

HOW	SOFTWARE	WORKS
The	Magic	Behind	Encryption,	CGI,	Search	Engines,	and

Other	Everyday	Technologies

by	V.	Anton	Spraul

San	Francisco

HOW	SOFTWARE	WORKS.	Copyright	©	2015	by	V.	Anton	Spraul.

All	rights	reserved.	No	part	of	this	work	may	be	reproduced	or	transmitted	in	any	form	or	by	any	means,	electronic	or
mechanical,	including	photocopying,	recording,	or	by	any	information	storage	or	retrieval	system,	without	the	prior
written	permission	of	the	copyright	owner	and	the	publisher.

Printed	in	USA

First	printing

19	18	17	16	15							1	2	3	4	5	6	7	8	9

ISBN-10:	1-59327-666-4

ISBN-13:	978-1-59327-666-9

Publisher:	William	Pollock

Production	Editor:	Alison	Law

Cover	Illustration:	Josh	Ellingson

Interior	Design:	Octopod	Studios

Developmental	Editors:	Hayley	Baker,	Seph	Kramer,	and	Greg	Poulos

Technical	Reviewer:	Randall	Hyde

Copyeditor:	Rachel	Monaghan

Compositor:	Susan	Glinert	Stevens

Proofreader:	James	Fraleigh

For	information	on	distribution,	translations,	or	bulk	sales,	please	contact	No	Starch	Press,	Inc.	directly:

No	Starch	Press,	Inc.

245	8th	Street,	San	Francisco,	CA	94103

phone:	415.863.9900;	info@nostarch.com

www.nostarch.com

Library	of	Congress	Cataloging-in-Publication	Data:

Spraul,	V.	Anton.
			How	software	works	:	the	magic	behind	encryption,	CGI,	search	engines,	and	other	everyday	technologies	/	by
V.	Anton	Spraul.
												pages	cm
			Includes	index.
			Summary:	“A	guide	for	non-technical	readers	that	explores	topics	like	data	encryption;	computer	graphics
creation;	password	protection;	video	compression;	how	data	is	found	in	huge	databases;	how	programs	can	work
together	on	the	same	problem	without	conflict;	and	how	map	software	finds	routes.”—	Provided	by	publisher.
			ISBN	978-1-59327-666-9	—	ISBN	1-59327-666-4
	1.	Electronic	data	processing—Popular	works.	2.	Computer	software—Popular	works.	3.	Computer	networks—
Popular	works.	I.	Title.
			QA76.5.S6663	2015
			005.3—dc23
																																																																																2015022623

No	Starch	Press	and	the	No	Starch	Press	logo	are	registered	trademarks	of	No	Starch	Press,	Inc.	Other	product	and
company	names	mentioned	herein	may	be	the	trademarks	of	their	respective	owners.	Rather	than	use	a	trademark
symbol	with	every	occurrence	of	a	trademarked	name,	we	are	using	the	names	only	in	an	editorial	fashion	and	to	the
benefit	of	the	trademark	owner,	with	no	intention	of	infringement	of	the	trademark.

The	information	in	this	book	is	distributed	on	an	“As	Is”	basis,	without	warranty.	While	every	precaution	has	been	taken
in	the	preparation	of	this	work,	neither	the	author	nor	No	Starch	Press,	Inc.	shall	have	any	liability	to	any	person	or
entity	with	respect	to	any	loss	or	damage	caused	or	alleged	to	be	caused	directly	or	indirectly	by	the	information
contained	in	it.

mailto:info@nostarch.com
http://www.nostarch.com

About	the	Author
V.	Anton	Spraul	has	taught	introductory	programming	and	computer	science	to	students
from	all	over	the	world	for	more	than	15	years.	He	is	also	the	author	of	Think	Like	a
Programmer	(No	Starch	Press)	and	Computer	Science	Made	Simple	(Broadway).

About	the	Technical	Reviewer
Randall	Hyde	is	the	author	of	The	Art	of	Assembly	Language	and	Write	Great	Code	(both
No	Starch	Press),	and	is	also	the	co-author	of	The	Waite	Group’s	Microsoft	Macro
Assembler	6.0	Bible	(Sams	Publishing).	Hyde	taught	assembly	language	at	the	University
of	California,	Riverside,	for	more	than	a	decade	and	has	been	programming	software	for
nuclear	reactor	consoles	for	the	past	12	years.

Brief	Contents

Acknowledgments

Introduction

Chapter	1:	Encryption

Chapter	2:	Passwords

Chapter	3:	Web	Security

Chapter	4:	Movie	CGI

Chapter	5:	Game	Graphics

Chapter	6:	Data	Compression

Chapter	7:	Search

Chapter	8:	Concurrency

Chapter	9:	Map	Routes

Index

Contents	in	Detail

Acknowledgments

Introduction

Who	This	Book	Is	For

Topics	Covered

Behind	the	Magic

1	Encryption

The	Goal	of	Encryption

Transposition:	Same	Data,	Different	Order

Cipher	Keys

Attacking	the	Encryption

Substitution:	Replacing	Data

Varying	the	Substitution	Pattern

Key	Expansion

The	Advanced	Encryption	Standard

Binary	Basics

AES	Encryption:	The	Big	Picture

Key	Expansion	in	AES

AES	Encryption	Rounds

Block	Chaining

Why	AES	Is	Secure

Possible	AES	Attacks

The	Limits	of	Private-Key	Encryption

2	Passwords

Transforming	a	Password	into	a	Number

Properties	of	Good	Hash	Functions

The	MD5	Hash	Function

Encoding	the	Password

Bitwise	Operations

MD5	Hashing	Rounds

Meeting	the	Criteria	of	a	Good	Hash	Function

Digital	Signatures

The	Problem	of	Identity

Collision	Attacks

Passwords	in	Authentication	Systems

The	Dangers	of	Password	Tables

Hashing	Passwords

Dictionary	Attacks

Hash	Tables

Hash	Chaining

Iterative	Hashing

Salting	Passwords

Are	Password	Tables	Safe?

Password	Storage	Services

A	Final	Thought

3	Web	Security

How	Public-Key	Cryptography	Solves	the	Shared	Key	Problem

Math	Tools	for	Public-Key	Cryptography

Invertible	Functions

One-Way	Functions

Trapdoor	Functions

The	RSA	Encryption	Method

Creating	the	Keys

Encrypting	Data	with	RSA

RSA	Effectiveness

RSA	Use	in	the	Real	World

RSA	for	Authentication

Security	on	the	Web:	HTTPS

Handshaking

Transmitting	Data	Under	HTTPS

The	Shared	Key	Problem	Solved?

4	Movie	CGI

Software	for	Traditional	Animation

How	Digital	Images	Work

How	Colors	Are	Defined

How	Software	Makes	Cel	Animations

From	Cel	Animation	Software	to	Rendered	2D	Graphics

Software	for	3D	CGI

How	3D	Scenes	Are	Described

The	Virtual	Camera

Direct	Lighting

Global	Illumination

How	Light	Is	Traced

Full-Scene	Anti-Aliasing

Combining	the	Real	and	the	Fake

The	Ideal	of	Movie-Quality	Rendering

5	Game	Graphics

Hardware	for	Real-Time	Graphics

Why	Games	Don’t	Ray	Trace

All	Lines	and	No	Curves

Projection	Without	Ray	Tracing

Rendering	Triangles

The	Painter’s	Algorithm

Depth	Buffering

Real-Time	Lighting

Shadows

Ambient	Light	and	Ambient	Occlusion

Texture	Mapping

Nearest-Neighbor	Sampling

Bilinear	Filtering

Mipmaps

Trilinear	Filtering

Reflections

Faking	Curves

Distant	Impostors

Bump	Mapping

Tessellation

Anti-Aliasing	in	Real	Time

Supersampling

Multisampling

Post-Process	Anti-Aliasing

The	Rendering	Budget

What’s	Next	for	Game	Graphics

6	Data	Compression

Run-Length	Encoding

Dictionary	Compression

The	Basic	Method

Huffman	Encoding

Reorganizing	Data	for	Better	Compression

Predictive	Encoding

Quantization

JPEG	Images

A	Different	Way	to	Store	Colors

The	Discrete	Cosine	Transform

The	DCT	for	Two	Dimensions

Compressing	the	Results

JPEG	Picture	Quality

Compressing	High-Definition	Video

Temporal	Redundancy

MPEG-2	Video	Compression

Video	Quality	with	Temporal	Compression

The	Present	and	Future	of	Video	Compression

7	Search

Defining	the	Search	Problem

Putting	Data	in	Order

Selection	Sort

Quicksort

Binary	Search

Indexing

Hashing

Web	Search

Ranking	Results

Using	the	Index	Effectively

What’s	Next	for	Web	Search

8	Concurrency

Why	Concurrency	Is	Needed

Performance

Multiuser	Environments

Multitasking

How	Concurrency	Can	Fail

Making	Concurrency	Safe

Read-Only	Data

Transaction-Based	Processing

Semaphores

The	Problem	of	Indefinite	Waits

Orderly	Queues

Starvation	from	Circular	Waits

Performance	Issues	of	Semaphores

What’s	Next	for	Concurrency

9	Map	Routes

What	a	Map	Looks	Like	to	Software

Best-First	Search

Reusing	Prior	Search	Results

Finding	All	the	Best	Routes	at	Once

Floyd’s	Algorithm

Storing	Route	Directions

The	Future	of	Routing

Index

Acknowledgments

This	book	was	shaped	and	guided	by	a	platoon	of	talented	editors:	Alison	Law,	Greg
Poulos,	Seph	Kramer,	Hayley	Baker,	Randall	Hyde,	Rachel	Monaghan,	and	the	“Big	Fish”
of	No	Starch,	Bill	Pollock.	Beyond	the	editorial	staff,	I	appreciate	the	support	and
kindness	of	everyone	I’ve	worked	with	at	No	Starch.

The	two	people	who	helped	me	the	most,	though,	are	Mary	Beth	and	Madeline,	the
best	wife	and	daughter	I	can	imagine.	Without	their	love	and	support,	this	book	would	not
have	been	written.

Introduction

Science	fiction	author	Arthur	C.	Clarke	wrote	that	“any	sufficiently	advanced	technology
is	indistinguishable	from	magic.”	If	we	don’t	know	how	something	works,	then	it	might	as
well	be	explained	by	supernatural	forces.	By	that	standard,	we	live	in	an	age	of	magic.

Software	is	woven	into	our	lives,	into	everyday	things	like	online	transactions,	special
effects	in	movies,	and	streaming	video.	We’re	forgetting	we	used	to	live	in	a	world	in
which	the	answer	to	a	question	wasn’t	just	a	Google	search	away,	or	where	finding	a	route
for	a	car	trip	began	with	unfolding	a	cumbersome	map.

But	few	of	us	have	any	idea	how	all	this	software	works.	Unlike	many	innovations	of
the	past,	you	can’t	take	software	apart	to	see	what	it’s	doing.	Everything	happens	on	a
computer	chip	that	looks	the	same	whether	the	device	is	performing	an	amazing	task	or
isn’t	even	turned	on.	Knowing	how	a	program	works	seems	to	require	spending	years	of
study	to	become	a	programmer.	So	it’s	no	wonder	that	many	of	us	assume	that	software	is
beyond	our	understanding,	a	collection	of	secrets	known	only	to	a	technological	elite.	But
that’s	wrong.

Who	This	Book	Is	For
Anyone	can	learn	how	software	works.	All	you	need	is	curiosity.	Whether	you’re	a	casual
fan	of	technology,	a	programmer	in	the	making,	or	someone	in	between,	this	book	is	for
you.

This	book	covers	the	most	commonly	used	processes	in	software	and	does	so	without	a
single	line	of	programming	code.	No	prior	knowledge	of	how	computers	operate	is
required.	To	make	this	possible,	I’ve	simplified	a	few	processes	and	clipped	some	details,
but	that	doesn’t	mean	these	are	mere	high-level	overviews;	you’ll	be	getting	the	real
goods,	with	enough	details	that	you’ll	truly	understand	how	these	programs	do	what	they
do.

Topics	Covered
Computers	are	so	ubiquitous	in	the	modern	world	that	the	list	of	subjects	I	could	cover
seems	endless.	I’ve	chosen	topics	that	are	most	central	to	our	daily	lives	and	with	the	most
interesting	explanations.

•	Chapter	1:	Encryption	allows	us	to	scramble	our	data	so	that	only	we	can	access	it.

When	you	lock	your	phone	or	password-protect	a	.zip	file,	you’re	using	encryption.
We’ll	see	how	different	scrambling	techniques	are	combined	in	modern	encryption
software.

•	Chapter	2:	Passwords	are	the	keys	we	use	to	lock	our	data	and	how	we	identify
ourselves	to	remote	systems.	You’ll	see	how	passwords	are	used	in	encryption	and	learn
the	surprising	steps	that	must	be	taken	to	keep	passwords	safe	from	attackers.

•	Chapter	3:	Web	Security	is	what	we	need	to	safely	purchase	goods	online	or	access	our
accounts.	Locking	data	for	transmission	requires	a	different	method	of	scrambling	called
public-key	encryption.	You’ll	discover	how	a	secure	web	session	requires	all	the
techniques	covered	in	the	first	three	chapters.

•	Chapter	4:	Movie	CGI	is	pure	software	magic,	creating	whole	worlds	out	of
mathematical	descriptions.	You’ll	discover	how	software	took	over	traditional	cel
animation	and	then	learn	the	key	concepts	behind	making	a	complete	movie	set	with
software.

•	Chapter	5:	Game	Graphics	are	impressive	not	just	for	their	visuals	but	also	for	how
they	are	created	in	mere	fractions	of	a	second.	We’ll	explore	a	host	of	clever	tricks
games	use	to	produce	stunning	images	when	they	don’t	have	time	for	the	techniques
discussed	in	the	previous	chapter.

•	Chapter	6:	Data	Compression	shrinks	data	so	that	we	can	get	more	out	of	our	storage
and	bandwidth	limits.	We’ll	explore	the	best	methods	for	shrinking	data,	and	then	see
how	they	are	combined	to	compress	high-definition	video	for	Blu-ray	discs	and	web
streams.

•	Chapter	7:	Search	is	about	finding	data	instantly,	whether	it’s	a	search	for	a	file	on	our
own	computer	or	a	search	across	the	whole	Web.	We’ll	explore	how	data	is	organized
for	quick	searches,	how	search	zeros	in	on	requested	data,	and	how	web	searches	return
the	most	useful	results.

•	Chapter	8:	Concurrency	allows	multiple	programs	to	share	data.	Without	concurrency,
multiplayer	video	games	wouldn’t	be	possible,	and	online	bank	systems	could	allow
only	one	customer	at	a	time.	We’ll	talk	about	the	methods	that	enable	different
processors	to	access	the	same	data	without	getting	in	each	other’s	way.

•	Chapter	9:	Map	Routes	are	those	instant	directions	we	get	from	mapping	sites	and	in-
car	navigators.	You’ll	discover	what	a	map	looks	like	to	software	and	the	specialized
search	techniques	that	find	the	best	routes.

Behind	the	Magic
I	think	it’s	important	to	share	this	knowledge.	We	shouldn’t	have	to	live	in	a	world	we
don’t	understand,	and	it’s	becoming	impossible	to	understand	the	modern	world	without
also	understanding	software.	Clarke’s	message	can	be	taken	as	a	warning	that	those	who
understand	technology	can	fool	those	who	don’t.	For	example,	a	company	may	claim	that
the	theft	of	its	login	data	poses	little	danger	to	its	customers.	Could	this	be	true,	and	how?
After	reading	this	book,	you’ll	know	the	answer	to	questions	like	these.

Beyond	that,	though,	there’s	an	even	better	reason	to	learn	the	secrets	of	how	software
works:	because	those	secrets	are	really	cool.	I	think	the	best	magic	tricks	are	even	more
magical	once	you	learn	how	they	are	done.	Read	on	and	you’ll	see	what	I	mean.

1
Encryption

We	rely	on	software	to	protect	our	data	every	day,	but	most	of	us	know	little	about	how
this	protection	works.	Why	does	a	“lock”	icon	in	the	corner	of	your	browser	mean	it’s	safe
to	enter	your	credit	card	number?	How	does	creating	a	password	for	your	phone	actually
protect	the	data	inside?	What	really	prevents	other	people	from	logging	into	your	online
accounts?

Computer	security	is	the	science	of	protecting	data.	In	a	way,	computer	security
represents	technology	solving	a	problem	that	technology	created.	Not	that	long	ago,	most
data	wasn’t	stored	digitally.	We	had	filing	cabinets	in	our	offices	and	shoeboxes	of
photographs	under	our	beds.	Of	course,	back	then	you	couldn’t	easily	share	your
photographs	with	friends	around	the	world	or	check	your	bank	balance	from	a	mobile
phone,	but	neither	could	anyone	steal	your	private	data	without	physically	taking	it.	Today,
not	only	can	you	be	robbed	at	a	distance,	but	you	might	not	even	know	you’ve	been
robbed—that	is,	until	your	bank	calls	to	ask	why	you	are	buying	thousands	of	dollars	in
gift	cards.

Over	these	first	three	chapters,	we’ll	discuss	the	most	important	concepts	behind
computer	security.	In	this	chapter,	we	talk	about	encryption.	By	itself,	encryption	provides
us	with	the	capability	to	lock	our	data	so	only	we	can	unlock	it.	Additional	techniques,
discussed	in	the	next	two	chapters,	are	needed	to	provide	the	full	security	suite	that	we
depend	on,	but	encryption	is	the	core	of	computer	security.

The	Goal	of	Encryption
Think	of	a	file	on	your	computer:	it	might	contain	text,	a	photograph,	a	spreadsheet,	audio,
or	video.	You	want	to	access	the	file	but	keep	it	secret	from	everyone	else.	This	is	the
fundamental	problem	of	computer	security.	To	keep	the	file	secret,	you	can	use	encryption
to	transform	it	into	a	new	format	that	is	unreadable	until	the	file	has	been	returned	to	its
original	form	using	decryption.	The	original	file	is	the	plaintext	(even	if	the	file	isn’t	text),
and	the	encrypted	file	is	the	ciphertext.

An	attacker	is	someone	who	attempts	to	decrypt	the	ciphertext	without	authorization.
The	goal	of	encryption	is	to	create	a	ciphertext	that	is	easy	for	authorized	users	to	decrypt,
while	practically	impossible	for	attackers	to	decrypt.	“Practically”	is	the	source	of	many

headaches	for	security	researchers.	Just	as	no	lock	is	absolutely	unbreakable,	no
encryption	can	be	absolutely	impossible	to	decrypt.	With	enough	time	and	enough
computing	power,	any	encryption	scheme	can	be	broken	in	theory.	The	goal	of	computer
security	is	to	make	an	attacker’s	job	so	difficult	that	successful	attacks	are	impossible	in
practice,	requiring	computing	resources	beyond	an	attacker’s	means.

Rather	than	jump	headfirst	into	the	intricacies	of	software-based	encryption,	I’ll	start
this	chapter	with	some	simple	examples	from	the	pre-software	days	of	codes	and	spies.
Although	the	strength	of	encryption	has	vastly	improved	over	the	years,	these	same	classic
techniques	form	the	basis	of	all	encryption.	Later,	you’ll	see	how	these	ideas	are	combined
in	a	modern	digital	encryption	scheme.

Transposition:	Same	Data,	Different	Order
One	of	the	simplest	ways	to	encrypt	data	is	called	transposition,	which	simply	means
“changing	position.”	Transposition	is	the	kind	of	encryption	my	friends	and	I	used	when
passing	notes	in	grade	school.	Because	these	notes	were	passed	through	untrustworthy
hands,	it	was	imperative	the	notes	were	unintelligible	to	anyone	but	us.

To	keep	messages	secret,	we	rearranged	the	order	of	the	letters	using	a	simple,	easy-to-
reverse	scheme.	Suppose	I	needed	to	share	the	vital	intelligence	that	CATHY	LIKES
KEITH	(the	names	have	been	changed	to	protect	the	innocent).	To	encrypt	the	message,	I
copied	every	third	letter	of	the	plaintext	(ignoring	any	spaces).	During	the	first	pass
through	the	message,	I	copied	five	letters,	as	shown	in	Figure	1-1.

Figure	1-1:	The	first	pass	in	the	transposition	of	the	sample	message

Having	reached	the	end	of	the	message,	I	started	back	at	the	beginning	and	continued
selecting	every	third	remaining	letter.	The	second	pass	got	me	to	the	state	shown	in	Figure
1-2.

Figure	1-2:	The	second	transposition	pass

On	the	last	pass	I	copied	the	remaining	letters,	as	shown	in	Figure	1-3.

Figure	1-3:	The	final	transposition	pass

The	resulting	ciphertext	is	CHISIAYKKTTLEEH.	My	friends	could	read	the	message
by	reversing	the	transposition	process.	The	first	step	is	shown	in	Figure	1-4.	Returning	all
the	letters	to	their	original	position	reveals	the	plaintext.

Figure	1-4:	The	first	pass	in	reversing	the	transposition	for	decryption

This	basic	transposition	method	was	fun	to	use,	but	it’s	terribly	weak	encryption.	The
biggest	concern	is	a	leak—one	of	my	friends	blabbing	about	the	encryption	method	to
someone	outside	the	circle.	Once	that	happens,	sending	encrypted	messages	won’t	be
secure	anymore;	it	will	just	be	more	work.	Leaks	are	sadly	inevitable—and	not	just	with
schoolchildren.	Every	encryption	method	is	vulnerable	to	leaks,	and	the	more	people	use	a
particular	method,	the	more	likely	it	will	leak.

For	this	reason,	all	good	encryption	systems	follow	a	rule	formulated	by	early	Dutch
cryptographer	Auguste	Kerckhoffs,	known	as	Kerckhoffs’s	principle:	the	security	of	data
should	not	depend	on	the	encryption	method	remaining	a	secret.

Cipher	Keys
This	raises	an	obvious	question.	If	the	encryption	method	is	not	a	secret,	how	do	we
securely	encrypt	data?	The	answer	lies	in	following	a	general,	publically	disclosed
encryption	method,	but	varying	the	encryption	of	individual	messages	using	a	cipher	key
(or	just	key).	To	understand	what	a	key	is,	let’s	examine	a	more	general	transposition
method.

