HOW
SOFTWARE
WORKS

HE MAGIC BEHIND ENCRVYPTION,
CGIlI, SEARCH ENGINES, AND
OTHER EVERYDAY TECHNOLOGIES

V:. ANTON SPRAUL

HOW SOFTWARE WORKS

The Magic Behind Encryption, CGI, Search Engines, and
Other Everyday Technologies

by V. Anton Spraul

0

no starch
press

San Francisco

HOW SOFTWARE WORKS. Copyright © 2015 by V. Anton Spraul.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

Printed in USA

First printing

1918171615 123456789

ISBN-10: 1-59327-666-4

ISBN-13: 978-1-59327-666-9

Publisher: William Pollock

Production Editor: Alison Law

Cover [llustration: Josh Ellingson

Interior Design: Octopod Studios

Developmental Editors: Hayley Baker, Seph Kramer, and Greg Poulos
Technical Reviewer: Randall Hyde

Copyeditor: Rachel Monaghan

Compositor: Susan Glinert Stevens

Proofreader: James Fraleigh

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103

phone: 415.863.9900; info@nostarch.com

www.nostarch.com

Library of Congress Cataloging-in-Publication Data:

Spraul, V. Anton.

How software works : the magic behind encryption, CGI, search engines, and other everyday technologies / by
V. Anton Spraul.

pages cm

Includes index.

Summary: “A guide for non-technical readers that explores topics like data encryption; computer graphics
creation; password protection; video compression; how data is found in huge databases; how programs can work
together on the same problem without conflict; and how map software finds routes.”— Provided by publisher.

ISBN 978-1-59327-666-9 — ISBN 1-59327-666-4

1. Electronic data processing—Popular works. 2. Computer software—Popular works. 3. Computer networks—
Popular works. I. Title.
QA76.5.56663 2015
005.3—dc23
2015022623

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken
in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any person or
entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information
contained in it.

mailto:info@nostarch.com
http://www.nostarch.com

About the Author

V. Anton Spraul has taught introductory programming and computer science to students
from all over the world for more than 15 years. He is also the author of Think Like a
Programmer (No Starch Press) and Computer Science Made Simple (Broadway).

About the Technical Reviewer

Randall Hyde is the author of The Art of Assembly Language and Write Great Code (both
No Starch Press), and is also the co-author of The Waite Group’s Microsoft Macro
Assembler 6.0 Bible (Sams Publishing). Hyde taught assembly language at the University
of California, Riverside, for more than a decade and has been programming software for
nuclear reactor consoles for the past 12 years.

Acknowledgments
Introduction

Chapter 1: Encryption
Chapter 2: Passwords
Chapter 3: Web Security
Chapter 4: Movie CGI
Chapter 5: Game Graphics
Chapter 6: Data Compression
Chapter 7: Search

Chapter 8: Concurrency
Chapter 9: Map Routes

Index

Brief Contents

Contents in Detail

Acknowledgments
Introduction
Who This Book Is For
Topics Covered
Behind the Magic
1 Encryption
The Goal of Encryption
Transposition: Same Data, Different Order
Cipher Keys
Attacking the Encryption
Substitution: Replacing Data
Varying the Substitution Pattern
Key Expansion
The Advanced Encryption Standard
Binary Basics
AES Encryption: The Big Picture
Key Expansion in AES
AES Encryption Rounds
Block Chaining
Why AES Is Secure
Possible AES Attacks
The Limits of Private-Key Encryption
2 Passwords
Transforming a Password into a Number
Properties of Good Hash Functions
The MD5 Hash Function
Encoding the Password
Bitwise Operations
MD5 Hashing Rounds
Meeting the Criteria of a Good Hash Function

Digital Signatures
The Problem of Identity
Collision Attacks
Passwords in Authentication Systems
The Dangers of Password Tables
Hashing Passwords
Dictionary Attacks
Hash Tables
Hash Chaining
Iterative Hashing
Salting Passwords
Are Password Tables Safe?
Password Storage Services
A Final Thought
3 Web Security
How Public-Key Cryptography Solves the Shared Key Problem
Math Tools for Public-Key Cryptography
Invertible Functions
One-Way Functions
Trapdoor Functions
The RSA Encryption Method
Creating the Keys
Encrypting Data with RSA
RSA Effectiveness
RSA Use in the Real World
RSA for Authentication
Security on the Web: HTTPS
Handshaking
Transmitting Data Under HTTPS
The Shared Key Problem Solved?
4 Movie CGI

Software for Traditional Animation

How Digital Images Work
How Colors Are Defined
How Software Makes Cel Animations
From Cel Animation Software to Rendered 2D Graphics
Software for 3D CGI
How 3D Scenes Are Described
The Virtual Camera
Direct Lighting
Global Illumination
How Light Is Traced
Full-Scene Anti-Aliasing
Combining the Real and the Fake
The Ideal of Movie-Quality Rendering
5 Game Graphics
Hardware for Real-Time Graphics
Why Games Don’t Ray Trace
All Lines and No Curves
Projection Without Ray Tracing
Rendering Triangles
The Painter’s Algorithm
Depth Buffering
Real-Time Lighting
Shadows
Ambient Light and Ambient Occlusion
Texture Mapping
Nearest-Neighbor Sampling
Bilinear Filtering
Mipmaps
Trilinear Filtering
Reflections
Faking Curves

Distant Impostors

Bump Mapping
Tessellation
Anti-Aliasing in Real Time
Supersampling
Multisampling
Post-Process Anti-Aliasing
The Rendering Budget
What’s Next for Game Graphics
6 Data Compression
Run-Length Encoding
Dictionary Compression
The Basic Method
Huffman Encoding
Reorganizing Data for Better Compression
Predictive Encoding
Quantization
JPEG Images
A Different Way to Store Colors
The Discrete Cosine Transform
The DCT for Two Dimensions
Compressing the Results
JPEG Picture Quality
Compressing High-Definition Video
Temporal Redundancy
MPEG-2 Video Compression
Video Quality with Temporal Compression
The Present and Future of Video Compression
7 Search
Defining the Search Problem
Putting Data in Order
Selection Sort

Quicksort

Binary Search
Indexing
Hashing
Web Search
Ranking Results
Using the Index Effectively
What’s Next for Web Search
8 Concurrency
Why Concurrency Is Needed
Performance
Multiuser Environments
Multitasking
How Concurrency Can Fail
Making Concurrency Safe
Read-Only Data
Transaction-Based Processing
Semaphores
The Problem of Indefinite Waits
Orderly Queues
Starvation from Circular Waits
Performance Issues of Semaphores
What’s Next for Concurrency
9 Map Routes
What a Map Looks Like to Software
Best-First Search
Reusing Prior Search Results
Finding All the Best Routes at Once
Floyd’s Algorithm
Storing Route Directions
The Future of Routing

Index

Acknowledgments

This book was shaped and guided by a platoon of talented editors: Alison Law, Greg
Poulos, Seph Kramer, Hayley Baker, Randall Hyde, Rachel Monaghan, and the “Big Fish”
of No Starch, Bill Pollock. Beyond the editorial staff, I appreciate the support and
kindness of everyone I’ve worked with at No Starch.

The two people who helped me the most, though, are Mary Beth and Madeline, the
best wife and daughter I can imagine. Without their love and support, this book would not
have been written.

Introduction

Science fiction author Arthur C. Clarke wrote that “any sufficiently advanced technology
is indistinguishable from magic.” If we don’t know how something works, then it might as
well be explained by supernatural forces. By that standard, we live in an age of magic.

Software is woven into our lives, into everyday things like online transactions, special
effects in movies, and streaming video. We’re forgetting we used to live in a world in
which the answer to a question wasn’t just a Google search away, or where finding a route
for a car trip began with unfolding a cumbersome map.

But few of us have any idea how all this software works. Unlike many innovations of
the past, you can’t take software apart to see what it’s doing. Everything happens on a
computer chip that looks the same whether the device is performing an amazing task or
isn’t even turned on. Knowing how a program works seems to require spending years of
study to become a programmer. So it’s no wonder that many of us assume that software is
beyond our understanding, a collection of secrets known only to a technological elite. But
that’s wrong.

Who This Book Is For

Anyone can learn how software works. All you need is curiosity. Whether you’re a casual
fan of technology, a programmer in the making, or someone in between, this book is for
you.

This book covers the most commonly used processes in software and does so without a
single line of programming code. No prior knowledge of how computers operate is
required. To make this possible, I’ve simplified a few processes and clipped some details,
but that doesn’t mean these are mere high-level overviews; you’ll be getting the real
goods, with enough details that you’ll truly understand how these programs do what they
do.

Topics Covered

Computers are so ubiquitous in the modern world that the list of subjects I could cover
seems endless. I’ve chosen topics that are most central to our daily lives and with the most
interesting explanations.

* Chapter 1: Encryption allows us to scramble our data so that only we can access it.

When you lock your phone or password-protect a .zip file, you’re using encryption.
We’ll see how different scrambling techniques are combined in modern encryption
software.

» Chapter 2: Passwords are the keys we use to lock our data and how we identify
ourselves to remote systems. You’ll see how passwords are used in encryption and learn
the surprising steps that must be taken to keep passwords safe from attackers.

» Chapter 3: Web Security is what we need to safely purchase goods online or access our
accounts. Locking data for transmission requires a different method of scrambling called
public-key encryption. You’ll discover how a secure web session requires all the
techniques covered in the first three chapters.

» Chapter 4: Movie CGI is pure software magic, creating whole worlds out of
mathematical descriptions. You’ll discover how software took over traditional cel
animation and then learn the key concepts behind making a complete movie set with
software.

» Chapter 5: Game Graphics are impressive not just for their visuals but also for how
they are created in mere fractions of a second. We’ll explore a host of clever tricks
games use to produce stunning images when they don’t have time for the techniques
discussed in the previous chapter.

* Chapter 6: Data Compression shrinks data so that we can get more out of our storage
and bandwidth limits. We’ll explore the best methods for shrinking data, and then see
how they are combined to compress high-definition video for Blu-ray discs and web
streams.

» Chapter 7: Search is about finding data instantly, whether it’s a search for a file on our
own computer or a search across the whole Web. We’ll explore how data is organized
for quick searches, how search zeros in on requested data, and how web searches return
the most useful results.

* Chapter 8: Concurrency allows multiple programs to share data. Without concurrency,
multiplayer video games wouldn’t be possible, and online bank systems could allow
only one customer at a time. We’ll talk about the methods that enable different
processors to access the same data without getting in each other’s way.

» Chapter 9: Map Routes are those instant directions we get from mapping sites and in-
car navigators. You’ll discover what a map looks like to software and the specialized
search techniques that find the best routes.

Behind the Magic

I think it’s important to share this knowledge. We shouldn’t have to live in a world we
don’t understand, and it’s becoming impossible to understand the modern world without
also understanding software. Clarke’s message can be taken as a warning that those who
understand technology can fool those who don’t. For example, a company may claim that
the theft of its login data poses little danger to its customers. Could this be true, and how?
After reading this book, you’ll know the answer to questions like these.

Beyond that, though, there’s an even better reason to learn the secrets of how software
works: because those secrets are really cool. I think the best magic tricks are even more
magical once you learn how they are done. Read on and you’ll see what I mean.

1
Encryption

We rely on software to protect our data every day, but most of us know little about how
this protection works. Why does a “lock” icon in the corner of your browser mean it’s safe
to enter your credit card number? How does creating a password for your phone actually
protect the data inside? What really prevents other people from logging into your online
accounts?

Computer security is the science of protecting data. In a way, computer security
represents technology solving a problem that technology created. Not that long ago, most
data wasn’t stored digitally. We had filing cabinets in our offices and shoeboxes of
photographs under our beds. Of course, back then you couldn’t easily share your
photographs with friends around the world or check your bank balance from a mobile
phone, but neither could anyone steal your private data without physically taking it. Today,
not only can you be robbed at a distance, but you might not even know you’ve been
robbed—that is, until your bank calls to ask why you are buying thousands of dollars in
gift cards.

Over these first three chapters, we’ll discuss the most important concepts behind
computer security. In this chapter, we talk about encryption. By itself, encryption provides
us with the capability to lock our data so only we can unlock it. Additional techniques,
discussed in the next two chapters, are needed to provide the full security suite that we
depend on, but encryption is the core of computer security.

The Goal of Encryption

Think of a file on your computer: it might contain text, a photograph, a spreadsheet, audio,
or video. You want to access the file but keep it secret from everyone else. This is the
fundamental problem of computer security. To keep the file secret, you can use encryption
to transform it into a new format that is unreadable until the file has been returned to its
original form using decryption. The original file is the plaintext (even if the file isn’t text),
and the encrypted file is the ciphertext.

An attacker is someone who attempts to decrypt the ciphertext without authorization.
The goal of encryption is to create a ciphertext that is easy for authorized users to decrypt,
while practically impossible for attackers to decrypt. “Practically” is the source of many

headaches for security researchers. Just as no lock is absolutely unbreakable, no
encryption can be absolutely impossible to decrypt. With enough time and enough
computing power, any encryption scheme can be broken in theory. The goal of computer
security is to make an attacker’s job so difficult that successful attacks are impossible in
practice, requiring computing resources beyond an attacker’s means.

Rather than jump headfirst into the intricacies of software-based encryption, I’ll start
this chapter with some simple examples from the pre-software days of codes and spies.
Although the strength of encryption has vastly improved over the years, these same classic
techniques form the basis of all encryption. Later, you’ll see how these ideas are combined
in a modern digital encryption scheme.

Transposition: Same Data, Different Order

One of the simplest ways to encrypt data is called transposition, which simply means
“changing position.” Transposition is the kind of encryption my friends and I used when
passing notes in grade school. Because these notes were passed through untrustworthy
hands, it was imperative the notes were unintelligible to anyone but us.

To keep messages secret, we rearranged the order of the letters using a simple, easy-to-
reverse scheme. Suppose I needed to share the vital intelligence that CATHY LIKES
KEITH (the names have been changed to protect the innocent). To encrypt the message, I
copied every third letter of the plaintext (ignoring any spaces). During the first pass
through the message, I copied five letters, as shown in Figure 1-1.

SIA|TIE) YILI@WK|E|SH K|E|ED T|H

| [

ClH| |

Figure 1-1: The first pass in the transposition of the sample message

Having reached the end of the message, I started back at the beginning and continued
selecting every third remaining letter. The second pass got me to the state shown in Figure
1-2.

ClA|T R L |CK) E [SS)K] E [EI|T | H

CIH| 1] S| T}A|YIK]JK]|T

Figure 1-2: The second transposition pass

On the last pass I copied the remaining letters, as shown in Figure 1-3.

— |-
[a—
-

ClH| 1 &|E}&|YK|K]T

,_
m
rm
T

Figure 1-3: The final transposition pass

The resulting ciphertext is CHISIAYKKTTLEEH. My friends could read the message
by reversing the transposition process. The first step is shown in Figure 1-4. Returning all
the letters to their original position reveals the plaintext.

SIS A | Y| K|K|TJT|L]E|E]H
|

Y 1 Y L Y
3 H I 5 I

Figure 1-4: The first pass in reversing the transposition for decryption

This basic transposition method was fun to use, but it’s terribly weak encryption. The
biggest concern is a leak—one of my friends blabbing about the encryption method to
someone outside the circle. Once that happens, sending encrypted messages won’t be
secure anymore; it will just be more work. Leaks are sadly inevitable—and not just with
schoolchildren. Every encryption method is vulnerable to leaks, and the more people use a
particular method, the more likely it will leak.

For this reason, all good encryption systems follow a rule formulated by early Dutch
cryptographer Auguste Kerckhoffs, known as Kerckhoffs’s principle: the security of data
should not depend on the encryption method remaining a secret.

Cipher Keys

This raises an obvious question. If the encryption method is not a secret, how do we
securely encrypt data? The answer lies in following a general, publically disclosed
encryption method, but varying the encryption of individual messages using a cipher key
(or just key). To understand what a key is, let’s examine a more general transposition
method.

In this method, senders and receivers share a secret number prior to sending any
messages. Let’s say my friends and I agree on 374. We’ll use this number to alter the
transposition pattern in our ciphertexts. This pattern is shown in Figure 1-5 for the
message CATHY LIKES KEITH. The digits of our secret number dictate which letter
should be copied from the plaintext to the ciphertext. Because the first digit is 3, the third
letter of the plaintext, T, becomes the first letter of the ciphertext. The next digit is 7, so
the next letter is the seventh letter after the T, which is S. Next, we select the fourth letter
from the S. The first three letters of the ciphertext are TST.

Figure 1-6 shows how the next two letters are copied to the ciphertext. Starting from

where we left off (indicated by the circled 1 in the figure), we count three positions,
returning to the beginning of the plaintext when we reach the end, to select A as the fourth
letter of the ciphertext. The next letter chosen is seven positions after the A, skipping
letters that have already been copied: the K. The process continues until all of the letters of
the plaintext have been transposed.

1 2 3 1 2 3 4 5 & 7 1 2 3 4

ClA@BH|Y|L|I|K|EIgSS|K|E]| ! |@BlH

T|S]|T

Figure 1-5: The first pass in transposing using the key 374
2 3 1 2 3 4 5 & 7 Q)

ClASlEs H]| Y| L|1]|K|E|&HES| E| | g H

T|S|T|A]K

Figure 1-6: The second pass in transposing using the key 374

The secret number 374, then, is our cipher key. Someone who intercepts this message
won’t be able to decrypt it without the key, even if they understand we’re using a
transposition method. The code can be regularly changed to prevent blabbermouths and
turncoats from compromising the encryption.

Attacking the Encryption

Even without the key, attackers can still try to recover the plaintext through other means.
Encrypted data can be attacked through brute force, trying all the possible ways of
applying the encryption method to the ciphertext. For a message encrypted using
transposition, a brute-force attack would examine all permutations of the ciphertext.
Because brute force is almost always an option, the number of trials an attacker will need
to find the plaintext is a good baseline for encryption strength. In our example, the
message CATHY LIKES KEITH has around 40 billion permutations.

That’s a huge number, so instead of brute force, a smart attacker would apply some
common sense to recover the plaintext faster. If the attacker can assume the plaintext is in
English, then most of the permutations can be ruled out before they are tested. For
example, the attacker can assume the plaintext won’t start with the letters HT because no
English word starts with those letters. That’s a billion permutations the attacker won’t
have to check.

An attacker with some idea of the words in the message can be even smarter about
figuring out the plaintext. In our example, the attacker might guess the message includes
the name of a classmate. They can see what names can be formed from the ciphertext

letters and then determine what words can be formed from the leftover letters.

Guesses about the plaintext content are known as cribs. The strongest kind of crib is a
known-plaintext attack. To carry out this type of attack, the attacker must have access to a
plaintext A, its matching ciphertext A, and a ciphertext B that uses the same cipher key as
ciphertext A. Although this scenario sounds unlikely, it does happen. People often leave
documents unguarded when they are no longer considered secret without realizing they
may aid attacks on other documents. Known-plaintext attacks are power ful; figuring out
the transposition pattern is easy when you have both the plaintext and ciphertext in front
of you.

The best defenses against known-plaintext attacks are good security practices, such as
regularly changing passwords. Even with the best security practices, though, attackers will
almost always have some idea of a plaintext’s contents (that’s why are they so interested in
reading it). In many cases, they will know most of the plaintext and may have access to
known plaintext-ciphertext pairs. A good encryption system should render cribs and
known plaintexts useless to attackers.

Substitution: Replacing Data

The other fundamental encryption technique is more resistant to cribs. Instead of moving
the data around, substitution methods systematically replace individual pieces of data.
With text messages, the simplest form of substitution replaces every occurrence of one
letter with another letter. For example, every A becomes a D, every B an H, and so on. A
key for this type of encryption looks like Table 1-1.

Table 1-1: A Substitution Cipher Key

Original ABCDEFGHI JKLMNOPQRSTUVWXY Z

Replacement M NBVCXZL KFHGJ DS APOIUYTR EWAQ

Although simple substitution, as this method is called, is an improvement over
transposition, it too has problems: there are only so many possible substitutions, so an
attacker can sometimes decrypt ciphertext through brute force.

Simple substitution is also vulnerable to frequency analysis, in which an attacker
applies knowledge of how often letters or letter combinations occur in a given language.
Stated broadly, knowing how often data items are likely to appear in a plaintext gives the
attacker an advantage. For example, the letter E is the most common letter in English
writing, and TH is the most common letter pair. Therefore, the most frequently occurring
letter in a long ciphertext is likely to represent plaintext E, and the most frequently
occurring letter pair is likely to represent plaintext TH.

The power of frequency analysis means that substitution encryption becomes more
vulnerable as the text grows longer. Attacks are also easier when a collection of
ciphertexts is known to have been encrypted with the same key; avoiding such key reuse is
an important security practice.

Varying the Substitution Pattern

To strengthen encryption against frequency analysis, we can vary the substitution pattern
during encryption, so the first E in the plaintext might be replaced with A, but the second
E in the plaintext is replaced with a T. This technique is known as polyalphabetic
substitution. One method of polyalphabetic substitution uses a grid of alphabets known as
a tabula recta, shown in Figure 1-7. In this table, each row and column is labeled with the
letter of the alphabet that starts the row or column. Every location in the grid is located
with two letters, such as row D, column H, which contains the letter K.

[AIBICIDIE[FIGIH] TTJ[K]LIMINIOJPIQIRISITIUIVIWX]Y]Z]
F P

<| ||| O] =0

<|c|=|w]=|0]|=|0|Z|Z|—|=—|—|x|O]| n|m|o|0]e| > N < <] =
sl<|c|owl=|o]=|0|Z|Z]l—|=]|—=]|—]T|O]|n|m|o]| O] >N <]<

—|—=|TZ|O|n|m|o|Ofo|>|N|<]x| S| <|C| =] w]=|O]=|O|Z|Z|—|=
~|=[=|x]|O[n|m|o[o|wm | >N < x| S <|c| v [=|0] w0 Z]|Z]—
—|=|—|=|z|®]|n|m|o|o]=lxN|<]x<|=]|<|c|H|w|=|o]=|0]|Z|=

== ||| | |o| 0= N < x| Z | <|c| =] w|=| 0] |0 Z

ZIZ |~ ===l |m|o|O]|me| >Nl <] <

—|w]=|0]|0|ZIZ|~|=|—|—|x|0O||m|o|of=| = [N<|=<|=|<|c
C—'mm@'ﬂozgr’R‘——IC}‘ﬂmDﬁm}N-{xé{

wn|=|0|=|0|Z|Z|—|=|—|—|Z|®||m|o|o]=| >Nl <|x]|=|<]|c|—
=<|=|<|c|H|w]=|o]=|o|ZIZ]|—|=]—|—|x|0]n|m|o|o]w=| x|~ <
<|=<|Zl<|c|H|w|=|o]|=|0|Z|Z|—|=|—|—|x=|O|]|m|o|O]w| > |~

| 0| Z|Z|—|=|—|=|Z|®O| |m]|o|O|e| = Nl < x| Z]| <|c| 2w =] O
O[o|OZ|Z|—[=|—|—|T|O| |m[O]|Of=| > N|<|><[Z]|<|c|—|w|o
|0|=|0|Z|Z]|—|=|—|=]|x|O]|]|m|o|0]o| >N <|=<]|Z]| <|c|—=|w»

IN[=<<|El<|c|H|w=|of=[0|1Z|Z|—|=]|—|—[|T|O|n|m|S|Ofw|>|
Ni=<|x<|Z|<|c| =] w]=]|0]|=|0|Z|Z|—|=|—|—|Z|O||m|o|0]|o=| >
>N <|><|2|<|c]|o|w]=|o|=|0|Z|Z|—|=|—|—| |0 |m|o|n]=
o[> |N|<|><| 2| <|c|=]|w]=|0]|=|0|Z|Z|—|=|—|—|x|o||m|c|o
O] > |N|=<><| =] <|c]|=|w|=|0|=|O|Z|Z|—|=|—|—|x|O]||m|o
=] (o) G N e B B B (= R [B B sl (o) 4 < U e I e e) el
m|O|O|=|>|N|<|x|Z|<|c|H|w]|=|o]=|0|Z|Z]—|=|—|—|x|®

n|m|o|o]e|=|N|<|x|=|<|c|=|w|=|o|<|o|Z|Z|—|=]|—|-|x|®
Q||m|o|o]=|x|N]<]x<]|=l<|c]=|w|=]|o]<|o|Z[Z]|—|=|—|—]|=
IT|QO|m|o|0|=|>|N|<| x| S| <|c| v |=|o]|=|0|Z|Z|—|=|—]|—
—lz|®||m|o|o]=lx Nl<|x<| S| <|c|=|v|= |0 |0l ZIZ]|—|=]|—
OlZ|1Zl—|=|=|-|lx|o]|n|m|o|o|w|x|N<|<|Z=]|<|c| =] v]=]|O

Figure 1-7: A tabula recta—the shaded first column and row are labels.

When using a tabula recta, the key is textual—Iletters are used to vary the encryption
instead of numbers, as we used in our transposition example. The letters of the plaintext
select rows in the tabula recta, and the letters of the key select columns. For example,
suppose our plaintext message is the word SECRET, and our encryption key is the word
TOUGH. Because the first letter of the plaintext is S and the first letter of the key is T, the
first letter of the ciphertext is found at row S, column T in the tabula recta: the letter L. We
then use the O column of the table to encrypt the second plaintext letter E (resulting in S),
and so on, as shown in Figure 1-8. Because the plaintext is longer than the key, we must
reuse the first letter of the key.

Flaintesxt Row Column Result

2Bl LEE | F S 1] = |
Ciphertext £ of — [5
LIS|W[X|L[M C U| — |W
R & —— | X
E E| == |1
T T | = |

Figure 1-8: Encryption using the tabula recta and cipher key TOUGH

Decryption reverses the process, as shown in Figure 1-9. The letters in the key indicate
the columns, which are scanned to find the corresponding letter in the ciphertext. The row
where the ciphertext letter is found indicates the plaintext letter. In our example, the first
letter of our key is T, and the first letter of the ciphertext is L. We scan the T column of the
tabula recta to find L; because L appears in row S, the plaintext letter is S. The process
repeats for every letter of the ciphertext.

Letter in

Ciphertext Column Column Row
LIS|W[X|L[M] L] — |8
Plaintext o S £
Sl E LG RILELE U W] S
G X| — |R
H L] — |E
T M| — | T

Figure 1-9: Decryption using the tabula recta and cipher key TOUGH

Polyalphabetic substitution is more effective than simple substitution because it varies
the substitution pattern throughout the message. In our example, the two occurrences of E
in the plaintext become different ciphertext letters, and the two occurrences of L in the
ciphertext represent two different plaintext letters.

Key Expansion

Although polyalphabetic substitution is a great improvement over simple substitution, it’s
effective only when the key isn’t repeated too often; otherwise it has the same problems as
simple substitution. With a key length of five, for example, each plaintext letter would be
represented by only five different ciphertext letters, leaving long ciphertexts vulnerable to
frequency analysis and cribs. An attacker would have to work harder, but given enough
ciphertext to work with, an attacker could still break the encryption.

For maximum effectiveness, we need encryption keys that are as long as the plaintext,
a technique known as a one-time pad. But that’s not a practical solution for most
situations. Instead, a method called key expansion allows short keys to do the work of

longer ones. One implementation of this idea frequently appears in spy novels. Instead of
sharing a super-long key, two spies who need to exchange messages agree on a code book,
which is used as a repository of long keys. To avoid arousing suspicion, the code book is
an ordinary piece of literature, like a specific edition of Shakespeare’s plays.

Let’s suppose a 50-letter message will be sent using this scheme. In addition to the
ciphertext, the message sender also appends the unexpanded key. Using the works of
Shakespeare as the code book, the unexpanded key might be 2.2.4.9. The first 2 indicates
the second of Shakespeare’s plays when listed alphabetically (As You Like It). The second
2 means Act II of the play. The 4 means Scene 4 of that act. The 9 means the ninth
sentence of that scene in the specified edition: “When I was at home, I was in a better
place, but travelers must be content.” The number of letters in this sentence exceeds the
number in the plaintext and could be used for encryption and decryption using a tabula
recta as before. In this way, a relatively short key can be expanded to fit a particular
message.

Note that this scheme doesn’t qualify as a one-time pad because the code book is finite,
and therefore the sentence-keys would have to be reused eventually. But it does mean our
spies only have to remember short cipher keys while encrypting their messages more
securely with longer keys. As you’ll see, the key expansion concept is important in
computer encryption because the cipher keys required are huge but need to be stored in
smaller forms.

The Advanced Encryption Standard

Now that we’ve seen how transposition, substitution, and key expansion work
individually, let’s see how secure digital encryption results from a careful combination of
all three techniques.

The Advanced Encryption Standard (AES) is an open standard, which means the
specifications may be implemented by anyone without paying a license fee. Whether you
realize it or not, much of your data is protected by AES. If you have a secure wireless
network at your home or office, if you have ever password-protected a file in a .zip
archive, or if you use a credit card at a store or make a withdrawal from an ATM, you are
probably relying, at least in part, on AES.

Binary Basics

Up to now, I’ve used text encryption samples to keep the examples simple. The data
encrypted by computers, though, is represented in the form of binary numbers. If you
haven’t worked with these numbers before, here’s an introduction.

Decimal Versus Binary

The number system we all grew up with is called the decimal system, deci meaning “ten,”
because the system uses 10 digits, 0 through 9. Each digit in a number represents the
quantity of a unit 10 times greater than the digit to its right. The units and quantities for
the decimal number 23,065 are shown in Figure 1-10. The 2 in the fifth position from the

left means we have 2 “ten thousands,” for example, and the 6 means 6 “tens.”

20,000 + 3,000 + 60 + 5 = 23,065
Figure 1-10: Each digit in the decimal number 23,065 represents a different unit quantity.

In the binary number system, there are only two possible digits, 0 or 1, which are
called bits, for binary digits. Each bit in a binary number represents a unit twice as large as
the bit to the right. The units and quantities for the binary number 110101 are shown in
Figure 1-11. As shown, we have one of each of the following units: 32, 16, 4, and 1.
Therefore, the binary number 110101 represents the sum of these four unit values, which
is the decimal number 53.

32 16 8 4 2 1
1{1T]0] 1|01

N

32+16+ 4 + 1 =53
Figure 1-11: Each bit in the binary number 110101 represents a different unit quantity.

Binary numbers are often written with a fixed number of bits. The most common
length for a binary number is eight bits, known as a byte. Although the decimal number 53
can be written as 110101 in binary, writing 53 as a byte requires eight bits, so leading 0
bits fill out the other positions to make 00110101. The smallest byte value, 00000000,
represents decimal O; the largest possible byte, 11111111, represents decimal 255.

Bitwise Operations

Along with the usual mathematical operations such as addition and multiplication,
software also uses some operations unique to binary numbers. These are known as bitwise
operations because they are applied individually to each bit rather than to the binary
number as whole.

The bitwise operation known as exclusive-or, or XOR, is common in encryption. When
two binary numbers are XORed together, the 1s in the second number flip the
corresponding bits in the first number, as shown in Figure 1-12.

Original 110(O|T11[T1T]010

XRwith OO T1T|T1O0]11}|11]0

Result 110 RBEON 1 ROREE O

Figure 1-12: The exclusive-or (XOR) operation. The 1 bits in the second byte indicate
which bits are “flipped” in the first byte, as shown in the shaded columns.

Remember, encryption must be reversible. XOR alters the bit patterns in a way that’s
impossible to predict without knowing the binary numbers involved, but it’s easily
reversed. XORing the result with the second number flips the same bits back to their
original state, as shown in Figure 1-13.

Original 110(O[T1T11[1T]01]0

XORwith | O[O T[T 1011|110

Result 110 |BNEON 1 [RORS O

XORwith | OO |1 [T 1O]T1|1]0

Back to 110011 1 11010

Figure 1-13: If we XOR a byte with the same byte twice, we’re back to where we started.

Converting Data to Binary Form

Computers use binary numbers to represent all kinds of data. A plaintext file could be a
text message, a spreadsheet, an image, an audio file, or anything else—but in the end,
every file is a sequence of bytes. Most computer data is already numeric and can therefore
be directly converted into binary numbers. In some cases, though, a special encoding
system is needed to convert non-numeric data into binary form.

For example, to see how a text message becomes a sequence of bytes, consider this
message:

Send more money!

This message has 16 characters, counting the letters, spaces, and exclamation point. We
can turn each character into a byte using a system such as the American Standard Code for
Information Interchange, which is always referred to by its acronym, ASCII, pronounced
“as-key”. In ASCII, capital A is represented by the number 65, B by 66, and so on, through
90 for Z. Table 1-2 shows some selected entries from the ASCII table.

Table 1-2: Selected Entries from the ASCII Table

Character Decimal number Binary byte

(space) 32 00100000
! 33 00100001
) 44 00101100

46 00101110
A 65 01000001
B 66 01000010
C 67 01000011
D 68 01000100
E 69 01000101
a 97 01100001
b 98 01100010
C 99 01100011
d 100 01100100
e 101 01100101

AES Encryption: The Big Picture

Before we examine the details of AES encryption, here’s an overview of the process.

Cipher keys in AES are binary numbers. The size of the key can vary, but we’ll discuss
the simplest version of AES, which uses a 128-bit key. Using mathematical key
expansion, AES transforms the original 128-bit key into eleven 128-bit keys.

AES divides plaintext data into blocks of 16 bytes in a 4%4 grid; the grid for the sample
message Send more money! is shown in Figure 1-14. Heavy lines separate the 16 bytes,
and light lines separate the bits within the bytes.

O(1[O{T1[{OJOf{T[{1JO[1{1]O{O{1]O[1JOJ1]J1]OJ1/T1/1]OJOJ1/1]0JO[1[0O|O
0/0{1/0(0/O({O{OJO[1{1]O[1[{1]OJ1JOJT1]1]OJT|T|1]14OJT1]1]1/O[O|1]|O
O(1[1[O(O[T1[O[1]JO[O[{1]O[O[O]JO|OJOJT1[1|OJT[{T|OfTJO(T|T{Of{T[T|I]]
O(1{T{O{1[T{T1{OJO[1{1]O{O[1]O|1JOJT1|1]|T1|T1/OJO[1]0O(0O|1{0({0[0O[O]]

Figure 1-14: The sample message Send more money! transformed into a grid of bytes,
ready for encryption using AES

The plaintext data is divided into as many 16-byte blocks as necessary. If the last block
isn’t full, the rest of the block is padded with random binary numbers.

AES then subjects each 16-byte block of plaintext data to 10 rounds of encryption.
During a round, the bytes are transposed within the block and substituted using a table.
Then, using the XOR operation, the bytes in the block are combined with each other and
with one of the 128-bit keys.

That’s AES in a nutshell; now let’s look at some of these steps in more detail.

Key Expansion in AES

Key expansion in a digital encryption system is a bit different than the “code book”
concept we discussed earlier. Instead of just looking up a longer key in a book, AES
expands the key using the same tools it will later use for the encryption itself: the binary
XOR operation, transposition, and simple substitution.

Figure 1-15 shows the first few stages of the key expansion process. Each of the blocks
in the figure is 32 bits, and one row in this figure represents one 128-bit key. The original
128-bit key makes up the first four blocks, which are shaded in the figure. Every other
block is the result of an XOR between two previous blocks; the XOR operation is
represented by a plus sign in a circle. Block 6, for example, results from the XOR of
Block 2 and Block 5.

[Block 1 | | Block 2 | | Block 3 | | Block 4 —
Extra

é‘l —*é —*é —“é L Scrambling

| Block 5 H Block & H Block 7 H | Block 8 =

Extra

('gl')‘J —”('i') —*('ia —}(_I? L Scrambling

| Bl{}ik 9 H | Block 10 H | Blocr 11 H | Blacf 12 |

L J

Figure 1-15: Key expansion process for AES

As you can see on the right of the figure, every fourth block passes through a box
labeled “Extra Scrambling.” This process includes transposing the bytes inside the block
and substituting each byte according to a table called the S-box.

The S-box table, which is used both in the key expansion and later in the encryption
itself, is carefully designed to amplify differences in the plaintext. That is, two plaintext
bytes that are similar will tend to have S-box replacements that are quite different. The

first eight entries from the table are shown in Table 1-3.

Table 1-3: Excerpts from the S-Box Table

Original bit pattern Replacement bit pattern
00000000 01100011
00000001 01111100
00000010 01110111
00000011 01111011
00000100 11110010
00000101 01101011
00000110 01101111
00000111 11000101
00001000 00110000
00001001 00000001
AES Encryption Rounds

Once AES has all the required keys, the real encryption can begin. Recall that the binary
plaintext is stored in a grid of 16 bytes or 128 bits, which is the same size as the original
key. This is not a coincidence. The first step of the actual encryption is to XOR the 128-bit
data grid with the original 128-bit key. Now the work begins in earnest, as the data grid is
subjected to 10 rounds of number crunching. There are four steps in each round.

1. Substitution.

Each of the 16 bytes in the grid is replaced using the same S-box table used in the key
expansion process.

2. Row Transposition.
Next, the bytes are moved to different positions within their row in the grid.
3. Column Combination.

Next, for each byte in the grid, a new byte is calculated from a combination of all four
bytes in that column. This computation involves the XOR operation again, but also a
binary form of transposition. To give you the flavor of the process, Figure 1-16 shows
the computation of the leftmost byte in the lowest row. The four bytes of the leftmost

column are XORed together, but the top and bottom bytes in the column have their
bits transposed first. This kind of transposition is known as bitwise rotation; the bits
slide one position to the left, with the leftmost bit moving over to the right end.

Every byte in the new grid is computed in a similar way, by combining the bytes in
the column using XOR; the only variation is which bytes have their bits rotated before
the XOR.

Original Data Grid

—{0 101011 1] | I |
IR EOEORIMNOE) | I |
ATy | | |

Fom IIODI 1] | I |

—h-F?IIID]I]OII]I]I] [ofof 1] GIDII
L, 1711,
pofrjojififijo] [o]1]1]ojof1]1]0]

> hé} :-é

New Data Grid
| | | | |
| | | | |
| |] |]
>0 111101 1] | | |

Figure 1-16: One part of the column-scrambling step in an AES round
4. XOR with Cipher Key.

Finally, the grid that results from the previous step is XORed with the key for that
round. This is why key expansion is needed, so that each round XORs with a different
key.

The AES decryption process performs the same steps as the encryption process, in
reverse. Because the only operations in the encryption are XORs, simple substitution from
the S-box, and transpositions of bits and bytes, everything is reversible if the key is
known.

Block Chaining

AES encryption could be applied individually to each 16-byte block in a file, but this
would create vulnerabilities in the ciphertext. As we’ve discussed, the more times an
encryption key is used, the more likely it is that attackers will discover and exploit
patterns. Computer files are often enormous, and using the same key to encrypt millions of
blocks is a form of large-scale key reuse that exposes the ciphertext to frequency analysis
and related techniques.

For this reason, block-based encryption systems like AES are modified so that identical

blocks in plaintext produce different ciphertext blocks. One such modification is called
block chaining.

When block chaining, the first block of the plaintext is XORed with a random 128-bit
number before encryption. This random number is called the starting variable and is
stored along with the ciphertext. Because each encryption is assigned a random starting
variable, two files that begin with the same data will have different ciphertexts even when
encrypted with the same key.

Every subsequent plaintext block is XORed with the previous ciphertext block before
encryption, “chaining” the encryption as shown in Figure 1-17. Chaining ensures that
duplicate blocks in a plaintext will result in different ciphertext blocks. This means files of
any length can be encrypted without fear of frequency analysis.

I Starting Variable |

Unencrypted Data Blocks r Encrypted Data Blocks
1 ——>®—> AES ——> 1
3 ——>» (P> AES —» 2
3 »P—> AES ——> 3

Figure 1-17: AES encryption using block chaining

Why AES Is Secure

As you can see, although AES contains many steps, each individual step is just
transposition or simple substitution. Why is AES considered strong enough to protect the
world’s data? Remember, attackers use brute force or cribs, or exploit patterns in the
ciphertext. AES has excellent defenses against all of these attack methods.

With AES, brute force means running the ciphertext through the decryption process
with every possible key until the plaintext is produced. In AES, keys have 128, 192, or
256 bits. Even the smallest key size offers around
300,000,000,000,000,000,000,000,000,000,000,000,000 possible keys, and a brute-force
attack would need to try about half of these before it could expect to hit the right one. An
attacker with a computer that could try a million keys per second could, in a day, try
1,000,000 keys x 60 seconds x 60 minutes x 24 hours = 86,400,000,000 keys. In a year,
the attacker could try 31,536,000,000,000 keys. Although that’s a large number, it’s not
even a billionth of a billionth of the possible combinations. An attacker might acquire
more computing power, but trying that many keys still doesn’t seem feasible—and that’s
just for the 128-bit version.

AES also makes using cribs or finding exploitable patterns difficult. During each
encryption round, AES rotates the bytes in each row of the grid and combines the bytes in
each column. After many rounds of this, the bytes are thoroughly mixed together so the
final value of any one byte in the ciphertext grid depends on the initial plaintext values of
all the bytes in a grid. This encryption property is called diffusion.

