
Introduction to Programming Languages

Programming in C, C++, Scheme, Prolog, C#, and SOA

Fifth Edition

Yinong Chen

Arizona State University

Kendall Hunt
publishing company

Cover image courtesy of© Shutter stock, Inc. Used under license.

Kendall Hunt
publis�ing company

www .kendallhunt.com
Send all inquiries to:
4050 West mark Drive

Dubuque, IA 52004-1840

Copyright© 2003, 2006, 2012, 2015 by Yinong Chen and Wei-Tek Tsai
2017 by Kendall Hunt Publishing Company

ISBN 978-1-5249-1699-2

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the copyright owner.

Published in the United States of America

Table of Contents

Preface .. x1

Chapter 1 Basic Principles of Programming Languages .. 1

1.1 Introduction .. 2

1.1.1

1.1.2

1.1.3

Programming concepts and paradigms

Program performance and features of programming languages

Development of programming languages

2

3

4

1.2 Structures of programming languages ... 8

1.2.1 Lexical structure 8

1.2.2 Syntactic structure 9

1.2.3 Contextual structure 9

1.2.4 Semantic structure 9

1.2.5 BNF notation

1.2.6 Syntax graph

9

11

1.3 Data types and type checking .. 12

1.3 .1 Data types and type equivalence 13

1.3 .2 Type checking and type conversion 13

1.3 .3 Orthogonality 14

1.4 Program processing and preprocessing .. 16

1 .4.1 Interpretation and compilation 16

1.4.2 Preprocessing: macro and inlining 18

* 1.5 Program development .. 23

1.5 .1 Program development process 23

1.5 .2 Program testing 24

1.5.3 Correctness proof 27

1.6 Summary .. 29

1. 7 Homework and programming exercises .. 31

Chapter 2 The Imperative Programming Languages, C/C++ ... 39

2.1 Getting started with CIC++ .. 40

2.1.1 Write your first CIC++ program 40

2.1.2 Basic input and output functions 41

2.1.3 Formatted input and output functions 42

2.2 Control structures in CIC++ ... 44

2.2.1 Operators and the order of evaluation 44

111

2.2.2 Basic selection structures (if-then-else and the conditional expression) 45

2.2.3 Multiple selection structure (switch) 46

2.2.4 Iteration structures (while, do-while, and for) 49

2.3 Data and basic data types in CIC++ ... 51

2.3 .1 Declaration of variables and functions 51

2.3.2 Scope rule 52

2.3.3 Basic data types 53

2.4 Complex types ... 56

2.4.1 Array 56

2.4.2 Pointer

2.4.3 String

2 .4 .4 Constants

2.4.5 Enumeration type

58

60

69

70

2.5 Compound data types ... 73

2. 5 .1 Structure types and paddings 73

2.5.2 Union 75

2.5.3

2.5.4

2.5.5

2.5.6

Array of structures using static memory allocation

Linked list using dynamic memory allocation

Doubly linked list

Stack

77

80

84

86

2.6 Standard input and output, files, and file operations ... 89

2.6.1 Basic concepts of files and file operations 89

2.6.2 File operations in C

2.6.3 Flush operation in C

90

95

2. 7 Functions and parameter passing ... 97

2.8 Recursive structures and applications .. 101

2. 8 .1 Loop structures versus recursive structures 101

2.8.2 The fantastic-four abstract approach of writing recursive functions 102

2.8.3 Hanoi Towers

2.8.4 Insertion sorting

2.8.5 Merge sort algorithm

2.8.6 Quick sort algorithm

2.8. 7 Tree operations

2.8.8 Gray code generation

103

106

108

110

110

114

2.9 Modular design .. 116

2.10 Case Study: Putting All Together .. 118

iv

2.11 Summary .. 125

2.12 Homework, programming exercises, and projects ... 127

Chapter 3 The Object-Oriented Programming Language, C++ ... 147

3 .1 A long program example: a queue and a priority queue written in C++ 148

3 .2 Class definition and composition ... 151

3.2.1 Class definition 151

3 .2.2 Scope resolution operator

3.2.3 Objects from a class

3.2.4 Definition of constructor and destructor

152

153

153

3 .3 Memory management and garbage collection ... 154

3 .3 .1 Static: global variables and static local variables 15 5

3 .3 .2 Runtime stack for local variables 156

3 .3 .3 Heap: dynamic memory allocation

3 .3 .4 Scope and garbage collection

3 .3 .5 Memory leak detection

159

159

164

3 .4 Inheritance ... 171

3.4.1 Class containment and inheritance 171

3.4.2 Inheritance and virtual function 174

3.4.3 Inheritance and hierarchy 177

3.4.4 Inheritance and polymorphism 191

3.4.5 Polymorphism and type checking 193

3.4.6 Polymorphism and late binding 194

3.4.7 Type Casting in C++ 194

3.5 Function and Operator Overloading .. 196

3 .5 .1 Function overloading 196

3.5.2 Operator overloading 197

3.6 File Operations in C++ .. 203

3.6.1 File objects and operations in C++ 203

3 .6.2 Ignore operation in C++ 208

3. 7 Exception Handling ... 209

3.8 Case Study: Putting All Together .. 213

3.8.1 Organization of the program 213

3.8.2 Header files 214

3.8.3 Source fi1es 216

*3 .9 Parallel computing and multithreading .. 224

3 .9. l Basic concepts in parallel computing and multithreading 224

V

3.9.2 Generic features in C++

3.9.3 Case Study: Implementing multithreading in C++

224

226

3 .10 Summary .. 230

3.11 Homework, programming exercises, and projects ... 231

Chapter 4 The Functional Programming Language, Scheme ... 241

4.1 From imperative programming to functional programming .. 242

4.2 Prefix notation .. 244

4.3 Basic Scheme terminology .. 246

4.4 Basic Scheme data types and functions ... 249

4.4.1 Number types 249

4.4.2 Boolean 250

4.4.3 Character 251

4.4.4 String 252

4.4.5 Symbol 252

4.4.6 Pair 252

4.4.7 List 254

4.4.8 Application of Quotes 255

4.4.9 Definition of procedure and procedure type 256

4.4.10 Input/output and nonfunctional features 258

*4.5 Lambda-calculus .. 260

4.5.1 Lambda-expressions

4.5.2 A-procedure and parameter scope

4.5.3 Reduction rules

260

261

261

4.6 Define your Scheme procedures and macros ... 262

4.6.1 Unnamed procedures 263

4.6.2 Named procedures 263

4.6.3 Scopes of variables and procedures 263

4.6.4 Let-form and unnamed procedures 265

4.6.5 Macros 266

4.6.6 Compare and contrast imperative and functional programming paradigms 268

4. 7 Recursive procedures ... 270

4.8 Define recursive procedures on data types .. 272

4.8.1 Number manipulations 272

4.8.2 Character and string manipulations 276

4.8.3 List manipulations 277

4.9 Higher-order functions ... 279

Vl

4.9.1 Mapping 280

4.9.2 Reduction 283

4.9.3 Filtering 284

4.9.4 Application of filtering in query languages 286

4.10 Summary .. 287

4.11 Homework, programming exercises, and projects ... 289

Chapter 5 The Logic Programming Language, Prolog .. 299

5 .1 Basic concepts of logic programming in Pro log .. 299

5.1.1 Prolog basics 300

5.1.2 Structures of Pro log facts, rules, and goals 302

5.2 The Prolog execution model .. 303

5.2.1 Unification of a goal 303

5.2.2 Example of searching through a database 305

5.3 Arithmetic operations and database queries .. 306

5 .3 .1 Arithmetic operations and built-in functions 3 06

5 .3 .2 Combining database queries with arithmetic operations 308

5 .4 Pro log functions and recursive rules .. 310

5.4.l Parameter passing in Prolog 310

5.4.2 Factorial example 311

5.4.3 Fibonacci numbers example 311

5.4.4 Hanoi Towers 312

5.4.5 Graph model and processing 313

5.4.6 Map representation and coloring 314

5 .5 List and list manipulation .. 316

5. 5 .1 Definition of pairs and lists 316

5.5.2 Pair simplification rules 317

5.5.3 List membership and operations 318

5.5.4 Knapsack problem 321

5.5.5 Quick sort 322

5 .6 Flow control structures .. 323

5.6.l Cut

5.6.2 Fail

5 .6.3 Repeat

324

327

328

*5.7 Prolog application in semantic Web .. 330

5.8 Summary .. 331

5.9 Homework, programming exercises, and projects ... 333

vii

Chapter 6 Fundamentals of the Service-Oriented Computing Paradigm 341

6.1 Introduction to C# .. 341

6.1.1 Getting started with C# and Visual Studio 341

6.1.2 Comparison between C++ and C# 343

6.1.3 N amespaces and the using directives 343

6.1.4 The queue example in C# 345

6.1.5 Class and object in C# 346

6.1.6 Parameters: passing by reference with re f&out 349

6.1.7 Base classes and constructors 350

6.1.8 Constructor, destructor, and garbage collection 350

6.1.9 Pointers in C# 351

6.1.10 C# unified type system 352

6.1.11 Further topics in C# 353

6.2 Service-oriented computing paradigm ... 353

6.2.l Basic concepts and terminologies 353

6.2.2 Web services development

6.2.3 Service-oriented system engineering

6.2.4 Web services and enabling technologies

355

356

357

6.3 *Service providers: programming web services in C# .. 358

6.3.l Creating a web service project 359

6.3.2

6.3.3

6.3.4

Writing the service class

Launch and access your web services

Automatically generating a WSDL file

360

361

363

6.4 Publishing and searching web services using UDDI ... 365

6.4.1 UDDI file 365

6.4.2 ebXML 367

6.4.3 Ad hoc registry lists 368

6.5 Building applications using ASP.Net .. 368

6.5.1 Creating your own web browser 368

6.5.2 Creating a Windows application project in ASP.Net 369

6.5.3 Developing a website application to consume web services 374

6.6 Silverlight and Phone Applications Development ... 377

6.6.1 Silverlight Applications 3 77

6.6.2 Developing Windows Phone Apps Using Silverlight 380

6.7 Cloud computing and big data processing ... 389

6.7.1 Cloud computing 389

6.7.2 Big data 392

Vlll

6.8 Summary .. 394

6.9 Homework, programming exercises, and projects ... 395

Appendix A Basic Computer Architectures and Assembly Language Programming 401

A. l Basic computer components and computer architectures .. 401

A.2 Computer architectures and assembly programming ... 402

A.3 Subroutines and local variables on stack ... 407

Appendix B Programming Environments Supporting C, C++, Scheme, and Prolog 409

B. l Introduction to operating systems .. 409

B.2 Introduction to Unix and CIC++ programming environments ... 412

B.2.1 Unix and Linux operating systems 412

B.2.2 Unix shell and commands 413

B.2.3 Unix system calls 417

B.2.4 Getting started with GNU GCC under the Unix operating system 419

B.2.5 Debugging your CIC++ programs in GNC GCC 421

B.2.6 Frequently used GCC compiler options 424

B.2.7 CIC++ operators 424

B.2.8 Download programming development environments and tutorials 426

BJ Getting started with Visual Studio programming environment ... 426

B.3.1 Creating a CIC++ project in Visual Studio 427

B.3 .2 Debugging your CIC++ programs in Visual Studio 429

B.4 Programming environments supporting Scheme programming .. 430

B.4.1 Getting started with DrRacket 430

B.4.2 Download DrRacket programming environment 431

B.5 Programming environments supporting Prolog programming .. 432

B.5.1 Getting started with the GNU Prolog environment 432

B.5.2 Getting started with Prolog programming 433

B.5.3 Download Prolog programming development tools 435

Appendix C ASCII Character Table ... 437

Bibliography ... 439

Index ... 443

ix

Preface

We all have witnessed the rapid development of computer science and its applications in many domains,
particularly in web-based computing (Web 2.0), cloud computing, big data processing, and mobile
computing. As a science discipline, the fundamentals of computer science, including programming
language principles and the classic programming languages, are stable and do not change with the
technological innovations. C, C++, Scheme/LISP, and Prolog belong to the classic programming languages
that were developed several decades ago and are still the most significant programming languages today,
both in theory and in practice. However, the technologies that surround these languages have been changed
and improved, which give these languages new perspectives and new applications. For example, C++ is
extended to generic classes and writing multithread programs. Functional programming principles are
widely used in database query languages and the new object- and service-oriented programming languages
such as C#.

This text is intended for computer science and computer engineering students in their sophomore year of
study. It is assumed that students have completed a basic computer science course and have learned a high­
level programming language like C, C++, or Java.

Most of the content presented in the text has been used in the "Introduction to Programming Languages"
course taught by the author in the School of Computer Science at the University of the Witwatersrand at
Johannesburg, and in the Computer Science and Engineering programs at Arizona State University. This
text is different from the existing texts on programming languages that either focus on teaching
programming paradigms, principles, and the language mechanisms, or focus on language constructs and
programming skills. This text takes a balanced approach on both sides. It teaches four programming
languages representing four major programming paradigms. Programming paradigms, principles, and
language mechanisms are used as the vehicle to facilitate learning of the four programming languages in a
coherent way. The goals of such a programming course are to make sure that computer science students are
exposed to different programming paradigms and language mechanisms, and obtain sufficient
programming skills and experience in different programming languages, so that they can quickly use these
or similar languages in other courses.

Although there are many different programming paradigms, imperative, object-oriented, functional, and
logic programming paradigms are the four major paradigms widely taught in computer science and
computer engineering departments around the world. The four languages we will study in the text are the
imperative C, object-oriented C++, functional Scheme, and logic Prolog. At the end of the course, students
should understand

• the language structures at different layers (lexical, syntactic, contextual, and semantic), the control
structures and the execution models of imperative, object-oriented, functional, and logic
programming languages;

• program processing (compilation versus interpretation) and preprocessing (macros and inlining);
• different aspects of a variable, including its type, scope, name, address, memory location, and value.

More specific features of programming languages and programming issues are explored in cooperation with
the four selected languages. Students are expected to have understood and be able to

• write C programs with complex data types, including pointers, arrays, and generic structures, as
well as programs with static and dynamic memory allocation;

xi

• apply the object-oriented features such as inheritance and class hierarchy, polymorphism and
typing, overloading, early versus late binding, as well as the constructors, the destructor and the
management of static memory, stack, and heap in C++;

• apply the functional programming style of parameter passing and write Scheme programs requiring
multiple functions;

• apply the logic programming style of parameter passing, write Prolog facts, rules, and goals, and
use multiple rules to solve problems;

• be able to write programs requiring multiple subprograms/procedures to solve large programming
problems;

• be able to write recursive subprograms/procedures in imperative, object-oriented, functional, and
logic programming languages.

The text has been revised and improved throughout in each of the new editions. In the second edition, the
major change made was the inclusion of programming in Service-Oriented Architecture (SOA). Since the
publication of the first edition in 2003, SOA programming has emerged as a new programming paradigm,
which has demonstrated its strength to become a dominating programming paradigm. All major computing
companies, including HP, IBM, Intel, Microsoft, Oracle, SAP, and Sun Microsystems, have moved into
this new paradigm and are using the new paradigm to produce software and even hardware systems. The
need for skill in SOA programming increases as the deployment of SOA applications increases. This new
SOA paradigm is not only important in the practice of programming, but it also contributes to the concepts
and principles of programming theory. In fact, SOA programming applies a higher level of abstraction,
which requires fewer technical details for building large software applications. We, the authors of this book,
are leading researchers and educators in SOA programming. The inclusion of the new chapter on C# and
SOA programming makes the text unique, which allows teaching of the most contemporary programming
concepts and practice. The new chapter also gives professors a new component to choose from, which adds
flexibility for them to select different contents for different courses. As SOA has developed significantly in
the past 10 years, this chapter is also updated in the fourth edition to include an introduction to Silver light
animation, phone application development, cloud computing, and big data processing.

In the third edition, we completely rewrite Chapter 5. We also discuss the modem applications of Pro log in
the semantic web (Web 3.0) and its relationship with the currently used web semantic languages RDF
(Resource Description Framework) and OWL (Web Ontology Language). Semantic web is considered the
next generation of web that allows the web to be browsed and explored by both humans and computer
programs. In the third edition revised print, this chapter is further expanded with the latest computing
technologies in cloud computing and big data processing.

Since the publication of the second edition in 2006, the programming environment for Chapter 4, on
Scheme, has been changed from DrScheme to DrRacket. The change does not affect the examples in the
text. They all work in the new DrRacket environment, except certain notational issues. We have updated
Chapter 4 to match the changes made in DrRacket.

As parallel computing and multithreading are becoming more and more important in software development,
the third edition adds a new section on parallel computing and multithreading in C++, in Chapter 3. A
MapReduce example is used as a case study for explaining multithreading in C++. The parallel computing
concept is also emphasized in Chapter 4, where the eager evaluation and higher functions Map and Reduce
are linked to parallel computing.

In the fourth edition, we added a number of new sections and many examples throughout Chapters 1, 2, 3,
4, 5, and 6 to explain the more difficulty concepts. In Chapter 1, macro expansion and execution are
explained in more detail and the order of executions are discussed and showed on different programming
environments. More complex examples of syntax graphs are given in Section 1.2. In Chapter 2, structure
padding is discussed in Section 2.5. The file operations in Section 2.6 are extended. More recursive

xii

examples are given in Section 2.7. A case study that puts a11 together is given in a new section at the end of
the chapter. In Chapter 3, a new subsection on memory leak detection is added in Section 3.3 on memory
management. Section 3 .4 on inheritance is extended with a new subsection on type casting. A new section
on C++ file operations is added as Section 3 .5. In Chapter 4, the application of filtering in query languages
is added in Section 4.9. In the new editions, Chapter 5 is further extended to include web application and
phone application development in C#. It also extends the discussions to cloud computing and big data
processing.

In the fifth edition, changes and revisions are made throughout the book. In Chapter 2, more data structures
are discussed, including doubly linked list, graphs, and trees. Chapter 3, Object-Oriented Programming
Language C++, is significantly extended to include inheritance, type casting, function overloading and
operator overloading, and C++ file operations. A new section 3 .8 Case Study is included to put together all
the concepts and programming mechanisms learned in this chapter. In Appendix B, tutorials on using GNU
GCC environment and Visual Studio environment to edit and debug programs are added.

This edition of the text is organized into six chapters and three appendices. Chapter 1 discusses the
programming paradigms, principles, and common aspects of programming languages. Chapter 2 uses C as
the example of the imperative programming paradigm to teach how to write imperative programs. It is
assumed that students have a basic understanding of a high-level programming language such as C, C++,
or Java. Chapter 3 extends the discussion and programming from C to C++. The chapter focuses on the
main features of object-oriented programming paradigms, including class composition, dynamic memory
management and garbage collection, inheritance, dynamic memory allocation and deallocation, late
binding, polymorphism, and class hierarchy. Chapters 4 and 5 take a major paradigm shift to teach
functional and logic programming, respectively. Students are not required to have any knowledge of
functional and logic programming to learn from these two chapters. Chapter 6 gives a brief introduction to
C# and service-oriented computing paradigm. A full discussion of the service-oriented computing paradigm
is given in another book by the authors: Service-Oriented Computing and Web Software Integration.
Assignments, programming exercises, and projects are given at the end of each chapter. The sections with
an asterisk(*) are optional and can be skipped if time does not permit covering all the material. Chapters 4
and 5 are self-contained and can be taught independently, or in a different order.

The three appendices provide supplementary materials to the main text. In Appendix A, the basic computer
organization and assembly language programming are introduced. If students do not have a basic computer
science background, the material should be covered in the class. Appendix B starts with basic Unix
commands. If the class uses a Unix-based laboratory environment, students can read the appendix to get
started with Unix. Then the appendix introduces the major programming language environments that can
be used to support teaching the four programming languages, including GNU GCC/G++ for C and C++,
Visual Studio for C and C++, DrRacket for Scheme, and GNU Prolog. Appendix C gives the ASCII code
table that is referred to in various parts of the text.

The text consists of six chapters, which can be considered reconfigurable components of a course. A half­
semester course (25-30 lecture hours) can teach from two to three chapters, and a full semester course can
teach four to five chapters of choice from the text. Chapter 3 (C++) is closely related to Chapter 2. If Chapter
3 is selected as a component of a course, Chapter 2, or a part of Chapter 2, should be selected as well. Other
chapters are relatively independent of each other and can be selected freely to compose a course.

For a half-semester course, sensible course compositions could include: (Chapters 1, 2, 3); (Chapters 2, 3);
(Chapters 1, 2, 6); (Chapters 2, 3, 6); (Chapters 1, 4, 5); and (Chapters 4, 5). For a full semester course,
sensible course compositions could include: (chapters 1, 2, 3, 4, 5); (chapters 1, 2, 3, 4, 6); (Chapters 1, 2,
3, 5, 6); and (Chapters 2, 3, 4, 5, 6).

I wish to thank all those who have contributed to the materials and to the formation of this text. Particularly,
I would like to thank my colleagues Scott Hazelhurst and Conrad Mueller of the University of the

Xlll

Witwatersrand, and Richard Whitehouse of Arizona State University who shared their course materials
with me. Parts of these materials were used in teaching the programming languages course and in preparing
this text. Thomas Boyd, Joe DeLibero, Renee Turban, and Wei-Tek Tsai of Arizona State University
reviewed the drafts of the text and made constructive suggestions and useful comments. Other instructors
using this text have given me invaluable feedback and improvement suggestions, including Janaka
Balasooriya, Calvin Cheng, Mutsumi Nakamura, and Y alin Wang. My teaching assistants helped me in the
past few years to prepare the assignments and programming exercises; particularly, I would like to thank
Ruben Acuna, Raynette Brodie, Justin Convery, Gennaro De Luca, Garrett Gutierrez, and Kevin Liao.

The text was written and revised while I was carrying out a full university workload. I am thankful to my
family. I could not imagine that I would be able to complete the task without their generous support by
allowing me to use most of the weekends in the past year to write the text.

Although I have used the materials in teaching the programming languages courses at the University of the
Witwatersrand, Johannesburg and at Arizona State University for several years, the text was put together
in a short period of time. There are certainly many errors of different kinds. I would appreciate it if you
could send me any corrections, comments, or suggestions for improving the text. My email address
dedicated to dealing with the responses to the text is <yinong.chen@asu.edu>. Instructors who use the text
can contact the author for instructional support, including lecture slides in PowerPoint format and the
solutions to the assignments.

Yinong Chen

December 2016

XIV

Chapter 1

Basic Principles of Programming Languages

Although there exist many programming languages, the differences among them are insignificant compared
to the differences among natural languages. In this chapter, we discuss the common aspects shared among
different programming languages. These aspects include:

• programming paradigms that define how computation is expressed;
• the main features of programming languages and their impact on the performance of programs

written in the languages;
• a brief review of the history and development of programming languages;
• the lexical, syntactic, and semantic structures of programming languages, data and data types,

program processing and preprocessing, and the life cycles of program development.

At the end of the chapter, you should have learned:

• what programming paradigms are;
• an overview of different programming languages and the background knowledge of these

languages;
• the structures of programming languages and how programming languages are defined at the

syntactic level;
• data types, strong versus weak checking;
• the relationship between language features and their performances;
• the processing and preprocessing of programming languages, compilation versus interpretation,

and different execution models of macros, procedures, and inline procedures;
• the steps used for program development: requirement, specification, design, implementation,

testing, and the correctness proof of programs.

The chapter is organized as follows. Section 1.1 introduces the programming paradigms, performance,
features, and the development of programming languages. Section 1.2 outlines the structures and design
issues of programming languages. Section 1.3 discusses the typing systems, including types of variables,
type equivalence, type conversion, and type checking during the compilation. Section 1.4 presents the
preprocessing and processing of programming languages, including macro processing, interpretation, and
compilation. Finally, Section 1.5 discusses the program development steps, including specification, testing,
and correctness proof.

1

1.1 Introduction

1.1.1 Programming concepts and paradigms

Millions of programming languages have been invented, and several thousands of them are actually in use.
Compared to natural languages that developed and evolved independently, programming languages are far
more similar to each other. This is because

• different programming languages share the same mathematical foundation (e.g., Boolean algebra,
logic);

• they provide similar functionality (e.g., arithmetic, logic operations, and text processing);
• they are based on the same kind of hardware and instruction sets;
• they have common design goals: find languages that make it simple for humans to use and efficient

for hardware to execute;
• designers of programming languages share their design experiences.

Some programming languages, however, are more similar to each other, while other programming
languages are more different from each other. Based on their similarities or the paradigms, programming
languages can be divided into different classes. In programming language's definition, paradigm is a set
of basic principles, concepts, and methods for how a computation or algorithm is expressed. The major
paradigms we wilJ study in this text are imperative, object-oriented, functional, and logic paradigms.

The imperative, also called the procedural, programming paradigm expresses computation by fully
specified and fully controlled manipulation of named data in a stepwise fashion. In other words, data or
values are initially stored in variables (memory locations), taken out of (read from) memory, manipulated
in ALU (arithmetic logic unit), and then stored back in the same or different variables (memory locations).
Finally, the values of variables are sent to the 1/0 devices as output. The foundation of imperative languages
is the stored program concept-based computer hardware organization and architecture (von Neumann
machine). The stored program concept will be further explained in the next chapter. Typical imperative
programming languages include all assembly languages and earlier high-level languages like Fortran,
Algol, Ada, Pascal, and C.

The object-oriented programming paradigm is basically the same as the imperative paradigm, except that
related variables and operations on variables are organized into classes of objects. The access privileges of
variables and methods (operations) in objects can be defined to reduce (simplify) the interaction among
objects. Objects are considered the main building blocks of programs, which support language features like
inheritance, class hierarchy, and polymorphism. Typical object-oriented programming languages include
Smalltalk, C++, Java, and C#.

The functional, also called the applicative, programming paradigm expresses computation in terms of
mathematical functions. Since we express computation in mathematical functions in many of the
mathematics courses, functional programming is supposed to be easy to understand and simple to use.
However, since functional programming is very different from imperative or object-oriented programming,
and most programmers first get used to writing programs in imperative or object-oriented paradigms, it
becomes difficult to switch to functional programming. The main difference is that there is no concept of
memory locations in functional programming languages. Each function will take a number of values as
input (parameters) and produce a single return value (output of the function). The return value cannot be
stored for later use. It has to be used either as the final output or immediately as the parameter value of
another function. Functional programming is about defining functions and organizing the return values of
one or more functions as the parameters of another function. Functional programming languages are mainly

2

based on the lambda calculus that will be discussed in Chapter 4. Typical functional programming
languages include ML, SML, and Lisp/Scheme.

The logic, also called the declarative, programming paradigm expresses computation in terms of logic
predicates. A logic program is a set of facts, rules, and questions. The execution process of a logic program
is to compare a question to each fact and rule in the given fact and rulebase. If the question finds a match,
we receive a yes answer to the question. Otherwise, we receive a no answer to the question. Logic
programming is about finding facts, defining rules based on the facts, and writing questions to express the
problems we wish to solve. Prolog is the only significant logic programming language.

It is worthwhile to note that many languages belong to multiple paradigms. For example, we can say that
C++ is an object-oriented programming language. However, C++ includes almost every feature of C and
thus is an imperative programming language too. We can use C++ to write C programs. Java is more object­
oriented, but still includes many imperative features. For example, Java's primitive type variables do not
obtain memory from the language heap like other objects. Lisp contains many nonfunctional features.
Scheme can be considered a subset of Lisp with fewer nonfunctional features. Prolog's arithmetic
operations are based on the imperative paradigm.

Nonetheless, we will focus on the paradigm-related features of the languages when we study the sample
languages in the next four chapters. We will study the imperative features of C in Chapter 2, the object­
oriented features of C++ in Chapter 3, and the functional features of Scheme and logic features of Pro log
in Chapters 4 and 5, respectively.

1.1.2 Program performance and features of programming languages

A programming language's features include orthogonality or simplicity, available control structures, data
types and data structures, syntax design, support for abstraction, expressiveness, type equivalence, and
strong versus weak type checking, exception handling, and restricted aliasing. These features will be further
explained in the rest of the book. The performance of a program, including reliability, readability,
writability, reusability, and efficiency, is largely determined by the way the programmer writes the
algorithm and selects the data structures, as well as other implementation details. However, the features of
the programming language are vital in supporting and enforcing programmers in using proper language
mechanisms in implementing the algorithms and data structures. Table 1.1 shows the influence of a
language's features on the performance of a program written in that language.

�

Readability/

Efficiency Re usability Writability Reliability L

Simplicity/Orthogonality ✓ ✓ ✓ ✓

Control structures ✓ ✓ ✓ ✓

Typing and data structures ✓ ✓ ✓ ✓

Syntax design ✓ ✓ ✓

Support for abstraction ✓ ✓ ✓

Expressiveness ✓ ✓

Strong checking ✓

Restricted aliasing ✓

Exception handling ✓

Table 1.1. Impact of language features on the performance of the programs.

3

The table indicates that simplicity, control structures, data types, and data structures have significant impact
on all aspects of performance. Syntax design and the support for abstraction are important for readability,
reusability, writability, and reliability. However, they do not have a significant impact on the efficiency of
the program. Expressiveness supports writability, but it may have a negative impact on the reliability of the
program. Strong type checking and restricted aliasing reduce the expressiveness of writing programs, but
are generally considered to produce more reliable programs. Exception handling prevents the program from
crashing due to unexpected circumstances and semantic errors in the program. All language features will
be discussed in this book.

1.1.3 Development of programming languages

The development of programming languages has been influenced by the development of hardware, the
development of compiler technology, and the user's need for writing high-performance programs in terms
of reliability, readability, writability, reusability, and efficiency. The hardware and compiler limitations
have forced early programming languages to be close to the machine language. Machine languages are the
native languages of computers and the first generation of programming languages used by humans to
communicate with the computer.

Machine languages consist of instructions of pure binary numbers that are difficult for humans to remember.
The next step in programming language development is the use of mnemonics that allows certain symbols
to be used to represent frequently used bit patterns. The machine language with sophisticated use of
mnemonics is called assembly language. An assembly language normally allows simple variables, branch
to a label address, different addressing modes, and macros that represent a number of instructions. An
assembler is used to translate an assembly language program into the machine language program. The
typical work that an assembler does is to translate mnemonic symbols into corresponding binary numbers,
substitute register numbers or memory locations for the variables, and calculate the destination address of
branch instructions according to the position of the labels in the program.

This text will focus on introducing high-level programming languages in imperative, object-oriented,
functional, and logic paradigms.

The first high-level programming language can be traced to Konrad Zuse's Plankalkiil programming system
in Germany in 1946. Zuse developed his Z-machines Zl, Z2, Z3, and Z4 in the late 1930s and early 1940s,
and the Plankalkill system was developed on the Z4 machine at ETH (Eidgenossisch Technische
Hochschule) in Ztirich, with which Zuse designed a chess-playing program.

The first high-level programming language that was actually used in an electronic computing device was
developed in 1949. The language was named Short Code. There was no compiler designed for the language,
and programs written in the language had to be hand-compiled into the machine code.

The invention of the compiler was credited to Grace Hopper, who designed the first widely known
compiler, called AO, in 1951.

The first primitive compiler, called Autocoder, was written by Alick E. Glennie in 1952. It translated
Autocode programs in symbolic statements into machine language for the Manchester Mark I computer.
Autocode could handle single letter identifiers and simple formulas.

The first widely used language, Fortran (FORmula TRANslating), was developed by the team headed by
John Backus at IBM between 1954 and 1957. Backus was also the system co-designer of the IBM 704 that
ran the first Fortran compiler. Backus was later involved in the development of the language Algol and the
Backus-Naur Form (BNF). BNF was a formal notation used to define the syntax of programming languages.
Fortran II came in 1958. Fortran III came at the end of 1958, but it was never released to the public. Further
versions of Fortran include ASA Fortran 66 (Fortran IV) in 1966, ANSI Fortran 77 (Fortran V) in 1978,

4

ISO Fortran 90 in 1991, and ISO Fortran 95 in 1997. Unlike assembly languages, the early versions of
Fortran allowed different types of variables (real, integer, array), supported procedure call, and included
simple control structures.

Programs written in programming languages before the emergence of structured programming concepts
were characterized as spaghetti programming or monolithic programming. Structured programming is a
technique for organizing programs in a hierarchy of modules. Each module had a single entry and a single
exit point. Control was passed downward through the structure without unconditional branches (e.g., goto
statements) to higher levels of the structure. Only three types of control structures were used: sequential,
conditional branch, and iteration.

Based on the experience of Fortran I, Algol 58 was announced in 1958. Two years later, Algol 60, the first
block-structured language, was introduced. The language was revised in 1963 and 1968. Edsger Dijkstra is
credited with the design of the first Algol 60 compiler. He is famous as the leader in introducing structured
programming and in abolishing the goto statement from programming.

Rooted in Algol, Pascal was developed by Niklaus Wirth between 1968 and 1970. He further developed
Modula as the successor of Pascal in 1977, then Modula-2 in 1980, and Oberon in 1988. Oberon language
had Pascal-like syntax, but it was strongly typed. It also offered type extension (inheritance) that supported
object-oriented programming. In Oberon-2, type-bound procedures (like methods in object-oriented
programming languages) were introduced.

The C programming language was invented and first implemented by Dennis Ritchie at DEC between 1969
and 1973, as a system implementation language for the nascent Unix operating system. It soon became one
of the dominant languages at the time and even today. The predecessors of C were the typeless language
BCPL (Basic Combined Programming Language) by Martin Richards in 1967 and then the B written by
Ken Thompson in 1969. C had a weak type checking structure to allow a higher level of programming
flexibility.

Object-oriented (00) programming concepts were first introduced and implemented in the Simula

language, which was designed by Ole-Johan Dahl and Kristen Nygaard at the Norwegian Computing Center
(NCC) between 1962 and 1967. The original version, Simula I, was designed as a language for discrete
event simulation. However, its revised version, Simula 67, was a full-scale general-purpose programming
language. Although Simula never became widely used, the language was highly influential on the modern
programming paradigms. It introduced important object-oriented concepts like classes and objects,
inheritance, and late binding.

One of the object-oriented successors of Simula was Smalltalk, designed at Xerox PARC, led by Alan Kay.
The versions developed included Smalltalk-72, Smalltalk-74, Smalltalk-76, and Smalltalk-80. Smalltalk
also inherited functional programming features from Lisp.

Based on Simula 67 and C, a language called "C with classes" was developed by Bjarne Stroustrup in 1980
at Bell Labs, and then revised and renamed as C++ in 1983. C++ was considered a better C (e.g., with
strong type checking), plus it supported data abstraction and object-oriented programming inherited from
Simula 67.

Java was written by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and Mike Sheridan at Sun
Microsystems. It was called Oak at first and then renamed Java when it was publicly announced in 1995.
The predecessors of Java were C++ and Smalltalk. Java removed most non-object-oriented features of C++
and was a simpler and better object-oriented programming language. Its two-level program processing
concept (i.e., compilation into an intermediate bytecode and then interpretation of the bytecode using a
small virtual machine) made it the dominant language for programming Internet applications. Java was still

5

not a pure object-oriented programming language. Its primitive types, integer, floating-point number,
Boolean, etc., were not classes, and their memory allocations were from the language stack rather than from
the language heap.

Microsoft's C# language was first announced in June 2000. The language was derived from C++ and Java.
It was implemented as a full object-oriented language without "primitive" types. C# also emphasizes
component-oriented programming, which is a refined version of object-oriented programming. The idea is
to be able to assemble software systems from prefabricated components.

Functional programming languages are relatively independent of the development process of imperative
and object-oriented programming languages. The first and most important functional programming
language, Lisp, short for LISt Processing, was developed by John McCarthy at MIT. Lisp was first released
in 1958. Then Lisp 1 appeared in 1959, Lisp 1.5 in 1962, and Lisp 2 in 1966. Lisp was developed
specifically for artificial intelligence applications and was based on the lambda calculus. It inherited its
algebraic syntax from Fortran and its symbol manipulation from the Information Processing Language, or
IPL. Several dialects of Lisp were designed later, for example, Scheme, InterLisp, FranzLisp, MacLisp, and
ZetaLisp.

As a Lisp dialect, Scheme was first developed by G. L. Steele and G. J. Sussman in 1975 at MIT. Several
important improvements were made in its later versions, including better scope rule, procedures (functions)
as the first-class objects, removal of loops, and sole reliance on recursive procedure calls to express loops.
Scheme was standardized by the IEEE in 1989.

Efforts began on developing a common dialect of Lisp, referred to as Common Lisp, in 1981. Common
Lisp was intended to be compatible with all existing versions of Lisp dialects and to create a huge
commercial product. However, the attempt to merge Scheme into Lisp failed, and Scheme remains an
independent Lisp dialect today. Common Lisp was standardized by the IEEE in 1992.

Other than Lisp, John Backus's FP language also belongs to the first functional programming languages.
FP was not based on the lambda calculus, but based on a few rules for combining function forms. Backus
felt that lambda calculus's expressiveness on computable functions was much broader than necessary. A
simplified rule set could do a better job.

At the same time that FP was developed in the United States, ML (Meta Language) appeared in the United
Kingdom. Like Lisp, ML was based on lambda calculus. However, Lisp was not typed (no variable needs
to be declared), while ML was strongly typed, although users did not have to declare variables that could
be inferentially determined by the compiler.

Miranda is a pure functional programming language developed by David Turner at the University of Kent
in 1985-1986. Miranda achieves referential transparency (side effect-free) by forbidding modification to
global variables. It combines the main features of SASL (St. Andrews Static Language) and KRC (Kent
Recursive Calculator) with strong typing similar to that of ML. SASL and KRC are two earlier functional
programming languages designed by Turner at the University of St Andrews in 1976 and at the University
of Kent in 1981, respectively.

There are many logic-based programming languages in existence. For example, ALF (Algebraic Logic
Functional language) is an integrated functional and logic language based on Hom clauses for logic
programming, and functions and equations for functional programming. Godel is a strongly typed logic
programming language. The type system is based on a many-sorted logic with parametric polymorphism.
RELFUN extends Horn logic by using higher-order syntax, first-class finite domains, and expressions of
nondeterministic, nonground functions, explicitly distinguished from structures.

6

The most significant member in the family of logic programming languages is the Horn logic-based
Prolog. Prolog was invented by Alain Colmerauer and Philippe Roussel at the University of Aix-Marseille
in 1971. The first version was implemented in 1972 using Algol. Prolog was designed originally for natural­
language processing, but it has become one of the most widely used languages for artificial intelligence.
Many implementations appeared after the original work. Early implementations included C-Prolog,
ESLPDPRO, Frolic, LM-Prolog, Open Prolog, SB-Prolog, and UPMAIL Tricia Prolog. Today, the
common Prologs in use are AMZI Prolog, GNU Prolog, LPA Prolog, Quintus Prolog, SICSTUS Prolog,
SNI Prolog, and SWI-Prolog.

Distributed computing involves computation executed on more than one logical or physical processor or
computer. These units cooperate and communicate with each other to complete an integral application. The
computation units can be functions (methods) in the component, components, or application programs. The
main issues to be addressed in the distributed computing paradigms are concurrency, concurrent computing,
resource sharing, synchronization, messaging, and communication among distributed units. Different levels
of distribution lead to different variations. Multithreading is a common distributed computing technique
that allows different functions in the same software to be executed concurrently. If the distributed units are
at the object level, this is distributed 00 computing. Some well-known distributed 00 computing
frameworks are CORBA (Common Object Request Broker Architecture) developed by OMG (Object
Management Group) and Distributed Component Object Model (DCOM) developed Microsoft.

Service-oriented computing (SOC) is another distributed computing paradigm. SOC differs from
distributed 00 computing in several ways:

• SOC emphasizes distributed services (with possibly service data) rather than distributed objects;

• SOC explicitly separates development duties and software into service provision, service
brokerage, and application building through service consumption;

• SOC supports reusable services in (public or private) repositories for matching, discovery and
(remote or local) access;

• In SOC, services communicate through open standards and protocols that are platform independent
and vendor independent.

It is worthwhile noting that many languages belong to multiple computing paradigms; for example, C++ is
an 00 programming language. However, C++ also includes almost every feature of C. Thus, C++ is also
an imperative programming language, and we can use C++ to write C programs.

Java is more an 00 language, that is, the design of the language puts more emphasis on the object
orientation. However, it still includes many imperative features; for example, Java's primitive type
variables use value semantics and do not obtain memory from the language heap.

Service-oriented computing is based on the object-oriented computing. The main programming languages
in service-oriented computing, including Java and C#, can be used for object-oriented software
development.

The latest development in programming languages is the visual/graphic programming. MIT App Inventor
(http://appinventor.mit.edu/) uses drag-and-drop style puzzles to construct phone applications in Android
platform. Carnegie Mellon's Alice (http://www.alice.org/) is a 3D game and movie development
environment on desktop computers. It uses a drop-down list for users to select the available functions in a
stepwise manner. App Inventor and Alice allow novice programmers to develop complex applications using
visual composition at the workflow level. Intel's loT Service Orchestration Layer is a workflow language
that allows quick development of loT (Internet of Things) applications on Intel's loT platforms, such as
Edison and Galileo(http://O1org.github.io/intel-iot-services-orchestration-layer/).

7

Microsoft Robotics Developer Studio (MRDS) and Visual Programming Language (VPL) are specifically
developed for robotics applications (https://en.wikipedia.org/wiki/Microsoft _ Robotics _Developer_
Studio). They are milestones in software engineering, robotics, and computer science education from many
aspects. MRDS VPL is service-oriented; it is visual and workflow-based; it is event-driven; it supports
parallel computing; and it is a great educational tool that is simple to learn and yet powerful and expressive.
Unfortunately, Microsoft stopped its development and support to MRDS VPL in 2014, which lead to many
schools' courses, including ASU FSEl00 course, using VPL without further support.

To keep ASU course running and also help the other schools, Dr. Yinong Chen, Gennaro De Luca, and the
development team at IoT and Robotics Education Laboratory at ASU took the challenge and the
responsibility to develop a new visual programming environment at Arizona State University in 2015: ASU

VIPLE, standing for Visual IoT/Robotics Programming Language Environment. It is designed to support
as many features and functionalities that MRDS VPL supports as possible, in order to better serve the
MRDS VPL community in education and research. To serve this purpose, VIPLE also keeps similar user
interface, so that the MRDS VPL development community can use VIPLE with little learning curve. VIPLE
does not replace MRDS VPL. Instead, it extends MRDS VPL in its capacity in multiple aspects. It can
connect to different physical robots, including LEGO EV3 and any robots based on the open architecture
processors. ASU VIPLE software and documents are free and can be downloaded at: http://
neptune.fulton.ad.asu.edu/WSRepository/VIPLE/

1.2 Structures of programming languages

This section studies the structures of programming languages in terms of four structural layers: lexical,
syntactic, contextual, and semantic.

1.2.1 Lexical structure

Lexical structure defines the vocabulary of a language. Lexical units are considered the building blocks
of programming languages. The lexical structures of all programming languages are similar and normally
include the following kinds of units:

• Identifiers: Names that can be chosen by programmers to represent objects like variables, labels,
procedures, and functions. Most programming languages require that an identifier start with an
alphabetical letter and can be optionally followed by letters, digits, and some special characters.

• Keywords: Names reserved by the language designer and used to form the syntactic structure of
the language.

• Operators: Symbols used to represent the operations. All general-purpose programming languages
should provide certain minimum operators such as mathematical operators like+,-,*,/, relational

operators like<,:::;,==,>,?:, and logic operators like AND, OR, NOT, etc.
• Separators: Symbols used to separate lexical or syntactic units of the language. Space, comma,

colon, semicolon, and parentheses are used as separators.
• Literals: Values that can be assigned to variables of different types. For example, integer-type

literals are integer numbers, character-type literals are any character from the character set of the
language, and string-type literals are any string of characters.

• Comments: Any explanatory text embedded in the program. Comments start with a specific
keyword or separator. When the compiler translates a program into machine code, all comments
will be ignored.

8

1.2.2 Syntactic structure

Syntactic structure defines the grammar of forming sentences or statements using the lexical units. An
imperative programming language normally offers the following kinds of statements:

• Assignments: An assignment statement assigns a literal value or an expression to a variable.
• Conditional statements: A conditional statement tests a condition and branches to a certain

statement based on the test result (true or false). Typical conditional statements are if-then, if-then­
else, and switch (case).

• Loop statements: A loop statement tests a condition and enters the body of the loop or exits the
loop based on the test result (true or false). Typical loop statements are for-loop and while-loop.

The formal definition of lexical and syntactic structures will be discussed in Section 1.2.5.

1.2.3 Contextual structure

Contextual structure (also called static semantics) defines the program semantics before dynamic
execution. It includes variable declaration, initialization, and type checking.

Some imperative languages require that all variables be initialized when they are declared at the contextual
layer, while other languages do not require variables to be initialized when they are declared, as long as the
variables are initialized before their values are used. This means that initialization can be done either at the
contextual layer or at the semantic layer.

Contextual structure starts to deal with the meaning of the program. A statement that is lexically correct
may not be contextually correct. For example:

String str = "hello";

inti O;

int j = i + str;

All declaration statements are lexically correct, but the last statement is contextually incorrect because it
does not make sense to add an integer variable to a string variable.

More about data type, type checking, and type equivalence will be discussed in Section 1.3.

1.2.4 Semantic structure

Semantic structure describes the meaning of a program, or what the program does during the execution.
The semantics of a language are often very complex. In most imperative languages, there is no formal
definition of semantic structure. Informal descriptions are normally used to explain what each statement
does. The semantic structures of functional and logic programming languages are normally defined based
on the mathematical and logical foundation on which the languages are based. For example, the meanings
of Scheme procedures are the same as the meanings of the lambda expressions in lambda calculus on which
Scheme is based, and the meanings of Pro log clauses are the same as the meanings of the clauses in Hom
logic on which Prolog is based.

1.2.5 BNF notation

BNF (Backus-Naur Form) is a meta language that can be used to define the lexical and syntactic structures
of another language. Instead of learning BNF language first and then using BNF to define a new language,
we will first use BNF to define a simplified English language that we are familiar with, and then we will
learn BNF from the definition itself.

9

A simple English sentence consists of a subject, a verb, and an object. The subject, in tum, consists of
possibly one or more adjectives followed by a noun. The object has the same grammatical structure. The
verbs and adjectives must come from the vocabulary. Formally, we can define a simple English sentence
as follows:

<sentence> :: = <subject><verb><object>

<subject> : : = <noun> I <article><noun> I <adjective><noun>

<article><adjective><noun>

<adjective> :: = <adjective> I <adjective><adjective>

<object> : : = <subject>

<noun>:: = table I horse I computer

<article> : : = the I a

<adjective> :: = big I fast I good I high

<verb>:: = is I makes

In the definitions, the symbol ": :=" means that the name on the left-hand side is defined by the expression
on the right-hand side. The name in a pair of angle brackets "<>" is nonterminal, which means that the
name needs to be further defined. The vertical bar "I" represents an "or" relation. The boldfaced names are
terminal, which means that the names need not be further defined. They form the vocabulary of the
language.

We can use the sentence definition to check whether the following sentences are syntactically correct.

fast high big computer is good table

the high table is a good table

a fast table makes the high horse

the fast big high computer is good

good table is high

a table is not a horse

is fast computer good

1

2

3

4

5

6

7

The first sentence is syntactically correct, although it does not make much sense. Three adjectives in the
sentence are correct because the definition of an adjective recursively allows any number of adjectives to
be used in the subject and the object of a sentence. The second and third sentences are also syntactically
correct according to the definition.

The fourth and fifth sentences are syntactically incorrect because a noun is missing in the object of the
sentences. The sixth sentence is incorrect because "not" is not a terminal. The last sentence is incorrect
because the definition does not allow a sentence to start with a verb.

After we have a basic understanding of BNF, we can use it to define a small programming language. The
first five lines define the lexical structure, and the rest defines the syntactic structure of the language.

<letter> : : = alblcldlelflglhliljlklllmlnlolplqlrlsltlulvlwlxlylz

<digit> : : = O 1112 I 3 I 4 15 I 6 I 7 I 8 I 9

<symbol> :: = l@I. 1�1?1#1$

<char>

<operator>

<identifier>

<number>

<item>

: : =

: : =

: : =

<letter>l<digit>l<symbol>

+l-l*l/1%1<1>1==1<=1>=1andlorlnot

: : = <letter> I <identifier><char>

<digit>l<number><digit>

<identifier>l<number>

10

<expression> : : = <i tern> I (<expression>) I

<expression><operator><expression>

<branch>

<switch>

<sbody>

<cases>

<loop>

: : = if <expr>then {<block>} I

: : =

: : =

if <expr>then {<block>}else {<block>}

switch<expr>{<sbody>}

<cases> I <cases>; default :<block>

case<value>:<block> I <cases> ; case<value>:<block>

while <expr>do {<block>}

<assignment> : := <identifier>=<expression>;

<statement> ::= <assignment>l<branch>l<loop>

<block> : := <statement>i<block>;<statement>

Now we use the definition to check which of the following statements are syntactically correct.

suml = O;

while suml <= 100 do {

suml = suml + (al + a2) * (3b % 4*b); }

if suml == 120 then 2sum - suml else sum2 + suml;

p4#rd_2 = ((la + a2) * (b3 % b4)) / (c7 - c8);

foo.bar = (al + a2 - b3 - b4);

(al/ a2) = (c3 - c4);

1

2

3

4

5

6

7

According to the BNF definition of the language, statements 1 and 2 are correct. Statements 3 and 4 are
incorrect because 3b and 2sum are neither acceptable identifiers nor acceptable expressions. Statement 5 is
inwrr�d. Stalt:m1�ut 6 is incorrect because an identifier must sta11 with a letter. Statement 7 i3 incorrect
because the left-hand side of an assignment statement must be an identifier.

1.2.6 Syntax graph

BNF notation provides a concise way to define the lexical and syntactic structures of programming
languages. However, BNF notations, especially the recursive definitions, are not always easy to understand.
A graphic form, called a syntax graph, also known as railroad tracks, is often used to supplement the
readability of BNF notation. For example, the identifier and the if-then-else statement corresponding to the
BNF definitions can be defined using the syntax graphs in Figure 1.1. The syntax graph for the identifier
requires that an identifier start with a letter, may exit with only one letter, or follow the loops to include any
number of letters, digits, or symbols. In other words, to check the legitimacy of an identifier, we need to
travel through the syntax graph following the arrows and see whether we can find a path that matches the
given identifier. For instance, we can verify that len 23 is a legitimate identifier as follows. We travel
through the first <letter> once, travel through the second <letter> on the back track twice, travel
through the <symbol> once, and finally travel through the <digit> twice, and then we exit the definition.

On the other hand, if you try to verify that 23 len is a legitimate identifier, you will not be able to find a
path to travel through the syntax graph.

Using the if-then-else syntax graph in Figure 1. 1, we can precisely verify whether a given statement is a
legitimate if-then-else statement. The alternative route that bypasses the else branch signifies that the else
branch is optional. Please note that the definition of the if-then-else statement here is not the same as the if­
then-else statement in C language. The syntax graph definitions of various C statements can be found in
Chapter 2.

11

---+ <letter>

identifier <letter>

<digit>

<symbol>

-+ if -+ <expr> -+ then -+ { -+ <block> -+ } r else -+ { ➔ <block> -+ }r
If-then-else - -

Figure 1.1. Definition of identifier and if-then-else statement.

As another example, Figure 1.2 shows the definitions of a set data structures, including the definitions of
value, string, array, bool, and number.

In syntax graphs, we use the same convention that terminals are in boldfaced text and nonterminals are
enclosed in a pair of angle brackets.

< array'>
<bool>

<number>

value _., <object>
- --► < string>

nun

-+

-. [-L <value
�

>- i 1 - ...
array

' .

_____. true --tlj

bo oi---c=: fake ----.,I _.,

numb;-
1

;.
Jl .. 0 b' ·• < digitl-9>

:f

-<cli.git>

__..., II

siring

<Unicode character except L .. �

► quote and backslash> -.--

\

---►

\

<slash> -.

<backspace> -►
<formfeect=- ·►
< newline> -.

< carriage-return.> --llt­
< horizontal-tab> ➔

► <4-h ex-c1i. gits> •

--:'i":-----------r--►

h ��-c-. <di&t> t
Figure 1.2. Definitions of different data structures.

1.3 Data types and type checking

In this section, we examine data types, type equivalence, and type checking that is part of the contextual
structure of a programming language.

12

1.3.1 Data types and type equivalence

A data type is defined by the set of primary values allowed and the operations defined on these values. A
data type is used to declare variables (e.g., integer, real, array of integer, string, etc.).

Type checking is the activity of ensuring that the data types of operands of an operator are legal or
equivalent to the legal type.

Now the question is, what types are equivalent? For example, are int and short types, and int and float types
in C language equivalent? Are the following operations legal in C?

inti 3; short j 5;float n, k 3.0;

n = i + j + k;

The answers to these questions are related to the type equivalence policy of programming languages. There
are two major type equivalence policies: structural equivalence and name equivalence. If the structural

equivalence policy is used, the two types are equivalent if they have the same set of values (data range)
and the same operations. This policy follows the stored program concept and gives programmers the
maximum flexibility to manipulate data. The stored program concept suggests that instruction and data
are stored in computer memory as binary bit patterns and it is the programmer's responsibility to interpret
the meanings of the bit patterns. Algol 68, Pascal, and C are examples of languages that use structural
equivalence policy. For example, in the following C code, a type salary and a type age are def ined:

typedef integer salary;

typedef integer age;

inti 0; salary s = 60000; age a

i = s + a;

40;

If structural equivalence policy is used, the statement "i = s + a; " is perfectly legal because all three
variables belong to types that are structurally equivalent. Obviously, adding an age value to a salary value
and putting it into an integer type variable normally does not make sense and most probably is a
programming error. Structural equivalence policy assumes programmers know what they are doing.

On the other hand, if name equivalence policy is used, two types are equivalent only if they have the same
name. Since no programming language will normally allow two different data types to have the same name,
this policy does not allow any variable of one type to be used in the place where a variable of another type
is expected without explicit type conversion. If name equivalence policy is used, the statement "i = s +
a ; " is then illegal.

Ada, C++, and Java are examples where the name equivalence policy is used. Name equivalence enforces
a much stronger discipline and is generally considered a good way to ensure the correctness of a program.

1.3.2 Type checking and type conversion

Besides type equivalence, type-checking policy is another important characteristic of a programming
language. We can vaguely differentiate strongly typed and weakly typed languages. In a (truly) strongly

typed language:

• every name in a program must be associated with a single type that is known at the compilation
time;

• name equivalence is used; and
• every type inconsistency must be reported.

13

C++ and Java are strongly typed languages. Functional programming languages are normally weakly typed
because mathematical functions are not typed. However, ML is strongly typed, although users did not have
to declare variables that could be inferentially determined by the compiler.

On the other hand, in a weakly typed language:

• not every name has to be associated with a single type at the compilation time;
• structural equivalence is used; and
• a variable of a subtype is acceptable, and implicit type conversion, called coercion, is allowed.

Type T l is considered the subtype of T2, if the set of data of T l is a subset of data of T2 and the set of
operations of T l is a subset of operations of T2. For example, an integer type can be considered a subtype
of floating-point type. C, Scheme, and Prolog are weakly typed programming languages. Typeless
languages like BCPL are weakly typed.

If a data type is a subtype of another type, it does not mean that the two types have the equivalent or similar
structure. For example, in a 32-bit computer, an integer number 3 is represented in a simple binary form,
as shown in the upper part of Figure 1.3. On the other hand, a floating-point number is normally represented
in a three-segment format (IEEE 7 54 Standard), with the leftmost bit representing the sign (positive or
negative), the next 8 bits representing the exponent, and the remaining 23 bits representing the fraction of
the number, as shown in the lower part of Figure 1.3.

inti 3 1 00000000000000000000000000000011 1

float j

s ign fraction

Figure 1.3. Integer and floating-point numbers have different internal structures.

In a strongly typed programming language, you can still use different types of variables in a single
expression. In this case, one has to do explicit type conversion. In CIC++, explicit type conversion is called
typecasting: the destination type in parentheses is placed before the variable that has an incompatible type.
In the following statement, explicit conversion is used to convert variable s of salary type and variable a
of age type into int type:

i = (int)s + (int)a;

Strong type checking trades flexibility for reliability. It is generally considered a good policy and is used in
most recent programming languages.

1.3.3 Orthogonality

The word orthogonality refers to the property of straight lines meeting at right angles or independent
random variables. In programming languages, orthogonality refers to the property of being able to combine
various language features systematically. According to the way the features are combined, we can
distinguish three kinds of orthogonality: compositional, sort, and number orthogonality.

Compositional orthogonality: If one member of the set of features S1 can be combined with one member

of the set of features S2, then all members of S1 can be combined with all members of S2, as shown in Figure

1.4.

14

Figure 1.4. Compositional orthogonality.

For example, assume that S1 is the set of different kinds of declarations: (1) plain, (2) initializing, and (3)

constant. For example

(1) type x i ; (2) type x i = 5 ; (3) cons t type x i = 5 ;

Set S2 is data types: boolean, int, float, array.

If the language is compositionally orthogonal, then we can freely combine these two sets of features in all
possible ways:

• Plain boolean, plain int, plain float, plain array

(1) boolean b; (2) int i; (3) float f; (4) array a[];

• Initializing boolean, initializing int, initializing float, and initializing array

(1) boolean b = true;

(2) int i 5;

(3) float f = 4.5;

(4) array a [3] = { 4' 6, 3};

• Constant boolean, constant int, constant float, constant array

(1) const boolean b = true;

(2) const int i = 5;

(3) const float f = 7.5;

(4) const array a[3] = {1, 2, 8} ;

Sort orthogonality: If one member of the set of features S1 can be combined with one member of the set

of features S2, then this member of S1 can be combined with all members of S2, as shown in Figure 1.5.

For example, if we know that int i is allowed (the combination plain-int), then, according to sort
orthogonality, plain boolean, plain int, plain float, and plain array will be allowed, that is:

(1) boolean b;

(2) int i;

(3) float f;

(4) array a [] ;

imply

Figure 1.5. Sort orthogonality 1.

However, since sort orthogonality does not allow other members of S1 to combine with members of S2, we

cannot conclude that initializing and constant declarations can be applied to the data types in S2.

15

The sort orthogonality can be viewed from the other side. If one member of the set S1 can be combined with

one member of the set S2, then all members in S1 can be combined with the members of S2, as shown in

Figure 1.6.

For example, if the plain declaration can be combined with the int type, we conclude that the plain,
initializing, and constant declarations can be applied to the int type.

imply

Figure 1.6. Sort orthogonality 2.

For example, ifwe know that const array a is allowed (the combination constant and array), according
to the sort orthogonality, then plain array, initializing array, and constant array will be allowed:

(1) array a [] ;

(2) array a[3] = {1, 2, 8};

(3) const array a[3] = {1, 2, 8};

However, since the sort orthogonality does not allow other members of S2 to combine with members of S1 ,

we cannot conclude that boolean, int, and float type can be declared in three different ways.

Number orthogonality: If one member of the set of features Sis allowed, then zero or multiple features of
S are allowed. For example, if you can declare a variable in a particular place (in many languages, e.g., C++
and Java, you can put declarations anywhere in the program), you should be able to put zero (no declaration)
or multiple declarations in that place. In a class definition, if you can define one member, you should be
allowed to define zero or multiple members.

1.4 Program processing and preprocessing

This section discusses what preparations need to be done before the computer hardware can actually execute
the programs written in a high-level programming language. Typical techniques used to do the preparation
work are preprocessing, interpretation, and compilation.

1.4.1 Interpretation and compilation

Interpretation of a program is the direct execution of one statement at a time sequentially by the interpreter.
Compilation, on the other hand, first translates all the statements of a program into assembly language
code or machine code before any statement is executed. The compiler does not execute the program, and
we need a separate loader to load the program to the execution environment (hardware or a runtime system
that simulates hardware). A compiler allows program modules to be compiled separately. A linker can be
used to combine the machine codes that were separately compiled into one machine code program before
we load the program to the execution environment. Figure 1. 7 shows typical processing phases of programs
using compilation.

16

source object
loader program code

(binary)

�a other simulator
compiler or

binaries hardware

Figure 1. 7. Compilation-based program processing.

The advantage of interpretation is that a separate program-processing phase (compilation) is saved in the
program development cycle. This feature allows the program to be updated without stopping the system.
The interpreter can immediately and accurately locate any errors. However, the execution speed with
interpretation is slower than the execution of machine code after the compilation. It is also more difficult
to interpret programs written in very high-level languages.

To make use of the advantages of both compilation and interpretation, Java offers a combined solution to
program processing. As shown in Figure 1.8, Java source program is first translated by a compiler into an
assembly language-like intermediate code, called bytecode. The bytecode is then interpreted by an
interpreter called Java Virtual Machine (NM). The advantage of using the intermediate code is that the
compiler will be independent of the machine on which the program is executed. Thus, only a single compiler
needs to be written for all Java programs running on any machine. Another advantage is that the bytecode
is a low-level language that can be interpreted easily. It thus makes NM small enough to be integrated into
an Internet browser. In other words, Java bytecode programs can be transferred over the Internet and
executed in the client's browser. This ability makes Java the dominant language for Internet application
development and implementation.

source
program

Java program javac bytecode

virtual
machine

Java virtual machine
Interpreter on a
specific machine

Figure 1.8. Java processing environment.

simulator
or

hardware

Microsoft's Visual Studio extends the Java environment's compilation and interpretation processing into a
two-step compilation process. As shown in Figure 1.9, in the first compilation step, a high-level language
program is compiled to a low-level language called intermediate language (IL). The IL is similar in
appearance to an assembly language. Programs in IL are managed and executed by the common language
runtime (CLR). Similar to Java's bytecode, the purpose of IL is to make the CLR independent of the high­
level programming languages. Compared to NM, CLR has a richer type system, which makes it possible
to support many different programming languages rather than one language only, as on JVM. On the basis
of the type system, nearly any programming language, say X, can be easily integrated into the system. All
we need to do is to write a compiler that translates the programs of the X language into the IL. Before an
IL program can be executed, it must be translated to the machine code (instructions) of the processor on
which the programs are executing. The translationjob is done by a Just-In-Time (JIT) compiler embedded
in CLR. The JIT compiler uses a strategy of compile-when-used, and it dynamically allocates blocks of

17

memory for internal data structures when each method is first called. In other words, JIT compilation lies
between the complete compilation and statement-by-statement interpretation.

Unlike the Java environment, Visual Studio is language agnostic. Although C# is considered its flagship,
Visual Studio is not designed for a specific language. Developers are open to use the common libraries and
functionality of the environment while coding their high-level application in the language of their choice.

1.4.2 Preprocessing: macro and inlining

Many programming languages a1low programmers to write macros or inline procedures that preserve the
structure and readability of programs while retaining the efficiency. The purpose of program
preprocessing is to support macros and inline procedures. The preprocessing phase is prior to the code
translation to the assembly or machine code. The preprocessor is normally a part of the compiler.

languages

C# compiler

CIC++ compiler

F# compiler

Scheme compiler

Prolog compiler

X compiler

compilers

IL

Intermediate

Language

Just-In-Time

compiler

JIT

in

CLR

Common

Language

Runtime

simulator

or

hardware

Figure 1.9. Microsoft's Visual Studio. Net programming environment.

In different programming languages, macros can be defined in different ways. In Scheme, we can introduce
a macro by simply adding a keyword macro in the head of a procedure definition. In CIC++, a macro is
introduced by a construct, which is different from a procedure definition:

#define name body

The #define construct associates the code in the body part to the identifier name part. The body can be a
simple expression or rather complex procedure-like code, where parameter passing is allowed. For example:

#define MAXVAL 100

#define QUADFN(a,b) a*a + b*b - 2*a*b

x = MAXVAL + QUADFN(5,16);

y MAXVAL - QUADFN(l,3);

The last two statements will be replaced by the macro preprocessor as:

X = 100 + 5*5 + 16*16 - 2*5*16;

y 100 - l*l + 3*3 - 2*1*3;

where MAXVAL is replaced by 100 and QUADFN (5, 16) is replaced by a*a + b*b - 2*a*b, with

parameter passing: a is given the value 5 and b is given the value 16, and a is given the value 1 and b is
given the value 3, in the two statements, respectively.

18

Macros are more efficient than procedure calls because the body part of the macro is copied into the
statement where the macro is called. No control flow change is necessary. This process is also called
inlining. On the other hand, if the macro is implemented as a procedure/function:

#define MAXVAL 100

int QUADFN(a,b) {return a*a + b*b - 2*a*b;}

x = MAXVAL + QUADFN(5,16);

y MAXVAL - QUADFN(l,3);

a procedure will cause a control flow change that usually needs to save the processor environment, including
registers and the program counter (return address), onto the stack. This process sometimes is called out­

lining. Obviously, inlining is much more efficient than out-lining.

Macro preprocessing is a very simple and straightforward substitution of the macro body for the macro
name. It is the programmer's responsibility to make sure that such a simple substitution will produce the
correct code. A slight overlook could lead to a programming error. For example, if we want to define a
macro to obtain the absolute value of a variable, we write the following macro in C:

#define abs (a) ((a<0) ? -a : a)

where the C statement ((a<0) ? -a : a) returns -a if a<0; otherwise, it returns a.

This macro definition of the absolute-value function looks correct, but it is not. For example, if we call the
macro in the following statement:

j = abs(2+5); II we expect 7 to be assigned to j.

The statement does produce a correct result. However, if we call the macro in the following statement:

j = abs(2-5); II we expect +3 to be assigned to j.

The statement will produce an incorrect result. The reason is that the macro-processor will replace
"abs (2-5)" by " ((a<0) ? -a : a)" and then replace the parameter "a" by "2-5", resulting in the
statement:

j = ((2-5 < 0) ? -2-5 : 2-5) ;

Since (2-5 < o) is true, this statement will produce the result of -2-5 = -7, which is assigned to the

variable j. Obviously, this result is incorrect, because we expect + 3 to be assigned to j.

Examine a further example. If we write a statement:

j = abs(-2-5);

The macro-processor will replace "abs (-2-5) " by" ((a<0) ? -a

"a" by "-2-5," resulting in the statement:

j = ((-2-5 < 0) ? --2-5 : -2-5);

a)" and then replace the parameter

The "--2" in the preprocessed statement may result in a compiler error.

The problem in this abs (a) macro is that we expect the expression that replaces a to be a unit. All
operations within the unit should be done before -a is performed. This is the case when we write a function
or procedure. However, the macro replacement does not guarantee this order of operation, and the
programmer must understand the difference. A correct version of the abs (a) macro is:

#define abs (a) ((a<0) ? -(a) : a) II correct version of abs(a) macro

19

Putting the "a" in a pair of parentheses guarantees that the operations within a are completed before -a is
performed.

Owing to the nature of simple textual replacement, a macro may cause side effects. A side effect is an
unexpected or unwanted modification of a state. When we use a global variable to pass values between the
caller procedure and the called procedure, a modification of the global variable in the called procedure is a
side effect.

Next, examine the side effect in the correctly defined abs (a) macro discussed earlier. Ifwe call the macro
in the following code:

i 3;

j = abs (++i); // we expect 4 to be assigned to j.

According to the way a macro is preprocessed, the following code will be produced by the macro-processor:

i 3;

j = ((++i < 0) ? -(++i) : ++i);

When the second statement is executed, variable i will be incremented twice. According to the definition
of the expression ++ i, variable i will be incremented every time before i is accessed. There is another
similar expression in CIC++: i++, which increments variable i every time after i is accessed. Similarly,

CIC++ have expressions --i and i--, etc.

In the earlier statement, variable i will be accessed twice: first when we assess (++ i < 0) , and then the
second ++ i will be accessed after the condition is assessed as false. As a result, number 5, instead of 4, will
be assigned to the variable j.

Macros can be used to bring (inline) a piece of assembly language code into a high-level language program.
For example:

#define PORTIO asm \

\

asm mov al, 2 \

asm mov dx, 0xD007 \

asm out al, dx \

The back slash \ means that there is no line break when performing macro replacement. When we make a
macro call to PORTIO in the program, this macro call will be replaced by:

_asm { asm mov al, 2 _asm mov dx, 0xD007 _asm out al, dx}

where _asm is the CIC++ keyword for assembly instructions. If the compiler is translating the program
into assembly code, nothing needs to be done with a line that starts with _asm. If the compiler is translating
the program into machine code, the compiler will call the assembler to translate this line into machine code.

For the execution of macros, different runtimes (execution engines) may process the translated code
indifferent order. As an example, we consider the following code, which has two pairs of functions and
macros.

/* Side effect, Macro versus Function */

#include <stdio.h>

#pragma warning(disable : 4996) // comment out if not in Visual Studio

#define macl(a,b) a*a + b*b - 2*a*b

20

#define mac2(a,b) a*a*a + b*b*b - 2*a*b

int funcl(int a, int b) return (a*a + b*b - 2 * a*b); }

int func2(int a, int b)

main() {

return (a*a*a + b*b*b - 2 * a*b);

int a, b, i, j, fncout, macout;

printf("Please enter two integers\n");

scanf ("%d%d", &a, &b);

i = a;

j = b;

fncout = funcl(++i, ++j);

printf("i = %d\tj = %d\n", i, j);

i = a;

j = b;

macout = macl(++i, ++j);

printf("i = %d\tj = %d\n", i, j);

printf("fncoutl = %d\tmacoutl = %d\n\n", fncout, macout);

i = a;

j = b;

fncout = func2(++i, ++j);

printf("i = %d\tj = %d\n", i, j);

i = a;

j = b;

macout = mac2(++i, ++j);

printf("i = %d\tj = %d\n", i, j);

printf("fncout2 = %d\tmacout2 = %d\n", fncout, macout);

Each of the pairs, (macl , funcl) and (mac2, func2), is supposed to implement the same functionality and
give the same output. Ifwe run the code on Visual Studio 2013, the outputs are as follows:

Please enter two integers

5

6

i = 6 j 7

i = 8 j 9

fncoutl 1 macoutl 1

i = 6 j = 7

i = 9 j = 10

fncout2 475 macout2 = 1549

How are these outputs generated? We will manually trace the execution as follows. After the macro
replacement, the two macro calls will be replaced by the following statements, respectively:

macout = macl(++i, ++j);➔

macout = mac2(++i, ++j);➔

macout = ++i*++i + ++j*++j - 2*++i*++j;

macout = ++i *++i *++i + ++j *++j *++j - 2 *++i *++j;

21

In Visual Studio, the order of execution is to apply to all the unary operations (++) first, in the order of their
appearances, before doing any arithmetic calculations at all.

For funcl and macl, the calculations are done as follows, respectively:

funcl: 6*6 + 7*7 - 2*6*7 36 + 49 - 84 = 1

macl: 8*8 + 9*9 - 2*8*9 = 64 + 81 - 144 = 1

In this example, funcl and macl happen to have generated the same result. This is pure coincidence. For
func2 and mac2, the calculations are done as follows, respectively, which generated different results:

funcl: 6*6*6 + 7*7*7 - 2*6*7 = 216 + 343 - 84 475

macl: 9*9*9 + 10*10*10 - 2*9*10 = 729 + 1000 - 180 = 1549

Now, we run the same code on GNU GCC. The following results are generated:

5

6

i = 6 j 7

i = 8 j 9

fncoutl 1 macoutl -31

i = 6 j = 7

i = 9 j = 10

fncout2 475 macout2 = 788

As can be observed, the function implementations generate the same results as that generated on Visual
Studio. However, the outputs of the macros on GCC are completely different from that on Visual Studio.
The reason is that GCC uses a different order of evaluations. Now we explain how macoutl = -31 and
macout2 = 788 are generated.

GCC calculates the unary operations for the operands of each operator in pair and makes the same variable
in the operation to have the same value.

For macl : macout = ++i *++i + ++j *++j - 2*++i *++j; the macro is evaluated as follows:

macl: 7*7 + 8*8 - (2*8)*9 = 49 + 64 - 144 = -31

where the value of the first pair of variables ++i is 7 and the value of the second pair of variables ++i is 8.
Then, 2 and ++i will form a pair, resulting (2 * 8), and its result will form a pair with the last ++i, which
obtains a value 9.

For mac2: macout = ++i*++i*++i + ++j*++j*++j - 2*++i*++j; the macro is evaluated as follows:

macl: (7*7)*8 + (8*8)*9 - (2*9)*10 = 392 + 576 - 180 = 788

Notice that the macros generate different values when there exist side effects, for example, when ++i is
used as the input. If no side effects are involved, the macros should generate the same results as their
function implementations, and macros should generate the same results running different execution
environments.

This discussion shows that macros are similar to, and yet different from, procedures and functions, and that
both writing macros (ensuring correctness) and using macros (understanding the possible side effects) can
be difficult and challenging. Can we write and use macros (obtain better efficiency) exactly in the same
way as we write and use procedures and functions (obtain the same simplicity)? Efforts have been made to
do that, and we are making good progress. As mentioned earlier, in Scheme, we can write macros in the

22

same way in which we write procedures. However, we still cannot use macros in exactly the same way we
use procedures. This issue will be discussed in the chapter on Scheme programming (Chapter 4). In C++,
"inline" procedures/functions are allowed. All that is needed is to add a keyword -inline (in C) and inline
(in C++) in front of the definition of a procedure/function. For example:

_inline int sum(int i, int j) {

return i + j;

However, the inline procedure/function is slightly different from a macro. A macro call will always be
replaced by the body of the macro definition in the preprocessing stage. The macro-processor will not check
the syntax and semantics of the definition. On the other hand, for an inline procedure/function call, the
compiler (not the preprocessor) will try to replace the call by its body. There are two possibilities: If the
procedure/function is simple enough, the compiler can do the replacement and can guarantee the correctness
of the replacement; that is, the inlined code must work exactly in the same way as an ordinary
procedure/function call. If the body of the procedure is too complicated (e.g., uses many variables and
complex expressions), the compiler will not perform inlining. The inline procedure in this case will work
like an ordinary procedure.

Java has a similar mechanism called final method. If a method is declared final, it cannot be overridden in
a subclass. This is because a call to a final method may have been replaced by its body during compilation,
and thus late binding cannot associate the call with a method redefined in a subclass.

*1.5 Program development

This section briefly introduces the main steps of the program development process, including requirement,
specification, design, implementation, testing, proof, and related techniques. Understanding these steps and
the related techniques involved is extremely important. However, a more detailed discussion of these topics
is beyond the scope of this text.

1.5.1 Program development process

Development of a program normally goes through the following process:

Requirement is an informal description, from the user's point of view, of the functionality of the program
to be developed. Normally, requirements are informal. For example, "I want the program to sort all numbers
in an increasing order" is an informal requirement.

Specification is a formal or semiformal description of the requirement from the developer's point of view.
The specification describes what needs to be done at the functionality level. A formal specification is
defined by a set of preconditions on the inputs and a set of post conditions on the outputs. For example, a
formal specification of "sorting numbers" can be defined as follows:

Input: (x1, X2, ... , Xn)

Preconditions on inputs:

(\:/Xi) (Xi E I) , where I is the set of all integer numbers.

Output: (Xi], Xi2, ... , Xin)

Postconditions on outputs:

23

(Vxij)(Vxik) ((XijE I/\ XijE I Aj < k) ➔ Xij::; Xik),

The design step translates what needs to be done (functional specification) into how to do it (procedural
steps or algorithm). For example, devising a sorting algorithm to meet the specification belongs to the
design step. An algorithm is usually written in a pseudo language that does not have the mechanical details
of a programming language. A pseudo language focuses on clear and accurate communication with
humans, instead of humans and machines.

The implementation step actualizes or instantiates the design step using a real programming language.
Writing programs in real programming languages is the main topic of this text and will be discussed in
much more detail in the following chapters.

The testing and correctness proof step tries to show that the implementation does the work defined in the
design step or in the specification step. The development process has to return to the implementation or
design steps if the implementation does not meet the requirements of the design or the specification.

The verification and validation step tries to show that the implementation meets the specification or the
user's requirements. The development has to return to design or specification steps if necessary.

In fact, numerous refined phases and iterations within and between these steps can occur during the entire
development cycle.

1.5.2 Program testing

In this and the next subsections, we present more details of the testing and correctness proof step, and
related techniques in the program development process.

A test case is a set of inputs to a program and the expected outputs that the program will produce if the
program is correct and the set of inputs is applied to the program. We also use the input case to refer to the
input part of a test case. Program testing is the process of executing a program by applying predesigned
test cases with the intention of finding programming errors in a given environment. Testing is related to the
environment. For example, assume that your program runs correctly on a GNU GCC CIC++ environment.
If you move your program to a Visual Studio CIC++ environment, you need to retest your program because
the environment has been changed. Debugging is the process of finding the locations and the causes of
errors and fixing them.

If a program has a limited number of possible inputs, we could choose all possible inputs as the test cases
to test the program. This approach is called exhaustive testing. If the outputs are correct for all test cases,
we have proved the program's correctness.

However, in many cases, a program can take an unlimited number of inputs, or the number of test cases is
too big to conduct exhaustive testing. We have two ways to deal with the problem: use incomplete testing
or use a formal method to prove the program's correctness.

If incomplete testing is used, the question is how we should choose (generate) the limited subset of test
cases. Functional testing and structural testing are two major approaches used to generate incomplete test
cases. In functional testing, we try to generate a subset of test cases that can cover (test) all functions or
subfunctions of the program under test. Functional testing is also called black-box testing because we
generate test cases without looking into the structure or source code of the program under test. In structural

testing, we try to generate a subset of test cases that can cover (test) particular structures of the program
under test. For example, we can try to cover all:

• statements in the program,
• branches of the control flow, or

24

• paths from the program's entry point to the program's exit point.

Structural testing is also called glass-box testing or white-box testing because it requires detailed
knowledge of the control structure and the source code of the program under test.

Both functional testing and structural testing can be considered so-called partition testing. Partition testing

tries to divide the input domain of the program under test into different groups so that the inputs in the same
group are equivalent in terms of their testing capacity. For example, ifwe are conducting functional testing,
we can consider all inputs that will cause the same subfunction to be executed as a group. On the other
hand, if we are conducting structural testing, we can consider all inputs that will cause the same program
path to be executed as a group. Then, we choose:

• one or several test cases from each group of inputs, and
• one or several inputs on the boundaries between the groups

to test the program. For example, if an integer input is partitioned into two groups--negative and
nonnegative-then zero is on the boundary and must be chosen as an input case. Obviously, if the partition
is done properly, partition testing will have a fair coverage of all parts of the program under test.

Program testing is a topic that can take an entire semester to study. We do not attempt to teach the complete
program testing theory and practice in this section. In the rest of the section, we will use a simple example
to illustrate some of the important concepts related to the topic.

Example: The gcd function in the following C program is supposed to find the greatest common divisor of
two nonnegative integers.

#include <stdio.h>

int gcd (int nO, int mO) { // nO >= 0 and mO >= 0 and (nO * 0 or mO * 0)

int n, m;

n = nO;

m = mO;

while (n != 0 && n != m) { // (n * 0) AND (n * m)

if (n < m)

m = m - n;

else

n = n - m;

return m;

main () {

int i, j, k;

scanf("%d\n%d", &i, &j);

k = gcd(i, j);

printf("%d\n", k);

// input integers i and j from the keyboard

// call function gcd

// output the greatest common divisor found

First, we "randomly" pick out the following test cases to test the program.

Input (i, j)

Output k

Expected Output k

25

Actual

(6, 9)

(10, 5)

(0, 4)

(5, 7)

(8, 29)

3

5

4

1

1

3

5

4

1

1

We find that the actual output equals the expected output in all these test cases. Now the question is, is this
program correct?

As we know, testing can never prove the correctness of a program unless all possible test cases have been
used to test the program. However, a set of test cases that can cover different parts of the program can
certainly increase the confidence of the correctness of the program.

Now we apply structural testing to generate systematically a better set oftest cases. We assume that we aim

at covering all the branches in the gcd function. To make sure we cover all branches, we first draw the
function's flowchart, as shown in Figure 1.10. A flowchart is an abstraction of a program that outlines the
control flows of the program in a graphic form. In the flowchart in Figure 1.10, each branch is marked with
a circled number.

no ®

no

no

m = m - n; n = n - m; return m;

® ®
return

Figure 1.10. Flowchart of gcd function.

To obtain a good coverage of the branches, we need to analyze the features of the input domain of the
program. For the given program, the input domain has the following features:

• The program takes two nonnegative integers as input. The boundary value is O.

• The branches of the program are controlled by the relative values of a pair of integers. We should
consider choosing equal and unequal pairs of numbers.

• The great common divisors are related to the divisibility of integers, or the prime and nonprime
numbers. We should choose some prime numbers and some nonprime numbers.

On the basis of the analysis, we can choose, for example, these values for both i and j: boundary value 0,
two prime numbers 2 and 3, and two nonprime numbers 9 and 10.

The combination of the two inputs generates the following input cases:

26

(0, 0) II This case is not allowed according to the precondition.

(0, 2), (0, 3), (0, 9), (0, 10)

(2, 0), (2 2), (2, 3), (2, 9), (2, 10)

(3, 0), (3, 2), (3, 3), (3, 9), (3, 10)

(9, 0), (9, 2), (9, 3), (9, 9), (9, 10)

(10, 0), (10, 2), (10, 3), (10, 9), (10, 10)

We can apply all these test cases to test the program. We can also reduce the number of test cases by
partitioning the input cases into groups: two input cases belong to the same group if they cover the same
branches in the same order. Table 1.2 lists the groups, a representative from each group, the expected output
of the representative input case, and the branches covered by the groups.

Groups partitioned Representative Expected gcd output Branches covered

(0, 2),(0, 3),(0, 9),(0, 10) (0, 2) 2 CD®®>

(2 2),(3, 3), (9, 9),(10, 10) (2 2) 2 CD®CV®>

(2, 0),(3, 0), (9, 0),(10, 0) (2, 0) 2 CD®®@®

(2, 3),(2, 9), (3, 10), (9, 10) (2, 3) 1 CD®®©®@®®>

(2, 10), (3, 9) (2, 10) 2 CD®®©®CV®>

(3, 2),(9, 2), (10, 3),(10, 9) (3, 2) 1 CD®®@®©@®>

(9, 3), (10, 2) (9, 3) 3 CD®®CV@®®>

Table 1.2. Input case partitions and branch coverage.

If we choose the representative input from each group and the expected output as the test cases, we obtain
a test case set that can cover all the branches in the flowchart. Applying this set of test cases, we will find
that the input case (2, 0) will not be able to produce the expected output. In fact, a dead-looping situation
will occur. Thus, we successfully find that the program is incorrect.

1.5.3 Correctness proof

To prove the correctness of a program, we need to prove that, for all predefined inputs (inputs that meet
the preconditions), the program produces correct outputs (outputs that meet the postconditions).

Program proof consists of two steps: partial correctness and termination. A program is partially correct
if an input that satisfies the preconditions is applied to the program, and if the program terminates, the
output satisfies the postconditions. A program terminates if, for all inputs that meet the preconditions, the
program stops in finite execution steps. A program is totally correct (total correctness) if the program is
partially correct and the program terminates.

The idea of partial correctness proof is to prove that any input that meets the preconditions at the program
entry point will be processed, step by step through the statements between the entry point and the exit point,
and the postconditions will be satisfied at the exit point. Obviously, if there is no loop in the program, it is
not too hard to do the step-by-step proof. However, if there is a loop in the program, the step-by-step
approach will not work. In this case, we need to use the loop invariant technique to derive the condition to
be proved through the loop. A loop invariant is a condition that is true in each iteration of the loop. To
prove a condition is a loop invariant, we can use mathematical induction: We prove that the condition is
true when the control enters the loop for the first time (iteration 1). We assume that the condition is true at
iteration k, and prove that the condition will be true at the iteration k+ 1.

27

Finding the loop invariant that can lead to the postconditions is the most challenging task of the correctness
proof. You must have a deep understanding of the problem in order to define a proper loop invariant.

Proving the termination is easy if we design the loops following these guidelines. The loop variable:

• is an enumerable variable (e.g., an integer);
• has a lower bound (e.g., will be greater than or equal to zero);
• will strictly decrease. Strictly decrease means that the value of the loop variable must be strictly

less than the value of the variable in the previous iteration. The "<" relation is strict, while "s" is
not.

If you do not follow the guidelines, you may have trouble proving the termination of even a simple program.
In an exercise given at the end of the chapter, a very simple example is given where many inputs have been
tried, and the program always stops. However, so far, nobody can prove that the program terminates for all
inputs.

Now we will study a similar example that we used in the last section to illustrate the proof concepts that we
discussed here. The program is given in a pseudo language. Since we do not actually have to execute the
program, we do not have to give the program in a real programming language.

gcd (nO, mO)

II precondition: (n02 0 A m02 0) A (nO* 0 v mO* 0) A (nO, mo are integer)

n = nO;

m = mO;

while n * 0 do

II loop invariant: (n 2A m 2 0) A (n * 0 v m * 0) A

II max{u: uJn and uJm} = max{u: uJnO and uJmO}

if n $; m

then m = m - n

else swap (n, m)

output(m)

II postconditions: m = max{u: uJnO and uJmO}

To prove the partial correctness, we need to prove, for any integer pair (nO, mO) that meets the
preconditions, the loop invariant is true in every iteration of the loop. When the control completes all the
iterations of the loop and reaches the exit point of the program, the postconditions will be true. As discussed,
finding the loop invariant is the most difficult part. Now we are given the condition that should be a loop
invariant, and we only need to prove that the condition is indeed a loop invariant. The given condition is:

(n 2A m 2 0) A (n * 0 v m * 0) A

max{u: uln and ulm} = max{u: ulnO and uJmO}

We need to prove it is a loop invariant. We can use mathematical induction to prove it in the following
steps:

(1) Prove the condition is true at the iteration 1: it is obvious.

(2) Assume the condition is true at iteration k.

(3) Prove the condition is true at iteration k+ 1.

Since the conversion made in each iteration is:

28

gcd(n, m) ⇒ gcd(n, m - n), or

gcd(n, m) ⇒ gcd(m, n)

According to mathematical facts:

gcd(n, m) gcd(n, m - n), and

gcd(n, m) = gcd(m, n)

Thus, from iteration k to iteration k+ 1, the condition will remain to be true. Therefore, we have proved the
condition is a loop invariant.

We then need to prove that the loop invariant leads to the postconditions. It can be easily seen from the
program that if the loop invariant is true when the control leaves the loop, the postconditions will indeed
be true. Thus, we have proved the partial correctness of the program.

To prove that the program terminates, we can use the following facts:

(1) The loop variable is (n, m) . The loop variable is enumerable.

(2) If we consider the dictionary order, that is:

(n, m) > (n, m - n), if n :2: m // e.g. (3, 6) > (3, 3) in dictionary order

(n, m) > (m, n), if n > m. // (6, 3) > (3, 6) in dictionary order

we can see that there is a strictly decreasing order on the loop variable (n, m) based on the dictionary

order.

(3) There is a lower bound on the value that (n, m) can take, that is (O , O) •

Since the loop variable (n, m) is enumerable, it decreases strictly, and there is a lower bound (o, o);
the loop must terminate.

In an exercise given at the end of the chapter, a variation of the gcd program is suggested. Try to prove its
partial correctness and its termination.

1.6 Summary

In this chapter, we introduced in Section 1.1 the concepts of the four major programming paradigms:
imperative, object-oriented, functional, and logic. We looked at the impact of language features on the
performance of the programs written in the language. We briefly discussed the development of languages
and the relationships among different languages. We then discussed in Section 1.2 the structures of
programs at four levels: lexical, syntactic, contextual, and semantic. We illustrated our discussion on the
lexical and syntactic levels by introducing the BNF notation and syntax graph. We used BNF notation to
define the lexical and syntactic structures of a simple programming language. In Section 1.3, we studied
the important concepts in programming languages, including data types, type checking, type equivalence,
and type conversion. Orthogonality was used to examine the regularity and simplicity of programming
languages. Finally, in Section 1.4, we briefly discussed program processing via compilation, interpretation,
and a combination of the two techniques. The emphasis was on the macro and inline procedures/functions
in CIC++. We studied how to define and use macros, and what their strengths and weaknesses are when
compared to ordinary procedures/functions. Section 1.5 outlined the program development process and
discussed programming testing and proof techniques through examples.

29

1.7 Homework and programming exercises

1. Multiple Choice. Choose only one answer for each question. Choose the best answer if more than
one answer is acceptable.

1.1 Stored Program Concept (von Neumann machine) is one of the most fundamental concepts in

computer science. What programming paradigm most closely follows this concept?

□ imperative □ object-oriented □ functional □ logic

1.2 What computing paradigm can solve a problem by describing the requirements, without writing code

in a step-wise fashion to solve the problem.

□ imperative □ functional □ object-oriented □ logic

1.3 What computing paradigm enforces stateless (no variable allowed) programming?

□ imperative □ object-oriented □ functional □ service-oriented

1.4 What is a feature of object-oriented computing?

□ stateless □ state encapsulation □ platform-independent □ side-effect free

1.5 In contrast to Web 1.0, what is the key function of Web 2.0?

□ Web is the computing platform □ Web supports graphic display

□ Web supports semantic analysis □ Web is accessed over HTTP protocol

1.6 Because of hardware constraints, early programming languages emphasized

□ efficiency □ orthogonality □ reliability □ readability

1. 7 What factor is generally considered more important in modern programming language design?

□ readability □ writability □ efficiency □ None

1.8 The main idea of structured programming is to

□ reduce the types of control structures. □ increase the types of control structures.

□ make programs execute faster. □ use BNF to define the syntactic structure.

1.9 Implicit type conversion is commonly refer to as:

□ typing coercion casting paradigm

1.10 In the following pseudo code, which programming language allows the mixed use of data types?

int i = 1; char c = 'a'; II declaration and initialization
c = c + i; II execution of an assignment statement

□ Ada DC □ Java □ All of them

1.11 In the layers of programming language structure, which layer performs type checking?

□ lexical □ syntactic □ contextual □ semantic

1.12 How many different identifiers can the following BNF ruleset generate?

<char> : : = a I b I c I • • • I x I y I z

<identifier>

□ 0

<char> I <char> <identifier>

□ 1 □ 26

31

□ more than 26

1.13 Which of the following statement is correct if a language is strongly typed. Select all that apply.

□ Each variable in a program has a single type associated with it.

□ Variable type can be unknown at compilation time.

□ Type errors are always reported.

□ Coercion is automatically allowed.

1.14 Which command (construct) has a loop when expressed in syntax graphs?

□ if-else □ switch □ for □ while

1.15 The contextual structure of a programming language defines

□ how to form lexical units from characters.

□ how to put lexical units together to form statements.

□ the static semantics that will be checked by the compiler.

□ the dynamic semantics of programs under execution.

1.16 If a program contains an error that divides a number by zero at the execution time. This error is a

□ lexical error □ syntactic error □ contextual error □ semantic error

1.17 Interpretation is not efficient if

□ the source program is small.

□ the source program is written in an assembly language.

□ the difference between source and destination is small.

□ multi-module programming is used.

1.18 What is the difference between an inline function and a macro in C++?

□ There is no difference between them.

□ The inline functions are for Java only. There are no inline functions in C++.

□ Inlining is a suggestion to the compiler, while a macro definition will be enforced.

□ A macro definition is a suggestion to the compiler, while inlining will be enforced.

1.19 Macros-Processing takes place during which phase?

□ Editing □ Preprocessing □ Compilation □ Execution

1.20 Assume a function requires 20 lines of machine code and will be called 10 times in the main program.
You can choose to implement it using a function definition or a macro definition. Compared with the
function definition, macro definition will lead the compiler to generate, for the entire program,

□ a longer machine code but with shorter execution time.

□ shorter machine code but with longer execution time.

□ the same length of machine code, with shorter execution time.

□ the same length of machine code, with longer execution time.

2. Compare and contrast the four programming paradigms: imperative, object-oriented, functional, and
logic.

32

3. Use the library and Internet resources to compile a table of programming languages. The table must

include all programming languages mentioned in Section 1.1.3 on the development of programming

languages. The table should contain the following columns:

• name of the programming language,

• year the language was first announced,

• authors/inventors of the language,

• predecessor languages (e.g., C++ and Smalltalk are predecessors of Java),

• programming paradigms (e.g., Java belongs to imperative and object-oriented programming
paradigms).

The table should be sorted by year.

4. What is strong type checking, and what are its advantages? List a few languages that use nearly

strong type checking in their program compilations.

5. What is weak type checking, and what are its advantages? List a few languages that use weak type

checking in their program compilations.

6. What is orthogonality? What are the differences between compositional, sort, and number
orthogonality?

7. Compare and contrast a macro and an inline function in C++. Which one is more efficient in

execution time? Which one is easier for programmers to write?

8. Compare and contrast the C++ inline function and Java's final method.

9. Which type equivalence leads to strong type checking, structural equivalence, or name equivalence?
Explain your answer.

10. Use BNF notation to define a small programming language that includes the definition of variable,

math-operator, math-expression, condition-operator, condition-expression, assignment statement,

loop statement, switch statement, and a block of statements. A variable must start and end with a
letter (an unusual requirement). A single letter is a valid variable. The definition of the expression

must be able to handle nested expressions like 2 * (x + y) and 5 * ((u + v) * (x - y)) . The

language must include the following statements:

Assignment: It assigns (the value of) a variable or an expression to a variable. For example, x

2*(y + z).

Conditional: if-then and if-then-else. The condition in the statement can be simply defined

as an expression.

For-loop: For example, for (i = O; i <10; i=i+l) {a block ofstatements}

Switch: It must have an unlimited number of cases.

Statement: A statement can be an assignment, conditional, for-loop, or switch statement.

33

Block: One statement is a block. Zero or multiple statements in curly braces and separated by";" is

also a block, according to number orthogonality. For example, i=i + 2; is a block. { i=i + 2; for

(k=O; k<i; k=k+l) { i=i + 1; s=2 * i} } is also a block.

11. The following syntax graph defines the identifiers of a programming language, where alpha is the
set of characters "a" through "z" and "A" through "Z," digit is the set of characters "O" through "9,"

and underscore is the character" ."

alpha

digit

� underscore �

11.1 Which of the following strings can be accepted by the syntax graph (choose all correct answers)?

□ FooBar25 □ 2 SfooBar □ Foo&Bar □ 12.5 □ Foo2bar
- - -

11.2 Give the syntax graph that defines the identifiers always starting with a letter from the set alpha.

11.3 Give the BNP definition equivalent to the syntax graph of the question above.

12. Given the C program below, answer the following questions.

#define minl (x, y) ((x < y) ? x : y)

#define min 10

#include <stdio.h>

int min2(int x, int y) {

if (x < y) return x;

else return y;

main()

int a, b;

scanf("%d %d", &a, &b);

if (b < min)

printf("input out of range\n");

else

a = minl(a, b++);

printf("a = %d, b %d\n", a, b);

a = rnin2(a, b++);

printf("a = %d, b %d\n", a, b);

12.1 Give the exact C code of the statement "a

12.2 Give the exact C code of the statement "a

min 1 (a, b + +) ; " after macro processing.

min2 (a, b++) ; "after macro processing.

12 .3 Give the exact C code of the statement "if (b < min) " after macro processing.

12.4 Assume 60 and -30 are entered as inputs. What is the exact output of the program?

34

12.5 Assume 50 and 30 are entered as inputs. What is the exact output of the program?

13. Assume a programming language has two sets of features. S1 is the set of three different kinds of

declarations: (1) plain, (2) initializing, and (3) constant. That is,

(1) typex i; (2) typex i = 5; (3) const typex i = S;S2 is the set of data types: (a) bool,

(b) int, (c) float, (d) array, (e) char.

13 .1 If the language guarantees sort orthogonality 1 in Figure 1. 5, and we know that int i is allowed
(the combination plain-int), list the allowed combinations of the features of the two sets that can be

implied by the sort orthogonality.

13.2 If the language guarantees sort orthogonality in Figure 1.6, and we know that const array a is
allowed (the combination constant-array), list the allowed combinations of the features of the two
sets that can be implied by the sort orthogonality.

13.3 If the language guarantees compositional orthogonality, list the combinations of the two sets of
features allowed. Write a simple C program that exercises a11 the declarations in this question. Each
declared variable must be used at least once in the program. The purpose of the program is to test
whether C supports compositional orthogonality. The program thus does not have to be semantically
meaningful. Test the program on Visual Studio or GNU GCC, and submit a syntax error-free
program. Note: a variable can be declared only once. You must use different variable names in the
declarations.

14. Programming exercise.

You are given the following simple C program.

I* assignl.c is the file name of the program. *I

#include <stdio.h> II use C style IIO library function

main () { II main function

int i = 0, j = 0; II initialization

printf("Please enter a 5-digit integer \n");

scan£ ("%d", &i); I I input an integer

i = i % 10000; II modulo operation

printf("Please repeat the number you entered\n");

scan£ ("%d", &j); I I input an integer

j = j % 10000; II modulo operation

if (i == j) II conditional statement

printf("The number you entered is %d\n", i);

else II else branch

printf("The numbers you entered are different\n");

14.l Enter the program in a development environment (e.g., Visual C++ or GNU GCC). Save the file as
assignl .c. If you are not familiar with any programming environment, please read Section B.2 of
AppendixB.

14.2 Compile and execute the program.

35

14.3 Read Chapter 2, Section 2.1. Modify the given program. Change <stdio. h> to <iostream>.

Change print£ to cout and change scan£ to cin, etc. Save the file as assignl.cpp

14.4 Compile and execute the program.

15. Macros are available in most high-level programming languages. The body of a macro is simply used
to replace a macro call during the preprocessing stage in compilation. A macro introduces an "inline"
function that is normally more efficient than an "out-line" function. However, macros suffer from
side effects, unwanted or unexpected modifications of variables. Macros should be used cautiously.
The main purpose of the following program is to demonstrate the differences between a function and
a macro. Other purposes include learning different ways of writing comments, formatted input and
output, variable declaration and initialization, unary operation ++, macro definition/call, function
definition/call, if-then-else and loop structures, etc. Study the following program carefully and
answer the following questions.

/* The purpose of this program is to compare and contrast a function

to a macro. It shows the side effects of a macro and an incorrect

definition of a macro. The macros/functions absl(x), abs2(x), and

abs3(x) are supposed to return the absolute value of x. */

#define absl (a) ((a<0) ? -(a) : (a)) // macro definition

#define abs2 (a) ((a<0) ? -a : a) // macro definition

#include <stdio.h>

int abs3(int a) { // function definition

return ((a<0) ? -(a)
a;

(a)); II--> if(a < 0) return -a else return

main()

int il = 0, i2 = 0, i3 = 0, jl = 0, j2 0, j3 0;

printf("Please enter 3 integers\n");

scanf ("%d %d %d", &il, &i2, &i3);

while (il != 123) { // 123 is used as sentinel

jl absl(++il 2); // call a macro

j2 = abs2(++i2 - 2); II call a macro

j3 = abs3(++i3 - 2); II call a function

printf("jl = %ct, j2 = %d, j3 = %d\n", jl, j2, j3);

printf("Please enter 3 integers\n");

scanf("%d %d %d", &il, &i2, &i3);

15 .1 Desk check (manually trace) the program. What would be the outputs of the program when the
following sets of inputs are applied to the program?

il, i2, i3 9, 9, 9 jl, j2, j3 =

il, i2, i3 -5, -5, -5 jl, j2, j3 =

il, i2, i3 0, 0, 0 jl, j2, j3 =

15 .2 Enter the program into a programming environment and execute the program using the inputs given
in the previous question. What are the outputs of the program?

36

15 .3 Explain the side effects that occurred in the program.

15 .4 Which macro is incorrectly defined? Explain your answer.

15.5 Change the macros in the program into inline functions.

16. Consider the gcd program in Section 1.5.3. What would happen if the else-branch swap (n, m) in

the program were changed to n = n - m?

16.l Can we still prove the partial correctness?

16.2 Can we prove the termination?

16.3 Write a C program to implement the original algorithm and find a set of test cases to test your

program. The test case set must cover the branches of the program.

17. Given the following algorithm in pseudo code:

termination(n)II precondition:

while n * 1 do

if even(n)

then n nl2

else n 3n + 1

output(n) II postcondition:

1 7 .1 Prove the program is partially correct.

n is

n =

17 .2 Discuss whether this program terminates or not.

any integer

1

17.3 Write a C program to implement the algorithm, generate a set oftest cases that can cover all branches

of the program, and use the set of test cases to test the program.

37

Chapter 2

The Imperative Programming Languages,

CIC++

As we discussed in Chapter 1, the imperative paradigm manipulates named data in a fully specified, fully
controlled, and stepwise fashion. It focuses on how to do the job instead of what needs to be done.
Imperative programs are algorithmic in nature: do this, do that, and then repeat the operation n times, etc.,
similar to the instruction manuals of our home appliances. The coincidence between the imperative
paradigm and the algorithmic nature makes the imperative paradigm the most popular paradigm among all
possible different ways of writing programs. Another major strength of the imperative paradigm is its
resemblance to the native language of the computer (von Neumann machine), which makes it efficient to
translate and execute the high-level language programs in the imperative paradigm.

In this chapter, we study the imperative programming languages CIC++. We will focus more on C and the
non-object-oriented part ofC++. We will study about the object-oriented part of C++ in the next chapter.

By the end of this chapter, you should

• have a solid w1derstanding of the imperative paradigm;
• be able to apply the flow control structures of the C language to write programs;
• be able to explain the execution process of C programs on a computer;
• be able to write programs with complex control structures including conditional, loop structures,

function call, parameter passing, and recursive structures;
• be able to write programs with complex data types, including arrays, pointers, structures, and

collection of structures.

The chapter is organized as follows. Section 2.1 gives a quick tutorial on CIC++ so that students can start
their laboratory work on C. Section 2.2 introduces the CIC++ control structures. Sections 2.3, 2.4, and 2.5
discuss data declaration; scope and basic data types; constant, array, pointer, and string; and type
construction, including enumeration type, union type, structured types, and file types. Section 2.5 also
presents several large program examples using array, pointer, and structures. Section 2.6 studies the
functions, function calls, and parameter-passing mechanism in the C language. Section 2. 7 teaches a unique
technique of understanding recursion and writing recursive programs in four easy steps. Finally, Section
2. 8 briefly discusses how to construct C programs into modules and how to use modules to form larger
programs.

Imperative programming is largely based on computer architectures and assembly language programming.
We will briefly discuss the basic computer architectures as the background material in Appendix A.

39

2.1 Getting started with CIC++

In this section, we first introduce how to write your first CIC++ program and how to perform input and
output. You can develop your programs in different programming environments. Two of the most
frequently used programming environments-GNU GCC and MS Visual Studio-are introduced in
AppendixB.

2.1.1 Write your first CIC++ program

A C program consists of one or more functions. There are two kinds of functions:

• Built-in functions are prewritten and exist in libraries, for example, input and output functions
(printf, scanf in C and cin, cout in C++), mathematical functions (abs, sin, cos, sqrt);

• User defined functions are written by the programmers.

The main () is a function that all CIC++ programs must have, which is the entry point of the programs

(i.e., execution of all programs begin at the first statement of the main function). The shortest and simplest

CIC++ program is:

main () { }

Obviously, this program does nothing. Usually, main will have some statements and invoke other user
written or library functions to perform some job. For example:

/*My first program, file name hello.c

This program prints "hello world" on the screen */

#include <stdio.h> // the library functions in stdio will be used

main () {

printf("hello world\n");

The simple C program will call a library function print£ to print

hello world

The first two lines are comments. There are two ways to write comments in CIC++. Multi-line comments
can be quoted in a pair of/* and * /, while single line comments can simply follow double slashes / /.

