A Circle object has a radius property, whereas a Rectangle object has a

width property and a height property. A Square object has a side property, as one might
expect, but a Square2 object doesn’t seem to have any properties, or for that matter any
way to compute its area. We’ll explain the difference between the Square class and the
Square2 class shortly.

The output (rounded to two decimal places for simplicity and wrapped to fit on the
page) after running the program in Figure 27 is

In Figure 27 we see polymorphism at work, because each class has its own doArea
method. When the program executes, the correct method is used, on the basis of the
class to which the object invoking the method belongs. After all, computing the area of
a circle is quite different from computing the area of a rectangle. The methods
themselves are straightforward; they employ assignment statements to set the
dimensions and the usual formulas to compute the area of a circle, rectangle, and
square.

Square is a separate class with a side property and a doArea method. The Square2 class,
however, recognizes the fact that squares are special kinds of rectangles. The Square2
class is a subclass of the Rectangle class, as is indicated by the reference in the header
of the Square2 class that it extends the Rectangle class. The Square2 class inherits the
width and height properties from the “parent” Rectangle class; the “protected,” rather
than private, status of these properties in the Rectangle class indicates that they can be
extended to any subclass. Square2 also inherits the setWidth, setHeight, getWidth,
getHeight, and doArea methods. In addition, Square2 has its own method, setSide,
because setting the value of the “side” makes sense for a square but not for an arbitrary
rectangle. What the user of the Square2 class doesn’t know is that there really isn’t a
“side” property; the setSide method merely sets the inherited width and height
properties to the same value. To compute the area, then, the doArea method inherited
from the Rectangle class can be used, and there is no need to redefine it or even to copy
the existing code. Here we see inheritance at work.

Inheritance can be carried through multiple “generations.” We might redesign the
program so that there is one “superclass” that is a general Shape class, of which Circle
and Rectangle are subclasses, with Square2 a subclass of Rectangle (see Figure 28 for a
possible class hierarchy).

Figure 28

A Hierarchy of Geometric Classes

What Have We Gained?

Now that we have some idea of the flavor of object- oriented programming, we should
ask what we gain by this approach. There are two major reasons why OOP is a popular
way to program:

Software reuse

A more natural “worldview”

SOFTWARE REUSE. Manufacturing productivity took a great leap forward when Henry
Ford invented the assembly line. Automobiles could be assembled using identical parts
so that each car did not have to be treated as a unique creation. Computer scientists are
striving to make software development more of an assembly-line operation and less of
a handcrafted, start- over-each-time process. Object-oriented programming is a step
toward this goal: A useful class that has been implemented and tested becomes a
component available for use in future software development. Anyone who wants to
write an application program involving circles, for example, can use the already
written, tried, and tested Circle class and simply create Circle objects as needed. As the
“parts list” (the class library) grows, it becomes easier and easier to find a “part” that
fits, and less and less time has to be devoted to writing original code. If the objects from
a class don’t quite fit, perhaps the class can be modified by creating a subclass; this is
still less work than starting from scratch. Software reuse implies more than just faster
code generation. It also means improvements in reliability; these classes have already
been tested, and if properly used, they will work correctly. And it means improvements
in maintainability. Thanks to the encapsulation property of object-oriented

programming, changes can be made in the details of class methods without affecting
other code, although such changes require retesting the classes.

A MORE NATURAL “WORLDVIEW.” The traditional view of programming is procedure-
oriented, with a focus on tasks, subtasks, and algorithms. But wait—didn’t we talk
about subtasks in OOP? Haven’t we said that computer science is all about algorithms?
Does OOP abandon these ideas? Not at all. It is more a question of when these ideas
come into play. Object-oriented programming recognizes that in the “real world,” tasks
are done by entities (objects). Object- oriented program design begins by identifying
those objects that are important in the domain of the program because their actions
contribute to the mix of activities going on in the banking enterprise, the medical
office, or wherever. Then it is determined what data should be associated with each
object and what subtasks the object contributes to this mix. Finally, an algorithm to
carry out each subtask must be designed.

Object-oriented programming is an approach that allows the programmer to more
closely model or simulate the world as we see it, rather than mimicking the sequential
actions of the Von Neumann machine. It provides another buffer between the real
world and the machine, another level of abstraction in which the programmer can
create a virtual problem solution that is ultimately translated into electronic signals on
hardware circuitry.

Finally, we should mention that a graphical user interface, with its windows, icons,
buttons, and menus, is an example of object-oriented programming at work. A general
button class, for example, can have properties of height, width, location on the screen,
text that may appear on the button, and so forth. Each individual button object has
specific values for those properties. The button class can perform certain services by
responding to messages, which are generated by events (for example, the user clicking
the mouse on a button triggers a “mouse-click” event). Each particular button object
individualizes the code to respond to these messages in unique ways. We will not go
into details of how to develop graphical user interfaces in Java, but in the next section
you will see a bit of the programming mechanics that can be used to draw the graphics
items that make up a visual interface.

Practice Problems

What is the output from the following section of code if it is added to

the main method of the Java program in Figure 27?

1.

In the Shape hierarchy described in this section, suppose that the

Triangle class includes a doArea method. What two properties should

any triangle object have?

2.

7Graphical Programming

The programs that we have looked at so far all produce text output—output composed
of the characters {A… Z, a… z, 0… 9} along with a few punctuation marks. For the first
30 to 35 years of software development, text was virtually the only method of
displaying results in human-readable form, and in those early days it was quite
common for programs to produce huge stacks of alphanumeric output. These days an
alternative form of output— graphics—has become much more widely used. With
graphics, we are no longer limited to 100 or so printable characters; instead,
programmers are free to construct whatever shapes and images they desire.

The intelligent and well-planned use of graphical output can produce some
phenomenal improvements in software. We discussed this issue in Chapter 6, where
we described the move away from the text-oriented operating systems of the 1970s and
1980s, such as MS -DOS and VMS, to operating systems with more powerful and user-
friendly graphical user interfaces (GUIs), such as Windows 7, Windows Vista and Mac
OS X. Instead of requiring users to learn dozens of complex text-oriented commands
for such things as copying, editing, deleting, moving, and printing files, GUIs can
present users with simple and easy to understand visual metaphors for these
operations. In Figure 29a, the operating system presents the user with icons for
printing, deleting, or copying a file. In Figure 29b, dragging a file to the printer icon
prints the file.

Not only does graphics make it easier to manage the tasks of the operating system, it
can help us visualize and make sense of massive amounts of output produced by
programs that model complex physical, social, and mathematical systems. (We will
discuss modeling and visualization in Chapter 13.) Finally, there are many applications
of computers that would simply be impossible without the ability to display output
visually. Applications such as virtual reality, computer-aided design/computer-aided
manufacturing (CAD/CAM), games and entertainment, medical imaging, and computer
mapping would not be anywhere near as important as they are without the enormous
improvements that have occurred in the areas of graphics and visualization.

Figure 29

An Example of the Use of Graphics to Simplify Machine Operation

So, we know that graphical programming is important. The question is, What features
must be added to a programming language like Java to produce graphical output?

Graphics Hardware

Modern computer terminals use what is called a bitmapped display, in which the
screen is made up of thousands of individual picture elements, or pixels, laid out in a
two-dimensional grid. These are the same pixels used in visual images, as discussed in
Chapter 4. In fact, the display is simply one large visual image. The number of pixels on
the screen varies from system to system; typical values range from 800 x 600 up to 1560
x 1280. Terminals with a high density of pixels are called high-resolution terminals.
The higher the resolution—that is, the more pixels available in a given amount of
space—the sharper the visual image because each individual pixel is smaller. However,
if the screen size itself is small, then a high resolution image can be too tiny to read. A
30” wide-screen monitor might support a resolution of 2560 x 1600, but that would not
be suitable for a laptop screen. In Chapter 4 you learned that a color display requires
24 bits per pixel, with 8 bits used to represent the value of each of the three colors red,
green, and blue. The memory that stores the actual screen image is called a frame
buffer. A high-resolution color display might need a frame buffer with (1560 X 1280)
pixels X 24 bits/pixel X 47,923,000 bits, or about 6 MB, of memory for a single image.
(One of the problems with graphics is that it requires many times the amount of
memory needed for storing text.)

The individual pixels in the display are addressed using a two-dimensional coordinate
grid system, the pixel in the upper- left corner being (0, 0). The overall pixel-numbering
system is summarized in Figure 30. The specific values for maxX and maxY in Figure 30

are, as mentioned earlier, system-dependent. (Note that this coordinate system is not
the usual mathematical one. Here the origin is in the upper-left corner, and y values
are measured downward.)

Figure 30

Pixel- Numbering System in a Bitmapped Display

The terminal hardware displays on the screen the frame buffer value of every
individual pixel. For example, if the frame buffer value on a color monitor for position
(24, 47) is RGB (0, 0, 0), the hardware sets the color of the pixel located at column 24,
row 47 to black, as shown in Figure 31. The operation diagrammed in Figure 31 must
be repeated for all of the 500,000 to 2 million pixels on the screen. However, the setting
of a pixel is not permanent; on the contrary, its color and intensity fade quickly.
Therefore, each pixel must be “repainted” often enough so that our eyes do not detect
any “flicker,” or change in intensity. This requires the screen to be completely updated,
or refreshed, 30–50 times per second. By setting various sequences of pixels to different
colors, the user can have the screen display any desired shape or image. This is the
fundamental way in which graphical output is achieved.

Figure 31

Display of Information on the Terminal

Graphics Software

To control the setting and clearing of pixels, programmers use a collection of software
modules that are part of a special package called a graphics library. Virtually all
modern programming languages, including Java, come with an extensive and powerful
graphics library for creating a wide range of shapes and images. Typically, an
“industrial strength” graphics library includes dozens or hundreds of modules for
everything from drawing simple geometric shapes like lines and circles, to creating and
selecting colors, to more complex operations such as displaying scrolling windows,
pull-down menus, and buttons.

The Java library includes a package called the Abstract Windowing Toolkit, usually
abbreviated AWT. This toolkit contains dozens of methods that allow users to create
powerful interfaces. The AWT package includes methods for

Creating the basic set of GUI components, including windows, buttons, text boxes,

icons, and menus

Allowing the user to control the size and placement of these components

Allowing the user to define special objects called listeners that automatically

activate methods when screen events, such as moving or clicking the mouse, or

selecting a menu item, occur

In 1998, Sun introduced a package of even more powerful GUI components, commonly
called Swing components. Both the AWT package and the Swing package are huge, and
their descriptions are well beyond the scope of this text. In this discussion we restrict
our focus to a modest subset of methods. Although the set is small, the graphics
methods we present give you a good idea of what visual programming is like, and will
allow you to display some interesting, nontrivial images on the screen. (To access these
Java graphics methods, you must include the statement

at the beginning of your program. This makes the classes in the Java AWT available for
your program to use.)

In Java, the primary means of drawing geometric shapes is with the class called
Graphics. Every open window contains an instance of this class called its graphics
context, which by tradition is represented by the letter g. When you open a window
you cannot see this “graphics context object,” but it is there, and it responds to
messages (i.e., method invocations) that ask it to display various shapes and patterns

within the window. It carries out this drawing operation using the identical bitmapped
techniques described previously.

To create a new window for our drawings (called a frame in Java), we can use the
following sequence of three commands:

The first line creates a new window called f containing the label “Example 1” in the title
bar at the top of the window. The second line sets the size of this window at 500 pixels
X 500 pixels. When setting the window size, be sure that you do not exceed the
maximum value allowed on your system. The last line makes the window visible on the
screen. After executing these three lines, your screen should display the following:

Now, to obtain the graphics context of the window f created above, we use the method
called getGraphics. This method returns the graphics context of the window to which
the message is sent and assigns it to the Graphics object g:

We can now send whatever drawing commands we want to g, and it will display the
shapes that we ask for inside window f.

What types of messages does g respond to? There are literally dozens of drawing
commands in the Graphics library that allow you to (1) draw geometric shapes (e.g.,
lines, rectangles, ovals, polygons); (2) set, change, and define colors; (3) fill in or shade
objects; (4) create text in a range of fonts and sizes; and (5) produce many different
types of graphs and charts. There are far too many methods to discuss here; instead, we
introduce a few of the most important and most basic methods, to give you an idea of
the type of graphic operations available in Java. You will have a chance to use these
operations in the exercises at the end of this module.

drawLine(int x1, int y1, int x2, int y2). This draws a straight line from point (x1, y1)

on the screen (measured in pixels) to point (x2, y2). Thus the operation

would produce something like the following image:

On your system, the exact location and length of the line may be slightly different

because of minor differences in screen resolution. You may also need to write

some code to hold the image on the screen. Figure 32 shows a complete program

1.

Figure 32

to draw the line and repaint the image on the screen a fixed number of times;

user input closes the program.

Complete Java Program for Drawing a Line

What actually happens internally when you execute a drawLine command? The

terminal hardware determines (using some simple geometry and trigonometry)

exactly which pixels on the screen must be “turned on” (i.e., set to the current

value of the drawing color) to draw a straight line between the specified

coordinates. For example, if the drawing color is black, then the command

drawLine(1, 1, 4, 4) causes the following four pixels in the frame buffer to be set

to the RGB value (0, 0, 0).

Now, when the hardware draws the frame buffer on the screen, these four pixels

are colored black. Because pixels are only about 1/100th of an inch apart, our

eyes do not perceive four individual black dots but an unbroken line segment.

drawOval(int x, int y, int width, int height). This operation draws an oval that fits

within a rectangle whose upper- left corner is located at (x, y) and whose

dimensions are the specified width and height. If the width and height values are

the same, you produce a circle. Thus, the following two commands

produce the following image:

2.

Now, using the two commands we have just introduced—drawLine and

drawOval—we can produce an image of the well-known international traffic sign

for No Entry:

However, we also know that this No Entry sign sometimes appears in either blue

or red rather than black. Java allows us to control the drawing color using the

setColor method from the Color class.

setColor(Color c). This method allows us to set our drawing color to any one of the3.

following 12 preset colors: red, yellow, blue, orange, pink, cyan, magenta, black,

white, gray, lightGray, and darkGray. (Java also lets you define totally new colors

based on the intensities of their red, green, and blue components. We won’t

discuss that feature here.) Using this new method, we can redraw our traffic sign

in blue as follows:

which produces the next image. Note that executing the operation setColor does

not change the color of images already drawn, only the color of any new images

subsequently placed on the screen.

The last thing we might want to add to our traffic sign is the phrase “No Entry”.

Java uses the method drawString to put text into a drawing:

drawString(String str, int x, int y). This method writes the string str into the

image. The lower-left position of the first character of the string is placed at

position (x, y). Thus, to put the desired text into the drawing, we could write the

following four lines:

4.

which produce the desired image:

(There are a number of Java methods for controlling font size and font type, but

we will not mention them here.)

There are other drawing commands to produce a variety of interesting shapes:

drawRect(int x, int y, int width, int height). This method draws a rectangle whose

upper-left corner is at position (x, y) and whose dimensions are the specified

height and width.

5.

drawRoundRect(int x, int y, int width, int height, int arcWidth, int arcHeight). This

method draws a rectangle with smoothly rounded corners. For example, the

command

produces:

6.

The parameters arcWidth and arcHeight set the diameter of the circles whose

arcs are used to form the rounded edges of the rectangle, as shown in the next

diagram.

Sometimes we want to produce a filled shape, rather than just an outline. Java

has a number of methods to draw shapes whose insides are filled using the

currently declared drawing color:

fillRect(int x, int y, int width, int height)7.

fillRoundRect(int x, int y, int width, int height, int arcWidth, int arcHeight)8.

fillOval(int x, int y, int height, int width)

All three of the above commands draw the specified shape with its insides filled

with whatever color you have specified. (Note: If you have not specified a

drawing color, then the shape is filled with the default color, which is usually

black.)

If we define a screen of size 300 X 300, then the following command:

produces the next image. Notice that the portions of the circle beyond the edge of

the window are discarded, an operation called clipping. All methods in the

graphics library clip those parts of an image that lie outside its window

boundaries.

This has been a brief introduction to the topic of graphics software. As mentioned

earlier, the number of methods in the Java Graphics class—or in any large-scale

production graphics package—is much, much larger. However, the nine

operations we have introduced are sufficient to allow you to produce some

9.

interesting images and, even more important, give you an appreciation for how

visually oriented software is developed.

Practice Problem

Write the sequence of commands to draw the following “house” on the

graphics window:

Create the house using four rectangles (for the base of the house, the

door, and the two windows), two line segments (for the roof), and one

filled circle (for the doorknob). Locate the house anywhere you want on

the window.

8Conclusion

In this module we looked at one representative high- level programming language,
Java. Of course, there is much about this language that has been left unsaid, but we
have seen how the use of a high-level language overcomes many of the disadvantages
of assembly language programming, creating a more comfortable and useful
environment for the programmer. In a high-level language, the programmer need not
manage the storage or movement of data values in memory. The programmer can
think about the problem at a higher level, can use program instructions that are both
more powerful and more natural language–like, and can write a program that is much
more portable among various hardware platforms. We also saw how modularization,
through the use of methods and parameters, allows the program to be more cleanly
structured and how object-oriented programming allows a more intuitive view of the
problem solution and provides the possibility for reuse of helpful classes. We even had
a glimpse of graphical programming.