In	this	method,	senders	and	receivers	share	a	secret	number	prior	to	sending	any
messages.	Let’s	say	my	friends	and	I	agree	on	374.	We’ll	use	this	number	to	alter	the
transposition	pattern	in	our	ciphertexts.	This	pattern	is	shown	in	Figure	1-5	for	the
message	CATHY	LIKES	KEITH.	The	digits	of	our	secret	number	dictate	which	letter
should	be	copied	from	the	plaintext	to	the	ciphertext.	Because	the	first	digit	is	3,	the	third
letter	of	the	plaintext,	T,	becomes	the	first	letter	of	the	ciphertext.	The	next	digit	is	7,	so
the	next	letter	is	the	seventh	letter	after	the	T,	which	is	S.	Next,	we	select	the	fourth	letter
from	the	S.	The	first	three	letters	of	the	ciphertext	are	TST.

Figure	1-6	shows	how	the	next	two	letters	are	copied	to	the	ciphertext.	Starting	from

where	we	left	off	(indicated	by	the	circled	1	in	the	figure),	we	count	three	positions,
returning	to	the	beginning	of	the	plaintext	when	we	reach	the	end,	to	select	A	as	the	fourth
letter	of	the	ciphertext.	The	next	letter	chosen	is	seven	positions	after	the	A,	skipping
letters	that	have	already	been	copied:	the	K.	The	process	continues	until	all	of	the	letters	of
the	plaintext	have	been	transposed.

Figure	1-5:	The	first	pass	in	transposing	using	the	key	374

Figure	1-6:	The	second	pass	in	transposing	using	the	key	374

The	secret	number	374,	then,	is	our	cipher	key.	Someone	who	intercepts	this	message
won’t	be	able	to	decrypt	it	without	the	key,	even	if	they	understand	we’re	using	a
transposition	method.	The	code	can	be	regularly	changed	to	prevent	blabbermouths	and
turncoats	from	compromising	the	encryption.

Attacking	the	Encryption
Even	without	the	key,	attackers	can	still	try	to	recover	the	plaintext	through	other	means.
Encrypted	data	can	be	attacked	through	brute	force,	trying	all	the	possible	ways	of
applying	the	encryption	method	to	the	ciphertext.	For	a	message	encrypted	using
transposition,	a	brute-force	attack	would	examine	all	permutations	of	the	ciphertext.
Because	brute	force	is	almost	always	an	option,	the	number	of	trials	an	attacker	will	need
to	find	the	plaintext	is	a	good	baseline	for	encryption	strength.	In	our	example,	the
message	CATHY	LIKES	KEITH	has	around	40	billion	permutations.

That’s	a	huge	number,	so	instead	of	brute	force,	a	smart	attacker	would	apply	some
common	sense	to	recover	the	plaintext	faster.	If	the	attacker	can	assume	the	plaintext	is	in
English,	then	most	of	the	permutations	can	be	ruled	out	before	they	are	tested.	For
example,	the	attacker	can	assume	the	plaintext	won’t	start	with	the	letters	HT	because	no
English	word	starts	with	those	letters.	That’s	a	billion	permutations	the	attacker	won’t
have	to	check.

An	attacker	with	some	idea	of	the	words	in	the	message	can	be	even	smarter	about
figuring	out	the	plaintext.	In	our	example,	the	attacker	might	guess	the	message	includes
the	name	of	a	classmate.	They	can	see	what	names	can	be	formed	from	the	ciphertext

letters	and	then	determine	what	words	can	be	formed	from	the	leftover	letters.

Guesses	about	the	plaintext	content	are	known	as	cribs.	The	strongest	kind	of	crib	is	a
known-plaintext	attack.	To	carry	out	this	type	of	attack,	the	attacker	must	have	access	to	a
plaintext	A,	its	matching	ciphertext	A,	and	a	ciphertext	B	that	uses	the	same	cipher	key	as
ciphertext	A.	Although	this	scenario	sounds	unlikely,	it	does	happen.	People	often	leave
documents	unguarded	when	they	are	no	longer	considered	secret	without	realizing	they
may	aid	attacks	on	other	documents.	Known-plaintext	attacks	are	power	ful;	figuring	out
the	transposition	pattern	is	easy	when	you	have	both	the	plaintext	and	ciphertext	in	front
of	you.

The	best	defenses	against	known-plaintext	attacks	are	good	security	practices,	such	as
regularly	changing	passwords.	Even	with	the	best	security	practices,	though,	attackers	will
almost	always	have	some	idea	of	a	plaintext’s	contents	(that’s	why	are	they	so	interested	in
reading	it).	In	many	cases,	they	will	know	most	of	the	plaintext	and	may	have	access	to
known	plaintext-ciphertext	pairs.	A	good	encryption	system	should	render	cribs	and
known	plaintexts	useless	to	attackers.

Substitution:	Replacing	Data
The	other	fundamental	encryption	technique	is	more	resistant	to	cribs.	Instead	of	moving
the	data	around,	substitution	methods	systematically	replace	individual	pieces	of	data.
With	text	messages,	the	simplest	form	of	substitution	replaces	every	occurrence	of	one
letter	with	another	letter.	For	example,	every	A	becomes	a	D,	every	B	an	H,	and	so	on.	A
key	for	this	type	of	encryption	looks	like	Table	1-1.

Table	1-1:	A	Substitution	Cipher	Key

Original A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Replacement M N B V C X Z L K F H G J D S A P O I U Y T R E W Q

Although	simple	substitution,	as	this	method	is	called,	is	an	improvement	over
transposition,	it	too	has	problems:	there	are	only	so	many	possible	substitutions,	so	an
attacker	can	sometimes	decrypt	ciphertext	through	brute	force.

Simple	substitution	is	also	vulnerable	to	frequency	analysis,	in	which	an	attacker
applies	knowledge	of	how	often	letters	or	letter	combinations	occur	in	a	given	language.
Stated	broadly,	knowing	how	often	data	items	are	likely	to	appear	in	a	plaintext	gives	the
attacker	an	advantage.	For	example,	the	letter	E	is	the	most	common	letter	in	English
writing,	and	TH	is	the	most	common	letter	pair.	Therefore,	the	most	frequently	occurring
letter	in	a	long	ciphertext	is	likely	to	represent	plaintext	E,	and	the	most	frequently
occurring	letter	pair	is	likely	to	represent	plaintext	TH.

The	power	of	frequency	analysis	means	that	substitution	encryption	becomes	more
vulnerable	as	the	text	grows	longer.	Attacks	are	also	easier	when	a	collection	of
ciphertexts	is	known	to	have	been	encrypted	with	the	same	key;	avoiding	such	key	reuse	is
an	important	security	practice.

Varying	the	Substitution	Pattern
To	strengthen	encryption	against	frequency	analysis,	we	can	vary	the	substitution	pattern
during	encryption,	so	the	first	E	in	the	plaintext	might	be	replaced	with	A,	but	the	second
E	in	the	plaintext	is	replaced	with	a	T.	This	technique	is	known	as	polyalphabetic
substitution.	One	method	of	polyalphabetic	substitution	uses	a	grid	of	alphabets	known	as
a	tabula	recta,	shown	in	Figure	1-7.	In	this	table,	each	row	and	column	is	labeled	with	the
letter	of	the	alphabet	that	starts	the	row	or	column.	Every	location	in	the	grid	is	located
with	two	letters,	such	as	row	D,	column	H,	which	contains	the	letter	K.

Figure	1-7:	A	tabula	recta—the	shaded	first	column	and	row	are	labels.

When	using	a	tabula	recta,	the	key	is	textual—letters	are	used	to	vary	the	encryption
instead	of	numbers,	as	we	used	in	our	transposition	example.	The	letters	of	the	plaintext
select	rows	in	the	tabula	recta,	and	the	letters	of	the	key	select	columns.	For	example,
suppose	our	plaintext	message	is	the	word	SECRET,	and	our	encryption	key	is	the	word
TOUGH.	Because	the	first	letter	of	the	plaintext	is	S	and	the	first	letter	of	the	key	is	T,	the
first	letter	of	the	ciphertext	is	found	at	row	S,	column	T	in	the	tabula	recta:	the	letter	L.	We
then	use	the	O	column	of	the	table	to	encrypt	the	second	plaintext	letter	E	(resulting	in	S),
and	so	on,	as	shown	in	Figure	1-8.	Because	the	plaintext	is	longer	than	the	key,	we	must
reuse	the	first	letter	of	the	key.

Figure	1-8:	Encryption	using	the	tabula	recta	and	cipher	key	TOUGH

Decryption	reverses	the	process,	as	shown	in	Figure	1-9.	The	letters	in	the	key	indicate
the	columns,	which	are	scanned	to	find	the	corresponding	letter	in	the	ciphertext.	The	row
where	the	ciphertext	letter	is	found	indicates	the	plaintext	letter.	In	our	example,	the	first
letter	of	our	key	is	T,	and	the	first	letter	of	the	ciphertext	is	L.	We	scan	the	T	column	of	the
tabula	recta	to	find	L;	because	L	appears	in	row	S,	the	plaintext	letter	is	S.	The	process
repeats	for	every	letter	of	the	ciphertext.

Figure	1-9:	Decryption	using	the	tabula	recta	and	cipher	key	TOUGH

Polyalphabetic	substitution	is	more	effective	than	simple	substitution	because	it	varies
the	substitution	pattern	throughout	the	message.	In	our	example,	the	two	occurrences	of	E
in	the	plaintext	become	different	ciphertext	letters,	and	the	two	occurrences	of	L	in	the
ciphertext	represent	two	different	plaintext	letters.

Key	Expansion
Although	polyalphabetic	substitution	is	a	great	improvement	over	simple	substitution,	it’s
effective	only	when	the	key	isn’t	repeated	too	often;	otherwise	it	has	the	same	problems	as
simple	substitution.	With	a	key	length	of	five,	for	example,	each	plaintext	letter	would	be
represented	by	only	five	different	ciphertext	letters,	leaving	long	ciphertexts	vulnerable	to
frequency	analysis	and	cribs.	An	attacker	would	have	to	work	harder,	but	given	enough
ciphertext	to	work	with,	an	attacker	could	still	break	the	encryption.

For	maximum	effectiveness,	we	need	encryption	keys	that	are	as	long	as	the	plaintext,
a	technique	known	as	a	one-time	pad.	But	that’s	not	a	practical	solution	for	most
situations.	Instead,	a	method	called	key	expansion	allows	short	keys	to	do	the	work	of

longer	ones.	One	implementation	of	this	idea	frequently	appears	in	spy	novels.	Instead	of
sharing	a	super-long	key,	two	spies	who	need	to	exchange	messages	agree	on	a	code	book,
which	is	used	as	a	repository	of	long	keys.	To	avoid	arousing	suspicion,	the	code	book	is
an	ordinary	piece	of	literature,	like	a	specific	edition	of	Shakespeare’s	plays.

Let’s	suppose	a	50-letter	message	will	be	sent	using	this	scheme.	In	addition	to	the
ciphertext,	the	message	sender	also	appends	the	unexpanded	key.	Using	the	works	of
Shakespeare	as	the	code	book,	the	unexpanded	key	might	be	2.2.4.9.	The	first	2	indicates
the	second	of	Shakespeare’s	plays	when	listed	alphabetically	(As	You	Like	It).	The	second
2	means	Act	II	of	the	play.	The	4	means	Scene	4	of	that	act.	The	9	means	the	ninth
sentence	of	that	scene	in	the	specified	edition:	“When	I	was	at	home,	I	was	in	a	better
place,	but	travelers	must	be	content.”	The	number	of	letters	in	this	sentence	exceeds	the
number	in	the	plaintext	and	could	be	used	for	encryption	and	decryption	using	a	tabula
recta	as	before.	In	this	way,	a	relatively	short	key	can	be	expanded	to	fit	a	particular
message.

Note	that	this	scheme	doesn’t	qualify	as	a	one-time	pad	because	the	code	book	is	finite,
and	therefore	the	sentence-keys	would	have	to	be	reused	eventually.	But	it	does	mean	our
spies	only	have	to	remember	short	cipher	keys	while	encrypting	their	messages	more
securely	with	longer	keys.	As	you’ll	see,	the	key	expansion	concept	is	important	in
computer	encryption	because	the	cipher	keys	required	are	huge	but	need	to	be	stored	in
smaller	forms.

The	Advanced	Encryption	Standard
Now	that	we’ve	seen	how	transposition,	substitution,	and	key	expansion	work
individually,	let’s	see	how	secure	digital	encryption	results	from	a	careful	combination	of
all	three	techniques.

The	Advanced	Encryption	Standard	(AES)	is	an	open	standard,	which	means	the
specifications	may	be	implemented	by	anyone	without	paying	a	license	fee.	Whether	you
realize	it	or	not,	much	of	your	data	is	protected	by	AES.	If	you	have	a	secure	wireless
network	at	your	home	or	office,	if	you	have	ever	password-protected	a	file	in	a	.zip
archive,	or	if	you	use	a	credit	card	at	a	store	or	make	a	withdrawal	from	an	ATM,	you	are
probably	relying,	at	least	in	part,	on	AES.

Binary	Basics
Up	to	now,	I’ve	used	text	encryption	samples	to	keep	the	examples	simple.	The	data
encrypted	by	computers,	though,	is	represented	in	the	form	of	binary	numbers.	If	you
haven’t	worked	with	these	numbers	before,	here’s	an	introduction.

Decimal	Versus	Binary

The	number	system	we	all	grew	up	with	is	called	the	decimal	system,	deci	meaning	“ten,”
because	the	system	uses	10	digits,	0	through	9.	Each	digit	in	a	number	represents	the
quantity	of	a	unit	10	times	greater	than	the	digit	to	its	right.	The	units	and	quantities	for
the	decimal	number	23,065	are	shown	in	Figure	1-10.	The	2	in	the	fifth	position	from	the

left	means	we	have	2	“ten	thousands,”	for	example,	and	the	6	means	6	“tens.”

Figure	1-10:	Each	digit	in	the	decimal	number	23,065	represents	a	different	unit	quantity.

In	the	binary	number	system,	there	are	only	two	possible	digits,	0	or	1,	which	are
called	bits,	for	binary	digits.	Each	bit	in	a	binary	number	represents	a	unit	twice	as	large	as
the	bit	to	the	right.	The	units	and	quantities	for	the	binary	number	110101	are	shown	in
Figure	1-11.	As	shown,	we	have	one	of	each	of	the	following	units:	32,	16,	4,	and	1.
Therefore,	the	binary	number	110101	represents	the	sum	of	these	four	unit	values,	which
is	the	decimal	number	53.

Figure	1-11:	Each	bit	in	the	binary	number	110101	represents	a	different	unit	quantity.

Binary	numbers	are	often	written	with	a	fixed	number	of	bits.	The	most	common
length	for	a	binary	number	is	eight	bits,	known	as	a	byte.	Although	the	decimal	number	53
can	be	written	as	110101	in	binary,	writing	53	as	a	byte	requires	eight	bits,	so	leading	0
bits	fill	out	the	other	positions	to	make	00110101.	The	smallest	byte	value,	00000000,
represents	decimal	0;	the	largest	possible	byte,	11111111,	represents	decimal	255.

Bitwise	Operations

Along	with	the	usual	mathematical	operations	such	as	addition	and	multiplication,
software	also	uses	some	operations	unique	to	binary	numbers.	These	are	known	as	bitwise
operations	because	they	are	applied	individually	to	each	bit	rather	than	to	the	binary
number	as	whole.

The	bitwise	operation	known	as	exclusive-or,	or	XOR,	is	common	in	encryption.	When
two	binary	numbers	are	XORed	together,	the	1s	in	the	second	number	flip	the
corresponding	bits	in	the	first	number,	as	shown	in	Figure	1-12.

Figure	1-12:	The	exclusive-or	(XOR)	operation.	The	1	bits	in	the	second	byte	indicate
which	bits	are	“flipped”	in	the	first	byte,	as	shown	in	the	shaded	columns.

Remember,	encryption	must	be	reversible.	XOR	alters	the	bit	patterns	in	a	way	that’s
impossible	to	predict	without	knowing	the	binary	numbers	involved,	but	it’s	easily
reversed.	XORing	the	result	with	the	second	number	flips	the	same	bits	back	to	their
original	state,	as	shown	in	Figure	1-13.

Figure	1-13:	If	we	XOR	a	byte	with	the	same	byte	twice,	we’re	back	to	where	we	started.

Converting	Data	to	Binary	Form

Computers	use	binary	numbers	to	represent	all	kinds	of	data.	A	plaintext	file	could	be	a
text	message,	a	spreadsheet,	an	image,	an	audio	file,	or	anything	else—but	in	the	end,
every	file	is	a	sequence	of	bytes.	Most	computer	data	is	already	numeric	and	can	therefore
be	directly	converted	into	binary	numbers.	In	some	cases,	though,	a	special	encoding
system	is	needed	to	convert	non-numeric	data	into	binary	form.

For	example,	to	see	how	a	text	message	becomes	a	sequence	of	bytes,	consider	this
message:
Send	more	money!

This	message	has	16	characters,	counting	the	letters,	spaces,	and	exclamation	point.	We
can	turn	each	character	into	a	byte	using	a	system	such	as	the	American	Standard	Code	for
Information	Interchange,	which	is	always	referred	to	by	its	acronym,	ASCII,	pronounced
“as-key”.	In	ASCII,	capital	A	is	represented	by	the	number	65,	B	by	66,	and	so	on,	through
90	for	Z.	Table	1-2	shows	some	selected	entries	from	the	ASCII	table.

Table	1-2:	Selected	Entries	from	the	ASCII	Table

Character Decimal	number Binary	byte

(space) 32 00100000

! 33 00100001

, 44 00101100

. 46 00101110

A 65 01000001

B 66 01000010

C 67 01000011

D 68 01000100

E 69 01000101

a 97 01100001

b 98 01100010

c 99 01100011

d 100 01100100

e 101 01100101

AES	Encryption:	The	Big	Picture
Before	we	examine	the	details	of	AES	encryption,	here’s	an	overview	of	the	process.

Cipher	keys	in	AES	are	binary	numbers.	The	size	of	the	key	can	vary,	but	we’ll	discuss
the	simplest	version	of	AES,	which	uses	a	128-bit	key.	Using	mathematical	key
expansion,	AES	transforms	the	original	128-bit	key	into	eleven	128-bit	keys.

AES	divides	plaintext	data	into	blocks	of	16	bytes	in	a	4×4	grid;	the	grid	for	the	sample
message	Send	more	money!	is	shown	in	Figure	1-14.	Heavy	lines	separate	the	16	bytes,
and	light	lines	separate	the	bits	within	the	bytes.

Figure	1-14:	The	sample	message	Send	more	money!	transformed	into	a	grid	of	bytes,
ready	for	encryption	using	AES

The	plaintext	data	is	divided	into	as	many	16-byte	blocks	as	necessary.	If	the	last	block
isn’t	full,	the	rest	of	the	block	is	padded	with	random	binary	numbers.

AES	then	subjects	each	16-byte	block	of	plaintext	data	to	10	rounds	of	encryption.
During	a	round,	the	bytes	are	transposed	within	the	block	and	substituted	using	a	table.
Then,	using	the	XOR	operation,	the	bytes	in	the	block	are	combined	with	each	other	and
with	one	of	the	128-bit	keys.

That’s	AES	in	a	nutshell;	now	let’s	look	at	some	of	these	steps	in	more	detail.

Key	Expansion	in	AES
Key	expansion	in	a	digital	encryption	system	is	a	bit	different	than	the	“code	book”
concept	we	discussed	earlier.	Instead	of	just	looking	up	a	longer	key	in	a	book,	AES
expands	the	key	using	the	same	tools	it	will	later	use	for	the	encryption	itself:	the	binary
XOR	operation,	transposition,	and	simple	substitution.

Figure	1-15	shows	the	first	few	stages	of	the	key	expansion	process.	Each	of	the	blocks
in	the	figure	is	32	bits,	and	one	row	in	this	figure	represents	one	128-bit	key.	The	original
128-bit	key	makes	up	the	first	four	blocks,	which	are	shaded	in	the	figure.	Every	other
block	is	the	result	of	an	XOR	between	two	previous	blocks;	the	XOR	operation	is
represented	by	a	plus	sign	in	a	circle.	Block	6,	for	example,	results	from	the	XOR	of
Block	2	and	Block	5.

Figure	1-15:	Key	expansion	process	for	AES

As	you	can	see	on	the	right	of	the	figure,	every	fourth	block	passes	through	a	box
labeled	“Extra	Scrambling.”	This	process	includes	transposing	the	bytes	inside	the	block
and	substituting	each	byte	according	to	a	table	called	the	S-box.

The	S-box	table,	which	is	used	both	in	the	key	expansion	and	later	in	the	encryption
itself,	is	carefully	designed	to	amplify	differences	in	the	plaintext.	That	is,	two	plaintext
bytes	that	are	similar	will	tend	to	have	S-box	replacements	that	are	quite	different.	The

first	eight	entries	from	the	table	are	shown	in	Table	1-3.

Table	1-3:	Excerpts	from	the	S-Box	Table

Original	bit	pattern Replacement	bit	pattern

00000000 01100011

00000001 01111100

00000010 01110111

00000011 01111011

00000100 11110010

00000101 01101011

00000110 01101111

00000111 11000101

00001000 00110000

00001001 00000001

AES	Encryption	Rounds
Once	AES	has	all	the	required	keys,	the	real	encryption	can	begin.	Recall	that	the	binary
plaintext	is	stored	in	a	grid	of	16	bytes	or	128	bits,	which	is	the	same	size	as	the	original
key.	This	is	not	a	coincidence.	The	first	step	of	the	actual	encryption	is	to	XOR	the	128-bit
data	grid	with	the	original	128-bit	key.	Now	the	work	begins	in	earnest,	as	the	data	grid	is
subjected	to	10	rounds	of	number	crunching.	There	are	four	steps	in	each	round.

1.	Substitution.

Each	of	the	16	bytes	in	the	grid	is	replaced	using	the	same	S-box	table	used	in	the	key
expansion	process.

2.	Row	Transposition.

Next,	the	bytes	are	moved	to	different	positions	within	their	row	in	the	grid.

3.	Column	Combination.

Next,	for	each	byte	in	the	grid,	a	new	byte	is	calculated	from	a	combination	of	all	four
bytes	in	that	column.	This	computation	involves	the	XOR	operation	again,	but	also	a
binary	form	of	transposition.	To	give	you	the	flavor	of	the	process,	Figure	1-16	shows
the	computation	of	the	leftmost	byte	in	the	lowest	row.	The	four	bytes	of	the	leftmost

column	are	XORed	together,	but	the	top	and	bottom	bytes	in	the	column	have	their
bits	transposed	first.	This	kind	of	transposition	is	known	as	bitwise	rotation;	the	bits
slide	one	position	to	the	left,	with	the	leftmost	bit	moving	over	to	the	right	end.