The third line of the program specifies what library package will be used. In this program, we use print£

that is defined in the stdio package. In the print statement, "\n" is the "newline" control symbol that puts
this output on a line by itself. Another useful control symbol is "\t" for tab.

A CIC++ function may return a value (like a Pascal function) or return no value (like a Pascal procedure).
A function may take zero or a number of parameters. The following are several forms of the main function:

main () { ... } // acceptable for C

void main() { ... } // in C++, void must be used.

int main(){ ... return 0;}

void main (int argc, char *argv []) { ... }

The first and the second forms do not require the function to return a value. The third form requires the
function to return an integer value. The fourth form does not require a return value but requires parameter
inputs.

40

You may ask how do we or why do we need to pass values to the function that will be called before any
other statements or functions are executed? The answer is that the parameters to the main () function allow
it to take command line inputs, used to specify, for example, the name of a data file.

For example, if we compiled our first program hello. c into the executable code hello. exe, we can

execute the program by simply typing the name hello and the Enter key. However, if we have a program,

say, letterReader. exe that reads a text file, say, letter. txt, then we need to execute the program by
typing

letterReader letter.txt

where the file name "letter. txt" will be passed to the main function of the program letterReader as
a parameter.

Unlike Java, CIC++ functions and variables may exist outside any class or functions. These functions and

variables are global. Function main () is always a global function.

2.1.2 Basic input and output functions

Generally, input in C/C++ is reading from a file and output is writing to a file. The keyboard is considered
the standard input file and the monitor screen is considered the standard output file. The functions
get char () and put char (x) are the basic I/O library functions in C. get char () fetches one character
from the keyboard every time it is called, and returns that character as the value of the function. After it
reaches the last character of a file, it returns EO F (end of file), signifying the end of the file. On the other

hand, put char (x) prints one character (the character stored in variable x) on the screen every time it is
called. The following program reads a line of characters from the keyboard and prints it on the screen. Since
both standard input and output are in fact files, a similar program can be used to copy the contents of one
file to the other.

#include <stdio.h>

main () {

char c;

c = getchar () ;

II declare c as a character type variable

II input one character from the keyboard

while (c != '\n') II while c # the newline control symbol

put char (c) ; I I print to screen

c = getchar(); II input another character from the keyboard

To input a stream of characters, you can use f get:

char *fgets(char *tempstr, int n, FILE *inputfile)

where tempstr will point to the string read from the file pointer input file. Using this read operation,
we can read from any text file. For now, we will consider the input file is the keyboard and the file name is

stdin. The int variable n is the maximum number of characters (bytes) we want to read. The operation
£gets will stop when n-1 characters are read or a newline character is read. It returns null if nothing is

read into the tempstr. Otherwise, it will return the value of tempstr.

The following snippet of code shows an example of using fgets.

char tempstr[256];

char name[32]; char breed[32]; char owner[32];

41

printf(1
1Please enter the dog's info in the following format:\n");

printf("name:breed:owner\n 11
);

fgets(input, sizeof(tempstr), stdin); II read from keyboard

II change '\n' char attached to tempstr into null terminator

tempstr[strlen(tempstr) - 1] = '\0';

char* name = strtok (tempstr, ": ") ; I I parse to ": 11

char* breed strtok(NULL, ":"); II remove separator

char* breed

char* owner

strtok (tempstr, ": "); I I parse to ":"

strtok (NULL, ": "); I I remove separator

where strtok function is used to parse the string and extract the part of the string separated by a separator.

In this example, ":" is used. You can use other separators, such as " " or ",". In the program, function
call strtok (temps tr, ": ") will read temps tr upto ":",while strtok (NULL, 1

1
: ") will remove

" : " and return the remaining string.

2.1.3 Formatted input and output functions

The basic input/output functions allow us to read and write a character at a time. They cannot be used to
read and write other types of variables and cannot control the format of output.

The formatted input/output functions are printf and scanf that take an argument for formatting
information. The following program demonstrates a simple use of the functions.

I* The program takes a number from the keyboard, processes the number,

and then prints the result. *I

#include <stdio.h>

main () {

int i;

float n

II i is an integer type variable

5.0;// n is floating-point type and is initialized to 5.0

printf("Please enter an integer\n");

scan£ ("%d 11
, &i); / / An integer is expected from the keyboard

if (i > n)

n = n + i;

else

n = n - i;

print£ (1
1 i = %d\t n = %f\n", i, n); / l%d, \t, %£, and \n control formats

Assume a number 12 is entered when scanf is executed; the output of the program is

i = 12 n = 1 7. 0

Generally, the formats of scanf and printf are

scanf ("control sequence", &variablel, &variable2, ... &variablek);

printf ("control sequence", expressions);

In the scan f function, the ampersand " & " is the address-of operator that returns the address of the variable.

Using the address-of operator in the argument of a function (e.g., & i in s canf) enforces the parameter
passing by reference. Parameter-passing mechanisms will be explained in detail later in Section 2.6.

42

In the print£ function, the "expressions" is a list of expressions whose values are to be printed out.
Each expression is separated by a comma.

The control sequence includes constant strings to be printed (e.g., "i = "), and control symbols to be used
to convert the input/output from their numeric values that are stored in the computer to their character
format displayed. The control symbol "%ct" in the scan£ and print£ signifies that the next argument in
the argument list is to be interpreted as a decimal number and "% f" signifies that the next argument is to be
interpreted as a floating-point number. The other control characters include "% c" for characters and "% s"
for strings of characters. The symbols "\n" and"\ t" signify the "newline" that puts the next output on a
new line, and "tab" puts the next output after a tab. If there is no "newline" or "tab" at the end of the
first output line, successive calls to print£ (or putchar) will simply append the string or character to the
previous output line.

In C++, a different library package and different I/O functions are used. When you use C++ specific
features, your program name must have an extension . cpp for C++ program. If you use extension . c, your
program will be considered to be a C program only, and you will obtain compilation errors for C++ specific
features.

#include <iostream> // iostream is the C++ library I/0 package

using namespace std;

void main() {

int i, j, sum; // declaration

cout << "Enter an integer" << endl; // prompt for input

cin >> i; // read an integer and put in variable i

cout << "Enter an integer" << endl;

cin >> j; // read an integer and put in variable j

sum = i + j;

cout << "Sum is " << sum << endl; // print sum

A scenario of execution of the program is

Enter an integer

5

Enter an integer

7

Sum is 12

In the program, the functions cin and cout are C++ standard input and output functions. The function
endl is the C++ newline function corresponding to C's "\n".

In C-formatted I/O, a programmer must specify the type of variables to be printed. In C++, the types are
automatically recognized. This improvement simplifies printing statements in most cases. Unfortunately,
we still have situations where we have to tell the program what type of data to print.For example, a character
type in C/C++ is the same as an integer type. How do we tell the program that we want to print a character
or an integer? The solution is type casting. The following example shows how a character type variable c,
initialized to 68 and corresponding to the ASCII character "D," is printed as integer 68 and as character "D"
using pr int f and std: : cout, respectively. The ASCII table is given in Appendix C.

#include <iostream>

using namespace std;

43

void main(void) {

char c = 68;

printf ("c = %d", c);

printf("\tc = %c\n", c);

cout<<"c = "<< (int) c;

cout<<"\tc = "<<c<<endl;

The output of the program is

C = 68 C D

C = 68 c = D

Please note that C++ 1/0 package <iostream> contains all C-styled 110 functions and control symbols

like pr int f, scanf, "\n" and "\ t."

2.2 Control structures in CIC++

In this section, we briefly review the basic control structures in CIC++, which are similar in all imperative
programming languages. The topics we will discuss are

• operators and the order of evaluation,
• basic selection structures,
• multiple selection structures, and

• iteration structures.

Recursion structures are much more complex and will be discussed in Section 2.7 in detail. Chapters 4 and
5 will have even more discussion on this topic.

2.2.1 Operators and the order of evaluation

CIC++ provides a set of operators to allow programmers to write complex arithmetic and logical
expressions. The precedence and associativity of CIC++ operators affect the grouping and evaluation of
operands in expressions. Table 2.1 summarizes the precedence and associativity (the order in which the
operands are evaluated) of C operators, listing them in the order of precedence from highest to lowest.
Operators with higher precedence are evaluated first. If two operators have equal precedence (they appear
at the same level in the table), they are evaluated according to their associativity, either from right to left or
from left to right, as defined in the right column of the table.

Table B.4 in Appendix B gives a complete list of the CIC++ operators, their precedence, description, and
associativity.

Please note that CIC++ use a lazy evaluation policy; that is, an expression will be evaluated only if its
value is needed. For example, ifwe have an expression

(i == 0) & & j ++

the second operand, j + +, will be evaluated only if i

if i == o is false (0).

O is true (nonzero). Thus, j will not be incremented

44

Operators Type of operation

[] () . -> postfix + + and postfix - Expression

prefix ++ and prefix - sizeof & * + - ~ ! Unary
Typecasts Unary
* 1% Multiplicative
+- Additive
<<>> Logical bitwise shift
<><=>= Relational
==I= Equality
& Bitwise-AND
I\ Bitwise-exclusive-OR

I B itwise-inclusive-O R
&& Logical-AND

II Logical-OR
?: Conditional-expression
= *=I=%=+=-==<<=>>=&=/\= i= Assignment

' Sequential evaluation

Table 2.1. CIC++ operators and their precedence.

2.2.2 Basic selection structures (if-then-else and the conditional expression)

Associativity
Left to right

Right to left
Right to left
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Right to left
Right to left
Left to right

The basic selection structure in CIC++ is implemented by if-then and if-then-else statements,
which can be defined by the syntax graph in Figure 2.1.

if ➔ (➔ <condition> ➔) ➔ <blockl>-
��

>
�_

e

_

l

_

s

_

e

_

➔

_

<

_

b

_

l

_

o

_

c

_

k

_

2

_

>

_

-

_

-
___ t->-

Figure 2.1. Syntax graph for if-then-else in CIC++.

In the syntax graph, <blockl> and <block2> contain zero, one, or a block of statements. A block of
statements are enclosed within curly braces, which can contain zero, one, or multiple statements. Local
declaration can be given in each block. The <condition> is any expression that evaluates to integer value.
If the expression evaluates to O (considered "false"), <block2> will be executed, otherwise (any nonzero
value will be considered "true"), <blockl> will be executed. In the syntax graph, we omitted the arrow
before the keyword if. In C, there is no Boolean type, while in C++ a Boolean type is predefined.

The following example illustrates the use of conditional structure and logic and relational operators.
if (a == b && c <= d)

X = 0;
else {

X = 1;
y = 2;

45

The character sequence"&&" is a logical operator for AND. The character sequences"==" and"<=" are
called relational operators. A complete set of both arithmetic and logical operators is given in Table 2.1.

CIC++ also provides a ternary conditional operator "?:" to form a conditional expression. The
conditional operator takes three operands and performs a similar selection function as an if-then-else
statement. The general form of the conditional operator is given in Figure 2.2.

In the syntax graph below, <operandl> and <operand2> can be any expression that returns a value or a
simple assignment statement, in which case, the assigned value will be considered the return value of the
operand. When the conditional expression is executed, the <condition> is first tested. If it returns a
nonzero or true value, <operandl> will be evaluated; otherwise, <operand2> will be evaluated.

➔ (➔ <condition>➔ ? ➔ <operandl> ➔ : ➔<operand2> ➔) ➔; ➔
Figure 2.2. Syntax graph for the conditional operator in CIC++.

The following example illustrates different ways of using the conditional expression and their effects. A
conditional expression can be used as an expression in the right-hand side of an assignment statement or as
a stand-alone statement.

i = O; j = 0; II i = 0 and j = 0 represent false value
(.?

1. i=5 : i=9); II 9 will be assigned to i;

k (.?
J. i=5 : j=9); II 9 will be assigned to j and to k

i 1; j = 2 II i * 0 and j * 0 represent true value

(.?
1. i=5 : i =9); II 5 will be assigned to i;

k = (.?
J. j=5 : j=9); II 5 will be assigned to j and to k

2.2.3 Multiple selection structure (switch)

The basic selection statements select one out of two cases. If we have multiple choices, we need to use
nested if-then-else statements. For example:

if (ch == '+') x = a + b;

else if (ch '-') X

else if (ch --

I* f)
X

else if (ch -- I I I)
X

= a b;
= a * b;
= a I b;

else printf("invalid operator");

It is often more convenient in such situations to use a multiple selection statement switch, as defined in
Figure 2.3.

The case statements label different actions we want to execute. The loop in the definition signifies that we
can have any number of case statements (the number must be greater than or equal to one). The break
statements, which exit the switch construct if a case is satisfied, are optional (there is a bypass route). The
default case is performed if none of the other cases is satisfied. According to the definition, default is
optional (there is a bypass route). If default is not included and none of the cases match, no action will
be executed. For example, the following piece of code selects one of the four operations.

switch (ch) {

case '+': x = a + b; break;

46

case '-' · x = a - b; break;

case ' *': x = a * b; break;

case '/': x = a/ b; break;

default: printf("invalid operator");

switch ➔ <➔ <expression> ➔) ➔ {

case ➔ <value> ➔ ➔ <block>

default ➔ ➔ <block>

break ➔;

Figure 2.3. Syntax graph for switch in CIC++.

)

Including the break statements in the code is not an efficiency issue, as many people believe. What would

happen if any one of the four break statements is omitted? Examine the following program without the

break statements.

/* This C program demonstrates the switch statement without using breaks.

The program is tested on MS Visual C++ platform */

#include <stdio.h>

void main() {

char ch = '+';

int f, a= lO, b=20;

print£ ("ch = %c\n", ch);

switch (ch) {

case '+': f = a + b;

case '-' . f = a - b;

case I* I: f = a * b;

case I I': f = a I b;

printf("f %d\n",

printf("f %d\n",

print£ ("f %d\n",

printf("f %d\n",

default: printf("invalid operator\n");

ch = '-';

print£ ("ch = %c\n", ch);

switch (ch) {

case I+ I: f = a + b;

case '-': f = a b;

case I* I: f = a * b;

case I I I: f a I b;

printf("f %d\n",

printf("f %d\n",

printf("f %d\n",

printf("f %d\n",

default: printf("invalid operator\n");

ch = '*';

printf("ch %c\n", ch) ;

47

f) ;

f) ;

f) ;

f) ;

f) ;

f) ;

f) ;

f);

switch (ch) {

case '+':

case '-' .

case '*' .

case 'I':

default:

ch = 'I';

printf("ch =

switch (ch) {

ch =

case '+':

case '-' .

case '*' .

case 'I':

default:

'9-:,.' .
0 '

printf("ch =

switch (ch) {

case '+':

case ,_,:

case '*' .

case 'I':

default:

f = a + b; printf("f %d \n", f) ;

f = a - b; printf("f %d\n", f) ;

f = a * b; printf("f %d\n", f) ;

f = a I b; printf("f %d\n", f) ;

printf("invalid operator\n");

%c\n", ch);

f = a + b; printf("f %d\n", f) ;

f = a - b; printf("f %d\n", f) ;

f = a * b; printf("f %d\n", f) ;

f = a I b; printf("f %d\n", f) ;

printf("invalid operator\n");

%c\n", ch);

f = a + b; printf("f %d\n", f) ;

f = a - b; printf("f %d\n", f) ;

f = a * b; printf("f %d\n", f) ;

f = a I b; printf("f %d\n", f) ;

printf("invalid operator\n");

The switch statements in this program are all syntactically correct, but they do not implement the selection

at all. The omission of the break statements leads to the "fall through" execution of all the following cases
of statements. The output of the program is

ch = +

f 30

f -10

f 200

f 0

invalid operator

ch = -

f -10

f = 200

f = 0

invalid operator

ch = *

f 200

f = 0

48

invalid operator

ch = I

f = 0

invalid operator

ch = %

invalid operator

This rather "unexpected" output is due to the 'jump-table" implementation of switch statements at the
assembly language level as shown in Figure 2.4.

The variable ch will be compared with the label values stored in the jump-table. If a match is found, the
control will jump to the right address of the statement-table. Obviously, if no break statement appears at
the end of each case, the machine would continue to execute the next statement. In some languages (e.g.,
Pascal), the compiler automatically adds a break statement at the end of each case. The advantage is the
elimination of a possible error source and the drawback is that the programmer loses a bit of writability­
in a rare case, a programmer may want to execute all the following cases once a condition is met.

statement table
..... add f a b Ill""

print f

.... sub f a b jump-table Ill""

print f

ch EB ➔ + -
... mul f a b

I
Ill""'

- print f
* div f a b

I
Ill""

I print f

else ... default Ill""'

Figure 2.4. The assembly language level implementation of the switch statement.

2.2.4 Iteration structures (while, do-while, and for)

The basic looping structure in CIC++ is the while-loop. The syntax graph of a while-loop is given in Figure
2.5.

while ➔ (➔ <condition> ➔) ➔ <block> ➔

Figure 2.5 Syntax graph for while statement in CIC++.

In a while-loop, the block of statements, called loop body, will execute repeatedly as long as the

condition statement produces a true (nonzero) value. However, there is no looping in the syntax

definition. This is because there is only a semantic level looping for the while-statement, but no looping

at the syntactic level. This is also true for the for-loop. On the other hand, there is a looping structure in

the syntax graph of the switch statement, but there is no looping for the statement at the semantic level.
The following program counts the number of inputs that are greater than 90. The program stops when a
negative number is entered.

#include <stdio.h>

main () {

int i, c = O;

49

scanf("%d", &i);

while (i >= 0)

if (i > 90)

c++; // counting: same as c

scanf ("%d", &i);

C + 1;

A variation of the while-loop is the do-while-loop that tests the condition after the loop body has been

executed once. Using a do-while-loop, we need only one scanf statement for the example above:

#include <stdio.h>

main () {

int i, C = 0;

do {scanf("%d", &i);

if (i > 90)

c++;

while (i >= 0);

The for-loop can be considered a more compact form of the while-loop. It allows us to put the
initialization, condition-test, and increment parts of a loop in a single statement. The syntax graph of the

for-loop is given in Figure 2.6.

In the syntax graph, the <initialization> and <increment> can be single statements or multiple

statements separated by commas. The function of the for-loop is equivalent to the function of the

following code with a while-loop:

<initialization>

while(<condition>)

<block>

<increment>

for➔ (4 <initialization>4 ;4 <condition>4 ;4 <increment>4 >7

L <block> �

Figure 2.6. Syntax graph for the for statement in CIC++.

For example, the following program does a similar job as the program with a while-loop, except that the

program with a while-loop terminates if a negative number is entered, while the following program

terminates when exactly n num hers are entered.

main () {

int i, k, n = 10, c=0;

for (k=0; k<n; k++) {

scanf ("%d", &i);

if (i > 90)

50

c++;

All three components in the parentheses of a for-loop are optional. A for-loop with all three
components absent creates an infinite loop:

for(;;) <block>

In some programming languages (e.g., Pascal), the loop iteration variable k and the loop boundary variable

n may not be modified in the loop body, which means that the for-loop can only iterate a fixed number

of times. In CIC++, both variables can be modified and thus the for-loop can iterate a variable number of
times. However, it is not a good programming practice to modify any of the two variables even if we are

allowed to modify them. Normally, we use a while-loop or a do-while-loop if the number ofiterations

is unknown and we use a for-loop if the number of iterations is fixed.

2.3 Data and basic data types in CIC++

The key concepts of data in a programming language include:

• Type: What values and operations are allowed on the type of data?
• Location: Where is data stored in memory?
• Address/Reference (of location in memory): How do we find the location where a particular piece

of data is stored?
• Name: How do we conveniently access the locations of data?
• Value: What is stored in a memory location?
• Scope (visibility and lifetime): Where and when is a piece of data visible or accessible?

We will look at these concepts while studying basic data types in CIC++.

2.3.1 Declaration of variables and functions

At machine level, all data and instructions are stored in memory locations in sequences of binary bits:
001011. It is up to the programmer to manage and interpret the bit patterns.

A variable declaration in a high-level programming language binds a name to a location in memory and
describes the attributes of the value in the location, so that the programmer can use the name to access the
memory location and the value stored in the location conveniently. A variable declaration describes the
following attributes of the value:

• type
• scope
• qualifier (modifiability, e.g., constant)
• variable initialization

Typically, the compiler allocates memory for the variable and binds the name to that location when a
variable is declared.

The general form of variable declaration in CIC++ is

qualifier typename variable names separated by a comma.

51

For example:

int i = 0, j, k;

const double pi = 3.1415926;

float x = 3.0, y, z = 2.5;

The general form of function declaration in CIC++ is

typename function_name(typename name, ... , typename name) {<body>}

The t ypename before the function_ name specifies the return-value type of the function. The list in the
parentheses is the list of parameters with their types. If a function does not return a value, we can either

write the type name void or write nothing. Similarly, if a function does not have any parameter, we can
either write void or nothing in the parentheses.

For example, the following program declares a max () function that returns the larger value between two

parameter values. The function is called twice in the main () function.

#include <stdio.h>

int max(int first, int second) {

if (first > second)
return first;

else return second;

void main (void) II main

int i = 7, j = 5, k = 12, f;
f max(i, j) ; II function

f max (k, f) ; II call the

2.3.2 Scope rule

II function declaration

function

call

function again with different parameters

The scope rule of a C/C++ declaration: The scope of a variable is from its declaration to the end of the
block defined by a pair of curly braces. The idea of the scope rule is declare-before-use: any variables or
functions must be declared before they can be used. For example:

{

int height = 6; int width = 6;

int area = height*width;

II block ends

In this example, the variable area is initialized to height *width, which are declared just before the area
is declared. According to the scope rule, the declaration is correct. On the other hand, if we swap the order
of the first two lines

int area = height*width;

int height = 6; int width 6;

II block ends

52

we will have a compilation error complaining that height and width are not declared when their values
are used.

There is a subtle difference between the scope rules of an imperative language and a functional language.
In a functional language, the scope rule normally says that "the scope of a variable is within the block in
which the variable is declared/defined." Should the scope rule of CIC++ say that "the scope of a variable is
within the block in which the variable is declared," no compilation error would occur if the declaration of
variable area is placed before height and width.

The declare-before-use principle is simple to understand and use for variables, but may cause problems for
declarations of mutually recursive functions. For example, a function F calls function G and function G calls
function F. In this case, which function should be declared first?

There are two possible solutions to this dilemma:

Multi-scan compilation: The compiler scans the program multiple times. For example, in the first round
of scan, all names (variables and functions) are stored in a name table, and in the second round of scan,
binding between names and memory locations is made.

Forward declaration: Each function is declared in two steps: a forward declaration and a genuine
declaration. The forward declaration makes a name known in advance (before it is used) and thus needs to
specify only the return type, function name, parameter types, and parameter names (parameter names are
optional). In the following program segment, for example, function bar calls function foo and function
foo calls function bar. In such a case, we cannot satisfy the declare-before-use requirement without using
forward declaration.

void bar(float, char); II forward declaration to satisfy

int foo (void); II forward declare all functions

int foo (void) { II genuine declaration

bar(2.5, I+ I) ;
II call function bar()

void bar(float f, char c) { II genuine declaration

k foo (); II call function foo()

scope rule

Most CIC++ compilers today use the multi-scan technique and thus forward declaration is not necessary
for mutually recursive functions. However, forward declaration is still frequently used for two reasons:

• To make the program independent of the compiler
• Better readability: The forward declarations serve as an index to (overview of) all functions

2.3.3 Basic data types

C defines five basic data types, sometimes called value types. They are:

• Character (char)
• Integer (int)

53

• Floating-point (float)
• Double precision floating-point (double)
• Valueless (void)

C++ adds two more basic data types:

• Boolean (bool)
• Wide-character (wchar_t)

There is no Boolean type in C. The logic values are represented by integer: 0 for false and any other value
will be interpreted as true. The character type in C is based on the 7-bit ASCII code, which allows 128
characters. C++'s wide-character type is based on the 16-bit Unicode, which allows 216 = 65,536 characters.
Java's character type is also based on the Unicode.

Several of these basic types can be modified using one or more of these modifiers:
signed, unsigned, short, long, register

The type modifiers signed and unsigned explicitly specify that the integer type is signed and unsigned,
respectively, although by default an integer type without any modifier is signed. For a signed integer, a "1"
at the most significant bit indicates a negative number, while for an unsigned integer, no bit is used for the
sign and only nonnegative numbers can be represented. Thus a "1" at the most significant bit indicates a
large positive number. The type modifiers short and long indicate the data ranges of the integers of these
types. It is more efficient to specify a short integer if you know your integer will not be very large. The type
modifier register suggests to the compiler that the programmer wants to access the variable as fast as
possible. Obviously, a variable can be accessed in the fastest way if it is put in a register. Since a processor
has a very limited number of registers, you should use the register modifier sparingly. The register
modifier is normally used for variables that need to be accessed frequently in a short period of time, such
as loop variables. Please note that the register modifier is only a suggestion to the compiler. The compiler
will take it into consideration where it is possible. However, there is no guarantee that the compiler can
keep the variable in a register longer than the other variables.

Table 2.2 summarizes the basic data types available in CIC++. Since CIC++ can be implemented on
machines of different sizes (e.g., word length= 8, 16, 32, and 64), the number of bits used to implement a
particular data type can vary. However, the language requires that a minimum number of bits must be
guaranteed for each data type. The larger machines can use more bits to provide extra data range and/or
higher precision. The second and third columns of the table list the guaranteed minimum number of bits
and the minimum data range for each of the data types.

To find the exact size of each type on a particular machine, you can call the s i z e of function using the type
name as the parameter sizeof (type_name). For example:

printf("size of long type = %d\n", sizeof(long));

will print the "size of long type = 4" if the machine uses 4 bytes to store a long integer. Ifwe call
printf("bool-size = %d, true = %d, false = %d\n", sizeof(bool), true,
false) ;

The output would be
I bool-size = 1, true = 1, false = 0

which means C++ uses one byte to store a bool type variable, the internal value of true is 1 and the
internal value of fa 1 s e is O.

54

Type Minimum bits Minimum range

bool(C++ only) 1 true/false

char 8 from -127 to 127

signed char 8 from -127 to 127

unsigned char 8 from Oto 255

wchar _ t(C++ only) 16 from Oto 65 535

int 16 from -32 768 to 32 768

signed int 16 same as int

unsigned int 16 from Oto 65 535

short int 16 from -32 768 to 32 768

signed short int 16 same as short int

unsigned short int 16 same as unsigned int

long int 32 ±2 147 483 647

signed long int 32 same as long int

unsigned long int 32 from 0 to 4 294 967 295

float 32 6 decimal digits of precision

double 64 IO decimal digits of precision

Table 2.2. Basic data types in CIC++.

To see the relationship among the types, we can classify the data types into four categories: scalar, function,
aggregate, and valueless (void) types, as shown in Figure 2.7. The scalar types can be further divided into

pointer, arithmetic, and enumeration types. In the diagram, boldfaced words are keywords, and italic words

are optional keywords. Other names are generic terms. The basic data types we discuss in this section belong
to arithmetic types. Functions are considered a special data type. In the following sections, we will discuss
pointer, enumeration, and aggregated types.

Pointer

Data T e

Function

enum struct union

Figure 2. 7. Classification of data types.

55

2.4 Complex types

In the previous section, we discussed basic data types. In this section, we discuss more complex data types
including array, string as array of characters, pointer, constant, and enumeration.

2.4.1 Array

Array is a homogeneous collection of data elements that are stored in a consecutive block of memory
locations. At the assembly language level, we use the initial address of the block plus the offset (index) of
the element to access a particular element. At the high-level language level, we use the array variable name
and the index to access an array element. An array is declared by

typename variablename[length] = {vo, v1, v2, ... , V1ength-d;

The length and the initialization part, = {vo, v1, v2, ... , v1ength-d, are optional, which produces
four possible combinations:

1. typename variablename[length];

2. typename variablename(] = {vo, v1, v2, ... , V1ength-1};

3. typename variablename[];

4. typename variablename[length] = {vo, v1, v2, ... , V1ength-d;

The first two array declarations are correct and are most frequently used. In the first declaration, the array
variable and its length are declared. However, array elements are not initialized. In the second declaration,
the length of the array is implied by the number of elements in the initialization list.

The third array declaration will immediately cause a compilation error because the compiler needs to know
the size of the array to allocate the right amount of memory space for the array, and the size of the array is
missing in the declaration.

The fourth declaration is syntactically correct, but one can easily make a contextual error in using this
declaration! There are three possible cases when we use both explicit and implicit mechanisms to specify
the length of the array:

• If length = n (the number of elements given in the initialization list), no problem will occur.
However, this case is exactly the same as the second way of declaration.

• If length < n, a compilation (contextual) error will occur: there are not enough places to hold the
elements given in the list.

• If length > n, no compilation error will occur. The n elements in the initialization list will be put in
the first n places 0, 1, 2, ... , n-1. This is a case that is not covered by the first two ways of array
declaration. Maybe this is the only case where we really need to use the fourth way of array
declaration.

In the declaration of arrays, the length must be an integer value or a simple expression with integer
operations like 20+5-l. It cannot contain a variable, even if the variable has been initialized.

The following piece of code illustrates the different ways of array declaration.

void main() {

int a[3], sa, sb, sc, sd; II a is correctly declared without
initialization

int b[] = {2, 3, 9, 4};

int c[2]

int d[5]

{15, 14};

{15, 14, 18};

II b is correctly declared and initialized

II c is correct, but the length is unnecessary

II the first 3 elements of d are initialized

56

// incorrect: not enough places //int d1[2] = {15, 14, 18};

I I int e [];

a [OJ 20;

// incorrect: no length indication

// array index always starts from 0

a [1] = 30;

a[2] = 90;

sa sizeof(a); II number of bytes used by a is 12

sb sizeof (b); II number of bytes used by b is 16

SC sizeof(c); II number of bytes used by c is 8

sd sizeof (d); II number of bytes used by d is 20

printf("sa = %d\t sb %d\t sc = %d\t sd = %d\n", sa, sb, sc, sd);

printf ("d0 = %d\t dl %d\t d2 = %d\t d3 = %d\t d4 = %d\n",

d[0], d[l], d[2], d[3], d[4]);}

The output of the program is

sa 12 sb 16 sc

d0 = 15 dl = 14 d2

8 sd

18 d3

20

0 d4 = 0

The first four lines of comments explain the different ways of declaration. The two incorrect declarations
are commented out so that the program can be compiled and executed.

In the program, the system function sizeof returns the number of bytes (a byte = 8 bits) of the variable.
The program is compiled on a 3 2-bit PC, an integer type variable takes 3 2 bits (4 bytes). If you compile the

same program on a different machine (e.g., a 16-bit or 64-bit machine), the sizeof function will return
different integer sizes. In Table 2.2, the minimum integer size given is 16 bits (2 bytes). When you write
CIC++ programs, you need to handle the word length of the machine on which your program runs. You can

use the sizeof function to find the word length of your computer and use the sizeof function to make

your program independent of the word length. More uses of the sizeof function will be seen later in the
text.

In Java, array declaration is different: We can declare an array without indicating its size and later give the
size when we create the array object during the execution. This way of memory allocation is called dynamic

memory allocation. The array declaration we discussed in this section is based on the static memory

allocation by the compiler. However, CIC++ does provide the dynamic memory allocation mechanism for
array and other structured data types. This will be discussed in conjunction with the pointer type.

We can define an array of int, char, and float, etc. Can we have an array of arrays? The answer is
yes. C and C++ use array of arrays to represent multidimensional arrays. Array of arrays are declared and
initialized like this:

char mac[5] [7];

int ma i [2] [3] = { { 4 , 2 , 3 } , { 7 , 8 , 9 } } ;

Conceptually, array mai is stored in a matrix of 2 by 3, and its elements are accessed using the array name

and the two indices mai [i J [j J • Structurally, array mai is stored in a block of consecutive memory
locations like this:

The following program illustrates the use of multidimensional arrays. Please note that maxrow and

max column are defined as macros. The compiler would not accept the declaration of the

maze [maxrow] [maxcol umn+ 1 J if they were defined as constant variables by using "const."

57

#define maxrow 50

#define maxcolumn 100

#include <stdio.h>

//const int maxrow = 100, maxcolumn 100;

char ma[maxrow] [maxcolumn+l];

void main(void)

int i, j ;

for (i=0; i < maxrow; i++)

for (j = 0; j < maxcolumn + 1; j++)

ma [i] [j] = ' x ' ;

2.4.2 Pointer

Pointer type is the most challenging data type in CIC++. This is especially true for Java programmers.
Pointers provide programmers flexibility in accessing memory locations and modifying their values. On
the other hand, the flexibility can easily create incorrect programs due to lack of understanding of computer
organization and the relationships among different data types. This section will explain the principle of
pointer type and the correct ways of using pointer variables.

We start by exploring different aspects of a variable:

• Value: A variable will hold a single value or a set of values. For example, an integer variable holds
a single value and an array variable holds a set of values. A value can appear on the right-hand side
of an assignment statement only and thus is called an r-value (for right-hand-side value).

• Location: A variable will be associated with a location or a set of memory locations. The value of
a variable is stored in the location.

• Address: The address of a variable is a natural number directly associated with a memory location
by the hardware. The address provides a direct way for programmers to access (read or write) a
memory location or variable. The address refers to the literal number and thus is also an r-value.

• Name: The name of a variable is a mnemonic symbol that provides a convenient way for
programmers to access a memory location or variable. A name is associated with a memory location
(or translated into the address of the location) by the compiler. Some languages only use names to
access memory locations (e.g., Java). Some languages allow using both names and addresses to
access memory locations (e.g., CIC++). A variable name can appear in the left-hand side and right­
hand side of an assignment statement and is called I-value (for left-hand-side value). A variable
name has two faces: If it is used on the left-hand side of an assignment, it refers to the memory
location. If it is used on the right-hand side of an assignment, it refers to the value stored in the
memory location.

We can use an analogy to understand these aspects. Consider the soccer teams attending the World Cup.
Each team consists of a number of members, corresponding to the set of values stored in a variable. Each
team member will stay in a location (i.e., a hotel room). Each location will have a unique address (i.e., street
address of the hotel plus room number). The team and each team member can be accessed by the address.
In computer memory, the set of values related to a variable is normally stored in a consecutive block of
memory locations, and thus, we can use the initial address of the block to access the values starting at that
address. The hotel and rooms may also have names. If the context (scope) is clear, we can also use the name
of the hotel and the name of a room to access a team member staying in the room. Read Appendix A,
Section A.2 for a more detailed example.

58

Why do we need the name if we have the address of a memory location? Humans are better at reading,
understanding, and remembering names than long tedious numbers.

Why do we need addresses in high-level language programming ifwe have names? The reasons are twofold.
First, every memory location in a computer has an address, but not every memory location has a name. We
can use addresses to access unnamed variables. Second, memory addresses are numbers and can be
manipulated. For example, we can easily increment the address of the current location to obtain the address
of the next location, or compare the two addresses to determine which address is smaller. As a result, it is
more powerful and more flexible to access memory locations using addresses than using names.

What is a pointer? To take advantage of names (easy for humans to remember) and addresses (flexible in
programming), we give a name to an address. The name of an address is a pointer. In other words, a pointer
variable contains the address of another variable. Like any variable, a pointer variable is an I-value and the
address stored in the pointer variable is an r-value.

Pointer as a data type is common in most imperative languages. The data range is the address space of the
programming language. In C/C++, the data range is the same as an unsigned integer. The operations on
pointers include the following:

• Assignment operation: An address value can be assigned to a pointer variable.
• Integer operations: A pointer variable can be operated like an integer variable.
• Referencing operation: Obtain the address of a variable x from the variable name: &x. The

ampersand & is called the address-of operator that returns the address value of the variable it

precedes. For example, if integer xis allocated at memory address = 2000, then &x will return 2000.
Please note that & x returns the address value, not a pointer variable containing that address value,

and thus &xis an r-value and can never appear on the left-hand side of an assignment statement.
• Dereferencing operation: To access the variable pointed to by a pointer variable y, we can use the

dereferencing operator* y. In other words, the dereferencing operator * creates a new name for the

variable pointed to by the pointer variable y. Please note that *y is a new name of the variable
pointed to by the pointer variable that * proceeds. * y is an]-value and can appear on both sides of
an assignment statement.

Although CIC++ has a pointer type, there is no type name for pointers. A pointer is declared by the type to
which it points. For example:

int i = 137, *j;

j = &i;

Variable i is an integer and j is a pointer variable pointing to the integer variable i or * j, which becomes

an alias (another name) of the variable. In other words, variable i has two names: i and *j. Assume that
the compiler has associated the variable i with the address 100, then the statement " j = & i; " will assign
100 to j.

A pointer variable is a variable too. We can define another pointer variable to point to a pointer variable.
For example, we can extend the above example to

int i = 137, *j = 0, **k = 1; II 1

j = &i; II 2

k= &j; II 3

*j = O; II 4

**k = 1; II 5

59

In the example, k is a pointer variable pointing to the pointer variable j. Assume the compiler has allocated
address 100 to i, 160 to j, and 120 to k. Initially, the three variables are independent, as shown in Figure
2.8. Please note the initializations"* j = o, * * k = 1;" at line 1 put the value 0 in variable j and put the
value 1 in variable k. This is different from the assignment statements at lines 4 and 5, where 0 and 1 are
put into the variable *j and **k, respectively! Here, you can see again that static semantics (context) and
dynamic semantics are different!

k j i

1201 1 160 1 o 100 1 137

Figure 2.8. Variables i, j, and k are declared as independent variables at line 1 of the code.

After the execution of the statement at line 2, the address of variable i is put in j, resulting in j pointing to
i (holding i's address); and after the execution of the statement at line 3, the address of variable j is put in
k, resulting in k pointing to j (holding j 's address). The new relationship between the three variables i, j,
and k after statements at lines 2 and 3 is illustrated in Figure 2.9.

Variable i is initialized to value 13 7. Using the address-of operator, statement "j = & i;" puts the address
of i, 100, into pointer variable j. Statement "k = & j ; " puts the address of j, 160, into pointer variable k.
On the other hand, we use the dereferencing operator to access the variable pointed to by the pointers. Since
k holds the address of j, we can use * k to access j, or * k becomes an alias of j. Similarly, since j holds
the address of i, we can use * j to access i, or * j becomes an alias of i. Furthermore, since * k is an alias
of j, * * k is an alias of i too, that is, i has two aliases: * j and * * k. However, since & i is an r-value (not a
variable), we cannot perform an & & i operation.

k = & &i is not valid! j is the name of a variable &i is a value
-.,,

.,,
'

'

'

... ,, ..

k = &j j &i i

12 o _I _1_6_0_=.1-----
1
-
6 0

•• , 1 o o -+----
1
......
0

...
0
_1 _1_3_7 __

k �k
--­

,..,,.;
.,,,.

.,..

,,

* k is a name of the variable whose

address is in k. * k is an alias of j

¥'

**k
,.

,,.

*j

** k is a name of the variable whose
address is in * k. * * k is an alias of * j

Figure 2.9. Relationship between variables and their pointers after lines 2 and 3.

At lines 4 and 5, both assignment statements modify variable i (* j and * * k are aliases of i), resulting in
the variable i being first changed from 13 7 to 0, and then changed from 0 to 1. If we compare the effect of
these two statements with the initialization at line 1, we can see that similar assignment operations in the
initialization part (contextual structure) and in the execution part (semantic structure) have different effects.

In this section, we discussed only the concept, the declaration, and the assignment of pointer variables. We
will discuss more applications of pointers in the following sections. It will make a lot more sense when we
combine pointer type with other complex data types.

2.4.3 String

There is no specific string type in C. Any array of characters can be considered a string, and thus a string
variable can be declared as an array of characters, for example:

60

char strl [] = { 'a', 'l',

char str2[] = "alpha";

char str3[5];

'p', 'h', 'a'};// initialized as an array

// initialized as a string

// without initialization

As can be seen from the example, there are two different ways to initialize an array of characters in the
declaration. The effect of these two initializations is slightly different.

The first declaration and initialization uses exactly the same method that declares and initializes any array,
and thus st r 1 is 100% an array of characters. On the other hand, we can also consider and use st r 1 as a
string. It has all the features that an array of characters should have. For example, we can modify the string
in the following code and print the modified string

char strl[] = {'a', 'l', 'p', 'h', 'a'};

for (i = 0; i < sizeof(strl); i++)

strl[i] += l; // same as strl[i] = strl[i]+l;

print£ ("%c", strl [i]);

printf("\t sizeof(strl) = %d\n", sizeof(strl));

As expected, the output of the code is

brnqib sizeof(strl) = 5

The second initialization indicates to the compiler that the array of characters is considered a string. In this
case, the compiler will append a null terminator (null character) '\ o' to the end of the string. In the ASCII

table, the code for the null character is o (seven binary zeros). Please notice that the code for the digit 'O'
is 48. Appending the null character to the end of a string increases the size of the string by one, as shown
in the following code.

char str2[] = "alpha";

for (i = 0; i < sizeof(str2); i++) {

str2 [i] += l;

print£ ("%c", str2 [i]);

printf("\t sizeof(str2) %d\n", sizeof(str2));

The output of the code is:

brnqib sizeof(str2) = 6 // '\0'is not a printable character

To have the same effect, one can use the following initialization to append the ' \ O' to the end of the string:

char str4 [] = { 'a' ' '1' ' 'p' ' 'h' ' 'a' ' '\ 0' } ;

As we discussed in the array section, we can specify the size in the declaration. If the size of the array is
specified and the size is smaller than "string_length+ 1," the'\ O' character and possibly some characters of
the string cannot be stored in the variable. This is called truncated initialization. For example:

char str5[5] "alpha";

char str6[4] = "alpha";

In this example, the null terminator '\0' will not be stored in str5; furthermore, the last "a" and the null

terminator are not stored in str6. Figure 2.10 shows the memory map and initialization of strl through
str6.

61

strl H l Ip Hal str2 H l Ip lh I a H str3 I I I I I I I
size = 5 size = 6 size = 5

str4 H l lpHaH str5 lalllpHal str6 I a I l Ip I h I
size 6 size = 5 size = 4

Figure 2.10. Memory allocation and initialization of six strings.

A number of string functions have been defined in the string package <string. h>and related library
packages. A list of useful string and character manipulation functions is given in Table 2.3.

Having introduced the string functions, we can use the strlen (str) to replace the sizeof (str) in the
previous example. In fact, si zeof (str) worked in that example because each character takes exactly one
byte and s i z eo f (s tr) returns the number of bytes. The program would not work if we had used the
wchar_t (two bytes per character) type instead. However, strlen (str) will work in both cases. Another
difference, sizeof will include the byte used to store the null terminator '\O', while strlen does not.

Notice that some environment, such as Visual Studio, implemented a new set of string library functions
with an extended name, such as strcpy _ s (strl, str2) and strcmp _ s (strl, str2). These
functions added security features to prevent code attacks at the instruction level, such as the return-oriented
programming (ROP) attacks. An ROP attack combines code sequences in library functions to create
malicious functions by changing the return address of function calls. This kind of attack does not need to
inject malicious code into a system; instead, it modifies the return addresses on system stack.

So far, we have discussed the string as an array of characters. A string can also be defined by a pointer to a
character or, more accurately, a pointer to the first character of a string. For example, the declaration

char *p = "hello, ", *q = "world", *s;

declares three pointer variables p, q, and s, each pointing to a character type variable. Pointer variables p
and q are initialized to values that point to a string, while s is not initialized. Now the question is, what is
the difference between the array-based strings and the pointer-based strings?

62

Library Function Description Example

stdlib.h atoi(str) Convert a numeric string into an atoi("356") returns 356
integer as an integer

i toa(i, str, base) Convert an integer i to a string itoa(356, str, 10)

using the specified base and link results m pointer str

the result to pointer str pointing to string "3 5 6".

stdio.h getc(stdin) Read a character from keyboard ch= getc(stdin);

gets(str) Read a string from keyboard gets(s);

strcpy(str, s);

putc(ch, stdout) Print a character onto screen ch= 'a';

putc(ch, stdout);

string.h strcat(str 1, str2) Concatenate str2 to the end of strl strcat (str, "hello world");

strncat(strl, str2, n) Concatenate the first n characters strcat (str, "hello world", 3);
(substring) of str2 to the end of str 1

strcmp(strl, str2) Return 0 if strl -- str2, if (strcmp(s 1, s2))

Return <O if strl < str2, y = x+l;

Return >O if strl > str2,

strncmp(strl, str2, n) Same as strcmp, except only if (strncmp(sl, s2, 3))
compare the first n characters y = x+l;

stricmp(strl, str2) Same as strcmp, except letter if (stricmp(sl, s2))
comparisons are case insensitive y=x+l;

strcpy(str 1, str2) Copy str2 into str 1 strcpy(str, "hello world");

strlen(str) Return the length of str L = strlen(str);

ctype.h tolower(ch) Return the lowercase equivalent tolower('D') returns 'd'

toupper(ch) Return the uppercase equivalent toupper('b') returns 'B'

Table 2.3. Useful library functions for string and character manipulation.

We can examine the fo11owing example to see in detail the differences and similarities between array-based
strings and pointer-based strings.

#include <stdio.h>

#include <string.h>

void main (void) {

char pl[]= " hello", ql[] = " this is an array-string", s1[6];

char *p2 = "Hi", *q2 = " this is a pointer-string", *s2=0;

char *temp;

I I s 1 = pl; // Array name cannot be a 1-value

I Isl = " hi"; / / Array name cannot be a 1-value

strcpy(sl, pl); // We must use string-copy function

printf(" sl = %s\t len-sl %d\n", sl, strlen(sl));

strcpy(sl, ql);

printf(" sl = %s\t len-sl %d\n", sl, strlen(sl));

63

//1

//2

//3

//4

//5

//6

//7

//8

//9

printf("sl = %s\t size-sl = %d\n", sl, sizeof(sl));

for (temp = sl; temp < sl+strlen(sl); temp++)

*temp += 1;

printf("sl = %s\n", s1);

for (temp = &s1[0]; temp <&sl[O] + strlen(s1); temp++)

*temp -= 1;

print£ ("sl = %s\n", s1);

// strcpy(s2, p2);

s2 = q2;

print£ ("s2 = %s\t len-s2 = %d\n", s2, strlen(s2));

printf ("s2 = %s\t size-s2 = %d\n", s2, sizeof (s2));

for (temp = s2; temp < s2+strlen(s2); temp++) {

// *temp += 1;

strcpy(sl, q2);

for (temp = s1; temp < sl+strlen(sl); temp++)

*temp += 1;

printf("sl = %s\t len-s1 = %d\n", sl, strlen(sl));

//10

//11

//12

//13

//14

//15

//16

//17

//18

//19

//20

//21

//22

//23

//24

//25

//26

All incorrect statements are commented out so that the program can be compiled and executed. The output
of the program is

sl

sl

sl

sl

hello

this is an array-string

this is an array-string

uijt!jt!bo!bssbz.tusjoh

s1 this is an array-string

s2 this is a pointer-string

len-sl = 5

len-s1 = 23

size-sl = 6

len-s2 = 24

s2 this is a pointer-string size-s2 = 4

s1 uijt!jt!b!qpjoufs.tusjohlen-s1 = 24

Now we explain each statement in the program.

Statement 1 declares three array-based strings pl, ql, and sl. Variables pl and ql are initialized to a string

while s 1 is not initialized.

Statement 2 declares three pointer variables p2, q2, and s2, each pointing to a character type variable.

Variables p2 and q2 are initialized to values pointing to a string while s 2 is not initialized.

Statement 3 declares a pointer variable "temp," to be used as a temporary pointer variable.

Statement 4 tries to assign the string variable pl to string variable sl. A compilation error occurs, because

s 1 is in fact an array name. We cannot assign anything to an array name. We can assign a value only to an

element of an array (e.g., "s 1 [OJ = 'a';" is a valid assignment).

Statement 5 tries to assign a string literal (value) to sl. For the same reason stated above, the statement
causes a compilation error.

64

The correct way to assign a string variable or a string literal to an array-based string is to use the library

function st r cp y (s 1 , p 1) . In statement 6, string p 1 is copied into string s 1 correctly and printed correctly
in statement 7.

Statement 8 copies ql into s 1. String s 1 and its length st r l en (s 1) are correctly printed in statement 9

(see output of the program). Please note that the length of sl is declared to be 6. How can the program put
24 characters in 6 places? This is in fact a semantic error that the compiler does not check. The runtime

system could handle the error by checking the sizes and lengths of the two arrays in strcpy and prevent a
longer array to be string-copied into a shorter array. However, these kinds of checks will slow down the
execution of the program, and the designers of C decided to leave the responsibility to the programmers!
As a programmer, you should know the lengths of the two arrays. If you really do not, you can always use
the strlen function to find the lengths; for example, you can use the following statement to replace
statement 6:

if (sizeof(sl) >= strlen(pl)) strcpy(sl, pl); else printf("error\n");

We still have not answered the question of how to put 24 characters in 6 places. What has happened is that
the 18 extra characters are appended to the 6 declared memory locations, as shown in Figure 2.11.

Before copy sll+l+l+I
length = 5, size = 6

After copy

length = 23, size = 6

Figure 2.11. A strcpy operation may illegally use more space than what is declared.

Before we perform the strcpy, s 1 contains 5 characters and the size of s 1 is 6, as specified in the

declaration. After we have performed the strcpy, a 23-character string is copied to the memory location

starting from address s 1. Obviously, the string goes beyond the limit of the size of s 1. That is why we can

still print the string s 1 with all characters, because the print f function starts from s 1 and stops when the

character ' \ O ' is detected.

The problem is that the use of memory beyond the declared boundary is unknown to the compiler and the

runtime system. Please note that in the output of print-statement 10, the size of s 1 is still 6, even if a 23-

character long string has been copied into s 1. There are three possibilities:

(1) The locations are not allocated to any variable and you are lucky;

(2) The locations are allocated to other variables and you have overwritten the values of those variables;

(3) The locations are allocated to other variables and your values will be overwritten later.

In cases (2) and (3), your program may crash or, even worse, still behave normally but produce incorrect
results that go undetected and cause much more damaging consequences. We explained in Chapter 1 that
CIC++ use weak type checking. As you can see here, CIC++ are also weak in runtime checking, which
leaves a huge responsibility entrusted to the programmers.

Now we continue to discuss the example. In statement 11, "temp = sl;" means to assign the address of

s 1 (or the address of the first element s 1 [OJ) to a pointer variable temp. Note that we use &x to obtain the
address of a simple variable x, and we simply use the array name s 1 to obtain the address of an array s 1

65

(or the address of the first element of the array). In some C compilers, you can use either & s 1 or s 1 to
obtain the address of array s 1. However, in C++ , you can use the array name only to obtain the address of
the array: Please also note that "temp = s 1 ; " is same as "temp = & s 1 [OJ ; " because s 1 [o J is a simple
variable of character type, not an array (see the use in statement 14). In the next part of the for-loop, we use

"temp < sl+strlen(s1) ;" to test if the value (address) of temp is less than the initial address of s1
plus the length of s 1. And then we increment temp in the next part.

In statement 12, we do "*temp += 1; ", which means we increment the value pointed to by the pointer
variable temp. The statement is the same as " (*temp)++;", but not the same as"* (temp++) ; ", which
increments the pointer value, instead of the pointed value. Please note that "*temp++;" is the same as

"* (temp++) ; ", because the unary operators* and++ operate at the same precedence level. However, they
associate from RIGHT to LEFT! Therefore, in "*temp++;", temp associates with++ before*, and hence

"*(temp++);" gets evaluated as "*temp++;".

Statement 13 will print the string in which every character is changed to the next character in the ASCII
code. For example, s is changed tot, his changed to i, i is changed to j, etc.

Statement 14 is equivalent to statement 11, and statement 12 is equivalent to statement 13 in structure, and
it reverses (decrypts) the encryption in statement 12. Statement 16 prints the decrypted string that is same
as the string before encryption.

We have discussed array-based strings so far, and now we turn to discuss pointer-based strings.

In statement 17, we try to do what we did in statement 6: string-copy p2 to s2. However, the attempt will
cause a compilation error. Thus, we commented the statement out so that we can continue with the other
statements. The reason for this compilation error is that s 2 is a pointer variable and there is no memory
allocated for a string. In the declaration in line 2, "char . . . * s2=0;" means that s2 is declared as a
pointer variable to char and the pointer is initialized to O. It does not mean that the pointer is initialized to
the address of the string "O." However, should we use "char . . . * s2=" O"; ", it does mean that the
pointer is initialized to the address of string "O."

In statement 18, we assign q2 to s2. We assign the value of q2 (a pointer value) to pointer s2. Both pointers
point to the same string. Here only pointer manipulation is involved. No string duplication is performed, as
shown in Figure 2.12.

s2
before

-----+() null

q
2 _I -+H+l l+I 1a1 H+l+l+l-l+l+H+I

size = 4 length = 24, size = 6

Figure 2.12. Both pointers q2 and s 2 point to the same string.

Statement 19 prints the string pointed to by s 2 and its length. Statement 20 does not print the size of the
string; instead, it prints the size of the pointer variable, which is 4 bytes (same as the size of an integer).

Statement 21 is similar to statements 11 and 14. Statement 22 tries to modify the character pointed to by
temp, as we did in statements 12 and 15. However, we will have a runtime error. In CIC++, if a string is

66

assigned to a pointer-based string variable, the string is a string literal and cannot be modified. If we try to
modify it, we will encounter a runtime error. Thus, we commented out this statement so that we can continue
to compile other statements.

Although we cannot modify a string initialized as a pointer-based string, we can modify the string if it is
copied into an array. Statement 23 copies pointer-based string q2 into sl and then we can modify the string
in s 1 in statements 24 and 25. Statement 26 prints the modified string.

Through this example, we explained the following aspects of a string in CIC++.

• We can use the array of characters to declare a string variable and initialize the string variable to a
string literal. We can access (read and write) the characters in the string as array elements. We can
assign the initial address of the array (string) to a pointer variable and use this pointer to access
(read and write) the characters in the string.

• We can declare a string variable using a pointer to character type and initialize the string to a string
literal. We can read the characters in the string, but we cannot modify the characters.

• We can copy a pointer-based string into an array and we can modify the characters in the array.

A multidimensional array is stored in memory as a sequence of its elements or a one-dimensional array and
can be processed easily using a pointer. We start with an example of 2-D array of characters.

#include <stdio.h>

void main(void) {

char *p = 0, ma[2] [4]; // declare a 2x4 array of characters

ma [0] [0] = ' C ' ; ma [0] [1] ' a ' ; ma [0] [2] ' r ' ; ma [0] [3] ' B ' ;

ma [1] [0] = ' i ' ; ma [1] [1] = ' k ' ; ma [1] [2] = ' e ' ; ma [1] [3] = ' \ 0 ' ;

p = &ma [0] [0] ;

while (*p != 0)

printf ("%c", *p);

*p = *p+l;

p++;

print£ ("\n");

p = &ma [0] [0] ;

while (*p != 0) printf("%c", *p++);

In the example above, a 2-D array is declared and initialized. We use pointer variable p to parse through
each element, adding 1 to each element. The characters before the addition and after the addition are printed
and the output of the program is shown in the screenshot.

We can further define 3-D arrays. The code below defines a 2-D array of strings. As a string is an array of
characters, the array is in fact a 3-D array of characters.

As we initialize the 2-D array using string values, the null terminator is appended to the end of each string.

To print these strings, we use character print, and thus use the 3-D array element ma [i J [j J [k] to print

each character. We use ma [i] [j J [k] !=' \0' as the termination condition of the inner-most for-loop.

Another option is to use the string length operation strlen () in the condition for the inner-most for-loop:
for (k=0; k < strlen(ma[i] [j]); k++).

67

#include <stdio.h>

void main() {

char *ma[2] [4] = {{"Car", "Bike", "Boat", "Plane"},

{"Horse", "Cow", "Dog", "Cat"}};

int i=0, j=0, k=0;

for (i=0; i<2; i++) {

for (j=0; j<4; j++)

for (k=0; ma[i] [j] [k] !='\0'; k++)

printf ("%c", ma [i] [j] [k]);

printf ("\n");

printf("\n");

We can also use pointer operations to access the 3-D array, in which we obtain the address of each string

through the operation char *p = ma [i] [j] , and then print each string, as shown in the following code.

#include <stdio.h>

void main() {

char *ma[2] [4] = {{"Car", "Bike", "Boat", "Plane"},

{"Horse", "Cow", "Dog", "Cat"}};

int i = 0, j = 0, k = 0;

char *p = 0;

for (i = 0; i<2; i++)

for (j = 0; j<4; j++)

p = ma[i][j]; II Do not use &ma[i][j]

printf("%s\n", p); II print string

while (*p!=0)

printf ("%c", *p++); I I print char

printf("\n");

printf ("\n");

Cal'
Cal'
Bike
Bike
Boat
Boat
Plane
Plane

Ho1 .. se
HoPse
CoH
CoH
Dog
Dog
Cat
Cat

Each word is printed twice, because we used two different ways to print the words. First, we printed the

entire word as a string, and then we printed each character of a string in a while loop. Notice that we use p

= ma [i] [j] ; instead of p = &ma [i] [j] ; because the element of the 2-D array is an array of character,

and the array name is the initial address of the array.

In C++, you can use all the C functions for string processing. However, a C++ library <string> is added to
allow string declaration and processing without explicitly declaring an array of characters. The following
code shows an example of using the string library.

#include <iostream>

#include <string> II This is the library for C++ string operations

using namespace std;

68

void main () {

string catl = "Max", cat2, temp; int length;

cout << "please enter a name for a cat" << endl;

cin >> cat2;

temp = catl; catl = cat2; cat2 = temp; II swap the names of catl & cat2

II One can also treat the string as an array of characters

length = catl.size();

cout << "The length of catl is: " <<length << endl;

for (int i = O; i < length; i++)

cout << catl[i];

cout << endl;

Notice that we do not need to use strcpy; instead, we can simply use assignment catl = cat2 to copy the
name in cat2 into catl . Instead of using strlen(catl) or sizeof catl , we use catl.size(), where catl is an
object, and .size() is a member function of the object. We will discuss more details about class and object
in the following chapter. The console output of the program is shown as follows:

2.4.4 Constants

please ente� a name for a cat
1,1olly·
The length of ,.:atl is: ;
1·1ol2y

Most programming languages allow constants to be declared. However, their implementations depend on
the language definition and the compiler technologies.

CIC++ provides three different ways to introduce constants:

• Macro: As discussed in Section 1.4.2, we can use a macro definition to introduce a constant. The
constant will substitute for the name at the preprocessing time. The advantage of a macro constant
is its efficiency. A small constant may fit in an immediate-type of a machine instruction and thus
save a memory access. The disadvantage is that the way a macro is defined is different from the
way a variable is declared and initialized (nonorthogonal).

• const qualifier: A constant is a "variable" that a program cannot modify. The advantage is that the
constant is declared and initialized in the same way as a variable is declared and initialized
(orthogonal). However, a memory access is needed in order to access the constant (slower). We
will discuss this kind of constant in this section.

• Enumeration constant: We can introduce constants by defining an enumeration type variable.
This topic will be discussed in the following section.

The simplest way to introduce constants in CIC++ is to use the qualifier const before the variable
declaration. For example:

const int min = 5, max = 100, pi = 3.14159265358979;

const char x = 'a', y = 's';

Constants increase the readability of programs. For example, the statement

if (x >= min and x <= max) x = x*x*pi;

is easier to understand than the statement

69

if (x >= 5 and x <= 100) x = x*x*3.14159265358979;

Constants also prevent us from making semantic errors. For example, if we try to modify a constant in a
statement like

max = max + 10;

the compiler will raise a compilation error because max is a constant.

A constant defined by qualifier cons t is actually a "constant variable" and thus it has a memory address.
We can apply the dereferencing operator on the constant. For example, the statement

temp = &max;

will put the memory address of constant max into the pointer variable temp.

In the following example, we demonstrate that we can even modify a constant variable ifwe can get around
the compiler's check.

void main() {

const int max 100;

int *temp; // temp is a pointer to an integer

//max = max + 10; // Compilation error would occur

temp = &max; // assign the address of max to temp

*temp = *temp + 10; // max is modified through pointer temp

printf("max = %d\n", max); // The output is: max = 110

Self-checking question: What would happen ifwe used "#define max 100" to define the constant? Will

the statement "temp = &max;" work?

Through this example, we can see that a constant defined by const qualifier is in fact a variable.

It has a memory location and memory address and we can use the & operator to obtain its address.

Compiler protection is used. A compilation error will occur if you try to modify a const variable. In some
versions of the compiler, a warning, instead of an error, will be given.

It can be modified if you can get around the compiler; for example, using an alias, you can modify a const
variable.

2.4.5 Enumeration type

We have discussed data types predefined in CIC++. Most modem programming languages also provide
mechanisms (type constructors) to allow programmers to define more complex data types. We will discuss
the enumeration type in this section and other complex data types in the following sections.

Enumeration type is usually used for variables that can take an enumerable ordered set of values. Each of
these values is given a name and we use the name to access the corresponding value. These names are
associated with integer values starting from 0. Each enumeration type is a distinct data type.

Enumeration types in CIC++ are defined using the keyword enum. For example:

#include <stdio.h>

typedef enum {

Sun, Mon, Tue, Wed, Thu, Fri, Sat

70

} Days;

Days x = Sun, y = Sat;
void main (void)

while (x <= y) {
printf("x = %d\t", x);

x++;

printf ("\n");

The names (constants) in the Days are not initialized and integers starting from O will be associated with
each name in the given order. Thus, the type definition above defines seven constants equivalent to:

const int Sun 0;
const int Mon 1;

const int Tue 2;
const int Wed 3;
const int Thu 4;

const int Fri 5;
const int Sat 6;

The output of the program is

Ix = 0 X = 1 X = 2 X = 3 X = 4 X = 5 X = 6

We can also initialize the names in the definition. For example, ifwe define Days as follows

typedef enum {
Sun = 1, Mon = 2, Tue = 3, Wed = 4, Thu = 5, Fri = 6, Sat = 7

} Days;

then the output of the program will be

lx = l x = 2 x = 3 x = 4 x = S x = 6 x = 7

We now show a longer example demonstrating the use of enumeration types.

#include <stdio.h>

#include <time.h>
typedef enum {

red, amber, green
} traffic_light;

void sleep(int wait);
main () {
traffic_light x = red;
printf("Red:\tStop!\n");
while (1)

switch (x) {
case amber:

sleep(l);
x = red;

// forward declaration

//sleep 1 second

71

printf("Red:\tStop!\n"); break;

case red:

sleep(6); //sleep 6 second

x = green;

printf("Green:\tGo>>>\n"); break;

case green:

sleep(12); //sleep 12 second

x = amber; printf("Amber:\tBrake ... \n");

void sleep(int wait) { // Sleep for a specified number of seconds.

clock_t goal; // clock t defined in <time.h>

goal = wait * CLOCKS PER SEC + clock();

while(goal > clock())

In this program, we defined an enumeration type called traffic_ light with three possible values: red,
amber, and green. We could use an int type instead. However, the program would be less readable and
prone to error. A snapshot of the output is given as follows.

Red: Stop!

Green: Go>>>

Amber: Brake ...

Red: Stop!

Green: Go>>>

Amber: Brake ...

In this example, the time function clock () in <time. h> is used to obtain the number ofclock cycles from
a given point. This function can be used to measure the time between any two points. For example, the
following piece of code can measure the time used by a function foo () .

cl = clock(); II time stamp 1

foo ();

c2 = clock(); // time stamp 2

interval = (double) (c2 - cl) / CLOCKS PER_SEC; // time difference

The time difference computed in this example is in seconds. The precision of this method is 0.001 second.

There is another time function time () that can be used to measure the time in seconds. The following code
shows the use of the time function and other related functions:

#include <stdio.h>

#include <time.h>

main () {

int n; time_t start, finish; double result, duration;

time(&start); // get the initial time

for(n = O; n < 900000000; n++)

72

result = 3.1415 * 2.23;

time(&finish); II get the end time

duration = difftime(finish, start); II compute difference

printf(" \nThe program takes %2.4f seconds\n" , duration);

2.5 Compound data types

In this section, we discuss compound data types that are composed of several data types, including structure,
union, array of structures, linked list of structures connected by pointers, and file types.

2.5.1 Structure types and paddings

A structure is created using the keyword struct. The general way to define a structure type is

struct type_name {

type fieldl;

type f ield2;

type fieldn;

struct variable_name;

For example:

struct stype

char ch;

int x;

U, V; II We can declare variables of the type here.

void main ()

struct stype s, t; II We can use the type to declare variables here too.

II The keyword struct must be used before type name.

Now we will study an example with a structure type.

struct Contact { II define a type that can hold a person's detail

char name [30] ;

long phone;

char email [30] ;

} ;

void main() {

struct Contact x, y, z;

strcpy(x.name, "Mike Smith");

x.phone = 9650022;

strcpy(x.email, " mike.smith@asu.edu");

strcpy(y.name, "Jane Miller");

y.phone = 9650055;

strcpy (y. email, "j ane. miller@asu.edu") ;

73

As you can see from the example, we use x. name notation to access the name field of the variable x. We
will see more examples of structures in the following sections, where we will combine the structure types
with the array and pointer types.

The processor reads integers and floats in words. If a structure contains an integer, a pointer, or a float, the
structure size must be aligned into multiples of 4 in a 32-bit computer and multiples of 8 in a 64-bit
computer. Consider a 32-bit computer. If a structure has a member of integer, pointer, or float, and a
member whole size is not a multiple of 4, padding is needed to align the data in memory. It may need
padding of one, two, or three bytes to pad one part of a structure. Consider the following snippet of code:

struct personnel {
char name[16];
int phone;
char address[24];
char gender;
II char CSmajor;
person;

II F or M

II y or N

printf("struct size = %d", sizeof person);

If you count the bytes, the struct variable person will need 45 bytes. However, the printf will print
the size of person = 48.

The reason is as follows. The structure contains an integer variable phone. An integer will be read at
machine language level by a "Load Word" instruction, and thus the entire structure will be read using the
Load Word instructions. As shown in the following memory map, the compiler will add three bytes before
the character type variable to make the byte into a four-byte word. As the result, the total size of the person
variable is 48 .

..____1_6 _byt_ e _s ____,_4 _ __.__ ___ 2_4 ___ _,_I 1-'-I 1__,__! __._I l__.1 I Size = 48

In the code, uncommenting the two lines of code adds one more character variable into the structure, as
shown below:

struct personnel
char name[16];
int phone;
char address[24];
char gender; II For M
char CSmajor; II Y or N
person;

printf("struct size = %d", sizeof person);

The total size of the structure will remain unchanged as 48. In this case, the three bytes of padding will
reduce to two bytes only, as shown in the following map:

..____1_6 ---'-by_te _s _..___4_.-L--___ 2 4 ___ __._I __.I I_I l.__1..___,j 1 I Size = 48

The order of the variables in a structure will be preserved by the compiler when it allocates the memory. If
the character types are separated by a Word-type variable, multiple paddings are required. Consider the
following snippet of code, where the variable gender is moved before the variable phone:

74

struct personnel

char name[16];

char gender;

int phone;

II F or M

char address[24];

char CSmajor; II Y or N

person;

printf("struct size = %d", sizeof person);

The memory map is given as follows:

.____16_b_:_yt_es_�I 1_._I 1_.__I 1_.__I 1----L-1 _4___._ ___ 24 __ ___,l'---1 .__I 1 ,__I 1 .,__,I 1 / Size = 52

Two paddings of three bytes each are added by the compiler, resulting in a structure of 52 bytes. These
examples show that it will result in a more efficient code if the character type variables are kept together in
the structure definition.

Padding is required only for word type of variables, such as int, float, and pointer. If a structure contains
character type of variables only, no padding will be added, irrespective of whether the total size is a multiple
of four or not. The compiler will use "Load Byte" instructions to read the structures that contain character
(byte) type only. Consider the following code, where the int variable phone is removed:

struct personnel {

char name[16];

char gender; II

char address[24];

char CSmajor; II y

char KnowJava; II

person;

F or M

or N

Y or N

printf("struct size = %d", sizeof person);

The program will print the size of person = 43, which is not a multiple of 4.

Consider the following snippet of code in a 32-bit computer:

struct contact {

x;

char narne[30];

int phone;

char email[30];

What is the size of variable x in bytes? It is incorrect to simply add 30+4+30. Because there is an integer
type involved, two padding bytes must be added to name and email arrays, and thus, the total number of

bytes for variable x is 68, instead of 64. However, ifwe keep the name and email members together in the
order, the size will become 64.

2.5.2 Union

A union type variable is a region of shared memory that, over time, can contain different types of values.
At any given moment, a union can contain only one value. Programmers must make sure the proper type is
used at the proper time. The general way to define a union type is

union union name {

75

type fieldl;

type field2;

type fieldn;

union variable_name;

For example:

union utype

char ch;

int x;

v;

void main() {

union utype s, t; //We can use the type to declare variables here too.

II The keyword union must be used before type name.

In this example, we define a union type called utype and declare a variable v of utype. Similar to a
structure type, we can have multiple data fields in the type definition. In this example, there are two data

fields. The field variable x belongs to the int type and takes 32 bits or 4 bytes (in a 32-bit machine) and

ch takes 8 bits or 1 byte. If the union type is defined as a structure type, the variable v will have 4+ 1 bytes
of memory allocated. However, in the union type, all data fields share the same memory. If these data fields
require different sizes of memory, the largest size among the data fields will be allocated and the smaller
sized fields will occupy a part of the memory. In this example, 4 bytes of memory will be allocated and the

smaller field ch will share the first byte of x.

The way we access a union type variable is similar to that of the structure type variable. For example,

v.x = 124000; // put an integer value into the data field x

v.ch = 'C'; II put a character value into the data field ch.

Since the two data fields share a part of the memory, the second assignment will overwrite the first byte of

v. x, destroying the integer value in v. x. Obviously, ifwe do not use the data fields carefully, we can easily
make mistakes in programming.

The question is why do we need such an unsafe data structure? The reason is that it could be useful in
certain situations. The following example depicts such a situation where union type variables make the
program more elegant.

Assume we want to define a data type to store personnel information for both faculty members and students
in a university. The faculty and students have ID numbers with different lengths. A person in a university
has either a faculty ID or a student ID. Ifwe use two separate data fields for faculty ID and student ID, we
will use only one of the two data fields for every record. If we use only one data field and leave the extra
bytes free when an ID number does not have enough characters to fill all bytes, we could lose our view of
whether we are dealing with a student record or a faculty record. A union type would solve the problem, as
shown in the following program:

#include <stdio.h>

#include <string.h>

struct Personnel

char name [30] ;

long phone;

// Define a structure type called Personnel

76

} ;

union identity { II Define a union type inside the structure type

char facultyid[8]; II Two alternative data fields are defined here

char studentid[l2];

id; II We declare a variable of the union type here.

main() {

struct Personnel x, *p; II Declare a Personnel type variable and a
pointer

strcpy(x.name, "Mike Lee"); I I Copy a name into the name field

x.phone = 21400000; II Assign a number to phone field

strcpy(x.id.studentid, "1999eas1234"); II Copy student ID

printf("x.id.studentid = %s\n", x.id.studentid);

strcpy(x.name, "Jane Smid"); I I Use the same x for a faculty record

x.phone = 9659876;

strcpy(x.id.facultyid, "cse1234");

printf("x.id.facultyid

p = &x;

printf("p->id.studentid

printf("p->id.facultyid

%s\n", x.id.facultyid);

%s\n", p->id.studentid);

%s\n", p->id.facultyid);

In this example, the same variable is used for a student record and a faculty record. The different ID field
names allow us to differentiate which record we are handling. In the next chapter, we will discuss the
generic class in C++, which is a more general way of associating different classes with a class reference.

2.5.3 Array of structures using static memory allocation

Structure types will make more sense if we combine them with array and pointer types to form collections
of structures. In the following example, we define an array of structures to form a database.

In the following program, Contact is a structure type with three data fields. The declaration

struct Contact ContactBook[max];

declares an array of structures with 100 entries. Then we use the tail variable as the index to access the

next unused element of the array: ContactBook [tail J. Figure 2.13 shows the structure of the array.

Since the element of the array is of the structcontact type with three data fields, we use the dot-notation

to access the data fields of the ith element:

ContactBook[i] .name

ContactBook[i] .phone

ContactBook[i] .email

77

ContackBook []

0 name

1

phone
email

name
phone
email

The ith

element

ContackBook[i]

name Members of
phone
email the ith element

ContackBook[i] .name

ContackBook[i] .phone

ContackBook[i] .email

99

Figure 2.13. Array of structures, its element, and members of the element.

The array variable ContactBook [max] is a global variable, that is, a variable that is outside all functions.
The memory locations for global variables are statically allocated by the compiler during compilation time.
We call this kind of memory allocation static memory allocation. In this example, the compiler will

allocate an array of 100 (max) elements before the program starts. Assume a long integer takes 4 bytes,
and the name and email take 30 bytes each. The total number of bytes needed for one array element is then
64 bytes. The array of 100 elements will take 6400 bytes.

I* This program demonstrates how to define an array of structures.

It statically allocates memory for the variables of structure type *I

#include <stdio.h>

#include <string.h>

#define max 100

struct Contact { II define a node that can hold a person's detail

char name [30] ;

long phone;

char email [30];

} ;

struct Contact ContactBook[max]; II an array of structures, 100 entries

int tail = 0;

void branching(char

int insertion();

int search();

II void deletion();

II void printall();

void main() {

char ch = 'a';

while (ch != 'q')

c) ;

II

II

II

II

II

II

II

tail is defined here as a global variable

forward declaration of a function

forward declaration of a function

forward declaration of a function

not implemented in this example

not implemented in this example

main() first prints a menu for selection

printf("enter your selection\n");

print£("

print£("

printf("

i: insert a new entry\n");

s: search an entry\n");

d: delete an entry\n"); II not implemented

78

printf(" p: print all entries\n"); II not implemented

printf (" q: quit\n");

fflush(stdin); II flush input buffer to make

ch = getc(stdin);

branching(ch);

II sure getc reads correctly

void branching(char c) { II branch to different tasks

switch (c)

case 'i': insertion(); break;

case 's': search(); break;

case 'q': printf("You exit the program\n"); break;

default: printf("Invalid input\n");

int insertion () II insert a new entry

if (tail == max)

printf("There is no more place to insert\n");

return -1;

else {

printf("Enter name, phone, email\n");

scan£ ("% s", ContactBook [tail] . name) ;

scanf(11%d 11
, &ContactBook[tail] .phone);

scan£ (11 % s 11 , ContactBook [tail] . email) ;

tail++;

printf(11 The number of entries = %d\n 11
, tail);

return O;

int search() { II search and print phone and email via name

char sname[30];

int i;

printf("please enter the name to be searched\n");

scanf(11%s", sname);

for (i=O; i<tail; i++)

if (stricmp(sname, ContactBook[i] .name)== 0)

printf("phone %d\n", ContactBook[i] .phone);

printf("email = %s\n 11
, ContactBook[i] .email);

return O;

printf("The name does not exist\n 11
);

return -1;

79

In the next chapter, we will discuss in detail the three different memory areas: static, stack, and heap, the
mechanisms for allocating memory from these three areas, as well as how memory is deallocated (garbage
collection).

2.5.4 Linked list using dynamic memory allocation

The advantage with static memory allocation is that the memory for the variables is already available when
we want to store data in them. The problem is that we need to know the maximum number of elements in
advance, which is possible in some cases and not possible in some other cases. If we overestimate the data
amount, we waste memory. Ifwe underestimate the data amount, we have to stop the program, modify the
max value, and recompile the program. To solve this problem, we can use dynamic memory allocation

that allocates memory to variables during the execution by a function call.

In C, the function that dynamically allocates memory is

void *malloc(size_t size);

The function takes one parameter that is of type size_t. The type size_t is usually an unsigned int.
The parameter specifies the number of bytes to be allocated. For example, if you need a memory location
for an integer variable, then you can call

p = malloc (4) ;

However, this statement will work only on a machine that uses 4 bytes for an integer. If you run your
program on another machine with a different word-length, the statement will cause a problem. A better way
to allocate memory for a given type of variable is to call malloc (si zeof (type_ name)) . For example,
if you need memory for an integer variable, it is better to do

p = malloc(sizeof(int));

The function malloc returns a pointer to the initial address of the memory. If the runtime system runs out
of memory, it returns null.

Please notice that the notation "void *" means here that the malloc function returns a generic pointer
that can point to a variable of any data type. This is possible because all pointer types are structurally
equivalent and C mainly uses structural type equivalence in its type checking. Of course, you can also make
an explicit type casting to convert the generic pointer type to the specific type, for the purpose of readability,
for example:

p = (int *) malloc(sizeof(int));

casts the return value to an integer type pointer.

In C++, a new dynamic memory allocation operator has been introduced:

class_name p = new class_name;

The new operator allocates the right amount of memory for a variable (object) of the given class and returns
a pointer of that class. Java uses a similar operator to dynamically allocate memory. The new operator will
be explained in more detail in the next chapter.

Since the malloc function returns a generic pointer, we often combine dynamic memory allocation with
pointers to define a collection of structures. The following example re-implements the array of structures
using dynamic memory allocation.

/* This program demonstrates how to define a linked list of structures.

It dynamically allocates memory for the variables of structure type.

Only the parts that are different from the array of structure example

80

are given here. */

#include <stdio.h>

#include <stdlib.h>

struct Contact {

char name[30];

long phone;

char email[30];

II used for malloc

// define a node holding a person's detail

struct Contact *next; // pointer to Contact structure

*head= NULL; //head is a global pointer to first entry

void branching(char c); // function forward declaration

int insertion();

int search();

// void deletion();

// void printall();

int insertion() { // insert a new entry at the beginning

struct Contact *p;

p = (struct Contact *) malloc(sizeof(struct Contact));

if (p == 0)

printf ("out of memory\n") ; return -1;

printf("Enter name, phone, email \n");

scanf("%s", p->name);

scanf ("%d", &p->phone);

scanf("%s", p->email);

p->next = head;

head= p;

return 0;

int search() // print phone and email via name

char sname[30];

struct Contact *p = head;

printf("please enter the name to be searched\n");

scanf ("%s", sname);

while (p ! = 0)

if (strcmp(sname, p->name)== 0)

printf("phone %d\n", p->phone);

printf("email = %s\n", p->email);

return 0;

else p = p->next;

printf("The name does not exist\n");

return -1;

81

In the example, the Contact type is redefined with an extra field next:

struct Contact *next; // pointer to Contact structure

The next field is a pointer to a Contact type variable. We use it to form a linked list. Please note that we
need to use the keyword struct whenever we refer to a structure type.

In the insertion function, we use

p = (struct Contact *) malloc(sizeof(struct Contact));

to allocate the right amount of memory for a variable of Contact type, and we link the initial address of
this memory chunk to a pointer variable p. The type casting makes it clearer that the memory is allocated
for a Contact type variable. Using malloc(sizeof(struct Contact)), instead of using malloc(68), can avoid
calculation error, and particularly, avoid calculating the padding bytes.

Figure 2.14 illustrates the insertion process. Assume that the linked list already has two nodes and a new
node is being inserted.

This insertion function inserts the new node at the beginning of the linked list. You can also insert the new
node at the end (or at any required position). In this case, you can use a temporary pointer, say temp, and
move temp to the last node before performing insertion, as shown in the following code.

Before insertion: After insertion:
head head

Joe ➔ John -
... Joe

1122556 1122334 1122556

joe@mail.net jon@mail.net joe@mail.net

next -- 0 next --

A new node is created:

p

Tom

1122667

�□c==>
Insertion :::::::::. Tom

p 1122667

tom@mail.net tom@mail.net

Figure 2.14. Insert a new node at the beginning of a linked list.

int insertion_at_end() { // insert a new entry at the end

struct Contact *p, *temp;

p = (struct Contact *) malloc(sizeof(struct Contact));

if (p == 0) {

printf("out of memory\n"); return -1;

printf("Enter name, phone, email \n");

➔ John

1122334

jon@mail.net

0

CD

scanf("%s", p->name); scanf("%d", &p->phone); scanf("%s", p->email);

p->next = 0;

if (head== 0) head= p;

else {

while (temp->next != null)

temp= temp->next;

temp->next = p;

// Find the last node

// Link the new node

82

Generally, a node can be inserted in any position in a linked list. Figure 2.15 illustrates the insertion process.
It consists of three steps: (1) Find the position where the new node is to be inserted. Use a temporary pointer
variable temp to point to this position. (2) Set the new node's next pointer to the node next to the node
pointed to by temp. (3) Set the next pointer of the node pointed to by temp to the new node.

In the earlier example of the array of structures, we used the dot-notation to access the data field of a
structure variable. It is different when referring to a data field of a structure pointed to by a pointer variable.
We use the arrow operator (sometimes called pointer-to-member operator) instead; that is, we use

p->name

p->phone

p->email

p->next

h ead

__,
p

CD temp

Joe -- John ,---11 Lee
1122556 1122334

I

1122889 I

I

joe@mail.net jon@mail.net I lee@mail.net
I

next --=:..:
-___ , 0

..._

@ temp.next = p;

Tom
1122667

tom@mail.net
@ p->next temp->next; =

Figure 2.15. Insert a new node in the middle of a linked list.

to access the four fields of a Contact structure variable pointed to by p. The differentiation is necessary
because their meanings are different. Examine the piece of code:

struct Contact *p, q;

p = (struct Contact *) malloc(sizeof(struct Contact));

strcpy(p->name, "smith"); // or strcpy(*p.name, "smith");

strcpy(q.name, "miller");

free(p); // return the memory allocated by malloc to the memory heap

p = &q; //p is now pointing to variable q.

In the example, p is a pointer to a Contact structure variable and p has only 4 bytes of memory allocated,
while q is the name of a variable of Contact type, as shown in Figure 2.16. The compiler has allocated the
entire memory that can hold all four data fields to q. Thus, we can directly copy a name "miller" into the
name field of q. Before we can copy anything into the variable pointed to by p, we must first use malloc
to obtain the memory for that variable.

83

q
contact structure contact structure

contact structure
p

contact structure

before p = &q; after p = &q;

Figure 2.16. Variable q is allocated statically, while the variable pointed to by p is dynamically allocated.

The last statement in the example assigns the address of q top. Now p is pointing to the variable q. In

other words, now q has another name which is *p. Ifwe do not free (delete) the Contact variable pointed

to by p before we assign the address of q to p, the variable will be completely inaccessible and becomes a

piece of garbage. The "free" function is, in fact, doing the job of garbage collection.

The function free(p) is the opposite of the function p = malloc (size), in that it returns the memory

linked top to the heap, the pool of free memory. Ifwe keep using malloc to get memory from the heap,
but do not collect the garbage, the heap will eventually be empty and we thus run out of memory. Not
collecting garbage is also called a memory leak. The following examples show memory leak when deleting
a linked list.

Assume that you want to delete the entire linked list pointed to by head. If you simply assign head =

nu 11, the linked list becomes an empty list. However, the memory used by all the nodes in the linked list

becomes uncollectable garbage. What is the result of the following operations?

free (head);

head= null ;

This snippet of code will free the memory used by the first node only. The memory used by all the other
nodes will become uncollectable garbage. The correct way of deleting the entire linked list is to use a loop
to free each and every node, as shown in the following snippet of code.

temp= head ;

while (temp != null)

temp= temp->next ;

free(head);

head= temp;

Garbage collection and memory leak will be discussed in the section on memory management in the next
chapter.

2.5.5 Doubly linked list

When traversing a linked list, you can easily move a temp pointer forward from the head pointer to the end
of the linked list. However, you cannot move the pointer backward along the linked list. If you need a data
structure that can move both forward and backward, doubly linked list is a good solution.

A doubly linked list node has two pointers pointing to the previous node and the next node. The following
code shows a simple example of a doubly linked list. An insertion function is given, which inserts a new

node at the sorted place by name. The id of the Node struct is generated automatically, and the names

are entered from the keyboard. This program can be combined with the complete program of the singly
linked list to allow full functionalities.

#include<stdio.h>

84

#include <stdlib.h>

#include<string.h>

#pragma warning(disable: 4996) II disable warning in Visual Studio

struct Node

} ;

int id;

char *name;

struct Node* previous;

struct Node* next;

II

II

II

II

int size

name is

pointer

pointer

is 4 bytes

a pointer, not an array

to previous node

to next node in list

struct Node *head = NULL, *tail = NULL;

int insertion(int i, char* n)

struct Node *temp = (struct Node*)malloc(sizeof(struct Node));

if (temp == NULL)

printf("out of memory\n"); return -1;

temp->id = i;

temp->name = n;

II Case 0: the linked list is empty if (head == NULL)

head = temp;

head->next = NULL;

head->previous = NULL;

tail = temp;

return 0;

else { II Case 1: The list is not empty, insert at the beginning

if (strcmp(temp->name, head->name) < 0) {

} ;

temp->next = head;

head->previous

head = temp;

head->previous

return 1;

temp;

NULL;

struct Node *iterator = head;

struct Node *follower = iterator;

while (iterator ! = NULL) { II Case 2

if (strcmp(temp->name, iterator->name) < 0)

temp->next = iterator;

iterator->previous = temp;

temp->previous follower;

follower->next = temp;

return 2;

follower = iterator;

85

iterator = iterator->next;

follower->next = temp; II Case 3

temp->previous = follower;

temp->next = NULL;

tail = temp;

return 3;

int main() {

int identity = O;

char *namel malloc(32);

char *name2 = malloc(32);

char *name3 = malloc(32);

struct Node *templ, *temp2;

printf(11 Please enter 3 names:\n");

scan£ (11 %s", namel);

scan£ (11 %s", name2);

scanf(11 %s", name3);

insertion(identity++,

insertion(identity++,

insertion(identity++,

templ = head;

temp2 = tail;

II enter

II enter

II enter

namel);

name2);

name3);

John

Mary

David

printf(11 ID %d, name %s \n 11 , templ->id, templ->name);

printf(11 ID %d, name

printf(11 ID %d, name

return 0;

%s \n 11 ,

%s\n 11 ,

templ->next->id, templ->next->name);

temp2->id, temp2->name);

Notice that dynamic memory is used for name 1, name 2, and name3 in the main program. It is necessary
in order to keep the memory in the linked list. If a local variable is used for the names, the memory will go
out of scope when function exits. Memory management will be discussed in detail in the next chapter. The
output of the program is as follows:

Please enter-· 3 names:
!John
1Mary

iDa1.1 id
!ID 2., name David

ID
i

0_, name John
!ID 1 � nar1e r,tary

2.5.6 Stack

A stack is a data structure that can contain a set of ordered items. The items are ordered in such a way that
an item can be inserted into the stack or removed from the stack at the same end. This end is called the top
of the stack.

86

The stack is one of the most important data structures in computer hardware and software design. This
section introduces the basic concept of stack through an example. More applications of the stack will be
further discussed in Chapter 3 when we study memory management, in Section A.2 in Appendix A when
we introduce basic computer architectures, and in A.3 when we discuss the implementation of function
calls at the assembly language level.

Like any structured data type or a data structure, a stack is defined on simpler data types and the new
operations on the data types.

Typically, a stack is defined on an array type. The basic operations defined on the stack are push (add an
element onto the stack top) and pop (remove the top element from the stack). The code below shows the
definition of a stack:

elementType stack[stackSize];

int top = 0;

void push(elementType Element)

if (top < stackSize) {

stack[top] = Element;

top++;

Printf("Error: stack full\n");

elementType pop() {

if (top > 0) {

top--;

return stack[top];

Printf("Error: stack empty\n");

Now we use the stack to implement a four-function calculator that supports addition, subtraction,
multiplication, and division operations on floating point numbers. The basic part of the implementation is
the same as the code above, except that the elementType is now float, and four extra arithmetic
functions are included. To perform operations, data are first pushed onto the stack. Every time an operation
is performed, the two data items on the stack top are popped out for operation and the result is pushed back
onto the stack.

#define stackSize 8 // a sample value

#include <stdio.h>

float stack[stackSize];

int top = 0;

void push(float Element)

if (top < stackSize) {

stack[top] = Element;

top++;

else

printf("Error: stack full\n");

float pop () {

87

if (top > 0) {

top--;

return stack[top];

else

printf("Error: stack empty\n");

float add ()

float y;

y = pop() + pop(); push(y);

float sub ()

float y;

y = pop() - pop(); push(y);

float mul ()

float y;

y = pop() * pop(); push(y);

float div ()

float y;

y = pop() / pop(); push(y);

void main ()

float xl = 1.5, x2 = 2.5, x3 = 3.5, x4

push(xl); push(x2); push(x3);

push(x4); push(x5); push(x6);

add(); sub(); mul(); div(); add();

printf("final value = %f\n", pop());

4.5, x5 5.5, x6 6.5;

What is computed in the main program by the sequence of operations add () , sub () , mul () , div () , and

add ()? Figure 2.17 shows the stack status after each push operation and after each arithmetic operation.

Initially, stack top = 0. It increments after each push operation. In each arithmetic operation, two pop

operations and one push operation are performed, resulting in the top being decreased by one. The final

value computed is 12.0. After the pop operation performed in the print£ statement, the top returns to
zero.

88

7
6
5
4
3
2
I

top-+ o

7
6

top-+ s
4 12.0
3 4.5
2 3.5
I 2.5
o 1.5

After add()

2.5
1.5 1.5

7.5
3.5
2.5
1.5

After sub()

5.5
4.5 4.5

3.5 3.5 3.5
2.5 2.5 2.5
1.5 1.5 1.5

26.25
2.5 10.5
1.5 1.5

After mul() After div()

Figure 2.17. Stack status after each operation.

12.0

After add()

2.6 Standard input and output, files, and file operations

So far, we have discussed using memory (variables) to store data. However, memory is only a temporary
place to store data. When we quit a program, all memory allocated to the program is taken back by the
operating system for reuse. If our program has data that need to be stored for future use, we need to store

the data into the permanent storage of a computer-the disk.

2.6.1 Basic concepts of files and file operations

Data stored on disk are organized in files. We consider a file as a structured data type and we access data
in a file using a pointer to an object of type FILE, which records whatever information is necessary to
control the stream of data.

As we know that disk operations are extremely slow, million times slower than memory operations, as it
involves mechanical rotations of the disk and sliding of the read/write heads. The challenge is to make file
operations faster. The solution is to use a buffer in the memory to hold a large block (e.g., 1024 bytes) of
data. Each disk operation will transfer a block of data, instead of a byte or a word of data. Figure 2.18 shows
how read and write operations are implemented.

For the read operations, the process is as follows:

• Declare a pointer f to a FILE type;
• Open a file for read: Create a buffer that can hold a block of bytes (e.g., 1024 bytes);
• Copy the first block of a file into the buffer;
• A program uses the pointer to read the data in the buffer;
• When the pointer moves down to the end of the buffer, copy the next block into the buffer;
• Close the file at the end of use.

For the write operation, the process is as follows:

• Declare a pointer f to a FILE type;
• Open a file for write: Create a buffer that can hold a block of bytes (e.g., 1024 bytes);
• A program uses the pointer to write the data in the buffer;
• When the buffer is full, copy the block into the disk;
• Move the pointer to the beginning for more write-operations;

89

• Close the file at the end of use.

File on disk

also called a stream

A block
f a pointer to a file

Figure 2.18. File read and write operations.

2.6.2 File operations in C

memory

Copy the

entire

buffer

into a

block

f

We focus on C file operations in this section, and we will discuss the C++ file operations in the next chapter.
We will use the following example to demonstrate the basic file operations, including opening, reading,
writing, and closing a file.

// demonstrate the use of fopen, fclose, feof, fgetc and fputc operations

#include <stdio.h>

#include <string.h>

// This function reads all characters in a file and puts them in a string

void file_read(char *filename, char *str) {

FILE *p;

int index=0;

p=fopen (filename, "r"); // Open the file for "read".

// Other options are "w" (write), "a" (append), and "rw" (read & write).

while(!feof(p))// while not reaching the end-of-file character

*(str+index++)=fgetc(p); //read a character from file and put it

// in str. p is incremented automatically.

str[index] ='\0';

puts(str);

II add the null terminator

// print str. You can use printf too.

fclose(p); // close the file

// This function creates a new file (or opens an existing file), and then

// stores (puts) all characters in the string str into the file.

void file_write(char *filename, char *str) {

int i, l;

FILE *p;

p=fopen(filename, "w");

1 = strlen(str);

for(i=0;i<l;i++)

// declare a pointer to file type

// open/create a file for "write".

// get string-length

90

fputc(*(str+i),p);

£close (p);

// write a character to the file pointed

// by p. p is incremented automatically.

// Close the file.

// This function cipher-encrypts the string in variable str.

void encrypt(int offset, char *str) {

int i,l;

l=strlen(str);

printf("original str = \n%s\n", str);

for(i=O;i<l;i++)

str[i] = str[i]+offset;

printf("encrypted str = \n%s \nlength %d\n", str, 1);

void main() {

char filename[25];

char strtext[1024];

printf("Please enter the name of the file to be read\n");

II you should enter the name of an existing text file, e.g., letterl.txt

scanf ("% ["\n] s", filename);

file_read(filename, strtext);

encrypt(5, strtext);

//Read a line till the end-of-line "\n"

//read text from file & put it in strtext

//manipulate the string strtext

printf("Please enter the name of the file to be written\n");

scanf("%["\n]s", filename); //Read a line till the end-of-line "\n"

file_write(filename, strtext); //write the text into the given file

This program first takes a file name from the keyboard, reads the file (we assume the file exists), and puts
the entire contents of the file in a string variable strtext. Then we call the encrypt function to encrypt the
string. Finally, we write the encrypted string into another text file.

In the program, we use the following basic file open operation:

p = fopen(filename, "r");

to open the file in "read" mode. The pointer p points to the first character in the text file (buffer). Other
mode options are "w" for "write" and "a" for "append" data at the end of the file. In addition to these modes,
the following characters can be included in mode to specify the translation mode for newline characters:

"t": Open in text (translated) mode. In this mode, CTRL+Z is interpreted as an end-of-file character on
input. "b": Open in binary (untranslated) mode; translations involving carriage-return and linefeed
characters are suppressed. The letter "b" must be placed at the end of the mode string. If you want to open
a file for both read and write operations, you can use an"+." Table 2.4 summarizes the mode definitions:

91

Mode Description

r Open an existing file for reading.

w Open a file for writing. If the file does not exist, a new fi]e is created. If the file exists, its content is
cleared, and the file is written as an empty.

a Open a file for appending. If the file does not exist, a new file is created.

r+ Open an existing file for reading and writing.

w+ Same as w mode, but allow both write and read.

a+ Same as a mode, but allow append and read.

b Binary mode. The letter b can appear at the end or before +, e.g., both w+b and wb+ are acceptable.

Table 2.4. File operation modes.

Having opened a file, we can use the function

ch = fgetc (p);

to read the first character from the file. After each f getc call, the pointer is automatically moved to the
next position, ready for reading the next character. Another function is

fputc(ch, p);

that puts the character in parameter ch into the file at the position pointed to by p.

After we have completed file operations (read or write), we must close a file by using the file close
operation

£close (p);

If a file is not closed, the file descriptor that is used by the operating system to identify the file will not be
freed. The total number of file descriptors that an operating system can issue is usually very limited. For
example, in the Unix operating system, the file descriptor must be between 0 and 20. File descriptors 0, 1,
and 2 are reserved for three system files: standard input, standard output, and standard error output, leaving
only 18 file descriptors for all users concurrently using the operating system. If no file descriptors are
available, the operating system will not be able to open any file for any user applications.

In the statement scanf ("% ["\n] s," filename) in the program example above, the control sequence

["\n] ensures that the scan£ reads until the newline symbol "\n," including the spaces in the line.

The other file operations include:

• fread(buffer, size, count, fileName); II unformatted read
• fwrite(buffer, size, count, filename); II unformatted write
• scanf(control sequence, parameter list); II formatted input from keyboard
• printf(control sequence, parameter list); II formatted output to screen
• fscanf(filename, control sequence, parameter list);

I I This function is the same as scanf, except it inputs from a file
• fprintf(filename, control sequence, parameter list);

I I This function is the same as printf, except it outputs to a file

The definitions of the functions fread and £write are:

size t fread(void *buffer, size t size, size t count, FILE *fileNarne);

size t fwrite(const void *buffer, size t size, size t count, FILE *fileNarne
) ;

92

// Using these two functions requires including a <stdio.h> header

The functions are defined in the standard library stdio. h. The function fread returns the number of full

items actually read, which may be less than count if an error occurs or if the end of the file is encountered

before reaching count. You can use the feof or £error function to distinguish a read error from an end­

of-file condition. If size or count is 0, tread returns 0, and the buffer contents are unchanged.

The function fwri te returns the number of full items actually written, which may be less than count if
an error occurs. Also, if an error occurs, the file-position indicator cannot be determined.

The parameters in the functions are specified as follows:

1. buffer: pointer to the source variable (for fwrite) or to the
destination variable (for fread)

2. size: item size in bytes

3. count: maximum number of items to be read or written. Normally, use 1.

4. fileName: pointer to FILE structure

The following segment of code shows the application of fr ea d and f write. It consists of two functions.

The save_file function saves a linked list of nodes into a file called fileName, and the load_file
function reads the file called f ileName, and rebuilds the linked list according to the saved data. The
segment of code demonstrates how to write and read strings and integers to and from a file.

// demonstrate the use of fopen, £close fread and fwrite operations

void save file() {

FILE *fileName;

personnel *node;

char ch;

long sid;

fileName = fopen(file_name, "wb"); // w for write, b for binary mode

if(fileName != NULL) {

else

node = head;

while(node != NULL)

fwrite(node->getName(), 30, 1, fileName);

fwrite(node->getBirthday(), 11, 1, fileName);

sid = node->getid();

fwrite(&sid, sizeof(long), 1, fileName); // binary write

node = node->getNext();

print£ ("ERROR - Could not open file for saving data !\n");

void load_file() {

FILE *fileName;

personnel *node, *temp;

char sname[30];

char sbirthday[ll];

93

long sid;

fileName = fopen(file_name, "rb");

if(fileName != NULL) {

I I r for read, "b" for binary

while(fread(sname, 30, 1, fileName) == 1) {

fread(sbirthday, 11, 1, fileName);

fread(&sid, sizeof(long), 1, fileName); // read binary

node = new personnel(sname, sbirthday);

node->setid(sid);

if(head != NULL)

temp->setNext(node);

else

head = node;

temp = node;

fclose(fileName);

We have used scan£ and print£ to read from the keyboard and print to the screen. In fact, in CIC++, the
keyboard is considered to be a read-only file (standard input f

i
le) and the screen is considered to be a write­

only file (standard output file). Their file names are stdin and stdout, respectively.

The functions f scan£ and fprintf are more general forms of file operations in which we can specify

what file we want to read and write. The standard input and output functions scan£ and print£ are special
cases of them and are equivalent to

fscanf(stdin, control sequence, parameter list);

fprintf(stdout, control sequence, parameter list);

The following example shows the application of fprintf and fscanf. First, an integer number and a float

number are written in the file named PersonData. Then the file is closed and reopened for read. An integer
number and a float number are read into two variables len and hei, respectively :

#include <stdio.h>

void main() {

FILE *fileID;

int length = 35429, len;

float height = 5.8, hei;

fileID = fopen("PersonData", "wb");

if(fileID != NULL) {

// open for write

fprintf(fileID, "%d\n", length); // write an integer into a file

£print£ (fileID, "%f\n", height); // write a float into a file

else

printf ("ERROR - Could not open file for saving data !\n");

£close (fileID);

fileID = £open ("PersonData", "rb");

if(fileID != NULL) {

94

// open for read

fscanf (fileID, "%ct", &len);

fscanf (fileID, "%£", &hei);

printf("length = %ct, height

£close (fileID);

II read an integer from a file

II read a float from a file

%f\n", len, hei);

In C++, similar input and output functions are defined:

cin >>

cout <<

cin.ignore();

cin.get(strvar, strlength, achar);

cin.getline(strvar, strlength, achar);

More details of C++ input, output, and file operations will be discussed in Chapter 3.

2.6.3 Flush operation in C

In the aforementioned programs, we used £flush (stdin) to remove the delimiter (a space, a newline,

etc.) before using getc (stdin). The reason is, the formatted input function scan£ will read only up to

the delimiter and leave the delimiter in the input buffer. Ifwe do not call f flush (stdin), the left delimiter

will be read by an unformatted input function such as get c (st din) and gets (st din) . Thus, we must

call function £flush (stdin) to flush the buffer of the standard input file stdin. It is not a problem if

two consecutive scan£ functions are called because a formatted input function can automatically remove

the delimiter. The C++ function equivalent to f flush is cin. ignore, which will be discussed in Chapter
3.

C-styled £flush (st din) function that flushes the input buffer to remove the remaining delimiters in the

buffer of the standard input file st din after a scan£ operation. Consider the following snippet of code:

#include <stdio.h>

#pragma warning(disable: 4996) // comment out if not in Visual Studio

int main() { // Test £flush() function

char strvar[BJ, ch;

scan£ ("%s", strvar); // Enter: Hi

printf("%s\n", strvar);

//£flush (stdin);

ch = getc(stdin);

// Try the program with and without fflush()

// enter a character 'x'

printf ("%c\n", ch);

printf ("%s\n", strvar);

The inputs and outputs of the program with the fflush() (commented out) and without the fflush,
respectively, are shown as follows:

95

Figure 2.19 explains the reason why the character read getc(stdin) does not read the character into the
variable ch, by illustrating the states of the input variable strvar and the input buffer in the execution
process of the program above. Notice that the newline character' \n' is left in the buffer after the scan£
operation is completed, and thus the next input character is appended to the character. The getc function
reads a character from the input buffer, which will read '\n', without giving a chance to read the keyboard.
As a result, no input is needed, '\n' is read into the input variable ch, and thus the keyboard operation is
skipped.

Variable: strvar scanf Input buffer (an array of bytes)

Initial state: I I I I I I I I I -t1 I I I I I I I I I I I J ... DJ --Keyboaf<l

t * 9 scanf(strvar) I I I I I I I I I +-- Hj i j,nj I I I I I I I I I 1··· DJ +--Keyboafd

t * IHI i j,oj I I I I I +-- \nl I I I I I I I I I I I j ... DJ +--Keyboard

Without fflush()

t * D +-- \nl I I I I I I I I I I I j ... DJ +--Keyboard

t* � +-- I I I I I I I I I I I I j ... DJ +--Keyboard

Figure 2.19. The input buffer between the keyboard and the input variable.

If the library function £flush does not exist in your environment, you can also write your own flush
function to flush all the characters in the file buffer. The following snippet of code shows a simple
implementation:

void myFlush() { II Manually flush all characters in the stdin buffer
int c;
do {

c = getchar();
} while (c != '\n' && c != EOF); II EOF: End of File flag

} ;

When you switch back from unformatted input to formatted input, you normally do not need to put the
delimiter back. However, it is a good idea to restore the character that is flushed. You can call the library
function ungetc ('\n', stdin) to put the newline character back into the buffer.