Java is not the only high-level language. You might be interested in looking at the other
online language modules for languages similar to Java (C++, C#, Python, and Ada). Still
other languages take quite a different approach to problem solving. In Chapter 10 of
Invitation to Computer Science, we look at some other languages and language
approaches and also address the question of why there are so many different
programming languages.

Exercises

Write a Java declaration for one real number quantity called rate,

initialized to 5.0.

1.

Write a single Java statement to declare two integer quantities called

orderOne and orderTwo, each initialized to 0.

2.

A Java main method needs one character variable choice, one integer

variable inventory, and one real number variable sales. Write the

necessary declarations; initialize choice to the blank character and the

other values to zero.

3.

Write a Java output statement to print the value of PI supplied by the

Math library.

Write a Java declaration for a constant quantity to be called

EVAPORATION_RATE, which is to have the value 6.15.

4.

You want to write a Java program to compute the average of three quiz

grades for a single student. Decide what variables your program needs,

and write the necessary declarations.

5.

Given the declaration

int[] list = new int[10];

how do you refer to the eighth number in the array?

6.

An array declaration such as

represents a two-dimensional table of values with 5 rows and 3 columns.

7.

Rows and columns are numbered in Java starting at 0, not at 1. Given this

declaration, how do you refer to the marked cell that follows?

Write Java statements to prompt for and collect values for the time in

hours and minutes (two integer quantities). Assume the declarations

8.

A program computes two integer quantities invento-ryNumber and

umberOrdered. Write a single output statement that prints these two

quantities along with appropriate text information.

9.

The integer quantities age and weight currently have the values 32 and

187, respectively. Write the exact output generated by the following

statement:

10.

Output that is a real number can be formatted so that the number is

rounded to a specified number of decimal places. To do this, add the

following statement at the very beginning of the program

11.

and add the following at the beginning of the main method body:

where the desired format for the output is given in quotes”for example,

“0.00” is requesting that the output be rounded to two decimal digits.

Output statements are then modified as follows (from the SportsWorld

program):

Write Java formatting and output statements to generate the following

output, assuming that density is a type double variable with the value

63.78:

What is the output after the following sequence of statements is executed?

(Assume the integer variables a and b have been declared.)

12.

Write a Java main method that gets the length and width of a rectangle

from the user and computes and writes out the area.

13.

In the SportsWorld program of Figure 14, the user must respond

with "C" to choose the circumference task. In such a situation, it is

preferable to accept either uppercase or lowercase letters. Rewrite

the condition in the program to allow this.

a.

In the SportsWorld program, rewrite the condition for continuation

of the program to allow either an upper-case or a lowercase

b.

14.

response.

Write a Java main method that gets a single character from the user and

writes out a congratulatory message if the character is a vowel (a, e, i, o,

or u), but otherwise writes out a "You lose, better luck next time" message.

15.

Insert the missing line of code so that the following adds the integers from

1 to 10, inclusive.

16.

What is the output after the following main method is executed?17.

Write a Java main method that outputs the even integers from 2 through

30, one per line. Use a while loop.

18.

In a while loop, the Boolean condition that tests for loop continuation is

done at the top of the loop, before each iteration of the loop body. As a

consequence, the loop body might not be executed at all. Our pseudocode

language of Chapter 2 contains a do-while loop construction, in which a

test for loop termination occurs at the bottom of the loop rather than at

the top, so that the loop body always executes at least once. Java has a

do-while statement that tests for loop continuation at the bottom of the

loop. The form of the statement is

19.

where, as usual, S1 can be a compound statement. Write a Java main

method to add up a number of nonnegative integers that the user supplies

and to write out the total. Use a negative value as a sentinel, and assume

that the first value is nonnegative. Use a do-while statement.

Write a Java program that asks for a duration of time in hours and

minutes and writes out the duration only in minutes.

20.

Write a Java program that asks for the user’s age in years; if the user is

under 35, then quote an insurance rate of $2.23 per $100 for life

insurance; otherwise, quote a rate of $4.32.

21.

Write a Java program that reads integer values until a 0 value is

encountered, then writes out the sum of the positive values read and the

sum of the negative values read.

22.

Write a Java program that reads in a series of positive integers and writes

out the product of all the integers less than 25 and the sum of all the

integers greater than or equal to 25. Use 0 as a sentinel value.

23.

Write a Java program that reads in 10 integer quiz grades and

computes the average grade. (Hint: Remember the peculiarity of

integer division.)

a.

Write a Java program that asks the user for the number of quiz

grades, reads them in, and computes the average grade.

b.

24.

Write a void Java method that receives two integer arguments and writes

out their sum and their product.

25.

Write a nonvoid Java method that receives a real number argument

representing the sales amount for videos rented so far this month. The

method asks the user for the number of videos rented today and returns

the updated sales figure to the main method. All videos rent for $4.25.

26.

Write a nonvoid Java method that receives three integer arguments and

returns the maximum of the three values.

27.

Write a Java doPerimeter method for the Rectangle class of Figurea.28.

27.

Write Java code that creates a new Rectangle object called yuri, then

writes out information about this object and its perimeter using the

doPerimeter method from part (a).

b.

Draw a class hierarchy diagram similar to Figure 28 for the following

classes: Student, Undergraduate_Student, Graduate_Student, Sophomore,

Senior, PhD_Student.

29.

Imagine that you are writing a program using an object-oriented

programming language. Your program will be used to maintain records

for a real estate office. Decide on one class in your program and a service

that objects of that class might provide.

30.

Write a Java program to balance a checkbook. The main method of the

CheckbookApp class should get the initial balance from the user, allow the

user to process as many transactions as desired, and write the final

balance. The Checkbook class should contain two public static methods to

handle deposits and checks, respectively. Each method should collect and

write out the amount of the transaction, and compute, write out, and

return the new balance. (See Exercise 11 on how to format output to two

decimal places, as is usually done with monetary values.)

31.

Write a Java program to compute the cost of carpeting three rooms. Room

objects have dimensions of width and length, and they can compute and

return their area and (given the price per square unit) the cost to carpet

themselves. The main method of the RoomApp class should create a Room

object and use a loop to process each of three rooms: get the dimensions

and carpet price, write out the individual areas and costs, add the three

costs, then write out the total cost. (See Exercise 11 on how to format

output to two decimal places, as is usually done with monetary values.)

32.

Determine the resolution on the screen on your computer (ask your

instructor or the local computer center how to do this). Using this

information, determine how many bytes of memory are required for the

frame buffer to store the following:

A black-and-white image (1 bit per pixel)a.

A grayscale image (8 bits per pixel)b.

33.

A color image (24 bits per pixel)c.

Using the drawLine command described in Section 7.2, draw an isosceles

triangle with the following configuration:

34.

Discuss what problem the display hardware might encounter while

attempting to execute the following operations, and describe how this

problem could be solved.

drawLine(1, 1, 4, 5);

35.

Draw a square with sides 100 pixels in length. Then inscribe a circle of

radius 50 inside the square. Position the square so its upper-left corner is

at position (60, 100).

36.

Create the following three labeled rectangular buttons:

Have the space between the Start and Stop buttons be the same as the

space between the Stop and Pause buttons.

37.

Create the following image of a “teeter-totter”:38.

Chapter : Programming in Java

Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

© 2014 Cengage Learning Inc. All rights reserved. No part of this work may by reproduced or used in any form or by any
means - graphic, electronic, or mechanical, or in any other manner - without the written permission of the copyright holder.

1

1.1

1.2

2

3

3.1

3.2

3.3

4

5

5.1

5.2

6

6.1

6.2

6.3

6.4

7

Chapter : Programming in Python
Book Title: Invitation to Computer Science, Sixth Edition
Printed By:
© 2013 , Cengage Learning

Programming in Python

Online module to accompany Invitation to Computer Science, 6th Edition, ISBN-10:

1133190820; ISBN-13: 9781133190820 (Cengage Learning, 2013).

Introduction to Python

A Simple Python Program

Creating and Running a Python Program

Virtual Data Storage

Statement Types

Input/Output Statements

The Assignment Statement

Control Statements

Another Example

Managing Complexity

Divide and Conquer

Using and Writing Functions

Object-Oriented Programming

What Is It?

Python and OOP

One More Example

What Have We Gained?

Graphical Programming

7.1

7.2

8

Graphics Hardware

Graphics Software

Conclusion

EXERCISES

ANSWERS TO PRACTICE PROBLEMS

1Introduction To Python

Hundreds of high-level programming languages have been developed; a fraction of
these have become viable, commercially successful languages. There are a half-dozen
or so languages that can illustrate some of the concepts of a high-level programming
language, but this module uses Python for this purpose.

Our intent here is not to make you an expert Python programmer—any more than our
purpose in Chapter 4 was to make you an expert circuit designer. Indeed, there is much
about the language that we will not even discuss. You will, however, get a sense of what
programming in a high-level language is like, and perhaps see why some people think
it is one of the most fascinating of human endeavors.

1.1A Simple Python Program

Figure 1 shows a simple but complete Python program. Even if you know nothing
about the Python language, it is not hard to get the general drift of what the program is
doing.

Figure 1

A Simple Python Program

Someone running this program (the user) could have the following dialogue with the
program, where boldface indicates what the user types:

To aid our discussion of how the program works, Figure 2 shows the same program
with a number in front of each line. The numbers are there for reference purposes
only; they are not part of the program. Lines 1-3 in the program of Figure 2 are Python
comments. Anything appearing on a line after the pound symbol (#) is ignored by the
compiler, just as anything following the double dash (--) is treated as a comment in the
assembly language programs of Chapter 6. Although the computer ignores comments,
they are important to include in a program because they give information to the
human readers of the code. Every high-level language has some facility for including
comments, because understanding code that someone else has written (or
understanding your own code after some period of time has passed) is very difficult
without the notes and explanations that comments provide. Comments are one way to
document a computer program to make it more understandable. The comments in lines
1-3 of Figure 2 describe what the program does plus tell who wrote the program and
when. These three comment lines together make up the program’s prologue comment
(the introductory comment that comes first). A prologue comment is always a good
idea; it’s almost like the headline in a newspaper, giving the big picture up front.

Figure 2

The Program of Figure 1 (line numbers added for reference)

Blank lines in Python programs are ignored and are used, like comments, to make the
program more readable by human beings. In our example program, we’ve used blank
lines (lines 4, 9, 11, 14) to separate sections of the program, visually indicating groups of
statements that are related. Except for blank lines, Python by default considers each
line of the program to be an individual program instruction, also called a program
statement, so you end a statement by just pressing the Enter key and going to the next
line to write the next statement.

The three quantities involved in this program are the speed of travel and the distance
traveled (these are input by the user) and the time to complete that travel (this is
computed and output by the program). The program code itself uses descriptive
names—speed, distance, and time—for these quantities, to help document their purpose
in the program. Lines 5-8 prompt the user to enter values for speed and distance, and
store those values in speed and distance. Later, we’ll see more details on how this
works. Line 10 computes the time required to travel this distance at this speed. Finally,
lines 12 and 13 print the two lines of output to the user’s screen. The values of speed,
time, and distance are inserted in appropriate places among the strings of text shown in
double quotes. The final program statement, line 15, has the effect of holding the
output on the user’s screen until the user presses the Enter key; otherwise, the output
might just flash by and be gone when the program ends.

Python, along with every other programming language, has specific rules of
syntax—the correct form for each component of the language. Any violation of the
syntax rules generates an error message from the compiler because the compiler does
not recognize or know how to translate the offending code. Python’s rules of syntax are
much simpler than those of many other programming languages, which is one reason
that Python programs are often shorter and, many would claim, easier to write than
programs in C++, Java, Ada, or C#, for example. Nonetheless, a typing error such as

will produce an error message, as will

because Python is a case-sensitive language, which means that uppercase letters are
distinguished from lowercase letters, and the instruction is print, not Print.

1.2Creating and Running A Python Program

Creating and running a Python program is basically a two-step process. The first step is
to type the program into a text editor. When you are finished, you save the file, giving it
a name with the extension.py. So the file for Figure 1 could be named

How About that Snake?

The Python programming language was created in the early 1990s by the Dutch
computer scientist and applied mathematician Guido van Rossum as a
successor to a language called ABC. It was not actually named for a snake. It
was named for the BBC comedy show Monty Python’s Flying Circus. Make of
that what you will!

Since its original release, Python has gone through a number of revisions.
Guido van Rossum remains the project leader and final arbiter of new
enhancements to the language, although—because it is an open-source
language—anyone can tinker with it and propose new features or additions,
and many have contributed to its development.

Python is prized for its low-stress (minimalist and intuitive) syntax, which leads
to quick development time. While the basics of the language are simple, an
extensive library of supporting code makes it a flexible and powerful language.

The second step is to execute the program. Details of how to run the program depend
on your system; you may be able to double-click on the TravelPlanner.py file, or you
may have to type the command “TravelPlanner.py” at the operating system prompt.
Whenever you run a Python program, the Python compiler (it’s actually called an
interpreter) translates the Python code first into low-level code called bytecode,
which is not yet object code, then finishes the translation into machine-specific object
code and executes it. (Referring to Figure 9.1 in the Invitation to Computer Science
textbook, there are no explicit linker or loader steps. The program goes quite
seamlessly from high-level code to execution.) A Python program will therefore run on
any computer that has Python on it.

Another approach is to do all of your work in an Integrated Development

Environment, or IDE. The IDE lets the programmer perform a number of tasks within
the shell of a single application program. A modern programming IDE provides a text
editor, a file manager, a way to run the program, and tools for debugging, all within
this one piece of software. The IDE usually has a graphical user interface (GUI) with
menu choices for the different tasks. This can significantly speed up program
development. Python comes with its own Integrated Development Environment called
IDLE, so you can do all your Python program development with this one tool.

This Python exercise is just a beginning. In the rest of this module, we’ll examine the
features of the language that will enable you to write your own Python programs to
carry out more sophisticated tasks.

Python Interpreter

A free Python interpreter is available to download at
www.python.org/download. Python comes with its own IDE called IDLE. You
can do all your Python program development within this one tool. There are
versions for Windows, Linux, and Mac OS X.

The graphics software used in Section 7 of this module is courtesy of Dr. John
Zelle of Wartburg College, Iowa. This is open-source software released under
the terms of the GPL (General Public License; see www.gnu.org/licenses
/gpl.html) and may be downloaded for free from http://mcsp.wartburg.edu/zelle
/python. Put the file (graphics.py) in the Python Lib folder after you have
installed Python.

2Virtual Data Storage

One of the improvements we seek in a high-level language is freedom from having to
manage data movement within memory. Assembly language does not require us to give
the actual memory address of the storage location to be used for each item, as in
machine language. However, we still have to move values, one by one, back and forth
between memory and the arithmetic logic unit (ALU) as simple modifications are made,
such as setting the value of A to the sum of the values of B and C. We want the
computer to let us use data values by name in any appropriate computation without
thinking about where they are stored or what is currently in some register in the ALU.
In fact, we do not even want to know that there is such a thing as an ALU, where data
are moved to be operated on. Instead, we want the virtual machine to manage the
details when we request that a computation be performed. A high-level language
allows this, and it also allows the names for data items to be more meaningful than in
assembly language.

Names in a programming language are called identifiers. Each language has its own

specific rules for what a legal identifier can look like. In Python an identifier can be
any combination of letters, digits, and the underscore symbol (_), as long as it does not
begin with a digit. An additional restriction is that an identifier cannot be one of the
few words, such as “while”, that have a special meaning in Python and that you would
not be likely to use anyway. The three integers B, C, and A in our assembly language
program can therefore have more descriptive names, such as subTotal, tax, and
finalTotal. The use of descriptive identifiers is one of the greatest aids to human
understanding of a program. Identifiers can be almost arbitrarily long, so be sure to
use a meaningful identifier such as finalTotal instead of something like A; the improved
readability is well worth the extra typing time. Remember that Python is case sensitive;
thus, FinalTotal, Finaltotal, and finalTotal are three different identifiers.

Capitalization of Identifiers

There are two standard capitalization patterns for identifiers, particularly
“multiple word” identifiers:

The code in this chapter uses the following convention for creating identifiers
(examples included):

The underscore character is not used except for named constants. Occasionally,
however, we’ll use single capital letters for identifiers in quick code fragments.

Data that a program uses can come in two varieties. Most quantities used in a program
have values that change as the program executes, or values that are not known ahead
of time but must be obtained from the computer user (or from a data file previously
prepared by the user) as the program runs. These quantities are called variables. Some
programs may use quantities that are fixed throughout the duration of the program,
and their values are known ahead of time. These quantities are called constants. The
names for both variables and constants must follow the Python identifier syntax rules
given previously.