Furthermore, passing the bytes through the S-box, round after round, amplifies the
effect of diffusion, and block chaining passes the diffusion effects of each block on to the
next. Together, these operations give AES the avalanche property, in which small changes
in the plaintext result in sweeping changes throughout the ciphertext.

AES thwarts attackers no matter how much they know about the general layout of the
plaintext. For example, a company may send emails to customers based on a common
template, in which the only variables are the customers’ account numbers and outstanding
balances. With diffusion, avalanches, and block chaining, the ciphertexts of these emails
will be very different. Diffusion and avalanches also reduce patterns that could be
exploited through frequency analysis. Even a huge plaintext file consisting of the same 16-
byte block repeated over and over would result in a random-looking jumble of bits when
run through AES encryption with block chaining.

Possible AES Attacks

AES appears to be strong against conventional encryption attacks, but are there hidden
weaknesses that offer shortcuts to finding the right cipher key? The answer is unclear
because proving a negative is difficult. Stating that no shortcuts, or cracks, are known to
exist is one thing; proving they couldnt exist is another. Cryptography is a science, and
science is always expanding its boundaries. We simply don’t understand cryptography and
its underlying mathematics to a point where we can say what’s impossible.

Part of the difficulty in analyzing the vulnerabilities of an open standard like AES is
that programmers implementing the standard in code may unwittingly introduce security
flaws. For example, some AES implementations are vulnerable to a timing attack, in
which an attacker gleans information about the data being encrypted by measuring how
long the encryption takes. The attacker must have access to the specific computer on
which the encryption is performed, however, so this isn’t really a flaw in the underlying
encryption, but that’s no comfort if security is compromised.

The best-understood vulnerability of AES is known as a related-key attack. When two
keys are mathematically related in a specific way, an attacker can sometimes use
knowledge gathered from messages encrypted using one key to recover a message
encrypted using the other key. Researchers have discovered a way to recover the AES
encryption key for a particular ciphertext in less time than a brute-force attack, but the
method requires ciphertexts of the same plaintext encrypted with keys that are related to
the original key in very specific ways.

Although this shortcut counts as a crack, it may not be of practical value to attackers.
First of all, although it greatly reduces the amount of work to recover the original key, it
may not be feasible for any existing computer or network of computers. Second, it’s not
easy to obtain the other ciphertexts that have been encrypted with the related keys; it
requires a breakdown in the implementation or use of the cipher. Therefore, this crack is
currently considered theoretical, not a practical weakness of the system.

Perhaps the most worrying aspect of this crack is that it’s believed to work only for the
supposedly stronger 256-bit-key version of AES, not the simpler 128-bit-key version
described in this chapter. This demonstrates perhaps the greatest weakness of modern

encryption techniques: their complexity. Flaws can go undetected for years despite the
efforts of expert reviewers; small changes in the design can have large ramifications for
security; and features intended to increase security may have the opposite effect.

The Limits of Private-Key Encryption

The real limitation of an encryption method like AES, though, has nothing to do with a
potential hidden flaw.

All the encryption methods in this chapter, AES included, are known as symmetric-key
methods—this means the key that encrypts a message or file is the same key that is used to
decrypt it. If you want to use AES to encrypt a file on your desktop’s hard drive or the
contact list in your phone, that’s not a problem; only you are locking and unlocking the
data. But what happens when you need to secure a data transmission, as when you enter
your credit card number on a retail website? You could encrypt the data with AES and
send it to the website, but the software on the website couldn’t decrypt the ciphertext
without the key.

This is the shared key problem, and it’s one of the central problems of cryptography.
Without a secure way to share keys, symmetric key encryption, by itself, is only useful for
locking one’s own private data. Encrypting data for transmission requires a different
approach, using different keys for encryption and decryption—you’ll see how this is done
in Chapter 3.

But there’s another problem we need to tackle first. AES requires an enormous binary
number as a key, but users can’t be expected to memorize a string of 128 bits. Instead, we
memorize passwords. As it turns out, the secure storage and use of passwords presents its
own quandaries. Those are the subject of the next chapter.

2

Passwords

One of software’s most crucial tasks is the protection of passwords. That may be
surprising. After all, aren’t passwords part of systems that provide protection? Don’t
passwords secure our accounts with banks, web retailers, and online games?

The truth is, while passwords are the keystones of computer security, they can become
the targets of attacks. If a remote computer accepts your identity based on your password,
a process known as authentication, it must have a list of user passwords to compare
against. That password list is a tempting target for attackers. Recent years have seen a
number of large-scale thefts of customer account data. How does this happen, and what
can be done to make breaches less likely? That’s what this chapter is about.

Before you learn how passwords are protected, though, you’ll see how they are
transformed into binary numbers, a process that has important implications for both
password storage and encryption.

Transforming a Password into a Number

In Chapter 1, you saw how an individual character could be replaced by a number from
the ASCII table. Here, you’ll see how a string of characters can be replaced by one big
number, such as the 128-bit key we need for AES. In computing, transforming something
into a number in a specified range is called hashing, and the resulting number is called a
hash code, hash value, or just plain hash.

Here, the word hash means chopping something up and then cramming the pieces back
together, as with hash browns. A particular hashing method is known as a hash function.
Hashing a password always begins by converting each character in the password to a
number using an encoding system such as ASCII. Hash functions differ in how they
combine those numbers; the hash functions used in encryption and authentication systems
must be carefully designed or security may be compromised.

Properties of Good Hash Functions

Developing a good hash function is no easy task. To understand what hash functions are
up against, consider the short password dog. That word contains 3 ASCII bytes, or a mere

24 bits of data, while an AES key is a minimum of 128 bits. Therefore a good hash
function must be capable of transforming those 24 bits into a 128-bit hash code with the
following properties.

Full Use of All Bits

A major strength of a computer-based encryption system like AES is the key size, the sheer
number of possible keys facing an attacker. This strength disappears, however, if all the
possible keys aren’t actually being used. A good hash function must produce results across
the full range of possible hash codes. Even for our short dog password, all 128 bits of the
resulting hash code must be influenced by the original 24 bits of the password.

No Reversibility

In Chapter 1, you learned that an encryption method has to be reversible. A good hash
function, in contrast, should not be reversible. I’ll discuss why this is important later in the
chapter. For now, know that for a given hash code, there should be no direct way to
recover a password that produced it. [say a password and not the password because
multiple passwords may produce the same hash code, which is known as a hash collision.
Because there are more possible passwords than hash codes, collisions are inevitable. A
good hash function should make it difficult for attackers to find any password that
produces a given hash code.

Avalanche

The avalanche property that’s vital to encryption is just as important in hashing. Small
changes in the password should result in large changes in the hash code—especially since
many people, when required to choose a new password, choose a slight variation of their
old one. The hash code produced for dog should be very different from those produced by
similar passwords such as doge, Dog, or odg.

The MD5 Hash Function

Meeting all these criteria is not easy. Good hash functions solve this problem in a clever
way. They start with a jumble of bits and use the bit patterns of the password to modify
this jumble further. That’s the method of the widely used hash function called MD5—the
fifth version of the Message Digest hash function.

Encoding the Password

To get started, MD5 converts the password to a 512-bit block; I'1l call this the encoded
password. The first part of this encoding consists of the ASCII codes of the characters in
the password. For example, if the password is BigFunTime, the first character is a B,
which has an ASCII byte of 01000010, so the first 8 bits of the encoded password are
01000010; the next 8 bits are the byte for i, which is 01101001; and so on. Thus, the 10
letters in our sample BigFunTime password will take up 80 bits out of 512.

Now the rest of the bits have to be filled up. The next bit is set to 1, and all the bits up

to the last 64 are set to 0. The final 64 bits store a binary representation of the length, in
bits, of the original password. In this case, the password is 10 characters, or 80 bits, long.
The 64-bit binary representation of 80 is:

00000000 00000000 00000000 00000000 00000000 00000000 00000000 01010000

Clearly, we don’t need 64 bits to store the length of a password. Using 64 bits for the
length allows MD5 to hash inputs of arbitrary length—the benefit of which we’ll see later.

Figure 2-1 shows the encoding of the sample password, organized into 16 numbered
rows of 32 bits each.

01000010 01101001 01100111 01000110 Binary ASCII of
01110101 01101110 01010100 01101001 Password Lefters
01101101 01100101 10000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 pydding
00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

10 00000000 00000000 00000000 00000000

11 00000000 00000000 00000000 00000000

12 00000000 00000000 00000000 00000000

13 00000000 00000000 00000000 00000000

14 00000000 00000000 00000000 00000000

15 00000000 00000000 00000000 00000000 Number of Bits
16 00000000 00000000 00000000 01010000 in Password

0 N O Ln b LD R —

Figure 2-1: The password BigFunTime transformed into the 512 bits used as input to the
MDS5 hash function

This encoded password is full of zeros and therefore doesn’t meet the “fully uses all the
bits” property of a good function, but that’s okay because this is not the hash code; it’s just
the starting point.

Bitwise Operations

The MD5 hash function uses a few operations I haven’t discussed before. Let’s go through
these briefly.

Binary Addition

The first new operation is binary addition. Binary addition is much like the decimal
addition you already know but with binary numbers. For example, the 32-bit
representation of the number 5 is:

00000000 00000000 00000000 0O0OOO1O01

The 32-bit representation of 46 is:

00000000 00OOOOOOO 00000000 00101110

If we add 5 and 46 together, the result is 51. Likewise, the addition of those two binary

representations results in the binary representation of 51:

00000000 00000000 00000000 00110011

Unlike normal addition, though, where sometimes the result has more digits than the
operands, in binary addition the number of bits is fixed. If the result of adding two 32-bit
binary numbers is greater than 32 bits, we ignore the “carry” at the left side of the result
and keep only the 32 bits on the right. It’s like working with a cheap calculator that has
just a two-digit display, so when you add 75 and 49, instead of displaying 124, it displays
only the last two digits, 24.

Bitwise NOT

The next new operation is called “not,” often written in all uppercase as NOT. As
demonstrated in Figure 2-2, NOT “flips” all of the bits, replacing each 1 with a 0 and each
0 with a 1.

Original |] 01011 1 11010

NoT (O[T 1[O]O|O|T]]1

Figure 2-2: The bitwise NOT operation. All bits are inverted. The 1 bits are highlighted
for clarity.

Bitwise OR

Up next is OR, sometimes called inclusive-OR to distinguish it from the exclusive-or
(XOR) that you saw in Chapter 1. The OR operation lines up two binary numbers with the
same number of bits. In each position of the resulting binary number, you get a 1 if there’s
a 1 in the first number or in the second number; otherwise, you get a 0, as shown in Figure
2-3.

Original 1{0]0]1] 11010

oRwith |O|O 1| T[O]T|T1]0

Result 1 {011 1 1 1 1 (0

Figure 2-3: The bitwise OR operation. Bit positions are 1 in the result if they are 1 in
either of the two inputs

Notice that unlike XOR, you can’t apply OR twice and get the original byte back. It’s a
one-way trip.

Bitwise AND

The last of the new operations is AND. Two binary numbers are aligned, and in each
position, the result is 1 wherever both bits are 1 in that position; otherwise, the result is 0.

So a 1 in the result means there was a 1 in that position in the first number and the second
number, as seen in Figure 2-4. As with OR, the AND operation isn’t reversible.

Original 110101]] G| 0

ANDwith [O[O | T 1110 T|1]0

Resst |OJOJO|T[Of1[0O]|O

Figure 2-4: The bitwise AND operation. Bit positions are 1 in the result if they are 1 in
both of the two inputs.

MD5 Hashing Rounds

Now we’re ready for some hashing. Pieces of the encoded password make only brief
appearances in the MD5 process, but those appearances make all the difference. The MD5
process always starts with the same 128 bits, conceptually split into four 32-bit sections,
labeled A through D, as shown in Figure 2-5.

A 01100111 0100010171 OO1T0001T1 O0O0000O01
B 1171011171 11001101 10101011 10001001
C 10011000 101110710 11011100 111711110

D 00010000 00110010 0101010001110110
Figure 2-5: The starting configuration of the 128 bits of an MD5 hash code

From here, it’s all about shifting these bits around and flipping them, in a process that
repeats a whopping 64 times. In this respect, the process is a lot like AES but with even
more rounds. Figure 2-6 is a broad diagram of one of the 64 rounds.

D | Before

Extra
L—| Scrambling

Row of Encoded

Password

| D | New | B | C | Aber

Figure 2-6: One round of the MD5 hash function. In the result, three of the sections are
transposed, while all four sections are combined to make a new section.

As shown, sections B, C, and D are simply transposed, so that the D section of one
round becomes the A section of the next. The main action of MD5 occurs in the “extra
scrambling” of each round, which creates a new section from the bits of all four sections

of the previous round. The extra scrambling uses the irreversible operations AND, OR,
and NOT to combine the bits of all four sections with one of the rows of the encoded
password. Different rows of the encoded password are used in different rounds, so that
eventually all the rows of the encoded password are used multiple times. Because of the
transposition, the process needs just four rounds to replace each of the four original
sections with the result of the extra scrambling. After the complete 64-round process, the
original bits of the sections will have been thoroughly sifted together with the encoded
password.

Meeting the Criteria of a Good Hash Function

Because MD5 starts with an assortment of bits, then alters these bits over and over, adding
in pieces of the encoded password, we can be sure that all the bits are affected along the
way, giving us a true 128-bit hash code. The sheer number of operations that are
irreversible—and remember, the actions described occur 64 times—means the hash
function as a whole is not reversible. This rotation and alteration of the bits in the “extra
scrambling” each round, combined with the rotation of the sections themselves, distribute
the bits and bytes and create the desired avalanche.

MD5 meets all the baseline requirements for a good hash function. It does have a few
subtle weaknesses, however, as you’ll soon see.

Digital Signatures

Hash functions serve other purposes in security besides creating keys from passwords.
One of the most important is the creation of file signatures. As stated earlier, MD5 can
process any size of input. If the input is larger than 512 bits, it’s first divided into multiple
512-bit blocks. The MD5 process is then applied once per block. The first block starts
with the initial 128 bits and each subsequent block starts with the hash code produced by
the previous block. In this way, we could run the entire text of this book, an audio file, a
video, or any other digital file through the function and get a single 128-bit hash code in
return. This hash code would become the file’s signature.

Why does a file need a signature? Suppose you have decided to download FreeWrite, a
(fictional) freeware word processor application. You’re wary, though, because of a bad
experience in which you downloaded a freeware program that turned out to be bogus and
riddled with malware. To avoid this, you want to be sure the FreeWrite file that you
download is the same file that the developers uploaded. The developers could hash the file
with MD5 and post the resulting hash code—the file signature—on their website,
freewrite.com. This allows you to run the file through an MD5 hash program and compare
the result to the code on the developer site. If the new result doesn’t match the signature,
something has changed: the file, the signature, or both.

The Problem of Identity

Unfortunately, matching the posted hash code proves the FreeWrite file is legitimate only
if the hash code was actually published by the developers. But what if an attacker copies

http://freewrite.com

the developer’s freewrite.com site to a similarly named domain like free-write.com, and
then posts a compromised file along with the hash of that compromised file? A digital
signature is only as trustworthy as its provider. We’ll explore this problem in further detail
in Chapter 3.

Collision Attacks

Even with a matching hash code from a legitimate source, though, a file might be trouble.
Many different files will produce the same hash code, which means an attacker trying to
modify a file for nefarious purposes can avoid detection if the new, modified file produces
the same hash code.

It’s not too difficult to produce two files with the same hash code, which is known as a
collision attack: just randomly generate files until two hash codes match. Finding a second
file to match the particular hash code of another file is much harder. To be of any real use
to an attacker, the file with the matching code can’t be a bunch of random bytes; it has to
be a program that does something malicious on the attacker’s behalf.

Unfortunately, there are methods to produce a second file with the same MD5 code that
is very similar to the first file. The discovery of this flaw in the MD5 hash function has led
researchers to suggest that other hash functions be used for signatures. These more
advanced hash functions usually have longer hash codes (up to 512 bits), more hashing
rounds, and more complicated binary math during each round. As with encryption,
though, there are no guarantees that flaws won’t be discovered in the more complicated
hash functions as well. Proper use of signatures means staying one step ahead of known
design flaws because attackers will exploit flaws mercilessly. Digital security is a cat-and-
mouse game in which the good guys are the mice, trying to avoid being eaten, never able
to defeat the cats, and only hoping to stay alive a little longer.

Passwords in Authentication Systems

Nowhere is this cat-and-mouse game more evident than in authentication systems. Every
place where you enter your password has to have a list of passwords to compare against,
and properly securing the list requires great care.

The Dangers of Password Tables

Let’s look at the most straightforward way passwords could be stored in a table. In this
example, Northeast Money Bank (NEMB) stores the username and password of each of its
customers, along with the account number and current balance. An excerpt from the
password table is shown in Table 2-1.

Table 2-1: Poorly Designed Password Table

Username Password Account number Balance

richguy22 ilikemoney 21647365 $27.21

http://freewrite.com
http://free-write.com

mrgutman falcon 32846519 $10,000.00
squire yes90125 70023193 $145,398.44

burgomeister78 taco999 74766333 $732.23

Just as Kerckhoffs’s principle says we can’t rely on encryption methods remaining
secret, we shouldn’t rely on the password list remaining a secret, either. A disgruntled
employee in the NEMB information technology department might easily acquire the file
containing the list, or determined attackers on the outside might worm their way through
the company defenses.

This is what’s known as a single point of defense, meaning that once anyone lays eyes
on this table, the game is over. First, this table shows the account numbers and balances of
all of the customers, so at the very least, that’s a major loss of privacy. What’s even worse
is that each password is stored in the form entered by the user. Accessing this password
list will allow attackers to log on as any customer—a disaster in the making.

Fortunately, the problems with this storage system are easily remedied. Knowing that,
and knowing how dangerous the system is, you would think that it would never be used.
Sadly, you would be wrong. Real companies are storing user passwords just like this.
Some extremely large companies that probably spent a great deal of money on their
websites have been caught following this practice.

Hashing Passwords

If Table 2-1 shows the wrong thing to do, what’s the right thing to do? One improvement
is leaving the password out of the table and instead storing the hash code of the password,
as shown by Table 2-2. (In the examples that follow, I show hash codes as decimal
numbers to keep their length manageable.)

Table 2-2: Password Table with Hashed Passwords

Account
Username Hash of password Balanc
number

richguy?22 330,711,060,038,684,200,901,827,278,633,002,791,087 21647365 $27.21
mrgutman 332,375,033,828,033,552,423,319,316,163,101,084,850 32846519 $10,00
squire 295,149,488,455,763,164,542,524,060,437,757,020,453 70023193 $145,3

burgomeister78 133,039,589,388,270,767,475,032,770,360,311,206,892 74766333 $732.2

When a user tries to log in, the submitted password is hashed and the result compared
to the stored hash code. If they match, the user is logged in. Because the hash function

isn’t reversible, getting access to the table isn’t the same as getting access to the
passwords. An attacker can’t log on to an account with the hash code.

The account number and balance are still stored as plaintext, though, and it would be a
good idea to encrypt them, making a table with only hash codes and ciphertext. The
problem is if we used the hash of the password as our cipher key, then encrypting the data
provides no additional protection because anyone who acquires this table will be able to
decrypt the ciphertext.

There are several ways to solve this problem. One solution is to use one hash function
to transform the password for authentication and another hash function to transform the
password into a cipher key to encrypt the account number and balance. As long as the
hash functions are not reversible, this solution would provide security for the account data
even if an attacker got access to the table.

Dictionary Attacks

Hashing the passwords is a good defense against attackers, but it’s not enough.
Authentication systems are still vulnerable to dictionary attacks.

In a basic dictionary attack, the attacker has no access to the password table and must
guess the password. The attacker could just try random jumbles of characters but will have
much more success with a dictionary, which in the world of software is simply a list of
words. In this case, the dictionary is a list of the most common passwords, and it begins
something like this:

* password

* 123456

» football

* mypassword
* abcdef

To foil the basic dictionary attack, most sites count the number of failed logins and,
after a certain number (perhaps as few as three), temporarily prevent further login attempts
from a particular computer. This renders the attack impractical by increasing the time
required to find the right password.

A different form of dictionary attack is used when an attacker has acquired a copy of a
hashed and encrypted password table. In this case, the attacker hashes each password in
the dictionary and compares it to each of the hash codes in the stolen table. When a match
is discovered, the attacker knows the password that generates that user’s hash code. To
save time, the attacker can run all the passwords in the dictionary through a selected hash
function once and store the results in a dictionary like in Table 2-3.

Table 2-3: Dictionary with Hash Codes

Password MD?5 hash code

password 126,680,608,771,750,945,340,162,210,354,335,764,377
123456 299,132,688,689,127,175,738,334,524,183,350,839,358
football 74,046,754,153,250,065,911,729,167,268,259,247,040
mypassword 69,792,856,232,803,413,714,004,936,714,872,372,804

abcdef 308,439,634,705,511,765,949,277,356,614,095,247,246

Dictionaries demonstrate why it is important for users to choose passwords that aren’t
obvious. The more obscure a password, the less likely it will be in an attacker’s dictionary.

Hash Tables

Unfortunately, an attacker can dispense with the dictionary altogether and build a table of
randomly generated passwords and their corresponding hash codes, which I’ll call a
precomputed hash table. Of course, the number of potential passwords is enormous, so if
the attacker wants a decent chance of getting a match, the hash table needs to be huge.
Building a precomputed hash table takes a lot of computing power and time, but it only
has to be built once, and then it can be used over and over again.

One weakness of the table is that its sheer size can make searching for a match
extremely slow. When you consider how fast a word processor can find a particular word
in a large document, this may seem surprising, but these precomputed tables are much
larger than any file on your computer. Suppose an attacker has a table of all passwords
composed of 10 or fewer uppercase and lowercase letters and digits. Even with these

restrictions, the number of potential passwords is 621, which is 839,299,365,868,340,224.
The precomputed hash table won’t need every one of these potential passwords as entries,
but it would need to have a sizable fraction. The table would be so large, though, it
couldn’t fit in a computer’s internal memory. It couldn’t even fit on a hard drive—or just
to get to the point, it’s so big it might need to be split across a million hard drives. And
that’s just the storage problem. Unless you have the distributed computing power of
Google, it’s not practical to search a table that large. (And searching a huge mass of data
isn’t easy even for Google; we’ll explore searching in detail in Chapter 7.)

Hash Chaining

Because a precomputed hash table is too large to store and search, attackers use a clever
technique called hash chaining to drastically reduce the number of entries in the table
without reducing its effectiveness. This technique uses a different type of function called a
reduction function that does the same sorts of mathematical gyrations as a hash function
but with the opposite purpose. Instead of creating a hash code from a password, it creates
a password from a hash code—not the password that produced the hash, but simply a
sequence of characters with the form of a valid password.

Here’s an example of hash chaining. When glopp26taz is hashed using MD5, it
produces this hash code:

22,964,925,579,257,552,835,515,378,304,344,866,835

A reduction function transforms this hash code into another valid password, say,
7HGuppZ2tss. This, in turn, is sent through the hash function, producing another hash code,
which is sent through the reduction function to generate another password, and so on. An
alternating series of passwords and hash codes, such as that shown in Figure 2-7, is a hash
chain.

glopp26taz

Q

22,964,925,579,257,552,835,515,378,304,344,866,835

P

7HGupp2tss

[

117,182,660,124,686,473,413,705,332,853,526,309,255

P

pRh7Té3y

9

33,218,269,111,507,728,124,938,049,521,416,301,013

Figure 2-7: In a hash chain, a hash function (H) alternates with a reduction function (R)
that produces an arbitrary password from a hash code.

Instead of a table of passwords and hash codes, the attacker generates a series of hash
chains, each of the same length, storing only the first and last links of each chain. The
chain in Figure 2-7 is shown as the third entry in Table 2-4. This table has 5 entries, but
each entry is a chain of 3 password/hash pairs, making this the equivalent of a plain table
of 15 entries.

Table 2-4: Hash Chain Table

Start End

sop3H4Yzai 302,796,960,148,170,554,741,517,711,430,674,339,836
5jhfHTeudy 333,226,570,587,833,594,170,987,787,116,324,792,461
glopp26taz 33,218,269,111,507,728,124,938,049,521,416,301,013

Y Yhs9j2a22 145,483,602,575,738,705,325,298,600,400,764,586,970

Pr2u912mnl 737,08,819,301,203,417,973,443,363,267,460,459,460

Figure 2-8 shows an example of using the table. Our attacker is trying to recover the
password for the target hash code 117,182,660,124,686,473,
413,705,332,853,526,309,255. The attacker must determine which chain in the table, if
any, contains the target hash code. First, the target code is compared against every number
in the End column of the table. In this case, no match is found, so the attacker runs the
target hash code through the reduction function to make a new password, runs that result
through the hashing function, and then searches for this new hash code in the End column
of the table. This process will continue until a match is found, or after the process is run
three times (the length of the chains in this table).

In this case, the initial target hash value is reduced to the password pRh7T63y, which,
in turn, is hashed, and this new hash value appears in the third entry of the table, in the
chain with the starting password glopp26taz. That identifies the hash chain in which the
target password may appear, but the attacker must obtain the password by iterating
through this chain. The starting password in that chain is hashed; the resulting hash value
is not a match for the initial hash value, so it is reduced to a new password, 7HGupp2tss,
and hashed again. This hash code does match, which means 7HGuppZtss is the password.

Hash code chains dramatically shrink the table while still providing the same amount
of searchable data. For example, if a chain has 100 passwords and 100 hash codes, then
the password matching any of those hash codes can be indirectly retrieved using that
chain, even though the chain has only one password and hash code in the table. Therefore,
a table with chains that long has the power of a regular precomputed hash table 100 times
larger.

There are some potential snags, though. For one, searching takes more computational
effort with hash chains. Also, because of collisions—multiple passwords that produce the
same hash code—a matching chain doesn’t necessarily contain the searched-for hash code
and its matching password, a problem known as chain merging. These are small
consolations for those of us worried about our data security, however. There are methods
for reducing the chain merging problem, but even without them, it’s clear that effective
precomputed tables can be made for particular hash functions, rendering the passwords
that use them vulnerable.

Hash value for which password is sought

[117,182,660,124,686,473,413,705,332,853,526,309,255 |

Password

> |7HGupp2tss|

Phase 1: Identify chain containing the hash value

117,182,660,124,686,473,413,705,332,853,526,309,255 |
Y

Y

| pRh7T63y |
Y

Q

| 33,218,269,111,507,728,124,938,049,521,416,301,013 }

Phase 2: Follow chain from start to find password

» | glopp2étaz |
Y

9

| 22,964,925,579,257,552,835,515,378,304,344,866,835 |
Y

?

;?HGu$p2T5.5|

[117,182,660,124,686,473,413,705,332,853,526,309,255 |

Hash chain table

Start End
sop3H4Yzai|302,796,960,148,170,554,741,517,711,430,674,339,836
5ihfHTeudy |333,226,570,587,833,594,170,987,787,116,324,792,461
glopp26taz | 33,218,269,111,507,728,124,938,049,521,416,301,013 |—
YYhs?j2022]145,483,602,575,738,705,325,298,600,400,764,586,970
Pr2u?12mnl| 737,08,819,301,203,417,973,443,363,267,460,459,460

Figure 2-8: Using a hash chain table to find a password that produces a particular hash
code. Neither the password nor the hash code is listed in the table.

Iterative Hashing

One way to thwart the creation of precomputed hash tables is to apply the hash function
more than once. Because the output of a hash function can itself be hashed, the original
password can pass through the same hash function any number of times. This technique,
unhelpfully, is also known as hash chaining, but to avoid confusion, I will refer to it as
iterative hashing. Figure 2-9 shows a five-deep iterative hashing of the password football.

football

9

74,046,754,153,250,065,211,729,167,268,259,247,040

4_®_

195,752,481,240,411,715,496,478,482,864,954,676,468

<@

215,740,418,882,503,683,136,771,049,688,419,950,093

‘_@_

13,171,899,822,692,340,279,911,684,933,338,601,262

46,202,593,210,040,684,2

Ln

1,622,731,805,548,624,146

Figure 2-9: Applying a hash function repeatedly

With this technique, passwords are repeatedly hashed when the password is stored and
when the user logs in. To thwart this, the attacker has to produce a table based on the same
idea, running the chosen hash code function the same number of times. From Kerchkoffs’s
principle, we know that cryptographic systems shouldn’t depend on keeping their methods
secret. The goal of iterative hashing isn’t to disguise how many times the password is
hashed, but to make the creation of the attacker’s precomputed hash table as difficult as
possible. In the example, the password runs through the hash function five times. That
would multiply the time needed to create the attacker’s table by five as well. In real-world
use, passwords can be run through hash functions hundreds or thousands of times. Is this
enough to prevent the creation of useful precomputed hash tables? Maybe. Computers get
faster every day. For the most part, this is wonderful, but the downside to ever-increasing
computational power is that it keeps pushing the boundary of practical limitations, and so
much of our information security is based on these practical limitations.

Someone setting up a password system based on iterative hashing has to choose the
number of iterations. It’s fairly easy to choose a number that provides good security today.
What’s difficult is predicting the number of iterations required a year from now, or 2
years, or 10.

You might think the best choice is some impossibly large number to guard against the
power of future computers. The problem is that today’s computers would have real trouble
processing legitimate logins. Would you be willing to wait five minutes to access one of
your online accounts?

Salting Passwords

Authentication systems need a way to strengthen hashing without a performance-crushing
number of hash iterations; that is, they need a method of storing passwords that requires
an impractical time investment from attackers without creating an equally unrealistic time

burden on legitimate access. That method is called salt. Salt is an apt term for this concept,
and I commend whoever came up with it. In culinary usage, a pinch of salt profoundly
changes the flavor of a dish. In cryptography, a small quantity of salt sprinkled on a
password dramatically changes its hash code.

Here’s how it works: when a new user signs up for an account and selects a username
and password, the system automatically generates the salt for that account. The salt is a
string of characters, like a short, random password, that is combined with the user’s
password before hashing. For example, user mrgutman chooses falcon as his password,
and the system generates h38T2 as the salt.

The salt and password can be combined in various ways, but the simplest is appending
the salt to the end of the password, resulting in falconh38T2 in this example. This
combination is then hashed, and the hash code stored in the authentication table along with
the username and the salt, as shown in Table 2-5.

Table 2-5: Password Table Using Salt

Username Salt Hash of password + salt

richguy22 7Pmnq 106,736,954,704,360,738,602,545,963,558,770,944,412
mrgutman h38T2 142,858,562,082,404,032,402,440,010,972,328,251,653
squire 93ndy 122,446,997,766,728,224,659,318,737,810,478,984,316

burgomeister78 HuOw2 64,383,697,378,169,783,622,186,691,431,070,835,777

Each time a user requests access, the salt is added to the end of the entered password
before hashing. An attacker who acquires a copy of this authentication table can’t get
much use out of a precomputed hash table. Although the table might have a password that
hashes to the given code, that password won’t produce the right code when combined with
the salt. Instead, the attacker would need to create a table for a specific salt. That could be
done, but remember that the salt is randomly chosen. If there are, say, 100,000 users in a
stolen authentication table, and the salts are numerous enough that no salt is duplicated in
the table, the attacker will need to create 100,000 tables. At this point, we can’t even call
them precomputed tables because the attacker is creating them for each attack.

Are Password Tables Safe?

Salting and iterative hashing are typically used together, creating real headaches for an
attacker. Iterative hashing increases the time requirement for creating a single
precomputed hash table, and salting means an attacker has to make a multitude of tables.
But is this combination enough?

There is no definitive answer to that question. Cryptography researchers and security
experts continue to develop new defenses against unauthorized access. At the same time,

though, attackers continue to find new methods to penetrate defenses. Advances in
computational power and programming theory help whichever side takes advantage of
them first.

Perhaps the most important lesson of this discussion is that security is often out of the
user’s hands. There will always be vulnerabilities, but there’s no way for a user to know if
a particular site or service is employing the best security practices. The salt technique, for
example, benefits only systems that use it, and not every system does.

Password Storage Services

That’s how passwords are stored on remote authentication systems. What about on the
user end? How do we safely store our passwords?

A long time ago, I had so few passwords that I could safely entrust them to my
memory, but eventually I knew I had to store passwords outside of my head. Writing the
passwords on a piece of paper, though, is just a different kind of security liability. For a
while, I had an elaborate homebrew solution involving a .txt file encrypted with AES and
stored on a memory card that was kept in a metal box that was probably not 100 percent
fireproof. This arrangement worked, except that every time I needed to look up a
password, I had to go to the box, get the memory card, slot it into my computer, double-
click the file, type the password (the one password I had to remember), and find the
desired entry in my table.

Eventually I threw in the towel and signed up for a web-based password storage
service. When I created an account with the service, I chose a master password. I then
stored all my other passwords and usernames on this website. This information is stored in
a way that renders it of little use to anyone who gains access to the raw data, so if my
password at Amazon is chickenfat (it isn’t), then the word chickenfat isn’t stored anywhere
on the password storage server. Instead, the passwords are encrypted by a program on my
browser before being sent to the password storage site, using my chosen master password
to generate the encryption key. Therefore, even if the server were breached, the attacker
wouldn’t be able to retrieve my individual passwords without the master password.

The master password itself is not stored on the password storage site, either. When the
encryption key is needed to encrypt or decrypt an individual login, the master password is
salted and then hashed repeatedly, for as many iterations as I specify.

Although using a password storage service puts all of my eggs in one basket, so to
speak, this frees me to use best practices for individual logins. Whereas previously I might
have created passwords that were collages of words and numbers I thought I could
remember, now my passwords are lengthy random jumbles. And they are all different
because I no longer need to remember them all.

A Final Thought

In all of this talk about authentication systems, I’ve avoided a crucial detail.
Authentication systems compare stored user passwords to passwords provided during
logons, but how does the remote computer doing the authentication get the users’ chosen

passwords in the first place? Secure transmission requires encryption, which implies the
users would have had to encrypt the passwords—but how could the remote system decrypt
the encrypted passwords without having the passwords already? This brings us back to the
shared key problem—none of what we talked about in this chapter can work unless that
problem is solved. So that’s what we’ll do next.

3
Web Security

You may not have realized it before, but the Internet as we know it couldn’t exist without
a solution to the shared key problem. Think about a typical situation: you’re buying
something at an online retailer that you’ve never purchased from before. At some point
you will be asked for your credit card data. Your browser tells you that your data is secure,
perhaps by displaying a “lock” icon in the corner. But for the browser to protect your card
number using AES, both your system and the retailer must use the same encryption key.
How do two systems securely transmit data without getting together beforehand to
exchange a key?

Solving this shared key problem is essential to providing any security on the Web.
We’ll explore the solution to the shared key problem in this chapter, which uses all the
techniques we’ve seen in the previous two chapters, plus a new special ingredient: public-
key cryptography.

How Public-Key Cryptography Solves the Shared Key
Problem

In the world of physical security, the shared key problem has a straightforward solution
because locks and keys are two separate things. Suppose person A needs to ship
confidential physical documents to person B. Person B could buy a strongbox and a keyed
lock and then mail the box and lock to person A while keeping the key. Then person A
puts the documents in the box, locks the box with B’s lock, and ships the box back to B.
Because B has the only key to the lock, this is a secure delivery method.

This is the desired situation for transmitting data digitally as well. We need to separate
the methods for locking and unlocking data, so that knowing how to encrypt data won’t
provide the means to decrypt the resulting ciphertext.

In Chapter 1, we learned about AES, which is a symmetric-key encryption method,
meaning the same key is used for encryption and decryption. For transmission, we need an
asymmetric-key encryption method, with one key for encryption and another key for
decryption. The encryption key is known as the public key, because it can be freely
distributed with no ill effects if it falls into the hands of an attacker; for this reason,
asymmetric-key encryption is also known as public-key cryptography. The decryption key

is known only to the recipient, so it’s known as the private key. These relationships are
shown in Figure 3-1.

Sender Public Key

'

Plaintext > Encryption —>| Ciphertext

Receiver Private Key

v

Ciphertext > Decryption =—| Plaintext

Figure 3-1: Asymmetric-key encryption, with a public key for encryption and a private key
for decryption. Only the receiver has the private key.

Math Tools for Public-Key Cryptography

What public-key cryptography requires, then, is an encryption method that’s reversible but
not with the cipher key that was used in the encryption. The basic tools of the encryption
methods we’ve seen so far won’t work for public-key cryptography. The most common
operation in AES, for example, is exclusive-or, which is used precisely because when
something is XORed twice with the same binary number, you get the same number you
started with. Reversible operations such as XOR inevitably lead to having the same key
for encryption and decryption.

Public-key encryption, therefore, requires a new technique. As it turns out, the secrets
to public-key encryption lie in the hidden relationships between numbers. In order to
explain what those relationships are and how they can be exploited for cryptography, we
need to go over a few pieces of math terminology.

Invertible Functions

Broadly stated, a function describes any situation where each numerical input results in a
single numerical output. The current Celsius temperature, for example, is a function of the
current Fahrenheit temperature. For any particular temperature in Fahrenheit degrees,
there is exactly one matching temperature in Celsius degrees.

In the same way, the monetary value of a pile of coins is a function of the number of
coins of each type. A pile containing three quarters, two nickels, a dime, and four pennies
has a monetary value of 99 cents. This pile of coins cannot be worth any other amount.

Sometimes a function can be reversed to produce another function. If we know a
temperature in degrees Fahrenheit, we also know it in degrees Celsius, and the reverse is
true: if we know a temperature in Celsius, we can also figure it out in Fahrenheit. In
mathematical terms, we would say that the Celsius-to-Fahrenheit function is the inversion
of the Fahrenheit-to-Celsius function, and that the original function is invertible. The coin

example, though, is not invertible. The same total monetary value can be produced by
multiple combinations of coins. If the coins in my pocket are worth 99 cents, I might have
three quarters, two nickels, a dime, and four pennies, or I might have nine dimes and nine
pennies, or some other combination.

One-Way Functions

For some invertible functions, computing in one direction may be a lot easier than the
other. For example, the mathematical concepts of square and square root are
complementary functions. Suppose you have a square room in your home that is covered
in black-and-white tiles, as shown in Figure 3-2. To find the total surface area of the floor,
you multiply 12 by 12 to get 144.

We say that 144 is the square of 12. Going in the other direction, we say that 12 is the
square root of 144. These are both functions; each number has one square and one square
root. The difficulty of computing these two functions is very different, though. Figuring
out a number’s square is easy: you just multiply the number by itself. Figuring out the
square root is hard. Unless you have a table of values to help you, computing a square root
is effectively a trial-and-error process. You make a guess at what the root might be,
multiply that guess by itself, see if your guess was too high or too low, and then adjust
your next guess accordingly, repeating the process until you find the exact square root or
get close enough that you are willing to stop. When a function is invertible but its inverse
is much harder to compute, it is called a one-way function.

12 feet

12 feet

Figure 3-2: A square room with walls 12 feet long has a total area of 144 feet.

Trapdoor Functions

Asymmetric encryption requires a one-way function so that the encryption key can be
public—the encryption will be easy, but the decryption will be so hard as to be infeasible.
The problem is, we shouldn’t make the decryption infeasible for the intended recipient as
well. So any old one-way function isn’t going to do the trick. We need what’s known as a
trapdoor function, a one-way function where the inverse function is hard in general, but
easy when some secret value is known.

Prime Numbers

The particular trapdoor function we’ll discuss involves prime numbers. A number is prime
if it is greater than 1 and can only be divided (without a remainder) by itself and 1. For
example, 5 is prime because it can be divided only by itself and 1. It cannot be evenly
divided into 2, 3, or 4 parts. The number 6, though, can be divided by 2 and 3 in addition
to 1 and itself. It is therefore a nonprime, or composite, number. Smaller numbers that
divide into a larger number are known as the larger number’s factors. Every number is
divisible by itself and by 1, but we call these trivial factors and tend to ignore them when
discussing factors. A prime number has only trivial factors.

Coprime Numbers

In a related concept, two numbers are said to be coprime if they share only 1 as a factor.
Either number may or may not be prime itself, but each can be thought of as prime as far
as the other number knows. For example, the composite numbers 9 and 4 are coprime
because there is no number that divides them both except for 1. In contrast, 6 isn’t coprime
with either 9 or 4, because 6 shares factors with both. These relationships are
demonstrated in Table 3-1.

Table 3-1: Showing that 9 and 4 Are Coprime, but 6 Is Not Coprime with 9 or 4

Divisor Remainder from 9 Remainder from 6 Remainder from 4
9 (trivial)

8 1

7 2

6 3 (trivial)

5 4 1

4 1 2 (trivial)

3 0 0 1

2 1 0 0

1 (trivial) (trivial) (trivial)

Although 1 is not a prime number, it’s considered to be coprime with every other
number.

Prime Factors

Now we are getting close to the hidden relationships that make public-key encryption
work. If we multiply two prime numbers, the resulting product has only those two prime
numbers as factors (again, not counting itself and 1). For example, 5 and 3 are prime
numbers. The product of 3 and 5 is 15, and 15 has only 3 and 5 as factors, as shown in
Table 3-2.