96

2. 7 Functions and parameter passing

Functions, also called procedures or subroutines in some other programming languages, are named blocks
of code that must be explicitly called. The purpose of functions is twofold:

• Abstraction: Statements in a function form a conceptual unit.
• Reuse: Statements in a function can be executed multiple times in the program.

As a part of a program, a function must communicate with the rest of the program. To pass values into a
function (in-passing), we usually have two methods: global variable and parameter passing. To pass values
out of a function (out-passing), we usually have three methods: global variable, parameter passing, and
return value. Different programming languages have different value passing policies and mechanisms.

• In imperative and object-oriented programming languages like CIC++ and Java, all combinations
of the in-passing and out-passing methods are allowed.

• In functional programming languages like Scheme or Lisp, parameter passing is the only in-passing
method and return value is the only out-passing method allowed.

• In logic programming languages like Prolog, parameter passing is the only in-passing and the only
out-passing method allowed.

Using a global variable to pass a value in or out of a function causes unwanted side effects and thus it is
generally not recommended to use global variables for passing values. It is conceptually simple to use a
return value to pass a value out of a function. We will thus focus on the parameter-passing mechanisms that
pass values in and out of functions.

When we discuss parameter passing, we need to differentiate two kinds of parameters: formal parameters
and actual parameters. Formal parameters are the parameters we use when we declare (define) a function.
Formal parameters are local variables of the function. Actual parameters are the values or variables we
use to substitute for the formal parameters when we call a function. Actual parameters are variables/values
of the caller before the control enters the function. They become the variables/values of the function after
the control enters the function.

Now the question is what would happen if we modify the formal parameters in the function. Will the
modification have an impact on the actual parameters? The answer to the question depends on what kind
of parameter-passing mechanisms we use. The most frequently used parameter-passing mechanisms are
call-by-value, call-by-alias, and call-by-address.

Call-by-value: The formal parameter is a local variable in the function. It is initialized to the value of the
actual parameter. It is a copy of the actual parameter. The modification of formal parameters has no impact
on the actual parameters. In other words, call-by-value can only pass values into a function, but it cannot
pass values outside the function. Functions using call-by-value must use return-value to pass a value to the
outside. The advantage of call-by-value is that it has no side effects and it is considered a reliable
programming practice. The drawback is that it is not convenient to handle structured data types.

The following piece of code demonstrates value in-passing by global variable and call-by-value
mechanisms:

#include <stdio.h>

int i = 1;

foo(int m, int n) {

// i is a global variable outside any function

// m and n are formal parameters

printf("i = %d m = %d n = %d\n", i, m, n);

i = 5; m = 3; n = 4; / / Modify i, m and n.

97

printf("i %d m

main()
int j = 2;
foo (i, j) ;
printf("i = %d j

The output of the program is

I
i = 1 m = ln = 2
i = 5 m = 3n = 4
i = 5 j = 2

%d n %d\n", i, m, n);

// j is a local variable, local to main() function
// i and j are actual parameters of function foo

%d\n", i, j);

As you can see, the global variable i is changed in the function and i remains changed after leaving the
function. On the other hand, j is passed to formal parameter n and n is modified in the function. The
modification to n has no impact on j .

Call-by-alias: It is also called call-by-reference or call-by-variable. The formal parameter is an alias name
of the actual parameter. Call-by-alias can pass a value into and out of a function. However, it has a side
effect, that is, a variable outside a function can be changed by an action in a function.

For call-by-alias, there is only one variable (memory location) with two names for the formal and actual
parameters, respectively. Changing the formal parameter immediately changes the actual parameter. The
actual parameter must be a variable. It cannot be a literal value because a value cannot have an alias. This
mechanism is supported by C++, but not by C.

To declare a formal parameter x in call-by-alias, an ampersand symbol is prefixed to the parameter: &x.
The following code demonstrates parameter passing by the call-by-alias mechanism, where the second
parameter of the f o o function is an alias to the corresponding actual parameter:

#include <iostream>
void foo(int, int&);
int i= 1;
void main() {

int j = 2;
foo (i, j);
printf ("i = %d j
foo (j, i) ;

// forward declaration

// j is a local variable, local to main() function
// i and j are actual parameters of function foo

%d\n", i, j);
// i and j are swapped

printf("i = %d j = %d\n", i, j);

void foo(int m, int &n) { // call-by-alias is applied to parameter n
printf("i = %d m = %d n = %d\n", i, m, n);
i = 5; m = 3; n = 4; // Modify i, m and n.
printf("i = %d m = %d n = %d\n", i, m, n);

The output of the program is
i = 1 m = 1 n = 2

98

i 5 m 3 n = 4

i 5 j 4 II notice that j is changed

i 5 m 4 n = 5

i 4 m 3 n = 4 II notice that i is changed immediately

i 4 j 4

This program is basically the same as the call-by-value example, except that the modification to the variable
n in the foo function is passed to the variable j in the main program, in the first call, and is immediately
passed to i in the second call to foo.

Call-by-address: It is also called call-by-pointer. The address of the actual parameter is passed into a local
variable of the function. The actual parameter can be an address value or a pointer variable. You can use
the address to modify directly the actual parameter pointed to by the address. You can also modify the
address value stored in the formal parameter. However, this modification will not modify the actual
parameter. In fact, for the pointer variable itself, call-by-value is applied. In the following example, we
demonstrate parameter passing by call-by-address.

#include <stdio.h>

void foo(int *n) {

printf("n

*n = 30;

printf("n
again

n = O;

void main ()

int i = 15;

foo(&i);

printf("i

i = 10;

foo(&i);

printf("i

%d\n", *n);

%d\n", *n);

%d\n", i);

%d\n", i);

The output of the program is

n = 15

n = 30

i 30

n = 10

n = 30

i 30

II declare call-by-address parameter

II print the variable value pointed to by n

II modify the variable value pointed to by n

II print the variable value pointed to by n

II Modify the pointer itself.

In the main program, we have a local variable i, initialized to 15. We then call function foo using &i, the
address of variable i. The actual parameter is the address value (a pointer) to i, not the variable i itself. In
the function definition body, the formal parameter is a pointer to an integer type. We use the pointer n to
modify the variable *n pointed to by n, which is in fact i. Thus, we have indirectly modified variable i in
the main () function. When the control exits the function, i remains modified. As the last statement in the
function, we modify n itself. However, this modification will not have an impact on the address value

99

passed ton when the control exits the function. As you can see here, call-by-address and call-by-value are
relative. We use call-by-address if our intention is to pass the variable pointed to by the pointer (address
value) to the function. If we change the variable through its address, the variable remains changed after
exiting the function. On the other hand, if the address value is what we really want to pass into the function,
instead of the variable pointed to by the address, we are actually doing call-by-value.

Another application of call-by-address is in the situation where we want to pass a structure variable (an
array, a string, or a structure) to a function. It is more convenient to pass the pointer of the structure variable,
instead of passing the structure itself.

In Java, parameter passing is limited in such a way that:

• If the parameter is of a primitive type, only call-by-value is allowed;
• If the parameter is of a class-based type, only call-by-address is allowed.

Some books say that Java only supports call-by-value. They are referring to the pointer variable (reference)
itself passed to a function. However, since the intention of passing the reference variable is to access the
object pointed to by the reference, it is better to say that it supports call-by-address, instead of call-by-value.
Notice that the pointer in Java is called "reference." However, Java's parameter passing for objects is not
call-by-alias or call-by-reference, according to the definition of call-by-reference here.

In CIC++, all combinations of parameter passing are allowed. You can pass a pointer (call-by-address) or
an alias (call-by-alias) to a simple variable (e.g., of integer type), or pass a complex type of variable using
call-by-value, call-by-alias, or call-by-address.

The following program shows how to pass a string into and out of a function using call-by-address:

//file name: strop.c

#include <stdio.h>

#include <string.h>

char *getString(char *str) { //The function returns a pointer to its
parameter.

return str; // returns a pointer.

void setString(char *strl, char *str2) { // Copy str2 into strl

strcpy(strl, str2);

void main() {

char *p, q[8] = "morning", *s

printf("s = %s\n", s);

p = getString(s);

printf("p = %s\n", p);

"hello";

setString(q, p); // q is the address of the array-based string

print£ ("q = %s\n", q);

The output of the program is

hello

hello

hello

100

2.8 Recursive structures and applications

Section 2 discussed basic control structures in CIC++. This section studies the complex recursive structures.
We first compare recursive structures with the iterative structures. Then we formulate the generic steps of
writing recursive functions. Finally, we use a longer example as a case study to go through the design steps.
More examples of recursion will be studied in Chapters 4 and 5.

2.8.1 Loop structures versus recursive structures

A function (or procedure) is said to be recursive if the function calls itself. A recursive function can call
itself anywhere, except the first statement, and once or multiple times, in the body of the function. If a
recursive function calls itself only once and in the last statement, the function is said to be tail-recursive.
Tail-recursion has the simplest structure.

Figure 2.20 compares three different repetition structures: (a) while-do-loop, (b) nontail-recursion, and (c)
tail-recursion.

loop-body

Jump to

,----------

'

t

(a)

part 1

call

n times

,-,
I

I

I

I

I

I

I

1

I

,-------------1

"

(b)

Figure 2.20. Three different repetition structures.

part 1

call

,-----------
'

+

(c)

Although other loop structures do exist, like for-loop and do-while-loop, while-do-loop is sufficient to
implement other possible loop structures. The nontail-recursion breaks its loop-body down into two parts,
separated by the recursive call. Part 1 is first repeatedly executed n times, and then part 2 is executed n
times. It is important to recognize that part 2 is executed the same number of times as part 1. The partially
completed computations are stored on the stack. When part 1 is eventually repeated, the sufficient number
of times or the stopping condition is satisfied, the control exit part 1 and enters part 2. Then part 2 will be
executed the same number of times, and finally exit at the end of part 2.

In the case of tail-recursion, the recursive call is the last statement, and thus, there is no part 2. As we can
see, the general recursive structure is very different from the iterative loop structure. However, the tail­
recursive structure has exactly the same control structure as the while-do-loop. In other words, the while­
do-loop structure is a special case of the recursive structure. We will see in Chapter 4 that functional
program languages can use recursion as their only repetition structure, completely removing loop structures
from the languages.

101

Here we are taking a glass-box approach to understand the recursive function; that is, we try to study
recursion by trying to understand the structure and the control flow of the function. This is one of the most
common approaches taken by many programmers. It works fine for simple recursive functions. However,
if a recursive function has multiple recursive calls in its body, the structure will be far too complex to
understand. We will take an innovative approach in this book to study the recursive function: the black-box
approach, or so-called abstract approach. This approach works fine for both simple and complex recursive
functions. We will see soon that this approach is far easier to understand and to apply to solve all kinds of
recursive problems in all possible programming languages.

2.8.2 The fantastic-four abstract approach of writing recursive functions

The idea of recursion may not be as straightforward as iterative looping. However, writing recursive
functions can be as simple as writing iterative functions, as long as you strictly follow the fantastic-four
abstract approach. The approach was first proposed by one of the authors in the first edition of this book
and was called "simple steps for writing recursive procedures." The approach has been rated by all students
who learn it to be the most efficient method of teaching and learning recursion and was called by the
students "fantastic-four." In the second edition, it is formally named the fantastic-four abstract approach,
which consists of the following steps:

1. Formulate the size-n problem: Recursion is necessary only if you want to solve a problem that

needs to repeat the same operations for a number of times. We assume the number of repetition is n. In

most cases, n is obvious. For example, if we want to compute factorial n ! , the size n is already given.

Formulating a size-n problem is merely choosing a function name, using n as the parameter, and defining
the return type (not the return value) of the function. It is similar to writing the forward declaration of a
function in C. Thus, the size-n problem for a factorial problem is

int factorial(int n);

The return value of the size-n problem is what the function is supposed to compute, or the value
we are looking for. In this step, we do not need to design the solution for the size-n problem.

2. Find the stopping condition and the corresponding return value: The body of a recursive
function should begin with checking the stopping condition. If the stopping condition is true, the function
returns the corresponding value and exits. Otherwise, it calls the function itself. In most cases, identifying
the stopping condition and corresponding value is trivial or given. For example, the stopping condition of

factorial (n) is n = O, and the corresponding value is 1.

3. Select m and formulate the size-m problem: After we have formulated the size-n problem, the

size-m problem is easy: We simply replace parameter n by min the size-n problem, where m < n. Size m
is determined by how much we can reduce the size of the problem in one iteration. If we can only reduce

the problem size by 1, mis n-1, and thus our task in this step is formulating a size-(n-l)problem. For

example, the size-(n-1) factorial problem is simply factorial (n-1). Sometimes, we may need to find

an m that is not n-1. It is application-specific to find a proper m. We will use several examples to illustrate
this point in this section and study many more examples in Chapter 4. Most students who have difficulty
comprehending recursion misunderstand this step: They try to define a solution, or the return value, of size­
m problem here in this step! It is not possible and it is not necessary to produce the return value in this step.
All we need to do about the return value here is exactly the same as what we did in step 1. We simply
assume the size-m problem will return a value and use this value in step 4. For example, the return value of

size-(n-1) factorial problem is factorial (n-1).

4. Construct the solution of the size-n problem: In this step, we will use the assumed solution or
return value for size-m or size-(n-1) problem to construct the solution of the size-n problem. Again, this is

102

application-specific. In the case of the factorial problem, the solution of the s1ze-n problem is
n*factorial(n-1).

Sometimes, we may need to use the return values of multiple size-m problems, where O � m < n (assume
size-0 is the stopping condition), to construct the solution of the size-n problem.

Strictly following these steps, we can define the complete factorial function as follows:

int factorial(int n) { // size-n problem

if (n == 0) / / Stopping condition

else

return 1; // Return value at the stopping condition

return n * factorial(n - 1); //use size-(n-1) problem's assumed

// solution to construct size-n problem's solution

2.8.3 Hanoi Towers

The Hanoi Towers game is a good example used for explaining recursion. As shown in Figure 2.21, the
rules of playing the game are:

• There are three pegs, and n successively smaller disks are initially placed on the left peg. In the

example in Figure 2.21, n = 4. The objective is to move all disks to the right peg. The center peg
can be used as an auxiliary holding (spare) peg.

• Disks may be moved from one peg to another. Only one disk may be moved at a time.
• The only disks that may be moved are the top disks on one of the three pegs.
• At no time may a larger disk may be placed on a smaller disk.

Now we follow the fantastic-four abstract approach to define a solution for the Hanoi Towers problem.

1. Formulate the size-n problem

We can simply formulate the size-n problem as void hanoi (int n). However, in the return value
(solution), we need to print how to move one disk from one peg to another in each step, and we need to
name these three pegs. We could hard code the names as pl, p2, and p3; or left, center, and right. To increase
the flexibility of the code, we add three parameters to the function, so that the user can pass different names
into the function. Thus, we formulate the problem as

void hanoitowers(int n, char *left char *center char *right);

Notice that the function does not return a value; instead, it prints instructions (steps) for how to move n disk

from the left peg, using the center peg as the auxiliary, to the right peg.

103

Initial state :

n disks on left peg

Step 1:

Move n-1 disks

to the center peg

Step 2:

Move 1 disk

to the right peg

Step 3:

Move n-1 disks

to the right peg

Figure 2.21. Solving Hanoi Towers problem.

2. Find the stopping condition and the corresponding return value

I

The stopping condition is n = 1. In this case, the size-I problem is hanoitowers (1, left, center,

right), and the solution is to print "move the disk from the left peg to the right peg."

3. Select m and formulate the size-m problem

Since we can move only one disk at a time, it is obvious that we can only reduce the size by one in one
iteration. Furthermore, since we have multiple parameters in the function, we could have multiple size­
(n-1) problems. The following are six possible size-(n-1) problems:

(1) move n-1 disks from left to right, using center as auxiliary:

hanoitowers(n-1, left, center, right)

(2) move n-1 disks from left to center, using right as auxiliary:

hanoitowers(n-1, left, right, center)

(3) move n-1 disks from center to left, using right as auxiliary:

hanoitowers(n-1, center, right, left)

(4) move n-1 disks from center to right, using left as auxiliary:

hanoitowers(n-1, center, left, right)

(5) move n-1 disks from right to left, using center as auxiliary:

hanoitowers(n-1, right, center, left)

(6) move n-1 disks from right to center, using left as auxiliary:

hanoitowers(n-1, right, left, center)

4. Construct the solution to the size-n problem

Use the solutions for size-(n-1) problems to construct the solution for the size-n problem.

104

Figure 2.21 and the text on the left-hand side showed how we construct the solution for the size-n problem
based on the solutions for size-(n-1) and size- I problems, that is,

hanoitowers(n-1, left, right, center) // move n-1 disks left -> center

hanoitowers(l, left, center, right) // move 1 disk left -> right

hanoitowers(n-1, center, left, right) // move n-1 disks left -> center

In words, the solution for the size-n problem is: (1) Move n-1 disks from left peg to the center peg.
We simply assume that we can do it, because it is a size-(n-1) problem. (2) Move the remaining disk from

left to right. (3) Move n-1 disks from center to the right.

Once we have designed the solution, we can easily obtain the C program that solves the Hanoi Towers
problem as follows:

#include <stdio.h>

void hanoitowers(int n,

if (n == 1) {

char *S, char *M, char *D)

// stopping condition

printf("move top from %s to %s\n", S, D);

// output at stopping condition

else { // from size-(n-1) to size-n problem

hanoitowers(n-1, S, D, M);

hanoitowers(l, S, M, D);

hanoitowers(n-1, M, S, D);

void hanoi(int n) // define a simpler human-interface

hanoitowers(n, "Left", "Center", "Right");

void main() {

hanoitowers (3, "Source", "Spare", "Destination");

printf("------------------------------------\n");

hanoi(4);

In the program, we defined a one-parameter function hanoi (n) as a simpler user interface, in case the user
wants the hard-coded peg names. The function with more parameters is defined as a recursive function.

When the main () function is executed, the functions hanoitowers (3, "Source",

"Spare", "Destination") and hanoi (4) will be called, resulting in the following output describing
how to solve the size-3 and size-4 Hanoi Towers problems:

move top from Source to Destination

move top from Source to Spare

move top from Destination to Spare

move top from Source to Destination

move top from Spare to Source

move top from Spare to Destination

move top from Source to Destination

move top from Left to Center

105

move top from Left to Right

move top from Center to Right

move top from Left to Center

move top from Right to Left

move top from Right to Center

move top from Left to Center

move top from Left to Right

move top from Center to Right

move top from Center to Left

move top from Right to Left

move top from Center to Right

move top from Left to Center

move top from Left to Right

move top from Center to Right

As you can see from the example, the most important idea of recursive functions is that we simply assume
that we have the solution for the size-(n-1) problem and we do not need to solve it. Why does it work?
Because the recursive mechanism will actually solve the problem from size-I upward automatically; that
is, it will solve the size-I problem, then it will use the solution to the size-I problem to construct the solution
to the size-2 problem, and so on. Since we have given the solution to the size-I problem and we have
defined how to find the solution to the size-n problem based on the solution to the size-(n-1), we basically
have given solutions to the problem of all sizes of problems!

2.8.4 Insertion sorting

Now we will follow the fantastic-four abstract approach to solve the sorting problem in a simple way

(insertion sorting) to demonstrate recursion. Assume that we have an array containing n integers: A [n J •

The task is to sort then numbers in ascending order.

1. Formulate the size-n problem.

We can simply formulate the size-n problem as

int* sorting(int *A, int n);

where A is the initial address of the array to be sorted and n is the size of the array. The function will return
the initial address of the sorted array.

2. Find the stopping condition and the corresponding return value.

The stopping condition is n = 1. In this case, the size-I problem is sorting (int *A, 1), and the

solution or return value is the address of A. A is not changed because A has only one element and is already
sorted.

3. Select m and formulate the size-m problem.

Here we take a simple approach by reducing the size of the problem by 1. Thus, m
(n-1) problem is

sorting(B, n-1);

n - 1 and the size-

where B is the address of an array ofsize-(n-1). We assume B will be sorted ifwe call this function. This
is very important!

106

4. Construct the solution of the size-n problem.

Since step 3 can solve the size-(n-1) problem, it is easy to solve the size-n problem:

(1) We split array A into two parts: The subarray of the first n-1 elements is B and the remaining
element is x.

(2) We call the function in step 3 to sort the size-(n- 1) array B.

(3) We find the right position p for inserting x into B.

(4) We make space for x by shifting the elements after position p one place right.

(5) We insert x at the position p.

Figure 2.22 graphically illustrates the four steps of implementing the recursive sorting algorithm.

1. Formulate the size-n problem.
int* sorting(int *A, int n); I I I I I I I I

□

I I I I
2. Find the stopping condition and

the corresponding return
value.

3. Select m, formulate the size-m
problem, assuming

I I I I I I I I 11 IG

it is sorted.

4. Construct the solution of size-n
problem.

n- 1
assume

I I I I I I I I

I I I I I I I I
>x

I I I

I I I

Figure 2.22. The fantastic-four steps sorting an array recursively.

1

The following program implements the four steps in the abstract approach. The comments in the program
associate the statements with the four steps described above.

#include <stdio.h>

int* sorting(int *A, int n)

int *B, i, j, p = n-1, x;

if (n==l) return A; II stopping condition and return value

else {

X = A[n-1];

B = sorting(A, n-1);

i = O;

II Store the last element in x

II size-(n-1) problem

while (i < n-1) { II Start to construct size-n solution

if (x < B[i]) {

p i; I I locate the position p for x

i = n; I I exit the loop

107

else i++;
// x should be inserted at position p

for (j = p; j < n-1; j++) // make space
B[n-1-(j-p)] = B[n-1-(j-p)-1];

B[p] = x; // put x in the right place
return B;

// end of else branch

void main() {
int *SA, i, k, A[]= {3, 2, 4, 2, 9, 7, 1, 6}; // sample array
k = (int)sizeof(A)/sizeof(int); // get the length of the array
SA= sorting(A, k);
for (i = 0; i < k; i++)

printf("%d, ", SA[i]);

Figure 2.23 illustrates the execution process and the changes of the array. In part 1 of the recursive function
(before the recursive call), the array size is reduced by 1 every time the recursive function is called, till n =
0. Since the array index starts from 0, the array has one element when n = 0, as shown on the left-hand side
of the figure. On the right-hand side, corresponding to part 2 (after the recursive call), the last element is
inserted into the right position to form the size-n problem's solution at each level ofrecursion.

Initial array---• 3, 2, 4, 2, 9, 7, 1, 6
Last element is separated: 3, 2, 4, 2, 9, 7, 1 I 6
Last element is separated: 3, 2, 4, 2, 9, 711

Last element is separated: 3, 2, 4, 2, 9 I 7

.---+1,2,2,3,4, 7,916-----. l,2,2,3,4,6, 7,9

Last element is separated: 3, 2, 4, 2 I 9
Last element is separated: 3, 2 I 4 I 2

2, 2, 3, 4, 7, 911 1, 2, 2, 3, 4, 7, 9
2, 2, 3, 4, 9 I 7 2, 2, 3, 4, 7, 9
2,2,3,419 2,2,3,4,9
2,3,412 2,2,3,4

Last element is separated: 3 I 2 I 4
Last element is separated: 3 I 2

2, 3 14 -------2, 3, 4
____ 3 I 2 construct size-n solution

111 2, 3

n=O 3-----'

Figure 2.23. Three different repetition structures.

2.8.5 Merge sort algorithm

For some problems, it is possible to reduce the size by more than 1, resulting in a more efficient solution.
For example, in step 3 of the above sorting example, we could select m = Ln/2J (floor of n/2). In other
words, we divide the size-n problem into two approximately equal-sized problems by dividing the array A
into two half-sized arrays Bl and B2. Then we call

sorting(Bl, Ln/2J); // floor of n/2

sorting(B2, ln/21); // ceiling of n/2

respectively and have both Bl and B2 sorted. Then we merge Bl and B2 into an array B by comparing the
elements of the two subarrays sequentially. This sorting algorithm is called merge sort, which is one of the

108

most efficient sorting algorithms with a complexity ofO(nlogn). The pseudo code in Figure 2.24 shows the
sorting process through an example, illustrating how each subarray is split, sorted, and merged.

split

81 '--=-==-,....-'--=--"--='--=---r-'=------=--.,

sort

81 '-=t--'-----<"--<�r�"-----F--'

merge

8 12234566

Figure 2.24. Merge sort and its sorting process.

The pseudo code below shows the recursive algorithm that implements merge sort. In the algorithm, the
floor(x) function rounds x downward, returning the largest integer value that is not greater than x.

mergesort (A, L,R) {

if R > L then

else

{ M = floor((R+L)l2);

mergesort (A, L, M);

mergesort (A, M+l,R);

merge (A, L, M, R) ; }

return A;

II rounds down (R+L)l2 to integer

111111111111111111111111
L I\, R

merge (A, L, M, R) 1111111111111 111111111111
for i = M down to L do B[i] = A[i];

for j = M+l to R do B[R+M+l-j] = A[j]; L

i = L;

j = R;

for k=L to R do {

if B [i] < B [j] then

{ A[k]=B[i]; i i+l;

else

{ A[k]=B[j]; j j-1; }

Please study the pseudo code above and identify the code for defining:

1. size-n problem
2. stopping condition and return value
3. size-m problems
4. the size-n solution from the size-m solutions

109

M M+1 R

2.8.6 Quick sort algorithm

Merge sort has the best complexity O(nlogn) in all the comparison-based sorting algorithms. The big 0
notation is defined based on the worst case execution time. However, merge sort is not the fast algorithm
in terms of the average execution time, which is calculated based on the mean value of all possible input
combinations of the input array. Quick sort, on the other hand, the complexity O(n2). However, the average
execution time beats merge sort.

The idea of quick sort is to pick a value (any value) in the array as the pivot value to divide the array into
two subarrays, one with all its elements less than the pivot value, and the other with all its value greater
than or equal to the pivot value. The pseudo code below shows the recursive algorithm that implements
quick sort. In Chapter 5, we will give a full implementation of quick sort in Prolog.

void Quicksort (A, L, R) {

if R = L then return; else

k = split(A, L, R);

Quicksort (A, L, k-1);

Quicksort (A, k+l, R);

int split(A, L, R)

int pivot = A[R]; i = L; j = R;

while i < j do {

while (A[i] < pivot) do i = i+l;

while ((j > i) && (A[j] >= pivot)) do j = j - 1;

if (i < j) then

swap(A[i], A[j]); // swap the values

swap(A[i], A[R]);

return i;

2.8. 7 Tree operations

Graphs and trees are widely used data structures. A graph is a mathematical model and a data structure that
is widely for representing related objects. A graph consists of a set of nodes and a set of edges between the
nodes. A graph is a directed graph if a direction is defined for each edge, and a graph is an undirected
graph if there is no direction defined for any edge. Assuming that the direction of the edge is the driving
direction of streets, a directed graph a11ows the flow following the edge directions. An undirected graph
allows the flow in both directions of the edge. A path from Node Nl to Node N2 is a sequence of edges
connectingNl toN2,for example, (Nl, Xl), (Xl, X2), (X2, X3), ... , (Xk, N2).

A directed graph is a tree, if it does not contain a loop and there is no more than one path between any two
nodes. A tree is a rooted tree if it has a unique node that does not have an incoming edge. This node is the
root of the tree. A node that does not have outgoing edges is a leaf. The height or depths of a tree is the
number edges from the root to the deepest (farthest) leaf.

A tree is a binary tree, if any of its nodes can have at most two child (next) nodes. In a full binary tree, each
node has either no child or two children. A balanced binary tree is a tree in which the heights (depths) of

110

the two subtrees of every node never differ by more than 1. Its height is O(log2n). Figure 2.25 shows a
rooted tree, a binary tree, a full binary tree, and a balanced binary tree.

A binary search tree stores data in such a way that it keeps keys (used for indexing data) in sorted order, so
that data search will be much faster.

(a) Rooted tree (b) Binary tree (c) Full binary tree

Figure 2.25. Binary trees.

When inserting data into a binary search tree, the simplest algorithm is

1) If the tree is empty, insert the first number as the root;
2) If the tree is not empty:

(d) Balanced binary tree

a. If the incoming number is small than the key of the current node, insert the number to the
left subtree using recursion;

b. If the incoming number is greater than or equal to the key of the current node, insert the
number to the right subtree using recursion.

Using this simple insertion algorithm, the binary search will not be balanced. In the worst-case scenario,
when the input numbers are sorted, the tree becomes a linked list. Figure 2.26 shows a not balanced binary
search tree and a balanced binary search tree.

(a) A binary search tree (b) A balanced binary search tree

Figure 2.26. A binary search tree and a balanced binary search tree.

To maintain the binary search tree balanced when inserting, a much more complex algorithm must be
applied. Red-black tree is a data structure that attempts to have the tree balanced during insertion, with a
topic of algorithm class.

111

As data are searched much often than data are inserted, it is critical to make search faster than insertion.
The complexity of search algorithms on different data structures is listed as follows:

• The complexity is O(n) for linear search of data stored in arrays or linked lists.
• The complexity is O(n) for binary search is O(login), if the binary tree is balanced.
• The complexity is O(n) for binary search is O(log2n), if the binary tree is binary.

The following code shows a simple implementation of search and insertion of binary search tree, where the

common functions main and branching are similar to those discussed in the linked list section.

#include <stdio.h>

#include <string.h>

#include <stdlib.h> // used by malloc

#include <time.h>

struct treeNode {

int data;

struct treeNode *left, *right; // pointers to left and right

*root = O; //root is a global pointer to the root entry

void branching(char);

void insertion();

// function forward declaration

struct treeNode *search(struct treeNode *, int);

void traverse(struct treeNode *);

main() { II print a menu for selection

char ch = 'i';

srand((unsigned)time(0)); // Use current time as seed

while (ch != 'q')

printf("Enter your selection\n");

print£("

print£("

print£("

print£("

£flush (stdin);

i: insert a new entry\n");

s: search an entry\n");

t: traverse the tree and print\n");

q : quit \ n") ;

// flush the input buffer

ch = tolower(getchar());

branching(ch);

void branching(char c) {

int key;

switch (c)

case 'i':

insertion();

break;

case 's':

// branch to different tasks

// Not passing root, but use it as global

printf("Enter the key to search\n");

scan£ ("%d", &key);

search(root, key); // root call-by-value

112

break;

case 't':

traverse(root);

break;

// print all data

default:

printf("Invalid input\n");

struct treeNode * search(struct treeNode *top, int key) {

struct treeNode *p = top;

if (key == p->data)

printf("data = %d\n", p->data);

if (key <= p->data) {

else

if (p->left == 0) return p;

else search(p->left, key);

if (p->right == 0) return p;

else search(p->right, key);

Deletion is more complex than insertion and search. Three cases need to be considered, as shown in Figure
2.27, where the shaded node is the node to be deleted.

�Ji ,' 2 \
I I

' I

'-�

(a) Case 1 (b) Case 2 (c) Case 3

Figure 2.27. Three cases in deletion of a node.

Case 1: If the node to be deleted is a leaf, the node can be simply deleted.

� '

12 (1s) y

@r

Case 2: If the node to be deleted has only one child node, we can link the parent node to the child node.

Case 3: If the node X to be deleted has two child nodes, we can use a search function to find Y, the successor
of X, which is the large node that is smaller than X. We use Y to replace X. Then, the problem becomes
deleting Y from the tree. We repeat the same process with three possible cases for deleting Y. In the example
in Figure 2.27, Y falls into case 2, and we can use node 14 to 13.

113

2.8.8 Gray code generation

The Gray code, named after Frank Gray, also known as reflected binary code, is a binary coding system
where two successive values differ in only one digit. The Gray code was originally designed for preventing
spurious output from electromechanical switches. Today, the Gray code is widely used in facilitating error
correction in digital communications such as digital terrestrial television and some cable TV systems.

The main feature of the Gray code is that an n-bit Gray code can be constructed from (n-1)-bit code in the
process shown in Figure 2.28.

Following the fantastic-four abstract approach, we can formulate the problem and its solution in the
following four steps:

1. Formulate the size-n problem.
char *gcode(int n); // will return the array of n-bit geode

2. Find the stopping condition and the corresponding return value.
If n = 1, return array {'O', 'l '};

3. Formulate the size-(n-1) problem, assuming the geode is found for the size-(n-1) problems.
gcode(n-1) will return the (n-1)-bit geode

4. Construct the solution of size-n problem.
partl = gcode(n-1);
part2 = reverse(part 1)
left-append 'O' to each item in partl
left-append ' 1' to each item in part2
return: part 1 and part2

n = 1 n= 4
0
1 0 000

0 001
n = 2 0 011
0 0 0 010
0 1 0 110

�1 1 0 111
1 0 0 101

0 100

Steps to construct n-bit Gray code
1. For n = 1, the Gray code is simply {O, 1};
2. Assume we have obtained the (n-1)-bit code;
3. Duplicate the (n-1)-bit code to obtain two copies;
4. Append a 'O' to the left of the first copy of (n-1)-

bit code;
n = 3

�5
. Reverse the order of the second copy of the n-1-bit

0 00 1 100 code to obtain the reflection;
0 01 1 101
0 11 1 111 � 6. Append a '1 ' to the left of reversed (n-1)-bit code;
0 10 1 110

� 7. Append the two copies of the (n-1)-bit code to
=

1 10 1 010
� form the n-bit Gray code. �

1 11 1 011
1 01 1 001

=

1 00 1 000

Figure 2.28. Generating n-bit Gray code from (n-1)-bit Gray code.

The complete Gray code generation function and a sample main program are given as follows:

114

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#define columns 8

#define rows 256

char **gcode(int n);

void main() {

I I malloc

II double pow(double, double)

II The example limits the size to 7 columns

II 256 = pow(2, 8)

char **g; int i, n, p;

printf("please enter an integer n for n-bit Gray code\n");

scan f (" % d" , & n) ; I I Note : 0 < n < co 1 umn s

g = gcode(n); II Call recursive geode function

p = (int) pow(2, n);

for (i=O; i<p; i++)

printf("%s\n", g[iJ); II Print each element in array

char **gcode(int n) {

int i, j, p, q;

char **sizem, **sizen; II pointers to 2-D arrays

p = (int) pow(2, n); II The length of size-n-code

q = (int) pl2; II create an array of pointers

sizen = (char **) malloc(sizeof(char[rowsJ));

for (i =0; i<p; i++)

sizen[iJ = (char *) malloc(sizeof(char[columnsJ));

if (n<=l) { II stopping condition

sizen[OJ[OJ '0';

sizen[OJ [lJ '\0'; II add terminator

sizen[lJ[OJ '1';

sizen[l] [lJ

return sizen;

I \0 I;
II add terminator

else {

sizem = gcode(n-1);

for (i = O; i < q; i++)

sizen[iJ [OJ = '0';

for (j = 1; j<=n; j++)

size n [i J [j J = s i z em [i J [j -1 J ;

for (i = 0; i < q; i++)

sizen [q+iJ [OJ = '1';

for (j = 1; j <=n; j ++)

sizen [q+iJ [j J = sizem [q-i-1] [j-lJ;

for (i = O; i < q; i++)

free (sizem [i J) ; I I free each row

115

please enter an integer n
for n-bit Gray code

0000

0001

0011

0010

0110

0111

0101

0100

1100

1101

1111

1110

1010

1011

1001

1000

free (sizem) ;

return sizen;

II free the index

2.9 Modular design

Functions bring a level of abstraction into our programs. The abstraction makes our program easier to
understand and to manage. However, the programming task can still become too large to understand. We
need to introduce another level of abstraction, that is, modular design. Other advantages of modular design
include:

• Sharing: We can group some frequently used functions and data into a module for being shared
with other programmers (e.g., library functions).

• Separate compilation: This is a maintenance issue. Ifwe find a programming error or we need to
make functional modifications in a part of the program, we do not have to recompile the entire
program.

• Expandability: We can easily add new modules into the system.

So far, we have been focusing on designing a program to solve relatively small problems. This is called
programming-in-the-small. We need the skill of programming-in-the-small before we can do
programming-in-the-large, which combines programming modules into a large program.

To design a module in a large system, we need to separate the specification from the implementation. The
specification part tells what the module does and gives an external view of the module, while the
implementation part gives code that implements the specification. Variable and function names given in
the specification part are available to users inside the module as well as outside the module.

All programming languages provide mechanisms to support modular design. In C, specifications of
programs are stored in .h files, while implementations are stored in .c files. In order to use functions defined
in another module named, say, modulename. c, we need to use

#include "modulename.h" I I user-defined header files are quoted by " ... "

Consider the traffic light example in Section 2.4. Since the sleep function may be used by other programs,
we want to put this function and possibly other frequently used functions into a module, say, called
mylib. c, which contains the following code:

II file name: mylib.c

#include<time.h>

const float pi = 3.14159265;

II Sleep for a specified number of seconds.

void sleep(int wait) {

}

clock_t goal; II clock t defined in <time.h>

goal = wait * CLOCKS PER SEC + clock();

while(goal > clock())

II This function computes the volume of a cylinder:

double cylinder (int h, int r) { llh: height, r: radius

116

const double pi

return pi*r*r*h;

3.14159265;

Notice that a module does not need to have a main () function.

Then, we can put the headers of all functions, the type definitions, as well as the global variables to be

shared among different modules, in the header file called my lib. h. In this example, we have only two
functions and one type definition. Thus, the header file should look like:

typedef enum {red, amber, green} traffic_light;

void sleep(int wait);

double cylinder (int h, int r);

In the main program of the traffic light example, we do not need the function sleep, or the type definition.
The code of the main function is as follows:

#include <stdio.h>

#include "mylib.h"

main() {

// system library uses angle brackets to include

II user library uses quotes to include

traffic_light x = red;

printf("Red:\tStop!\n");

while (1)

switch (x) {

case amber:

sleep(l); //sleep 1 second

x = red;

printf("Red:\tStop!\n"); break;

case red:

sleep(6); //sleep 6 second

x = green;

printf("Green:\tGo>>>\n"); break;

case green:

sleep(12); //sleep 12 second

x = amber;

printf("Amber:\tBrake ... \n");

In Visual Studio programming environment, all modules (.c files) should be placed in the folder "Source
Files" and all the user-defined header files should be placed in the folder "Header Files," as shown in Figure
2.29.

117

(il 't9 10 '1ail >[t?J
� earch Solt1tion E:rplorer t.Ctrl+ ;; P ·

�
.,,, IS] Trafficlibrary ,,..

t> � External Dependencies. ,,..,,,'
.,,, ._i Header Files ,,..,,'

� IE) m)dib.h k'

iii Resource Files ,,..,'
� ,,.., .,,, ;ai Source File!i- ,,..,,'
I> ++ mylib.c k

,,..,

I> ++ Traffic_Light_Main,c �----

Library header file includes

the headers of all functions

Library file storing the

frequently used C functions

Main function that uses

the library functions

Figure 2.29. Organizing the modules and header files.

In object-oriented computing, better modularity is the main focus. We will discuss program design with
multiple classes and multiple modules in more detail in Chapter 3.

2.10 Case Study: Putting All Together

In this section, we give an example that applies many of the data structures and programming techniques
learned in this chapter, including array, string, enumeration type, pointer, pointer to pointer, linked list,
global variable versus local variable, call-by-value and call-by-address parameter-passing mechanisms,
memory management and garbage collection, and recursion. The memory management and garbage
collection will be further discussed in the C++ chapter in more detail, where memory leak detection and
detection tool will be introduced.

The first part of the example includes the declaration, forward declaration, the main function, and the
branching function.

#include <stdio.h>

#include <string.h>

#include <ctype.h>

#include <stdlib.h>

#pragma warning(disable: 4996) // comment out if not in Visual Studio

typedef enum {diploma = 0, bachelor, master, doctor} education;

// A struct for nodes of the linked list.

struct container {

} ;

struct person *plink; // points to a struct person.

struct container *next;

// A struct to hold attributes of a person

struct person {

char name[32];

char email[32];

int phone;

118

education degree;

} ;

void branching(char c);

char* get_name();

void print list(struct container* root);

int insertion(struct container** ptrToHead); II note: pointer to pointer

struct container* search(struct container* root, char* sname);

void deleteOne(struct container** ptrToHead);

void deleteAll(struct container** ptrToHead);

void print_all(struct container* root);
l**I

int main() {

} ;

II Declare head as a local variable of main function

struct container* head= NULL;

char ch= 'i';

do II Print a menu for selection

printf("Enter your selection\n");

printf("\ti: insert a new entry\n");

printf("\td: delete one entry\n");

printf("\tr: delete all entries\n");

printf("\ts: search an entry\n");

printf("\tp: print all entries\n");

print f (" \ t q : quit \ n") ;

fflush(stdin); II Flush the input buffer. Read section 2.6.3

ch= tolower(getchar());

branching(ch, &head);

print£ ("\n");

while (ch != 113);

return 0;

II Convert uppercase char to lowercase.

II 113 is 'q' in ASCII

l**I

II Branch to different tasks: insert a person, search for a person,

II delete a person, and print all added persons.

void branching(char c, struct container** ptrToHead) {

char *p;

switch (c)

case 'i':

insertion(ptrToHead);break;

case 's':

p = get_name();

search(*ptrToHead, p);break;

case 'd':

deleteOne(ptrToHead);break;

case 'r':

119

} ;

deleteAll(ptrToHead);break;

case 'p':

print_all(*ptrToHead);break;

case 'q':

deleteAll(ptrToHead); // free all memory when quit

break;

default:

printf("Invalid input\n");

The relationship between the container struct and the person struct is illustrated in Figure 2.30. Notice that
the head pointer is declared as a local variable in the main function, which is not visible in the other
functions, and thus, we need to use parameter passing to access and to modify the head pointer. To read the
head pointer, we can use call-by-value parameter passing, which are used in the functions search and
printAll. In the functions deleteOne and deleteAll, we need to modify the head pointer, and we need to pass
the address of head pointer into these functions, which is thus a pointer to a pointer.

ptrToHead head

container

*plink *plink
null

*next *next *next

name name name

email email email

phone phone phone

education education education

Figure 2.30. A linked list of containers, with pointers to a person node and to the next container.

In the following, we provide the remaining functions listed in the forward declaration part and discuss their
implementation.

/**/

// Delete the first person node in the linked list.

void deleteOne(struct container** ptrToHead)

int i = O;

struct container *toDelete = NULL;

if (*ptrToHead == NULL) {

printf("\nThe list is empty. Nothing was deleted.\n");

else if ((*ptrToHead)->next == NULL) {

free((*ptrToHead)->plink);

120

else

free(*ptrToHead);
*ptrToHead = NULL;

toDelete = *ptrToHead;
*ptrToHead = (*ptrToHead)->next;

free(toDelete->plink);

free(toDelete);

toDelete = NULL;

printf("\nA container node was deleted.\n");

} ;
l**I

II Recursively delete the entire list given the head of a linked list.

void deleteAll(struct container** ptrToHead)

} ;

struct container* pnext;

if (*ptrToHead NULL)

return;

else {

deleteOne(ptrToHead);

deleteAll(ptrToHead);

II Read the input from the user.

char * get_name()

char *p = (char *) malloc(32); II Use dynamic memory which does not go
out of scope

} ;

printf("Please enter a name for the search: ");

scanf("%s", p);

return p;

l**I

II Inserts the person to the sorted place. Note: A < a, and A will be
ordered first.

int insertion(struct container** ptrToHead)

int i = O;

struct container* newNode = NULL, *iterator = NULL, *follower = NULL;

struct person* newPerson = NULL;

newNode = (struct container*) malloc(sizeof(struct container));

II Case 1: The program is out of memory.

if (newNode == NULL)

printf("Fatal Error: Out of Memory. Exiting now.");

return O;

121

II Case 2: The structure still has unfilled slots.

else {

newPerson = (struct person*) malloc(sizeof(struct person));

if (newPerson == NULL) {

else

printf("Fatal Error: Out of Memory. Exiting now.");

return 0;

printf("Enter the name:\n");

scanf("%s", newPerson->name);

printf("Enter the phone number:\n");

scanf("%d", &newPerson->phone, sizeof(newPerson->phone));

printf("Enter the e-mail:.\n");

scanf("%s", newPerson->email);

do {

printf("Enter the degree: select 0 for diploma, select 1

for bachelor, select 2 for master, or select 3 for doctor:\n");

scanf("%d", &newPerson->degree);

if (newPerson->degree< diploma I I newPerson->degree >

doctor)

doctor);

printf("Please enter a value from Oto 3.\n");

while (newPerson->degree < diploma I I newPerson->degree >

newNode->plink = newPerson;

if (*ptrToHead == NULL)

*ptrToHead = newNode;

(*ptrToHead)->next = NULL;

return 0;

else {

if (strcmp(newPerson->name, (*ptrToHead)->plink->name)<0) {

newNode->next = *ptrToHead;

*ptrToHead = newNode;

return 0;

iterator = *ptrToHead;

follower = iterator;

while (iterator != NULL)

if (strcmp(newPerson->name,iterator->plink->name)<0) {

newNode->next = iterator;

follower->next = newNode;

return 0;

122

follower

iterator

iterator;

iterator->next;

follower->next = newNode;

newNode->next = NULL;

return O;

return O;

} ;

/**/

// Print the name, e-mail, phone, and education level of each person.

// It calls the helper printFirst to recursively print the list

void print_all(struct container* root)

} ;

struct container* iterator = root;

//Case 1: The structure is empty

if (iterator == NULL)

}

printf("\nNo entries found.\n");

return;

II Case 2: The structure has at least one item in it

else{

printFirst(root);

return;

void printFirst(struct container* root)

if (root ! = NULL) {

printf("\n\nname = %s\n", root->plink->name);

printf("email = %s\n", root->plink->email);

printf("phone = %d\n", root->plink->phone);

switch (root->plink->degree)

case diploma:

printf("degree = diploma\n");

break;

case bachelor:

printf("degree

break;

case master:

printf("degree

break;

case doctor:

printf("degree

bachelor\n");

master\n");

doctor\n");

123

} ;

break;

default:

printf("System Error: degree information corruption.\n");

break;

printFirst(root->next);

/**/

//Find a person by comparing names given the head of the linked list.

struct container* search(struct container* root, char* sname)

} ;

struct container* iterator = root;

while (iterator ! = NULL)

if (strcmp(sname, iterator->plink->name) == 0)

printf("\n\nname = %s\n", iterator->plink->name);

printf("email = %s\n", iterator->plink->email);

printf("phone = %d\n", iterator->plink->phone);

switch (iterator->plink->degree)

case diploma:

printf("degree = diploma\n");

break;

case bachelor:

printf("degree

break;

case master:

printf("degree

break;

case doctor:

printf("degree

break;

default:

bachelor\n");

master\n");

doctor\n");

printf("System Error: degree information corruption.\n");

break;

free(sname); // garbage collection

return iterator;

iterator iterator->next;

printf("The name does not exist.\n");

free(sname); // garbage collection

return iterator;

124

2.11 Summary

In this chapter, we started from basic issues in writing imperative CIC++ programs and went through
important and advanced topics in the languages. The focus is on the topics that are significantly different
from Java. The major topics we discussed are:

• Getting started with writing simple CIC++ programs;
• Control structures in CIC++ using syntax graphs;
• Relationships among memory locations, memory addresses, variable names, variable addresses,

and the value stored in a variable;
• Pointers and pointer variables, referencing, and dereferencing;
• Array-based and pointer-based string operations;
• Three different ways of introducing constants: macro, const, and enumeration types;
• Structure types and compound data types;
• File type and file operations;
• Three major parameter-passing mechanisms: call-by-value, call by address, and call-by-alias;
• Recursive structures; and
• A brief introduction to modular design. More modular design will be discussed in the C++ chapter.

Table 2.5 summarizes the features supported by C and C++, as well as by Java. As can be seen from the
table, C and C++ allow more flexibility, whereas Java is more restricted.

Feature C and C++ Java

Macro YES NO

Inlining YES YES

Global variables YES NO

Static variables YES YES

Pointer YES NO

Value semantics for all types YES Primitive types

Reference semantics for all types YES Reference types

String type char array YES

Union type YES NO

Parameter passing: call-by-value YES Primitive types

Parameter passing: call-by-alias C++ only NO

Parameter passing: call-by-address YES Reference types

Recursive call and application of the fantastic-four abstract approach YES YES

Table 2.5. Feature comparison between CIC++ and Java.

125

2.12 Homework, programming exercises, and projects

1. Multiple Choice. Choose only one answer for each question. Choose the best answer if more than
one answer is acceptable.

1.1 Forward declaration in modern programming practice

1.2

□ provides a level of abstraction. □ is never necessary.

□ is not required if <iostream> is included. □ is useless.

□ C uses strong type checking.

C language does not have a Boolean type because

□ C is not designed to handle logic operations.

□ Boolean values can be represented as integers. □ C++ has already defined a Boolean type.

1.3 Two functions are said to be mutually recursive if

□ one function is defined within the other function.

□ they call each other.

□ each function calls itself.

□ they are independent of each other.

1.4 Assume that a string is declared as char str [] = "alpha", what is the return value of sizeof

(str)?

□ 1 □ 5 □ 6 □ 7

1.5 Assume that two pointers are declared as: char *strl = "alpha", *str2;
Which assignment statement below will lead to a semantic error?

D str2 = strl; D str2 = 0; D strl = strl+l; D *str2

1.6 Which of the following declarations will cause a compilation error?

D char s [5]; D char s [3] = "hello";

D char s [] ; D char s [] = { 's'' 't' ' 'r' } ;

1.7 Given a declaration: int i= 25, *j = &i, **k = &j;
which of the following operations wilJ change the value of variable i?

□ j++; □ k++;

1.8 Given a declaration: int i= 25, *j = &i, **k = &j;

□ (*k) ++;

which of the following operations will cause a compilation error?

□ i++; D(&i)++; D(*j)++;

□ (**k) ++;

□ (**k) ++;

1.9 What is the maximum number of padding bytes that a compiler can add to a structure?

□ 40

"Hi
II;

D 1 D 2 D 3 D more than 3

1.10 The enumeration type of values are stored in the memory as

□ bool □ double □ int □ string

127

1.11 If we want to store a linked list of structures, with each structure containing different types of data,
into a disk file, what file type should we choose?

□ array file □ binary file □ text file □ structure file

1.12 The reason that we need to call fflush() or cin. ignore() is because the previous

□ output leaves a character in the file buffer. □ output fails to complete its operation.

□ input leaves a character in the file buffer. □ input fails to complete its operation.

1.13 Assume the following structure is defined in a 32-bit programming environment.
struct myNode {

char name[30];
char
struct

x, * y;

location[32];
myNode* next;

what is the size of x?

□ 4 bytes

what is the size of x?

□ 4 bytes

□ 66 bytes

□ 66 bytes

□ 68 bytes □ 72 bytes

□ 68 bytes □ 72 bytes

1.14 What parameter-passing mechanism cannot change the variable values in the caller?

□ call-by-value □ call-by-alias □ call-by-address □ None of them

1.15 What parameter-passing mechanism requires the actual parameter to be a variable?

□ call-by-value □ call-by-alias □ call-by-address □ None of them

1.16 Given the forward declaration: void foo(char c, int &n); what parameter passing mechanisms are
used? Select all that apply.

□ call-by-value □ call-by-alias □ call-by-address □ None of them

1.17 What type of recursive function is structurally equivalent to a while-loop?

□ head-recursion □ middle-recursion □ tail-recursion □ mutual recursion

The Ackermann function is defined recursively for two nonnegative integers k and n as follows. Answer
the following three questions based on the function and the fantastic-four abstract approach.

A(s, t) =
A(s - 1, 1), {

t + 1,

A(s - 1,A(s, t - 1)),

1.18 What is the size-n problem?

□ (s, t) □ A(s, t)

ifs= 0
if s > 0 and t = 0
ifs > 0 and t > 0

□ A(n)

1.19 What is the stopping condition and return value at the stopping condition?

□ s = 0 and t+l □ s = 0 and t = l □ s > 0 and t = 0

128

□ n

□ s > 0 and t > 0

1.20 What is the size-m problem that can be used for calculating the size n problem? Select all that apply.

□ A(s, t) □ A(s-1, 1) □ A(s, t-1)

1.21 The data stored in a binary search tree is sorted, if the tree is traversed in

□ preorder □ postorder □ inorder

□ A(s-1, A(s, t-1))

□ in any order

1.22 Consider an array, a linked list, doubly linked list, and a binary search tree. Which data structure
requires fewest comparisons in average to search an element stored in the data structure?

□ binary search tree □ array □ doubly linked list □ linked list

2. What is a byte and what is a word in memory? What is the name of a variable? What is the address
of a memory location? What is the content of a memory location?

3. What is the difference between a memory location and a register? How do we access a memory
location and a register?

4. A variable has several aspects (name, address, value, location), and different aspects are used in
different places.

4.1 If a variable is used on the left-hand side of an assignment statement, which aspect is actually used?

4.2 If a variable is used on the right-hand side of an assignment statement, which aspect is actually used?

4.3 If we apply the address-of operator"&" to the variable (i.e., &v), which aspect is returned?

5. Given a piece of C code

1 #include <stdio.h>

2 void main () {

3 char str [] = "hello", *p;

4

5

6

7

8

p = str;

while (*p != '\0')

(*(p++))++;

print£ ("str = %s, p = %s\n", str, p);

5 .1 What is the exact output of the printf statement?

5.2 At line 3, ifwe replace char str [J = "hello" by char * str = "hello", it will cause

□ compilation error. □ runtime error.

5.3 At line 3, ifwe replace *p; with char *p

□ compilation error. □ runtime error.

□ no error at all.

str; it will cause

□ no error at all.

□ incorrect output.

□ incorrect output.

5 .4 In lines 5 and 6, the string is accessed using a pointer and pointer operations. Rewrite the program
from line 3 to line 6 so that only array operations are used to access the string.

6. What are the three different methods of defining constants in CIC++? What are the differences of the
constants defined in these methods?

129

6.1 Can a constant defined by const ever be modified? If yes, how and why? If no, why?

6.2 Can a constant defined by #define ever be modified? If yes, how and why? Ifno, why?

6.3 What are the advantages of defining an enumeration type instead of using an integer type directly?

7. What is the difference between a structure type and a union type? In what circumstances are union
types useful?

8. Parameter passing

8.1 What is a formal parameter and what is an actual parameter?

8.2 What is the difference between call-by-value and call-by-alias?

8.3 Where do you need to use call-by-value and where do you need to use call-by-alias?

8.4 How do you use call-by-value and call-by-alias?

9. Structure type

9 .1 How do you define a structure type? How do you declare a variable of a structure type? How do you
declare a pointer to a structure type variable?

9 .2 How do you obtain memory statically for a structure type variable? How do you create dynamic
memory and link it to a pointer?

9 .3 How do you use the name of a structure and a pointer to a structure to access the fields in the
structure?

10. Programming exercise. This question gives you practice in using declarations, forward declarations
and scopes of functions and variables, and type checking in C and C++.

Given the C program below, answer the following questions.

// This program shows function and variable declarations and their

scopes.

#include <stdio.h>

int keven = 0, kodd = O;

long evennumber(short);

long oddnumber(short);

int even(int);

int evennumber(int a) {

if (a == 2) {

else

printf("keven

return keven;

a = (int)a/2;

if (even (a)) {

keven++;

// genuine declaration

%d, kodd = %d\n", keven, kodd);

// Is an even?

return evennumber(a);

130

else {

kodd++;

return oddnumber(a);

II return a;

int oddnumber(int b) {

if (b == 1) {

printf("keven

return kodd;

II genuine declaration

else

b = 3*b+l;

if (! even (b))

kodd++;

%d, kodd = %d\n", keven, kodd);

II Is b odd?

return oddnumber(b);

else {

keven++;

return evennumber(b);

II return b;

int even(int x) {

return (x%2

II% is modulo operator.

0) ? 1 : 0);

void main() {

register short r = 0;

int i = r;

float f;

for (r = 0; r < 3; r++) {

II a register type variable is faster,

II it is often used for loop variable

printf("Please enter an integer number that is >= 2\n");

scanf("%d", &i);

if (even (i))

f evennumber(i);

else

f oddnumber(i);

10.1 Save the file as declaration. c. (consider the program to be a C program). Choose the commands

under the menu "Build":

131

Compile declaration.c

Build declaration.exe

Execute declaration.exe

What errors or warning messages are displayed?

10.2 Save the file as declaration. cpp. Repeat question 10.1.

10.3 Analyze the type requirement of functions and variables in the given program. Make minimum
changes to declaration. cpp to remove all compilation errors and warnings.

10.4 Explain global variables and local variables. List the global variables and local variables in the
program. The parameters of a function are local variables too.

10.5 Can we swap the order of the two variable declarations: "register short r

= r; "? Explain your answer according to C/C++'s scope rule.

O;" and "int i

10.6 Explain the forward declaration. If the forward declarations in the program were removed, what
would happen?

10.7 Explain type casting and type coercion. List all type castings and type coercions used in the program.

10.8 According to the analysis above and the definition of strong type checking, are C and C++ strongly
typed? Which language's typing system is stronger, C or C++?

10.9 Program correctness/reliability issue. A correct program must terminate for all valid inputs. The
given program has been tested by many people. It has always terminated for the inputs used.
However, nobody so far can prove that this program can terminate for any integer input. Thus, this
program is often used as an example of improperly designed loop structure or recursive function. A
good programming practice in writing loop or recursive function is to guarantee that the loop variable
or the size-related-parameter (they control the number of iterations) is defined on an enumerable set
(e.g., integer), has a lower bound (e.g., 0), and decreases strictly (e.g., 9, 6, 5, 3, 2, 1). Add a print­
statement in functions evennumber and oddnumber to print the size-related parameter value and

use input values i = 3, 4, and 7, respectively, to test the program. Give the three sequences of values
printed by the added print-statements.

10.10 Compare questions 10 with homework question 17 in Chapter 1 and explain why it is difficult to

prove that the program can terminate for any integer input.

11. The following program will open and read an existing text file called f ilel. txt, add a number
between 1 and 25 to each and every character, and then write the modified text into a new file called

file2. txt. Read this program carefully and answer the questions following the program.

// Filename: encryptionO.c

#include <stdio.h>

#include <string.h>

// Read all characters in the file and put them in a string str

void file read(char *filename, char *str) {

132

FILE *p; //p is declared as a pointer to the FILE type.

int index=0;

p=fopen(filename, "r"); II Open the file for "read".

// Other options incl. "w" (write) and "a"
(append)

while (! feof (p))
character

// while not reaching the end-of-file

it

*(str+index++)=fgetc(p); //read a character from file and put

str[index-1]='\0';

puts(str);

£close (p);

II in str. Then p is increased automatically.

II add the string terminator

// print str. You can use print£ too.

// close the file

void encrypt(int offset, char *str) {

int i,l;

l=strlen(str);

printf("unencrypted str = \n%s\n", str);

for(i=0;i<l;i++)

str[i] = str[i]+offset;

printf("encrypted str = \n%s \nlength = %d\n", str, l);

void file_write(char *filename, char *str) {

int i, l;

FILE *p;

p=fopen (filename, "w") ;

l = strlen(str);

for(i=0;i<l;i++)

fputc(*(str+i),p);
pointed

£close (p);

void main(void)

char filename[25];

char string[1024];

strcpy (filename, "file 1. txt") ;

file_read(filename, string);

encrypt(7, string);

strcpy(filename, "file2.txt");

file_write(filename, string);

// open the file for "write".

// string-length

// write a character in the file

II by p. p is increased automatically

// close the file

11.1 Enter the following text in a text file named f ilel. txt.

Politician A said "Politician Bis a liar, because he promised in last
year's election that he would give every homeless person a home".

133

Politician B said "Politician A is a liar, because he promised in last
year's election that he would give every jobless person a job". Are these
functions mutually recursive?

Enter the following text in a text file named file4. txt.

Politician B said "Politician A is a liar, because he promised in last
year's election that he would give every homeless person a home".

Politician A said "Politician Bis a liar, because he promised in last
year's election that he would give every jobless person a job". These
quotations are not mutually recursive.

Use filel. txt file and the key = 7 as the test case for the program encrytion0. c. Load the

program into Visual C++ and execute the program. The program should generate a file called
file2. txt.

Hint: f ilel. txt must be in the same directory as the program.

11.2 Rewrite the void encrypt (int offset, char *str) function in the given program using

pointer operations to replace array operations, for example, replace st r [i J with * (st r+ i) .

Replace the for-loop with a while-loop, where you must use a terminator to detect the end of the
string. Comment the code where changes have been made.

11.3 Write a function called int difference (char *filenamel, char *filename2) that

compares two files. The file's names must be passed to the parameters filenamel and filename2,

respectively. The program should return the number of characters that are different (mismatches).
For example, if the two files are exactly the same, the function returns 0. If the program detects 10

mismatches, it returns 10. If one file is longer than the other, the extra characters count as differences.
This function must use string and pointer operations and compare each character one after another.
You may not use the library function for string comparison. Write at least two lines of comment at
the beginning of the function, describing what this function does and how it is implemented.

11.4 Write afunctionvoid faultinjection(char *filenamel, char *filename2, int n)

that injects n character faults into the file specified by the parameter f ilenamel. Each character
fault is a modification to a character by adding a random number between -10 and 10. The positions

of the n faults are chosen randomly between the first character and the last character in the file. The

modified file is stored in the file specified by the parameter filename2.

Note: To generate a random number, you can call a library function, for example, rand () . For a
simple example, the following code prints 20 pseudo random numbers between 0 and 99. The

function srand (unsigned) seeds the random-number generator with the current time so that the
numbers generated by rand () will be different every time you call it.

#define size 100

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

main () {

int i, rdm;

// function rand() is defined in this library

// function time(NULL)is defined in this library

srand((unsigned)time(NULL)); // Use current time as seed

for (i = 0; i<20; i++) {

rdm = rand() % size; // modulo operation

printf("random = %d\n", rdm);

134

11.5 Rewrite the main () function to perform the following operations described in the pseudo code.

encrypt filel.txt into file2.txt

decrypt file2.txt into file3.txt II use a negative key

Find the differences between filel.txt and file3.txt

Find the differences between filel.txt and file4.txt

Call faultinjection (file4.txt, file5.txt, n); II choose n = 5

Find the differences between file4.txt and file5.txt

12. The following program generates maps representing mazes, where blank (space) characters represent
open rooms through which a path may pass, while "X" characters represent closed rooms that cannot
be used on any path. The starting position is marked by a character "S" and the goal position is

marked by a character "G." For a given maze, one can write a program to check if there is path from

"S" to "G," and print the paths if they exist. In this exercise, we generate only the mazes and do not
attempt to write a program to find the paths. You are given the following C code, try to understand

what it does and make the changes given in the following questions.

II This program exercises the operations on multidimensional array

#include <stdio.h>

#pragma warning(disable: 4996) II comment out if not in Visual Studio

#define maxrow 50

#define maxcolumn 50

char maze[maxrow] [maxcolumn]; II Define a static array of arrays of
characters.

int lastrow = O;

II Forward Declarations

int triple(int);

void initialization(int, int);

void randommaze(int, int);

void printmaze(int, int);

int triple(int x) { II% is modulo operator.

return ((x % 3 == 0) ? 1 0);

void initialization(int r, int c) {

int i, j;

for (i = O; i < r; i++) {

maze [i] [OJ = 'X'; II add

maze [i] [c - 1] = 'X'; II add

maze [i] [c] =
I \0 I;

II add

for (j = 1; j < C
- 1; j++)

border

border

string

if ((i == o) I I (i == r - 1))

terminator

maze [i] [j] = 'X'; I I add border

else

135

maze [i] [j] I I •
II initialize with space

II Add 'X' into the maze at random positions

void randommaze(int r, int c) {

int i, j, d;

for (i = l; i < r - l; i++)

i

j

for (j = l; j < c - 2; j++)

d = rand ();

rand()

rand()

if (triple (d))

%

%

ma z e [i] [j] ' X ' ;

(r - 2) + l;

(c - 3) + l;

maze [i] [j] Is Ii II define Starting

do {

i = rand() % (r - 2) + l;

j = rand() % (c - 3) + l;

while (maze [i] [j] == ' s ') ;

point

maze[i] [j] = 'G'; II define Goal point

II Print the maze

void printmaze(int r, int c)

int i, j;

for (i = O; i < r; i++)

for (j = O; j < c; j++)

printf ("%c", maze [i] [j]);

printf ("\n");

void main ()

int row, column;

printf("Please enter two integers, which must be greater than 3 and
less than maxrow and maxcolomn, respectively\n");

scanf ("%d\n%d", &row, &column) ;

while ((row <= 3) I I (column <= 3) I I (row >= maxrow) I I (column >=
maxcolumn)) {

printf("both integers must be greater than 3. Row must be less
than %d, and column less than %d. Please reenter\n", maxrow, maxcolumn);

136

scanf ("%d\n%d", &row, &column);

initialization(row, column);

randommaze(row, column);

printmaze(row, column);

llencryptmaze(row, column);

llprintmaze(row, column);

lldecryptmaze(row, column);

llprintmaze(row, column);

The program above can be written using pointer operations, instead of using array indices, The code
below shows the pointer version of the initialization function.

void initialization(int r, int c) {

int i, j;

char *p = O;

for (i = O; i <= r; i++) {

p = &maze [i] [OJ;

II Tt points to initial address of the ith row of the maze

*p = 'X'; II add left border

*(p + c - 1) = 'X'; II add right border

* (p

for

+ c) = '\0'; II

(j = 1; j < C -

if ((i == o) I I

* (p + j)

else

*(p + j)

add string terminator

1; j++) {

(i == r - 1))

'X'; II add top and bottom borders

I f •
II initialize inner maze with space

Now, you can follow the example to complete the following exercise questions.

12.1 Rewrite the function int triple(int) using macro definition.

12.2 Rewrite the function randommaze(row, column) by substituting pointer operations for all array
operations. You may not use indexed operation like maze[i]U], except getting the initial value of the

pointer.

12.3 Rewrite the function printmaze(row, column) by substituting string operations for all character
operations.

12.4 Write the function encryptmaze(row, column) based on the pointer operations. The function will

encrypt the maze in the following secret rules:

• An integer i will be added to each space character, where i is the row number of the character.

• An integer j will be added to each non-space character (X, S, and G), where j is the column number

of the character. Do not encrypt the terminator character '\O'.

137

12.5 Write the function decryptmaze(row, column) to decrypt the maze.

12.6 Call encryptmaze(row, column) and decryptmaze(row, column) functions in the main() function by
removing the comment marks, and call the printmaze(row, column) after encryption and after
decryption.

13. You are given the following program. Save the given program under the name contactbook. c.
The program takes a command line parameter: the database's name in which the contact records
are to be saved, assuming the database name is person. dbms.

You can pass command line parameters within the Visual Studio environment as follows:
(1) Use Visual Studio to compile and build the program contactbook. c.
(2) Choose menu "Project" and "Properties ... ".
(3) Under the item "Con£ iguration Properties," click on "Debugging," and enter the

file name person. dbms to the right of the field "Command Arguments."
(4) Click OK to return.
(5) Now you can execute the program.
II. You can also pass command line parameters using the following method:
(1) Compile and build the program.
(2) Choose MS Windows "Start" Menu.
(3) Choose "Run ... ".
(4) Click on "Browse ... ".
(5) Browse to the folder where your contactbook. c is stored.
(6) Go into the folder "Debug." (This folder should have been created by the compile and build

commands in step 1.)
(7) Choose the executable program called contactbook and then click "open."
(8) You should see the path" ... \Debug\contactbook. exe."
(9) Append the file name person. dbms to the end of the path, with a space in between. The

entire command sequence should look like: " ... \Debug\ contactbook. exe"
person. dbms.

(10) Click "OK." The program should start to run.

The tasks of this assignment are as follows.

13 .1 Read the program carefully and make sure you understand the program and each function in the
program. Then add at least two lines of comments below each function's forward declaration to
explain what the function does.

13 .2 Write a function called sort () . The function should sort the existing linked list by the name field
in dictionary order. Use the simplest sorting algorithm. For example, the selection sort: find the name
with the smallest dictionary value and place it in the first place in the linked list, and then find the
name with the next smallest dictionary value and put it in the second place, and so on.

13 .3 Add your sort () function into the program and modify the program to offer users an extra option
"sort" in the menu.

13 .4 Test each function of the program: insert, delete, search, and sort. You can quit the program and
restart the program. The records stored in the linked list should be saved and reloaded into the list.
To copy the output in Visual Studio: Highlight the text you want to copy, click on the small icon

138

"c:\" at the top-left comer of the output window. Choose Edit-Copy. Then you can paste the output

into a text file.

// Manipulation of files and singly linked list

// Command line parameter inputs

#include <stdio.h>

#include <stdlib.h> // malloc is defined in this library

#include <string.h>

struct contact {

// string operations are defined in this library

char name[30];

char phone[20];

char email[30];

struct contact *next;

}*head = NULL;

char *file_name;

// forward declaration

void menu();

void branching(char c);

struct contact* find_node(char *str, int *position);

void display_node(struct contact *node, int index);

int insert();

int deletion();

int modify () ;

int search();

void display_all();

void load_file();

void save file();

int main(int argc, char *argv[]) {

char ch;

if(argc != 2) // Two command line parameters required

printf("Command Line Parameters Required !\n");

printf("Try again \n");

getchar(); // enter any character to return

return -1;

printf("SINGLY LINKED LIST\n");

printf("******************");

file_name = argv[l];

load_file ();

do {

menu ();

£flush (stdin); // Flush the standard input buffer

ch = tolower(getchar()); // read a char, convert to lower case

branching(ch);

139

} while (ch != 'q');

return O;

void menu ()

printf("\n\nMENU\n");

printf("----\n");

printf("i: Insert a new entry.\n");

printf("d: Delete an entry.\n");

printf("rn: Modify an entry.\n");

printf("s: Search for an entry.\n");

printf("p: Print all entries.\n");

printf("q: Quit the prograrn.\n");

printf("Please enter your choice (i, d, rn, s, p, or q) --> ");

void branching(char c) {

switch (c)

case 'i':

SUCCESSFULLY.\n");

case 'd':

case 'rn':

case IS I:

case 'p':

case 'q':

if(insert() != 0)

print£ ("INSERTION OPERATION FAILED. \n") ;

else

print£ ("INSERTED NODE IN THE LIST

break;

if (deletion () ! = 0)

print£ ("DELETION OPERATION FAILED. \n");

else

printf("DELETED THE ABOVE NODE SUCCESSFULLY.\n");

break;

if(rnodify() != 0)

printf("MODIFY OPERATION FAILED.\n");

else

printf("MODIFIED THE ABOVE NODE SUCCESSFULLY.\n");

break;

if (search () != 0)

printf("SEARCH FAILED.\n");

else

printf("SEARCH FOR THE NODE SUCCESSFUL.\n");

break;

display_all ();

break;

save file();

break;

default: printf("ERROR - Invalid input.\n");

printf("Try again \n");

break;

140

return;

int insert ()

struct contact *node;

char sname[30];

int index = 1;

printf("\ninsertion module \n");

printf("Enter the name of the person to be inserted: ");

scan£ ("%s", sname);

node = find_node(sname, &index);// find duplicates

if(node != NULL)

else

printf("ERROR - Duplicate entry not allowed.\n");

printf("A entry is found in the list at index %d.\n", index);

display_node(node, index);

return -1;

node = (struct contact*) malloc(sizeof(struct contact));

if (node == NULL)

printf("ERROR - Could not allocate memory !\n");

return -1;

strcpy(node->name, sname);

printf("Enter his telephone number: ");

scanf("%s", node->phone);

printf("Enter his email address: ");

scanf("%s", node->email);

node->next = head;

head = node;

return 0;

int deletion ()

char sname[30];

struct contact *temp, *prev;

int index = 1;

printf("\nDeletion module \n");

printt("Please enter the name of the person to be deleted: ");

scan f ("% s " , s name) ;

temp = head;

while (temp != NULL) // search for the node to be deleted

if (stricmp(sname, temp->name) != 0) { //case insensitive
strcmp

141

index);

prev = temp;

temp = temp->next;

index++;

else {

printf("Person to be deleted is found at index %d.",

display_node(temp, index);

if(temp ! = head) prev->next = temp->next;

else head = head->next;

free(temp); // Garbage collection

return O;

printf("The person with name '%s' does not exist.\n", sname);

return -1;

int modify() {

struct contact *node;

char sname[30];

int index = 1;

printf("\nModification module \n");

printf("Enter the name whose record is to be modified in the\n");

printf("database: ");

scan£ ("%s", sname);

node = find_node(sname, &index);

if(node != NULL)

else

printf("Person to be modified is found at index %d.", index);

display_node(node, index);

printf("\nEnter the new telephone number of this person: ");

scanf("%s", node->phone);

printf("Enter the new email address of this person: ");

scanf("%s", node->email);

return O;

printf("The person with name '%s' does not exist \n", sname);

printf("database.\n");

return -1;

int search ()

struct contact *node;

char sname[30];

int index = 1;

142

print£ ("\nSearch module \n");

printf("Please enter the name to be searched in the database: ");

scanf(11%s", sname);

node = find_node(sname, &index);

if(node ! = NULL)

else

printf(1
1 Person searched is found at index %d.", index);

display_node(node, index);

return 0;

printf(11 The person '%s' does not exist.\n", sname);

return -1;

void display_all() {

struct contact *node;

int counter = 0;

print f (11 \nDisplay module 11) ;

node = head;

while(node ! = NULL) {

display_node(node, ++counter);

node = node->next;

printf("\nNo more records.\n");

void load_file ()

FILE *file_descriptor;

struct contact *node, *temp;

char str[30];

file_descriptor = fopen(file_name, "rb"); // "b" for binary mode

if(file_descriptor ! = NULL) {

while(fread(str, 30, 1, file_descriptor) == 1)

node = (struct contact*) malloc(sizeof(struct contact));

strcpy(node->name, str);

fread(node->phone, 20, 1, file_descriptor);

fread(node->email, 30, 1, file_descriptor);

if(head ! = NULL) temp->next = node;

else head = node;

node->next = NULL;

temp = node;

fclose(file_descriptor);

143

void save file() {

FILE *file_descriptor;

struct contact *node;

file_descriptor = fopen(file_name, "w");

if(file_descriptor != NULL)

else

node = head;

while(node != NULL) {

fwrite(node->name, 30, 1, file_descriptor);

fwrite(node->phone, 20, 1, file_descriptor);

fwrite(node->email, 30, 1, file_descriptor);

node = node->next;

printf("\nERROR - Could not open file for saving data !\n");

getchar();

exit(-1);

struct contact* find_node(char *str, int *position) {

struct contact *temp = head;

while (temp != NULL) {

if (stricmp(str, temp->name) != 0) {

temp = temp->next;

(*position)++;

else return temp;

return NULL;

void display_node(struct contact *node, int index)

printf("\nRECORD %d:\n", index);

printf("\t\tName:\t\t%s\n", node->name);

printf("\t\tTelephone:\t%s\n", node->phone);

printf("\t\tEmail Address:\t%s\n", node->email);

14. Follow the fantastic-four abstract approach to write a recursive function to find the largest number

in a given array of integers.

15. In Section 2.7, an array is sorted by a simple recursive function. In step 3 of the fantastic-four abstract

approach, the m is selected to be n - 1. Rewrite the sorting program, but select m to be n / 2 (merge

sort). You can assume that the initial size n is a power of 2 to simplify the problem.

16. Fibonacci numbers are defined by

144

fili.,_n) = ! �
fili.,_n -1) + fili.,_n - 2)

n=O

n = I

n�2

Follow the fantastic-four abstract approach to implement the function in C.

16.1 Define the size-n problem.

16.2 Define the stopping conditions and the return values.

16.3 Define the size-m problem.

16.4 Explain how you construct the size-n solution from the size-m solutions.

16.5 Implement the function in C that can be used to compute Fibonacci numbers for the integer
n20.

16.6 Write a main program that takes the input of n from the keyboard; call the recursive function, and
then print the result.

17. The Ackermann function is defined recursively for two nonnegative integers s and t as follows:{ t + 1,

A(s, t) = A(s - 1, 1),
A(s - 1,A(s, t - 1)),

ifs= 0

ifs > 0 and t = 0
ifs > 0 and t > 0

17 .1 Follow the fantastic-four abstract approach to implement the function in C. The function should take
two integer numbers, m and n, and return the value of A(s, t), which is a long integer. Notice that the
Ackerman function is a very rapidly growing function. Even values of 4 for m and n will yield an
extremely large number, and thus using a long integer as the return value is necessary.

17 .2 Write a main program that takes inputs of m and n from the keyboard; call the recursive function,
and then print the result.

145

Chapter 3

The Object-Oriented Programming

Language, C++

We discussed CIC++ as an imperative programming language in Chapter 2. Although we mainly discussed
C, we used the notion ofC/C++. The reason is that C is part ofC++, or C is the imperative part of C++. In
this chapter, we study C++ as an object-oriented programming language, or we will focus on the object­
oriented features of the language.

The main idea of object-oriented programming is to use abstract and extendable data types as the building
blocks of programs. The principle behind the object-oriented paradigm consists of a number of
programming concepts, including the following:

• Abstract data type (class): Encapsulates related information in a class. A class (type) is used to
declare objects (variables) that consist of data and operations (functions). Access to data members
can be accurately controlled through operations defined in the data type.

• Inheritance: Derives a new class (derived class) based on an existing class (base class). Inheritance
allows us to reuse and extend the data structures and functions that we or others have defined.

• Class hierarchy: Links all related classes together using inheritance.
• Late binding and polymorphism: Support virtual functions that use late binding. Allow pointers

to objects in the class hierarchy to move downward, and allow the same function call to bind to
different implementations of the function.

In this chapter, we will describe the object-oriented features of C++. At the end of the chapter, you should:

• have a good understanding of the object-oriented programming paradigm;
• be able to define classes with data members (also called member variables) and member functions

(also called methods) in C++;
• understand the differences and similarities between data types and classes;
• understand the memory allocation mechanism in programming languages and the three memory

allocation mechanisms: static, stack, and dynamic memory;
• be able to apply major object-oriented concepts in program design, including inheritance, class

hierarchy, polymorphism, dynamic memory allocation, and late binding.

The chapter is organized as follows. In Section 3 .1, a complete example of a C++ program is presented.
The program will be used and explained in the following sections. In Section 3 .2, the composition and
definition of classes are discussed. The static and dynamic memory allocation and deallocation are studied
in Section 3 .3. Section 3 .4 discusses the main features of the object-oriented programming paradigm,

147

including class inheritance, inheritance-based class hierarchy, polymorphic pointer, virtual functions, and
late binding. In Section 3.5, C++ exceptions and exception handling are discussed.

3.1 A long program example: a queue and a priority queue written in C++

In this section, we present a complete C++ program that illustrates various features that we will discuss in
the following sections:

• class definition;
• the in-class implementation of member functions and the out-class implementation of member

functions using scope resolution operators;
• constructor and destructor;
• overloading of member functions;
• creation of stack and heap objects;
• access of class members using dot operator and pointer-to-member operators.

The following program is only explained through comments embedded in the program in this section.
Different parts of the program will be further explained and studied in the following sections.

#include <iostream>

using namespace std;

class Queue II Class definition

private: II private members can only be accessed in the class

int queue_size;

protected: II protected members can be accessed in derived classes

int *buffer; II pointer to first element of array

int front; II used for removing an element from the queue

int rear; II used for adding an element into the queue

static int counter; II It must be initialized outside the class

public: II public members can be accessed by all functions

Queue(void) { II constructor with no parameters

front = O;

rear = O;

queue_size = 10;

buffer = new int[queue_size]; II create a heap object of array

if (buffer ! = NULL) counter++; II counting objects

Queue (int n) {

front = O;

rear = 0;

queue_size = n;

II overloaded constructor with one parameter

buffer = new int[queue size]; II create a heap object of array

if (buffer ! = NULL) counter++; II counting objects

virtual ~Queue(void) { II destructor

delete buffer; II You must use "delete [] buffer;" if buffer points

148

buffer = NULL; II to an array of objects, instead of integers.

counter--; II decrement the# of objects

void enqueue(int v) { II add an element at the end of the queue

if (rear < queue_size)

else

buffer[rear++] = v;

if (compact())

buffer[rear++] = v;

int dequeue(void) { II return and remove the 1st element from the queue

if (front < rear)

return buffer[front++];

else {cout<< "Error: Queue empty"<<endl; return -1;}

private:

bool compact(void); II implementation outside class

} ;

int Queue: :counter = O;

II static class member of Queue is initialized here outside class

II End of the class definition

class PriQueue : public Queue

public:

IIPriQueue is derived from Queue

} ;

int getMax(void); II return and remove the max value from priority queue

PriQueue(int n) : Queue(n) { };

II base class constructor may not be inherited. It has to be explicitly

II called. PriQueue's constructor simply calls Queue's constructor;

~PriQueue() { II base class destructor may not be called or

delete buffer; II inherited. We must explicitly use delete.

buffer = NULL;

counter--; II decrement the counter of objects

bool Queue: :compact(void) { II using scope resolution operator

if (front == 0) {

cout<<"Error: Queue overflow"<<endl;

return false;

else {

for (int i=O;i<rear-front;i++)

buffer[i]=buffer[i+front];

rear = rear - front;

149

front = O;

return true;

int PriQueue::getMax(void) { II get & remove max value from priority queue

int i, max, imax;

if (front < rear) {

max = buffer[front];

imax = front; II imax holds the index of current max value

for (i=front;i<rear;i++) {

if (max < buffer[i])

max = buffer[i];

imax = i;

for (i=imax;i<rear-l;i++)

buffer[i] =buffer[i+l]; II remove the max value

rear rear - 1;

return max;

else {

cout<< "Error: Queue empty"<<endl;

return -1;

void main() {

Queue Q1(5);

Q1.enqueue(2);

Q1.enqueue(8);

int x = Ql.dequeue();

int y Ql.dequeue();

II main function must be outside any class

II will call constructor Queue(int)

II insert 2 into Ql

II insert 8 into Ql

cout << "x = " << x << endl << "y = " << y << endl;

Queue *Q2 = new Queue(4); II will call constructor Queue(int)

Q2->enqueue(12); II insert 12 into Q2

Q2->enqueue(18); II insert 18 into Q2

x = Q2->dequeue();

y = Q2->dequeue();

cout << "x =
11 << x << endl << "y = 11 << y << endl;

PriQueue *Q3 = new PriQueue(4); II will call constructor Queue(int)

Q3->enqueue(12); II insert 12 into Q3

Q3->enqueue(18);

Q3->enqueue(14);

x = Q3->getMax();

y = Q3->getMax();

II insert 18 into Q3

II insert 14 into Q3

150

cout << "x = " << x << endl << "y

delete Q2; Q2

delete Q3; Q3

NULL;

NULL;

3.2 Class definition and composition

" << y << endl;

The class is the fundamental building block of C++ programs. A class consists of a number of class
members. A member can be a data member or a function member (also called a member function or
method).

3.2.1 Class definition

The syntax of the class definition is given in Figure 3 .1. The access privilege of a member has three levels.
If a member is prefixed with the public access privilege, the member can be accessed by any functions
inside or outside the class. If a member is prefixed with no access privilege (default access privilege) or the
private access privilege, the member can only be accessed by member functions within the same class. If
a member is prefixed with the protected access privilege, the member can only be accessed by member
functions within the same class and the inherited classes (derived classes).

class ➔ <className> ➔ {

f
<access Privilege> ➔ <members>➔

<accessPrivilege>:

public:

private:

<members> ___________ __,,

<dataField>

<operation>

Figure 3.1. Syntax graphs of class definition.

Public and protected access privileges give access to the group of classes that meet the conditions. C++ also
allows a class to give access to any particular class or function through the definition of friend access. For
example, when you define class A, you can list class B and function C as friends. Then, all functions in
class B and function C will be able to access all public, protected, and private data and functions in A. In
other words, a friend function has the same access privilege as a function inside the class. Notice that the
friendship is not mutual. If class A lists class Bas a friend, all functions in class B can access all members
in class A. However, the functions in class B cannot access the protected and private members. The
following code shows an example of declaring a friend class.

#include <iostream>

using namespace std;

class Circle

friend class Cylinder; // De8lare class Cylinder as a friend

private:

double radius;

double area(double r) { return 3.1416*r*r

} ;

151

class Cylinder {

public:

double volume(Circle &c, double r, double h) {

double a = c.area(r) ; // area function is private in Circle class

return a*h;

} ;

} ;

void main ()

double v, r = 5, h 10

Circle c;

Cylinder y

v = y.volume(c, r, h) ;

cout << "cylinder volume = " << v << endl;

// The program will output: cylinder volume = 785.4

Now we will examine the class definition in the Queue example given in Section 3 .1. In this example, we
define a Queue class that has several data and function members. There is one data member that is private.
There are three data members that are protected. All function members are declared as public so that they
can be accessed by all functions in the program.

In the previous chapter, we discussed that a C structure consists of a number of data members. As you can
see in the definition of a C++ class, the C structure is a special case of a class when:

• there are only data members and no member functions;
• all members are public members.

If you are familiar with Java, you can see that the class definitions in the two languages are similar.
However, C++ allows you to put the implementation part of a member function outside the class to separate
the specification (function declaration) from the implementation (the body of the function) by using a scope
resolution operator.

3.2.2 Scope resolution operator

In Java, implementations of member functions (methods) are always within the class definition. In C++,
they can be inside the class definition (for short functions) or outside the class definition (for longer
functions). It is more efficient to have function implementations in the class because we save the time
needed to jump to another memory area to access the implementations. However, it is structurally clearer
to separate the implementation from the specification.

If the implementation of a function is outside the class, we must specify the class to which the
implementation belongs. The scope resolution operator in C++ serves this purpose. It consists of the class
name and two consecutive colons. Generally, the format is

return_type class_name: :function_name(parameters) {implementation};

For the Queue example we discussed above, we put the shorter functions enqueue and dequeue in the
class, while putting the longer function's implementation outside the class using the scope resolution

operator, that is "Queue: : ," as shown in the code below.

bool Queue::compact(void) {

if (front == 0) {

//Queue:: is the scope resolution operator

152

cout<<"Error: Queue overflow"<<endl;

return false;

else {

for (int i=O;i<rear-front;i++)

buffer[i]=buffer[i+front];

rear = rear - front;

front = O;

return true;

For much longer implementation, it makes the structure better to put the body of a member function outside
the class definition, if the implementation is very long (e.g., over a hundred lines).

3.2.3 Objects from a class

Like a structure in C, a class in C++ can be used to declare variables. The variable declared by a class is
called an object of the class. For example:

Queue r; II r is a variable (object) of Queue class.

Queue *s;

r.enqueue(25);

X = r.dequeue();

s = new Queue;

s->enqueue(25);

y = s->dequeue();

II

II

II

II

II

II

s is a pointer to a Queue variable.

push/add a number into the Queue variable

pop/remove the front element from the Queue

create a heap object of the Queue and link it to s

push a number into the object pointed to by s

pop the front element from the Queue object.

As can be seen in this example, we can allocate memory for a variable (object) from the stack or from the

heap. In this example, we declare r as a variable of Queue class. The variable obtains memory (or the

object is created) from the stack during the compilation. We can immediately push an integer into the r

object by the r. enqueue (int) operation.

On the other hand, variable s is not an object of the Queue class. It is a pointer to a Queue object from the

heap. The object is dynamically created by a new operation:

s = new Queue();

Having created the object, we push an integer into the object linked to s by the s->enqueue (int)
operation.

3.2.4 Definition of constructor and destructor

A constructor in a class is a special member function whose name is the same as the class name. A
constructor is used to automatically initialize objects when an object is created. We can also define multiple
constructors with different numbers of parameters or different types of parameters. Defining two or more
functions with the same name is called overloading. As long as these functions have different parameter
lists, they are considered different functions by the compiler.

A destructor is a special member function whose name is the same as the class name but prefixed by the
tilde character "~." The tilde character is often used for complement operation, suggesting that the
destructor is the complement operation of the constructor. A destructor is used to delete objects (collect

153

garbage) created within the class, normally within the constructors. A destructor cannot have any
parameters or a return value, and thus it cannot be overloaded. The definition and the use of constructors
are basically same as those in Java. However, there is no destructor in Java programs. Instead, Java uses a
built-in garbage collector to collect automatically all objects that have no references.

We defined two overloaded constructors and a destructor in the Queue class in the example program. The
first constructor has no parameters and it creates an object of array with 10 elements. The second constructor
takes a parameter and creates an object of array with the given number of elements. Both constructors
initialize the front and rear pointer to zeros, indicating an empty queue.

The definitions of constructors and the destructor are relatively simple. However, understanding how
memory is allocated by the constructor and deallocated by the destructor is not trivial. We will devote the
entire next section to discussing the general memory management in imperative and object-oriented
programming languages like C, C++, and Java.

3.3 Memory management and garbage collection

When a program is started, the operating system (OS) will allocate a segment of memory to the program.
The memory allocated to a program is managed by the programming language environment (runtime
system) and it is divided into three areas: static, stack, and heap areas as shown in Figure 3.2.

Starting address �

Static memory

Heap pointer--+

Stack pointer -+

Global functions

Global and static

variables & objects

Heap

l

I
Stack

size known at

compilation t ime

size known at
compilation time

Variables and objects created
using "new" or "malloc,"
including member functions

all local var iables and
local objects, including
member functions

Figure 3.2. Partition of the memory allocated to a program.

The programmers can choose from which area to obtain memory by declaring their variables in different
ways. In CIC++:

All static local variables in functions obtain memory from static memory. In other words, if we want to
have memory from the static area for any variable, we can add the qualifier static before the variable
declaration, for example, "static int s;" will declare a static integer variable. All global variables
(variables declared outside any functions) obtain memory from static memory, whether the qualifier
static is used or not.

154

All non-static local variables in functions obtain memory from the stack. These functions include the global
functions and the member functions in objects. This stack is also called program runtime stack to
differentiate it from other possible stacks used in the computer system.

All dynamically allocated variables obtain memory from the heap. In C, the memory allocated by the
function malloc is from the heap area. In C++, the memory allocated by using new is from the heap area.
If a class contains data members and function members, the data members will obtain memory from the
heap when an object is created using new. However, local variables in the member functions will not obtain
memory until the functions are being executed, and the local variables in these functions will obtain memory
from the language stack.

Now the question is what difference will it make to a programmer to use these different memory areas?
This question will be answered in the following subsections.

3.3.1 Static: global variables and static local variables

Static memory is allocated statically, that is, during the compilation stage (before the program is executed).
There is only one copy of the static memory. Changes made to a static variable will have an impact on all
the other functions that use the variable. A static variable will go out of scope only if the program is
terminated. Why do we need a static local variable?

The following function shows a situation where using a static local variable is better than using a global
variable:

void login() {

static int counter

readid_pwd();

if (verified())

counter++;

O; // will be initialized only once

// count the # of users logged in

This function allows users (callers) to login to a secure resource and keeps track of the number of users
who entered the resource. If the counter variable is not declared as static, the variable will be re­
allocated and initialized every time the function is called. As a static variable, counter will be allocated
and initialized only once. Thus, the variable can keep the history of the logins.

If a static local variable is declared as a class member, it may not be initialized when it is declared. It must
be initialized outside the class using the scope resolution operator. In the Queue class example, a static
local variable counter is declared in the class. It has to be initialized outside the class using the scope
resolution operator:

class Queue {

static int counter; // declaration is inside the class

int Queue: :counter = O; // initialization is outside the class

The variable counter is incremented in the constructors and decremented in the destructor. The variable
can keep track of how many objects of the Queue class exist.

Generally, a static local variable could be declared as a global variable. The advantages, however, of using
a static local variable are twofold:

155

• It puts the variable declaration in the place where the variable is actually used. It makes the program
easier to read and to understand.

• It prevents other functions from accessing the variable. As a global variable, all other functions can
read and modify it.

Although a static local variable exists all the time, it is invisible outside the function. In the following

program example, we define a static local variable counter in the login () function and a global variable

also called counter. Although both variables obtain their memory from the static memory area, they are
two independent variables and there is no name conflict.

#include <iostrearn>

using narnespace std;

int counter = O;

void login(void) {

II Global variable

static int counter = O; II Static local variable

counter++; II Modify local variable

cout << "login counter " << counter << endl;

void rnain(void) {

int i;

for (i=O;i<S;i++)

counter = counter + 2;

login ();

cout << "global counter " << counter << endl;

The output of the program is as follows. It can be seen that, within the function login (), only the static

local variable counter is visible. Outside the function, only the global variable is visible.

login counter 1

login counter 2

login counter 3

login counter 4

login counter 5

global counter = 10

3.3.2 Runtime stack for local variables

Local variables are variables declared within a function. When the control enters a function, a block of
memory (called a stack frame) is created on the stack. All non-static local variables obtain memory from
the stack frame. When the control leaves the function, all these local variables are freed and the contents of
these variables are no longer valid (no longer accessible). More details on stack frames used to
accommodate local variables and to support reentrant and recursive function calls are discussed in
Appendix A.

The stack memory allocation is illustrated in the example in Figure 3.3. As shown in the left part of Figure

3.3, the program consists of two functions. The main function has one local variable i. The function bar

has two local variables j and k. Please note that the formal parameter of a function is a local variable to the
function.

156

The state (O) shows the initial state of the stack before the main function is executed. When the control

enters the main function, the local variable i obtains the memory on the top of the stack, as shown in stack
state (1) . The value of i is initialized to O and then incremented to 1. Then i is passed as the actual

parameter to the function bar. When the control enters the function bar, the two local variables j and k
obtain memory on the top of the stack, as shown in state (2) . The value of i is passed to the formal

parameter j. Please note that j and i have different memory locations. j has a copy of i's value. When j

is modified in the function bar, the modification has no impact on variable i.

Program

int bar(int j)

int k = 2;

j = j + k;

return (j);

void main(void)

int i =0;

i++;

i = bar(i);

(0)

Runtime
Stack

occupied

i

occupied

free

free

free

free

free

i =

(2)

(3)

(4)

0, 1

Figure 3.3. A simple program and its runtime stack.

k k 2

J. j 1, 3

i i 1
occupied

k freed

j freed
i i = 1, 3

occupied

k freed

j freed

i freed

occupied

When the control exits the function bar, variables j and k go out of scope. The stack pointer returns to its

original position before it entered the function. The memory used for variables j and k, is thus freed, as

shown in stack state (3) . Therefore, we cannot access j and k outside the function. Finally, when the
control exits the main function, variable i is also freed and the stack pointer returns to the position it held

before it entered the main function, as shown in state (4) in Figure 3 .3.

Since local variables are automatically garbage-collected by the runtime stack when they go out of scope,
there is no need for programmers to explicitly return the memory to the system.

Having understood the stack used to allocate memory for local variables, we can easily understand how
recursive functions are implemented. In fact, no special mechanism is needed. The stack that handles all
local variables handles the variables in recursive functions, too.

Now we examine the following recursive function fac (n) . There are two local variables in the function:

The formal parameter n and a temporary variable fa c that holds the return value from the (n -1)l11 iteration.

Figure 3.4 shows the runtime stack before and during the execution of the recursive function fac (3).

#include <iostream>

using namespace std;

int fac (int n) {

if (n <= 1) return 1; else return n* fac(n - 1);

void main() {

int i = 3, j;

j = fac(i);

157

cout << "j " << j<< endl;

State (o) is the state before the function fac (3) is called. When the control enters the function fac (n)

for the first time, the two local variables n and fac obtained memory on the stack, as shown in state (1).

Formal parameter n is initialized to the actual parameter 3, but variable f ac is not given a value yet. Within

the first iteration, fa c (n -1) is called and the function is reentered. Again, the two local variables obtain

memory from the stack. Now, n is initialized to the actual parameter value 2 and fac is not given a value,
as shown in state (2) in Figure 3.4. The variables n and fac in the second iteration are different from n

and fac in the first iteration, although they happen to have the same names. Since they have different
scopes, they are considered different variables.

(0)

➔

3)

➔

occupied

n

fac

n

fac

n
fac

occupied

n = 1

fac 1

1)

-.

4)

n n = 3
fac

occupied

n

fac
n = 2 n = 2 -. n

fac
n = 3 n

fac

occupied

fac 2

n = 3

2)

➔ n

fac

n
fac

occupied

(5)

n

fac

n

fac

➔ n

fac

occupied

Figure 3.4. The runtime stack of a recursive program.

n = 2

n = 3

n = 3
fac 6

Within the second iteration, fa c (n -1) is called again. In this iteration, n is initialized to 1 and the condition

(n <= 1) is true. Now the function fac (1) is actually completed. It did not complete before. Now a value

is then returned to fac in this iteration, as shown in state (3). The return of iteration 3 completed the
function call f ac (1) in iteration 2 and the return value fac = 1 is passed into iteration 2. The operation
n * fac (1) then will produce a value 2, as shown in state (4). The return value 2 will, in turn, be passed

to iteration 1 and produces a value 6, as shown in state (5) in Figure 3 .4. When the final iteration is

completed, the fa c (n) function exits and the stack pointer will return to its original state (O) .

If you compare the recursive function call here and the ordinary function call in the previous example, you
can see that the processes of variable allocation on the stack are handled in exactly the same way.

In fact, at the assembly language (or machine code) level, the variable fa c used for holding the return value
is not on the stack. Instead, a register is used. A register can be considered a global variable used by the
compiler, which is invisible to the high-level language programmers. Since the concept of register is not a

part of high-level language programming, we use a stack variable fac here to make the value passing
visible on the stack.

158

3.3.3 Heap: dynamic memory allocation

The third area in the data section is the heap. Heap is used for dynamic memory allocation requested by
operations like malloc (size) in C and new class_name in C++. For example, in C,

struct Contact { // define a structure

char name[30];

int phone;

*p;

p = (struct Contact *) malloc(sizeof(struct Contact));

The function malloc will acquire a memory block from the heap. The size of the memory block should be

the size of the Contact type variable, and we cast the address of the piece of memory to the Contact
pointer type. In C++, we use the new operator to acquire the memory for an object of Contact class, as
shown in the code below:

class Contact { // define a class

char name[30];

int phone;

} ;

Contact *p = new Contact();

The data types that acquire memory from the heap are called reference types because their variables take
memory addresses (references) as their values.

3.3.4 Scope and garbage collection

So far, we have explained when we should use static, stack, and heap memory. We have also explained
how we acquire memory from static, stack, and heap areas. The last question we need to answer is, do we
need to worry about garbage collection? In other words, do we need to deallocate memory that we
allocated? The answer to the question depends on where we acquire the memory.

According to the definitions, global and static variables should exist for the entire lifetime of the program
(even when they are invisible), and thus they should never be garbage-collected by the programmer or by
the runtime system. When the main function exits, the OS that starts the program will reclaim the entire
memory segment allocated to the program. Thus, if a variable or an object is static or global, we do not
need to worry about collecting its memory.

If a variable or an object obtains its memory from the stack, the memory will be deallocated automatically
by the system. As explained in Section 3 .3 .2, when the control enters a function, local variables or objects
obtain memory from the stack. When the control exits the function, the stack pointer moves back to the
original position it held when it entered the function; that is, the memory allocated to the local variables is
returned back to the stack. This memory deallocation is managed by the scope rule of the language: The
scope of a variable starts from the declaration and ends at the end of the block. When a variable goes out
of scope, the memory allocated to the variable returns to the system.

However, if variables or objects acquire their memory from the heap, it will not be automatically

deallocated or freed. We will have to explicitly use free and delete operations to return the memory

allocated by malloc in C and by new in C++, respectively.

Now we go back to the Queue example discussed earlier in this chapter. We now focus on the constructor
and the instantiation of objects in another function, as shown in the following segment of the code:

Queue(int n) { // overloaded constructor with one parameter

159

front = O;

rear = O;

queue_size n;

buffer = new int[queue_size]; // create a heap object of array

void foo ()

Queue Q1(5);

Ql.enqueue(2);

Ql.enqueue(8);

int x = Ql.dequeue();

int y = Ql.dequeue();

// will call constructor Queue(int)

// insert 2 into Ql

// insert 8 into Ql

cout << "x " << x << endl << "y = " << y << endl;

Queue *Q2 = new Queue(4);

Q2->enqueue(12);

Q2->enqueue(18);

x = Q2->dequeue();

y = Q2->dequeue();

// will call constructor Queue(int)

// insert 12 into Q2

// insert 18 into Q2

cout << "x " << x << endl << "y " << y << endl;

delete Q2; Q2

delete Q3; Q3

NULL;

NULL;

The declaration "Queue Ql (5) ; "will create a stack object Ql shown in the left part of the diagram in
Figure 3.5. Object Ql has four data members: queue_size, front, rear, and a pointer variable
*buffer. When Ql is created, the constructor Queue (int n) will be called and a heap object int [5]
will be created and linked to the pointer *buffer, as shown in the right part of the diagram in Figure 3.5.

*buffer

queue_size

front

rear

Ql

an object

from stack

int[S]

an object from heap

Figure 3.5. A stack object is first created and then a heap object is created.

On the other hand, the declaration with the new operator "Queue *Q2 = new Queue (5) ; "will create a
pointer variable Q2 on the stack, and then create a Queue object with four data members from the heap.
The constructor Queue (int n) will create a further object int [5 J from the heap and link it to the pointer
*buffer, as shown in Figure 3.6.

160

Q2 A queue object int[5]

I I ... *buffer,.... ,....

a pointer queue size

variable front

from stack rear

An object

from heap An object from heap

Figure 3.6. A pointer variable is created from the stack; a Queue object and an int [5 J object are created
from the heap.

Since any program will be allocated to only a limited amount of memory, garbage collection is extremely
important, especially for those programs that continuously add and delete data. In Java, an automatic and
expensive garbage-collection mechanism is implemented to collect unused memory. It is expensive because
the system has to maintain a reference counter associated with each object created. When the reference
counter drops to zero, the object is no longer accessible and thus can be collected. C++ does not have an
automatic garbage-collection mechanism. The garbage is partially collected by the system and partially the
responsibility of the programmers. Table 3 .1 summarizes the memory allocation and deallocation
mechanisms, and the applications of static, stack, and heap memory.

Memory Allocation Deallocation Application

Static Global variables: declared Deallocated by the system Unique copy m global or
outside any class or local context
function; local variables when the main function

with static prefix exits

Stack Local variables declared in Deallocated by the system Temporary variable used in
a function when the function exits a function

Heap Use malloc in C; or use The programmer must Variables that should never

new in C++ explicitly use free in C; or go out of scope unless

use delete in C++ explicitly deleted

Table 3.1. Allocation and deallocation of different kinds of memory.

As we can see from the table, the heap is the only memory that programmers need to garbage-collect. If
you write a constructor and create an object in the constructor, you must write a destructor and call the

delete operation in the destructor to delete the object. If you are using a class defined by somebody else,
you should not worry about garbage-collecting the objects created in the constructor. The destructor should
collect the object automatically.

If you create an object in your program, you must call the delete operation in an appropriate place to
delete the object. For example, assume you are writing a program to maintain a database. You create an

object in a function called insertion () that adds a new data item into your database. Then you should

have a function called deletion () that removes an unwanted data item from the database. In the deletion

function, you should not only remove the links to the data item, but also use the delete operation to
garbage-collect the memory that holds the data item. If you fail to do so, you have a memory leak that will
eventually lead to failure (out of memory) of the entire system. Now consider memory deallocation in the

foo () function in the Queue example. We created a stack object Ql and a heap object is created in the

161

constructor and linked to the buffer pointer in Ql, as shown in Figure 3.5. When Ql goes out of scope,
Ql is returned to the stack. Now what happens to the heap object (integer array) linked to Ql? If Ql is
simply deallocated, the object from the heap will hang up and can never be accessed or garbage-collected.
To avoid this situation, the C++ runtime system will call the destructor whenever a function exits, to delete
any objects that are created in a constructor and are linked to an object that is going out of scope.