Identifiers for variables and constants serve the same purpose in program statements
as pronouns do in ordinary English statements. The English statement “He will be
home today” has specific meaning only when we plug in the value for which “He”
stands. Similarly, a program statement such as

becomes an actual computation only when numeric values have been stored in the
memory locations referenced by the distance and speed identifiers.

We now know how to name variables, but how do we actually create them in a Python
program? The syntax is very simple; variables are created and given values all in one
statement of the form

For example,

associates the identifier myNumber with some (unknown to us and we don’t care)
memory location and stores the integer value 15 in that location. This statement is
equivalent to the assembly language statement

Python recognizes different types of data that can be stored in variables, namely string
data or numeric data. A string is just a sequence of characters; the statement

prints the exact sequence of characters within the quote marks. Such a string is
sometimes called a literal string because it is printed out exactly as is. The first
statement below stores that same string in a variable, and the second statement then
prints out the contents of that variable:

The effect is the same in either case—the user sees

on the screen.

There are also several different types of numeric data, the most common being type int
and type float. Whole numbers with no decimal points, such as –28 and 5231, are of
type int; numbers with decimal points, such as 25.8 or –52.976, are of type float. Figure

3 lists these common Python data types.

Figure 3

Some of the Python Data Types

int an integer quantity

float a real number (a decimal
quantity)

string a sequence of characters

We know that all data are represented internally in binary form. In Chapter 4 we noted
that any one sequence of binary digits can be interpreted as a whole number, a
negative number, a real number (one containing a decimal point, such as –17.5 or
28.342), etc. In Python, a variable doesn’t have a fixed data type associated with it.
Instead, it takes on the data type of whatever value it currently contains. After
execution of

the binary string in memory location myNumber will be interpreted as an integer. If the
statement

is executed later in the same program, Python will then interpret the binary string in
myNumber as a decimal value. Still later, myNumber could take on the string data type
with the statement

although at this point the identifier would be somewhat misleading! And this points out
a difficulty with the ability of an identifier to take its data type from the value assigned
to it at the moment. If the reader of the program has to remember, “let’s see, in this
section of code the variable xyz means something-or-other, but down in that section of
code it means something-or-other-else,” then there is room for confusion. Good
programming practice says that an identifier should represent only one thing in a
given program.

Let’s consider program constants. An example of a constant is the integer value 2. The

integer 2 is a constant that we don’t have to name by an identifier, nor do we have to
build the value 2 in memory manually by the equivalent of a .DATA pseudo-op. We can
just use the symbol “2” in any program statement. When “2” is first encountered in a
program statement, the binary representation of the integer 2 is automatically
generated and stored in a memory location. In a program that does computations
about circles, an approximation to ₃, say 3.1416, could be used just as easily by simply
sticking this number wherever in the program we need it. But if we are really using
this number as an approximation to ₃, it is more informative to use the identifier PI.
The statement

stores the desired decimal value in a memory location with the identifier PI. The
convention among Python programmers is that an identifier of all caps, like PI,
represents a constant value in the program. Therefore the value of PI should not be
changed by a later program statement. However, Python won’t prevent you from later
making a change in the value of PI, so it’s up to you as the programmer to treat this
value of PI as unchangeable. In Python, then, a named constant is really just a variable.

In addition to variables of a primitive data type that hold only one unit of information,
we can create a whole collection, called a list, of logically related variables at one time.
This allows storage to be set aside as needed to contain each of the values in this
collection. For example, suppose we want to create a roster of students in the class. We
can do this using a Python list that contains string data. The following two
statements create a Python list and print its contents.

The output is

While roster refers to the list as a whole, individual list elements can be accessed by
giving their position or index in the list. List indices begin at 0, so

produces output of

Figure 4 illustrates this list.

Figure 4

A 4-Element List roster

Here is an example of the power of a high-level language. In assembly language, we
can name only individual memory locations—that is, individual items of data—but in
Python we can also assign a name to an entire collection of related data items. A list
thus allows us to talk about an entire table of values, or the individual elements making
up that table. If we are writing Python programs to implement the data cleanup
algorithms of Chapter 3, we can use a list of integers to store the 10 data items.

A Python list can perform many different actions. For example, the list can be put into
sorted order:

produces output of

Practice Problems

Which of the following are legitimate Python identifiers?

martinBradley C3P_OH Amy3 3Right Print

1.

What is the output from the following fragment of Python code?

myVariable = 65

myVariable = 65.0

myVariable = “Sixty Five”

print(myVariable)

2.

Using the roster list of Figure 4, how do you reference the last item in

the list?

3.

3Statement Types

Now that we understand how to create variables to hold data, we will examine
additional kinds of programming instructions (statements) that Python provides. These
statements enable us to manipulate the data items and do something useful with them.
The instructions in Python, or indeed in any high-level language, are designed as
components for algorithmic problem solving, rather than as one-to-one translations of
the underlying machine language instruction set of the computer. Thus, they allow the
programmer to work at a higher level of abstraction. In this section we examine three
types of high-level programming language statements. They are consistent with the
pseudocode operations described in Chapter 2 (see Figure 2.9).

Input/output statements make up one type of statement. An input statement collects
a specific value from the user for a variable within the program. In our TravelPlanner
program, we need input statements to get the values of the speed and distance that are
to be used in the computation. An output statement writes a message or the value of a
program variable to the user’s screen. Once the TravelPlanner program computes the
time required to travel the given distance at the given speed, the output statement
displays that value on the screen, along with other information about what that value
means.

Another type of statement is the assignment statement, which assigns a value to a
program variable. This is similar to what an input statement does, except that the value
is not collected directly from the user, but is computed by the program. In pseudocode
we called this a “computation operation.”

Control statements, the third type of statement, affect the order in which instructions
are executed. A program executes one instruction or program statement at a time.
Without directions to the contrary, instructions are executed sequentially, from first to
last in the program. (In Chapter 2 we called this a straight-line algorithm.) Imagine
beside each program statement a light bulb that lights up while that statement is being
executed; you would see a ripple of lights from the top to the bottom of the program.
Sometimes, however, we want to interrupt this sequential progression and jump
around in the program (which is accomplished by the instructions JUMP, JUMPGT, and
so on, in assembly language). The progression of lights, which may no longer be
sequential, illustrates the flow of control in the program—that is, the path through the
program that is traced by following the currently executing statement. Control
statements direct this flow of control.

3.1Input/Output Statements

Remember that the job of an input statement is to collect from the user specific values
for variables in the program. In pseudocode, to get the value for speed in the
TravelPlanner program, we would say something like

In the Python TravelPlanner program, the equivalent program statement is

This statement accomplishes several things at once, and we should look at it in pieces.
The right-hand side of the equals sign,

is done first, using the built-in Python input function (“built-in” means that this
function is supplied with the Python language). We pass information to the input
function in the form of a literal string (enclosed in quote marks). This writes a message
to the user requesting information about the speed. Such a message is called a user
prompt; it alerts the user that the program is waiting for some input. The input
function also reads the user’s response from the keyboard and “returns” this input
data. The complete Python statement

stores the result that input returns in the variable speed. But input always captures the
input data as a string of characters. If the user enters 58, then the input function

captures the string consisting of a 5 followed by an 8; this is just a two-character string,
similar to the string “ab” consisting of an a followed by a b. In other words, the
two-length string of characters “58” is not the same as the integer numeric value of 58,
and we could not do any numerical computations with it. The next statement of our
sample program

converts the string value “58” into the integer number 58 and again stores the result in
speed. This statement uses the built-in Python int function; we give this function
information in the form of the current value of speed (which is string data). The int
function converts the string into its integer equivalent and “returns” the integer value
58. This in turn is stored in the speed variable, which now contains data of type int.

The statements

do the same thing using the built-in float function that converts the string returned by
the input function into a decimal value that then gets stored in distance. Here we have
assumed that the user might enter a decimal value for distance, as in the sample
dialogue, so we used the float conversion function rather than the int function.

It’s possible to chain functions together in one statement. The statement

works by putting the string value returned by the input function directly into the int
function (skipping the intermediate step of storing it in speed) and then storing the
result returned by the int function in speed. This single statement has the same effect as
the two statements we used earlier, and makes it clear that the real purpose of speed in
the program is to store an integer value.

This conversion, or type casting, from string data to integer data only works if the user
entered a string that can be interpreted as an integer. If the user interaction with the
TravelPlanner program is

an error message will result that says something like “invalid literal for int() with base
10.” In other words, Python could not convert the literal string “abc” that the user
entered into a base 10 integer. The following

produces a similar result. However, if the user enters 145 in response to

the float function will happily perform automatic type casting and convert the string
value “145” to the equivalent decimal value 145.0.

The int and float functions also perform conversions on numeric data. The result
returned by

is, not unexpectedly, 145.0. The result returned by

is 45. Notice that while the int function could make nothing of the string “45.7”, it will
truncate the numeric value 45.7.

To complete the picture, there is a Python str function that converts numeric data into
string data. The result returned by

is the string “56”.

Once the value of time has been computed in the TravelPlanner program, we want to
write it out. A pseudocode operation for producing output would be something like

and the Python output statement is almost the same thing:

This statement uses the built-in Python print function. The print function writes out the
information given to it as a string. If the value of time is 2.35, the print function
converts that to the string sequence of four characters “2.35” and that is what is output.
Of course the sequence of characters 2.35 and the decimal value 2.35 look exactly the
same, so it doesn’t matter.

But we don’t want the program to simply print a number (or something that looks like
a number) with no explanation; we want some words to make the output meaningful.
In our TravelPlanner program, we used the print function twice, in each case giving the
function a mixture of literal strings and numeric variables, separated by commas.

Each print function produced one line of output. The output was

The print function type cast the numeric variables into their string equivalents, and
helpfully inserted blanks before each piece (except the first string piece) so that the
output looks nice and is not jammed together.

The appearance of the output string can be modified by using an escape sequence
within a literal string. An escape sequence consists of a backslash (\) followed by a
single character; the combination is treated as a unit that results in special output-
formatting effects, not as two characters of the literal string itself. Two useful escape
sequences are

\n Insert a new line

\t insert a tab character

The result of

is

The \n forces the second part of the literal string to print on a new line, and the \t
indents the second line one tab distance from the left margin. In this way a single print
function can print more than one line. Conversely, it’s possible to make several print
functions produce only a single line of output. The result of

is

We mentioned earlier that Python by default considers each line of the program to be
an individual program statement, but a single statement can be spread over multiple
lines by putting a backslash at the end of a line. This use of the backslash means that
the next line is a continuation of this same statement, and the \ is called a line
continuation character. The following is one statement spread over two lines,

and the result is

The print function prints a blank line if no information is passed to it. Therefore

would result in

Another way to get a blank line is to insert the \n escape sequence several times within
a literal string. This explains the last line of code in the Travel-Planner program:

The input function prints the user prompt on a new line in any case, so the effect of the
\n escape sequences is to add two extra blank lines before the user prompt. Because the
program is waiting to read input, the screen remains visible until the user presses
Enter, at which point the program terminates. We’ve usually stored the string returned
by the input function in a program variable, but here it just gets ignored.

Literal strings can be joined together by the concatenation operator, represented by a
π sign. The statement

produces

Here we put a space at the end of the first string in order to separate the printed result
from the second string. We could use string concatenation to write the output from the
TravelPlanner program, but we’d have to convert the numerical values into strings
because concatenation only works on strings. This would look like

where again we had to insert spaces into the literal strings. This is a lot of work
compared to the original two statements that let the print function do the type casting,
spacing, and concatenation for us automatically!

Finally, in our sample execution of the TravelPlanner program, we got the following
output:

This is fairly ridiculous output—it does not make sense to display the result to 10
decimal digits. Exercise 11 at the end of this module tells you how decimal output can
be formatted to a specified number of decimal places.

Practice Problems

Write a single statement that prompts the user to enter an integer

value and stores that value (as an integer) in a variable called

quantity.

1.

A program has computed a value for the variable average that

represents the average high temperature in San Diego for the month

of May. Write an appropriate output statement.

2.

What appears on the screen after execution of the following

statement?

3.

3.2The Assignment Statement

As we said earlier, an assignment statement assigns a value to a program variable. This
is accomplished by evaluating some expression and then writing the resulting value in
the memory location referenced by the program variable. The general pseudocode
operation

has as its Python equivalent

The expression on the right is evaluated, and the result is then written into the memory
location named on the left. For example, the assignment statements

result in B taking on the value 2 and C taking on the value 5. After execution of

A has the value that is the sum of the current values of B and C. Assignment is a
destructive operation, so whatever A’s previous value was, it is gone. Note that this one
assignment statement says to add the values of B and C and assign the result to A. This
one high-level language statement is equivalent to three assembly language statements
needed to do this same task (LOAD B, ADD C, STORE A). A high-level language program
thus packs more power per line than an assembly language program. To state it
another way, whereas a single assembly language instruction is equivalent to a single
machine language instruction, a single Python instruction is usually equivalent to
many assembly language instructions or machine language instructions, and allows us
to think at a higher level of problem solving.

In the assignment statement, the expression on the right is evaluated first. Only then is
the value of the variable on the left changed. This means that an assignment statement
like

makes sense. If A has the value 7 before this statement is executed, then the expression
evaluates to

and 8 then becomes the new value of A. (Here it becomes obvious that the assignment
operator = is not the same as the mathematical equals sign =, because A = A + 1 does not
make sense mathematically.)

All four basic arithmetic operations can be done in Python, denoted by

+ Addition

- Subtraction

* Multiplication

/ Division

For the most part, this is standard mathematical notation, rather than the somewhat
verbose assembly language op code mnemonics such as SUBTRACT. The reason a
special symbol is used for multiplication is that × would be confused with x, an
identifier, • (a multiplication dot) doesn’t appear on the keyboard, and juxtaposition
(writing AB for A*B) would look like a single identifier named AB.

As soon as an arithmetic operation involves one or more real numbers, any integers
are converted to their real number equivalent, and the calculations are done with real
numbers. Thus the following divisions behave as we expect:

all result in the value 3.5. In Python, the division

also results in the value 3.5, even though both the numerator and denominator are
integers. But if we think of grade-school long division of integers:

we see that the division of 7 by 2 results in an integer quotient of 3 and an integer
remainder of 1. In other words,

Python provides two operations, symbolized by // and %, that break down integer
division into its integer quotient and its integer remainder, respectively. Using these
operators,

results in the value 3, and

results in the value 1.

If the values are stored in variables, the result is the same. For example,

produces the output

The expression on the right side of an assignment statement need not evaluate to a
numerical value. The input statement

is also an assignment statement. The expression on the right applies the input function
to write a user prompt and read the sequence of characters the user types in at the
keyboard. The resulting string that the input function returns is then assigned to the
speed variable.

The Python print function does something neat with arithmetic expressions. For
example, the result of

is

Practice Problems

newNumber and next contain integer values in a Python program.

Write a statement to assign the value of newNumber to next.

1.

What is the value of Average after the following statements are

executed?

Total = 277

Number = 5

Average = Total//Number

2.

Recall that the print function type casts numerical values to strings, but in this case the
arithmetic expression is evaluated first, and then the numerical result of that
expression, 28, is converted to the string “28” for printing.

3.3Control Statements

We mentioned earlier that sequential flow of control is the default; that is, a program
executes instructions sequentially from first to last. The flowchart in Figure 5
illustrates this, where S1, S2,…, Sk are program instructions (program statements).

Figure 5

Sequential Flow of Control

As stated in Chapter 2, no matter how complicated the task to be done, only three types
of control mechanisms are needed:

Sequential: Instructions are executed in order.1.

Conditional: Which instruction executes next depends on some condition.2.

Looping: A group of instructions may be executed many times.3.

Sequential flow of control, the default, is what occurs if the program does not contain
any instances of the other two control structures. In the TravelPlanner program, for
instance, instructions are executed sequentially, beginning with the input statements,
next the computation, and finally the output statements.

In Chapter 2 we introduced pseudocode notation for conditional operations and
looping. In Chapter 6 we learned how to write somewhat laborious assembly language
code to implement conditional operations and looping. Now we’ll see how Python
provides instructions that directly carry out these control structure
mechanisms—more evidence of the power of high-level language instructions. We can
think in a pseudocode algorithm design mode, as we did in Chapter 2, and then
translate that pseudocode directly into Python code.

Conditional flow of control begins with the evaluation of a Boolean condition, also
called a Boolean expression, that can be either true or false. We discussed these
“true/false conditions” in Chapter 2, and we also encountered Boolean expressions in
Chapter 4, where they were used to design circuits. A Boolean condition often involves
comparing the values of two expressions and determining whether they are equal,
whether the first is greater than the second, and so on. Again assuming that A, B, and C
are variables with integer values in a program, the following are legitimate Boolean
conditions:

A == 0 (Does A currently have the
value 0?)

B < (A + C) (Is the current value of B less
than the sum of the current
values of A and C ?)

A != B (Does A currently have a
different value than B?)