Table 3-2: The Product of Prime Numbers 3 and 5 Is 15, and 15 Has Only 3 and 5 as
Factors

Divide 15 by Result Remainder
15 0 0 (trivial)
14 1 1

13 1 2

12 1 3

11 1 4

10 1 5

9 1 6

8 1 7

7 2 1

6 2 3

5 3 0

4 3 3

3 5 0

2 7 1

1 15 0 (trivial)

This is a one-way function. If I give you two prime numbers, you can easily multiply
them together, although you might use a calculator if the numbers are large. The inverse of
this function would mean starting with the product of two prime numbers and finding the
two original primes. That’s considerably harder.

Let’s take 18,467 as an example. This number is indeed the product of two primes—
but which two primes? To answer this question, you would need to divide 18,467 by every
prime number starting from 2. Eventually you would discover that 18,467 divided by 59 is
313, which means that 59 and 313 are the two prime factors.

Finding the prime factors is very difficult if all you have is the product. However, when
you have the product and one of the two factors, finding the other factor is simple, because
all you have to do is divide the first prime into the product. That makes it a trapdoor
function—easy in one direction, hard in another unless you have the extra piece of
information. If the prime numbers are large enough, finding the factors is infeasible
without the trapdoor.

The RSA Encryption Method

This trapdoor function is at the heart of the RSA public-key encryption system, named
after the initials of its inventors: Rivest, Shamir, and Adleman. In actual practice, this
system uses very large numbers to prevent a simple brute-force attack, but I’ll use small
numbers in a simplified example to more easily demonstrate how it works.

Suppose that siblings Zed and Abigail share a bank account but live apart. Zed has just
changed the account’s four-digit PIN to 1482 and needs to send this new number to
Abigail via email. Because email transmissions pass through many potentially insecure
computers, the PIN must be encrypted in some way, but Zed and Abigail haven’t
previously shared a cipher key that would allow the use of a method like AES. Instead,
Zed will securely transmit the new PIN using RSA.

Creating the Keys

Although Zed has the confidential data to transmit in this example, the RSA procedure
begins with Abigail, who must produce a public key before Zed can encrypt the PIN.

Step 1

Abigail begins by choosing two prime numbers; let’s say she chooses 97 and 113.

Step 2

Abigail multiplies these two numbers together to get 10,961. To keep things straight, I’ll
call this number the prime-product.

Step 3

Next Abigail must compute a totient (which is pronounced TOE-shent, to thyme with
quotient). For a number N, the totient is the amount of numbers that are less than N and
coprime with N. For example, the number 15 is coprime with 1, 2, 4, 7, 8, 11, 13, or 14, as
shown in Figure 3-3. Because there are eight numbers coprime with 15, the totient of 15 is
8.

Ln
Ln
Cad

=
=
N
N

Lo

13

N
R
o~
i
[~
k2

—
—

11

10 5 H

S

=0
0
€D

— b3 L B Lhn O N 0O
Ln

Figure 3-3: The eight circled numbers have no factors in common with 15. Therefore the
totient of 15 is 8.

Computing the totient of a number normally requires checking every smaller number
for common factors, and therefore it’s a lot of work—for huge numbers, finding the totient
is practically impossible. However, if the number in question is the product of two prime
numbers, there’s a shortcut: simply subtract 1 from each of the two prime numbers and
multiply the results together. For example, 15 is the product of two primes, 3 and 5. If we
subtract 1 from each of the two primes, we get 2 and 4; if we multiply 2 and 4 we get 8,
the totient of 15.

This shortcut greatly aids Abigail, whose next step is computing the totient of the
prime-product, 10,961. Since that is the product of the primes 97 and 113, the totient of
10,961 is 96 x 112, or 10,752.

Step 4

Now Abigail selects a number that meets the following criteria:
* Greater than 1

* Less than the totient

* Coprime with the totient

Let’s say she picks 5. This is acceptable because it is greater than 1, it is less than 10,752,
and there is no number other than 1 that divides both 5 and 10,752. Abigail is going to
share this number with Zed, so we’ll call it the public key.

Step 5

The chosen public key determines Abigail’s private key, the number she has to keep
secret. For any given public key and totient, there is just one number that can serve as the
private key, and we can identify it by testing successive multiples of the totient. For each

multiple, we add 1 and see if the result is divisible by the public key. When it is, the result
of this division is the private key.

The process is demonstrated in Table 3-3. The first multiple of 10,752 is 10,752 itself;
Abigail adds 1 to make 10,753, then divides by 5, getting 2,150 with a remainder of 3. She
tries the second multiple, 21,504, and when she adds 1 and divides by 5, she gets 4,301
and no remainder, so her private key is 4,301.

Table 3-3: Finding the Private Key

Multiple Multiply by 10,752 Add1 Divide by 5 Remainder
1 10,752 10,753 2,150 3
2 21,504 21,505 4,301 0

Of course, with larger numbers it may take a lot more multiples to find the private key,
but there is always one number that will pass the test. The number of multiples tested will
always be less than the public key (in our example, Abigail knows she’ll find the private
key in four tries or less). In any case, now that Abigail has her private key, the actual
encryption can begin.

Encrypting Data with RSA

Abigail emails both her prime-product (10,961) and public key (5) to Zed. Because these
numbers don’t allow anyone to decrypt the resulting ciphertext, it doesn’t matter who else
reads the email before it reaches Zed.

The actual encryption of the new PIN takes just two steps.

Step 1

Zed raises the PIN, 1,482, to the power of the public key, 5—that is, 1,482 is multiplied by
itself five times:

1,482 x 1,482 x 1,482 x 1,482 x 1,482 = 7,148,929,565,430,432

Step 2

The second step is to find the remainder of dividing the result of step 1 by the prime-
product. In this case, 10,961 goes into 7,148,929,565,430,432 about 652 billion times, but
all Zed cares about is that the remainder of that division is 2,122. Zed sends this remainder
to Abigail.

Step 3

On the receiving end, Abigail performs two similar steps to decrypt the ciphertext. She
starts by raising the ciphertext number, 2,122, to the power of the private key, 4,301.

Because 2,122%43% is enormous—over 14,000 digits—I won’t show it here.

Step 4

Abigail finds the remainder of dividing the enormous number from step 3 by the prime-
product. The remainder of that division is exactly 1,482, revealing Zed’s PIN.

RSA Effectiveness

Remember that the goal of RSA, like any encryption system, is making encryption easy,
decryption easy for the intended recipient, and decryption very hard for anyone else. A
summary of our RSA example is shown in Figure 3-4.

Even using much larger primes, encryption and authorized decryption are easy with the
aid of the computer, as a review of the steps in our example will show.

1. Abigail picked two prime numbers and multiplied them together to produce her prime-
product. Multiplying two numbers together is easy.

2. Abigail computed the totient of the prime-product by subtracting one from each of the
two prime numbers before multiplying. Subtraction and multiplication are easy.

3. Abigail chose a public key, a number that shares no factors with the totient. For large
numbers, this would be impractical to find by hand, but for a computer, this is easy.

4. Abigail found the appropriate value for her private key, which should, when multiplied
by the number chosen for her public key, produce a number that’s 1 more than a
multiple of the totient. This is a chore to do by hand, but for a computer, this too is
easy.

5. Abigail sent Zed the prime-product and public key.

6. Zed raised the PIN to the power of the public key. For a computer, this is relatively
easy.

7. Zed divided the result from the previous step by the prime-product and took the
remainder. Division is easy.

8. Zed sent the remainder to Abigail.
9. Abigail raised the number Zed sent to the power of the private key. Easy.

10. Abigail divided the result of the previous step by the prime-product and took the
remainder, revealing Zed’s PIN. Easy.

Select prime

numbers ?’1 i 13
MI:J|T1P|}I' T:::ﬂgel 10,961
prime-product

Y
Subtmc;] flrcam 7 12
eqacn prime
Multiply to
get totient 10,752
Select public key,
coprime with 5
totient l
4,301
Private key, when multiplied
by public key it's 1 more Send to Zed
than a multiple of totient

Zed's PIN, the data
| a‘iag to be encrypted
Raise PIN to power
| 7,148,929,565,30,... of public key (1,482°)

v

L »[10,961F—>[2122

Take remainder of
division by prime-pmduci

l Send to Abigail
Z 122
Raise number to power e 1
of private key (2,12243%1) AL L LASTE,. [
Take remainder of 482 ::'

division by prime-product

Figure 3-4: A summary of the RSA example. The box in the middle shows Zed’s
responsibilities; the rest are Abigail’s.

RSA encryption and decryption by authorized parties is easy work for a computer, but
unauthorized decryption is maddeningly difficult. To decrypt, an attacker must have both
the prime-product, which Abigail gives out freely, and the private key, which she keeps to
herself. How could an attacker compute the private key? Finding that number means first
finding the totient of the prime-product, but remember, Abigail was only able to compute
the totient quickly because she knows the two prime numbers that created the prime-
product. Without those two prime numbers, an attacker must find the totient the hard way
—Dby checking every number less than the prime-product to find all the coprimes.

In our example, the prime-product is small, so it’s feasible for a computer to find the
totient in this brute-force manner. In actual practice, though, prime-products are huge, and
finding their totients isn’t feasible at all. In fact, an attacker would be better off searching
for the two primes that make the prime-product, to use the shortcut method of making the
totient. That still requires checking all numbers up to the square root of the prime-product,
though, so for large numbers this is as infeasible as finding the totient the long way.

The RSA encryption method therefore creates our desired digital equivalent of a
“lockbox.” Encryption and decryption no longer share the same secrets, so knowing how
to lock the data doesn’t provide the ability to unlock it.

RSA Use in the Real World

Our simplified example demonstrates the basics of RSA encryption, but for real-world
use, we have to consider a few other details.

Bidirectional Transmission

The system shown in the example allows for Zed to securely transmit to Abigail, but not
the other way around. If they wanted to send secure messages in either direction, Zed
would have to go through all the steps that Abigail did, making his own prime-product,
totient, public key, and private key, and sending the prime-product and public key to
Abigail.

Key Size

In RSA, the last step of either encryption or decryption is taking the remainder of division
with the prime-product, which means the plaintext number must be less than the prime-
product. In the example with Abigail and Zed, then, the largest possible plaintext number
is 14,960. That’s not a problem for Zed and his four-digit PIN, but for general use larger
ranges are needed.

Just as important, the larger the value of the prime-product, the more difficult it will be
for an attacker to find the two prime factors. In other words, the size of the prime-product
directly affects the security of encryption. In current practice, primes are chosen to
produce a prime-product with a minimum of 1,024 bits. As you may recall, the Advanced
Encryption Standard described in Chapter 1 used only 128 or 256 bits for the key. So we
are talking about a truly humongous number—1,024 bits is equivalent to a decimal
number of over 300 digits.

Long Plaintexts and Performance

A 1,024-bit key allows the encryption of very large numbers. But a typical text, image, or
audio file is a long series of small numbers, not one big number. How do we transmit a
long series of numbers using RSA? With AES, long files would be chopped up into as
many 128-bit blocks as necessary. In theory, we could do the same with RSA, chopping up
files into a multitude of 1,024-bit blocks and applying RSA to each block. The problem is
that RSA encryption is much slower than AES.

AES has more steps than the RSA Encryption Standard, but even so, AES is high-

performance because the steps themselves are so simple. The most common operations are
XOR and shifting bits around, and these operations are individually trivial. You can grasp
this by working out the result of these operations in your head, as shown in Figure 3-5.

Original I3 O | O [EbEs 010

xoRwith | 11 T1O[T[O[O|T1]0

Result A AKAKARARARA R

Original 110101 1{O0]10|1

Rotate Three
Bits Left eleflelele|2e|e|c®e

Figure 3-5: Computing XOR or rotating bits to new positions is easy.

In contrast, the RSA process has only a few steps, but the reliance on exponentiation
means more work overall. Consider a relatively small exponent: 1715, Written out, that’s

17 x 17 x17 x 17 x 17 x17 x 17 x 17 x 17 x 17 x 17 x 17 x 17 x 17 x 17 x 17

Try working that out in your head, and you see the problem. Now imagine exponents
involving numbers with hundreds of digits. Although a computer can handle these
calculations, exponents are clearly a lot more work than simple XORs. Because exponents
take so much time, using RSA for large amounts of data is impractical.

Combining Systems

The solution to the RSA performance problem is simple: don’t transmit large amounts of
data with RSA. Instead, use RSA to transmit an encryption key for another, faster method,
such as AES.

Returning to Abigail and Zed, suppose Zed needs to send Abigail a long document that
he has already converted to a series of numbers using the ASCII table. Zed would prefer to
encrypt the document using AES rather than take on the hard work of RSA. To use AES,
though, Zed and Abigail would both need to share an AES encryption key. RSA provides
the means to share that key safely. Zed can create the AES key himself, then encrypt it
with RSA using Abigail’s public key. Then Zed can encrypt the long document using
AES, and Abigail can decrypt the resulting ciphertext using the key they now share. This
process is illustrated in Figure 3-6.

Document Document

R AES -

AES Key | RSA B

Abigail’s RSA Public

Zed e-mails to Abigail

Abigail’s RSA Private

v

AES Key |=— RSA N

Document Document

«— AES - -

Figure 3-6: Combining RSA and AES to produce an asymmetric public-key system with
high performance

In this figure, the A-lock symbol means “encrypted with AES” while the R-lock means
“encrypted with RSA.” By sending both the AES-encrypted document and the AES key
encrypted with her public RSA key, Abigail has everything necessary to decrypt the
document, but an attacker intercepting the transmission won’t be able to decrypt the
document without Abigail’s private key.

By combining the two encryption methods, we combine their strengths to get the high
performance of AES and the shared keys of RSA. Public-key encryption is typically used
this way, to initiate a symmetric-key encryption process that would otherwise be
impossible.

RSA for Authentication

Public-key cryptography creates an authentication problem. Because the public key is just
that—public—anyone can send an encrypted message to the private key owner; therefore,
the recipient of a transmission cannot be certain of the sender’s identity. This problem

doesn’t occur with symmetric-key encryption, because the secrecy of the one key, when it
can be shared, ensures not only the security of the message but also that the message
originated with the other person who has the key. Luckily, public-key cryptography can be
also be used to authenticate.

Authentication Using RSA

In our RSA example, Abigail has her prime-product of 10,961 and her private key of
4,301, while Zed has the prime-product and Abigail’s public key of 5. This allows Zed to
send a secure message to Abigail, but it also allows Abigail to send an authenticated
message to Zed.

Suppose Abigail wants to send that same PIN, 1482, back to Zed to acknowledge its
receipt, and in such a way that Zed can be sure the acknowledgment comes from Abigail.

Abigail takes the PIN, 1,482, and raises it to the power of her private key (instead of

the public key used for encryption). 1,482%3%1 is another huge number—it has over 13,000
digits—so I’'m not going to write it here, but when that huge number is divided by the
prime-product of 10,961, the remainder is 8,742. Abigail sends an email with that
remainder to Zed. Zed now raises that 8,742 to the power of Abigail’s public key, 5, which
results in 51,056,849,256,616,667,232. Finally, Zed divides that number by the prime-
product, getting a remainder of 1,482. Zed recognizes this number as the PIN, and knows
it must have been transformed using Abigail’s private key, proving the number came from
Abigail. The relationship between security and authentication in RSA is shown in Figure
3-7.

RSA for Security

Public Private

. v

Original —> Encrypt Decrypt —| Criginal

L J

Transmission

Original —> Encrypt Decrypt —| Original

| 1

Private Public

L J

RSA for Authentication
Figure 3-7: The RSA process provides either encryption or authentication.

We can authenticate entire files by applying this authentication process to the
encryption key of a system like AES and sending the encrypted file and the authenticated
key to the recipient.

The RSA process can therefore produce an authenticated message or a secure message,
depending on whether we encrypt with a private key or a public key. Ideally we’d like
messages to be both authenticated and secure. We can accomplish this by applying both
variations of the process to the same message. In our example, illustrated in Figure 3-8,
Abigail could encrypt the number she wants to transmit with her private key, then encrypt

the result with Zed’s public key. Upon receipt, Zed would reverse the procedures, first
decrypting with his private key, then again with Abigail’s public key.

Abigail Private Zed Public

, Y

Original = Encrypt —— Encrypt

Transmission

Abigail Public Zed Private

. v

Original |«— Decrypt <«——— Decrypt =

Figure 3-8: Applying the RSA with the sender’s private key and the recipient’s public key
provides authentication and security.

Identity Authorities

You may have noticed that authentication introduces a subtler version of the shared key
problem. Zed knew the email came from Abigail because he recognized the PIN produced
when he transformed the number using Abigail’s public key, which means the sender must
have the matching private key. But if Zed is worried about someone pretending to be
Abigail, how exactly does he know that the public key was sent by Abigail in the first
place, not by an imposter who has hacked Abigail’s email account?

The solution to this problem is an authority, a third party that helps verify identities. As
you’ll see, authorities provide the digital equivalent of ID cards. When two computers
initiate a secure, authenticated transmission through the exchange of public keys, they
show their IDs, which assures each computer of the identity of the other. Of course, this
assumes each computer trusts the authority providing the ID, so in the end, authentication
requires having implicit faith in someone. One either trusts that the transmission comes
from the entity that claims to have sent it, or one trusts some third party to identify the
sender. Identity authorities form a crucial component of the ultimate subject of this
chapter, web security.

Security on the Web: HTTPS

Web pages are transferred using HTTP, which stands for Hypertext Transfer Protocol.
When this data is transferred securely, it is called HTTPS, where the S stands for secure.
This is why you’ll see https at the beginning of your browser’s address bar when you are
transferring sensitive data—or I hope you do. Web security is something most people take
for granted, but it’s an amazing feat to instantly create trust and security between two
automated parties who may have just been introduced, requiring all the tricks and
techniques you’ve seen so far.

For this discussion, suppose you’re purchasing from a retail website using a computer
or phone. In this scenario, your computer is known as the client. The computer running the
website for the retailer is the server. This is the first time you’ve made a purchase from
this retailer, so you have to provide shipping and billing information such as your address
and credit card number. This situation cries out for security, but it requires authentication
as well.

To see why, you have to remember that your computer is not directly connected to the
server. Your data will be passed along from system to system, through computers managed
by your Internet service provider (ISP) and those managed by the retailer’s ISP, and
possibly through intermediate systems managed by neither. It’s possible for any of these
systems to be compromised by attackers such that the infected system would intercept
transmissions headed for the retailer, responding in its place. If this happens, when you
place your order, you’re giving your data away to attackers, not to the retailer. Although
the data is encrypted, it is encrypted with the key provided by the compromised system, so
the encryption ensures only that no one else eavesdrops on the data you are sending to the
attackers. This sort of impersonation is known as a man-in-the-middle attack, and is foiled
by good authentication.

Handshaking

Secure transmission of data occurs in sessions. A session is the web equivalent of a phone
call: an extended conversation that begins when you first load a page on a site and ends
after you have not interacted with the site for some predetermined amount of time.

Before the transmission can begin, your client and the server must successfully
perform a ritual called handshaking. The name implies that it’s just two computers saying
howdy, but it’s more like a tense scene in a crime show where one guy doesn’t want to
show the “stuff” in the back of the van until the other guy shows the cash in the briefcase.
The handshaking phase, if successful, authenticates the server to the client, and creates the
key that will be used for encrypting the data throughout the session. As with Abigail and
Zed, a public-key encryption system is used just long enough to share the keys needed for
the better-performing private-key encryption system.

Step 1

The client tells the server which encryption methods it supports. The HTTPS protocol
allows computers to choose from a suite of acceptable methods for encryption, which
means that different secure websites that you access may use different encryption
techniques providing higher or lower levels of security. In addition to the encryption
support information, the client also provides a randomly generated number—the purpose
of which you’ll soon see.

Step 2

The server responds with its own list of supported encryption methods and also its
certificate. The server certificate contains several pieces of data, including the domain
name of the site (such as amazon.com) and the name of the certificate issuer (the authority

http://amazon.com

that will verify the site’s identity). It also contains the server’s public key. HTTPS can use
several different public-key cryptographic systems, but RSA is common. The server uses
the same certificate for every client it transacts with, so the public-and-private key pair
only has to be created once for each certificate. Although this means the server uses the
same RSA keys for all clients, as you’ll see, the RSA keys are used only during this
handshaking phase.

The server certificate also contains a signature. As discussed in Chapter 2, digital
signatures are hash codes. In this case, the server hashes the certificate data and encrypts
the hash code using the server’s private key.

In addition, the server also sends a random number to the client, just as the client has
sent a random number to the server.

Step 3

The client validates the certificate. There are two aspects to the validation. First, the client
applies the server’s public key to the hash code in the certificate, then hashes the
certificate itself and compares the two hash codes. If the codes match, the certificate is
internally valid, but it doesn’t prove this is the actual certificate for the site.

Now the client must check with the issuer of the certificate, a certification authority
with built-in trust with your browser. If you drill down into your browser’s options, you
will find a list of issuers under a heading such as “Trusted root certification authorities.”
The issuer provides a copy of the site’s certificate; when this matches the certificate
provided by the server, the client is assured of the identity of the server.

Step 4

The client generates another random number, 48 bytes long, or 384 bits, known as the
premaster secret. As the name implies, this number must remain a secret. However, the
client needs to send it to the server, so the client encrypts it using the server’s public key.

Step 5

The client and server independently create the 384-bit master secret by hashing a
combination of the premaster secret and the two random numbers that were exchanged in
the first two steps. Once the master secret is created, the premaster secret and the other
two random numbers are discarded.

Note that the master secret is not exchanged between client and server. By this stage,
both the client and the server have all the numbers needed to create the master secret.
They independently run the numbers through the same process to produce the same result.

A summary of the handshaking process is shown in Figure 3-9.

Client Server

Supported Encryplion
Methods

Randem Mumber -

Y

Supported Encrypfion
Methods

[

Certificate

Random Number

&

I

I)

Validate Certificate

Compute Premaster
Secret

Premaster Secret

Compute Master Compute Master
Secret Secret

Y

Figure 3-9: The HTTPS handshaking procedure

Transmitting Data Under HTTPS

Now the client and server can begin sending actual data—web pages and media from the
server, and user data from the client. The 384 bits of the master secret are divided into
three 128-bit sections, each providing a different aspect of security.

Data Encryption

The first section of the master secret is used as the key for a private-key encryption system
such as AES. Each of the subsequent data transmissions during the secure session will be
encrypted using this cipher key.

Block Chaining

Because web pages have standard header formats that could provide cribs to attackers, a
method such as block chaining (discussed in Chapter 1) is employed. As you may recall,
such systems need a starting value to encrypt the first block of the transmission; the
middle 128-bit section of the master secret is used as this starting value.

Message Authentication Code

The final 128-bit section of the master secret is used to create a message authentication
code, or MAC, for each transmission. In this case, we’re not trying to authenticate the

identity of the sender—that was already handled in the handshaking phase. Instead, the
MAC ensures that data isn’t altered during transmission.

In this process, each transmission is hashed through a function like MD5, but first the
transmission data is combined with the remaining 128-bit section of the master secret.
This is known as keyed hashing, and the 128-bit section in this context is known as a MAC
key. Using a keyed hash helps foil man-in-the-middle attacks. An attacker who wishes to
pass a fake transmission to the receiver will need the MAC key to produce a hash code
that will be accepted as genuine by the receiver.

The hashing occurs before the encryption, so that both the original message and the
hash code are encrypted.

The Shared Key Problem Solved?

So that’s how data is securely transmitted over the Web. As you can see, solving the
shared key problem requires just about every trick in the cryptography toolkit. Public-key
encryption creates the secure channel for initial communications. Private-key encryption is
used to secure individual transmissions of data. Hashing authenticates both the session and
individual messages. If the site uses passwords to authenticate users, then all of the
password techniques from Chapter 2 would come into play as well.

Web security is a complex system of techniques. And therein lies a potential problem:
the complexity of computer security can hide weaknesses. Just as a machine with more
parts has more parts that can break down, the layering of so many intricate methods and
techniques can mask undiscovered vulnerabilities. Sometimes the vulnerability is not
within any one part, but in how the parts are connected. Although methods like RSA and
AES are currently considered safe, clever attackers may find ways to break the security
without breaking the underlying encryption methods.

For example, earlier versions of HTTPS were vulnerable to a particular man-in-the-
middle attack that arose from the observation that most secure sessions begin with a user
clicking on a link. Suppose, for example, that you have received an email from the bank
that issues your credit card with a link to your most recent account statement. The link is
an HTTPS address, which means that when you click it, your browser will launch and
request a secure connection with the bank’s server. However, this request itself is not
secure. An attacker’s program could intercept this request and pass it along to the bank
server as a request for a plain unencrypted HTTP connection, and then eavesdrop on all
the unencrypted traffic that followed. The user might be tipped off by the prefix in the
address bar, but how many users would think to check that? To cover this security hole,
web servers can now tell browsers that all connections must be made through HTTPS—
but that solution doesn’t foil an attacker who can intercept the announcement as well. The
ultimate solution may be to require HTTPS for all web communications.

Undoubtedly new vulnerabilities will be found in the future, requiring the invention of
new defenses. Computer security is a moving target. We’ll never be able to declare our
data entirely safe, but relying on best practices may keep us one step ahead of attackers.

4
Movie CGI

Some of software’s most impressive work can be seen in movie theaters. Images that in
earlier eras were painstakingly produced with models, matte paintings, elaborate
costumes, and trick photography are now created by computers. More than merely
simplifying the filmmaking process, computer-generated imagery (CGI) produces images
that would have been impossible before. For many filmgoers, movies changed forever
when they saw Jurassic Park. When Steven Spielberg was developing the movie, he
expected to create his dinosaurs using old-school effects like automated puppets and
animated miniatures, but once he saw some computer-animated test footage, he decided to
use CGI for many of the dinosaur shots. The result left viewers astounded by images like
the panorama shown in Figure 4-1. For comparison, the old way to put a dinosaur in a
movie is shown in Figure 4-2.

Figure 4-1: CGI dinosaurs visit the watering hole in Jurassic Park (Universal
Pictures/Amblin Entertainment, 1993).

¥

.

i+
b

.

N

S

-

Pl Ty—p - K

"-
L
AV

Figure 4-2: The Beast from 20,000 Fathoms (Jack Dietz Productions, 1953) munches on
Coney Island.

Amazing as they were, films like Jurassic Park were just the beginning of the CGI
revolution. Now movies like Avatar create whole worlds using CGI, so that viewers are
never sure what parts of a shot are physically real, if any. With enough time and money, it
seems like filmmakers can produce anything imaginable.

Before computers blew our minds with dinosaurs and lush alien planets, though, they
were transforming the world of traditionally animated movies. Using computers not only
radically altered the process of traditional animation, but as you’ll discover, the concepts
and techniques employed are the foundation for almost everything in computer graphics.
This is where the story of CGI begins.

Software for Traditional Animation

A movie is a series of still images, or frames, presented to the eye in rapid succession, like
a high-speed slideshow. Each frame lingers on the retina for a moment after it disappears
from the screen, effectively blending with the next frame to provide the illusion of
continuous motion—a phenomenon known as persistence of vision. Traditionally, movies
are shown at a rate of 24 frames per second (fps). Making a movie means producing 24
images for every second of the film.

A live-action movie uses a camera to collect images in real time. A traditionally
animated film like Lady and the Tramp, though, is created a bit differently: each frame of
the movie is an individually photographed, hand-crafted work of art.

Traditional animation is a huge undertaking requiring a large team of artists. Typically,
each character in an animated film is assigned a lead animator, but the lead animator does
not draw the character on every frame in which he or she appears, because that’s too much
work for one person. Instead, the lead animator draws only as many keyframes as are

needed to suggest the action—perhaps one out of every few dozen frames of a finished
animation sequence. Other animators draw the in-between frames to complete the
sequence, a process known as tweening. At this stage, the animation is still just a series of
pencil drawings on paper. The drawings must be transferred to transparent cellulose
sheets, which is why this style of animation is also known as cel animation. Then comes
what animators call “ink and paint”: the faint pencil lines are traced over with black ink,
and the cel is colored. Then the sheets are placed in front of a separately painted
background and photographed.

As you might expect, tweening, inking, and painting are tedious, time-intensive jobs.
Beginning around 1990, computer imagery has been used to mimic the cel animation style
with far less manual labor.

How Digital Images Work

In a traditional animated film, each frame is a photograph of physical art, but computer
animation works with digital images—pictures defined by numerical data.

When you look at a video display such as a television, a smartphone screen, or a
digitally projected theater screen, the image that reaches your eyes is made up of dots of
varying colors, known as pixels. Figure 4-3 depicts a tree against a blue sky as a grid of
pixels. Each of the 100 pixels in this 10x10 grid is assigned a color, here specified by
name.

Sky Blue

leafy Green

A

Figure 4-3: A tree made of pixels

Although we can think of each pixel as a solid color, the underlying reality is a bit
different. For example, at home you might watch a movie on a common liquid crystal
display (LCD) television in which pixel colors are determined by electrically controlled
crystals. On the back of an LCD screen is a light source, either a fluorescent lamp or a
series of light-emitting diodes (LEDs). The light source itself is white. In front of the light
is a translucent panel with bars in the three primary colors—red, green, and blue—as
shown in Figure 4-4.

Red Green Blue

Figure 4-4: Three bars of pure primary colors create one LCD pixel.

A layer of liquid crystals lying between the light source and the color panel puts an
individually controlled crystal behind each of the translucent bars. You can think of these
crystals as electrically operated doors, and the degree to which each crystal door is open
determines how much light gets through. By varying the amount of red, green, or blue,
any one of millions of colors can be produced by each pixel. This is additive color mixing,
in which adding more color makes the result brighter. If we want a particular pixel to
come across as bright yellow, for example, we would set the levels of red and green high,
and the level of blue low. If we wanted a dark gray, we would set each of the color bars to
the same low intensity. All three colors at maximum intensity produce pure white. Later in
this chapter, we’ll see an example of subtractive color mixing, which is what you might
remember from art class, where adding more color makes the result darker.

How Colors Are Defined

The most common way to define a pixel’s color is with the RGB system, which uses three
numbers to represent the intensity of red, green, and blue in the pixel. The numbers
typically range from 0 to 255 to match the range of an eight-bit byte. This means that each
RGB pixel is specified by three bytes of data.

As far as software is concerned, a digital image such as that shown in Figure 4-3 is just
a list of bytes of color data, three bytes for each pixel. This block of bytes is known as the
image’s bitmap. The first three bytes in the bitmap are the red, green, and blue levels of
the pixel in the upper-left corner of the image, and so on. The width and height of an
image or bitmap in pixels is known as its resolution; for instance, Figure 4-3’s resolution
is 10x10. A bitmap called a display buffer stores the colors of each pixel of a digital
display like an LCD television; ultimately, computer graphics methods are about setting
the numbers in a display buffer.

The location of a particular pixel in a bitmap is specified by two coordinates, an x-
coordinate for horizontal position and a y-coordinate for vertical position. The (0,0)
coordinate, known as the origin, can be located in a corner or in the center; it varies
among different coordinate systems. When positioning pixels on a physical display, we
refer to coordinates as screen coordinates. Screen coordinate systems commonly set the
origin at the upper-left pixel, so a 1920x1080 screen would locate pixels as shown in

Figure 4-5. Here, the y-axis increases moving down the image, the x-axis increases
moving right across the image, and the center location is (960, 540).

x:0 y:0

\

__— x:9260 y: 540

G|

™\

x: 1212 y: 1079
Figure 4-5: Locating pixels on a 1920% 1080 screen

Coordinate systems are a ubiquitous part of computer graphics and, as you’ll see in this
chapter and the next, much of the work of producing graphics involves converting
coordinates from one system to another.

How Software Makes Cel Animations

Now that you understand what’s inside a digital image, you’re ready to see how software
can make digital images that look like traditional cels. The first step is getting the artist’s
work inside the computer.

Transforming Drawings into Models

Software-generated cel animation starts the same way as traditional animation: with an
artist sketching a character. Instead of drawing on paper, though, the artist draws with a
mouse or an electronic stylus and the drawings are recorded by software. In order to
ultimately produce a bitmapped image, we need a system that defines the artist’s strokes
numerically, producing a model of the drawing. Locations within a model are called local
coordinates. Figure 4-6 shows a drawing of a bug-man within a box that defines the local
coordinate space.

x0y o7

x: 1000 y: 1000

Figure 4-6: A bug-man drawing inside a box defining coordinate limits

Each line and curve in this model is defined in terms of these local coordinates.
Straight line segments, like the antennae and legs of our character, can be defined by the
coordinates of the points at either end of the line, as shown in Figure 4-7. Note that the
coordinates here have fractional parts to increase precision.

x: 450.46 y: 105.33

x: 455.77 y: 201.98
x: 486.07 y: 230.46

Figure 4-7: Defining straight line segments using the coordinates of the end points

For curves, control points are needed in addition to end points to define the direction
and amount of curvature. Imagine that the control point is attached to the curve so that
moving it controls the degree of curvature, as illustrated by the simple curves in Figure 4-
8. If you’ve ever worked with a vector graphics application, you’ve likely worked with
curves like this.

R

Figure 4-8: Curves defined by two end points and one control point

Simple curves can be represented by just two end points and one control point, but
longer, more complicated curves are made up of sequences of simple curves, as shown
with the bug-man’s shoe in Figure 4-9.

The lines and curves define just the outline of a character or other drawing; the colors
inside the outline are defined using a system such as RGB. The character model, then, is a
numerical representation of all the lines, curves, and color data.

Figure 4-9: A complicated curve made of simple curves

Automatic Tweening

Numerically defining drawings allows for automatic tweening. The animator draws one
frame of a character’s animation sequence, then creates succeeding keyframes by moving
the control points of the curves in the previous frames. The animation software can then
generate the other frames through interpolation. The concept is demonstrated in Figure 4-
10. Here, the coordinates of the middle point are calculated as the average of the
coordinates of the other points. The x-coordinate of the interpolated point, 20, is halfway
between 10 and 30; the y-coordinate, 120, is halfway between 100 and 140. In this
example, all the points lie on a line, but the interpolation path can be a curve as well.

Keyframe 1 Point {10,100)

Interpolated Point (20,120)

Keyframe 2 Point {30,140)
Figure 4-10: Computing a middle point between two keyframe points via interpolation

Figure 4-11 shows how interpolation creates new frames of animation. The leftmost
face is the original model; the second face shows some of the control points; and the third
has a wide mouth created by repositioning two of the control points downward. The
rightmost face was created through linear interpolation, placing each control point halfway
between the two keyframe positions. Animation software can create as many in-between
positions as necessary to fill the gap between keyframes.

oV oV o

Figure 4-11: From left: a model, the model with selected control points, the model with
two of the control points moved, and a tweened model created by interpolation between
the positions of the previous two models

Although basic interpolation tweening can be a huge time-saver, adjusting the positions
of lots of little points remains tedious. More advanced animation software can treat a
character drawing as a complete, interconnected body, in which rigid connections and
joints are specified. This means that an animator need only position the feet for each
keyframe to make our bug-man walk, and the software positions the rest of the legs
accordingly. The software might even handle real-world physics, so that a sequence of
images of our bug-man falling over a log could be animated entirely by the software.

Positioning and Scaling

Numerical modeling also allows the drawings to be placed anywhere in a frame at any
size. Changing the size of a model is called scaling, and is accomplished by multiplying or
dividing the coordinates for each of the points. Figure 4-12 shows the bug-man model of
Figure 4-6 scaled down to a quarter of its original area by dividing each of the coordinates
in half. One point on his antenna is highlighted to show the idea.

Placing a model in a particular location on the screen is called translation, and is
accomplished by increasing or decreasing coordinates by fixed amounts. In Figure 4-13,
the shrunken bug-man from Figure 4-12 is translated to the middle of the screen by adding
700 to each x-coordinate and 200 to each y-coordinate.

Original Model Scaled-Down Model

local 0,0 local 580,210

Llocal 0,0 local 290,105

local 500,500

Local 1000,1000

Figure 4-12: Scaling a model means multiplying or dividing each of the coordinates.

Screen 0,0 Local 0,0 Local 290,105
* Screen 700,200 Screen 990,305
|
i -~
' !
Local 500,500

Screen 1200,700 Screen 1919,1079

Figure 4-13: Translating a model means adding to or subtracting from coordinates.

“Ink and Paint” for Digital Images

Now that the points on the models are mapped to screen coordinates, it’s time to transform
each frame into a bitmap. This is the software version of cel animation’s “ink and paint.”
To keep things simple, let’s look at how just the right arm of our bug-man model would be
converted to a bitmap, or rasterized, when displayed over a solid white background.
Figure 4-14 shows the arm over a pixel grid, with circles marking the pixel centers.

With the model mathematically defined, the software can place the arm at any position
on the bitmap and then apply the indicated color—in this case, black—to the appropriate
pixels. Right away we see there’s a problem, though: the contours of the arm don’t match
the borders of pixels, so how do we determine which pixels to color? A simple rule is to
color pixels when their centers are covered. Figure 4-15 shows the result of pixel-center
coloring.

Figure 4-14: The right arm of the bug-man superimposed over a pixel grid

Figure 4-15: Coloring pixels solid black based on pixel centers

As you can see, though, this result is rather ugly. Because the pixels are square, this
coloring rule replaces the gracefully curving border of the model with a jagged edge,
which is why this problem is known as the jaggies. The general problem is that the model
is smooth and continuous, while the bitmap is made with square black-and-white pixels.
The bitmap is just an approximation of the model. The discrepancy between continuous
models and their bitmap approximations is known as aliasing, and is the source of many
visual anomalies in computer graphics.

To avoid the jaggies, we need to color pixels using an anti-aliasing technique. In our
example, instead of coloring the pixels black and white, we’ll use a range of grays to
produce a better approximation of the model. Each pixel will be colored based on how
much of it is covered by the arm.

In order to put this idea into action, instead of checking only the center of each pixel,
let’s test several points in each pixel to see how many of them lie within the model. In

Figure 4-16, 7 of the 10 testing points scattered around the pixel area are covered by the
shape, meaning this is 70 percent coverage.

The percentage of each pixel covered by the model determines the gray level. The
result for our bug-man’s arm is shown in Figure 4-17. Although this example might not
look like much, if you hold the page at arm’s length and squint, the edges should appear to
smoothly blend into the white background, producing the illusion of a graceful curve.

Figure 4-16: A close-up of one pixel at the end of the bug-man’s arm, with a scattering of
10 points to estimate the area covered by the model

Figure 4-17: Using grayscale to anti-alias, shown with and without the pixel grid.

Blending into Any Background

We need to generalize the technique just described in order for it to work with a
background other than solid white. Consider Figure 4-18. On the left is the bug-man
model, and in the middle is the background for the shot in which he’ll appear: a close-up
of a setting sun over a rocky terrain. On the right is the complete image with the model
superimposed over the background.

Model Background Model over Background

Figure 4-18: The bug-man model, a background, and the model superimposed over the
background

This book is printed in black and white, but in this image the sun would be shades of
reddish-orange and the ground would be shades of brown. As before, pixels along the
model’s edge will appear jagged unless we use an anti-aliasing technique. But using the
previous technique to color pixels in gray tones won’t help the black edge blend into a
background of red-orange and brown pixels.

A more general anti-aliasing technique calculates an alpha level for each pixel based
on the percentage of the pixel that’s covered by the model. You can think of an alpha level
as a measure of opacity. Like the color levels, an alpha level is typically defined in the
range of 0—255. In Figure 4-19, a black bar is superimposed over a tree at different alpha
levels. At an alpha level of 255, the bar is entirely opaque, while at 25 the bar is barely
visible. An alpha level of 0 would make the bar completely invisible.

The alpha levels of all the pixels in a bitmap are collectively referred to as its alpha
channel. The process of making an alpha channel for a model is similar to how we anti-
aliased the black arm against the white background, only rather than assigning a shade of
gray based on the pixel’s coverage percentage, we assign an alpha value for the pixel
instead. Each model is thus conceptually transformed into both a bitmap, showing the
color of each pixel covered by the model, and an alpha channel, showing the opacity of
each pixel. Figure 4-20 shows the color bitmap (here, just black pixels) and the alpha
channel of the bug-man arm separately.

i

[N %

25 £ 12y 200 255
Figure 4-19: A tree covered by five black bars of varying alpha level
Model Color Bitmap Alpha Channel

Figure 4-20: The arm of the bug-man model with its corresponding color bitmap and

alpha channel

Now the model can be applied to any background. The final color of each pixel is a
blend of the color in the background and the model’s color bitmap, with the alpha level
determining how much of each color goes into the mix. In the bug-man scene of Figure 4-
18, if a black bug-man pixel with 30 percent alpha were placed on top of a red-orange
sunset background pixel, the result would be a darker red-orange, as shown in Figure 4-21.
The resulting amount of each color component lies somewhere between the two mixed
colors, but because the black pixel is only 30 percent alpha, the red-orange background
color dominates. For pixels completely covered by the model, the alpha level is 100
percent and the color in the final image is the same as in the model’s color bitmap. In this
way, a bitmap with an alpha channel can be smoothly blended into any background.