In the f oo () function in the example above, we also created a heap object and linked it to Q2. Since this
object is not created in a constructor, we must call the delete operation outside the destructor to delete
the object. We call the delete operation before exiting the foo () function. When the object linked to Q2
is deallocated, what happens to the heap object (integer array) linked to the object, as shown in Figure 3 .6?
Again, to garbage-collect the heap object created in the constructor, the delete operation will call the
destructor to delete any objects that are created in a constructor and are linked to an object that is being
deleted.

In summary, the destructor wi11 be called in the following situations:

1. When a function exits and a local object (from stack) goes out of scope. The destructor will be
called to garbage-collect any objects linked to the local object before the memory of the local object
goes out of scope.

2. When a program (the main function) ends and global or static objects exist. Since the main function
is treated like any other functions, the destructor will be called. However, when the main function
exits, the entire program exits, the OS will take back the entire memory segment allocated to the
program.

3. When the delete function is called. An object allocated using the new operator (from heap)
outside the class must be explicitly deallocated using the delete operator. The destructor will be
called to garbage-collect any objects linked to the object to be deleted.

4. When the destructor is explicitly called. The destructor is simply a function. A user can call the
destructor function like calling any other functions.

Furthermore, to garbage-collect the memory in a collection of objects, we need to delete each object through
an iteration structure. For example, to delete a linked list of object, one cannot simply set the head pointer
to null or delete the head only. Below is an example of deleting a linked list using a while loop, which
delete the objects one by one from the head to the tail.

temp = head;

while (temp != null)

temp = temp->next;

delete head;

head = temp;

One can also use a recursive procedure to delete the objects backward from the tail to the head, as shown
in the code below:

void deleteList(ListNode *p) {

if (p == null)

return;

else {

deleteList(p->next); // size-(n-1) problem

delete p;

162

How do we delete an array of objects? We can use a loop to delete each element, just like we did in the
examples above.

However, the language provides a library function to delete all the elements one by one without the user to
explicitly use a loop. The operation is delete[] p; where p is pointing to an array of objects or structures.
The code below shows an example of using delete[] p operation:

#include <iostream>

using namespace std;

#define size 4

class arrayObject {

public:

} ;

int x; double y;

arrayObject() { II constructor showing it is called by printing

cout << "arrayObject's constructor called" << endl;

~arrayObject() { II destructor showing it is called by printing

cout << "arrayObject's destructor called" << endl;

void main() {

arrayObject *p, *q; II declare two pointer variables to the object

p = new arrayObject[size]; II Create an array of objects

for (q = p; q < p + size; q++) {II Initialize the objects

q->x 10;

q->y = 1.5;

for (q = p; q < p + size; q++) {

cout<<"Element address "<<q<<" Element x value: "<<q->x<<endl;

cout<<"Element address "<<q<<" Element y value: "<<q->y<<endl;

delete[] p;

The output of the program shows that the destructor is called four times (size of the array), because the
delete operation is called four times automatically to delete each element of the array.

,'\l'l'c\yOhject' :; con:;t 1•uc tor c,,lled
,'\l'l'i\yOh,jec t' s cons t1•ncto1• r.alled
arrc\yOhjec t' :; con:;-tructor called
a1•1•ctyOh,iect' s constl'uctol' called
Elerr1ent add1•e 005DC144 EleP1ent)(Vc\lue 10
Element add1•e 005DC144 Eh:ment y value 1 c· .J

Eler�ent adrlt•e _, 005DC151 Element X v,1111.e 10
Element add1•e 00!:.DCi!:.4 Element y value 1.S
El1:111ent ,.uhh·c !.� 005DC164 EleP1ent X v,1:ltte 10

Element addre 00SDC161 Elcr�ent y va.lue LS
Eler�ent culd1•e s 005DC174 Ele111ent X value 10

Element adclre s 00SDC174 Element y value 1.S
a1•ray0hjec t' s ctestructot• called
cu•ray0hjec t' s dc:.:tructor called
a1•t•ct90hject' s ctestl'ltctot• ca 11 eel
a1•1•ay0hject':; clest1·uctor called

163

3.3.5 Memory leak detection

To make sure that your program does not have a memory leak, you should create a memory a11ocation and
deallocation table that lists all the malloc (new) calls and the corresponding free (delete) calls that garbage­
collect the memory created by the malloc (new) calls.

Tools have been developed to detect memory leak. Visual Studio has a built-in tool to detect possible leak.
To use the tool, you will need to define the flag to map malloc calls to C Run-Time (CRT) debugger and to
include necessary library functions.

We will use the following program to demonstrate memory leak detection in Visual Studio. The program
is the C++ version of the case study discussed in Chapter 2, Section 2.10.

#include <iostream>

#include <string>

#include <stdlib.h> // include memory leak detection library functions

#include <crtdbg.h> II include memory leak detection library functions

#pragma warning(disable: 4996) II comment out if not in Visual Studio

using namespace std;
I************************** Macros ************************I

#define _CRTDBG_MAP_ALLOC II Define flag to map malloc calls to debugger

#define ARRAY SIZE 32

I****************** Forward Declarations ******************/

class container;

class person;

void branching(char c, container** pointerToHead);

char* get_name();

void printFirst(container* root);

int insertion(container** pointerToHead);

person* search(container* root, char* sname);

void deleteFirst(container** pointerToHead);

void deleteAll(container** pointerToHead);

void printAll(container* root);

I****************** Class Definitions ******************/

II A class to hold attributes of a person

class person{

public:

char *name; II a pointer to string. No memory for the string

char *email; II a pointer to string. No memory for the string

int phone;

person() { II Default constructor.

name = NULL;

email NULL;

phone = O;

} ;

II Constructor WITH parameters to initialize the class properties

person(char *cName, char *cEmail, int iPhone) {

164

II given

name = new (char[ARRAY_SIZE]); // acquiring memory for storing
name

email = new (char[ARRAY_SIZE]); // acquiring memory for storing
email

} ;

} ;

strcpy(name, cName);

strcpy(email, cEmail);

phone = iPhone;

// initialize name

// initialize email

// initialize phone

virtual ~person()

delete name;

delete email;

} ;

// Destructor: Deallocate all heap memory.

class container {

public:

// A class for nodes of the linked list.

} ;

person *plink;

container *next;

// points to a person object

container() { // Default Constructor

plink = NULL;

next = NULL;

} ;

// Constructor initializing plink and next.

container(person *p, container *n) {

} ;

plink = p;

next = n;

int main () { // Entry point of the program.

container* head = NULL; // Declare head as a local variable of main

// Print a menu for selection

char ch = 'i';

do

std: :cout << "Enter your selection" << endl;

std:: cout << "\ti: insert a new entry" << endl;

std:: cout << "\td: delete one entry" << endl;

std:: cout << "\tr: delete all entries" << endl;

std:: cout << "\ts: search an entry" << endl;

std:: cout << "\tp: print all entries" << endl;

std:: cout << "\tq: quit" << endl;

std::cin >> ch;

ch = tolower(ch); // Convert any uppercase char to lowercase.

branching(ch, &head); // passing pointer to head pointer

std: :cout << endl;

while (ch ! = 'q');

165

return O;

} ;

II Branch to different tasks:, search, delete, print

void branching(char c, container** pointerToHead) {

} ;

char *p;

switch (c) {

case 'i':

insertion(pointerToHead); break;

case 's':

p = get_name();

search(*pointerToHead, p); break;

case 'd':

deleteFirst(pointerToHead); break;

case 'r':

deleteAll(pointerToHead); break;

case 'p':

printAll(*pointerToHead); break;

case 'q':

deleteAll(pointerToHead); II free all memory

_CrtDumpMemoryLeaks(); II Call memory leak report function

break;

default:

std: :cout << "Invalid input. Please select again" << endl;

II Recursively delete the entire list given the head of a linked list.

void deleteAll(container** pointerToHead)

} ;

if (*pointerToHead == NULL) {

std: :cout << "\nThe list is empty. Nothing was deleted." << endl;

return;

else{

II Delete the next item in the list.

deleteAll(&(*pointerToHead)->next); II recursive call

deleteFirst(pointerToHead);

II Delete the first person node in the linked list.

void deleteFirst(container** pointerToHead)

int i = 0;

container *toDelete = NULL;

if (*pointerToHead == NULL) { II *pointerToHead is the head of the list

std: :cout << "\nThe list is empty. Nothing was deleted." << endl;

166

} ;

// (*pointerToHead)->next is equivalent to saying head->next

else if ((*pointerToHead)->next == NULL) {

// delete (*pointerToHead)->plink; // delete the person object

delete*pointerToHead;

*pointerToHead = NULL;

else{

toDelete = *pointerToHead; // toDelete = head;

*pointerToHead = (*pointerToHead)->next; //head = head->next;

// delete toDelete->plink; // delete the person object

delete toDelete;

toDelete = NULL;

std: :cout << "\nA container node was deleted." << endl;

/* Inserts the person lexigraphically given the head of a list.

Note: A < a so all capital letters will be ordered first. */

int insertion(container** pointerToHead)

int i = 0;

container* newNode = NULL, *iterator = NULL, *follower

person* newPerson = NULL;

char name[ARRAY_SIZE];

char email[ARRAY_SIZE];

int phone = O;

newNode = new container();

// Case 1: The program is out of memory.

if (newNode == NULL) {

NULL;

std: :cout << "Fatal Error: Out of Memory. Exiting now." << endl;

return 0;

}

// Case 2: The structure still has unfilled slots.

else{

cin.ignore();

std: :cout << "Enter the name:" << endl;

std: :cin.getline(name, ARRAY_SIZE, '\n');

std: :cout << "Enter the phone number:" << endl;

cin >> phone;

std: :cout << "Enter the e-mail:" << endl;

cin.ignore();

std: :cin.getline(email, ARRAY_SIZE, '\n');

newPerson = new person(name, email, phone);

if (newPerson == NULL)

std: :cout << "Fatal Error: Out of Memory. Exiting now." <<
endl;

167

else{

return 0;

newNode->plink = (newPerson);

if (*pointerToHead == NULL) {

*pointerToHead = newNode;

(*pointerToHead)->next = (NULL);

return 0;

else{

if (strcmp(newPerson->name, (*pointerToHead)->plink->name)
< 0) {

0)

newNode->next = (*pointerToHead);

*pointerToHead = newNode;

return 0;

iterator = *pointerToHead;

follower = iterator;

while (iterator ! = NULL) {

if (strcmp(newPerson->name, iterator->plink->name) <

newNode->next = (iterator);

follower->next = (newNode);

return 0;

follower

iterator

iterator;

iterator->next;

follower->next = (newNode);

newNode->next = (NULL);

return 0;

return 0;

} ;

char * get_name() {// Read the input from the user.

} ;

// Use dynamic memory which does not go out of scope

char *p = new(char[ARRAY_SIZE]);

std: :cout << "Please enter a name for the search: " << endl;

std: :cin >> p;

return p;

// Print the name, e-mail, phone, and education level of each person.

168

// It calls the helper printFirst to recursively print the list

void printAll(container* root)

} ;

container* iterator = root;

//Case 1: The list is empty

if (iterator == NULL) {

}

std::cout << "\nNo entries found." << endl;

return;

II Case 2: The list has at least one item in it

else{

printFirst(root);

return;

void printFirst(container* root){// Print the root of the linked list

} ;

if (root ! = NULL) {

std::cout << "\n\nname = " << root->plink->name << endl;

std::cout << "email " << root->plink->email << endl;

std::cout << "phone " << root->plink->phone << endl;

printFirst(root->next);

//Find a person by comparing names given the head of the linked list.

person* search(container* root, char* sname)

container* iterator = root;

while (iterator ! = NULL) {

if (strcmp(sname, iterator->plink->name) == 0)

std: :cout << "\n\nname = " << iterator->plink->name << endl;

std: :cout << "email " << iterator->plink->email << endl;

std: :cout << "phone " << iterator->plink->phone << endl;

delete sname; // garbage collection

return iterator->plink;

iterator = iterator->next;

std::cout << "The name does not exist." << endl;

delete sname; // garbage collection

return NULL;

In the deleteFirst function, two delete operations are intentionally commented out:

// delete (*pointerToHead)->plink; // delete the person object

// delete toDelete->plink; // delete the person object

169

which will cause memory leak, as the person object linked to the container object will not be deleted when
the container object is deleted. This memory leak will be detected if we draw a memory allocation and
deallocation table, as shown in Table 3 .2 that lists all memory allocation and corresponding deallocation.
The simple principle is: for each new (or malloc) operation, there must be a delete (free) operation to
deallocate the memory.

Function name new() calls Function name delete calls

constructor name = new (char[ARRAY_ SIZE]) destructor delete name
person() email = new (char[ARRAY_ SIZE]) ~person() delete email

get_name() char *p = new (char[ARRA Y _SIZE]) search() delete sname

insertion() new Node = new container() deleteFirst() delete *pointerToHead

or

delete toDelete

insertion() new Person = newperson(name, email, deleteFirst() No delete operation is found to
phone); match this new() call.

Table 3.2. Memory allocation and deallocation table.

If we uncomment the following two lines of code in the deleteFirst function, the table will be complete and
the memory leak problem will be solved.

II delete (*pointerToHead)->plink; II delete the person object

II delete toDelete->plink; II delete the person object

Another possible implementation is to delete the person object in destructor of the container class, instead
of in the deleteFirst function:

virtual ~container()

delete plink;

} ;

The advantage of using the destructor is to make sure that no memory leak can occur even if the user's
function deleteFirst overlooks the need of delete plink call.

Various tools have been developed to detect memory leak. Visual Studio has a built-in tool to detect possible
leak. To use the tool, you will need to define the flag to map malloc calls to CRT debugger and include
necessary library functions, as shown in the snippet of code.

#define _CRTDBG_MAP_ALLOC II Define flag to map malloc calls to debugger

#include <stdlib.h> II include memory leak detection library functions

#include <crtdbg.h> II include memory leak detection library functions

II your other code here

_CrtDumpMemoryLeaks();

Return;

II Call memory leak reporter before returning

The memory leak detection code has been included in the foregoing example. When we run the code in the
debugging mode (start with Debugging), with the two delete operations commented out, the following
memory leak report will be generated:

Detected memory leaks!

Dumping objects ->

{188} normal block at 0x0068C440, 32 bytes long.

Data: <john@asu.edu > 6A 6F 68 6E 40 61 73 75 2E 65 64 75 00 CD CD CD

170

{187} normal block at 0x0068C3E0, 32 bytes long.

Data: <John > 4A 6F 68 6E 00 CD CD CD CD CD CD CD CD CD CD CD

{186} normal block at 0x0068C390, 16 bytes long.

Data: < h @ h 9 > 94 FD lE 01 E0 C3 68 00 40 C4 68 00 39 9C DC 02

Object dump complete.

The program '[9044] MyCppProject.exe' has exited with code 0 (0x0).

After we uncomment these two delete operations, or include the destructor ~container() with delete plink
operation, the memory leak problem will be fixed.

You can find more detail of Visual Studio memory leak detection tool at:

https://msdn.microsoft.com/en-us/library/x98tx3cf.aspx

Memory leak detection tools are also developed for other programming environments. For example,
Valgrind is a GNU GCC/G++ memory leak detection tool. Its detail can be found at:

http://www.valgrind.org/docs/

The tool is installed in GNU GCC/G++ in ASU general server. The following commands can be used to
include the memory leak detection tool:

g++ -o myProg -g myProg.cc // Compile

// The use of -g allows exact line numbers in error messages

valgrind --leak-check=full --tool=memcheck ./myProg

3.4 Inheritance

3.4.1 Class containment and inheritance

C language does not support the inheritance from one structure to another. However, we can still share the
structures defined before. The way we reuse the existing structures is through a class containment

mechanism, that is, we can use a structure to declare a variable within another structure, and, thus, we do
not have to redefine the existing structure. Such a containment mechanism is also available in C++. For

example, assume that we have defined a class Employee as follows:

class Employee {

char name[30];

long id;

char department[50];

int salary (int base, int bonus) { . . . } ;

int tax (int thisMonth, int this Year) { . . . } ;

Now we want to define a linked list to hold the information of all the employees. We can then define an
employee node class in the following two different ways:

// Definition 1:

class EmployeeNodel {

Employee data;

EmployeeNode *next;

// containing the class Employee

171

// Definition 2:

class EmployeeNode2

char name[30];

long id;

char department[50];

int salary (int base, int bonus) { . . . } ;

int tax(int thisMonth, int thisYear) { ... };

EmployeeNode *next;

In the definition of EmployeeNode 1, we contain an Employee class in the EmployeeNode 1 class, while

in the definition of EmployeeNode2, we copy (rewrite) all the data members and member functions into
the new class. What are the advantages and disadvantages of these two definitions?

The advantages of using a containment mechanism are:

• The new class is more concise;
• There is a level of abstraction in the EmployeeNodel. This class has only two members: A data

member that contains employee information and a pointer that points to the next node. Normally,
we do not need the detail of the data. However, if we do need to access the detail of the data
member, it will be a bit less convenient. For example, if we declare a stack object by
"EmployeeNode x; ", then we will have to use x. data. name (three sections), x. data. id,

x. data. department, x. data. salary (), and x. data. tax () to access the members; and use

x. next (two sections only) to access the next member in EmployeeNodel object. Since the

members from the Employee class are not semantically related to the next member in the

EmployeeNodel, it makes sense to separate them in two different levels.

The second advantage could become a disadvantage if these members are semantically related and should
not be separated. Now we define two new manager classes based on the employee class as follows:

// Definition 1:

class Managerl {

Employee empl;

int rank;

// containing the class Employee

// Definition 2:

class Manager2 {

char name[30];

id;

department[50];

long

char

int

int

int

salary (int base, int bonus) { . . . } ;

tax (int thisMonth, int this Year) { . . . } ;

rank;

Here the extra member rank defined in the manager classes is related to the members in the Employee

class. It should be put at the same level as the other members, so that members' name, id, department,

172

salary (), and tax () can be accessed in the same way as the member rank. Thus, the class definition
Manager2 is more suitable than Managerl.

What is wrong with the definition of the Manager2 class? There are several problems associated with the
approach of repeating the members in another class:

• It wastes time and space, especially when the member functions salary () and tax () in the

Employee class are very long.
• A more serious problem is data integrity: Redundant structures exist in your program. When you

change the Employee class, you must change the Manager class to preserve data integrity. If you
have multiple redundant data in different places, it is very difficult to maintain the code.

Object-oriented programming languages introduced the inheritance mechanism to address the problem. The
inheritance mechanism supports the definition of a new class based on an existing class. In C++, the
existing class is called the base class and the new class is called the derived class. In Java, they are called
parent (super) class and child (sub) class, respectively. The inheritance mechanism allows the derived class
to

• inherit all members (data members and member functions) of the base class without having to
repeat any of them;

• be able to add new members;
• be able to redefine members of the base class.

Using the inheritance mechanism, we can define a new manager class as follows:

class Manager3 : public Employee {

int rank;

The Manager3 class can be used in exactly the same way as the Manager2 class; that is, we can access the
inherited members from the Employee class in the same way as using the new member rank. The only

difference is that when the members of the Employee class are modified, the inherited members of the
Manager3 class are automatically modified.

As we can see from the above discussion, containment and inheritance mechanisms have different
applications. Now the question is how can we decide what mechanism is the right one for a particular
situation? As mentioned above, we can make the decision based on whether the new members are really
related to the members in the base class. Another way to help you make the decision is to characterize the
containment relation and the inheritance relation as "has-a" relation and "is-a" relation. For example, an
employee node (in a linked list) has an employee as its data, a car has-a wheel, a university has-a student;
and a manager is-an employee, pixel is-a point, etc. Whenever the has-a relation holds, we apply the
containment mechanism, and whenever the is-a relation holds, we apply the inheritance mechanism. For
example:

• Since it is better to consider that the employee node has-an (contains an) employee than to consider
that the employee node is-an employee, we should apply the containment mechanism.

• Since it is better to consider that the manager is-an employee than to consider that the manager
has-an (contains an) employee, we should apply the inheritance mechanism.

Now we examine our Queue and PriQueue example at the beginning of the chapter. Obviously, it is better

to consider that the priority queue PriQueue is-a Queue than to consider that the PriQueue has-a

Queue. Thus, we used the inheritance mechanism to define the PriQueue.

173

class PriQueue : public Queue

public:

int getMax(void); II return and remove the max value from the queue

PriQueue(int n) : Queue(n) { };

II base class constructor may not be inherited. It has to be explicitly

II called. PriQueue's constructor simply calls Queue's constructor;

~PriQueue() { II base class destructor may not be called here or

delete buffer; II inherited. We must explicitly use delete.

buffer = 0;

} ;

} ;

The third line defines a new member in the PriQueue class that returns and removes the element with the

maximum value from the queue. The fourth line defines the constructor of the PriQueue class. Please note
that the base class's constructor may not be inherited. It has to be explicitly called. PriQueue 's constructor

simply calls the Queue's constructor. The next member function is the destructor of the PriQueue class.
The base class's destructor may not be inherited and may not be called in the derived class's destructor.
Thus, we have to use the explicit delete operation to delete the objects created in the constructor of the
PriQueue class.

Inheritance is useful in associating many related classes and organizing them into a hierarchy of classes.
From this section and in the following sections, we will use a more complicated example to illustrate the
major properties of object-oriented programming languages, including inheritance, class hierarchy, virtual
function, late binding, polymorphism, and type checking.

3.4.2 Inheritance and virtual function

In using inheritance, if a member only shares the name with its base class and has a different data structure
or functionality, we can redefine or override the member in the derived class. For any member of a class to

be redefined, we must put the keyword virtual before the name. In the derived classes, we may, but we
do not have to, use the keyword virtual before the member that has been declared as virtual. If a

member is declared as virtual, all redefined members in the derived classes will be virtual, no matter

whether the keyword virtual is used or not. The destructor of a class must be defined as virtual if the
class is used as a base class and there are destructors defined in the derived classes.

The following program defines four classes: Color, Shape, Rectangle, and Triangle. The Shape is the base
class and the Rectangle and Triangle are its child class. The Color does not have an inheritance relationship
with the other classes. It is used as a member in the Shape class. The program demonstrates the use of
inheritance and virtual functions.

#include <iostream>

#include <stdlib.h>

#include <stdio.h>

#include <string>

using namespace std;

#pragma warning(disable: 4996) II comment out if not in Visual Studio

class Color {

public:

string name;

174

public:

} ;

Color(string color) {

name = color;

class Shape {

protected:

int width, height;

string *shapeName;

Color *color;

public:

Shape(int edge = 0, const char *name

width = edge;

"Shape")

shapeName = new string(name);

color = NULL;

~Shape ()

delete shapeName;

int area () {

cout << "Called Shape's area." << endl;

return 0;

virtual void print_name()

cout << "I am a: " << *shapeName << endl;

virtual void print color() = 0;

} ;

class Rectangle : public Shape

public:

Rectangle(int rectWidth = 0, int rectHeight
"Rectangle") {

height = rectHeight;

color = new Color("Red");

~Rectangle ()

delete color;

int area ()

0)

cout << "Called Rectangle's area." << endl;

return (width * height);

void print_name()

175

Shape(rectWidth,

cout << "I am a: " << width << " x "<< height << " " << *shapeName
<< endl;

void print color() {

if (color != NULL)

cout << "I am " << color->name << endl;

} ;

class Triangle : public Shape {

public:

Triangle(int triBase = 0, int triHeight

height = triHeight;

color = new Color("Blue");

~Triangle ()

delete color;

int area ()

0)

cout << "Called Triangle's area." << endl;

return (width * height/ 2);

void print_name()

Shape (triBase, "Triangle")

cout << "I am a: " << *shapeName << " with a right angel" << endl;

void print_color() {

if (color != NULL)

cout << "I am " << color->name << endl;

} ;

int main(int argc, char *argv[])

Shape *shape;

Rectangle rect(12, 7);

Triangle tri(15, 8);

rect.area();

tri. area () ;

shape = ▭

shape->print_name();

shape->area();

shape->print color();

shape = &tri;

shape->print_name();

shape->area();

shape->print color();

176

return 0;

The output of the program is given as follows:

Called Rectangle's area.
Called Triangle's area.
I am a: 12 x 7 Rectangle
Called Shape's area.
I am Red
I am a: Triangle with a right angle
Called Shape's area.
I am Blue

In the base class of the program, print_ name function is defined as virtual, and the same function is
redefined in the Rectangle and Triangle class to print different information.

You can also define an abstract function, an interface, or a pure virtual function, by assigning the virtual
function to 0. In the base class of the program, the print_color function is an abstract function:

virtual void print_color() = O;

An abstract function must be overridden in the derived classes. If a class contains an abstract function, the
class is an abstract class and it cannot be used to instantiate an object. It can only be used to derive new
classes. In this example, Shape class is an abstract class.

3.4.3 Inheritance and hierarchy

Assume that we are developing a database for a university to hold personnel information of students and
employees. We break the information to be stored into multiple classes and organize the classes in a
hierarchy using inheritance. As shown in Figure 3.7, the class Personnel is the root of the inheritance
tree. Classes Student and Employee inherit Personnel. Classes Faculty, Staff, and Consultant
inherit Employee, etc. In each class, a number of members are defined. According to the inheritance
principle, a child (derived) class will inherit the members of its parent (base) class and, in tum, its
grandparent class, great grandparent class, etc.

In Figure 3.7, the display () function in each node will print each data member in the class. Since each
class has different data members, we have to write a different display function in each class. It is thus
defined as a virtual function. Of course, we could use different names in different classes. However, we
will shortly see that it is a much better way to redefine the display function than to use different names.

C++ also supports multiple inheritances, that is, a class can inherit members from more than one class.
The need for multiple inheritances arises when a class has an is-a relation with multiple classes. For
example, the Consultant class inherits the Employees and Consul tingCo classes, as shown in Figure
3. 7. Syntactically, the use of multiple inheritances is simple; we simply list the classes from which the
derived class wants to inherit. For example, using the multiple inheritances, we defined the Consultant
class as follows:

class Consultant: public Employee, public ConsultingCo{ II inherit two
classes

... II new members here

177

Contact Personnel PersonnelNode ConsultingCo

address
phone
email

............ , name
id

birthday
.............. *pContact

·······1.. *pNode

*pNext

virtual display()

Student

*pCourse

supervisor
display ()

Grad

GPA

semesters
display ()

Undergrad

multiple

TA

Employee

department
salary

rank
dis la ()

portfolio

Staff

research
display ()

Faculty

division
wage

display ()

multiple

hours
display ()

Consultant

inheritance relation containment relation
< -------------------

Figure 3.7. Organizing classes in a hierarchy.

However, the semantics of multiple inheritances are complex and error prone. Inheritance must be used

with caution. In this example, the Consultant class inherits from two classes that are not in the same
inheritance hierarchy. If a class inherits two classes in the same hierarchy, we must use a virtual base class
to avoid the duplication of members in the derived class. For example, assume we have a TA (teaching

assistant) class that inherits from Employee and Student classes. We must define the Personnel class

as a virtual base class. Then, when we derive the Employee and Student classes, the members in

Personnel (i.e., name, id, etc.), will not be doubly copied into the TA class through Employee and

Student, as shown in the following piece ofcode:

class Personnel {

II members

} ;

class Employee virtual public Personnel {

II members

} ;

class Student virtual public Personnel {

II members

} ;

class TA : public Employee, public Student {

II Member list

} ;

void main ()

178

Please note that we defined two classes, Contact and PersonnelNode, which do not have the inheritance
or is-a relation with other classes. Containment relation is used to relate them to a class in the hierarchy.
Class Contact is contained in the class Personnel, and class PersonnelNode contains a Personnel
class.

We could put a particular member in different classes. The principle is to put a member in a class where all
its derived classes share the member. For example, features like name, id, and birthday that everyone
shares should be in the Personnel class that is the root of the hierarchy.

AC++ implementation of a part of the hierarchy in Figure 3.7 is given below. The program includes the
classes Contact, Personnel, Employee, Faculty, Consul tingCo, Consultant, PersonnelNode,
and a list of global functions. In the global functions, the menu function allows users to select desired
operations (e.g., insertion of a new node and printing the node information). Different insertion functions
are used to create a new object of different classes and insert it into the linked list. A single remove ()
function deletes an object of any class from the linked list and garbage-collects the memory allocated to the
object using an explicit delete operation. The display_ all () function displays the object information
stored in the linked list. The dis p 1 a y _ a 11 () function will call the polymorphic member functions defined
in each class to display class-specific information. More details of the program are given as comments in
the program.

The purpose of this program is to illustrate:

• Class definition: public, protected, and private members, and use public member
functions to access private members.

• Class inheritance and hierarchy: Employee inherits Personnel and Faculty inherits
Employee;

• Multiple inheritance: Consultant inherits Employee and Consul tingCo classes.
• Class containment: Personnel class contains Contact class, and PersonnelNode class

contains Personnel class.
• Constructor: The constructor is defined in every class. The constructor of a derived class can call

the constructor of the base class.
• Destructor: Destructors are defined in Personnel, Employee, and Faculty classes. The

destructor of a derived class cannot call the destructor of the base class. It has to repeat the
statements if it wants to perform the same operations.

• Explicit garbage collection: Objects created in the insertion functions have to be deleted (garbage­
collected) explicitly. The program contains a remove () function. Heap objects created in the
insertion functions are explicitly deleted using the delete function.

• Polymorphism: Polymorphic pointer: Use a pointer to Personnel class object to access objects
of derived classes. Polymorphic function: display () function is defined as virtual and a
different function is ca11ed when the polymorphic pointer points to a different class object.

• Linked list: In the PersonnelNode class, a pointer pNext to PersonnelNode (itself) is declared.
The pointer forms the links of the linked list.

• Global functions: Member functions in each class are associated with the object of the class.
G1obal functions are not associated with any class and can be called anywhere in the program.

• Global variable: head is defined as a global variable that holds the starting address of the linked
list; sometimes called a head pointer.

• Static local variable: In the constructor of the Personnel class, a static local variable
iidCounter is declared to hold the current ID number that has been issued. The static qualifier

179

ensures that the variable is initialized only once and incremented after each instantiation of a new
object.

#include <iostream>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

using namespace std;

class Contact {

} ;

private:

char cAddress[75];

char cPhone[25];

char cEmail[75];

public:

void setAddress(char *cAddress) {strcpy(this->cAddress, cAddress);}

void setPhone(char *cPhone) { strcpy(this->cPhone, cPhone);

void setEmail(char *cEmail) { strcpy(this->cEmail, cEmail); }

char* getAddress() { return cAddress;

char* getPhone() { return cPhone; }

char* getEmail() { return cEmail; }

Contact(char *cAddress, char *cPhone, char *cEmail) { // constructor

setAddress(cAddress);

setPhone(cPhone);

setEmail(cEmail);

class Personnel

private:

char cName[S0];

int iid;

char cBirthday[ll];

protected:

Contact *pContact;

public:

void setName(char *cName) { strcpy(this->cName, cName); }

void setBirthday(char *cBirthday) {strcpy(this->cBirthday,
cBirthday);}

void setid(i_nt iid) { this->iid

char* getName() { return cName;

int getid () { return iid; }

iid; }

char* getBirthday() { return cBirthday;

Contact * getContact() { return pContact;

virtual void display() {

cout << "PERSONNEL" << endl;

cout << "Name:\t" << getName() << endl;

180

cout << "Id:\t" << getid() << endl;

cout << "Birthday:\t" << getBirthday() << endl;

cout << "Address:\t" << pContact->getAddress() << endl;

cout << "Phone:\t" << pContact->getPhone() << endl;

cout << "Email:\t" << pContact->getEmail() << endl;

Personnel(char *cName, char *cBirthday, char *cAddress, char

*cPhone, char *cEmail) { // constructor

static int iidCounter = O;

setName(cName);

setid(iidCounter);

// set Name

// set Id by a self-incremental counter

iidCounter++; // increment the ID generator;

setBirthday(cBirthday); // set Birthday

pContact = new Contact(cAddress, cPhone, cEmail);

virtual ~Personnel() {

delete pContact;

pContact = NULL;

// destructor

// delete the object linked to pContact

// Make sure pContact not point to an

object

} ;

class Employee : public Personnel { // inherit from Personnel

private:

char cDepartment[75];

float £Salary;

char cRank[75];

public:

void setDepartment(char *cDepartment) {strcpy(this->cDepartment,
cDepartment);}

void setSalary(float £Salary) { this->fSalary = £Salary; }

virtual void setRank(char *cRank) { strcpy(this->cRank, cRank);

char* getDepartment() { return cDepartment;

float getSalary() { return £Salary; }

virtual char* getRank() { return cRank; }

void display ()

Personnel::display();

cout << "EMPLOYEE" << endl;

cout << "Department:\t" << getDepartment() << endl;

cout << "Salary:\t" << getSalary () << endl;

cout << "Rank:\t" << getRank () << endl;

Employee(char *cName, char *cBirthday, char *cAddress, char *cPhone,

char *cEmail, char *cDepartment, float £Salary, char *cRank)

Personnel(cName, cBirthday, cAddress, cPhone, cEmail)

181

} ;

setDepartment(cDepartment);

setSalary(fSalary);

setRank(cRank);

// destructor virtual ~Employee() {

delete pContact;

pContact = NULL;

// delete the object linked to pContact

// Make sure pContact does not point to

// any object

class Faculty : public Employee {//inherit from Employee

private:

char cResearch[75];

public:

virtual void setResearch(char *cResearch)

strcpy(this->cResearch, cResearch);

char* getResearch() { return cResearch; }

virtual void display() {

Employee: :display();

cout << "FACULTY" << endl;

cout << "Research\t" << getResearch() << endl;

Faculty(char *cName, char *cBirthday, char *cAddress, char *cPhone,

char *cEmail, char *cDepartment, float fSalary, char *cRank, char

*cResearch)

Employee(cName, cBirthday, cAddress, cPhone, cEmail,

cDepartment, fSalary, cRank)

} ;

setResearch(cResearch);

virtual ~Faculty() {

delete pContact;

pContact = NULL;

// destructor

// delete the object linked to pContact

// Make sure pContact does not

// point to any object

class ConsultingCo

private:

// not inherit from a class

char division[30];

float wage;

public:

virtual void display() {

cout << "ConsultingCo" << endl;

cout << "Division: " << getDivision() << endl;

cout << "Wage: " << getWage() << endl;

182

} ;

char* getDivision() {

return division;

void setDivision(char *division) {

strcpy(this->division, division);

float getWage() {

return wage;

void setWage(float wage) {

this->wage = wage_;

ConsultingCo(char *division , float wage)

setDivision(division_);

setWage(wage);

// multiple inheritance: Consultant class inherit from two classes

class Consultant : public Employee, public ConsultingCo{

private:

int hours;

public:

virtual void display()

Employee::display();

ConsultingCo::display();

cout << "Consultant" << endl;

cout << "Hours: " << getHours() << endl;

int getHours() { return hours;}

void setHours(int hours) {this->hours =hours ;}

Consultant(char *cName, char *cBirthday, char *cAddress, char
*cPhone, char *cEmail, char *cDepartment, float fSalary, char *cRank, char*
division_, float wage_, int hours)

: Employee(cName, cBirthday, cAddress, cPhone, cEmail,
cDepartment, fSalary, cRank), ConsultingCo(division_, wage_) {

} ;

setHours(hours);

virtual ~Consultant()

delete pContact;

pContact = NULL;

// destructor

// delete the object linked to pContact

// Make sure pContact does not point to

// any object

183

class PersonnelNode

private:

II This is a container class

Personnel *pNode; II It contains a Personnel class

PersonnelNode *pNext; II pointer used to form a linked list

public:

void setNode(Personnel *pNode) { this->pNode = pNode; }

void setNext(PersonnelNode *pNext) { this->pNext = pNext;

Personnel* getNode() { return pNode; }

PersonnelNode* getNext() { return pNext;

PersonnelNode() {

pNode NULL;

pNext NULL;

II constructor

*head= NULL; II declare a global pointer variable head

II Forward declaration of global functions outside any class

int main(); II The main function

void menu(); II display main choices

void branching(char);

void sub_menu();

void insert();

int insert _personnel();

int insert_employee();

int insert faculty ();

int insert consultant();

void remove();

II branch to the chosen function

II display different insertion options

II call sub_menu() and branch to chosen function

II insert a personnel node

II insert an employee node

II insert a faculty node

II call remove function

void display_all (); II display members in all nodes in the linked list

void display_node(Personnel*, int); II display the members in one node

int main ()

char ch;

II main function is the entry point of the program

cout << "CLASSES INHERITANCE, HIERARCHY AND POLYMORPHISM" << endl;

cout << "***" << endl;

do {

menu ();

cin >> ch;

ch= tolower(ch);

branching(ch);

while (ch != 'q');

return O;

II display choices

II enter a choice from the keyboard

II convert to lower case

II branch to the chosen function

II 'q' for quit

void menu ()

cout << endl << endl << "MENU" << endl;

184

cout << "----" << endl;

cout << "i: Insert a new entry. " << endl;

cout << "d: display all entries. " << endl;

cout << "r: remove an entry. " << endl;

cout << "q: Quit the program. " << endl;

cout << endl << "Please enter your choice (i' d, r, or

void branching(char c)

switch(c)

// branch to chosen function

case 'i': insert();

break;

case 'd': display_all();

break;

case 'r': remove();

break;

q) --> ";

case 'q': cout << endl << "@Exiting the program " << endl;

cin.get(); //type any key.

break;

default: cout << endl << "@ERROR - Invalid input." << endl;

cout << "@Try again " << endl;

void sub_menu() // display insertion options

cout << endl << endl << "INSERTION SUB-MENU" << endl;

cout << "------------------" << endl;

cout << "p: insert a personnel entry. " << endl;

cout << "e: insert an employee entry. " << endl;

cout << "f: insert a faculty entry." << endl;

cout << "c: insert a consultant entry. II << endl;

cout << "q: Quit insertion and back to main menu. " << endl;

cout << endl << "Please enter your choice (p, e, f, c, or q) --> ";

// insert() is the umbrella insertion function that calls different

// insertion functions according to the selection in the sub-menu.

void insert ()

char ch;

cout << endl << "@Insertion module ";

do

sub_menu();

cin >> ch;

ch = tolower(ch);

switch (ch)

case 'p': if(insert_personnel() != 0)

cout << "@INSERTION FAILED." << endl;

185

case 'e':

case 'f':

case 'c':

case 'q':
endl;

default:

while (ch ! = 'q');

int insert_personnel()

else

cout << "@INSERTED SUCCESSFULLY." << endl;

break;

if(insert employee() ! = 0)

cout << "@INSERTION FAILED." << endl;

else

cout << "@INSERTED SUCCESSFULLY." << endl;

break;

if (insert faculty () ! = 0)

cout << "@INSERTION FAILED." << endl;

else

cout << "@INSERTED SUCCESSFULLY." << endl;

break;

if (insert consultant () ! = 0)

cout << "@INSERTION FAILED." << endl;

else

cout << "@INSERTED SUCCESSFULLY." << endl;

break;

cout << endl << "@Exiting the insertion ... " <<

cin.get();

break;

cout << endl << "@ERROR - Invalid input." << endl;

cout << "@Try again " << endl;

// do-while statement

// insert a Personnel node

Personnel *person = NULL;

PersonnelNode *node = NULL;

char name[50], birthday[ll], address[75], phone[25], email[75];

cout << endl << "@Inserting personnel node " << endl;

cout << "Enter the name: ";

cin.ignore(); // fflush()

cin.getline(name, 50);

cout << "Enter the birthday, e.g., 05/24/1985: ";

cin.getline(birthday, 11);

cout << "Enter the address: ";

cin.getline(address, 75);

cout << "Enter the phone number: ";

cin.getline(phone, 25);

cout << "Enter the email: ";

cin.getline(email, 75);

186

person = new Personnel(name, birthday, address, phone, email);

node = new PersonnelNode();

if((person ! = NULL) && (node ! = NULL))

node->setNode(person);

node->setNext(head);

head= node;

return O;

else {

cout << endl << "@ERROR - Could not allocate enough memory!" <<
endl;

return -1;

int insert employee() // insert an Employee node

Personnel *person = NULL;

PersonnelNode *node = NULL;

char name[50], birthday[ll], address[75], phone[25], email[75],
department[75], rank[75];

float salary;

cout << endl << "@Inserting employee node " << endl;

cout << "Enter the name: ";

cin.ignore();

cin.getline(name, 50);

cout << "Enter the birthday, e.g., 05/24/1985: ";

cin.getline(birthday, 11);

cout << "Enter the address:";

cin.getline(address, 75);

cout << "Enter the phone number: ";

cin.getline(phone, 25);

cout << "Enter the email: ";

cin.getline(email, 75);

cout << "Enter the department: ";

cin.getline(department, 75);

cout << "Enter the salary. It must be a float number: ";

cin >> salary;

cout << "Enter the rank: ";

cin.ignore();

cin.getline(rank, 75);

person = new Employee(name, birthday, address, phone, email, department,
salary, rank);

node = new PersonnelNode();

if((person ! = NULL) && (node != NULL))

node->setNode(person);

187

else

node->setNext(head);

head = node;

return O;

cout << endl << "@ERROR - Could not allocate enough memory!" <<
endl;

return -1;

int insert faculty() // insert a Faculty node

Personnel *person = NULL;

PersonnelNode *node = NULL;

char name[50], birthday[ll], address[75], phone[25], email[75],

department[75], rank[75], research[75];

float salary;

cout << endl << "@Inserting faculty node " << endl;

cout << "Enter the name: ";

cin.ignore();

cin.getline(name, 50);

cout << "Enter the birthday, e.g., 05/24/1985: ";

cin.getline(birthday, 11);

cout << "Enter the address: ";

cin.getline(address, 75);

cout << "Enter the phone number: ";

cin.getline(phone, 25);

cout << "Enter the email: ";

cin.getline(email, 75);

cout << "Enter the department: ";

cin.getline(department, 75);

cout << "Enter the salary. It must be a float number: ";

cin >> salary;

cout << "Enter the rank: ";

cin.ignore(); cin.getline(rank, 75);

cout << "Enter the research: ";

cin.getline(research, 75);

person = new Faculty(name, birthday, address, phone, email, department,

salary, rank, research);

node = new PersonnelNode();

if((person ! = NULL) && (node != NULL))

node->setNode(person);

node->setNext(head);

head = node;

return O;

188

else

cout << endl << "@ERROR - Could not allocate enough memory!" <<

endl;

return -1;

int insert consultant()

Personnel *person = NULL;

PersonnelNode *node = NULL;

// insert a Faculty node

char name[50], birthday[ll], address[75], phone[25], email[75],

department[75], rank[75], division[30];

float salary, wage;

int hours;

cout << endl << "@Inserting consultant node " << endl;

cout << "Enter the name: ";

cin.ignore();

cin.getline(name, 50);

cout << "Enter the birthday, e.g., 05/24/1985: ";

cin.getline(birthday, 11);

cout << "Enter the address: ";

cin.getline(address, 75);

cout << "Enter the phone number: ";

cin.getline(phone, 25);

cout << "Enter the email: ";

cin.getline(email, 75);

cout << "Enter the department: ";

cin.getline(department, 75);

cout << "Enter the salary. It must be a float number: ";

cin >> salary;

cout << "Enter the rank: ";

cin.ignore();

cin.getline(rank, 75);

cout << "Enter the division: ";

cin.getline(division, 30);

cout << "Enter the wage. It must be a float number: ";

cin >> wage;

cout << "Enter the hours. It must be an integer: ";

cin >> hours;

person = new Consultant(name, birthday, address, phone, email,

department, salary, rank, division, wage, hours);

node = new PersonnelNode();

if((person != NULL) && (node != NULL))

node->setNode(person);

189

node->setNext(head);

head = node;

return 0;

else {

cout << endl << "@ERROR - Could not allocate enough memory!" <<
endl;

return -1;

I* void remove() function removes a node in the linked list. In the remove
function, an id number will be entered as the key. The node whose id field
stored an id number that is equal to the entered id number will be removed.
*I

void remove ()

int id;

PersonnelNode *temp, *prev;

Personnel *person;

int index = 1;

cout<<"Remove module \n" << endl ;

cout<<"Please enter the ID number of the person to be deleted: "<<endl;

cin>> id;

temp = head;

while (temp != NULL)

person = temp->getNode();

if (id != person->getid()) {

prev = temp;

temp = temp->getNext();

index++;

else {

cout <<"Person to delete is found at index"<<index<<endl;

display_node(person, index);

if (temp ! = head)

prev->setNext(temp->getNext());

else

head = head->getNext();

delete person; II explicit garbage-collection

person = NULL;

delete temp;

temp = NULL;

return;

cout <<"The person with ID

II

II

II

Make it not to point to any object

explicit garbage-collection

Make it not to point to any object

<< id << does not exist."<< endl;

190

void display_all() { // Display contents of all nodes in the linked list

PersonnelNode *node;

int node count= O;

cout << endl << "@Display module ";

node = head;

while(node != NULL) {

display_node(node->getNode(), ++node_count);

node = node->getNext();

cout << endl << "@No more records." << endl;

void display_node(Personnel *node, int index) {// Display contents of node

cout << endl << "Record " << index << "." << endl;

node->display();

invoked.

// Polymorphic call. Depending on the object pointed

// to by node, a different display() will be

3.4.4 Inheritance and polymorphism

Polymorphism is the ability to apply the same operation to different objects and to receive different forms
of responses. Polymorphism in C++ is applied to different classes related by inheritance. With at least one
virtual member defined, it allows a pointer declared to point to an object of class A to point to an object of
class B if Bis a descendant class of A. Therefore, the pointer of a base class is polymorphic. The main
purpose of polymorphism is to access the virtual members. A member function of a class can be defined as
a virtual function and redefined in the derived classes. Then, the same call to a virtual function in different
classes will cause different functions to be invoked. Thus, the calls are polymorphic.

Polymorphism has been illustrated in the long example in Section 3.4.3, where the display() functions in
different classes are virtual.

Now we examine how polymorphism simplifies the design. In the program, we defined the linked list node
to have two pointer variables.

class PersonnelNode {

Personnel *pNode;

PersonnelNode *pNext;

The first pointer variable points to an object of the Personnel class that is the data portion of the linked
list. The second pointer variable points to an object of PersonnelNode that is the link portion of the linked
list. Since the pNode is declared as a pointer to the root class's objects, it can be used to point to objects of
all derived classes: Personnel, Employee, Faculty, Staff, Consultant, etc. In other words, we can
link different objects in the same linked list, as shown in Figure 3.8.

191

he ad
►r··························· .. ·································i

pNode

pNext

pNode

pNext

,--...----·······················
pNode

NULL

··································•····
Student Faculty Personnel

Joe John Jane

1234 1233 5678

12/01/85 10/05/82 08/22/62

*pContact *pContact *pContact

display () display () display ()

*pCourse CSE

3.5 80000

Professor

VLSI

Figure 3.8. Different objects are linked into the same list.

Having inserted different nodes into the linked list, we could use the following code to print members

defined in the Personnel object (the root node) using a pointer pl to the Personnel object:

PersonnelNode *pn;
for (pn = head; pn ! = NULL; pn = pn->next) {// traverse the linked list

Personnel *pl pn->pNode; // pl is a Personnel class pointer

cout << "name = " << pl->cName << endl;
cout << "id = " << pl->iid << endl;
cout << "birthday = " << pl->cBirthday << endl;
cout << "Contact->address " << pl->pContact->cAddress << endl;
cout << "Contact->phone " << pl->pContact->cPhone << endl;
cout << "Contact->email 11 << pl->pContact->cEmail << endl;

Now the question is can we add the following statements to print members defined in the Student class?

cout << "GPA = 11 << pl->GPA << endl;
cout << "department =

11 << pl->cBirthday << endl;

The answer is no, because the type checking mechanism in C++ will prevent us from using the Personnel
pointer pl to access the members that do not exist in the base class Personnel (see next subsection). In
order to print the complete information in different kinds of nodes in the linked list, we defined a virtual

function display () in each class in the hierarchy. When pl points to a particular object, the display ()
function specifically defined in the class of the object is invoked, as shown in the following piece of code:

PersonnelNode *pn;
for (pn = head; pn ! =0; pn = pn->pNext) {

Personnel *pl = pn->pNode; // pl can point to any object

192

pl->display();

invoked

II the function defined in current class is

Since the Personnel class also has the function display (), the compiler will not complain. However,

since display () is redefined in the derived classes, polymorphism will cause the redefined display ()

function to be called, thus allowing the information specific to the node to be printed. For example, the

display () function in the Student class could be defined as follows, in which the class-specific
members GPA and major can be printed.

Student::display() {

cout << "name = "<< name<< endl;

cout << "id = "<< id<< endl;

cout << "birthday = "<< birthday<< endl;

cout << "Contact->address "<< Contact->address << endl;

cout << "Contact->phone = " << Contact->phone << endl;

cout << "Contact->email = " << Contact->email << endl;

cout << "GPA = "<< GPA<< endl;

3.4.5 Polymorphism and type checking

As we have seen in the previous subsection, although polymorphism allows us to move a pointer from a
base class object to a derived class object, it only allows us to access members inherited from the base class.
It does not allow us to access the new members defined in the derived class. Observe a further example:

Personnel *p = new Personnel(); II link a Personnel object to p.

Employee *e = new Employee(); II link an Employee object to e.

Faculty *f = new Faculty(); II link a Faculty object to f.

then, according to polymorphism, we can use the pointer p to access the objects of the derived class:

p = e; II p is now pointing to the object pointed by e.

p->id = 123; II Now we use p to access members in Employee object.

p = f; II p is now pointing to the object pointed by f.

p->id = 124; II Now we use p to access members in Faculty object.

However, we cannot access the members that do not exist in the base class. For example, if we write the
following statements in our program:

p = e;

strcpy(p->department, "computer science");

we will have a compilation error. The reason is: classes in C++ are essentially user-defined types. Static

type checking is enforced by the compiler. After we have moved the Personnel class pointer to an

Employee class's object and then access p->id, the compiler will consider that we are still accessing the

Personnel class's member, and thus it will not complain. However, ifwe try to access p->department,

the compiler will not be able to find the member department in the Personnel class and thus the
compiler will report a compilation error.

193

3.4.6 Polymorphism and late binding

When a member function is declared as a virtual function, late binding will be used; that is, the function
name wi11 be bound to the actual memory locations that store the function's code, not during the
compilation, but during the execution of the program. Binding a name to its memory locations during the
execution stage is called late binding or dynamic binding. If late binding is applied, the function can be
redefined. On the other hand, binding a name to its memory locations during the compilation stage is called
early binding or static binding. If early binding is applied, the member cannot be redefined. In C++, only
member functions can be dynamically bound. Data members can only be bound statically. Early binding is
considered a feature of the imperative programming paradigm, while late binding is considered a feature of
the object-oriented programming paradigm. In Java, late binding is applied to all member functions of a
class by default. If you specifically want to apply early binding to a member function, you must use the
keyword "final" to enforce the early binding. Polymorphic function calls are possible only if late binding
is applied.

Why do we need early binding? For example, if you write a password verification member function in a
class and do not want anyone to redefine/override the function in a derived class, you can apply early
binding to prevent overriding. Another advantage of early binding is its efficiency. Late binding during
execution is less efficient than early binding. For efficiency reasons, C++ applies early binding to all
members of a class by default. If you specifically want to apply late binding to a member function, you
must use the keyword "virtual" to enforce the late binding.

3.4. 7 Type Casting in C++

In C, we can simply put the destination type in front of the variable to change the variable type to the
destination type in the syntax (type) variable or type (variable). For example:

int X = 7;

double f = (double) x + 5;

Even though C-style casting can be used in C++, C++ has a set of its own casting functions. The most
commonly used for implementing the aforementioned casting is:

int X = 7;

double f = static_cast<double>(x);

The options available in C++ to cast a variable or an object include:

• const_ cast: It converts a variable or object into a constant one. This is cast useful if you want to
allow a variable or object to be modifiable before a certain point in the programming execution,
but treat it as a constant of that point.

• static_ cast: It removes the type restriction to allow the object to be used as a different object, as
long as the structures of the source type and the destination type are equivalent. static_ cast is the
common use of casting and works in most cases. The static_ cast is type-checked by the compiler
and is safe. The other options should be considered only if static_ cast does not work.

• dynamic_ cast : It is normally used to cast pointer among the classes in an inheritance hierarchy.
There are two common applications. (1) The polymorphism allows a base class pointer to be used
to point to the objects of its derived classes. In order to use a pointer of a derived class to point to
an object of its base class, dynamic_ cast can be used. (2) It can be used to cast a base class pointer
to a derived class to obtain the full access to all the members in the derived class. In addition, it can
also be used to covert a pointer in an inheritance hierarchy not only up and down, but also sideways.
But this is not a common use. The dynamic_ cast is not type-checked by the compiler, and the

194

programmer is responsible for the program's dynamic behaviors. Figure 3.9 shows an example of
applying dynamic_ cast.

• reinterpret_cast: This is a more powerful but dangerous version of dynamic_cast. It can be applied
to convert not only pointers, but also objects. It can covert unrelated objects with different types
and different sizes through truncation. It can covert a larger object to a smaller object in terms of
memory use. If truncation is performed, the object cannot be casted back to the original type. Avoid
using this cast unless static and dynamic casts do not work.

Pet dynamic_ cast

Cat

[chih�ahua I j Rottweiler

Figure 3.9. Common dynamic_cast along the inheritance hierarchy.

The following snippet of code shows moving the pointers up and down in an inheritance hierarchy
consisting of three classes A, B, and C, where A is the base class, B is derived from A, and C is derived
from B. We declare a pointer from each class: ap, bp, and cp. We use ap pointer to access objects of classes
B and C. The polymorphism allows pointer of A to access objects of classes B and C without using casting.
We then use the cp pointer to access objects of B and C. In this case, casting is required. We use static_ cast
to cast the objects of A and B to type C before accessing the object.

#include <iostream>

using namespace std;

class A {

public: virtual void display() { // virtual method to be redefined

char s O = 'A' ;

cout << sO << 11 in class A display\n 11 ;

} ;

} ;

class B : public A {

char sl = 'B';

public: void display()

cout << sl << 1
1 in class B display\n 11 ;

} ;

class C : public B {

char s2 = 'C';

public: void display()

cout << s2 << " in class C display\n";

} ;

int main ()

A *ap, objA;

B* bp = new B();

195

C *cp = new C();

II Move pointer downwards

cout << "Use ap to print \n";

ap = bp;

ap->display();II Use ap to call

ap = cp;

ap->display();II Use ap to call

II Move pointer upwards

the display method in B

the display method in C

II cp = bp; II Without casting, this line will cause an error

cout << "\nUse cp to print \n";

cp = static_cast<C*>(&objA); II use static cast

cp->display();II Use cp to call the display method in A

cp = static_cast<C*>(bp); II use static_cast

cp->display();II Use cp to call display method in B

The output of the code is shown as follows:

I •�:\.
. -

Use a}l to pPint
Bin class B display
C in class C display

Use cp to p1•int
A in class A display
Bin class B display
Press an ke to continue

3.5 Function and Operator Overloading

Overloading is a useful feature allowing programmers to define and apply the same function name or
operator name to different type of data. C++ allows both function overloading and operator overloading.

3.5.1 Function overloading

Function overloading: This is a feature of all object-oriented programming languages. It allows
programmers to define multiple functions with the same name. However, these overloaded functions must
have at least one parameter that has a different type, so that the compiler can differentiate which function
to bind when a function call is made. The compiler treats them as different functions.

At the beginning of the chapter, we discussed constructor overloading. Overloading can be applied to any
function in C++. In the Queue example, we have the following function:

void enqueue(int v) { II add an element at the end of the queue

if (rear < queue_size)

else

buffer[rear++] = v;

if (compact ())

buffer[rear++] v;

196

We can define an overloaded function:

void enqueue(double v) {

if (rear < queue_size)

buffer[rear++] = v;

else

if (compact())

buffer[rear++] v;

These two functions have exactly the same functionality, but they deal with different types of values.
Overloading is widely used in defining the same functions for different types of data.

Overloaded functions require to have different parameter lists. It is unfortunate that different return types
cannot be used for overloading. For example, in the Queue example, we defined the function:

int dequeue(void) { // return and remove the 1st element from the queue

if (front < rear)

return buffer[front++];

else {cout<< "Error: Queue empty"<<endl; return -1;}

We cannot define the following overloaded function:

double dequeue(void) {

if (front < rear)

return buffer[front++];

else {cout<< "Error: Queue empty"<<endl; return -1;}

The compiler will throw an error, as this function has the same parameter as the int dequeue(void) function.
Both Java and C++ have the same definition of overloading.

What is the benefit of defining overloaded functions? It is more convenient for the users to call the
overloaded functions. Without function overloading feature, we would have to write two different functions
such as enqueuelnt(int v) and enqueueDouble(double v), and the caller must use the correct function name
with the parameter types. With the overloading feature, the user can call the same function using different
parameter types.

Overloading allows us to have multiple constructors. Recall that a constructor must have the same name as
the class. Without overloading, we can have one constructor only. A destructor cannot be overloaded,
because a destructor cannot have any parameters or a return value. Two destructors could not be
differentiated by the compiler.

3.5.2 Operator overloading

An operator in C++ is a built-in function that is often defined using a symbol name and the mathematical
style. For example,+,-, *, /, <, ++,>>,and <<. These operators are predefined for primitive types of data.
For example,+,-,*, and/ are defined for numerical types, such as int and double. It is very convenient that
we can overload these operators to user-defined object types. For example:

197

• Define a string assignment operator to allow stringl = string2; instead of using strcpy(stringl,
string2);

• Define a string comparison operator to allow string I >= string2, instead of using strcmp(stringl,
string2);

• Define + operator on an object rectangleArea(length, width) to allow the addition of two objects:
rectangleArea(3, 5) + rectangleArea(2, 6), and define a comparison operator < to allow the
comparison: rectangleArea(3, 5) < rectangleArea(2, 6);

• Define + operator to add one to a Date(year, month, day) with a number (of days), and to compare
two date objects: Date(2016, 10, 23) < Date(2016, 8, 31);

According to a language's orthogonality, if one operator can be overloaded, all the operators should be able
to overloaded. Most of the C and C++ operators can be overloaded. However, due to their nature, there are
some operators that cannot be overloaded. Table 3.3 lists a few such operators.

Operator Description Example

.. Scope resolution operator (C++ only) Queue::enqueuer(int v); . .

Object member selector through value semantics Contact.name

* Member of object Contact selected by pointer-to- Contact. *name
member name

?: Ternary conditional ((a<0)? -a: a)

sizeof Size of an object sizeof(Contact)

static cast Static cast for simple variables static_ cast <double>(i);

dynamic_ cast Static cast for pointers with inheritance relation dynamic_ cast<Contact>(p)

reinterpret_ cast For converting between different objects reinterpret_ cast<type>(a)

Table 3.3. Operators that cannot be overloaded.

In this section, we will define a few overloaded operators for object types in two examples. In the first
example, we define three operators:+,-, and<, on the user-defined cylinder object. In the second example,
we define prefix ++d operator and postfix d++ on user-defined Days objects.

In the first example, we define the add operator overloading as follows:

Cylinder operator+(con st Cylinder &c)

The first part is the return type of the operator. It returns a Cylinder object. The second part operator+ define
the operator name is +. The operator is defined as a class member, and it adds a class member with the
parameter. Thus, only one parameter is defined in the parameter list. We use &c to specify the parameter­
passing mechanism call-by-alias. The operation- is defined in the same way. We defined the relational
operator> as follows:

bool operator>(const Cylinder &c)

To define relational operator, such as greater than, greater than or equal to, we will specify the return type
as bool.

#define USE MATH DEFINES

#include <iostream>

#include <cmath>

using namespace std;

class Cylinder {

198

private:

double radius;

double height;

public:

II radius of cylinder

II height of cylinder

} ;

double getVolume(void)

return M PI * radius * radius * height; II M PI defined in <cmath>

void setRadius(double r) {

radius = r;

void setHeight(int h) {

height = h;

}

II Overload + operator to add two Cylinder objects.

Cylinder operator+(const Cylinder &c) {

}

Cylinder cylinder;

cylinder.radius = this->radius + c.radius;

cylinder.height = this->height + c.height;

return cylinder;

II Overload - operator to subtract two Cylinder objects.

Cylinder operator-(const Cylinder &c) {

Cylinder cylinder;

cylinder.radius = this->radius - c.radius;

cylinder.height = this->height - c.height;

return cylinder;

II Overload - operator > (greater than of two Cylinder objects.

bool operator>(const Cylinder &c) {

Cylinder cylinder; double vol0, voll;

vol0 = this->getVolume();

voll = cylinder.getVolume();

if (vol0 > voll) return true;

else return false;

int main() {

Cylinder cylinderl, cylinder2, cylinder3;

double volume = 0.0;

II cylinderl and cylinder2 initialization

cylinderl.setRadius(5.0); cylinderl.setHeight(5.0);

cylinder2.setRadius(4.0); cylinder2.setHeight(10.0);

II get and print volumes of cylinderl and cylinder2

volume = cylinderl.getVolume();

199

cout << "Volume of cylinderl : " << volume << endl;

volume = cylinder2.getVolume();

cout << "Volume of cylinder2 : " << volume << endl;

// Add two objects using overloaded operator +, and get and print volume

cylinder3 = cylinderl + cylinder2;

volume = cylinder3.getVolume();

cout << "Volume of cylinder3 : " << volume << endl;

// Subtract two object as follows:

cylinder3 = cylinderl - cylinder2;

// get and print volume of cylinder 3

volume = cylinder3.getVolume();

cout << "Volume of cylinder3 : " << volume << endl;

if (cylinderl > cylinder2) // using overloaded operator >

cout << "cylinderl volume is greater than cylinder2 volume" << endl;

else

cout<<"cylinderl volume isn't greater than cylinder2 volume"<< endl;

return O;

In the main program, we use the overloaded operators in the following statements:

cylinder3 = cylinderl + cylinder2;

cylinder3 = cylinderl - cylinder2;

if (cylinderl > cylinder2)

The output of the program is given as follows:

Uolume of cylinder1 : 392.699
Uolume of cylinder2 : 502.655
Uolume of cylinder] : 381?.04
Uolume of cylinder3 : -15.?08
cylinder1 volume is greater than cylinder2 volume

In the second example, we define a Days class; it contains an enumeration type variable that can take these
values: Sun, Mon, Tue, Wed, Thu, Fri, and Sat. We want to define an incremental operation++ that can
change Mon to Tue, Tue to Wed, and Sat to Sun.

In this example, we use the following two lines of code to the prefix++ operator overloading and the postfix
++ operator overloading, respectively:

Days operator++()

Days operator++(int)

The first definition does not have a parameter to indicate that++ will be placed before the object, and the
second definition has an int type parameter to indicate that++ will be placed after the object.

#include <iostream>

using namespace std;

typedef enum { Sun = 0, Mon, Tue, Wed, Thu, Fri, Sat } DayType;

class Days

private:

200

DayType day;

public:

Days() { day = Sun; } // constructor without parameter

Days(DayType d) { day = d; } // constructor with a parameter

DayType getDay(void) { return day; }

void setDay(DayType d) { if (d >= Sun && d <= Sat) this->day = d;

void display ()

switch (day)

case Sun: cout << "Sun" << endl; break;

case Mon: cout << "Mon" << endl; break;

case Tue: cout << "Tue" << endl; break;

case Wed: cout << "Wed" << endl; break;

case Thu: cout << "Thu" << endl; break;

case Fri: cout << "Fri" << endl; break;

case Sat: cout << "Sat" << endl; break;

default: cout << "Incorrect day" << endl;

}

II Overload prefix ++ operator to add one to Days object: ++days.

Days operator++()

Days days(day); II Save the original value

switch (this->day) {

case Sun: this->day Mon; break;

case Mon: this->day Tue; break;

case Tue: this->day Wed; break;

case Wed: this->day Thu; break;

case Thu: this->day Fri; break;

case Fri: this->day Sat; break;

case Sat: this->day Sun; break;

default: cout << "Incorrect day" << endl;

days.day = this->day; II What happens if remove this line of code?

cout << "For debugging: the value that prefix ++ returns is: "

<< days.day << endl;

return days; // return the value that has been increased

}

II Overload postfix ++ operator to add one to Days object: days++.

Days operator++(int) {//This parameter indicates ++ follows a parameter

Days days(day); II Save the original value

switch (this->day) {

case Sun: this->day Mon; break;

case Mon: this->day Tue; break;

case Tue: this->day Wed; break;

case Wed: this->day Thu; break;

201

} ;

case Thu: this->day

case Fri: this->day

Fri; break;

Sat; break;

case Sat: this->day Sun; break;

default: cout << "Incorrect day" << endl;

} // The value in the this object has been changed.

cout << "For debugging: the value that postfix ++ returns is: "

<< days.day << endl;

return days; // return the value before the changes.

int main ()

Days dayl(Mon), day2, day3;

day2.setDay(Sat);

day3.setDay(Sun);

cout << "The days before ++ operations" << endl;

dayl.display();

day2.display();

day3.display();

++dayl; ++day2; ++day3;

cout << "The days after prefix ++ operations" << endl;

dayl.display();

day2.display();

day3.display();

dayl++; day2++; day3++;

cout << "The days after postfix ++ operations" << endl;

dayl.display();

day2.display();

day3.display();

return O;

Notice the difference in the definition of the prefix increment and postfix increment. The difference is that
the prefix increment returns the modified object, while the postfix increment returns the object before being
changed. In both operations, the objects are changed.

In the main program, we use the overloaded operators, prefix increment and postfix increment, respectively,
in the fo11owing statements:

++dayl; ++day2; ++day3;

dayl++; day2++; day3++;

The output of the program is given as follows. Notice that Sun is changed to Mon after the increment, which
is exactly what we want.

202

:The days before ++ oper·ations
;Mon
;Sat
!Sun
iFor debugging: the value that pref xf Y ++ returns s: 2
�o� debugging: the value that pref �f x t+ 0etu0ns s: 0
:For· debugging: the value th.::ir.:. rJr•et :..:f :, ++ r·e·.::1.:'0ns 1
The days after prefi� ++ operations
Tue
iSun
1Mon
1Fo� debugging: the value that postfix++ retu�ns s: 2

ifor· debugg.:ng: the vaJue that postfix++ ,•(-?tur·ns .s: 8
;for debugging: the value that postfi:x: •H r·eturns s: 1
!The days after- postfi;<' ++ 1.::iper'abons
,t•ied
'Mon
:rue
iPres.s any key to continue . .

Debugging information is also printed just before return statements in the two ++ operators' definition. This
debugging information shows that return values in the prefix increment operator definition and values
printed after by calling the display() functions are the same, because the values are pre-incremented.
However, the return values in the postfix increment operator definition and values printed after by calling
the display() functions are different, because the return values are not incremented yet in the operator
definition. The printout also shows that the enumeration values are print in integers if we directly print the
values. In order to print the word values, we need to use a switch statement to map the integers their word
values.

Table B.4 in the Appendix B gives a complete list of the CIC++ operators, their precedence, description,
and associativity. The operators that cannot be overloaded are also indicated in the description part of the
table.

3.6 File Operations in C++

In Chapter 2, we discussed basic concepts of standard input/output, files, and file operations in C. Please
review Section 2.5 on basic concepts discussion which is applicable to C++ file operations. In this section,
we discuss the C++ specific file operations.

3.6.1 File objects and operations in C++

C++ provides a different set of stream classes to perform input/output and file operations.

• ofstream: Stream class for writing on files.
• ifstream: Stream class for reading from files.
• fstream: Stream class for both reading from and writing to files.

These classes are derived from the library classes istream and ostream. As standard input and output, we
have used their objects cin and cout: cin is an object of class istream and cout is an object of class ostream.
These classes include member functions open, is_ open, and close. In this section, we will use these classes
for general file read and write operations. The only difference with the standard input and output is that,
instead of using the default file names stdin and stdout, we will specify a different file name for reading or

203

writing. Like C file operations, you can also specify the options for different types of read and write. Table
3 .4 shows the available operations.

ios::in Open file for input operations. Not required of ifstream class is used.

ios::out Open for output operations. Not required of ofstream class is used.

ios::binary Open in binary mode.

ios::ate Set the cursor position at the end of the file for reading or writing.

ios::app
The write operations are performed at the end of the file, appending the content to the current
content of the file.

ios::trunc
If the file is opened for output operations and it already existed, its previous content is deleted and
replaced by the new one.

Table 3.4. Options for C++ file operations

The following program shows a part of a C++ linked list program that saves the linked list into file before
exiting, loads the data from file, and creates a linked list at starting.

#include <iostream>

#include <fstream> // include ifstream and ofstream classes

#include <string>

using namespace std;

class Contact {

public: string name;

int phone;

Contact *next;

} ;

Contact *head = NULL;

int save_file(string myFileName); // myFileName is "SavedList"

void load_file(string myFileName); // myFileName is "SavedList"

void load_file(string myFileName)

int count = 0;

// myFileName is "contactFile"

Contact * temp = head; // head is global

ifstream myFileVar; // declare a variable of File type

myFileVar.open (myFileName); // open the same file name

if(myFileVar.is_open())

myFileVar >> count; // read count from file

for (int i = O; i < count; i++) {

Contact* temp= new Contact();

myFileVar >> temp->name;

myFileVar >> temp->phone;

temp->next = head;

head = temp;

myFileVar.close();

204

}

II Note, save_file does not delete the linked list when saving into file

int save_file(string myFileName) { II myFileName is "contactFile"

int count = O;

Contact *temp = head; II head is global

ofstream myFileVar; II declare a variable of File type

while (temp != NULL) II count number of Contact nodes in linked list {

temp = temp->next; count++;

myFileVar.open(myFileName);

if(myFileVar.is_open())

myFileVar << count; II save count into file

while (temp != NULL)

myFileVar << temp->name << endl;

myFileVar << temp->phone << endl;

temp = temp->next;

myFileVar.close();

return 0;

void main() {

string myFile = "SavedList";

load_file(myFile);

II Perform other functions

save_file(myFile);

deleteList(head); II delete all notes in a loop

Figure 3 .10 illustrates how the linked list data is saved into the file. We do not need to save the next member.
It will be created in load file function.

myFileVar

___ _,.

--------:::::::

____.

--

--�
___

head�----
John

1234567

next

Julia

2345678

next

Tom

3456789

next

Figure 3.10. Different objects are linked into the same list.

205

count

Similar to C file I/O and file operations, there are different ways of reading and writing files in C++. The
following program example shows a more complex example of writing a structure of data consisting of first
name, last name, phone, and email into a .csv (Comma Separated Value) file, which is one of the data
formats of Excel. To illustrate the different ways available, we will use a different way of reading and
writing the .csv file. Table 3.5 shows a .csv file entered using the writingFile function in the program. In
the program, phone is considered as an integer and processed as an integer.

First Last Phone Email

David Smith 3456789 david@gmail.com

Mary Miller 7654321 mary@yahoo.com

Jane Jones 9650000 jane@live.com

John Lee 1234567 john@asu.edu

Table 3.5. Example of .csv file generated by the program.

#include <iostream>

#include <string>

#include <fstream> // for file reading and writing functions.

using namespace std;

void readingFile(); // Forward Declarations

void writingFile(); // Forward Declarations

ofstream wFile;

int main () {

char choice;

do

cout << "\nSelect a function" << endl;

cout << "(w) For writing file" << endl;

cout << "(r) For reading file that exist" << endl;

cout << '' (q) For quitting" << endl;

choice = getc(stdin);

cout << endl;

if (choice == 'r')

readingFile () ;

else if (choice == 'w')

writingFile();

else{

cout << "Invalid input\n" << endl;

cin.ignore();

while (choice != 'q');

return O;

void writingFile() { // This function writes into a file

// Declare object to read file of Comma Separated Value csv file

wFile.open("person.csv", ios: :out/ios::app);

206

} ;

II Open for writing and appending

II These strings are declared to store the input data.

string firstName, lastName, phone, email;

int iPhone;

cout << "Please enter first name, last name, phone, and email" << endl;

cin >> firstName;

cin >> lastName;

cin >> phone;

cin >> email;

wFile << firstName << ',' << lastName; II write in the file

if ((phone [0] > 4 7) & & (phone [0] < 5 8))

II check if the first char is a digit between 0 and 9

iPhone = stoi(phone); II convert string to integer

wFile <<

else

" "

, << iPhone;

wFile << "," <<phone;

wFile << "," <<email << endl;

wFile.close();II Always close a file when done.

cin.ignore(); II Remove delimeter at the end

void readingFile() { II This function uses getline to read from the file

II Declare object to read file.

ifstream rFile("person.csv");II Comma Separated Value file

II These strings are declared to store the parsed data.

string firstName, lastName, phone, email;

int iPhone;

if (rFile.is_open()) II Open the file{

II Keep reading until the end of the file.

while (getline(rFile, firstName, ', '))

get line (rFile, lastName, ', ') ;

getline (rFile, phone, ', ');

get line (rFile, email, '\n') ;

cout << firstName << '\t' << lastName;

if ((phone[0] > 47) && (phone[0] < 58))

II If not header, convert string to integer

iPhone = stoi(phone);

cout << "\t" << iPhone;

else cout << "\t" << phone;

cout << "\t" <<email << endl;

rFile.close();II Always close a file when done.

207

} ;

else cout << "Unable to open file" << endl;

cin.ignore(); II Remove delimeter at the end

3.6.2 Ignore operation in C++

In Chapter 2, we used f flush (st din) to remove the delimiter (a space, a newline, etc.) when we switch
from scanf to getc. The C++ function equivalent to fflush is cin. ignore.

The function cin. ignore () is similar to but more powerful than the C-styled f flush (st din) function
that flushes the input buffer to remove the remaining delimiters in the buffer of the standard input file

stdin after a scanf operation. In C++, you must use cin. ignore () if you switch from the formatted
input function cin >> to an unformatted input function such as cin. get or cin. getline, etc. Similar

to scanf, cin >> will read only up to a space or newline and leave the space or newline in the buffer. The

function cin. ignore () will remove the space or newline. The function cin. ignore () is more powerful
than simply removing one character from the input buffer. There are three overloaded functions. (1)
cin. ignore (): discard one character from the input buffer; (2) cin. ignore (int n) : discard n

characters from the input buffer; and (3) cin. ignore (int n, char term): discard n characters or stop

when the character in the parameter term is encountered. For example,

#include <iostream>

using namespace std;

void main(void) {

char strvar[12];

cin >> strvar; II Enter: Hi

cout << "Please enter the string: Hello world" << endl;

II cin.ignore(); II option 1

II cin.ignore(lO); II option 2

I I cin. ignore (10, 'w') ; I I option 3

cin.getline(strvar, 12, '\n'); II Enter: Hello world

cout << strvar << endl;

Figure 3.11 illustrates the states of the input variable strvar and the input buffer in the execution process

of the program above. Notice that the newline character' \n' is left in the buffer after the cin » operation
is completed and thus the next input string "Hello world" is appended to the character. The

cin. getline function reads the input buffer until it encounters a newline character. Since a newline

character already exists in the buffer, the cin. getline function will not wait for the user to enter a
newline. As a result, no input is needed and an empty string is read into the input variable strvar. The

print statement cou t < < will then print nothing. It creates an illusion that the last two statements in the
program are skipped.

To solve the problem, we can use the function cin. ignore () to discard the newline character (option 1

in the program). To illustrate the effects of the three cin. ignore functions, we apply the three options

one by one. The outputs of the statement "cout << strvar << endl;" in the three executions will be,
respectively:

Hello world

Id

II correctly printed

II 10 characters are discarded

208

arid // It stops after the character 'w' is read

Variable: strvar cin Input buffer (an array of bytes)

Initial S(ate: I I I I I I I I ---rn-r1 I I I I I I I I I I I I··· rn +-K
e
yboar

d

t * Call cin>> strvar I I I I I I I j ... [D +- HI i Im! I I I I I I I I I , ... [D +-K
e
ybo

ar<l

t *

Figure 3.11. The input buffer between the keyboard and the input variable.

Option 1 removes a single character. Option 2 removes 10 characters. Option 3 removes 10 characters or

stops when a character 'w' is encountered, whichever comes first, and thus 8 characters are removed. Please

notice that cin. ignore removes the characters left in the input buffer. If there is no character in the buffer,

it will remove the character entered after the cin. ignore statement!

Functions cin. get and cin. getline work like the cin >> except that they will read a line with spaces,

whereas the parameter strvar is a string variable that will hold the entered string; parameters strlength

and achar are optional. Parameter strlength is an integer that limits the maximum number of characters

to be passed to the parameter strvar. Parameter achar is a character that serves as the terminator or
delimiter. The input function stops reading when the terminator character is read. By default, the terminator
is the newline character '\n'. Both cin. get and cin. get line will reserve one character for the

terminator, that is, you can enter only strlength-1 characters. The only difference between cin. get

and cin. getline is that the cin. getline function will remove the terminator from the strvar

variable, while cin. get will keep the terminator in the strvar variable. The following code shows a

simple example where the character '@' is used as the terminator:

#include <iostream>

using namespace std;

void main() {

char aline[25];

cout << "Please enter a line terminated by '@'" << endl;

cin.getline(aline, 25, '@');

cout << aline << endl;

3. 7 Exception Handling

An exception is a forced deviation caused by a known event, which represents an abnormal situation from
the normal execution sequence of the program. There are internal exceptions and external exceptions.

209

An internal exception is caused by a message to the CPU seeking attention from a source within the CPU
itself, for example, when an operation performs a division by 0, causes an overflow, or executes an illegal
(undefined) operation. Internal exceptions are called software-related exceptions.

An external exception is caused by a message to the CPU seeking attention from a source outside the CPU
(e.g., out-of-memory, memory access violation, bus error, device busy, etc.). External exceptions are also
called interrupts.

Exceptions are difficult to handle and are normally handled at all levels of a computer system.

At the hardware level, when an exception occurs, the hardware will identify the exception source, compute
the exception handler's entry address, and load the address into the program counter of the CPU. Thus, the
CPU starts to execute the exception handler's code. A very limited number of exceptions can be handled at
the hardware level. For example, a Motorola 68000 processor can handle up to 256 exceptions and
interrupts. At the OS level, more exceptions can be handled. For each exception, a simple exception handler
will be provided. At the program language level, most program languages provide exception-handling
mechanisms. For example, C++ provides several exception classes to facilitate programmers in handling
exceptions more effectively. At the user program level, a programmer can write application-specific
exception handlers to handle various semantics-related exceptions. Only the programmers know the
semantics of their programs.

At each level, exception handling can make use of the exception handlers below and can add extra exception
handlers.

If an exception is not caught by the programmer's handlers, there are two possibilities: (1) The exception
is caught by a lower level of exception handler and an error message will normally be shown. The
programmer can either terminate the program or enter the debugging state to see what instruction or
operation caused the exception. (2) If the exception is not caught by a lower level exception handler, the
program will normally crash or freeze.

Visual Studio C++ provides an exception library <stdexcept> that includes the following exception classes:

exception Class (root class)

domain error Class

invalid_argument Class

length_error Class

logic_error Class

out of_range Class

overflow error Class

range_error Class

runtime error Class

underflow error Class

C++ also provides several constructs for programmers to define their exception conditions and exception
handlers. The syntax, which is similar to that of Java, is given in BNF notations as follows:

<exception-structure> : := try<code-block><handler-list>

<handler-list> : : = <empty> I <handler> I <handler-list><handler>

<handler> ::= catch (<except-declaration>) <code-block>

<except-declaration> : : = <type-name> I <type-name><identifier>

<type-name> *<identifier>

<throw-statement> : : = throw I throw<expression>

210

The code-block following the try keyword is the code that is a part of the code required by the semantics
of the program. However, an exception condition may occur in this part of the code. For example, there is
a division operation on a variable whose value could be zero, or a memory request is made, which may or
may not receive the required memory.

The handler-list may consist of zero, one, or multiple handlers, each of which handles a different type of

exception variable. Each handler starts with the keyword cat ch and is followed by declaring an exception

variable and a block of code. The variable will be used to receive the "return" value of a throw statement

in the try statement. The code-block in the catch statement will handle the exception in a specific way
(e.g., print an error message of the value of the exception variable).

The throw statement is similar to a return statement. It is normally used in the try statement to exit

(return from) the block and possibly to pass a value to an exception variable. Multiple throw statements

can be used. If the types of the return values are different, different exception handlers (multiple cat ch

statements) must be used. We can also consider that catch is a function, and a throw statement is a

function caH to a cat ch function. Since there can be multiple cat ch statements, cat ch is an overloaded

function with different parameter types. The value in the throw statement will be parameter-passed to the
catch function.

The following program illustrates the application of the exception statements:

#include <iostream>

using namespace std; II It includes <stdexcept> library

int main () {

int *queue, n;

cout << "Enter queue-size >= 10 : " << '\n';

cin >> n;

try

if (n < 10)

throw -1; II return an integer value

queue = new int[n];

if(queue == 0)

throw "heap allocation failed!";

catch(char * se) {

cout << "Exception: " << se << '\n'; II return a string

catch(int ie) {

cout << "Exception: " << ie << " too small" << '\n' ;

}

II

return O;

In this program, there are two throw statements, handling two different exception situations, respectively.

One returns an integer value and the other returns a string. Thus, two catch statements (two exception

handlers) are necessary. The integer return value will be passed to the integer exception variable ie, and

the string return value will be passed to the string variable se.

211

Although we can use the normal data types to declare exception variables, it is recommended, for the
purpose of readability, to define an exception class (type) and use the class to declare exception variables.
The following piece of code checks if a date entered is in a valid format and in the valid ranges. A class

DataErr is defined and used to declare an exception variable derr. The variable is assigned values in the

try statement. In the catch statement, another variable dateerr of DataErr type is declared. When a

throw statement calls the catch function, the values in the variable derr are passed to the variable

DataErr.

class DateErr {

public:

derr;

char *pdate;

int idate;

char birthday[ll], atemp[ll], *ptemp;

cout << "Enter birthday, e.g., 05/24/1985";

try { // handling incorrect date input

cin.getline(birthday, 11);

strcpy(atemp, birthday); // 05/24/1985

ptemp = atemp;

derr.pdate = birthday;

atemp[2] = '\0'; //extract the month

// handling incorrect date input

derr.idate = atoi(ptemp); // extract month

if ((derr.idate<l) 11 (derr.idate>l2))

throw derr; // out of month range 1 .. 12

atemp[5] = '\0';

ptemp = ptemp + 3;

derr.idate = atoi(ptemp); //extract day

if ((derr.idate<l) 11 (derr.idate>31))

throw derr; // out of day range 1 .. 31

ptemp = ptemp + 3; //extract the year

derr.idate = atoi(ptemp);

if ((derr.idate<1800) 11 (derr.idate>2050))

throw derr;

catch (DateErr dateerr)

cout << "Exception: "

<< dateerr.idate << "incorrect in"

<< dateerr.pdate << '\n';

212

3.8 Case Study: Putting All Together

In this section, we give an example that applies many of the data structures and programming techniques
learned in this chapter, including

• Class definition: with private members and public members. A friend function is also defined in
the Pet class, which allows the changeBreed function outside the class to access this class's
members.

• Inheritance and inheritance hierarchy: among the Pet, Cat, Dog, and Fish classes. The Fish class
has an additional member that does not exist in the Pet class.

• Containment: between the Container and Pet classes. The Cat, Dog, and Fish classes can be added
into the Container class through polymorphic pointer of Pet.

• Type casting: Explicitly convert int type to enumeration type
• Memory management and garbage collection: heap memory is deleted in the remove function.
• Header files and multiple classes and organization of the program: Each class is split into a header

file and a source file.
• File operations:

3.8.1 Organization of the program

The program consists of five classes: Pet, Cat, Dog, Fish, and a Container. The Container class contains a
pointer to a Pet object and a pointer to the next Container object (self-containment), forming a linked list
of Pet, Cat, Dog, and Fish objects. The classes and their relationships among them are shown in Figure
3.12. Each class is split into a header (.h) file and a source code (.cpp) file. The header files are stored in
the "Header Files" folder, and the source files are stored in the "Source Files" folder, as shown in the Visual
Studio Solution Explorer at the right-hand side of Figure 3.12. The header files are used to store the class
definitions, while the source files are used to store the implementation. All the methods in the source files
use scope resolution operators to associate the implementation with the class definition. Please also read
Section 2.9 on module design oflarge programs and the scope of variables and functions.

A virtual method is defined in each class to display all the members in each class, which allows the
polymorphic to call the display() functions differently implemented in each class. All the data members are
defined as private members, and a get-method is defined for each data member.

Linked list manipulation functions are defined, including add, remove, and modify. A save and a load
functions are defined to save to linked list data into a text file before the program exits and to load the data
into the linked list at program start.

213

Pet name

breed

�pe

Cat

head

Container

*pet *pet
*next *next

Dog Fish

Inheritance

hierarchy

Fish

containment
I

I

Dog Cat

name name

breed breed
t�pe

dis lay()
tvoe

temoerature

display()

Figure 3.12. Classes and their relationships.

3.8.2 Header files

Solution Explorer • f1. X

...i [SJ CppProjed
I> !El External Dependenc

...i i I Header Files
I> @J Cat.h
I> @J Container.h
I> @J Dog.h
I> @J Fish.h
I> @J Peth

I> ■-■ References.
,. · Resource Files.

.111 ,,., 1 Source Files
I> ++ Cat.cpp
I> ++ Container.cpp 1

I> ++ Dog.cpp
I> ++ Fii.h.cpp
I> ++ Mainclas.s.cpp
I> ++ Pet.cpp

This section presents all the header files in the program. The definitions are explained through comments.
These files should be added into the Header Files folder in the Visual Studio project.

Peth

#ifndef PETH

#define PETH

II These two preprocessor directives and the one at the end: #endif,

II prevent the header file from being included (linked in) multiple

II times, when it is used multiple times by the user.

#include <string>

using namespace std;

enum PetType { dog= 0, cat, fish};

class Pet

private:

string name, breed; II private local variables

PetType type;

public:

Pet(string pet_name, string pet_breed, PetType pet_type); II constructor

string getName(); II accessor methods

string getBreed();

PetType getType();

friend void changeBreed(Pet* pet, string breed);

214

II This friend definition allows changeBreed() to access this class

virtual void display() {

} ;

#endif II PETH

Cat.h

#ifndef CAT H

#define CAT H

#include "Pet.h"

class Cat : public Pet

public:

Cat(string pet_name, string pet_breed, PetType type)
pet_breed, type){}

void display();

} ;

#endif II CAT H

Dog.h

#ifndef DOG H

#define DOG H

#include "Pet.h"

class Dog : public Pet

public:

Dog(string pet_name, string pet_breed, PetType type)
pet_breed, type){}

void display();

} ;

#endif II DOG H

Fish.h

#ifndef FISH H

#define FISH H

#include "Pet.h"

class Fish : public Pet {

private:

int temperature;

public:

Pet(pet_name,

Pet(pet_name,

Fish(string pet_name, string pet_breed, PetType type, int temp)
Pet(pet_name, pet_breed, type) {

} ;

temperature = temp;

int getTemperature();

void display();

#endif II Fish H

215

Container.h

#ifndef CONTAINER H

#define CONTAINER H

#include "Pet.h"

class Container

public:

} ;

Pet *pet;

Container *next;

Container(); II constructor

#endif II CONTAINER H

3.8.3 Source files

This section presents all the C++ source files in the program. The classes and functions are explained
through comments. These files should be added into the Source Files folder in the Visual Studio project.

Mainclass.cpp

II This example put together many concepts discussed in this Chapter

#include "Container.h"

#include "Pet.h"

#include "Dog.h"

#include "Cat.h"

#include "Fish.h"

#include <iostream>

#include <fstream>

#include <string>

using namespace std;

II forward declarations, listing all functions defined in this class

void flush ();

void branching(char);

void helper(char);

void add_pet(string, string, PetType);

Pet* search_pet(string, string, PetType);

void remove_pet(string, string, PetType);

void remove_all();

void print all();

void save(string); II Save linked list into a text file before exiting

void load(string); II Load the save data back in the linked list upon
starting

Container* head= NULL; II global list head

int main() { II main class

CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF I CRTDBG_LEAK_CHECK_DF);

II Use for checking memory leaks in VS

load("Pets.txt"); II Load the saved data back into the linked list

char ch= 'i';

216

do { II Print the selection menu

cout << "Please enter your selection" <<

cout << "\ta:

cout << "\tc:

cout << "\tr:

cout << "\tp:

cout << "\tq:

cin >> ch;

flush () ;

add a new pet to the list"

change the breed of a pet"

remove a pet from the list"

print all pets on the list"

quit and save list of pets"

endl;

<< endl;

<< endl;

<< endl;

<< endl;

<< endl;

branching(ch); II Jump to the selected function

while (ch ! = 'q');

save ("Pets. txt"); I I Save linked list data into a text file

remove_all(); II garbage collect all the memory

head = NULL;

return 0;

void flush ()

int c;

II Flush file buffer

do c = getchar(); while (c ! = '\n' && c ! = EOF);

void branching(char c) { II Jump to the select function

switch (c) { II Cases a, c, r, and p are differentiated in helper()

case 'a': II no break, it falls through

case 'c':

case 'r':

case 'p':

helper(c);

break;

case 'q':

break;

default:

printf("\ninvalid input!\n\n");

II The helper function is used to determine what data is needed and which
function to send that data to.

II It uses pointers and values that are returned from some functions to
produce the correct output.

II Study this function and know how it works.

II It is always helpful to understand how the code works before
implementing new features.

void helper(char c)

string name, breed;

PetType type;

217

int type check = -1;

if (C == 1p I)

print_all (); II Print all members' information

else {

endl;

cout << endl << "Please enter the pet's name: " << endl;

cin >> name;

cout << "Please enter the pet's breed: 11 << endl;

cin >> breed;

while (! (type check == 0 I I type check == 1 I I type check == 2))

{

cout << endl << "Please select one of the following: " << endl;

cout << "0. Dog " << endl;

cout << 11 1. Cat" << endl;

cout << "2. Fish" << endl;

cin >> type_check; II Enter 0, 1, or 2

type (PetType)type_check; II Cast int to PetType

Pet* pet_result = search_pet(name, breed, type);

if (c == 'a') { II Call add_pet function

if (pet_result == NULL) {

add_pet(name, breed, type);

cout << endl << "Pet added." << endl << endl;

else

cout << endl << "Pet already on list." << endl << endl;

else if (c == 'c') II change pet breed

if (pet_result == NULL)

cout << endl << "Pet not found." << endl << endl;

return;

cout << endl << "Please enter the new breed for this pet:
11 <<

cin >> breed; flush();

changeBreed(pet_result, breed);

cout << endl << "Pet's breed changed." << endl << endl;

else if (c == 'r') { II call remove_pet function

if (pet result == NULL)

cout << endl << "Pet not found." << endl << endl;

return;

remove_pet(name, breed, type);

218

cout << endl << "Pet removed from the list." << endl << endl;

void changeBreed(Pet* pet, string breed) {

pet->breed = breed;

II This function will be used to add a new pet to the tail of the global
linked list.

II We use the enum 'type' variable to determine which constructor to use.

II Notice that that search is called before this function to make sure the
new pet is not on the list.

void add_pet(string name, string breed, PetType type)

Container* new container

if (type == dog)

new_container->pet

else if (type == cat)

new Container();

new Dog(name, breed, type);

new_container->pet = new Cat(name, breed, type);

else if (type == fish)

int temp; II For Fish object, an additional parameter is needed

cout << "Please enter an integer for the Preferred Temperature of
the fish breed";

cin >> temp;

new_container->pet = new Fish(name, breed, type, temp);

NULL; new container->next

if (head == NULL) { II If the linked list is empty

head = new container;

return;

Container* container traverser = head->next;

Container* container follower = head;

II Find the end of the linked list and add the new object at the end

while (container_traverser ! = NULL) {

container_follower = container_traverser;

container traverser container_traverser->next;

container follower->next new_container;

}

II Search linked list and return the pointer to the object

II that meet the criteria.

Pet* search_pet(string name, string breed, PetType type)

Container* container traverser = head;

while (container_traverser ! = NULL)

219

if (container_traverser->pet->getName() == name

&& container_traverser->pet->getBreed() == breed

&& container_traverser->pet->getType() == type)

return container_traverser->pet;

container traverser

return NULL;

}

container_traverser->next;

// Remove one pet

void remove_pet(string name, string breed, PetType type)

Container* to_be removed;

}

if (head->pet->getName() == name

&& head->pet->getBreed() == breed

&& head->pet->getType() == type)

to_be_removed = head;

head = head->next;

delete to_be removed->pet;

delete to_be_removed;

return;

Container* container_traverser = head->next;

Container* container follower = head;

while (container_traverser != NULL)

if (container_traverser->pet->getName() == name

&& container_traverser->pet->getBreed() == breed

&& container_traverser->pet->getType() == type)

to_be_removed = container_traverser;

container_traverser = container_traverser->next;

container follower->next = container_traverser;

delete to_be_removed->pet;

delete to_be removed;

return;

container follower = container_traverser;

container traverser container_traverser->next;

// Remove all nodes in the linked list

void remove_all()

while (head ! = NULL)

Container* temp = head;

head = head->next;

delete temp->pet;

delete temp;

220

II This function uses the virtual display() method of the Dog, Cat and
Fish classes to print all Pets in an organized format.

void print_all() {

}

Container *container_traverser = head;

if (head== NULL)

cout << endl << "List is empty!" << endl << endl;

while (container_traverser ! = NULL) {

container_traverser->pet->display();

container traverser container traverser->next;

II Save the linked list of pets to a file using ofstream.

II We first count the number of nodes in the linked list.

II We cast the enum 'type' to an int before writing it to the file.

void save(string fileName)

}

int count = O;

Container* container traverser = head;

II count number of Containers in linked list

while (container_traverser != NULL)

container traverser

count++;

ofstream myfile;

myfile.open(fileName);

if (myfile.is_open()) {

container traverser

myfile << count;

container traverser->next;

head;

while (container_traverser != NULL) {

myfile << container_traverser->pet->getName() << endl;

myfile << container_traverser->pet->getBreed() << endl;

myfile << (int)container_traverser->pet->getType() << endl;

container traverser container_traverser->next;

myfile.close();

II Load the linked list of pets from a file using ifstream.

II We create the linked list in the same order that is was saved to a file.

II We create a new node for the linked list, then add it to the tail of the

II list. We cast the int type back to the enum 'type'.

II We use the 'type' variable read from the file to determine which
constructor to use.

221

void load(string fileName)

ifstream myfile;

myfile.open(fileName);

if (myfile.is_open()) {

Pet.cpp

int type as int, count 0;

string name, breed;

PetType type;

Container* container_traverser = head;

myfile >> count;

for (int i = O; i < count; i++)

Container* new node

myfile >> name;

myfile >> breed;

new Container();

myfile >> type_as int;

type = (PetType)type as_int;

if (type == dog)

new_node->pet = new Dog(name, breed, type);

else

new_node->pet = new Cat(name, breed, type);

new_node->next = NULL;

if (head == NULL) {

else

new node->next

head = new_node;

head;

container_traverser = head;

while (container_traverser->next ! = NULL)

container_traverser = container_traverser->next;

container traverser->next new_node;

myfile.close();

#include "Pet.h"

Pet: :Pet(string pet_name, string pet_breed, PetType pet type)

name = pet_name;

breed = pet_breed;

type = pet_type;

string Pet::getName()

return name;

222

string Pet: :getBreed()

return breed;

PetType Pet::getType()

return type;

Cat.cpp

#include "Pet.h"

#include "Cat.h"

#include <iostream>

void Cat: :display()

cout << endl << "Name: " << getName () << endl;

cout << "Breed: " << getBreed() << endl;

cout << "PetType: Cat" << endl << endl;

Dog.cpp

#include "Pet.h"

#include "Dog.h"

#include <iostream>

void Dog: :display()

cout << endl << "Name: " << getName() << endl;

cout << "Breed: " << getBreed() << endl;

cout << "PetType: Dog" << endl << endl;

Fish.cpp

#include "Pet.h"

#include "Fish.h"

#include <iostream>

int Fish: :getTemperature()

return temperature;

} ;

void Fish: :display()

cout << endl << "Name: " << getName () << endl;

cout << "Breed: " << getBreed() << endl;

cout << "PetType: Fish" << endl;

cout << "Preferred Temperature: " << getTemperature() << endl << endl;

Container.cpp

#include "Container.h"

// Constructor for Container class

Container: :Container() {

223

pet = NULL;

next = NULL;

*3.9 Parallel computing and multithreading

Most computers today have multiple processors. Writing programs using the parallel computing and
multithreading paradigms is a necessity in modern software development.

3.9.1 Basic concepts in parallel computing and multithreading

Multitasking in OS and multithreading in application programs are similar. Both provide the ability to
execute different parts of a code simultaneously, while maintaining the correct results of computation.

In the OS case, the parts of the code executed in parallel are called processes or tasks and are often
semantically independent of each other (but can be related). OS performs process scheduling and resource
(processors, memory, peripherals, etc.) allocation. OS system calls allow users to create, manage, and
synchronize processes. In the case of the application program, the parts of the code executed in parallel are
called threads. Most often, they are semantically dependent (but they can be independent).

In both cases, programmers must carefully design the OS/application in such a way that all the
processes/threads can run at the same time without interfering with each other, and produce the same result
in a finite amount of time regardless of the order in which they are executed.

We differentiate a program from a process and a function (method) from a thread. A program or a function
(method) is a piece of code written by a programmer that is static, while a process or thread consists of an
executing program/function, its current values, state information, and the resources used for supporting its
execution. In other words, a process or thread is a dynamic entity, which exists only when a program or a
method is being executed.

To execute multiple processes/threads truly in parallel, multiple processors must exist. If a system has only
one processor, multiple processes/threads appear to execute simultaneously, but actually execute
sequentially in time-sharing mode.

From the same piece of code, multiple processes/threads can be created. The code and data contained within
different processes/threads are, by default, separated: each has its own copy of executable code, its own
stack for local variables, and its own data area for objects and other data elements.

C++ was not initially designed to handle parallel software development. The language must be extended in
its environment to handle such tasks. In this section, we will discuss how Visual Studio extends C++ to
facilitate multithreading.

3.9.2 Generic features in C++

Generic types are parameterized types [Source: http://msdn.microsoft.com/en-us/library/c570k3f3.aspx].
They are defined with an unknown type parameter that is specified using the generic keyword:

generic <typeName T>

A type constructed from a generic type is referred to as a constructed type, which is a type not fully
specified. For example, List<T> is an open constructed type. Type T will be determined at execution time.
On the other hand, a type that is fully specified, such as List<double>, is a closed constructed type or a
specialized type.

224

Based on the generic type definition, a generic function can be defined, which is a function that contains
generic type parameters. When being called, actual types are used instead of the type parameters
[http://msdn.microsoft.com/en-us/library/skef48fy.aspx].

generic <typeName Tl, typeName T2 >

Tl foo<Tl x, T2 y>

function-body

In this example, generic types Tl and T2 are used as the parameter of the function foo.

Furthermore, we can define a generic class. A generic class is a template that can be instantiated by different
actual classes.

It can be defined using generic type parameters and generic functions. It can also extend an interface class
[http://msdn.microsoft.com/en-us/library/skef48fy.aspx]. For example,

generic <typeName Tl, typeName T2 >

ref class gStack {

private Tl *buffer;

void push(T2 item);

T2 pop();

A generic class can have constraints, which limit the types to be used for the type parameter. For example,

interface class Icitem { };

generic <class ItemType> where ItemType : Icitem

ref class gStack {};

A full example is given below to illustrate the concepts and the syntax of defming generic class, function,
and type [http://msdn.microsoft.com/en-us/library/a l 74071k.aspx].

using namespace System;

inter£ ace class IAge { int Age () ; } ;

ref class Senior : IAge

public: virtual int Age() { return 70;

} ;

ref class Adult: IAge

public: virtual int Age() { return 30; }

} ;

ref class MyClass

public:

} ;

generic <class ItemType>

where ItemType : IAge II could include a list of constraints

bool isSenior(ItemType item) II Because of the constraint,

II the Age method can be called on ItemType.

if (item->Age() >= 65) return true;

else return false;

225

int main() {

MyClassA ageGuess = gcnew MyClass(); // g.c. - new

AdultA parent = gcnew Adult();

SeniorA grandfather = gcnew Senior();

if (ageGuess->isSenior<AdultA>(parent))

Console::WriteLine("\"parent\" is a senior");

else

Console::WriteLine("\"parent\" is not a senior");

if (ageGuess->isSenior<SeniorA>(grandfather))

Console::WriteLine("\"grandfather\" is a senior");

else

Console: :WriteLine("\"grandfather\" is not a senior");

The syntax for using a generic class is different from that for using a normal class. When using a generic
class as a type to define a variable, we need to append the symbol /\ to the class name, for example,

MyClas s A, Adult A, and senior A. For accessing the member of an object, arrow notation -> will be used,
for example, ageGuess->isSenior. For creating an object, gcnew will be used, while new is used to

create a class instance, for example, Adult A parent = gcnew Adult ().

3.9.3 Case Study: Implementing multithreading in C++

After being introduced to the generic class, we can start to implement a multithreading program in C++.
We will use a simple problem as our case study, so that we can focus on the creation of a multithreading
program. The problem we will solve is to add a large array of numbers. Assume the size of the array is
1,000,000. Without applying multithreading, we would use a for-loop that iterates a million time to add the
numbers. Now, we assume that we have p processors, and we can split the array into p arrays, and let one
processor add 1/p of the numbers. After all of the processors have completed the addition, we add the p
sums to obtain the final sum. Figure 3 .13 illustrates the process, which consists of three steps:

• Map: Divide the input domain into p parts, where p = 4 in this example, and add all the parts in
parallel. Multithreading programming can help in completing the tasks in parallel.

• Spin synchronization: Wait for the computation (addition) of all the parts to complete.
• Reduce: Combine (add) the results from all the parts to obtain the final result.

This process is called MapReduce. The name comes from the higher-order functions Map and Reduce to
be discussed in Chapter 4. MapReduce has been widely used in many areas. For example, the web search
engines use MapReduce in this way: The domains to be searched are divided into subdomains. The search
engine instances search the domains in parallel. The short lists of results from all search engine instances
are merged (reduced) into a single list of results.

226

0 ------;,

l/4M ------;,

2/4 M �

3/4M ------;,

l M �
ARRAY

} Thread 1 - sum 1

} .§ Thread 2 - sum2 .�

-6
�

} Thread 3 - sum3

} Thread 4 - sum4

.s
0...

(/J

Final Sum

Figure 3.13. Adding a million numbers using MapReduce.

The C++ program below includes two implementations that add a million numbers. One implementation
uses a single thread and the second implementation uses multithreading based on the MapReduce process.
The execution times of the two implementations are compared at the end.