If the current values of A, B, and C are 2, 5, and 7, respectively, then the first condition
is false (A does not have the value zero), the second condition is true (5 is less than 2
plus 7), and the third condition is true (A and B do not have equal values).

Comparisons need not be numeric. They can also be made between string values, in
which the “ordering” is the usual alphabetic ordering. If the current value of Color is

“Red”, then

is true because "Red" comes after (is greater than) "Blue".

Figure 6 shows the comparison operators available in Python. Note the use of the two
equality signs to test whether two expressions have the same value. The single equality
sign is used in an assignment statement, the double equality sign in a comparison.

Figure 6

Python Comparison Operators

COMPARISON SYMBOL EXAMPLE EXAMPLE
RESULT

the same
value as

== 2 == 5 false

less than < 2 < 5 true

less than or
equal to

<= 5 <= 5 true

greater than > 2 > 5 false

greater than
or equal to

>= 2 >= 5 false

not the same
value as

!= 2 != 5 true

Boolean conditions can be built up using the Boolean operators and, or, and not. Truth
tables for these operators were given in Chapter 4 (Figures 4.12–4.14). Python uses the
English language connective words for these operators, making them very easy to
understand (see Figure 7).

Figure 7

Python Boolean Operators

OPERATOR SYMBOL EXAMPLE
EXAMPLE
RESULT

AND and

(2 < 5)
and (2 >
7) false

OR or
(2 < 5) or
(2 > 7) true

NOT not
not (2 ==
5) true

A conditional statement relies on the value of a Boolean condition (true or false) to
decide which programming statement to execute next. If the condition is true, one
statement is executed next, but if the condition is false, a different statement is
executed next. Control is therefore no longer in a straight-line (sequential) flow, but
may hop to one place or to another. Figure 8 illustrates this situation. If the condition is
true, the statement S1 is executed (and statement S2 is not); if the condition is false, the
statement S2 is executed (and statement S1 is not). In either case, the flow of control
then continues on to statement S3. We saw this same scenario when we discussed
pseudocode conditional statements in Chapter 2 (Figure 2.4).

Figure 8

Conditional Flow of Control (if-else)

The Python instruction that carries out conditional flow of control is called an if-else
statement. It has the following form (note that the words if and else are lowercase, and
that there is a colon at the end of the Boolean condition and at the end of else):

Below is a simple if-else statement, where we assume that A, B, and C have integer
values:

Suppose that when this statement is reached, the values of A, B, and C are 2, 5, and 7,
respectively. As we noted before, the condition B < (A + C) is then true, so the statement

is executed, and the value of A is changed to 4. However, suppose that when this
statement is reached, the values of A, B, and C are 2, 10, and 7, respectively. Then the
condition B < (A + C) is false, the statement

is executed, and the value of A is changed to 6.

A variation on the if-else statement is to allow an “empty else” case. Here we want to do
something if the condition is true, but if the condition is false, we want to do nothing.
Figure 9 illustrates the empty else case. If the condition is true, statement S1 is executed
and after that the flow of control continues on to statement S3, but if the condition is
false, nothing happens except that the flow of control moves directly on to statement
S3.

Figure 9

If-Else with Empty Else

This if variation of the if-else statement can be accomplished by omitting the word else.
This form of the instruction therefore looks like

We could write

This has the effect of doubling the value of A if the condition is true and of doing
nothing if the condition is false.

Multiple statements can be combined into a block. The block is then treated as a single
statement, called a compound statement. A compound statement can be used
anywhere a single statement is allowed. The implication is that in Figure 8, S1 or S2
might be a compound statement. This makes the if-else statement potentially much
more powerful, and similar to the pseudocode conditional statement in Figure 2.9.

Python recognizes a block by two clues. First, the colon after the Boolean condition or
after the else indicates that a block is coming next. The extent of the block is given by
indentation. For example,

If the variable snack does have the string value “pb & j” at this point, then the block of
three print statements is executed, and the output is

If snack has some different value, the one-statement else block is executed, and the
output is

Indenting in Python not only makes a program easier for human beings to read, it’s
also used by the Python interpreter to determine the extent of a block of code. Use the
Tab key to get the proper levels of indenting.

Let’s expand on our TravelPlanner program and give the user of the program a choice
of computing the time either as a decimal number (3.75 hours) or as hours and minutes
(3 hours, 45 minutes). This situation is ideal for a conditional statement. Depending on
what the user wants to do, the program does one of two tasks. For either task, the
program still needs information about the speed and distance. The program must also
collect information to indicate which task the user wishes to perform. We need an
additional variable in the program to store this information. Let’s use a variable called
choice to store the user’s choice of which task to perform. We also need two new
variables to store the (integer) values of hours and minutes.

Figure 10 shows the new program, with the three additional variables. The condition
evaluated at the beginning of the if-else statement tests whether choice has the value
“D” or “d”. (Although the program asks the user to enter “D”, it’s easy to imagine
someone typing lowercase “d” instead, and this compound condition works with either
value.) If so, then the condition is true, and the first block of statements is
executed—that is, the time is output in decimal format as we have been doing all along.

If the condition is false, then the second block of statements is executed. In either case,
the program then exits normally with the final input statement. Note that because of
the way the condition is written, if choice does not have the value “D” or the value “d”,
it is assumed that the user wants to compute the time in hours and minutes, even
though choice may have any other value that the user may have typed in response to
the prompt.

Figure 10

The TravelPlanner Program with a Conditional Statement

To compute hours and minutes (the else clause of the if-else statement), time is
computed in the usual way, which results in a decimal value. The whole-number part
of that decimal is the number of hours needed for the trip. We can get this number by
type casting the decimal number to an integer. This is accomplished by

which drops all digits behind the decimal point and stores the resulting integer value in
hours. To find the fractional part of the hour that we dropped, we subtract hours from
time. We multiply this by 60 to turn it into some number of minutes, but this is still a
decimal number. We do another type cast to truncate this to an integer value for
minutes:

For example, if the user enters data of 50 mph and 475 miles and requests output in
hours and minutes, the following table shows the computed values.

Here is the actual program output for this case:

Now let’s look at the third variation on flow of control, namely looping (iteration). We
want to execute the same group of statements (called the loop body) repeatedly,
depending on the result of a Boolean condition. As long as (while) the condition
remains true, the loop body is executed. The condition is tested before each execution
of the loop body. When the condition becomes false, the loop body is not executed
again, which is usually expressed by saying that the algorithm exits the loop. To ensure
that the algorithm ultimately exits the loop, the condition must be such that its truth
value can be affected by what happens when the loop body is executed. Figure 11
illustrates the while loop. The loop body is statement S1 (which can be a compound
statement), and S1 is executed while the condition is true. Once the condition is false,
the flow of control moves on to statement S2. If the condition is false when it is first
evaluated, then the body of the loop is never executed at all. We saw this same scenario
when we discussed pseudocode looping statements in Chapter 2 (Figure 2.6).

Figure 11

While Loop

Python uses a while statement to implement this type of looping. The form of the
statement is:

The colon after the Boolean condition indicates that a block of code is coming, and the
extent of the block is determined by indentation.

For example, suppose we want to write a program to add a sequence of nonnegative
integers that the user supplies and write out the total. We need a variable to hold the
total; we’ll call this variable sum. To handle the numbers to be added, we could use a
bunch of variables such as n1, n2, n3,…, and do a series of input-and-add statements of
the form

and so on. The problem is that this approach requires too much effort. Suppose we
know that the user wants to add 2000 numbers. We could write the above input-
and-add statements 2000 times, but it wouldn’t be fun. Nor is it necessary—we are
doing a very repetitive task here, and we should be able to use a loop mechanism to
simplify the job. (We faced a similar situation in the first pass at a sequential search
algorithm, Figure 2.11; our solution there was also to use iteration.)

Even if we use a loop mechanism, we are still adding a succession of values to sum.
Unless we are sure that the value of sum is zero to begin with, we cannot be sure that
the answer isn’t nonsense. We should set the value of sum to 0 before we add anything
to it.

Now on to the loop mechanism. First, let’s note that once a number has been read in
and added to sum, the program doesn’t need to know the value of the number any
longer. We can have just one variable called number and use it repeatedly to hold the
first numerical value, then the second, and so on.

The general idea is then

Now we have to figure out what the condition “there are more numbers to add” really
means. Because we are adding nonnegative integers, we could ask the user to enter one
extra integer that is not part of the legitimate data, but is instead a signal that there are
no more data. Such a value is called a sentinel value. For this problem, any negative
number would be a good sentinel value. Because the numbers to be added are all
nonnegative, the appearance of a negative number signals the end of the legitimate
data. We don’t want to process the sentinel value (because it is not a legitimate data
item); we only want to use it to terminate the looping process. This might suggest the
following code:

Here’s the problem. How can we test whether number is greater than or equal to 0 if we
haven’t read the value of number yet? We need to do a preliminary input for the first
value of number outside of the loop, then test that value in the loop condition. If it is
nonnegative, we want to add it to sum and then read the next value and test it.
Whenever the value of number is negative (including the first value), we want to do
nothing with it—that is, we want to avoid executing the loop body. The following
statements do this; we’ve also added instructions to the user.

The value of number gets changed within the loop body by reading in a new value. The
new value is tested, and if it is nonnegative, the loop body executes again, adding the
data value to sum and reading in a new value for number. The loop terminates when a
negative value is read in. Remember the requirement that something within the loop
body must be able to affect the truth value of the condition. In this case, it is reading in
a new value for number that has the potential to change the value of the condition from
true to false. Without this requirement, the condition, once true, would remain true
forever, and the loop body would be endlessly executed. This results in what is called
an infinite loop. A program that contains an infinite loop will execute forever (or until
the programmer gets tired of waiting and interrupts the program, or until the program
exceeds some preset time limit).

Here is a sample of the program output:

The problem we’ve solved here, adding nonnegative integers until a negative sentinel
value occurs, is the same one solved using assembly language in Chapter 6. The Python
code above is almost identical to the pseudocode version of the algorithm shown in

Figure 6.7. Thanks to the power of the language, the Python code embodies the
algorithm directly, at a high level of thinking, whereas in assembly language this same
algorithm had to be translated into the lengthy and awkward code of Figure 6.8.

To process data for a number of different trips in the TravelPlanner program, we could
use a while loop. During each pass through the loop, the program computes the time
for a given speed and distance. The body of the loop is therefore exactly like our
previous code. All we are adding here is the framework that provides looping. To
terminate the loop, we could use a sentinel value, as we did for the program above. A
negative value for speed, for example, is not a valid value and could serve as a sentinel
value. Instead of that, let’s allow the user to control loop termination by having the
program ask the user whether he or she wishes to continue. We’ll need a variable to
hold the user’s response to this question. Of course, the user could answer “N” at the
first query, the loop body would never be executed at all, and the program would
terminate.

Figure 12 shows the complete program. Following the indentation, one can see that the
overall structure of the program is

opening query to the user

a while loop that contains an if-else statement

the usual closing statement

Figure 12

The TravelPlanner Program with Looping

Practice Problems

What is the output from the following section of code?1.

What is the output from the following section of code?2.

What is the output from the following section of code?3.

How many times is the output statement executed in the following4.

section of code?

Write a Python statement that outputs “Equal” if the integer values of

night and day are the same, but otherwise does nothing.

5.

4Another Example

Let’s briefly review the types of Python programming statements we’ve learned. We
can do input and output—reading values from the user into memory, writing values
out of memory for the user to see, being sure to use meaningful variable identifiers to
reference memory locations. We can assign values to variables within the program.
And we can direct the flow of control by using conditional statements or looping.
Although there are many other statement types available in Python, you can do almost
everything using only the modest collection of statements we’ve described. The power
lies in how these statements are combined and nested within groups to produce ever
more complex courses of action.

For example, suppose we write a program to assist SportsWorld, a company that
installs circular swimming pools. In order to estimate their costs for swimming pool
covers or for fencing to surround the pool, SportsWorld needs to know the area or
circumference of a pool, given its radius. A pseudocode version of the program is
shown in Figure 13.

Figure 13

A Pseudocode Version of the SportsWorld Program

We can translate this pseudocode fairly directly into Python code. We will also add a
prologue comment to explain what the program does (optional but always
recommended for program documentation). Also, the computations for circumference
and area both involve the constant pi (π). We could use some numerical approximation
for pi each time it occurs in the program. Instead we’ll make use of a built-in Python
module. A module is a collection of useful code that you can make available to your
Python program by using the import statement. In this case, the value of pi is defined
in the math module, so we would put

at the top of our program. Then the expression

has the value assigned to pi in the math module, and

would produce

As with all Python “constants,” however, the value of math.pi can be changed in your
program. Thus

would produce the value 7 as output. Again, it’s up to the programmer to treat a value
as a constant (unchangeable) if that’s what it’s supposed to be. Thankfully, the above
assignment statement doesn’t change the value of pi stored in the Python math module,
it just changes it within the program in which it appears.

Figure 14 gives the complete program; the prologue comment notes the use of the math
module. Figure 15 shows what actually appears on the screen when this program is
executed with some sample data.

Figure 14

The SportsWorld Program

Figure 15

A Sample Session Using the Program of Figure 14

It is inappropriate (and messy) to output the value of the area to 10 or 11 decimal
places based on a value of the radius given to one or two decimal places of accuracy.
See Exercise 11 at the end of this module for decimal number formatting tips.

Practice Problems

Write a complete Python program to read in the user’s first and last

initials and write them out.

1.

Write a complete Python program that asks for the price of an item

and the quantity purchased, and writes out the total cost.

2.

Write a complete Python program that asks for a number. If the

number is less than 5, it is written out, but if it is greater than or

equal to 5, twice that number is written out.

3.

Write a complete Python program that asks the user for a positive

integer n, and then writes out all the numbers from 1 up to and

including n.

4.

5Managing Complexity

The programs we have written have been relatively simple. More complex problems
require more complex programs to solve them. Although it is fairly easy to understand
what is happening in the 30 or so lines of the SportsWorld program, imagine trying to
understand a program that is 50,000 lines long. Imagine trying to write such a
program! It is not possible to understand—all at once—everything that goes on in a
50,000-line program.

5.1Divide and Conquer

Writing large programs is an exercise in managing complexity. The solution is a
problem-solving approach called divide and conquer. Suppose a program is to be
written to do a certain task; let’s call it task T. Suppose further that we can divide this
task into smaller tasks, say A, B, C, and D, such that, if we can do those four tasks in the
right order, we can do task T. Then our high-level understanding of the problem need

only be concerned with what A, B, C, and D do and how they must work together to
accomplish T. We do not, at this stage, need to understand how tasks A, B, C, and D can
be done. Figure 16(a), an example of a structure chart or structure diagram,
illustrates this situation. Task T is composed in some way of subtasks A, B, C, and D.
Later we can turn our attention to, say, subtask A, and see if it too can be decomposed
into smaller subtasks, as in Figure 16(b). In this way, we continue to break the task
down into smaller and smaller pieces, finally arriving at subtasks that are simple
enough that it is easy to write the code to carry them out. By dividing the problem into
small pieces, we can conquer the complexity that is overwhelming if we look at the
problem as a whole.

Figure 16

Structure Charts

Divide and conquer is a problem-solving approach, and not just a computer
programming technique. Outlining a term paper into major and minor topics is a
divide-and-conquer approach to writing the paper. Doing a Form 1040 Individual Tax
Return for the Internal Revenue Service can involve subtasks of completing Schedules
A, B, C, D, and so on, and then reassembling the results. Designing a house can be
broken down into subtasks of designing floor plans, wiring, plumbing, and the like.
Large companies organize their management responsibilities using a divide-
and-conquer approach; what we have called structure charts become, in the business
world, organization charts.

How is the divide-and-conquer problem-solving approach reflected in the resulting
computer program? If we think about the problem in terms of subtasks, then the
program should show that same structure; that is, part of the code should do subtask A,
part should do subtask B, and so on. We divide the code into subprograms, each of
which does some part of the overall task. Then we empower these subprograms to
work together to solve the original problem.

5.2Using and Writing Functions

In Python, subprograms are called functions. Each function in a program should do
one and only one subtask. Data get passed back and forth between the “main” section
of the program and various functions. The main part may pass data to a function,
receive new data from a function, or both. Data received from a function could in turn
be passed on to another function. You can imagine data flowing along the connecting
lines in the structure chart. That’s how we “empower these subprograms to work
together.”

The Force is with Them

Filmmaker George Lucas started Industrial Light and Magic in 1975 to create
the special effects he wanted for the original Star Wars movie. Since then, ILM
has contributed to the entire Star Wars series, Jurassic Park, Raiders of the Lost
Ark, and many other hit films full of amazing special effects. Many of the
original special effects were done with miniature models, but by the 1980s
computer graphics was taking over the special effects world.