R G B
Black, 30% Alpha @ ® ®
Red-Orange, Opaque ——g@— —@ B
Result @ @ &

Figure 4-21: The red, green, and blue components of three colors: the black of the model,
the red-orange of the background pixel, and the result of mixing these two colors if the
black has 30% alpha

From Cel Animation Software to Rendered 2D Graphics

These techniques are now the default way to produce cel-style animation, and software is
as common a tool for animation studios as brushes and paper were in earlier generations.
While some animation studios use programs they developed themselves, most direct-to-
video or television animation and some feature films are made with off-the-shelf software.
One such program, Toon Boom, has been used for television shows such as The Simpsons
and Phineas and Ferb, while the artists at Studio Ghibli use a program called Toonz to
animate such movies as Spirited Away.

The usefulness of these techniques is not limited to filmmaking, though. More
generally, the software techniques used to mimic traditional cel-style animation are called
two-dimensional graphics, or 2D graphics, because the control points for models are
located with two coordinates, x and y. The general task of transforming models into final
images is called rendering, and the software that performs the task is the renderer.
Rendered 2D graphics are used throughout computing. Many video games, such as Angry
Birds, use the cel-animation look. These rendering techniques are also used to display
fonts and icons in applications such as browsers and word processors.

Although rendered 2D graphics are ubiquitous in computing and can make great cel-
style animations, creating the mind-blowing visuals of films like Avatar requires
extending these ideas to three dimensions.

Software for 3D CGI

Breathtaking CGI in films like Avatar use 3D graphics. The “3D” here doesn’t refer to
simulated depth perception, like in a 3D movie, but rather to the three coordinates of each
control point in the animation models: x- and y-coordinates for horizontal and vertical
positioning and a z-coordinate to indicate depth. Figure 4-22 shows a three-dimensional
model of a box with a highlighted point defined by x-, y-, and z-coordinates.

+Y

+Z

............

+X

: 100
\::D

-y z: =100

Figure 4-22: A box in three-dimensional space

As with 2D graphics, 3D graphics are all about rendering models into bitmaps. The
rendering methods that produce the most realistic results require the most processing time.
Movie CGI is impressive largely because the renderer can process each frame for a very
long time, resulting in the high-quality result that I’ll call movie-quality rendering. We’ll
discuss the keys to movie-quality rendering in this chapter. Then, in Chapter 5, we’ll talk
about graphics for video games, and see how many of the techniques shown here have to
be modified, faked, or scrapped altogether when images must be produced in real time in
response to user interaction.

How 3D Scenes Are Described

3D models are built out of lines and curves just like 2D models, but these lines and curves
stretch across three dimensions instead of two. The box in Figure 4-22 is a very simple
model defined by eight points; the models used in movie CGI tend to be complex, defined
by hundreds, thousands, or even tens of thousands of points. As with 2D rendering,
models in 3D rendering are defined by local coordinates. The points at the corners of the
box in Figure 4-22, for example, are defined relative to the local origin at the bottom of
the box.

While 2D rendering can directly map from local coordinates to screen coordinates, 3D
models are first placed into scenes in a virtual world that has its own coordinate space
called world coordinates. Designing a 3D scene is the CGI equivalent of building a movie
set. We can place as many models as we want in the virtual world, of any size and at any
location, and the renderer can figure out the world coordinates for all the locations on the
models.

Introducing another coordinate system might seem like an unnecessary complication,
but world coordinates actually make 3D graphics much easier in the long run. For
example, an artist can model a dining room chair independently of the other models for
the scene in which it will be used. Then the artist can copy the single chair model to make
as many seats as needed for the dining room scene. Also, a scene, like a movie set, isn’t
built to produce a single image but to create a space that will be shown in many images
from many different angles, as we’ll see in the next section.

The Virtual Camera

With the scenery in place, a viewpoint is needed. On a movie set, a cinematographer
determines what image is captured by placing the camera and choosing a lens. For CGI,
the viewpoint determines how the three-dimensional scene is transformed into a two-
dimensional rendered image.

Transformation from three dimensions to two is known as projection. To better
understand projection, consider Figure 4-23, in which an imaginary pyramid originates
from the eye of a viewer looking at a table. A translucent grid lies in the pyramid between
the viewer and the scene. Looking through the grid, the viewer can map each visible
location on the three-dimensional table to a particular square on the two-dimensional grid.
That’s projection, but instead of a grid of squares, it’s a grid of pixels in a bitmap.

Figure 4-23: Projecting a three-dimensional scene onto a flat display is like viewing a
real-world scene through a translucent grid.

Direct Lighting

There are many different methods of projection, but projection methods in movie-quality
rendering are part of the larger issue of lighting. Although we don’t often realize it, our
perception of an object’s color is determined not only by the object itself but also by the
lighting under which we view the object. Knowing this, filmmakers carefully light their
scenes for dramatic effect, but the problem of lighting in CGI is more fundamental.

Without an accurate model of scene lighting, the resulting images won’t look realistic at
all.

To understand why this is true, let’s take a simple scene of a yellow metal table in a
green room, as shown in Figure 4-24.

... Green Walls
.+ and Floor

Viewpoint

Yellow Table

Figure 4-24: A 3D scene

From this viewpoint, some of the pixels will be “table” pixels and the others will be
“wall” or “floor” pixels. A simple renderer might color every table pixel the same shade of
yellow, while coloring all the other pixels an identical green. But because this coloring
ignores the effect of lighting, the resulting image would be flat and unrealistic. (The
blocks of solid color would make the image resemble an animation cel—an interesting
effect, but not realistic.) A movie-quality renderer needs a lighting model so that the colors
in our scenes are influenced by virtual light sources.

The essential real-world lighting effects modeled by CGI renderers include distance,
diffuse reflection, and specular reflection.

The Distance Effect

To understand the distance effect, imagine a lamp emitting pure white light hanging
directly over the middle of the table, as in Figure 4-25.

The closer this light is to the table, the brighter the table appears. In the physical world,
this effect is caused by the beam of light widening as it gets farther from its source. The
more narrowly focused a light source is, the less the light diminishes with distance—
which explains why the highly focused light of a laser hardly diminishes at all.

Figure 4-25: The closer a light is to a surface, the brighter the surface appears.

Renderers can model the distance effect realistically, but they also allow unrealistic
distance effects in order to create a particular look or mood. For example, in a scene where
a character carries a torch through a cave, a lighting designer will decide whether the
torchlight extends a long way or barely penetrates the gloom.

All of the lighting effects we’ll discuss allow these kinds of adjustments. Although it
may seem strange to intentionally create unrealistic light when the whole point of the
lighting model is to make a realistic scene, there’s a subtle but important distinction
between reality and viewers’ expectations of reality. Using light in unrealistic ways is an
old cinematic trick. For example, when a character in a darkened bedroom turns on a
lamp, a stage light in the ceiling of the set also turns on, so that the entire scene is softly
lit. Without the extra, unrealistic light, the scene won’t look right—it will appear too dark.
In the same way, CGI lighting models allow their controls to be tweaked to produce
results that are a little wrong, but feel right.

The Diffuse Reflection Effect

Light that strikes a surface head-on appears brighter than light that strikes a surface at a
sharp angle. In Figure 4-26, the center of the table seems brighter, or yellower, than the
corners.

Figure 4-26: Diffuse lighting depends on the angle at which light strikes a surface.

This is due in part to the distance effect—the center is closer to the lamp than the
corners—but is mostly due to the diffuse reflection effect, a change in brightness caused
by variation in the light’s angle of incidence. In Figure 4-27, the solid lines show the
incident light rays, while the dashed lines are reflections. As you can see, the light strikes
point B at a much larger angle than at point A, and therefore point B appears brighter than
point A. But note that the viewing angle, or angle of reflectance, makes no difference in
the diffuse reflection effect. Therefore, point A will look the same to both viewers, and so
will point B.

Angles of Incidence

Figure 4-27: Diffuse lighting varies based on the angle at which the light strikes the
surface, but is the same for all viewpoints.

The Specular Reflection Effect

Because the metal tabletop is highly reflective, it partially acts as a mirror. As with any

mirror, what you see in it depends on what lies on the opposite angle to your point of view.
Figure 4-28 shows a shiny spot on the table where the hanging light is at the opposite
angle from our viewpoint, approximately midway between the center of the table and the
closest edge. Because this spot is a mirror-like reflection of the white light bulb, the spot
will be white.

Figure 4-28: Specular lighting depends on both the angle at which the light strikes the
surface and the view angle.

These shiny spots are known as specular reflections, and appear where the light’s angle
of incidence matches the angle of reflectance. Figure 4-29 shows the location of specular
reflections for two different viewpoints; notice that each ray rebounds at the same angle
that it struck the table. Both viewers see a shiny spot on the table, but they see the spot in
different places.

In the real world, some materials reflect differently than others. A shiny material like
plastic has a high level of specular reflection, while a dull material like cotton cloth has
more diffuse reflection. CGI lighting models allow artists to set different reflection
properties for each surface on a model to match the appearance of real-world materials.

Figure 4-29: The specular light on the table appears in different places for different
viewpoints.

Global Illumination

So far we’ve been discussing direct lighting, the result of light flowing directly from a
source to a surface. In reality, the color of every object in the physical world is influenced
by the color of every other object nearby. A light-brown sofa in a room with white walls
looks very different than it does in a room with blue walls, because the sofa gains a subtle
tint from the reflected light of the walls. This is indirect lighting, and for a computer-
generated image to look realistic, it must account for this effect. A lighting model that
accounts for all of the light in the scene, both direct and indirect, is known as a global
illumination model.

An example of indirect lighting is shown in Figure 4-30. Let’s assume the light bulb
emits pure white light. The beam first hits a wall that is painted cyan (a light blue). The
light reflecting from the wall is likewise cyan, and when the reflected cyan light strikes the
yellow rug, the resulting reflected light is green. The bouncing colors therefore result in a
subtle greenish tint in the yellow rug. This sequence of color changes is caused by
subtractive color, where mixing colors results in a darker shade, the way a color inkjet
makes different shades by mixing cyan, yellow, and magenta ink. Subtractive color is the
opposite of the additive RGB system we discussed early in the chapter, in which mixing
results in a brighter color.

Pure White Spotlight @ \

t-

@ Cyan Wall

Yellow Rug/] .. \

Figure 4-30: Light bouncing off multiple surfaces influences apparent color.

How Light Is Traced

A global illumination model seems to require following the paths of light beams as they
bounce around the scene. A naive renderer, then, would use three-dimensional coordinate
math to trace the path of every beam of light from each light source as it bounces from
surface to surface. This would waste a lot effort, though, because it would deduce the
color of every surface in the scene—including surfaces the viewer can’t actually see
because they lie outside of the viewpoint’s field of view, are obscured by other objects, or
are facing away from the viewpoint.

Why Light Is Traced Backward

Renderers avoid this inefficiency by tracing beams backward from the viewpoint into the
scene, a technique known as ray tracing. In ray tracing, an imaginary line is traced from
the viewpoint through the center of each square in a pixel grid, as shown in Figure 4-31.
The geometry of each model in the scene is compared with the imaginary line to see if the
two intersect. The closest point of intersection to the viewpoint indicates the visible
surface that will color the pixel. Note that this method of projection closely follows the
explanation of Figure 4-23.

Next, more lines are traced outward from this known visible point. The goal is to
discover which lines end at light sources, either directly or after bouncing off other
objects. As shown in Figure 4-31, specular reflections trace only the rebound at the same
angle of each impact, but diffuse reflections trace a number of lines in random directions.
As the diffuse beams strike other objects, they will spawn more diffuse reflections, which
means the number of paths to trace keeps multiplying the more the process continues.
Renderers apply a cut-off to limit the number of bounces for each beam.

Specu[ur

.-‘#-

Diffuse
e Ay
EERE

. 2T Tl

Figure 4-31: Tracing a beam of light from a viewpoint, through the center of the shaded
pixel, until it reaches a model in the scene. To determine specular lighting, the tracing
rebounds at the same angle as impact; for diffuse lighting, it rebounds at several random
angles.

How Ray Tracing Models Real-World Effects

Although ray tracing is a lot of work for even a network of computers, the method can
accurately model many real-world visual effects.

One such effect is translucency. Although a bitmap can be made translucent by
assigning low alpha values to pixels, that’s not the whole story for transparent materials
like glass. A glass tumbler, for example, doesn’t merely allow light to pass through it, but
also distorts whatever is behind it, as shown in Figure 4-32.

e e
"'h-._____________..-"'

e e

Figure 4-32: The distortion of curved glass

A ray tracing renderer can refract light beams according to the laws of optics as they
pass through translucent materials. This will not only allow the renderer to model glass in
CGI, but will also help to reproduce the distorting effects of transparent materials and
liquids like water.

Ray tracing can also be extended to simulate camera lenses. Normally, all objects in a
computer-generated image are perfectly in focus. In images shot by a movie camera,
though, only objects at a certain distance from the camera are in focus, leaving other
objects less focused the farther they are from that distance. While one might consider

having everything in focus an advantage of computer-generated imagery, skilled
cinematographers use selective focus to help tell their stories. In Figure 4-33, Jimmy
Stewart and Grace Kelly are in focus in the foreground, while the apartments in the
background are blurry; the viewer’s attention is drawn to the actors, but the distant, open
background is a subtle reminder of how visible the apartments in this courtyard are from
each other—an important detail in the film. Because movie viewers have grown
accustomed to receiving depth information about scenes through the use of focus,
computer-generated images and movies often must simulate the use of photography lenses
to match viewer expectations.

't T e

Figure 4-33: Focus depth in Rear Window (Paramount Pictures/Patron Inc., 1954)

Shadows are another key component of a realistic computer-generated image. Ray
tracing produces shadows naturally, as shown in Figure 4-34. Because no beam of light
can reach the shadowed area, no beam traced back from the viewpoint can reach the light,
so the area will remain dark.

Figure 4-34: Tracing beams of light renders shadows naturally.

Ray tracing can also model highly reflective surfaces simply by setting a very high
specular reflection property on the material. For example, when you’re standing inside a
well-lit room when it’s dark outside, the room in which you stand is clearly reflected in the
window.

So although ray tracing is computationally intense, adding these real-world effects
doesn’t add much extra work, and the effects add greatly to the realism of the final image.
In the next chapter, you’ll see the tricks video games use to render reflective surfaces and

shadowing in real time, when ray tracing isn’t an option. Some effects, like glass
distortion, are usually not even attempted in real-time rendering; there’s simply not
enough time.

Full-Scene Anti-Aliasing

While the images rendered by ray tracing can be stunning, they can suffer from the same
aliasing problems we saw with 2D graphics. Whenever one object is in front of another,
each projected light beam will either hit the foreground object or miss and hit what lies
behind the object. Figure 4-35 shows a chair on a rug as seen from a particular viewpoint.
Beams traced from this viewpoint near the edge of the chair seat hit either the chair or the
rug, which assigns the associated pixel the color of one surface or the other. This causes a
jagged edge like those we saw for 2D images.

The renderer can avoid the jaggies by applying anti-aliasing to the whole image. There
are many methods for full-screen anti-aliasing, but with ray tracing, a direct way to anti-
alias the entire scene is to project more beams from the viewpoint than necessary. For
example, rather than just sending out a beam at the center of every pixel, the renderer
might also send out beams into the spaces between the pixel centers. After the color for
every beam is determined, the final color of each pixel is blended from the colors of the
center beam and the beams at the neighboring corners. Pixels that lie along an edge in the
image are thereby assigned intermediate colors, avoiding the jagged “staircase” effect.

Figure 4-35: In the highlighted area, each light beam trace ends on the chair or the rug,
resulting in jaggies.

Figure 4-36 demonstrates this idea. Each circle represents a beam projected into a
scene. The pixels are colored based on the average of colors in the center and corners of
each pixel, which results in the anti-aliased edge shown on the right. More beams can be
traced for even better results, at the expense of more processing time.

- - - - - -

Figure 4-36: Each pixel’s final color is a blend of five beams traced into the scene, one at
the center of the pixel, and four at the corners.

Combining the Real and the Fake

In a completely computer-animated film, rendering is the final step in producing each
frame, but when CGI is integrated into live-action films, there’s more work to be done.
Imagine, for example, a scene in which a computer-generated Tyrannosaurus rex stalks
through a real field of grass.

To make this happen, we first need two sequences of digital images. One sequence
shows the grass field, and has either been shot on a digital camera or on a traditional film
camera and then subsequently scanned. Either way, the movements of the camera are
computer controlled, which allows the camera movement to match up precisely with the
movement of the virtual camera in the other sequence, the computer-generated animation
of the dinosaur.

Next, the two sequences are combined, frame-by-frame, in a process called digital
composition. Although the dinosaur sequence was produced from 3D models, at this point
both sequences are simply two-dimensional bitmaps and are combined using the same
method used to place our bugman on top of the sunset back in Figure 4-18. Through the
use of alpha blending, the edges of the dinosaur in each frame are smoothly blended with
the field-of-grass background. Without this blending, the dinosaur will have a shimmering
edge like that of a weatherman standing in front of the five-day forecast.

Digital composition is used throughout modern moviemaking, even when no computer-
generated imagery is involved, such as for dissolves (a transition where one scene
smoothly fades into the next). Formerly, dissolves were produced by a device known as an
optical printer, which pointed a camera at a screen onto which several projectors were
aimed. The camera would make a new film that combined the images of the projected
films. A dissolve was accomplished by turning down the light in one projector while
turning up the light on another. The results were acceptable, but you could always spot an
optical printer sequence in a movie because the second-generation images would be blurry
compared to the rest of the film. Now, dissolves, superimposed titles, and all sorts of other
movie effects that you might not really think of as “effects” are performed with digital
composition.

The Ideal of Movie-Quality Rendering

When all the advanced rendering techniques described in this chapter come together, the
results can be stunningly realistic, highly stylized, or anything in between. The only real
limitation on CGI is time, but that’s a big limitation. The truth is, what I’ve been calling
movie-quality rendering can be an unattainable ideal even for Hollywood. Although films
can be in production for several years, there’s only so much time that can be allotted for
each frame. Consider the computer-animated Pixar film WALL-E. With a running time of
98 minutes, the film required the rendering of over 140,000 high-resolution computer
images. If Pixar wanted to produce all of the images for WALL-E in two years, it would
have to render images, on average, every eight minutes.

Even on a networked “render farm,” eight minutes is not sufficient to use ray tracing,
global illumination, glass refraction, and all the other high-end techniques for every single
image. Faced with these practical constraints, filmmakers pick and choose which
techniques to use on each sequence to maximize visual impact. When ideal rendering is
required, the time is spent, but when the best effects won’t be missed or the budget won’t
allow it, they aren’t used. The renderer used at Pixar—a program called RenderMan that
was originally developed at Lucasfilm—can forgo ray tracing and its massive associated
computational effort, but that means many of the realism-enhancing effects have to be
produced some other way.

But how is that done? What kinds of tricks are needed to render images without ray
tracing—images that may not be perfectly realistic but are still amazing? To answer this
question, we’ll turn from Hollywood to the world of video games, where rendering is
under an extreme time limitation. How extreme? If eight minutes isn’t enough time to
produce an ideal render, imagine trying to render an image in under 20 milliseconds. In the
next chapter, we’ll see how video games produce great graphics in a hurry.

5

Game Graphics

A modern video game is like a modern movie—a big production that requires expertise in
many different technical areas. Teams of programmers develop code for audio, artificial
intelligence, network connectivity, and so on. Still, the first thing you notice about a video
game is the graphics.

Early video game systems like the Atari 2600 and Sega Genesis relied on premade
bitmap graphics; that is, there was no rendering, not even the 2D rendering described in
the previous chapter. Instead, if a video game needed to show the game’s hero walking, an
artist would draw several bitmaps to be shown in a repeating sequence. Backgrounds, too,
were hand-drawn. Displays were low resolution and offered only a few choices for pixel
colors.

As the quality of displays improved, game developers turned to other techniques to
produce their bitmaps. Fighting games like Mortal Kombat would scan photographs of
stunt actors in costume or at least use them for reference. Some games in this era would
actually use rendered graphics, but not real-time rendering; instead they would prerender
the bitmaps on more powerful systems over a longer period of time. The 3D game as we
know it today was unknown outside of a few early experiments.

That started to change in the mid-1990s. Game consoles like the Sony PlayStation were
built around 3D graphics capabilities instead of bitmaps. PC gamers began to purchase
what were then called graphics accelerators— plug-in hardware to assist in the creation of
3D graphics. Those early 3D games were crude, both graphically and otherwise, compared
to games today. Also, few 3D games were made for the PC because Microsoft had yet to
build DirectX, a standardized interface between game software and graphics hardware,
which meant that games had to include different code to match each manufacturer’s
graphics accelerator.

Even so, gamers were hooked on the new 3D gaming, and each succeeding generation
of graphics hardware blew away the capabilities of the previous one. Nowhere was this
generational leap more apparent than in cut scenes—short, prerendered videos shown at
the beginning of the game to set the scene, or at critical points during the game to advance
the plot. Because these videos were prerendered on expensive hardware, just like the
movie CGI we discussed in Chapter 4, early cut scenes were much more impressive than
the graphics during actual gameplay. As the hardware advanced, though, gameplay visuals

began to match or even exceed the cut scenes of earlier games.

These days, few games use prerendered cut scenes. Although the game may still
include noninteractive “movie” sequences to set up or advance the plot, they’re much
more likely to be rendered in real time, just like the rest of the game. That’s because the
real-time rendering looks so good, it’s not worth it for game developers to do anything
else.

And that, I think, is why I find video game graphics so amazing. They look as good as
or better than the prerendered graphics I saw in earlier video games, or even in early CGI
movies, and they’re being produced in real time. Those two words—real time—Ilook
innocent enough, but they encapsulate an enormous challenge for a game renderer. To put
it into numbers: if your typical gamer wants a refresh rate of 60 frames per second, each

image must be rendered in a mere /¢, of a second.

Hardware for Real-Time Graphics

The increasing quality of real-time graphics is tied to advancements in graphics hardware.
Today’s graphics hardware is powerful and optimized for the tasks involved in 3D
graphical rendering. Although this book is about software, a brief discussion of hardware
is necessary to understand why game graphics work the way they do.

The main processor inside a computer or video game console is the central processing
unit (CPU). These processors might have multiple cores, or independent processing
subunits. Think of a core as an office worker. The cores inside a CPU are like fast, widely
trained workers. They are good at doing just about any task, and doing it very quickly.
However, they are so expensive that you can afford to have only a few of them, usually
eight or fewer in a typical desktop processor, although this number will continue to rise.

By contrast, a graphics processing unit (GPU) will have hundreds or even thousands of
cores. These cores are much simpler, and individually slower, than the cores in a CPU.
Think of them as workers who can do only a few tasks well, and don’t do those tasks
especially fast, but they are so affordable that you can have an army of them. This
hardware approach for GPUs was adopted because there’s only so much improvement that
can be made to the speed of individual cores. Even though the raw speed of cores
increased with each generation, that wasn’t nearly enough to close the performance gap to
allow high-quality real-time rendering; the only solution was more cores.

CPUs, then, are great at tasks with steps that have to be completed in a specified order,
like filling in a tax form. GPUs, though, are better at tasks that can be easily divided
among many workers, like painting the outside of a house. Game renderers are designed to
keep all of the GPU cores as busy as possible.

Why Games Don’t Ray Trace

We saw in the preceding chapter how ray tracing can produce amazing graphics. But
games don’t ray trace, because it’s too slow for real-time rendering. There are several
reasons for this.

One reason is that ray tracing doesn’t match up well with the “army of workers” GPU
design. For example, ray tracing sends out a beam of light for each pixel, determines
where that beam strikes, and from that point of impact, sends out a bunch more light
beams, determines where they strike, and so on. This job is better suited for a CPU,
because the renderer must determine each point of impact before it knows what beams to
check next.

More broadly, realtime renders should expend computational effort where the result
makes a difference to the viewer. Consider a computer-generated scene in which you face
a chair in the middle of a polished wooden floor. A ray tracer, pinballing light around the
room, would still indirectly determine the color of every point on the back of the chair,
because that data is necessary for proper global illumination of the floor. A game renderer,
though, could never afford the luxury of coloring a surface that won’t be directly seen.

All Lines and No Curves

To understand how a video game renders without ray tracing, we start with the basic
building block of game graphics: the triangle. In the previous chapter we learned how CGI
models in movies are made of lines and curves. In game rendering, models are normally
made exclusively of lines. If you remember graphing parabolas in high school algebra,
you’ll recall that the math for describing curves is a lot more complicated than the math
for describing lines, and there’s just not enough time to deal with curves in a game. That’s
why game renderers use lines, and this means that the surfaces defined by the control
points are flat. The simplest flat surface is a triangle, defined by three points in space.

Triangles are ubiquitous in games. In a game, whatever you think you’re looking at,
you’re actually looking at millions of triangles, joined at angles to create surfaces and
shapes. Triangles used in rendering are often generically called polygons, even though
almost all the polygons are simple triangles.

Games simulate curved surfaces by using lots and lots of triangles. A round tumbler,
for example, can be approximated as a ring of interlocking triangles, as shown in Figure 5-
1. On the right, the outlines of each triangle are shown for clarity.

<

N

Figure 5-1: A curved tumbler approximated with triangles

Projection Without Ray Tracing

To render the triangles in the scene models, the renderer must project the control points
that define the triangle to locate these points on the screen. Ray tracing projects by
following an imaginary beam of light through the center of each pixel, but in this case we
have to do something different.

The good news is that a direct mathematical relationship exists between world
coordinates and screen coordinates, and this makes mapping the points fairly
straightforward. We know the location—the X, y, and z world coordinates—of the
viewpoint and of the point on the model we want to project. We also know the location of
the virtual projection screen. Figure 5-2 shows how we use these locations to determine
the exact y-coordinate where the line aimed at the model point crosses the projection
screen. In this example, the depth (the distance from the viewpoint along the z-coordinate)
of the projection screen is four-tenths of the depth from the viewpoint to the point on the
model, as shown by the large blocks along the bottom. Knowing this proportion, we can
calculate the x- and y-coordinates of the projected point. The y-coordinate of the projected
point is four-tenths of the distance between the y-coordinate of the viewpoint and the y-
coordinate of the point on the model, as shown by the shaded boxes on the projection
screen. Also, though we can’t see this from the perspective of Figure 5-2, the x-coordinate
of the projected point will be four-tenths of the distance between the x-coordinates of the
viewpoint and model point.

Projection Screen

(Seen from Side)

i
|
Viewpoint

Figure 5-2: Projecting a point in the virtual world to the screen

Note that the position of the imaginary projection screen in the virtual world affects the
resulting projection. To see this effect, make a rectangle using the forefinger and thumb of
both hands and look through it while moving your hands close and then farther away. The
farther away your hands are from your eyes, the narrower your field of view. In the same
way, games can adjust field of view by altering the distance between the viewpoint and the
projection screen in the virtual world. For example, games that let you look through
binoculars or a gun scope accomplish the zoom effect by moving the projection screen
deeper into the scene.

Rendering Triangles

With all three points of a triangle located in screen space, rendering a triangle follows the
same rasterization process we saw in Chapter 4 to make a bitmap out of a 2D model. In

Figure 5-3, the pixel centers inside the triangle boundaries are colored gray.

From reading the previous chapter, you probably have some objections to this simple
method of triangle rendering. First, how can we just color every pixel the same—what
about all those lighting effects? And second, look at those jaggies— how do we get rid of
them?

Figure 5-3: With the vertices of a triangle located on the screen, the triangle can be
rendered.

These questions will be answered, but first we have to deal with a more fundamental
problem. Simply determining where every triangle is located on the screen and coloring its
pixels doesn’t work because every pixel on the screen will probably be inside more than
one triangle. Consider the image shown in Figure 5-4. The flowerpot is behind a cube,
which is behind a tall cup. Pixel A lies within four different triangles: one on the front of
the cup, one on the back of the cup, one on the front of the cube, and one on the side of the
cube. Likewise, four triangles enclose pixel B. In each case, only one triangle should
actually determine the color of the pixel. In order to render the image correctly, the
renderer must always map each pixel to the model surface in the scene that is closest to the
viewpoint. Ray tracing already finds the closest intersection point between the light beam
and a model in the scene, so this problem is handled without any additional effort. Without
ray tracing, though, what should the renderer do?

] .

=

As

L

Figure 5-4: Three overlapping models in a scene

The Painter’s Algorithm

A simple solution is known as the painter’s algorithm. First, all of the triangles in the
scene are ordered according to their distance from the viewpoint. Then the models are
“painted” back to front, the way Bob Ross would paint a landscape on The Joy of
Painting. This algorithm is easy for the programmer to implement, but it has several
problems.

First, it’s highly inefficient: the renderer will wind up coloring the same pixel over and
over again as foreground models are rendered over previous background models, which is
a huge waste of effort.

Second, it doesn’t allow for easy subdivision to keep the army of workers busy on the
GPU. The painter’s algorithm requires the models to be drawn in a certain order, so it’s
difficult to effectively divide the work among separate processing units.

Third, there’s not always an easy way to determine which of two triangles is farther
way from the viewpoint. Figure 5-5 shows a perspective view of two triangles, with
numbers indicating the depth of each vertex. The top view makes it clear which triangle is
in front, but because the depths of one triangle’s vertices are between those of the other
triangle, there’s no easy way to figure out which triangle is closer by direct comparison of
the vertex depths.

Perspective View Top View

e

& 4

Viewpoint

Figure 5-5: Perspective and top views of two triangles

Depth Buffering

Because of all the deficiencies of the painter’s algorithm, the most common solution to
projection in games is a method known as depth buffering. As introduced in the previous
chapter, computer graphics require a bitmap called a display buffer to store the color of
each pixel in a display. This technique also uses a corresponding depth buffer to track the
depth of each pixel—how far away it is from the viewpoint. Of course, a screen is flat, so
pixels don’t really have depth. What the depth buffer actually stores is the depth of the
point in the scene that was used to determine the color of that pixel. This allows the
renderer to process the objects in the scene in any order.

Here’s how depth buffering would work with the example scene from Figure 5-4.
Initially, the depth of each pixel would be set to some maximal value that’s greater than
the depth of any actual object in the scene—Ilet’s say 100,000 virtual feet. If the cup is
drawn first, the depth of those pixels in the depth buffer is set to the corresponding
distances from the viewpoint. Suppose the flowerpot is drawn next; the renderer then sets
the depth of its pixels. We can picture the depth buffer as a grayscale image, where pixels
are darker the closer they are to the viewpoint. The depth buffer at this stage is shown in
Figure 5-6.

The depth buffer solves the problem of projecting the right point onto the pixel. Before
rendering a pixel, the renderer checks the depth buffer value for that pixel’s location to see
if the new pixel would be in front of or behind the pixel that’s already in the display
buffer. When a new pixel appears behind the pixel in that location in the display buffer, the
renderer skips it and moves on. Continuing with our example, when the cube is drawn, the
pixels on the left side of the cube that overlap with the cup are not drawn, because the
values in the depth buffer show that the cup’s pixels are in front of the cube. The cube
would overwrite the pixels of the flowerpot, because the depth of the flowerpot pixels is
greater than those of the cube.

Figure 5-6: A depth buffer with two objects drawn. Darker colors are closer to the
viewpoint.

Depth buffering is an efficient solution to projection because less work is thrown away.
Models can be roughly preordered so that they are painted approximately front to back, to
minimize overwritten pixels. Also, because depth buffers allow for rendering models in
any order, work can more easily be divided among the cores of the graphics processor. In
our example, different cores can be working on the cup, cube, and flowerpot at the same
time, and the right model will be projected to each pixel in the final rendered image.

Real-Time Lighting

Now that the renderer knows which triangle each pixel belongs to, the pixel must be
colored. In real-time rendering this is known as pixel shading. Once a particular pixel has
passed the depth buffer test, all the data needed to color the pixel is processed by an
algorithm called a pixel shader. Because each pixel can be independently colored, pixel
shading is a great way to keep the army of workers busy inside the GPU.

The data needed by the shader will vary based on the complexity of the lighting model,
including the location, direction, and color of the lights in the scene. Without a method
like ray tracing, a full global illumination model, in which reflections from near surfaces
color each other, isn’t possible. However, shaders can include the basic effects of distance,
diffuse reflections, and specular reflections.

In Figure 5-7, a beam of light represented by the solid arrow reflects from a triangle.
The dashed arrow represents the normal (or surface normal) of the triangle in that
location; a normal is simply a perpendicular line pointing away from the surface. In
Chapter 4 we learned how the angles between light beams, surfaces, and viewpoints affect
diffuse and specular reflections. The normal is used by the pixel shader for these
calculations; so, for example, in Figure 5-7, if the dark arrow represents a light beam, this
would have high diffuse reflection because the angle between the light and the normal is
small.

Figure 5-7: A triangle with a surface normal (dashed arrow) perpendicular to the triangle
surface, and a light beam (dark arrow) striking the surface.

In Figure 5-7, the normal points straight up, meaning it is perpendicular to the plane of
the triangle. Triangles with straight-up normals for every point on the surface are
completely flat, which makes the individual triangles clearly visible in the rendering. For
example, with straight-up normals, the tumbler in Figure 5-8 appears faceted like a
gemstone.

For a more rounded appearance, the normals are bent as shown in Figure 5-9. Here, the
normals at the corners are bent outward, and the normal at any location inside the triangle
is a weighted average of the normals at the corner. Because the normal at the point of
impact for the light beam no longer points straight up, the light beam reflects more
sharply. If this were part of a diffuse lighting calculation, the resulting color would be
brighter.

~

Figure 5-8: If the normals for each location on a triangle point the same way, this model
will be rendered as a series of flat triangles.

A

A

Figure 5-9: The normal at the point of light impact is affected by the bent corner normals,
which changes the angle of reflection.

Bending normals allows the flat triangle to reflect light as though it were the bent
triangle shown in Figure 5-10.

Figure 5-10: Bending the normals gives the triangle a bent shape so far as the lighting
calculations are concerned.

This goes only so far in fixing the problem, though, because the underlying shape is
unchanged. Bending normals doesn’t affect which pixels are matched to which triangle; it
affects only the lighting calculations in the pixel shader. Therefore, the illusion breaks
down along the edges of a model. With our tumbler, bending normals helps the sides of
the tumbler to appear smooth, but it doesn’t affect the tumbler’s silhouette, and the rim is
still a series of straight lines. Smoother model renderings require additional techniques
that we’ll see later in this chapter.

Shadows

Shadowing plays an important part in convincing the viewer to accept the reality of an
image by giving models weight and realism. Producing shadows requires tracing beams of
light; a shadow is, after all, the outline of an object between a light source and a surface.
Game renderers don’t have time for full ray tracing, so they use clever shortcuts to
produce convincing shadow effects.

Consider the scene outline shown in Figure 5-11. This scene will be rendered in a
nighttime environment, so the lamppost on the left will cast strong shadows. To render the
shadows properly, the renderer must determine which pixels visible from this viewpoint
would be illuminated by the lamppost and which will be lit only by other light sources. In
this example, the renderer must determine that the point labeled Scene-A is not visible

from the lamppost, but Scene-B is.

/\ ® Scene-A

q | l o Scene-B
L

Figure 5-11: The light from the lamppost should cast shadows in this scene.

A common solution to this problem in games is a shadow map, a quickly rendered
image from the point of view of a light source looking into the scene that calculates only
the depth buffer, not the display buffer. Figure 5-12 is a shadow map for the lamppost in
Figure 5-11, showing the distance from the lamppost to every point in the scene; as with
the depth buffer, this is shown in grayscale with closer pixels colored darker.

& Shadow-B

i

Figure 5-12: The depth buffer from a rendering of the viewpoint of the lamppost

Shadow maps are created for each light source before scene pixels are colored. When

coloring a pixel, the pixel shader checks each light’s shadow map to determine if the point
being rendered is visible from that light. Consider the points Scene-A and Scene-B in
Figure 5-11. The shader computes the distance from each of these points to the top of the
lamppost and compares this distance to the depth of the same points projected onto the
shadow map, labeled Shadow-A and Shadow-B in Figure 5-12. In this case, the depth of
Shadow-A in Figure 5-12 is less than the distance between Scene-A and the lamppost in
Figure 5-11, which means something is blocking that light from reaching Scene-A. In
contrast, the depth of Shadow-B matches the distance from Scene-B to the lamppost. So
Scene-A is in shadow, but Scene-B is not.

I deliberately gave the shadow map in Figure 5-12 a blocky appearance; to improve
performance, shadow maps are often created at lower resolutions, making blocky
shadows. If a game offers a “shadow quality” setting, this setting most likely controls the
resolution of the shadow maps.

Ambient Light and Ambient Occlusion

The simpler lighting model in real-time rendering tends to produce images that are too
dark. It’s easy to overlook the effect of indirect lighting in the world around us. For
example, standing outside in the daytime, you’ll have enough light to read even if you
stand in a solid shadow, because of indirect sunlight bouncing off nearby surfaces.

To produce images with natural-looking light levels, a game renderer will typically
apply a simple ambient light model. This lighting is omnipresent, illuminating the surface
of every model without regard to light beams or angles of incidence, so that even surfaces
missed by in-scene lighting are not totally dark. Ambient lighting is used throughout
games, even for indoor scenes. This is a situation where a little fakery produces a more
realistic result.

Ambient lighting can also be used to adjust the mood of a scene. When you leave
behind a golden, autumnal field to enter a dusky forest in an open-world game like World
of Warcraft, a large part of the effect is the ambient lighting changing from bright yellow
to dim blue.

Although the simple ambient lighting model keeps the rendering from being too dark,
the method doesn’t produce any shadows, which hurts a scene’s realism. Ambient
occlusion methods fake shadows from ambient light by following the observation that
such shadows should occur in crevices, cracks, holes, and the like. Figure 5-13 shows the
key idea. Point A is much less occluded than point B because the angle through which
light can reach the point is much larger, letting more light through. Therefore, ambient
light should have a greater influence on point A than point B.

For a renderer to measure the occlusion precisely, though, it would have to send out
light beams in every direction, much like the scattering of light from diffuse lighting, but
we already know that tracing light beams is not an option for real-time rendering. Instead,
a technique called screen space ambient occlusion (SSAO) approximates the amount of
occlusion for each pixel after the main rendering is over, using data that was already
computed earlier in the rendering process.

In Figure 5-14 we see SSAO approximation in action. Note that the viewpoint is
looking straight down at the surface. The dashed arrow is the normal for the point on the
surface. The gray area is a hemisphere aligned with that normal, shown as a semicircle in
this 2D representation. The shader examines a scattering of points inside the hemisphere.
Each point is projected into screen coordinates, just like the projection of the model point
shown back in Figure 5-2. Then the depth of the point is compared to he depth buffer for
the pixel location, which tells the shader whether the point is in front of (shown in white)
or behind (black) the model surface. The percentage of points behind the surface is a good
approximation of the amount of ambient occlusion.

Figure 5-13: Measuring the occlusion at given points

Viewpoint

Figure 5-14: Screen space ambient occlusion approximates the degree of occlusion by the
percentage of points behind the model surface.

SSAO is heavy work for the renderer because it requires projecting and examining a lot
of extra points—at least 16 per pixel for acceptable results. However, the calculations for
each pixel are independent, which allows the work to be easily divided among the army of
worker cores. If a gamer has the hardware to handle it, SSAO produces believable ambient
shadowing.

Texture Mapping

Throughout these discussions of graphics, we have discussed models as though their
surfaces were one solid color, but that describes few surfaces in the actual world. Tigers
have stripes, rugs have patterns, wood has grain, and so on. To reproduce surfaces with
complex coloring, pixel shaders employ texture mapping, which conceptually wraps a flat
image onto the surface of a model, much like an advertising wrap on the side of a city bus.
To be clear, texture mapping is not just for game rendering; movie CGI employs it
extensively, too. But texture mapping is a special problem for games, in which textures
have to be applied in milliseconds. The sheer number of textures and texture operations

needed for a single frame presents one of the greatest challenges of game rendering.

Figure 5-15 shows a texture bitmap (an image of a zigzag pattern) and a scene in which
the pattern has been applied. Bitmap images used for texture mapping are called textures.
In this case, the surface of the rug rectangle is covered by a single large texture, although
for regular patterns like the one on this rug, a smaller texture can be applied repeatedly to
tile the surface.

The pixel shader is responsible for choosing the base color of the pixel using the
associated texture; this base color is later modified by the lighting model. Because the
textured surface is an arbitrary distance from the viewpoint, and at an arbitrary orientation,
there’s not a one-to-one correspondence between pixels in the texture and pixels on the
model’s surface. Choosing pixel colors in a textured area based on the applied texture is
known as sampling.

Texture Bitmop

3383

Texture Applied to Surface in Scene

Figure 5-15: Texture mapping. The zigzag texture on top is applied to the rug object under
the chair.

To illustrate the decisions involved in sampling, let’s start with a bitmap of a robot with
a hat, shown in Figure 5-16. The pixels in a texture are called texels. This 20x20 texture
has 400 texels.

In this example, this texture will appear as a painting in the frame on the wall in Figure
5-17.