Every	byte	in	the	new	grid	is	computed	in	a	similar	way,	by	combining	the	bytes	in
the	column	using	XOR;	the	only	variation	is	which	bytes	have	their	bits	rotated	before
the	XOR.

Figure	1-16:	One	part	of	the	column-scrambling	step	in	an	AES	round

4.	XOR	with	Cipher	Key.

Finally,	the	grid	that	results	from	the	previous	step	is	XORed	with	the	key	for	that
round.	This	is	why	key	expansion	is	needed,	so	that	each	round	XORs	with	a	different
key.

The	AES	decryption	process	performs	the	same	steps	as	the	encryption	process,	in
reverse.	Because	the	only	operations	in	the	encryption	are	XORs,	simple	substitution	from
the	S-box,	and	transpositions	of	bits	and	bytes,	everything	is	reversible	if	the	key	is
known.

Block	Chaining
AES	encryption	could	be	applied	individually	to	each	16-byte	block	in	a	file,	but	this
would	create	vulnerabilities	in	the	ciphertext.	As	we’ve	discussed,	the	more	times	an
encryption	key	is	used,	the	more	likely	it	is	that	attackers	will	discover	and	exploit
patterns.	Computer	files	are	often	enormous,	and	using	the	same	key	to	encrypt	millions	of
blocks	is	a	form	of	large-scale	key	reuse	that	exposes	the	ciphertext	to	frequency	analysis
and	related	techniques.

For	this	reason,	block-based	encryption	systems	like	AES	are	modified	so	that	identical

blocks	in	plaintext	produce	different	ciphertext	blocks.	One	such	modification	is	called
block	chaining.

When	block	chaining,	the	first	block	of	the	plaintext	is	XORed	with	a	random	128-bit
number	before	encryption.	This	random	number	is	called	the	starting	variable	and	is
stored	along	with	the	ciphertext.	Because	each	encryption	is	assigned	a	random	starting
variable,	two	files	that	begin	with	the	same	data	will	have	different	ciphertexts	even	when
encrypted	with	the	same	key.

Every	subsequent	plaintext	block	is	XORed	with	the	previous	ciphertext	block	before
encryption,	“chaining”	the	encryption	as	shown	in	Figure	1-17.	Chaining	ensures	that
duplicate	blocks	in	a	plaintext	will	result	in	different	ciphertext	blocks.	This	means	files	of
any	length	can	be	encrypted	without	fear	of	frequency	analysis.

Figure	1-17:	AES	encryption	using	block	chaining

Why	AES	Is	Secure
As	you	can	see,	although	AES	contains	many	steps,	each	individual	step	is	just
transposition	or	simple	substitution.	Why	is	AES	considered	strong	enough	to	protect	the
world’s	data?	Remember,	attackers	use	brute	force	or	cribs,	or	exploit	patterns	in	the
ciphertext.	AES	has	excellent	defenses	against	all	of	these	attack	methods.

With	AES,	brute	force	means	running	the	ciphertext	through	the	decryption	process
with	every	possible	key	until	the	plaintext	is	produced.	In	AES,	keys	have	128,	192,	or
256	bits.	Even	the	smallest	key	size	offers	around
300,000,000,000,000,000,000,000,000,000,000,000,000	possible	keys,	and	a	brute-force
attack	would	need	to	try	about	half	of	these	before	it	could	expect	to	hit	the	right	one.	An
attacker	with	a	computer	that	could	try	a	million	keys	per	second	could,	in	a	day,	try
1,000,000	keys	×	60	seconds	×	60	minutes	×	24	hours	=	86,400,000,000	keys.	In	a	year,
the	attacker	could	try	31,536,000,000,000	keys.	Although	that’s	a	large	number,	it’s	not
even	a	billionth	of	a	billionth	of	the	possible	combinations.	An	attacker	might	acquire
more	computing	power,	but	trying	that	many	keys	still	doesn’t	seem	feasible—and	that’s
just	for	the	128-bit	version.

AES	also	makes	using	cribs	or	finding	exploitable	patterns	difficult.	During	each
encryption	round,	AES	rotates	the	bytes	in	each	row	of	the	grid	and	combines	the	bytes	in
each	column.	After	many	rounds	of	this,	the	bytes	are	thoroughly	mixed	together	so	the
final	value	of	any	one	byte	in	the	ciphertext	grid	depends	on	the	initial	plaintext	values	of
all	the	bytes	in	a	grid.	This	encryption	property	is	called	diffusion.

Furthermore,	passing	the	bytes	through	the	S-box,	round	after	round,	amplifies	the
effect	of	diffusion,	and	block	chaining	passes	the	diffusion	effects	of	each	block	on	to	the
next.	Together,	these	operations	give	AES	the	avalanche	property,	in	which	small	changes
in	the	plaintext	result	in	sweeping	changes	throughout	the	ciphertext.

AES	thwarts	attackers	no	matter	how	much	they	know	about	the	general	layout	of	the
plaintext.	For	example,	a	company	may	send	emails	to	customers	based	on	a	common
template,	in	which	the	only	variables	are	the	customers’	account	numbers	and	outstanding
balances.	With	diffusion,	avalanches,	and	block	chaining,	the	ciphertexts	of	these	emails
will	be	very	different.	Diffusion	and	avalanches	also	reduce	patterns	that	could	be
exploited	through	frequency	analysis.	Even	a	huge	plaintext	file	consisting	of	the	same	16-
byte	block	repeated	over	and	over	would	result	in	a	random-looking	jumble	of	bits	when
run	through	AES	encryption	with	block	chaining.

Possible	AES	Attacks
AES	appears	to	be	strong	against	conventional	encryption	attacks,	but	are	there	hidden
weaknesses	that	offer	shortcuts	to	finding	the	right	cipher	key?	The	answer	is	unclear
because	proving	a	negative	is	difficult.	Stating	that	no	shortcuts,	or	cracks,	are	known	to
exist	is	one	thing;	proving	they	couldn’t	exist	is	another.	Cryptography	is	a	science,	and
science	is	always	expanding	its	boundaries.	We	simply	don’t	understand	cryptography	and
its	underlying	mathematics	to	a	point	where	we	can	say	what’s	impossible.

Part	of	the	difficulty	in	analyzing	the	vulnerabilities	of	an	open	standard	like	AES	is
that	programmers	implementing	the	standard	in	code	may	unwittingly	introduce	security
flaws.	For	example,	some	AES	implementations	are	vulnerable	to	a	timing	attack,	in
which	an	attacker	gleans	information	about	the	data	being	encrypted	by	measuring	how
long	the	encryption	takes.	The	attacker	must	have	access	to	the	specific	computer	on
which	the	encryption	is	performed,	however,	so	this	isn’t	really	a	flaw	in	the	underlying
encryption,	but	that’s	no	comfort	if	security	is	compromised.

The	best-understood	vulnerability	of	AES	is	known	as	a	related-key	attack.	When	two
keys	are	mathematically	related	in	a	specific	way,	an	attacker	can	sometimes	use
knowledge	gathered	from	messages	encrypted	using	one	key	to	recover	a	message
encrypted	using	the	other	key.	Researchers	have	discovered	a	way	to	recover	the	AES
encryption	key	for	a	particular	ciphertext	in	less	time	than	a	brute-force	attack,	but	the
method	requires	ciphertexts	of	the	same	plaintext	encrypted	with	keys	that	are	related	to
the	original	key	in	very	specific	ways.

Although	this	shortcut	counts	as	a	crack,	it	may	not	be	of	practical	value	to	attackers.
First	of	all,	although	it	greatly	reduces	the	amount	of	work	to	recover	the	original	key,	it
may	not	be	feasible	for	any	existing	computer	or	network	of	computers.	Second,	it’s	not
easy	to	obtain	the	other	ciphertexts	that	have	been	encrypted	with	the	related	keys;	it
requires	a	breakdown	in	the	implementation	or	use	of	the	cipher.	Therefore,	this	crack	is
currently	considered	theoretical,	not	a	practical	weakness	of	the	system.

Perhaps	the	most	worrying	aspect	of	this	crack	is	that	it’s	believed	to	work	only	for	the
supposedly	stronger	256-bit-key	version	of	AES,	not	the	simpler	128-bit-key	version
described	in	this	chapter.	This	demonstrates	perhaps	the	greatest	weakness	of	modern

encryption	techniques:	their	complexity.	Flaws	can	go	undetected	for	years	despite	the
efforts	of	expert	reviewers;	small	changes	in	the	design	can	have	large	ramifications	for
security;	and	features	intended	to	increase	security	may	have	the	opposite	effect.

The	Limits	of	Private-Key	Encryption
The	real	limitation	of	an	encryption	method	like	AES,	though,	has	nothing	to	do	with	a
potential	hidden	flaw.

All	the	encryption	methods	in	this	chapter,	AES	included,	are	known	as	symmetric-key
methods—this	means	the	key	that	encrypts	a	message	or	file	is	the	same	key	that	is	used	to
decrypt	it.	If	you	want	to	use	AES	to	encrypt	a	file	on	your	desktop’s	hard	drive	or	the
contact	list	in	your	phone,	that’s	not	a	problem;	only	you	are	locking	and	unlocking	the
data.	But	what	happens	when	you	need	to	secure	a	data	transmission,	as	when	you	enter
your	credit	card	number	on	a	retail	website?	You	could	encrypt	the	data	with	AES	and
send	it	to	the	website,	but	the	software	on	the	website	couldn’t	decrypt	the	ciphertext
without	the	key.

This	is	the	shared	key	problem,	and	it’s	one	of	the	central	problems	of	cryptography.
Without	a	secure	way	to	share	keys,	symmetric	key	encryption,	by	itself,	is	only	useful	for
locking	one’s	own	private	data.	Encrypting	data	for	transmission	requires	a	different
approach,	using	different	keys	for	encryption	and	decryption—you’ll	see	how	this	is	done
in	Chapter	3.

But	there’s	another	problem	we	need	to	tackle	first.	AES	requires	an	enormous	binary
number	as	a	key,	but	users	can’t	be	expected	to	memorize	a	string	of	128	bits.	Instead,	we
memorize	passwords.	As	it	turns	out,	the	secure	storage	and	use	of	passwords	presents	its
own	quandaries.	Those	are	the	subject	of	the	next	chapter.

2
Passwords

One	of	software’s	most	crucial	tasks	is	the	protection	of	passwords.	That	may	be
surprising.	After	all,	aren’t	passwords	part	of	systems	that	provide	protection?	Don’t
passwords	secure	our	accounts	with	banks,	web	retailers,	and	online	games?

The	truth	is,	while	passwords	are	the	keystones	of	computer	security,	they	can	become
the	targets	of	attacks.	If	a	remote	computer	accepts	your	identity	based	on	your	password,
a	process	known	as	authentication,	it	must	have	a	list	of	user	passwords	to	compare
against.	That	password	list	is	a	tempting	target	for	attackers.	Recent	years	have	seen	a
number	of	large-scale	thefts	of	customer	account	data.	How	does	this	happen,	and	what
can	be	done	to	make	breaches	less	likely?	That’s	what	this	chapter	is	about.

Before	you	learn	how	passwords	are	protected,	though,	you’ll	see	how	they	are
transformed	into	binary	numbers,	a	process	that	has	important	implications	for	both
password	storage	and	encryption.

Transforming	a	Password	into	a	Number
In	Chapter	1,	you	saw	how	an	individual	character	could	be	replaced	by	a	number	from
the	ASCII	table.	Here,	you’ll	see	how	a	string	of	characters	can	be	replaced	by	one	big
number,	such	as	the	128-bit	key	we	need	for	AES.	In	computing,	transforming	something
into	a	number	in	a	specified	range	is	called	hashing,	and	the	resulting	number	is	called	a
hash	code,	hash	value,	or	just	plain	hash.

Here,	the	word	hash	means	chopping	something	up	and	then	cramming	the	pieces	back
together,	as	with	hash	browns.	A	particular	hashing	method	is	known	as	a	hash	function.
Hashing	a	password	always	begins	by	converting	each	character	in	the	password	to	a
number	using	an	encoding	system	such	as	ASCII.	Hash	functions	differ	in	how	they
combine	those	numbers;	the	hash	functions	used	in	encryption	and	authentication	systems
must	be	carefully	designed	or	security	may	be	compromised.

Properties	of	Good	Hash	Functions
Developing	a	good	hash	function	is	no	easy	task.	To	understand	what	hash	functions	are
up	against,	consider	the	short	password	dog.	That	word	contains	3	ASCII	bytes,	or	a	mere

24	bits	of	data,	while	an	AES	key	is	a	minimum	of	128	bits.	Therefore	a	good	hash
function	must	be	capable	of	transforming	those	24	bits	into	a	128-bit	hash	code	with	the
following	properties.

Full	Use	of	All	Bits

A	major	strength	of	a	computer-based	encryption	system	like	AES	is	the	key	size,	the	sheer
number	of	possible	keys	facing	an	attacker.	This	strength	disappears,	however,	if	all	the
possible	keys	aren’t	actually	being	used.	A	good	hash	function	must	produce	results	across
the	full	range	of	possible	hash	codes.	Even	for	our	short	dog	password,	all	128	bits	of	the
resulting	hash	code	must	be	influenced	by	the	original	24	bits	of	the	password.

No	Reversibility

In	Chapter	1,	you	learned	that	an	encryption	method	has	to	be	reversible.	A	good	hash
function,	in	contrast,	should	not	be	reversible.	I’ll	discuss	why	this	is	important	later	in	the
chapter.	For	now,	know	that	for	a	given	hash	code,	there	should	be	no	direct	way	to
recover	a	password	that	produced	it.	I	say	a	password	and	not	the	password	because
multiple	passwords	may	produce	the	same	hash	code,	which	is	known	as	a	hash	collision.
Because	there	are	more	possible	passwords	than	hash	codes,	collisions	are	inevitable.	A
good	hash	function	should	make	it	difficult	for	attackers	to	find	any	password	that
produces	a	given	hash	code.

Avalanche

The	avalanche	property	that’s	vital	to	encryption	is	just	as	important	in	hashing.	Small
changes	in	the	password	should	result	in	large	changes	in	the	hash	code—especially	since
many	people,	when	required	to	choose	a	new	password,	choose	a	slight	variation	of	their
old	one.	The	hash	code	produced	for	dog	should	be	very	different	from	those	produced	by
similar	passwords	such	as	doge,	Dog,	or	odg.

The	MD5	Hash	Function
Meeting	all	these	criteria	is	not	easy.	Good	hash	functions	solve	this	problem	in	a	clever
way.	They	start	with	a	jumble	of	bits	and	use	the	bit	patterns	of	the	password	to	modify
this	jumble	further.	That’s	the	method	of	the	widely	used	hash	function	called	MD5—the
fifth	version	of	the	Message	Digest	hash	function.

Encoding	the	Password
To	get	started,	MD5	converts	the	password	to	a	512-bit	block;	I’ll	call	this	the	encoded
password.	The	first	part	of	this	encoding	consists	of	the	ASCII	codes	of	the	characters	in
the	password.	For	example,	if	the	password	is	BigFunTime,	the	first	character	is	a	B,
which	has	an	ASCII	byte	of	01000010,	so	the	first	8	bits	of	the	encoded	password	are
01000010;	the	next	8	bits	are	the	byte	for	i,	which	is	01101001;	and	so	on.	Thus,	the	10
letters	in	our	sample	BigFunTime	password	will	take	up	80	bits	out	of	512.

Now	the	rest	of	the	bits	have	to	be	filled	up.	The	next	bit	is	set	to	1,	and	all	the	bits	up

to	the	last	64	are	set	to	0.	The	final	64	bits	store	a	binary	representation	of	the	length,	in
bits,	of	the	original	password.	In	this	case,	the	password	is	10	characters,	or	80	bits,	long.
The	64-bit	binary	representation	of	80	is:
00000000	00000000	00000000	00000000	00000000	00000000	00000000	01010000

Clearly,	we	don’t	need	64	bits	to	store	the	length	of	a	password.	Using	64	bits	for	the
length	allows	MD5	to	hash	inputs	of	arbitrary	length—the	benefit	of	which	we’ll	see	later.

Figure	2-1	shows	the	encoding	of	the	sample	password,	organized	into	16	numbered
rows	of	32	bits	each.

Figure	2-1:	The	password	BigFunTime	transformed	into	the	512	bits	used	as	input	to	the
MD5	hash	function

This	encoded	password	is	full	of	zeros	and	therefore	doesn’t	meet	the	“fully	uses	all	the
bits”	property	of	a	good	function,	but	that’s	okay	because	this	is	not	the	hash	code;	it’s	just
the	starting	point.

Bitwise	Operations
The	MD5	hash	function	uses	a	few	operations	I	haven’t	discussed	before.	Let’s	go	through
these	briefly.

Binary	Addition

The	first	new	operation	is	binary	addition.	Binary	addition	is	much	like	the	decimal
addition	you	already	know	but	with	binary	numbers.	For	example,	the	32-bit
representation	of	the	number	5	is:
00000000	00000000	00000000	00000101

The	32-bit	representation	of	46	is:
00000000	00000000	00000000	00101110

If	we	add	5	and	46	together,	the	result	is	51.	Likewise,	the	addition	of	those	two	binary

representations	results	in	the	binary	representation	of	51:
00000000	00000000	00000000	00110011

Unlike	normal	addition,	though,	where	sometimes	the	result	has	more	digits	than	the
operands,	in	binary	addition	the	number	of	bits	is	fixed.	If	the	result	of	adding	two	32-bit
binary	numbers	is	greater	than	32	bits,	we	ignore	the	“carry”	at	the	left	side	of	the	result
and	keep	only	the	32	bits	on	the	right.	It’s	like	working	with	a	cheap	calculator	that	has
just	a	two-digit	display,	so	when	you	add	75	and	49,	instead	of	displaying	124,	it	displays
only	the	last	two	digits,	24.

Bitwise	NOT

The	next	new	operation	is	called	“not,”	often	written	in	all	uppercase	as	NOT.	As
demonstrated	in	Figure	2-2,	NOT	“flips”	all	of	the	bits,	replacing	each	1	with	a	0	and	each
0	with	a	1.

Figure	2-2:	The	bitwise	NOT	operation.	All	bits	are	inverted.	The	1	bits	are	highlighted
for	clarity.

Bitwise	OR

Up	next	is	OR,	sometimes	called	inclusive-OR	to	distinguish	it	from	the	exclusive-or
(XOR)	that	you	saw	in	Chapter	1.	The	OR	operation	lines	up	two	binary	numbers	with	the
same	number	of	bits.	In	each	position	of	the	resulting	binary	number,	you	get	a	1	if	there’s
a	1	in	the	first	number	or	in	the	second	number;	otherwise,	you	get	a	0,	as	shown	in	Figure
2-3.

Figure	2-3:	The	bitwise	OR	operation.	Bit	positions	are	1	in	the	result	if	they	are	1	in
either	of	the	two	inputs

Notice	that	unlike	XOR,	you	can’t	apply	OR	twice	and	get	the	original	byte	back.	It’s	a
one-way	trip.

Bitwise	AND

The	last	of	the	new	operations	is	AND.	Two	binary	numbers	are	aligned,	and	in	each
position,	the	result	is	1	wherever	both	bits	are	1	in	that	position;	otherwise,	the	result	is	0.

So	a	1	in	the	result	means	there	was	a	1	in	that	position	in	the	first	number	and	the	second
number,	as	seen	in	Figure	2-4.	As	with	OR,	the	AND	operation	isn’t	reversible.

Figure	2-4:	The	bitwise	AND	operation.	Bit	positions	are	1	in	the	result	if	they	are	1	in
both	of	the	two	inputs.

MD5	Hashing	Rounds
Now	we’re	ready	for	some	hashing.	Pieces	of	the	encoded	password	make	only	brief
appearances	in	the	MD5	process,	but	those	appearances	make	all	the	difference.	The	MD5
process	always	starts	with	the	same	128	bits,	conceptually	split	into	four	32-bit	sections,
labeled	A	through	D,	as	shown	in	Figure	2-5.

Figure	2-5:	The	starting	configuration	of	the	128	bits	of	an	MD5	hash	code

From	here,	it’s	all	about	shifting	these	bits	around	and	flipping	them,	in	a	process	that
repeats	a	whopping	64	times.	In	this	respect,	the	process	is	a	lot	like	AES	but	with	even
more	rounds.	Figure	2-6	is	a	broad	diagram	of	one	of	the	64	rounds.

Figure	2-6:	One	round	of	the	MD5	hash	function.	In	the	result,	three	of	the	sections	are
transposed,	while	all	four	sections	are	combined	to	make	a	new	section.

As	shown,	sections	B,	C,	and	D	are	simply	transposed,	so	that	the	D	section	of	one
round	becomes	the	A	section	of	the	next.	The	main	action	of	MD5	occurs	in	the	“extra
scrambling”	of	each	round,	which	creates	a	new	section	from	the	bits	of	all	four	sections

of	the	previous	round.	The	extra	scrambling	uses	the	irreversible	operations	AND,	OR,
and	NOT	to	combine	the	bits	of	all	four	sections	with	one	of	the	rows	of	the	encoded
password.	Different	rows	of	the	encoded	password	are	used	in	different	rounds,	so	that
eventually	all	the	rows	of	the	encoded	password	are	used	multiple	times.	Because	of	the
transposition,	the	process	needs	just	four	rounds	to	replace	each	of	the	four	original
sections	with	the	result	of	the	extra	scrambling.	After	the	complete	64-round	process,	the
original	bits	of	the	sections	will	have	been	thoroughly	sifted	together	with	the	encoded
password.

Meeting	the	Criteria	of	a	Good	Hash	Function
Because	MD5	starts	with	an	assortment	of	bits,	then	alters	these	bits	over	and	over,	adding
in	pieces	of	the	encoded	password,	we	can	be	sure	that	all	the	bits	are	affected	along	the
way,	giving	us	a	true	128-bit	hash	code.	The	sheer	number	of	operations	that	are
irreversible—and	remember,	the	actions	described	occur	64	times—means	the	hash
function	as	a	whole	is	not	reversible.	This	rotation	and	alteration	of	the	bits	in	the	“extra
scrambling”	each	round,	combined	with	the	rotation	of	the	sections	themselves,	distribute
the	bits	and	bytes	and	create	the	desired	avalanche.

MD5	meets	all	the	baseline	requirements	for	a	good	hash	function.	It	does	have	a	few
subtle	weaknesses,	however,	as	you’ll	soon	see.