A single frame of computer-generated film can require coordination of perhaps
hundreds of software components. ILM turned to Python to create software to
manage the flow of the various pieces—including thousands of images—needed
for a complex and rapid production process. Over time, Python has assumed an
ever-larger role in production process management. It has also been used to
create a user interface for computer graphic artists to access various elements
at their disposal. And, it supports a network-wide whiteboard and instant
messaging system for discussions in daily shot reviews. Python is also
integrated with custom-built C and C++ code that supports the in-house lighting
tool used to place light sources into a 3-D scene and preview shadings and
surfaces.

We’ve already used some built-in Python functions. The statement

passes a literal string to the print function, which then writes it out. The statement

uses the input function. A literal string is passed into this function. The function’s job is
to print this literal string, pick up the string the user types in response, and return that
new string, which then gets assigned to the variable speed. We also used the int
function:

This statement passes the string value speed to the int function; the function type casts
this string to an integer value and returns that value, which is then assigned to speed.
Then we got a little fancier:

Here the literal string gets passed to the input function, and the string value returned
by the input function is passed directly into the int function, whose returned value is
then assigned to speed.

Let’s review the SportsWorld program with an eye to further subdividing the task.
There is a loop that does some operations as long as the user wants. What gets done?
Input is obtained from the user about the radius of the circle and the choice of task to
be done (compute circumference or compute area). Then the circumference or the area
gets computed and written out.

We’ve identified three subtasks, as shown in the structure chart of Figure 17. We can
visualize the main section of the program at a pseudocode level, as shown in Figure 18.
This divide-and-conquer approach to solving the problem can (and should) be planned
first in pseudocode, without regard to the details of the programming language to be
used. If the three subtasks (input, circumference, area) can all be done, then arranging
them within the structure of Figure 18 solves the problem. We can write a function for
each of the subtasks. Although we now know what form the main section will take, we
have pushed the details of how to do each of the subtasks off into the other functions.
Execution of the program begins with the main section. Every time the flow of control
reaches the equivalent of a “do subtask” instruction, it transfers execution to the
appropriate function code. When execution of the function code is complete, flow of
control returns to the main section and picks up where it left off.

Figure 17

Structure Chart for the SportsWorld Task

Figure 18

A High-Level Modular View of the SportsWorld Program

We’ll start with functions for the circumference and area subtasks. Functions are
named using ordinary Python identifiers, so we’ll name these functions
doCircumference and doArea. Because we’re using meaningful identifiers, it is obvious
which subtask is carried out by which function.

A simple function in Python has the following form:

The notation “def” says that a function is about to be defined. As we saw with the if
statement and the while statement, the colon and the indentation identify the block of
code that is the function body. The doCircumference function can be written as

and the doArea function is similar. Figure 19 shows the complete program at this point.
The two function bodies are the same statements that previously appeared in the main
section of the program. Where these statements used to be, there are now function
invocations that transfer control to the function code:

and

Figure 19

A Modularized SportsWorld Program, Version 1

The doCircumference and doArea functions obviously need to make use of the radius
variable. These functions know the value of radius because radius was a variable in the
main section of the program, which makes it a global variable, known throughout the
program, even inside a function body. In general, a function should only have access to
the information it needs to do its particular subtask, lest it inadvertently change the
value of some variable about which it has no business even knowing. Python solves
this problem because the value of a global variable can be used, but it can’t easily be
changed within a function by a simple assignment statement, as we will see next.

Let’s try a function for the third subtask, getting input. We might try

In the main section, before invoking this function, we would have to create the global
variables radius and taskToDo. We can give them dummy values because they should
get their real values within the getInput function. Figure 20 shows this version, which
DOES NOT WORK. The result of running this program will give 0 for the circumference
and the area, no matter what is entered for the radius. Here’s why. The statement

Figure 20

A Modularized SportsWorld Program, Version 2 THIS DOES NOT WORK

creates a new variable called radius (and assigns it the value supplied by the user). A

variable created within a function is a local variable and is not known anywhere else
in the program. In other words, this particular radius variable has nothing to do with
the original radius variable, and it’s this local variable whose value is being set. After
execution of the function is complete, this local variable disappears. The original radius
variable (whose value has remained 0 all this time) is what the doCircumference and
doArea functions use. In fact, the program doesn’t even use the doCircumference
function because, like the global radius variable, taskToDo still has its original value
(’A’) once the getInput function exits, so it’s always the area that is computed.

We need to find some way to allow the getInput function the ability to change the
original radius and taskToDo values. To do this, we make use of the return statement,
whose syntax is

The expression list is a list, separated by commas, of expressions for values to be
“returned” to the statement that invoked the function. This statement should be an
assignment statement, with the function invocation on the right side and a list of
variables on the left side that will receive, in order, the values returned. Figure 21
shows a new version of the SportsWorld program where the getInput function returns
values for the radius and taskToDo variables. We’ve used new names within the
getInput function to emphasize that the values computed there (in this case, the values
are simply obtained from the user) are values for local variables. Within the main
section, the key statement is

Figure 21

A Modularized SportsWorld Program, Version 3

Here the getInput function is invoked on the right side of the assignment statement,
and the values returned by getInput are assigned, in order, to the radius and taskToDo
variables:

A return statement with an empty expression list would simply cause an exit from the
function in which it appears.

Believe it or not, we are still not quite happy with the modularized version of the
SportsWorld program. It’s this use of global variables that is troublesome. Within the
doCircumference and doArea functions, the radius variable just seems to pop up
“unannounced” by the somewhat back-door route of being a global variable. Even
though these functions can’t change the value of radius by just assigning it a new value
(which would be an undesirable side effect), it seems that if a function needs to know
(that is, use) the value of a variable, it should explicitly “receive” that value. In fact, it
would be good practice to get rid of global variables altogether.

To explicitly pass values to a function, we need to use the more general definition of a
Python function, which has the form

The invocation of a function with parameters requires giving the name of the function
followed by an argument list that will pass values to the function that are pertinent to
that function’s task. An argument list can contain either variables that have already

been assigned a value or literal expressions such as 2 + 3. The parameter list is a list of
variables local to the function that will receive their values from the corresponding
argument list when the function is invoked. The parameters in the parameter list
correspond by position to the arguments in the statement that invokes this function;
that is, the first parameter in the list matches the first argument given in the statement
that invokes the function, the second parameter matches the second argument, and so
on. It is through this correspondence between arguments and parameters that
information (data) flows into a function. Parameter names and argument names need
not be the same; the name of the parameter is what is used inside the function, but it is
the correspondence with the argument list that matters, not the parameter identifier
used.

The doCircumference function, as noted earlier, needs to know the value of the radius.
We’ll give the doCircumference function a single parameter, and when we invoke this
function we’ll pass radius as the single argument. Of course this is pointless if radius
remains a global variable. We’ll eliminate global variables by making a main function
in which we’ll put, more or less, the code that has been in the main section. Then the
new main section will just invoke the main function. Figure 22 shows the final
modularized version of SportsWorld. The change in the main function is to invoke the
doCircumfer-ence and doArea functions by passing the single argument radius to each
function. In addition, the parameter name for doArea has been set to something
different from “radius”, just to demonstrate that parameter names and argument
names need not agree.

Figure 22

A Modularized SportsWorld Program, Version 4

We now see that the statement

passes a literal string argument to the input function. Although we haven’t seen the
code for the built-in input function, we can tell that it uses one parameter.

We’ve now seen several variations of how a function might use data. Assuming that we
have isolated a main function to avoid any global variables, we can identify four
different situations. Figure 23 describes these, and Figure 24 shows a small Python
program that illustrates each case. Figure 25 shows the resulting output. A given
function could mix and match these cases; for example, it might need to use a value
(which would be an “in-only” case requiring a parameter) and also return some new
value (which would be an “out-only” case requiring a return statement). It is helpful to
plan ahead of time how data should flow in and out of each function.

Figure 23

Data Flow in and out of Python Functions

DIRECTION OF DATA
FLOW

WHAT IT MEANS HOW IT’S
ACCOMPLISHED

None Function is a “constant”
function that does the
same thing every time,
and needs no data nor
does it create new
data.

No parameter, no
return statement

In only Function needs to use,
but not change, this
value.

Pass the value as an
argument to a
parameter

DIRECTION OF DATA
FLOW

WHAT IT MEANS HOW IT’S
ACCOMPLISHED

Out only Function constructs a
new value that the
invoking function
needs to know.

No parameter; use a
local variable to
construct the value
and send it back via a
return statement

In-Out Function needs to use
and also change this
value.

Pass the value as an
argument to a
parameter; send the
changed value back via
a return statement

Figure 24

Parameter Passing and Return Statements

Figure 25

Output from the Program of Figure 24

This program demonstrates data flow into and out of functions.

the value of x is 5

the value of y is 17

the value of y is 34

Because it seems to have been a lot of effort to arrive at the complete, modularized
version of our SportsWorld program, shown in Figure 22 (which, after all, does the
same thing as the program in Figure 14), let’s review why this effort is worthwhile.

The modularized version of the program is compartmentalized in two ways. First, it is
compartmentalized with respect to task. The major task is accomplished by a series of
subtasks, and the work for each subtask takes place within a separate function. This
leaves the main function free of details and consisting primarily of invoking the
appropriate function at the appropriate point. As an analogy, think of the president of a
company calling on various assistants to carry out tasks as needed. The president does
not need to know how a task is done, only the name of the person responsible for
carrying it out. Second, the program is compartmentalized with respect to data, in the
sense that the data values known to the various functions are controlled by parameter
lists. In our analogy, the president gives each assistant the information he or she needs
to do the assigned task, and expects relevant information to be returned—but not all
assistants know all information.

This compartmentalization is useful in many ways. It is useful when we plan the
solution to a problem, because it allows us to use a divide-and-conquer approach. We
can think about the problem in terms of subtasks. This makes it easier for us to
understand how to achieve a solution to a large and complex problem. It is also useful
when we code the solution to a problem, because it allows us to concentrate on writing
one section of the code at a time. We can write a function and then fit it into the
program, so that the program gradually expands rather than having to be written all at
once. Developing a large software project is a team effort, and different parts of the
team can be writing different functions at the same time. It is useful when we test the
program, because we can test one new function at a time as the program grows, and

any errors are localized to the function being added. (The main function can be tested
early by writing appropriate headers but empty or dummy bodies for the remaining
functions.) Compartmentalization is useful when we modify the program, because
changes tend to be within certain subtasks and hence within certain functions in the
code. And finally it is useful for anyone (including the programmer) who wants to read
the resulting program. The overall idea of how the program works, without the details,
can be gleaned from reading the main function; if and when the details become
important, the appropriate code for the other functions can be consulted. In other
words, modularizing a program is useful for its

Planning

Coding

Testing

Modifying

Reading

Finally, once a function has been developed and tested, it is then available for any
application program to use. An application program that does quite different things
than SportsWorld, but that needs the value of the area or circumference of a circle
computed from the radius, can use our doCircumference and doArea functions.

Practice Problems

What is the output of the following Python program?1.

What is the output of the following Python program?2.

What is the output of the following Python program?3.

Change the doCircumference function from Figure 22 so that

instead of computing and printing out the value of the

circumference, it computes the value and returns it to the main

function.

a.

Change the main function in Figure 22 so that it prints out the

value of the circumference returned by the function of part (a).

b.

4.

6Object-Oriented Programming

6.1What Is It?

The divide-and-conquer approach to programming is a “traditional” approach. The
focus is on the overall task to be done: how to break it down into subtasks, and how to
write algorithms for the various subtasks that are carried out by communicating
subprograms (in the case of Python, by functions). The program can be thought of as a
giant statement executor designed to carry out the major task, even though the main
function may simply call on, in turn, the various other functions that do the subtask
work.

Object-oriented programming (OOP) takes a somewhat different approach. A
program is considered a simulation of some part of the world that is the domain of
interest. “Objects” populate this domain. Objects in a banking system, for example,
might be savings accounts, checking accounts, and loans. Objects in a company
personnel system might be employees. Objects in a medical office might be patients
and doctors. Each object is an example drawn from a class of similar objects. The
savings account “class” in a bank has certain properties associated with it, such as
name, Social Security number, account type, and account balance. Each individual
savings account at the bank is an example of (an object of) the savings account class,
and each has specific values for these common properties; that is, each savings account
has a specific value for the name of the account holder, a specific value for the account
balance, and so forth. Each object of a class therefore has its own data values.

A class also has one or more subtasks associated with it, and all objects from that class
can perform those subtasks. In carrying out a subtask, each object can be thought of as
providing some service. A savings account, for example, can compute compound
interest due on the balance. When an object-oriented program is executed, the
program generates requests for services that go to the various objects. The objects
respond by performing the requested service—that is, carrying out the subtask. Thus, a
program that is using the savings account class might request a particular savings
account object to perform the service of computing interest due on the account
balance. An object always knows its own data values and may use them in performing
the requested service.

There are three terms often associated with object-oriented programming, as
illustrated in Figure 26. The first term is encapsulation. Each class has its own
subprogram to perform each of its subtasks. Any user of the class (which might be
some other program) can ask an object of that class to invoke the appropriate
subprogram and thereby perform the subtask service. The class user needs to know
what services objects of the class can provide and how to request an object to perform
any such service. The details of the subprogram code belong to the class itself, and this
code may be modified in any manner, as long as the way the user interacts with the
class remains unchanged. (In the savings account example, the details of the algorithm
used to compute interest due belong only to the class, and need not be known by any
user of the class. If the bank wants to change how it computes interest, only the code
for the interest method in the savings account class needs to be modified; any
programs that use the services of the savings account class can remain unchanged.)
Furthermore, the class properties represent data values that will exist as part of each
object of the class. A class therefore consists of two components, its properties and its
subprograms, and both components are “encapsulated”—bundled—with the class.

Figure 26

Three Key Elements of OOP

A second term associated with object-oriented programming is inheritance. Once a
class A of objects is defined, a class B of objects can be defined as a “subclass” of A.
Every object of class B is also an object of class A; this is sometimes called an “is a”
relationship. Objects in the B class “inherit” all of the properties of objects in class A
and are able to perform all the services of objects in A, but they may also be given some
special property or ability. The benefit is that class B does not have to be built from the
ground up, but rather can take advantage of the fact that class A already exists. In the
banking example, a senior citizens savings account would be a subclass of the savings
account class. Any senior citizens savings account object is also a savings account
object, but may have special properties or be able to provide special services.

The third term is polymorphism. Poly means “many.” Objects may provide services
that should logically have the same name because they do roughly the same thing, but
the details differ. In the banking example, both savings account objects and checking
account objects should provide a “compute interest” service, but the details of how
interest is computed differ in these two cases. Thus, one name, the name of the service
to be performed, has several meanings, depending on the class of the object providing
the service. It may even be the case that more than one service with the same name
exists for the same class, although there must be some way to tell which service is
meant when it is invoked by an object of that class.

Let’s change analogies from the banking world to something more fanciful, and
consider a football team. Every member of the team’s backfield is an “object” of the
“backfield” class. The quarterback is the only “object” of the “quarterback” class. Each
backfield object can perform the service of carrying the ball if he (or she) receives the
ball from the quarterback; ball carrying is a subtask of the backfield class. The
quarterback who hands the ball off to a backfield object is requesting that the backfield
object perform that subtask because it is “public knowledge” that the backfield class
carries the ball and that this service is invoked by handing off the ball to a backfield
object. The “program” to carry out this subtask is encapsulated within the backfield
class, in the sense that it may have evolved over the week’s practice and may depend
on specific knowledge of the opposing team, but at any rate, its details need not be
known to other players. Inheritance can be illustrated by the halfback subclass within
the backfield class. A halfback object can do everything a backfield object can but may

also be a pass receiver. And polymorphism can be illustrated by the fact that the
backfield may invoke a different “program” depending on where on the field the ball is
handed off. Of course our analogy is imperfect, because not all human “objects” from
the same class behave in precisely the same way—fullbacks sometimes receive passes
and so on.

6.3Python and OOP

How do these ideas get translated into real programs? The details, of course, vary with
the programming language used, and not every language supports object-oriented
programming. Python, however, does support object-oriented programming. When we
write a class, we specify the properties (called attributes or data attributes in Python)
common to any object of that class. We also specify the services that any object of that
class can perform. Services (subtasks) are implemented as subprograms and, as we
know, subprograms in Python are functions. Functions associated with a class are
called methods to distinguish them from the “regular” functions we talked about in the
previous section.

Let’s rewrite the SportsWorld program one more time, this time as an object-oriented
program. What are the objects of interest within the scope of this problem?
SportsWorld deals with circular swimming pools, but they are basically just circles. So
let’s create a Circle class, and have the SportsWorld program create objects of
(instances of) that class. The objects are individual circles. A Circle object has a radius.
A Circle object, which knows the value of its own radius, should be able to perform the
services of computing its own circumference and its own area. At this point, we are
well on the way to answering the two major questions about the Circle class:

What are the attributes common to any object of this class? (In this case, there is a

single attribute—the radius.)

What are the services that any object of the class should be able to perform? (In

this case, it should be able to compute its circumference and compute its area,

although as we will see shortly, we will need other services as well.)