Suppose that the area inside the frame fills a 10x10 block of pixels in the rendered
image. The texture will be applied head-on without any adjustment for perspective, which

means all the renderer has to do is shrink the 2020 block of texels to fit the 10x10 block
of pixels in the final image.

Figure 5-16: A texture of a robot wearing a hat

Figure 5-17: In this scene, the texture of Figure 5-16 will be applied inside the picture
frame on the wall.

Nearest-Neighbor Sampling

Because 10x10 pixels are needed to fill the textured area, let’s imagine a grid of 100
sample points overlaying the texture. Figure 5-18 shows a closeup section of the original
robot texture from Figure 5-16. Here, the centers of the texels are shown as squares, and
the crosses represent the sample points for the pixels in the scene. Sampling resolves this
mismatch of pixels to texels.

The simplest method of sampling is choosing the color of the nearest texel, an
approach known as nearest-neighbor sampling. This approach is easy to implement and
fast to compute, but tends to look horrible. In this example, each of four texels is equally
close to the pixel centers, so I’ve arbitrarily chosen the texel in the lower right of each
pixel center. Figure 5-19 shows the texels chosen by this sampling method, and the 10x10-
pixel block that would appear in the final image.

As you can see, the result looks more like a skeletal aerobics instructor than a robot
with a hat. If you’ve ever looked closely at an oil painting, you may guess why the
nearest-neighbor technique produces such an unattractive result. Up close, an oil painting
reveals a wealth of detail, a multitude of individual brushstrokes. Take a few steps back,
though, and the strokes vanish as the colors blend together in the eye. In the same way,
when a texture is represented with fewer pixels, the colors of neighboring texels should
blend. Nearest-neighbor sampling, though, simply picks the color of one texel with no
blending; in our example, three out of four texels have no influence on the result at all.

Figure 5-18: A close-up section of the Figure 5-16 texture. Squares are texel centers;
crosses are sample points.

Texels Chosen by Textured Area
Nearest-Neighbor Sampling in Scene

HEEN
HE
HE
=
EENE
EE
EEE
|
| | EEEEEEE
_. | B . | i |

o E

=
|

Figure 5-19: The result of 10% 10 nearest-neighbor sampling on Figure 5-16. On the left
are the selected texels of the original texture, and on the right is the resulting bitmap.

When a texture is expanded to fill a larger area, the results are just as ugly. In this case,
some of the texels will simply be repeated in the textured area, producing a blocky result.
To see the problem, let’s start with a triangle and its representation as a 16x16 anti-aliased
texture, as shown in Figure 5-20.

16x16 Triangle
Bitmap

A i

Figure 5-20: A triangle and its representation as an anti-aliased 16 % 16-pixel texture.

Triangle

Now suppose this texture is applied over a 32x32 area. Ideally, it should look smoother
than the original, smaller texture; the greater resolution offers the opportunity for a finer
edge. As shown in Figure 5-21, though, nearest-neighbor sampling puts four sample points
in each texel, so every texel in the original 16x16 texture simply becomes four identically
colored pixels at the larger size.

Nearest Neighbor Sampling 32x32 Bitmap Results

+* + + + + + + +

= o b

Figure 5-21: When used to enlarge textures, nearest-neighbor sampling merely duplicates
pixels.

Bilinear Filtering

A better-looking sampling method is bilinear filtering. Instead of taking the color of the
nearest texel, each texture sample is a proportional blend of the four nearest texels. The
method is called bilinear because it uses the position of the sample point along two axes
within the square formed by the four nearest texels. For example, in Figure 5-22, the
sample point toward the bottom and just left of center results in the mixing percentages
shown. The final color of this sample is computed from the colors of the texels at the
given percentages.

Figure 5-23 shows the robot texture after reduction via bilinear filtering. With only a
fourth of the original pixels, the reduced version necessarily lacks detail, but if you hold
the original at arm’s length and compare to the reduced version held close, you’ll see the
reduction is a good representation, and much better than the nearest-neighbor result.

Position of

SamplaPokit Color Mixing
N —
- ‘ . 11% | 6%

55% | 28%

Figure 5-22: Bilinear filtering measures the position of a sample point vertically and
horizontally within the square of neighboring texels, and uses these positions to determine
the percentage that each texel influences the sample color.

N Bilinear Filtered
Original 20x20 Texture 10% 10 Bitmap

1 . . |

Figure 5-23: The robot texture reduced through bilinear filtering

Figure 5-24 shows a 32x32 area blown up from the 16x16 triangle texture using
bilinear filtering—a clear improvement over the chunky nearest-neighbor sampling.

Original 16x16 Texture Bilinear Filtered 32x32 Bitmap

F

Figure 5-24: The triangle texture expanded through bilinear filtering

Mipmaps

The examples in the previous section show the limit of what is possible with bilinear
filtering. For bilinear filtering to look good, the texture needs to be at least half, but no
more than twice, the resolution of the textured area. If the texture is any smaller, bilinear
filtering still produces blocky results. If the texture is too large, even though four texels
are used per sample, some texels won’t contribute to any samples.

Avoiding these problems requires a set of different-sized bitmaps for each texture: a
large, full-resolution version for viewing up close, and smaller versions for when the
textured area is also small. This collection of progressively smaller textures is known as a
mipmap. An example is shown in Figure 5-25. Each texture in the mipmap is one-quarter
of the area of the next larger texture.

I
[l o

Figure 5-25: A mipmap is a collection of textures, each one-quarter the size of the
previous.

With a mipmap, the renderer can always find a texture that will produce good results
with bilinear filtering. If a 110x110 texture is needed, for example, the 128%128 texture is
shrunk. If a 70%70 texture is required, the 64x64 texture is magnified.

Trilinear Filtering

While bilinear filtering and mipmaps work reasonably well, they introduce a distracting
visual anomaly when transitioning from one mipmap texture to another. Suppose, in a
first-person game, you’re running toward a brick wall that uses a mipmapped texture. As
you get closer to the wall, the smaller texture will get blown up more and more until you
reach the point where you get a shrunk-down version of the next larger texture in the
mipmap. Unfortunately, a larger texture that has been reduced through bilinear filtering
doesn’t quite match a smaller version of the same texture that has been expanded, so at the
moment of this transition the texture will “pop.” The problem can also occur with no
movement at all on a surface that stretches out to the distance, such as a long rug in a
corridor, that has been tiled with a repeating texture; because the parts of rug at different
distances are covered by different textures in the mipmap, seams will be clearly visible
where the textures touch.

To smooth over the texture transition, the renderer can blend samples from different
textures in addition to blending between texels in a texture. Suppose the area to be
textured is 7070, a size that falls between the 64x64 and 128x%128 textures in a mipmap.
Instead of just using bilinear filtering on the nearer-sized 64x64 texture, the renderer can
use bilinear filtering on both the larger and smaller textures, then blend the two resulting
samples. As with the bilinear filtering itself, this final step is proportional: in our example,
the color would be mostly determined by the result from the 64x64 texture, with a little of

the 128%128 result mixed in. Because we are filtering in two dimensions on each texture,
then blending the results, this technique is known as trilinear filtering. It is demonstrated
in Figure 5-26.

Trilinear filtering eliminates popping and seaming between textures in a mipmap, but
because it requires two bilinear samples and then a final blend, it does over twice as much
work as bilinear filtering.

+
v
]] []
+ —p — - — R — +
[] [] -]

Bilinear Trilinear Bilinear
Somple Somple Somple

Figure 5-26: Trilinear filtering takes bilinear samples from the larger and smaller textures
in a mipmap and blends the results.

Reflections

As discussed in Chapter 4, ray tracing naturally captures all the effects of light reflecting
from one surface to another. Unfortunately, the subtle influence of colors of nearby
surfaces is nearly impossible to capture without ray tracing, but game renderers do have a
way to fake what I’1l call clear reflections: the more obvious, mirror-like reflections on
such surfaces as polished countertops, windows, and of course mirrors themselves.

Games limit which surfaces produce clear reflections. Having just a few objects with
such reflections maintains the realism of the scene at a much lower computational cost. To
reduce the workload further, renderers use environment mapping, in which shiny objects
are conceptually placed inside cubes that are texture-mapped with a previously rendered
image of the object’s surroundings.

Figure 5-27 shows a sample situation: a shiny sports car on a showroom turntable. To
compute the effect of clear reflections, the renderer conceptually places the car in a cube;
the cube itself is not rendered, but used only to map reflections. The inside of the cube is
texture-mapped with an image of the showroom interior, as shown in Figure 5-28.
Because the reflected images will be somewhat distorted anyway by the surface of the car
body, viewers won’t notice that the reflections don’t perfectly match the rendered world in
which the car is placed.

Figure 5-27: For realism, the shiny car body should reflect the showroom.

@ME& SAlEs

Figure 5-28: For the purpose of mapping reflections, the car is considered to be in a cube,
the insides of which are covered by a bitmap image of the showroom.

—

Instead of tracing light as it pinballs around the scene, mapping reflections becomes an
indirect texture-map reference, a relatively simple calculation. Of course, the surface of
the car is probably also texture-mapped, which means that adding reflections is at least
doubling the per-pixel effort, but the gain in realism is usually worth the extra work.

The job becomes harder when a reflecting model is moving, as would happen if our car
were racing down a desert road in a driving game. The renderer can’t simply paste a static
image of a desert inside a cube and expect this to fool the viewer. Because the viewpoint
will be moving with the car as the car travels down the road, the reflections must likewise
travel— or at least give that appearance.

There’s an old Hollywood trick that was used to convey the illusion of sideways
movement in relation to the camera. An actor would stand on a treadmill so he could walk
without going anywhere. Behind him an illustration of scenery on a continuous roll would
slide past at the same speed as the treadmill. As long as the audience didn’t notice the
same trees going by, it looked as though the actor was actually moving sideways.

The same idea can be applied inside the cube around the shiny car. A portion of a wide
continuous image is selected, as shown in Figure 5-29. Sliding the selection “window”
across the wide image to match the movement of the car creates the illusion that the car is
reflecting the arid mountains depicted in the scene.

¥ ¥ Y

Figure 5-29: Sliding a window down a wide, continuous image creates the effect of
movement in mapped reflections.

Faking Curves

Nothing in a video game destroys realism faster than a model with easily recognizable
triangles trying to represent a rounded shape. Early 3D games were filled with car tires
shaped like octagons and human characters that looked like they were made of toy bricks.
We’ve already seen one part of the solution to this problem—bending the normals of
triangle vertices—but producing smooth models requires a whole set of techniques.

Distant Impostors

An obvious solution to the problem of flat triangles is to break models down into so many
small triangles that the individual facets are too small to be recognized. That works in
theory, but even though triangles are simple shapes, there’s still a limit to how many can
be rendered in the time allowed. Trying to design each model at the highest possible detail
would slow rendering to a crawl.

A renderer could, however, use lots of extra triangles to smooth out just those models
closest to the viewpoint. This is the idea behind distant impostors. Here, each object in a
game is modeled twice—a fully detailed high-triangle model and a simplified model with
relatively few triangles. This simplified model is the “impostor” of the original, and is
swapped in for the high-quality model whenever the model gets beyond a certain distance
from the viewpoint.

Distant impostors make effective use of rendering time, but because the two models are
so dissimilar, if a player is watching a particular model while moving closer to it, the
transition between the models can be visually jarring. Ideally, you’d like to give the
viewer the feeling that the distant object is revealing greater detail as it comes closer, but
in practice the two models are so different that the replacement looks like one object
magically transforming into another.

Bump Mapping

Another technique for smoothing models keeps the triangle count the same, but alters the
lighting calculations at each pixel to give the appearance of an irregular surface.

To understand why this bump mapping method can be so effective, imagine a game
featuring a hacienda with stucco walls. To get the appearance of stucco, the renderer can
apply a texture made from an image of an actual stucco wall to the walls of the hacienda
model. Because stucco is wavy, its undulations should be visible under the scene lighting.

Merely applying a texture to a flat wall wouldn’t convince the eye; it would look like a flat
wall with a picture of stucco on it.

Bump mapping allows flat surfaces to react to light as though they were wavy like
stucco, bumpy like popcorn ceilings, crumpled, louvered, or anything else. The process
starts with a grayscale bitmap the same size as the texture that will be applied to the model
surface. This bitmap is known as a height map, because the brightness of each pixel
indicates the height of the surface.

The height map allows a pixel shader to approximate the surface normal at each pixel
location. This is easiest to understand in 2D. Figure 5-30 shows a row of 10 pixels. The
numbers at the bottom represent the height of each pixel. The 10 points are shown at
proportionate heights, along with the surface normals. I've added gray lines to show how
the normals for the fourth and seventh points are computed. An imaginary line is drawn
between the two points on either side of a chosen point; then, the normal for the chosen
point is set perpendicular to this line.

\
it
tI\ ! f& A

& 4 7 14 10 11 2 8 <] 10

Figure 5-30: A row of pixels with light calculations altered by bump mapping. The
numbers indicate the artificial height of each pixel. The renderer determines the normal at
each pixel based on the heights of neighboring pixels.

These bent normals affect the calculations for both diffuse and specular lighting,
allowing a flat surface to react to light as though it were rough or wavy. As with previous
tricks that involved bending normals, though, a surface with a bump map is still a flat
surface. The points on the surface are not actually raised or lowered, but merely react to
light as though they were pointing in different directions. As a player moving through a
3D scene passes a bump-mapped model, the lighting on the surface will change in a
realistic manner, but the edges of the model will still be straight, possibly giving the game
away. Just as the rim of the tumbler back in Figure 5-8 betrayed the straight lines on the
model, the outside corners of our bump-mapped hacienda will be perfectly straight when
they should be wavy, because bump mapping doesn’t alter the shape of the flat wall.

Tessellation

Suppose you’re playing a fantasy game, and all your attention is focused on a huge ogre
slowly approaching with an axe in his hands. As a gamer, you want this ogre to look as
good as possible even as he gets close enough to nearly fill the screen, but you don’t want
him made out of so many triangles that the frame rate is too low for you to effectively
fight him.

If the renderer uses a distant impostor, though, there will be a jarring transition that will
remind you that you’re just playing a game. If the renderer bump-maps the ogre model,

the light will reflect realistically off the rivets in his armor, but the neat lighting effect
won’t hide the fact that the model just has too few triangles to be viewed up close.

A process known as tessellation solves this problem. First, each triangle in the ogre
model is subdivided into more triangles. The corners of these new triangles are then
manipulated independently inward or outward (that is, up or down in relation to the
original triangle) using a height map. Instead of merely bending normals to trick the
lighting model as bump mapping does, tessellation actually produces a model with more
detail. Figure 5-31 demonstrates the process for a single triangle.

This method is a great way to cover up the straight lines of triangles and is a clear
improvement in appearance over bump mapping and distant impostors. Because the model
is actually deformed into a new, more complicated shape, even the edges of the model are
properly affected, unlike with bump mapping. Also, unlike the distant impostor technique,
the model improves gradually as the distance from the viewpoint decreases, avoiding the
sharp transition when models are swapped.

Single Triangle

Tessellation

Disp|ﬂcement of Verlices Using Height Map

Figure 5-31: A triangle is tessellated, producing a web of smaller triangles. These new
triangle vertices are then manipulated using a height map to produce the more complex
surface on the bottom.

Though you might think that tessellation is used extensively in games, it’s not, because
it inflicts a much larger performance hit than the simpler methods discussed earlier.
Creating more complex models on the fly is a lot more work than accessing one of several
premade models as in the distant impostor method, or adjusting normals in bump

mapping.

Tessellation is therefore used where the results are most obvious. For example, in a
game set outdoors, the ground beneath the avatar’s feet may stretch far into the distance.
Modeling the ground in great detail would require a huge number of triangles, creating a
performance bottleneck, but if the ground model has a low triangle count, the ground

closest to the viewer will have an unrealistic, angular appearance. Tessellation can smooth
out just the closest part of the ground.

Anti-Aliasing in Real Time

All of the renderer’s hard work can go down the drain if individual pixels become clearly
visible through aliasing. As with movie CGI, games need some form of full-screen anti-
aliasing to smooth over the edges of models and surfaces. With ray tracing, anti-aliasing is
conceptually simple: send out more beams than pixels and blend the results. Game
renderers, though, must use more efficient techniques.

Supersampling

The most direct approximation to casting multiple beams is known as supersampling anti-
aliasing (SSAA). Instead of casting multiple beams per pixel, supersampling renders an
intermediate image that is much larger than the desired final image. The color of each
pixel in the final image is a blend of a sample of pixels from the larger image.

Consider the two white triangles covered by a gray triangle shown in Figure 5-32. Note
that the edges of the white triangles won’t be visible in the rendered image but are shown
here for clarity.

Figure 5-32: An arrangement of three triangles

Figure 5-33 demonstrates a basic rendering of these triangles at an 8x4 resolution.
Each pixel is colored gray or white depending on whether the pixel center lies within the
area of the gray triangle in the foreground.

e
/

| T

Figure 5-33: Coloring pixels without anti-aliasing

To produce an 8x4 supersampled image, the triangles are first rendered at a 16x8
resolution as shown in Figure 5-34.

S AT

L] L] « =" L] - L] L]
w - '.__5__...--" - - - *
" _:z_,..--"'"-:n. - +, - «, -F/ *|,
Sr et
}r“f‘{ - L . L . - r - . L] .
Figure 5-34: Supersampling the three triangles. Here, each pixel in the final bitmap is
represented by four subpixels with scattered sample points.

As you can see, each pixel in Figure 5-33 has become four smaller pixels in Figure 5-
34. These smaller pixels are called subpixels. Using this higher-resolution rendering, the
color of each pixel in the final rendering is a proportional blend of the colors of its four
subpixels, as shown in Figure 5-35.

BEE
.>‘-.___:__. -/;1 .
AT /1.

Figure 5-35: Coloring each pixel by blending subpixels

Supersampling does a nice job of smoothing out the jaggies, but as you might expect,
rendering the image at a much higher resolution incurs a large performance penalty.
Sampling four pixels to make one pixel in the final image is four times as much work for
the pixel shader. In this example, I’ve kept things simple by assigning a flat color to each
triangle, but in a typical game render each subpixel represents, at a minimum, a texture
map sample followed by lighting calculations. Although earlier generations of video
games commonly used SSAA, it’s rare to see this method now.

Multisampling

In the previous example you can see that when all four subpixels are inside the same
triangle, supersampling doesn’t accomplish anything. To reduce the performance hit of
anti-aliasing, the subpixel work can be limited to the edges of triangles where the jaggies
occur, a technique known as multisample anti-aliasing (MSAA).

Figure 5-36 demonstrates one version of this concept. Two pixels lie across the edge
between two triangles. With supersampling, each of the eight subpixels is texture-sampled
and individually colored by scene lighting. With multisampling, there are still eight
subpixels for the two pixels, but not eight samples. Instead, the renderer first determines
which triangle contains each subpixel. Each of the four subpixels that lie within the same
triangle is given the same color, which has been sampled from a point midway between
the subpixel sample points. So while supersampling colors eight subpixels A through H,
multisampling colors only four subpixels A through D, which means substantially less
work in texture mapping and lighting.

Supersampling Multisampling

Figure 5-36: Comparing supersampling and multisampling

When all four subpixels lie within the interior of the same triangle, multisampling
colors only one subpixel per final pixel, introducing little computational overhead.
Multisampling puts in extra effort where it is most needed—reducing jaggies at edges—
and thus is an efficient use of rendering time.

Post-Process Anti-Aliasing

Performance can be improved even further by delaying anti-aliasing until the image is
rendered, an idea known as post-process anti-aliasing. That is, the image is first rendered
normally at the desired final resolution, and then the jaggies are identified and smoothed
over. In essence, a post-process anti-aliasing technique decides that some of the pixels in
an image are colored incorrectly based on nothing more than the colors of the pixels
themselves.

One such method is called fast approximate anti-aliasing, or FXAA. (Why that
wouldn’t be FAAA is perhaps a question we’re not supposed to ask.) The idea behind
FXAA is to find pixels that are likely to be along the edge between overlapping triangles,
and then blend neighboring pixel colors to smooth the jarring transition.

FXAA examines each pixel in the image separately—Ilet’s call the pixel under
examination the current pixel. The process starts by computing the perceived brightness of
the current pixel and its four immediate neighbors, similar to examining a black-and-white
version of the image. The brightest and dimmest pixels in the neighborhood are selected,
as shown in Figure 5-37, and their difference is compared to a cut-off value. This test
ensures that the anti-aliasing is applied only to pixel neighborhoods of high contrast—
areas where the difference between the brightest and dimmest pixels is large.

— Brightest Pixel

—— Darkest Pixel

Figure 5-37: Checking the level of contrast in a pixel’s neighborhood

These high-contrast areas likely represent jagged edges that need to be smoothed, and
each such area is further examined as shown in Figure 5-38. The 3x3 block of pixels
centered on the current pixel is considered both as a set of three columns and a set of three
rows to determine whether this is a horizontal or vertical edge. In this example, because
the columns are similar to each other but one row strongly contrasts with the other two,
this would be classified as a horizontal edge.

R

3x3 Pixel Neighborhood Column Comparison Row Comparison

Figure 5-38: Looking for contrast in the columns and rows of a pixel neighborhood

Because this is a horizontal edge, the next step is to compare the pixels above and
below the current pixel to find which contrasts the most with the current pixel. In this
case, the pixel above is much brighter than the current pixel, while the pixel below is quite
similar. This means the detected edge is between the current pixel and its topside neighbor.
To anti-alias this edge, the current pixel will be replaced by a bilinear sample between the
pixel centers, shown as the white circle in Figure 5-39. FXAA examines other pixels along
the edge to determine how jagged the edge is, adjusting the degree of blending by placing
the sample point farther from the center of the current pixel.

Figure 5-39: To smooth this edge, FXAA will replace the color of the center pixel with a
bilinear sample at the circle point.

A post-process anti-aliasing method like FXAA is very fast compared to supersampling
or even multisampling because it doesn’t create any sub-pixels at all. However, the results
of FXAA are not always as impressive as other methods. In particular, FXAA can
sometimes blur areas that weren’t actually aliased; unlike supersampling, post-process
methods like FXAA are only guessing where the edges are, so areas of high contrast
within textures may fool the algorithm.

The Rendering Budget

The trade-offs that accompany different anti-aliasing techniques mean that developers of
real-time graphics applications must choose between best quality and best performance. Is

FXAA good enough for this situation? Or is MSAA necessary? This choice, though, is not
made in isolation. More broadly, game developers must review all the techniques available
for real-time rendering—Ilighting and shadows and anti-aliasing, and lots of other
possibilities we don’t have the space to discuss, like motion blur and particle systems—
and select a set that maximizes the quality of the images without exceeding the time
allowed for rendering. Within that /4, of a second, a surprising amount of work can be

done, but all of the best-looking techniques can’t be used, so sacrifices have to be made
somewhere.

On a console or in a mobile game, these choices are usually all made by the game
designer. On PCs, a degree of choice is usually afforded to the user, who is given controls
to raise or lower the resolution of textures, select the method of texture filtering, choose
among anti-aliasing methods, turn shadows and reflections on or off, and tweak the
renderer in a host of other ways. In part, this control is given so the user can adjust the
render workload to match the performance of the particular system, since the PC in
question might be top of the line, or an aging clunker.

Beyond that, though, detailed rendering options reflect the truth that beauty is
subjective: what impresses one viewer might have no effect on another. Some gamers are
horrified by jagged edges, for example, and always crank up anti-aliasing to the
maximum, while others wouldn’t dream of devoting precious processor cycles to
removing jaggies when there are more realistic shadows to be had instead. In a sense,
video games are all about placing ourselves inside believable illusions, and what we
believe is up to us.

What’s Next for Game Graphics

So where do game graphics go from here? We can expect game programmers to continue
to be challenged by advancements in displays. Monitors keep increasing in resolution,
eating away some of the benefit of each new GPU generation. A special challenge will
come from virtual reality (VR) headsets, which combine displays mounted inside helmets
with sensors to track the gamer’s head movements. VR headsets can be trouble if the
display lags behind the movement—our brains don’t like conflicting information, and
when our eyes are saying one thing, and our inner ear something else, the result for many
people is nausea. In a game played on a normal flat screen, gamers would prefer a
consistently high frame rate but don’t get too bent out of shape by sporadic dips in the
number; with VR devices, an absolutely rock-steady frame rate is imperative.

Beyond matching the needs of displays, it’s difficult to predict exactly how game
graphics will progress. Over the past decade, every time I’ve played a new AAA game (as
the industry calls the biggest-budget titles), I find myself thinking the graphics can’t get
any better, that whatever improvements the next generation of hardware brings will be
insignificant. And every time, I’ve been proven wrong. So I’m confident that I’ll continue
to be blown away by the advances in game graphics, even if I can’t be sure what those
advances will be.

Raw hardware power is only part of the equation. Buying a new GPU with twice as
many cores as an older GPU means the hardware can process twice as many triangles in

the same allotment of time, but once triangle counts get high enough, doubling them
doesn’t improve the resulting images very much. Indeed, at some point, models may get
so detailed and triangle counts so high that the average triangle will occupy less than a
one-pixel area on the screen. When that happens, it will call into question the whole idea
of rendering the scene as a series of triangles. Rather than projecting three triangle vertices
to determine the color of one pixel, renderers may replace triangles with single points of
fixed volume—imagine building a sculpture out of tiny marshmallows.

What ultimately drives advancements in game graphics, though, isn’t hardware, but the
creativity of graphics programmers. Many of the techniques in Chapter 4 are about
making accurate, or at least plausible, simulations of how light and vision work in the real
world. Game graphics are just about making results that look good. That gives
programmers enormous leeway to experiment, to find new ways to spend part of the
precious rendering budget, to find new tricks to put silly grins on the faces of gamers. I
don’t know for sure what game developers are cooking up for the next generation of
games, but I’m sure that they’ll continue to put my GPU to work in ways that will thrill
and amaze.

6

Data Compression

Sometimes the hard work of software is obvious to everyone, as it is with movie CGI and
video game graphics. You don’t have to know anything about how computers work to be
impressed with the visuals in films like Avatar and games like Crysis. Sometimes, though,
software is doing its most amazing work when it looks like it’s not working hard at all.

Watching a high-definition movie on a disc or streamed over the Internet is something
most of us take for granted. Isn’t that just storing and displaying images? Why would that
require special techniques? To understand why we should be impressed with Blu-ray
video and Netflix streaming, let’s look at what video was like before these formats came
to be.

Videocassettes, the earliest home video medium, recorded images on a roll of magnetic
tape. These were analog recordings—magnetic transcriptions of the same signal that
would’ve been broadcast by television antennas. The video resolution was even lower than
what we now call “standard definition,” and as with other analog recordings like
audiocassettes and vinyl records, the quality of the video would degrade over time. The
one upside to videocassettes was their capacity: a longer movie merely required a longer
spool of tape.

Next came the LaserDisc. About the size of LP records, these discs looked like larger
versions of today’s DVDs and Blu-ray discs, but like videocassettes, they were still storing
the analog broadcast-format signal. However, LaserDiscs recorded a higher-resolution
picture that came close to standard definition, and allowed you to jump to particular places
in the video without having to rewind or fast-forward the way you would with a
videocassette. For a while, the LaserDisc seemed like the future of video, but now
capacity was a problem. Unlike the effectively limitless capacity of a magnetic tape roll,
LaserDiscs could hold only 60 minutes of video per side, so watching a movie meant
flipping the disc halfway through or even switching discs.

Today, the problem of capacity is even more serious. Our Blu-ray discs are much
smaller than LaserDiscs, but our videos are a much higher resolution. Let me put the
problem into numbers. In high-definition video each frame is a 1920%1080 bitmap, a total
of 2,073,600 pixels. If each pixel is stored in three-byte RGB format, one frame of a high-
definition movie would require 6,220,800 bytes, or about 6.2 megabytes (mega means
“million”). Movies are recorded at 24 or 30 frames per second, which is 1,800 frames per

minute, 108,000 frames per hour, or 216,000 frames for a two-hour film. If each frame is
6,220,800 bytes, then 216,000 frames is 1,343,693 megabytes, or about 1,345 gigabytes
(giga means “billion”).

How can all of that data fit on a Blu-ray disc? Part of the answer is the “blu-ray” itself,
a blue laser that’s narrower than the laser used on LaserDiscs or even conventional DVDs,
allowing more data to be packed into a smaller area, just as smaller print allows more
words on a page. Even so, a Blu-ray can store only about 50 gigabytes(GB) of data, less
than 4 percent of what’s required.

Streaming video has the same problem. If one frame of video is 6.2 megabytes (MB),
and the video is running at 30 frames per second, then streaming requires an Internet
connection of 186 megabytes per second (MBps). A typical home broadband connection is
more like 4AMBps. What’s worse, because of traffic congestion and hiccups in the network,
you can’t count on maintaining the full rated bandwidth over the course of a long
transmission. Realistically, streaming video should use no more than a couple of MBps at
most.

So how can we fit giant amounts of video data into these small containers? The answer
is data compression—storing data in a format that requires fewer bytes than the original
format. Compression techniques can be broadly divided into two categories. With lossless
compression, the compressed data can be restored to its exact original state. In contrast,
lossy compression accepts that the restored data may be slightly different than the original.
Video streaming and storage uses a combination of both types of compression. In this
chapter, we’ll first investigate some general compression techniques using simple
examples. Then we’ll see how these ideas apply to video, producing highly compressed
sequences of images that look nearly as good as the uncompressed originals.

Run-Length Encoding

Most of us have employed some form of lossless compression, though we wouldn’t have
called it that, because many techniques for lossless compression are commonsense ideas.
One such method is run-length encoding. Suppose I were to show you a 27-digit number
for one minute to see whether you could remember it an hour later. That might sound hard,
but look at the number:

777,777,777,555,555,555,222,222,222

I suspect you wouldn’t try to remember each digit individually. Instead, you’d count
the occurrences of each digit, and remember it as “nine sevens, nine fives, and nine twos.”

That’s run-length encoding in action. Repeats of the same piece of data (in this case, a
digit) are called runs, and when runs are common, we can shorten the data by recording
the lengths of the runs rather than the whole number. Run-length encoding is lossless
compression, because if we remember the shorthand version of the number, we can
reproduce the number in its original form whenever needed.

Just by itself, run-length encoding can provide excellent compression for certain types
of images, such as icons, logos, comic-book-style illustrations— any image with large
blocks of solid color. When pixels have the same color as their neighbors, we can reduce

the storage requirements considerably. As an example, I’ll describe the system used by the
TGA image file format. TGA is short for Truevision Graphics Adapter, an early piece of
graphics hardware designed for video editors. The file format, if not the adapter, is still in
use in the video industry, and is probably the simplest example of run-length encoding for
images.

The image data in a TGA file is compressed on a row-by-row basis. Within each row,
each run of two or more pixels of exactly the same color is identified. The remaining
pixels are called raw pixels. Consider the selected row in the sample image in Figure 6-1.
In this row, there are several short runs of pixels, and several raw pixels that are different
from their neighbors.

]
L
-
[#]
=
e

raw

Figure 6-1: The selected row has a mix of runs and raw pixels.

The TGA format organizes runs and raw pixels into packets. Each packet begins with a
one-byte header. The leftmost bit of the header byte determines whether it is a run packet
or a raw packet. The other seven bits denote the size of the packet in pixels. Because the
smallest packet has one pixel, TGA encodes the packet’s size as one less than its actual
size; that is, a size field of 0000000 represents a size of 1, and 0000001 represents 2, and
so on. Following the header is either the encoded color of all the pixels in the run, or for a
raw packet, the colors of each individual pixel. Using the RGB color format, the row of
pixels from Figure 6-1 would be encoded as shown in Table 6-1.

Table 6-1: TGA Encoding of Pixel Row

Run/raw Size Red Green Blue Description

1 0000001 11111111 11111111 11111111 Run of two white pixels

1 0000010 11001100 11001100 00000000 Run of three yellow pixels

0 0000001 11111111 11111111 11111111 Raw packet of two pixels; first is white

00000000 10000000 00000000 Second pixel in raw packet; dark green
1 0000001 00000000 00000000 11111111 Run of two blue pixels

0 0000000 11111111 11111111 11111111 One raw white pixel

This encoding requires 23 bytes versus the uncompressed size of 30 bytes. This

compression ratio of 30:23, or about 4:3, isn’t very high, but note that a mere 4 bytes are
needed to store rows where every pixel is the same color, like the top row of Figure 6-1.
The overall compression ratio of this bitmap in TGA format is an impressive 300:114, or
about 5:2.

Dictionary Compression

Just by itself, run-length encoding can compress pictures with large blocks of solid colors,
but most of the images in movies aren’t like that. For photographs and other types of
digital images with lots of color variation, software has to work much harder to find
patterns exploitable by compression. One of the key tools is known as dictionary
compression.

The Basic Method

Later we’ll see how dictionary compression is used on images, but the idea is easiest to
understand when it is applied to a text document, so let’s start there. An uncompressed text
document is stored as a series of character codes such as ASCII.

We’ll compress this sample paragraph:

Those pictures created by a computer are called computer graphics. When these pictures created by the
computer are viewed in a sequence, that sequence is called an animation. An entire movie created from an
animation, a sequence of pictures created by a computer, is called a computer-animated movie.

To make this example simpler, I’ll ignore the spaces and punctuation in this text and
just worry about the letters. There are 234 letters in this paragraph; stored as
uncompressed ASCII text, the letters would require 234 bytes. To employ dictionary
compression on this text, we first need a dictionary, which in this context is a numbered
list of every word in the document being compressed. Table 6-2 is our list of words,
numbered both in decimal and binary. Note that capitalization counts: an and An are
separate entries.

Table 6-2: Dictionary Compression

Position Binary-encoded position Word

1 00000 a

2 00001 an

3 00010 An

4 00011 animated
5) 00100 animation

6 00101 are

7 00110 by

8 00111 called

9 01000 computer
10 01001 created
11 01010 entire

12 01011 from

13 01100 graphics
14 01101 in

15 01110 is

16 01111 movie

17 10000 of

18 10001 pictures
19 10010 sequence
20 10011 the

21 10100 these

22 10101 Those

23 10110 viewed
24 10111 When

As shown, 5 bits are sufficient to represent the range of positions used. Each word in
the original paragraph is replaced with its position in this table. For example, instead of
using eight ASCII codes (64 bits) for each appearance of the word computer, the 5-bit
dictionary entry is used instead.

The dictionary itself takes up space, however, and must be included in the compressed
document, so we save space only when a word appears more than once. In this example,
the total number of letters for all words in our dictionary is 116, requiring 116 bytes.
Replacing each of the 48 words in the sample paragraph with a 5-bit dictionary reference

requires 235 bits, or about 30 bytes. The total compressed storage, then, is 146 bytes,
which compared to the original 234 uncompressed bytes is a compression ratio of about
8:5. With longer documents the savings will be even better, because the text grows much
faster than the dictionary. A typical novel, for example, is about 80,000 words long, but
uses a vocabulary of only a few thousand words.

Huffman Encoding

In almost every text, some words are used much more than others. A technique called
Huffman encoding takes advantage of this fact to improve on basic dictionary
compression.

To create a Huffman code, the words in the document are ranked by frequency.
Imagine a children’s story with the 10-word vocabulary shown in Table 6-3. As with basic
dictionary compression, each word is assigned a binary code, but here shorter codes are
assigned to the words that appear most frequently in the story.

Table 6-3: Huffman Code for a Children’s Story

Word Frequency Binary code
the 25% 01

a 20% 000
princess 12% 100
good 11% 110
witch 10% 111
evil 8% 0010
ate 7% 0011
magic 4% 1010
toadstool 2% 10110
forevermore 1% 10111

With the table in place, Huffman code compression is the same as basic dictionary
compression: each word is replaced with its corresponding binary code. For example, the
encoding for the princess ate a magic toadstool would start with 01 for the, then 100 for
princess, and so on. In full, the encoding is:

011000011000101010110

As you may have noticed, the list of binary codes in Table 6-3 skips some possible
codes, such as 011 or 0110. Skipping codes is necessary to make this a prefix code, in
which no binary code appears at the start of another. For example, because 01 is the code
for the, other codes that begin with 01, such as 011 or 0110, are forbidden. Because the
individual codes vary in length, a prefix code is necessary to know where each code ends.
With our example, the 01 that begins the bit sequence must be the code for the because no
other code starts with 01; the only way to partition the whole sequence is as:

01 100 0011 000 1010 10110

If we allowed a code that broke the prefix rule, the sequences could become
ambiguous. Suppose forevermore is assigned the code 00. While this is a shorter code, it
means the example sequence could also be partitioned as:

01 100 00 110 00 1010 10110

This would decode as the phrase the princess forevermore good forevermore magic
toadstool.

By assigning the shortest codes to the most common words, Huffman encoding can
achieve greater compression than dictionary compression alone when data can be stored as
a relatively small set of codes and some codes are more common than others.

Reorganizing Data for Better Compression

Unfortunately, the images we see in videos are not good candidates for Huffman encoding.
Unlike the color-block images we compressed with the run-length technique, the pixels in
a video image vary across the full range of possible colors. With 16 million different
possible RGB colors, it’s unlikely video images will have enough repetition to allow
Huffman encoding to work. However, sometimes it’s possible to create repetition in varied
data by changing how the data is stored.

Predictive Encoding

For one such approach, consider a weather station that records the temperature once per
hour, and over the course of one day stores the following readings:

51, 52, 53, 54, 55, 55, 56, 58, 60, 62, 65, 67, 68, 69, 71, 70, 68, 66, 63, 61, ¢

4)
COMPRESSION IN ZIP FILES

Dictionary compression and Huffman encoding are at the heart of most general
compression schemes. The .zip archive format, for example, can choose from a half-
dozen compression methods but usually employs an algorithm called deflate. Rather
than replacing duplicated data with a reference number from a list of words, this
algorithm employs a variation of dictionary compression called a sliding window.

With this method, duplicate data is replaced with numerical indicators showing
where the data occurred previously. In the textual example of Figure 6-2, there are three
duplicate runs of characters. The first member of each pair is the number of characters to
go back, and the second number is the length of the run. For example, the pair 5, 2

means “go back five characters, and copy two characters.”

S 55
l_Ll l_l_l I [1 I I |
[Tlhfeln[Jtlhfe] |sfclafr] |sfclalrfeld] [t]hfefm].|
I—I—l I—I—I
16, 4

Figure 6-2: Sliding-window compression

The compressed version of this text can be symbolically written as “Then t[5,2]
scar[5,5]ed[16,4]m.” Instead of the number pairs being stored directly, though, they are
Huffman-encoded, so the most commonly occurring pairs are assigned shorter codes.
The deflate method is a highly effective general compression scheme, capable of
reducing the 3,138,473 characters in a raw text version of Tolstoy’s War and Peace to a

Gip file of around 930,000 bytes, about a 10:3 ratio.

J

If we assume a temperature range of 120 to —50, we can store each temperature in an 8-
bit byte, using 192 bits total. There aren’t many duplicates in this list, though, so Huffman
encoding won’t be effective. The situation improves if we rewrite this list using predictive
encoding. For every temperature after the first, we’ll record not the temperature itself, but
its difference from the previous temperature. Now the list looks like this:

(1) 1, 1, 1, 1, ©0, 1, 2, 2, 2, 3, 2, 1, 1, 2, -1, -2, -2, -3, -2, -2, -2, -3, -

Whereas the original data had few duplicates, the predictive-encoded data has many.
Now we can apply Huffman encoding with excellent results.

Quantization

Another approach, if we are willing to accept some degradation of the data, is
quantization, where we store the data with less precision. Suppose the weather station
from the previous example also records daily rainfall amounts, taking the following
readings over the course of three weeks:

.01, 1.23, 1.21, 0.02, 0.01, 0.87, 0.57, 0.60, 0.02, 0.00, 0.03, 0.03, 2.45,
2.41, 0.82, 0.53, 1.29, 0.02, 0.01, 0.01, 0.04

These readings have two decimal places, but maybe we don’t actually need this much
precision in the data. For one thing, any amount below 0.05 might represent condensation
on the collector rather than actual rain; likewise, condensation might also be the only
difference between readings like 1.23 and 1.21. So let’s leave off the last digit of every
number:

By itself, this compresses the data, since storing one place after the decimal will take
fewer bits than storing two. In addition, the quantized data also has several runs of zeros
that can be compressed with run-length encoding, and some duplicates that can be
compressed by Huffman encoding.

These techniques point to a general multistage approach for compression. First,

reorganize the data to increase the runs and duplicates, by storing small differences
between numbers rather than the raw numbers themselves, quantizing the data, or both.
Then compress the data with run-length and Huffman encoding.

JPEG Images

We now have almost all the tools needed to compress video. The logical first step in
compressing a video is to compress the individual images in the video. However, we can’t
directly apply predictive encoding and quantization to digital photographs and other
images with lots of subtle color variation; we need to convert these pictures to another
format first.

That’s the idea behind JPEG, a common compressed-image format designed
specifically for digital photographs. (The name is the acronym for the Joint Photography
Experts Group that developed the format.) The compression method for this format is
based on a couple of key observations of photography and human perception.