Digital	Signatures
Hash	functions	serve	other	purposes	in	security	besides	creating	keys	from	passwords.
One	of	the	most	important	is	the	creation	of	file	signatures.	As	stated	earlier,	MD5	can
process	any	size	of	input.	If	the	input	is	larger	than	512	bits,	it’s	first	divided	into	multiple
512-bit	blocks.	The	MD5	process	is	then	applied	once	per	block.	The	first	block	starts
with	the	initial	128	bits	and	each	subsequent	block	starts	with	the	hash	code	produced	by
the	previous	block.	In	this	way,	we	could	run	the	entire	text	of	this	book,	an	audio	file,	a
video,	or	any	other	digital	file	through	the	function	and	get	a	single	128-bit	hash	code	in
return.	This	hash	code	would	become	the	file’s	signature.

Why	does	a	file	need	a	signature?	Suppose	you	have	decided	to	download	FreeWrite,	a
(fictional)	freeware	word	processor	application.	You’re	wary,	though,	because	of	a	bad
experience	in	which	you	downloaded	a	freeware	program	that	turned	out	to	be	bogus	and
riddled	with	malware.	To	avoid	this,	you	want	to	be	sure	the	FreeWrite	file	that	you
download	is	the	same	file	that	the	developers	uploaded.	The	developers	could	hash	the	file
with	MD5	and	post	the	resulting	hash	code—the	file	signature—on	their	website,
freewrite.com.	This	allows	you	to	run	the	file	through	an	MD5	hash	program	and	compare
the	result	to	the	code	on	the	developer	site.	If	the	new	result	doesn’t	match	the	signature,
something	has	changed:	the	file,	the	signature,	or	both.

The	Problem	of	Identity
Unfortunately,	matching	the	posted	hash	code	proves	the	FreeWrite	file	is	legitimate	only
if	the	hash	code	was	actually	published	by	the	developers.	But	what	if	an	attacker	copies

http://freewrite.com

the	developer’s	freewrite.com	site	to	a	similarly	named	domain	like	free-write.com,	and
then	posts	a	compromised	file	along	with	the	hash	of	that	compromised	file?	A	digital
signature	is	only	as	trustworthy	as	its	provider.	We’ll	explore	this	problem	in	further	detail
in	Chapter	3.

Collision	Attacks
Even	with	a	matching	hash	code	from	a	legitimate	source,	though,	a	file	might	be	trouble.
Many	different	files	will	produce	the	same	hash	code,	which	means	an	attacker	trying	to
modify	a	file	for	nefarious	purposes	can	avoid	detection	if	the	new,	modified	file	produces
the	same	hash	code.

It’s	not	too	difficult	to	produce	two	files	with	the	same	hash	code,	which	is	known	as	a
collision	attack:	just	randomly	generate	files	until	two	hash	codes	match.	Finding	a	second
file	to	match	the	particular	hash	code	of	another	file	is	much	harder.	To	be	of	any	real	use
to	an	attacker,	the	file	with	the	matching	code	can’t	be	a	bunch	of	random	bytes;	it	has	to
be	a	program	that	does	something	malicious	on	the	attacker’s	behalf.

Unfortunately,	there	are	methods	to	produce	a	second	file	with	the	same	MD5	code	that
is	very	similar	to	the	first	file.	The	discovery	of	this	flaw	in	the	MD5	hash	function	has	led
researchers	to	suggest	that	other	hash	functions	be	used	for	signatures.	These	more
advanced	hash	functions	usually	have	longer	hash	codes	(up	to	512	bits),	more	hashing
rounds,	and	more	complicated	binary	math	during	each	round.	As	with	encryption,
though,	there	are	no	guarantees	that	flaws	won’t	be	discovered	in	the	more	complicated
hash	functions	as	well.	Proper	use	of	signatures	means	staying	one	step	ahead	of	known
design	flaws	because	attackers	will	exploit	flaws	mercilessly.	Digital	security	is	a	cat-and-
mouse	game	in	which	the	good	guys	are	the	mice,	trying	to	avoid	being	eaten,	never	able
to	defeat	the	cats,	and	only	hoping	to	stay	alive	a	little	longer.

Passwords	in	Authentication	Systems
Nowhere	is	this	cat-and-mouse	game	more	evident	than	in	authentication	systems.	Every
place	where	you	enter	your	password	has	to	have	a	list	of	passwords	to	compare	against,
and	properly	securing	the	list	requires	great	care.

The	Dangers	of	Password	Tables
Let’s	look	at	the	most	straightforward	way	passwords	could	be	stored	in	a	table.	In	this
example,	Northeast	Money	Bank	(NEMB)	stores	the	username	and	password	of	each	of	its
customers,	along	with	the	account	number	and	current	balance.	An	excerpt	from	the
password	table	is	shown	in	Table	2-1.

Table	2-1:	Poorly	Designed	Password	Table

Username Password Account	number Balance

richguy22 ilikemoney 21647365 $27.21

http://freewrite.com
http://free-write.com

mrgutman falcon 32846519 $10,000.00

squire yes90125 70023193 $145,398.44

burgomeister78 taco999 74766333 $732.23

Just	as	Kerckhoffs’s	principle	says	we	can’t	rely	on	encryption	methods	remaining
secret,	we	shouldn’t	rely	on	the	password	list	remaining	a	secret,	either.	A	disgruntled
employee	in	the	NEMB	information	technology	department	might	easily	acquire	the	file
containing	the	list,	or	determined	attackers	on	the	outside	might	worm	their	way	through
the	company	defenses.

This	is	what’s	known	as	a	single	point	of	defense,	meaning	that	once	anyone	lays	eyes
on	this	table,	the	game	is	over.	First,	this	table	shows	the	account	numbers	and	balances	of
all	of	the	customers,	so	at	the	very	least,	that’s	a	major	loss	of	privacy.	What’s	even	worse
is	that	each	password	is	stored	in	the	form	entered	by	the	user.	Accessing	this	password
list	will	allow	attackers	to	log	on	as	any	customer—a	disaster	in	the	making.

Fortunately,	the	problems	with	this	storage	system	are	easily	remedied.	Knowing	that,
and	knowing	how	dangerous	the	system	is,	you	would	think	that	it	would	never	be	used.
Sadly,	you	would	be	wrong.	Real	companies	are	storing	user	passwords	just	like	this.
Some	extremely	large	companies	that	probably	spent	a	great	deal	of	money	on	their
websites	have	been	caught	following	this	practice.

Hashing	Passwords
If	Table	2-1	shows	the	wrong	thing	to	do,	what’s	the	right	thing	to	do?	One	improvement
is	leaving	the	password	out	of	the	table	and	instead	storing	the	hash	code	of	the	password,
as	shown	by	Table	2-2.	(In	the	examples	that	follow,	I	show	hash	codes	as	decimal
numbers	to	keep	their	length	manageable.)

Table	2-2:	Password	Table	with	Hashed	Passwords

Username Hash	of	password Account
number Balance

richguy22 330,711,060,038,684,200,901,827,278,633,002,791,087 21647365 $27.21

mrgutman 332,375,033,828,033,552,423,319,316,163,101,084,850 32846519 $10,000.00

squire 295,149,488,455,763,164,542,524,060,437,757,020,453 70023193 $145,398.44

burgomeister78 133,039,589,388,270,767,475,032,770,360,311,206,892 74766333 $732.23

When	a	user	tries	to	log	in,	the	submitted	password	is	hashed	and	the	result	compared
to	the	stored	hash	code.	If	they	match,	the	user	is	logged	in.	Because	the	hash	function

isn’t	reversible,	getting	access	to	the	table	isn’t	the	same	as	getting	access	to	the
passwords.	An	attacker	can’t	log	on	to	an	account	with	the	hash	code.

The	account	number	and	balance	are	still	stored	as	plaintext,	though,	and	it	would	be	a
good	idea	to	encrypt	them,	making	a	table	with	only	hash	codes	and	ciphertext.	The
problem	is	if	we	used	the	hash	of	the	password	as	our	cipher	key,	then	encrypting	the	data
provides	no	additional	protection	because	anyone	who	acquires	this	table	will	be	able	to
decrypt	the	ciphertext.

There	are	several	ways	to	solve	this	problem.	One	solution	is	to	use	one	hash	function
to	transform	the	password	for	authentication	and	another	hash	function	to	transform	the
password	into	a	cipher	key	to	encrypt	the	account	number	and	balance.	As	long	as	the
hash	functions	are	not	reversible,	this	solution	would	provide	security	for	the	account	data
even	if	an	attacker	got	access	to	the	table.

Dictionary	Attacks
Hashing	the	passwords	is	a	good	defense	against	attackers,	but	it’s	not	enough.
Authentication	systems	are	still	vulnerable	to	dictionary	attacks.

In	a	basic	dictionary	attack,	the	attacker	has	no	access	to	the	password	table	and	must
guess	the	password.	The	attacker	could	just	try	random	jumbles	of	characters	but	will	have
much	more	success	with	a	dictionary,	which	in	the	world	of	software	is	simply	a	list	of
words.	In	this	case,	the	dictionary	is	a	list	of	the	most	common	passwords,	and	it	begins
something	like	this:

•	password

•	123456

•	football

•	mypassword

•	abcdef

To	foil	the	basic	dictionary	attack,	most	sites	count	the	number	of	failed	logins	and,
after	a	certain	number	(perhaps	as	few	as	three),	temporarily	prevent	further	login	attempts
from	a	particular	computer.	This	renders	the	attack	impractical	by	increasing	the	time
required	to	find	the	right	password.

A	different	form	of	dictionary	attack	is	used	when	an	attacker	has	acquired	a	copy	of	a
hashed	and	encrypted	password	table.	In	this	case,	the	attacker	hashes	each	password	in
the	dictionary	and	compares	it	to	each	of	the	hash	codes	in	the	stolen	table.	When	a	match
is	discovered,	the	attacker	knows	the	password	that	generates	that	user’s	hash	code.	To
save	time,	the	attacker	can	run	all	the	passwords	in	the	dictionary	through	a	selected	hash
function	once	and	store	the	results	in	a	dictionary	like	in	Table	2-3.

Table	2-3:	Dictionary	with	Hash	Codes

Password MD5	hash	code

password 126,680,608,771,750,945,340,162,210,354,335,764,377

123456 299,132,688,689,127,175,738,334,524,183,350,839,358

football 74,046,754,153,250,065,911,729,167,268,259,247,040

mypassword 69,792,856,232,803,413,714,004,936,714,872,372,804

abcdef 308,439,634,705,511,765,949,277,356,614,095,247,246

Dictionaries	demonstrate	why	it	is	important	for	users	to	choose	passwords	that	aren’t
obvious.	The	more	obscure	a	password,	the	less	likely	it	will	be	in	an	attacker’s	dictionary.

Hash	Tables
Unfortunately,	an	attacker	can	dispense	with	the	dictionary	altogether	and	build	a	table	of
randomly	generated	passwords	and	their	corresponding	hash	codes,	which	I’ll	call	a
precomputed	hash	table.	Of	course,	the	number	of	potential	passwords	is	enormous,	so	if
the	attacker	wants	a	decent	chance	of	getting	a	match,	the	hash	table	needs	to	be	huge.
Building	a	precomputed	hash	table	takes	a	lot	of	computing	power	and	time,	but	it	only
has	to	be	built	once,	and	then	it	can	be	used	over	and	over	again.

One	weakness	of	the	table	is	that	its	sheer	size	can	make	searching	for	a	match
extremely	slow.	When	you	consider	how	fast	a	word	processor	can	find	a	particular	word
in	a	large	document,	this	may	seem	surprising,	but	these	precomputed	tables	are	much
larger	than	any	file	on	your	computer.	Suppose	an	attacker	has	a	table	of	all	passwords
composed	of	10	or	fewer	uppercase	and	lowercase	letters	and	digits.	Even	with	these
restrictions,	the	number	of	potential	passwords	is	6210,	which	is	839,299,365,868,340,224.
The	precomputed	hash	table	won’t	need	every	one	of	these	potential	passwords	as	entries,
but	it	would	need	to	have	a	sizable	fraction.	The	table	would	be	so	large,	though,	it
couldn’t	fit	in	a	computer’s	internal	memory.	It	couldn’t	even	fit	on	a	hard	drive—or	just
to	get	to	the	point,	it’s	so	big	it	might	need	to	be	split	across	a	million	hard	drives.	And
that’s	just	the	storage	problem.	Unless	you	have	the	distributed	computing	power	of
Google,	it’s	not	practical	to	search	a	table	that	large.	(And	searching	a	huge	mass	of	data
isn’t	easy	even	for	Google;	we’ll	explore	searching	in	detail	in	Chapter	7.)

Hash	Chaining
Because	a	precomputed	hash	table	is	too	large	to	store	and	search,	attackers	use	a	clever
technique	called	hash	chaining	to	drastically	reduce	the	number	of	entries	in	the	table
without	reducing	its	effectiveness.	This	technique	uses	a	different	type	of	function	called	a
reduction	function	that	does	the	same	sorts	of	mathematical	gyrations	as	a	hash	function
but	with	the	opposite	purpose.	Instead	of	creating	a	hash	code	from	a	password,	it	creates
a	password	from	a	hash	code—not	the	password	that	produced	the	hash,	but	simply	a
sequence	of	characters	with	the	form	of	a	valid	password.

Here’s	an	example	of	hash	chaining.	When	glopp26taz	is	hashed	using	MD5,	it
produces	this	hash	code:

22,964,925,579,257,552,835,515,378,304,344,866,835

A	reduction	function	transforms	this	hash	code	into	another	valid	password,	say,
7HGupp2tss.	This,	in	turn,	is	sent	through	the	hash	function,	producing	another	hash	code,
which	is	sent	through	the	reduction	function	to	generate	another	password,	and	so	on.	An
alternating	series	of	passwords	and	hash	codes,	such	as	that	shown	in	Figure	2-7,	is	a	hash
chain.

Figure	2-7:	In	a	hash	chain,	a	hash	function	(H)	alternates	with	a	reduction	function	(R)
that	produces	an	arbitrary	password	from	a	hash	code.

Instead	of	a	table	of	passwords	and	hash	codes,	the	attacker	generates	a	series	of	hash
chains,	each	of	the	same	length,	storing	only	the	first	and	last	links	of	each	chain.	The
chain	in	Figure	2-7	is	shown	as	the	third	entry	in	Table	2-4.	This	table	has	5	entries,	but
each	entry	is	a	chain	of	3	password/hash	pairs,	making	this	the	equivalent	of	a	plain	table
of	15	entries.

Table	2-4:	Hash	Chain	Table

Start End

sop3H4Yzai 302,796,960,148,170,554,741,517,711,430,674,339,836

5jhfHTeu4y 333,226,570,587,833,594,170,987,787,116,324,792,461

glopp26taz 33,218,269,111,507,728,124,938,049,521,416,301,013

YYhs9j2a22 145,483,602,575,738,705,325,298,600,400,764,586,970

Pr2u912mn1 737,08,819,301,203,417,973,443,363,267,460,459,460

Figure	2-8	shows	an	example	of	using	the	table.	Our	attacker	is	trying	to	recover	the
password	for	the	target	hash	code	117,182,660,124,686,473,
413,705,332,853,526,309,255.	The	attacker	must	determine	which	chain	in	the	table,	if
any,	contains	the	target	hash	code.	First,	the	target	code	is	compared	against	every	number
in	the	End	column	of	the	table.	In	this	case,	no	match	is	found,	so	the	attacker	runs	the
target	hash	code	through	the	reduction	function	to	make	a	new	password,	runs	that	result
through	the	hashing	function,	and	then	searches	for	this	new	hash	code	in	the	End	column
of	the	table.	This	process	will	continue	until	a	match	is	found,	or	after	the	process	is	run
three	times	(the	length	of	the	chains	in	this	table).

In	this	case,	the	initial	target	hash	value	is	reduced	to	the	password	pRh7T63y,	which,
in	turn,	is	hashed,	and	this	new	hash	value	appears	in	the	third	entry	of	the	table,	in	the
chain	with	the	starting	password	glopp26taz.	That	identifies	the	hash	chain	in	which	the
target	password	may	appear,	but	the	attacker	must	obtain	the	password	by	iterating
through	this	chain.	The	starting	password	in	that	chain	is	hashed;	the	resulting	hash	value
is	not	a	match	for	the	initial	hash	value,	so	it	is	reduced	to	a	new	password,	7HGupp2tss,
and	hashed	again.	This	hash	code	does	match,	which	means	7HGupp2tss	is	the	password.

Hash	code	chains	dramatically	shrink	the	table	while	still	providing	the	same	amount
of	searchable	data.	For	example,	if	a	chain	has	100	passwords	and	100	hash	codes,	then
the	password	matching	any	of	those	hash	codes	can	be	indirectly	retrieved	using	that
chain,	even	though	the	chain	has	only	one	password	and	hash	code	in	the	table.	Therefore,
a	table	with	chains	that	long	has	the	power	of	a	regular	precomputed	hash	table	100	times
larger.

There	are	some	potential	snags,	though.	For	one,	searching	takes	more	computational
effort	with	hash	chains.	Also,	because	of	collisions—multiple	passwords	that	produce	the
same	hash	code—a	matching	chain	doesn’t	necessarily	contain	the	searched-for	hash	code
and	its	matching	password,	a	problem	known	as	chain	merging.	These	are	small
consolations	for	those	of	us	worried	about	our	data	security,	however.	There	are	methods
for	reducing	the	chain	merging	problem,	but	even	without	them,	it’s	clear	that	effective
precomputed	tables	can	be	made	for	particular	hash	functions,	rendering	the	passwords
that	use	them	vulnerable.

Figure	2-8:	Using	a	hash	chain	table	to	find	a	password	that	produces	a	particular	hash
code.	Neither	the	password	nor	the	hash	code	is	listed	in	the	table.

Iterative	Hashing
One	way	to	thwart	the	creation	of	precomputed	hash	tables	is	to	apply	the	hash	function
more	than	once.	Because	the	output	of	a	hash	function	can	itself	be	hashed,	the	original
password	can	pass	through	the	same	hash	function	any	number	of	times.	This	technique,
unhelpfully,	is	also	known	as	hash	chaining,	but	to	avoid	confusion,	I	will	refer	to	it	as
iterative	hashing.	Figure	2-9	shows	a	five-deep	iterative	hashing	of	the	password	football.

Figure	2-9:	Applying	a	hash	function	repeatedly

With	this	technique,	passwords	are	repeatedly	hashed	when	the	password	is	stored	and
when	the	user	logs	in.	To	thwart	this,	the	attacker	has	to	produce	a	table	based	on	the	same
idea,	running	the	chosen	hash	code	function	the	same	number	of	times.	From	Kerchkoffs’s
principle,	we	know	that	cryptographic	systems	shouldn’t	depend	on	keeping	their	methods
secret.	The	goal	of	iterative	hashing	isn’t	to	disguise	how	many	times	the	password	is
hashed,	but	to	make	the	creation	of	the	attacker’s	precomputed	hash	table	as	difficult	as
possible.	In	the	example,	the	password	runs	through	the	hash	function	five	times.	That
would	multiply	the	time	needed	to	create	the	attacker’s	table	by	five	as	well.	In	real-world
use,	passwords	can	be	run	through	hash	functions	hundreds	or	thousands	of	times.	Is	this
enough	to	prevent	the	creation	of	useful	precomputed	hash	tables?	Maybe.	Computers	get
faster	every	day.	For	the	most	part,	this	is	wonderful,	but	the	downside	to	ever-increasing
computational	power	is	that	it	keeps	pushing	the	boundary	of	practical	limitations,	and	so
much	of	our	information	security	is	based	on	these	practical	limitations.

Someone	setting	up	a	password	system	based	on	iterative	hashing	has	to	choose	the
number	of	iterations.	It’s	fairly	easy	to	choose	a	number	that	provides	good	security	today.
What’s	difficult	is	predicting	the	number	of	iterations	required	a	year	from	now,	or	2
years,	or	10.

You	might	think	the	best	choice	is	some	impossibly	large	number	to	guard	against	the
power	of	future	computers.	The	problem	is	that	today’s	computers	would	have	real	trouble
processing	legitimate	logins.	Would	you	be	willing	to	wait	five	minutes	to	access	one	of
your	online	accounts?

Salting	Passwords
Authentication	systems	need	a	way	to	strengthen	hashing	without	a	performance-crushing
number	of	hash	iterations;	that	is,	they	need	a	method	of	storing	passwords	that	requires
an	impractical	time	investment	from	attackers	without	creating	an	equally	unrealistic	time

burden	on	legitimate	access.	That	method	is	called	salt.	Salt	is	an	apt	term	for	this	concept,
and	I	commend	whoever	came	up	with	it.	In	culinary	usage,	a	pinch	of	salt	profoundly
changes	the	flavor	of	a	dish.	In	cryptography,	a	small	quantity	of	salt	sprinkled	on	a
password	dramatically	changes	its	hash	code.

Here’s	how	it	works:	when	a	new	user	signs	up	for	an	account	and	selects	a	username
and	password,	the	system	automatically	generates	the	salt	for	that	account.	The	salt	is	a
string	of	characters,	like	a	short,	random	password,	that	is	combined	with	the	user’s
password	before	hashing.	For	example,	user	mrgutman	chooses	falcon	as	his	password,
and	the	system	generates	h38T2	as	the	salt.

The	salt	and	password	can	be	combined	in	various	ways,	but	the	simplest	is	appending
the	salt	to	the	end	of	the	password,	resulting	in	falconh38T2	in	this	example.	This
combination	is	then	hashed,	and	the	hash	code	stored	in	the	authentication	table	along	with
the	username	and	the	salt,	as	shown	in	Table	2-5.

Table	2-5:	Password	Table	Using	Salt

Username Salt Hash	of	password	+	salt

richguy22 7Pmnq 106,736,954,704,360,738,602,545,963,558,770,944,412

mrgutman h38T2 142,858,562,082,404,032,402,440,010,972,328,251,653

squire 93ndy 122,446,997,766,728,224,659,318,737,810,478,984,316

burgomeister78 HuOw2 64,383,697,378,169,783,622,186,691,431,070,835,777

Each	time	a	user	requests	access,	the	salt	is	added	to	the	end	of	the	entered	password
before	hashing.	An	attacker	who	acquires	a	copy	of	this	authentication	table	can’t	get
much	use	out	of	a	precomputed	hash	table.	Although	the	table	might	have	a	password	that
hashes	to	the	given	code,	that	password	won’t	produce	the	right	code	when	combined	with
the	salt.	Instead,	the	attacker	would	need	to	create	a	table	for	a	specific	salt.	That	could	be
done,	but	remember	that	the	salt	is	randomly	chosen.	If	there	are,	say,	100,000	users	in	a
stolen	authentication	table,	and	the	salts	are	numerous	enough	that	no	salt	is	duplicated	in
the	table,	the	attacker	will	need	to	create	100,000	tables.	At	this	point,	we	can’t	even	call
them	precomputed	tables	because	the	attacker	is	creating	them	for	each	attack.