Figure 27 shows the complete object-oriented version of SportsWorld. There are three
major sections to this program. At the top is the class definition for the Circle class;
below that is the getInput function (identical to what it looked like in the previous
version) and then the main function.

Figure 27

An Object-Oriented SportsWorld Program

A class definition in Python has the following form:

As usual, the opening: and the indentation define the scope of the class definition. The
class identifier can be any Python identifier. The body of the class consists of the
definitions of all the class methods—that is, code for the services that any object of this
class can perform. This is part of what we expect to see for a class, but what about the
attributes? Just like other Python variables, data attributes spring into being simply by
having a value assigned to them. However, it is customary to initialize attributes all at
once in an “initialization” method. This does two things: it creates all the attribute
variables in one place so the reader of the code can see what they are, and it assigns
initial values to these variables. Fortunately, Python provides an initialization method
called __init__ that is automatically invoked whenever an object of the class is created.
We’ll discuss its details shortly. Our Circle class has five methods, counting the
initialization method.

An object of a class is created by a statement of the form

so in the main function of our SportsWorld program we create a Circle object called
swimmingPool by the statement

Methods of the Circle class can only be invoked by an object of that class, using the
syntax

For example, we see in the main function that the swimmingPool object invokes the
doCircumference function by

From this invocation, it appears that the doCircumference method has no parameters
because no arguments are passed. Yes and no—we’ve lost one parameter that we had
in the previous version, but we’ve gained a “hidden” parameter. What have we lost?
We don’t have to pass the radius value to the doCircumference function because, as a
method of the class, that function is invoked by an object, and the object carries its data
values with it. The only thing doCircumference has to know is what the invoking object
is. As we can see from the statement

the invoking object is swimmingPool. Every method of a class has a parameter called
“self” that corresponds to the invoking object. The doCircumference function is defined
in the Circle class as follows:

The “self” parameter automatically picks up the calling object as its argument value,
even though the argument list of the method invocation is empty.

so that

is actually

(We’ll say more momentarily about the double underscore in front of “radius”.) If there
were additional parameters (besides self) in the method, there would be corresponding
arguments in the method invocation.

All of the class methods are public, meaning they can be invoked from anywhere in the
program (by an object of the class, of course). In fact, although we won’t go into the
details, one could create a module (just a file containing the Circle class definition), and
then any Python program could use this class with the appropriate import statement.
Think of the Circle class as handing out a business card that advertises these services:
Hey, you want a Circle object that can find its own area? Find its own circumference?
Set the value of its own radius? I’m your class!

Now consider the class attributes. To refer to an attribute of an object, the syntax is

which would logically be

in our case or, if within a method,

Without some further effort, attributes of a class are also public, meaning that they can
be used or changed anywhere in the program by statements such as

Recall that we didn’t like global variables being available everywhere, even when they
couldn’t be changed within a function. That’s why we made a main function. Similarly,
we don’t like the idea that any function in the program can willy-nilly decide to change
the attributes of an object. Python allows us to create attributes that are (almost)
private by preceding the attribute name with a double underscore. Thus, Circle objects
in our program don’t have a radius attribute, they have an attribute named __radius.
Declaring an attribute in this fashion means that within any method of the class, the
attribute can be referred to directly by

This explains the statement

in the doCircumference method. But if you try a statement such as

in the main function, you will get an error message from the interpreter that says “
AttributeError: Circle instance has no attribute ’__radius’ ”. Of course it does have such
an attribute, but it’s not directly available for use outside of a Circle class method.

The rest of the program must rely on the swimmingPool object to invoke the getRadius
and setRadius methods to reveal the current value of its radius and change the value of
its radius.

This one-and-only attribute variable __radius is created within the __init__ method.
Again, this method is automatically invoked whenever a new object is created. The
definition is

This method has the usual self parameter, plus a second parameter called value. If we
had created the swimmingPool object within the main function by a statement such as

then the value of __radius would be initialized to 25. Because in Figure 27 we passed no
argument, the “default” value set in the parameter list is used, and our swimmingPool
object has a radius of 0 until the getInput function returns another value for the radius
from the user.

6.3One More Example

The object-oriented version of our SportsWorld program illustrates encapsulation. All
data and calculations concerning circles are encapsulated in the Circle class. Let’s look
at one final example that illustrates the other two watchwords of OOP—polymorphism
and inheritance.

In Figure 28 the domain of interest is that of geometric shapes. Four different classes
are defined: Circle, Rectangle, Square, and Square2.

Figure 28

A Python Program with Polymorphism and Inheritance

Each class includes an initialization method in which the attribute variables for objects
of that class are created as private variables. A Circle object has a radius attribute,
whereas a Rectangle object has a width attribute and a height attribute. Other methods
are defined for the services or subtasks that an object from the class can perform. Any
Circle object can set the value of its radius and can compute its area. A Square object
has a side attribute, as one might expect, but a Square2 object doesn’t seem to have any
attributes, although it has an initialization method, nor does it seem to have any way to
compute its area. We will explain the difference between the Square class and the
Square2 class shortly.

The main function uses these classes. It creates objects from the various classes and
uses the __init__ function of the appropriate class to set the dimensions of the object.
After each object is created, the main function requests the object to compute its area
as part of an output statement giving information about the object. For example, the
statement

creates a Circle object named joe and automatically invokes the Circle __init__ method
that, in turn, sets the radius of the object to 23.5. Then

invokes the doArea method for the Circle class and returns the area. Figure 29 shows
the output after the program in Figure 28 is run.

Here we see polymorphism at work, because there are lots of doArea methods; when
the program executes, the correct method is used, on the basis of the class to which the
object invoking the function belongs. After all, computing the area of a circle is quite
different from computing the area of a rectangle. The algorithms themselves are
straightforward; they employ assignment statements to set the dimensions (if a
dimension is to be changed from its initial value, which does not happen in this
program) and the usual formulas to compute the area of a circle, rectangle, and square.
The methods can use the attributes of the objects that invoke them without having the
values of those attributes passed as arguments.

Figure 29

Output from the Program of Figure 28

Square is a stand-alone class with a side attribute and a doArea method. The Square2
class, however, recognizes the fact that squares are special kinds of rectangles. The
Square2 class is a subclass of the Rectangle class, as is indicated by the reference to
Rectangle in the parentheses after the class name Square2. It inherits the width and
height properties from the “parent” Rectangle class. But creation of a Square2 object
doesn’t automatically invoke the Rectangle initialization method. Instead, Square2 has
its own __init__ method, which has a single parameter value. The Square2 __init__
method itself invokes the Rectangle __init__ method and passes it two copies of value to
set the width and height attributes. (Note the syntax for this invocation:
Rectangle.__init__(self, value, value).) Square2 also inherits the setWidth,

setHeight, getWidth, getHeight, and doArea methods. In addition, Square2 has its own
function, setSide, because setting the value of the “side” makes sense for a square, but
not for an arbitrary rectangle. What the user of the Square2 class doesn’t know is that
there really isn’t a “side” property; the setSide function, like the initialization method,
merely sets the inherited width and height properties to the same value. To compute
the area, then, the doArea function inherited from the Rectangle class can be used, and
there’s no need to redefine it or even to copy the existing code. Here we see inheritance
at work.

Inheritance can be carried through multiple “generations.” We might redesign the
program so that there is one “superclass” that is a general Shape class, of which Circle
and Rectangle are subclasses, Square2 being a subclass of Rectangle (see Figure 30 for a
possible class hierarchy).

Figure 30

A Hierarchy of Geometric Classes

6.4What Have we Gained?

Now that we have some idea of the flavor of object-oriented programming, we should
ask what we gain by this approach. There are two major reasons why OOP is a popular
way to program:

Software reuse

A more natural “worldview”

Software Reuse

Manufacturing productivity took a great leap forward when Henry Ford invented the
assembly line. Automobiles could be assembled using identical parts so that each car
did not have to be treated as a unique creation. Computer scientists are striving to
make software development more of an assembly-line operation and less of a
handcrafted, start-over-each-time process. Object-oriented programming is a step
toward this goal: A useful class that has been implemented and tested becomes a
component available for use in future software development. Anyone who wants to
write an application program involving circles, for example, can use the already
written, tried, and tested Circle class. As the “parts list” (the class library) grows, it
becomes easier and easier to find a “part” that fits, and less and less time has to be

devoted to writing original code. If the class doesn’t quite fit, perhaps it can be
modified to fit by creating a subclass; this is still less work than starting from scratch.
Software reuse implies more than just faster code generation. It also means
improvements in reliability; these classes have already been tested, and if properly
used, they will work correctly. And it means improvements in maintainability. Thanks
to the encapsulation property of object-oriented programming, changes can be made in
class implementations without affecting other code, although such change requires
retesting the classes.

A More Natural “Worldview”

The traditional view of programming is procedure-oriented, with a focus on tasks,
subtasks, and algorithms. But wait—didn’t we talk about subtasks in OOP? Haven’t we
said that computer science is all about algorithms? Does OOP abandon these ideas? Not
at all. It is more a question of when these ideas come into play. Object-oriented
programming recognizes that in the “real world,” tasks are done by entities (objects).
Object-oriented program design begins by identifying those objects that are important
in the domain of the program because their actions contribute to the mix of activities
present in the banking enterprise, the medical office, or wherever. Then it is
determined what data should be associated with each object and what subtasks the
object contributes to this mix. Finally, an algorithm to carry out each subtask must be
designed. We saw in the modularized version of the SportsWorld program in Figure 22
how the overall algorithm could be broken down into pieces that are isolated within
functions. Object-oriented programming repackages those functions by encapsulating
them within the appropriate class of objects.

Object-oriented programming is an approach that allows the programmer to come
closer to modeling or simulating the world as we see it, rather than to mimic the
sequential actions of the Von Neumann machine. It provides another buffer between
the real world and the machine, another level of abstraction in which the programmer
can create a virtual problem solution that is ultimately translated into electronic
signals on hardware circuitry.

Finally, we should mention that a graphical user interface, with its windows, icons,
buttons, and menus, is an example of object-oriented programming at work. A general
button class, for example, can have properties of height, width, location on the screen,
text that may appear on the button, and so forth. Each individual button object has
specific values for those properties. The button class can perform certain services by
responding to messages, which are generated by events (for example, the user clicking
the mouse on a button triggers a “mouse-click” event). Each particular button object
individualizes the code to respond to these messages in unique ways. We will not go
into details of how to develop graphical user interfaces in Python, but in the next
section you will see a bit of the programming mechanics that can be used to draw the
graphics items that make up a visual interface.

Practice Problems

What is the output from the following section of code if it is added to

the main function of the Python program in Figure 28?

1.

In the hierarchy of Figure 30, suppose that the Triangle class is able to

perform a doArea function. What two attributes should any triangle

object have?

2.

7Graphical Programming

The programs that we have looked at so far all produce text output—output composed
of the characters {A… Z, a… z, 0… 9} along with a few punctuation marks. For the first
30 to 35 years of software development, text was virtually the only method of
displaying results in human-readable form, and in those early days it was quite
common for programs to produce huge stacks of alphanumeric output. These days an
alternative form of output—graphics—has become much more widely used. With
graphics, we are no longer limited to 100 or so printable characters; instead,
programmers are free to construct whatever shapes and images they desire.

The intelligent and well-planned use of graphical output can produce some
phenomenal improvements in software. We discussed this issue in Chapter 6, where
we described the move away from the text-oriented operating systems of the 1970s and
1980s, such as MS-DOS and VMS, to operating systems with more powerful and
user-friendly graphical user interfaces (GUIs), such as Windows 7, Windows Vista, and
Mac OS X. Instead of requiring users to learn dozens of complex text-oriented
commands for such things as copying, editing, deleting, moving, and printing files, GUIs
can present users with simple and easy-to-understand visual metaphors for these
operations, such as those shown below. In (a), the operating system presents the user
with icons for printing, deleting, and copying a file; in (b), dragging a file to the printer
icon prints the file.

Not only does graphics make it easier to manage the tasks of the operating system, it
can help us visualize and make sense of massive amounts of output produced by

programs that model complex physical, social, and mathematical systems. (We discuss
modeling and visualization in Chapter 13.) Finally, there are many applications of
computers that would simply be impossible without the ability to display output
visually. Applications such as virtual reality, computer-aided design/computer-aided
manufacturing (CAD/CAM), games and entertainment, medical imaging, and computer
mapping would not be anywhere near as important as they are without the enormous
improvements that have occurred in the areas of graphics and visualization.

So, we know that graphical programming is important. The question is: What features
must be added to a programming language like Python to produce graphical output?

7.1Graphics Hardware

Modern computer terminals use what is called a bitmapped display, in which the
screen is made up of thousands of individual picture elements, or pixels, laid out in a
two-dimensional grid. These are the same pixels used in visual images, as discussed in
Chapter 4. In fact, the display is simply one large visual image. The number of pixels on
the screen varies from system to system; typical values range from 800 ₃ 600 up to 1560
₃ 1280. Terminals with a high density of pixels are called high-resolution terminals.
The higher the resolution—that is, the more pixels available in a given amount of
space—the sharper the visual image because each individual pixel is smaller. However,
if the screen size itself is small, then a high-resolution image can be too tiny to read. A
30" wide-screen monitor might support a resolution of 2560 ₃ 1600, but that would not
be suitable for a laptop screen. In Chapter 4 you learned that a color display requires
24 bits per pixel, with 8 bits used to represent the value of each of the three colors red,
green, and blue. The memory that stores the actual screen image is called a frame
buffer. A high-resolution color display might need a frame buffer with (1560 ₃ 1280)
pixels ₃ 24 bits/pixel = 47,923,000 bits, or about 6 MB, of memory for a single image.
(One of the problems with graphics is that it requires many times the amount of
memory needed for storing text.)

The individual pixels in the display are addressed using a two-dimensional coordinate
grid system, the pixel in the upper-left corner being (0, 0). The overall pixel-numbering

system is summarized in Figure 31. The specific values for maxX and maxY in Figure 31
are, as mentioned earlier, system-dependent. (Note that this coordinate system is not
the usual mathematical one. Here, the origin is in the upper-left corner, and y values
are measured downward.)

Figure 31

Pixel-Numbering System in a Bitmapped Display

The terminal hardware displays on the screen the frame buffer value of every
individual pixel. For example, if the frame buffer value on a color monitor for position
(24, 47) is RGB (0, 0, 0), the hardware sets the color of the pixel located at column 24,
row 47 to black, as shown in Figure 32. The operation diagrammed in Figure 32 must
be repeated for all of the 500,000 to 2 million pixels on the screen. However, the setting
of a pixel is not permanent; on the contrary, its color and intensity fade quickly.
Therefore, each pixel must be “repainted” often enough so that our eyes do not detect
any “flicker,” or change in intensity. This requires the screen to be completely updated,
or refreshed, 30–50 times per second. By setting various sequences of pixels to different
colors, the user can have the screen display any desired shape or image. This is the
fundamental way in which graphical output is achieved.

Figure 32

Display of Information on the Terminal

7.2Graphics Software

To control the setting and clearing of pixels, programmers use a collection of software
routines that are part of a special package called a graphics library. Typically an
“industrial strength” graphics library includes dozens or hundreds of functions for
everything from drawing simple geometric shapes like lines and circles, to creating and
selecting colors, to more complex operations such as displaying scrolling windows,
pull-down menus, and buttons. In this module we’ll be using the graphics.py library,
written by Dr. John Zelle of Wartburg College, Waverly, Iowa. (See
http://mcsp.wartburg.edu/zelle/python to download graphics.py, then put the file in the
Python Lib folder.) This easy-to-use graphics library allows you to draw basic shapes in
a graphics window and will give you a good idea of what visual programming is like.

Because we need to use the graphics library, all graphics programs will begin with the
following form of the import statement:

The graphics library contains a number of classes. To get started, we use a class called
GraphWin that creates a window where we can do our drawing. Figure 33 shows the
complete Python program that brings up the empty window shown on the next page.

Figure 33

Python Program for Graphics Window

The first line in the main function in Figure 33 creates a GraphWin object called win.
Three arguments are passed to the GraphWin __init__ method that represent,
respectively, the literal string to appear in the title bar of the window, the width of the
window, and the height of the window. If the width and height arguments are omitted,
the default dimensions are 200 ₃ 200. The second line has the win object invoke the
getMouse method of the GraphWin class. This method returns information about the
point in the graphics window where a mouse click has occurred. In this program we
are ignoring the information returned, but the effect is that the program will wait
(holding the window on the screen) until the user clicks the mouse somewhere in the
window. This causes the second line of the program to be executed, followed by line 3,
which closes the graphics window, after which the program closes as well.

The default color of the drawing window is gray, but you can make it white by adding
the following line of code after the win object gets created:

Now that we can get a graphics window to appear, we need the ability to draw in it.
We’ll be able to draw lines, circles, ovals, and rectangles; fill objects with various colors;
and display text. The default drawing color is black. The code snippets shown to create
these effects go in the middle of the program, shown in Figure 33, where the boldface
comment appears. (We’ve also set the background color to white in each case to make it
easier to see what’s being drawn.)