First, although pixel colors may vary widely throughout an image, individual pixels
tend to be similar to their neighbors. If you take a picture of a leafy tree against a partly
cloudy sky, lots of green leaf pixels will be next to other green pixels, blue sky pixels will
neighbor blue sky pixels, and gray cloud pixels will neighbor gray cloud pixels.

Second, among neighboring pixels, there will be more noticeable variation in
brightness levels than in color tone. For our tree photograph, each of the myriad leaf pixels
will reflect a different quantity of sunlight, but the underlying color of each pixel will be
roughly similar. Also, although the mechanisms of human vision are not completely
understood, tests indicate that we perceive differences in brightness more distinctly than
differences in color.

High compression of digital photographs is possible only with lossy compression; we
have to accept some degradation of the image. Following these key observations, though,
allows the JPEG format to throw away the data that is least likely to be missed. In our tree
photograph, the most important distinctions are the broad differences between leaf and
sky, or sky and cloud, not between two neighboring cloud pixels. After that, the most
important distinction is the relative brightness of pixels, more so than relative color. The
JPEG format therefore gives priority to broad differences over fine differences, and
brightness over color.

A Different Way to Store Colors

JPEG compression divides images into 8x8 blocks of pixels that are independently
compressed. To compress brightness and color differently, each pixel’s R, G, and B values
are converted to three other numbers Y, Cb, and Cr. Here, Y is the luminance of the pixel,
or how much light the pixel produces. Cb is the blue difference, and Cr is the red
difference. The simplest way to envision the YCbCr system is to imagine a dark green
video screen with three knobs labeled Y, Cb, and Cr initially set to zero: turn up Y and the
screen is brighter; turn up Cb and the screen becomes more blue and less green; turn up Cr
and the screen becomes more red and less green. Table 6-4 lists a few named colors in

both systems for comparison. (A historical note: YCbCr is derived from the color system
used in broadcast television. In the early days of color television, the remaining black-and-
white televisions could properly display color transmissions by interpreting only the Y
component of the signal.)

Table 6-4: Select Colors in the RGB and YCbCr Color Systems

R G B Color description Y Cb Cr
0 255 0 Lime green 145 54 34
255 255 255 Pure white 235 128 128
0 255 255 Aqua 170 166 16
128 0 0 Maroon 49 109 184

JPEG compresses the Y, Cb, and Cr data separately, so we can think of each 8x8 block
of pixels as becoming three 8x8 blocks of Y, Cb, and Cr data. Separating the data this way
takes advantage of the greater variation in brightness than in color. Under the YCbCr
system, most of the differences between the pixels will be concentrated in the Y
component. The lower variance in the Cb and Cr blocks will make them easier to
compress, and because we’re more sensitive to variations in luminance than variations of
color, the Cb and Cr blocks can be compressed more heavily.

The Discrete Cosine Transform

The conversion to YCbCr follows the observation that brightness is more important than
color. To take advantage of the greater importance of broad changes over narrow changes,
though, we need to convert each 8x8 data blocks yet again. The discrete cosine transform
(DCT) converts the absolute luminance and color data into relative measurements of how
these values differ from pixel to pixel. Although this transformation is applied to an entire
8%8 block of numbers, I’ll first illustrate the idea with a single row of eight numbers from
the luminance (Y) block, shown as shades of gray in Figure 6-3.

204 255 255 204 153 102 51 153

Figure 6-3: A row of luminance levels

To begin the DCT, we subtract 128 from each number, which has the effect of moving
the 0—255 range to a range centered around 0, so that maximum brightness is 127 and
absolute black is —128. The resulting luminance levels for the row are depicted as a line
chart in Figure 6-4.

127

-128

26 127 12y 76 25 26 /v L

Figure 6-4: Subtracting 128 from each luminance level centers the range of possible
numbers around 0.

The DCT produces eight new numbers that each combine the eight luminance levels in
a different way. Figure 6-5 shows the DCT of the previous figure.

127

-128

Coarse » Fine
Figure 6-5: The discrete cosine transform of the data in Figure 6-4.

Note that the numbers are labeled with a range from “coarse” to “fine.” The leftmost
number in the DCT is the simplest combination of the luminance levels: their sum. Thus,
the first number is the overall brightness of the pixels, and will be positive for a bright row
of pixels and negative for a dark row. The second number effectively compares the
luminance levels on the left end of the row against those on the right, and is positive in
this example because our luminance levels are brighter on the left than on the right. The
rightmost number effectively compares each luminance value against its immediate
neighbors, and is close to 0 here because the numbers in Figure 6-4 change gradually.

These DCT numbers are the coefficients that result from an operation called matrix
multiplication. If your eyes just glazed over, don’t worry: the operation involves nothing
more than multiplication and addition. We produce each coefficient by multiplying the
luminance values by a different, predetermined vector. In this context, a vector is just an
ordered list of numbers. The eight vectors used in the DCT are illustrated in Figure 6-6.
(The numbers in each vector are related to the cosine function from trigonometry, which is
where the discrete cosine transform gets its name, but we can safely ignore that for this
discussion.)

Vector 1

0.5
0
=0.5
2324567 8
Vector 4
0.5
0
=0.5
1234567 8
Vector 7
0.5
0
-0.5
12345678

Vector 2
0.5
0
=0.5
12345678
Vector 5
0.5
0
=0.5
12345678
Vector 8
0.5
0
0.5
12345678

Figure 6-6: The vectors needed for our single-row DCT

Vector 3
0.5
0
-0.5
12345678
Vector 6
0.5
0
=0.5
12345678

To produce a coefficient for our luminance row, we multiply each number in a vector

by the luminance in the same position. For example, Table 6-5 shows the computation of
the Vector 2 coefficient for our luminance row. Each number from the luminance row is
multiplied by the number in the same position in Vector 1; then, these products are
summed to get 157.386.

Table 6-5: Computing the Coefficient for Vector 2

Position Luminance (from Figure 6-4) Vector Product
1 76 0.49 37.24

2 127 0.416 52.832
3 127 0.278 35.306
4 76 0.098 7.448

5 25 —0.098 -2.45

6 -26 -0.278 7.228

7 =77 -0.416 32.032

8 25 -0.49 -12.25

Total 157.386

Looking at the vectors of Figure 6-6, you can see how each combines the luminance
levels differently. Because every number in Vector 1 is the same positive number, the
Vector 1 coefficient becomes a measure of overall brightness. Because Vector 2’s numbers
gradually sweep from high to low, the second coefficient will be positive when luminance
tends to fall off from the left to right in the pixel row, and negative when luminance tends
to increase. Vector 3’s coefficient is a measure of how the ends of the row differ from the
middle, and so on. You’ve already seen the resulting coefficients charted in Figure 6-5;
Table 6-6 shows the result numerically.

Table 6-6: Coefficients from the Discrete Cosine Transform of the Sample Luminance
Row

Vector number Coefficient
1 124.804

2 157.296

3 -9.758

4 —87.894

5 18.031

6 —49.746

7 23.559

8 —-13.096

The process is reversible: we can retrieve the original luminance numbers from Figure
6-4 by multiplying the eight coefficients against eight different vectors, a process called
the inverse discrete cosine transform (IDCT). Table 6-7 shows how the second luminance
value, 127, is extracted from the coefficients.

Table 6-7: Computing the Second Luminance Value from the Coefficients

Position Coefficient Vector Product

1 124.804 0.354 44.125

2 157.296 0.416 65.393
3 -9.758 0.191 -1.867
4 -87.894 —0.098 8.574

5 18.031 —0.354 —6.375
6 —49.746 —0.49 24.395
7 —23.559 —0.462 —-10.833
8 —13.096 —0.278 3.638
Total 127

The DCT, then, gives us a different way of storing the same numbers: as the
relationship between the data rather than the data itself. Why is this useful? Remember
that fine distinctions between pixels are less noticeable than broader distinctions. Later,
you’ll see how the DCT allows the JPEG format to compress the fine details more than the
broad.

The DCT for Two Dimensions

JPEG compression works not on rows of pixels but on 8x8 pixel blocks, so now let’s see
how the DCT operates in two dimensions. The one-dimensional DCT multiplies eight
vectors with the original eight numbers to produce eight coefficients. The two-dimensional
DCT, though, requires 64 matrices, each matrix being an 8x8 table of numbers. Like the
vectors, each matrix will multiply all 64 pieces of data in the 8x8 block.

The matrices themselves are two-dimensional combinations of the vectors we saw
earlier. This is easiest to understand pictorially. Figure 6-7 shows the combination of a
horizontal Vector 1 and a vertical Vector 1. Because the numbers in Vector 1 are all the
same, the numbers in the resulting matrix are as well. In these matrix illustrations, lighter
gray means a higher number.

Vector 1 (Horizontal) Vector 1 (Vertical) Matrix Combination

0.5
55—

0

0.5

0 On Un b QO pD —

12345678
0.5 0 05

Figure 6-7: The matrix combination of Vector 1 and itself

In Figure 6-8, horizontal Vector 1 is combined with vertical Vector 2. The resulting
matrix gradually varies from top to bottom as Vector 2 gradually varies, but doesn’t vary
left to right because the numbers in Vector 1 don’t vary.

Vector 1 (Horizontal) Vector 2 (Vertical) Matrix Combination
1
0.5 2
R o e) 3
4
0 5 CECEEHEEEE
6 0
5.5 5 o o
8 i [

12345678
05005

Figure 6-8: The matrix combination of Vector 1 and Vector 2

Figure 6-9 shows a last example, Vector 8 combined with Vector 8. Because Vector 8
swings back and forth from positive to negative, the combination matrix has a
checkerboard quality.

Vector 8 (Horizontal) Vector 8 (Vertical) Matrix Combinafion
1 H B N
0.5 2 i N N
3 C I
4 e
0 5 C
6 5 mn
0.5 7 H B B B
8 H E BN

12345678
05 0 05

Figure 6-9: The matrix combination of Vector 8 and itself

The two-dimensional DCT replaces each of the 64 numbers in an 8x8 block with a
matrix coefficient. Figure 6-10 shows which matrices are used for a few locations. Similar
to the one-dimensional DCT, the coefficient in the upper left, which is the same shown in
Figure 6-7, sums all the numbers in the original block equally. As we progress downward
and to the right, the distinctions being measured grow finer.

. H B NN
OEE EEEBE
NN E EEN
TEEE E N EE
loEm H E EE
omm H E RN
DEm H E RN
EmEm E N ERE
N
4
-t
EENEENEE
ENEEEEEE
ENEEEEEE
T I
ENE NE
EEEEEEEE H E BN
HE N E =
EEEEEEEE EmEBE
H B R B
ENEEEEEE EE E BN
E N E BN
EEEEEEEE ETECETEE

Figure 6-10: Some of the matrices used in the two-dimensional DCT

To demonstrate the two-dimensional DCT, I’'ll use just the luminance values of the
pixel block shown in Figure 6-11.

Bx8B Block of Pixels Luminance (Y) Values

1291133 128120128 66 | 71 | 86

152 | 157 | 157 | 152|120 100] 82 | 79

Ejaﬂ==== 171|176 | 178 | 169 | 162 | 141 | 120 | 109

:]|I;H= 167 | 16B | 179 | 175 | 168 | 154 | 142 | 128
Hj]DDj]EH= 1591 155|168 1173|162 | 157 | 153 | 136
EE}EEHEE= 163|161 | 157 | 163 | 159 | 162|154 | 132

161 | 159|157 | 149 | 141 | 155|149 | 138

151 | 147 | 147 [149 | 141 | 143 | 145 [138

Figure 6-11: A block of pixels and the associated luminance (Y) block

Figure 6-12 shows the same luminance block with 128 subtracted from each number to
make a range from —127 to 128 centered around 0.

1 5 0 |-8] 0 |-62|-57|-42

24 | 29 | 29 | 24 | -8 | -28 | -46 | -49

43 | 48 | S0 | 41 | 34 | 13 | -8 |-19

39 140 | 51 | 47 | 40 | 26| 14] O

31 |27 | 40 | 45 | 34 | 292 | 25| 8

35|33 | 29 | 35| 31 | 34 | 26| 4

|3 |22 131272110

211l 21 1311511710

Figure 6-12: The luminance block from Figure 6-11 with the range of possible values
centered around 0

Figure 6-13 shows the luminance block after DCT. Each number is the coefficient
resulting from multiplying the matrix of luminance values in Figure 6-12 with one of the
matrices from Figure 6-10. Remember that these numbers, too, are centered around 0. So
the 132 in the upper left, for example, indicates a high luminance level for the block as a
whole. Notice that the numbers in the upper left are largest in magnitude (furthest from 0
in either direction), indicating that broad luminance differences are much greater than the
fine differences in this pixel block. This result is typical of JPEG-encoded photographs.

132 [110 | -43 | -3 1 5 -3 -3

-85 71 |-22|-20]| 19 |-15] -5 | 10

1031 13 | 20 | =12 11 | =10 =5 3

~34|-13] & 2 7 =2 | -6 4

=15 =211 =1 =112 -2 -4]10

g -5 & 3 0 -5 O 8

e -4 | -4 7 5 =7 | -6 &

3 -5 2 -1 1 -2 1 3

Figure 6-13: The DCT of the block in Figure 6-12

Compressing the Results

Now the real compression can begin, the first step of which is quantization. Figure 6-14
shows the 8%8 block of divisors used for quantizing the luminance block. Each number in
the coefficient block of Figure 6-13 is divided by the number in the same position in
Figure 6-14, with results rounded to the nearest whole number. This degrades the image
through quantization error, but note that the divisors in Figure 6-14 are smallest in the

upper left. Thus, the quantization error is most pronounced in the coefficients that measure
the finest distinctions, where the error is least likely to be noticed. The actual values of the
divisors varies according to the compression quality, with larger divisors used to quantize
the Cr and Cb blocks, but the divisor block always follows this general pattern (lower
values in the upper left, higher in the bottom right).

16 |11 | 10| 16 | 25 | 40 | 51 | 61

12|12 |14 |19 | 26| 58 | 60 | 55

14 | 13 | 16 | 24 | 40 | 57 | 69 | 59

14 | 17 | 22 | 29 | 51 | 87 | BO | 62

18 | 22 | 37 | 56 | 68 | 109|103 | 77

24 | 35| 55| 64 | 81 | 104|113] 92

49 | 64 | 78 | 87 | 103|121 | 120|101

72|92 | 95|98 |112[100]103] 99

Figure 6-14: The divisors used to quantize luminance blocks
The result of quantization for our sample block is shown in Figure 6-15.

You can see how suitable these numbers are for run-length and Huffman encoding.
Most of the coefficients have been quantized all the way down to 0, with many duplicate
coefficients among the rest.

After quantization, nonzero results tend to cluster in the upper left of the matrix, so the
quantized numbers are listed in the zigzag pattern shown in Figure 6-16.

8 10 -4 | O 0 0 0)]

=71 6 | -2 | -1 1 0 0 0

Figure 6-15: The quantized luminance block

Z

This zigzag pattern tends to produce a very long run of zeros at the end, as it does in
our example:

Figure 6-16: Storing coefficients in a zigzag order

8 10 -7 -76 -40-21-2-1-11-1001020 -1 000O0O0O0O0O0O

000O00O
0oo0oo0oo00000OO0OOO0OCOOOOOOOOOOOOOOOOOOQO

To encode the runs of zeros, we replace each nonzero entry in the list by a pair of
numbers: the number of zeros skipped (possibly none), and the coefficient itself. For
example, the eighth number in our list is a —2 that is preceded by one 0. This would
become the number pair 1, —2. At this stage, our list looks like this:

11 the rest are zero)

Some of these number pairs, such as 0, —1, appear very frequently in these lists
compared to other pairs like 0, 10. For maximum compression, the JPEG standard defines
a Huffman encoding for every possible number pair in these lists. The common 0, —1 pair,
for example, becomes the short Huffman code 001, while the uncommon 0, 10 pair
becomes the longer code 10110010. There’s also a special code, 1010, to signal that all the
rest of the coefficients in the list are 0. The Huffman encoding for our list is shown in
Table 6-8.

Table 6-8: The Huffman Encoding of the Coefficients from Figure 6-15

Zeros skipped Coefficient Huffman encoding
0 8 10110000
0 10 10110010
0 —7 100111

0 —7 100111

0 6 100010

0 —4 100100

1 -2 11100110
0 1 000

0 -2 0110

0 -1 001

0 -1 001

0 1 000

0 -1 001

1 -1 11001

2 1 110110

2 -1 110111
(Nothing left but zeros) 1010

All of the bits in the rightmost column, strung together, represent the compressed
encoding of our original luminance block. The original block represented the luminance
levels as 64 bytes, or 512 bits total. In contrast, the encoding in Table 6-8 uses a mere 88

bits.

The two color blocks, Cr and Cb, would show even higher compression because the
divisors used on the color blocks are even larger, which produces smaller numbers with
shorter Huffman codes and more zeros for the run-length encoding. Overall, JPEG images
typically achieve a 10:1 compression ratio. The amount of compression can be increased

or reduced by using smaller or larger divisors than those shown in Figure 6-14. These
divisors are adjusted by the “quality” slider in image-manipulation programs. Sliding the
control to “low quality” increases the divisors, reducing the file size while increasing the
quantization error.

JPEG Picture Quality

High compression is great only if the restored image is indistinguishable from the original,
or nearly so. Typically the alterations JPEG compression makes to an image are difficult
to see. To get a feel for the changes introduced by compression, let’s compare the original
block of luminance values to the block that results from compressing and decompressing,
as shown in Figure 6-17.

Criginal luminance Block Reconstructed Luminance Block
1291133128 | 120|128 66 | 71 | 86 130|127 [129|130 112 84 | 71 | 74
152|157 | 157 | 152|120 100 | 82 | 79 158|154 | 155|153 132102 86 | 85
1711176 | 178 | 169 | 162 | 141 | 120 | 109 174 | 173 | 174 | 172155129 | 111 | 107
167 | 168 | 179 | 175|168 | 154 | 142 | 128 1651168 | 173 | 174166 [150 | 137 | 130
1591155168 | 173 | 162|157 | 153 | 136 156|161 | 165|166 | 165160 | 150 | 141
163|161 | 157 | 163 | 159|162 | 154|132 159|163 | 162|158 158 [159|151 | 139
161 | 159 | 157 | 149 | 141 | 155] 149 | 138 159|161 | 156 | 146 | 147 | 154 | 148 | 136
151 | 147 | 147 | 149 | 141 | 143 | 145|138 151|153 | 145 | 135|138 150147 | 135

Figure 6-17: The original luminance block, and the result of compressing and
decompressing the block

Since it’s tough to visually compare these two blocks of numbers, Figure 6-18 shows
the differences as a grayscale matrix. As you can see, most of the matrix is neutral gray,
indicating numbers very close to the original.

— +15 or Mare

— Within +/-4

- =15 or less

Figure 6-19: The amount of error in each location of the luminance block

The best evidence for the quality of JPEGs is shown in Figure 6-19. On the top is an
uncompressed digital photograph. Because this photo is in grayscale, we don’t need RGB

pixel color, just a single byte indicating the grayscale level. At a resolution of 975x731,
this uncompressed photo requires just under 713 kilobytes of storage. In the middle is a
compressed JPEG version of the original photo, requiring just 75 kilobytes of storage,
which is virtually indistinguishable from the original. The photo on the bottom is a low-
quality JPEG using larger divisors. While the photo takes up only about 7 kilobytes,
compression artifacts are clearly visible. Many of the individual 8x8 pixel blocks have
been reduced to solid squares of the same gray level. In general, JPEG can result in a 10:1
compression ratio without sacrificing visual quality.

Compressing High-Definition Video

The JPEG format does a fantastic job of compressing images with only small sacrifices in
quality, but for high-definition video we need even more compression. Remember,
uncompressed high-definition video requires about 186MBps. Individually compressing
each image as a JPEG would reduce that requirement to about 18MBps—a big
improvement, but for streaming or disc storage we need to shrink the data to just a few
MBps per second.

Figure 6-18: An uncompressed photo (top), high-quality JPEG compression (middle), and
low-quality JPEG compression (bottom)

Temporal Redundancy

To hit this target, video compression techniques take advantage of similarities between
images in sequence. Figure 6-20 shows an image sequence from a movie’s opening
credits.

The Eird
&

The Robot

Tom Morrow

Figure 6-20: A few frames of an opening title sequence

Each of these images will be shown for several seconds; which means that the
sequence will contain many duplicate frames in a row. Also, even as the video transitions
from one image to the next, most of the picture remains unchanged. Only the area in the
center varies.

Now consider the image sequence shown in Figure 6-21. Although each frame differs
from the next, the same elements are present in each frame, just in different places on the
screen.

Figure 6-21: An image sequence with a moving object

These examples show two different forms of temporal redundancy, continuity of data
from one frame to the next. Compression that exploits such redundancy is called temporal
compression, and as we’ll see in the next section, it’s the key to achieving the compression
ratios needed for video streaming and storage.

MPEG-2 Video Compression

One method of temporal compression is employed by MPEG-2, a common video format
supported by Blu-ray discs and digital broadcast television. More advanced techniques
exist, but they are extensions of the ideas demonstrated here.

Groups of Frames

MPEG-2 videos are divided into sequences of around 15 frames called groups of pictures
(GOPs). Exactly one frame in each GOP is selected to be a basic JPEG-encoded image
called an intracoded frame (I-Frame). This frame is the rock upon which the rest of the
GOP is built. All of the other frames use temporal compression, which means they are
stored not as the absolute colors of the pixels in the image, but by how those colors differ

from those in another image in the GOP, as we’ll see shortly.

The other frames in the group are assigned one of two types, predicted frames (P-
Frames) and bidirectional frames (B-Frames). A P-Frame stores the difference between its
pixels and those of a previous frame, while a B-Frame stores the difference between its
pixels and those of a previous and a later frame.

A GOP is shown in Figure 6-22, with arrows indicating the frames referenced by the
temporal compression. As you can see, everything depends on the I-Frame. During
playback, it must be decoded before any other image in the GOP, after which the frames
that directly reference the I-Frame can be decoded, and so on.

= 1 15 = =

B B | B B P B B P B B P
P-Frame in
Previous GOP

Figure 6-22: A GOP, or group of pictures

Grouping pictures this way simplifies encoding and decoding, and also limits the
length of the reference “chain.” Just like a photocopy of a photocopy, the longer the chain
of temporal compression, the fuzzier the image gets. The regular appearance of I-Frames
is also what allows you to see images as you fast-forward or rewind; the video player just
picks out the I-Frames, which can be decoded and displayed independently of the other
frames in its GOP.

The MPEG specification gives encoding software wide discretion in forming GOPs.
The number of I-Frames, which directly determines the size of GOPs, is up to the encoder,
as is the number of B-Frames between the other frame types. Like the divisors used in
JPEG quantization, the ability to change the relative numbers of the three frame types
offers a trade-off between quality and compression. In applications where compression is
paramount, like videoconferencing, I-Frames are rare and B-Frames are common, while in
a Blu-ray, the encoder will use as many I-Frames as possible while still fitting all the video
data on the disc.

Temporal Compression

So how does the temporal compression of P-Frames and B-Frames work? In this example,
we’re compressing a P-Frame by referencing an I-Frame. First, the pixels in the P-Frame
are divided into 16x16 macroblocks. For each macroblock, the I-Frame is searched for a
matching block of pixels with the same color data. This matching block may not appear in
exactly the same place in the I-Frame, though, so it is indicated by its offset: the difference
between the location in the P-Frame and the location in the I-Frame, expressed in screen
coordinates. For example, an offset of —100, 50 indicates that the macroblock’s location in
the I-Frame is 100 pixels left and 50 pixels down from its location in the P-Frame, as
shown in Figure 6-23.

g— |

Frame 88 (l-Frame) Frame 89 (P-Frame)

Figure 6-23: A macroblock in a P-Frame referencing a matching block of pixels in a
previous frame

In most cases, an exact match won’t be found, so in addition to storing the location of
the best match, the differences between the two macroblocks must also be stored. Figure
6-24 shows a luminance block from the P-Frame and the best match in the I-Frame. (I’'m
using 8x%8 blocks instead of a full 16x16 macroblock to keep the example manageable.)

Luminonce Block from P-Frame Luminance Block from |-Frome
1221111 J 1251116 | 147 | 66 | 99 | 88 1291133128 120|128 &6 | 71 | 86
155|157 | 165 150|123 | 100) 88 | 79 152|157 | 157 | 152 | 120|100 82 | 79
1711188178 166 166|146) 75 | 111 1711176178169 | 162 | 141 | 120] 109
167 | 168|175 175 174|159 142] 130 167|168 | 179175168154 1421128
152|158 | 1864 | 171 | 173 | 157 | 160] 1346 159|155 | 168 173 1162|157 | 153 136
1751168 150 | 160 | 160 | 157 | 163 | 130 163 11461 | 157§ 163|159 | 162 | 154]) 132
1721164 | 157 | 149 | 142 | 150 | 143] 138 161|159 157 | 149 | 141 | 155] 149] 138
151 | 144 | 147 | 1491 145 | 143) 142 | 150 151 | 147 | 147 | 149 1 141 | 143 | 145] 138

Figure 6-24: A luminance block and its best match in a prior frame

Next, a block of differences is computed: each number in the I-Frame block is
subtracted from the number in the same position in the P-Frame block. The result for our
example is shown in Figure 6-25.

Luminance Difference

O 22 3 4 |-191 0 |-28] O
-3 0 -8 2 -3 0 -6 0
o |-12| O 3 |-4]-5]|45] -2
oOojJoy|4)]|]O0]|-6]-5]0]-2
0 -3 4 2 1-111 O -/ 1 0
= I B 7 3 -1 5 -9 .
-1nl-510] o0]-1 . 516]0
O 3 0 0 -4 0 3 |-12

Figure 6-25: The difference between the two luminance blocks in Figure 6-24

Because the blocks are a close match, these values are all small. This is a form of
predictive encoding, just like the list of temperatures shown earlier in the chapter. By
storing differences, we’ve made the range of data much smaller, and therefore more easily
compressed. When we apply the DCT and quantize the results, the numbers are downright

tiny, as shown in Figure 6-26.

Figure 6-26: The result of quantizing the block in Figure 6-25 and applying the DCT

This block is highly susceptible to the last stage of compression: the combination of
run-length and Huffman encoding. As shown in Table 6-9, the original luminance block

luminance Diference after DCT

0 ojJo|]-1]0 o]0 0
0 1 1 0 0 o]0 0
0 1 0 0 0 o]0 0
-1 1 0 0 0 o]0 0
0 1 0 0 0 o]0 0
0 010 0 0 cl]0 0
0 o]0 0 0 o]0 0
0 o]0 0 0 o]0 0

has been reduced to a mere 39 bits.

Table 6-9: The Huffman Encoding of the Numbers in Figure 6-26

Run length Coefficient Huffman encoding
4 1 1110110

1 -1 11001

0 1 000

0 1 000

0 -1 001

1 1 11000

7 1 111110100
(Nothing left but zeros) 1010

Not every macroblock in the P-Frame is encoded in this way. In some cases, a
macroblock may not be similar enough to any block of pixels in the previous frame to
save any space by storing the difference. Those macroblocks can be recorded directly, like
the macroblocks in an I-Frame. For a B-Frame, matching macroblocks can be found in a
previous frame or a later frame, which improves the odds of a close match.

Video Quality with Temporal Compression

Temporal compression depends upon temporal redundancy—sequences of frames with
few changes. For this reason, some videos compress much better than others. Movies with
lots of camera movement, like Cloverfield or The Blair Witch Project, are difficult to
compress, while movies with long takes where the camera doesn’t move, like 2001: A
Space Odyssey, are ideal.

Ultimately, video compression is a bit of an art as well as a science. As stated earlier,
different MPEG-2 encoders can produce different results for the same sequence of images.
Shorter GOPs, with more I-Frames and fewer B-Frames, produce better-looking video
than longer GOPs, but longer GOPs mean better compression. An encoder can vary the
mix of frames even within the same video, using longer GOPs when there’s high temporal
redundancy and shorter GOPs when there isn’t. Also, good encoders will try to line up
GOP boundaries with sharp cuts in a movie; if you’ve ever seen a video that was
momentarily very blocky when the scene changed, it’s likely because a GOP stretched
over the cut.

There’s also the question of performance, especially if the video is being compressed in
real time, as with a live event. There might not be enough time to find the absolute best

match for a macroblock in the other frame.

Playback quality can vary as well. For example, because of how frames are broken into
individually processed macroblocks, seams may appear along the borders of the blocks.
To reduce this effect, a decoder may apply a deblocking filter. This smoothes block
boundaries by averaging pixel colors, much like the anti-aliasing methods shown in
previous chapters. The strength of the filter can be adjusted based on the likelihood of a
clean boundary. In a B-Frame, for example, if one block references the previous frame
while an adjacent block references the next frame, there’s a greater likelihood of a rough
boundary, which calls for stronger filtering.

In other cases, the resolution of the video and the display resolution may not match.
For example, when you’re streaming an episode of the old cop show Adam-12 (it’s not just
me, right?) on a high-definition television, either the television or the player has to convert
the original 640%480 images to fill the 1920%1080 display. This is the same problem we
solved in Chapter 5 with texture mapping—applying a bitmap to a larger area—and video
devices can employ the same sorts of techniques. Early high-definition players effectively
used nearest-neighbor sampling, which produced poor results. Newer players employ
techniques similar to trilinear filtering. Instead of blending between bilinear samples from
two different levels in a mipmap, however, they blend between successive frames. This is
especially effective in smoothing objects in motion.

Although not as computationally intense as the original encoding, playing back a
temporally compressed video is still a lot of work for a processor. Also, the structure of a
GOP requires decoding the frames out of order. This in turn requires that frames be
buffered, held in a queue prior to display. For streaming video, much larger buffers are
used so that minor hiccups in the network don’t disrupt playback.

The Present and Future of Video Compression

The latest video compression standard, known as H.264 or MPEG-4, extends the
techniques used in MPEG-2 but isn’t fundamentally different. The primary differences
improve the quality of macroblock matching. Instead of being matched against just one or
two other frames, macroblocks can be matched against 32 other frames. Also, the 16x16
macroblocks themselves can be broken down into separately matched 8x8 blocks.

Through such improvements, MPEG-4 can often achieve twice the compression ratio
of MPEG-2 with the same quality result. For that reason, MPEG-4 is an industry standard
for both streaming and storage. Most Blu-ray videos use it, as do YouTube and Netflix. Its
chief competition is a format called Theora, which uses similar compression methods but
is freely licensed, unlike the proprietary MPEG-4.

Today’s compression formats do an amazing job at shrinking video data, but they do so
at a high computational cost. The next time you watch a clip on YouTube, think about a
GOP, all the macroblocks being copied and updated from one frame to the next, and all the
number crunching that goes into performing the DCT over and over again. It’s a dizzying
amount of calculation just to show a cat falling off a piano.

Even more computational horsepower will be needed in the future. The new ultra high

definition (UHD) format, seen in theaters in films like Peter Jackson’s Hobbit series, is
starting to trickle down to home video. UHD images are 3840%2160, which is four times
the number of pixels as current high definition. The frame rate will also increase, from
today’s 24 or 30 fps to 48, 60, or even 120 fps. UHD video could increase the bit
requirements from today’s 1,400Mbps to over 23,000, which will require a corresponding
increase in bandwidth and disc storage capacity—unless someone clever comes up with an
even better way for software to shrink the data.

7

Search

This chapter is about a topic that, perhaps more than any other subject covered in this
book, we all take for granted: finding the data we want, known as a search. Searching
happens so often, and so quickly, that it’s easy to miss the magic. When a word processor
underlines a misspelled word that you just typed, a fast search has taken place behind the
scenes. When you enter part of a filename and get a list of matching files on your laptop’s
hard drive, that’s another near-instant search. And then there’s the ultimate search
achievement: the Web. The Web is so unfathomably large that we can only guess its true
size, and yet, web search engines can find relevant web pages in a fraction of a second.

How does software find what we want so fast?

Defining the Search Problem

Let’s start by getting our terminology straight. A collection of data is known, appropriately
enough, as a data collection. Each item in the data collection is a record. A record is
uniquely identified by a key (no relation to the cryptography term). A search retrieves the
record that matches a given key. For a real-world example, when you use a dictionary the
word you’re looking up is the key, and the definition of that word is the record.

The main goal of searching is to find the right record. But the speed of the search is
just as important. If searches could go on indefinitely, searching would be simple. But as
the wait time increases, so does our frustration. The length of time we’ll wait on a search
varies, but it’s never very long, and in many situations, the search must appear to finish
instantaneously.

Putting Data in Order

Efficient searching requires well-organized data. When you visit a bookstore, for example,
finding a novel by a particular author is easy if the store has ordered the shelves by
authors’ last names. For one thing, you know where to start looking. Once you look at the
first book on the shelf and see how close its author’s name is alphabetically to the author
you seek, you would have a good idea where to look next.

If the store didn’t shelve its books in any particular order, then finding a book would be

hard work. The best option is to start at one end of the shelf and examine every single
book, which is known as a sequential search. In the worst case, the book you want isn’t
even on the shelf, but you wouldn’t know that until you’ve looked through the whole
collection.

Therefore, putting the data collection in a particular order, known as sorting, is
essential for efficient searching. There are many different ways to sort; entire books have
been written to describe different sorting algorithms for software. We’ll look at two
methods here.

Selection Sort

If I asked you to put a list of numbers in order, you would most likely use what is known
as a selection sort. First, you’d scan the list to find the lowest number, and then you’d
cross the number out and copy it to a new list. You would repeat the process until all the
numbers were in order in the new, sorted list.

The first three steps of a selection sort of nine numbers are shown in Figure 7-1. In the
first step, the lowest number is copied to the beginning of a new list. In the steps that
follow, the lowest remaining numbers are copied to the new list.

47 |93 |56 |33 |45 |52 |22 11 |74

Step | l

11

47 | 93 | 56 | 33 | 45 | 52 | 22 74
Step 2 l

11 | 22

47 | 93 | 56 | 33 | 45 | 52 74
Step 3 l—

11122 |33

Figure 7-1: The first three steps in a selection sort of nine numbers

Quicksort

While selection sort is easy to understand, software rarely uses it because it isn’t efficient.
Each step requires us to process every number in the unsorted list, and for that effort all
we get is one number in its correct position.

A better sorting method, called quicksort, partially orders all of the data processed
during each pass, reducing later effort and time. Instead of scanning the entire list for the
lowest number, we select a number in the list to be the pivot. We use the pivot to partition
the list, dividing the list around the pivot. Numbers that are less than the pivot go to the
front of the list, and those that are greater go to the back.

For this example we’ll use the same list of numbers used in the selection sort. Figure 7-
2 shows the first step of partitioning. Different versions of quicksort select the pivot in
different way; we’ll keep things simple and use the first number in the list, 47, as the
pivot. The next number, 93, is copied to the end of the new list because it is greater than
47.

47 193 |56 |33 |45 |52 12211 |74

|

Less than More than
Pivot 22 Pivot

Figure 7-2: The number 93 is more than the pivot, so it moves to the end of the new list.

In Figure 7-3, 56 is also greater than 47, so it’s copied to the next space on the end.

47 556 1 33 145152122111 |74
Less than More than
Pivot 56 | 93 Pivot

Figure 7-3: The number 56 is more than the pivot, so it moves to the end of the new list.

In Figure 7-4, 33 is less than 47, so it’s copied to the front of the new list.

47 33 14515212211 |74
Less than More than
Pivol 33 36 | 93 Pivot

Figure 7-4: The number 33 is less than the pivot, so it moves to the front of the new list.

Figure 7-5 combines the next five steps. Three of the remaining numbers go to the
front of the list and two go to the back. This leaves a gap for one more number.

47 45 | 52 |22 |11 | 74

|

lessthan | 45 | 45 | 22 | 11 74 | 52 | 56 | 93 | More than

Pivot Pivot

Figure 7-5: The remaining numbers in the list are partitioned.

In Figure 7-6, this gap is filled with 47, the pivot. This completes the initial
partitioning.

47

{

L"‘;?”’““ 33 145 |22 | 11 |47 | 74 | 52 | 56 | 93 | More then
ivot Pivot

Figure 7-6: The pivot fills the open space in the new list.

This new list isn’t sorted, but it’s in better shape than before. The pivot is in its correct
sorted position, indicated by the shading. The first four numbers in the list are less than 47,
and the last four are greater than 47. A single partitioning does more than put one number
in its correct place, like one step of a selection sort; it also divides the remaining numbers
in the list into sublists, as shown in Figure 7-7. These sublists can be sorted independently.
Sorting two shorter lists requires less effort than sorting one longer list. If you doubt this,
consider an extreme case: would you rather sort 50 short lists of 2 numbers, or 1 long list
of 100 numbers?

33 |45 |22 |11 |47 |74 | 52 | 56 | 93

| |
Sublist 1 Sublist 2

Figure 7-7: Partitioning has transformed the list into two separate, smaller lists that can
be sorted independently.

The two sublists are now independently partitioned. In Figure 7-8, the first number in
the sublist, 33, becomes the new pivot and the four numbers of sublist 1 are partitioned.
This puts 22 and 11 to the left of the 33, and 45 to the right.

Pivot

22 |11 |33 |45 |47 |74 | 52 | 56 | 93

1]
| t
Less than More than
Pivot Pivot

Figure 7-8: Partitioning sublist 1 of Figure 7-7

In Figure 7-9, sublist 2 is partitioned using 74 as a pivot.

Pivot

Y

22 | 11 | 33 |45 |47 | 52 | 56 | 74 | 93

| |
| t
Less than More than
Pivot Pivot

Figure 7-9: Partitioning sublist 2 of Figure 7-7

These partitions put both of their pivots in their correct sorted places in the list. The
partitions also create four new sublists, as shown in Figure 7-10.

22 1 11 g8l 45 47 52 | 56 |wzam| 93

|] 1 |
| t | t
Sublist 3 Sublist 4 Sublist 5 Sublist 6

Figure 7-10: Now four sublists remain. Single-number sublists are trivial.

Sublists 4 and 6 contain a single number, which means there’s nothing to partition. In
Figure 7-11, sublists 3 and 5 are partitioned.

IR 22 [ESSHIFASHIFAZEIROZEI 56 |[RZARIETS

l | |]
| f | f
Partitioned Already Partitioned Already
Sorted Sorted

Figure 7-11: Only two trivial sublists remain, which means the whole list is sorted.

Now we have just two single-number sublists left, which means that the sort is

complete.

In this example, the pivots evenly divided their partitions, but quicksort isn’t always so
lucky. Sometimes the split is uneven, and in the worst case, the pivot could be the lowest
or highest number in the list, which means the partitioning produces the same result as a
step in a selection sort. But most partitions will be roughly even, which tends to result in a
much faster sort.

More generally, quicksort scales much better than selection sort. For any sorting
method, sorting time increases as the size of the data collection increases, but selection
sort slows down much more than quicksort. Let’s say a particular computer can sort
10,000 records in around a second using either method. On the same computer, a selection
sort of 1,000,000 records would take nearly 3 hours, while a quicksort would take only
about 11 minutes.

Binary Search

When data is in order, software can find a particular record easily. One simple search
method for ordered data is binary search. The word binary in this case doesn’t refer to
binary numbers, but to choosing between two alternatives.

Figure 7-12 shows binary search in action. The record we want has a key of 48.
Initially, all we know is that the data in the collection is ordered on our key, so the record
could appear anywhere. In step 1, we examine the record in the middle of the collection. If
this record had a key of 48, we would we be done, but this is unlikely. However, because
this record has a key of 62, which is larger than 48, we know that the desired record must
appear among the first seven records. Thus, examining one record has eliminated not just
that record from consideration, but also the seven records that appear later in the
collection.

In step 2, we examine the fourth record, the midpoint of the remaining seven records.
This record has a key of 23, which is lower than 48. Therefore the desired record must be
in the three records between 23 and 62.

In step 3, we examine the middle of these remaining three records, which has a key of
47. This tells us the desired record must be the one record between 47 and 62. If that
record did not have a key of 48, it would mean the collection did not include a record with
that key.

Sorted Data | 1517|1923 |33 |47 148626667 74|77 |89192 |94

Stepl |22 |22 |22 |2 |62|2 |2 |2 2|2]|2]|¢®%

Step2 |2 |2 |2 |23 2 |2 |2 |62|2 |2 |2 |2 |2 |2]|¢®2

Step3 | 2| 2|2 |23 ¢ |47 |62 |¢|¢|¢|2|¢]|°¢*¢

V

Stepd | ¢ | ¢ |2 |23| ¢ |47|48|62| 2 | ¢ |¢ | ¢ |2 |¢|°*¢

Figure 7-12: Binary search taking four steps to find a particular record in a collection of
size 15

Each step in a binary search eliminates half of the records from consideration, which
means binary search scales fantastically well. With a sequential search, doubling the size
of a data collection doubles the time needed for the average search. With binary search,
doubling the number of records requires just one more step. If we start with 31 records, for
example, after examining the middle record, either we get lucky and find the desired
record, or we find out whether the desired record is in the first or last 15 records. Either
way we would now have only 15 records left to search, putting us back where we started
in Figure 7-12. For huge data collections, the difference between binary and sequential
search is dramatic. A sequential search of 1,000,000 records will examine 500,000 records
on average, while a binary search of 1,000,000 records will examine no more than 20.