Are	Password	Tables	Safe?
Salting	and	iterative	hashing	are	typically	used	together,	creating	real	headaches	for	an
attacker.	Iterative	hashing	increases	the	time	requirement	for	creating	a	single
precomputed	hash	table,	and	salting	means	an	attacker	has	to	make	a	multitude	of	tables.
But	is	this	combination	enough?

There	is	no	definitive	answer	to	that	question.	Cryptography	researchers	and	security
experts	continue	to	develop	new	defenses	against	unauthorized	access.	At	the	same	time,

though,	attackers	continue	to	find	new	methods	to	penetrate	defenses.	Advances	in
computational	power	and	programming	theory	help	whichever	side	takes	advantage	of
them	first.

Perhaps	the	most	important	lesson	of	this	discussion	is	that	security	is	often	out	of	the
user’s	hands.	There	will	always	be	vulnerabilities,	but	there’s	no	way	for	a	user	to	know	if
a	particular	site	or	service	is	employing	the	best	security	practices.	The	salt	technique,	for
example,	benefits	only	systems	that	use	it,	and	not	every	system	does.

Password	Storage	Services
That’s	how	passwords	are	stored	on	remote	authentication	systems.	What	about	on	the
user	end?	How	do	we	safely	store	our	passwords?

A	long	time	ago,	I	had	so	few	passwords	that	I	could	safely	entrust	them	to	my
memory,	but	eventually	I	knew	I	had	to	store	passwords	outside	of	my	head.	Writing	the
passwords	on	a	piece	of	paper,	though,	is	just	a	different	kind	of	security	liability.	For	a
while,	I	had	an	elaborate	homebrew	solution	involving	a	.txt	file	encrypted	with	AES	and
stored	on	a	memory	card	that	was	kept	in	a	metal	box	that	was	probably	not	100	percent
fireproof.	This	arrangement	worked,	except	that	every	time	I	needed	to	look	up	a
password,	I	had	to	go	to	the	box,	get	the	memory	card,	slot	it	into	my	computer,	double-
click	the	file,	type	the	password	(the	one	password	I	had	to	remember),	and	find	the
desired	entry	in	my	table.

Eventually	I	threw	in	the	towel	and	signed	up	for	a	web-based	password	storage
service.	When	I	created	an	account	with	the	service,	I	chose	a	master	password.	I	then
stored	all	my	other	passwords	and	usernames	on	this	website.	This	information	is	stored	in
a	way	that	renders	it	of	little	use	to	anyone	who	gains	access	to	the	raw	data,	so	if	my
password	at	Amazon	is	chickenfat	(it	isn’t),	then	the	word	chickenfat	isn’t	stored	anywhere
on	the	password	storage	server.	Instead,	the	passwords	are	encrypted	by	a	program	on	my
browser	before	being	sent	to	the	password	storage	site,	using	my	chosen	master	password
to	generate	the	encryption	key.	Therefore,	even	if	the	server	were	breached,	the	attacker
wouldn’t	be	able	to	retrieve	my	individual	passwords	without	the	master	password.

The	master	password	itself	is	not	stored	on	the	password	storage	site,	either.	When	the
encryption	key	is	needed	to	encrypt	or	decrypt	an	individual	login,	the	master	password	is
salted	and	then	hashed	repeatedly,	for	as	many	iterations	as	I	specify.

Although	using	a	password	storage	service	puts	all	of	my	eggs	in	one	basket,	so	to
speak,	this	frees	me	to	use	best	practices	for	individual	logins.	Whereas	previously	I	might
have	created	passwords	that	were	collages	of	words	and	numbers	I	thought	I	could
remember,	now	my	passwords	are	lengthy	random	jumbles.	And	they	are	all	different
because	I	no	longer	need	to	remember	them	all.

A	Final	Thought
In	all	of	this	talk	about	authentication	systems,	I’ve	avoided	a	crucial	detail.
Authentication	systems	compare	stored	user	passwords	to	passwords	provided	during
logons,	but	how	does	the	remote	computer	doing	the	authentication	get	the	users’	chosen

passwords	in	the	first	place?	Secure	transmission	requires	encryption,	which	implies	the
users	would	have	had	to	encrypt	the	passwords—but	how	could	the	remote	system	decrypt
the	encrypted	passwords	without	having	the	passwords	already?	This	brings	us	back	to	the
shared	key	problem—none	of	what	we	talked	about	in	this	chapter	can	work	unless	that
problem	is	solved.	So	that’s	what	we’ll	do	next.

3
Web	Security

You	may	not	have	realized	it	before,	but	the	Internet	as	we	know	it	couldn’t	exist	without
a	solution	to	the	shared	key	problem.	Think	about	a	typical	situation:	you’re	buying
something	at	an	online	retailer	that	you’ve	never	purchased	from	before.	At	some	point
you	will	be	asked	for	your	credit	card	data.	Your	browser	tells	you	that	your	data	is	secure,
perhaps	by	displaying	a	“lock”	icon	in	the	corner.	But	for	the	browser	to	protect	your	card
number	using	AES,	both	your	system	and	the	retailer	must	use	the	same	encryption	key.
How	do	two	systems	securely	transmit	data	without	getting	together	beforehand	to
exchange	a	key?

Solving	this	shared	key	problem	is	essential	to	providing	any	security	on	the	Web.
We’ll	explore	the	solution	to	the	shared	key	problem	in	this	chapter,	which	uses	all	the
techniques	we’ve	seen	in	the	previous	two	chapters,	plus	a	new	special	ingredient:	public-
key	cryptography.

How	Public-Key	Cryptography	Solves	the	Shared	Key
Problem
In	the	world	of	physical	security,	the	shared	key	problem	has	a	straightforward	solution
because	locks	and	keys	are	two	separate	things.	Suppose	person	A	needs	to	ship
confidential	physical	documents	to	person	B.	Person	B	could	buy	a	strongbox	and	a	keyed
lock	and	then	mail	the	box	and	lock	to	person	A	while	keeping	the	key.	Then	person	A
puts	the	documents	in	the	box,	locks	the	box	with	B’s	lock,	and	ships	the	box	back	to	B.
Because	B	has	the	only	key	to	the	lock,	this	is	a	secure	delivery	method.

This	is	the	desired	situation	for	transmitting	data	digitally	as	well.	We	need	to	separate
the	methods	for	locking	and	unlocking	data,	so	that	knowing	how	to	encrypt	data	won’t
provide	the	means	to	decrypt	the	resulting	ciphertext.

In	Chapter	1,	we	learned	about	AES,	which	is	a	symmetric-key	encryption	method,
meaning	the	same	key	is	used	for	encryption	and	decryption.	For	transmission,	we	need	an
asymmetric-key	encryption	method,	with	one	key	for	encryption	and	another	key	for
decryption.	The	encryption	key	is	known	as	the	public	key,	because	it	can	be	freely
distributed	with	no	ill	effects	if	it	falls	into	the	hands	of	an	attacker;	for	this	reason,
asymmetric-key	encryption	is	also	known	as	public-key	cryptography.	The	decryption	key

is	known	only	to	the	recipient,	so	it’s	known	as	the	private	key.	These	relationships	are
shown	in	Figure	3-1.

Figure	3-1:	Asymmetric-key	encryption,	with	a	public	key	for	encryption	and	a	private	key
for	decryption.	Only	the	receiver	has	the	private	key.

Math	Tools	for	Public-Key	Cryptography
What	public-key	cryptography	requires,	then,	is	an	encryption	method	that’s	reversible	but
not	with	the	cipher	key	that	was	used	in	the	encryption.	The	basic	tools	of	the	encryption
methods	we’ve	seen	so	far	won’t	work	for	public-key	cryptography.	The	most	common
operation	in	AES,	for	example,	is	exclusive-or,	which	is	used	precisely	because	when
something	is	XORed	twice	with	the	same	binary	number,	you	get	the	same	number	you
started	with.	Reversible	operations	such	as	XOR	inevitably	lead	to	having	the	same	key
for	encryption	and	decryption.

Public-key	encryption,	therefore,	requires	a	new	technique.	As	it	turns	out,	the	secrets
to	public-key	encryption	lie	in	the	hidden	relationships	between	numbers.	In	order	to
explain	what	those	relationships	are	and	how	they	can	be	exploited	for	cryptography,	we
need	to	go	over	a	few	pieces	of	math	terminology.

Invertible	Functions
Broadly	stated,	a	function	describes	any	situation	where	each	numerical	input	results	in	a
single	numerical	output.	The	current	Celsius	temperature,	for	example,	is	a	function	of	the
current	Fahrenheit	temperature.	For	any	particular	temperature	in	Fahrenheit	degrees,
there	is	exactly	one	matching	temperature	in	Celsius	degrees.

In	the	same	way,	the	monetary	value	of	a	pile	of	coins	is	a	function	of	the	number	of
coins	of	each	type.	A	pile	containing	three	quarters,	two	nickels,	a	dime,	and	four	pennies
has	a	monetary	value	of	99	cents.	This	pile	of	coins	cannot	be	worth	any	other	amount.

Sometimes	a	function	can	be	reversed	to	produce	another	function.	If	we	know	a
temperature	in	degrees	Fahrenheit,	we	also	know	it	in	degrees	Celsius,	and	the	reverse	is
true:	if	we	know	a	temperature	in	Celsius,	we	can	also	figure	it	out	in	Fahrenheit.	In
mathematical	terms,	we	would	say	that	the	Celsius-to-Fahrenheit	function	is	the	inversion
of	the	Fahrenheit-to-Celsius	function,	and	that	the	original	function	is	invertible.	The	coin

example,	though,	is	not	invertible.	The	same	total	monetary	value	can	be	produced	by
multiple	combinations	of	coins.	If	the	coins	in	my	pocket	are	worth	99	cents,	I	might	have
three	quarters,	two	nickels,	a	dime,	and	four	pennies,	or	I	might	have	nine	dimes	and	nine
pennies,	or	some	other	combination.

One-Way	Functions
For	some	invertible	functions,	computing	in	one	direction	may	be	a	lot	easier	than	the
other.	For	example,	the	mathematical	concepts	of	square	and	square	root	are
complementary	functions.	Suppose	you	have	a	square	room	in	your	home	that	is	covered
in	black-and-white	tiles,	as	shown	in	Figure	3-2.	To	find	the	total	surface	area	of	the	floor,
you	multiply	12	by	12	to	get	144.

We	say	that	144	is	the	square	of	12.	Going	in	the	other	direction,	we	say	that	12	is	the
square	root	of	144.	These	are	both	functions;	each	number	has	one	square	and	one	square
root.	The	difficulty	of	computing	these	two	functions	is	very	different,	though.	Figuring
out	a	number’s	square	is	easy:	you	just	multiply	the	number	by	itself.	Figuring	out	the
square	root	is	hard.	Unless	you	have	a	table	of	values	to	help	you,	computing	a	square	root
is	effectively	a	trial-and-error	process.	You	make	a	guess	at	what	the	root	might	be,
multiply	that	guess	by	itself,	see	if	your	guess	was	too	high	or	too	low,	and	then	adjust
your	next	guess	accordingly,	repeating	the	process	until	you	find	the	exact	square	root	or
get	close	enough	that	you	are	willing	to	stop.	When	a	function	is	invertible	but	its	inverse
is	much	harder	to	compute,	it	is	called	a	one-way	function.

Figure	3-2:	A	square	room	with	walls	12	feet	long	has	a	total	area	of	144	feet.

Trapdoor	Functions
Asymmetric	encryption	requires	a	one-way	function	so	that	the	encryption	key	can	be
public—the	encryption	will	be	easy,	but	the	decryption	will	be	so	hard	as	to	be	infeasible.
The	problem	is,	we	shouldn’t	make	the	decryption	infeasible	for	the	intended	recipient	as
well.	So	any	old	one-way	function	isn’t	going	to	do	the	trick.	We	need	what’s	known	as	a
trapdoor	function,	a	one-way	function	where	the	inverse	function	is	hard	in	general,	but
easy	when	some	secret	value	is	known.

Prime	Numbers

The	particular	trapdoor	function	we’ll	discuss	involves	prime	numbers.	A	number	is	prime
if	it	is	greater	than	1	and	can	only	be	divided	(without	a	remainder)	by	itself	and	1.	For
example,	5	is	prime	because	it	can	be	divided	only	by	itself	and	1.	It	cannot	be	evenly
divided	into	2,	3,	or	4	parts.	The	number	6,	though,	can	be	divided	by	2	and	3	in	addition
to	1	and	itself.	It	is	therefore	a	nonprime,	or	composite,	number.	Smaller	numbers	that
divide	into	a	larger	number	are	known	as	the	larger	number’s	factors.	Every	number	is
divisible	by	itself	and	by	1,	but	we	call	these	trivial	factors	and	tend	to	ignore	them	when
discussing	factors.	A	prime	number	has	only	trivial	factors.

Coprime	Numbers

In	a	related	concept,	two	numbers	are	said	to	be	coprime	if	they	share	only	1	as	a	factor.
Either	number	may	or	may	not	be	prime	itself,	but	each	can	be	thought	of	as	prime	as	far
as	the	other	number	knows.	For	example,	the	composite	numbers	9	and	4	are	coprime
because	there	is	no	number	that	divides	them	both	except	for	1.	In	contrast,	6	isn’t	coprime
with	either	9	or	4,	because	6	shares	factors	with	both.	These	relationships	are
demonstrated	in	Table	3-1.

Table	3-1:	Showing	that	9	and	4	Are	Coprime,	but	6	Is	Not	Coprime	with	9	or	4

Divisor Remainder	from	9 Remainder	from	6 Remainder	from	4

9 (trivial) 	 	

8 1 	 	

7 2 	 	

6 3 (trivial) 	

5 4 1 	

4 1 2 (trivial)

3 0 0 1

2 1 0 0

1 (trivial) (trivial) (trivial)

Although	1	is	not	a	prime	number,	it’s	considered	to	be	coprime	with	every	other
number.

Prime	Factors

Now	we	are	getting	close	to	the	hidden	relationships	that	make	public-key	encryption
work.	If	we	multiply	two	prime	numbers,	the	resulting	product	has	only	those	two	prime
numbers	as	factors	(again,	not	counting	itself	and	1).	For	example,	5	and	3	are	prime
numbers.	The	product	of	3	and	5	is	15,	and	15	has	only	3	and	5	as	factors,	as	shown	in
Table	3-2.

Table	3-2:	The	Product	of	Prime	Numbers	3	and	5	Is	15,	and	15	Has	Only	3	and	5	as
Factors

Divide	15	by Result Remainder

15 0 0	(trivial)

14 1 1

13 1 2

12 1 3

11 1 4

10 1 5

9 1 6

8 1 7

7 2 1

6 2 3

5 3 0

4 3 3

3 5 0

2 7 1

1 15 0	(trivial)

This	is	a	one-way	function.	If	I	give	you	two	prime	numbers,	you	can	easily	multiply
them	together,	although	you	might	use	a	calculator	if	the	numbers	are	large.	The	inverse	of
this	function	would	mean	starting	with	the	product	of	two	prime	numbers	and	finding	the
two	original	primes.	That’s	considerably	harder.

Let’s	take	18,467	as	an	example.	This	number	is	indeed	the	product	of	two	primes—
but	which	two	primes?	To	answer	this	question,	you	would	need	to	divide	18,467	by	every
prime	number	starting	from	2.	Eventually	you	would	discover	that	18,467	divided	by	59	is
313,	which	means	that	59	and	313	are	the	two	prime	factors.

Finding	the	prime	factors	is	very	difficult	if	all	you	have	is	the	product.	However,	when
you	have	the	product	and	one	of	the	two	factors,	finding	the	other	factor	is	simple,	because
all	you	have	to	do	is	divide	the	first	prime	into	the	product.	That	makes	it	a	trapdoor
function—easy	in	one	direction,	hard	in	another	unless	you	have	the	extra	piece	of
information.	If	the	prime	numbers	are	large	enough,	finding	the	factors	is	infeasible
without	the	trapdoor.

The	RSA	Encryption	Method
This	trapdoor	function	is	at	the	heart	of	the	RSA	public-key	encryption	system,	named
after	the	initials	of	its	inventors:	Rivest,	Shamir,	and	Adleman.	In	actual	practice,	this
system	uses	very	large	numbers	to	prevent	a	simple	brute-force	attack,	but	I’ll	use	small
numbers	in	a	simplified	example	to	more	easily	demonstrate	how	it	works.

Suppose	that	siblings	Zed	and	Abigail	share	a	bank	account	but	live	apart.	Zed	has	just
changed	the	account’s	four-digit	PIN	to	1482	and	needs	to	send	this	new	number	to
Abigail	via	email.	Because	email	transmissions	pass	through	many	potentially	insecure
computers,	the	PIN	must	be	encrypted	in	some	way,	but	Zed	and	Abigail	haven’t
previously	shared	a	cipher	key	that	would	allow	the	use	of	a	method	like	AES.	Instead,
Zed	will	securely	transmit	the	new	PIN	using	RSA.

Creating	the	Keys
Although	Zed	has	the	confidential	data	to	transmit	in	this	example,	the	RSA	procedure
begins	with	Abigail,	who	must	produce	a	public	key	before	Zed	can	encrypt	the	PIN.

Step	1

Abigail	begins	by	choosing	two	prime	numbers;	let’s	say	she	chooses	97	and	113.

Step	2

Abigail	multiplies	these	two	numbers	together	to	get	10,961.	To	keep	things	straight,	I’ll
call	this	number	the	prime-product.

Step	3

Next	Abigail	must	compute	a	totient	(which	is	pronounced	TOE-shent,	to	rhyme	with
quotient).	For	a	number	N,	the	totient	is	the	amount	of	numbers	that	are	less	than	N	and
coprime	with	N.	For	example,	the	number	15	is	coprime	with	1,	2,	4,	7,	8,	11,	13,	or	14,	as
shown	in	Figure	3-3.	Because	there	are	eight	numbers	coprime	with	15,	the	totient	of	15	is
8.

Figure	3-3:	The	eight	circled	numbers	have	no	factors	in	common	with	15.	Therefore	the
totient	of	15	is	8.

Computing	the	totient	of	a	number	normally	requires	checking	every	smaller	number
for	common	factors,	and	therefore	it’s	a	lot	of	work—for	huge	numbers,	finding	the	totient
is	practically	impossible.	However,	if	the	number	in	question	is	the	product	of	two	prime
numbers,	there’s	a	shortcut:	simply	subtract	1	from	each	of	the	two	prime	numbers	and
multiply	the	results	together.	For	example,	15	is	the	product	of	two	primes,	3	and	5.	If	we
subtract	1	from	each	of	the	two	primes,	we	get	2	and	4;	if	we	multiply	2	and	4	we	get	8,
the	totient	of	15.

This	shortcut	greatly	aids	Abigail,	whose	next	step	is	computing	the	totient	of	the
prime-product,	10,961.	Since	that	is	the	product	of	the	primes	97	and	113,	the	totient	of
10,961	is	96	×	112,	or	10,752.

Step	4

Now	Abigail	selects	a	number	that	meets	the	following	criteria:

•	Greater	than	1

•	Less	than	the	totient

•	Coprime	with	the	totient

Let’s	say	she	picks	5.	This	is	acceptable	because	it	is	greater	than	1,	it	is	less	than	10,752,
and	there	is	no	number	other	than	1	that	divides	both	5	and	10,752.	Abigail	is	going	to
share	this	number	with	Zed,	so	we’ll	call	it	the	public	key.

Step	5

The	chosen	public	key	determines	Abigail’s	private	key,	the	number	she	has	to	keep
secret.	For	any	given	public	key	and	totient,	there	is	just	one	number	that	can	serve	as	the
private	key,	and	we	can	identify	it	by	testing	successive	multiples	of	the	totient.	For	each

multiple,	we	add	1	and	see	if	the	result	is	divisible	by	the	public	key.	When	it	is,	the	result
of	this	division	is	the	private	key.

The	process	is	demonstrated	in	Table	3-3.	The	first	multiple	of	10,752	is	10,752	itself;
Abigail	adds	1	to	make	10,753,	then	divides	by	5,	getting	2,150	with	a	remainder	of	3.	She
tries	the	second	multiple,	21,504,	and	when	she	adds	1	and	divides	by	5,	she	gets	4,301
and	no	remainder,	so	her	private	key	is	4,301.

Table	3-3:	Finding	the	Private	Key

Multiple Multiply	by	10,752 Add	1 Divide	by	5 Remainder

1 10,752 10,753 2,150 3

2 21,504 21,505 4,301 0

Of	course,	with	larger	numbers	it	may	take	a	lot	more	multiples	to	find	the	private	key,
but	there	is	always	one	number	that	will	pass	the	test.	The	number	of	multiples	tested	will
always	be	less	than	the	public	key	(in	our	example,	Abigail	knows	she’ll	find	the	private
key	in	four	tries	or	less).	In	any	case,	now	that	Abigail	has	her	private	key,	the	actual
encryption	can	begin.

Encrypting	Data	with	RSA
Abigail	emails	both	her	prime-product	(10,961)	and	public	key	(5)	to	Zed.	Because	these
numbers	don’t	allow	anyone	to	decrypt	the	resulting	ciphertext,	it	doesn’t	matter	who	else
reads	the	email	before	it	reaches	Zed.

The	actual	encryption	of	the	new	PIN	takes	just	two	steps.

Step	1

Zed	raises	the	PIN,	1,482,	to	the	power	of	the	public	key,	5—that	is,	1,482	is	multiplied	by
itself	five	times:

1,482	×	1,482	×	1,482	×	1,482	×	1,482	=	7,148,929,565,430,432

Step	2

The	second	step	is	to	find	the	remainder	of	dividing	the	result	of	step	1	by	the	prime-
product.	In	this	case,	10,961	goes	into	7,148,929,565,430,432	about	652	billion	times,	but
all	Zed	cares	about	is	that	the	remainder	of	that	division	is	2,122.	Zed	sends	this	remainder
to	Abigail.

Step	3

On	the	receiving	end,	Abigail	performs	two	similar	steps	to	decrypt	the	ciphertext.	She
starts	by	raising	the	ciphertext	number,	2,122,	to	the	power	of	the	private	key,	4,301.
Because	2,1224,301	is	enormous—over	14,000	digits—I	won’t	show	it	here.

Step	4

Abigail	finds	the	remainder	of	dividing	the	enormous	number	from	step	3	by	the	prime-
product.	The	remainder	of	that	division	is	exactly	1,482,	revealing	Zed’s	PIN.