Lines. The following code creates two Point objects with specific coordinates,

then creates an object of the Line class from one point to the other. Nothing will

appear in the graphics window, however, until the Line object invokes the “draw”

method and passes the window on which to draw.

1.

What actually happens internally when the program executes the l.draw(win)

statement? The terminal hardware determines (using some simple geometry and

trigonometry) exactly which pixels on the screen must be “turned on” (i.e., set to

the current value of the drawing color) to draw a straight line between the

specified coordinates. For example, if the start point is (1,1), the finish point is (4,

4), and the drawing color is black, then the statement l.draw(win) causes four

pixels in the frame buffer to be set to the RGB value (0, 0, 0) as shown in the next

figure.

Now, when the hardware draws the frame buffer on the screen, these four pixels

are colored black. Because pixels are only about 1/100th of an inch apart, our

eyes do not perceive four individual black dots, but an unbroken line segment.

Circles. The Circle class __init__ method takes two arguments, the center point

and the radius. The following code creates a circle with center at (250,

250)—which is the center of our window—and with a radius of 100.

If you position the drawing object in such a way that it does not fit within the

graphics window, then the image is “clipped” so that only part of it is shown.

2.

Ovals. The Oval class __init__ method takes two point arguments, the upper-left

corner and lower-right corner of the imaginary “bounding box” enclosing the

oval.

3.

Rectangles. The Rectangle class __init__ method also takes two point arguments,

the upper-left corner and lower-right corner of the rectangle.

4.

Fill. Any graphics object can invoke the setFill method for its class, which has a

single argument of type color. Standard colors such as blue, green, etc., are

available—pass the argument in single quotes, as in c.setFill(’black’).

5.

Text. The Text class __init__ method takes two arguments, a point and a string.

The point is the “center point” of the text string, which will be drawn

horizontally. The string is Armed with these objects and methods, we can have a

little fun. The program in Figure 34 produces the following window:

6.

Figure 34

Python Program for Smiley Face

Now that a display window and graphics are available, we seem close to producing
elements of a typical GUI. Can we draw a button that acts like a button on a real GUI
form—that is, can we write code to sense a mouse click on that button and respond
with some action? To make this work, we’ll need to again use the getMouse method of

the GraphWin class, but this time we actually want to capture the point information
this method returns. In the program of Figure 35, we use the Rectangle class to draw a
“button” in the graphics window. Then we create a Point object p to capture the
location returned by the getMouse function. The Point class has getX and getY methods
that return the coordinates of the calling object. The if statement tests whether these
coordinates fall within the boundaries of the rectangle and, depending on whether that
is true or not, writes a “win” or “lose” message. Figure 36 shows two versions of the
result, depending on whether the mouse click occurred on the button (a) or not (b). Of
course in a true windows GUI program, we would expect something more interesting
to happen in response to clicking on a button.

Figure 35

Python Program That Responds to Button Click

Python Program That Responds to Button Click

Figure 36

Results of Executing the Program of Figure 35

This brief introduction to graphical programming allows you to produce some
interesting images and, even more important, gives you an appreciation for how
visually oriented software is developed.

Practice Problems

Write a Python program to draw the following “house” in the graphics

window. Create the house using four rectangles (for the base of the

house, the door, and the two windows), two line segments (for the roof),

and one filled circle (for the doorknob). Locate the house anywhere you

want in the graphics window.

8Conclusion

In this module we looked at one representative high-level programming language,
Python. Of course, there is much about this language that has been left unsaid, but we
have seen how the use of a high-level language overcomes many of the disadvantages
of assembly language programming, creating a more comfortable and useful
environment for the programmer. In a high-level language, the programmer need not
manage the storage or movement of data values in memory. The programmer can
think about the problem at a higher level, can use program instructions that are both
more powerful and more natural language–like, and can write a program that is much
more portable among various hardware platforms. We also saw how modularization,
through the use of functions and parameters, allows the program to be more cleanly
structured, and how object orientation allows a more intuitive view of the problem
solution and provides the possibility for reuse of helpful classes.

Python is not the only high-level language. You might be interested in looking at the
other online language modules for languages similar to Python (Java, C++, C#, and Ada).
Some languages have different ways to do assignments, conditional statements, and
looping statements. Still other languages take quite a different approach to problem
solving. In Chapter 10 of Invitation to Computer Science, we look at some other
languages and language approaches and also address the question of why there are so
many different programming languages.

Exercises

Write a Python statement to create a variable called quantity with initial

value 5.0.

Write a Python statement to create a string variable called greeting with

initial value “Top o’ the Mornin’”.

A Python main function needs one variable called choice, one variable called

inventory, and one variable called sales. Write Python statements to create

these variables; initialize choice to the blank character and the other values

to zero.

Assume that import math has been included at the top of your program:

Write a Python statement to print the value of the mathematical

constant e supplied by the math module.

a.

What will be the result of executing the following two Python

statements?

Exercises

b.

You want to write a Python program to compute the average of three integer

quiz grades for a single student. Decide what variables your program needs,

and create them with appropriate initial values.

Given the statement

Exercises

what Python statement would output “miny”?

A Python list can be thought of as representing a 1-D table of values. A 2-D

table of values can be represented as a list of lists. For example, the following

code

Given this code, what would be printed by the following statement?

Write Python statements to prompt for and collect values for the time in

hours and minutes (two integer quantities).

Say a program computes two integer quantities inventory-Number and

numberOrdered. Write a single output statement that prints these two

quantities along with appropriate text information.

The variables age and weight currently have the values 32 and 187,

respectively. Write the exact output generated by the following statement:

Output that is a decimal number can be formatted so that the number is

rounded to a specified number of decimal places. For example, in the

TravelPlanner program we might decide that the travel time required should

be printed to only two decimal places. We would change the second print

statement as follows:

The “%5.2f” % is a formatting directive for printing the numerical value

time that follows it. The “f” part says the next variable is to be converted (if

necessary) to type float. The 5.2 says to print the resulting decimal value

using 5 columns (including the decimal point) and rounded to 2 decimal

places. The sample result would be

If this were done in one print statement instead of two, the formatting

directive could be included as the end of the literal string preceding the

variable time.

Write two Python print statements to generate the following output,

assuming that density is a type double variable with the value 63.78:

What is the output after the following sequence of statements is executed?

Write a Python program that gets the length and width of a rectangle from

the user and computes and writes out the area.

In the SportsWorld program of Figure 14, the user must respond with “C” to

choose the circumference task. In such a situation, it is preferable to accept

either upper-case or lowercase letters. Rewrite the condition in the program

to allow this.

Write a Python program that gets a single character from the user and writes

out a congratulatory message if the character is a vowel (a, e, i, o, or u), but

otherwise writes out a “You lose, better luck next time” message.

Insert the missing line of code so that the following adds the integers from 1

to 10, inclusive.

What is the output after the following code is executed?

Write a Python program that outputs the even integers from 2 through 30,

one per line. Use a while loop.

In a while loop, the Boolean condition that tests for loop continuation is done

at the top of the loop, before each iteration of the loop body. As a

consequence, the loop body might not be executed at all. Our pseudocode

language of Chapter 2 contains a do-while loop construction, in which a test

for loop termination occurs at the bottom of the loop rather than at the top,

so that the loop body always executes at least once. Python contains a break

statement that causes an exit from the loop, so a do-while effect can be

accomplished by the following

where, as usual, S1 can be a compound statement. Write Python code to add

up a number of nonnegative integers that the user supplies and to write out

the total. Use a negative value as a sentinel, and assume that the first value is

nonnegative. Use an if and break statement.

Write a Python program that asks for a duration of time in hours and

minutes and writes out the duration only in minutes.

Write a Python program that asks for the user’s age in years; if the user is

under 35, then quote an insurance rate of $2.23 per $100 for life insurance,

otherwise, quote a rate of $4.32.

Write a Python program that reads integer values until a 0 value is

encountered, then writes out the sum of the positive values read and the

sum of the negative values read.

Write a Python program that reads in a series of positive integers and writes

out the product of all the integers less than 25 and the sum of all the integers

greater than or equal to 25. Use 0 as a sentinel value.

Write a Python program that reads in 10 integer quiz grades and

computes the average grade.

a.

Write a Python program that asks the user for the number of quiz

grades, reads them in, and computes the average grade.

b.

Redo part (b) so that only the integer part of the average is computed.c.

Write a Python function that receives two integer arguments and writes out

their sum and their product. Assume no global variables.

Write a Python function that receives a real number argument representing

the sales amount for videos rented so far this month. The function asks the

user for the number of videos rented today and returns the updated sales

figure to the main function. All videos rent for $4.25.

Write a Python function that receives three integer arguments and returns

the maximum of the three values.

Write a Python function that receives miles driven and gallons of gas used

and returns miles per gallon.

Write a Python program where the main function uses an input function to

get the miles driven (a decimal value) and the gallons of gas used (an integer

value), then writes out the miles per gallon, using the function from Exercise

28.

Write a Python program to balance a checkbook. The main function needs to

get the initial balance, the amounts of deposits, and the amounts of checks.

Allow the user to process as many transactions as desired; use separate

functions to handle deposits and checks. (See Exercise 11 on how to format

output to two decimal places, as is usually done with monetary values.)

Write a Python program to compute the cost of carpeting three rooms.

Carpet cost is $8.95 per square yard. Use four separate functions to collect

the dimensions of a room in feet, convert feet into yards, compute the area,

and compute the cost per room. The main function should use a loop to

process each of the three rooms, then add the three costs, and write out the

total cost. (Hints: The function to convert feet into yards must be used twice

for each room, with two different arguments. Hence, it does not make sense

to try to give the parameter the same name as the argument. See Exercise 11

on how to format output to two decimal places, as is usually done with

monetary values.)

Write a Python doPerimeter function for the Rectangle class of Figure

28.

a.

Write Python code that creates a new Rectangle object called yuri, with

dimensions 14.4 and 6.5, then writes out information about this object

and its perimeter using the doPerimeter function from part (a).

b.

Draw a class hierarchy diagram similar to Figure 30 for the following classes:

Student, Undergraduate_Student, Graduate_Student, Sophomore, Senior,

PhD_Student.

Imagine that you are writing a program using an object-oriented

programming language. Your program will be used to maintain records for a

real estate office. Decide on one class in your program and a service that

objects of that class might provide.

Determine the resolution on the screen on your computer (ask your

instructor or the local computer center how to do this). Using this

information, determine how many bytes of memory are required for the

frame buffer to store the following:

A black-and-white image (1 bit per pixel)a.

A grayscale image (8 bits per pixel)b.

A color image (24 bits per pixel)c.

Using the Point and Line classes described in Section 7.2, draw an isosceles

triangle with the following configuration:

Discuss what problem the display hardware might encounter while

attempting to execute the following operations, and describe how this

problem could be solved.

Draw a square with sides 100 pixels in length. Then inscribe a circle of

radius 50 inside the square. Position the square and the inscribed circle in

the middle of the graphics window.

Create the following three labeled rectangular buttons:

Have the space between the Start and Stop buttons be the same as the space

	Unknown
	About Invitation to Computer Science, Sixth Edition
	Invitation to Computer Science, Sixth Edition
	Contributors
	Creators
	Dedication
	Preface
	Copyright

	An Introduction to Computer Science
	1.1 Introduction
	Programming your DVR: An example of an algorithm
	Algorithm for adding two m-digit numbers
	A correct solution to the shampooing problem

	1.4 A Brief History of Computing
	1.4.1 The Early Period: Up to 1940
	The Pascaline, one of the earliest mechanical calculators
	Drawing of the Jacquard loom
	1.4.2 The Birth of Computers: 1940–1950
	Photograph of the ENIAC computer
	Organization of the text into a six-layer hierarchy

	Part Introduction
	Algorithm Discovery and Design
	2.1 Introduction
	2.2 Representing Algorithms
	2.2.1 Pseudocode
	The beginning of the addition algorithm of Figure 1.2 expressed in a high-level
	programming language
	2.2.2 Sequential Operations
	2.2.3 Conditional and Iterative Operations
	The if/then/else pseudocode statement
	Second version of the average miles per gallon algorithm
	Execution of the while loop
	Third version of the average miles per gallon algorithm
	Execution of the do/while posttest loop
	Summary of pseudocode language instructions

	2.3 Examples Of Algorithmic Problem Solving
	2.3.1 Example 1: Go Forth and Multiply
	Algorithm for multiplication of nonnegative values via repeated addition
	2.3.2 Example 2: Looking, Looking, Looking
	First attempt at designing a sequential search algorithm
	Second attempt at designing a sequential search algorithm
	The sequential search algorithm
	Algorithm to find the largest value in a list
	2.3.4 Example 4: Meeting Your Match
	First draft of the pattern-matching algorithm
	Final draft of the pattern-matching algorithm

	2.4 Conclusion
	Chapter Review
	Additional Resources

	Chapter 3 The Eﬃciency of Algorithms
	3.1 Introduction
	3.2 Attributes of Algorithms
	3.3 Measuring Eﬃciency
	3.3.1 Sequential Search
	3.3.2 Order of Magnitude—Order n
	Work = 2n
	Work = cn for various values of c
	Growth of work = cn for various values of c
	3.3.3 Selection Sort
	An attempt to exchange the values at X and Y
	Exchanging the values at X and Y
	3.3.4 Order of Magnitude—Order n
	Work = cn for various values of c
	A comparison of n and n
	For large enough n, 0.25n has larger values than 10n

	3.4 Analysis of Algorithms
	3.4.1 Data Cleanup Algorithms
	3.4.2 Binary Search
	Binary search tree for a seven-element list
	A comparison of n and lg n
	3.4.3 Pattern Matching
	3.4.4 Summary

	3.5 When Things Get Out Of Hand
	Four connected cities
	Hamiltonian circuits among all paths from A in Figure 3.23 with four links
	Comparison of lg n, n, n , and 2
	Comparisons of lg n, n, n , and 2 for larger values of n
	A first-fit solution to a bin-packing problem

	3.6 Summary of Level 1
	Chapter Review
	Exercises

	Chapter Review
	Challenge Work

	Chapter Review
	Additional Resources

	Part Introduction
	The Building Blocks: Binary Numbers, Boolean Logic, and Gates
	4.1 Introduction
	4.2 The Binary Numbering System
	4.2.1 Binary Representation of Numeric and Textual Information
	Distinction between external and internal representation of information
	4.2.2 Binary Representation Of Sound and Images
	Example of sound represented as a waveform
	Digitization of an analog signal
	a Sampling the original signal.
	b Recreating the signal from the sampled values.
	Example of a digitized photograph
	a Individual pixels in the photograph.
	b Photograph.
	An eight-level gray scale
	Using variable-length code sets
	a Fixed length.
	b Variable length.
	4.2.3 The Reliability Of Binary Representation
	4.2.4 Binary Storage Devices
	Using magnetic cores to represent binary values
	Relationships among transistors, chips, and circuit boards
	Simplified model of a transistor

	4.3 Boolean Logic and Gates
	4.3.1 Boolean Logic
	4.3.2 Gates
	The three basic gates and their symbols
	Construction of a NOT gate
	Construction of NAND and AND gates
	a A two-transistor NAND gate.
	b A three-transistor AND gate.
	Construction of NOR and OR gates
	a A two-transistor NOR gate.
	b A three-transistor OR gate.