#include "stdafx.h"

#include <iostream>
#include <random>
#include <math.h>
#include <time.h>
#using <System.dll>
using namespace System;
using namespace System::Threading;

using namespace std;
II Create a global variable to store the values
#define ARRAY SIZE 1000000
double ARRAY[ARRAY_SIZE]; II create a global array
II The ThreadClass class contains the function to be started as a thread.
public ref class ThreadClass II It is a generic class to be instantiated {
private:

II State information used in the task.

char* threadName;
int s_index; II start
int e index; II end

public:
ThreadClass() { } II Default constructor
II The constructor obtains the state information
ThreadClass(char* name, int start_index, int end_index)

threadName = name; II Parameter passing by name

227

s index

e index

start index;

end_index;

II The thread function adds numbers in the given range.

void SumFunc() {

double sum 0;

for (int i = s index; i < e_index; i++) {

sum = sum + ARRAY[i] I ARRAY_SIZE; II make small

printf("%s: - sum %f\n", threadName, sum*ARRAY_SIZE);

} ;

switch (threadName[7]) II extract the thread number

II store sub sums into the array elements 1, 2,

case I 1': ARRAY[l] sum; break;

case I 2 I
: ARRAY[2] sum; break;

case I 3 I
: ARRAY [3] sum; break;

case I 4 I
: ARRAY[4] sum; break;

3, and 4

II Entry point for MultiThreading, in which threads are created and started

public ref class MainClass

public:

static void Main()

clock_t START_TIME, END_TIME;

II Generate random numbers and store them into a global array

for(int index = 0; index < ARRAY_SIZE; index++) {

ARRAY[index] = rand();

}

II without multithreading

START TIME clock();

double sum 0;

for (int i 0; i < ARRAY_SIZE; i++) {

sum = sum + ARRAY[i]IARRAY_SIZE;

printf("Final Sum without threading

END_TIME = clock();

%f\n", sum*ARRAY_SIZE);

printf("Final Sum without threading completed in %0.4f seconds.\n",
(END_TIME - START_TIME) I (float)CLOCKS PER_SEC);

II create four thread objects

ThreadClass/\ OBJECTl gcnew ThreadClass("THREAD l", 0,
(ARRAY_SIZEl4) * 1) ;

ThreadClass/\ OBJECT2
(ARRAY_SIZEl4) * 2);

ThreadClass/\ OBJECT3
* 2 , (ARRAY_ SI Z EI 4) * 3) ;

gcnew ThreadClass("THREAD 2", (ARRAY_SIZEl4),

gcnew ThreadClass ("THREAD 3", (ARRAY_SIZEI 4)

228

ThreadClassA OBJECT4 = gcnew ThreadClass("THREAD 4", (ARRAY_SIZE/4)
* 3 , (ARRAY_ SI Z E / 4) * 4) ;

// Create four threads from the thread objects using library class Thread

ThreadA THREADl = gcnew Thread(gcnew ThreadStart(OBJECTl,
&ThreadClass::SumFunc));

ThreadA THREAD2 = gcnew Thread(gcnew ThreadStart(OBJECT2,
&ThreadClass::SumFunc));

ThreadA THREAD3 = gcnew Thread(gcnew ThreadStart(OBJECT3,
&ThreadClass::SumFunc));

ThreadA THREAD4 = gcnew Thread(gcnew ThreadStart(OBJECT4,
&ThreadClass::SumFunc));

START_TIME = clock();

// Start running the four threads

THREADl->Start();

THREAD2->Start();

THREAD3->Start();

THREAD4->Start();

// Spin Synchronization: Wait for all threads to complete

// before adding the sub-sums to obtain the final sum

THREADl->Join(); // wait until the thread terminates

THREAD2->Join();

THREAD3->Join();

THREAD4->Join();

sum = ARRAY[l]+ARRAY[2]+ARRAY[3]+ARRAY[4];

printf("Final sum = %f\n", sum*ARRAY_SIZE);

END_TIME = clock();

printf("Entire threads process completed in %0.4f seconds.\n",
(END_TIME - START_TIME) / (float)CLOCKS PER_SEC);

}

} ;

int main() // The main() of C++ must be a global function {

MainClass: :Main(); // call the MainClass's Main() function

The output of the program is given in Figure 3.14. It shows the execution time (0.046 second) of a simple
for-loop implementation without using multithreading, the time of each thread (in clock cycles), and the
time (0.172 second) used by the entire threading implementation.

229

• • .1 - I· - - 1 .•• • --

Final Sum without threading = 1638?9830�3--�
Final Sum without threading completed

econds.

THREAD 3: sum 40945?9053.999983
THREAD 4: - sum = 409?125060.999926
THREAD 2: - sum = 4095272200.999984
THREAD 1: - sum = 4101006727.999986
Final sum 16387983043.999876
Entire threads rocess com1leted in 0.1720 �econds.

Figure 3.14. Output of the program, showing the execution time.

Why is the multithreading solution slower than the single threading implementation? The reason is that the
calculation is too simple. The overhead of creating threads and synchronizing the threads exceeds the
benefit of parallel computing. Multithreading will make sense only if the computing tasks are heavy, such
as solving equation systems and searching the web.

3.10 Summary

In this chapter, we first briefly reviewed the principles of the object-oriented paradigm. We then discussed
class composition and definition, including information hiding through defining public, protected, and
private members of a class. A large program example was used to explain the related concepts.
Understanding memory management in a programming language is the key to understanding memory
allocation and deallocation of global/static, stack, and heap variables. After the discussion of the memory
management, we are in a much better position to understand the constructor and destructor of a class.
Garbage co11ection in C++ is done jointly by stack management, destructor and explicit delete operations.
In Section 3.4, we studied the major features of the object-oriented programming paradigm-including
class inheritance, inheritance-based class hierarchy, polymorphic pointer, virtual functions, and late
binding-that support polymorphic function calls. Again, we used a large example, the Personnel
hierarchy, to illustrate the concepts and principles we studied in this section. Section 3 .5 presented the
overloading features in C++, including function overloading and operator overloading. Section 3.6
discussed C++ standard input and output, as well as the fiJe operations. Section 3. 7 introduced the
exceptions in computer systems and how to write exception handlers in C++. Finally, Section 3.8 put all
the concepts learned in this chapter in a case study. Finally, Section 3.9 briefly studied generic class and,
generic functions, and generic types in C++ and parallel computing and multithreading in C++.

230

3.11 Homework, programming exercises, and projects

1. Multiple Choice. Choose only one answer for each question. Choose the best answer if more than
one answer is acceptable.

1.1 In C++, if class B is derived from class A, then without casting,

□ a pointer to a class A object can point to a class B object.

□ a pointer to a class B object can point to a class A object.

□ a pointer to a class A object can point to a class B object, and vice versa.

□ a pointer to a class A object can NOT point to a class B object, and vice versa.

1.2 A virtual member function in C++

□ is an abstract interface that has no implementation.

□ is an extendable function that allows a programmer to add formal parameters to the function.

□ implies early binding between the function name and the code.

□ implies late binding between the function name and the code.

1.3 Type checking during compilation will prevent a base-class pointer from accessing

□ any members of the derived class object.

□ the inherited members of the derived class object.

□ the additional members of the derived class object.

□ public members in the derived class object.

1.4 What part of memory should be deallocated by the destructor?

□ heap object created in the constructor. □ stack object created in constructor.

□ heap object created in main() function. □ static object created in main() function.

1.5 What part of memory must be deallocated by an explicit "delete" operation?

□ heap object created in the constructor □ stack object created in constructor

□ heap object created in main() function □ static object created in main() function

1.6 If class B is derived from class A, and x is a protected member of A, in which classes can x be
accessed?

□ Only in A. □ Only in B. □ In A and B. □ None of them.

1. 7 A, B, and C are three independent classes. A wants to allow B to access all its members, but does not
allow C to access. What is the best way for class A to implement this access control?

□ Use public. □ Use protected. □ Use private. □ Use friend.

1.8 If class B is derived from class A, and two pointers p and q are declared by

A *p; B *q;

which operation below is valid according to polymorphism?

Op = q; □ q :::: p; □ Both ofthem.

231

□ None of them.

1.9 If a member function in a class A is defined as a virtual function, then the member function

□ cannot be defined in class A. □ cannot be re-defined in a derived class.

□ can be re-defined in a derived class. □ none of the above.

1.10 Type checking during compilation will prevent a base-class pointer from accessing

□ any members of the derived class object.

□ the inherited members of the derived class object.

□ the new (extended) members of the derived class object.

□ public members in the derived class object.

1.11 If the relationship between two classes can be best described as an "is-a" relation, we should

□ derive one class from the other (use inheritance).

□ contain one class in the other.

□ define them totally independent of each other.

□ none of the above

1.12 The class hierarchy of a C++ program is formed according to the

□ number of data fields in classes. □ number of member functions in classes.

□ number of public members in classes. □ inheritance relationship among classes.

1.13 In the C++ exception structure, how many handlers can be defined following each try-block?

□ zero or more. □ one only. □ one or more.

1.14 What is the function of throw statement?

□ exit from a try-block and pass a value to a catch-block

D exit from a catch-block and pass a value to the try-block

Given the C++ class definitions below, answer the following three questions:

class employee {char *name; long id; char *department;}

class managerl {employee empl; short rank;}

class manager2: public employee {short rank;}

1.15 What class is defined using a containment relationship?

D managerl D manager2 D both of them

1.16 How does an object m ofmanagerl class access the member id?

Om.id D m. empl. id D m. empl->id

1.17 How does an object n of manager2 class access the member id?

0 n.id D n. empl. id D n. empl->id

□ at most two.

□ same as try

□ none of the above

□ none of them

1.18 What type casting mechanism should be used if you want to cast an integer value to a double value?

□ static cast □ const cast □ dynamic_ cast D reinterpret_ cast

232

1.19 What type casting mechanism should be used if you want to change pointer type for pointing to a
different object in an inheritance hierarchy?

□ static cast □ const cast □ dynamic_ cast □ reinterpret_ cast

1.20 What features are supported in C++? Select all that apply.

□ virtual function □ function overloading □ operator overloading □ virtual operator

1.21 What type of values can a throw-statement throw (return)?

□ Primitive type □ String type □ Object types

1.22 What is a generic type?

□ A type that can take different type of values at the same time.

□ A type that contains all other types.

□ The type can be determined at run time.

□ All of them.

1.23 Can a multithreading program take longer time than a single thread program that solves the same

problem?

□ Yes □ No

1.24 Why do we need the spin synchronization at the end of a MapReduce process?

□ To improve the performance of multithreading.

□ To make sure that all the threads complete their tasks.

□ To instantiate a concrete type to a generic type.

1.25 "Map and Reduce" is a concept for

□ defining generic type. □ defining generic class.

□ defining parallel computing process. □ saving memory usage.

2. Given the C++ code below, answer the following questions.

class Queue {

private:

int queue size;

protected:

int *buffer; int front; int rear;

public:

Queue(int n)

front = 0; rear = O; queue_size = n;

buffer = new int[queue_size];}

virtual ~Queue(void) {delete buffer; buffer = NULL;}

void enqueue(int v) {

if (rear < queue_size) buffer[rear++] = v;

int dequeue(void) { // return and remove the 1st element

233

if (front < rear)

return buffer[front++];

Queue InitialQueue(lOO);

void main() {

Queue *myQueue = new Queue(50);

myQueue->enqueue(23);

Initia1Queue->enqueue(25);

delete myQueue;

2.1 What is the destructor of the Queue class?

□ enqueue(int v) □ dequeue(void) □ Queue(int n) □ ~Queue(void)

2.2 What variable must be destructed (garbage-collected) by the destructor in the Queue class?

□ front □ rear □ queue_ size □ *buffer

2.3 Where does the variable (object) Ini tialQueue obtain memory from?

□ static memory □ stack □ heap

2.4 Where is the destructor called in the program above?

□ queue

□ in the constructor □ in the destructor □ in the enqueue function

D in the dequeue function D implicitly in delete myQueue

2.5 Where does the pointer variable myQueue obtain memory from?

□ static memory □ stack □ heap □ queue

2.6 Where does the object pointed to by the pointer variable myQueue obtain memory from?

□ static memory □ stack □ heap □ queue

3. What are the main differences between the imperative paradigm and the object-oriented paradigm?

4. What is the purpose of a scope resolution operator?

5. What is the purpose of a constructor? Can we have more than one constructor?

6. What is the purpose of a destructor? Can we have more than one destructor? When do we need a

destructor?

7. What are the main differences between Queue r, * s, where Queue is a class? How do we use
them? Where do they obtain memory? Which of the following operations are valid?

r = s;

r = &s;

s = r;

r = *s;

s = &r;

s = *r;

234

8. In the queue example in Section 3.1, an enqueue operation will cause the queue elements to shift to

make spaces (compact operation) if the rear pointer points to the end of the queue. This will cause a

longer delay than other enqueue operations. To smooth the performance, we can organize the queue

into a "cyclic queue," as shown in Figure 3.15. In other words, when rear = n, we set rear = o,

as long as the number of the entries in the queue is less than the queue size (or front > 0). Modify

the given program to implement the virtual ring. You can add a variable "entries" in the class to keep
track of the number of entries in the queue.

n-1 0 n-1 0

Figure 3.15. A cyclic queue, its initial state, and the state with 7 entries.

9. Memory management.

9 .1 What is a static variable? What is the difference between a static local variable and a global variable?
Do we need to collect the memory allocated to static variables?

9 .2 What is the programming language's stack? What variables obtain memory from the stack? What
mechanism is used to collect the memory allocated from the stack?

9.3 What is the programming language's heap? What variables obtain memory from the heap? What
mechanism is used to collect the memory allocated from the heap?

9 .4 Compare and contrast variables from static memory, stack, and heap. What would happen if we
declared a local variable as static local? What would happen if we declared a static local variable as
a simple local variable? What would happen if we declared a static local as a global?

10. What is inheritance? What is a "is-a" relation? What is a "has-a" relation? When do we use
inheritance? What are the advantages of using inheritance?

11. Consider the contactbook. c program given in the homework, programming exercises, and

projects in Chapter 2.

11.1 Read the program and try to understand what the program does. Set command line parameter and

execute the programming following the instructions given in the question.

11.2 Save contactbook. c as contactclass. cpp (cpp for C++). The executable IS then

contactclass. exe and the database should be called contactclass. dbms.

11.3 Change the structure definition struct contact to a class definition class contact. All the

four data members must be private.

235

11.4 Write public get- and set- member functions for each of the four data members, so that the data

members can be accessed through member functions.

11.5 Write a constructor. The constructor takes three parameters (name, phone, email). The

data members name, phone, email must be initialed by the parameter values (e.g.,

strcpy (this->name, name);). The pointer next must be initialized to NULL.

11.6 Change malloc to new and change free (p) to delete p. Make minimal changes to the rest of

the program to make the program executable.

11.7 Test the program by inserting five records, displaying all the records, searching for an existing record,

searching for a nonexistent record, deleting the record in the middle of the linked list, deleting the

first and the last records, and displaying the remaining records.

12. Memory management and garbage collection experiment. Close all other applications before you
load the following C++ program into Visual Studio C++.

12.1 Build and run the program. It takes a few minutes to complete.

12.2 Modify the program: Call deletionl () ; in the main() function, instead of deletion2 () ;

12.3 Modify the program: Call deletion0 () ; in the main() function, instead of deletion2 () ;

12.4 Explain the differences between deletion0 (), deletionl (), and deletion2 ().

/* Warning: This program illustrates memory leak. The program has been
tested in Visual C++ 6.0 and Visual Studio .Net on Windows 2000 and XP.
Do not run the program on computers with Windows 98 or older. If you
don't see the memory leak problem, you can increase the number of
iterations for i in the main() function. */

#include <iostream>

#include <string.h>

using namespace std;

// forward declaration

int insert(void);

void deletion0(void);

void deletionl(void);

void deletion2(void);

int IDgenerator = 0; // global variables

class contact {

private:

char name[30];

char phone[20];

char email[30];

contact *next;

int userid;

public:

contact () { }

236

contact(char* name, char* phone, char* email) {

strcpy(this->name, name);

strcpy(this->phone, phone);

strcpy(this->email, email);

userid = IDgenerator++;

this->next = NULL;

contact* getNext() { return next; }

void setNext(contact* nx) {next = nx;

} *head = NULL; // declare head pointer as global

int main() {

int i = 0, j = 0;

while (i<l0000) {

for (j = 0 ; j<l000; j++) {

insert(); // insert 1 000 records

deletion2();

// What happens if you call deletion0() or deletionl() here?

i++;

cout << i << " - " << IDgenerator << endl;

return 0;

int insert ()

contact *node;

char sname [30] = "John", sphone [20] = "1234 567", semail [30]

"john@asu.edu";

void

void

void

node = new contact(sname, sphone, semail);

if (node == NULL) {

cout << "ERROR - Could not allocate memory!" << endl;

return -1;

node->setNext(head);

head = node;

return 0;

deletion0 () head NULL;

deletionl () delete head; head

deletion2 ()

contact *p;

while (head ! = NULL) {

p = head;

head = head->getNext();

delete p;

237

NULL; }

13. Complete the Personnel hierarchy program in Section 3.4 by adding the following classes and
functions into the program.

13.1 Add the classes Student, Grad, Undergrad, and Staff.

13.2 Add functions save_ file (), and load_ file (), so that the records stored in the linked list can be

preserved onto the disk before the program quits and the linked list can be preloaded with the entries
stored in the disk f

i

le when the program is restarted.

13.3 Add a menu item and related functions to delete all nodes in the PersonnelNode linked list. Make
sure there is no memory leak for all dynamic memory.

13 .4 Use C++ exception constructs to define and handle all possible exceptions in the program, for
example, out of memory or file operation error exceptions.

13.5 Use type id (*ptr) to identify the type of the object that the pointer ptr is pointing to. For example,

the following code can be used to determine if the pointer ptr is pointing to an object of Employee

class.

#include<typeinfo>

if(typeid(*ptr) == typeid(Employee)) { ... }

In the Visual Studio environment, you must enable the runtime type info setting in order to use this

feature, by following these steps:

Menu: Project->YourProjectName Properties ... -> Configuration Properties
-> CIC++ -> Language -> Enable Run-Time Type Info: Choose "Yes"

Modify the display () function in each class to print the class name of the current object using the

typeid function.

14. Define your own heap to replace the system heap used in the question above.

14.1 Declare a large block of memory (e.g., a global array) called myheap and use the block of memory

as your own heap. Organize the memory as a linked list whose nodes can have different sizes. In
each node, use the first word (e.g., an integer of four bytes) to store the size (number of bytes) of the
node. Define two functions

void insertion(void *p);

void *deletion(int m);

that can insert a new node and remove a node from the linked list, respectively.

14.2 Define a function

void *GetMem(int n);

that takes n bytes of memory from myheap and returns the initial address. The function must call the

deletion function to obtain the memory.

238

14.3 Define a function

void ReleaseMem(void *p);

that returns the memory pointed to by p to myheap. The function must call the insertion function

to return the memory.

14.4 Make a copy of the program you wrote. Modify the copy to use myheap for the objects of the

Student class.

14.5 Test your program by adding and deleting Student nodes.

239

Chapter 4

The Functional Programming Language,

Scheme

When we moved from the imperative programming paradigm to the object-oriented paradigm, we did not
really feel that we had a paradigm shift. Indeed, the object-oriented paradigm is based on the imperative
paradigm. Some texts categorize imperative and object-oriented paradigms as the procedural paradigm.
However, you will see in this chapter that it is a real paradigm shift when you switch from imperative and
object-oriented programming to functional programming.

In this chapter, we will use Scheme as an example to study the main features and programming techniques
of functional programming languages. By the end of the chapter, you should

• have a good understanding of the functional programming paradigm and its major differences with
the imperative and object-oriented programming paradigms;

• have a good understanding of data types and their operations;
• be able to define procedures and macros;
• understand the relationship between A-calculus and the functional programming language;
• be able to define and use global and local variables;
• be able to write Scheme programs with multiple procedures;
• have a good understanding of the principles of recursion;
• be able to apply recursive procedures to solve different types of problems;
• understand and use higher-order functions to solve recursive problems.

The chapter is organized as follows. We first discuss the main differences between imperative and
functional programming paradigms. In Section 4.2, we briefly review the prefix notation used in Scheme
and other functional programming languages. In Section 4.3, we put together the terminology that will be
used throughout the chapter. In Section 4.4, we study the data types and the predefined Scheme functions
that form the Scheme environment on which we can define our own programs. In Section 4.5, we discuss

the basic syntax and semantics of the general computing system A-calculus. Scheme and many other

programming languages can be considered an implementation of A-calculus. From Section 4.6, we study
the important programming constructs of functional programming languages: named procedure, unnamed
procedure, let-form that defines local variables, and the conversion between unnamed procedures and let­
forms. We also start to write our own Scheme programs with multiple procedures. In Section 4.7, we study
the most important programming technique in functional programming languages: recursion. We discuss
structural (white-box) and functional (black-box) approaches of understanding a recursive procedure. We
outline simple steps that can guide us in writing recursive procedures. In Section 4.8, we continue to study

241

recursive procedures on different data types. Finally, in Section 4.9, we present the unique feature of
functional programming languages: The higher-order functions, where they are used, and how they are
implemented. A programming environment that supports the development of Scheme programs, Dr Racket,
is introduced in Appendix B.

4.1 From imperative programming to functional programming

The idea of functional programming is to liberate programming from the von Neumann-style (or stored
program concept)-based imperative programming paradigm. Imperative programming languages are more
efficient to implement because they match the currently used stored program concept-based computer
architecture. However, they force programmers' attention to the detail of storing states and modifying
states. The major problems of imperative programming paradigms are:

• the lack of accurate definition of the semantics;
• the referential use of variables and its side effects;
• the need to have a good understanding of computer architecture and memory organization;
• the difficulty of programming parallel-executable components.

The functional programming paradigm tries to address these problems by focusing on what is wanted rather
than how it is implemented. An analogy is to compare ordering a pizza in a restaurant to making your own
pizza at home. When you order a pizza, you focus on what you want. When you make your own pizza, you
not only know what you want, but also understand the underlying hardware, for example, at what
temperature, how long the pizza needs to be baked, and how to control the temperature and set the timer of
the oven.

The major advantages of functional programming paradigm are as follows:

• Higher level of abstraction that needs less attention to the details of the underlying computer
architecture.

• Simpler and more accurate definitions of semantics. It is based on well-founded mathematics and
thus is easier to reason about.

• Side-effects-free or referential transparency. For example, in an imperative program, f(x) + f(x)
may or may not be equal to 2*f(x), depending on whether the function modifies any global variables
or the parameter x. However, in a functional program, it is guaranteed that f(x) + f(x) is always
equal to 2*f(x).

• Easier for parallel processing. In functional programs, operations at the same level are independent
of each other and can thus be processed in any order or in parallel.

• Powerful higher-order functions. You can pass the operation (not only the return value) of another
function as the parameter to a function.

The above differences are mostly at the conceptual level. What are the differences at the programming
level? That is, what different approaches do we have to take in writing functional programs? Understand
that these differences are the main topics of this chapter. The following list is an outline of these differences:

• Functional programming languages are not based on the stored program concept. You cannot
declare a variable (a memory location) to store a value and later modify the value, or store another
value in the same memory location. What you can do is to define a name and associate a value with
the name (named value). This name then represents the value, not the container of the value, and
thus you can never associate the name with another value nor modify the value. This approach is
often considered by imperative programmers as a restriction that brings the least convenience in

242

programming. However, this approach is the milestone of the paradigm shift that gets rid of the
stored program concept of stepwise storing and manipulating data.

• In functional programming languages, parameter passing is the major mechanism that passes values
into a function. Only call-by-value is allowed. Call-by-alias is not allowed. In fact, parameter
passing is used to replace most assignment statements in imperative programs.

• Every function in a functional programming language will return a single value. Since intermediate
values cannot be stored in memory and be used later, you must organize your program to use a
return value immediately. In other words, a return value must be passed to another function
immediately. If you want to return two or more values, you can

o split the function into multiple functions and each function return one value, or
o organize multiple values into a pair (or nested pair) structure, or
o organize multiple values into a list structure.

• Functions are treated as first-class objects. In other words, a function can appear in any place where
a value is expected. In this case, the function will be first evaluated, and its return value will be
used as the value expected. This mechanism effectively supports immediately passing the return
value to another function.

Now we will use an example to illustrate these differences. The following imperative program declares two
global variables a and b, and two functions foo and main.

int a = 5; II declare a global variable and initialize it to 5

float b = 2.4; II declare a global variable and initialize it to 2.4

float foo(int x, float y) { II return value type, function name,
parameters

int fl;

float f2;

X = X + 5;

y = y + 10.5;

fl abs (x);

£2 = square(y);

f2 = max(fl, £2);

return fl + £2;

void main ()

float f;

f = foo(a, b);

printf ("%f\n", f);

II declare a local variable and initialize it

II declare a local variable and initialize it

II modify variable value

II modify variable value

II call a function and assign to return value

II call a function and assign to return value

II call a function and assign return value to

II return

II main function does not return any value

II function call and parameter passing

to

to

fl

f2

f2

As we can see, the program is written in a way in which a typical imperative program is written:

• it stores values in variables;
• it manipulates (modifies) variable values;
• it returns a value.

0

0

How do we write a functional program to implement the same function? The following Scheme program
does exactly the same job:

(define a 5) name value 5 as a

(define b 2.4) name value 2.4 as b

243

(define (foo x y)

(+ (abs (+ x 5))

(max (abs (+ x 5))

(square (+ y 10.5))

(print (foo a b))

function name followed by parameters

the first operand of + is abs function

the second operand of + is max function

the second operand of max is square

; the main function will return a value

The syntax of the Scheme program is straightforward. Every operation or expression consists strictly of a
list in prefix notation:

(operator operand ... operand)

where the first element is always the operator (e.g.,+, abs, square, max), followed by the list of operands.
Each operand can be either a value or a function that returns a value.

Now you are in a good position to understand the Scheme program. A careful comparison between the two
programs will confirm the approaches used in the functional program: No memory is available to store the
intermediate values; intermediate values must be passed to another function immediately; every function
returns a value; a function can be placed in any place where a value is expected. Having understood these
differences, your imperative programming experience can now be positively used in writing functional
programs.

4.2 Prefix notation

We can represent mathematical operations and expressions in three different notations: infix, prefix, and
postfix. Table 4.1 shows examples of these notations:

Infix Prefix Prefix with parentheses Postfix

3+4 +34 (+ 3 4) 34+

(3 + 4) * 5 + 6 +*+34 56 (+ (* (+ 3 4) 5) 6) 34+ 5*6+

45 max 29 max 45 29 (max 45 29) 45 29 max

Table 4.1. Different representations of mathematical expressions.

Infix notation was invented in the 1920s by the Polish mathematician Jan Lukasiewicz and it is thus also
known as Polish notation. The postfix notation is also called reverse Polish notation. Although infix
notation is easier for humans to use, Scheme language uses prefix notation with parentheses for all
expressions. The reasons for this decision are:

• We can consistently use prefix notation to represent unary, binary, and multi-operand operations,
for example, unary: (- 3), binary:(+ 3 4), and multi-operand: (max 3 4 5 6 7), while infix notation
can represent only binary operations.

• Prefix notation is a parenthesis-free notation. Although parentheses in the expression help to
understand the order of evaluation, they are not necessary for prefix notation to define the order of
the evaluation. On the other hand, infix notation has to rely on the parentheses to define the order
of evaluation.

• Expressions in prefix notation are easier to execute on a stack-based computer architecture.

244

A mathematical expression can also be represented as a rooted tree. A rooted tree is a directed tree with a
unique root node, and there is a path from the root to any other node. A directed tree is a directed graph

in which there is at most one path between any pair of nodes. The prefix, infix, and postfix notations can
be obtained via traversing the tree, which is the process of inspecting the nodes of the tree. There are three
common ways of tree traversing: preorder, inorder, and postorder.

Preorder traversing: The root node of a (sub) tree is visited first, its leftmost subtree is then visited, and
finally the rightmost tree is visited. Preorder traversing can be applied to any rooted tree.

Inorder traversing: The left subtree is visited first, then the root node of the (sub) tree, and finally, the
right subtree is visited. Inorder traversing is defined only for binary trees.

A binary tree is a tree in which each node has at most two child nodes.

Postorder traversing: Starting from the leftmost subtree, then the rightmost subtree, and finally, the root
node. Postorder traversing can be applied to any rooted tree.

Figure 4.1 shows a binary tree representing a mathematical expression with binary operations.

Figure 4.1. Tree representation of a mathematical expression.

If we traverse the tree in the three orders-prefix, infix, and postfix-and print the value of the node when
we visit a node, the following expressions will be printed:

Preorder:

*x+*abc

The printed sequence is the prefix notation of the expression represented by the binary tree.

Inorder:

x*a*b + c {infix notation}

The printed sequence is an incorrect infix notation of the expression, because parentheses are necessary in
infix notation. We have to apply a more complex algorithm to print the infix notation with correct
parentheses. The correct infix notation of the expression represented in the tree should be

(x* (a*b + c))

Postorder:

xab*c+* {postfix notation}

The printed sequence is the postfix notation of the expression represented by the binary tree.

Note that expressions in prefix and postfix notations are free of parentheses: The order of computation is
specified by the sequence of symbols only. They can be calculated easily on a stack-based processor. For
example, one simple algorithm of calculating an expression in prefix is as follows:

(1) The expression is scanned (read) from right to left;

245

(2) If a parenthesis character "(" or ")" is scanned,

simply ignore it and continue to scan the next character;

(2) If a variable or a value is scanned, push it onto the stack;

(3) If an operator (a symbol representing an operation) is scanned,

the appropriate number (in the example above, the number is 2) of

variables is popped out from the stack, and the operation applied to
them;

(4) The result of the operation is pushed back onto the stack;

(5) The scan of the expression continues;

(6) After the expression has been completely scanned, the result is the

only item left in the stack.

For example, ifwe evaluate the expression (- 5 (+ a b) c)) on a stack-based processor, we start from
the rightmost parenthesis and stop at the leftmost parenthesis, as shown in Figure 4.2.

start: (- 5 (+ (* a b) c)) stop: (- 5 (+ (* a b) c))

➔ a

b b

C C C

a*b 5

C a*b+c a*b+c 5-(a*b+c)

Figure 4.2. Expression processed and the stack maps during processing.

The first stack map is the initial stack status. Following the algorithm above, parentheses are ignored and

characters c, b, and a are pushed onto the stack (stack map 2 through 4). The operator * is scanned, a and

b are popped out, multiplied and pushed back onto the stack (stack map 5). Then the operator+ is scanned,

the values of" a* b" and c are popped out, added, and pushed back onto the stack (stack map 6). Next, 5 is

pushed onto the stack (stack map 7), and, finally, the operator - is scanned, the values of "a *b+c" and 5
are popped out, subtracted, and pushed back onto the stack (stack map 8).

4.3 Basic Scheme terminology

This section introduces basic terminology used in this chapter.

Primitive: A primitive is a predefined operation in Scheme. These operations cannot or do not need to be
defined in terms of anything simpler. When we use a Scheme environment, we, in fact, use the set of
primitives to build our applications. For example, the following operations are examples of the primitives:

(+ 3 6)

246

(<= 2 5)

(sqrt 32)

(number? 45)

(symbol? "x")

(append "abc" "123")

In the rest of the chapter, we will see many more Scheme primitives.

Form: Anything that you ask Scheme to evaluate is a form. The answer (return value) to a form is the
value of the form. For example:

(+ 3 6)

(+ (* 4 6))

(twoscomplement '(1 0 0 1 1 0))

Procedure: Procedure is a user-defined new primitive operation using the keyword define. A procedure
always returns a value when it is evaluated.

Function: In Scheme, there is no function. The term function is used only in its general meaning, say, a
mathematical function. A procedure in Scheme has the same meaning as the function in CIC++.

Keyword define: It is used to create a named form (named constant or named procedure). In other words,
it associates a form with a name. A complete definition consists of parts: (1) the keyword define, (2) the
name to be defined, (3) any form that gives a value. For example:

(define size 100)

(define x (* 5 6))

(define (addl x) (+ x 1))

parameter

named constant

named operation

named procedure, where x is the

Keyword define-macro: It is used in the same way as define is used, except that it introduces a macro,
instead of a procedure. For example:

(define-macro (addl x) (+ x 1))

parameter

; define a macro, where x is the

Keyword lambda: It is a keyword used to define an unnamed procedure. For example:

(define (addl x) (+ x 1)) named procedure, where x is the

parameter

((lambda (x) (+ x 1)) 7)

((lambda (x y) (+ x y)) 4 5)

unnamed procedure performing x+l

unnamed procedure performing x+y

7+1

4+5

Since an unnamed procedure is a form, we can associate an unnamed procedure with a name, thus
introducing another way of defining a named procedure as shown in the examples below:

(define (addl x) (+ x 1)) define named procedure without using

lambda

(define (f x y) (+ x y))

lambda

(define addl(lambda (x) (+ x 1)))

(define f (lambda (x y) (+ x y)))

define named procedure without using

define named procedure using lambda

define named procedure using lambda

As we can see from these examples, we can define a named procedure using or without using lambda. The
two ways of definition are equivalent.

247

Parameter: Variables used when we define a procedure. Parameters will be replaced by arguments when
they are evaluated.

Argument: The input values that a procedure call needs for performing the evaluation. For example, when

we call procedures (addl x) and (f x y) , we must substitute forms or values for the parameters. For
example:

(addl 5)

(f 6 (* 3 7))

5 is the argument. The procedure call will return 6

6 and (* 3 7) are arguments. It will return 27.

Application: It applies an operation to the results of eva]uating the other forms. In other words, a primitive
applies a simple operation to values that do not need any further evaluation, while application involves
nested evaluation, or complex operations like procedure calls or macro calls. For example:

(+ 5 1) is a primitive. It applies addition to simple values.

(+ (+ 2 3) 1) is an application. It involves nested operation.

(addl 5) is an application. It calls a procedure.

Figure 4.3 summarizes the terminology introduced in this section and shows the relationships among the
components of a Scheme program. Everything we ask Scheme to evaluate is a form. Definitions of a
procedure or a macro are not forms, because they do not cause actual evaluation. Only when we use
arguments to replace the parameters and call a procedure, does it become a form; that is, procedure call is
a form, not the procedure itself. A fonn can be a simple primitive or a complex application.

Scheme
program

define procedures (parameters, forms)
define macros (parameters, forms)

{
primitives (operator, values)

forms . . f nested operations (operator, forms)
apphcat10ns procedure calls

macro calls

Figure 4.3. Summary of terminology and relationships among components of a Scheme program.

A mathematical expression can be evaluated in different orders. For example, to evaluate 3 + 4 + (15

I 3), we can have the following orders:

(1) 3 + 4 = 7, 15 / 3 5, 7 + 5 12, or

(2) 15 / 3 5, 4 + 5 9, 3 + 9 12, or

(3) 15 / 3 5, 3 + 4 7, 7 + 5 12

Generally, there are two main methods that are used to determine the evaluation orders. Assume that an
expression has multiple nested operations.

Eager evaluation: It tries to start from innermost operations first. At the same level, operations can be
performed in any order. If there is a function with parameters, it always evaluates all parameters first before
it attempts to evaluate the function. Eager evaluation can better support parallel computing than can lazy
evaluations, as all the computations can be done before they are needed.

Lazy evaluation: It tries to start from outermost operations first. At the same level, operations are
performed from left to right sequentially. Ifthere is a function with parameters, it will evaluate a parameter
only if its value is needed.

248

For example, if the Scheme form to be evaluated is

(+ (+ 3 5) (* (+ 4 6) (- 5 3)))

then the eager and lazy evaluations will evaluate the form in the following orders, respectively.

Eager: (+ 4 6) , (- 5 3) , (+ 3 5) , (* 10 2) , (+ 8 2 0)

Lazy: (+ 3 5) , (+ 4 6) , (- 5 3) , (* 10 2) , (+ 8 2 0)

The orders of the evaluation for the conditional form (if a b c) are

Eager: a, b, c, if
Lazy: a, if, b; or a, if, c // only one of b and c will be evaluated

For imperative languages, the order of evaluation must be strictly predefined, because different orders may
produce different results. Most imperative languages, including C, C++, and Java, use lazy evaluation.

For functional programming languages, the order of evaluation does not matter, and thus, the languages do
not have to predefine the order. As a result, parallel computing is possible. For example, a multiprocessor
computer can evaluate the function (if a b c) in two steps: (1) Evaluate a, b, and c simultaneously; (2)
Choose the result from b or c according to the result of a. On the other hand, a multiprocessor computer
cannot speed up the evaluation of (if a b c) in an imperative language. It has to evaluate the function in three
steps: (1) Evaluate a; (2) Choose to evaluate b or c according to the result of a; (3) Evaluate b or c.

For example, assume that the procedures a, b, and c take one hour each to compute. The eager evaluation
can compute a, b, and c in parallel in one hour, while the lazy evaluation cannot evaluate the procedure in
parallel. It will take one hour to compute a. Depending on the result of a (true or false), it will take another
hour to compute b (if a is true) or c (if a is false).

4.4 Basic Scheme data types and functions

This section introduces basic data types and primitive Scheme functions. The available primitive functions
depend on the programming environment and the version of the environment. Our discussion is mainly
based on the DrRacket environment. Not all functions listed in this section will be explained here. Some of
them will be explained in the later sections when we use these functions to define more complex functions.

A data type is defined by the range of values and operations defined in these values. Basic Scheme data
types include number, Boolean, character, string, symbol, pair, and list. This subsection will briefly
introduce these data types and basic operations defined in these data types.

4.4.1 N um her types

There are different types of numbers in different programming languages, for example, long, short, integer,
float, and double. Scheme has number type that includes all these types. For example, you can use all these
numbers 2, -5, 1.03, 2/5, 2.5e·3 in the number type. Because numbers are represented internally as a list,
not stored in a "memory location," there is theoretically no limit on the size of the numbers. For example,

there is no overflow when we compute very large numbers like 100! or (factorial 100). Within the
number type, we can still differentiate integer and real. An incomplete set of operations defined on number
type is listed in Table 4.2.

249

Accessor functions Meaning Predicate functions

(+ <num> ... <num>) addition (number? <num>)

(- <num> ... <num>) subtraction (integer? <num>)

(* <num> ... <num>) multiplication (real? <num>)

(/ <num> ... <num>) division (negative? <num>)

(- <number>) negate (positive? <num>)

(add 1 <num>) add one (even? <num>)

(sub 1 <num>) subtract one (odd? <num>)

(quotient <int><int>) quotient (zero? <num>)

(remainder <int><int>) remainder (= <num> ... <num>)

(round <num>)

(truncate <num>) round to nearest

(abs <num>) integer part

(sqrt <num>) absolute value

(expt x y) square root

(max <num> ... <num>) returns xY

(min <num> ... <num>) maximum

(random <int>) minimum

random number

between O &<int>

Table 4.2. Operations defined on number type.

4.4.2 Boolean

Meaning

Is it a number?

Is it an integer?

Is it a real number?

Is it negative?

Is it positive?

Is it even?

Is it odd?

Is it zero?

Are they equal?

Boolean is a simple type with two possible values: #t (true) or #f (false). An incomplete set of operations
defined on Boolean type is given in Table 4.3.

Accessor functions Meaning Predicate functions

(and <expr> ... <expr>) logical and (eq? <bool><bool>

(or <expr> ... <expr>) logical or

(not <expr>) logical not

Table 4.3. Operations defined on Boolean type.

Boolean type variables can be used in conditional statements like

(if c a b)

Meaning

Are they equal?

Example:

(define x #t)

(define y #f)

(eq? X y)

In the conditional form, if the value of c is #t, the form returns a, otherwise, it returns b. For example,

(if (= x 0) (+ al a2) (- bl b2))

the conditional form will evaluate (+ al a2) if (= x O) is true, otherwise, it will evaluate (- bl b2).

Another conditional form is the multiple conditional form cond:

(cond (cl el) (c2 e2) ... (en en) (else ex))

250

In this form, the conditions cl, c2, ... , en will be evaluated sequentially. When ci, i = 1, 2, ... , n,

evaluates to #t, the corresponding expression ei wil1 be evaluated. If all cl, c2, ... , en evaluate to #f, the
expression ex in the else part will be executed. If the else part is missing, no action will be taken.

The following example defines a procedure that converts a numerical grade into a symbolic grade.

(define grade (lambda(n)

(cond ((>= n 90) 'a)

))

((>= n 8 0) ' b)
((>= n 7 0) 1 C)

((>= n 60) 'd)

(else 'f)

(grade 89)

(grade 55)

procedure call, will return b

procedure call, will return f

4.4.3 Character

The data values of character type are the set of ASCII characters. A complete set of ASCII characters is
given in Appendix C. An incomplete set of operations defined on character type is given in Table 4.4. The
comparisons between two characters are based on their integer values in the ASCII table.

To differentiate a character from other similar values of other types (e.g., number, symbol, or string), we
use # \ 5 for character 5, # \A for upper case A, # \b for lower case b, and #\space for the character space.

Accessor functions Meaning Predicate functions Meaning

(char->integer convert to int (char? <expr>) Is it a character?
<char>) (char-alphabetic? <expr>) Is it an alphabetic?
(integer->char <int>) convert to char (char=? <char><char>) Are they equal?

(char<? <char><char>) Is char < char?

(char>? <char><char>) Is char > char?

(char-ci=? <char><char>) case-insensitive
comparison

Table 4.4. Operations defined on character type.

According to the ASCII table, we can find the integral value of a character or find the character for a given
integer:

(char->integer #\A) will return 65

(char->integer #\C) will return 67

(char->integer #\5) will return 53

(integer->char 97) will return #\a

(integer->char 36) will return #\$

(integer->char 57) will return #\9

The comparison between characters is also based on their integral values. For example:

(char<? #\A #\a) ;will return #t because 65 < 97

(char>?#\$ #\9) ;will return #f because 57 > 36

251

4.4.4 String

A string is a sequence of characters in a pair of double quotation marks. For example, "hello world" is a
string with length 11 (there are 11 characters in the string). An incomplete set of operations defined on
string type is given in Table 4.5.

A string can be indexed and the first character (leftmost) of a string has the index 0. Thus, the following
two forms

(string-ref "hello world"0)

(string-ref "hello world"6)

will return characters #\hand# \ w, respectively.

Accessor functions Meaning

(string <char>) convert char to string

(string->symbol <str>) convert string to symbol

(symbol->string <sym>) convert symbol to string

(string->number <str>) convert string to number

(number->string <num>) convert number to string

(string-length <str>) get string length

(string-append <str><str>) append two strings

(string-ref <str><i>)

(substring <str><i><j>) get char at position i

get substring between i
andj

Predicate functions

(string? <str>)

(string=?
<str><str>)

(string-ci=?
<str><str>)

Table 4.5. Operations defined on string type.

4.4.5 Symbol

Meaning

Is it a string?

Are they equal?

Are they case-
insensitively
equal?

A symbol is a name prefixed with a single quote (e.g., 'James and '2t3w are symbols). Unlike a string, a
symbol cannot contain a space. A space marks the end of a symbol. Literal values of number, Boolean,
character, and string cannot be symbols. The quote prefixed to them will simply be ignored. For example,

(+ '2 4) is the same as (+ 2 4) and will return 6; (string-length '"hello") is the same as

(string-length "hello") and will return 5. An incomplete set of operations defined on symbol type
is given in Table 4.6.

Accessor functions Meaning Predicate functions Meaning

(quote x) same as 'x (symbol? <sym>) Is it a symbol?

(string->symbol <str>) convert string to symbol (eq? <sl><s2>) Are the two

(symbol->string <sym>) convert symbol to string symbols equal?

Table 4.6. Operations defined on symbol type.

Please note that symbols are case-insensitive; that is, 'A and 'a are considered to be the same symbol. The

form (eq? 'ABC 'abc) will thus return true.

4.4.6 Pair

Pair is a structured data type in Scheme. A pair is denoted by ' (x . y) , where x and y can be any literal
values of any data type.

252

An incomplete set of operations defined on pair type is given in Table 4.7.

Accessor functions Meaning Predicate functions Meaning

(cons <expr><expr>) form a new pair (pair? <expr>) Is it a pair?
(car <pair>) return first element (equal? Are they equal?
(cdr <pair>) return second element <pair><pair>)

Table 4.7. Operations defined on pair type.

The acronyms car and cdr originally meant "Contents of Address portion of Register" and "Contents of
Decrement portion of Register," which are the first part and second part of a register in an IBM 704
machine.

The following piece of code illustrates the pair-based functions and their return values:

(cons 1 2) will return a pair (1 2)
(cons 4 8) will return a pair (4 8)

(cons 1 (cons 4 8)) will return a pair (1 (4 8))

(car ' (4 8)) will return the first element that is 4

(cdr ' (4 8)) will return the second element that is 8

(car (cdr ' (1 (4 8)))) will return 4

(pair? ' ((4 8) 9)) will return #t (true)

In the piece of code, we see nested pairs like ' (1 • (4 • B)) and ' ((4 • B) • 9) . In fact, we can
nest any level of pairs to produce a very complex structure. For example, the following two forms:

(cons (cons 2 (cons 8 7)) (cons 4 8))
(cons 12 (cons 2 (cons 8 (cons 4 (cons 3 7)))))

will produce the following pairs:

((2 . (8 . 7)) • (4 . 8))

(12 . (2 . (8 • (4 • (3 . 7)))))

To reduce the complex appearances of nested pairs, Scheme allows us to apply the following pair
simplification rule to simplify the notation of pairs:

A dot and the left parenthesis to the right of the dot can be omitted if the item to the right of the dot is a
pair. After the left parenthesis is removed, that corresponding right parenthesis must be removed.

For example, in the following pairs:

((2 _. _(8 • 71) _. _(4 . Bl)

(12 _. _(2 _. _(B _. _(4 _. _(3 . 7lllll

The dots and parentheses that can be removed according to the rule are underlined. After the removal, the
pairs become:

((2 8 7) 4 . 8)

(12 2 8 4 3 . 7)

DrRacket uses the simplified pair notation for any outputs of the pairs. However, you can use either the
simplified pair notation or the complete pair notation when you use pairs in your program.

253

4.4.7 List

Although pairs are capable of representing collections of data, lists, which are almost special cases of pairs,
will be more convenient in many situations.

Using BNF notation, a list can be recursively defined as follows:

<list> : : = null I '()

<list> : : = (cons x <list>), where x can be any Scheme form.

The recursive definition starts with the definition of an empty list, which can be represented as null or
' (). The recursive part defines a new list based on an existing list: (cons x <list>) produces a new
list, where the operator cons is the same operator used to produce a new pair and x can be any Scheme
form. Since lists, except the empty list ' (), are constructed by the pair construction operator cons, all lists,
except the empty list ' (), are in fact pairs.

Based on the definition of lists, we can create the following lists:
I () is a list. It is the empty list.

(cons 4 I ()) returns list (4 ())

(cons 7 I (4 ())) returns list (7 (4 ())) = (7 4 ())

(cons 9 I (7 4 ())) returns list (9 (7 4 ())) = (9 7 4 ())

According to the simplification rule of pair representation, the pair (7 . (4 . ())) can be simplified to
(7 4 • ()) and pair (9 • (7 4 • ())) can be simplified to (9 7 4 . ' ()) . Now the question is
can we simplify the pair (4 • ()) to the pair (4)? The answer is "no" according to the pair simplification
rule, because the empty list is not at all a pair. However, we can introduce another list simplification rule

to simplify the list notation:

In a list, if to the right of a dot is an empty list, then the dot and the pair of parentheses representing the
empty list can be omitted.

By applying this list simplification rule, the list (4 . ()) is simplified to (4) , (7 4 . ()) is simplified
to (7 4) , and (9 7 4 . ()) is simplified to (9 7 4) .

An incomplete set of operations defined on list type is given in Table 4.8.

Please note that the accessor functions car and cdr in Table 4.8 are the same operations for pairs. They
work for a list, if and only if the list is a pair. The only situation where a list is not a pair is when the list is
an empty list. For all nonempty lists, car and cdr will work. When car and cdr are applied to a list, (car
x) will return the first element of the pair, which is the first element in the list. Similarly, (cdr x) will
return the second element of the pair, which is the residual list when the first element is taken out.

254

Accessor functions Meaning Predicate functions Meaning

(cons <expr><lst>) form a new pair (1st? <expr>) Is it a pair?

(car <1st>) return first element (null? <1st>) Is list empty?

(cdr <1st>) return residual list when the (member x <1st>) Is x a member of
first element is removed list?

(lst<expr> ... <expr>) return (<expr> ... <expr>)

(equal? <lst><lst>) Are they equal?
(append <lst><lst>) append two list into one
(length <1st>) return the length of list
(1st-ref <lst><p>) return element at position p
(1st-tail <lst><k>) return the list after removal of

the first k elements

Table 4.8. Operations defined on list type.

The member function (member x <list>will return false ifx is not a member if the 1st. ifx is a member
of 1st, it will return the sub-list from the first x found in 1st. This is similar to C, where O is false and any
nonzero number is considered true. We can define a member that returns true or false only, as shown in the
following code:

(define (member? element 1st)

(cond ((null? 1st) #f)

((equal? element (car 1st)) #t)

(else (member? element (cdr 1st)))))

4.4.8 Application of Quotes

We have seen that we use quotes in symbols, pairs, and lists, for example:

(symbol->string 'James)

(cdr (car '((2 . 4) . 5)))

level

(cons ' (2 (5 • 6) 9) ' (3 7))

level

the symbol must be quoted

the pair must be quoted at the outermost

the list must be quoted at the outermost

It is clear that we need to quote a symbol. But it is not so straightforward to understand why and when we
need to quote pairs and lists. As we can see from the example above, we only quote the outermost level of
a pair or a list. Can we also quote the pairs or lists inside a pair or a list? First examine the following
example:

(cdr (car '((2 . 4) . 5)))

(cdr (car ' (' (2 • 4) • 5)))

only quote the outermost level

quote the inner pair too

What is the difference between these forms? To see the difference, we must understand the way Scheme
fonns are evaluated. Scheme uses the prefix notation. Every form to be evaluated starts with a left
parenthesis. The first element, or the element that immediately follows the left parenthesis, is always the
operator. The operator will be compared with the operators stored in the operator table. When a match is
found, Scheme will perform the operation defined for the operator.

A list and a pair also start with a left parenthesis. To let the language know that lists and pairs are not forms
for evaluation and that their first elements should not be considered an operator, we use a quote prior to the
left parenthesis. When Scheme sees a quote and a left parenthesis, it knows that the parenthesis does not

255

start a form, but instead starts a pair or a list. Scheme will then find the corresponding right parenthesis to
identify the end of the pair or the list. Obviously, it will not have any operators within a literal list or pair.
Thus, there is no need to quote any list or pair within a list or a pair. Some versions of Scheme will report
an error if you quote a list or a pair within a list or a pair. The Dr Racket will consider the quote character'
to be a separate element and thus

(cdr (car ' (' (2 . 4) . 5)))
(car (car ' (' (2 . 4) . 5)))

will return rather unexpected results:

I
(2 • 4)

. quote

According to the rules of orthogonality, if we are allowed to quote literals of a pair and list, we should be
allowed to quote other types of literals. Scheme indeed allows you to quote literals of any types. For
example, you can write '55 (quote number literal), '#t (quote Boolean literal), "'hello" (quote string literal).
In these cases, Scheme will simply ignore the quotes. Note that a literal value of any type cannot be a
symbol!

Finally, we consider another example.

I (member 'jim '(3 5 5 Hi 'jim (5 9) "Hello"))

The operation and the arguments of the operation look good. The first argument is a symbol. The second
argument is a list containing the symbol same symbol, and thus we expect the membership operation returns

(' j irn (5 9) 11 He 11 o 11)) or true. Is it right? However, when we execute the operation, it returns

false. Why? The reason is that we should not quote anything inside a list. If we do, the quote symbol will
be considered a part of the symbol, instead of the indicator of the symbol. You can try the following forms
and see what will be returned.

(member ''jim '(3 5 5 Hi 'jim (5 9) "Hello"))

➔ ('jim '(3 5 5 Hi 'jim (5 9) "Hello")) or true
(member 'jim '(3 5 5 Hi jim (5 9) "Hello"))

➔ ('jim '(3 5 5 Hi jim (5 9) "Hello")) or true

Notice in the first line of the code above, ''jim are two single quotes (apostrophes), not a double quotation.

In summary, what can or must be quoted? What cannot or should not be quoted?

• You can quote a name to make it a symbol.
• You must quote pair and list literals at the outermost level to differentiate them from forms to be

evaluated.
• You must not quote pairs, lists, or anything inside a pair or a list.
• You must not quote forms that you want to evaluate. If you quote a form, the form simply becomes

a list. The operator in the first place will be considered the first element of the list.
• You may quote number, string, and Boolean literals, but it makes no difference. Thus, do not quote

them.

4.4.9 Definition of procedure and procedure type

A procedure is a user-defined function that extends the predefined primitives in the language system. The
set of procedures can be considered to form a special data type: The procedure type. The data values of
the procedure type are all possible procedures. The operations defined on the procedure type are the higher-

256

order functions. A higher-order function, or higher-order procedure, is a procedure that can take the
operation of another procedure as its parameter. Please note that a procedure that takes the return value of
another procedure is not a higher-order procedure. In functional programming languages, functions
(procedures) are first class objects. A procedure can be put in any place where a value is expected and the
procedure's return value will be used as the value that is expected. Thus, every procedure in Scheme that
has a parameter can take the return value of another procedure. The higher-order procedure must take the
operation of another procedure as a parameter. Higher-order procedures will be discussed later in the
chapter.

The syntax graph of procedure definition is given in Figure 4.4.

�(define� <procedure_narne>
7

4 (lambda (➔ <parameter_list>

<form> �))

Figure 4.4. Syntax graph of procedure definition.

Using the syntax, we can define a procedure as follows:

(define maximum (lambda (x y)
(if (> X y)

X

y

)))

7

>

The definition uses two keywords: define and lambda. There is a simplified definition that uses only one
keyword. The syntax graph of the alternative procedure definition is given in Figure 4.5.

�(define� (� <procedure_name> <parameter_list> �)
7

<form> �))

Figure 4.5. Syntax graph of the simplified procedure definition.

Using the simplified definition, the maximum procedure can be defined by

(define (maximum x y)
(if (> X y)

X

y

We will use the two ways of defining procedures interchangeably in the text.

257

4.4.10 Input/output and nonfunctional features

Scheme has a simple input and output mechanism. The form (read) will wait for keyboard input and
returns the input value. The inputted value will be interpreted as a symbol. You can convert the symbol to
other types as required.

Output can be done by any one of these forms:

(display 3)

(write 3)

(print 3)

None of these forms prints on a new line. You can use form (newline) to change to a new line.

The following Scheme program reads a symbol, converts it to a string, appends a space at the end, reads
another symbol, converts it to a string, and appends it to the first string. Finally, the string with a space is
displayed.

(display

(string-append

(string-append (symbol->string (read)) " ")

(symbol->string (read))

The following is a more complex example that uses input and output. In this example, we implement the
menu function and the branching function we implemented in CIC++.

The menu function takes input from the keyboard, and compares the entered selection with existing options.
If a match is found, the program branches to the corresponding function.

(define menu (lambda () no parameter

)))

(begin

(newline) (newline) ; print two newlines

(display "enter your selection") (newline)

(display "i: insert a new entry") (newline)

(display "s: search an entry") (newline)

(display "d: delete an entry") (newline)

(display "p: print all entries") (newline)

(display "q: quit") (newline)

(let((c (read))) ; read a symbol from keyboard and assign it to c

(if (eq? C 'q)

(display "END.")

(begin

(branching c)

(menu)

call branching below

recursive call to itself

(define branching (lambda (sel)

258

(begin
(cond

)))

(menu)

((eq? sel 'i) (display "inserted ... 11))

((eq? sel 's) (display II searched ... "))
((eq? sel 'd) (display "deleted ... 11))

((eq? sel 'p) (display "printed ... "))
(else (display "invalid input ... "))

There are several forms in the program that we have not discussed:
(let ((name value))

body

The let-form assigns the value to the name, and then executes the body part of the code. The let-form will
be discussed later in detail.

In the procedure (menu), (menu) itself is called. A procedure that calls itself is a recursive procedure.

Loops are features of imperative languages. Functional programming languages mainly use recursion to
implement the functions of loops. Many more recursive procedures will be discussed in the rest of the
chapter.

Now we will discuss some of the nonfunctional features in the program. The form
(begin

forml

formn

allows sequential execution of a sequence of independent forms. Sequential execution is really a feature of
the imperative programming paradigm. As you can see, Scheme does have some imperative features that
make programming easier.

Another imperative feature is that the form (display x) does not return a value. For example, if you
execute:

(+ (display 5) 7)

and expect the form to return 12, you will receive an error message instead:
I Error: addition expects type <number> as 1st argument

The reason is that (display 5) only prints 5 on the screen, but it does not return any value.

However, we can define a function that performs output and returns a value, as shown in the following
procedure definition:

(define writeln (lambda(x)
(begin

(display x)
(newline)

259

X

))

For example, ifwe call the procedure:

(+ (writeln 5) 4)

It will print 5, and then pass the value 5 to the next form that adds it to 4 and returns 9.

Please note that in the implementation of the write ln procedure, we used the nonfunctional feature of

sequential execution quoted by the (begin ...) form.

*4.5 Lambda-calculus

The A-calculus (lambda-calculus) is a formal mathematical system devised by Alonzo Church in 1934 to
investigate universal computing models, functions, function application, and recursion. It has influenced
many computing systems and programming languages, especially the functional programming languages.

Lisp was the first programming language based on A-calculus. Scheme (a dialect of List), Haskell, Miranda,
SML, and ML are more recent functional programming languages based on the mathematical system.

The A-calculus is analogous to Turing machines. However, A-calculus is much easier to understand and
much simpler to use. Turing machines can be considered the most basic assembly language based on the

simplest 1-bit computer architecture, whereas A-calculus is a super high-level language that can be
conveniently learned and applied to solve various kinds of complex problems.

In this section, we briefly discuss the structure (lexical, syntactic, and semantic) of A-calculus, so that we

can better understand the Scheme programming language that is based on A-calculus. You will shortly see

that the Scheme language is strictly based on A-calculus. If you know A-calculus, you know how to write
Scheme programs.

4.5.1 Lambda-expressions

The structure of the A-calculus is short and simple. At the lexical level, there are only three lexical units: A,
the parentheses"(" and")," and an infinite list of variables (names), e.g., a, b, a l , a2, ... , etc.

At the syntactic level, a A-expression is a finite combination of lexical units and variables. Using BNF

notation, a simplified A-expression can be defined by

A-expression : : = <constant> <variable> I <expression>

A<variable> (< A-expression>)

(<A-expression><A-expression>)

In the definition, constant is a value of any data type. The definitions of the variable (identifier)

and the expression have been discussed in Chapter 1. According to the definitions, the following

expressions are A-expressions:

5

X

x+y

Ax(x+y)

a constant is a A-expression

a variable is a A-expression

an expression is a A-expression

A<variable>(< A-expression>) is a A-expression

260

Ax(x+y) 5 ; (<A-expression><A-expression>) is a A-expression

4.5.2 A-procedure and parameter scope

One of the A-expressions, A<variable><A-expression>, is called a11.-procedure. The variable prefixed
by A is called the parameter of the procedure and the A-expression that follows the parameter is called the
body of the procedure. The scope of the parameter is the body of the A-procedure. For example, if we have
a A-expression

Ax (x+y) (x+3)

the scope of the parameter x in Ax is in and only in the body (x+y) . It does not cover the x in (x+ 3) .

An occurrence of a variable x in a A-expression is bound if it is within the scope of a parameter in Ax. An
occurrence of a variable x in a A-expression is free if it is not within the scope of a parameter in AX. An
occurrence of a parameter x binds all free occurrences of x within its scope.

Given the following A-expression

AX (+ (/ AX (* x 2) 8 AX (- x 1) 5) (* AX (+ x 2) 3 x)) 7

How many A-procedures are contained in the A-expression? What are the scopes of different parameters?

Each Ax corresponds to a A-procedure, and, thus, the A-expression contains four A-procedures. The scope
of each parameter is underlined in the following expression:

A� (+ (/ Ax (* x 2) 8 AX (- x 1) 5) (* AX (+ x 2) 3 �)) l

In the next subsection, we will discuss reduction rules that evaluate such complex expressions to a simple
value, or the return value of the expression.

4.5.3 Reduction rules

The process of evaluating a A-expression is called a reduction. We will briefly discuss three reduction rules
that transform a A-expression into a simpler A-expression. They are alpha (a) reduction, beta (P) reduction,
and eta (11) reduction. Repeatedly applying these reduction rules transforms a A-expression to a simple
value, which is the return value of the expression. The reduction rules define the semantics of A-calculus.

(1) The alpha (a) reduction

Ax(E) <=> Ay([y/x]E)

The a-reduction rule says that for a A-expression with a parameter x, we can substitute y for parameter x
and all the occurrences of x in its scope.

The a-reduction rule allows us to freely choose and change parameter names for convenience.

For example, in the following expression, different parameters have the same name.

AX (+ (/ AX (* x 2) 8 AX (- x 1) 5) (* AX (+ x 2) 3 x)) 7

Although the expression is not ambiguous for the computer that evaluates it, it is simply easier for humans
to understand if we choose different names for different parameters. Thus, we can apply a-reduction rule
to rename the parameters in the A-expression as follows:

Axl (+ (/ Ax2 (* x2 2) 8 AX3 (- x3 1) 5) (* Ax4 (+ x4 2) 3 xl)) 7

(2) The beta (P) reduction

261

Ax(El) E2 [E2/x]El

The f3-reduction rule says that we can remove the parameter x for E 1 if we substitute the A-expression E2

for all the occurrences of x in E 1. The A-expression E2 is called the argument to the A-procedure Ax (E 1) .

The f3-reduction rule defines how to perform parameter passing in a A-procedure to reduce the complexity

of an A-expression that contains A-procedures.

Now we can repeatedly apply the f3-reduction rule to the following A-expression:

AX 1 (+ (/ AX 2 (* x 2 2) 8 AX 3 (- x 3 1) 5) (* AX 4 (+ x 4 2) 3 x 1))]_

We assume we use lazy evaluation, that is, we proceed from outermost first (underlined part). Thus, the

first step is to substitute argument 7 for xl, resulting in the following simplified A-expression:

(+ (I h2 (* x2 2) 8 Ax3 (- x3 1) 5) (* Ax4 (+ x4 2) 3 7))

Then the three A-procedures are at the same level and we substitute their arguments for their parameters,
respectively:

(+ (I (* 8 2) AX 3 (- x 3 1) 5)) (* AX 4 (+ x 4 2) 3 7))

⇒ (+ (I (* 8 2) (- 5 1)) (* AX 4 (+ x 4 2) 3 7))

⇒ (+ (/ (* 8 2) (- 5 1)) (* (+ 3 2) 7))

⇒ (+ (/ 16 4) (* 5 7))

⇒ (+ 4 35)

⇒ 39

Having completed the parameter passing, the A-expression has become a simple mathematical expression
that can be easily evaluated to 39.

(3) Eta (11) reduction

Ax(E) <=> E, if x does not appear in E.

For example, assume we have a A-expression:

Axl(* Ax2(+ x2 2) 3)

If parameter x 1 does not appear in the A-expression in x 1 's scope, we can then remove Ax 1 according to

11-reduction. In words, 11-reduction says that, if a parameter is not used in a procedure, it should be removed
from the parameter I ist.

In fact, in beta reduction we have implicitly applied 11-reduction: After we substitute the argument for the
parameter x, there are no longer appearances of x in the expression and thus Ax is removed.

4.6 Define your Scheme procedures and macros

Now we come back to Scheme. In this section, we will discuss the definition of procedures, scope of
parameters, and global and local variables. We will also discuss the macro that is related to procedure.

262

4.6.1 Unnamed procedures

Having studied A-expressions, it is easy to write Scheme procedures and understand how procedures are

evaluated. Consider the A-expression:

AX (+ (/ AX (* x 2) 8 AX (- x 1) 5) (* AX (+ x 2) 3 x)) 7

To write a Scheme procedure that is equivalent to the expression, all we need to do is to use the Scheme

keyword "lambda" to replace "A" and add necessary parentheses. Thus, we have

lambda x(+(/lambdax(* x 2) 8 lambdax(- x 1) 5) (* lambdax(+ x 2) 3 x))7

After adding necessary parentheses, we have a proper Scheme procedure that evaluates to 39.

((lambda (x)

(+ (I ((lambda (x) (* x 2)) 8)

((lambda (x) (- x 1)) 5))

(* ((lambda (x) (+ x 2)) 3) x)

7

There are four procedures in the code above. None of them is given a name. Such procedures are called
unnamed procedures.

4.6.2 Named procedures

The problem with the unnamed procedures is that we cannot call the procedure multiple times to obtain the
advantage of code reuse. Embedding one procedure in another procedure may compromise the readability
of the code. The solution to these problems is to name the procedures and use the names to call the
procedures. A named procedure is defined by using the keyword "define" to associate an unnamed
procedure with a name. Using named procedures, we can rewrite the code as follows:

(define fool (lambda (x) (* x 2)))

(define foo2 (lambda (x) (- x 1)))

(define foo3 (lambda (x) (+ x 2)))

(define bar (lambda (x)

))

(+ (/ (fool 8) (foo2 5))

(* (foo3 3) x))

(bar 7)

4.6.3 Scopes of variables and procedures

In Scheme, any names defined by the keyword "define" are global. For example,

(define size 100)

(define foo (lambda (x) (* x 2)))

(define bar (lambda (x) (...))

(define writeln (lambda (x) (...))

263

A global name can be accessed in the entire program. For example, the value of the global variable size
can be used in any other procedures. Please note that although we call size a variable, it is not a memory
location to which we can reassign a value. It is really a named value that we can use but cannot change.

As we have seen, a parameter of a procedure is local. Its scope is only within the body of the procedure.
For example, the three procedures foo, bar, and writeln use the same parameter name, but they have
different scopes and thus will not cause name conflict. Now the question is can we define a local variable?

Scheme offers a let-form to accommodate the needs of local variables. The syntax graph of let-form is
given in Figure 4.6.

�(let ➔ (
T

(<name> <form>) y) <body> ➔) �

Figure 4.6. Syntax graph of let-form.

A let-form consists of a list of (<name>< form>) pairs and a body part. In each pair, the name is associated
with the form. The body is any form. For example:

(let ((a 3) (b 4)) (+(*a a) (* 2 a b) (* b b)))

In this let-form, a is associated with 3, and b is associated with 4. The body is the form:
(+ (* a a) (* 2 a b) (* b b))

The names defined by a let-form are called local variables. The scope of the local variables in the let-form
is only within the body part of the form. It is different from imperative languages where the scope of a
variable is from the declaration to the end of the block. We can see the difference by the example below.

(let ((x 5)
(y (* X 4)))

(+ X y)

What is the return value of the form? It is not 25, but the following error:
I reference to undefined identifier: x

The problem is in the second local variable where we try to associate y with (* x 4) . However, the scope
of x does not start from the declaration (association). Its scope is only in the body part of the let-form. Thus,
it is undefined.

To accommodate the expectations of some imperative programmers, some Scheme versions added the let*­
form to allow the scope of a local variable to start from its association. Thus,

(let* ((x 5)
(y (* X 4)))

(+ X y)

will return 25 as imperative programmers expected.

To build larger programs, a Scheme program can be divided into modules and further limit the scope of
global variables and procedures within a module. Names can be made visible outside a module using the
export form. The following example shows the definition of a Scheme module and the export form:

264

(module module-name

(export namel

(define namel

name3 name5

valuel)

... namen) names visible outside the module

define a global variable

(define name2 (lambda (x) (...))) define a global procedure

(define name3 ...)

In the module definition, names namelname3name5, ... are accessible outside the module, while names

name2name4, ... are not accessible outside the module.

Now consider a secure email system that consists of several modules. In the encryption module, only
the procedure string-encryption is exported and accessible from the outside.

(module encryption

(export string-encryption)

(define character-rotation (lambda (ch)

(define character-encryption (lambda (ch) (...)))

(define string-encryption (lambda (str) (...)))

(define encryption-helper (...))

(...)

; outside accessible

Then, in another module, say, secure-email, the string-encryption can be called, as shown below:

(module secure-email

(define load_file (lambda (str filename) (...)

(string-encryption (load_file (str filetext)))

4.6.4 Let-form and unnamed procedures

Let-forms and unnamed procedures are, in fact, equivalent: They can be converted from one to the other.
The general format of let-forms is

(let

((namel valuel)

(name2 value2)

(namen valuen)

body

It can be mechanically translated into the unnamed procedure:

((lambda (namel name2 . . . namen)

body)

valuel value2 ... valuen)

For example, the let-form

265

(let

((a 3)

(b 4)

(+ (* a a) (* 2 a b) (* b b))

can be translated into the following unnamed procedure:

((lambda (a b)

(+ (* a a) (* 2 a b) (* b b))

)

3 4

Now we examine the let-form with incorrect scope

(let ((x 5)

(y (* X 4)))

(+ X y)

If we translate it into unnamed procedure, we have

((lambda (x y)

(+ X y)

5 (* X 4) this x is unbound

From the unnamed procedure, we can see more clearly that the variable x in the argument (* x 4) is not
initialized.

4.6.5 Macros

Macro in Scheme is a pattern-based replacement process. It replaces any code (implementation) that
matches a pattern in such a way that an expansion is made. It substitutes the parts of code for the parts in
the pattern that they match. A macro in Scheme has similar meaning as a macro in other programming
languages like C and C++. A macro introduces a name substitution instead of a control flow change.

The definition of Scheme macros is similar to the definition of procedures. All you need to do is to change
the keyword define to the keyword define-macro.

The following definition defines a macro that computes the cube (the third power) of a number:

(define-macro cube (lambda (x) (* x x x)))

If we call the macro by (cube 5) , it returns 12 5. It looks like the macro works exactly like a procedure.

Now consider another use of the same macro in the following program:

(define i 5)

(cube i) to be replaced by (* 'i 'i 'i)

266

If cube is defined as a procedure, the code should work fine. However, cube is defined as a macro. When
we execute the code, we have the following error message:

I expects type <number> as 1st argument, given: i;

To understand why this error happens, we need to review the idea of macro: name substitution instead of a
control flow change. Before we call (cube i) , the call has been replaced by the body of the macro
definition; thus, what we really execute is:

(* Ii Ii Ii)

The system is smart enough to consider the first name as an operator and thus not consider it as a symbol.
Thus, what the macro is trying to do is to multiply three symbols.

Why does the call (cube 5) work? The call will be replaced by
(* I 5 I 5 I 5)

Since numbers cannot be symbols, they will be evaluated to numbers. Thus, the form is the same as
(* 5 5 5)

To make your macro also work for named values, you can use the list function in your definition.
(define-macro cube (lambda (x) (list * x x x)))

Using this definition, (cube i) will be replaced by
(list '* 'i 'i 'i)

which produces a list (* i i i). Since i has been defined to be 5, (* i i i) will evaluate to 125.

Similar to the pattern design in C++ generic class, some Scheme implementations, such as DrRacket
Scheme, also allow the design pattern-based macros, where a generic code pattern is defined, and the
generic pattern can be replaced by a concrete code. For example, the following Scheme code defines a
pattern (_ x ...) and the pattern is substituted by the concrete code (+ x . . .) , where the generic
operator is replaced by the addition operator+:

(define-syntax addition
(syntax-rules ()

((X •. •)

(+ X ...))))

(addition 1 2 3 4)
> 10

Call the macro-based procedure definition

The same design pattern can be used for a different operation by replacing the generic operator by the
multiplication operator *:

(define-syntax product
(syntax-rules ()

((X .. •)

(* X • • •))))

(product 1 2 3 4)
> 24

Call the macro-based procedure definition

267

4.6.6 Compare and contrast imperative and functional programming paradigms

Having covered the basic functional programming concepts, we will now compare and contrast the
imperative and functional programming paradigms again using an example.

In this example, we design a vehicle's Anti-lock Braking System (ABS). The requirement and specification
of the ABS example are as follows:

Requirement:

To obtain the maximum braking effect

Specification:

Define (or measure) the wheel diameter;

Measure the wheel rotations per second rps;

Compute the wheel velocity wv;

Measure the body velocity bv;

Error detection and action:

if (bv > wv), reduce braking force

else if (bv < wv), reduce acceleration force

else "no action"

The following code is the C++ implementation using modular design, that is, we try to put related code that
performs a coherent job into a module or a function.

#include <iostream>

using namespace std;

const float mile inch = 63360.0; // inches per mile

const float pi = 3.1416;

float wheel diameter

float wheel sensor() {

float rps;

15; // inches

cout << "get rotations per second: " << endl;

cin >> rps;

return rps;

float wheel_velocity(float rps) {

float wv;

wv = (pi * wheel diameter * rps * 3600)/mile inch;

return wv;

float body_velocity()

float bv;

cout << "get miles per hour: " << endl;

cin >> bv; return bv;

void error_detection(float wv, float bv) {

if (abs (bv - wv) < 0. 01) // 0. 01 is the tolerance

cout << "no action" << endl;

else

268

if (bv > wv)

cout << "reduce brake force!" << endl;

else

cout << "reduce acceleration force!" << endl;

void start engine () {

float rps, wv, bv;

rps = wheel_sensor();

wv = wheel_velocity(rps);

bv = body_velocity();

error detection (wv, bv);

void main() {

start_engine();

A very similar Scheme program can be constructed using the modular design. For every C++ function, we
define a global procedure.

(define mile-inch 63360.0)

(define pi 3.1416)

(define wheel-diameter 15) ; inches

(define wheel-sensor (lambda ()

(begin (display "get rotations per second: ")

(read))))

(define wheel-velocity (lambda (rps) ; miles per hour

(/ (* pi wheel-diameter rps 3600)

mile-inch)))

(define body-velocity (lambda ()

(begin (display "get miles per hour: ")

(read))))

(define error-detection (lambda(wv bv)

(if (< (abs (- bv wv)) 0.01) ; 0.01 is the tolerance

(write "no action")

(if (> bv wv)

(write "reduce brake force!")

(write "reduce acceleration force!")))))

(define start-engine (lambda ()

(error-detection (wheel-velocity (wheel-sensor))

(body-velocity))))

(define main (lambda ()

(start-engine)))

(main)

269

Carefully examining and comparing the two implementations, we arrive at the following observations. Both
programs consist of functions (procedures). The programs and the functions are organized in the same way
as much as possible. However, the two programs are still very different:

• The Scheme program does not allow variables and there is no need to declare names.
• AU Scheme procedures must return a value, while C++ functions may or may not return a value.
• The return values of C++ functions have to be stored in temporary variables, while Scheme

procedures can be placed in the positions where the return values are needed. This difference can
be seen clearly, for example, in the "start engine" functions in these two programs.

• The Scheme program is much more compact than the C++ program.

The Scheme program above used global procedures although those procedures are in fact local. In the

following program, the four procedures wheel-sensor, wheel-velocity, body-velocity, and

error-detection are defined as local procedures in let-forms.

(define start-engine (lambda ()

(let (

(wheel-sensor (lambda ()

(begin (display "get rotations per second: ")

(read))))

(wheel-velocity (lambda (rps) ; miles per hour

(let ((pi 3.1416)

(mile-inch 63360)

(wheel-diameter 15))

(/ (* pi wheel-diameter rps 3600) mile-inch))))

(body-velocity (lambda ()

(begin (display "get miles per hour: ")

(read))))

(error-detection (lambda(wv bv)

(if (< (abs (- bv wv)) 0. 01)

(write "no action")

(if (> bv wv)

(write "reduce brake force!")

(write "reduce acceleration force!")))))

(error-detection (wheel-velocity (wheel-sensor))

(body-velocity)))))

(define main (lambda ()

(start-engine)))

(main)

4. 7 Recursive procedures

This section continues the discussion on this topic in Chapter 2 and uses more examples to illustrate the
fantastic-four abstract approach of understanding and writing recursive procedures:

1. Formulate the size-n problem;

270

2. Find the stopping condition and the corresponding return value;
3. Select m and formulate the size-m problem; and
4. Construct the solution of the size-n problem from the assumed solution of the s1ze-m

problems.

Please read Section 2.7 before continuing with this section. The fantastic-four abstract approach is generic.
It can be applied in different programming paradigms. In this section, we use the Hanoi Towers problem to
illustrate the fantastic-four abstract approach in the functional programming paradigm.

1. Formulate the size-n problem

We can simply formulate the size-n problem as hanoi (n) or (hanoi n) in prefix notation. We can also

formulate the problem as (hanoi towers n left center right), allowing the user to name the pegs.

The solution of the return value of this function is to print instructions (steps) that move n disk from the

left peg, using center peg as auxiliary, to the right peg.

2. Find the stopping condition and the corresponding return value

The stopping condition is n = 1. In this case, the size-I problem is (hanoitowers 1 left center

right), and the solution or return value is "move the disk from the left peg to the right peg."

3. Select m and formulate the size-m problem

Since we can only move one disk at a time, it is obvious that we can only reduce the size by one in one
iteration. Since we have multiple parameters in the problem, we have multiple size-(n-1) problems. As
explained in Section 2. 7, we need the following two size-(n-1) problems:

(1) move n-1 disks from left to center, using right as auxiliary:

hanoitowers(n-1, left, right, center)

(2) move n-1 disks from center to right, using left as auxiliary:

hanoitowers(n-1, center, left, right)

4. Construct the solution of the size-n problem

Use the solutions for the size-(n-1) problems to construct the solution for the size-n problem.

The text on the left-hand side in Figure 4.7 shows how we construct the solution for the size-n problem
based on the solutions for the size-(n-1) and size-I problems, that is,

hanoitowers(n-1, left, right, center)

hanoitowers(l, left, center, right)

hanoitowers(n-1, center, left, right)

// move n-1 disks left -> center

// move 1 disk left -> right

// move n-1 disks left -> center

In words, the solution for the size-n problem is: (1) Move n-1 disks from left peg to the center peg.
We simply assume that we can do it, because it is a size-(n-1) problem. (2) Move the remaining disk from
left to right. (3) Move n-1 disks from center to the right.

Based on the discussion, we can directly obtain the Scheme program that solves the Hanoi Towers problem
as follows. In the program, we defined a one-parameter procedure (hanoi n) as a simpler user interface.
The procedure with more parameters is given as a helper procedure.

(define hanoi (lambda (n) ; define a simpler human-interface

(hanoitowers n "Left" "Center" "Right")

))

271

(define hanoitowers (lambda (n source spare destination)

(if (= n 1) stopping condition

))

(begin

(display "move top from ")

(display source)

(display " to ")

(display destination)

(newline)

output at stopping condition

(begin ; from size-(n-1) to size-n problem

(hanoitowers (- n 1) source destination spare)

(hanoitowers 1 source spare destination)

(hanoitowers (- n 1) spare source destination)

Ifwe call the procedure (hanoi 3), we will have the following output describing how to solve the size-3
Hanoi Towers problem.

move top from Left to Right

move top from Left to Center

move top from Right to Center

move top from Left to Right

move top from Center to Left

move top from Center to Right

move top from Left to Right

As you can see from the example, the most important idea of recursive procedure is that we simply assume
that we have the solution for size-(n-1) problem and we do not need to solve it. Why does it work? Because
the recursive mechanism will actually solve the problem from size-I upward; that is, it will solve the size­
I problem, then use the solution of the size- I problem to construct the solution of the size-2 problem, and
so on. Since we have given the solution of the size- I problem and we have defined how to find the solution
from the size-(n-I) to the size-n problem, we basically have given solutions to the problem of all sizes!

4.8 Define recursive procedures on data types

In this section, we continue to study recursion. We discuss recursive procedures that manipulate numbers,
characters, strings, pairs, and lists. The purposes of this section are twofold: understand recursion and
become familiar with data types in Scheme. In the discussion, we may or may not explicitly mention the
four steps of writing recursive procedures. However, if you still do not fully understand the idea of writing
recursive procedures, you should carefully go through these examples and try to identify the four steps and
application-specific parts of the procedures.

4.8.1 Number manipulations

We will study several recursive procedures that manipulate decimal and binary numbers.

272

(1) Addition and Multiplication

We start with a few simple procedure definitions. We first define an add procedure that adds two numbers
together.

I
(define Add (lambda (x y)

(+ X y)

))

Then, we write a recursive procedure to compute the square using a sequence of additions, based on the
mathematical formula n2 = 1 + 3 + ... + 2n - 1. The procedure can take both positive and negative numbers
as input.

(define Squarel (lambda (x) ; Solution 1
(if (= X 0)

0

(Add (Squarel (- (abs x) 1)) (Add (- (abs x) 1) (abs x))))

))

(define Square2 (lambda (x) ; Solution 2
(if (= X 0)

0

(if (< X 0)
(Square2 (- x))
(Add (Square2 (- x 1)) (Add (- x 1) x))))

))

(define square3 (lambda (x) ; Solution 3
(square-helper x x)

))

(define square-helper (lambda (x n)
(if (= n 0)

0

(if (< X 0)
(square-helper (- x) (- n))
(Add (square-helper x (- n 1)) x)))

))

All three solutions use recursion. Please identify the four steps of the fantastic approach used in these three
procedures.

(2) Decimal-binary conversion

How do we convert a decimal number to a binary number? One of the algorithms frequently used is shown
in Figure 4.7. We divide the decimal number by 2, and keep dividing the quotient by 2, until the quotient
becomes 0. The remainder in each step of division forms the binary number that is equivalent to the decimal
number.

273

remainder

2 1

2 1

0
resulting

binary

0 number

1

0

Figure 4.7. Converting a decimal number to a binary number.

Following the same algorithm, we can devise a Scheme program to convert a decimal number in the list
format [e.g., the list format of 354 is (3 5 4)], into the equivalent binary number in list format.

(define dtob (lambda (n)

))

(if (= n 0)

(list 0)

(append (dtob (quotient n 2))

(list (remainder n 2))

The output of the procedure call (dtob 19) is

(0 1 0 0 1 1)

stopping conditions

return value at stopping

size-m problem and from

size-m to size-n solution

The stopping condition is n = O and the corresponding return value is a list (O) , because the binary number

corresponding to decimal number O is also 0. The size-n problem is (dtob n) and the size-m problem is

(dtob (quotient n 2)), where m = (quotient n 2), because the quotient ofn/2 is smaller than

n, and, thus, the size of the problem will eventually be reduced to the stopping condition.

Constructing the solution of the size-n problem is done by appending the current remainder of n/2 to the
solution of the size-(n-1) problem:

(append (dtob (quotient n 2)) (list (remainder n 2)))

(3) Binary addition

How do we add two binary numbers arithmetically? The algorithm that we use is shown in Figure 4.8. We
add from right to left. A carry will be generated if the result of addition at a position is greater than or equal
to 2. The final result may have one more bit than the two numbers to be added.

The following Scheme program mimics the addition process. The program consists of multiple procedures,
and all procedures are recursive.

(define binaryadd (lambda(11 12)

(let ((lenl (length 11)) (len2 (length 12)))

(if (> lenl len2)

(binaryadd 12 11)

(if (< lenl len2)

274

(binaryadd (append ' (0) 11) 12)

(recursiveAdd (append '(0) 11) (append '(0) 12) 0)

)))))

(define recursiveAdd (lambda(11 12 carry)

(if (null? 11)

)))

I ()

(let ((t (+ (tail 11) (tail 12) carry)))

(append (recursiveAdd (rrntail 11)

(rrntail 12)

(quotient t 2))

(list (remainder t 2))

1 0 0 1 1

+ 1 1 0 0 1

carry 1 0 0 1 1 0

result 1 0 1 1 0 0

◄

Figure 4.8. Adding two binary numbers.

In the main procedure, the procedure that is called first, we first define two local variables lenl and len2
to represent the lengths of the two binary numbers in list format. The size-n problem that the procedure is

dealing with is (binaryadd 11 12), where n is the absolute value I length (11) -length (12)) I. The

procedure exits the recursive call (stopping condition) when lenl=len2, or when n=0. If lenl>len2, we
recursively call (binaryadd 12 11), which means we swap the positions of 11 and 12. In other words,

we always use the shorter number as the first argument. If lenl<len2, we recursively call (binaryadd

(append ' (o) 11) 12 11), which means we add one Oto the left of the shorter number, attempting to
make the two numbers to be added the same length. We keep adding O until the two numbers have same
length in their list format.

When lenl=len2, we exit the main procedure and call the recursi veAdd procedure. We add a Oto the
left of both numbers to handle the situation when the addition result takes one extra bit. Again, the

recursi veAdd procedure is recursive. The size-n problem that recursi veAdd is dealing with is

(recursiveAdd 11, 12, carry), where n is the length of lists 11 and 12. The procedure stops when

the lists become empty, or the length becomes 0. The size-(n-1) problem is (recursiveAdd (rrntail

11) (rrntail 12) (quotient t 2)) , where (rrntail 1) returns the list without the last element of
1 or having the last element of 1 removed. Thus, the size (length of the lists) of the problem becomes n -1.

In the program, the addition of three binary bits is done in the definition of the local variable t: (1 et ((t
(+ (tail Ll) (tail L2) carry))) ...) , where, the procedure (tail 1) returns the last element

of the list L.

The implementations of (rrntail 1) and (tail 1) are not given here. You are asked to complete the

recursive procedures as exercises. The procedures will be recursive, and you can follow the four-step
abstract approach to implement them.

275

(4) Two's complement

We can obtain two's complement of a binary by using its one's complement plus one at the end (the least
significant bit) . The addition is an arithmetic addition and may cause a carry to the higher bit. We can use

the binaryadd procedure that we just defined for this purpose. The one's complement can be obtained by
inverting each bit. Again, we assume the binary numbers we are dealing with are in their list format.

(define twoscomplement (lambda (x)

(binaryadd '(1) (onescomplement x))

))

(define onescomplement (lambda (x)

(if (null? x)

' ()

(if (= (car x) 0)

(cons 1 (onescomplement (cdr x)))

(cons O (onescomplement (cdr x)))))))

The procedure onescomplement is recursive. The stopping condition is when the list is empty. The

corresponding return value is empty list ' () . The size-n problem is (ones complement x), where x is a

list with n elements. The size-(n- 1) problem is (ones com pl emen t (cdr x)) , where (cdr x) is a list

with n -1 elements.

4.8.2 Character and string manipulations

In Chapter 2, we wrote a C program to encrypt a string. Now we use Scheme to implement a similar string­
encryption program.

Assuming st r is a string of length n, we would like to add an integer k to the integer value of each character
in the string. The integer value of each character is given in the ASCII table in Appendix C.

The idea of the string-encryption is as follows:

If st r is an empty string "" (stopping condition), then return empty string. There is no character to encrypt.

The size-n problem is (string-encryption str), where str has n characters.

We reduce the size-n problem to a size-(n-1) problem by removing the first character from the string.

We construct the solution of the size-n problem (string-encryption str) by encrypting the first character of

str, and append the solution of the size-(n- 1) problem to the encrypted character.

Before we write the main procedure (string-encryption str), we need to write a few helper
procedures:

(character-encryption ch) encrypts a character;

(string-car s) returns the first (leftmost) character of strings;

(string-cdr s) returns the substring of s after removing the first character.

The Scheme program including all necessary procedures is given as follows. The basic operations defined
on characters and strings have been given in Tables 4.4 and 4.5.

(define string-encryption (lambda (str key)

(if (string=? str "") stopping condition

276

))

11 11 ; return empty string

(string-append

(character-encryption (string-car str) key)

(string-encryption (string-cdr str) key)

(define character-encryption (lambda (ch k)

(string (integer->char (+ (char->integer ch) k)))

))

(define string-car (lambda (s)

(string-ref s 0) ;return the element at position 0

))

(define string-cdr (lambda (s)

(substring s 1 (string-length s)) ;return the element at position 0

))

To decrypt the string, we can use the following decryption program. The program calls the encryption
program with a negative key value to reverse the encryption.

(define string-decryption (lambda (str key)

(string-encryption str (- key))

))

We can add different features to the encryption program. The following procedure generates a random

number between 3 and 9, uses it as the key to call (string-encryption str key), and appends the

key to the end of the encrypted string.

(define random-encryption (lambda (str)

(let ((key (+ (random 7) 3)))

))

(string-append (string-encryption str key)

(number->string key)

4.8.3 List manipulations

List is the most important data type of the functional programming languages. Since a list consists of a
collection of elements, most list manipulations involve repetition or recursion.

The following program computes the sum of a list of numbers:

(define list-sum (lambda (1st)

(if (null? 1st)

(display "Error: the list is empty")

(list-sum-helper 1st)

))

(define list-sum-helper (lambda (1st)

277

(if (null? 1st)

0

(+ (car 1st) (list-sum-helper (cdr 1st)))

))

(list-sum ' (2 3 4 6)) ; call the procedure. It returns 15.

We split the program into two procedures. The first procedure checks if the initial list given is empty. If it

is empty, the procedure returns an error message. Note that ifwe call the second procedure using an empty
list, it will return 0. This return value does not differentiate whether the sum is 0 or there is no element in
the list.

The second procedure is recursive. The stopping condition is "the list is empty." The corresponding return

value is 0. The size-(n-1) problem is (list-sum-helper (cdr 1st)), because cdr returns the list

without the first element. Thus, the size of (cdr ls t) is one smaller than the size of ls t. The construction
of the solution of the size-n problem is by

(+ (car 1st) (list-sum-helper (cdr 1st)))

which adds the first element to the sum of the remaining elements.

The next example we discuss is reversing a list. The size-n problem is (reverse-list 1st). The
stopping condition is empty list and the corresponding return value is empty list. To reduce the size-n

problem to the size-(n-1) problem, we take out the first element of the list using (cdr 1st). To construct

the solution from the size-(n-1) problem to the size-n problem, we append the first element of 1st to the
end of the solution of the size-(n-1) problem. Thus, we obtain the following program.

(define reverse-list (lambda (1st)

(if (null? 1st)

I ()

(append (reverse-list (cdr 1st)) (list (car 1st)))

))

For example, the procedure cal] (reverse-list ' (1 3 5 7 9)) will return: (9 7 5 3 1).

We can define a few other list operations. The following procedure returns the union of two lists:

(define tail (lambda (1st)

(car (reverse-list 1st))))

(define rmtail (lambda (1st)

(reverse-list

(cdr (reverse-list 1st)))))

(define union (lambda (x y)

(cond ((null? x) y)

((member (tail x) y)

(union (rmtail x) y))

(else (union (rmtail x) (cons (tail x) y)))))) (union '(1 3 5) '(2

3 4 6))

>(1 5 2 3 4 6)

278

We use tail and rmtail procedures to keep the elements in the same order in the merged list. We could use

car and cdr, instead of tail and rmtail, in the code. However, the output will be (5 1 2 3 4 6),

instead of (1 5 2 3 4 6) . The order of the first would be reversed in the result list.

The following procedure returns the intersection of two lists:

(define intersection (lambda (x y) ; umbrella to deal with empty list

(if (null? x) '()

(intersect-recursive x y))

))

(define intersect-recursive (lambda (x y)

(if (null? (cdr x)) ; stopping condition

(if (member (car x) y)

x return value at stopping condition

))

'() ; return value at stopping condition

)

(if (member (car x) y)

(cons (car x) (intersect-recursive (cdr x) y))

(intersect-recursive (cdr x) y)))

(intersection '(1 3 5 6 7) '(2 3 4 6))

> (3 6)

The procedure is designed following the fantastic-four abstract approach. The steps are:

Step 1: The size-n problem is (intersect-recursive (x y))

Step 2: The stopping condition is when x has one element only, i.e., (nul 1? (cdr x)). In this case, if x

is a member of y, then, the intersection is x, else, is ' () .

Step 3: The size-(n-1) problem is (intersect-recursive (cdr x) y), where x is replaced by (cdr x) ,
which has one element less than x.

Step 4: Construction of size-n problem's solution from size-(n-1) problem's solution. We assume that the

size-(n-1) problem's solution is given. We just need to add (car x) into the solution if (car x) is a

member ofy. If (car x) is not a member of y, the size-n problem's solution is the same as the size-(n-1)
problem's solution.

4.9 Higher-order functions

A higher-order function is a function that takes the operation of another function (not the return value) as
an argument. All functional programming languages support higher-order functions. There are many
different higher-order functions. We will discuss the two most useful higher-order functions defined on
lists:

• Mapping: Apply the same operation defined by another procedure to all elements of a list;
• Reduction: Apply an operation to list and generate a single value as output.
• Filtering: Remove elements of a list that do not satisfy a predicate defined by another procedure.

279

4.9.1 Mapping

The general form of mapping is

(map procedure-name list-parameter)

where list-parameter is a list with the same type of elements and procedure-name is the name of

any procedure that manipulates a single parameter that has the same type as the element of the 1 is t -

parameter. The map procedure will call the procedure (procedure-name list-element) on each element of
the list and return a list that consists of the return values of these procedure calls. For example, ifwe define

a foo procedure on an integer and apply the procedure in a map procedure:

(define foo (lambda (x) (+ (* x x) x)))

(map foo '(3 6 9 12 15 18))

The map procedure will apply f oo on each and every element of the list (3 6 9 12 15 18) , and, thus,
the map procedure will return

(3*3+3 6*6+6 9*9+9 12*12+12 15*15+15 18*18+18)

= (12 42 90 156 240 342)

We can also embed the body of the foo into the map procedure to implement the same function:

(map (lambda (x) (+ (* x x) x))' (3 6 9 12 15 18))

Now we will use map procedure to reimplement some procedures we wrote before, where the same
operation is applied to each element of a list.

First, examine the one's complement. The same operation, the inversion operation, is applied on each
element of the list. Thus, we can first define a bit-inversion procedure, and then apply the procedure to the
list.

(define bitinvert (lambda (x) (if (= x 0) 1 0)))

(define onescomplement (lambda (x)

(map bitinvert x)

))

Next, consider the string encryption, where an integer is added to each character in the string. Since map
procedures only work on lists, we need to convert the string to a list. The following is the program:

(define character-encryption (lambda (ch)

(integer->char (+ (char->integer ch) 5))

))

(define string-encryption (lambda (func str)

(list->string (map func (string->list str)))

))

; key = 5

When we call the second function and use the first function, character-encryption, as a parameter:

> (string-encryption character-encryption "Hello World")

the function will be applied to each element of the list. The return value is: "Mjqqt¾\\twqi."

Notice that the string is first converted to a list in order to use the higher-order map function. The returned
list is converted back to a string.

280

As can be seen from these two examples, the previous implementations are recursive, involving repetition
of operations. Using the map higher-order function, no recursion is needed. The reason is that recursion is
embedded in the map function and is thus transparent to the user of the map higher-order function. If we
look at the implementation of map, we will see the recursion.

(define mapl (lambda (procedure-name list-parameter)

(if (null? list-parameter)

' ()

(cons

)))

(procedure-name (car list-parameter))

(mapl procedure-name (cdr list-parameter))

As can be seen from this program, procedure-name is an ordinary parameter of a mapl procedure.

However, in the body of the program, procedure-name is placed in the first place directly following a

left parenthesis, where an operator is expected. Thus, the parameter procedure-name is considered an
operator. This brings, in fact, a new type of parameter passing, known as call-by-name. Different from
call-by-value or call-by-alias, call-by-name does not pass the value or address of the variable. It passes the
name itself.

Now, we extend the string encryption procedure to more complex situations. We will read the key from the
keyboard, and we will encrypt alphabetic characters and digits only. We do not encrypt all the other
characters, such as space and special characters. We assume the key values will be in the range 1 to 4. We
first give the normal recursive version as follows.

;Encryption procedure using recursion

(define encrypt (lambda (str)

(recursive-encrypt str O (string-length str) (read))

))

(define recursive-encrypt

(lambda (str pos len key)

(if (>= pos len)
""

(string-append

(encrypt-char (string-ref str pos) key)

(recursive-encrypt str (+ 1 pos) len key)))))

(define encrypt-char

(lambda (c key) (encrypt-rotate c key)

))

(define encrypt-rotate

(lambda (c key)

))

(if (or (char-alphabetic? c)

(and (> (char->integer c) 47) (< (char->integer c) 58)))

(string (integer->char (+ (char->integer c) key)))

(string c))

In the procedure, we check ASCII code value to determine if a character is a digit. We can also define a
predicate (digit? c) for this purpose.

281

Next, we give the decryption procedure that decrypts the string encrypted using the procedure above. The
decryption procedure will have a different data range for decryption, which is the encryption range plus the
key value, as the encryption procedure has added a key to the encrypted value.

;Decryption procedure using recursion

(define decrypt (lambda (str)

(recursive-decrypt str O (string-length str) (read))

))

(define recursive-decrypt (lambda (str pos len key)

(if (>= pos len)
11 11

(string-append

(decrypt-char (string-ref str pos) key)

(recursive-decrypt str (+ 1 pos) len key)))

))

(define decrypt-char (lambda (c key)

(decrypt-rotate c key)

))

(define decrypt-rotate (lambda (c key)

(if (or (char-alphabetic? (integer->char (- (char->integer c) key)))

(and (> (char->integer c) (+ 47 key))

(< (char->integer c) (+ 58 key))))

(string (integer->char (- (char->integer c) key)))

(string c))

))

; Testing:

(encrypt "Hello CSE240!") Enter key 4

(decrypt "Lipps GWI684!")

(encrypt "Hello CSE598?")

(decrypt "Lipps GWI9=<?")

Now, we present the higher-order function version of the same procedures, where the recursion part is
embedded into the map procedure. First we give the encryption part.

;Encryption procedure using map

(define key (read))

(define encrypt (lambda (str)

(list->string (map encrypt-char (string->list str)))

))

(define encrypt-char (lambda (c)

(if (or (char-alphabetic? c)

(and (> (char->integer c) 47) (< (char->integer c) 58)))

(encrypt-rotate c)

c)

))

(define encrypt-rotate (lambda (c)

(integer->char (+ (char->integer c) key))

282

))

The higher-order function version of the decryption procedure is given as follows.

;Decryption procedure using map

(define decrypt (lambda (str)

(list->string (map decrypt-char (string->list str)))

))

(define decrypt-char (lambda (c)

(if (or (char-alphabetic? (integer->char (- (char->integer c) key)))

(and (> (char->integer c) (+ 47 key))

(< (char->integer c) (+ 58 key))))

(decrypt-rotate c)

c)

))

(define decrypt-rotate

(lambda (c)

(integer->char (- (char->integer c) key))

))

; Testing

; Enter key = 4

(encrypt "Hello CSE240!")

(decrypt "Lipps GWI684!")

(encrypt "Hello CSE598?")

(decrypt "Lipps GWI9=<?")

Mapping is an example of higher-order functions. You can design different higher-order functions based
on the idea of applying an operation to a list of elements. For example, you can design a (deep-map proc a­
list), where the list contains a sublist, such as '(l 3 (4 (2 2) 5) ((6 (7)))). You may also design a map2
function that can add a number list, such as:

(map2 + '(3 4 5) '(4 5 6) '(5 6 7)) ; return value: (12 15 18)

4.9.2 Reduction

Mapping allows us to apply the same operation to many data points simultaneously. Reduction allows us
to combine multiple results from the parallel mapping operations into a single result. Without the reduction
function, we would need to write a recursive program to perform such operations, for example,

(sum-list '(12 33 564 122 12 1 4))

(define sum-list (lambda (x)

(if null? x)

0

(+ (car x) (sum-list (cdr))))))

The reduction function provides a generic way of handling all these functions by computing a function that
depends upon all members of a list. Similar to mapping, the idea is to pass an operator (function) as a
parameter to the reduction function. The definition of the reduction function (reduce) is given as follows:

(define reduce

(lambda (op base x) ;passing by name

283

(if (null? x)
base

(op (car x) (reduce op base (cdr x)))))

In the definition above, we used the parameter base, because different functions need different bases (e.g.,
sum needs 0 and product needs 1 as bases). Having defined the higher-order reduction function, we can
apply it to different operators. For example,

Sum:

Product:

(reduce+ 0 '(2 4 6 8 10)) ⇒ 30

(reduce* 1 '(2 4 6 8 10)) ⇒ 3840

Average: (/(reduce+ 0 '(2 4 6 8 10)) (length '(2 4 6 8 10))) ⇒ 5

Mapping and reduction are often used together to solve large problems. For example, Google uses a
MapReduce technique in its search engine to perform parallel searches. The web domains to be searched
are divided into many subdomains. The same search operation is mapped to each subdomain. The search
results from all subdomains are then reduced into a single list as the final search result.

4.9.3 Filtering

A filtering procedure or a filter is a higher-order function similar to a mapping procedure. It applies another
procedure to all members of list:

(filter procedure-name list-parameter)

The difference is that the procedure that is the parameter of filter here is a predicate that returns either true
or false. If the predicate (procedure-name list-element) returns true, the element will stay in the result list
that is to be returned by the filter procedure. If the predicate (procedure-name list-element) returns false,
the element will be removed from the result list.

For example,

(filter (lambda (x) (> x 200)) '(50 300 500 65 800))

will return

1 (3oo 500 800)

which is the sublist of the list in the filter procedure with all elements that are less than or equal to 200
removed. Similar to the map procedure, the predicate procedure in the filter procedure can be defined
separately:

(define largerthan200? (lambda (x) (> x 200)))
(filter largerthan200?' (50 300 500 65 800))

The filter procedure can also be applied to the substructures with a list. For example, if we have a list of
(class-name class-size) pairs defined as follows:

(define class-list
' (("CSEl00" . 100) ("CSE200" . 80) ("CSE240" . 100) ("CSE310" . 70)

("CSE330" . 75) ("CSE310" . 65) ("CSE420" . 50)))

(define large-class? (lambda (x) (>= (cdr x) 80)))
(define find-large-class (lambda (alist)

(filter large-class? alist)

284

))

If we call the procedure that uses the filter procedure, the following sublist will be returned:

(("CSEl00" . 100) ("CSE200" . 80) ("CSE240" . 100))

The filter procedure is not implemented in the current DrRacket version. We can define it as a user's
procedure as follows:

(define filter (lambda (predicate-name alist)

(if (null? alist)

)))

I ()

(if (predicate-name (car alist))

(cons (car alist) (filter predicate-name (cdr alist)))

(filter predicate-name (cdr alist))

As we can see, the filter procedure is a recursive procedure. The stopping condition is "if the list is empty"
and the return value at the condition is empty list. The size-(n-1) problem is the problem when the first
element is removed. To construct the solution of size-n, we use the predicate-procedure to test the current
element of the list. If the return value of the predicate procedure is true, we include the element in the return

list by performing a cons operation on the element and the solution of the size-(n-1) problem. Otherwise,
the solution of the size-n problem is simply the solution of the size-(n-1) problem: The current element is
simply not included in the construction of the size-n problem.

The map and filter procedures defined above work for plain lists. They do not work for lists with sublists.
However, we can modify the definition of map and filter, so that they can dive into sublists and apply the
operator to all elements of the sublists. These higher-order functions are called deep-filter and deep-map.

(define deep-filter (lambda (pred arg-list)

(if (null? arg-list)

I ()

(if (pair? arg-list)

(if (not (pair? (car arg-list)))

(if (pred (car arg-list))

(cons (car arg-list) (deep-filter pred (cdr arg­

list)))

(deep-filter pred (cdr arg-list)))

(cons (deep-filter pred (car arg-list))

(deep-filter pred (cdr arg-list)))))))

))

The key of this procedure is to check if the arg-list is a pair. If it is, we will further check if the first element
is a pair. If not, we will check if its value satisfies the predicate. If not, it will not be included into the result
list. If the element is a pair, then, we will recursively apply the deep-filter procedure to its first element and
the second element of the pair. Notice that all lists, except the empty list, are pairs.