RSA	Effectiveness
Remember	that	the	goal	of	RSA,	like	any	encryption	system,	is	making	encryption	easy,
decryption	easy	for	the	intended	recipient,	and	decryption	very	hard	for	anyone	else.	A
summary	of	our	RSA	example	is	shown	in	Figure	3-4.

Even	using	much	larger	primes,	encryption	and	authorized	decryption	are	easy	with	the
aid	of	the	computer,	as	a	review	of	the	steps	in	our	example	will	show.

1.			Abigail	picked	two	prime	numbers	and	multiplied	them	together	to	produce	her	prime-
product.	Multiplying	two	numbers	together	is	easy.

2.			Abigail	computed	the	totient	of	the	prime-product	by	subtracting	one	from	each	of	the
two	prime	numbers	before	multiplying.	Subtraction	and	multiplication	are	easy.

3.			Abigail	chose	a	public	key,	a	number	that	shares	no	factors	with	the	totient.	For	large
numbers,	this	would	be	impractical	to	find	by	hand,	but	for	a	computer,	this	is	easy.

4.			Abigail	found	the	appropriate	value	for	her	private	key,	which	should,	when	multiplied
by	the	number	chosen	for	her	public	key,	produce	a	number	that’s	1	more	than	a
multiple	of	the	totient.	This	is	a	chore	to	do	by	hand,	but	for	a	computer,	this	too	is
easy.

5.			Abigail	sent	Zed	the	prime-product	and	public	key.

6.			Zed	raised	the	PIN	to	the	power	of	the	public	key.	For	a	computer,	this	is	relatively
easy.

7.			Zed	divided	the	result	from	the	previous	step	by	the	prime-product	and	took	the
remainder.	Division	is	easy.

8.			Zed	sent	the	remainder	to	Abigail.

9.			Abigail	raised	the	number	Zed	sent	to	the	power	of	the	private	key.	Easy.

10.	Abigail	divided	the	result	of	the	previous	step	by	the	prime-product	and	took	the
remainder,	revealing	Zed’s	PIN.	Easy.

Figure	3-4:	A	summary	of	the	RSA	example.	The	box	in	the	middle	shows	Zed’s
responsibilities;	the	rest	are	Abigail’s.

RSA	encryption	and	decryption	by	authorized	parties	is	easy	work	for	a	computer,	but
unauthorized	decryption	is	maddeningly	difficult.	To	decrypt,	an	attacker	must	have	both
the	prime-product,	which	Abigail	gives	out	freely,	and	the	private	key,	which	she	keeps	to
herself.	How	could	an	attacker	compute	the	private	key?	Finding	that	number	means	first
finding	the	totient	of	the	prime-product,	but	remember,	Abigail	was	only	able	to	compute
the	totient	quickly	because	she	knows	the	two	prime	numbers	that	created	the	prime-
product.	Without	those	two	prime	numbers,	an	attacker	must	find	the	totient	the	hard	way
—by	checking	every	number	less	than	the	prime-product	to	find	all	the	coprimes.

In	our	example,	the	prime-product	is	small,	so	it’s	feasible	for	a	computer	to	find	the
totient	in	this	brute-force	manner.	In	actual	practice,	though,	prime-products	are	huge,	and
finding	their	totients	isn’t	feasible	at	all.	In	fact,	an	attacker	would	be	better	off	searching
for	the	two	primes	that	make	the	prime-product,	to	use	the	shortcut	method	of	making	the
totient.	That	still	requires	checking	all	numbers	up	to	the	square	root	of	the	prime-product,
though,	so	for	large	numbers	this	is	as	infeasible	as	finding	the	totient	the	long	way.

The	RSA	encryption	method	therefore	creates	our	desired	digital	equivalent	of	a
“lockbox.”	Encryption	and	decryption	no	longer	share	the	same	secrets,	so	knowing	how
to	lock	the	data	doesn’t	provide	the	ability	to	unlock	it.

RSA	Use	in	the	Real	World
Our	simplified	example	demonstrates	the	basics	of	RSA	encryption,	but	for	real-world
use,	we	have	to	consider	a	few	other	details.

Bidirectional	Transmission

The	system	shown	in	the	example	allows	for	Zed	to	securely	transmit	to	Abigail,	but	not
the	other	way	around.	If	they	wanted	to	send	secure	messages	in	either	direction,	Zed
would	have	to	go	through	all	the	steps	that	Abigail	did,	making	his	own	prime-product,
totient,	public	key,	and	private	key,	and	sending	the	prime-product	and	public	key	to
Abigail.

Key	Size

In	RSA,	the	last	step	of	either	encryption	or	decryption	is	taking	the	remainder	of	division
with	the	prime-product,	which	means	the	plaintext	number	must	be	less	than	the	prime-
product.	In	the	example	with	Abigail	and	Zed,	then,	the	largest	possible	plaintext	number
is	14,960.	That’s	not	a	problem	for	Zed	and	his	four-digit	PIN,	but	for	general	use	larger
ranges	are	needed.

Just	as	important,	the	larger	the	value	of	the	prime-product,	the	more	difficult	it	will	be
for	an	attacker	to	find	the	two	prime	factors.	In	other	words,	the	size	of	the	prime-product
directly	affects	the	security	of	encryption.	In	current	practice,	primes	are	chosen	to
produce	a	prime-product	with	a	minimum	of	1,024	bits.	As	you	may	recall,	the	Advanced
Encryption	Standard	described	in	Chapter	1	used	only	128	or	256	bits	for	the	key.	So	we
are	talking	about	a	truly	humongous	number—1,024	bits	is	equivalent	to	a	decimal
number	of	over	300	digits.

Long	Plaintexts	and	Performance

A	1,024-bit	key	allows	the	encryption	of	very	large	numbers.	But	a	typical	text,	image,	or
audio	file	is	a	long	series	of	small	numbers,	not	one	big	number.	How	do	we	transmit	a
long	series	of	numbers	using	RSA?	With	AES,	long	files	would	be	chopped	up	into	as
many	128-bit	blocks	as	necessary.	In	theory,	we	could	do	the	same	with	RSA,	chopping	up
files	into	a	multitude	of	1,024-bit	blocks	and	applying	RSA	to	each	block.	The	problem	is
that	RSA	encryption	is	much	slower	than	AES.

AES	has	more	steps	than	the	RSA	Encryption	Standard,	but	even	so,	AES	is	high-

performance	because	the	steps	themselves	are	so	simple.	The	most	common	operations	are
XOR	and	shifting	bits	around,	and	these	operations	are	individually	trivial.	You	can	grasp
this	by	working	out	the	result	of	these	operations	in	your	head,	as	shown	in	Figure	3-5.

Figure	3-5:	Computing	XOR	or	rotating	bits	to	new	positions	is	easy.

In	contrast,	the	RSA	process	has	only	a	few	steps,	but	the	reliance	on	exponentiation
means	more	work	overall.	Consider	a	relatively	small	exponent:	1716.	Written	out,	that’s
…

17	×	17	×	17	×	17	×	17	×	17	×	17	×	17	×	17	×	17	×	17	×	17	×	17	×	17	×	17	×	17

Try	working	that	out	in	your	head,	and	you	see	the	problem.	Now	imagine	exponents
involving	numbers	with	hundreds	of	digits.	Although	a	computer	can	handle	these
calculations,	exponents	are	clearly	a	lot	more	work	than	simple	XORs.	Because	exponents
take	so	much	time,	using	RSA	for	large	amounts	of	data	is	impractical.

Combining	Systems

The	solution	to	the	RSA	performance	problem	is	simple:	don’t	transmit	large	amounts	of
data	with	RSA.	Instead,	use	RSA	to	transmit	an	encryption	key	for	another,	faster	method,
such	as	AES.

Returning	to	Abigail	and	Zed,	suppose	Zed	needs	to	send	Abigail	a	long	document	that
he	has	already	converted	to	a	series	of	numbers	using	the	ASCII	table.	Zed	would	prefer	to
encrypt	the	document	using	AES	rather	than	take	on	the	hard	work	of	RSA.	To	use	AES,
though,	Zed	and	Abigail	would	both	need	to	share	an	AES	encryption	key.	RSA	provides
the	means	to	share	that	key	safely.	Zed	can	create	the	AES	key	himself,	then	encrypt	it
with	RSA	using	Abigail’s	public	key.	Then	Zed	can	encrypt	the	long	document	using
AES,	and	Abigail	can	decrypt	the	resulting	ciphertext	using	the	key	they	now	share.	This
process	is	illustrated	in	Figure	3-6.

Figure	3-6:	Combining	RSA	and	AES	to	produce	an	asymmetric	public-key	system	with
high	performance

In	this	figure,	the	A-lock	symbol	means	“encrypted	with	AES”	while	the	R-lock	means
“encrypted	with	RSA.”	By	sending	both	the	AES-encrypted	document	and	the	AES	key
encrypted	with	her	public	RSA	key,	Abigail	has	everything	necessary	to	decrypt	the
document,	but	an	attacker	intercepting	the	transmission	won’t	be	able	to	decrypt	the
document	without	Abigail’s	private	key.

By	combining	the	two	encryption	methods,	we	combine	their	strengths	to	get	the	high
performance	of	AES	and	the	shared	keys	of	RSA.	Public-key	encryption	is	typically	used
this	way,	to	initiate	a	symmetric-key	encryption	process	that	would	otherwise	be
impossible.

RSA	for	Authentication
Public-key	cryptography	creates	an	authentication	problem.	Because	the	public	key	is	just
that—public—anyone	can	send	an	encrypted	message	to	the	private	key	owner;	therefore,
the	recipient	of	a	transmission	cannot	be	certain	of	the	sender’s	identity.	This	problem

doesn’t	occur	with	symmetric-key	encryption,	because	the	secrecy	of	the	one	key,	when	it
can	be	shared,	ensures	not	only	the	security	of	the	message	but	also	that	the	message
originated	with	the	other	person	who	has	the	key.	Luckily,	public-key	cryptography	can	be
also	be	used	to	authenticate.

Authentication	Using	RSA

In	our	RSA	example,	Abigail	has	her	prime-product	of	10,961	and	her	private	key	of
4,301,	while	Zed	has	the	prime-product	and	Abigail’s	public	key	of	5.	This	allows	Zed	to
send	a	secure	message	to	Abigail,	but	it	also	allows	Abigail	to	send	an	authenticated
message	to	Zed.

Suppose	Abigail	wants	to	send	that	same	PIN,	1482,	back	to	Zed	to	acknowledge	its
receipt,	and	in	such	a	way	that	Zed	can	be	sure	the	acknowledgment	comes	from	Abigail.

Abigail	takes	the	PIN,	1,482,	and	raises	it	to	the	power	of	her	private	key	(instead	of
the	public	key	used	for	encryption).	1,4824,301	is	another	huge	number—it	has	over	13,000
digits—so	I’m	not	going	to	write	it	here,	but	when	that	huge	number	is	divided	by	the
prime-product	of	10,961,	the	remainder	is	8,742.	Abigail	sends	an	email	with	that
remainder	to	Zed.	Zed	now	raises	that	8,742	to	the	power	of	Abigail’s	public	key,	5,	which
results	in	51,056,849,256,616,667,232.	Finally,	Zed	divides	that	number	by	the	prime-
product,	getting	a	remainder	of	1,482.	Zed	recognizes	this	number	as	the	PIN,	and	knows
it	must	have	been	transformed	using	Abigail’s	private	key,	proving	the	number	came	from
Abigail.	The	relationship	between	security	and	authentication	in	RSA	is	shown	in	Figure
3-7.

Figure	3-7:	The	RSA	process	provides	either	encryption	or	authentication.

We	can	authenticate	entire	files	by	applying	this	authentication	process	to	the
encryption	key	of	a	system	like	AES	and	sending	the	encrypted	file	and	the	authenticated
key	to	the	recipient.

The	RSA	process	can	therefore	produce	an	authenticated	message	or	a	secure	message,
depending	on	whether	we	encrypt	with	a	private	key	or	a	public	key.	Ideally	we’d	like
messages	to	be	both	authenticated	and	secure.	We	can	accomplish	this	by	applying	both
variations	of	the	process	to	the	same	message.	In	our	example,	illustrated	in	Figure	3-8,
Abigail	could	encrypt	the	number	she	wants	to	transmit	with	her	private	key,	then	encrypt

the	result	with	Zed’s	public	key.	Upon	receipt,	Zed	would	reverse	the	procedures,	first
decrypting	with	his	private	key,	then	again	with	Abigail’s	public	key.

Figure	3-8:	Applying	the	RSA	with	the	sender’s	private	key	and	the	recipient’s	public	key
provides	authentication	and	security.

Identity	Authorities

You	may	have	noticed	that	authentication	introduces	a	subtler	version	of	the	shared	key
problem.	Zed	knew	the	email	came	from	Abigail	because	he	recognized	the	PIN	produced
when	he	transformed	the	number	using	Abigail’s	public	key,	which	means	the	sender	must
have	the	matching	private	key.	But	if	Zed	is	worried	about	someone	pretending	to	be
Abigail,	how	exactly	does	he	know	that	the	public	key	was	sent	by	Abigail	in	the	first
place,	not	by	an	imposter	who	has	hacked	Abigail’s	email	account?

The	solution	to	this	problem	is	an	authority,	a	third	party	that	helps	verify	identities.	As
you’ll	see,	authorities	provide	the	digital	equivalent	of	ID	cards.	When	two	computers
initiate	a	secure,	authenticated	transmission	through	the	exchange	of	public	keys,	they
show	their	IDs,	which	assures	each	computer	of	the	identity	of	the	other.	Of	course,	this
assumes	each	computer	trusts	the	authority	providing	the	ID,	so	in	the	end,	authentication
requires	having	implicit	faith	in	someone.	One	either	trusts	that	the	transmission	comes
from	the	entity	that	claims	to	have	sent	it,	or	one	trusts	some	third	party	to	identify	the
sender.	Identity	authorities	form	a	crucial	component	of	the	ultimate	subject	of	this
chapter,	web	security.

Security	on	the	Web:	HTTPS
Web	pages	are	transferred	using	HTTP,	which	stands	for	Hypertext	Transfer	Protocol.
When	this	data	is	transferred	securely,	it	is	called	HTTPS,	where	the	S	stands	for	secure.
This	is	why	you’ll	see	https	at	the	beginning	of	your	browser’s	address	bar	when	you	are
transferring	sensitive	data—or	I	hope	you	do.	Web	security	is	something	most	people	take
for	granted,	but	it’s	an	amazing	feat	to	instantly	create	trust	and	security	between	two
automated	parties	who	may	have	just	been	introduced,	requiring	all	the	tricks	and
techniques	you’ve	seen	so	far.

For	this	discussion,	suppose	you’re	purchasing	from	a	retail	website	using	a	computer
or	phone.	In	this	scenario,	your	computer	is	known	as	the	client.	The	computer	running	the
website	for	the	retailer	is	the	server.	This	is	the	first	time	you’ve	made	a	purchase	from
this	retailer,	so	you	have	to	provide	shipping	and	billing	information	such	as	your	address
and	credit	card	number.	This	situation	cries	out	for	security,	but	it	requires	authentication
as	well.

To	see	why,	you	have	to	remember	that	your	computer	is	not	directly	connected	to	the
server.	Your	data	will	be	passed	along	from	system	to	system,	through	computers	managed
by	your	Internet	service	provider	(ISP)	and	those	managed	by	the	retailer’s	ISP,	and
possibly	through	intermediate	systems	managed	by	neither.	It’s	possible	for	any	of	these
systems	to	be	compromised	by	attackers	such	that	the	infected	system	would	intercept
transmissions	headed	for	the	retailer,	responding	in	its	place.	If	this	happens,	when	you
place	your	order,	you’re	giving	your	data	away	to	attackers,	not	to	the	retailer.	Although
the	data	is	encrypted,	it	is	encrypted	with	the	key	provided	by	the	compromised	system,	so
the	encryption	ensures	only	that	no	one	else	eavesdrops	on	the	data	you	are	sending	to	the
attackers.	This	sort	of	impersonation	is	known	as	a	man-in-the-middle	attack,	and	is	foiled
by	good	authentication.

Handshaking
Secure	transmission	of	data	occurs	in	sessions.	A	session	is	the	web	equivalent	of	a	phone
call:	an	extended	conversation	that	begins	when	you	first	load	a	page	on	a	site	and	ends
after	you	have	not	interacted	with	the	site	for	some	predetermined	amount	of	time.

Before	the	transmission	can	begin,	your	client	and	the	server	must	successfully
perform	a	ritual	called	handshaking.	The	name	implies	that	it’s	just	two	computers	saying
howdy,	but	it’s	more	like	a	tense	scene	in	a	crime	show	where	one	guy	doesn’t	want	to
show	the	“stuff”	in	the	back	of	the	van	until	the	other	guy	shows	the	cash	in	the	briefcase.
The	handshaking	phase,	if	successful,	authenticates	the	server	to	the	client,	and	creates	the
key	that	will	be	used	for	encrypting	the	data	throughout	the	session.	As	with	Abigail	and
Zed,	a	public-key	encryption	system	is	used	just	long	enough	to	share	the	keys	needed	for
the	better-performing	private-key	encryption	system.

Step	1

The	client	tells	the	server	which	encryption	methods	it	supports.	The	HTTPS	protocol
allows	computers	to	choose	from	a	suite	of	acceptable	methods	for	encryption,	which
means	that	different	secure	websites	that	you	access	may	use	different	encryption
techniques	providing	higher	or	lower	levels	of	security.	In	addition	to	the	encryption
support	information,	the	client	also	provides	a	randomly	generated	number—the	purpose
of	which	you’ll	soon	see.

Step	2

The	server	responds	with	its	own	list	of	supported	encryption	methods	and	also	its
certificate.	The	server	certificate	contains	several	pieces	of	data,	including	the	domain
name	of	the	site	(such	as	amazon.com)	and	the	name	of	the	certificate	issuer	(the	authority

http://amazon.com

that	will	verify	the	site’s	identity).	It	also	contains	the	server’s	public	key.	HTTPS	can	use
several	different	public-key	cryptographic	systems,	but	RSA	is	common.	The	server	uses
the	same	certificate	for	every	client	it	transacts	with,	so	the	public-and-private	key	pair
only	has	to	be	created	once	for	each	certificate.	Although	this	means	the	server	uses	the
same	RSA	keys	for	all	clients,	as	you’ll	see,	the	RSA	keys	are	used	only	during	this
handshaking	phase.

The	server	certificate	also	contains	a	signature.	As	discussed	in	Chapter	2,	digital
signatures	are	hash	codes.	In	this	case,	the	server	hashes	the	certificate	data	and	encrypts
the	hash	code	using	the	server’s	private	key.

In	addition,	the	server	also	sends	a	random	number	to	the	client,	just	as	the	client	has
sent	a	random	number	to	the	server.

Step	3

The	client	validates	the	certificate.	There	are	two	aspects	to	the	validation.	First,	the	client
applies	the	server’s	public	key	to	the	hash	code	in	the	certificate,	then	hashes	the
certificate	itself	and	compares	the	two	hash	codes.	If	the	codes	match,	the	certificate	is
internally	valid,	but	it	doesn’t	prove	this	is	the	actual	certificate	for	the	site.

Now	the	client	must	check	with	the	issuer	of	the	certificate,	a	certification	authority
with	built-in	trust	with	your	browser.	If	you	drill	down	into	your	browser’s	options,	you
will	find	a	list	of	issuers	under	a	heading	such	as	“Trusted	root	certification	authorities.”
The	issuer	provides	a	copy	of	the	site’s	certificate;	when	this	matches	the	certificate
provided	by	the	server,	the	client	is	assured	of	the	identity	of	the	server.

Step	4

The	client	generates	another	random	number,	48	bytes	long,	or	384	bits,	known	as	the
premaster	secret.	As	the	name	implies,	this	number	must	remain	a	secret.	However,	the
client	needs	to	send	it	to	the	server,	so	the	client	encrypts	it	using	the	server’s	public	key.

Step	5

The	client	and	server	independently	create	the	384-bit	master	secret	by	hashing	a
combination	of	the	premaster	secret	and	the	two	random	numbers	that	were	exchanged	in
the	first	two	steps.	Once	the	master	secret	is	created,	the	premaster	secret	and	the	other
two	random	numbers	are	discarded.

Note	that	the	master	secret	is	not	exchanged	between	client	and	server.	By	this	stage,
both	the	client	and	the	server	have	all	the	numbers	needed	to	create	the	master	secret.
They	independently	run	the	numbers	through	the	same	process	to	produce	the	same	result.

A	summary	of	the	handshaking	process	is	shown	in	Figure	3-9.

Figure	3-9:	The	HTTPS	handshaking	procedure

Transmitting	Data	Under	HTTPS
Now	the	client	and	server	can	begin	sending	actual	data—web	pages	and	media	from	the
server,	and	user	data	from	the	client.	The	384	bits	of	the	master	secret	are	divided	into
three	128-bit	sections,	each	providing	a	different	aspect	of	security.

Data	Encryption

The	first	section	of	the	master	secret	is	used	as	the	key	for	a	private-key	encryption	system
such	as	AES.	Each	of	the	subsequent	data	transmissions	during	the	secure	session	will	be
encrypted	using	this	cipher	key.

Block	Chaining

Because	web	pages	have	standard	header	formats	that	could	provide	cribs	to	attackers,	a
method	such	as	block	chaining	(discussed	in	Chapter	1)	is	employed.	As	you	may	recall,
such	systems	need	a	starting	value	to	encrypt	the	first	block	of	the	transmission;	the
middle	128-bit	section	of	the	master	secret	is	used	as	this	starting	value.

Message	Authentication	Code

The	final	128-bit	section	of	the	master	secret	is	used	to	create	a	message	authentication
code,	or	MAC,	for	each	transmission.	In	this	case,	we’re	not	trying	to	authenticate	the

identity	of	the	sender—that	was	already	handled	in	the	handshaking	phase.	Instead,	the
MAC	ensures	that	data	isn’t	altered	during	transmission.

In	this	process,	each	transmission	is	hashed	through	a	function	like	MD5,	but	first	the
transmission	data	is	combined	with	the	remaining	128-bit	section	of	the	master	secret.
This	is	known	as	keyed	hashing,	and	the	128-bit	section	in	this	context	is	known	as	a	MAC
key.	Using	a	keyed	hash	helps	foil	man-in-the-middle	attacks.	An	attacker	who	wishes	to
pass	a	fake	transmission	to	the	receiver	will	need	the	MAC	key	to	produce	a	hash	code
that	will	be	accepted	as	genuine	by	the	receiver.