Indexing

To keep the figures simple, our examples to this point have used just record keys. In
practice, though, the rest of the record has to be stored somewhere, and this can cause
problems. To see why, we have to understand the choice software faces when allocating
storage space for data, whether in main memory, on a hard drive, or anywhere else.

Fixed-size storage allocation assigns each record the same amount of space and is used
for data that is either always the same size or has a small maximum size. Credit card
numbers, for example, are always 16 digits. The names of credit card owners, on the other
hand, vary in size, but there are only so many letters that will fit on the card. Both card
numbers and card-holder names could be stored in a fixed number of bytes. In Figure 7-
13, the maximum size of a last name is 15 characters, just long enough for Hammond-
Hammond. The other names are shorter, resulting in wasted bytes, shown as shaded

squares. Because the space needed to store a name is small, though, this wasted space is of
no great concern.

H{AIMIMIOIN|D| - |[HIAIMIMIOIN|D
SIML | T|H
J|O[H|N| S |OIN

Figure 7-13: Fixed allocation of storage results in wasted space

Variable-size storage allocation exactly fits the data. Consider a collection of MP3
files. Roughly speaking, the longer the song, the larger the MP3 file. A short pop song
might be 3 or 4MB, while a progressive-rock epic might be as large as 20MB. We
wouldn’t want to store song data in fixed space because this would waste too much space
for shorter songs, and this would limit the length of a song. Instead, the data should be
stored in just as much space as needed.

Variable-size storage allocation uses space efficiently, but fixed-size storage allocation
is required for software to use efficient search methods. When all the records in a
collection are the same size, software can quickly find a record in a particular position.

This is because storage locations are identified by numerical addresses. Every byte in
digital storage—whether in a computer’s main memory, or on a flash drive or hard drive—
can be precisely located by its address. If a computer has 8GB of main memory, for
example, those bytes are numbered from zero to just over eight trillion. Collections of
fixed-size records are stored contiguously, which makes finding a record’s address simple.
Suppose a collection has 100 records, each 20 bytes in size, and the collection begins at
address 1,000. That puts the first record at address 1,000, the second at 1,020, the third at
1,040, and so on. We can calculate the address of any record by multiplying its position
number by 20 and adding the result to 1,000. In this way, software can quickly locate any
record in any collection of fixed-size records.

Finding records quickly is essential for a method like binary search. Without fixed-size
records, the only way to find a record in a particular position is to start from the beginning
of the data collection and count the records. That’s just a sequential search, and defeats the
point.

Choosing between fixed-size and variable-size storage allocation means choosing
between efficient search and efficient storage. However, a technique called indexing gives
us both. Indexing separates the keys from the rest of the records, much as a library card
catalog allows patrons to search for books on cards before ultimately retrieving the books
from the shelves.

An index is a table of record keys and addresses. The addresses themselves are stored
as binary numbers with a fixed number of bits. For example, when Microsoft releases
versions of Windows in “32-bit” and “64-bit” editions, those bit counts refer to the size of
the addresses for main memory. Because the addresses are a fixed size, we can store the
addresses and keys together in an index of fixed-size records that can be searched
efficiently using a method like binary search. The rest of each record’s data is stored in a
variable-size allocation. This produces a data collection that is efficient for storage and

searching.

Figure 7-14 shows an indexed data collection of four songs. On the left, the index
contains the song titles and the addresses for the remaining data of each song, such as the
artist name and the encoded music. On the right is a block of memory cells numbered
from 1 to 400. The arrows point to each address.

As shown in the example, this split data allocation allows each record to use as much
or as little space as needed. It even allows the index and remaining data to be on different
storage devices. For example, the index might be kept in a computer’s fast main memory,
while the encoded music data is left on its relatively slow hard drive. Because only the
index is needed for search, such an arrangement allows for efficient search while using the
minimum amount of main memory.

>
|
> |
Life on Mars 204 |
Nite Flights]
Surrender 92 I_}I | I
The True Wheel 293

e

400

Figure 7-14: An indexed data collection of digital music

We can also have multiple indexes for the same data collection. The arrangement in
Figure 7-14 allows individual songs to be quickly located by song title, but doesn’t help us
search for a song based on artist name or album title. Data collections can have multiple
indexes for different search criteria, and because the main record data is simply referenced
by an address, having multiple indexes doesn’t greatly affect the total storage
requirements for the data collection.

Hashing

Although ordered data is required for efficient searching, sorting data takes time. So far
we’ve discussed sorting as though data collections need to be sorted just once. Sometimes
that is the case; for example, a word processor needs a list of correctly spelled words for
spell checking, but that list is created once and supplied as part of the application. A
spellcheck word list is a static data collection, one that changes infrequently. However,
many of the collections we search are dynamic—records are frequently added or removed.
Because efficient searching requires ordered data, collections must be re-sorted following
each addition or removal. When insertions and deletions are common, the time spent re-

sorting the data collection can negate the benefit of a faster search. In such cases, it may
be better to structure the data to facilitate frequent changes.

One data structure that eases additions and removals of records involves hash
functions, which were introduced in Chapter 2. For this example let’s imagine a hash
function that produces a mere 3-bit hash, equivalent to a decimal number in the range of 0
to 7. We can use this to store records in a hash table with slots for 8 records. A slot is a
place where a record could be stored.

To store a record in the hash table, we hash the record’s key to determine which slot to
use. Suppose we are storing MP3 files with song titles as the keys. Four titles and their
associated hash codes are shown in Table 7-1.

Table 7-1: Hash Codes for Sample Song Titles

Song title Hash code
Life on Mars 6
Nite Flights 4
Surrender 1
The True Wheel 4

Figure 7-15 shows the hash table after the insertion of the first three songs from Table
7-1. The first column in each record is a bit, which is 1 if the slot is in use and 0 if not.
The second column is the title, and the third column holds the address of the remaining
data.

0|0
1 | 1| Surrender (Address of Other Data Including Encoded Music)
sl
3]0
4 | 1 | Nite Flights (Address of Other Data Including Encoded Music)
510
6 | 1| Life on Mars (Address of Other Data Including Encoded Music)
7 |0

Figure 7-15: An eight-slot hash table

The beauty of a hash table is that a search doesn’t really require searching. We just run
the key through the hash function and the result tells us where the record should be. If
there’s no record in that slot, we know right away that the collection doesn’t contain a
record with that key. Even better, hash tables avoid the effort of sorting. This makes a hash
table an excellent choice for a collection with frequent additions and deletions of records.

However, we haven’t inserted the fourth song in the list. The song title “The True
Wheel” hashes to 4, the same number as “Nite Flights.” As you may remember from
Chapter 2, a hash function is not guaranteed to produce a different hash value for every
input, and indeed, some matching hash values, or collisions, are inevitable. Since we can
put only one record in a slot, we need a rule for handling collisions. The simplest rule is to
use the first empty slot after the collision point. Because slot 4 is already occupied with
“Nite Flights,” we would place “The True Wheel” in the next open slot, which is slot 5, as
shown in Figure 7-16.

0]0
1 | 1] Surrender (Address of Other Data Including Encoded Music)
2 |0
3 |10
4 | 1 | Nite Flights (Address of Other Data Including Encoded Music)
5 | 1| The True Wheel (Address of Other Data Including Encoded Music]
6 | 1| Life on Mars (Address of Other Data Including Encoded Music)
/7 |0

Figure 7-16: Resolving a collision. The second song that hashes to 4 is placed in the next
empty slot, which is slot 5.

This handles the collision problem, but it complicates the use of the hash table.

With this collision rule in place, finding a record is no longer a one-step process. Each
search still starts at the slot indicated by the hash code, but then checks the slots one by
one until it finds the matching song title. If the search reaches an empty slot, the song isn’t
in the collection.

Collisions can also cause records to be stored far from the position indicated by the
hash code. For example, if a title with a hash code of 5 is inserted into the table shown in
Figure 7-16, even though no previous song title has hashed to 5, the slot is already filled
by “The True Wheel,” and the new song would move all the way to slot 7. As a hash table
fills, these situations become more common, degrading search performance; in effect,
some hash table searches become miniature sequential searches.

Collisions also complicate the deletion of records. Suppose “Nite Flights” is removed
from the hash table of Figure 7-16. The obvious way to remove a record is just to mark the
slot “empty” again, but that doesn’t work. To see why, remember that the song title “The
True Wheel” hashed to 4, and the song was stored in slot 5 only because slot 4 was
occupied at the time. A search for “The True Wheel” will begin at slot 4 as indicated by
the hash code, find the slot empty, and end the search unsuccessfully. The song is still in
the index table, but can’t be found by a hash search.

To avoid this problem, we can remove the song data but keep the slot marked as
occupied, as shown in Figure 7-17.

Slot 4 is now what is called a tombstone. By leaving the slot marked as occupied while
deleting the data, we ensure that searches still work. However, tombstones waste space.

Furthermore, because the table never really frees any record slots, the performance issues
of congestion remain.

For these reasons, hash tables are periodically rehashed. Once a certain percentage of
the slots in a table are occupied, a new, larger table is created, and each key in the original
table is hashed with a new hash function, producing a fresh, sparsely populated table
without any tombstones.

0]0
1 | 1] Surrender (Address of Other Data Including Encoded Music)
210
310
4 |1
5 | 1| The True Wheel (Address of Other Data Including Encoded Music)
6 | 1| Life on Mars (Address of Other Data Including Encoded Music)
7 10

Figure 7-17: Leaving slot 4 marked as occupied after deletion of its data

Web Search

All of the techniques shown in this chapter are needed for efficiently searching large data
collections, and no collection is larger than the Web. A search engine such as Google
depends upon a vast index, where the keys are search terms, the addresses are URLs, and
the web pages are the records. The size of the Google index is estimated at around 100
petabytes, or 100,000,000 gigabytes. To find something in an index this large requires all
of the best search techniques. Although these techniques help illustrate how an index this
large could be searched, they don’t tell us how the index was created in the first place.

Search engines use robots, programs that run without direct human intervention, to
build their indexes. The robots crawl all over the Web. Starting at some particular web
page, they make a list of all the links on that page. Those linked pages are then processed
to find links to other pages, and so on. Eventually the robot has links to most of the
content on the Web.

Some content, though, is more difficult to locate. Some pages can’t be reached from a
site’s home page but are instead found through the site’s own search engine. A news site,
for example, may not link to older articles but does provide a local search for its archives.
This unlinked but valuable content is known as the deep web. Incorporating deep web
content into a search engine index usually requires some assistance from the site. Site
managers have several ways to provide web-crawling robots a “table of contents” for all
the pages on the site, such as a document called a Sitemap. This document is named after
the site map page some sites provide for users to quickly find the content they are looking
for, but has a specific format that’s easy for robots to process. Sitemaps keep search
engines updated with content changes and are especially useful for sites with deep content
that would otherwise be left out of search engine indexes.

Ranking Results

As robots gather pages, search engines mine the pages for keywords, counting how often
each keyword appears on each page. Early search engines employed little more than a list
of keywords along with their page counts. If you searched for cake, the page where cake
most often appeared would be at the top of the returned list. That’s logical enough, but a
mere word count doesn’t produce what we now consider to be good search results.

The first problem is that it’s too easy for someone to exploit the system for personal
gain. Suppose the operator of a site selling knockoff pharmaceuticals wants to get a lot of
traffic and doesn’t care how it’s done. When the operator discovers that legions of people
are searching for omelette recipe, the operator might put those words on the home page as
many times as possible, even hiding the words in the behind-the-scenes formatting code.
As a result, the site might be among the first returned on searches for omelette recipes,
even though no such recipes appear on the site. Word counts do not guarantee a match
between search terms and content.

Another website operator might build a site that is legitimately about omelettes, but it’s
filled with content stolen from Wikipedia, in order to generate revenue from ads about a
zero-cholesterol egg substitute. In this case, the word count correctly connects the search
term to matching content, but the quality of the content is poor.

The underlying issue is that the websites are self-reporting the nature and the quality of
their content. What’s missing is the opinion of a disinterested viewer. Ideally, search
engines could employ an army of reviewers to determine what pages are about and how
well they cover their chosen topics. The Web is so vast and ever-changing, though, that
this is a practical impossibility.

Instead, search engines rely on the opinions of other websites. They acquire these
opinions in the form of inbound links. The number of links to a particular page is a good
metric for how that page is regarded by the online community. In Figure 7-18, page C has
four inbound links, page D has none, and each of the others has one. On this basis alone,
page C appears to be the most valued resource, while A, B, and E appear equally useful.

]

T 0
: B

D

Y

A ——| 4

<]
>
(&

Figure 7-18: The number of links pointing to a page is one factor used by search engines
to determine ranking.

There’s more to the story though. A page with a high inbound link count grants more
points to the pages it links to. In the previous figure, three pages have only one inbound
link, but the quality of each link is different. Page E is linked from page C, which has a
high inbound link count, while pages A and B are linked only from each other. Factoring
the quality of each link into the link count helps to foil link farming, in which large
numbers of pointless websites are created, often through free host services, for the purpose
of increasing a target site’s inbound link count.

In effect, this turns the Web into a collection of self-organized expert communities.
When a number of well-regarded cooking sites begin linking to a new omelette-focused
site, which in turn links back to omelette-related content in the established sites, the new
site is inducted into the online cooking community. Thereafter, the new site’s links count
as much as the older, established sites.

Using the Index Effectively

While building the index is the bulk of the work of making a search engine, how the index
is used during a search is just as important. Good search results require attention to detail.

For one thing, a search engine cannot merely use the supplied search terms as
keywords. Consider the differences in word forms. You might type frozen rain in a search
box, but most pages with relevant information use the form freezing rain. By linking
together different forms of keywords in its index, a search engine can maximize the
usefulness of results. This idea applies to synonymous terms as well. Because the words
insomnia and sleeplessness mean the same thing, searching for either term produces
similar results, even though some pages predominantly use one word or the other. For
example, the Wikipedia article on insomnia appears in the first few results for either
search term, even though, at the time of this writing, the word sleeplessness appears only
twice in the article, while the word insomnia appears over 200 times.

The results from these search terms are not identical, though. A search for insomnia
will also include links to the 2002 film Insomnia, but these links aren’t returned by a
search for sleeplessness. That result makes sense—presumably, no one searching for the
film would have entered a synonym of the film’s title—but how can a search engine know
the two terms are linked in some ways but not others?

Tracking how search terms are combined can yield valuable clues. If searchers
frequently add the terms movie or film to the term insomnia, then searches for just
insomnia may indicate someone interested in the film and not the medical condition.

Furthermore, the links on a search results page are not actually direct links to the listed
pages. Instead, they are pass-through links. For example, if you search Google for
insomnia, then click on the link for the Wikipedia entry, you’ll first be taken to the
google.com server, which will then redirect you to wikipedia.org. Google tracks which
result you selected, and this data, collected from countless users over time, allows Google
to fine-tune the results, keeping the links that users actually find useful near the top.

http://wikipedia.org

Search engines can also make use of the location of the person searching. For example,
when you search for smiley’s pizza while you’re standing in a particular town, the search
engine appends the town’s name to the search, so that the results are localized, instead of
returning the websites of the most popular pizzerias with that name in the entire world.

What’s Next for Web Search

As impressive as current web search capabilities are, there’s still room for improvement.

For example, images provide unique challenges for search engines. Currently, image
files are indexed based on accompanying text. A search engine might gather clues from an
image’s filename, or make educated guesses based on the text surrounding the image on
the page.

We can soon expect the use of computer vision techniques in web indexes. Such
software techniques transform an image into a description of the image. In some ways this
is the reverse of the graphics techniques described in Chapters 4 and 5, where
mathematical models were rendered into images. With computer vision, images are
simplified into mathematical descriptions that are then categorized by pattern. Such
software is currently used in self-governing robots, so that they can recognize an object
they have been sent to retrieve. Future search engines may process the Web’s images using
these techniques, identifying both general subjects (“clear sky,” “kittens™) and specific
subjects (“Eiffel Tower,” “Abraham Lincoln”) within the images.

Indexes will also be updated faster. Currently web indexes update only when a web-
crawling robot passes through. In the future, indexes may be updated in near real time, so
that conversations quickly developing throughout social media can be indexed as they
happen. Eventually, real-time search may be combined with artificial intelligence to
automatically generate basic news stories from social media for fast-breaking events like
natural disasters.

But those are tomorrow’s marvels. The Web and its search engines are the marvel of
today, a powerhouse of information unfathomable just a few decades ago.

8

Concurrency

Usually we can tell when software is doing something interesting, even if we don’t know
how it’s done. We know that computers make graphics, encrypt our transmissions, and
stream our videos. What we miss, though, is that these tasks often involve multiple
programs, multiple processors, or even multiple computers connected via a network,
accessing the same data at the same time.

This overlapping access of data, known as concurrency, is a vital part of modern
technology. High-performance tasks like graphics and shared resources like websites
wouldn’t be possible without it. But concurrency causes big problems when it’s not
carefully managed. In this chapter, we’ll see how results can become scrambled when
multiple processors access the same data. Then we’ll look at the clever software (and
hardware) techniques that keep processors from getting in each other’s way.

Why Concurrency Is Needed

Situations that require concurrency fall into three basic categories: performance, multiuser
environments, and multitasking.

Performance

Concurrency is needed when there’s more work to do than a single processor can handle.
Until recently, the number of instructions a processor could execute in a second was
steadily increasing, but now the pace of improvement has slowed. In order to execute
more instructions in the same amount of time, a processor has to run faster. The faster it
runs, the more power courses through it and the hotter it gets, which can eventually
damage the components.

To mitigate that problem, the size of the components in the processor keeps getting
smaller so that they draw less current and remain relatively cool. But it’s getting difficult
to make processor components any smaller, which in turn makes it difficult to make them
run any faster. When a single processor can’t get the job done, the only solution is to use
multiple processing cores. We saw this with video game graphics in Chapter 5, but it’s not
just high-end game graphics that need multiple processors. Even today’s basic graphics

tasks may require multiple processor cores.

Multiuser Environments

Concurrency also allows networked computer systems to work together. Suppose you are
playing an online game such as World of Warcraft. The game tracks each player’s actions
as well as those of the computer-controlled monsters. The game’s servers tally every spell
and axe swing, and calculate the damage done, the monsters slain, and the loot dropped.

Concurrency is required here because the processor in every player’s computer must
share the data of nearby players and computer-controlled creatures.

Multitasking

Concurrency can occur even in situations where only one processor is involved. Modern
computers multitask, which means they are constantly switching between different
programs, even when we think we’re doing only one thing on the computer at a time. For
example, multitasking is what allows your email client to receive a new message while
you surf the Web. In these cases, whether or not the computer has multiple processor
cores, it’s definitely running multiple processes—different programs with overlapping
executions.

Printing is another typical example. When you print a recipe from a website, the
software that manages the printer, known as the driver, collects the print data in an orderly
queue and then passes it on to the printer as needed. This is called print spooling. Without
print spooling, the browser could send the data only as fast as the printer processed it,
which means that you would have to wait for the print job to finish before you could do
anything else with the browser.

Print spooling can’t work without concurrency. You can think of a print spool as one of
those carousels that sit in the window between the front counter and the kitchen in a short-
order restaurant, like the one shown in Figure 8-1. Someone in the front puts new orders
on the carousel, and someone in the back takes down the orders as they are fulfilled. The
shared data storage of the carousel allows the order takers and the cooks to work
independently.

Existing Orders Retrieved in Back

| e

New Orders Added in Front

Figure 8-1: An order-ticket carousel

This arrangement is known as a shared buffer and is frequently used behind the scenes
in software. For example, suppose you are typing an email, but your computer
momentarily slows down so that nothing you typed appears on screen. Then the system
catches up, and everything you typed is now in the email. That happens because the
keyboard doesn’t communicate directly with the email program, but uses the operating
system as an intermediary. The operating system queues the keystrokes in a shared buffer
so the email program can access them when ready.

Multitasking also allows programs to sit in the background and interrupt you when
something significant happens. When a new email alert appears in the corner of your
desktop’s screen while you are working in a word processor, or your phone signals a
newly received text message while you’re playing a game, that’s multitasking at work.

Beyond the performance benefits of multiple processors and distributed processing, the
importance of multitasking means some form of concurrency is required to provide the
basic computing functionality we rely on daily.

How Concurrency Can Fail

Although concurrency is a vital part of everyday computing, it creates enormous
headaches for software and can produce serious problems if proper safeguards aren’t in
place to prevent them.

The underlying issue is how data is copied when it’s used in calculations. Essentially,
all a computer processor does is retrieve numbers from storage and either perform math
with them or compare them. To do these tasks, though, it must copy the numbers from
wherever they are stored to locations inside the processor. Stored data isn’t changed
directly. Instead, the computer fetches the value from main memory, or a hard drive, or
across a network, and delivers it to the innermost part of the processor. The processor
performs the math on this internal copy, and then sends the updated value back to storage
to replace the original data.

Suppose you’re playing a first-person shooter game. You have 300 bullets in reserve
when you run over an ammo clip, picking up 20 more bullets. Figure 8-2 shows the steps
involved. To update your bullet count, the processor first retrieves your current bullet
count and the number of bullets in the clip from their places in storage, shown in step 1.
These values are fed into the inputs of an “adder” circuit in the processor, as shown in step
2, which performs the actual math. Then the result is sent back to main memory, replacing
the old value in the bullet count storage location, as shown in step 3.

Processor Storage
L 20 | [300 |-
Step 1
i [Adder | 300] [20]
| I
|20 | [300 |

Step 2 |—>| Adder |<J [300 | | 20 |

[320 |
20 | [300 |
Step 3 [Adder | [320 | [20]
[320 | T

Figure 8-2: Three steps to update a number from 300 to 320

This update sequence causes problems when multiple processes attempt to make
alterations to the same storage location. Take, for example, a massively multiplayer online
game (MMO). Trina Orcslayer and Skylar Rockguardian are two players. They are both
officers of the same “guild,” and this game allows guilds to hold shared bank accounts
across multiple game servers. On Friday morning, the balance of the guild account is
exactly 10,000 gold, and Skylar and Trina each have 500 gold in their personal accounts.
Sometime that day, Skylar withdraws 300 gold from the guild account while Trina
deposits 200 gold into it. If these are the only transactions that happen, the final balance
should be 9,900 in the guild account (10,000 — 300 + 200), 800 in Skylar’s account (500 +
300), and 300 in Trina’s account (500 — 200).

And that’s what will happen if the transactions are kept separate. Suppose Skylar
makes the withdrawal in the morning, and Trina makes her deposit that afternoon. We
won’t get into programming here, but let’s consider the steps that the game software will
take to carry out these transactions. Let’s start with Skylar’s withdrawal:

1. Retrieve the balance of the guild account. Call this Skylar’s copy.
2. Subtract 300 gold from Skylar’s copy.

3. Add 300 gold to Skylar’s personal stash.

4. Update the guild bank balance to Skylar’s copy.

Now suppose Trina makes the deposit in the afternoon. The steps of her transaction
are:

1. Retrieve the balance of the guild account. Call this Trina’s copy.
2. Subtract 200 gold from Trina’s personal stash.

3. Add 200 gold to Trina’s copy.

4. Update the guild bank balance to Trina’s copy.

In this example everything works fine. But what happens if Skylar and Trina perform
their transactions at the same time? In that case, the final balance of the guild account
could be incorrect. This happens if the original guild balance of 10,000 gold is retrieved
for calculation by both processes before either of them completes the transaction.

Take a look at the details shown in Table 8-1. When Trina and Skylar initiate
transactions at the same time, the same 10,000 balance is retrieved into their separate
copies of the balance. Trina’s copy is increased to 10,200, while Skylar’s copy is
decreased to 9,700. Then both of the updated figures overwrite the guild account balance.
In the example shown in the table, Skylar’s updated number arrives last, which means
9,700 is the new account balance and 200 gold has simply vanished.

It could have worked out the other way—Trina’s copy could have arrived after
Skylar’s, increasing the guild’s gold balance, but of course neither result is correct. The
only correct final balance is 9,900 gold, the balance that corresponds to the two
transactions occurring separately.

Situations similar to this example are possible whenever two or more processes use the
same data simultaneously. The general term for this situation is a race condition, since all
the processes involved are racing to complete their task first. In this case the process that
finishes last “wins,” because it determines the final value of the data.

While this example features two different processors, Trina’s and Skyler’s, it’s
important to note that race conditions can happen even with a single processor. Because
multitasking involves switching the processor to a different program many times a second,
multiple processes operating on the same data could interleave, creating a race condition.

Table 8-1: The Danger of Overlapping Bank Transactions

Skylar’s Trina’s Guild
Step Description

copy copy balance

Trina

” Retrieve the guild balance from the bank. 10,000 10,000
fkylar Retrieve the guild balance from the bank. 10,000 10,000
;"rma Subtract 200 gold from Trina’s stash. 10,000 10,000

Trina Add 200 gold to Trina’s copy of the guild

3 balance. 10,200 10,000

Skylar Subtract 300 gold from Skylar’s copy of the

2 guild balance. 9,700 10,000
Skylar ,
3 Add 300 gold to Skylar’s stash. 9,700 10,000

Trina Send Trina’s copy of the guild balance to the

4 bank. 10,200 10,200

Skylar Send Skylar’s copy of the guild balance to the

4 bank. 9,700 9,700

Making Concurrency Safe

In order to make concurrency useful, then, we need to prevent race conditions. This
requires enforcing rules on how processes can access data. The tighter the restrictions, the
easier it is to prevent problems from occurring, but these restrictions can have an adverse
effect on performance.

Read-Only Data

One possible restriction is to allow processes to retrieve data simultaneously, but prohibit
them from changing it; this is known as read-only data. This eliminates the possibility of a
race condition but at an enormous cost. Most applications that require shared data access
simply can’t work without the ability to change the data. So this method is rarely
considered. However, as we’ll see later, distinguishing which processes want to change
data from those that merely want to read data can improve the performance of
concurrency.

Transaction-Based Processing

Another straightforward, comprehensive solution eliminates simultaneous data access
entirely. The race condition occurs in the example because Skylar’s and Trina’s
transactions overlap. What if we prevent overlapping transactions? To enforce this rule,
once any bank transaction begins, we wait for it to signal its completion before any other
transaction may start. For example, the steps in Skylar’s process now might look like this:

Signal Start Transaction to the bank server.

Retrieve the balance of the guild account. Call this Skylar’s copy.
Subtract 300 gold from Skylar’s copy.

Add 300 gold to Skylar’s personal stash.

Update the guild bank balance to Skylar’s copy.

S o

Signal End Transaction to the bank server.

The steps in Trina’s process would be likewise bracketed:

Signal Start Transaction to the bank server.

Retrieve the balance of the guild account. Call this Trina’s copy.
Subtract 200 gold from Trina’s personal stash.

Add 200 gold to Trina’s copy.

Update the guild bank balance to Trina’s copy.

o 0k W

Signal End Transaction to the bank server.

The bank server process enforces the transaction rules. When no transaction is under
way, a signal to start a new transaction is immediately accepted. So if Trina’s transaction
began during an idle period, it would continue. If, however, the start transaction signal
from Skylar’s process arrived while Trina’s transaction was being processed, Skylar’s
transaction would have to wait until Trina’s transaction finished. And if other transactions
arrived during this time, the bank server would put them in a queue, to process them in the
order in which they arrived.

This rule transforms the guild bank into the equivalent of a lobby with a single teller. If
a customer arrives and the teller is available, the customer gets immediate service;
otherwise, the customer must wait until the teller is free. This prevents race conditions but
robs the system of the performance benefit of having multiple processors. Just as having
one teller in a busy bank means a long wait for each customer, allowing only one
transaction through the bank server at a time means a relatively long wait for each
transaction.

The rule is much too strict. At any given time, the bank may be handling a large
number of transactions, and few (if any) of them involve the same accounts. This rule
prevents race conditions by preventing all overlapping transactions, even when the overlap
is harmless.

Semaphores

Another idea takes advantage of the fact that most of the transactions are not interacting
with the same data. If the transaction rule is like a bank with a single teller, a better rule
would be like a bank where every account has its own personal teller. Two or more
customers attempting to access the same account at the same time will form a queue, but
customers accessing different accounts won’t slow each other down at all.

The secret ingredient behind this technique is a special type of data called a semaphore.
In nautical language, semaphores are flags that ships hoist to signal other ships; in
software, semaphores are the numerical equivalent of flags, signaling whether or not
logically connected data is in use. The simplest type of semaphore has just two possible
values, 0 or 1, and is called a binary semaphore.

How Semaphores Prevent Race Conditions

Returning to our guild bank account, we can avoid the race condition by creating
semaphores on the bank server for each of the account balances. Each semaphore begins
with a value of 1.

Before requesting an account balance, a process must first acquire the semaphore
associated with that account. This acquire operation will check the value of the
semaphore. If the semaphore is 1, it means no other process is using the associated
balance; in this case, the semaphore changes to 0, and the process will be allowed to
continue.

If the semaphore is already 0, though, it means another process is currently accessing
the associated balance. In this case, the software will have to wait.

When a process completes its transaction, it releases the semaphore, which
immediately sets its value back to 1. This allows one of the processes waiting for the
semaphore to continue.

Using semaphores, Skylar’s process would look like this:

Acquire the semaphore for the guild account.

Retrieve the balance of the guild account. Call this Skylar’s copy.
Subtract 300 gold from Skylar’s copy.

Add 300 gold to Skylar’s personal stash.

Update the guild bank balance to Skylar’s copy.

o ok L

Release the semaphore for the guild account.

And Trina’s:

Acquire the semaphore for the guild account.

Retrieve the balance of the guild account. Call this Trina’s copy.
Subtract 200 gold from Trina’s personal stash.

Add 200 gold to Trina’s copy.

Update the guild bank balance to Trina’s copy.

AR

6. Release the semaphore for the guild account.

In this way, Skylar and Trina are prevented from accessing the guild balance at the
same time, preventing the race condition. Additionally, neither transaction will affect any
other transaction that doesn’t deal with this particular account.

How Semaphores Are Made

Now let’s look at how semaphores are actually made. If semaphores aren’t implemented
with care, they can produce the very race conditions they are intended to prevent.
Although the acquire operation is just one step for Skylar’s and Trina’s processes, in
reality, it takes several steps itself:

1. Retrieve the value of the semaphore.
2. If the value is 0, go back to step 1 and try again.
3. Set the semaphore to 0.

Now consider what happens if both Skylar’s and Trina’s processes attempt to acquire
the guild account semaphore at the same time. If the semaphore had a value of 1, both
processes could retrieve this initial value (in step 1) before either had a chance to check
the value and set it to 0. In this case, both processes would think that they were the only
process that had acquired the semaphore, and were therefore free to do whatever they
wanted with the accompanying bank balance. We’re right back where we started.

To make a semaphore, then, software needs some help from hardware. The processor
on the bank server must be able to implement the acquire and release operations in such a
way that nothing can interrupt them. This is known as making the operations atomic,
which in this sense means indivisible.

Modern processors implement a hardware operation known as test-andset. This sets a
byte in main memory to a particular value, while retrieving the previous value for
inspection. Test-and-set makes semaphores possible. In the list of semaphore steps, the
problem is the potential interruption between steps 1 and 3. If two different processes
execute the first step before either reaches the third step, both will be able to alter the data
that the semaphore is supposed to protect. Using the atomic test-and-set operation, though,
a semaphore acquire operation can be implemented like this:

1. Using test-and-set, set the semaphore to 0 and retrieve the old value.
2. If the old value was 0, go back to step 1 and try again.

Now the race condition cannot happen. If two processes attempt to acquire the same
semaphore at the same time, they will each execute the test-and-set in step 1. Both
operations will set the semaphore value to 0, but only the semaphore that tests-and-sets
first will retrieve a 1. The other process will retrieve a 0. One process will immediately
continue, while the other will have to wait.

The Problem of Indefinite Waits

A process acquiring a semaphore using this two-step plan—continuously checking the

semaphore’s value until it changes back to 1—is said to be in a spin lock. This is the
simplest way to wait for a semaphore to become available, but it has two major problems.
First, it wastes processor time. A process in a spin lock is continuously executing code, but
the code isn’t doing anything useful. Secondly, spin locks can be unfair. In some cases,
some processes cannot check the semaphore as fast as others. Perhaps the process is
executing on a slower processor, or perhaps the process is communicating with a server
across a slower network. Regardless of the reason, if a semaphore’s resource is so popular
that multiple processes are always waiting, a slower-checking process might never be able
to snag the semaphore. This is known as starvation; picture the least-assertive person at a
busy restaurant with only one waiter, and you’ll get the idea.

Orderly Queues

Avoiding starvation requires a more organized approach to waiting. Banks organize the
wait in their lobbies with cordons, forming groups of waiting customers into orderly
queues. Semaphores can be designed to do the same thing. Rather than waste time
continually checking the value of the semaphore, many acquire operations written so that
when they do not succeed immediately, they put their process to sleep, so to speak. Putting
a computer or phone to sleep means suspending all running applications in a way that
allows the applications to be restored quickly. In the same way;, if a process cannot
immediately acquire a semaphore, it will be suspended and flushed out of the processor,
but its internal data will remain in storage.

To accomplish this, the computer’s operating system assigns each process a unique
identification number. When an acquire operation has to wait, the process identifier is
placed at the end of that semaphore’s wait list. When the process currently holding that
semaphore releases it, the first process on the list is awakened. In this way, processes
acquire the semaphore in the same order they request it. A process may have to wait to
acquire a popular semaphore, but will eventually get to the top of the list— it won’t starve.

Starvation from Circular Waits

Although semaphores prevent race conditions when implemented and used correctly, they
can cause starvation when processes need to access multiple pieces of data that are
protected by semaphores.

Suppose Skylar and Trina’s guild opens a second account that is accessible to lower-
ranked guild officers, so now the guild has a main account and a secondary account. The
banking system has implemented semaphores for each individual account, eliminating the
chance of a race condition on any guild transactions.

But on a particular day, Skylar and Trina are each transferring 200 gold from one
account to the other in opposite directions. Both transactions involve debiting one account
and crediting the other. Skylar’s transaction would have these steps:

1. Acquire the semaphore of the main account balance.

2. Retrieve the balance of the main account.

Acquire the semaphore of the secondary account balance.
Retrieve the balance of the secondary account.

Add 200 gold to the secondary account balance.

Subtract 200 gold from the main account balance.

Update the secondary account balance.

Update the main account balance.

© L N o Uk~ W

Release the semaphore of the secondary account.

10. Release the semaphore of the main account.

Trina’s transaction would run like this:

Acquire the semaphore of the secondary account balance.
Retrieve the balance of the secondary account.

Acquire the semaphore of the main account balance.
Retrieve the balance of the main account balance.

Add 200 gold to the main account balance.

Subtract 200 gold from the secondary account balance.
Update the main account balance.

Update the secondary account balance.

L L N o Uk W

Release the semaphore of the main account.
10. Release the semaphore of the secondary account.

Because all shared value access is properly bracketed by the acquisition and release of
associated semaphores, no race conditions can occur from the overlapping execution of
these transactions. However, suppose both transactions begin around the same time and
the first few steps interleave as shown in Table 8-2.

Table 8-2: Multiple Semaphores Leading to Indefinite Waiting

. . Main account Secondary account
Step Description y

semaphore semaphore
Initial state. 1 1
Skylar Acquire the semaphore of the main 0 1
1 account balance.
Skylar Retrieve the balance of the main 0 1

2 account.

Trina Acquire the semaphore of the secondary 0 0

1 account balance.

Trina Retrieve the balance of the secondary 0 0
2 account.

Skylar Acquire the semaphore of the secondary 0 0
3 account balance.

Trina Acquire the semaphore of the main 0 0
3 account balance.

I’ve shown only these steps because these are the only steps that would occur. Both
Skylar’s and Trina’s processes would halt at step 3, because both are trying to acquire
semaphores that aren’t available. What’s worse is that they can never become available,
because each is being held by the other process. This is like waiting for traffic to clear so
you can turn left on a two-lane road, but someone going the other way wants to turn left

behind you, as shown in Figure 8-3.
) (I
DO >

Figure 8-3: If both white cars are waiting to turn left, traffic is stopped.

Because neither process in this example can continue until the other process completes,
this situation is known as a circular wait. In this case, the circular wait involves only two
processes, but circular waits sometimes involve many processes, and is therefore difficult
to detect or foresee. A circular wait is one form of deadlock, which describes a situation in
which a process cannot be expected to continue. Circular waits are one way that
concurrency can cause deadlocks, and unless precautions are taken, a circular wait can
occur whenever processes hold multiple semaphores at once. Fortunately, such
precautions can be easy to implement.

One solution is a rule by which semaphores must be acquired in some specified order.
In our example, the game’s bank management system can internally assign each account a
number, and require processes to acquire account semaphores in numerical order. Or, put
more broadly, a process can acquire an account’s semaphore only when it does not
currently hold a semaphore for an account with a higher number. This rule prevents the
circular wait in the previous example. Let’s suppose the main account is 39785 and the
secondary account is 87685. Because the main account number is lower, both Skylar’s and
Trina’s processes would attempt to acquire its semaphore first. If both processes tried at
the same time, only one process would succeed. That process would then acquire the
semaphore for the secondary account and complete the transaction, at which point both
account semaphores would be released, allowing the other process to continue through
completion.

Performance Issues of Semaphores

With the proper rules in place, semaphores enable concurrency without fear of race
conditions, deadlock, or starvation. However, in situations where we are trying to boost
performance by having multiple processors work together on the same job, enforcing these
semaphore rules can limit the performance benefit we hoped to create. Instead of lots of
processors working together, we are left instead with lots of processors waiting in line for
an opportunity to work. Concurrent software can mitigate these performance issues by
creating additional rules.

Sometimes a process needs access to a piece of data but doesn’t need to change it. In
our running guild bank example, suppose Skylar and Trina are both inspecting the main
guild account at the same time—that is, neither player is depositing or withdrawing, but is
merely checking the balance. In this case, no danger arises from the simultaneous access
of the account. Even though the processes would have potentially overlapping retrieval
operations, as long as neither one of them updated the balance, everything would be fine.

Allowing simultaneous access during “read-only” situations greatly improves
multiprocessor performance, and requires only a modification of the semaphore concept.
Instead of having one semaphore for each piece of data to be shared, we’ll have two: a
read semaphore and a write semaphore, subject to the following rules:

* Acquiring the associated write semaphore allows data to be retrieved or updated, just
like how the semaphores worked in previous examples.

 Acquiring the associated read semaphore allows data to be retrieved, but not updated.

» A write semaphore can be acquired only when no process holds a semaphore (of either
type) for that data.

* A read semaphore can be acquired only when no process holds a write semaphore for
that data.

Following these rules means that at any given time, either one process will have
acquired the write semaphore for a piece of data or one or more processes will have
acquired read semaphores for that data. At first, this appears to be what we want. So long
as processes are merely looking at, but not changing data, they can share access. Once a
process needs to change the data, all other processes are locked out until the updating
process completes its work.

Unfortunately, these rules potentially reintroduce the starvation problem. As long as
read-only processes keep arriving, a process that needs a write semaphore might wait
indefinitely. To prevent this from happening, we can modify the last rule as follows: “a
read semaphore can be acquired only when no process is holding or waiting for a write
semaphore.” In other words, once a process attempts to acquire a write semaphore, all
processes arriving later must wait behind it.

Another potential concern for performance is known as granularity, which in this
context refers to whether we lock up individual pieces or collections of data. For example,
the bank system could use semaphores to protect individual data elements, such as the
balance of the main guild account, or it could apply a single read/write pair for all data

related to a particular guild’s finances, such as the balances of all guild accounts, the list of
guild officers who are allowed to access that account, and so on.

Protecting data as a group can cause more waiting, because a process that may need
only one or two numbers in a data group will have to lock up all the data in the group,
potentially blocking another process that needs other, nonoverlapping data from the group.
Very fine granularity can also hinder performance. Acquiring and releasing semaphores
takes time, and with lots of semaphores, it’s possible for processes to spend most of their
time dealing with them. Developers must therefore carefully determine the best
granularity for a particular application.

What’s Next for Concurrency

For several reasons, we can expect concurrency to be an even greater concern for the
future.

These days, multiple processing cores can be found even in our simplest computing
devices. The push for more processing power will continue, and until the arrival of a new
processing paradigm like quantum computing, more processing power will mean more
processor cores.

Multitasking is now the norm. We expect our computing devices to run multiple
applications at the same time, and to interrupt our foreground tasks when something
interesting happens in the background.

Data and devices are becoming more connected than ever. Data and processing are
increasingly being moved from client devices onto servers or clouds of interconnected
servers. In computer gaming, socialization is the new paradigm, and in some games, even
single-player game modes require an Internet connection.

In short, properly handling concurrency is becoming essential in everyday computing.
What looks like a single computer running a single-user application may contain a
multiprocessor that provides a multitasking environment with shared cloud storage for
data. The vital power of concurrency is thus often invisible. As the trend toward even
greater concurrency continues, we may take for granted the way in which so many
processes work together without running into one another. But future improvements in
computing depend upon further advancements in concurrency control. We don’t know yet
whether current methods of preventing deadlock, starvation, and race conditions will be
sufficient as concurrency increases. If current methods are inadequate for solving future
challenges, they will become the bottleneck until better methods are developed.