For example, if we test the following call:

(deep-filter (lambda (x) (> x 100))

I (200 100 (220 50 120) 200 19 300 100 (90 2 900) (20)))

285

The output will be:

(200 (220 120) 200 300 (900) ())

where the elements ofless than or equal to 100 are removed from the result list. Similarly, a deep-map can
be defined.

4.9.4 Application of filtering in query languages

Filter is widely used in many situations to remove unwanted data. This is particularly important in data
mining, database, and web applications. The C# code example below illustrates a typical query to a database
source:

class program {

static void Main() {

Book[] Books = new Book[] {

new Book {bookid = 1, title = "Programming",

isbn = "0-7575-0367", price = 69.99},

new Book {bookid = 3, title = "OS",

isbn = "6-5432-123-0", price = 57.77},

new Book {bookid = 4, title = "Computing",

isbn = "0-321-52403-9", price

new Book {bookid = 5, title = "XML",

isbn = "0-201-77168-3", price

} ;

var myQuery =

from b in Books

where b.price < 80

orderby b.title

select b;

foreach (Book item in myQuery)

Console.WriteLine("Title

item.title, item.price);

{0}, Price

94.91},

74.21},

{ 1 } II f

In this example, the query part, "from-where-orderedby-select" is in functional style with filtering. The

clause "where b.price < 80" defines the filtering predicate and the predicate is applied to each
element of the books. Other functional programming features are also used. In the following snippet of
code, a simple query is given that returns all the customers that have placed orders between 100 and 1000.

static void CalcNoLet() { // Without using let

var q = from c in AllCustomers

where SumOrders(c) < 1000 && SumOrders(c) > 100

select c;

int count q.Count();

286

In the code, the function SumOrders are called twice and executed twice. If we use a let-form to associate
the result with a local name expense, there is no need to perform the calculation twice.

static void CalcWithLet() { // Using let

4.10

var q = from c in AllCustomers

let expense = SumOrders(c)

where expense < 1000 && expense > 100

select c;

int count = q.Count();

Summary

In this chapter, we studied the major features of functional programming languages and important
techniques of writing functional programs, including

• prefix notation;
• data types and predefined Scheme functions on the data types;
• the syntax and semantics of A-calculus, and the relationship between A-calculus and the Scheme

programming language;
• important programming constructs of functional programming languages: named procedure,

unnamed procedure, let-form global and local variables, and the conversion between unnamed
procedures and let-forms;

• writing Scheme programs with multiple procedures;
• the principle of recursion, and the techniques of writing recursive procedures;

• the higher-order functions that can be used to solve recursive problems in a much simpler way.

287

4.11 Homework, programming exercises, and projects

l. Multiple Choice. Choose only one answer for each question. Choose the best answer if more than
one answer is acceptable.

1.1 In Scheme, the primitive (char? "#\A") will return

□ #t □ #f □ A

1.2 (member '2 '(3 4 2 1)) will return

□ #f □(3 5 2 9)

1.3 (caddr '(2 4 6 8 10)) will return

0(6 8 10) 0(6)

□(4 2 1)

□6

□ error message

□(2 1)

□ error message

1.4 The most efficient way, in terms of the execution time, to check whether a list L is empty is by

□(NULL? L) □(= (length L) 0)

□(< (length L) 1) □(= L 0)

1.5 Which of the following forms is an unnamed procedure?

□(+ z 3) □((lambda (z) (+ z 3)) 4)

□(define foo (lambda (z) (+ z 3)))

□ none of them

1.6 Eager evaluation evaluates

□ all parameters of a function first.

□ a parameter of a function only if it is necessary.

□ no parameters at all.

□ outermost first.

1. 7 Lazy evaluation evaluates

□ all parameters of a function first.

□ a parameter of a function only if it is necessary.

□ no parameters at all.

□ innermost first.

□(define bar 25)

1.8 In imperative programming languages, different orders of evaluations (eager or lazy)

□ may produce different results. □ always produce different results.

□ never produce different results. □ None of them are correct.

1.9 In functional programming languages, different orders of evaluations (eager or lazy)

□ may produce different results. □ always produce different results.

289

□ never produce different results. □ None of them are correct.

1. 10 Each let-form in Scheme can be converted into

□ an unnamed procedure. □ a named procedure.

□ a list of 1oca1 variables. □ a list of global variables.

1.11 Assume that you have (define x ' (5)) and (define y ' (8 9)) . What operation will return

the list (5 8 9) ?

□(cons x y) □(list x y) □(append x y) □ None of them

1.12 Which of the followings is NOT a Scheme pair?

□ '() □ '(x . y) □ '(x)

1.13 What is the return value of the following form?

(filter (lambda (x) (> x 2 0)) ' (10 3 0 15 10 8 0))

□(30 80) □(10 15 10) □(10 15)

1.14 A deep-filter can be used in the situation where the list

□ '(())

□(10 10 15)

□ is a plain list. □ contains nonnumerical values.

□ contains sublists. □ is not a pair.

1.15 What is the return value of the following form?

(map (lambda (x) (+ x 10)) '(10 30 15))

□ 20 □ 40 □ 25

1.16 In Scheme, an empty list is

□ a pair. □ not a pair. □ a string.

□(20 40 25)

Do

1.17 What mechanism cannot be used for passing a value into a Scheme procedure?

□ Call-by-value □ Call-by-alias □ Call-by-name □ Return value

1.18 How is a procedure name (operator) passed into a procedure?

□ Call-by-value □ Call-by-alias □ Call-by-name □ Return value

1.19 If you want to return multiple values from a Scheme procedure, which of these methods is invalid?

□ Use multiple return-statements. □ Split the procedure into multiple procedures

□ Put the values in a pair and return the pair □ Put the values in a list and return the list

1.20 Normally, a recursive procedure can be written by following these steps: Define the size-n problem,
find the solution for the base case or the stopping condition, and then, find

□ the so1utions of the size-I, size-2, ... , size-n problems.

□ a loop variable that is incremented in each iteration.

□ the solutions of the size-n, size-(n-1), size-(n-2), ... , size-I problems.

□ the solution of the size-(n-1) problem, and finally find the solution of the size-n problem.

290

□ the solution of the size-n problem based on the hypothetical solution of the size-(n-1) problem.

2. What is the major difference between the imperative and functional programming paradigms? How
does an imperative program typically pass values from one function to another function? How does
a functional program pass values from one function to another function?

3. How does a Scheme program pass parameters into a procedure? Does Scheme support call-by-value?

Does Scheme support call-by-alias?

4. What is the difference between a Scheme procedure and a Scheme macro? Write a macro that returns

the absolute value of a number.

5. What is an unnamed procedure? Why do we need an unnamed procedure? How do we define and
call an unnamed procedure?

6. What are bound and free variables in A-calculus?

7. What are global and local variables in Scheme?

8. What is eager evaluation? What is lazy evaluation? Is the order of evaluation (eager or lazy)

important in functional programming language like Scheme? Is the order of evaluation important in
imperative programming languages like CIC++? Assume we have a multiprocessor computer that
can evaluate 10 independent operations simultaneously and each arithmetic operation takes a unit of
time. How many units of time are necessary to evaluate the following form?

(+ (+ (- 6 2) (* 5 7)) (* (+ 4 6) (- 5 3)))

8.1 if the form is evaluated in an imperative language like C?

8.2 if the form is evaluated in Scheme?

9. According to the BNF definition of A-expression, if El and E2 are A-expressions, El E2 is also a

A-expression. If El, E2, and E3 are A-expressions, is El E2 E3 also a A-expression? When do we

need a A-expression of the form El E2 E3?

10. What is a A-procedure? What reduction rule evaluates a A-procedure?

11. What is the relationship between a A-expression and a Scheme form? How do we convert a A.­

expression into a Scheme form?

12. How do we convert a let-form into an unnamed procedure? How do we convert an unnamed

procedure into a let-form?

13. Given a A-expression: Ax{+ Ax[- x 1] 3 (* Ax[+ x 2] 3 x)} 9

13 .1 Indicate the scope of each variable by underlining the variable and the expression associated with it.

13 .2 Use the a-conversion rule to convert the expression, so that different parameters have different
names.

13.3 Use the�- and 11-conversion rules to convert (using lazy evaluation) the expression. Show each step
of the conversion.

291

13 .4 Give the Scheme unnamed procedure corresponding to the A-expression.

14. How do we introduce a global variable/procedure? How do we define a local variable/procedure?

15. What kinds of data structures does Scheme support?

16. What is a character type in Scheme? Is a character treated as a string with only one element?

17. What is a pair? How do we represent a pair?

18. What is a list? How do we represent a list? Is a pair a list? Is a list a pair?

19. When do we need a quote and when not?

20. Convert the following expressions into prefix notations and use DrRacket to evaluate them.

20.1 (2 + (4 + (6 + (8 + (10 + 12)))))

20.2 (((((2 + 4) + 6) + 8) + 10) + 12)

20.3 ((2 + 4) + (6 + 8) + (10 + 12))

20.4 (2 + 4 + 6 + 8 + 10 + 12)

20.5 (2 + 4 * 6 + 8 * 10 + 12)

20.6 125187

20.7 Input two integers and add them: (read) + (read)

20.8 Print ((2 + 4) + (6 + 8) + (10 + 12))

21. Write Scheme programs/forms to perform the following functions.

21.1 Find the second element of the list, e.g., ' (2 4 6 8 1 o 12) . Your form should work for any list

containing two or more elements.

21.2 Find the last element of the list ' (2 4 6 8 1 o 12) . Your form only needs to work for lists of six

elements.

21.3 What would be the return value of the form (caddddr ' (3 1 8 9 2)) ? 2 or ' (2) ?

21.4 Merge the two lists ' (1 2 3 4) and ' (5 7 9) into a single list ' (1 2 3 4 5 7 9) .

21.5 Obtain the length of the list ' (a b x y 1 O 12) .

21.6 Check whether ' (+ 2 4) is a symbol.

21. 7 Check whether ' + is a member of the list ' (+ 3 4 6) .

21.8 Check whether"+", '(+ 3 5), and"(* 4 6)" are strings.

21.9 Check whether (* 3 5) , ' (/ 3 7) , (1 2 3 4) , " (+ 2 8) " and " (1 2 3) " are strings.

22. Show how the form (/ (+ 5 4) (- 8 (* 2 3))) is executed on a stack machine, a computer

architecture that is based on a stack instead of registers.

292

23. Given the following Scheme program/procedure:

(define myabs

(lambda (x)

(if (negative? x)

(- x)

X

23.1 What does this program do?

23 .2 Find 3 test cases to test the program in Dr Racket environment.

24. Given the following Scheme program:

(define foo

(lambda (n)

(if (= n 0)

1

(* n (foo (- n 1)))

24.1 What does this program do?

24.2 Test the program with n = 0, n = 5, n = 150, n = -5.

24.3 The program does not terminate for some inputs. Find and fix the bug and re-execute the program.

25. Define a Scheme procedure with two parameters.

25.1 Define a procedure (mymax x y) that returns the larger value between x and y.

25.2 Test your program with inputs (0 0), (-2 0), (0 -2), (10 0), (0 12), (1000 10), (20 8000).

25.3 Find the largest value among (48, 6, 120, 35, 12) by repeatedly calling theprocedure (mymax

X y).

26. Given the following Scheme procedure:

(define dtod (lambda (N)

(if (= N 0)

(list 0)

(append (dtod (quotient N 10))

))

26.1 What does this program do?

(list (remainder N 10)))

26.2 Modify the program to remove the leading zero in the output list.

293

26.3 Find 3 test cases to test the program under DrRacket.

27. Write a Scheme program (dtoh N) that converts a decimal number into the list of its hexadecimal
digits, where you must use letter 'a for 1 o, 'b for 11, ... , and 'f for 15, for example,

(dtoh 18) ➔ (1 2)

(dtoh 26) ➔ (1 a)

(dtoh 225) ➔ (e 1)

28. What do the following Scheme procedures do?

(define dtoh (lambda (N)

(if (= N 0)

I (0)

(dtoh0 N)

))

(define dtoh0 (lambda (N)

(if (= N 0)

I ()

(append (dtoh0 (quotient N 16))

(list (remainder N 16)))

))

29. Write a Scheme program to convert a decimal number into a decimal in list format.

30. Given a A-expression:

A(x, y){+ Ax[- x 2] 4 (* Ax[+ x 2] 3 x) (/ Ax[/ x 2] 4) y} 8 Ax(+ x 2) 4

30.1 Indicate the scope of each variable by underlining the variable and the expression associated with it.

30.2 Use the a-conversion rule to convert the expression, so that different parameters have different
names.

30.3 Use the�- and r,-conversion rules to convert (using lazy evaluation) the expression. Show each step
of the conversion.

30.4 Give the Scheme program corresponding to the A-expression. The program should consist of
unnamed procedures only.

30.5 Rewrite the Scheme program using let-forms instead of unnamed Scheme procedures.

31. Write a recursive program to implement (tail x): return the last element of list x. If x is empty, the

program should return "error." For example, (tail ' ()) ⇒ "error," (tail '(a 3 b)) ⇒b and
(tail ' (1 2 w 5 7)) ⇒ 7. You may NOT call (reverse x) procedure in your program. Use
the following procedure calls as test cases:

(tail ' ())

(tail '(2 3 4 ab 4 5 cd))

(tail '(2 (3 5)))

294

(tail ' (7))

Hint: To handle the empty list, you can write a separate procedure to check if x is null. If it is, you
return "error"; otherwise, you call the procedure that handles a nonempty list.

32. Write a recursive program to implement (rmtail x): remove the last element of list x and return the
resulting list. If the initial x is empty, the program must return "error." For example, (rmtail ' (
))⇒"error," (rmtail '(a 3 b))⇒' (a 3) and (tail '(1 2 w 5 7))⇒' (1 2 w 5). You
must follow the fantastic-four abstract approach to write a recursive program to do the job. You may
NOT call (reverse x) procedure in your program. Use the following test cases to test your
program:
(rmtail ' ())
(rmtail '(2 3 4 ab 4 5 cd))
(rmt ail ' (2 (3 5)))

(rm tail ' (7))

*33. Repeat the question above, but use C or C++.

34. Given the following Scheme program:
(define mymax (lambda (1st)

(if (null? (cdr 1st))
(car 1st)
(let ((m (mymax (cdr 1st))))

(if (> (car 1st) m)
(car 1st)

m)))

))

34.1 Add a procedure to handle the case of an empty list, that is, if the given list is empty, the program
should return "error: list empty."

34.2 Consider that the fantastic-four abstract approach is used to solve the problem. Describe each step
and the solution obtained in each step.

34.3 Compare and contrast the algorithm used in this program and the divide-and-conquer algorithm used
in the next question.

34.4 Use C to reimplement the program. Compare and contrast the C and Scheme programs.

35. Use the divide-and-conquer algorithm to implement a procedure (maxdac 1st) that finds the
largest number in the given list 1st. A divide-and-conquer algorithm divides a size-n problem into
two half-sized problems, solves each of them recursively, and combines the solutions of the two half­
sized problems.

3 5 .1 Define two procedures to find the first and the second halves of a given list: (first half ls t) and
(secondhalf 1st), where their lengths are I n/2 l (ceiling) and Ln/2J (floor), respectively.

35.2 Write an umbrella procedure to handle the empty list, that is, if the list is initially empty, the
procedure should return "error: list empty."

35.3 Use the divide-and-conquer algorithm and follow the four design steps to devise the solution of the
size-n problem (maxdac 1st). In each step, the list is divided into two sublists oflength I n/2 l and

295

Ln/ 2J, respectively. You cannot call any library function that can find the max-value. You can only
use<, >,<=, or >= operators to perform comparison operations in your program.

Hint: You can use a let-form to assign the largest number from the first half to ml and the largest
number from the second half to m2, and then choose the larger one between ml and m2.

3 5 .4 Test the program using the following test cases:
(define 1st '(5))
(firsthalf 1st)
(secondha1f 1st)
(maxdac 1st)
(define 1st '(5 2))
(firstha1f 1st)
(secondha1f 1st)
(maxdac 1st)
(define 1st '(2 8 6 5 28 2 9))
(firsthalf 1st)
(secondha1f 1st)
(maxdac 1st)

36. A computer system consists of hardware and software. Normally, before we physically make a piece
of hardware, we simulate the hardware by a program, so that we can verify its correctness and
evaluate its performance. As we know, all complex hardware components can be implemented by
the basic gates AND, OR, NOT, and XOR shown in Figure 4.9.

� b

Figure 4.9. Basic gates.

36.1 Write four Scheme procedures to simulate these four gates.

� b

36.2 Define a Scheme procedure (full adder x a b) to simulate the logic in Figure 4.10. The procedure
must return a list with two elements ' (s c) , where s is the sum of a, b, and x, and c is the
carry-out. Hint: You can use two procedures to produce the two results, respectively, and then write
a main procedure to call the two sub procedures.

X

a

b

Figure 4.10. The logic of a full adder.

296

36.3 Verify your procedure by exhaustive testing. Use all valid inputs to test the procedure. There are
eight valid inputs:

(fulladder 0 0 0)

(fulladder 0 0 1)

(fulladder 0 1 0)

(fulladder 0 1 1)

(fulladder 1 0 0)

(fulladder 1 0 1)

(fulladder 1 1 0)

(fulladder 1 1 1)

36.4 Figure 4.11 shows the design of an n-bit (n=32 in the figure) adder using n one-bit adders. The carry­
out of bit-i is the carry-in of bit i+ 1, where carry-in of bit O is 0. Write a recursive procedure to

implement the n-bit adder, and design a test plan to test the program.

resultO

Adder

0

aO bO

resultl

Adder

1

al bl

result2

Adder

2

a2 b2

result31

• • • _... Adder

31

a31 b31

Figure 4.11. Design of an-bit adder, where n=32.

297

carry-out

Chapter 5

The Logic Programming Language, Prolog

Before we move to the logic programming paradigm, we can complete our pizza example discussed in
Chapter 4 by including logic programming in this analogy. Imperative programming can be compared with
making a pizza from scratch using flour, water, salt, tomato, cheese, and other topping stuff. You write the
steps (recipe) and follow the steps to make the pizza. By the end of the steps, you have your pizza. Object­
oriented programming uses larger components to simplify the recipe. Using the pizza analogy, it uses
premade components, such as a premade pizza base and tomato sauce. Functional programming is
comparable with ordering a pizza. Instead of following a recipe to make a pizza, you describe what you
want your pizza to have. For example, you like to have a thin base with blue cheese, pepperoni, and bacon.
Logic programming requires even less knowledge of the pizza. It allows you to describe a list of
requirements, and then the system searches for solutions that satisfy the requirements. In the pizza analogy,
you do not even need to know what pizza is. You can describe what you like to eat. For example, you can
say that you like pasta, tomato, and mushroom. Then, the waiter or waitress can search the menu and find
all the solutions that meet your requirements. Depending on how accurate and restrictive your requirements
are, you may obtain many solutions, one solution, or no solution.

In this chapter, we will use Prolog as an example to study the main features and programming techniques
of logic programming languages. By the end of the chapter, you should

• have a good understanding of the logic programming paradigm and its major differences with the
imperative and functional programming paradigms;

• have a good understanding of variables in Prolog and their differences with variables in imperative
and functional programming languages;

• be able to define a database that consists of multiple facts and rules;
• be able to write complex recursive rules;
• be able to write goals (questions) that inquire a database;
• understand the execution model of Pro log facts, rules, and goals;
• be able to use a Prolog programming environment, such as the GNU environment, to edit, debug,

and execute Prolog programs.

5.1 Basic concepts of logic programming in Prolog

Logic programming describes what the problem is by a set of conditions and constraints, and leaves the
computer to match the problem to the existing knowledge of facts and rules and to find solutions to the
problem.

299

5.1.1 Prolog basics

Prolog uses a simplified version of predicate logic, which was developed to convey logic-based ideas in a
written form. It is similar to natural language and thus easy to understand. To convert a natural language
sentence into a predicate logic statement, you first eliminate all unnecessary words from your sentences,
and then transform the sentence into the prefix notation by placing the relationship first and listing the
objects in a pair of parentheses. For example,

• A computer is powerful. ➔ powerful(computer).
• Charlie owns a computer. ➔ own(charlie, computer).
• If a cell phone can perform computing, it must have a processor.

➔ if computing(cellphone), contains(cellphone, processor).

A Prolog program consists of a list of facts, rules, and goals. The facts define the known relationships
among objects, also called axioms. The rules define functions that generate new relationships based on
existing relationships. The collection of all the facts is called the factbase. The collection of all the rules is
called the rule base. The collection of all the facts and rules is called the database. The goals are formulations
of problems to be solved by searching and matching the database. The example below shows a Prolog
program consisting of three types of statements:

% Facts about objects and their relationships

man (conrad).

man (obed).

woman(elaine).

mother_of(jane, elaine).

mother_of(jane, mike).

father_of(mike, andrew).

father_of(andrew, conrad).

% Rules that extend facts: about objects and their relationships

parent_of (X, Y) : - mother (X, Y); father (X, Y). % where ";" = "or"

grandmother_of(X, Z) mother_of(X, Y), parent_of(Y, Z). % "," = "and"

grandfather_of(X, Z) :- father_of(X, Y), parent_of(Y, Z).

Once we have written the facts and rules, we can write goals (questions) about objects and their
relationships. Below is a list of goals that query the database:

?- grandfather_of(mike, conrad). % Is mike grandfather of conrad

?- mother_of(X, mike). % who is mother of mike?

?- father_of(andrew, Y). % andrew is the father of whom?

The syntax of a part of the facts and rules can be defined in BNF notation as follows. BNF notation was
discussed in Chapter 1.

<digit> .. -

<integer> . · =

<float> .. -

<number>

<lowercase> : : =

<uppercase> .. -

<underscore>

<control> .. -

0111213141516171819

<digit>l<number><digit>

<integer>.<integer>

<integer>l<float>

alblcldlelflglhliljlklllmlnlolplqlrlsltlulvlwlxlylz

AIBICIDIEIFIGIHIIIJIKILIMINIOIPIQIRISITIUIVIWIXIYIZ

: : =

, I repeat I fail

300

<char> ::= <lowercase>i<uppercase>l<digit>

<identifier> : := <lowercase>!<identifier><char>

<literal>

<literals>

<object>

<objects>

<variable>

<predicate>

<assignment>

<clause>

: : =

<number>l<identifier>

<literal>!<literal>, <literal>

<literal>l<identifier>l<variable>

<object>l<object>, <object>

<uppercase>i<underscore>l<variable><char>

<identifier>

::= <variable>is<expression>

<control>i<assignment>!<predicate>(<objects>)

<clauses> ::= <clause>l<clause>, <clause>l<clause>; <clause>

<fact> ::= <predicate>(<literals>).

<rule> ::= <clause>. !<clause>:-. I <clause> :- <clauses>.

<statement> ::= <fact>l<rule>

<statements> : := <statement>l<statement><statement>

<goal> ::= <clauses>.

A number of terminologies and concepts are exposed through the example and the simplified definition
above. A Prolog database consists of a list of statements. A statement is a fact or a rule, which consists of
clauses. The clauses are in prefix notation, starting with the predicate, also called relationship, followed by
a list of objects or literals in a pair of parentheses, which are called arguments of the clauses. The set of
facts or rules with the same predicate and the same arity (the number of arguments) can be represented in
a notation of predicate/arity. For example, man/1, woman/I, mother_of/2, parent_of/2, and
grandfather_ of/2.

A name starting with an uppercase letter or the underscore is a variable. Numbers and identifiers are literals.
Notice that identifiers start with a lowercase character. It cannot start with a number or other characters. It
cannot contain special characters. For example, 3 lst_december and mac&cheese are not valid identifiers
or literals. The arguments of a fact are all literals, while the arguments of a rule are normally variables, but
can have some literals.

Unlike the variables and names in imperative and functional programming languages, a Prolog variable is
a placeholder, not a memory location or a named value. A variable that begins with an uppercase letter is a
named variable, while a variable that begins with the underscore character is an anonymous variable or
unnamed variable. Both input value and return value can be passed to a named variable when calling a
function (a clause). The anonymous variables are pure placeholders. Neither an input value nor a retun1
value can be passed to an anonymous variable. We use an anonymous variable in a rule or in a goal if we
do not need or do not care about the value of the variable.

A rule states a general relationship and normally uses variables as arguments. Rules are used to conclude
a specific fact or another rule based on given conditions. A rule consists of three parts. The first part is
called the conclusion. The second part is a two-character symbol":-", with the meaning of "if." The third
part is called the conditions. A rule states that if the conditions are true, the conclusion is true.

A goal is a question that queries the database. The syntax of a goal is the same as a clause or clauses that
are executed in the query mode. To simplify the query, a complex goal with multiple clauses can be defined
as a rule in the database. When executing the query, the conclusion part of the rule can be entered as the
goal.

Next, we will study the structures and programming models of Pro log facts, rules, and goals in detail.

301

5.1.2 Structures of Prolog facts, rules, and goals

The Prolog examples discussed so far, as well as BNF notations, show simple structures of Prolog clauses.
Prolog clauses also allow each object to have the structure of a clause. Let us consider the following book
database with a schema of (title, author(first, last), price, date(year, month)).

% Facts

book(c, author(ray, miller), 69.99, data(2009, 6)).

book(scheme, author(john, smith), 49.99, date(2003, 5)).

book(prolog, author(mary, lee), 59.99, date(1993, 7)).

book(compiler, author(elaine, sanders), 109.99, date(2012, 5)).

book(os, author(elaine, sanders), 129.99, date(1993, 4)).

% Rules

authorship(Author, Title) :- book(Title, Author,) .

cost(Title, Price) :- book(Title, , Price,) .

more_expensive(Titlel, Title2) :- book(Titlel, _, Pl, _),

book(Title2,_, P2,) , Pl > P2.

newer(Titlel, Title2) :- book(Titlel,_, , date(Yl, Ml)),

book(Title2, , , date (Y2, M2)), (Yl < Y2; (Yl= :=Y2, Ml<M2)).

/* Goals to ask

book(c, Who, , Published on).

authorship(Who, What).

cost(prolog, Howmuch).

more_expensive(MoreExpensiveTitle, compiler).

newer(prolog, NewerBook).

newer(scheme, NewerBook).

*/

In this example, the object author itself is a clause, with the predicate = author and with two objects first
and last. The object date is also a clause with year and month as its object.

The last two rules combine the queries with arithmetic operations, where the prices and publication dates
are compared. In the rule newer/2, the years are compared first. If the years are equal, then the months are
compared.

To query about data using the facts, we need to provide four arguments. For the arguments we do not care
about, we can use an anonymous variable (underscore). We can incorporate the "don't care" arguments into
a few rules, so that the queries only need to provide the variables needed. Based on this idea, we defined a
number of rules with two objects. Below is the query results of executing the goals listed as comments in
the example above:

?- book(c, Who, , Published_on).

Published_on = data(2009, 6)

Who = author(ray, miller)

This question asks "Who" is the author of the title "c" and what is the date of publication? We do not care
about the price and thus an anonymous variable (underscore) is used in its place.

302

In the next question, the authorship rule is asked with both arguments as variables. In this case, one answer
will be printed. If a semicolon is entered, it will print the next possible answer. If a return key is entered,
the system will stop searching. In the outputs below, semicolons are entered until all the answers are printed.

?- authorship(Who, What).

➔ What = c

Who = author(ray, miller) ?

➔ What = scheme

Who = author(john, smith) ?

➔ What = prolog

Who = author(mary, lee) ? ;

➔ What = compiler

Who = author(elaine, sanders)

➔ What = OS

Who = author(elaine, sanders)

?

In the next question, the cost of the pro log book is asked. It simply returns the price

?- cost(prolog, Howmuch).

➔ Howmuch = 59.99

In the next question, the more_ expensive rule is asked: Which book is more expensive than the compiler
book? The query generates one result:

?- more_expensive(MoreExpensiveTitle, compiler).

➔ MoreExpensiveTitle = os

In the last query, the goal newer/2 is asked. The first question asks which prolog book is newer than which
books, and the second question asks if Scheme is newer than which books by publication date. They
generate one result and two results, respectively.

?- newer(prolog, NewBook).

➔ NewerBook = OS

?- newer(scheme, NewBook).

➔ NewerBook prolog ?

➔ NewerBook = OS ?
;

➔ no

In the last rules of the book example, arithmetic operations are used. In the next section, we will discuss
more examples that use arithmetic operations.

5.2 The Prolog execution model

This section explains how a goal is executed by the Prolog runtime. It also explains the unification between
two clauses and between variables and literal values.

5.2.1 Unification of a goal

Pro log programs solve problems by asking questions and retrieving information from a database. A question
is cal1ed a goal. A goal succeeds if there are facts that match or unify the goal. If no facts unify a goal, the

303

search checks the rules. A goal unifies a rule if it unifies all the clauses on the right-hand side of the :­
symbol. A goal unifies (matches) a fact or a clause, if:

• Their predicates are the same.
• Their numbers of arguments are the same.
• Their corresponding arguments unify.

Two arguments unify, if they are identical literals, if one of them is a variable, or if both of them are
variables. When a literal unifies a named variable, the variable is instantiated with the literal value. When
a literal unifies an anonymous variable, the unification succeeds, but no instantiation takes place. If both
arguments are variables, they unify into one variable. When one of the them is instantiated with a value,
the other is also instantiated with the same value.

Clauses can be connected by "and" operators or "or" operators to form a composite clause. A clause always
returns a true value or a false value. It can never return a nonlogical value such as an integer or a string. We
must use an argument to store such a value being used outside the clause.

When a match is found for a goal, Pro log runtime prints "yes" if the question is a yes-no question, or prints
the variable names and their values if the question uses name variables as the argument. If no more match
is found after the entire database is searched, it returns no.

Assume a Pro log database consists of a set of facts and rules, as shown in the right-hand side in Figure 5 .1.
Assume a goal "?- qst(a1, ... , an)," is being executed to query the database. The execution process is
illustrated in the C-like pseudo-code program on the left-hand side of Figure 5.1.

First, the predicate of the goal is compared with the predicate of each fact. If a match is found, the parameter
list in the goal is further compared with the fact that has the same name. If a match is found, an answer (a
solution) is found for the goal. In this case, the user can decide to stop searching or continue to find more
solutions by typing the "enter" key or typing the semicolon.

Having compared all the facts sequentially, the search continues into the rules. The name and parameter list
of the goal are compared with the name and parameter list of each rule. If a match is found, it does not mean
that a solution is found, because the rule is conditional. The conditions of the rule must be further compared
one by one based on how the conditions are composed. If they are combined by logic AND operation, a
solution is found only if all conditions are true. If they are combined by logic OR operation, a solution is
found once a condition is found true.

304

Goal:
?- qst (a1, ... , an) . I

I* Facts *I
II check facts for (i=l; i <=p; i ++) then { ------------------ - +

if (qst == fi) then
i f (a 1 ' . . . ' an) = = (xi ' 1 ' . . . ' xi , qi)
then return "yes"

else if (read keyboard) "enter" then
exit

else if (read keyboard)
" . " then ,

continue to search next match

f 1 (X1, 1' • • • '

f 2 (X2, 1' • .. '

. . . '

fP (x
p,l' . . . '

I* Rules *I

Xl,ql) •

X2,q2) ·
x3,q3) ·

x
p,qp) .

for (i=l; i<=k; i++) then { _ii_c_h _e��-1:_�l_e�-�

- + r1(Y1,1, · · ., Y1,s1) :-

if (qst == ri) then { C1,1 · · · C1,t1 ·
if (a1, · · ·, an) == (Yi,l' • · ·, Yi,qi) then r2 (Y2,1, · · ·' Y2,s2) : -

I I check conditions in a rule ,- ----- ♦ c2 , 1 . . . c2 , t2 •

if (composite condition == true)------

return "no"

then return "yes"

else if (read keyboard)

then exit
"enter"

else if (read keyboard) == ";" then
continue to search next match

Figure 5.1. Prolog execution model.

5.2.2 Example of searching through a database

· · · c3,t3 ·
. '

ck,l • • • ck,tk"
I* End *I

Figure 5 .2 presents a concrete example demonstrating the entire execution process using the family database
in Section 5.1. Given the database consisting of four facts and one rule, a question"?- grandmother_of(jane,
conrad)." is asked. The numbered arrows in the figure show the execution steps.

1. The goal "?- grandmother_of(jane, conrad)." will be matched with each item in the database,
starting from the beginning.

2. A match is found with the rule.
3. The match instantiates the variables X and Z to jane and conrad, respectively.
4. Since the match is a rule, in order for the rule to be true, the composite condition must be true. The

subgoal is to check if mother_ of(jane, Y) is true. Y has not yet been instantiated.
5. The subgoal is matched with the database from the beginning.
6. A match is found with the first condition. Notice here that the second fact has not been matched

when it moves forward to check the second condition. Thus, a backtrack point needs to be set
between the first and the second facts.

7. Variable Y is now instantiated to edith by the match.
8. Now we need to match the second condition mother of(Y, Z), where Y and Z have been instantiated

to jane and conrad, respectively.
9. The subgoal is taken back to the database. No match could be found throughout the entire database

and thus the subgoal fails.

305

10. Since the second and third conditions are connected by an "or" operation, it can give a solution as
long as one of the two conditions succeeds. Thus, we need to check father_of(Y, Z), where Y and
Z have been instantiated to jane and conrad, respectively. No match can be found for this subgoal
and thus the third condition fails. Since both the second and third conditions failed, the goal
grandmother_ of(jane, conrad) fails.

11. However, the entire database has not been completely searched. The control will return to the
backtrack point set at step 6. There is another match for the first condition: mother_ of(jane, Y).

12. Variable Y is instantiated to mike and the subgoal becomes mother_of(jane, mike).
13. Now we need to match the second condition mother_of(Y, Z), where Y and Z have been instantiated

to mike and conrad, respectively. No match could be found and thus it fails.
14. Now we need to match the third condition father_of(Y, Z), where Y and Z have been instantiated

to mike and conrad, respectively. No match could be found and thus it fails.

After the 14 steps of exhaustive comparison, no match could be found for the goal grandmother_ of(jane,
conrad) and thus the goal failed.

?-grandmother_of(jane, conrad).
1

2

grandmother_of(jane, conrad) •--- 3 - - - - -
I
I

6 ·- _,. __ ,_,L ___ _
I I
I I

5 I -- -,---1-+----
mother_Of(jane, Y). -

♦
- --- --��-- ------_-_-_ -__ - _-_-_ -_�{---�------ :

I I I I ,-------------------� I I I : 12 :7 1 I

I I : :
I

• I
:

mother of(jane, elaine) • J
:

9
mother_of(elaine, conrad) •-----------r--

I
I
I
I

�-�

/*Facts

mother_of(jane, elaine)

mother_of(jane, mike)

father_of(mike, andrew)

father_of(andrew, conrad)

/*Rules

grandmother_of(X, Z)
1 : father_of (elaine, conrad) ◄------------• _

1
, • · 4 ---- mother_of (X, Y),

10
: •• : ---------------------+
1 • � _____ § __ -----(mother of (Y, Z);

mother_of (jane, mike) •-----------1-J_: : i-------- -
1 -1-------- - ----- father of (Y, Z))

13 : �------------ -
mother_of(mike, conrad) ◄-----------------•

:
I

father_of (mike, conrad) . ♦--------- 14 _ _ ____ :

Figure 5.2. Demonstrating the execution model.

5.3 Arithmetic operations and database queries

Prolog is not only a database query language, but also a general programming language that is capable of
performing general-purpose computations, with a comprehensive set of operators and built-in functions.

5.3.1 Arithmetic operations and built-in functions

This section presents the frequently used arithmetic operations and functions that are supported in GNU
Prolog, as listed in Table 5.1 (Source: http://www.gprolog.org/manual/gprolog.html).

306

•

Operators and expressions Meaning or results

pi, e Constant values 3 . 14 5 9 2 6 ... and 2 . 718 2 8 1.. .

inc(E) E+ l

El+El, El-E2, El *E2, El/E2, El/ /E2 Addition, subtraction, multiplication, division, integer division

El rem E2, El div E2 Remainder and quotient of E 1 divided by E 2

El modE2 Modular operation

abs(E) Absolute value of E

min(El,E2), max(El,E2) Minimal and maximal value between El and E2

sqrt(E) Square root of E

sin(E), cos(E), tan(E), atan(E) Sine, cosine, tangent, arc tangent of E

E 1 /\ E2, E 1 * * E2 E 1 raised to the power of E 2

exp(E) e raised to the power of E

log(E), loglO(E) Natural logarithm and base 10 logarithm of E

X is expression Instantiate the value of the expression with X

Numeric: El E2 El -.- E2 succeeds if El equals to E2. For example, 2*2

Nonnumeric: == (Xl, X2) = : =2+2 will succeed, while == ('Apple', 'Orange') will fail.

Numeric: El =\ = E2 El=\= E2 succeeds ifEldoesnot equal toE2.For example, 3*3

Nonnumeric: \ == (Xl, X2) =\ = 3 + 3 will succeed, while \ == ('App 1 e' , 'Apple') will

fail.

Numeric: El < E2 El < E 2 succeeds if E 1 is less than E 2

Nonnumeric: @< (Xl, X2) @< (Xl, X2) succeeds if X 1 is less than X2

Numeric: El =< E2 El =< E2 succeeds if E 1 is less than or equal to E 2

Nonnumeric: @ =< (Xl, X2) @=< (Xl, X2) succeeds if X 1 is less than or equal to x 2

Numeric: El > E2 El < E 2 succeeds if E 1 is greater than E 2

Nonnumeric: @> (Xl, X2) @> (Xl, X2) succeeds if X 1 is greater than X2

Numeric: El >= E2 El > = E 2 succeeds if E 1 is greater than or equal to E 2

Nonnumeric: @ >= (Xl, X2) @>= (Xl, X2) succeeds if Xl is greater than or equal to X2

Xis E Assignment, e.g., Xis 3* (5+7). Y is 2* *10.

Table 5.1. GNU Prolog arithmetic operators and built-in functions.

Notice that:

• In GNU Prolog, arithmetic expressions can be written in infix notation and in prefix notation. For
example, both expressions 2*2 = := 2+2 and = :=(2*2, 2+2) will succeed and return true. Similarly,
both expressions ==(apple, orange) and apple == orange are valid in syntax. As a clause, an
arithmetic operation always return true, so that the next clause connected by the "and" operator will
be executed.

• Pro log uses>= for greater than or equal to; however, it uses =< for less than or equal to, instead of
using <= as is used by C, C++, and Java.

307

Without writing a program of your own, you can try following built-in arithmetic functions. If you never
used a Prolog environment, you can see in the tutorial in Appendix B.4 to get started with using the GNU
Prolog programming environment.

?- y is 5*8. % 1. return y = 4 0, yes

?- y is 2**10. % 2. return y = 1024, yes

?- y is X+2*5. % 3. What would be the return value?

?- 2*2 2+2. % 4. returns yes.

?- = : =(2*2, 2+2). % 5. returns yes.

?- ==(apple, orange). % 6. returns no.

?- apple -- apple. % 7. returns yes.

?- apple @ =< orange. & 8. returns yes.

?- y is 5*8, 3*3 = : = 3+3. % 9. no

?- y is 5*8, 3*3 = : = 3+3+3. % 10. return y = 40, yes

What does the Prolog runtime print (output) for a query?

If the goal as a clause returns a false value, it simply prints "no." See examples 6 and 9 in the code above.
Variables and their values will not be printed. One can use "write" clause in the goal to print the names and
values one wants to print. If the goal as a clause returns a true value, it will print "yes" at the end. If there
is a variable in the goal, it also prints variable name = its value.

The runtime also prints an error message if there is an error. An error is neither true nor false. In example

3 above, the goal"?- Y is X +2*5" will return an instantiation error, because X does not have a value, and
it cannot appear on the right-hand side of an assignment statement.

5.3.2 Combining database queries with arithmetic operations

As an example, the code below shows a weather database, in which the seasons of the major cities are
defined by weather/3 facts. The nearby cities are defined by nearby/2 facts. A hot/1 and a cold/1 rules are
used to link the nearby city with the major city. The example also introduces arithmetic operations into
database queries.

%Facts

weather(phoenix, spring, hot).

weather(phoenix, summer, hot).

weather(phoenix, fall, hot).

weather(phoenix, winter, warm).

weather(charlotte, spring, warm).

weather(charlotte, summer, hot).

weather(charlotte, fall, warm).

weather(charlotte, winter, cold).

weather(minneapolis, winter, cold).

weather(minneapolis, spring, cold).

weather(minneapolis, summer, warm).

weather(minneapolis, fall, cold).

nearby(tempe, phoenix).

nearby(mesa, phoenix).

308

nearby(scottsdale, phoenix).

nearby(burnsville, minneapolis).

% Rules

hot(C) :- (weather(C, spring, hot), weather(C, fall, hot));

(D\==C, nearby(C, D), hot(D)).

cold(C) :- (weather(C, spring, cold), weather(C, fall, cold));

(D\==C, nearby(C, D), cold(D)).

By entering the "trace." goal in GNU Prolog, the following executions will be traced, which lists how each
unification step is performed. To cancel the trace, enter the goal "notrace." For example, tracing the
execution of the goal cold(X) and asking what city is cold, generate the following output.

I ?- trace.

The debugger will first creep -- showing everything (trace)

I ?- cold (X) .

1 1 Call: cold(16) ?

2 2 Call: weather(16,spring,cold) ?

2 2 Exit: weather(minneapolis,spring,cold) ?

3 2 Call: weather(minneapolis,fall,cold) ?

3 2 Exit: weather(minneapolis,fall,cold) ?

1 1 Exit: cold(minneapolis) ?

X minneapolis ? ;

1 1 Redo: cold(minneapolis) ?

2 2 Redo: weather(minneapolis,spring,cold) ?

2 2 Fail: weather(_16,spring,cold) ?

2 2 Call: 84\== 16 ?

2 2 Exit: 86\== 16 ?

3 2 Call: nearby(16, 109) ?

3 2 Exit: nearby(tempe,phoenix) ?

4 2 Call: cold(phoenix) ?

5 3 Call: weather(phoenix,spring,cold) ?

5 3 Fail: weather(phoenix,spring,cold) ?

5 3 Call: 157\==phoenix ?

5 3 Exit: 159\==phoenix ?

6 3 Call: nearby(phoenix, 182) ?

6 3 Fail: nearby(phoenix, 170) ?

4 2 Fail: cold(phoenix) ?

3 2 Redo: nearby(tempe,phoenix) ?

3 2 Exit: nearby(burnsville,minneapolis) ?

4 2 Call: cold(minneapolis) ?

5 3 Call: weather(minneapolis,spring,cold) ?

5 3 Exit: weather(minneapolis,spring,cold) ?

6 3 Call: weather(minneapolis,fall,cold) ?

6 3 Exit: weather(minneapolis,fall,cold) ?

4 2 Exit: cold(minneapolis) ?

1 1 Exit: cold(burnsville) ?

309

X burnsville ? ;

1 1 Redo: cold(burnsville) ?

4 2 Redo: cold(minneapolis) ?

5 3 Redo: weather(minneapolis,spring,cold) ?

5 3 Fail: weather(minneapolis,spring,cold) ?

5 3 Call: _157\==minneapolis ?

5 3 Exit: _159\==minneapolis ?

6 3 Call: nearby(minneapolis, 182) ?

6 3 Fail: nearby(minneapolis, 170) ?

4 2 Fail: cold(minneapolis) ?

1 1 Fail: cold(16) ?

No

The execution is done in three phases. In the first phase, a match cold(minneapolis) is found from the
weatherl3 facts. After a semicolon is entered, the search continues, and the nearby facts are compared,
where a match cold(burnsville) is found. After another semicolon is entered, the search continues, but no
match is found and a "No" output is printed.

In the following sections, we will use arithmetic operations and functions in many different situations,
particularly in recursive functions.

5.4 Prolog functions and recursive rules

We have discussed the fantastic-four abstract approach of writing recursive functions in CIC++ (Section
2. 7) and in Scheme (Section 4. 7). The same approach can be applied to writing Pro log recursive rules.

5.4.1 Parameter passing in Prolog

Pro log clauses that perform arithmetic functions are often called Pro log functions. Unlike in CIC++ and
Scheme functions, a Prolog function cannot have a return value, except a Boolean value, and thus an
argument must be used for passing the return value to the outside of the function. Table 5 .2 lists the
parameter-passing mechanisms supported by CIC++, Java, Scheme, and Prolog. For the Prolog column, the
items are explained below:

• Call-by-value and call-by-alias: These are the main parameter-passing mechanisms. All the
parameters (arguments) can be used for both mechanisms: They can take values as input and can
pass results as output of the function.

• Return value: Prolog functions or clauses return a Boolean (logical) type value (true or false), and
they never return other types of values. Thus, if a nonlogical return value is needed, an argument
must be defined for that.

• Function as the first class object is a feature of a functional programming language. Scheme fully
supports this feature. CIC++ and Java partly support this feature. For example, we can place an
expression, such as X +5, in a print statement. However, you cannot use write(X +5) in Pro log. You
must use Y is X+5, write(Y). Thus, Prolog does not support this feature at all.

We will see more examples that illustrate the features in this table in later discussions.

310

Parameter-passing mechanism CIC++ Java Scheme

Call-by-value Always Primitive type Always

Call-by-alias Always Object type Never

Return value Return value or Return value or Always
void void

Function as the first class object Not always Not always Always

Table 5.2. Parameter-passing mechanisms of different languages.

5.4.2 Factorial example

Pro]og

Always

Always

True or false,
never other types

Never

A Pro log rule is recursive if a clause in the condition part has the same predicate and arity as the conclusion.
We begin with a simple example of calculating the factorial(N) = N*(N-1)* ... *2* 1.

To define the factorial function, we need two arguments, one for passing in the input N and one for passing
the result F. Below is the recursive rule that implements the factorial function:

factorial(0,1).

factorial(N,F) :- N>O, Nl is N-1, factorial(Nl,Fl), Fis N * Fl.

The Pro log recursive function consists of two rules. The first rule is the stopping condition. IfN is 0, then
F will unify with value 1 and thus the return value of the function will be F = 1. As this rule does not have
a condition, the stopping condition is a fact.

The second rule is the main part of the recursive function that implements the other three steps of the
fantastic-four abstract approach:

Size-N problem: factorial(N, F).

Size-(N-1) problem: factorial(Nl, Fl). Notice that we cannot use factorial(N-1,Fl) in Prolog, because
Prolog does not support the feature of a function as the first-class object, and thus, the function N-1 cannot
be placed in the place where the result ofN-1 is expected. We have to first calculate the value ofN-1, and
then place the value into the function.

Constructing the size-N problem's solution from the assumed size-(N-1) problem's solution: F is N * Fl.

The order of Prolog rules is important. Normally, the rule representing the stopping condition must be
placed before the other rules of the recursive function. We can call the rule using different inputs:

?- factorial(3, 5). % return: no

?- factorial(3, 6). % return: yes

?- factorial(4, F).

?- factorial(N, 6).

% return: F 24

% What does this goal return?

In most cases, a Prolog argument can be used for both input and output. However, when arithmetic
operations and assignments are involved, such as N > 0 and F is N * F 1, all the variables on the right-hand
side must have been instantiated. In the example above, factorial(N, 6), an instantiation error will occur,
because N does not have a value and N > 0 needs to be performed.

5.4.3 Fibonacci numbers example

As a slightly more complex example, we implement the Fibonacci numbers function, which is defined as
follows:

3 11

{

0 if N = 0
f ib(N) = 1, if N = 1

f ib(N - 1) + f ib(N - 2), if N � 2

The recursive rules that implement the Fibonacci numbers function are as follows:
fib(F, N) N =:= 0, F is 0. % Stopping condition 1 and return value

fib(F, N) :- N =:= 1, F is 1. % Stopping condition 2 and return value

fib(F, N) :- N > 1,

Ml is N-1,

M2 is N-2,

fib(Fl, Ml), % Size N-1 problem

% Size N-2 problem fib (F2, M2) ,

F is Fl + F2. % Constructing size-N problem solution

The example is implemented by directly following the abstract approach of recursive function design. As
defined in the Fibonacci formula, there are two stopping conditions and there are two size-M problems,
with Ml =N-1 and M2=N-2. We assume that fib(Fl, Ml) and fib(F2, M2) will solve the two size-M
problems and place the results in the calculation in Fl and F2. Then, the size-N problem is solved by Fl +F2.

5.4.4 Hanoi Towers

As we have discussed in CIC++ (Section 2.7) and in Scheme (Section 4.7), the Hanoi Towers game is a
good example for showing recursive function design. Please read Section 2. 7 for the rules for playing the
game. Using Prolog, the puzzle can be simply solved by the following recursive rules:

hanoi(N) :- move(N, source, center, destination). %Helper rule

move(l, S, , D) :- % stopping condition

write('Move top from '), write(S), write(' to '), write(D), %Output

nl. % nl = newline

move(N, S, C, D) % Size-N problem

N>l,

M is N-1,

move(M, S, D, C), % Size-(N-1) problem: move

move(l, s, ' D) I % move remaining 1 from S

move(M, C, s, D). % Size-(N-1) problem: move

N-1 disks from s to C

to D

N-1 disks from C to D

The first line of code introduces a helper to simplify the call to the rule. A user can call the rule by using
one argument, instead of four arguments.

The recursive rules have four arguments, defining the size N and the three pegs on which the disks can be
placed. The rule is defined following the abstract approach. The stopping condition is the case when there
is one disk in the game. In this case, we simply move the disk from S (source) to D (destination). The C
(center) peg is not necessary in this case, and thus we used an anonymous variable in the place of center.

The size-(N-1) problem is the case when we have N-1 disks. These N-1 disks can be on the source peg or
on the center peg. The key to the solution of the size-N problem is to assume that we can move these N­
disks together. Notice that this assumption does not violate the rules for playing the game. The size-(N-1)
problem is solved step by step, by following the playing rules of recursive mechanism.

312

If we call the rule using the goal Hanoi(3), we have the following outputs. Examining the steps, we can see
that none of the steps moved more than one disk or placed a larger disk on a smaller disk.

Move top from source to destination

Move top from source to center

Move top from destination to center

Move top from source to destination

Move top from center to source

Move top from center to destination

Move top from source to destination

5.4.5 Graph model and processing

Before we start to define Pro log rules on graph, we first learn the basics of graph. A graph is a mathematical
model and a data structure that is widely used for representing related objects. A graph consists of a set of
nodes and a set of edges between the nodes. A graph is a directed graph if a direction is defined for each
edge, and a graph is an undirected graph if there is no direction defined for any edge. Assuming that the
direction of the edge is the driving direction of streets, a directed graph allows the flow following the edge

directions. An undirected graph allows the flow in both directions of the edge. A path from Node Nl to
Node N2 is a sequence of edges connecting Nl to N2, for example, (Nl, Xl), (Xl, X2), (X2, X3) ,

... , (Xk, N2). We also say node NI is connected to node N2 if there is a path from Nl to N2.

In this section, we represent a directed graph in a factbase and define recursive rules to search the graph.
We use a set of edges to represent a graph, where each edge consists of a pair of nodes attached to the edge.
An example is given below.

edge (a, b).

edge (a, c).

edge (b, d) .

edge (c, d).

edge (c, f).

edge (d, e).

edge(f,g).

edge (g, h).

edge(i,j).

edge (j, k).

edge(k,i).

A
�

Now, we can define rules to search the factbase and check if any given nodes are connected through a path.
Consider the following definition of connected rules:

connected(Nodel, Node2) edge(Nodel, Node2).

connected(Nodel, Node2) :- connected(Nodel, X), connected(X, Node2).

This set of rules are recursive rules, where the first rule is the stopping condition, while the second rule
constructs the size-N problem's solution from the solutions of two smaller problems. In words, it says that
Node I is connected to Node2, if Node I is connected to node X, and X is connected to N2. However, the
definition uses two recursive calls in the second rule, which can make the search unnecessarily complex.
The two recursive rules are not based on the stopping condition, which can lead to an infinite loop. A better
way of defining the rules is to use the stopping condition and use one recursive call only:

connected(Nodel, Node2) :- edge(Nodel, Node2).

313

connected(Nodel, Node2) :- edge(Nodel, X), connected(X, Node2).

Now let us consider how we can convert the directed graph into an undirected graph. As an undirected
graph allows the flow to go in both directions on each edge, we can simply add a mirror edge(b, a) into the
factbase if there exists edge(a, b). This approach works, but can cause the data inconsistency problem, as
the mirror edges provide redundant facts. A better way is to define a rule to describe the fact that each edge
is bidirectional. Consider adding the following mirror rule into the graph factbase:

edge(X, Y) :- edge(Y, X).

Will this simple rule turn the directed graph into an undirected graph? The answer is no! Carefully
examining this rule, we can see it is a recursive rule, as the condition part of the rule calls its conclusion
part. Once we have identified that the rule is a recursive rule, we know it is incorrect, because it does not
follow the four-step abstract approach of designing recursive rules. There is no stopping condition, and thus
the rule can enter into an infinite loop. For example, the goal

?- edge(a, d)

will cause an infinite loop. Of course, not all goals will land into an infinite loop.

To address such a problem, we can define a helper rule: adjacent(X, Y) :- edge(X, Y); edge(Y, X). Then,
we use the helper rule to define the connected rule without following the directions of the edges.

adjacent (X, Y) : - edge (X, Y); edge (Y, X) .

connected(Nodel, Node2) :-adjacent(Nodel, Node2).

connected(Nodel, Node2) :- adjacent(Nodel, X), connected(X, Node2).

5.4.6 Map representation and coloring

Map coloring is a typical application of graph theory and artificial intelligence. To make a map more
readable, the neighboring areas (e.g., states), must be marked in different colors. Taking a U.S. map as an
example, we can use a set of Pro log facts to define the states and colors marked on each state. Figure 5 .3
illustrates a part of the U.S. map with eight states on the west, and the graph model of the eight states. Each
node in the graph represents a state. There is an undirected edge between two nodes if the two states are
adjacent (share a piece of border). On the rightmost part of the figure, the graph is colored by three different
colors: orange, yellow, and red. The question is are the colors correctly applied so that neighboring states
are marked with different colors?

314

Figure 5.3. Map, its graph model, and coloring.

It may be easy enough to answer the question by desk-checking the colors if we have only seven states in
the graph. However, after we have added all the states into the graph, the problem is no longer trivial. To
solve the problem in general, we can use a set of Pro log facts and rules:

edge (az, ca). color (az, orange) .

edge(az, ne). color(ca, yellow) .

edge(az, ut). color(ne, red).

edge(ca, ne). color(ut, yellow)

edge(ca, or). color(or, orange).

edge(ne, ut). color(id, yellow) .

edge(ne, or). color (wy, red).

edge(ne, id). color(wa, red).

edge(ut, id).

edge(ut, wy).

edge (id, wy).

edge (id, wa).

edge(or, id).

edge(or, wa).

adjacent(X, Y) . - edge(X, Y); edge(Y, X).

rniscolor(S1, S2, Color)

adjacent(Sl, S2), color (Sl, Color), color(S2, Color) .

The facts edge/2 and color/2 are straightforward. The adjacent rule is the same rule we discussed in the
previous graph example. The rule miscolor/3 has three conditions, which check if the two states are adjacent
and if the two states have the same color.

Now, we can test the program by asking the question with three variables: miscolor(S 1, S2, C). The question
will generate the following output:

C = yellow

315

Sl = ut

S2 = id ? •
. '

C = yellow

Sl id

S2 = ut ? ;

no

From the output we can see that ut (Utah) and id (Idaho) are adjacent, yet both are colored in yellow. A
coloring error is detected. To fix the error, we can use another color for ut or id, for example, green. After
fixing the error and testing the program again, no error is detected:

I ?- miscolor(Sl, S2, C).

no

5.5 List and list manipulation

Similar to what we discussed in Scheme, Prolog uses pairs to define the lists. All the concepts, rules, and
operations of pairs and lists discussed in Scheme can be applied to Pro log, except that the syntax is different.

5.5.1 Definition of pairs and lists

Pair is a structured data type in Pro log. A pair consists of two items in a pair of brackets and the two items
are separated by a vertical bar: [x I YJ. Using BNF notation, a Prolog pair is defined as

<pair>::= [<A> I]

where both A and B can be a variable, value, or an item of any data type. Using the terminology of Scheme,
A is the value of (car pair) and B is the value of (cdr pair). Below are a few examples of pairs:

[1 I 2 J

[1 I [2 I 3] J

[l I [2 I [3 I [JJJJ)

[[2 I [8 I 7] J I [4 I 8J J

[12 I [2 I [8 I [4 I [3 I 7] J J J J

Similar to a Scheme list, a Prolog list can be defined by pairs recursively:

<list> : : = [] (empty list)

<list> : : = [<H> I <list>]

where

<H> is a variable, a value, or an item of any type;

According to the definition, all lists are lists, except that the empty list is not a pair. However, there are
many pairs that are not lists.

The execution (search) model of Prolog does not really differentiate between a list and a pair. The rules
defined on lists can be applied on pairs, even if the pairs are not lists. However, results can be surprising
when a pair is not a list. For example, the membership rule can be applied to pairs:

?- member (1, [l I [2 I 3]]). % It returns "true"

?- member (2, [1

?- member (3, [l

[2

[2

3]]) . % It returns "true"

3]]). % It returns "false"

316

The pair [1 I [2 I 3]] is not a list. However, the first two elements 1 and 2 are in the same positions as list
members, and thus the search can find them as members, and element 3 is in a position that the membership
rule cannot find and thus it returns "false." We will discuss this in detail later when we discuss the definition
of the membership rule, and the way the member rule executes.

5.5.2 Pair simplification rules

To reduce the complex appearances of nested pairs, Prolog allows us to apply the following pair

simplification rule to simplify the notation of pairs:

• A (vertical) bar and the left bracket to the right of the bar can be replaced by a comma, if the item
to the right of the bar is a pair. After the left bracket is removed, the corresponding right bracket
must be removed.

• If a (vertical) bar is followed by an empty list, the bar and empty list can be removed.

We can apply these simplification rules to the pairs below by underlining the bars and the adjacent pairs or
empty list:

[1 I 2 J

[1 _I _[2 I 31]

[1 _1 _[2 _1 _[3 I [JJJJ)

[[2 _I _[8 I 71] _I _[4 I Bl]

[9 _I _[2 _I _[B _I _[4 _I _[3 I 7llllJ

➔ cannot be simplified

➔ [1, 2 I 3]

➔ [1, 2, 3])

➔[[2, BI 7], 4

➔[9, 2, 8, 4, 3

8]]

7]

After replacement and removal, the simplified pairs are given in the list above. Prolog supports both the
full notation and the simplified notation of pairs.

The pair representation and simplification rules are similar to those of Scheme. When reading this section,
please compare and contrast with the Scheme pairs in Section 4.4.6. Table 5.3 lists a few examples of
Scheme and Prolog pairs, and their full notations and simplified notations.

Scheme pairs: full and simplified notations Prolog pairs: full and simplified notations

(1 . 2) (1. 2) [1 12] [1 12]

(1 . (2 . 3)) (1 2 . 3) [1 I [2 I 3JJ [1,213]]

(1 . (2 . (3 . ()))) (12 3) [1 I [2 I [3 I []]]] [l, 2, 3]

((2 . (8 . 7)) . (4 . 8)) ((2 8 . 7) 4 . 8) [[2 us I 7JJ U4 I 81J [[2, s I 7J, 4 I 8JJ

(9 . (2 . (8 . (4 . (3 . 7))))) (9 2 8 4 3 . 7) [9 I [2 I [8 I [4 I [3 I 7JJ]]] [9, 2, s, 4, 3 I 7J

Table 5.3. Comparison between Scheme and Prolog pairs.

Representing a nonempty list as a pair [H I T] is very useful when writing recursive rules, where T is in
most cases the argument to the size-(N-1) problem. It is also helpful when learning Prolog to reread the
Scheme chapter on solving recursive problems. For example, when writing recursive rules to reverse a list,
we can consider the following cases:

• Define the size-n problem: reverse(L, RL), where L is the list to be reversed and RL will hold the
result (i.e., the reversed list).

• Define the stopping condition and its return value: If the list is empty (stopping condition), then
the reversed list is an empty list (return value).

317

• Identify the size-(n-1) problem and assume the problem is solved: Since the list is not empty,
it can be represented as a pair [H I T]. T is a list of size n-1 and thus, the size-(n-1) problem is
reverse(T, RT). We assume that we have obtained RT, which is the reversed list of T.

• Construct the solution to the size-n problem based on the hypothetic solution in the last step:
Since RT is reversed from T, and His a first element of list L, ifwe insert Hat the end of RT, we
have the complete list reversed.

The complete recursive function (rules) for reversing a list is shown below:

reverse ([] , []) . /* Stopping condition */

reverse ([X I T], RL) /* size-n problem */

reverse(H, RT), /* size-(n-1) problem */

append(RT, [HJ, RL). /* construct size-n problem's solution

We will discuss many more list-related recursive examples in the following sections.

5.5.3 List membership and operations

*/

Pro log offers powerful operations to manipulate lists and list members. Many of the operations are related
to the membership rules. The membership rules can be defined as

member (X, [X I]) •

member (X, [I T]) · - member (X, T).

In words, the two rules state:

• X is a member of a list whose first element is X. An anonymous variable is used in the tail part of
the list, because we do not care what it is if we have found that the element matches the first element
of the list.

• X is a member of a list whose tail is T ifX is a member ofT. An anonymous variable is used in the
head part of the list, as the head has been checked in the first rule.

To see how the member rules work, let us examine a query?- member(apple, [orange, pear, apple, banana]).
The query will be unified with the first rule member(X, [X I _]), where the first X unifies with apple, while
the second X unifies with orange, as shown in the diagram below. The unification fails.

member(apple, [orange, pear, apple, banana]).
I I

I I

I

I

• •

member(X, X]) .

Then, the query tries the second rule member(X, [_I T]) :- member(X, T). This rule removes the head
element orange, resulting in a query?- member(apple, [pear, apple, banana]). A similar situation will occur,
where the first X unifies with apple, while the second X unifies with pear. The unification fails again. As
the rules are recursive, it continues to remove the head element, and it then enters the query ?­
member(apple, [apple, banana]). Now, the first X unifies with apple, and the second X also unifies with
apple, as shown in the diagram below. The goal succeeds.

318

member(apple, [apple, banana]).
I

I

I I

...

member(X, X]) .

What would happen if we asked the question ?- member(apple, [apple I orange])? The query would
successfully unify with the first member rule and the goal would succeed.

What would happen if we asked the question ?- member(orange, [apple I orange])? Obviously, the orange
does not unify with apple and the first rule fails. When matching with the second rule, the tail part of the
pair [apple I orange] would be used as the second argument, resulting in the query ?- member(orange,
orange). Would this goal succeed? No. The second argument of member rule is not a Jist. The element range
can be a member of a list [orange], but it cannot be a member of orange.

Similar to the Scheme list functions car and cdr, we can define the rules to extract the first element and
the remaining list:

car (X, [X I] .

cdr(X, [IX].

We can also define rules to extract the last element of a list:

last(X, [X]). % stopping condition

last (X, [I Tail]) : - last (X, Tail) . % recursive

The second rule removes the head repeatedly until there is only one element left. Then, the stopping
condition will return the element as output.

Another frequently used list operation is append. The rule has three arguments, where the first two
arguments are input Jists, and the third argument is the resulting list:

append([] , X, X). % stopping condition

append([X I Y], Z, [X I W]) :­

append(Y, Z, W).

% size-n problem & construction

% size-(n-1) problem

% goal example

?- append(H, [d, f, g], [x, a, b, c, d, f, g])

H = [x, a, b, c]

The append/3 rule can be used to define the list reverse rules:

reverse ([] , []) .

reverse([X I L],Rev) :­

reverse (L, RL),

append(RL, [X], Rev).

% Stopping condition

% size-n problem

% size-(n-1) problem

% construction

To count the number of members, we can define the count rules:

count([], 0). % Stopping condition

count([I Tail], S)

count(Tail, Sl),

S is Sl+l.

% Size-N problem

% Size-(N-1) problem

% Construct the solution to Size-N problem

The idea is to assume that the recursive clause has found that the count of the tail is S 1, and the total count
with the head is simply S 1 + 1. The accrual process is to repeatedly remove the head and add 1 to the sum

319

till the list becomes empty. Notice that there is a built-in rule in GNU Prolog that performs the same
function: length(List, Len).

If the list consists of numbers only, we can revise the count/2 rule to perform summation. The only
difference to add the element, instead of adding 1, in each step of the recursion:

% stopping condition sum_list ([] , 0).

sum_list([HeadlTail], Sum)

sum_list(Tail, Suml),

Sum is Head+Suml. % Adding the value of Head

As an example, consider an industry application of the membership rules. In a computer assembly line,
workers are supposed to put the following components in each carton box. The weight of the carton box is
3 lb, and the weights of the other components are

• a chassis, with weight 27 lb;
• a monitor, with weight 7 lb;
• a keyboard, with weight 5 lb;
• a set of speakers, with weight 4 lb.

The correct weight of each completed box should be 27+7+5+4+3 = 46 lb. However, human errors can be
made. They may miss a component or put an additional component in the box. Assume that the maximum
weight that the box can possibly hold is 50 lb, excluding the carton box's weight. To detect errors, the last
step of the assembly line is to weigh the completed box. If the total weight is not equal to 46 lb, an error
must have occurred.

Based on the requirement, we can write a weight-check rule to detect how many components of each type
is placed in the box. Based on the total weight that the box can possibly hold, the numbers of components
that the box can hold are

• 0 or 1 chassis
• 0, 1, 2, 3, 4, 5, 6, or 7 monitors
• 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 keyboards
• 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 sets of speakers

Using the member rules, we can implement the weight-check in the following Prolog program.

weight check (C, M, K, S, W)
member(C, [0, 1]) '

member(M, [0' 1, 2, 3, 4' 5, 6, 7]) '

member(K, [0, 1, 2, 3, 4' 5, 6, 7, 8, 9, 10]) ,

member(S, [0' 1, 2, 3, 4' 5, 6, 7, 8, 9, 10, 11, 12]),

w = 27*C + 7*M + 5*K + 4*S + 3,

w = : = 4 6.

We can ask different questions to check if the weight is correct, and how many components are placed in
the carton box. For example,

?- weightcheck(l, 1, 0, 2, W).

will return the result: W = 49.

320

5.5.4 Knapsack problem

The example of the membership rules can be further applied to solve optimization problems, such as the
Knapsack problem. Knapsack problem is a problem in combinatorial optimization. Given a set of items,
each with a weight and a value, both have integer values, we need to write a program to find the number of
items to include in a collection so that the total weight is less than or equal to a given limit and the total
value is at its maximum (http://en.wikipedia.org/wiki/Knapsack_problem). Knapsack problem's algorithm
is complex in execution time, as the algorithm must try all the combinations.

There are many applications of the Knapsack problem. A typical example showing this problem is the
thief's backpack problem. A thief breaks into a store and wants to fill the backpack with as much value as
possible, under the condition that the backpack has a limit in weight to carry. Here we will show a variation
of the problem, search for the minimum value, instead of the maximum value.

In a buffet restaurant, one can eat unlimited food. For simplicity, we assume only these items are available:
pizza slices, salad bowls, meatballs, and bags of fries. These items have the following weights and calories:

• Pizza slice: The weight of each slice is 5 ounce and the calories are 150;
• Salad bowl: The weight of each bowl of salad is 7 ounce and the calories are 50;
• Meatball: The weight of each meatball is 3 ounce and the calories are 100;
• Fries: The weight of each bag of fries is 4 ounce and the calories are 200.

Assume a person needs to eat certain amount of food exceeding a given weight, 20 ounce, in order to obtain
sufficient energy for the day. On the other hand, the person wants to consume the minimum amount of
calories to keep healthy.

You want to write a program to help the customers to find the food that meets the weight requirement and
have the minimum amount of the calories. We can write a rule to find how many items of each kind can be
included for a given total weight, based on the total weight and the weight of each item. Then, based on the
number of items, we can calculate the total calories of the food. We assume that the person will not eat any
single type of items whose total weight exceeds the minimum weight (20) needed.

caloriesByWeight(P, S, M, F, Weight, Calories) :­

member(P, [0, 1, 2, 3, 4]),

member (S, [0, 1, 2, 3]),

member(M,

mernber(F,

[0,

[0,

1, 2, 3, 4, 5, 6, 7]),

1, 2, 3, 4, 5]),

Weight is 5*P + 7*S + 3*M + 4*F,

Weight >= 20,

Calories is 150*P + 50*S + l00*M + 200*F.

To compare if a particular collection of food has less calories than another collection with the same weight,
we can write a rule to make the comparison:

moreCalories(W, MoreCal)

caloriesByWeight(, , W, Cal),

MoreCal > Cal.

This rule will return true if MoreCal has a large value than the value Cal calculated from the rule
caloriesByWeight (, , W, Cal) .

Now, we can find the particular collection of food that has the least amount of calories among all other
collections of food with the same weight.

321

leastCalories(P, S, M, F, Weight, MinCalories) :­

caloriesByWeight(P, S, M, F, Weight, MinCalories),

not(moreCalories(Weight, MinCalories)).

% \+ moreCalories(Weight, MinCalories). This is an alternative to not().

In this rule, we calculate the calories of a given collection of food using caloriesByWeight (P, s, M,

F, Weight, MinCalories). Then, use the next rule to make sure that the calculated calories is NOT
more than any other co11ections. We use the not(X) rule to make sure that all the combinations will be
checked. If not rule is not predefined in your programming environment, you can define your own not rule.

not(X) :- X, !, fail. % Define not rule

not () .

Other uses of the not rule will be further discussed in Section 5.6.2.

The use of the "not" rule in Pro log can be problematic, as Prolog will try to prove that the proposition is
not true. The only way to prove something is not true in Prolog is an exhaustive search of all possibilities
and find no answer. It may take a long time. In the example above, however, searching all possibilities to
find the minimum value is exactly what we want.

5.5.5 Quick sort

There exist many sorting algorithms, such as bubble sort, selection sort, merge sort, and quick sort. Quick
sort is the fast sorting algorithm among all the sorting algorithms.

Assume the numbers to be sorted are in list Listl and the sorted list is List2. The idea of quick sort is to
pick any element, for example, the first element, as the pivot value. Then, quick sort will put the numbers
smaller than the pivot into a sublist LI, and put the numbers that are greater than or equal to the pivot into
the list L2. We repeat the process for L 1 and L2 until all the numbers are sorted.

Figure 5 .4 illustrates the process of sorting people by their ages. First, we have all the people lined up in a
row. We take the first (leftmost) person as the pivot. Then, all the people who are younger than the pivot
person move to the left of that person, and all the people who are not younger than the pivot person move
to the right of that person. Then, we recursively repeat the process for the left-side people and the right-side
people until there are no more people in the sublists.

The Prolog rules that implement the quick sort process are given as follows:

qsort([], []). % empty list is already sorted

qsort([PivotlTail],Sorted) :- % Take first number as pivot

split(Pivot, Tail, 11, 12), % Call split/ 4 rule.

qsort(Ll,Sortedl), % sort first part

qsort(L2,Sorted2), % sort second part

append(Sortedl, [PivotlSorted2], Sorted)

split (,[],[],[]). % stopping condition

split (Pivot, [XIT], [XI Le] ,Gt):- % take first from Tail

X=<Pivot, split(Pivot,T,Le,Gt). % and put it into Le

split (Pivot, [XI T], Le, [XI Gt]): - % take first from Tail

X > Pivot, split(Pivot,T,Le,Gt). % and put it into Gt

322

people

. age< 25
pivot

age people

25 age 2 25
ptvo

@ t t@
people

age< 23

age people

23 age 2 23
people age

age< 30 30

people

age 2 30

Figure 5.4. Illustration of quick sort of people by age.

The sorting rules consist of two recursive functions. The qsort/2 rule assumes that the split/4 function will
split the list into two sublists L 1 and L2 around the given pivot value. Then, we recursive call qsort on lists
Ll and L2. Assuming that the two size-M problems, where M < N, will be solved (sorted), the last clause
of the recursive rule will append the two lists, with the pivot value inserted into the second list before
appending.

The second set of recursive rule split/4 compares each element with the pivot value and puts them into the
Le list if the element is less than the pivot; otherwise, it puts them into the Gt list.

Calling qsort as a goal, the given list is sorted:

I ?- qsort ([8, 3, 4, 12, 25, 4, 6, 1, 9, 22, 6], Sorted).

Sorted= [1,3,4,4,6,6,8,9,12,22,25] ?

yes

5.6 Flow control structures

So far, we have been focusing on understanding the automated searching process of the Prolog runtime,
which exhaustively searches all the possible answers. Now, we will study the ways of changing the search
options by removing and adding the backtrack points. A backtracking point is a point from which the
Prolog runtime will restart its search if the current search fails, or if the current search succeeds but a
semicolon is entered thereafter.

There are several built-in clauses that can be used for changing the order of searching the Prolog database.

We will discuss three important flow control clauses in this section: ! (cut) that removes the backtrack

points, repeat that adds backtrack points, and fail that enables the search to continue from the last
backtrack point.

323

5.6.1 Cut

A cut (!) is a special control facility in Pro log that enables programmers to restrict the backtracking options.

A cut will succeed when it is met (executed). It will remove all existing backtracking points, but new
backtracking points may be added thereafter. Notice that a cut may cut off valid options and thus the search

may not find all the answers even if the semicolon key is typed. Thus, you should use cut only if you are
sure that there are no more answers or you do not want to have all possible answers. For example, in the
factorial rule, we are sure that when N = o, there cannot be any more answers and thus we can use cut:
factorial (0, 1) : - ! •

Figure 5.5 shows the search structure (the solid lines) of a Prolog database, where a branch means that there
are two possible search branches at the point. The dotted lines show the actual search paths and the circled
numbers are backtrack points. The search starts from the beginning of the database. When the first branch
is encountered, it continues with, say, the left branch and makes a backtrack point Q) to mark that the right
branch has not yet been searched. When the second and third branches on the left are encountered, backtrack
points Q) and @ are added, respectively. Then the search goes to the end at the leftmost branch and it returns
to the latest backtrack point, which is @. The search removes @, goes to the end, and then returns to the
latest backtrack point, which is now Q). The research process continues until a match is found, or the entire
database has been searched.

Figure 5.5. Adding backtrack points.

Now examine what happens if a cut (!) is used in the rules of the database. As shown in Figure 5.6 (a),

after backtrack points CD and Q) are created and then a cut is executed, all existing backtrack points, in this

example, CD and Q), will be removed, as shown in Figure 5.6 (b). A cut will succeed when it is executed
and thus the search continues as normal. When the next branch is encountered, a new backtrack point @
will be added. After the search goes to the left end, it returns to the latest backtrack point, which is @ and
continues from @. Now when the search goes to the point "e," the search terminates and the remaining
structure will not be searched, because there are no more backtrack points pointing to indicate what parts
have not been searched.

324

Figure 5.6. (a) A cut is executed after creating two backtrack points.
(b) The existing backtrack points are removed and search continues.

The concept is simple. However, it is not trivial to understand what backtrack points are and where
backtrack points are added and when they are removed. Consider the following simple database. To
understand the effect of cut, we define four programming language rules: plgO (no cut), plgl (a cut as

the first condition), plg2 (a cut as the second condition), and plg3 (a cut as the third condition).

language(english).

language(scheme).

language(prolog).

computer(scheme).

computer(prolog).

plgO(P) language(P), computer(P).

plgl (P)

plg2(P)

plg3(P)

!, language(P), computer(P).

language(P), !, computer(P).

language(P), computer(P), ! .

II

II

II

II

no cut

a cut

a cut

a cut

in the rule

as the first condition

as the second condition

as the third condition

Figure 5.7 illustrates the search process when the question ?- plgO (P) is asked. The first backtrack point

is created when a match is found for the first condition "language (X)" and the search proceeds to
matching the second condition. After the second condition fails, the research resumes from the backtrack
point G)_

Thus, for the question?- plgO (X), where no cut is applied in the rule plgO (X), the question will find
two answers if a semicolon is typed after the first answer:

X scheme

X = prolog

For the question ?- plgl (X), where a cut is put as the first condition of the rule plgl (X), the cut is
executed before any backtrack points are created. Thus, no backtrack points will be removed and the answer
to this question is the same as the answer to the question ?- p 1 g O (x) .

For the question?- plg2 (X), the cut will be executed after backtrack point G) is created and before an
answer is found. The execution of cut then removes the backtrack point G)_ As the result, after the search
failed (see the bottom right of Figure 5.7), there is no backtrack point to return to and, thus, not a single
answer is found for the question.

325

?- plO (X) .

•
language(englsih). II no match

•
language(scheme). II no match

•
language(prolog). II no match

•
computer(scheme). II no match

•
computer(prolog). II no match

•
plO (P) .

•

II match P = X

?- language (X) . II Check 1 st condition: return to beginning of database

•
language(english).

•
Backtrack point CD

language(scheme).

•
Backtrack point@

•
language(prolog).

•
Backtrack point®

II match: X = english
----------?- computer(english). II restart

•
language(english) .

•
language(scheme).

•
language(prolog).

•
computer(scheme).

•
computer(prolog).

•

failed

Figure 5. 7. Adding backtrack points.

II no match

II match

II no match

II no match

II no match

For the question ?- plg3 (X), the cut will be executed after backtrack point CD is created and after the

first answer x = scheme is found. The execution will remove the backtrack point CD. As a result, the
second answer will not be found, even if a semicolon is typed.

Not all the search-returning points in the Prolog database are backtracking points that can be removed by
cut. There are other kinds of search-returning points: composite condition returning points and

recursive exit points. These two kinds of returning points may not be removed by the cut.

For example, there are two conditions in the rule plg3 (P) in the programming language example above.
While searching for a match for the first condition, a search-returning point must be marked so that the
search can continue from this point to find a match for the second condition after a match is found for the
first condition. Obviously, this search-returning point may not be removed from a semantics point of view.
If such a search-returning point could be removed, a solution that only meets the first condition would be
accepted as a "true" solution of the rule, which is incorrect.

For a recursive rule, there is a similar situation where a searching returning point must be marked. As shown
in Figure 5.8, when a recursive call is made, the execution reenters the rule, leaving the condition behind
the recursive call not searched and, thus, a research-returning point must be added every time a recursive

326

call is made. Similar to the composite condition returning point, the recursive exit point may not be removed
by the cut.

factorial(0,1)

! .

factorial(N,F)

N>O,

Nl is N-1,

factorial(Nl,Fl),

/* Recursive exit point */

Fis N * Fl.

n 2

part 1

call

Recursive

exit point

Figure 5.8. Recursive rule and recursive exit point.

5.6.2 Fail

The built-in function fail simply returns a false value. In Pro log runtime, if a true value is returned, meaning
that a solution is found, the search will pause, waiting for a manual input of a semicolon to continue
searching, or an enter for stopping. If you want to ask the runtime to continue searching, you can add a
fail clause after the clause where a true value can return. We will use the definition of the not rules to

illustrate the use off ail.

not (X) : - X, ! , fail.

not () .

% what happen if ! is not used?

As the name suggests, the rule not (x) should return false if x is true, and return true if x is false. In the

definition, ifx is true, the cut (!) clause will be executed, which returns true too, and then the fail clause

will be executed, which will fail. Why do we need the cut before the fail? With the cut, the search will

continue after a failed clause. The cut will remove all the backtracking points, so that the search will not
continue after a failed clause.

On the other hand, if x is false, the cut and the fail will not be executed, and thus, the next not (X)

clause will be executed. As it has no condition, it always succeeds and returns true. An anonymous variable
is used in the second not rule to prevent a "singleton" variable warning.

Now we use an example to illustrate the use of the not rules, where the not rule is highlighted.

% facts

female(elaine).

female (j ane) .

female (sarah) .

male (conrad)

327

male (joe).

married(luke).

married(mike).

father_of(andrew, conrad).

father_of(luke, mike).

father_of(mike, andrew).

mother_of(elaine, sarah).

mother_of(jane, edith).

mother_of(jane, mike).

% Rules

not (P) :- P, ! , fail.

not() .

is_male(X) :- father_of(X,); male(X).

is_female(X) :- mother_of(X,) ; female(X).

bachelor(X) :- is_male(X), not(married(X)).

grandmother_of(X, Z) :- mother_of(X, Y),

(mother_of(Y, Z); father_of(Y, Z)).

familyquestions :­

grandmother_of(X, andrew),

write('The grandmother of andrew is '),

write(X), nl,

father_of(Y, mike),

write(Y), write(' is the father of mike'), nl,

bachelor(Z), write(Z), write(' is a bachelor'),nl.

Using the family question as the goal?- familyquestions, the following output is generated:

?- familyquestions.

The grandmother of andrew is jane

luke is the father of mike

andrew is a bachelor

true ?

conrad is a bachelor

true ?

joe is a bachelor

5.6.3 Repeat

Now we examine the next control structure repeat that always succeeds and always adds a backtrack
whenever it is executed. Figure 5.9 shows a simple application of repeat that creates an infinite loop:
When the repeat is executed, a backtrack point is created and repeat succeeds. Then, the control enters
the body of the loop to "do something." At the end, the built-in predicate fail is executed. The fail
predicate does nothing but fail (return false). Since the rule fails, it automatically returns to the latest
backtrack point. The backtrack point is removed when the control returns to it. However, when the repeat
is executed, a new backtrack point is created. The loop thus repeats forever.

328

i i
repeat

�r

t

l
do something �De=) do something

cfL) (tat.)
Figure 5.9. The repeat adds a backtrack point every time it is executed.

The following program gives an example of this application. The program repeatedly gets a printable
character from the keyboard and writes the character on the screen.

get forever :-

repeat,

get(X),

write(X),

nl,

fail.

/* add a backtracking point */

/* enter a printable char */

/* to return to last backtracking point. */

Without the fail predicate at the end, the rule will succeed and not automatically return to repeat. It
returns to the repeat only after a semicolon is entered.

Now examine another application of repeat that creates a loop and the loop exits when a certain condition
is met.

get_digit (X) : -

repeat, /* add a backtracking point */

write('enter a digit'),

nl,

getO (Xl),

Xl > 47,

Xl < 58,

Xis Xl - 48,

! •

/* get any character */

/* will fail if not digit */

/* remove backtracking points */

When the rule get digit (X) is executed, the first condition is a repeat, which succeeds and adds a
backtrack point. Predicates write and nl always succeed. Then a character is entered from the keyboard
and instantiated to Xl. If xl is a digit, its ASCII value must be between 48 and 57. If these two boundary
conditions are met, the ASCII value is converted to the value it represents. Then the cut is executed, which
removes the backtrack point created by repeat. Thus, the loop exits. On the other hand, if one of the
boundary conditions is false (i.e., a nondigit character is entered), the composite condition fails and it returns
to the backtrack point and another iteration of the loop starts.

329

*5. 7 Prolog application in semantic Web

The web was originally built for human users to retrieve information. Although a large part of the web is
machine-readable, the data are not machine-understandable. Because of the volume of information on the
web today, it is no longer possible to manage and retrieve information manually. The solution is to use
metadata to describe the data contained on the web.

As defined by W3C (WWW Consortium), the semantic web is a vision for the future of web information,
where the information available on the web is given explicit meaning to better support automatic processing
and integration of web information. If we consider that the current web is a decentralized platform for
distributed presentations, the semantic web is a decentralized platform for distributed knowledge. Ontology
is the key technology for implementing the semantic web.

The word ontology comes from the field of philosophy, where it means a systematic explanation of being.
In computer science, ontology is a formal specification of the terms/objects in a domain and the
relationships among them. Technically, an ontology defines a common vocabulary of elements in which
the meanings of the elements are described in terms of their relations, properties, and attributes (e.g.,
synonym and antonym), and the structure of the statements using the vocabulary.

A shared representation is essential for the common understanding of data and communication. Ontology
defines the structure of knowledge representation and conceptualization of a domain. It describes domain
knowledge in a generic way and provides an agreed-upon understanding of a domain.

Ontology includes machine-understandable definitions of basic concepts in a specific domain for the
purposes of

• sharing a common understanding of the structure of information among people or software agents
that use the information;

• making domain assumptions explicit, and enabling reuse of domain knowledge;
• separating domain knowledge from operational knowledge;
• enabling domain knowledge analysis and reasoning.

The languages currently used for implementing ontologies include RDF (Resource Description
Framework), OWL (Web Ontology Language), and Prolog. RDF and OWL have the capacity to represent
knowledge, but they do not have the computing power to process the knowledge. Prolog has the capacity
for representing knowledge as well as for processing knowledge.

Prolog is a well-established high-level logic and declarative programming language. It is designed for
artificial intelligence and is a natural choice for implementing ontologies (semantic web). A Prolog program
has a built-in database and the capacity for data processing and reasoning. The statements in RDF and in
OWL can be easily translated into Prolog statements. Prolog has been used to implement RDF and OWL
parsers, for example,

• SWI-Prolog RDF parser: http://www.swi-prolog.org/
• Thea: A Web Ontology Language - OWL Parser for [SWI] Prolog

http://www.semanticweb.gr/TheaOWLParser/

Figure 5 .10 shows an example of representing knowledge in RDF. Its XML representation is given below,
which is a list of triples.

<?xml version="l.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:cs="http://venus.eas.asu.edu/WSRepository/xml/Courses.rdf">

330

<rdf:Description rdf:about="professors">

<cs:subsume rdf:resource= "faculty"/>

<cs:includes rdf:resource= "Mary"/>

</rdf:Description>

<rdf:Description rdf:about="SOC">

<cs:taughtOn>Mon and Wed</cs:taughtOn>

<cs:taughtin>Room220</cs:taughtin>

<cs:member rdf:resource= "seniorCourses"/>

</rdf:Description>

<rdf:Description rdf:about="seniorCourses">

<cs:subsume rdf:resource= "courses"/>

</rdf:Description>

</rdf:RDF>

As can be seen in Figure 5 .10, the RDF representation can be easily represented in Pro log facts. The
processing of the data can be written in Pro log rules.

"John Doe"

5.8 Summary

taughtBy
"987654321" "Mon&Wed" "Room220"

Figure 5.10. Graphic representation of RDF statements.

This chapter described the fundamental concepts oflogic programming and basic programming techniques.
It covered:

• The basic concepts and execution model of Pro log is described in a C-like pseudo language, which
helps in understanding the Prolog rules and the problem-solving process.

• The structure of Pro log programs. At the lexical level: The composition of Pro log variables; at the
syntactic level: The syntax of constructing facts, rules, and goals; at the level of the contextual
structure: The instantiation and scope of variables; and at the semantic level, there are two different
programming models: The database-base unification model and the arithmetic model.

• Recursive rules and application of recursion: The fantastic-four abstract approach discussed in
the C and Scheme chapters can be applied to Prolog recursive programming.

331

• Lists and list operations: This section shares much common ground with the list operations in the
Scheme chapter. Prolog lists and Scheme lists are compared and the pair type defined in Scheme is
used to explain the different list representations used in Prolog.

• The flow control structures of Pro log are explained in detail, including the application of cut, fail,
and repeat.

• Finally, Prolog application in the semantic web.

Logic programming language is becoming more and more important in the context of ontology, semantic
web, and Big Data analysis.

332

5.9 Homework, programming exercises, and projects

1. Multiple Choice. Choose only one answer for each question. Choose the best answer if more than

one answer is acceptable.

1.1 Which of the following programming languages most closely follows the stored program concept?

□ C □ Lisp □ Scheme □ Prolog

1.2 Prolog is based on

□ Lambda calculus □ Predicate logic □ Turing machine

1.3 There are three kinds of clauses in a Prolog program: facts, rules, and goals.

□ A fact can be considered a special case of a rule.

□ A fact can be considered a special case of a goal.

□ A rule can be considered a special case of a fact.

□ A rule can be considered a special case of a goal.

□ Boolean logic

1.4 What mechanism cannot be used for passing values between clauses within a Prolog rule?

□ Call-by-value □ Call-by-alias □ Return value □ All of them

1.5 If you want to pass multiple values out of a Pro log rule, which of the following methods is valid?

□ Use multiple return statements in the predicate.

□ Use a single return statement to return a list that contains the multiple values required.

□ Use multiple named variables to hold the values.

□ Use multiple unnamed variables to hold the values.

1.6 A goal clause and a fact unify, if

□ their predicates are the same.

□ their corresponding arguments match.

1. 7 The arity of a predicate is

□ the head of the predicate.

□ the body of the predicate.

1.8 The scope of a Prolog variable is within

□ a single rule.

□ the fact/rule base.

1.9 A circular definition of a Prolog rule

□ their arities are the same.

□ all of the above are true.

□ the neck of the predicate.

□ the number of arguments of the predicate.

□ a single clause in a rule.

□ the body of the next rule.

□ is an imperative feature that should be discouraged.

□ will cause a dead loop for every goal.

□ will cause a dead loop when no match can be found.

□ will never cause a dead loop.

333

1.10 An anonymous variable in Pro log is a

□ constant. □ placeholder. □ predicate.

1.11 What is the output when the following Prolog goal is executed?

?-member(apple,

□ true?

[orange, apple, pear]).

□ X = apple □ [apple, pear]

1.12 Assume we have the following fact in a Prolog factbase:

child_of(mary, [amy, david, conrad]).

What is the output when the following Prolog goal is executed?

?- child_of(mary, [amy I T]).

□ T = [amy, david, conrad] □ T = [david, conrad]

□ T = david, conrad □ T = conrad

1.13 Assume that we have the following fact in a Prolog factbase:

child_of(mary, [amy, david, conrad]).

What is the output when the following goal is executed?

?- child_of(mary,

□ H = [amy]

[am y I [H I [con rad]]]) .

□ H = [david] □ H = david

1.14 What is the output when the following Prolog goal is executed?

?- member(X, [81, 25, 9, 29]), Y is X*X, Y<400.

□ X = [81, 25, 9, 29 J □ X = 9 Y =29

1.15 Given the following recursive rules in Prolog:

foo (X, [X]) .

f oo (X, [I T]) : - foo (X, T) .

The rules find

□ the last element of a list.

□ X = 9 Y = 81

□ the length of a list.

□ question.

□None of them

□ H = [amy, conrad]

□ X = 81 Y =400

□ whether an element is a member of a list. □ the sum of all members in a list.

1.16 When Prolog is searching for possible matches and a cut"!" is encountered,

□ all existing backtrack points will be removed.

□ all existing recursive exit points will be removed.

□ all existing backtrack points and recursive exit points will be removed.

□ none of the existing backtrack points and recursive exit points will be removed.

1.17 What does the built-in predicate cut(!) do?

□ Stop searching immediately.

□ Remove all existing backtracking points.

334

□ Stop search after the first match is found.

□ Remove a11 backtracking and recursive exit points.

1.18 What does the built-in predicate fail do?

□ Jump to the previous repeat predicate. □ Remove one backtracking point.

□ Return false.

1.19 The built-in Prolog predicate repeat always

□ fails immediately.

□ succeeds and adds a backtracking point.

□ fails at the end of the database.

□ fails when it is visited (executed) for the second time.

1.20 What does the following code do?

go :- repeat, get(X), write(X), nl, fail.

□ It takes a single character from the keyboard and prints it.

□ It repeatedly takes a character from the keyboard and prints it.

□ Stop searching immediately.

□ It takes a character from the keyboard, prints it, and exits if the character is a digit.

□ It takes a character from the keyboard, prints it, and exits if the character is NOT printable.

1.21 What is the key difference between the semantic web and the syntactic web?

□ Semantic web performs semantic check of pages submitted to web.

□ Semantic web enables keyword-based search.

□ Semantic web better supports automatic processing and integration of web information.

□ Semantic web is based on Prolog.

1.22 How is Prolog related to the semantic web?

□ Prolog is frequently used to describe the semantic web as a markup language.

□ Pro log is frequently used for writing the parsers of the semantic description language.

□ Prolog is a service-oriented programming language.

□ All Prolog programs are semantic web.

2. There are several data passing mechanisms between the calling function (caller) and the called

function (callee): call-by-values, call-by-alias, return value, and global variable (global name). What
data passing mechanisms are supported by imperative C, functional Scheme, and logic Prolog? Draw
a table to summarize the supported mechanisms by these three languages.

3. What are named and unnamed (anonymous) variables in Prolog? What are their differences?

4. What is the scope rule of Prolog?

5. What are the differences between the variables in imperative, functional, and logic programming
languages?

335

6. How is a Prolog program executed? What is the definition of a match?

7. What is a circular definition? What is the consequence of a circular definition? In a family database,
will a problem occur if we define the following rules? Put these rules in a family database and test
them.

sister(X, Y) :- sister(Y, X).

brother(X, Y) :- brother(Y, X).

parent_of(X, Y) :- child_of(Y, X).

child_of(X, Y) :- parent_of (Y, X).

8. What is the difference between a circularly defined rule and a properly defined recursive rule? Can
a recursive rule cause a dead loop? How can you avoid a dead loop in the definition of recursive
rules?

9. Does the order of the clauses in a rule matter? Does the order of the facts and rules in a fact/rule base
matter?

10. How do you design a recursive rule? Is the following design process correct?

(1) Formulate the size-N problem: Choose the predicate name and appropriate arguments for holding
the return value and the input values to the rule.

(2) Design the stopping condition (normally, N = 0 or N = 1) and its solution.

(3) Assume that you have already found the solution of the same problem with size NI, where NI <
N.

(4) Use the solution of the size-NI problem to define the solution of the size-N problem.

(5) Verify the above design process using the "Hanoi Towers" problem discussed in Chapter 4 as an
example.

11. Using BNF notation, a Prolog list can be recursively defined as follows:

<list> .. - [], where [] is an empty list

<list> : := [<X> I <Y>], where X is a variable or value, and Y is a list.

In the definition, [<X> I <Y> J can be considered to be a pair as defined in Scheme in Chapter 4.

11.1 Describe simplification rules that can be used to simplify the Prolog lists.

11.2 Apply the simplification rules to simplify [1 I [2 I [3 I [J J J J into [1 2 3 J •

11.3 Is this structure [[1 I 2 J I [3 I [4 I 5 J J J a valid Prolog list? Explain your answer.

12. Define a rule to return the common members of two lists. Trace the execution manually and by the
trace routine. Compare the two traces. The format of the rule is

common(X, Listl, List2)

13. Define a rule to return the change (number of quarters, dimes, nickels, and pennies) of a given amount
S, where 0 <= S<= 100. The format of the rule is

change(S, Q, D, N, P)

336

14. You are given the following Prolog factbase. The familyquestions rule is, in fact, a compound

question. It will cause a number of goals (questions) to be called. You can consider the question as
the "main" program that addresses the problem you want to solve. However, since the individual
questions are connected by an "and" relationship, the compound question will stop if a "no" answer

is given to any individual question. You could use the "or" relationship to connect some questions.
In this case, the compound question will stop if a "yes" answer is given to any individual question.

/* Factbase for family. It consists of facts and rules. */

/* Facts */

male (luke) .
male (mike) .
female (sarah).

mother_of(jane, elaine).

mother_of(jane, mike).

father_of(mike, andrew).

father_of(andrew, conrad).

father_of(luke, mike).

/* Rules */

grandmother_of(X, Z) :­

mother_of (X, Y),

(mother_of(Y, Z); father_of(Y, Z)).

familyquestions :­

grandmother_of(X, andrew),

write('The grandmother of Andrew is '), write(X), nl,

father_of(Y, mike),

write(Y), write(' is the father of mike'), nl, nl.

14.1 Enter the program using a text editor under the Unix operation system and save the file as

f ami 1 y. pl. You can enter the program on your PC and upload the program into the Unix server.

You may also enter the program on your PC and upload the program into your pro log directory in
the Unix server.

14.2 Compile the program using the Prolog command:

> gplc family.pl

14.3 Enter GNU Prolog by executing the Unix command gprolog.

14.4 Execute the program family by typing GNU Prolog command

I?- [family] .

14.5 Ask a few questions, for example,

I?- male(luke).

I?- male (X) .

I?- grandmother of(jane, mike).

337

I?- grandrnother_of(jane, X).
I?- grandrnother_of(X, mike).
I?- farnilyquestions. /* This will call all questions in the rule. */

14.6 Change the "and" operator,"," after the first "nl" statement (newline) to the "or" operator";" in the
farnilyquestions program and observe what differences are made in the output.

14. 7 Manually trace the execution of the following goal. List all statements in their execution order
involved in the trace.
I?- grandrnother_of(jane, andrew).

14.8 Add the following set of rules that extend the relationships among the members: brother, sister,
grandfather, grandparent, greatgrandfather.

14.9 Add 30 facts into the factbase showing the relationships between family members. These facts must
ensure each rule defined on the facts can return a yes value for at least one set of parameters.

14.10 Compile the extended program and ask at least 10 different questions using GNU Prolog commands,
also use variables in these questions.

14.11 Add a rule called rnorequestions at the end offactbase to include the 10 questions that you have
tested. Include sufficient write statements so that the answers to individual questions are printed.
Make sure that the compound question can terminate (will not cause a "dead loop").

14.12 Recompile the program and call the following goal.

I?- rnorequestions.

15. Define recursive rules to compute mathematical functions.

15.l Compute addexp (X, Y, N) = (X + Y) N, where x, Y, and N are nonnegative integers, and x, Y
and N cannot be O at the same time, because 0° is undefined. You must add an argument to store the
return value.

15.2 Test your program using different input sets (test cases) and verify (e.g., using your calculator) the
correctness of the answer. Give five sets of inputs-outputs that you tested.

15 .3 Compute f e (x, Y, N) = ((x + Y) N) ! . The function must call the function that you designed in
question 15 .1. You must include all functions that are used.

15.4 Test your program in question 15.3 using different input sets (test cases) and verify (e.g., using your
calculator) the correctness of the answer. Give two sets of inputs-outputs that you tested.

16. The Ackermann function is defined recursively for nonnegative integers m and n as follows:

A(s, t) = A(s - 1, 1), {
t + 1,

A(s - 1,A(s, t - 1)),

338

ifs= 0
ifs > 0 and t = 0
ifs > 0 and t > 0

Note: The Ackerman function is a very rapidly growing function. Even values of 4 for m and n will
yield an extremely large number. Thus, use small values of m and n, like 1, 2, or 3, when you test
your program.

Follow the fantastic-four abstract approach to implement the function in Prolog rules.

16.1 Define the size-n problem.

16.2 Define the stopping conditions and the return values.

16.3 Define the size-m problems.

16.4 Construct the size-n solution from the size-m solutions.

16.5 Give the complete rules that can be used for computing the Ackermann function for any given integer

N � 0.

17. You are asked to create a family tree according to the given tree structure in Figure 5 .11. In the family

tree, the horizontal edges represent the spouse relationship. The left one is female and the right one
is male. The top-down edges represent the parent-child relationship.

Figure 5.11. The structure of a family tree.

17 .1 Define the factbase according to the given family tree structure by using the facts father_ of(a, b) and
mother_ of(a, b) You can add more facts, and the names added in the tree must be different.

17.2 Define a rule sibling (X, Y) which returns yes ifx and Y have the same parent, where x and Y

may not be the same (e.g., sibling (mike, mike) must return no).

17.3 Define a recursive rule depth (D, x) where D is the number of levels from the root to x. The depth

of the root is O.

17.4 Based on the depth relationship, define a rule cousinl (X, Y) which returns "yes" ifx and Y have

the same depth. Note, this cousin relationship is slightly different from what the word cousin means.
In this definition, siblings are cousins too.

17.5 Define a recursive rule cousin2 (X, Y) without using the depth relationship. Hint: Use the parent
rule in the question.

339

17.6 Define a rule called treequestions that will call all rules that you have defined once. Make sure

that all calls in the rule treequestions will be executed.

340

Chapter 6

Fundamentals of the Service-Oriented

Computing Paradigm

Having discussed four major programming paradigms, this chapter introduces the fundamentals of the
emerging service-oriented computing (SOC) paradigm, including the basic concepts, principles,
programming, and the software development processes based on this paradigm. As a preparation, we first
give a short introduction to C#. As C# is closely related to C++ and Java, it should be straightforward to
learn this language. The focus of the chapter is not on the language, but on the paradigm that suggests a
new way of software development.

6.1 Introduction to C#

C# is an object-oriented programming language, and it is one of the major languages that is used for writing
web services (WS) today. In fact, the constituent services (components) of a service-oriented application
are object oriented. The object-oriented classes are wrapped with open standard interfaces to become
services. A service-oriented application is composed of services from different service providers.

6.1.1 Getting started with C# and Visual Studio

To get started with C# and Visual Studio, enter the following program that prints the string "Hello, World!":

using System;

public class MyFirstClass {

public static void Main()

Console.WriteLine("Hello, World!");

To execute this C# program on Visual Studio, you can follow the following simple steps:

1. Start Visual Studio from the Windows "Start" menu.

2. Choose Visual Studio menu "File - New - Project...": A "New Project" dialog box will pop up, in which
you can choose different languages, including CIC++, J# (Java), and C#.

3. Once you have selected C# in the box on the left-hand side, you can further choose a template to
facilitate the application you want to develop. For example:

a. Choose "Console Application" to start a text and command line-based programming
template.

341

b. Choose "Windows Application" to start a forms-based application template, which allows
you to define graphic user interfaces.

4. At the bottom of the same dialog box, you can choose a Name for your project, choose a Location
(directory) where you want to save your project, and choose a Solution Name. You can put multiple
projects in the same Solution.

5. Click OK.

A project template with appropriate libraries (depending on the template that you select) wi11 be created. If
you have selected C#, you can type your C# program in the file with the extension .cs that is created when
you start a new project.

The following program shows a more complex example. The program manages the scores/weights of a
weightlifting competition. The user is asked to enter the names and weights lifted by four players, and the
program prints the winner's name and weight.

using System;

class Tournament {

static void FindWinner(string[] N, Int32[] W) {

if (W[O] > W[l])

else

if (W[O] > W[2])

if (W[O] > W[3])

Console.WriteLine(N[O]+" wins with weight

else

Console.WriteLine(N[3]+" wins with weight

else

if (W[2] > W[3])

Console.Write1ine(N[2]+" wins with weight

else

Console.Write1ine(N[3]+" wins with weight

if (W[l] > W[2])

if (W[l] > W[3])

Console.WriteLine(N[l]+" wins with weight

else

Console.Write1ine(N[3]+" wins with weight

else

if (W[2] > W[3])

Console.Write1ine(N[2]+" wins with weight

else

"+W[O]);

"+W [3]);

"+W [2]) ;

"+W [3]);

"+W [1]);

"+W [3]);

"+W[2]);

Console.Write1ine(N[3]+" wins with weight = "+W[3]);

static void Main() { // Declare variables (memory spaces)

Int32 i, N = 4; // N is the number of players

Int32[] Weights; // Declare a reference to an array of int

string Num, Weight;

string[] Names; // Declare a reference to an array of string

Names = new string[N]; // Create an array object

Weights = new Int32[N]; // Create an array object

342

for (i=0; i<N; i++) {

Console.WriteLine("Enter the name and weight of Player {0}",

i) ;

Names[i] = Console.ReadLine(); // read the name

Weight = Console.ReadLine(); // read the weight in a string

Weights[i] = Convert.Toint32(Weight); // Convert string to int

FindWinner(Names, Weights);

This program illustrates many important issues of a typical program, including input; output; converting
string to integer; declaring integer, string, reference to array of integer, and reference to array of string;
creating an object of array; loop, defining static function; and parameter passing and function call. The
comments in the program give more details of explanation.