The	hashing	occurs	before	the	encryption,	so	that	both	the	original	message	and	the
hash	code	are	encrypted.

The	Shared	Key	Problem	Solved?
So	that’s	how	data	is	securely	transmitted	over	the	Web.	As	you	can	see,	solving	the
shared	key	problem	requires	just	about	every	trick	in	the	cryptography	toolkit.	Public-key
encryption	creates	the	secure	channel	for	initial	communications.	Private-key	encryption	is
used	to	secure	individual	transmissions	of	data.	Hashing	authenticates	both	the	session	and
individual	messages.	If	the	site	uses	passwords	to	authenticate	users,	then	all	of	the
password	techniques	from	Chapter	2	would	come	into	play	as	well.

Web	security	is	a	complex	system	of	techniques.	And	therein	lies	a	potential	problem:
the	complexity	of	computer	security	can	hide	weaknesses.	Just	as	a	machine	with	more
parts	has	more	parts	that	can	break	down,	the	layering	of	so	many	intricate	methods	and
techniques	can	mask	undiscovered	vulnerabilities.	Sometimes	the	vulnerability	is	not
within	any	one	part,	but	in	how	the	parts	are	connected.	Although	methods	like	RSA	and
AES	are	currently	considered	safe,	clever	attackers	may	find	ways	to	break	the	security
without	breaking	the	underlying	encryption	methods.

For	example,	earlier	versions	of	HTTPS	were	vulnerable	to	a	particular	man-in-the-
middle	attack	that	arose	from	the	observation	that	most	secure	sessions	begin	with	a	user
clicking	on	a	link.	Suppose,	for	example,	that	you	have	received	an	email	from	the	bank
that	issues	your	credit	card	with	a	link	to	your	most	recent	account	statement.	The	link	is
an	HTTPS	address,	which	means	that	when	you	click	it,	your	browser	will	launch	and
request	a	secure	connection	with	the	bank’s	server.	However,	this	request	itself	is	not
secure.	An	attacker’s	program	could	intercept	this	request	and	pass	it	along	to	the	bank
server	as	a	request	for	a	plain	unencrypted	HTTP	connection,	and	then	eavesdrop	on	all
the	unencrypted	traffic	that	followed.	The	user	might	be	tipped	off	by	the	prefix	in	the
address	bar,	but	how	many	users	would	think	to	check	that?	To	cover	this	security	hole,
web	servers	can	now	tell	browsers	that	all	connections	must	be	made	through	HTTPS—
but	that	solution	doesn’t	foil	an	attacker	who	can	intercept	the	announcement	as	well.	The
ultimate	solution	may	be	to	require	HTTPS	for	all	web	communications.

Undoubtedly	new	vulnerabilities	will	be	found	in	the	future,	requiring	the	invention	of
new	defenses.	Computer	security	is	a	moving	target.	We’ll	never	be	able	to	declare	our
data	entirely	safe,	but	relying	on	best	practices	may	keep	us	one	step	ahead	of	attackers.

4
Movie	CGI

Some	of	software’s	most	impressive	work	can	be	seen	in	movie	theaters.	Images	that	in
earlier	eras	were	painstakingly	produced	with	models,	matte	paintings,	elaborate
costumes,	and	trick	photography	are	now	created	by	computers.	More	than	merely
simplifying	the	filmmaking	process,	computer-generated	imagery	(CGI)	produces	images
that	would	have	been	impossible	before.	For	many	filmgoers,	movies	changed	forever
when	they	saw	Jurassic	Park.	When	Steven	Spielberg	was	developing	the	movie,	he
expected	to	create	his	dinosaurs	using	old-school	effects	like	automated	puppets	and
animated	miniatures,	but	once	he	saw	some	computer-animated	test	footage,	he	decided	to
use	CGI	for	many	of	the	dinosaur	shots.	The	result	left	viewers	astounded	by	images	like
the	panorama	shown	in	Figure	4-1.	For	comparison,	the	old	way	to	put	a	dinosaur	in	a
movie	is	shown	in	Figure	4-2.

Figure	4-1:	CGI	dinosaurs	visit	the	watering	hole	in	Jurassic	Park	(Universal
Pictures/Amblin	Entertainment,	1993).

Figure	4-2:	The	Beast	from	20,000	Fathoms	(Jack	Dietz	Productions,	1953)	munches	on
Coney	Island.

Amazing	as	they	were,	films	like	Jurassic	Park	were	just	the	beginning	of	the	CGI
revolution.	Now	movies	like	Avatar	create	whole	worlds	using	CGI,	so	that	viewers	are
never	sure	what	parts	of	a	shot	are	physically	real,	if	any.	With	enough	time	and	money,	it
seems	like	filmmakers	can	produce	anything	imaginable.

Before	computers	blew	our	minds	with	dinosaurs	and	lush	alien	planets,	though,	they
were	transforming	the	world	of	traditionally	animated	movies.	Using	computers	not	only
radically	altered	the	process	of	traditional	animation,	but	as	you’ll	discover,	the	concepts
and	techniques	employed	are	the	foundation	for	almost	everything	in	computer	graphics.
This	is	where	the	story	of	CGI	begins.

Software	for	Traditional	Animation
A	movie	is	a	series	of	still	images,	or	frames,	presented	to	the	eye	in	rapid	succession,	like
a	high-speed	slideshow.	Each	frame	lingers	on	the	retina	for	a	moment	after	it	disappears
from	the	screen,	effectively	blending	with	the	next	frame	to	provide	the	illusion	of
continuous	motion—a	phenomenon	known	as	persistence	of	vision.	Traditionally,	movies
are	shown	at	a	rate	of	24	frames	per	second	(fps).	Making	a	movie	means	producing	24
images	for	every	second	of	the	film.

A	live-action	movie	uses	a	camera	to	collect	images	in	real	time.	A	traditionally
animated	film	like	Lady	and	the	Tramp,	though,	is	created	a	bit	differently:	each	frame	of
the	movie	is	an	individually	photographed,	hand-crafted	work	of	art.

Traditional	animation	is	a	huge	undertaking	requiring	a	large	team	of	artists.	Typically,
each	character	in	an	animated	film	is	assigned	a	lead	animator,	but	the	lead	animator	does
not	draw	the	character	on	every	frame	in	which	he	or	she	appears,	because	that’s	too	much
work	for	one	person.	Instead,	the	lead	animator	draws	only	as	many	keyframes	as	are

needed	to	suggest	the	action—perhaps	one	out	of	every	few	dozen	frames	of	a	finished
animation	sequence.	Other	animators	draw	the	in-between	frames	to	complete	the
sequence,	a	process	known	as	tweening.	At	this	stage,	the	animation	is	still	just	a	series	of
pencil	drawings	on	paper.	The	drawings	must	be	transferred	to	transparent	cellulose
sheets,	which	is	why	this	style	of	animation	is	also	known	as	cel	animation.	Then	comes
what	animators	call	“ink	and	paint”:	the	faint	pencil	lines	are	traced	over	with	black	ink,
and	the	cel	is	colored.	Then	the	sheets	are	placed	in	front	of	a	separately	painted
background	and	photographed.

As	you	might	expect,	tweening,	inking,	and	painting	are	tedious,	time-intensive	jobs.
Beginning	around	1990,	computer	imagery	has	been	used	to	mimic	the	cel	animation	style
with	far	less	manual	labor.

How	Digital	Images	Work
In	a	traditional	animated	film,	each	frame	is	a	photograph	of	physical	art,	but	computer
animation	works	with	digital	images—pictures	defined	by	numerical	data.

When	you	look	at	a	video	display	such	as	a	television,	a	smartphone	screen,	or	a
digitally	projected	theater	screen,	the	image	that	reaches	your	eyes	is	made	up	of	dots	of
varying	colors,	known	as	pixels.	Figure	4-3	depicts	a	tree	against	a	blue	sky	as	a	grid	of
pixels.	Each	of	the	100	pixels	in	this	10×10	grid	is	assigned	a	color,	here	specified	by
name.

Figure	4-3:	A	tree	made	of	pixels

Although	we	can	think	of	each	pixel	as	a	solid	color,	the	underlying	reality	is	a	bit
different.	For	example,	at	home	you	might	watch	a	movie	on	a	common	liquid	crystal
display	(LCD)	television	in	which	pixel	colors	are	determined	by	electrically	controlled
crystals.	On	the	back	of	an	LCD	screen	is	a	light	source,	either	a	fluorescent	lamp	or	a
series	of	light-emitting	diodes	(LEDs).	The	light	source	itself	is	white.	In	front	of	the	light
is	a	translucent	panel	with	bars	in	the	three	primary	colors—red,	green,	and	blue—as
shown	in	Figure	4-4.

Figure	4-4:	Three	bars	of	pure	primary	colors	create	one	LCD	pixel.

A	layer	of	liquid	crystals	lying	between	the	light	source	and	the	color	panel	puts	an
individually	controlled	crystal	behind	each	of	the	translucent	bars.	You	can	think	of	these
crystals	as	electrically	operated	doors,	and	the	degree	to	which	each	crystal	door	is	open
determines	how	much	light	gets	through.	By	varying	the	amount	of	red,	green,	or	blue,
any	one	of	millions	of	colors	can	be	produced	by	each	pixel.	This	is	additive	color	mixing,
in	which	adding	more	color	makes	the	result	brighter.	If	we	want	a	particular	pixel	to
come	across	as	bright	yellow,	for	example,	we	would	set	the	levels	of	red	and	green	high,
and	the	level	of	blue	low.	If	we	wanted	a	dark	gray,	we	would	set	each	of	the	color	bars	to
the	same	low	intensity.	All	three	colors	at	maximum	intensity	produce	pure	white.	Later	in
this	chapter,	we’ll	see	an	example	of	subtractive	color	mixing,	which	is	what	you	might
remember	from	art	class,	where	adding	more	color	makes	the	result	darker.

How	Colors	Are	Defined
The	most	common	way	to	define	a	pixel’s	color	is	with	the	RGB	system,	which	uses	three
numbers	to	represent	the	intensity	of	red,	green,	and	blue	in	the	pixel.	The	numbers
typically	range	from	0	to	255	to	match	the	range	of	an	eight-bit	byte.	This	means	that	each
RGB	pixel	is	specified	by	three	bytes	of	data.

As	far	as	software	is	concerned,	a	digital	image	such	as	that	shown	in	Figure	4-3	is	just
a	list	of	bytes	of	color	data,	three	bytes	for	each	pixel.	This	block	of	bytes	is	known	as	the
image’s	bitmap.	The	first	three	bytes	in	the	bitmap	are	the	red,	green,	and	blue	levels	of
the	pixel	in	the	upper-left	corner	of	the	image,	and	so	on.	The	width	and	height	of	an
image	or	bitmap	in	pixels	is	known	as	its	resolution;	for	instance,	Figure	4-3’s	resolution
is	10×10.	A	bitmap	called	a	display	buffer	stores	the	colors	of	each	pixel	of	a	digital
display	like	an	LCD	television;	ultimately,	computer	graphics	methods	are	about	setting
the	numbers	in	a	display	buffer.

The	location	of	a	particular	pixel	in	a	bitmap	is	specified	by	two	coordinates,	an	x-
coordinate	for	horizontal	position	and	a	y-coordinate	for	vertical	position.	The	(0,0)
coordinate,	known	as	the	origin,	can	be	located	in	a	corner	or	in	the	center;	it	varies
among	different	coordinate	systems.	When	positioning	pixels	on	a	physical	display,	we
refer	to	coordinates	as	screen	coordinates.	Screen	coordinate	systems	commonly	set	the
origin	at	the	upper-left	pixel,	so	a	1920×1080	screen	would	locate	pixels	as	shown	in

Figure	4-5.	Here,	the	y-axis	increases	moving	down	the	image,	the	x-axis	increases
moving	right	across	the	image,	and	the	center	location	is	(960,	540).

Figure	4-5:	Locating	pixels	on	a	1920×1080	screen

Coordinate	systems	are	a	ubiquitous	part	of	computer	graphics	and,	as	you’ll	see	in	this
chapter	and	the	next,	much	of	the	work	of	producing	graphics	involves	converting
coordinates	from	one	system	to	another.

How	Software	Makes	Cel	Animations
Now	that	you	understand	what’s	inside	a	digital	image,	you’re	ready	to	see	how	software
can	make	digital	images	that	look	like	traditional	cels.	The	first	step	is	getting	the	artist’s
work	inside	the	computer.

Transforming	Drawings	into	Models

Software-generated	cel	animation	starts	the	same	way	as	traditional	animation:	with	an
artist	sketching	a	character.	Instead	of	drawing	on	paper,	though,	the	artist	draws	with	a
mouse	or	an	electronic	stylus	and	the	drawings	are	recorded	by	software.	In	order	to
ultimately	produce	a	bitmapped	image,	we	need	a	system	that	defines	the	artist’s	strokes
numerically,	producing	a	model	of	the	drawing.	Locations	within	a	model	are	called	local
coordinates.	Figure	4-6	shows	a	drawing	of	a	bug-man	within	a	box	that	defines	the	local
coordinate	space.

Figure	4-6:	A	bug-man	drawing	inside	a	box	defining	coordinate	limits

Each	line	and	curve	in	this	model	is	defined	in	terms	of	these	local	coordinates.
Straight	line	segments,	like	the	antennae	and	legs	of	our	character,	can	be	defined	by	the
coordinates	of	the	points	at	either	end	of	the	line,	as	shown	in	Figure	4-7.	Note	that	the
coordinates	here	have	fractional	parts	to	increase	precision.

Figure	4-7:	Defining	straight	line	segments	using	the	coordinates	of	the	end	points

For	curves,	control	points	are	needed	in	addition	to	end	points	to	define	the	direction
and	amount	of	curvature.	Imagine	that	the	control	point	is	attached	to	the	curve	so	that
moving	it	controls	the	degree	of	curvature,	as	illustrated	by	the	simple	curves	in	Figure	4-
8.	If	you’ve	ever	worked	with	a	vector	graphics	application,	you’ve	likely	worked	with
curves	like	this.

Figure	4-8:	Curves	defined	by	two	end	points	and	one	control	point

Simple	curves	can	be	represented	by	just	two	end	points	and	one	control	point,	but
longer,	more	complicated	curves	are	made	up	of	sequences	of	simple	curves,	as	shown
with	the	bug-man’s	shoe	in	Figure	4-9.

The	lines	and	curves	define	just	the	outline	of	a	character	or	other	drawing;	the	colors
inside	the	outline	are	defined	using	a	system	such	as	RGB.	The	character	model,	then,	is	a
numerical	representation	of	all	the	lines,	curves,	and	color	data.

Figure	4-9:	A	complicated	curve	made	of	simple	curves

Automatic	Tweening

Numerically	defining	drawings	allows	for	automatic	tweening.	The	animator	draws	one
frame	of	a	character’s	animation	sequence,	then	creates	succeeding	keyframes	by	moving
the	control	points	of	the	curves	in	the	previous	frames.	The	animation	software	can	then
generate	the	other	frames	through	interpolation.	The	concept	is	demonstrated	in	Figure	4-
10.	Here,	the	coordinates	of	the	middle	point	are	calculated	as	the	average	of	the
coordinates	of	the	other	points.	The	x-coordinate	of	the	interpolated	point,	20,	is	halfway
between	10	and	30;	the	y-coordinate,	120,	is	halfway	between	100	and	140.	In	this
example,	all	the	points	lie	on	a	line,	but	the	interpolation	path	can	be	a	curve	as	well.

Figure	4-10:	Computing	a	middle	point	between	two	keyframe	points	via	interpolation

Figure	4-11	shows	how	interpolation	creates	new	frames	of	animation.	The	leftmost
face	is	the	original	model;	the	second	face	shows	some	of	the	control	points;	and	the	third
has	a	wide	mouth	created	by	repositioning	two	of	the	control	points	downward.	The
rightmost	face	was	created	through	linear	interpolation,	placing	each	control	point	halfway
between	the	two	keyframe	positions.	Animation	software	can	create	as	many	in-between
positions	as	necessary	to	fill	the	gap	between	keyframes.

Figure	4-11:	From	left:	a	model,	the	model	with	selected	control	points,	the	model	with
two	of	the	control	points	moved,	and	a	tweened	model	created	by	interpolation	between
the	positions	of	the	previous	two	models

Although	basic	interpolation	tweening	can	be	a	huge	time-saver,	adjusting	the	positions
of	lots	of	little	points	remains	tedious.	More	advanced	animation	software	can	treat	a
character	drawing	as	a	complete,	interconnected	body,	in	which	rigid	connections	and
joints	are	specified.	This	means	that	an	animator	need	only	position	the	feet	for	each
keyframe	to	make	our	bug-man	walk,	and	the	software	positions	the	rest	of	the	legs
accordingly.	The	software	might	even	handle	real-world	physics,	so	that	a	sequence	of
images	of	our	bug-man	falling	over	a	log	could	be	animated	entirely	by	the	software.

Positioning	and	Scaling

Numerical	modeling	also	allows	the	drawings	to	be	placed	anywhere	in	a	frame	at	any
size.	Changing	the	size	of	a	model	is	called	scaling,	and	is	accomplished	by	multiplying	or
dividing	the	coordinates	for	each	of	the	points.	Figure	4-12	shows	the	bug-man	model	of
Figure	4-6	scaled	down	to	a	quarter	of	its	original	area	by	dividing	each	of	the	coordinates
in	half.	One	point	on	his	antenna	is	highlighted	to	show	the	idea.

Placing	a	model	in	a	particular	location	on	the	screen	is	called	translation,	and	is
accomplished	by	increasing	or	decreasing	coordinates	by	fixed	amounts.	In	Figure	4-13,
the	shrunken	bug-man	from	Figure	4-12	is	translated	to	the	middle	of	the	screen	by	adding
700	to	each	x-coordinate	and	200	to	each	y-coordinate.

Figure	4-12:	Scaling	a	model	means	multiplying	or	dividing	each	of	the	coordinates.

Figure	4-13:	Translating	a	model	means	adding	to	or	subtracting	from	coordinates.

“Ink	and	Paint”	for	Digital	Images

Now	that	the	points	on	the	models	are	mapped	to	screen	coordinates,	it’s	time	to	transform
each	frame	into	a	bitmap.	This	is	the	software	version	of	cel	animation’s	“ink	and	paint.”
To	keep	things	simple,	let’s	look	at	how	just	the	right	arm	of	our	bug-man	model	would	be
converted	to	a	bitmap,	or	rasterized,	when	displayed	over	a	solid	white	background.
Figure	4-14	shows	the	arm	over	a	pixel	grid,	with	circles	marking	the	pixel	centers.

With	the	model	mathematically	defined,	the	software	can	place	the	arm	at	any	position
on	the	bitmap	and	then	apply	the	indicated	color—in	this	case,	black—to	the	appropriate
pixels.	Right	away	we	see	there’s	a	problem,	though:	the	contours	of	the	arm	don’t	match
the	borders	of	pixels,	so	how	do	we	determine	which	pixels	to	color?	A	simple	rule	is	to
color	pixels	when	their	centers	are	covered.	Figure	4-15	shows	the	result	of	pixel-center
coloring.

Figure	4-14:	The	right	arm	of	the	bug-man	superimposed	over	a	pixel	grid

Figure	4-15:	Coloring	pixels	solid	black	based	on	pixel	centers

As	you	can	see,	though,	this	result	is	rather	ugly.	Because	the	pixels	are	square,	this
coloring	rule	replaces	the	gracefully	curving	border	of	the	model	with	a	jagged	edge,
which	is	why	this	problem	is	known	as	the	jaggies.	The	general	problem	is	that	the	model
is	smooth	and	continuous,	while	the	bitmap	is	made	with	square	black-and-white	pixels.
The	bitmap	is	just	an	approximation	of	the	model.	The	discrepancy	between	continuous
models	and	their	bitmap	approximations	is	known	as	aliasing,	and	is	the	source	of	many
visual	anomalies	in	computer	graphics.

To	avoid	the	jaggies,	we	need	to	color	pixels	using	an	anti-aliasing	technique.	In	our
example,	instead	of	coloring	the	pixels	black	and	white,	we’ll	use	a	range	of	grays	to
produce	a	better	approximation	of	the	model.	Each	pixel	will	be	colored	based	on	how
much	of	it	is	covered	by	the	arm.

In	order	to	put	this	idea	into	action,	instead	of	checking	only	the	center	of	each	pixel,
let’s	test	several	points	in	each	pixel	to	see	how	many	of	them	lie	within	the	model.	In

Figure	4-16,	7	of	the	10	testing	points	scattered	around	the	pixel	area	are	covered	by	the
shape,	meaning	this	is	70	percent	coverage.

The	percentage	of	each	pixel	covered	by	the	model	determines	the	gray	level.	The
result	for	our	bug-man’s	arm	is	shown	in	Figure	4-17.	Although	this	example	might	not
look	like	much,	if	you	hold	the	page	at	arm’s	length	and	squint,	the	edges	should	appear	to
smoothly	blend	into	the	white	background,	producing	the	illusion	of	a	graceful	curve.

Figure	4-16:	A	close-up	of	one	pixel	at	the	end	of	the	bug-man’s	arm,	with	a	scattering	of
10	points	to	estimate	the	area	covered	by	the	model

Figure	4-17:	Using	grayscale	to	anti-alias,	shown	with	and	without	the	pixel	grid.

Blending	into	Any	Background

We	need	to	generalize	the	technique	just	described	in	order	for	it	to	work	with	a
background	other	than	solid	white.	Consider	Figure	4-18.	On	the	left	is	the	bug-man
model,	and	in	the	middle	is	the	background	for	the	shot	in	which	he’ll	appear:	a	close-up
of	a	setting	sun	over	a	rocky	terrain.	On	the	right	is	the	complete	image	with	the	model
superimposed	over	the	background.

Figure	4-18:	The	bug-man	model,	a	background,	and	the	model	superimposed	over	the
background

This	book	is	printed	in	black	and	white,	but	in	this	image	the	sun	would	be	shades	of
reddish-orange	and	the	ground	would	be	shades	of	brown.	As	before,	pixels	along	the
model’s	edge	will	appear	jagged	unless	we	use	an	anti-aliasing	technique.	But	using	the
previous	technique	to	color	pixels	in	gray	tones	won’t	help	the	black	edge	blend	into	a
background	of	red-orange	and	brown	pixels.