9
Map Routes

Because we can instantly get directions using sites like Google Maps, we forget that not
long ago people often got lost driving to unfamiliar destinations. Now software plans our
route for us and even alters the route mid-trip if an accident or road closure blocks our
way.

In computing, this task is called finding the shortest path. Despite the name, the goal
isn’t always to find the shortest path, but more generally to minimize the cost, where the
definition of cost varies. If the cost is time, the software finds the fastest route. If the cost
is distance, the software minimizes the mileage, truly finding the shortest path. By
changing how cost is defined, the same software methods can find routes to match
different goals.

What a Map Looks Like to Software

Although software can provide directions, it can’t actually read a map. Instead, it uses
tables of data. To see how we get from a map to a table of data, let’s begin with Figure 9-
1, which shows a portion of a city map for a simple routing problem. The goal is to find
the quickest route from the corner of 3rd Street and West Avenue to the corner of 1st
Street and Morris Avenue. The numbered arrows alongside the streets show the average
driving time in seconds between intersections. Note that 1st Street and Morris Avenue are
one-way streets.

- 15 - 9

Start 3rd Street
23 > 7 >
A A A
19 14 11 18 12
Y Y
- Q - 26
2nd Street
17 - o >
A A A
@
o 2 g
2 o =
@ {:" 2
18 < 35 21| > |35 < 14
Ty ¥ =
G _E e
< 5:’ 3
Y Y
1st Street Goal
25 > 28 -

Figure 9-1: A simple routing problem: find the fastest route from 3rd and West to 1st and
Morris.

To produce a data table that can be processed by software, we first reconceptualize the
mabp as the directed graph shown in Figure 9-2. Here, the street intersections are
represented as points labeled A through I. The arrows in Figure 9-1 become connections
between points on the graph, known as edges.

15 Q

23)

19 14 11 18 12
¢ Q ¢ 26
= :&* >0
[A $
17 33
18 35 21 35 14

o L 0

23 28
Figure 9-2: The map from Figure 9-1 as a directed graph

Using the directed graph, we put the data into the tabular form shown in Table 9-1.
This table contains all of the information from the map in Figure 9-2 that software needs
to find the fastest route. In Figure 9-2, for example, travel time from A to B is 23 seconds;
the same information is provided by the first row of the table. Note that travel in
impossible directions, such as from H to G, is not listed.

Table 9-1: The Data from the Directed Graph of Figure 9-2 in Tabular Form

From To Time
A B 23
A D 19
B A 15

C B 9

D A 14
D E 17
D G 18
E B 18
E D 9

E F 33
E H 21
F C 12
F E 26
G D 35
G H 25
H E 35
H I 28
I F 14

Best-First Search

Now we’re ready to find the quickest route on the map, which means finding the lowest-
cost path from A to I on our graph. Many methods exist for solving this problem; the
variation I’1l describe is a type of algorithm called a best-first search. Calling this
algorithm a “search” may be a little misleading, because this method doesn’t aim for the
destination. Instead, at each step it finds the best new route from the starting point to any
point it hasn’t already routed to. Eventually, this procedure stumbles upon a route to the
destination, which will be the cheapest route possible from the start to the goal.

Here’s how best-first search works for our example. All routes starting at A must first
travel to either B or D. The algorithm starts by comparing these two choices, as shown in
Figure 9-3.

B
-~V &

-y @B
19

Figure 9-3: The first step in our best-first search. Starting from A, we can travel either to
B or D.

In these figures, black circles mark the points we’ve found the best paths to, while gray
circles indicate points we can reach directly from one of the marked (black) points. The
numbers inside the circles represent the cost of the route to that point. In each step, the
search examines all edges extending from marked to unmarked points to find the edge that
produces the lowest-cost route. In this first step, the choice is between the A-to-B edge
and the A-to-D edge. Because the travel time to D is less than the travel time to B, the
lowest-cost route is from A to D, as shown in Figure 9-4.

We’ve just found the cheapest possible route from A to D. No matter what the rest of
the graph looks like, it can’t contain a lower-cost route from A to D, because this is the
lowest-cost route of all routes starting from A. In the same way, each step will produce a
new route that will be the lowest-cost route possible from A to some other point.

In the second step, there are four edges to consider: the A-to-B edge and the three
edges extending from D. Again, the algorithm will choose the edge that creates the fastest
new route. In considering the edges extending from D, we have to include the 19 seconds
from A to D. For example, the time required to travel from A to E through D is the sum of
the A-to-D edge time (19) and the D-to-E edge time (17), which is 36 seconds.

Note that one edge from D leads back to A. In Figure 9-4, the circle at the end of that
edge is white to indicate that it will never be chosen. There’s no benefit in taking a round
trip back to our starting point. More generally, once a point has been included in a route
(marked black in the figures), later appearances of that point are ignored, because a better
route to it has already been found.

At this stage, the lowest-cost new route is made using the A-to-B edge. This brings us
to the stage shown in Figure 9-5. Again, because we’ve found the lowest-cost route of all
remaining routes, that makes this A-to-B route the fastest possible way to get from A to B.

37

Figure 9-4: In the second step of our search, the best new route leads to D. Marking D
exposes three new routing possibilities, one of which leads back to our starting point.

Figure 9-5: The third step in our best-first search finds the best route to point B.

We have six edges to consider next, although the edges leading back to A aren’t
contenders. The best choice uses the B-to-C edge to make an A-to-C route of 30 seconds,
as shown in Figure 9-6.

Figure 9-6: The fourth step in our search finds the best route to point C.

Finding the fastest route to C doesn’t help us reach our ultimate goal, though. From C,
we can only return to B, to which we already know the fastest route.

At this stage, the fastest new route is the one going through B to E, as shown in Figure
9-7.

s b}

Wi e T 4]

A % e E

52

dO NN

“a .

‘s\ ""-h-.._* 55
X ‘ “a 7E
. 36
N’

S5
Figure 9-7: The fifth step in our best-first search finds the best route to E.

This process continues until we have reached the state shown in Figure 9-8. At this
stage, the lowest-cost new route uses the edge from H to I, which means we’ve finally

identified the best route from A to I.

@ © O O

Figure 9-8: The ninth and final step in our best-first search reaches point I.

As shown, the fastest route from A to I is A-B-E-H-I. Looking at our original map in
Figure 9-1 and its graph equivalent in Figure 9-2, we can see that this corresponds to
taking 3rd Street to Kentucky Avenue, taking a left on 1st Street, and driving one block to
our destination.

Reusing Prior Search Results

In this example, the best-first search found not only the fastest route from A to I, but also
the fastest route to every other point on the map. Although this is an unusual result, the
best-first process typically produces a surplus of information. At a minimum, the search
results will also provide the best routes between intermediate points that lie along the
route between the start and destination points. In our example, the best route from A to I
contains the best routes from B to H, and from E to I, and so on. For this reason, the
results of best-first searches can be stored for later use.

We can even use this data in searches involving points that weren’t part of the original
map data. To see why, consider Figure 9-9. This is the same directed graph in Figure 9-2
except that it includes a new point, J, that has edges to A and B.

19 36
15 Q
f 23 7
19 14 11 18 12
Q 26
* - i -
—> ' —_F?
T 17 33
18 35 21 35 14
4 b
» o |
25 28

Figure 9-9: The directed graph from Figure 9-2 with an additional point, J

Suppose we need to find the fastest route from J to I. Any route from J begins by going
to either A or B. We already know the fastest routes from A and B to I from the results in
Figure 9-8. The fastest route from A to I takes 83 seconds. The fastest route from B to I
takes 60 seconds; we find this by subtracting the A-to-B edge time of 23 seconds from the
total A-to-I time of 83 seconds.

This means that the J-to-I route that starts by heading to A takes 102 seconds—19

seconds to reach A, and 83 seconds to follow the best route from A to I. The route that
heads directly to B takes 96 seconds: 36 seconds to reach B, and 60 seconds from there to

reach I. Using the previous search results makes finding the fastest J-to-I route much

simpler.

Finding All the Best Routes at Once

In general, then, storing past search results benefits future searches. This idea can be
extended to efficiently find the best routes between any two points on a given map, which
is known as the all-pairs shortest paths problem.

Floyd’s Algorithm

We’ll solve the all-pairs shortest paths problem using Floyd’s algorithm (sometimes called
the Floyd-Warshall algorithm), which starts with simple routes of individual edges, then
builds longer routes by connecting the existing routes using each point on the map in turn.
This method uses a grid, the initial state of which is shown in Figure 9-10. At each step in
the process, the grid contains the costs of the best routes between every pair of points. At
the start, the only known routes are the edges that directly connect points, the same data
from Figure 9-2 and Table 9-1. For example, the 23 in row A, column B, represents the
cost of travel from A to B. The cost is 0 where the “from” and “to” points are the same.

(N°A B C D E F G H |
Alol23] - |19

B (15| o7 |- |

C 210 :

D |14 0 |17 18

el - 18] -[9oo]|33f- |2
Ele] s |02 =|28|0] =]
G- |-]-|[3]-]-|0]25

Hl - |- -] -|[35]-|-]o0]z2s
-]- =] =]m-]=-]0

Figure 9-10: The initial grid of numbers for Floyd’s algorithm. At this stage the only
routes in the grid are the direct connections between points.

As the process continues, this grid will be filled in and modified. New routes will be
added where none initially exist, such as from A to F. Routes with lower costs will replace
existing routes; if we can find a way to get from G to D in less than 35 seconds, for
example, we’ll replace the 35 currently in the grid.

We start by considering point A as a route connector. From Figure 9-10, we can see

that B and D have routes to A. Because A has routes back to B and D, A can connect B to
D and D to B. These new routes are shown as gray squares in Figure 9-11.

oA B C D E F G H I

from
AlO ji-f’"# lf
B|15T 0| 7 | 34|11
& - 21 0
D | 14 g8z - O|17| - |18
E - | 18| - 1 0 |33 - |21
Fl - -112|-126]|0
G| - |- - |35 -|-1]10/]25
H - 39 O | 28

-0 -1 -1 -1 -114]1-1-10

Figure 9-11: Discovering new routes using point A as a connector

The cost of new routes is the sum of the costs of the two routes we are connecting. In
Figure 9-11, the cost of the B-to-D route (34) is the cost of the B-to-A route (15) plus the
cost of the A-to-D route (19), as indicated by the arrows. The cost of the D-to-B route (37)
is computed the same way, as the sum of the D-to-A route (14) and the A-to-B route (23).

In the next step, we use point B to connect existing routes. This produces a whopping
eight new routes, as shown in Figure 9-12.

C 1241 9 | 0 43|20 - | - | -

D | 14|37 44| 0 [17]| - |18
E|33]|18]25| 9| o |33 - |21

Fl - -|12] -2 0

G|« | =|=]|835]|=]|=]|0]25

Hf - - -1-135]-1|-1|0]2s
[lele|lsla]la]|id]=]|=]0

Figure 9-12: Discovering new routes using point B as a connector

As with the previous step, the cost of each new route is the sum of the costs of the two
routes we are connecting. For example, the cost of the new A-to-E route (34) is the sum of
the A-to-B cost (23) and the B-to-E cost (11).

In the next step, using C to connect existing routes reveals three new routes, as shown
in Figure 9-13.

B 15| 0| 7 34|11

Cl124| 9| 0 |43]|20
D

1413744 0 |17 - | 18

33 | = -1 0|25

T ©

35| - - | 0 |28

| || |lelellls |idla] c |5

Figure 9-13: Discovering new routes using point C as a connector

In the next step, we have our first instance of a better route. Previously we found a 33-
second route from E to A. In this step, we discover a 23-second route from E to A through
D, and update the grid with the lower cost. Nine new routes are also found, bringing us to
the state shown in Figure 9-14.

from
A| O |[23]|30]|19] 34 37
B 11510 7 |34]11] - |8
C |24 9 | 0 |43|20| - |61
D |14|37 |44 | O [17| - |18

E 258 18| 25| 2 | O | 33 [g2Zia 21

F 1361211255126 O |73

G PRI 35 2 - | O | 25

Hl=l=l=]=135]=]=1]10]|28

il | lelales|ld]e] |6

Figure 9-14: Discovering new routes using point D as a connector

This process continues, using the points E through I to connect routes in turn, resulting
in the complete grid shown in Figure 9-15. By relating the points back to the street names
on the original map, routing software can use this grid to provide the fastest time between
any two locations on the map. If you want to know how many seconds it should take to get
from the corner of 1st and West to the corner of 3rd and Morris, the software will translate
this into a query about the G-to-C route on the graph. Then the answer can be found right
there in the grid: 77 seconds.

B 1151 0| 7 [20]| 114438 | 32| 60

Cl24]1 2| 0 12912053147]4] |69

D | 1413542 0 | 17150 | 18| 38| 66

E 231825 9 | O (33|27 |21] 49

F 1362112135126 0 |53 |47 175

G |49 |70 /7735|3267 0 | 251358

H |58|53|54|44)35])142]162] 0 | 28

| | 501351264940 | 1467 |61 O

Figure 9-15: The complete grid produced by Floyd’s algorithm, showing the fastest time
possible from each point to every other point

Storing Route Directions

What this grid doesn* tell you, as you may have noticed, is what that fastest route is—
only how much time it takes. For example, you can see that the fastest route from A to I
takes 83 seconds, but does that route begin by going east or south, and where do you make
the first turn? In order to record the route itself, we must record the initial direction of the
routes when updating route times in the grid.

Figure 9-16 shows the starting grid. As before, the grid will be used to store the costs
of the best routes found so far, but now it will also store the initial direction of travel for
each route. This starting grid contains just the edges of the original graph. The 23 and B in
the second column of the first row means the best route from A to B costs 23 and starts by
heading toward B.

from
0 |23 10 .
Al |e].|bp] - |-
5[o 7 -]
hkls|lE€l=]lE] =
510
cl el]
S - [o[7[- |8
Al -|-|-1€e|-1|c
: 18 S 10|33 21
B D| - |F H
' 21 - 26| 0
c|-|e]| - :
35 ~ [0 |25
G D| - | - H| -
“35] - | - 0|28
2 el - -] -]
| =l o T1&] = | = | D
A R - N

Figure 9-16: The initial grid for Floyd’s algorithm, amended to store the direction of
travel for each route

In Figure 9-17, we use A to connect existing routes, as we did in Figure 9-11. But now,
adding or updating a route in the grid means recording the direction as well. The new
route from B to D, for example, begins by going to A. The logic is: “We’ve just
discovered a route from B to D that goes through A. The fastest known route from B to A
heads directly to A. Therefore, the route from B to D must also start by going to A.”

from

o123 - MBN -1 -1 -1-1 -
A % B .-"'1'#‘[)\- - i E E
B 5T 0| 7 3411 -1 -1 -1 -
pt——t—c—=r E | - | -] - | -
. a1 0]] .
cl el]: |
o [14]37]-107117 18 -
AIESE - -1]E G :
| -118]-19]0]33 21 -
-8l -1 -1F|-|H]| -

" 121 - [26] 0

cl| -|€E| - i

- - | 35 0 |25][-
Gl. o] - A -
35 0 | 28
LI I (U A I I P P B
T T-1-1-14]-1-1T°¢

Figure 9-17: Discovering new routes using point A as a connector

Skipping over the steps for B and C, Figure 9-18 shows the grid just after we’ve added
the routes for D. Here we’ve found a new route from B to G that takes 52 seconds.
Because this new route goes through D, the route must begin the same way the route to D
begins—by traveling to A.

from
NEE IR E
|ele|p]|B]-|D
15107 [34] 11 52
Bl A C |@b——EARN -
24| 9 1 0 [43|20 - | 61|
Clele|-[e|8[\]Bs)
5 437240 [17] - 8] -
Alalal-lel-1c]-
- [Z825[9 [0 [[z [2
p|le|elp]|-|Flc]|H
- [3e[2r 2[5 [26 [0 |73
clclclclel] - IRe
o (@72 7935 [32[- | 0 |25
pfo|p|pflD]|-]|-[H]-
: 135 - | - 1028
H El - | -] - |
| 12 0
F

Figure 9-18: Discovering new routes using point D as a connector

Figure 9-19 shows the completed grid, with the times removed for clarity.

A B C D E F G H |

from

Al - B|B|D|B|B|D|B]| BS
B|A| -|C|E|E|E|E]|E]E >
C|B|B B|B|B|B|B|B
D|A|E]E E|E|G)|E]|E
E|D|B]|]B]D FID|H]H
FI1C|IC S| E|E E|E| E
G|D|D|D]|D]|D|H H|H

H| E|E I E | E I E | - I

| FIF]IFLF|F|F]F]F

Figure 9-19: The complete routing grid produced by Floyd’s algorithm, showing the

direction of travel. The fastest route from A to I is highlighted.

The fastest route from A to I is highlighted in the grid. We start at row A, column I, and
see the fastest route from A to I starts by going to B. So then we look at row B and see the
fastest route from B to I heads to E. The route from E heads to H, and the route from H
reaches I. Using this grid is like stopping at every street corner and asking, “Which way
should I turn?”

The Future of Routing

Today’s software can provide accurate directions in an instant, so what can tomorrow’s
mapping software possibly do better?

Improvements in mapping will come from improvements in data. For example, if the
software has access to hourly traffic data, it can tailor directions to the time of the trip.

Real-time traffic data may also be integrated into mapping software. For example, most
mapping programs don’t know about traffic issues until the user requests a new route. In
the future, your mapping software may find out about accidents and road closures before
you do and route you around the problems. Weather data may also be included to provide
more accurate estimates of travel time, and to accommodate the preferences of drivers
who wish to avoid driving in heavy rain or other troubling conditions.

Routing is just a small part of a larger area of software called geographic information
systems (GIS), which uses software to answer questions about maps and location-tagged
data. Some GIS tasks have nothing to do with routing, such as determining if an area
contains enough potential customers to support a new grocery store. But many interesting
GIS projects combine the map routing concepts from this chapter with data about what’s
inside buildings along a map’s roadways. By tracking where schoolchildren live, for
example, GIS software can plan the most efficient routes for school buses.

In the future, routing software may expand to encompass more of the abilities of
general GIS tools. When you need a route for a long drive out of town, the software may
not provide just the turns you need to take, but also highlight places where you might want
to stop, like the best-priced gas stations and the restaurants that serve your favorite food.

Index

Numbers

2001: A Space Odyssey, 142
2D graphics, 61-69
3D graphics, 69. See also rendering

A

acquire operation, 168, 170
adder circuit, 164
additive color mixing, 60
AES (Advanced Encryption Standard), 9-18, 55
block chaining, 15, 55
combining with RSA, 4849
data organization under, 11
key expansion, 13-14
overview, 12
performance vs. RSA, 48
possible weaknesses, 17—-18
S-box, 13, 14
security of, 16
aliasing, 66, 80, 99
all-pairs shortest path, 183. See also Floyd’s algorithm
alpha blending, 67-68, 82
alpha channel, 68, 78, 82
alpha level, 67
ambient lighting, 96-97
ambient occlusion, 96
American Standard Code for Information Interchange (ASCII), 12, 20-22, 119-120
AND (bitwise operation), 23, 25
angle of incidence, 74, 75

angle of reflectance, 74

animation
cel, 59
ink and paint, 59, 65
interpolation, 63
anti-aliasing, 66—67
alpha blending, 67-68
full-screen, 80
FXAA, 111
multisampling, 111
post-process, 111
real-time, 108-113
supersampling, 109
ASCII (American Standard Code for Information Interchange), 12, 20-22, 119-120
atomic operation, 169
attacks, 2
brute-force, 5, 16, 20, 47
collision, 26
dictionary, 28
frequency analysis, 6, 9, 15, 17
known-plaintext, 6
man-in-the-middle, 52, 56
related-key, 17
timing, 17
authentication, 19, 26, 34. See also RSA
authority, 51, 53
avalanche, 17, 21
Avatar, 69

axis, 61

B

best-first search, 178-181
marked points, 178, 179, 180

reusing results, 181-182
surplus information, 181
B-frame, 139
bidirectional frame, 139
bilinear filtering, 101
in FXAA, 112
binary, 10
ASCII, 12
bit, 10
byte, 10
search, 151
binary addition, 22
binary search, 151-152, 153
binary semaphore, 168
bit, 10
bitmap, 61, 116
alpha channel, 68, 78, 82
coordinate, 61
depth buffer, 91, 95, 96
display buffer, 61
height map, 106
mipmap, 102
origin, 61
resolution, 61
shadow map, 95
texture, 97
translucency, 68, 78
bitwise operations, 11
AND, 23, 25
binary addition, 22
NOT, 23, 25
OR, 23, 25

rotation, 14

XOR, 11, 14, 15
bitwise rotation, 14
Blair Witch Project, The, 142
block chaining, 15
blue difference (Cb), 124
Blu-ray, 116, 143
brute force attack, 5, 16, 20, 47
buffer, shared, 163
buffering, 143
bump mapping, 106, 107
byte, 10

C
Cb (blue difference), 124

cel animation, 59
central processing unit. See CPU (central processing unit)
certificate, 53
CGI (computer-generated imagery), 57-59, 82—83. See also 3D graphics; rendering
chain merging, 31
cipher key. See key (encryption)
ciphertext, 2, 3, 8
circular wait, 172
clear reflection, 103
client, 52
Cloverfield, 142
code book, 9
coefficient, 126
collision, 20, 26
collision attack, 26
color
additive, 60

RGB, 60, 116, 124
subtractive, 60, 76
YCbCr, 124
composite number, 40
compression, 116
deflate, 122
dictionary, 118-122
Huffman encoding, 120, 134
of JPEG pixel blocks, 132
lossless, 116
lossy, 116, 124
MPEG-2, 138
predictive encoding, 122
quantization, 123, 132
run-length encoding, 117, 123, 133, 142
sliding window, 122
temporal, 138
TGA file format, 117
.zip file format, 122
compression ratio, 118
dictionary compression, 120
JPEG, 135
MPEG-4, 143
TGA, 118
.zip file, 122
computer security. See security
computer vision, 160
computer-generated imagery (CGI), 57-59, 82-83. See also 3D graphics; rendering
concurrency, 161
atomic operation, 169
deadlock, 172
multitasking, 162—-163, 174

multiuser environments, 162
performance, 162
print spooling, 162
problems of, 163-166
race condition, 165-169
read-only data, 166, 173
semaphore, 168-174
shared buffer, 163
starvation, 170, 172, 173
transaction, 166167
control point, 62
coordinates, 61
axis, 61
control point, 62
conversion, 61, 71, 88, 96
interpolation, 63
local, 62
model, 62
origin, 61
projection, 71
scaling, 64
screen, 61, 88, 96
translation, 64
world, 70, 88
X, 61
y, 61
z, 69
coprime number, 40
core, 86, 162, 174
cost, 175, 178, 183, 184
computing route cost, 179, 182

defining per problem, 175

CPU (central processing unit), 86
adder, 164
core, 86, 162, 174
performance characteristics, 86
test-and-set, 169
updating data, 163, 165

Cr (red difference), 124

crack, 17

crib, 6, 9, 16

cut scene, 86

D

data collection, 146
dynamic, 154
hash table, 154
static, 154
data compression. See compression
DCT (discrete cosine transform), 125-131, 141
deadlock, 172
deblocking filter, 143
decimal, 10
decryption, 2
deep web, 157
deflate, 122
depth buffer, 91, 95, 96
depth buffering, 91-92
dictionary, 28
dictionary attack, 28
dictionary compression, 118—122
diffuse reflection, 74, 77, 92, 93, 107
diffusion, 16

digital composition, 82

digital image, 59

digital signature, 25-26, 53
validation, 53
weaknesses, 26

direct lighting, 76

directed graph, 176
coverting to table, 176
edge, 176
point, 176

discrete cosine transform (DCT), 125-131, 141

display buffer, 61

dissolve, 82

distance effect, 72—73, 92

distant impostor, 106, 108

dynamic data collection, 154

E
edge, 176
encryption, 2
avalanche, 17
crack, 17
diffusion, 16
key. See key (encryption)
one-time pad, 9
public-key, 38
RSA. See RSA
shared key problem, 18, 37
substitution, 6
symmetric key, 18
transposition, 2
environment mapping, 103-105

exclusive-or. See XOR

F

factor, 40, 41
fast approximate anti-aliasing (FXAA), 111
field of view, 89
finding the shortest path, 175
fixed-size storage, 152, 153
Floyd’s algorithm, 183189
connecting routes, 183, 187
grid, 183, 186
improving routes, 185
route directions, 186—-189
focus, 79
fps (frames per second), 59, 116, 144
frame, 59, 116
buffering, 143
macroblock, 139
frame rate, 59
frames per second (fps), 59, 116, 144
frequency analysis, 6, 9, 15, 17
full-screen anti-aliasing, 80
functions, 39
hash, 20-21
invertible, 39—42
one-way, 39, 42
square, 39
square root, 39
trapdoor, 40
FXAA (fast approximate anti-aliasing), 111

G

geographic information systems (GIS), 189

global illumination model, 76

GPU (graphics processing unit), 87, 90
granularity, 173

graph, directed. See directed graph
graphics accelerator, 86

graphics processing unit (GPU), 87, 90
group of pictures, 138

H

H.264 standard, 143
handshaking, 52—-54
hash chaining, 29-31
chain merging, 31
reduction function, 29, 31
hash table, 29, 31
hashing, 20-23, 154-156
avalanche, 17, 21
collision, 20, 26
desirable properties, 20-21
digital signature. See digital signature
encoded password, 21
irreversibility, 20, 25
iterative, 32—-33
keyed, 55
MAC, 55
MD5. See MD5
reduction function, 29, 31
rehashing, 156
salt, 34, 35
slot, 154
tombstone, 156
height map, 106
HTTPS, 52-56

authority, 53
certificate, 53
handshaking, 52-54
issuer, 53
MAC, 55
master secret, 54
premaster secret, 53
security of, 55-56
session, 52
transmission, 54-56
Huffman encoding, 120, 142
code creation, 120
in JPEG, 134

I

IDCT (inverse discrete cosine transform), 127
I-frame, 138, 139
images
digital, 51-60
searching for, 160
inbound link, 158
indexing, 152—-154
indirect lighting, 76
ink and paint, 59, 65
interpolation, 63
intracoded frame, 138
inverse discrete cosine transform (IDCT), 127
issuer, 53

iterative hashing, 32—-33

J
jaggies, 66, 80, 89, 109, 112
Joint Photography Experts Group, 123

JPEG, 123-136
adjusting quality, 135
compressing pixel blocks, 132
compression ratio, 135
DCT, 125
picture quality, 135136
Jurassic Park, 57-58

K
Kerckhoffs’s principle, 4, 5, 27, 33
key (encryption), 4
AES, 9-14
asymmetric, 38
code book, 9
expansion, 9
keyed hashing, 55
MAC, 55
private, 38, 44, 45, 50
public, 38, 43, 44, 45, 50
related-key attack, 17
shared key problem, 18, 37
size, 20, 47
symmetric, 18
key (search), 146, 151
key expansion, 9
keyframe, 59

known-plaintext attack, 6

L

Lady and the Tramp, 59
LaserDisc, 116

LCD (liquid crystal display), 60
light-emitting diode (LED), 60

lighting, 71-80
ambient, 96-97
angle of incidence, 74, 75
angle of reflectance, 74
bump mapping, 106, 107
diffuse reflection, 74, 77, 92, 93, 107
direct, 76
distance effect, 72—73, 92
indirect, 76
model, 72
normal, 92, 93, 107
ray tracing. See ray tracing
real-time, 92-97
reflection, 80
clear, 103
environment mapping, 103-105
shadow. See shadow
specular reflection, 75, 77, 92, 107
link farming, 159
links
farming, 159
inbound, 158
pass-through, 159
liquid-crystal display (LCD), 60
local coordinate, 62
lossless compression, 116
lossy compression, 116, 124

luminance, 124

M

MAC, 55
macroblock, 139

deblocking filter, 143
man-in-the-middle attack, 52, 56
map

converting to table, 176

directed graph, 176

routing. See routing
massively multiplayer online game (MMO), 164
master secret, 54
matrix, 128
matrix multiplication, 126
MD5, 21-25

digital signature, 25-26

encoding password for, 21-22

quality of, 25

round, 24-25
message authentication code, 55
mipmap, 102
MMO (massively multiplayer online game), 164
model, 61-63, 70, 87

ambient light, 96

bump mapping, 106

control point, 62

distant impostor, 106

drawing, transforming into, 62, 88, 93, 105

global illumination, 76

interpolation, 63

lighting, 72

line, 62

scaling, 64

tessellation, 107—108

translation, 64
Mortal Kombat, 85

movie-quality rendering, 70, 82—-83
MPEG-2, 138-142
adjusting quality, 139
B-frame, 139
GOP, 138, 142
I-frame, 138, 139
macroblock, 139
P-frame, 139
MPEG-4, 143
multisample anti-aliasing (MSAA), 110-111
vs. supersampling, 111
multitasking, 162—-163, 174

N

nearest-neighbor sampling, 99-100, 101, 143
normal, 92, 93, 107
NOT (bitwise operation), 23, 25

numerical address, 153

O
offset, 139

one-time pad, 9

one-way function, 39, 42
optical printer, 82

OR (bitwise operation), 23, 25

origin, 61

P
packet, 118

painter’s algorithm, 950
partition, 147
pass-through link, 159
password, 6, 19

common, 28, 29

encoding, 21-22

hashing, 20-23

salt, 34, 35

storage service, 35-36

table, 26, 27
performance scaling, 150
persistence of vision, 59
P-frame, 139
Phineas and Ferb, 69
pivot, 147
pixel, 59, 66

alpha channel, 68

alpha level, 67, 78, 82

bitmap, 61

contrast, 112

depth, 91, 95, 96

luminance, 124

raw, 117

run, 117

sampling, 97

shader, 92. See also lighting

subpixel, 110

texel, 98

variation in photographs, 123
plaintext, 2, 3, 4, 8, 27, 28

known-plaintext attack, 6
polyalphabetic substitution, 7-9
polygon, 88. See also triangle
post-process anti-aliasing, 111
precomputed hash table, 29, 31
predicted frame, 139

predictive encoding, 122
prefix code, 121
premaster secret, 53
prime number, 40

as factor, 41

coprime, 40
prime-product, 42, 44, 45
print spooling, 162
private key, 38, 44, 45, 50
process, 162
projection, 71, 88, 96

field of view, 89

ray tracing, 77
public key, 38, 43, 44, 45, 50

Q

quantization, 123, 132, 141
queue, 163, 170
quicksort, 147-150
partition, 147
pivot, 147
sublist, 149

R

race condition, 165-169
rasterization, 65—68, 89
raw pixel, 117
ray tracing, 77-81, 105
anti-aliasing, 80
focus, 79
laws of optics, 79
performance, 87

projection, 77

reflection, 80
shadow, 79
read semaphore, 173
read-only data, 166, 173
real-time lighting, 92—97
record, 146
red difference (Cr), 124
reduction function, 29, 31
reflection, 80
clear, 103
environment mapping, 103—-105
rehashing, 156
related-key attack, 17
release operation, 168
renderer, 69
rendering, 69
2D, 61-69
budget, 113
depth buffering, 91-92
depth ordering, 89-92
field of view, 89
focus, 79
lighting, 71-80
movie-quality, 70, 82—83
pixel shader, 92
polygon, 88
projection, 71
rasterization, 89
ray tracing, 77-81
realism, 72, 79, 94, 96, 105
reflection, 80

translucency, 78

triangle, 88, 90
viewpoint, 71
resolution, 61
RGB color system, 60, 124
vs. YCbCr, 124
Rivest, Shamir, and Adleman method. See RSA (Rivest, Shamir, and Adleman method)
robot, 157, 160
rotation, 14
routing
cost, 175, 178, 179, 182, 183, 184
directed graph, 176
finding the shortest path, 175
using real-time data, 189
RSA (Rivest, Shamir, and Adleman method), 42-51
authentication, 49-51
authority, 51
bidirectional transmission, 47
combining with AES, 48-49
effectiveness, 45-47
encryption process, 44—45
key creation, 42—44
key size, 47
performance, 47-48
prime-product, 42, 44, 45
real-world use, 4749
totient, 43, 45
run of pixels, 117
run-length encoding, 117, 123, 133, 142

S

salt method, 34, 35
sampling, 97

bilinear filtering, 101, 112
mipmap, 102
nearest-neighbor, 99-100, 101, 143
trilinear filtering, 102-103
S-box, 13, 14
scaling, 64, 150
screen coordinate, 61, 88, 96
screen space ambient occlusion (SSAQO), 96-97
search, 29, 145
all-pairs shortest path, 183
best-first, 178—181
binary, 151-152, 153
engine, 157
images, 160
location use, 160
page ranking, 158-159
robot, 157, 160
sequential, 146, 153
Sitemap, 157
storage requirements, 153
term, 159-160
Web, 157-160
security, 1, 17, 19, 35
of AES, 16
best practices, 6, 27, 29, 34, 56
single point of defense, 27
Web, 52-56
selection sort, 146
performance scaling, 150
semaphore, 168—-174
acquire, 168, 170
binary, 168

circular wait, 172
granularity, 173
implementation, 169
performance, 172-174
read, 173
release, 168
spin lock, 169
test-and-set, 169
wait list, 170
write, 173
sequential search, 146, 153
server, 52
session, 52
shadow, 79, 94-97
ambient occlusion, 96
mapping, 94-95
quality, 95
shadow map, 95
shared buffer, 163
shared key problem, 18, 37
signature. See digital signature
simple substitution, 6
Simpsons, The, 69
single point of defense, 27
Sitemap, 157
sliding window, 122
slot, 154
sort, 146
quicksort, 147
selection sort, 146
specular reflection, 75, 77, 92, 107
spin lock, 169

square function, 39
square root function, 39
SSAA (supersampling anti-aliasing), 109-110
vs. multisampling, 111
SSAO (screen space ambient occlusion), 96-97
starting variable, 15
starvation, 170, 172, 173
static data collection, 154
storage
address, 153
fixed-size, 152, 153
requirements for search, 153
variable-size, 152, 153
subpixel, 110
substitution, 6-9
polyalphabetic, 7
S-box, 13
simple, 6
tabula recta, 7
subtractive color mixing, 60, 76
supersampling anti-aliasing (SSAA), 109-110
vs. multisampling, 111
surface normal. See normal

symmetric key, 18

T

tabula recta, 7

temporal compression, 138
temporal redundancy, 138, 142
tessellation, 107—108
test-and-set, 169

texel, 98

texture mapping, 97-103, 143
bump mapping, 106
sampling, 97

TGA file format, 117
compression ratio, 118
packet, 118

Theora, 143

timing attack, 17

tombstone, 156

Toon Boom, 69

Toonz, 69

totient, 43, 45

transaction, 164, 166—167

translation, 64

translucency, 68, 78

transposition, 2—6
rotation, 14

trapdoor function, 40

triangle, 88, 90, 107

trilinear filtering, 102—103, 143

trivial factor, 40

tweening, 59

automatic, 63-64

U
ultra high definition video (UHD), 144

\"

variable-size storage, 152, 153
vector, 126

video streaming, 116
videocassette, 115

view angle, 74

viewpoint, 71

virtual camera, 71

A%

War and Peace, 122
web search, 157-160
web session, 52

world coordinate, 70, 88

write semaphore, 173

X

x-axis, 61
x-coordinate, 61
XOR (bitwise operation), 11, 14, 15

Y

y-axis, 61

YCbCr color system, 124
vs. RGB, 124

y-coordinate, 61
Y (luminance), 124

Z

z-coordinate, 69

.zip file format, 122

	Title Page
	Copyright Page
	About the Author
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	Who This Book Is For
	Topics Covered
	Behind the Magic

	Chapter 1: Encryption
	The Goal of Encryption
	Transposition: Same Data, Different Order
	Cipher Keys
	Attacking the Encryption

	Substitution: Replacing Data
	Varying the Substitution Pattern
	Key Expansion

	The Advanced Encryption Standard
	Binary Basics
	Decimal Versus Binary
	Bitwise Operations
	Converting Data to Binary Form

	AES Encryption: The Big Picture
	Key Expansion in AES
	AES Encryption Rounds
	Block Chaining
	Why AES Is Secure
	Possible AES Attacks

	The Limits of Private-Key Encryption

	Chapter 2: Passwords
	Transforming a Password into a Number
	Properties of Good Hash Functions
	Full Use of All Bits
	No Reversibility
	Avalanche

	The MD5 Hash Function
	Encoding the Password
	Bitwise Operations
	Binary Addition
	Bitwise NOT
	Bitwise OR
	Bitwise AND

	MD5 Hashing Rounds
	Meeting the Criteria of a Good Hash Function

	Digital Signatures
	The Problem of Identity
	Collision Attacks

	Passwords in Authentication Systems
	The Dangers of Password Tables
	Hashing Passwords
	Dictionary Attacks
	Hash Tables
	Hash Chaining
	Iterative Hashing
	Salting Passwords
	Are Password Tables Safe?

	Password Storage Services
	A Final Thought

	Chapter 3: Web Security
	How Public-Key Cryptography Solves the Shared Key Problem
	Math Tools for Public-Key Cryptography
	Invertible Functions
	One-Way Functions
	Trapdoor Functions
	Prime Numbers
	Coprime Numbers
	Prime Factors

	The RSA Encryption Method
	Creating the Keys
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5

	Encrypting Data with RSA
	Step 1
	Step 2
	Step 3
	Step 4

	RSA Effectiveness
	RSA Use in the Real World
	Bidirectional Transmission
	Key Size
	Long Plaintexts and Performance
	Combining Systems

	RSA for Authentication
	Authentication Using RSA
	Identity Authorities

	Security on the Web: HTTPS
	Handshaking
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5

	Transmitting Data Under HTTPS
	Data Encryption
	Block Chaining
	Message Authentication Code

	The Shared Key Problem Solved?

	Chapter 4: Movie CGI
	Software for Traditional Animation
	How Digital Images Work
	How Colors Are Defined
	How Software Makes Cel Animations
	Transforming Drawings into Models
	Automatic Tweening
	Positioning and Scaling
	“Ink and Paint” for Digital Images
	Blending into Any Background

	From Cel Animation Software to Rendered 2D Graphics

	Software for 3D CGI
	How 3D Scenes Are Described
	The Virtual Camera
	Direct Lighting
	The Distance Effect
	The Diffuse Reflection Effect
	The Specular Reflection Effect

	Global Illumination
	How Light Is Traced
	Why Light Is Traced Backward
	How Ray Tracing Models Real-World Effects

	Full-Scene Anti-Aliasing

	Combining the Real and the Fake
	The Ideal of Movie-Quality Rendering

	Chapter 5: Game Graphics
	Hardware for Real-Time Graphics
	Why Games Don’t Ray Trace
	All Lines and No Curves
	Projection Without Ray Tracing
	Rendering Triangles
	The Painter’s Algorithm
	Depth Buffering

	Real-Time Lighting
	Shadows
	Ambient Light and Ambient Occlusion
	Texture Mapping
	Nearest-Neighbor Sampling
	Bilinear Filtering
	Mipmaps
	Trilinear Filtering

	Reflections
	Faking Curves
	Distant Impostors
	Bump Mapping
	Tessellation

	Anti-Aliasing in Real Time
	Supersampling
	Multisampling
	Post-Process Anti-Aliasing

	The Rendering Budget
	What’s Next for Game Graphics

	Chapter 6: Data Compression
	Run-Length Encoding
	Dictionary Compression
	The Basic Method
	Huffman Encoding

	Reorganizing Data for Better Compression
	Predictive Encoding
	Quantization

	JPEG Images
	A Different Way to Store Colors
	The Discrete Cosine Transform
	The DCT for Two Dimensions
	Compressing the Results
	JPEG Picture Quality

	Compressing High-Definition Video
	Temporal Redundancy
	MPEG-2 Video Compression
	Groups of Frames
	Temporal Compression

	Video Quality with Temporal Compression

	The Present and Future of Video Compression

	Chapter 7: Search
	Defining the Search Problem
	Putting Data in Order
	Selection Sort
	Quicksort

	Binary Search
	Indexing
	Hashing
	Web Search
	Ranking Results
	Using the Index Effectively

	What’s Next for Web Search

	Chapter 8: Concurrency
	Why Concurrency Is Needed
	Performance
	Multiuser Environments
	Multitasking

	How Concurrency Can Fail
	Making Concurrency Safe
	Read-Only Data
	Transaction-Based Processing
	Semaphores
	How Semaphores Prevent Race Conditions
	How Semaphores Are Made

	The Problem of Indefinite Waits
	Orderly Queues
	Starvation from Circular Waits

	Performance Issues of Semaphores
	What’s Next for Concurrency

	Chapter 9: Map Routes
	What a Map Looks Like to Software
	Best-First Search
	Reusing Prior Search Results

	Finding All the Best Routes at Once
	Floyd’s Algorithm
	Storing Route Directions

	The Future of Routing

	Index