C# inherits most of its syntax from the CIC++ family of languages and supports most features that Java
supports. It is strongly typed with automatic garbage collection and a rich functionality set that empowers
developers of both object- and service-oriented software. This section introduces, from a C++
programmer's point of view, a small subset of this extensive language.

6.1.2 Comparison between C++ and C#

Table 6.1 compares and contrasts the main features of C++ and C#. As can be seen, C# moves toward
automatic management like Java, while trying to keep the C++ features where possible.

6.1.3 Namespaces and the using directives

A namespace is used to group a set of classes, and a "using namespace" is also used to quote the classes in
the namespace as library functions to be used in a program. The following code segment shows the very
basic code template for a C# program:

using <namespace> II using existing namespace as library

namespace myNamespacel // define my own namespace

class myclassl {

public static void Main() {

class myclass2

public double PiValue()

Header files in CIC++ do not exist in C#. Instead, namespaces are used to reference groups oflibrarics and
classes. Programmers can define namespaces in order to prevent class naming conflicts, as well as to
reference namespaces, which define the .Net Framework SDK. For example:

namespace VirtualStore {

namespace Customer {

//define customer classes

class ShoppingCartOrder() { ... }

343

namespace Ad.min {

//define administration classes

class ReportGenerator() { ... }

Feature C++

main() Global function

Use of library Header files (#include directives)
functions and the using directive can be

used.

Preprocessor Preprocessor directives and
directives macros are allowed.

Global Allowed
functions or
variables

Inheritance Multiple inheritance is allowed.

Override Declaring override functions does
not require the override keyword.

Garbage and No automatic garbage collector.
destructor Destructors are called

automatically, but a programmer
can call destructors.

long type 32 bits

Array The brackets"[]" appear following
declaration the array variable, e.g., int

myArray [] = { 1, 2, 7} ;

String An array of characters with a
terminator.

Pointer Allowed

switch Supports fall through from one
statement case label to another. Use break to

exit.

foreach Not allowed
statement

C#

public static function in a class

Header files may not be used. The using

directive is used to reference types in other
namespaces.

Preprocessor directives are allowed, but cannot
create macros. Directives can be used for
conditional compilation.

Not allowed. They must be contained within a
type declaration (such as class or struct).

A class can inherit implementation from one
base class only. However, a class or an interface
can implement multiple interfaces.

Declaring override methods requires the
override keyword.

There is an automatic garbage collector.
Programmer cannot call the destructors.

64 bits

The brackets "[]" appear following the array
type, e.g.,

int[] my Array= {l , 2, 7};

A string type is defined. One can use == and ! =

to compare two string objects.

Pointers are allowed only in unsafe mode.

Does not support fall through from one case
label to another.

Used to iterate through arrays and collections.

Table 6.1. Comparing and contrasting C++ and C# features.

The using directive tells the compiler where to search for definitions for namespace class's member
methods that are used in the application. For example:

344

using VirtualStore;

using System.Windows.Forms;

An alternative to using directives is to fully qualify each single reference like this:

private System.Windows.Forms.Button Buttonl;

6.1.4 The queue example in C#

To see concrete differences between C++ and C# and to get started with writing a C# program, we present
the C# version of the Queue example given in Section 3 .1. From this example, you can see that it is easy to
get started with C# after you have learned C++.

using System;

namespace ConsoleApplicationl

II class is defined within curly bracket

class Queue

private int[] buffer;

private int queue_size;

protected int front;

protected int rear;

public Queue() { // constructor

front = 0; rear = 0; queue_size 10;

buffer = new int[queue_size];

public Queue(int n) { // constructor

front = 0; rear = 0; queue_size n;

buffer = new int[queue_size];

public void enqueue(int v) {

if(rear < queue_size) buffer[rear++] v;

else if(compact()) buffer[rear++] = v;

public int dequeue() {

if(front < rear) return buffer[front++];

else {

Console.WriteLine("Error: Queue empty");

return -1;

private bool compact() {

if (front == 0) {

Console.WriteLine("Error: Queue overflow");

return false;

else {

for(int i = 0;i < rear-front; i++)

buffer[i] = buffer[i+front];

rear = rear - front; front = 0;

345

return true;

static void Main() {

Queue Q2 = new Queue(4);

Q2.enqueue(12); Q2.enqueue(18);

int x = Q2.dequeue(); int y Q2.dequeue();

Console.WriteLine("X = {0} Y = {1} ", x, y);

Console.ReadLine();

If you compare this program with the C++ program in Section 3 .1, you can see that the two programs are
very similar and C# is not difficult to learn.

6.1.5 Class and object in C#

Like Java, all C# applications require a unique program entry point, or Main method, implemented as a

member method within a class. This differs from C++, where Main is a function that must be located outside
any class. In C# programs, Main's location is determined by the compiler, and it does not matter which

class defines the Main. Main is required to be defined as static, and may optionally receive arguments
or return a value. An optional public access modifier notifies the C# compiler that anyone can call this

member method. The required static keyword means that Main is called without requiring an object
instance.

A class is a user-defined type and a blueprint of functionality for variables of that type. An object is a named
reference to that class with memory allocated. Instantiating a class with the new function creates an instance
or an object with information about member methods and other members allocated on the heap. For both
C++ and C#, a variable of a reference type takes values of the heap addresses required to locate those class
members. Class members include anything defined inside a class, such as variables, constants, and
functions.

In C#, accessing the members of a static object is accomplished, like Java, using class name and the"." dot
operator

<classNarne>.<rnernberNarne>

Console.WriteLine("Hello World!");

where rnernberNarne is a method call or variable name, respectively.

Accessing the members of a reference object is also accomplished like Java, with the"." dot operator

<referenceNarne>.<rnernberNarne>

tirne.printStandard();

where rnernberNarne is a method call or variable name, respectively.

C++ offers a second way to define objects, not as reference types on the heap, but as local types on the
stack. This is done by simply instantiating without the new function. In C#, the new keyword is the only
way to create an object instance.

The class syntax can be described using the following syntax diagram, where the item in square brackets is
optional.

346

[attributes] [modi£ iers] class <className> [: baseClassName]

[class-body]

} [;]

Attributes can be thought of as inline notes and declarative statements that the programmer can attach to
a class, members, parameters, or other code elements. Through a library called reflection, this extra
information can be retrieved and used by other codes at run time. Attributes provide a generic means of
associating information with declarations, a powerful tool in numerous scenarios.

The access modifiers public, protected, and private have equivalent semantics in C# and C++. Both
C# and C++ will default to private if no access modifier is explicitly defined.

Other possible method modifiers include sealed, override, and virtual, as well as the class modifier

abstract that deals with class inheritance functionality and scope.

In C++, programmers have the choice of defining class members inside the class declaration, or outside the
class declaration with the use of the scope-resolution operator. In C#, programmers must define all class
members inside the curly brackets of that class. The simple idea of grouping related objects inside the same
class is designed to create more modular bundles of code.

A key feature of object-oriented programming is to decompose the application into multiple classes. One
of the classes will contain the Main() method, while other classes will contain reusable members and
methods.

Let us consider a program that helps a person to prepare for travel, including the computation of the amount
of U.S. dollars and local currency needed and local temperature converted into Fahrenheit. The program is
decomposed into four classes, as shown in Figure 6.1.

Main class
with the Main()
method

• Hotel cost in USD;

• Enter numbers of days to travel;
• Enter the country name;
• Make use of other classes to perform computation;
• Print output;

amount
inUSD

Amount in
local
currency

• Rental car cost in USD; • Convert USD amount into
local currency amount;

• Convert Celsius to
Fahrenheit;

• Meal cost in USD;
• Total cost;

myCost class CurrencyConversion class

• Convert Fahrenheit
to Celsius;

TemperatureConversion class

Figure 6.1. Problem decomposition into multiple classes.

The sample code implementing the travel preparation is given as follows. A constructor with a parameter
is given in the class myCost. Since the parameter is used by multiple member functions in the class, it is
more productive to pass the parameter through the constructor. The parameter value will be passed to the
object when the object is instantiated by the new function. On the other hand, we do not need to have a
constructor for the other two classes: CurrencyConversion and TemperatureConversion. In these classes,
the parameters are used by one member function only, and thus, we can pass the parameters directly to the
member functions, instead of creating data members to hold the parameter values.

using System;

347

class TravelPreparation { II Main Class

static void Main(string[] args) II The main method

Console.WriteLine("Please enter the number of days you will travel");

String str = Console.ReadLine(); II read a string of characters

Int32 daysToStay= Convert.Toint32(str); II Convert string to integer

myCost usdObject = new myCost(daysToStay); II Create an object

int usdCash = usdObject.total(); II Call a method in the object

Console.WriteLine("Please enter the country name you will travel to");

String country = Console.ReadLine();

CurrencyConversion exchange = new CurrencyConversion();

Double AmountLocal = exchange.usdToLocalCurrency(country, usdCash);

Console.WriteLine("The amount of local currency is: " + AmountLocal);

Console.WriteLine("Please enter the temperature in Celsius");

str = Console.ReadLine();

Int32 celsius = Convert.Toint32(str);

TemperatureConversion c2f = new TemperatureConversion();

Int32 fahrenheit = c2f.getFahrenheit(celsius);

Console.WriteLine("Local temperature in Fahrenheit is: "+fahrenheit);

class myCost {

private Int32 days; II Data member

public myCost(Int32 daysToStay) { II Parameter passed into the class

days = daysToStay; II through the constructor, which is

private Int32 hotel()

return 100 * days;

private Int32 rentalCar()

return 30 * days;

private Int32 meals()

return 20 * days;

public Int32 total()

II used to initialize the data member

II Parameter value used in all methods

II Parameter value used in all methods

II Parameter value used in all methods

return hotel() + rentalCar() + meals();

class CurrencyConversion

public Double usdToLocalCurrency(String country, Int32 usdAmount)

switch(country)

case "Japan": return usdAmount * 117;

case "EU": return usdAmount * 0.71;

case "Hong Kong": return usdAmount * 7.7;

case "UK": return usdAmount * 0.49;

348

case "South Africa": return usdAmount * 6.8;

default: return -1;

class TemperatureConversion {

public Int32 getFahrenheit(Int32 c)

Double f = c * 9 / 5 + 32; return Convert.Toint32(f);

public Int32 getCelsius(Int32 f) {

Double c = (f - 32) * 5 / 9; return Convert.Toint32(c);

The classes used in this program are synthetic. When SOC is studied in the later sections, we will show that
we can access remote objects over the Internet, called WS, which provide real-time services, such as
obtaining the temperatures of given locations and actual currency exchange rates.

6.1.6 Parameters: passing by reference with ref&out

In C#, parameter passing by reference, or giving the receiving method access to permanently changing the
value, is done with the ref keyword, as seen in the example below:

using System;

class Point {

public Point(int x) {

this.x = x;

public void GetPoint(ref int x)

x = this.x; // this.x refers to the class member

int x;

class Test

public static void Main() {

Point myPoint = new Point(l0);

int X = 0;

myPoint.GetPoint(ref x); /Ix 10

C# offers a second way to pass parameters by reference, with the out keyword. The out keyword makes

it possible to pass an uninitialized parameter by reference.

using System;

class Point {

public Point(int x) {

this.x = x;

349

public void GetPoint(out int x) {

x = this.x;

int x;

class Test

public static void Main() {

Point myPoint = new Point(l0);

int x;

myPoint.GetPoint(out x);

6.1.7 Base classes and constructors

/Ix 10

C# takes after the C++ model for defining a parent class in the class header. Classes may inherit from one
base class at most. The C# syntax for defining a base class and for calling the base class constructor might
look like this:

class CalculatorStack: stack

public CalculatorStack(int n) :stack(n) {

6.1.8 Constructor, destructor, and garbage collection

Like C++, if the programmer does not define a constructor, C# creates a default constructor for each class.
This ensures that the member variables of the class are set to appropriate default values, rather than pointing
to random garbage. Multiple constructors can be overloaded for a class. Constructor header syntax includes
the public modifier and the class name with zero or more parameters. Constructors are called automatically
when the class object is instantiated and do not return a value.

In general, destructors release a reference, an object holds to other objects. In C++, the programmer is
responsible for implementing a class destructor to deallocate heap memory after the object is no longer
referenced. Without manual clean up, memory leaks may ultimately crash the system. C# avoids this
potential problem with automatic object clean up and tracking of all memory allocation by the .Net Garbage
Collector (GC). The GC is nondeterministic. It does not take up processor time by running constantly, and
it only runs when heap memory is low. There are some cases when the C# programmer wants to release
resources manually; for example, when working with nonobject resources like a database connection or
window handle. To ensure deterministic finalization, the Object. Finalize method can be overridden.

C# does not have a delete function. Other than that small difference, overriding Object. Finalize method
has the same syntax and effect as using a C++ destructor, as shown in the code below:

public class DestructorExample{

public DestructorExample() {

Console.WriteLine('Woohoo, object instantiated!');

~DestructorExample() {

Console.WriteLine('Yay, destructor called!');

350

6.1.9 Pointers in C#

C# supports the following pointer operations, which will appear familiar to C++ programmers:

& The address-of operator returns the memory address of the variable.

* The primary pointer operator is used in two scenarios:

1. to declare a pointer variable;

2. to dereference or access the value in the memory location to which the pointer points.

-> The dereferencing and member access operator first gets the object the pointer points to, and then
accesses a given member of that object. * can accomplish the same operation. These expressions equally
access a member x of an object pointed to by pointer p.

(*p). x;
p->x;

Semantics for CIC++ pointers, as well as syntax for referencing and dereferencing their values, are upheld
in C#. The main difference in C# is that any code using pointers needs to be marked as unsafe. The unsafe

keyword is used as a modifier in the declaration of an unsafe method, and to mark blocks of code that call
unsafe methods. Code written in the unsafe context is not explicitly unsafe-it simply allows the
programmer to work with raw memory and sidesteps compiler type checking. Unsafe code should not be
confused with unmanaged code; the objects in unsafe code are still managed by the runtime and GC.

Pointers in C# can point to either value types (basic data types) or reference types. However, you can only
retrieve the address of a value type. Another thing to note is, if you are working with the Visual Studio IDE,
the code needs to be compiled with the /unsafe compiler option.

This example illustrates pointers in C#:

public class MyPointerTest {
unsafe public static void Swap(int *xVal, int *yVal) {

int temp= *xVal;

*xVal *yVal;

*yVal = temp;

public static void Main(string[] args) {
int X = 5;
int y = 6;
Console.WriteLine("Original Value: x
unsafe {

Swap (&x, &y) ;

Console.WriteLine("New Value: x

The console outputs are:

I
Original Value: x 5, y

_ New Value: x = 6, y = 5
6

351

{ 0}' y {1}"", x, y);

{ 0}' y {l}", x, y);

6.1.10 C# unified type system

C# uses a unified type system that makes the value of every data type an object. Reference types (complex
types) and value types share the same roots through the base class System. Object. Value types have a
minimum set of abilities inherited through this hierarchy. The following are all valid C# code examples:

5.ToString() //Retrieves the name of an object

b.Equals() -- c.Equals(//Compares two object references at runtime

w.GetHashCode() //Gets the hash code for an object

4.GetType() //Gets the type of an object

Because all types inherit from objects, it is possible to use the dot(.) operator on value types without first
wrapping the value inside a separate wrapper class. This solves some of the inefficient code that object­
oriented programmers must write in C++ (and in Java) to wrap value types before using them like reference
types.

In C++, if you want to create a method with a parameter that accepts any type, you have to write a wrapper
class with overloaded constructors for each value type you want to support. For example:

class AllTypes {

public:

All Types (int w) ;

AllTypes(double x);

AllTypes(char y);

AllTypes(short z);

//a constructor must be overloaded for each desired type

//retrieving a value from this class would require overloaded functions

} ;

class CTypesExample

public Example(AllTypes& myType) {

} ;

In C#, whenever a value type is used where an object type is required, the compiler will automatically box
the value type into a heap-allocated wrapper. Boxing is the compiler process that converts a value type to
a reference type. Unboxing is explicitly casting the reference type back to a value type.

Boxing and unboxing example 1:

int V = 55;

Console.WriteLine ("Value is: {v}", v);
objects

//The compiler wraps value types for you

int v2 = (int) v;

Boxing and unboxing example 2:

int V = 55;

//Console.Writeline only accepts

//Unboxing is like Java casting

object x = v; //box int value type v into reference type x

Console.WriteLine ("Value is: {0}", x); // Console.Writeline

int v2 = (int) x; // only accepts objects

352

A unified type system makes cross-language interoperability possible. Other benefits of the type system
include guaranteed type safety, a security enhancement where each type in the system is tracked by the
runtime. The overall effect is a safer, more robust code, with mainstream functionality creating a
conceptually simpler programming model.

6.1.11 Further topics in C#

The purpose of this section is to extend the object-oriented features discussed in C++. C# is a powerful
programming language to which many books and websites have been dedicated. Key topics that are integral
in C#, which are not covered extensively here, include: generics, indexers, properties, event handling,
delegates, attributes, and a long list of capabilities within the namespaces of the .Net framework.

Section B.2.3 in Appendix B introduces how to use Visual Studio to compile and run C++ and C# programs.

6.2 Service-oriented computing paradigm

The evolutional and technological shift from products to services means that the value of a technology is
moving from the resulting product itself to how the technology is being received by its users. The value (in
terms of increased productivity of using the product, total cost of ownership, improved efficiency and
effectiveness, return on investment formula or benchmark, project completion time, and increased revenue)
must be explicit and reflected from the technology's investment. For software products, the emerging SOC,
including service-oriented architecture (SOA) and WS technologies, reflects the shift from the product­
oriented paradigm to the service-oriented paradigm. This paradigm shift is completely changing the way
we develop and use computer software. In the near future, computer users may no longer need to buy
hardware or software. All they will need to do is to sign up for a service contract with a service provider or
broker. Hardware with necessary software can be provided for free. Users are charged for the services they
use, similar to the models used by cable TV or cellular phone operators. The services can be provided online
through the web technology. Computer companies such as IBM, Microsoft, Micro Sun Systems, Oracle,
and SAP have started to implement the new paradigm. For example, WebSphere (IBM) and Visual Studio
.Net (Microsoft) are platforms that support the development and applications of WS. The software licensing
model is also being changed from the previous model, which is a step toward this service-oriented direction:
the users have to register the software or it stops functioning within a certain period of time. Furthermore,
the entire software is no longer stored on CDs. They are partially stored on the vendor's web servers with
appropriate access control.

In the traditional software development process, the developer takes the requirements, converts them into
the specification, uses a programming language to code the specification, and then uses a compiler to
translate the code into the executable. The SOC paradigm evolves from the object-oriented computing
(OOC) and component-based computing paradigms by splitting the developers into three independent but
collaborative parties: the application builders (also called service requesters), the service brokers (or service
publishers), and the service providers. The responsibility of the service providers is to write program
components, such as classes, and then, to wrap them into services with the open standard interfaces. The
service brokers publish and market the available services. The application builders find the available
services through service brokers and use the services to compose new applications. The application
development is done via discovery and composition, rather than traditional design and coding.

6.2.1 Basic concepts and terminologies

Technically, a service is the interface between the producer and the consumer. From the producer's point
of view, a service is a function module that is well defined, self-contained, and does not depend on the
context or state of other functions. In this sense, a service is often referred to as a service agent or simply
an agent. These services can be newly developed modules or just wrapped around existing legacy programs

353

to give them new interfaces. From the application builder or user's point of view, a service is a unit of work
done by a service provider to achieve desired end results. A service normally does not have the human
user's interface. Instead, it provides a programming interface so that a service can be called (invoked) by
other services. For human users to use the services, a user interface needs to be added. For example, the
airline's services always have two sets of interfaces. The programming interfaces are used by programs for
automated search (e.g., one can write a program to find the lowest fare across airlines from city A to city B
with a given number of stops). The human user interfaces allow human users to manually browse through
the airline's web pages to find the tickets they want.

Service-Oriented Architecture is a software system consisting of a collection of loosely coupled services
(components) that communicate with each other through standard interfaces and via standard message­
exchanging protocols. These services are autonomous and platform independent. They can reside on
different computers and make use of each other's services to achieve their own desired goals and end results.
A new service can be composed at runtime based on locally or remotely available services. Remote services
can be searched and discovered through service brokers that publish services for public access.

Web services implement a web-based SOA and a set of enabling technologies, including XML (eXtensible
Markup Language), the standard for data representation. Simple Object Access Protocol (SOAP) enables
remote invocation of services across network and platforms. Web Services Description Language (WSDL)
and Web Ontology Language for Services (OWL-S) are XML-based languages for service description.
Universal Description Discovery and Integration (UDDI) allows WS to be published and listed in its WS
registry for searching and discovering. WS have three technical aspects:

• Services are functional building blocks. Multiple services can form a composite service and the
composite service becomes a new building block. Service composition can be done at runtime when
such a building block is needed.

• Services are software modules that can be identified by a Uniform Resource Locator (URL) and
whose interfaces and bindings are capable of being defined, described, and discovered as XML
artifacts. WS are often described by WSDL or OWL-S, accessed by the protocol SOAP, and
published by UDDI. With an added human user interface, a single service or a composite service
can form a web application. WS are normally accessed by computer programs while web
applications are accessed by human users.

• Services support direct interactions with other software agents using XML-based messages
exchanged via Intern.et-based protocols; for example, hypertext transfer protocol (HTTP) and file
transfer protocol (FTP) are independent of platforms and programming languages.

A Service-Oriented Enterprise (SOE) is an enterprise that implements and exposes its business processes
through an SOA, and it provides frameworks for managing its business processes across an SOA landscape.

A Service-Oriented Infrastructure (SOI) better supports the operation of software developed in SOE.
Intel proposed the SOI concept. The idea is to develop computing components, memory components, and
networking components as virtual services, so that they seamlessly interoperate with software services.
Another implication of SOI is that the hardware can be constructed as recomposable services which allow
hardware components to be replaced or upgraded without stopping the operation of the system.

Service-oriented computing refers to the paradigm that represents computation in service-orientation
concepts and principles. SOC is also used as an umbrella term for SOA, WS, SOE, SOI, etc.

Service-oriented system engineering (SOSE) is a combination of system engineering, software
engineering, and SOC. It suggests developing service-oriented software and hardware under system
engineering principles, including requirement, modeling, specification, verification, design,
implementation, testing (validation), operation, and maintenance.

354

6.2.2 Web services development

Under the SOC paradigm, individual services are developed independently based on standard interfaces.
They are submitted to service brokers. The application builders or service requesters search, find, bind, test,
verify, and execute services in their applications dynamically at runtime. Such SOA gives the application
builders the maximum flexibility to choose the best service brokers and the best services. Figure 6.2 shows
a typical WS architecture, its components, and the process of registering and requesting a service.

Directory services @ /
UDDI / WSDL / SOAP · - -♦ __ S_ e_rv-ic_ e_ b_ r _ok- e -rs---..'ebXML/CPP

Ontology ·--♦

@
Application builder

½pplication()

... ...
I I

I I

(J) SOAP call

® Results

,

, I White page I
!Yellow pagel

I Green page I

Service providers

...
I

I

...
I

I

Programming
languages:
C++,C#
Java

I I

I I

T T

Computing service
development:
.Net (Microsoft)
W ebSphere (IBM)

Application development platforms
Specification languages .Net, WebSphere,

Web and data service development
XML, RDF, OWL-S, WSDL

WSFL, BPEL4 WS, PSML for composition, code generation

Figure 6.2. A typical web service architecture.

The components and steps shown in the diagram are explained as follows:

1. The service providers develop software components (agents) to provide different services using
ordinary programming languages such as C++, C#, or Java. SOC development platforms like
Microsoft Visual Studio and IBM WebSphere support the generation of standard interfaces in
XML-based WSDL, which can be then registered to a service registry, such as UDDI.

2. The service providers register (publish) the services to a service broker and the services are
published in the registry.

3. Current service brokers are UDDI or ebXML-based, which provide a set of standard service
interfaces for publishing and discovering WS. For UDDI, the information needed for publishing a
service includes: (1) White page information: Service provider's name, identification (e.g., the
company's DUNS number), and contact information. (2) Yellow page information (business
category): industry type, product type, service type, and geographic location. (3) Green page
information: technical detail on how other WS can access (invocate) the services, such as APis
(application programming interfaces). UDDI's white and yellow pages are an analogy to the
telephone white and yellow pages.

4. An application builder looks up, through the Internet, the broker's service registry, seeking desired
services and instructions on how to use the services. The ontology and standard taxonomy will help
automatic matching between the requested and registered services.

5. Once the service broker finds a service in its registry, it returns the service's details (service
provider's binding address and parameters for calling the service) to the application builder.

6. The application builder uses the available services to compose the required application. This is
higher-level programming using service modules to construct larger applications. In this way, an
application builder does not have to know low-level programming. With the help of an application

355

development platform, the application code can be automatically generated based on the
composition logic and the constituent services.

7. The code of certain services found through a broker could reside in a remote site (e.g., in the service
provider's site). SOAP calls can be used for accessing the services remotely.

8. The service agents in the service provider directly communicate with the application and deliver
service results.

6.2.3 Service-oriented system engineering

Service-oriented computing uses services discovered over the Internet to compose applications. The
trustworthiness of the discovered services, as well as the availability of remote servers and the connectivity
to the Internet, are much bigger issues than those developed in the same house. Thus, SOSE techniques will
play a bigger role in ensuring the trustworthiness of the discovered services.

Because SOC software is developed by three independent yet collaborative parties, SOSE will be different
from the traditional software engineering. Table 6.2 lists typical SOSE techniques in the development
phases of SOC software. Because the development process is collaborative, many of the SOSE techniques
are collaborative too. For example, test cases may be contributed in a collaborative manner by all three
parties. The service provider can provide sample unit test cases for the service broker and service requestors
to reuse. The service broker can provide its own test cases via a specification-based test case generation
tool, and the broker may even make the tool available for all the parties. The application builder can use
the sample test cases provided by the service broker, and also contribute its own application test cases.

While the basic engineering principles remain the same, the way they are applied will be different in the
SOC paradigm. Specifically, most engineering tasks will be done on the fly at runtime in a collaborative
manner. Because systems will be composed at runtime using existing services, many engineering tasks need
to be performed without complete information and with significant information available just in time before
application. In this way, SOSE in some ways may be drastically different from traditional engineering
where engineers have complete information about the system requirements and thorough analyses can be
performed even before system design is started.

Development phase SOSE techniques

Collaborative specification Service specification languages, model-driving architecture, ontology
& modeling engineering, and policy specification

Collaborative verification Dynamic completeness and consistency checking, dynamic model
checking, and dynamic simulation

Collaborative design Ontology engineering, dynamic reconfiguration, dynamic composition
and recomposition, dynamic dependability (reliability, security,
vulnerability, safety) design

Collaborative Automatic system composition and code generation
implementation

Collaborative validation Dynamic specification-based test generation, group testing, remote
testing, monitoring, and dynamic policy enforcement

Collaborative run-time Dynamic data collection and profiling, data mining, reasoning,
evaluation dependability (reliability, security, vulnerability, etc.) evaluation

Collaborative operation and Dynamic reconfiguration and recomposition, dynamic reverification
maintenance and revalidation

Table 6.2. Different SOSE techniques.

356

6.2.4 Web services and enabling technologies

Web services and the enabling technologies form a perfect instance of the SOC paradigm, where available
resources on the web make full SOC possible and attractive. One part of WS is the semantic web, which
represents resources, and the other part is the service agents, which make use of available resources on the
web to provide services requested by the application builders and service requesters.

The semantic web is a vision for the future of the web in which information is given explicit meaning,
making it easier for WS to process and integrate information available on the web in an automatic manner.
A specific domain of the semantic web is called ontology, which defines a vocabulary of terms (words),
their meanings (semantics), their interconnections (e.g., synonym and antonym), and rules of inference.
The enabling technologies for WS and the semantic web include the following:

Extensible markup language (XML) is a universal meta language used to define other WS standards,
protocols, interfaces, documents, data, etc. Like Backus Naur Form (BNF), XML is a context-free language
that only defines the syntax of the language. The context and semantics of data and programs need to be
defined in a detailed language or protocol based on XML syntax, such as SOAP, RDF, OWL, or WSDL,
to be discussed in this chapter.

Resource Description Framework (RDF) can be considered a language that describes individual resources.
An RDF document consists of a collection of statements. Each statement is a triple of (1) subject; (2)
predicate, property, or relationship; and (3) object or value. The subject and the predicate are each a resource
and the object can be a resource or a value. A statement makes an assertion that the subject is related to the
object in the way specified by the predicate. An RDF document can be represented as a directed and labeled
graph ifwe use a node to represent the subject or an object, and use an edge to represent the predicate. The
subject is the source, the object is the target, and the predicate is the label of the edge.

RDF Schema (RDFS) extends RDF with frame-based primitives to specify class hierarchy and property
hierarchy, with domain and range definitions of the properties, which can be used to define a simple
ontology like a dictionary.

Web Ontology Language (OWL). In terms of the expressivity of describing the ontology or semantics,
RDF and RDFS are very limited. OWL is built on RDF and RDFS to provide the description logic, including
the classes and properties, as well as the constraints on the properties and their combinations using logic
operators.

Web Services Description Language (WSDL) is an XML-based specification language for describing the
WS interfaces. It can be used to define data types, input and output data formats, the operations (methods)
provided by WS, network addresses, and protocol bindings.

Simple Object Access Protocol (SOAP) enables remote invocation of services across network and
platforms. A SOAP packet is written in XML format and is normally embedded in an HTTP (hypertext
transfer protocol) packet to be sent to the destination using HTTP protocol. Once the receiver receives the
SOAP packet, it calls the requested service and returns the result to the requester.

Universal Description Discovery and Integration (UDDI) [http://www.uddi.org] provides a service
directory service. The goal of the UDDI initiative is to build a standard, open, global, and platform­
independent framework to share a global business registry, let business entities find each other, and define
how they access each other's services over the Internet. UDDI is implemented as a WS that allows service
providers to publish their WS and for service requesters to search services by name, by business type, or
by geographic region. When submitting a service to UDDI, the service provider must provide the provider's
identity, contact information, geographic location, service type, and service APis for the programs of the
application builders to call the services. UDDI uses WSDL for service description and uses SOAP for
service invocation.

357

electronic business XML (ebXML) [http://www.ebxml.org]. Similar to UDDI, ebXML also provides a
service directory, but it is more complex than UDDI. The goal of ebXML is more challenging, as it is to
build a global e-business infrastructure, with the specific goal of letting small companies and companies in
developing nations participate (with a very low entry cost). In ebXML, a central role is played by business
processes. Every company publishes one or more Collaboration Protocol Profile (CPP), a description of the
processes and the technical service interfaces to interact with them. The role of CPP is comparable to that
of WSDL in UDDI, but CPP is more powerful, which allows users to define the semantics. ebXML also
provides a messaging service to play the role of SOAP in UDDI.

Figure 6.3 shows the relationships among these techniques and their roles in creating SOC systems, where
XML, XML Schema, DRF, RDF Schema, and OWL are used to describe resources, data, and semantics of
resources and data, which form global and local ontologies. Programming languages such as Java, C++,
and C# can be used to write the service agents. The IDE such as Visual Studio and WebSphere can be used
to wrap the program into a standard service interface written in WSDL to form service agents, which make
use of the resources, data, and ontologies to provide required services. UDDI and ebXML are used to
publish services. SOAP is used for remote service invocation between services.

RDF and RDF schema

XML and XML schema

Web Services

Figure 6.3. Overview of the techniques to be discussed in this chapter.

In the remainder of the chapter, we will study creating WS, registering WS, and using WS to build
applications.

6.3 *Service providers: programming web services in C#

Web services are platform independent. However, the class that actually performs the computation tasks
will still be written in a specific programming language. In other words, a WS is an interface that converts
the service call (remote invocation) in an open standard language (e.g., XML/SOAP/WSDL) into the
function-call of the programming language (e.g., C# or Java), in which the service agent is written, as shown
in Figure 6.4.

358

Return value in XML/SOAP

Remote invocation in XML/SOAP

Web service interfuces

Function call
in C#

Return value
in C#

To UDDI server

WSDL description
fur UDDI ublication

Automatically
Service agent .__

_
_ F_un_c _tio _ns_wrrtt_· _e n,....in _C_#-'(o_r _J_a�_a.,;._) _ ____,,____ ___ _, generate the

WSDL file
Manually write the functions

Figure 6.4. Service agent and web service interfaces.

In the previous section, we mentioned the standard interfaces in XML, SOAP, and WSDL. We did not
study them in detail. In fact, we do not need to write the interfaces manually for the service agent. There
are tools that can automatically generate the interface file. This is analogous to writing a web page. You
can either directly use the html language to write a web page, or use a web authoring tool to write a web
page.

There are different languages and development environments that can be used to develop WS. In this
section, we will use C# and Visual Studio as examples to show how to develop and access WS. We will
discuss:

• How a service provider creates a WS project, writes WS consisting of a set of C# functions, and
automatically generates the WSDL interface file;

• How a service provider puts the WS and its WSDL interface file online so that the service requesters
(clients) can remotely invocate the services;

• How a service requester (client) accesses the WS by calling the functions remotely either in a web
application or in another WS.

6.3.1 Creating a web service project

ASP.NET is the built-in programming template in the Visual Studio.Net framework's Common Language
Runtime (CLR) that is used to create individual WS on the service provider's server. It can also be used to
create web applications on the client site to consume the WS. ASP .Net WS tutorials for programmers and
a downloadable version can be found in its official site at [http://www.asp.net/Tutorials/quickstart.aspx].

Similar to creating a C++ or C# programming project, you can create a C# and ASP.Net web service
template as follows:

• In the "File" menu of Visual Studio, choose "New" and "Web Site ... ";
• A dialog window will be open. Choose the template "ASP. Net Web Service." Choose a location

and a name for your WS, for example, enter a name for the project (e.g.,

c: \inetpub\wwwroot\WebStrar). Then a WS project WebStrar with a stack of folders and
files will be created;

• In the project stack, the file with the name "service. cs" is the file in which your C# code should

be incorporated. Double click on the Service. cs f
i

le, and you will see the template of the service
agent code. You can simply add your C# functions into the template. See the next subsection.

Once you have added your code into the template, you can use the tools in Visual Studio to compile your
C# code, build the project, debug the code, and execute the code.

359

6.3.2 Writing the service class

You still have to write the code of your service class manually to perform the required tasks (services), for
example, perform addition, sorting, etc. However, ASP.NET has provided a template with defined
namespaces and classes to facilitate writing of WS. The following code shows the template in the file

Service. cs.

using System;

using System.Web;

using System.Web.Services;

using System.Web.Services.Protocols;

[WebService (Name space = "http://tempuri.org/")]

[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfilel 1)]

public class Service : System.Web.Services.WebService {

public Service () {

//Uncomment the following line if using designed components

//InitializeComponent();

[WebMethod] // Make the following function accessible over Web

public string HelloWorld() {

return ("Hello World");

[WebMethod] // Make the following function accessible over Web

public double PiValue() {

double pi = System.Math.PI; // call lib function PI

return (pi);

[WebMethod] // Make the following function accessible over Web

public int abs(int x) {

if (x >= 0) return (x);

else return (-x);

The program template starts with listing namespaces that could be used in the WS. Not all of the namespaces

listed are necessary for this small example. Since the project name is called WebStrar, the new namespace

created for the project is called WebStrar. Then, a public class called Service is defined, which inherits

the built-in class WebService in the namespace System. Web. Services. In the class definition, it starts

with the constructor Service (), followed by a list of functions. A list of required system functions are
omitted in the given program above. Three web accessible functions are defined in the class:

The stringHelloWorld()function simply returns a string "Hello World."

The double Pi Value (int x) function returns a double value (e.g., 3.14159265358979).

The abs () function takes an integer value as input and returns an integer value, the absolute value of x: If

x is nonnegative, it returns x, otherwise, it returns -x.

360

Before each function, an instruction [WebMethods J is used, which makes the following function web
accessible.

6.3.3 Launch and access your web services

Once you have incorporated all your service functions into the C# program template Service. cs, you can
build (compile) and execute the program.

When the program is executed using the option: "debug" - "start without debugging," it will immediately
launch your WS on your local host. If you are working on a Windows XP machine, the service will be
launched as a local web page located at:
http://localhost:1262/WebStrar/Service.asmx.

Figure 6.5 shows the web page that contains the three services abs, Pi Value, and HelloWorld, defined
in Service. asmx.

Click on a service, and the function behind the service will be remotely invocated. For example, if abs is
clicked, the web page shown in Figure 6.6 will pop up. Since a parameter value is needed in the WS, the
web page provides an input panel to take the parameter value. After a value (e.g., -18 o 2) is entered and
the bottom "invoke" is clicked, the WS abs is remotely invoked. The return value will be shown in another
web page containing the following information:

<?xml version="l.0" encoding="utf-8" ?>

<int xmlns="http://tempuri.org/">1802</int>

,:J Serfce,Vi{_eb Servic� � Microsoft ln:t�rnet Explorer
, , · . . : ,, . . . _ · 1!4'.JLQ][RI

File Edit View Favorites Tools Help

E:ack
l

.
-1\...) Search U Favorites

Address e http://localhost: 1262/WebSt rar/Service:;;x- .
-----•-------· ·- ------ _______ ..,,_

--

Service

�· .�. L�. D G
·-----· --�7 Go Links »

The fol lowing operations are supported, For a formal definition
) please review the Service Descriptjon,

• HelloWorld

• PiValue

• abs

»

- �_I
< llil >_1

Figure 6.5. The web service is launched on a service-hosting server.

The return value 18 o 2 is wrapped in the XML format.

361

, Service

Click for a complete list of operations,

abs

Test

To test the operation using the HTTP POST protocol, click the 'Invoke' button,

Parameter Value

x: 1-180? -�-�-��---=-�=-----_-_----_ --·----- l
I Invoke I

Figure 6.6. Enter the parameter value from a web browser.

�I

The above process is in fact in the test mode. It is possible only when the services are launched on a local
host. In this mode, the services cannot be remotely accessed by other application builders over the Internet.
They must be deployed on an Internet-accessible server and be given a URL in order for them to be accessed
by other WS or applications on the Internet. If you want to make the services available on the Internet, you
have two different ways to do it.

First, you can publish the services on your Windows XP computer by following these steps. In your Visual
Studio WS project, you can choose menu item "Build" - "Publish Web Site." Then a dialog window
will be open. You can choose a location in your computer to host the services; for example, you can choose
the location: C: \Inetpub\wwwroot\WebStrarServices, where Inetpub\wwwroot is the web
directory managed by the Internet Information Server (IIS), which is an optional component of the
Windows XP operating system. You need to install IIS in order to run WS from your Window XP machine.
Once the website is published, a web page with the address
http:/ /localhost \WebStrarServices/Service. asmx will be open, which will display the same
services shown in Figure 6.5. Replacing the word "localhost" with the IP address of the local machine,
we obtain the URL of the WS (i.e., http: / /14 9. 16 9. 177. 10 7 /WebStrarServices / Service. asmx

will be the URL of the services).

Second, you can publish the services if you have access to a web server (e.g., a machine running Windows
Server and IIS). The service discussed here has been deployed on the server at the following address:

http:/ /venus.eas.asu.edu/WSRepository/Services/BasicThree/Service.asmx

Once the services are deployed on a server, the WS can be accessed only through their programming

interfaces. The following code shows an example of writing a SOAP/HTTP request to call the WS abs,

and the response from the WS to be sent back to the service requester.

The following code shows the SOAP request, where the length needs to be replaced with the actual value.

POST /WebStrar/Servicel.asmx HTTP/1.1

Host: localhost

Content-Type: text/xml; charset=utf-8

Content-Length: length

SOAPAction: "http://tempuri.org/abs"

<?xml version="l.0" encoding="utf-8"?>

362

<soap:Envelope xmlns:xsi="http://www.w3.org/200l/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/200l/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<abs xmlns="http://tempuri.org/">

<x>int</x>

</abs>

</soap:Body>

</soap:Envelope>

The SOAP response, where the length needs to be replaced with the actual value:

HTTP/1.1 200 OK

Content-Type: text/xml; charset=utf-8

Content-Length: length

<?xml version="l.0" encoding="utf-8"?>

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<absResponse xmlns="http://tempuri.org/">

<absResult>int</absResult>

</absResponse>

</soap:Body>

</soap:Envelope>

Furthermore, in order to publicize the WS, their URL and WSDL file must be registered to a service
directory to make the services Internet-searchable.

6.3.4 Automatically generating a WSDL file

When we execute the Service 1.asmx file on Visual Studio, its WSDL file is automatically generated by the
ASP.Net environment and linked to the web page in Figure 6.5. When you click on the link "service

Description," a web page containing the service's WSDL file will be opened. Below is a part of the
WSDL file for the service.

<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:tns="http://tempuri.org/" xmlns:s="http://www.w3.org/200l/XMLSchema"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soapl2/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://tempuri.org/">

<wsdl:types>

<s:schema elementFormDefault="qualified"
targetNamespace="http://tempuri.org/">

<s:element name="HelloWorld">

<s:complexType/>

</s:element>

<s:element name="HelloWorldResponse">

363

<s:complexType>

<s:sequence>

<s:element minOccurs="0" maxOccurs="l" name="HelloWorldResult"

type="s:string"/>

</s:sequence>

</s:complexType>

</s:element>

<s:element name="PiValue">

<s:complexType/>

</s:element>

<s:element name="PiValueResponse">

<s:complexType>

<s:sequence>

<s:element minOccurs="l" maxOccurs="l" name="PiValueResult"

type="s:double"/>

</s:sequence>

</s:complexType>

</s:element>

<s:element name="abs">

<s:complexType>

<s:sequence>

<s:element minOccurs="l" maxOccurs="l" name="x" type="s:int"/>

</s:sequence>

</s:complexType>

</s:element>

<s:element name="absResponse">

<s:complexType>

<s:sequence>

<s:element minOccurs="l" maxOccurs="l" name="absResult" type="s:int"/>

</s:sequence>

</s:complexType>

</s:element>

<s:element name="string" nillable="true" type="s:string"/>

<s:element name="double" type="s:double"/>

<s:element name="int" type="s:int"/>

</s:schema>

</wsdl:types>

This WSDL file contains the information for the UDDI server to match the service requests from the clients
with the services provided by the WS.

In the next section, we discuss the service directory and, in Section 6.5, we discuss how to use the .Net
framework to build applications based on the WS running on service providers' servers.

364

6.4 Publishing and searching web services using UDDI

There are three types of service brokers: Directory services (e.g., UDDI), repository services (e.g., ebXML),
and ad hoc service listings.

6.4.1 UDDI file

The Universal Description, Discovery, and Integration (UDDI) is an OASIS standard that is used to
represent, model, and publish WS (http://www.uddi.org). UDDI was initiated by IBM, Ariba, and
Microsoft. Today, over 300 companies participate in the organization, including HP, Intel, Novell, and
SAP. UDDI is based on existing standards, including XML, SOAP, and WSDL. UDDI's main function is
a service registry, and its registry information is roughly organized in three groups:

• White Pages include the service provider's name, identity (e.g., the DUNS number), and contact
information.

• Yellow Pages include the industry type, product and service type, and geographic location.
• Green Pages include binding information associated with services, references to the technical

models that those services implement, and pointers to various file and URL-based discovery
mechanisms. The information can be searched and interpreted by programs.

This section uses Microsoft UDDI Business Registry as an example to elaborate the service publication and
searching processes.

All major computing companies have their UDDI implementation, including IBM, Microsoft, Oracle, and
SAP. As an example, Microsoft UDDI interface is shown in Figure 6.7. The functions include:

1. Create a new account: This is a manual process using a graphical user interface (GUI), as
shown in Figure 6. 7.

2. Publish a service provider: This is a manual process using a GUI, as shown in Figure 6.8.
3. Publish your services: This can be a manual process using a GUI or an automatic process

using an API, as shown in Figure 6.9.
4. Search for services: This can be a manual process using a GUI or an automatic process

using an API, as shown in Figure 6.10.

Uddi
8u $i!'l ss Re gl$tr)· Nocte

t Home �earth Pub llish
I

LJNl(S

I 11omt

N ws

TOOL'S

Reg is�r ¢::I
Pubhs h ¢:::J
Search ¢:::J

Figure 6.7. Open an account at Microsoft UDDI registration page.

Once an account is opened, the user can register as a service provider, as shown in Figure 6.8. A unique
identity number will be returned to the service provider, which can be used by the service provider for
publishing WS.

365

Address I;� https: 1/uddi. mlcrosoft. com/edit/frames, aspx - [v I Go Links »

Uddi
Business Registry Node

Publish

8 ,

$·e::, Providers

I 13· cs

-....JilMM&Ei ;;;11111;;;;;;;4;;;;;;;;;;;;;;;;;;;;
(signOut ·]

UDDI Help

.:\My UDDI

My UDDI displays only the entities - Web services, providers, and
tModels - you publish, Any information you enter is immediately
a vailable in Search,

S·¢ abcl

http://www.yahoo.com
My UDDI Providers tModels

'C) tModels My UDDI enables you to publish and modify your Web l1]
service information, To publish a service, you must first
publish a provider, You will typically publish a tModel to
describe an interface, and then use that tModel in one or
more service descriptions when you publish them under the
appropriate provider,

Figure 6.8. Register as a service provider.

Once a WS is published by a service provider, a tModel key will be returned to the service provider, which
can uniquely identify the WS, as shown in Figure 6.9.

A tModel usually represents a description of an interface, Make tModels easy to locate and
reference by adding details) categories) and identifiers, Publish technical information, such as
an interface specification or WSDL fi le

J by pointing to one or more overview documents,

Details Identifiers Categories Overview Doc1Jment

Name and briefly describe the interface (or other data) that this tModel represents, [21 The tModel key is unique and is intended for use in programmatic queries only,

Owner:

cs,

tModel Key:
uuid: 02016094-9c03-4 7e9-a52b-1dec2d0c1454

Lan9uage:
· en-US

Description:
f Provide text st;ing !Compute Pi value
Compute absolute value

Iv

(*Maximum 255 characters; text only)

1 record(s) found,

Figure 6.9. Publish a web service.

The WS published in UDDI are organized in a category tree, as shown in Figure 6.10, which can be searched
manually or through a programming interface.

366

6.4.2 ebXML

Electronic Business using eXtensible Markup Language (eBXML) is a modular suite of
specifications/standards that enables enterprises of any size and in any geographic location to conduct
business over the Internet. Using ebXML, companies now have a standard method to exchange business
messages, conduct trading relationships, communicate data in common terms, and define and register
business processes (http://ebxml.org/).

From the service broker's point of view, ebXML defines more features than does UDDI. The most
significant difference is that ebXML offers a service repository in addition to service registry. Since large
computing companies such as Microsoft, IBM, and Oracle have resources to host their own services, they
prefer the UDDI. On the other hand, ebXML is preferred by medium and small IT companies, companies
whose core business is not in IT, and governmental organizations. ebXML was started in 1999 as an
initiative of OASIS and the United Nations/BCE agency CEFACT. The original project envisioned and
delivered five layers of substantive data specifications:

• ebXML Business Process Specification Schema

• Core Components

• Collaboration Protocol Profiles and Agreements (CPPA)

• Message Service

• Registry and Repository

Make providers easy to locate by adding details, identifiers, and categorizations. Publish support contacts,
links to additional information, or relationships with other providers by adding contacts, discovery UR.Ls, and
relationships.

Categories Discovery URLs Relatii:mships
--------- ---

A categorization scheme is a predefined set of categories, derived from an internal or external l1J
hierarchy, that can be used to classify a provider. Add one or more categories by selecting from
available schemes. If an appropriate categorization is not available, contact a UDDI Services
Coordinator.

Categorization Scheme: VS Web Service Search Categorization
Key Name: Collaboration
Key Value: 2

Select a categorization scheme:
uddi-org :types

uddi-org: relationships

ntis-gov: sic: 1987

unspsc-org:unspsc:3-1

unspsc-org:unspsc

microsoft-com: geoweb: 2000

ntis-gov: naics: 1997

VS Web Service Search Categorization

ntis-gov: naics: 2002

unspsc-org:unspsc:v6.0501

ubr-uddi-org: iso-ch: 3166-2003

1 record(s) found,

Delete

Add Cahsqory

Cancel

Add Category

Figure 6.10. Categorization of web services in UDDI directory.

367

ebXML aims to provide a migration path of technologies for Small-Medium Enterprises (SME) and
government organizations to an integrated eBusiness platform. The heterogeneous nature of eBusiness
transactions requires a flexible infrastructure/framework that supports simple service calls and complex
document exchange. For eBusiness, the key integration patterns realize SOA benefits in a pragmatic
iterative manner.

6.4.3 Ad hoc registry lists

Less formally, many organizations offer a simple list of services or a manually organized service registry.
Users can instantly register a new service and manually search a service by browsing through the list. Some
of the useful service lists include:

• ASU Services and Application Repository (http://venus.eas.asu.edu/WSRepository/repository/)
• Remote Methods (http://www.remotemethods.com/)
• Web Service X (http://www.webservicex.net/)
• Xmethods (www.xmethods.net)

6.5 Building applications using ASP.Net

In Section 6.3, we discussed in detail how to use C# and ASP.Net to develop individual WS. This section
uses the same development tool to construct applications using the remote WS available online.

6.5.1 Creating your own web browser

Before we create our applications using remote WS, we need to learn the Visual Studio design and
development tools. We will learn them through an example, in which you create your own web browser in
a few simple steps.

1. Start Visual Studio by clicking Start ➔ All Programs ➔ Microsoft Visual Studio.
2. Create a new project by clicking on File ➔ New ➔ Project.
3. From the New Project window, create a new Visual C# Windows application and name the

application "JohnDoesBrowser." You can use your name.
4. On the newly created project, select the "Form I" and modify the following properties using the

values below:
a. Text➔ John Doe's Browser
b. Size ➔ 720, 640 (Width, Height)

5. From the Toolbox, drag-and-drop the GUI item "WebBrowser" onto the design surface. The web
browser control will fill the design surface completely. If you do not want the content area of your
browser to fill the entire browser window, you can click the smart tag located on the top-right
corner of the web browser control and select "Undock in parent container." Then, you can select
the web browser control and expand the area so that it occupies almost the entire designer space.
Make sure to leave room at the bottom for the URL address and the GO button

6. Drag-and-drop a Textbox and a Button from the Toolbox onto the Design surface. The textbox will
be used to enter the URL for your browser, and the button will be used for invoking the web page.
Please place them on the top or bottom, as you wish. Change the properties of the controls using
the values below:

a. Textbox: (
N

ame)➔ txtURL
b. Textbox: Text: http://
c. Size the Textbox wide enough that it can accommodate most URLs
d. Button: Text ➔ Go, and (name) ➔ btnGo

7. Now, you can link the code behind the button "Go" by double clicking on the button, and it will
take you to the code area. Add one line of code (highlighted) in the prototype, as shown below.

368

private void btnGo_Click(object sender, EventArgs e)

webBrowserl.Navigate(txtURL.Text); // Add this line of code

8. Compile and execute your application by pressing Ctrl+FS (or use the menu command). Your own
web browser is ready to take you to any URL you enter, as shown in Figure 6.11.

'_ ·- ·. , . , , 'x ,

I
Sc-�,rch !rn,A•Je'. •,1,,p� f'l,1·, Y0 •..luT1Jfw N1•,�-. G•n,111 D11\1· M,)r,· � Sign in ,(f J

e •
I

Go gle
T. l f 'L

Figure 6.11. John Doe's web browser GUI.

!,]

Choose "Build" ➔ "Batch build," and check the "release" box to generate the .exe file to run on different
computers. Send your browser to your friends for testing.

You can add many other features to your browser. For example, you can build a simple calculator in your
browser, which allows you to do calculations while reading a web page. You can also add encryption and
decryption services in your browser, so that you can encrypt your data before sending them to your friends.

6.5.2 Creating a Windows application project in ASP.Net

There are two types of applications: the applications that run on your PC and applications that run in a web
browser. The web browser application we developed is running on a PC. In this section, we will develop
an application running on a PC, and in the next section, we will develop an application running in a web
browser.

Similar to creating a C# and ASP.Net project as discussed in Section 6.2, you can create a C# and ASP.Net
Windows application template as follows:

1. In the "File" menu of Visual Studio, choose New ➔ Project...
2. Choose C# as the project type and "Windows Forms Application" as the template. Enter a name

for the project, for example, WindowsFormsApplicationl and a location. You can create a new
solution for the project, or add the project in an existing solution. If you want to use the ASP.Net
development server to test the WS that you created in Section 3 .1 and the Windows application you
are creating, you should add this project into the same solution that you created for the WS project,
called WebStrar. Then a solution with two projects will be created, WebStrar and
WindowsFormsApplicationl , with a stack of other folders and files.

3. Once the project is created, a form called Forml. cs will be generated for creating the GUI. Before
we design the GUI, we first link the remote service into the project.

4. To add remote WS into the application (creating proxies of services), in the Solution Explorer,
mouse right-click the "References" folder in the project stack, and then choose "Add Web
Reference," as shown in Figure 6.12(a). If you do not see "Add Web Reference", choose "Add
Service Reference." Then, in the dialog box, click the "Advanced " You will then find the "Add
Web Reference" option. "Add Web reference" is used for accessing services in .asmx format, while

369

"Add Service Reference" is used for accessing .svc services developed in Windows
Communication Foundation.

5. A dialog window will be opened for "Add Web Reference." You can search the services that you
want to use in the application. In this example, we will use the basic service developed in Section
6.3 .1. Use the URL (http://localhost:49187 /WebStrar/Service.asmx) on the local host if you
developed the service, or use the deployed service at:

http:/ /venus.eas.asu.edu/WSRepository/Services/BasicThree/Service.asmx

Copy and paste the URL into the URL textbox of the Window and click on "Go." The three services will
be found and linked into the application, as shown in Figure 6.1 3. You can choose a name for the proxy
class created. In the example, we choose "myFirstServices." Click on the button "Add Reference;" the
services in the proxy "myFirstServices" will be added into the application stack. After the service is added,
it will show up in the Solution Explorer, as shown in Figure 6.12(b).

(a)

Solution Explorer

,lru:. 1.i]

... I/- X

d Solution 'Vi/indowsFormsApplication1'
1 .'iJ WindmvsFormsApptkatM>Rl

r, Propertie�
P.-J:' .•..• �--'
� Acid Reference ...

Add Service Reference ...

Adel library Package Reference ...
if) dpp.wrmg

1 · -
,. .r Form1. cs

� Forml.Des.igner.cs.
� Forml.resx

� Program.cs.
(b)

Solution Explorer ,. � X

·� I � Lil I ::: s'il
':;; Solution 'WindowsFormsApplication1'
1 c WindowsformsA:ppl'icationl

t> {'" Prop e:rti es.
t, • Reference.s.

, Service Reference5.
,. Web References.

·; myFin;.tS,ervices ¢
O app,config

,. g2] Forml.cs
� Form1.Designer.cs
· -� Form1.resx

c&) Program.cs

Figure 6.12. Solution Explorer before and after the web services are linked to the application.

Add Web Refere-nce

Navigate to a we:b service URL and click.Acid Re:ferenceto add all the: available services.

I .. @ �

.URL: http://venus,eas.a;u,ecluiWSRepo;itory/Service;/Ba;icThree,/Service.asmx •

Service

The following operations are supported. For a formal definition, please reviev" the
serv•c:e pescript1011.

• HelloWocfd

• ili

This web service is using http://tempuri.org/ as its default
munesp.ace.

-,. ·; Web j:ervice; found at this URL:
1 Service Fo-und;

• Service
E

l

I Web reference name:
my Fi r;.tServi c e;

Add Reference

'"I Cancel

Figure 6.13. Add a web reference in a windows application.

Please notice that in step 2 above, you can also choose "New" and "Web Site," and choose ASP. Net Web

site as the template. In this case, the application created will run on a server and the users can use the
application over the Internet.

370

Both web applications and WS need to reside on a web server. However, they are different. The former
refers to an application with a human user interface. Users can use a web browser to access the functions
of the application. Examples of web applications include online banking, online shopping, web gaming,
and online examination. The latter refers to a piece of executable code that is accessed through a
programming interface. Any WS equipped with a human interface is considered a web application. A web
application may use all local functions, all WS, or both as its components.

After linking the remote WS into the Windows Forms Application, we can now design the GUI. Figure
6.14 shows the GUI defined in the Forrnl. cs. We can drag and drop the GUI controls (components) in the
system toolbox (button, label, textbox, etc.) on the left-hand side of the diagram into the blank area of
Forrnl and add the names for them. In this example, we added four buttons and named them, respectively:

1. Invoke String Service: This button will be linked to the WS function Hello World() and the
returned string will be displayed in the Label area named "Print String Value Here."

2. Get Pi Value: This button will be linked to the WS function PiValue() that returns the pi value and
the returned value will be displayed in the Label area named "Print Pi Value Here."

3. Get Absolute Value: This button will be linked to the WS function abs() that returns the absolute
value. The returned value will be displayed in the Label area named "Print Return Value Here."

4. Add Pi and Abs Value: This button will be linked to the WS functions that are composed of
PiValue() plus abs(). The sum will be displaced in the Label area named "Print Result Here."

Each function above can be considered an independent application. The first three applications use one web
operation each, while the fourth application uses two web operations.

roolbmr " ff. X Fo,ml.c.s• Forml,,s. [De.s.ign]" X Ob;ec.t Brow.er •

•� VScrollBar
,jj '\'VebBrow.er

A Common Controls

I\ Pointer

@ Butte,, ----------

� CheckBox
ti· Chei::kedli::tBox a;"

� ComboBox
DateTimePicker

A Label -----------

A Linklabel

!=<1 ListBox
l�bil T ext:Box

'1� Forml

_ >[Invoke String Service Print String Value Here

Get Pi Value Print Pi Value Here

I Get Absolute Value J Print .Absolute Value Here

- ------------------------------ ➔
I Get Pi and Abs Value j Print Pi+Absolute Value Here

"'

----------------------- -,

)

"J

Figure 6.14. Using the toolbox to design the GUI.

Solution Explorer
,!\ti.:! :�
',d Solution '1NindowsForms.Applicatio
., i.'.Jl Wi'rwf'owsform:sAppticat:k>nl

� Properties
c, [· References

Ser.rice Reference;.
.i · Web References

1 ; myFirs.tService.s l
l � app.config

.i .<;; Forml.cs
� Forn1l.Designer,c;
� Forml.re:sx

cif] Program.cs

While adding the GUI controls (button, label, textbox) into the form, the default names are button I, button2,
labell, label2, textboxl, textbox2, etc. To make the code more readable, we have renamed buttons to
btnString, btnPi, btnAbs, and btnPiAbs. We have renamed the labels to lblString, lblPi, lblAbs, and
lblPiAbs. We leave textboxl and textbox2 unchanged. Notice that renaming is done in the Property list,
and it must be done before we click the button and add the code for the button.

Once the graphic interface is designed, the code that draws the graphic items such as buttons, labels, and
textboxes is automatically generated from the library functions, so that we can focus on the part of the code
that performs the functions we want to perform. In the code below, we have highlighted the part of the code
we added into the template in boldface text.

To add your code, double click each button in the form. After each click, a method template (an empty
method) will be created. All you need to do is to add code in the template to perform the task the button is
supposed to perform. The C# code below shows the completed code after all the buttons are programmed.

371

Notice that you must add the code button by button. You cannot copy the code all together. If you copy the
code all at once, the link between the button and the code wil1 not be created.

using System;

using System.Windows.Forms;

using WindowsFormsApplicationl.myFirstServices;// add this line

namespace WindowsFormsApplicationl{

public partial class Forml : Form

public Forml() {

InitializeComponent();

private void Forml_Load(object sender, EventArgs e) {

private void btnString_Click(object sender, EventArgs e)

Service hw = new Service();

this.lblString.Text = hw.HelloWorld();

private void btnPi_Click(object sender, EventArgs e) {

Service pivar = new Service();

this.lblPi.Text = pivar.PiValue() .ToString();

private void btnAbs_Click(object sender, EventArgs e) {

Service absvar = new Service();

int number = Convert.Toint32(this.textBoxl.Text);

int result = absvar.abs(number);

this.lblAbs.Text = result.ToString();

private void btnPiAbs_Click(object sender, EventArgs e) {

int number = Convert.Toint32(this.textBox2.Text);

Service absvar = new Service();

number = absvar.abs(number);

double result = number + absvar.PiValue();

this.lblPiAbs.Text = result.ToString();

A part of the code is generated when we double click the buttons. The code that we add is highlighter. First,
we added the namespace, where the service name myFirstServices is chosen in Figure 6.13.

using WindowsFormsApplicationl.myFirstServices;

The namespace points to the remote WS Service(). Without using this namespace, we have to add the path
to each use of Service().

Four functions are added behind the four buttons, respectively, each of which defines the action when one
of the buttons is clicked by the user:

372

1. Btu String_ ClickO: The function first creates an object of the WS Service(), and then it calls the
method Hello World(). The returned string value is assigned to the lblString area.

2. BtnPi_ ClickO: The function first creates an object of Service(), and then it calls the method
PiValue(). The returned double value is converted to string and then assigned to the lblPi area.

3. BtnAbs_ ClickO: Different from the first two functions, this function will take the input from
textboxl, convert it into integer type, and then call the abs function in Service(). The returned value
is displayed in lblAbs.

4. BtnPiAbs_ ClickO: The function will call two functions in Service(). It first calls the abs() function,
taking the input from textbox2. Then it calls the PiValue(), adds the two numbers, and displays the
result in lblPiAbs.

When you compile and execute the program, the application GUI will be generated. After you click on the
buttons, with proper input values if required, the results are displayed in the label areas, as shown in Figure
6.15.

Invoke String Service Hello World

Get Pi Value 3.14159Q65'35-8979

Get Absolute Value -824 824

Get Pi and Abs Value -200 203.141592653-SS

Figure 6.15. Graphic interface of the web application based on remote web services.

Note, since this application is a web application, it needs to be deployed to a web server. On the other hand,
the application does not have to be a web application. It can be a Windows application. For example, if we
develop a game based on WS, the game can be either a web application itself or a Windows application. In
the latter case, the application can be downloaded to a Windows computer. However, the computer must
have Internet access when playing the game, because the game will contact the WS at runtime.

In the code above, a remote service "Service()" is used as a class to instantiate an object and the methods
in the object are used to perform the required function:

Service hw = new Service();

However, the object linked to the reference hw is a "virtual object" or a proxy, which does not contain the
code for the methods. It creates a channel to each method in the remote service, as shown in Figure 6.16.

Please notice that, since this application is a forms application, it does not need to be deployed to a web
server. For example, ifwe develop a game based on WS, the game can be a Windows Forms Application.
In this case, the application can be downloaded to a Windows computer to play. However, the computer
must have Internet access while playing the game because the game will contact the WS at runtime. On the
other hand, website applications must be deployed to a web server. If we develop a game as a website
application, one can play the game in a web browser without downloading. In the next example, we will go
through the development of website application.

373

II Service requester
service hw= new service();

D
virtual object

{

public string .-
HelloWorld(); .- .-

public double . _
PiValue(); - - -

public int abs(intx);-

A real object created from
a class would have the
code of the methods

II Service Provider

public class Service:
System.Web.Services. WebService

[Web Method]
.- � public string HelloWorld() {

__. .- return "Hello World"·
--

--
-- '

channels [WebMethod]
__ -;> public double PiValue(){

-
-- double pi = System.Math.Pl;

return (pi);

- _ _ [WebMethod] //
- - - ➔ public int abs(intx) {

if (x >= 0) return (x);

else return (-x);

Figure 6.16. Proxy in application accessing the remote services.

6.5.3 Developing a website application to consume web services

Similar to creating a Forms application that runs on a Windows machine as discussed in the previous
section, you can create a website application template in the following steps.

Step 1. Start a Website Project

In the "File" menu of Visual Studio, choose New ➔ ASP.Net website . . . , and name the project TestClient,
as shown in Figure 6.17. Then, a Solution with one project will be created. In the Solution Explorer, a file

named Default. aspx will be created, which is the platform for drawing the web GUI. This form is

equivalent to the Forml. cs in the Windows Forms Application template.

Step 2. Add Service Reference

Now, we can add the service address into our service test client. We could add the same service that we
discussed in the previous example:
http://venus.eas.asu.edu/WSRepository/Services/BasicThree/Service.asmx. However, we will use a real
service. The service is an encryption/decryption service that can secure our WS and web applications. This
service is at the address:

http:/ /venus.eas.asu.edu/WSRepository/Services/Encryption W cf/Service.svc

The service also has a different format (.svc file) and is developed using Windows Communication
Foundation. To add this service into your application, right-click the References folder in the "TestClient"
Solution Explorer, and choose "Add Service Reference . . . " Notice that WCF services use Add Service
Reference, while ASP.Net Services use Add Web Reference.

Type the service's WSDL address

http://venus.eas.asu.edu/WSRepository /Services/Encryption W cf/Service. svc ?wsdl

374

into the Add Service Reference dialog window, as shown in Figure 6.18. We name the service reference
"AspProxyTo W cf."

New Web Site

Recent "fornpl�les. J_.N_E_T_F_ra_m_ew __ or_k_4 __ •_,1 Sort by: r._D_ef_a_ul_t ------·
.-J
I ;!;i fil!][$;arch lmtalled fo�plate; _-__ __.

Inista:Ued Templates
Type: Visual C#

Vi5,ual Basic
Visual C#

Online 1emplates

Web location:

1 �C� ASP.NET Web Site

@'c;# ASP.NET Web Site (Razor)

c# ASP.NET Empty Web Site

ASP.NET Dynamic Data Entities Web Site

Visual C#

Visual C#

Visual C#

Visual C#

ASP.NET Dynamic Data Linq to SQL Web Site Visual C�

WCF Service Visual C#

ASP.NET Reports Web Site Visual C#

Vir.11al r:tt

C:\YinongDellOffice\Teach AII\CSE240\TestClient

An ASP.NET 1Neb $ite

_6;row5,e, ..

Figure 6.17. Choosing ASP.Net website as a development template.

Add Service Reference

To 1oee a lis;t of available services. on a specific server, enter a service URL ancl dick: Go, To browse for available
s.ervices, click: Dis.cover,

Address:

http://venus,eas.,as.u.edu.ArVSRepo;itor//Services/EncryptionWc:f/Ser1ice,svc?wsci1
;· I §.

o 111 Qiscover I•j

�ervice:s;

@!!) Service
-'>.; ISer,ice

tl,amespace:

Servi c eRef eren c e1

Adyanced, ..

.Qperations:

I
Decrypt

_
Encrypt

...__, __ o_K_--.Jl f Cancel

Figure 6.18. Add service reference to ASP.Net website

Step 3. Design GUI to Access WCF Service

Open the Default.aspx page. There are two ways to create the GUI. Using the design of the Default.aspx
page, you can use the controls in the toolbox to draw (drag-and-drop). The GUI design is shown in Figure
6.19.

375

App_Code/I:Service.cs App_Code/Service.cs ;

!ASP .NET TEST CLIENT

Please enter a string for encryption: ja secrete word?

he encr,ipted string looks like this: [lblEncrypted]

Check if the decrypted string is correct -- ,,.,. [lblOecl)pted]

'ou can also fincl documentation on ASP.NET at MSDN.

Submit j

Solution Explorer "' q. X
11� 1¢ fia1 •mm·�,
· d Solution 'EncryptionWcf' (2 pr
[) . '··1 Solution Item;;.
" C:\ .. ,\EncryptionWcf\

r> 4:iJ App_Code
j App_Data

iJ Service.svc
� 1Neb.config

,, ;:: C::\...�\T.est'Cl'ient\

r, .. Account
· ·• App_Data

,., App_:WebRe:fere:ncl:$
,. EncryptService

l> -� Re:fere:nce.wcm
r., Script5.

Figure 6.19. Design view of the Default.aspx page.

The other method for GUI design is to enter the Source View of the Default.aspx page and type the source
code to create the GUI. The source code of the GUI in Figure 6.19 is given as follows:

<%@ Page Title="Home Page" Language="C#" MasterPageFile="~/Site.master"
AutoEventWireup="true"

CodeFile="Default.aspx.cs" Inherits=" Default" %>

<asp:Content ID="HeaderContent" runat="server"
ContentPlaceHolderID="HeadContent">

</asp:Content>

<asp:Content ID="BodyContent" runat="server"

ContentPlaceHolderID="MainContent">

<h2>ASP.Net Test Client</h2>

<p>Please enter a string for encryption:

<asp:TextBox ID="txtinput" runat="server" Width="200px">a secrete
word?</asp:TextBox>

 <asp:Button ID="btnSubmit" runat="server" onclick="btnSubmit Click"

Text="Submit" /></p>

<p>The encrypted string looks like this:

<asp:Label ID="lblEncrypted" runat="server"></asp:Label></p>

<p>Check if the decrypted string is correct -->

<asp:Label ID="lblDecrypted" runat="server"></asp:Label></p>

</asp:Content>

Typically, you can use the Design View to make the initial design, and use the source code to refine the
design. If you already have a design, you can copy the source code to make another design.

Step 4. Write Client Code to Consume WCF Service

The C# code behind the submit button in the Default.aspx page is given below:

using System;

public partial class Default : System.Web.UI.Page {

protected void btnSubmit_Click(object sender, EventArgs e) {

EncryptService.ServiceClient myClient = new

EncryptService.ServiceClient();

376

try{lblEncrypted.Text = myClient.Encrypt(txtinput.Text);}

catch (Exception ec) {lblEncrypted.Text = ec.Message.ToString();}

try{lblDecrypted.Text = myClient.Decrypt(lblEncrypted.Text);}

catch (Exception de) {lblDecrypted.Text = dc.Message.ToString();}

Step 6. Test the ASP.Net Client

To build the page and start the page, the test window will be opened in a web browser, as shown in Figure
6.20. Enter a string and click the "Submit" button. The encrypted string should be displayed.

1 ·= .1 @ ftilEWJ·
/ 0 HomePage

_<f.J'...,. _________________ _,,,
C If· 0 localhost:51085/TestClient/Oefaultaspx

ASP .NET TEST CLIENT

Please enter a string fer enctyption: [�1y secret m�-9 i� "Hello _C,:Yption"] [iubmit]

The encrypted strin9 looks like this: FbryW6Z:A.7olgfYSbleU2Un5QX5znWU'vl/3of3SLipSv2rsaIL1Xe4;'<q+g=::

Check 1f the decrypted stnng is co1Tect -- > M)' secret msg is "Hello Cr·yption"

Figure 6.20. Accessing WCF service using ASP.Net website.

Now, you can extend the application to include the decryption of the encrypted text. To test your decryption
service, you can copy and paste the encrypted string into the decryption textbox and see if the decrypted
text is the same as the text before the encryption.

6.6 Silverlight and Phone Applications Development

ASP.Net Applications discussed in the previous section allows us to develop web applications with
convenient graphic users interface. Silverlight further enables us to develop graphic users interface with
animation. Silverlight can be used to develop both web applications and phone applications.

As smartphones also support ordinary web browsers, any website application can be executed on
smartphones. However, the phone apps are different from web apps in several aspects. The phones have a
smaller screen, and screen orientation can change when the phone is rotated. The phones have their sensory
devices such as vibration sensor, GPS sensor, camera, and touch screen. The apps development can take
advantage of the sensors. The phones have limited computing and storage capacity, but can be backed up
by backend servers.

6.6.1 Silverlight Applications

Silverlight is a general website application development platform, which is a compact version of the
Windows Presentation Foundation (WPF). Silverlight extends ASP.Net's GUI capacity for developing
better presentation layer; particularly it adds the animation functions for developing applications that are
more dynamical. Figure 6.21 gives an overview of the development packages on Visual Studio
environment.

377

VisuaJ Studio DeveJopment Environment

Desktop Software Development Web Software Development

Workflow Foundation

WPP: ASP .Net Web Site, JavaScript, AJAX

Windows Presentation Foundation HTML, CSS, XSL

ASP .Net Windows

Forms Applications

DLL and

components

Silverlight ¢ Silverlight
Constructs Applications

GDI+

Framework I User

Class Library controls

Common Language Runtime

I

Windows

Communication

Foundation

Server

controls

Figure 6.21. Development packages on Visual Studio environment.

In addition to the server controls offered in ASP.Net, Silverlight includes a set of additional and enhanced
controls to facilitate the graphics and animation design, including:

• Common controls:
o Textbox, Checkbox, RadioButton, ComboBox, ...
o TabControJ, ScrollViewer, ProgressBar, SpeedBar, ...

• Extensible control base classes
• Layout controls:

o Grid, StackPanel
• Data controls:

o DataGrid, TexBlock, and so on.

Silverlight supports a number of animation classes, which enable the developers to create different games
and movies. The classes include:

• Linear interpretation: The object moves smoothly from point A to point B
o DoubleAnimation
o PointAnimation
o ColorAnimation

• Key-frame animation: Object jumps from point A to point B
o DoubleAnimationKeyFrame

o PointAnimationKeyFrame
o ColorAnimationUsingKeyFrame
o ObjectAnimationUsingKeyFrame

To start a Silverlight project, we choose in the Visual Studio File ➔ New ➔ Project ... , and then choose C#
➔ Silverlight application. A project containing a MainPage.xaml file will be created, which is the main
page where we design our GUI, as shown in Figure 6.22. We can start to draw the GUI items, as we did in
ASP.Net, where a Default.aspx page serves the same purpose. A Silverlight GUI page is represented in
XAML code, while an ASPX page is coded in XHTML. XAML has not only date representation capacity
like XHTM, but also programming capacity.

378

Toolbox

@

�
,!!I.!!!

A

[�:1

G)
□

:�
l��lj

I\
f��l

□

@

mm
c8

Button

Image
Label
ListBox

Rectangle

TextBlock
Text:Box

Pointer

Border
Button

Canva�

,, �x MainPage.xaml* X

L·• •

Figure 6.22. MainPage.xaml of a Silverlight project.

I Add Node ·,

j Re�ove Node j

We can put C# code behind the .xaml page, in the same way we did in .aspx page design and coding. The
following is an example where we created an animated linked list data structure with adding and removing
node functions.

namespace LinkedList {

public partial class MainPage

private MasterList list;

public MainPage() {

UserControl

InitializeComponent(); list = new MasterList(mainSpace);

private void addButton_Click(object sender, RoutedEventArgs e)

list.addLast(textBox.Text); textBox.Text = "";

private void removeButton_Click(object sender, RoutedEventArgs e) {

list.remove(textBox.Text); textBox.Text = "".,

Figure 6.23 shows the Silverlight project and its files. There are two groups of files. The folder LinkedList
contains all the source files, including both the GUI design files in XAML and the C# code. The folder
LinkedList.Web contains all the files generated for web deployment, where the LinkList.xap file is a zip
file that contains all the executable code in MSIL (MS Intermediate Language) language. The code in the
xap file will be executed in the out-of-browser mode in a sandbox on the client machine. The html file
LinkListTestPage.html will be the access point from a browser to execute the Silverlight application. Notice
that the files can be deployed on a f ile server without 11S hosting. If we do have an 11S server, we can also
access the LinkListTestPage.aspx file, which is also created in the LinkedList.Web folder.

Silverlight is used for building both website and phone applications. In this section, we briefly discussed
using Silverlight to build website applications. We will show more Silverlight applications in the next
section in conjunction with Windows Phone apps development. The Silverlight components discussed in
phone applications development can be applied to web application development as well.

379

MainPage,xaml X MainP<19e.xamt.cs .. Solution Explorer
" I!�

I ·Si .ii ;

Enter node name in the textbox: / Add Node j

I Rem�ve Node I B
OJ[EJJl!I

Pf
<Grid x: Name='"LayoutRoot" Background= "White" Keyll'p= "entercapture ">

<Te:.,:-tBox !Height= "38" ttorizontalAlignment= "Left" Margin="93, 550.,0i 0"
<Button Content="Add .Node" Height="23" HorizontalAlignment="Left:" M;r;i
<Button Content="Remove N-0de" Height="24" HorizontalAlignment="Left L:'J
<Canvas Height="510" l-lori:zontalAlignment="Left" Name="mainSpace" Ve,
<TextBlock Height="23" HorizontalAlignment="Left" Margin="93�521,e,,

</Grid>

..... ..1 Solution Item5,
A � Linkedlist

, 1� Properties
) l:S'.i References.
[> � App.xaml

� Arrow.cs
� GraphicalNode,cs
'i1'.J GraphicHandler,c.s

t:, t".1 MainPage,xaml
� Maste:rList.c.s.
� Maste:rNode,c.s

A {� Ltn.kedlist Web

l>

·"

Properties
References.
ClientBin

Lii,kedli.st.xap:
@] LinkedlistTestPage:.a!>pX
L!I LinkedListT e.stPage:.html
� Silve:rlight.js

r, [G Web.config

Figure 6.23. Silverlight project deployment files and its out-of-browser execution file.

6.6.2 Developing Windows Phone Apps Using Silverlight

.,. I/, X

There are a few major phone development platforms, including Apple iPhone, Android phone, Black Berry
phone, and Microsoft Windows phone. There are many different development environments available for
each of these phone platforms. In this section, we will briefly discuss using Visual Studio Silverlight for
developing Windows phone apps and App Inventor for developing Android phone apps.

Windows Phone operating system operates on a micro version of the Windows operating system and the
.NET framework. It incorporates Silverlight and XAML into its GUI design. Any .NET common language
can drive a Windows Phone behind GUI, including C#, F#, and Visual Basic. C# will be used in this section
to implement our service-oriented development approach. Although we are using the phone platform to
host Silverlight and XAML, many of the mechanisms and techniques studied here can be applied for
developing website applications as well.

To get started, we download the Windows Phone SDK from the official Windows phone development site:
http://dev.windowsphone.com/en-us/home, where we can also read tutorials and download sample apps
with source code. Once we have installed the SDK, we will see the Windows Phone Application template
in the Visual Studio templates, as shown in Figure 6.24.

380

New Project m�
Recent T�mplales l_,N_ET_F_ra_m_ew_o_rk_4 __ •_] Sort by:[._ D_ef_au_ lt _____ •_,I ;I :I mJ ��rch l'.:;ta lj;d T e.nip1;le--;:-- -3J
lnsulled Templates

iOS
Microsoft Robotics
Reporting
SharePoint
Sil11erl ight

Q Silve:rl ight for Vl/indows Phone
T est

. - 111111111111111

Fi ME&&
MyPhoneAnimation

Windows Phone App lication y Visual C#

Windows Phone Databouncl Application Visual C#

Windows Phone Class Librar; Vi.sual C#

Windows Phone Panorama Appl ication Visual (#

l,-1,linclows Phone Pivot Application Visua l C#

Type: Visua l CF

I
A project for creating a Windows
Phone application

_J

-
�ame:

j,ocation:

!!e lution:

C:\VinongAII\YinongDel lOffice\Teach AII\CSE445-446 Programs\Silverlight\ • I .llrowse .. ,

Solution name:

[,-C-re-ate-n-ew-so -
lu-tio-n-----------------..

.
J

MyPhoneAniniation (l] Create girectory for solution
lJ Add to soyrce control

Figure 6.24. Starting a Windows Phone Application project.

t

Using the Windows Phone Application template, a project with a stack of files will be generated. The
MainPage.xaml will be the main GUI page. We can use the Toolbox controls to draw the user interface, as
shown in Figure 6.25, where we used the Ellipse, Rectangle, and Button to draw the GUI.

loolbox • q. X

,. Windows Phone Control�

� Pointer

• Ad Control

a Border

@) Button

c8 Canvas

@ CheckBox

0 Ellipse

m Grid

m HyperlinkButton

fQ Image

�J Li�tBox

m Map

ffl Media Element

Et.� Pa�sworclBox

0

□ Rectangle

Solution Explorer

,i
ll!;]

I .� 1.il I � Elli

T r, X

I.� Solution 'MyPhoneAnimation' (1
A .Zt] MyPhoneAnimatlon

r, � Properties

/> References
,. L!l App.xaml

App.xaml.cs,
[ii Applicationlcon.png
81 Backgr�und.png

,. 'C!'j MainPa�e.xaml i
� MainPage.xaml.cs

ti! SplashScreenimage.jpg

Figure 6.25.Adding ellipse and rectangle objects to the MainPage.xaml file.

Once the GUI is drawn, the .xaml file will be modified to include the objects. Now, we will open the xaml
source file to add animation to the objects. The XAML code below is a part of the MainPage.xaml. The
code is generated when the objects are placed on the design surface. Now, we will use XAML's
programming capacity to program the animation. The highlighted code is the code that is added to define
the animation of the objects.

<phone:PhoneApplicationPage

x:Class="MyPhoneAnimation.MainPage"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

381

xmlns:phone="clr­

namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"

xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone"

xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

mc:Ignorable="d" d:DesignWidth="480" d:DesignHeight="768"

FontFamily="{StaticResource PhoneFontFamilyNormal}"

FontSize="{StaticResource PhoneFontSizeNormal}"

Foreground="{StaticResource PhoneForegroundBrush}"

SupportedOrientations="PortraitOrLandscape" Orientation="Portrait"

shell:SystemTray.IsVisible="True">

<phone:PhoneApplicationPage.Resources>

<Storyboard x:Name="myStoryboard">

<DoubleAnimation Storyboard.TargetName="headMove"

Storyboard.TargetProperty="X"

From="-10" To="l0" Duration="0:0:0.50"

AutoReverse="True"

RepeatBehavior="Forever" />

<DoubleAnimation Storyboard.TargetName="legMove"

Storyboard.TargetProperty="Y"

From="-5" To="5" Duration="0:0:0.50"

AutoReverse="True"

RepeatBehavior="Forever" />

</Storyboard>

</phone:PhoneApplicationPage.Resources>

<!-- LayoutRoot is the root grid where all page content is placed-->

<Grid x:Name="LayoutRoot" Background="Transparent">

<Grid.RowDefinitions>

<RowDefinition Height="Auto"/>

<RowDefinition Height="*"/>

</Grid.RowDefinitions>

<!--TitlePanel contains the name of the application and page title-->

<StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28">

<TextBlock x:Name="ApplicationTitle" Text="MY APPLICATION"

Style="{StaticResource PhoneTextNormalStyle}"/>

<TextBlock x:Name="PageTitle" Text="My Animation" Margin="9,-7,0,0"

Style="{StaticResource PhoneTextTitlelStyle}"/>

</StackPanel>

<!--ContentPanel - place additional content here-->

<Grid x:Name="ContentPanel" Grid.Row="l" Margin="12,0,12,0">

<Ellipse Name="ellipsel" Height="82" HorizontalAlignment="Left"

Margin="169,104,0,0" Stroke="Black" StrokeThickness="l"

VerticalAlignment="Top" Width="113" Fill="#FFB17F7F" >

<Ellipse.RenderTransform>

<TranslateTransform x:Name="headMove" />

</Ellipse.RenderTransform>

382

</Ellipse>

<Rectangle Height="134" HorizontalAlignment="Left" Margin="169,192,0,0"
Name="rectangle2" Stroke="Black" StrokeThickness="l"
VerticalAlignment="Top'' Width="ll3" Fill="#FF5C3232" />

<Rectangle Fill="#FF6C4040" Height="108" HorizontalAlignment="Left"
Margin="l48,206,0,0" Name="rectangle3"

Stroke="Black" StrokeThickness="l" VerticalAlignment="Top" Width="40" >

<Rectangle.RenderTransform>

<RotateTransform x:Name="rotatel" />

</Rectangle.RenderTransform>

</Rectangle>

<Rectangle Fill="#FF6C4040" Height="108" HorizontalAlignment="Left"
Margin="288,192,0,0" Name="rectangle4" Stroke="Black" StrokeThickness="l"

VerticalAlignment="Top" Width="40" >

<Rectangle.RenderTransform>

<RotateTransform x:Name="rotate2" />

</Rectangle.RenderTransform>

</Rectangle>

<Rectangle Fill="#FF529F09" Height="108" HorizontalAlignment="Left"
Margin="242,332,0,0" Name="rectangle6" Stroke="Black" StrokeThickness="l"

VerticalAlignment="Top" Width="40" >

<Rectangle.RenderTransform>

<TranslateTransform x:Name="legMove" />

</Rectangle.RenderTransform>

</Rectangle>

<Rectangle Fill="#FF529F09" Height="108" HorizontalAlignment="Left"
Margin="242,332,0,0" Name="rectangle6" Stroke="Black" StrokeThickness="l"
VerticalAlignment="Top" Width="40" />

<Button Content="Resume" Height="72" HorizontalAlignment="Left"
Margin="285,508,0,0" Name="buttonl" VerticalAlignment="Top" Width="134"
Click="buttonl_Click" FontSize="18" />

<Button Content="Hands" Height="72" HorizontalAlignment="Left"
Margin="48,508,0,0" Name="button2" VerticalAlignment="Top" Width="135"
Click="button2_Click" FontSize="18" />

<Button Content="Head" Height="72" HorizontalAlignment="Right"
Margin="0,508,154,0" Name="button3" VerticalAlignment="Top" Width="133"
FontSize="lB" Click="button3 Click" />

</Grid>

</Grid>

</phone:PhoneApplicationPage>

We use Storyboard to define the animation. Storyboard is an element in XAML file. It can contain different
child elements that associate different types oftimelines and animations with different objects, for example,
buttons, textbox, shapes that you draw, etc., to make the objects move by the timelines and animations. We
can apply timelines and animations in many different situations. For example:

• We can make an object move automatically up and down or sideways by defined timelines.
• We can change its color when the user moves the mouse over a button.
• We can make it grow when the user selects the button.

383

• We can shrink away and then grow back to its original size when we click the button.
• We can fade a button when it is disabled or becomes unavailable.

In the foregoing code, the first piece of the highlighted code defines two animations using Storyboard:

• The headMove defines the head of the person to move left 10 points and right 10 points along the
X-axis.

• The legMove defines the left leg of the person to move up 5 points and down 5 points along the Y­
axis.

The storyboard defined still needs to be associated with an object. To do so, we need to find the "Ellipse"
object, modify and add the following code into the definition of the Ellipse element.

<Ellipse.RenderTransform>

<TranslateTransform x:Name="headMove" />

</Ellipse.RenderTransform>

</Ellipse>

Notice: when we add this line of the code, we need to change the empty node <Ellipse/> into a nonempty
node, and thus, we need to remove the slash character "/" at the end of the empty node. Then, we add

<Ellipse. RenderTransform>element and then close the <Ellipse> node by adding </Ellipse>.

Similarly, we need to associate the storyboard with the "Rectangle" object. We modify and add the
following code into the definition of the Rectangle element.

<Rectangle.RenderTransform>

<TranslateTransform x:Name="legMove" />

</Rectangle.RenderTransform>

</Rectangle>

Before we can test your animation code, we still need to modify the code behind the MainPage.xaml.cs. In
the Solution Explore in your project, double click the file MainPage.xaml.cs, and add the code shown below
in the page.

public MainPage() {

myStoryboard.Begin(); // add this line of code

Now, we can test our phone app to see the head's moving. Use menu command: Debug ➔ Start Without
Debugging to test your program. Now, we should see the head is moving left and right and one of the legs
is moving up and down.

Next, we will define the animation for the two arm (rectangle) objects. We add the following two pieces of
code into the MainPage.xaml page:

<Rectangle.RenderTransform>

<RotateTransform x:Name="rotatel" />

</Rectangle.RenderTransform>

</Rectangle>

and then

<Rectangle.RenderTransform>

<RotateTransform x:Name="rotate2" />

</Rectangle.RenderTransform>

</Rectangle>

384

Ifwe test our phone app now, we will not be able to see any movement of the arms. The reason is that we
have not defined the arms movement variables rotation 1 and rotation2 in the storyboard.

There are two different ways to program animations in Silverlight. We showed how to do it in xaml code
in the previous steps. We can also program the animation in C#.

We will now add more code into the C# file MainPage.xaml.cs. First, we program the right arm. In the
Solution Explore in our project, we double click the file MainPage.xaml.cs. Then, we add the following
code in the MainPage() constructor. Do not delete any code. Just add the code into the existing template.

public partial class MainPage : PhoneApplicationPage {

DateTime startTime;

int resume = 1;

II Constructor

public MainPage ()

InitializeComponent();

startTime = DateTime.Now;

CompositionTarget.Rendering += OnCompositionTargetRendering;

myStoryboard.Begin();

void OnCompositionTargetRendering(object sender, EventArgs args) {

II Angle directly controlled rotation for rotationl

rotatel.Angle = (rotatel.Angle + resume * 0.5) % 360;

II Time-controlled rotation for rotation2

Timespan elapsedTime = DateTime.Now - startTime;

rotate2.Angle = resume * elapsedTime.TotalMinutes * 1000;

In the aforesaid code, we used two different ways to control the rotations. The rotationl uses the degrees
of angle, while rotation2 uses the elapsed time. Now, we can test our phone to see the arms moving.

Next, we will further program the three buttons to stop and resume the movements of head, leg, and arms.
In order to add the event handler behind each button, we double click each button to create the templates in
the event handlers, and then we add the code in the event handlers.

First, double click the Hand button. It will take us to the MainPage.xaml.cs and create an event handler
template for the button. We can add one line of code: resume = o; this line of code will freeze the
movement of the arms.

private void button2_Click(object sender, RoutedEventArgs e)

resume = 0; II Add this line code. It will freeze the arms

Return to the MainPage.xaml page, and double click the Head button. It will take us to the
MainPage.xaml.cs and create a code template for the button. Again, we add one line of code:
myStoryboard.Pause();

private void button3_Click(object sender, RoutedEventArgs e)

myStoryboard.Pause(); II This line of code will freeze head.

385

This line of code will pause the storyboard, and thus stop both the head and leg movements.

Finally, return to the MainPage.xaml page and double click the Resume button. It will take us to the
MainPage.xaml.cs, and create a code template for the button. We add two lines of code:

private void buttonl_Click(object sender, RoutedEventArgs e)

resume = -1; // Make arms rotate in the opposite direction

myStoryboard.Begin();

The first line of the code (resume = -1;) will make the arms rotate in the opposite direction, and the
second line of code starts the storyboard again and makes the head and leg to move again.

Now, we have completed all parts of the animation, and we can test our phone app using the Visual Studio
menu command: Debug ➔ Start Without Debugging to test the program. Figure 6.26 shows a few
screenshots of the animation.

My Animation

"' h w-,;:� JI, .. ::,:,!

� :: 0

,-.......-,. ·.-,,

I
My Animation My Animation

' ("I)

Figure 6.26. Screenshots of the phone app with multiple objects animation.

Windows phone supports both SOAP and RESTful services, and we can easily reimplement our web
applications on the Windows Phone template. Figure 6.27 shows a secure messenger Phone app that calls
our encryption and decryption service developed in Chapter 6, Section 6.3 and deployed in the ASU
Repository of Web Services and Web Applications.

386

1•J,H.fl ?f,1•::1,,,.,

I
decrypt encrypt

I [_-E-,-1�:-�,�;-

.. 1,,H,yp,]

Figure 6.27. Screenshots of a secure messenger app using the encryption and decryption service.

The C# code behind the MainPage.xaml.cs of the application, which includes the encryption function, is
given as follows:

namespace EncryptDecryptApp {

public partial class MainPage : PhoneApplicationPage {

public string msgEncrypted;

public MainPage() // Constructor { InitializeComponent();

protected override void

OnNavigatedTo(System.Windows.Navigation.NavigationEventArgs e)

base.OnNavigatedTo(e); // try to receive msg from another page

string msg = "";

// Retrieve the string that is passed in the navigation URI

if (NavigationContext.QueryString.TryGetValue("msg", out msg))

textBlockl.Text = msg; // put the received data TextBox

private void Encrypt_Click(object sender, RoutedEventArgs e) {

string msgl = textBoxl.Text;

encryption.ServiceClient prxyEncrypt new
encryption.ServiceClient();

prxyEncrypt.EncryptCompleted += new
EventHandler<EncryptCompletedEventArgs>(prxyEncrypt_EncryptAsync);

prxyEncrypt.EncryptAsync(msgl); // call encryption service

EventHandler<System.ComponentModel.AsyncCompletedEventArgs>
(prxyEncrypt CloseCompleted);

private void prxyEncrypt_EncryptAsync(object sender,

EncryptCompletedEventArgs e) {

textBlockl.Text = e.Result;

private void send_Click(object sender, RoutedEventArgs e) {

387

this.NavigationService.Navigate(new Uri("/decrypt.xaml?msg=" +
textBlockl.Text, UriKind.Relative));

The C# code behind the decrpt.xaml.cs is given as follows:

namespace EncryptDecryptApp {

public partial class decrypt : PhoneApplicationPage

public decrypt () { Ini tiali zeComponent () ;

protected override void

OnNavigatedTo(System.Windows.Navigation.NavigationEventArgs e) {

base.OnNavigatedTo(e); // try to receive msg from another page

string msg = "";

// Retrieve the query string values that were passed in the navigation URI

if (NavigationContext.QueryString.TryGetValue("msg", out msg))

textBlockl.Text = msg; // put the received data TextBox

private void decrypt_Click(object sender, RoutedEventArgs e)

string msgEncrypted = textBlockl.Text;

encryption.ServiceClient prxyEncrypt new
encryption.ServiceClient();

prxyEncrypt.DecryptCompleted += new
EventHandler<DecryptCompletedEventArgs>(prxyEncrypt_DecryptAsync);

prxyEncrypt.DecryptAsync(msgEncrypted);

private void prxyEncrypt_DecryptAsync(object sender,
DecryptCompletedEventArgs e) {

textBlockl.Text = e.Result;

private void Encrypt_Click(object sender, RoutedEventArgs e) {

string msg = "";

this.NavigationService.Navigate
(new Uri("/MainPage.xaml?msg=" + msg, UriKind.Relative));

The secure messenger application does not involve animation, and the development process has little
difference with that of a website application. Figure 6.28 shows the phone app that implements a simulated
maze navigation application. As the maze can be modified and the robot can move in the maze, extensive
animation coding is required.

388

Figure 6.28. Screenshots of a maze navigation app.

6. 7 Cloud computing and big data processing

Cloud computing and big data have received significant attention recently. Cloud computing offers a new
computing infrastructure that enables rapid delivery of computing resources as a utility in a dynamic,
scalable, and virtualized manner. The advantages of cloud computing over traditional desktop-based
computing include agility, lower entry cost, device independency, location independency, and scalability.
Recently, IT giants have developed their cloud computing environments, including Amazon Elastic
Compute Cloud, Google App Engine (GAE), Microsoft Azure, Oracle Exalogic Elastic Cloud, and
Saleforce.com cloud. The capacity of cloud computing makes it possible to process extreme big data sets
to data mine valuable information.

6.7.1 Cloud computing

Cloud computing provides a large-scale delivery of services to clients and allows for flexible payment in a
"pay-as-go" model without the need for clients to own the IT infrastructure or software applications. Here,
the clients can be the software applications or the end users of the software applications, as SaaS refers to
both the service as a software component and the application available to the end users.

Cloud computing often has several key components, including:

• Top level: This level hosts Software-as-a-Service (SaaS) for users to use in applications;
• 2nd level: This level provides Platform-as-a-Service (PaaS);
• 3rd level: This level provides basic support as Infrastructure-as-a-Service (IaaS); and
• 4th level: This is the lowest level that provides a data center.

Most of the current clouds are built on top of modem data centers. They incorporate IaaS, PaaS, and Saas,
and provide these services like utilities, so that the clients are billed by how much they use.

Data Centers: This level provides the hardware for the cloud. Data centers are usually built in less
populated areas with a low energy rate and a low probability of natural disasters. Modem data
centers usually consist of thousands of interconnected servers with lots of disk storage and caches

connected by high-speed networks.

389

Infrastructure-as-a-Service: Built on top of the data centers tier, the IaaS tier virtualizes the
computing power, storage, and network connectivity of the data centers, and it is offered as
provisioned services to consumers. Users can scale up and down these computing resources on
demand. Typically, multiple tenants coexist on the same infrastructure resources. Examples of this
tier include Amazon EC2 and Microsoft Azure Platform.

Platform-as-a-Service: Often referred to as cloudware, PaaS provides a development platform
with a set of services to assist application design, development, testing, deployment, monitoring,
and hosting on the cloud. It usually requires no software download or installation, and supports
geographically distributed teams to work on projects collaboratively. Google App Engine,
Microsoft Azure, and Amazon Map Reduce/Simple Storage Service are among the examples of
this tier.

Software-as-a-Service: The SaaS is the application software presented to end users as services on
demand, usually in a browser. It saves users from the troubles of software deployment and
maintenance. The software is automatically updated from the clouds, and no additional license
needs to be purchased typically. Features can be requested on demand, and are rolled out more
frequently. Also, as a SaaS application is often a service-oriented program, it can often be easily
integrated with other mashup applications. An example of Saas is Google Map, and it can
participate in various mashup applications across the web. Other examples include Salesforce.com
and Zoho productivity and collaboration suites.

The dividing lines for the four tiers are not distinctive. Components and features of one tier can
also be considered to be in another tier. For example, data storage services may be considered as
IaaS or PaaS.

In a cloud environment, everything can be implemented and treated as a service. SaaS runs on top of a
cloud environment, and it delivers web-based services to clients, and shifts IT responsibilities of application
functionality, deployment, maintenance to the service providers. A client does not own the software but
pays for the services on the web provided by the software. Often a user uses an API to access the services
on the web. Even though it is called Software as a Service, devices and Internet of Things, such as Robot
as a Service (RaaS) are included in the Saas level to extend cloud computing into the physical world.

PaaS runs in the middle of a cloud environment, and it provides the computing environment for the Saas
to execute by using the computing, communication, and storage resources provided by IaaS. These
functionalities are traditionally provided by an OS; however, PaaS may have more resources than traditional
computing systems, and need to handle millions of users in real time. A common technique used by PaaS
is virtualization and it provides many virtual systems to either end users or Saas.

In a typical cloud environment, IaaS may have thousands or even hundreds of thousands of processors with
a large storage capability.

Note that a Saas application may also be considered a traditional service as both of them are based on SOC
and may use common service-oriented techniques such as publication, search, discovery, ontology,
composition, and policy enforcement. However, a SaaS application is indeed distinct from a service
application in the following ways:

• A service application may reside locally on a computer (such as a laptop or desktop), or it can be
made available as a WS supported by a server. In contrast, a SaaS application must be a web
application and must run on a top of a server with large computing and storage resources.

• A service application can be shared by people, but each user will see the same service with identical
functionalities; in contrast, a SaaS application can be shared by people but each user may see the

390

same Saas application differently with different user interfaces and functionality. For example, a
user may customize the user interface and request specific new items to display as priority items.
Gmail is a typical Saas application where a user may specify user interfaces and request specific
features. This feature is not commonly available in a service application. This is the configurability
of SaaS.

• A Saas application often uses a multi-tenancy architecture where the same software is used to serve
multiple clients with different features. However, a typical service application does not have this
multi-tenancy architecture.

SOA and cloud computing are related. Specifically, SOA is an architectural pattern that guides
business solutions to create, organize, and reuse its computing components, whereas cloud

computing is a set of enabling technologies that service a bigger, more flexible platform for
enterprises to build their SOA solutions. In other words, SOA and cloud computing will coexist,
complement, and support each other.

Note that Saas participants include at least the following people:

• End users: They consume services provided and pay for those services. They may also
form Communities of Interest (COI) to share their own services and experience.

• Business providers: A business provider engages, influences, deploys, and supports the
clients' usage of services.

• Service providers: A service provider creates, migrates, and composes services for users.
Note that a service provider does not need to provide the platform to run these services;
service providers can run their software using a public, private, or hybrid cloud
environment.

• Platform operators: They offer a platform for managing the entire lifecycle of services
from creation to deployment, operation, and delisting.

A cloud can be a public cloud where everyone can access it, a private cloud where only the people
within a specific organization can access it, or a hybrid cloud where parts of resources are available
to the public but other parts are available to selected people only. In general, cloud computing has
the following features:

• Service-oriented computing: Most of the cloud environments support SOC and Saas.
Thus, a cloud environment often supports publishing, discovery, and composition of
services including application services as well as supporting services such as information
services, storage services, and communication services.

• Web-based operations: People will use software offered on the web, and often the
software will be available as Saas running on PaaS and IaaS. This feature provides device

and location independence.

• Scalable computing via dynamic provisioning: A typical cloud environment will
automatically provide sufficient resources to complete a requested task. This may involve
automated workload detection, automated resource allocation, load balancing, intelligent
scheduling, and parallel processing on a cluster of processors.

391

• Multi-tenancy architecture with automated configuration and customization: Instead
of having a customer using individualized software, multiple customers may share the same
software. In this way, the cost of software development can be reduced as only one version
of the software needs to be developed. However, each client may still feel that the software
is custom made for them.

• Reliability and availability: A cloud environment often has redundant resources so that if
some parts of the system fail, the rest of the system can recover from the failures
automatically. Furthermore, this will be done without the knowledge of users as the
recovery will be autonomously done by the system.

• Security via isolation and policy enforcement: As a cloud environment often provides a
centralized administration of distributed resources, data security is critical. Furthermore, in
multi-tenancy architecture, because both the software and the databases may be shared
among different clients who do not know each other, users will demand high security
assurance. Various security policies may be enforced at runtime to ensure system security.

• Automated system maintenance and upgrades: A cloud environment often maintains its
resource automatically including software and machine upgrades. Software upgrades may
be handled via service updates, software configuration, and database design; and system
updates will include system management and hardware replacement. Furthermore, these
updates may be performed while users are using various cloud services at the same time.

6.7.2 Big data

Big data is the term for a collection of data sets, which are so large and complex that it becomes
difficult to process using on-hand database management tools or traditional data processing
applications [http://en.wikipedia.org/wiki/Big_data]. Sources of big data are mainly from humans
through social networking and from devices in IoT (Internet of Things). The challenges in big data
processing lie not only in the volume, but also in the types of data and the velocity of new data
generated. There are three types of data stored in computer systems:

• Structured Data: Tables of data in traditional relational databases. SQL is the typical
query language.

• Semi-Structured Data: XML files stored in XML databases, as discussed in Chapter 4
and this chapter.

• Unstructured Data: Data that are not structured or semi-structured, mainly streamed data
like voice, photos, and video files.

A big data system typically includes all the types, and big data processing will deal with all the
types simultaneously. Thus, the data type in big data systems is called poly-structured. A big data
system can be characterized by several Vs, including:

• Value: Big data is considered the next big thing after the Internet (communication) and
Cloud Computing (computation). It can bring tremendous value to the society and the
economy.

• Volume: A moving target from petabyte (10 15 bytes), exabyte (101 8), zetabyte (1021), to
more.

392

• Velocity: Real-time data require real-time responses.

• Variety: Data from different sources with different semantics are integrated into different
applications.

• Variability in data structures: Poly-structured data.

• Veracity: Noise elimination and fault tolerance are required to process big data.

• Volatile: Not all data can be stored, and some will be permanently deleted, and thus, big
data processing systems are required to selectively store and organize the data to maximize
its value.