	4.4 Building Computer Circuits
	4.4.1 Introduction
	Diagram of a typical computer circuit
	4.4.2 A Circuit Construction Algorithm
	Circuit diagram for the output labeled Output-1
	The sum-of-products circuit construction algorithm
	4.4.3 Examples Of Circuit Design and Construction
	One-bit compare-for-equality circuit
	N-bit compare-for-equality circuit
	The 1-ADD circuit and truth table
	Sum output for the 1-ADD circuit
	Complete 1-ADD circuit for 1-bit binary addition
	The complete full adder ADD circuit

	4.5 Control Circuits
	A two-input multiplexor circuit
	A 2-to-4 decoder circuit
	Example of the use of a decoder circuit
	Example of the use of a multiplexor circuit

	4.6 Conclusion
	Chapter Review
	Exercises

	Chapter Review
	Challenge Work

	Chapter Review
	Additional Resources

	Computer Systems Organization
	5.1 Introduction
	The concept of abstraction

	5.2 The Components Of A Computer System
	Components of the Von Neumann architecture
	5.2.1 Memory and Cache
	Structure of random access memory
	Organization of memory and the decoding logic
	Two-dimensional memory organization
	Overall RAM organization
	Overall organization of a typical disk
	Organization of an I/O controller
	5.2.3 The Arithmetic/logic Unit
	Three-register ALU organization
	Multiregister ALU organization
	Using a multiplexor circuit to select the proper ALU result
	Overall ALU organization
	5.2.4 The Control Unit
	Typical machine language instruction format
	Examples of simple machine language instruction sequences
	Organization of the control unit registers and circuits
	The instruction decoder

	5.3 Putting The Pieces Together— The Von Neumann Architecture
	The organization of a Von Neumann computer
	Graph of processor speeds, 1945 to the present
	A SIMD parallel processing system
	Model of MIMD parallel processing

	Chapter Review
	Additional Resources

	Part Introduction
	An Introduction to System Software and Virtual Machines
	6.1 Introduction
	6.2 System Software
	6.2.1 The Virtual Machine
	The role of system software
	6.2.2 Types of System Software
	Types of system software

	6.3 Assemblers and Assembly Language
	6.3.1 Assembly Language
	The continuum of programming languages
	The translation/loading/execution process
	6.3.2 Examples of Assembly Language Code
	Algorithm to compute the sum of nonnegative numbers
	Assembly language program to compute the sum of nonnegative numbers
	Generation of the symbol table
	Outline of pass 1 of the assembler
	Outline of pass 2 of the assembler
	Example of an object program

	6.4 Operating Systems
	6.4.1 Functions of an Operating System
	User interface responsibility of the operating system
	Example of a graphical user interface
	6.4.2 Historical Overview Of Operating Systems Development
	Operation of a batch computer system
	Structure of a typical batch job
	Configuration of a time-shared computing system
	A local area network
	The virtual environment created by a network operating system
	6.4.3 The Future
	Structure of a distributed system

	Chapter Review
	Additional Resources

	Computer Networks, the Internet, and the World Wide Web
	7.1 Introduction
	7.2 Basic Networking Concepts
	7.2.1 Communication Links
	Two forms of information representation
	Modulation of a carrier to encode binary information
	Transmission time of an image at different transmission speeds
	Some common LAN topologies
	An Ethernet LAN implemented using shared cables
	An Ethernet LAN implemented using a switch
	7.2.4 Overall Structure of the Internet
	Structure of a typical company network
	Structure of a network using an ISP
	Hierarchy of Internet service providers
	Internet domain survey host count graph

	7.3 Communication Protocols
	The five-layer TCP/IP protocol hierarchy
	7.3.1 Physical Layer
	The concept of a bit pipe
	7.3.2 Data Link Layer
	The Medium Access Control protocols in Ethernet
	A message packet sent by the Data Link protocols
	Message pipe
	7.3.3 Network Layer
	Relationship between IP addresses and port numbers
	Logical view of a TCP connection
	7.3.5 Application Layer
	Behavior of the HTTP Application layer protocol

	7.4 Network Services and Beneﬁts
	7.4.1 Interpersonal Communications
	7.4.2 Resource Sharing
	The client/server model of computing
	7.4.3 Electronic Commerce
	7.5.1 The Internet
	A network of networks
	State of networking in the late 1980s

	Chapter 8 Information Security
	8.1 Introduction
	8.2 Threats and Defenses
	8.2.1 Authentication and Authorization
	8.2.2 Threats from the Network

	8.3 Encryption
	8.3.1 Encryption Overview
	8.3.2 Simple Encryption Algorithms
	The mathematical function modulo 26 is being applied.
	Encoding
	8.3.3 DES
	The XOR gate
	The DES encryption algorithm
	8.3.4 Public Key Systems

	8.4 Web Transmission Security
	A TLS/SSL session

	8.5 Think Small, Think Big
	8.6 Conclusion
	8.7 Summary of Level 3
	Chapter Review
	Exercises

	Chapter Review
	Challenge Work

	Chapter Review
	Additional Resources

	Part Introduction
	Introduction to High- Level Language Programming
	9.1 The Language Progression
	9.1.1 Where Do We Stand and What Do We Want?
	9.1.2 Getting Back To Binary
	Transitions of a high-level language program

	9.2 A Family of Languages
	9.3 Two Examples In Five-part Harmony
	9.3.1 Favorite Number
	Ada program for favorite number
	C++ program for favorite number
	C# program for favorite number
	Java program for favorite number
	Python program for favorite number
	9.3.2 Data Cleanup (Again)
	The converging-pointers algorithm for data cleanup
	Ada converging-pointers algorithm
	C++ converging-pointers algorithm
	C# converging-pointers algorithm
	Java converging-pointers algorithm
	Python converging-pointers algorithm
	Output from the various data cleanup implementations
	(CONTINUED)

	9.5 Meeting Expectations
	9.6.3 Modern Environments
	9.6.4 Agile Software Development

	9.7 Conclusion
	Chapter Review
	Exercises

	Chapter Review
	Challenge Work

	The Tower of Babel
	10.1 Why Babel?
	10.2.1 Plankalkül
	10.2.2 Fortran
	User-hardware interface and programming languages
	C allows access to a memory cell address as well as to its content
	Storing a value in a specific memory location using C
	10.2.6 Java
	10.2.7 Python
	10.3.2 HTML
	HTML code for a Web page
	Body of the Web page generated by the HTML code in Figure 10.4
	The new HTML (image) tag
	JavaScript embedded in an HTML page

	10.4 Alternative Programming Paradigms
	10.4.1 Functional Programming
	Scheme program to add nonnegative integers
	A Prolog program
	The logic programming paradigm
	Model of SIMD processing
	Model of MIMD processing
	The divide-and-conquer approach using multiple processors
	10.5.1 Go
	10.5.2 F#
	F# program to add nonnegative integers

	10.6 Conclusion
	Chapter Review
	Additional Resources

	Compilers and Language Translation
	11.1 Introduction
	11.2 The Compilation Process
	General structure of a compiler
	Overall execution sequence of a high-level language program
	11.2.1 Phase I: Lexical Analysis
	Parse tree produced by the parser
	Two parse trees for the statement x = x + y + z
	Third attempt at a grammar for assignment statements
	Grammar for a simplified version of an if-else statement
	Parse tree for the statement if (x = = y) x = z; else x = y;
	Code generation for the assignment statement x = x + y + z
	Optimized code for the assignment statement x = x + y + z

	Chapter Review
	Challenge Work

	Chapter Review
	Additional Resources

	Models of Computation
	12.1 Introduction
	12.2 What is a Model?
	12.3 A Model of a Computing Agent
	12.3.1 Properties of a Computing Agent
	12.3.2 The Turing Machine
	A Turing machine tape
	A Turing machine configuration
	The next Turing machine configuration after executing one instruction

	12.4 A Model of an Algorithm
	12.5 Turing Machine Examples
	12.5.1 A Bit Inverter
	State diagram for the bit inverter machine
	12.5.2 A Parity Bit Machine
	State diagram for the parity bit machine
	12.5.3 Machines for Unary Incrementing
	State diagram for the incrementer
	12.5.4 A Unary Addition Machine
	State diagram for the addition machine

	12.6 The Church–Turing Thesis
	Emulating an algorithm by a Turing machine

	12.7 Unsolvable Problems
	Hypothetical Turing machine P running on T* and t
	Hypothetical Turing machine Q running on T* and t
	Hypothetical Turing machine S running on S*

	12.8 Conclusion
	12.9 Summary of Level 4
	Chapter Review
	Exercises

	Chapter Review
	Challenge Work

	Chapter Review
	Additional Resources

	Part Introduction
	Simulation and Modeling
	13.1 Introduction
	13.2 Computational Modeling
	13.2.1 Introduction To Systems and Models
	Using a simulation in an interactive design environment
	13.2.2 Computational Models, Accuracy, and Errors
	13.2.3 An Example of Model Building
	Example of simulated events
	System to be modeled
	New customer arrival algorithm
	Statistical distribution of customer service time
	Algorithm for generating random numbers that follow the distribution given in
	Algorithm for customer departure event
	The main algorithm of our simulation model
	Using a two-dimensional graph to display output
	Using a two-dimensional graph to display and compare two data values
	Three-dimensional image of the Earth’s surface with overlay showing status of a
	forest fire
	Three-dimensional model of a methyl nitrite molecule
	Visualization of projected tsunami wave heights
	Use of animation to model ozone layers in the atmosphere

	13.4 Conclusion
	Chapter Review
	Exercises

	Electronic Commerce and Databases
	14.1 Introduction
	Secure site assurance
	14.2.4 Designing Your Web Site

	14.3 Databases
	14.3.1 Data Organization
	Data organization hierarchy
	Records and fields in a single file
	Three entities in the Rugs-For-You database
	14.3.3 Other Considerations

	Chapter 15 Artiﬁcial Intelligence
	15.1 Introduction
	The Turing test

	15.2 A Division of Labor
	Human and computer capabilities

	15.3 Knowledge Representation
	A semantic net representation

	15.4 Recognition Tasks
	A neuron
	One neuron with three inputs
	Neural network model
	A simple neural network—OR gate
	The truth table for XOR
	An attempt at an XOR network

	15.5 Reasoning Tasks
	15.5.1 Intelligent Searching
	Decision tree for sequential search
	Decision tree for binary search
	A state-space graph with exponential growth
	15.5.2 Swarm Intelligence
	15.5.3 Intelligent Agents
	15.5.4 Expert Systems
	15.5.5 The Games We Play
	Garry Kasparov vs. Deep Blue
	IBM’s Watson beats its human opponents on Jeopardy!
	IBM’s Watson supercomputer

	15.6 Robotics
	Honda’s ASIMO conducting

	15.7 Conclusion
	Chapter Review
	Exercises

	Chapter Review
	Challenge Work

	Chapter Review
	Additional Resources

	Computer Graphics and Entertainment: Movies, Games, and Virtual Communities
	16.1 Introduction
	Pong—One of the first computer-based video games

	16.2 Computer-generated Imagery (CGI)
	16.2.1 Introduction to CGI
	A simplified three-stage graphics pipeline
	16.2.3 Object Modeling
	Wireframe model of a dolphin (based on image in Wikipedia entry on polygon
	meshes)
	Simple tessellation and corresponding vertex list
	16.2.4 Object Motion
	The three types of rigid motion
	Using matrix multiplication to implement object translation
	Example of a translation performed on the object shown in Figure 16.4(a)
	Figure-8 object containing two control points
	16.2.5 Rendering and Display
	Example of a fully rendered frame
	Three light sources illuminating triangle T
	Converting an image to a two-dimensional representation
	16.2.6 The Future of CGI

	16.3 Video Gaming
	Typical architecture of a GPU and video memory

	16.4 Multiplayer Games and Virtual Communities
	Architecture of an MMOG

	Chapter Review
	Additional Resources

	Part Introduction
	Making Decisions About Computers, Information, and Society
	17.1 Introduction
	17.2 Case Studies
	17.2.1 Case 1: The Story of MP3—compression Codes, Musicians, and Money
	Peer-to-peer ﬁle sharing system created by Napster
	17.2.5 Case 4: Genetic Information and Medical Research

	17.3 Personal Privacy and Social Networks
	17.5 Summary of Level 6
	Chapter Review
	Exercises

	Chapter Review
	Additional Resources

	Programing in Ada
	A Simple Ada Graph
	Some of the Ada Primitive Data Types
	A 12-Element Array hits
	Sequential Flow of Control
	Ada Comparison Operators
	Ada Boolean Operators
	Conditional Flow of Control (if-else)
	If-else with Empty Else
	The TravelPlanner Graph with a Conditional Statement
	While Loop
	The TravelPlanner Graph with Looping
	A Pseudocode Version of the SportsWorld Graph
	The SportsWorld Graph
	A Sample Session Using the Graph of Figure 15
	Structure Charts
	Structure Chart for the SportsWorld Task
	A High-Level Modular View of the SportsWorld Program
	The Main Program Code in a Modularized Version of the SportsWorld Program
	The Outline for an Ada Function/Procedure
	The getInput Procedure
	The doCircumference Procedure
	The Complete Modularized SportsWorld Graph
	The Sports World Graph Using Functions
	Some Ada Terminology
	The SportsWorld Graph with Deﬁned subtypes
	Three Key Elements of OOP
	Object-Oriented Terminology and Usage: Standard and Ada
	An Object-Oriented SportsWorld Graph
	An Ada Graph with Polymorphism and Inheritance
	Output from the Graph of Figure 31
	A Hierarchy of Geometric Types
	Pixel-Numbering System in a Bitmapped Display
	Display of Information on the Terminal
	Practice Problems

	Programming in C#
	A Simple C# Program
	The Overall Form of a Typical C# Program
	The Program of Figure 1 (line numbers added for reference)
	A 12-Element Array hits
	Sequential Flow of Control
	Conditional Flow of Control (if-else)
	If-else with Empty else
	The TravelPlanner Program with a Conditional Statement
	while Loop
	The TravelPlanner Program with Looping
	A Pseudocode Version of the SportsWorld Program
	The SportsWorld Program
	A Sample Session Using the Program of Figure 15
	Structure Charts
	Structure Chart for the SportsWorld Task
	A High-Level Modular View of the SportsWorld Program
	The Main Function in a Modularized Version of the SportsWorld Program
	The Outline for a C++ Function
	The getInput Function
	The doCircumference Function
	The Complete Modularized SportsWorld Program
	The SportsWorld Program Using Nonvoid Functions
	some C# Terminology
	Three Key Elements of OOP
	An Object-Oriented SportsWorld Program
	A C# Program with Polymorphism and Inheritance
	A Hierarchy of Geometric Classes
	Pixel-Numbering System in a Bitmapped Display
	Display of Information on the Terminal

	Programming In C++
	A Simple C++ Program
	The Overall Form of a Typical C++ Program
	The Program of Figure 1 (line numbers added for reference)
	Some of the C++ Primitive Data Types
	A 12-Element Array hits
	Sequential Flow of Control
	C++ Comparison Operators
	C++ Boolean Operators
	Conditional Flow of Control (if-else)
	If-Else with Empty Else
	The TravelPlanner Program with a Conditional Statement
	While Loop
	The TravelPlanner Program with Looping
	A Pseudocode Version of the SportsWorld Program
	The SportsWorld Program
	A Sample Session Using the Program of Figure 15
	Structure Charts
	Structure Chart for the SportsWorld Task
	A High-Level Modular View of the SportsWorld Program
	The Main Function in a Modularized Version of the SportsWorld Program
	The Outline for a C++ Function
	The getInput Function
	The doCircumference Function
	The Complete Modularized SportsWorld Program
	The SportsWorld Program Using Nonvoid Functions
	Some C++ Terminology
	Three Key Elements of OOP
	An Object-Oriented SportsWorld Program
	A C++ Program with Polymorphism and Inheritance
	Output from the Program of Figure 29
	A Hierarchy of Geometric Classes
	Pixel-Numbering System in a Bitmapped Display
	Display of Information on the Terminal

	Programming in Java
	A Simple Java Program
	The Program of Figure 1 (line numbers added for reference)
	Some of the Java Primitive Data Types
	A 12-Element Array hits
	Sequential Flow of Control
	Java Comparison Operators
	Java Boolean Operators
	Conditional Flow of Control (if-else)
	if-else with Empty else
	The TravelPlanner Program with a Conditional Statement
	While Loop
	The TravelPlanner Program with Looping
	A Pseudocode Version of the SportsWorld Program
	The SportsWorld Program
	A Sample Session Using the Program of Figure 14
	Structure Charts
	Methods in the Circle Class
	Pseudocode for the SportsWorld Main Method Using the Circle Class
	A Modularized Version of the SportsWorld Program
	The Outline for a Java Method
	The doCircumference Method
	The Circle Class in a Modularized Version of the SportsWorld
	Program
	Some Java Terminology
	Three Key Elements of OOP
	The New Circle Class
	The New SportsWorld Class
	A Java Program with Polymorphism and Inheritance
	A Hierarchy of Geometric Classes
	An Example of the Use of Graphics to Simplify Machine Operation
	Pixel- Numbering System in a Bitmapped Display
	Display of Information on the Terminal
	Complete Java Program for Drawing a Line

	Programming in Python
	A Simple Python Program
	The Program of Figure 1 (line numbers added for reference)
	Some of the Python Data Types
	A 4-Element List roster
	Sequential Flow of Control
	Python Comparison Operators
	Python Boolean Operators
	Conditional Flow of Control (if-else)
	If-Else with Empty Else
	The TravelPlanner Program with a Conditional Statement
	While Loop
	The TravelPlanner Program with Looping
	A Pseudocode Version of the SportsWorld Program
	The SportsWorld Program
	A Sample Session Using the Program of Figure 14
	Structure Charts
	Structure Chart for the SportsWorld Task
	A High-Level Modular View of the SportsWorld Program
	A Modularized SportsWorld Program, Version 1
	A Modularized SportsWorld Program, Version 2 THIS DOES NOT WORK
	A Modularized SportsWorld Program, Version 3
	A Modularized SportsWorld Program, Version 4
	Data Flow in and out of Python Functions
	Parameter Passing and Return Statements
	Output from the Program of Figure 24
	Three Key Elements of OOP
	An Object-Oriented SportsWorld Program
	A Python Program with Polymorphism and Inheritance
	Output from the Program of Figure 28
	A Hierarchy of Geometric Classes
	Pixel-Numbering System in a Bitmapped Display
	Display of Information on the Terminal
	Python Program for Graphics Window
	Python Program for Smiley Face
	Python Program That Responds to Button Click
	Results of Executing the Program of Figure 35