A big data system requires technologies from different domains. The key technologies supporting
include infrastructure, management, and analytic techniques, where:

• Infrastructure: Parallel computing, cloud computing, storage, and database facilities.
Scalability is the key issue here, including scale up and more importantly, scale out.

• Management: Organizing data and facilities, including data representation and
management, NO-SQL (Not Only SQL) movement, Key-value store for unstructured data,
CAP (Consistency and data integrity, Availability and reliability, Partition and distribution)
Theory for optimization and compromise, MapReduce, and Hadoop.

• Analytic techniques: Specifically developed for processing big data in specific
applications, which include aggregation and statistics, for example, data warehouse, data
centers and OLAP (On-Line Analytical Processing); indexing, searching, and querying:
keyword search & Pattern matching (XML/RDF); and knowledge discovery using data

mining and statistical modeling.

The MapReduce concept is based on the higher-order functions Map and Reduce that we have
discussed in Chapter 4, where:

• Map: Divide a list of data into n subsets and each processor performs the same operations
to compute one subset.

• Reduce: Merge the results from subsets to one result.

Assume the job is partitioned into n pieces. For each piece i, where i = 0, l, 2, ... , n-l.

• One Map operation takes a key-value pair <k;i, Vil> and generates a new pair <k;2, v;2>. All
Map operations will generate a list <k;2, v;2>, where i = 0, l, 2, ... , n-l.

yields
Map: list < kiv vi1 > � list < kiz, Viz >

• One Reduce operation takes all n outputs from all Maps and generates a single element

<k4, v3>.

yields
Reduce: < k3, list Viz > � < k4, v3>

Note: Map and Reduce do not take list operation names in the example, because the operation is
implied.

393

Big data systems have been applied in many domains. For example:

• Health care: A big data system can link all patients' data, doctors' decisions, and
outcomes, require an ontology.

• National security: Utah Data Center is a big data system for Comprehensive National
Cybersecurity Initiative. The mission is classified.

• Tax: IRS collects all data from all organizations and individuals to detect any tax evasion.

• Credit scores: U.S. companies collect many types of finance-related activities of every
person with a social security number.

• Retailers: Not only online retailers like Amazon and eBay, but also traditional retailers
like Walmart and Target, have million transactions/hour to process.

• Recommender system: A subclass of information filtering system that predicts the rating,
ranking, and preference that a user would give to an item, or the probability that a user
would buy the item.

• Real estate: Collect GPS signals to help home buyers to determine their drive times to
work throughout at different times.

6.8 Summary

This chapter introduced the fundamentals of C# programming and the emerging SOA and the enabled
programming paradigm. We started with comparing and contrasting C++ and C# through features and
examples. Then, we discussed the SOC paradigm, including the basic concepts, the three-party model of
service providers, service brokers, and application builders. We discussed the WS and the enabling
technologies. The chapter provided examples of developing WS as a service provider, publishing and
discovering WS in service directories, and composing Forms applications and website applications using
existing WS.

Service-oriented architecture emerged as a new programming paradigm, which has demonstrated its
strength in becoming a dominating programming paradigm. All major computing companies, including HP,
IBM, Intel, Microsoft, Oracle, SAP, and Sun Microsystems, have moved into this new paradigm and are
using the new paradigm to produce software and even hardware systems. The need for skill in SOA

programming increases as the deployment of SOA applications increases. This new SOA paradigm is not
only important in the practice of programming, but it also contributes to the concepts and principles of

programming theory. In fact, SOA programming applies a higher level of abstraction, which requires fewer
technical details for building large software applications. We, the authors of this book, are leading
researchers and educators in SOA programming.

Service-oriented architecture has been used in web application and smartphone application development.
This chapter discussed the ASP.Net development environment for web GUI application development as
well as Silverlight for GUI and animation application development.

394

6.9 Homework, programming exercises, and projects

1. Multiple Choice. Choose only one answer for each question. Choose the best answer if more than

one answer is acceptable.

1.1 What programming paradigm supports the highest level of abstraction?

□ imperative □ object-oriented □ functional

1.2 What language supports automatic garbage collection?

□ C □ C++ □ C#

□ service-oriented

□ None of them

1.3 Who will need to have a detailed knowledge of programming languages in the SOC paradigm?

□ service providers □ service brokers □ application builders □ None of them

1.4 What party in the SOC paradigm needs to use an object-oriented programming language?

□ service providers □ service brokers □ application builders □ None of them

1.5 What feature does C# not support?

□ preprocessor directives

□ overriding

1.6 What feature does C# not support?

□ multiple inheritance

□ pointer

□ macros

□ switch statement

□ array

□ for each statement

1. 7 What do the C# using namespace directives replace?

□ declaration in C++ □ printf statement

□ pointer □ header files

1.8 What language is used for both object- and service-oriented computing?

□ C □ C++ □ C#

1.9 What is WSDL used to describe?

□ Scheme

□ control flow of web services □ interface of web services

□ syntax of web services

1.10 What is UDDI used for?

□ describing the interface of web services

□ publishing web services

1.11 What are the green pages in UDDI used for?

□ semantics of web services

□ composing SOA applications

□ calling the remote web services

□ describing contact information of service providers

□ describing the service types of the web services

395

□ describing technical detail for remote invocation of web services

□ describing testing results on the reliability and trustworthiness of web services

1.12 What is SOAP used for?

□ describing the interface of web service

□ publishing web services

□ composing SOA applications

□ calling remote web services

1.13 What is the difference between a web service and a web application?

□ A web service is intended for being accessed by a computer program.

□ A web service is intended for being accessed by a human user.

□ A web application is intended for being accessed by a computer program.

□ Web application is a synonym of web service.

1.14 Where can we program animations in a Windows phone app? Select all that apply.

□ in HTML file □ in XAMIL file □ in C# file □ in Web.config file

1.15 What animation class should be used if you want your object to jump from one point to another

point?

□ DoubleAnimation □ PointAnimation

□ DoubleAnimationKeyFrame □ SingleAnimation

1.16 What features does Saas have?

□ It is identical to SOA software, and there is no difference.

□ Saas does not use SOA technology at all.

□ SaaS is similar to SOA software; however, it is often hosted on a cloud environment.

□ SaaS is the same as a web service.

1.17 What does PaaS offer?

□ Software components and services □ Application development environment

D Computing capacity D Memory and disk space

1.18 What type of data does a big data system process?

D Structured data D Semi-structured data

D Unstructured data D All of these types

1.19 What does veracity mean among big data characteristics?

□ Noise elimination and fault tolerance □ Poly-structured data

□ Real-time data processing □ Volatility of data

1.20 Where is MapReduce used in a big data system?

D Infrastructure D Management

396

□ Analytic techniques □ Data types

2. Add a column in table 6.1 to compare Java with C++ and C#.

3. Compare and contrast C++ and C#.

3 .1 Can a scope resolution operator be used in C#?

3 .2 Does a C# program need a constructor? Does a C# program need a destructor?

3.3 Are there any global functions (functions that are outside any class) in C#?

3 .4 Does C# support stack objects (objects that obtain their memory from the language stack)?

4. A part of the queue and priority queue example in C++ (the Queue class) in Section 3.1 has been

rewritten in C# in Section 6.1. Complete the priority queue class in C#.

5. Compare and contrast the object-oriented programming paradigm and the service-oriented
programming paradigm.

6. What are the major differences between object-oriented software development and service-oriented
software development?

7. Sorting an array or a list of numbers is a frequently used service.

7.1 Use an efficient algorithm (e.g., merge sort) and C# to write a sorting program for float numbers;
wrap it as a web service; and deploy it as a web service.

7.2 Register the web service to a free UDDI server.

7.3 Build a Windows-based application that needs a sorting service and use the web service that you

placed on the web server to perform the required sorting tasks.

8. In this assignment, you will write a "Rescue Turtles" game in C#. As shown in Figure 6.29, your
program should display a random pattern with turtles, where an "M" represents a turtle on its feet
and a "W" represents a turtle on its back. The goal of the game is to have all turtles on their feet using
the minimum time and minimum number of operations. The player can choose one of the following
game actions:

• Select a column (e.g., c2): All turtles on the column will be inversed (M ➔W and W ➔ M).
• Select a row number (e.g., r3): All turtles on the row will be inversed.
• Select a column AND a row number (e.g., c2r3): The turtle at that position will be inversed.
• Enter a q to exit the game.

397

rO

rl

r2

r3

r4

rO

rl

r2

r3

r4

co cl c2 c3 c4

M

M w M

M w w

w

cO cl c2 c3 c4

M M

M w M

w w

w

If enter

��DL--./

If enter

c2

�oc:)

co cl c2 c3 c4

M

M M M

M w w

M

cO cl c2 c3 c4

M w

M M M

w w

M

If enter

r3

�oc:)

If enter

c2rl

me:)

cO cl c2 c3 c4

M

M M M

w M M

M

cO cl c2 c3 c4

M M

M M M

w w

M

If enter

co

�□q

If enter

r3

me:)

Figure 6.29. Two patterns and possible solutions.

cO cl c2 c3 c4

M

M M M

M M M

M

cO cl c2 c3 c4

M M

M M M

M M

M

The game should offer multiple levels of different size and complexity, for example, different sizes (3 x 3),
(5 x 5), (7 x 7), and (9 x 9) and different ways of placing turtles. The game starts with a player­
selected level. After a certain number of consecutive wins, the game proceeds to the next level, if
there is a next level. At the highest level, the same level of the game will be continuously displayed
until a "q" is entered.

The score at the end of each match (pattern) and total score will be computed by the following formulas:

Match score: MS = (200 + L)/t - 5* Nm - 10* Ni. IfMS < 0, then set MS = 0.

Total score: TS = TS+ MS after each match, the initial value of TS = 0.

where
L is the level of the GameLevel type and can take the values of easy, fair, tough, and extreme.
t is the time interval (in seconds) from the time point the pattern is displayed to the time point the

player wins a match (all turtles are on their feet).
Nm is the number of invert actions when a column or a row number is entered.
Ni is the number of individual invert actions when both column and row numbers are entered.

8.1 Use C# to implement the Rescue Turtle game.

8.2 Convert the reusable functions into web services and put them into a web server. The game must use
the web services, instead of local functions.

8.3 Use the reusable functions to build another game; you may need to add some additional functions
(web services).

*8.4 Save the game in the Pocket PC or PDA format, so that the game can be played on a Pocket PC or
PDA.

398

9. This is a group project. Figure 6.30 shows a Teaching Assistant Ontology (TAO) system that can be
used to assist the instructors in keeping their test questions, as well as for students to ask questions

and obtain answers.

Restriction 1 Restriction 1

Figure 6.30. A Teaching Assistant Ontology.

The system allows the instructor to add a new course (e.g., cse565), into the system, and also add
chapters, sections, and questions and solutions into the system. It also allows the instructor to specify
certain relations (restrictions) among the data in the ontology, for example, restriction 1: the two
questions must be in the given order if they appear in the same test paper and restriction 2: the two

questions may not appear in the same test paper.

9 .1 Implement the following functions as web services and save the services on a web server.

1. addTreeNode(subRoot, name);

2. removeTreeNode(nodeName);

3. addTreeLeave(subRoot, name);

4. removeTreeLeave(leaveName);

5. selectLeave(leaveN ame);

6. takeTest(testName);

7. gradeTest(testName, grade);

8. enterGrade(roster, testName, grade);

9. sort(roster);

10. display(roster, range);

11. login(userName, pwd);

12. logout();

9 .2 Register these web services to a free UDDI server.

9 .3 Make use of the above web services to build the following applications.

1. testPaper(sub Root, name);

399

• login(userName, pwd);

• selectLeave(namel) ... selectLeave(namen);

• buildTest(testName);

• logout();

2. testGiving(testName);

• login(userName, pwd);
• take Test(testN ame);
• gradeTest(testName, grade);
• enterGrade(roster, testName, grade);
• logout();

3. reportGrade(roster, keyl, key2, key3);

• login(userName, pwd);
• sort(roster);
• display(roster, range);
• logout();

10. Figure 6.31 shows the component architecture model of an online bookstore.

getOrderinfo

ASP. NETWebApplic ...

11"', -- ---· -
· placeOrder

i l"i ------ , __ _ I f!J __ _____ __ _ _ _

Client l _ 11
processOrder IreJectOrder _

ASP. NETWebApplic .. . e, ' I.) ASP. NETWebApplic . . .
_
:
_
dl
j
_ · ,, I

- ---- --1 ['j ··-··
-- --- -·- l (') ----- --

1 orderSuccessful

1 acceptOrder

,�
J orderBook

placeCharge

�
:�.

j _ _'_�_ -�
S

�.
NE

::.�
bAppli�� I orderBook

I Bank
dl Externa!WebService
r .. --- '"�---- - -·

I publisher

.,Cd.I · Externa!WebService
l . -
------------. i:A r·-------- --- -----

i shipping

parcel

ExternalWebService

Figure 6.31. Components of an online bookstore.

10.1 Use a process specification language, such as BPEL4WS, PSML-S, WSFL, or C# to define the flow
of the bookstore.

10.2 Find existing services on the Internet, where possible, and bind the services into your process model
to perform required functions.

* 10 .3 Use a verification tool to check the properties of your process model, such as completeness,
consistency, reachability, deadlock, etc.

* 10 .4 Use a test case generation tool to generate test cases and apply the test cases to test your program.

*10.5 Apply a reliability model to evaluate the reliability of your program based on the test data.

400

Appendix A

Basic Computer Architectures and Assembly

Language Programming

In this appendix, we first introduce different computer architectures, and discuss how the architectures
impact the way we write programs at the assembly language level. We then briefly examine how local
variables are allocated on the language stack.

A.1 Basic computer components and computer architectures

At the highest level, a computer system can be abstracted as consisting of five components: control,
datapath, memory, input, and output.

Control tells the other components, data path, memory, input, and output devices, what to do according to
the instructions of the program. In other words, the control component of a computer decodes instructions
and sends the control signals to other components to perform the desired operations.

Datapath consists of one instruction register (IR), several data registers, and an arithmetic logic unit
(ALU). The data registers buffer the data fetched from memory and the ALU performs basic arithmetic and
logic operations on the data stored in registers and possibly in memory. Since all high-level operations are
decomposed into basic arithmetic and logic operations, datapath is the component that manipulates data in
the required way. Datapath and control are also called the processor because they are closely related and
are usually implemented on a single chip.

Memory stores the instructions (machine language code) and data translated from the programs.

Input and output components are the interface between the user and the computer. The input component
writes the user's input to memory and the output component reads data from memory and sends them to
the user. Keyboard, mouse, and scanner are typical input devices, and screen, printer, and speaker are typical
output devices of a computer system.

Figure A.1 shows the five components and their interactions. A typical process is as follows. A computer
program is entered through a keyboard and stored in memory. The program is compiled into machine code
and stored into the memory. When this program is executed, a single instruction is fetched into the datapath
at a time.

For example, assume that an addition instruction

add Rl, R2, R3 // Rl = R2 + R3

is fetched into the IR in the datapath. The control reads the instruction from IR, decodes the instruction, and

finds that the instruction is to add the content of register R2 and R3 and to store the result R2 + R3 back into
register Rl. The control then sends proper control signals to the datapath to complete the required operation.

401

Processor
Memory

8 ... ___ _
! ·····;)>

Output

Figure A.1. Five-component model of a computer system.

In the following discussion, we will focus on the datapath, memory, and the organization of the two
components, because they are directly related to imperative programming.

Figure A.2 shows four different architectures of computer systems. The memory-memory architecture in
Figure A.2(a) has no data registers in the datapath, and, thus, the ALU has to take operands directly from
memory. Since memory access (MA) is very slow, this architecture is simple but extremely slow. The
accumulator architecture in Figure A.2(b) has one data register called the accumulator. One of the
operands is always in the accumulator and the data has to be fetched into the accumulator before any ALU
operation. The result is written back into the accumulator too. In the stack architecture in Figure A.2(c),
the data registers are organized as a last-in first-out stack. The ALU can only take operands from the top of
the stack. The result is pushed onto the top of the stack. The diagram in Figure A.2(d) is called load-store

architecture. It is a generalization of the stack architecture in which the ALU can take operands from any
registers and write back the result into any register.

� memory memory

(a) memory-memory architecture (b) ace umula tor arc hi tee ture

registers

memory

bus

(c) stack architecture (d) load-store architecture

Figure A.2. Four major computer architectures.

A.2 Computer architectures and assembly programming

To see how the architectures impact the way we write programs, we show in Table A.1 the assembly
language programs on the four architectures that solve the same computation problem:

402

y = xl * x2 + x3 * x4

where xl, x2, x3, x4, and y correspond to memory locations.

We now compare the instruction count (IC) and the MA of the programs on the four architectures. Register
or accumulator accesses are much faster than memory accesses and thus can be ignored in the analysis.

On the memory-memory architecture, the three instructions perform the following operations:

yl = xl*x2;

y2 = x3*x4;

y = yl+y2;

Since each instruction involves reading two operands from memory and writing the result back to the
memory, the total number of memory accesses is 9.

Memory-memory Accumulator Stack Load-store

mult yl, xl, x2 Load xl Push xl (Load xl) Load Rl xl

mult y2, x3, x4 mult x2 Push x2 (Load x2) Load R2 x2

add y, yl, y2 Store yl mult Load R3 x3

Load x3 Push x3 (Load x3) Load R4 x4

mult x4 Push x4 (Load x4) mult Rl Rl R2

Add yl mult mult R3 R3 R4

Store y Add Add Rl Rl

Pop y (Store y) R3

Store Rl y

IC MA IC MA IC MA IC MA

3 9 7 7 8 5 8 5

Table A.1. Assembly language programs on the four architectures.

On the accumulator architecture, one of the operands of all arithmetic operations is by default in the only
register (accumulator) and the result is always written back into the accumulator. In this example, in order
to perform xl *x2, xl is first loaded into the accumulator, the multiplication instruction multiplies the

accumulator content with x2, and the result is written back into the accumulator. Then the content of the

accumulator is stored in the memory location yl, making the accumulator free for the next multiplication.
The program has seven instructions and each instruction has exactly one MA, resulting in seven memory
accesses.

On the stack architecture, operands of all operations are assumed to be on the top of the stack and the results
are written back on the top. A stack consists of a set of registers or a block of memory in which data can
be stored and two operations can be performed on the data: push x and pop x. The former loads the data

from memory location x and puts it on top of the stack and the latter takes (and removes) the data on the

stack top and stores it into the memory location x. Figure A.3 shows the execution process of the stack­
based program in Table A. l. You can imagine that the stack is a storage compartment (or magazine) that
has only one access (push and pop) point and a spring is used to hold the available item to the access point.
When a new item is pushed onto the stack, all items already in the stack are pushed down one place. When
the item on the stack top is removed, all the items in the stack move one place up.

For example in Table A. l, the values of xl, x2, x3, and x4 are stored in memory. To compute:

403

y = x 1 * x2 + x3 * x4

the value of xl is pushed (copied) onto the stack by the operation Push xl. Then x2 is pushed onto the
stack. The operation mul t will pop the two values on the stack top (one after another) and perform the
multiplication. The result of xl *x2, assumed to be (x12), is pushed back onto the stack. Similarly, x3 and
x 4 are pushed onto the stack, the result of x 3 * x 4, assumed to be (x 3 4), is pushed back onto the stack. The
operation add will pop the two values on the stack top (one after another) and perform the addition. The
result (x12+x34) is pushed back onto the stack. Finally, the operation pop y will move the data on the
stack top onto memory location y. The stack state returns to the state before it starts the operation.

Initial
state
ofthe
stack

-c:::::�
.. ,.,,,.- �

--1,-, 0--
-<.::'�,......

� .. � Q.�-
..--_-:([J_ .--·
�--

c;

xl -_ Push xl
x2 --- Push x2
x3 Push
x4
y �

Memory

,_;�;2\ l + �,
xl x2 x12
- xl

5
::::::::::-..

�
--- �

5 � :::::::- �
- ::::==-- �. �� ��

- ---·
---- �

..__. __
--::: -- ==----

r:;:;;::- r·

Figure A.3. Using a stack to compute y

x3

p y
Push x4 Po

/J;4\l�
I l(x12+x34)I x4

L --

I x3 I
s

�
-�I (x12) I -

�
-<"'-., ,..--...
c•:::::::·_.;:;;:>' ,c:;;_-;:_;;::,,,

� ------- ...--

� z5 � .. c"
r===- �---....

= xl * x2 + x3 * x4.

In the real implementation, a stack has the same structure as a memory or an array. We use a pointer or an
index variable "top" to hold the position of the stack top. Instead of moving all data in the stack up and
down when pop and push operations are executed, we simply move the value of the variable top. Figure
A.4 shows stack states by moving the position of the top variable.

There are eight instructions in this program; however, only push and pop instructions involve memory
accesses. Thus there are only five memory accesses.

The last architecture is a generalization of the stack architecture in which the registers can be accessed in
an arbitrary way, that is, the ALU can take inputs from any two registers, instead of only from the two
registers below the top pointer. This extra flexibility does not reduce the numbers ofIC and MA in this
example, but in general, it can reduce IC and MA. It also makes programming easier. Load-store
architecture, also called Reduced Instruction Set Computer (RISC) architecture, is a mainstream
architecture used in today's computer systems. In the following example, we will explain how we write
programs on the load-store architecture and what are the roles of memory, registers, and ALU.

404

top ...
top ... x2 top ...

top ... xl xl (x12)
occupied occupied occupied occupied

initial push xl push x2 mult

top ...
top ... x4 top ...

x3 x3 (x34) top -.
(x12) (x12) (x12) (x12+x34) top -.

occupied occupied occupied occupied occupied

push x3 push x4 mult add pop Y

Figure A.4. Stack states during the execution.

Assume we want to organize a game involving a large number of teams and matches. In this example, we
consider eight teams to, tl, t2, ... , t 7. We assume to plays t1 and t2 plays t3, and so on. In the first
round, the winners in round 1 will play in round 2, and the winners in round 2 will play in round 3, as shown
in Figure A.5.

Now we will see how we organize the matches in an efficient way. We put the teams in a hotel where we
have a large number of rooms to accommodate a large number of teams. However, the hotel is not close to
the competition venue, and teams need to be transported, say by a bus, to the competition venue. To save
time and eliminate unforeseeable traffic situations, teams will be transported (loaded) into waiting rooms
close to the competition venue. The organization of the game facility is shown in Figure A.6. The game
facility is analogous to a load-store architecture. The hotel corresponds to the memory, the waiting rooms
correspond to the registers, the competition venue corresponds to the ALU, and the bus route corresponds
to the data bus connecting memory and the registers.

initial teams

Round 1

winners round 1

Round 2

winners round 2 t0123

Round 3

champion

Figure A.5. The scheme of matches.

The organization of matches in Figure A.5 can be implemented by the following pseudo assembly language
program. The comments after the double slash // explain what each instruction does. The instruction
mat ch (z , x, Y) is, in fact, a procedure call and the definition of the procedure is given at the end of the
program. The procedure simply chooses the larger value between x and Y and puts it in z.

405

hotel

--� waiting rooms
competition

12

11

10

09

08

07

06

05

04

03

02

01

00

t7

t6

t5

t4

t3

t2

tl

to

bus route

R31

R30

R29

R28

R4

R3

R2

Rl

RO

Figure A.6. The organization of the game facility.

// This program implements the organization in figure A.5. The teams (data)

// are preloaded in the memory locations 21, 22, 23, 24, 25, 26, 27, 28.

//round 1, four matches
load Rl, mem[21] // load the content in memory location 21 into Rl

load R2, mem[22] // load the content in memory location 22 into R2
match Rl, Rl, R2 // call procedure match. The winner is put back into

Rl

load R3, mem[23]

load R4, mem[24]

match R3, R3, R4

R3

load RS, mem[25]

load R6, mem[26]

match RS, RS, R6

RS

load R7, mem[27]

load RS, mem[28]

match R7, R7, RS

R7

// load the content in memory location 23 into R3

// load the content in memory location 24 into R4
// call procedure match. The winner is put back into

// load the content in memory location 25 into RS
// load the content in memory location 26 into R6
// call procedure match. The winner is put back into

// load the content in memory location 27 into R7

// load the content in memory location 28 into RS

// call procedure match. The winner is put back into

// round 2, two matches

match Rl, Rl, R3 // two winners in round 1 play and put winner in Rl

match RS, RS, R7

RS

// other two winners in round 1 play and put winner in

// round 3, one match, and store the final result

match Rl, Rl, RS // two winners in round 2 play and put winner in Rl

store Rl, mem[20] // store the champion in memory location 20

// the "match" instruction is implemented as a procedure

406

match(Z, X, Y): II match procedure needs 3 parameters

if X > y branch G II if X > Y, then jump to label

move z y II Y is greater than X, put y

branch L II unconditionally jump to L

G: move z X II Xis greater than Y, put X

L: return z II The larger value is put in

A.3 Subroutines and local variables on stack

in

in

z

G below

z

z

Most operating systems today are capable of multitasking. A subroutine (procedure or function) may be
interrupted before its completion and be called by a second caller (reentrance). A subroutine may also call
itself (recursion). In both cases (reentrant) and (recursive), the subroutine needs to offer a separate
workspace (local variables) for each occasion of its execution. In other words, each time a subroutine is
called, a new workspace must be created. In fact, it makes no difference at the assembly language level
whether the call is a reentrant or recursive call.

At the assembly language level, local variables are implemented by a stack frame within the stack and are
accessed through the frame pointer. A stack is usually a block of memory. As shown in Figure A.7, the
stack is accessed through a stack pointer sp. The stack pointer is usually stored in a register. When a
subroutine is called, the return address, the address of the instruction next to the subroutine call, will be
stored onto the stack and sp incremented. Then a stack frame (a block of memory) will be created and a

register is used as the frame pointer f p to access the memory locations in the frame. The codes below
illustrate the process of a subroutine call:

stack[sp] = PC; II store return address onto stack. PC: program counter.

sp++; II increment stack pointer

fp sp; II set frame pointer

sp = frame size; II create frame of frame size

Then we have memory space between stack[fp] and stack[fp+frame_size] for local variables, as
shown in Figure A. 7. When the subroutine completes and returns to the caller program, the following
operation will be executed to return the stack to the state before the subroutine call:

sp fp; II deallocate the stack frame

PC = stack[--sp] II restore the PC and thus

II the control will return to the caller

To support reentrant and recursive subroutine calls, the frame creation and deletion described above can be
executed repeated and, thus, create nested frames on the stack, as shown in Figure A.8.

In fact, the value of the frame pointer associated with each reentrance (recursion) will be stored in its stack
frame, so that we only need one register for the frame pointers, no matter how many times the subroutine
is called.

407

sp�

sp� return address

occupied occupied

before subroutine call save return address

stack
frame

return address

occupied

make frame for local variables

Figure A.7. A stack frame is created for local variable in a subroutine.

In summary, we discussed the following issues in this appendix:

• The major components of a computer system and the basic computer architectures.
• How to write assembly language programs on different architectures and how to write imperative

programs: store data in memory, move data into registers, manipulate the data in ALU, put the
result back into the register, and finally store data back into the memory.

• An example of an assembly language program on a load-store architecture.
• The process of subroutine calls and how stack frames are created for local variables in reentrant

and recursive occasions of the subroutine.

SP♦

stack

frame 3

sp •
return address

stack stack

fp
frame 2 frame 2

sp + return address return address

stack stack stack

fp -. frame 1 frame 1 frame 1

return address return address return address

occupied occupied occupied

after first call after a re-entrance after another re-entrance

Figure A.8. Multiple reentrances of a subroutine.

408

Appendix B

Programming Environments Supporting C,

C++, Scheme, and Prolog

Operating system is the interface between human and computer. It oversees operations of a computer,
including storing and retrieving files (file management system), scheduling programs for execution, and
coordinating the execution of programs. It also supports the development environments of computer
programs by running different compilers, linkers, and runtimes. In this appendix, we will discuss the
Unix/Linux and Windows operating systems, and the programming environments for C, C++, C#, Scheme,
and Prolog that are discussed in this book.

B.1 Introduction to operating systems

A computer system without software is useless. Software can be roughly divided into two kinds: the system
programs, which control the operation of the computer itself, and the application programs which solve
problems for their users.

The most fundamental system program is the operating system, which manages all system resources and
provides the base upon which the application programs can be written and executed. The goal of an
operating system is to provide an environment in which users can execute programs in a convenient and
efficient manner.

Initially the operating system is defined as a monolithic resource manager. Under this definition, a
computer is viewed as a set of resources such as processors, memory, devices, and files that have to be
multiplexed among competing tasks or jobs. In this context, the main problem solved by the operating
system is the orderly sharing and protection of resources: offering computing tasks to share common
machine resources while guaranteeing the necessary protection of tasks from one another. Control of
sharing and protection is based on the maintenance of detailed status information about resource usage. The
status information must be constantly updated by the operating system, which keeps track of all resources
within one large monolithic program.

As computer capacity and application domains grew and computer resources required more sophisticated
management, the maintenance and synchronization of resources usage and status information became more
and more complex. Operating systems designed as monolithic resource managers became less and less
tractable, hard to understand, hard to maintain, and hard to test.

The newer operating systems are considered an extension to hardware, providing the users with a virtual

machine. A computer system is treated as structured classes of resources, where each class of resources is
managed by a separate set of programs.

Generalizing the concept that the operating system can be viewed as a collection of software modules which
turn real resources into virtual ones, one can view the entire operating system as one piece of software that

409

turns the real computer, including all resources, into one virtual machine composed of virtual resources, as
shown in Figure B. l(a). In this perspective, the operating system is nothing more than a software extension
to the computer hardware that makes the hardware more amenable to user programming.

(a) A computer system (b) An operating system

Figure B.1. Computer system and operating system.

In Figure B.l(b), the layers of the operating system are elaborated. The core of an operating system is its
kernel. Different device managers and drivers are built on the kernel. Different middlewares can be built
on the managers and drivers to facilitate the communication and execution of different types of applications.
The operating system shell facilitates the human user interface.

• Kernel: Performs basic required functions, including disk file management, memory management,
and processor management for task schedule and dispatch. The kernel of an operating system is not
replaceable.

o File manager: It manages the directories (or folders) in the secondary storage, typically,
disks. It allows users to create, remove, change directories and access files in the
directories. A file is accessed through a directory path: A sequence of directories within
directories. For example, DOS (Disk Operating System) is basically a file manager, as the
shell and other kernel mangers are very simple. DOS runs one program at a time, and thus
memory manager is simple.

o Memory manager: It allocates space for each program in the main memory. It may create
the illusion that the computer has more memory than it actually does through virtual
memory. It shifts blocks of data (pages) back and forth between the main memory and
secondary storage (disk). Memory manger is complex in multitasking and multiprocessor
systems. To improve memory access speed, a computer system also uses cache to buffer
the frequently accessed data.

o Task scheduler and dispatcher: Figure B.2 shows an example of task states and state
transitions in an operating system. The task scheduler adds new tasks to the task queue and
removes completed tasks from the queue. The dispatcher controls the allocation of time
slices to the tasks in the task table (the tasks in ready state). The other state transitions can
be controlled in the task programs.

• Device managers and Drivers are responsible for the peripherals attached to the computer
systems, such as printer, monitor, mouse, keyboard, etc. Peripherals and their drivers can be
installed and uninsta11ed by users.

• Middlewares: are software packages installed to map a general operating system to a system for
more specific purposes. An embedded system is often implemented by installing a middleware to
map the embedded applications to its sensors and actuators. For example, a VIPLE middleware is
installed on a Linux operating system to facilitate communication and data interpretation between

410

ASU VIPLE software and the devices (sensors and motors) attached to the hardware
(http://neptune.fulton.ad.asu.edu/VIPLE/).

• Applications: A special purpose operating system has a set of preinstalled applications to fulfill
the given missions. A general purpose operating system allows users to develop and to install
applications.

• Shell: The human user interface responsible for communicating with users. There are text-based
shells, such as DOS and Linux, and graphical user interface (GUI), such as Windows, iOS, and
Android.

sleep
time
expires

sleeping

creation scheduler

�/
� dispatcher

terminated

Figure B.2. States and transitions between the states in an operating system.

There are different types of operating systems, developed at different times and serving different types of
applications.

Batch operating systems draw their name from the way in which work is submitted to them in batches of
cards. A batch of cards defines a job. A job consists of a related set of tasks such as the compilation, loading,
and execution of a program. Typically, a batch of cards includes control cards and program cards. Control
cards are commands to the operating system that tell it what to do about the program cards that follow. For
example, compile only; or load, execute, and punch the results; or pass as input to some application program
residing in the file system. Remote batch systems are distinguished from batch systems by the simple fact
that the jobs are submitted not at the site of computer, but at a remote card reader that is connected via a
network to the batch system. A remote card reader is usually installed together with a printer, so the users
can obtain their results at the site where the jobs are submitted. Although off-line preparation of jobs
continued for some time, it was quickly replaced in most systems. Disk systems became widely available
and greatly improved on off-line operation.

Disk operating systems. A computer can, while processing one job, simultaneously devote a very small
amount of its CPU to (or use an I/O processor for) reading in one or more jobs and writing them onto the
disk. Thus, when the current job is completed, the computer can rapidly retrieve another batch of work from
its disk (reading from a disk is much quicker than reading a batch of cards). Similarly, when a job requires
the printer to output a line, the computer first writes the line to the disk. The line is printed later when the
printer becomes available. This form of overlap of CPU and I/O operations is called spooling (Simultaneous
Peripheral Operation On-Line). Obviously, spooling which keeps both CUP and I/O devices working at
higher rates has a direct beneficial effect on the performance of the system.

Unlike spooling, buffering overlaps the I/O of a job with its own computation. The advantage of spooling
over buffering is that spooling overlaps the I/O of one job with the computation of the other jobs.

Time-sharing operating systems. Among the online systems, one must distinguish between shared
multiuser systems and private single-user systems on the one hand, and between user-programmable and

411

non-programmable systems on the other hand. The terms user-programmable and non-programmable mean
that the users of the operating system are allowed, and not allowed, to write user programs under the
operating system environment, respectively. In the first category, shared and programmable systems are
called time-sharing or interactive systems. The term time-sharing means that the processor time is shared
among all users and the switches occur so frequently that the users can interact with each program while it
is running. Thus time-sharing systems are also called interactive systems. The term time-sharing could be
used for any system that serves several users at a time. Even batch systems may be time-shared. However,
the rate at which a modem interactive system jumps from one user to another is perhaps 1000 times higher
than that of a batch system.

Web operating system. The concept was developed at the University of California at Berkeley around
1999. It starts to challenge the desktop operating when service-oriented computing paradigm and web­
based computing model become an alternative to the object-oriented computing paradigm and desktop­
based computing model in recent years. The main idea is to connect to the web server through a browser,
and all the computation and resources are on the server and thus the operating system is running on the
server. The key technologies related to web operating systems include:

• W eh-based computing concepts;
• Service-oriented architecture and service-oriented computing;
• Web applications in all domains, including business, finance, and society
• Web 2.0: web as computing platform and Web 3.0: semantic web
• Cloud computing, including, Software as a Service (SaaS), Infrastructure as a Service (laaS), and,

Platform as a Service (PaaS);
• Big data processing through parallel computing and parallel data management.

B.2 Introduction to Unix and C/C++ programming environments

This section introduces Unix operating system and GNU C and C++ programming environment under Unix
and Linux operating systems.

B.2.1 Unix and Linux operating systems

Unix is a multitasking and time-sharing operating system. The design principles include:

• Simplicity: keep the operating system simple and have it support only a minimum number of
functions

• Generality and orthogonality: A single method should serve a variety of purposes, for example:
o the same system calls are used to read (or write) files and devices;
o the same naming, aliasing, and access protection mechanisms apply to data files,

directories, and devices;
o the same mechanism is used to trap interrupts and processor traps.

• Portability: UNIX portability means at least three things:
o Portability of U

N

IX itself from one computer model to another;
o Portability of C programs from one computer model to another, where both computers are

running the same version of UNIX;
o Portability of C programs from one version of UNIX to another.

• File system: There are three kinds of U
N

IX files: ordinary files, directories, and special files. The
files are organized as a multiple tree. An ordinary file is a sequence of bytes. A special file is either
some type of device (e.g., tape and communication line) or a FIFO (first-in-first-out queue), which
is a mechanism used to pass data between processes. A directory is a file which contains
information on how to find other files.

412

• Hierarchy: UNIX can be viewed as being layered, as shown in Figure B.3, where user interface and
programmer interface will be studied as operating system example in the remaining sections of this
chapter.

Shell

System programs

Kernel and
managers

Hardware

Human users

User interface

Commands, compilers, interpreters, and system libraries

Programmer's interface (system calls to the kernel)

Signals File system Page replacement CPU scheduler

Terminal handling Swapping Demand paging Dispatcher

I/O system Block I/O system Virtual memory

Terminal drivers Device drivers

Kernel interface to hardware

Terminal controllers Device controllers Memory controllers Processors

Terminals Disk, printer, etc. Cache, memory

Figure B.3. Unix operating system hierarchy.

Unix is an operating system standard used and supported by many companies, including Solaris, Intel, HP
etc., as workstation, mainframes, and server operating system. These are typically bigger computer systems.

Linux is a free and open source version of Unix. It is typically used in smaller systems, such as PC and
embedded systems. Many different commercial products have been developed on Linux, including:

• Android (Google, U.S.). It has been used in mobile applications.
• Redhat (Red Hat, U.S.). It has been widely used as general purpose operating systems.
• Ubuntu (Canonical Ltd, U.K.). It has been widely used as general purpose and embedded operating

systems.
• Yocto (https://www.yoctoproject.org/). It is used in many embedded applications, such as Internet

of Things (IoT) and robots.

B.2.2 Unix shell and commands

In Unix, the built-in system programs, as well as the user-written programs, are usually executed by a
command line interpreter, which is called shell, as it surrounds the operating system. The shell is not
permanently resident in the main memory like the kernel and is executed as a user process. Users can write
their own shells. There are several shells that are widely used, e.g., the Bourne shell, the Korn shell, and
the C shell.

A shell command line consists of a command name (the name of any executable file), followed by options
and a list of arguments separated by blanks. During execution, the shell loads the file specified in the
command, and makes the command arguments accessible to it. Then a child process is created to execute
the command while the parent process (the shell) waits for the child to terminate. Upon termination of the
child process, the shell types its prompt to the terminal to indicate that the user may type the next command.
For example, commands

rm temp

ps

kill PIO

will remove (delete) the file temp;

will list all processes which are running;

will terminate the running process with process identifier Pl D;

413

test -f temp will return a True, if file temp exists and is not a directory;

test -w temp will return a True, if file temp is writable.

A UNIX shell can be used as a programming language. The execution of a command is analogous to a
subroutine call. A file of commands, called a shell script, can be executed like any other simple command.
Current shell command languages include shell variables and the usual high-level programming-language
control structures like if-then-else, case, while, for, etc. For example, the executable file

myScript

if test -f temp
then test -r temp
else rm temp
fi

ps

kill 27491

can be executed as if myScript is a simple command.

In this section, we will briefly explain the basic Unix commands that we may need to run our C and C++
programs. We first explain a few commands that we will use immediately to get started. Then most of the
commands that you may need are listed in Table B.1 at the end of the section.

Current directory

To find what directory you are currently in, you simply type

pwd

pwd stands for "print working directory." The output shows the path from the root directory to your current
working directory.

Creating a new directory

To create a new directory within the current directory, type command

mkdir newdirectoryname

Deleting a directory

To remove (delete) a nonempty directory in the current directory, type command

rmdir directoryname

Note that the directory to be removed must be empty. If the directory is not empty, you can enter the
directory and then use the commands rm */*,rm *, rmdir */*,rm *, etc., to remove all the files
and directories contained in the directory before removing the directory.

List directory and files

To list all the subdirectories and files in the current directory, type

ls only list directory or file names

ls -1 will list details on directory and file, e.g., access permission

Change directory

414

To change into a different directory within the current directory, type

cd directoryName

cd

enter the directory

return to the parent directory

Type cd, a space, and two full stops (periods) to move one level up in the directory structure or back into
the parent directory.

Unix online manual

To read the description of a command, type

man commandName

For example, man ed. If you do not know the exact command, you may try apropos keyword and a list
of possible commands relating to the keyword will be printed. A full help description of commands listed
above can then be displayed using man.

Table B.1 below lists most commands that you may need. You can use the online manual to check the
options available to each command and the full description of each command. The commands are
alphabetically sorted.

Unix command Description

cat [options] file concatenate and print on standard output

cd [directory] change directory

chgrp [options] group file change the group of the file

chmod [options] file change file or directory access permission mode

ch own [options] owner file change the ownership of a file

cmp [options] file 1 file2 compare two files and list where differences occur (text or
binary files)

compress [options] file compress the file and save it as f i 1 e . z

cp [options] file 1 file2 copy filel into file2

date [options] report the current date and time

diff [options] filel file2 compare the two files and display the differences (text files
only)

df [options] [resource] report the summary of disk blocks free and in use

du [options] [directory or file] report amount of disk space in use

echo [text string] echo the text string to stdout

ed or ex [options] file Unix line-oriented text editor

emacs [options] file full-screen editor

file [options] file report the file type

find directory [options] [actions] find files matching a type or pattern

finger [options] usemame@hostname report information about users on local and remote
machines

ftp [options] hostname file transfer using file transfer protocol

415

gee [options] file gee IS used to compile C and C++ program

g++ [options] file g++ is used to compile C and C++ program, but C file will
be treated as C++ program

gplc [options] file GNU Prolog compiler

grep [options] 'search string' search a file for a pattern
argument

gzip [options] file compress or uncompress a file. Compressed files are stored

gunzip [options] file with a . g z ending

head [-number] file display the first 10 or the given number of lines of a file

hostname display the name of the current machine

javac [options] file Java compiler

k i 11 [options] [pid#] [%job] the process with the process id number (pid#)

In [options] source_ file target link the source file to the target

login sign on
logout, or exit exit

lpq [options] show the status of print jobs

lpr [options] file print to defined printer

lprm [options] remove a print job from the print queue

cancel [options]

ls [options] [directory or file] list directory contents or file permissions

man [options] command show the manual (man) page for a command

mkdir [options] directory make a directory

mv [options] file 1 file2 change file name from f i 1 e 1 into f i 1 e 2

passwd [options] change your login password

pico [options] file text editor

p s [options] show status of active processes

pwd print working (current) directory

rep [options] hostname remotely copy files from this machine to another machine

rlogin [options] hostname login remotely to another machine

rm [options] file remove a file

rmdir [options] directory remove an empty directory

sort [options] file sort the lines of the file according to the options chosen

tail [options] file display the last few lines (or parts) of a file

telnet [host [port]] communicate with another host using telnet protocol

tr [options] string 1 string2 translate the characters in string 1 from stdin into those in

string2 in stdout

uncompressfile.Z uncompress f i 1 e . Z and save it as a file

uniq [options] file remove repeated lines in a file

416

uudecode [file] decode a uuencoded f
i

le, recreating the original file

uuencode [file] new_name encode binary file to 7 -bit ASCII, useful when sending via
email, to be decoded as new_ name at destination

vi [options] file visual, screen-oriented text editor

we [options] [file(s)] display word (or character or line) count for f ile(s)

who or w report who is logged in and what processes are running

Table B.1. Unix command table.

B.2.3 Unix system calls

A system call in an operating system provides public library functions for the users to access the resources
managed by the operating system, including accessing the file system, controlling the processes, and
implementing interprocess communication. The system calls are running in the kernel mode. All Unix
system calls are included as C library and can be called just like calling C library functions. Table B.2 list
the common Unix system calls.

Category Function description System calls

File management Creating file and file buffer create(); open(); cJose()

File stream read and write read(); write();

File random access !seek();

File linking and unlinking link(); unlink

File status stat(); fstat()

Security and access control access(); chmod(); chown; umask;

Device control ioctl();

Process Process creation and termination exec(); fork(); kill(); exit();
management Process ownership and grouping getuid(); geteuid();getegid();

Process ID access getid(); getppid();

Change process working directory chdir();

Interprocess Pipelining pipe();
communication Messaging msgget(); msgsnd();

Process synchronization Wait(); signal(); alarm();

Semaphores semget(); semop();

Shared memory communication shmget();shmat();shmdt()

Table B.2. Unix system calls.

All the input and output functions, as well as the file operations we use in C and C++ are calling the
operating system calls to complete their jobs, as only system calls can access the file system, devices, and
processes in the system, as discussed in Chapters 2 and 3.

Like all modern operating systems, Unix supports multitasking programming. We will use system calls to
illustrate the implementation of parallel computing in Unix. We start to use the process creation system
call:

417

int fork();

When fork() is executed in a process, it creates a new (child) process, which is basically a copy of its parent
process: The same program code, including the fork() statement, status, user-data, and system-data
segments, will be copied. The only difference is that the two processes (parent and child) will receive
different return values from the system call fork().

The child receives a O return value, whereas the parent receives the process-ID of the child. If the parent
receives "-1" value, an error has occurred in creating a child process. fork() has no arguments, the caller
could not have done anything wrong. The only cause of an error is resource exhaustion (e.g., out of
memory). In the exception handling, the parent process may want to wait a while (with a sleep call) and try
later again.

Another Unix system that usually works with fork() in tandem is the exec(parameters). Usually, the child
process executes an exec(parameters) system call after the return of fork(), whereas the parent either waits
for the child to terminate or goes off to do something else. Figure 2.12 shows a typical use of fork() and
exec(parameters).

The exec(parameters) system call reinitializes the child process from the given program and data files in
the parameters. The steps of the creation and reinitialization of the new process are marked on the lower
part of the diagram in Figure B.4.

switch(fork())
0: exec(prog, data) //child to call
-1: sleep() / / error handling
default wait() //for P1 to exit

Process PO

I nstructions(prog)

j user_data(prog)

j sys_data(prog)

Q) fork()

.

,,

, _________________ : ',,
\ fork() creates a \
/ child process /

.' ---------------- ,' I ,'
!,
'

Create
a copy of PO

switch(fork())
0: exec(prog, data) //child to call
-1: sleep()// error handling
default wait() //for P1 to exit

Process P1

® lnstructions(prog)

user_data(prog)

J sys_data(prog)

® exec (prog, data)

Figure B.4. A typical application of system calls fork() and exec()

prog.exe

Different versions of the system call are used to facilitate different parameter formats. Below are C
specifications of two versions of the system call:

II Version 1: list all parameters

int execl(path, argO, argl, ... , argn, null)

char*path; II path (location) of program file

char *argO; II first argument (program file)

char *argl; II second argument

418

char
char

*argn;
*null;

// last argument
// null indicates end of arguments

// Version 2: Use a file name and an array as the parameters

int execvp(file, argv)

char*file; //program file name
char *argv[]; // pointer to the array of arguments

The following C program shows a simplified design of a command line interpreter (CLI), which waits for
a command to be entered, and starts the program associated with the command as a child process of itself:

#include <fcntl.h> // Command Line Interpreter

static void main (int argc, char *argv[]) {

while (TRUE) { // read, execute a command and wait for termination

read_command(argv);

// read command name in argv[O] and data in argv[l] ... argv[argc-1]

switch (fork ()) {

case -1:

printf("Cannot create new process \n");

break;

case 0:

execvp (argv[O], argv);

// The execvp function should never return. If it returns

printf("Cannot execute \n"); // an error must have occurred

break;

default: // CLI process itself will come to this case

if (wait(NULL) == -1)

printf("Cannot execute wait system call \n");

// Parent process receives the PID of child process

// and then waits for the termination of child

B.2.4 Getting started with GNU GCC under the Unix operating system

GNU GCC is a C/C++ development environment under the Unix operating system. We assume that you
know how to write a C/C++ program and have read the previous section on Unix commands.

First, you need to write your CIC++ program. You can write the program on your desktop computer and
SHH or PuTTy software to transfer the program to the Unix operating system. You can also write the
program in Unix using different text editors available on Unix, such as pico, nano, vi, and vim.

A short introduction to Unix and basic Unix commands are given in Section B.l. If you use the SSH Secure
Shell, you can start a console window by choosing the menu item "Window" and then choosing "New
Terminal." To enter and edit your program, you can use any Unix text editors (e.g., pico or vi). You
enter, for example,

pico hello.c

A new text window will be opened and you can start to enter your program.

// My first program, file name hello.c

419

#include <stdio.h>

int main() {

// the library functions standard I/O will be used

printf("hello, world\n");

return 0;

After you have entered the program, type ctrl-X to exit the pico editor. Then you can use the GCC
compiler to compile your program.

You can execute the command

gee -Wall hello.c -o output

which will take your 'hello.c' file and output an executable called "output." It is a good idea to add the
-Wall flag, which enables the compiler's warning messages, to learn to generate better code. The -o flag
is also optional, so if you choose not to specify an output file name, it will name the file a.out by default.
We run gee -Wall hello.e -o output in the example below, and we see that the compiler provides several
warnings messages, but no errors, so the code is successfully compiled.

0 2;general.as.u.edu - default - SSH Secure Shell

jj fUe !;dit -�iew Window H;lp-·

jj � I ��-I ____ • I � e_�_i_-�_-1 -�-.. �T��-, -���iJ
jj iJ Quick Connect =-, Profiles

-bash-3.2$ gee -Wall hello.e -o output

-bash-3.2$ output

-be sh: output: c.o:mroemd not found

-bash-3.2$ ls

hello hello. e hello. els hellovoid. e

-bash-3.2$ gee -Kall hello.c -o output

-:t::ash-3.2$./output

hello world

-1::;ash-3. 2$ I

Connected to general.as.u.edu

:mt'ul

Now, to run the executable file "output," you simply type the following command:

./output

It will execute the program and print the output.

□ X

If your program has a syntax error, such as a missing semicolon, you will receive an error message, as seen
below:

420

0 2:general.as,u.edu - default - SSH Secure: Shell
. -

JI file fdit �iew
-- --
Window -

-- - --
Help -

- - -- --
-

-JJ liil I � � I- 1$,�� i "' I i1iJ ill I t� i � �? I
n fl Qu�k �onnect � -

,- - - -Profiles -�
-baish-3.2$ ls

hello hello. c hello. els hellovoid. c •t..r:i::·1.t

-baish-3.2$ gc.c -Wall hello. C -o cuput

hello. c. In functfon an:aina:

hello. c: 5: 9: error:. expected a,a or ai:a before ainta

int foe O -�
A

lhello.c:4:6: warr.dng: unused ·variable ba [-iiu.nus,ed-T.,.,.ar·iable]

int X = 0
A.

-bash-3.2$ I

- □ X
--

,.

'y

Connected to general.as.u.edu rssH2--: aeil28-cb�-:. h��-md5- n(l79x11-,-�1---A

Note, you can also use C++ compiler g++ to compile your C program, for example:

g++ hello.c -o output

If no compilation errors are found, the command will create an object code (machine code) and store the
code in the file output. To run the program, you type

./output

The program will be executed and the output printed on the screen.

The compiler g++ can compile both C and C++ programs. The name of a C program must have the
extension . c while the name of a C++ program must have the extension . cpp.

Note, gee can also be used to compile both C and C++ programs. The difference is that g++ will treat C
program also as C++ program, while gee will not treat C program as C++ program.

B.2.5 Debugging your CIC++ programs in GNC GCC

Now, we will go over how to perform a basic debugging in GNU GCC.

1. In order to debug our program, we first compile our code with debugging information enabled using
the -g flag. In other words, gee -g hello.e -o debugthis.

o.c

-bash-3.2; gee •; hello.c •o d�cugchi5

-b�=sh-3. 2S t:,

1 hello. c :iutput
-bi!i:,h-3. 2$ I

2. Now, we can run the debugger using gdb debugthis.

421

� general.as,u.eclu · default - SSH Secure Shell

fJ Eile !;dlt: �iew V1lindow]:!elp

-bash-3.2$ ls
hello. c
-bash-3.2$ gee -g hello.e -o debugthis
-baish-3.2$ ls

hello' C
-bash-3.2$ gdb debugthis
GNU gdb j{iDE,) 7. 6, 1
Copyright {C) 2013 Free Softweire Found.Bit ion, Inc.

D

License GPLv3+: GNU •SPL version 3 or later <http: //gnu. arg/licenses/gpl. htrrl>
This is free software: you ar-e free to change and. redistribute it.
Ther-e is NO WARRANTY.' 1 to the extent pernii tted b�• law. Type "shaw copying ..
and "show wairnrn.ty•• for der;ails.
This :; E was configured as "'x86_64-unJmmm-linux-gnu".
For bug rep-orr;in;;1 instructions, please see:
<http://w-i.iw,gnu.org/software/gdb/bugs/> ...
Reading s�!JI'ibols from /aifs/asu. edu/users/k/l/i/kliaoS/CSE:240/debugthis. , , done,
(gdb) I

X

3. Notice that we can open multiple SSH/PuTTy terminals at once, so it might be a good idea to have
the code open in another terminal and the debugging process open in another terminal. Once we
are in gdb, we can add breakpoints into our program, which stipulate where the program should
stop executing. We can add breakpoints for line numbers and also function calls. Below, we add a
breakpoint to line IO and the function call foo() using the commands break 10 and break foo,

respectively.

L!I gierier.al.a�u.edv � i;:f�fa It - SSH)e,cure $hell □

•buh.•3. 2:;. gab de:bug"'hl.s1
..-,, g(ib (Ga, -6-1.
Co:p�•r::..qht (C� 2 3 Free Sott a.re Foufl!'Jat1 n, Inc.
-· :ic�n:!!c GP- ·3+: � "'S?L ·etoior.i 3 or ue:r. <http;/ /gri.u. or�t/licen.oe: /gpl. M:ml>
hi.Ill is f:ree :!lo�t.;a.re: you u·e fr,ee t::i, cbainge and redii!!itril:!u.t.e :i. t,.

""h e ,:,, tic . 'tf.U:l J' I • Typ-e ":it!Oiri' COJ:'.,fing"

hle hello.c. ., line S.

X.

4. Once our breakpoints are set, we can run the program using the command run, and it should stop
once it hits a breakpoint. At this point, we can begin executing the program line by line. One way
to do this is "step-into," which will execute a program, including all function calls, line by line. We
can step into by using the s command, as shown below where we step into the foo() function.

422

iJ gen,e,al.i15t.J.ed�, - def ult - SSH Secure She:11

'.Stea !..-po i:n; l a: z
(qdb) breei: ••
Bre&t..-,po1:n .. 2 ,It Ox-I, C.S2�; ! ... _e ·Jc lo.c, l1ne S.
(g:db) run
St .:'Cl ,g '.Pl:'.OQra, : /a!S/HU, ed.U/fJSU,lli/t,O l/ 1/ liaoe/ SE2 0/ et:11.1gthi.S

□

·a.rn.H1.g: no l able .5ec-:1 na tound in add.etil �)r:rl)ol-tlle s �r.e -:, tplled1 :sc, at
>tl.!Un!.a.aa bCi !J

l • • an (► at hel .c:
Scurc f.i i.! more: re:cetnt ·th � �xecu•�.blc.

pr)n�f4�!el1D CSE2�0!\n"):

2, f O ,. at h�lla.c:S
p��n�f(�foo\n'>:

X

5. Another option is to use "step-over" or n, which will skip over function calls when executing line
by line.

6. Once a line is executed, we can also print variable values using print i, for example.

Bre ·Kp iii.it
qdb) nm

Surtin; pro r, : /afa·/a.eu.edu/u:s nl �l .. lll llaoe/CSE2\lrOldeb-ugthJ.a

□

o.rr.iin : r.io l da.ble aeee ona ! u�d. i.n ad.died f!Vffl'b:'l -tile �'!i!l"te -sup�li-ed ""S;,., e

"'SE') I

1, .ur.i o a.t hello.c:11
prine�(-�e 10 CSE2�D!\n"

oon;

l t =

X

7. Finally, to quit the debugger, we can use quit and then enter y if the program is still running.

Memory leak detection tools are also in GNU GCC. For example, Valgrind is a GNU GCC/G++ memory
leak detection tool. Its details can be found at:

http://www. valgrind. org/ docs/

423

The tool is installed in GNU GCC/G++ in the ASU general server. The following commands can be used
to include the memory leak detection tool

g++ -o myProg -g myProg.cc II Compile

II The use of -g allows exact line numbers in error messages

valgrind --leak-check=full --tool=memcheck .lmyProg

B.2.6 Frequently used GCC compiler options

GCC has many available options. We list a few commonly used options for convenience in Table B.3.
Multiple options can be applied in one command.

Command Compilation option description

gee hello.c No option. It generates default executable code: a.out

gee hello.c -o hello -o generates executable code: hello

gee -Wall hello.c -o hello -Wall generates warning

gee -E hello.c > hello.i -E generates the preprocessor (macro) output and redirects it to hello.i

gee -S hello.c > hello.s -S generates the assembly code output and redirects it to hello.s

gee -C hello.c -C generates object file without linking and save it in hello.o

gee -Wall -v hello.c -o hello -V prints the steps of the compilation steps

Table B.3. Frequently used GCC compilation options.

B.2. 7 C/C++ operators

Table B.4 lists the C and C++ operators, their precedence, description, and associativity. The table also
indicates the operators that cannot be overloaded in the description part.

[Reference: https://en.wikipedia.org/wiki/Operators_in_C_and_C%2B%2B] .
....---------.-- --. -------.----- ---- ---· .. -·-•-.. --- ---·· . - --------·-· ---------

Precedence Operator Description Associativity
'-- --- ---- -------------- ------· - --·- -- -- --- �-------- ---·-· --

1
(highest)

2

Scope resolution (C++ only). No overloading. None
----�----·---··--·----- -- ------- ··-· -------,-----·--

++

()

[]

->

typeid()

Postfix increment

Postfix decrement

Function call

Array subscripting

Element selection through value semantics.
No overloading.

Element selection through pointer

Run-time type information (C++ only)

const_cast Type cast (C++ only). No overloading.

dynamic_cast Type cast (C++ only). No overloading.

reinterpret_cast Type cast (C++ only). No overloading.

static_cast Type cast (C++ only). No overloading.

Left-to-right

------------··----- ---------+-·-----

3
++ Prefix increment Right-to-left

Prefix decrement

424

---7�
1 Unary plus (positiv
! Unary minus (nega

e sign)
tive sign)

. .

4

5

-

6

,._

10
-· -- -

11
--- ·-- --

12
---- --

13
--- -

14

15
---r-, --

16

I!
I ~

I (type)
*

&
sizeof
new, new[]
delete, delete[]

�-.... --·- -· ---- ---·-

*

->*
*

I
%

I Logical NOT
Bitwise NOT (One' s Complement)
Type cast.
Indirection (derefer ence)
Address-of (derefe rence)
Size of objects. No overloading
Dynamic memory
Dynamic memory

�--------

allocation (C++ only)
deallocation (C++ only)

Member of object Contact selected by pointer-to- Left-to-right
member name. No
Pointer to member

--... �,

Multiplication
Division

overloading.
(C++ only).
-· --· - ------- --··· - -- -

Left-to-rig ht

Modulo that returns remainder
--· - - ------·--·-·-·------�---- ·---· -

+
-

-·-·------

<<
>>
<
<=
>
>=
--

!=
&

'--•-

A

-

I
- ------·-

&&
,__ -

II

?:
=
+=
--

*=
I=
%=
<<=
>>=

Addition Left-to-right
Subtraction

�-, __ - ---- ·-

Bitwise left shift Left-to-rig ht
Bitwise right shift

--- ------------�--- ----

Less than Left-to-right
Less than or equal to
Greater than
Greater than or equ al to

Equal to
Not equal to
Bitwise AND
--·----- --·

Bitwise XOR (exclu
--

Left-to-right

-------------+-- ·--··

sive or)
-·-- --

Left-to-rig ht
- - - ----

Left-to-right
Bitwise OR (inclusi ve or) Left-to-rig ht
-- ------

Logical AND
----- .,. ____ ,_ -----

Logical OR

.. _ --·-----

Left-to-right
---------------+-· ··--· - ·-

Left-to-rig ht
------ ---- -- - -------- -- --

Ternary conditional.
Direct assignment
Assignment by sum
Assignment by diffe
Assignment by prod
Assignment by quot

No overloading.

rence/subtraction
uct
ient

Assignment by rem ainder
Assignment by bitwi
Assignment by bitwi

se left shift
se right shift

425

Right-to-left
-------+- -- --·

Right-to-left

I&= , Assignment by bitwise AND - l

I A: I Assignment by bitwise XOR

I I
= Assignment by bitwise OR

17 throw Exceptions throw operator (C++ only) _______ I Right-to-left
18 I

�ft-to-rightI
l Comma(lowest) I,

-

Table B.4. CIC++ operators, their features, and overloading abilities.

B.2.8 Download programming development environments and tutorials

You can download a desktop copy of GNU GCC from the GNU home page:

http:/ /www.gnu.org/

GNU GCC page:

http://www.gnu.org/software/gcc/gcc.html

Tutorials and references related to this section can be found at:

1. The Beginner's Guide to Nano, the Linux Command-Line Text Editor
http://www.howtogeek.com/howto/ 4 29 80/the-beginners-guide-to-nano-the-linux-command-line­
text-editor/

2. Interactive Vim tutorial
http://www.openvim.com/

3. Vim Tutorial
https://linuxconfig.org/vim-tutorial

4. The ultimate Vim configuration: vimrc
https://github.com/amix/vimrc

5. Compiling C and C++ Programs
http://pages.cs.wisc.edu/~beechung/ref/gcc-intro.html

6. Tutorial of gee and gdb
http://cseweb.ucsd.edu/classes/fa09/cse 141/tutorial_gcc _gdb.html

7. GDB Tutorial - A W alkthrough with Examples
https://www.cs.umd.edu/~srhuang/teaching/cmsc212/gdb-tutorial-handout.pdf

8. Introduction to GDB a tutorial (video)
https://www.youtube.com/watch?v=sCtY--xRUyI

B.3 Getting started with Visual Studio programming environment

In this subsection, we introduce the Visual Studio environments that support the development of CIC++,

C#, and SOA programs.

You can download a free copy of Visual Studio Professional from Microsoft DreamSpark
(https://www.dreamspark.com). You must be a registered student in order to download from this site. You
can use Visual Studio for C, C++, and C# program development.

426

I

B.3.1 Creating a C/C++ project in Visual Studio

Visual Studio supports C, C++, and C#. C# and SOA programming in Visual Studio are discussed in
Chapter 6. To start a C or C++ project, you can follow the following steps to set up your system properly.

• Start Visual Studio.
• Choose Visual Studio menu "file" - "new" - "project ... ": A "New Project" dialog box will

pop up.
• Choose "Visual c++ project" in the window on the left-hand side, and then choose "Win32

Project" in the window on the right-hand side. Enter the project name. Assume your project name
is "MyCprogram," in the text box below the two windows. Click OK.

• Under "Project type," select "Win32."
• Under "Templates," select "Console Application."
• Click next.

• A new window pops up. Click on "application type" and choose "Empty Project," as
shown in Figure B.5.

• Click "Fini sh."

'Nin32 .Application W'izard - MyCprogram

Overview

Application Setting�

Application Settings

Application type:
0 �indows application

(�) CQ.nsole application

()QLL
0 �tatic library

Additional options:
� �mpty project

,v c, �c

Add common header files fur:

r -
•

� Sei;urity Development Lifecyde (SDL)
checks

J < Previous I ; l ext I
I Finish 11 Cancel

Figure B.5. Creating a new C/C++ project.

X

Now you have created an empty project that can be used to run your CIC++ programs. There are two
possibilities for you to add your C/C++ program into the project: (1) You want to type your program in
Visual Studio. (2) You have already saved your program in a .c file or a .cpp file.

Option 1: type your program in Visual Studio

Step 1. In your Solution Explorer, right click the folder "Source Files," choose Add ➔ New Item ... , as
shown in Figure B.6:

427

r Solution Explorer

t1J I •�,,.

Sea1d> �ol,;t,c;n Ex.plorer /Ctd· ·\

:;:I Solution 'MyCprogram' (1 project) ·
J. IS] My{program

� •·• References

1 a External Dependencies
Header Files

Clas!> Wizard ...

i Scope to This
I

I [m'O New Solution Explorer View

IJ(, Cut

! oJ Copy

P,;,e

X Delete

ID Rename

> Properties

: •a Existing Item ...
I New Filter

I +,ts Class ...

Ctrl+X ; +.rs Re5ource ...

Ctrl+C

(trl, ,

Del

Alt+Enter

Figure B.6. Adding a source file into the project.

Step 2. As shown in Figure B.7, choose C++ File template. When you enter the program name, make sure
you enter an extension .c if you want to write a C program. By default, it creates a C++ program.

Add New Item - MyCprogram

.t Installed

.i Visual C++
Code
Data
Rei.ource
Wi::b
Utility
Property Sheets
HL.SL

Graphic,

t> Online

Sort by:

[5

lliJ
+

1

Default

C++ File (,cpp)

Header File: (.h)

Make sure you enter an

extension .c if you want

to write a C program

By default., it creates a
C++program

-· •-1

�to 90 online and find te1rmJ�

Virnal C++

Vis.ual C++

Se.arch lmtallecl Te:mplate.s (Ctrl+E)

Type: Virnal C++

X

Creates a file containing C+ + !:ource: code

Name:

location: C:\YinongDell Office\ Teach AII\CSE240 AII\Programs Example.s\M}<Cprogram\MyCprogram\ .,. I ftrowse .. , I

, --8,-dd _ _,I I Cancel

Figure B. 7. Adding a C file by changing the extension to .c.

Step 3. Click Add. An empty C program file is created. You can start to write your program in the file, as
shown in Figure B.8.

428

MyFirstCprogram.c .g X
fSl MyCp'.ogram (Global Scope) __ _ _ __

�11 My first program, file name hello.c
2 : // the library functions standard I/0 will be used

3 #include <stdio.h>
4 dint main () {

s l
6

7 l}
8

161% .. ◄

printf(11hello, world\n");
return 0; �J

l
Enter or paste

your C
rogram here

Figure B.8. Typing your C program in the new file.

Option 2: Open an existing C/CPP program

ti} I '<�P !. si1 I® I
'.: Search Sa!ut,on hplore.1 (Ctrl.,;J P ·

c;:l Solution 'MyCprogram' {1 project)
..,. [SJ MyCprogram

l> •·• References
l> c;i External Dependencies

� Header File,
, Resource Files

..,. , I Source Files
I> +.t MyFirstCprogram,c

New.c

program file
added

Assume that you have created a program called MyFirstCProgram. c or MyFirstCPPPrograml. cpp
and now you can add your program into the project following these steps:

Step 1. In your Solution Explorer, right click the folder "Source Files," choose Add ➔ Existing Item .. . ,
instead of Add ➔ New Item.

Step 2: Browse to the location where you have saved your .c or .cpp file and open the file.

Using Visual Studio, you can easily implement GUI (graphic user interface) in C++ and in C#: When you
create a new C++ (or C#) project, instead of selecting an empty project, you can select "Windows Forms
Application" as the project type. Then, the GUI tools and library will be included in your project stack. You
can use the provided tools and library functions, such as buttons (for mouse click inputs), textboxes (for
text inputs), and labels (for outputs), to implement different kinds of GUI. See Chapter 6 for more details.

B.3.2 Debugging your CIC++ programs in Visual Studio

Visual Studio has the most powerful debugging capacity. As shown in Figure B.9, you can simply click the
left edge of the program panel to add a break point. You can choose Debug ➔ Start Debugging to start
running the program. The program will stop at the first break point. You can click "Continue" to the next
break point. You can also click the single-step execution to move the next statement. There are three single­
step execution methods:

• Step into: The execution will enter into the function if the current statement is a function call;
• Step over: The execution will move to the next statement, no matter the current statement is a

simple statement or a function call;
• Step out: If you enter a function, and you want the execution to exit the function and return to the

next statement after the function call.

429

D4 MyCprogram (D·ebugging) - Microsoft '\/i5,ual Studio

Eile fdit }liew £roject Build Qebug Team Iools Teit Analyze Window .l:!elp

j:j C "' • o I � Code Ma

MyFirs.tCprogram.c -i-l X

� MyCprogram

2

Click to
set a break

point

161 % "' ◄

[-

l
����

_� __ _,,_i _______ c ______ _

#include <stdio.h>

#pragma warning(disable 4996)

Hint main() {

l char str[16];

s c an f ("%s '1
, st r) ;

Three single-step
execution methods

printf(u String entered is: %s\n 11

, str);

return 0; s lms elaps,ed

Single step
execution position

indicator

►

� ·-------------
--

-----... -------·--------........-----------------.----·---------------------------------

Autos:

1 Name Value
t> � printf returned 25

.o11 • str OxOOeffb10 "Hello"
• [0] Array of character 72.'H'

Read the variable
• [1] variable and the 101 'e'
... [2] characters in the 108 'I' values during

... [3] array 108 'I' single-step

� [4] 111 'o' execution

Figure B.9. Debugging your C program.

B.4 Programming environments supporting Scheme programming

In this section, we first introduce how can you start to write simple Scheme programs, and then explain
how you use the DrRacket programming environment to run your Scheme programs.

B.4.1 Getting started with DrRacket

A simple Scheme program is extremely simple. Most mathematical expressions in prefix notations are
simple Scheme programs. For example,

(+ I 2)

is a simple Scheme program that can be executed. To print "hello world," all we need to write is:

(print "hello world")

430

In the rest of the section, we will introduce DrRacket, a free Scheme programming environment for
educational purposes. DrRacket can be downloaded from http://racket-lang.org/download/

After you have downloaded and installed DrRacket, you can follow the following steps to set up and then
use the programming environment to run your Scheme programs. We are referring to DrRacket version
RSRd:

1. Start the program Dr Racket. As shown in Figure B. l 0, a window with two sections will be opened. In
the upper section window, you can enter your program, and in the lower section, evaluation results and
possible error message will be displayed.

2. To have the full functionality, you need to choose the right language. In this text, we used RSRS
(professional edition). You can also use the "Advanced Student" version. However, some features are
not supported in the student version, such as the pair data structure and its operations.

By default, the system is set to the "Beginning Student" version that works only for basic functions.

3. Enter your program in the upper window. For example,

(print "hello world")

(newline) start a newline for next print

(print (+ (* 3 8) 10))

(- 20 5)

4 Click on "Check Syntax" to check the possible syntax errors. Click on "Run" to execute your program.
The single step execution option is only available when you choose the "Beginning Student" version.
Click on "Stop" to abort the execution.

•-- -------------------- ----- -- -------
-�

file ,Edit �ie:w),.anguage Rafket Insert Iabs Help

Untitled,.. (define .. ,),.. Save i;J Debug lfl Check Syntax Q,. Run � Stop @
(write·;,;.el:;; W�-;:-;;;,)

--�----------· - -· -·------------·---·-···---
is

·· -

, (newline)

(-'- (" 3 e) .:.C•)

(- 20 5)

\IVelcome to �, version 5.2 [3m].
: LangL1age: Advanced Student; memory limit: 128 MB.
. "hello Wo:rld"

3-9
' 15

Copy code from PPT to here?

Paste into Notepad first to
remove the format

,o, Choose a language (ctt•C)

Teadling Laoguages
vHow to Design Programs

Beginning Student
Beginning Student with List Abbreviations
Intermediate Student
Intermedlete Student with lan-bda

I> DelnProgramm

r-\ Legacy Languages
L(RSRS

Pretty Big

!>Swindle

Figure B.10. DrRacket programming environment and language selection.

B.4.2 Download DrRacket programming environment

DrRacket home page:

http://racket-lang.org/

DrRacket download page:

http://racket-lang.org/download/

431

B.5 Programming environments supporting Prolog programming

In this section, we will explain how to use the GNU Prolog environment under the Unix operating system
to edit, compile, and execute Prolog programs. A short introduction to Unix and basic Unix commands is
given in Appendix B.1.

B.5.1 Getting started with the GNU Prolog environment

After you have logged onto a Unix server with GNU Prolog installed, you can create a new directory using
the command:

mkdir Prologfiles

Then you can put all your Pro log files and programs in this directory. You may create subdirectories in this
directory.

Enter the directory by using the Change Directory command:

cd Prologfiles

To write a GNU Prolog program, you can either use a Unix editor, for example, pico or vi (pico is more

convenient) or upload (e.g., using an FTP client software) a pre-edited file into the directory Prologf iles.

The name of a Prolog program should have an extension .pl.

To compile a Prolog program, say myprologprog. pl, type the command

host> gplc myprologprog.pl

at the operating system prompt host>, where gplc is the GNU Prolog compiler.

The compiler will generate the machine code program, sometimes called executable, stored under the name
myprologprog.

Then you can start GNU Prolog by typing gprolog at the operating system prompt host>

host> gprolog

Before you write a program of your own, you can execute the Prolog built-in functions in the GNU Pro log
environment.

?- write(hello).

?- write(Hello).
displayed*/

% hello is a constant

% Hello is a variable. Its address will be

?- write('hello world'). % a string is printed

?- read(Y), write('The variable entered is '), write(Y), nl.

% nl prints a newline. Type a period and an enter at the end of the input

?- Xis 2+2.

?- Y is 5*8.

?- Y is 2**10.

?- 2*2 = : = 2+2. % returns yes.

?- = : =(2*2, 2+2). % returns yes.

432

?- ==('Apple', 'Orange'). % returns no.

?- 'Apple' == 'Apple'. % returns yes.

?- length([a, b, x, y, 2, 45, z], 1).

?- a pp end ([a, b, c, d] , [4 , 6, 8] , LL) .

?- append (X, Y, [a, b, c]) . Then, type 11; 11 to obtain all possible answers.

?- X is [l I [2 I [3 I []]]], write(X). Explain the output.

If you have written your own Prolog program, you can execute the executable created by the gplc compiler.
For example, you can type

I?- [myprologprog].

to execute your program, where, I?- is the GNU Prolog prompt. Then you can enter a goal (question) to

search the database of myprologprog.

To exit from the GNU Prolog system, type the end-of-file character at the Prolog prompt "d, that is,

I?- "d

You can turn on and turn off the debugging tool (trace) by executing the goals, respectively:

I?- trace.

I?- notrace.

// turn on trace tool

//turn off trace tool

When dealing with big sources, it is not very practical to trace every single step of the execution. You can
define a set of spy-points on interesting predicates, and you will be prompted when the debugger reaches
one of these predicates. Spy-points can be added using spy/1.

You can set a set of spy-points using spy(PredSpec) sets, which set a spy-point on all the predicates given
by PredSpec, where PredSpec defines one or several predicates.

For more Prolog commands, please check the GNU online manual at:

http://www.gprolog.org/manual/gprolog.html

B.5.2 Getting started with Prolog programming

To write a GNU Prolog program in Unix, you can either use a Unix editor, for example, pico or vi (pico is
more convenient) or upload (using an SSH) a pre-edited file into your Unix environment. The name of a
GNU Prolog program should have an extension .pl. To start with, you can enter the following program
using pico editor (or other editor) and save the file as weather.pl;

/* Database for weather. It consists of facts rules. In this example, the
rule will cause a number of goals to be called */

% Facts

weather(phoenix, spring, hot).

weather(phoenix, summer, hot).

weather(phoenix, fall, hot).

weather(phoenix, winter, warm).

weather(wellington, spring, warm).

433

weather(wellington, summer, warm).

weather(wellington, fall, hot).

weather(wellington, winter, cold).

weather(toronto, spring, cold).

weather(toronto, summer, hot).

weather(toronto, fall, cold).

weather(toronto, winter, cold).

% Rules

warmer(Cl, C2)

warmer(Cl, C2)

weather(Cl, spring, hot), weather(C2, spring, warm).

weather(Cl, spring, hot), weather(C2, spring, cold).

/* The following rule is a compound question. It will cause a number of goals
(questions) to be called. It can be considered as the "main" program. Please
note, since the questions are connected by "and" relationship, it stops if a
"no" answer is given to any single question. You could use the "or"
relationship to connect questions. The compound question will stop if a "yes"
answer is found.
*/

weatherquestions

warrner(phoenix, X),

write('Phoenix is warmer than '), write(X), nl,

weather(Cityl, fall , hot),

write('Cityl = '), write(Cityl), nl,

weather(City2, , hot) ,

write('City2 = '), write(City2), nl,

weather(, Season , warm),

write('Season = '), write(Season), nl,

weather(Cl, summer , hot),

weather (Cl, fall ' hot),

write ('Cl = ') , write(Cl), nl,

weather(C2, spring, warm),

weather(C2, fall , warm),

write('C2 = I) I write(C2), nl, nl.

To compile a Prolog program, say myprologprog.pl, type gplc weather.pl at the operating system prompt

host> gplc weather.pl

The compiler will generate the machine code program stored under the name weather. To start GNU Pro log,
type "gprolog" at the operating system prompt

434

host> gprolog

Once you are in gproJog mode, you can try a few simple program statements:

To execute a program that has been compiled (machine code of a Prolog program), for example, weather,
type

I?- [weather].

where, I?- is the GNU Prolog prompt and you do not enter it. DO NOT forget the dot at the end. Now, you
can ask the following questions about the weather program:

?- warmer(phoenix, X).

?- weather(City, fall , hot).

?- weather(City, , hot).

% To see more answers, enter ";" after each answer.

?- weather(, Season , warm).

?- weatherquestions. % this will call all questions in the rule.

To exit from GNU Prolog, type your end-of-file character at the main Prolog prompt /\d (Ctrl-d).

You can find a complete set of GNU Prolog commands at http://www.gprolog.org/manual/gprolog.html.

B.5.3 Download Prolog programming development tools

GNU Prolog is running in the Unix operating system. To connect to a Unix server, you can use a telnet
client software, or a secure telnet client software like SSH if your server requires a secure connection.

You can download a personal version of SSH program from, for example, www. opens sh. com.

The full GNU Prolog manual is available at:

http://www.gprolog.org/manual/ gprolog.html

Windows and Mac versions running as an Independent Development Environment can be downloaded from
the GNU Prolog download page (Unix, Linux and MS Windows versions):

http://www.gprolog.org/#download

You can also execute Prolog programs using SWI-Prolog and Quintus Prolog, which can be downloaded at
the following sites, respectively.

SWI-Prolog: http://www. swi-prolog. org/

Quintus Prolog: http://www. sics. se/isl/quintuswww/ site/

435

Appendix C

ASCII Character Table

ASCII stands for American Standard Code for Information Interchange. The appendix lists the decimal,
hexadecimal, binary, and the corresponding character values.

Deci Hex Binary Char Comment 024 18 001 1000 CAN Cancel

-mal 025 19 001 1001 EM End of Medium

000 00 000 0000 NUL Null character 026 1A 001 1010 SUB Substitute

001 01 000 0001 SOH Start of Header 027 18 001 1011 ESC Escape

002 02 000 0010 STX Start of Text 028 1C 001 1100 FS File Separator

003 03 000 0011 ETX End of Text 029 10 001 1101 GS Group

004 04 000 0100 EOT End of Trans. Separator

005 05 000 0101 ENQ Enquiry

006 06 000 0110 ACK Acknowledge
030 1E 001 1110 RS Record

Separator
007 07 000 0111 BEL Bell

031 1F 001 1111 us Unit Separator
008 08 000 1000 BS Backspace

032 20 0010 SP Space
009 09 000 1001 HT Horizontal Tab 0000

010 0A 000 1010 LF Line Feed 033 21 010 0001 ! Exclamation

011 OB 000 1011 VT Vertical Tab mark

012 oc 000 1100 FF Form Feed 034 22 010 0010 " Double quote

013 OD 000 1101 CR Carriage 035 23 010 0011 # Number sign

Return 036 24 010 0100 $ Dollar sign

014 OE 000 1110 so Shift Out 037 25 010 0101 % Percent

015 OF 000 1111 SI Shift In 038 26 010 0110 & Ampersand

016 10 001 0000 DLE Data Link 039 27 010 0111 ' Single quote
Escape

040 28 010 1000 (Parenthesis

041 29 010 1001) Parenthesis
Deci Hex Binary Char Comment
-mal

042 2A 010 1010 * Asterisk

017 11 001 0001 DCI Device Control
043 28 010 1011 + Plus

1 044 2C 010 1100 ' Comma

018 12 001 0010 DC2 Device Control 045 20 010 1101 - Dash

2 046 2E 010 1110 Dot

019 13 001 0011 DC3 Device Control 047 2F 010 1111 I Slash
3

048 30 011 0000 0
020 14 001 0100 DC4 Device Control

4 049 31 011 0001 1

021 15 001 0101 NAK Negative Ack. 050 32 011 0010 2

022 16 001 0110 SYN Synchronous 051 33 011 0011 3

Idle 052 34 011 0100 4

023 17 001 0111 ETB End Trans. 053 35 011 0101 5

Block
054 36 011 0110 6

437

055 37 011 0111 7 091 58 101 1011 [Bracket

056 38 011 1000 8 092 5C 101 1100 \ Back slash

057 39 011 1001 9 093 5D 101 1101] Bracket

058 3A 011 1010 Colon 094 5E 101 1110 I\ Circumflex

059 38 011 1011 ' Semicolon 095 5F 101 1111 Underscore

060 3C 011 1100 < Less than 096 60 110 0000

061 3D 011 1101 = Equal 097 61 110 0001 a

062 3E 011 1110 > Greater than 098 62 110 0010 b

063 3F 011 1111 ? Question mark 099 63 110 0011 C

064 40 100 0000 @ At symbol 100 64 110 0100 d

065 41 100 0001 A 101 65 110 0101 e

066 42 100 0010 B 102 66 110 0110 f

067 43 100 0011 C 103 67 110 0111 g

068 44 100 0100 D 104 68 110 1000 h

069 45 100 0101 E 105 69 110 1001 i

070 46 100 0110 F 106 6A 110 1010 j

071 47 100 0111 G 107 68 110 1011 k

072 48 100 1000 H 108 6C 110 1100 I

073 49 100 1001 I 109 60 110 1101 m

074 4A 100 1010 J 110 6E 110 1110 n

075 48 100 1011 K 111 6F 110 1111 0

076 4C 100 1100 L 112 70 111 0000 p

077 4D 100 1101 M 113 71 111 0001 q

078 4E 100 1110 N 114 72 111 0010 r

079 4F 100 1111 0 115 73 111 0011 s

080 50 101 0000 p 116 74 111 0100 t

081 51 101 0001 Q 117 75 111 0101 u

082 52 101 0010 R 118 76 111 0110 V

083 53 101 0011 s 119 77 111 0111 w

084 54 101 0100 T 120 78 111 1000 X

085 55 101 0101 u 121 79 111 1001 y

086 56 101 0110 V 122 7A 111 1010 z

087 57 101 0111 w 123 78 111 1011 { Brace

088 58 101 1000 X 124 7C 111 1100 I Vertical bar

089 59 101 1001 y 125 70 111 1101 } Brace

090 5A 101 1010 z 126 7E 111 1110 ~ Tilde

127 7F 111 1111 DEL Delete

438

Bibliography

Appleby, D., and J. VandeKopple. Programming Languages: Paradigm and Practice. 2nd ed. New York:
McGraw-Hill, 1997.

Bal, H., and D. Grune. Programming Languages Essentials. Boston: Addison Wesley, 1994.

Brickley, D., and R. V. Guha. "RDF Vocabulary Description Language 1.0: RDF Schema." W3C
Recommendation. 2004. http://www.w3.org/TR/rdf-schema/

Chen, Y. Testing and Evaluating Fault-Tolerant Protocols by Deterministic Fault Injection. Dtisseldorf:
VDI-Verlag GmbH, 1993.

Chen, Y. "Analyzing and visual programming internet of things and autonomous decentralized systems,"
Simulation Modelling Practice and Theory Volume 65, June 2016, pp. 1-10.

Chen, Y., G. De Luca, "VIPLE: Visual IoT/Robotics Programming Language Environment for Computer
Science Education," IPDPS Workshops 2016: 963-971.

Chen, Y. and H. Hu. "Internet oflntelligent Things and Robot as a Service." Simulation Modelling Practice
and Theory (2012). http://dx.doi.org/10.1016/j.simpat.2012.03.006.

Chen, Y., H. Huang, and W. T. Tsai. "Scheduling Simulation in a Distributed Wireless Embedded System."
SIMULATION: Transactions of the Society for Modeling and Simulation International 81, no. 6 (June
2005):425-36.

Chen, Y., and Y. Kakuda. "Autonomous Decentralised Systems in Web Computing Environment."
International Journal a/Critical Computer-Based Systems 2, no. 1 (2011):1-5.

Chen, Y. and W. T. Tsai. Service-Oriented Computing and Web Software Integration. 5th ed. Dubuque:
Kendall Hunt, 2015.

Chen, Y. and W. T. Tsai. "Towards Dependable Service-Orientated Computing Systems." Simulation
Modelling Practice and Theory 17, no. 8 (September 2009): 1361-66.

Clements, A. 68000 Family Assembly Language. Boston: Brooks/Cole, 1994.

Connen, T., C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. 2nd ed. Cambridge: MIT,
2001.

Deitel, H., and P. Deitel. C++: How to Program. 3rd ed. Murray Hill: Prentice Hall, 2001.

Diaz, D. "GNU Prolog." A Native Prolog Compiler with Constraint Solving over Finite Domains.
http://gnu-prolog.inria.fr/manual/index.html.

Gunnerson, E. A Programmer's Introduction to C#. Berkeley: A press, 2001.

Hankins, T., and T. Luce. Programming Languages: Paradigm and Practice-Prolog Mini-Manual. New
York: McGraw-Hill, 1991.

Hennessy, J. L., and D. A. Patterson. Computer Architecture: A Quantitative Approach. 2nd ed. Burlington:
Morgan Kaufmann, 1995.

439

Hull, R. G. Programming Languages: Paradigm and Practice-PC Scheme Mini-Manual. New York:
McGraw-Hill, 1991.

Kernighan, B. Programming in C: A Tutorial. http://www.lysator.liu.se/c/bwk-tutor.html.

Kernighan, B., and D. Ritchie. The C Programming Language. Murray Hill: Prentice Hall, 1978.

Kernighan, B., and R. Pike. The UNIX Programming Environment. Prentice Hall, 1984.

Lister, A. M., and R. D. Eager. Fundamentals of Operating Systems. 5th ed. Hampshire: Macmillan, 1993.

Manis, V., and J. Little. The Schematics of Computation. Murray Hill: Prentice Hall, 1995.

Manola, F., and E. Miller. "RDF Primer". W3C Recommendation. 2004. http://www.w3c.org/TR/REC-rdf­
syntax/.

Muldner, T. C++ Programming with Design Patterns Revealed. Boston: Addison Wesley, 2002.

Myers, G. J. The Art of Software Testing. New York: Wiley, 1979.

Oualline, S. Practical C Programming. 3rd ed. Sebastopol: O'Reilly & Associates, 1997.

Patterson, D., and J. Hennessy. Computer Organization and Design: The Hardware/Software Interface.
2nd ed. Burlington: Morgan Kaufmann, 1998.

Paul, R., W. T. Tsai, Y. Chen, C. Fan, Z. Cao, and H. Huang. "E2E Testing and Evaluation of High
Assurance Systems." In Springer Handbook of Engineering Statistics, edited by Hoang Pham. London:
Springer-Verlag, 2006.

Powell, R., and R. Weeks. C# and the .Net Frameworks: The C++ Perspectives. Indianapolis: Sams, 2002.

Siewiorek, D., and R. S. Swarz. Reliable Computer Systems: Design and Evaluation. 3rd ed. Natick: A. K.
Peters, 1998.

Singh, M. P., and M. N. Huhns. Service-Oriented Computing. New York: Wiley, 2005.

Stroustrup, B. The C++ Programming Language. Murray Hill: Addison Wesley, 1997.

Tanenbaum, A. Modern Operating Systems. 2nd ed. Upper Saddle River: Prentice Hall, 2001.

Tsai, W. T. "Service-Oriented System Engineering: A New Paradigm." IEEE International Workshop on
Service-Oriented System Engineering (SOSE), Beijing, October 2005, 3-8.

Tsai, W. T., X. Bai, and Y. Chen. On Service-Oriented Software Engineering. Beijing: Tsinghua University
Press, 2008.

Tsai, W. T., Y. Chen, C. Cheng, X. Sun, G. Bitter, and M. White. "An Introductory Course on Service­
Oriented Computing for High Schools." Journal of Information Technology Education 7, (2008):323-46.

Tsai, W. T., C. Fan, Y. Chen, and R. Paul. "DDSOS, Distributed Service-Oriented Simulation."
Proceedings of 39th Annual Simulation Symposium (ANSS), Huntsville, AL, April 2006.

Tsai, W. T., X. Liu, Y. Chen, and R. Paul. "Dynamic Simulation Verification and Validation by Policy
Enforcement." 38th Annual Simulation Symposium, April 2005, 91-98.

Tsai, W. T., R. A. Paul, B. Xiao, Z. Cao, and Y. Chen. "PSML-S: A Process Specification and Modeling
Language for Service Oriented Computing." 9th IASTED International Conference on Software
Engineering and Applications (SEA), Phoenix, November 2005, 160-67.

440

Tsai, W. T., W. Song, R. Paul, Z. Cao, and H. Huang. "Services-Oriented Dynamic Reconfiguration
Framework for Dependable Distributed Computing." Proceedings of IEEE COMPSAC 2004, 554-59.

Tsai, W. T., X. Wei, and Y. Chen. "A Robust Testing Framework for Verifying Web Services by
Completeness and Consistency Analysis." IEEE International Workshop on Service-Oriented System
Engineering (SOSE), Beijing, October 2005, 151-58.

Tsai, W. T., X. Wei, Y. Chen, B. Xiao, R. Paul, and H. Huang. "Developing and Assuring Trustworthy
Web Services." In Proceedings of 7th International Symposium on Autonomous Decentralized Systems,
Chengdu, China, April 4-8, 2005, 43-50.

Tsai, W. T., L. Wu, J. Elston, and Y. Chen. "Collaborative Leaming Using Wiki Web Sites for Computer
Science Undergraduate Education: A Case Study." IEEE Transactions on Education 54, no. 1 (February
2011):114-24.

441

Index

--.. 20

A-calculus .. 260

A-expression .. 260

& 59

&& .. 46

* 59

** .. 60

: : .. 152
::= .. 10

? : .. 46

++ .. 20

<= .. 46

== .. 46
abstract approach 102
abstract function 1 77
accumulator architecture 402
actual parameters 97
Add Service Reference 3 7 4
Add Web Reference 370
address .. 58
address-of operator 59
ALF ... 6
Algol ... 5
Alice .. 7
alpha reduction 261
animation classes 378
animations ... 3 84
anonymous variable 301
App Inventor ... 7
application ... 248
argument ... 248
arithmetic and logic unit (ALU) 401
arithmetic operations in Prolog 306
arity ... 301
array .. 56
array of arrays ... 57
arrow operator ... 83
ASP.NET .. 359

443

assembler .. 4
assembly language 4
assignments ... 9
ASU VIPLE .. 8
attributes ... 347
Autocoder ... 4
automatic garbage collection 343
backtracking .. 323
balanced binary tree.............................. 110
base class 1 73
basic selection structure 45
beta reduction 261
Big data ... 392
binary search tree.................................. 111
binary tree ... 110
black-box testing 24
blocks .. 97
BNF .. 9
BNF notation .. 300
body .. 261
Boolean ... 54
bound .. 261
boxing ... 352
break point .. 429
bytecode.. 1 7
C 5
C with classes ... 5
C# .. 6, 341
C++ ... 5
call-by-address .. 99
call-by-alias . 9 8
call-by-name ... 281
call-by-reference 98, 310
call-by-value 97, 310
call-by-variable 98
cast .. 194
catch .. 211
character .. 53
cin ... 43

cin. get .. 208 define-macro 247, 266

cin. getline 208 dereferencing operator 59

cin. ignore 95, 208 derived class ... 173

class ... 151 design .. 24

class containment 171 destructor 15 3

class hierarchy 1 7 4
class members 151

directed graph 110, 245, 313, 314
directed tree .. 24 5

classification of data types 5 5
clause .. 301

dispatcher .. 410
distributed computing 7

Cloud computing 389
coercion ... 14

distributed 00 computing 7
dot-notation ... 77

COI .. 391 double precision floating-point 54

Comma Separated Value (CSV) 206
command line parameter 13 8, 23 5
comments .. 8

doubly linked list 84
DrRacket ... 430
dynamic binding . 194

common language runtime 1 7
compilation ... 16
composite condition return point 327
composite condition return points 326
compositional orthogonality 14
compound data types 73
conditional expression 46

dynamic memory allocation 57, 80
dynamic_ cast 194
eager evaluation 248
early binding 194
enum ... 70
enumeration constant 69
enumeration type 70

conditional operator 46 EOF ... 41

conditional statements 9 ESLPDPRO .. 7

connected .. 313 eta reduction ... 262

con st qualifier .. 69 evaluation orders 248

const_ cast .. 194 exception ... 209

constants .. 69 exception variable 211

constructor ... 153 exec() system call 418

containment mechanism 172 execution engine 303

contextual structure 9 exhaustive testing 24

COREA ... 7 expandability .. 116

correctness ... 27 export .. 264

cout ... 43 fact base ... 3 00

CPPA .. 367 factorial function 311

C-Prolog .. 7
cut (!) ... 324
Data centers ... 3 89

facts ... 300
fail ... 327
fantastic-four.. I 02, 270, 310

data type .. 13 fclose ... 92

datapath ... 401 feof ... 93

datbase .. 3 00 ferror .. 93

DCOM .. 7 fflush ... 95, 208

debugging .. 24 fgetc .. 92
debugging in GNU GCC 421 Fibonacci numbers 311
debugging in Visual Studio 429 file and file operation concepts 89
declaration ... 51 file close file ... 92
declarative ... 3 file open operation 91
deep-filter .. 285 file operations in C 90
deep-map ... 286 file operations in C++ 203
define .. 247 file operations in Unix 417

444

filtering .. 284 Hanoi Towers 312
final method .. 23 has-a .. 173
first-class object 243 header file ... 213
floating-point. .. 54 header files .. 214
flowchart ... 26 heap .. 84, 154
fopen ... 91 higher order function 242

for statement ... 5 0 higher-order function 257, 279

fork() ... 418 higher-order procedure 257

for-loop ... 50 Horn logic ... 7

form of Scheme 24 7 IaaS ... 389

formal parameters 97 identifier ... 8, 12

formatted input/output 42 imperative ... 2

Fortran ... 5 implementation 24

forward declaration 53 infix ... 244

FP .. 6 inheritance 174

fprintf .. 92 inheritance mechanism 173

fputc .. 92 inline .. 18, 23

frame pointer ... 407 inlining.. 19

fread .. 93 inorder traversing 245

free .. 261 in-passing .. 97

friend ... 151 Input .. 401

Frolic ... 7 input case .. 24

fscanf ... 92 insertion sorting . 106

full binary tree 110 instruction register (IR) 401

function ... 24 7 integer ... 53

function overloading 196 intermediate language............................. 1 7

functional .. 2 Internet of Things 3 92

functional programming 242 interpretation ... 16

functional testing 24 interrupts ... 210

fwri te .. 93 IoT .. 392

g++ .. 421 is-a .. 173

garbage .. 84
garbage collection 159
garbage collector 350
gee ... 421
generic class .. 225
generic function 225
generic types ... 224

get char () ... 41
glass-box testing 25
global .. 41
global variable ... 78
GNU GCC ... 419

Java ... 5
Java virtual machine 17
jump-table ... 49
kernel .. 410
keywords ... 8
Knapsack problem 321
KRC .. 6
lambda .. 247
late binding ... 194
lazy evaluation44, 248
let-form .. 259, 264
lexical structure ... 8

GNU Prolog 7, 432
goal. ... 301
goals .. 300
Google App Engine 3 89
gplc .. 432
Green Pages .. 365
GUI 369, 371,375,429

libraries ... 40
Linux ... 413
Lisp ... 6
list simplification rule 254
literals ... 8
load-store architecture 402
logic .. 3
logical operator44, 46

445

loop body .. 49 overloaded functions 197
loop invariant .. 27 overloaded operators 198
loop statements .. 9 overloading ... 153
I-value ... 58 OWL ... 330
macro .. 18, 69, 266 PaaS .. 389

malloc .. 80, 159 pair in Pro log .. 316

map coloring ... 314 pair simplification rule 317

map procedure 280 paradigm ... 2

mapping .. 280 parameter 248, 261

MapReduce 226, 284, 393 parameter passing mechanisms 310

match ... 304 partial correctness 2 7

maze navigation 3 88 partition testing 25

member functions 14 7 Pascal .. 5

member rules ... 318 path .. 110, 24 5, 313

member variables 147 peripherals .. 410

Memory ... 401 Phone Application 3 80

memory leak 84, 161, 164 Phone operating system 380

memory leak detection 164 Plankalktil ... 4

memory-memory architecture 402 pointer ... 58

merge sort .. 108 Polish notation 244

methods ... 14 7 Polymorphic function 1 79

Microsoft Azure 3 89 Polymorphic pointer 1 79

middleware .. 410 polymorphism 191

Miranda ... 6 postconditions 23, 27

ML .. 6 postfix ... 244

MRDS VPL ... 8 postorder traversing 245

multidimensional arrays 5 7 preconditions 23, 27

multiple inheritance 177 predicate .. 284

multi threading 7, 224, 226 prefix ... 244

name .. 58 preorder traversing 245

name equivalence 13 preprocessing . 18

named procedure 24 7, 263 primitive of Scheme 246

nonterminal ... 10 printf ... 40

not ... 327 priority queue .. 173

number orthogonality 16 private ... 151

object ... 153 procedural ... 2

object-oriented .. 2 procedural paradigm 241

one's complement.. 276 procedure .. 2 5 6

ontology .. 357 procedure of Scheme 24 7

operating system 409 processes ... 224

operator overloading 198, 200 program arguments 13 8

operators .. 8 program testing 24

operators in Prolog 306 programming language's features 3

order of evaluation 249 Prolog .. 7

order of execution 22 Prolog functions 310

orthogonality 3, 14 Prolog list. 316, 336

out ... 349 Pro log pair .. 316

out-lining ... 19 Prolog recursive function 311

out-passing .. 97 Prolog runtime 303

output .. 401 Pro log variable 301

overloaded constructors 154 protected 151

446

public .. 151
pure virtual function 177

putchar (x) ... 41

Queue .. 152
quick sort ... 322
Quintus Prolog 7, 435
quote .. 255
railroad tracks .. 11
RDF ... 330, 357
RDFS .. 357
recursive .. 101, 407
recursive definition 254
recursive exit points 326
recursive procedure 259
red·uction ... 261
reduction function 283
re-entrant ... 407
ref .. 349
reference type 159, 346, 351
reinterpret_ cast. 195
relational operators 46
RELFUN ... 6
repeat ... 328
repository .. 3 65
requirement ... 23
Resource Description Framework 330
return value 243, 310
root .. 245
rooted tree ... 245
rule base ... 3 00
rules ... 300
runtime stack ... 15 5
r-value ... 58
Saas .. 389
SASL ... 6

scanf .. 42, 95
scheduler ... 410
Scheme .. 6,430
Scheme Boolean 250
Scheme character type 251
Scheme data type 249
Scheme list .. 254
Scheme number 249
Scheme pair ... 252
Scheme pair simplification rule 253
Scheme string .. 252
Scheme symbol 252
scope ... 261
scope resolution operator 152
scope rule .. 52
search-returning points 326

447

semantic structure 9
semantic Web 330, 357
separate compilation 116
separators .. 8
service ... 353
Service Orchestration Layer 7
service repository 367
Service-Oriented Architecture 354
service-oriented computing 7
Service-Oriented Computing 354, 356
Service-Oriented Enterprise 354
Service-Oriented System Engineering .. 354
sharing 116
shell. ... 411, 413
shell script.. ... 414
Short Code .. 4
side effect .. 20
side-effects-free 242
Simula ... 5
single-step execution 429

size- (n -1) problem 102

size-n problem 102
Smalltalk ... 5
smart phones ... 3 77
SOA .. 353
soc .. 7
SOE ... 354
SOI .. 354
Solverlight .. 3 77
sort orthogonality.................................... 15
sorting algorithm 322
sorting problem 106
sorting rules .. 323
specification .. 23
spin synchronization 226
stack ... 86, 154, 403
stack architecture 402
stack frame 156, 407
static .. 154
static binding... 194
static memory allocation 57, 78
static semantics ... 9
static type-checking 193
static_ cast.. 194
stdio .. 40
stopping condition 102, 2 71
stored program concept... 2, 13
storyboard ... 3 84
strongly typed language.......................... 13
struct ... 73
structural equivalence 13

structural testing 24 Unix .. 412
structure .. 73 Unix Command 415
structure type ... 73 Unix on-line manual 415
structured programming 5 Unix system calls 417
subroutine .. 407 unmanaged code 3 51
subtype .. 14 unnamed procedure 24 7
SWI-Prolog 7, 435 unnamed procedures 263
switch .. 47 un.safe .. 3 51

syntactic structure 9 unsafe method 351
syntax graph .. 11 value ... 58

system call ... 41 7 value type ... 53, 351

tail-recursive procedure 101 valueless .. 54

terminal ... 10 variable ... 58

termination .. 2 7 VIPLE .. 8, 411

test case ... 24 virtual base class . 1 7 8
threads ... 224 Visual Programming Language 8
throw ... 211 visual/graphic programming 7

time function clock () 72 VPL ... 8

time function time () 72 wchar t ... 54

total correctness 27 weakly typed language . 14

trace ... 309 Web application 354

tree .. 110 Web Ontology Language 330

try .. 211
two's complement 276

W eh operating system 412
Web Services .. 354

type checking .. 13
typecasting .. 14
UDDI .. 365

while-loop ... 49
White Pages .. 3 65
white-box testing 25

unboxing ... 352
undirected graph 110, 313, 314
ungetc .. 96
unified type system 352
unify .. 303

wide-character .. 54
Windows Forms Application 369
Windows Presentation Foundation 3 77
workspace ... 407
XAML .. 379

union ... 75 XML ... 357
Yellow Pages .. 365

448

CPSIA infonnation can be obtained
at www.lCGtesting.com
Printed in the USA
LVOW05s2012040218

564542L V00004BA/12/P

II I II II I Ill 11 1111111111111
9 781524 916992

j

	Binder3
	1
	2
	Binder1
	3289_001
	3289_011
	3289_018
	3289_025
	3289_032
	3289_038
	3289_047
	3289_055
	3289_061
	3289_068
	3289_075
	3289_081
	3289_087
	3289_092
	3289_098
	3289_104
	3289_110
	3289_116
	3289_122
	3289_128
	3289_133
	3289_139
	3289_146
	3289_151
	3289_155
	3289_162
	3289_168
	3289_174
	3289_179
	3289_184
	3289_189
	3289_194
	3289_198
	3289_202
	3289_208
	3289_213
	3289_218
	3289_223
	3289_228
	3289_232
	3289_237
	3289_243
	3289_250
	3289_259
	3289_266
	3289_273
	3289_279
	3289_284

	Binder2
	3290_001
	3290_009
	3290_015
	3290_024
	3290_032
	3290_039
	3290_045
	3290_052
	3290_059
	3290_068
	3290_075
	3290_080
	3290_086
	3290_093
	3290_099
	3290_106
	3290_112
	3290_117
	3290_123
	3290_133
	3290_140
	3290_147
	3290_155
	3290_163
	3290_170