A	more	general	anti-aliasing	technique	calculates	an	alpha	level	for	each	pixel	based
on	the	percentage	of	the	pixel	that’s	covered	by	the	model.	You	can	think	of	an	alpha	level
as	a	measure	of	opacity.	Like	the	color	levels,	an	alpha	level	is	typically	defined	in	the
range	of	0–255.	In	Figure	4-19,	a	black	bar	is	superimposed	over	a	tree	at	different	alpha
levels.	At	an	alpha	level	of	255,	the	bar	is	entirely	opaque,	while	at	25	the	bar	is	barely
visible.	An	alpha	level	of	0	would	make	the	bar	completely	invisible.

The	alpha	levels	of	all	the	pixels	in	a	bitmap	are	collectively	referred	to	as	its	alpha
channel.	The	process	of	making	an	alpha	channel	for	a	model	is	similar	to	how	we	anti-
aliased	the	black	arm	against	the	white	background,	only	rather	than	assigning	a	shade	of
gray	based	on	the	pixel’s	coverage	percentage,	we	assign	an	alpha	value	for	the	pixel
instead.	Each	model	is	thus	conceptually	transformed	into	both	a	bitmap,	showing	the
color	of	each	pixel	covered	by	the	model,	and	an	alpha	channel,	showing	the	opacity	of
each	pixel.	Figure	4-20	shows	the	color	bitmap	(here,	just	black	pixels)	and	the	alpha
channel	of	the	bug-man	arm	separately.

Figure	4-19:	A	tree	covered	by	five	black	bars	of	varying	alpha	level

Figure	4-20:	The	arm	of	the	bug-man	model	with	its	corresponding	color	bitmap	and

alpha	channel

Now	the	model	can	be	applied	to	any	background.	The	final	color	of	each	pixel	is	a
blend	of	the	color	in	the	background	and	the	model’s	color	bitmap,	with	the	alpha	level
determining	how	much	of	each	color	goes	into	the	mix.	In	the	bug-man	scene	of	Figure	4-
18,	if	a	black	bug-man	pixel	with	30	percent	alpha	were	placed	on	top	of	a	red-orange
sunset	background	pixel,	the	result	would	be	a	darker	red-orange,	as	shown	in	Figure	4-21.
The	resulting	amount	of	each	color	component	lies	somewhere	between	the	two	mixed
colors,	but	because	the	black	pixel	is	only	30	percent	alpha,	the	red-orange	background
color	dominates.	For	pixels	completely	covered	by	the	model,	the	alpha	level	is	100
percent	and	the	color	in	the	final	image	is	the	same	as	in	the	model’s	color	bitmap.	In	this
way,	a	bitmap	with	an	alpha	channel	can	be	smoothly	blended	into	any	background.

Figure	4-21:	The	red,	green,	and	blue	components	of	three	colors:	the	black	of	the	model,
the	red-orange	of	the	background	pixel,	and	the	result	of	mixing	these	two	colors	if	the
black	has	30%	alpha

From	Cel	Animation	Software	to	Rendered	2D	Graphics
These	techniques	are	now	the	default	way	to	produce	cel-style	animation,	and	software	is
as	common	a	tool	for	animation	studios	as	brushes	and	paper	were	in	earlier	generations.
While	some	animation	studios	use	programs	they	developed	themselves,	most	direct-to-
video	or	television	animation	and	some	feature	films	are	made	with	off-the-shelf	software.
One	such	program,	Toon	Boom,	has	been	used	for	television	shows	such	as	The	Simpsons
and	Phineas	and	Ferb,	while	the	artists	at	Studio	Ghibli	use	a	program	called	Toonz	to
animate	such	movies	as	Spirited	Away.

The	usefulness	of	these	techniques	is	not	limited	to	filmmaking,	though.	More
generally,	the	software	techniques	used	to	mimic	traditional	cel-style	animation	are	called
two-dimensional	graphics,	or	2D	graphics,	because	the	control	points	for	models	are
located	with	two	coordinates,	x	and	y.	The	general	task	of	transforming	models	into	final
images	is	called	rendering,	and	the	software	that	performs	the	task	is	the	renderer.
Rendered	2D	graphics	are	used	throughout	computing.	Many	video	games,	such	as	Angry
Birds,	use	the	cel-animation	look.	These	rendering	techniques	are	also	used	to	display
fonts	and	icons	in	applications	such	as	browsers	and	word	processors.

Although	rendered	2D	graphics	are	ubiquitous	in	computing	and	can	make	great	cel-
style	animations,	creating	the	mind-blowing	visuals	of	films	like	Avatar	requires
extending	these	ideas	to	three	dimensions.

Software	for	3D	CGI

Breathtaking	CGI	in	films	like	Avatar	use	3D	graphics.	The	“3D”	here	doesn’t	refer	to
simulated	depth	perception,	like	in	a	3D	movie,	but	rather	to	the	three	coordinates	of	each
control	point	in	the	animation	models:	x-	and	y-coordinates	for	horizontal	and	vertical
positioning	and	a	z-coordinate	to	indicate	depth.	Figure	4-22	shows	a	three-dimensional
model	of	a	box	with	a	highlighted	point	defined	by	x-,	y-,	and	z-coordinates.

Figure	4-22:	A	box	in	three-dimensional	space

As	with	2D	graphics,	3D	graphics	are	all	about	rendering	models	into	bitmaps.	The
rendering	methods	that	produce	the	most	realistic	results	require	the	most	processing	time.
Movie	CGI	is	impressive	largely	because	the	renderer	can	process	each	frame	for	a	very
long	time,	resulting	in	the	high-quality	result	that	I’ll	call	movie-quality	rendering.	We’ll
discuss	the	keys	to	movie-quality	rendering	in	this	chapter.	Then,	in	Chapter	5,	we’ll	talk
about	graphics	for	video	games,	and	see	how	many	of	the	techniques	shown	here	have	to
be	modified,	faked,	or	scrapped	altogether	when	images	must	be	produced	in	real	time	in
response	to	user	interaction.

How	3D	Scenes	Are	Described
3D	models	are	built	out	of	lines	and	curves	just	like	2D	models,	but	these	lines	and	curves
stretch	across	three	dimensions	instead	of	two.	The	box	in	Figure	4-22	is	a	very	simple
model	defined	by	eight	points;	the	models	used	in	movie	CGI	tend	to	be	complex,	defined
by	hundreds,	thousands,	or	even	tens	of	thousands	of	points.	As	with	2D	rendering,
models	in	3D	rendering	are	defined	by	local	coordinates.	The	points	at	the	corners	of	the
box	in	Figure	4-22,	for	example,	are	defined	relative	to	the	local	origin	at	the	bottom	of
the	box.

While	2D	rendering	can	directly	map	from	local	coordinates	to	screen	coordinates,	3D
models	are	first	placed	into	scenes	in	a	virtual	world	that	has	its	own	coordinate	space
called	world	coordinates.	Designing	a	3D	scene	is	the	CGI	equivalent	of	building	a	movie
set.	We	can	place	as	many	models	as	we	want	in	the	virtual	world,	of	any	size	and	at	any
location,	and	the	renderer	can	figure	out	the	world	coordinates	for	all	the	locations	on	the
models.

Introducing	another	coordinate	system	might	seem	like	an	unnecessary	complication,
but	world	coordinates	actually	make	3D	graphics	much	easier	in	the	long	run.	For
example,	an	artist	can	model	a	dining	room	chair	independently	of	the	other	models	for
the	scene	in	which	it	will	be	used.	Then	the	artist	can	copy	the	single	chair	model	to	make
as	many	seats	as	needed	for	the	dining	room	scene.	Also,	a	scene,	like	a	movie	set,	isn’t
built	to	produce	a	single	image	but	to	create	a	space	that	will	be	shown	in	many	images
from	many	different	angles,	as	we’ll	see	in	the	next	section.

The	Virtual	Camera
With	the	scenery	in	place,	a	viewpoint	is	needed.	On	a	movie	set,	a	cinematographer
determines	what	image	is	captured	by	placing	the	camera	and	choosing	a	lens.	For	CGI,
the	viewpoint	determines	how	the	three-dimensional	scene	is	transformed	into	a	two-
dimensional	rendered	image.

Transformation	from	three	dimensions	to	two	is	known	as	projection.	To	better
understand	projection,	consider	Figure	4-23,	in	which	an	imaginary	pyramid	originates
from	the	eye	of	a	viewer	looking	at	a	table.	A	translucent	grid	lies	in	the	pyramid	between
the	viewer	and	the	scene.	Looking	through	the	grid,	the	viewer	can	map	each	visible
location	on	the	three-dimensional	table	to	a	particular	square	on	the	two-dimensional	grid.
That’s	projection,	but	instead	of	a	grid	of	squares,	it’s	a	grid	of	pixels	in	a	bitmap.

Figure	4-23:	Projecting	a	three-dimensional	scene	onto	a	flat	display	is	like	viewing	a
real-world	scene	through	a	translucent	grid.

Direct	Lighting
There	are	many	different	methods	of	projection,	but	projection	methods	in	movie-quality
rendering	are	part	of	the	larger	issue	of	lighting.	Although	we	don’t	often	realize	it,	our
perception	of	an	object’s	color	is	determined	not	only	by	the	object	itself	but	also	by	the
lighting	under	which	we	view	the	object.	Knowing	this,	filmmakers	carefully	light	their
scenes	for	dramatic	effect,	but	the	problem	of	lighting	in	CGI	is	more	fundamental.

Without	an	accurate	model	of	scene	lighting,	the	resulting	images	won’t	look	realistic	at
all.

To	understand	why	this	is	true,	let’s	take	a	simple	scene	of	a	yellow	metal	table	in	a
green	room,	as	shown	in	Figure	4-24.

Figure	4-24:	A	3D	scene

From	this	viewpoint,	some	of	the	pixels	will	be	“table”	pixels	and	the	others	will	be
“wall”	or	“floor”	pixels.	A	simple	renderer	might	color	every	table	pixel	the	same	shade	of
yellow,	while	coloring	all	the	other	pixels	an	identical	green.	But	because	this	coloring
ignores	the	effect	of	lighting,	the	resulting	image	would	be	flat	and	unrealistic.	(The
blocks	of	solid	color	would	make	the	image	resemble	an	animation	cel—an	interesting
effect,	but	not	realistic.)	A	movie-quality	renderer	needs	a	lighting	model	so	that	the	colors
in	our	scenes	are	influenced	by	virtual	light	sources.

The	essential	real-world	lighting	effects	modeled	by	CGI	renderers	include	distance,
diffuse	reflection,	and	specular	reflection.

The	Distance	Effect

To	understand	the	distance	effect,	imagine	a	lamp	emitting	pure	white	light	hanging
directly	over	the	middle	of	the	table,	as	in	Figure	4-25.

The	closer	this	light	is	to	the	table,	the	brighter	the	table	appears.	In	the	physical	world,
this	effect	is	caused	by	the	beam	of	light	widening	as	it	gets	farther	from	its	source.	The
more	narrowly	focused	a	light	source	is,	the	less	the	light	diminishes	with	distance—
which	explains	why	the	highly	focused	light	of	a	laser	hardly	diminishes	at	all.

Figure	4-25:	The	closer	a	light	is	to	a	surface,	the	brighter	the	surface	appears.

Renderers	can	model	the	distance	effect	realistically,	but	they	also	allow	unrealistic
distance	effects	in	order	to	create	a	particular	look	or	mood.	For	example,	in	a	scene	where
a	character	carries	a	torch	through	a	cave,	a	lighting	designer	will	decide	whether	the
torchlight	extends	a	long	way	or	barely	penetrates	the	gloom.

All	of	the	lighting	effects	we’ll	discuss	allow	these	kinds	of	adjustments.	Although	it
may	seem	strange	to	intentionally	create	unrealistic	light	when	the	whole	point	of	the
lighting	model	is	to	make	a	realistic	scene,	there’s	a	subtle	but	important	distinction
between	reality	and	viewers’	expectations	of	reality.	Using	light	in	unrealistic	ways	is	an
old	cinematic	trick.	For	example,	when	a	character	in	a	darkened	bedroom	turns	on	a
lamp,	a	stage	light	in	the	ceiling	of	the	set	also	turns	on,	so	that	the	entire	scene	is	softly
lit.	Without	the	extra,	unrealistic	light,	the	scene	won’t	look	right—it	will	appear	too	dark.
In	the	same	way,	CGI	lighting	models	allow	their	controls	to	be	tweaked	to	produce
results	that	are	a	little	wrong,	but	feel	right.

The	Diffuse	Reflection	Effect

Light	that	strikes	a	surface	head-on	appears	brighter	than	light	that	strikes	a	surface	at	a
sharp	angle.	In	Figure	4-26,	the	center	of	the	table	seems	brighter,	or	yellower,	than	the
corners.

Figure	4-26:	Diffuse	lighting	depends	on	the	angle	at	which	light	strikes	a	surface.

This	is	due	in	part	to	the	distance	effect—the	center	is	closer	to	the	lamp	than	the
corners—but	is	mostly	due	to	the	diffuse	reflection	effect,	a	change	in	brightness	caused
by	variation	in	the	light’s	angle	of	incidence.	In	Figure	4-27,	the	solid	lines	show	the
incident	light	rays,	while	the	dashed	lines	are	reflections.	As	you	can	see,	the	light	strikes
point	B	at	a	much	larger	angle	than	at	point	A,	and	therefore	point	B	appears	brighter	than
point	A.	But	note	that	the	viewing	angle,	or	angle	of	reflectance,	makes	no	difference	in
the	diffuse	reflection	effect.	Therefore,	point	A	will	look	the	same	to	both	viewers,	and	so
will	point	B.

Figure	4-27:	Diffuse	lighting	varies	based	on	the	angle	at	which	the	light	strikes	the
surface,	but	is	the	same	for	all	viewpoints.

The	Specular	Reflection	Effect

Because	the	metal	tabletop	is	highly	reflective,	it	partially	acts	as	a	mirror.	As	with	any

mirror,	what	you	see	in	it	depends	on	what	lies	on	the	opposite	angle	to	your	point	of	view.
Figure	4-28	shows	a	shiny	spot	on	the	table	where	the	hanging	light	is	at	the	opposite
angle	from	our	viewpoint,	approximately	midway	between	the	center	of	the	table	and	the
closest	edge.	Because	this	spot	is	a	mirror-like	reflection	of	the	white	light	bulb,	the	spot
will	be	white.

Figure	4-28:	Specular	lighting	depends	on	both	the	angle	at	which	the	light	strikes	the
surface	and	the	view	angle.

These	shiny	spots	are	known	as	specular	reflections,	and	appear	where	the	light’s	angle
of	incidence	matches	the	angle	of	reflectance.	Figure	4-29	shows	the	location	of	specular
reflections	for	two	different	viewpoints;	notice	that	each	ray	rebounds	at	the	same	angle
that	it	struck	the	table.	Both	viewers	see	a	shiny	spot	on	the	table,	but	they	see	the	spot	in
different	places.

In	the	real	world,	some	materials	reflect	differently	than	others.	A	shiny	material	like
plastic	has	a	high	level	of	specular	reflection,	while	a	dull	material	like	cotton	cloth	has
more	diffuse	reflection.	CGI	lighting	models	allow	artists	to	set	different	reflection
properties	for	each	surface	on	a	model	to	match	the	appearance	of	real-world	materials.

Figure	4-29:	The	specular	light	on	the	table	appears	in	different	places	for	different
viewpoints.

Global	Illumination
So	far	we’ve	been	discussing	direct	lighting,	the	result	of	light	flowing	directly	from	a
source	to	a	surface.	In	reality,	the	color	of	every	object	in	the	physical	world	is	influenced
by	the	color	of	every	other	object	nearby.	A	light-brown	sofa	in	a	room	with	white	walls
looks	very	different	than	it	does	in	a	room	with	blue	walls,	because	the	sofa	gains	a	subtle
tint	from	the	reflected	light	of	the	walls.	This	is	indirect	lighting,	and	for	a	computer-
generated	image	to	look	realistic,	it	must	account	for	this	effect.	A	lighting	model	that
accounts	for	all	of	the	light	in	the	scene,	both	direct	and	indirect,	is	known	as	a	global
illumination	model.

An	example	of	indirect	lighting	is	shown	in	Figure	4-30.	Let’s	assume	the	light	bulb
emits	pure	white	light.	The	beam	first	hits	a	wall	that	is	painted	cyan	(a	light	blue).	The
light	reflecting	from	the	wall	is	likewise	cyan,	and	when	the	reflected	cyan	light	strikes	the
yellow	rug,	the	resulting	reflected	light	is	green.	The	bouncing	colors	therefore	result	in	a
subtle	greenish	tint	in	the	yellow	rug.	This	sequence	of	color	changes	is	caused	by
subtractive	color,	where	mixing	colors	results	in	a	darker	shade,	the	way	a	color	inkjet
makes	different	shades	by	mixing	cyan,	yellow,	and	magenta	ink.	Subtractive	color	is	the
opposite	of	the	additive	RGB	system	we	discussed	early	in	the	chapter,	in	which	mixing
results	in	a	brighter	color.

Figure	4-30:	Light	bouncing	off	multiple	surfaces	influences	apparent	color.

How	Light	Is	Traced
A	global	illumination	model	seems	to	require	following	the	paths	of	light	beams	as	they
bounce	around	the	scene.	A	naive	renderer,	then,	would	use	three-dimensional	coordinate
math	to	trace	the	path	of	every	beam	of	light	from	each	light	source	as	it	bounces	from
surface	to	surface.	This	would	waste	a	lot	effort,	though,	because	it	would	deduce	the
color	of	every	surface	in	the	scene—including	surfaces	the	viewer	can’t	actually	see
because	they	lie	outside	of	the	viewpoint’s	field	of	view,	are	obscured	by	other	objects,	or
are	facing	away	from	the	viewpoint.

Why	Light	Is	Traced	Backward

Renderers	avoid	this	inefficiency	by	tracing	beams	backward	from	the	viewpoint	into	the
scene,	a	technique	known	as	ray	tracing.	In	ray	tracing,	an	imaginary	line	is	traced	from
the	viewpoint	through	the	center	of	each	square	in	a	pixel	grid,	as	shown	in	Figure	4-31.
The	geometry	of	each	model	in	the	scene	is	compared	with	the	imaginary	line	to	see	if	the
two	intersect.	The	closest	point	of	intersection	to	the	viewpoint	indicates	the	visible
surface	that	will	color	the	pixel.	Note	that	this	method	of	projection	closely	follows	the
explanation	of	Figure	4-23.

Next,	more	lines	are	traced	outward	from	this	known	visible	point.	The	goal	is	to
discover	which	lines	end	at	light	sources,	either	directly	or	after	bouncing	off	other
objects.	As	shown	in	Figure	4-31,	specular	reflections	trace	only	the	rebound	at	the	same
angle	of	each	impact,	but	diffuse	reflections	trace	a	number	of	lines	in	random	directions.
As	the	diffuse	beams	strike	other	objects,	they	will	spawn	more	diffuse	reflections,	which
means	the	number	of	paths	to	trace	keeps	multiplying	the	more	the	process	continues.
Renderers	apply	a	cut-off	to	limit	the	number	of	bounces	for	each	beam.

Figure	4-31:	Tracing	a	beam	of	light	from	a	viewpoint,	through	the	center	of	the	shaded
pixel,	until	it	reaches	a	model	in	the	scene.	To	determine	specular	lighting,	the	tracing
rebounds	at	the	same	angle	as	impact;	for	diffuse	lighting,	it	rebounds	at	several	random
angles.

How	Ray	Tracing	Models	Real-World	Effects

Although	ray	tracing	is	a	lot	of	work	for	even	a	network	of	computers,	the	method	can
accurately	model	many	real-world	visual	effects.

One	such	effect	is	translucency.	Although	a	bitmap	can	be	made	translucent	by
assigning	low	alpha	values	to	pixels,	that’s	not	the	whole	story	for	transparent	materials
like	glass.	A	glass	tumbler,	for	example,	doesn’t	merely	allow	light	to	pass	through	it,	but
also	distorts	whatever	is	behind	it,	as	shown	in	Figure	4-32.

Figure	4-32:	The	distortion	of	curved	glass

A	ray	tracing	renderer	can	refract	light	beams	according	to	the	laws	of	optics	as	they
pass	through	translucent	materials.	This	will	not	only	allow	the	renderer	to	model	glass	in
CGI,	but	will	also	help	to	reproduce	the	distorting	effects	of	transparent	materials	and
liquids	like	water.

Ray	tracing	can	also	be	extended	to	simulate	camera	lenses.	Normally,	all	objects	in	a
computer-generated	image	are	perfectly	in	focus.	In	images	shot	by	a	movie	camera,
though,	only	objects	at	a	certain	distance	from	the	camera	are	in	focus,	leaving	other
objects	less	focused	the	farther	they	are	from	that	distance.	While	one	might	consider

having	everything	in	focus	an	advantage	of	computer-generated	imagery,	skilled
cinematographers	use	selective	focus	to	help	tell	their	stories.	In	Figure	4-33,	Jimmy
Stewart	and	Grace	Kelly	are	in	focus	in	the	foreground,	while	the	apartments	in	the
background	are	blurry;	the	viewer’s	attention	is	drawn	to	the	actors,	but	the	distant,	open
background	is	a	subtle	reminder	of	how	visible	the	apartments	in	this	courtyard	are	from
each	other—an	important	detail	in	the	film.	Because	movie	viewers	have	grown
accustomed	to	receiving	depth	information	about	scenes	through	the	use	of	focus,
computer-generated	images	and	movies	often	must	simulate	the	use	of	photography	lenses
to	match	viewer	expectations.

Figure	4-33:	Focus	depth	in	Rear	Window	(Paramount	Pictures/Patron	Inc.,	1954)

Shadows	are	another	key	component	of	a	realistic	computer-generated	image.	Ray
tracing	produces	shadows	naturally,	as	shown	in	Figure	4-34.	Because	no	beam	of	light
can	reach	the	shadowed	area,	no	beam	traced	back	from	the	viewpoint	can	reach	the	light,
so	the	area	will	remain	dark.

Figure	4-34:	Tracing	beams	of	light	renders	shadows	naturally.

Ray	tracing	can	also	model	highly	reflective	surfaces	simply	by	setting	a	very	high
specular	reflection	property	on	the	material.	For	example,	when	you’re	standing	inside	a
well-lit	room	when	it’s	dark	outside,	the	room	in	which	you	stand	is	clearly	reflected	in	the
window.

So	although	ray	tracing	is	computationally	intense,	adding	these	real-world	effects
doesn’t	add	much	extra	work,	and	the	effects	add	greatly	to	the	realism	of	the	final	image.
In	the	next	chapter,	you’ll	see	the	tricks	video	games	use	to	render	reflective	surfaces	and

shadowing	in	real	time,	when	ray	tracing	isn’t	an	option.	Some	effects,	like	glass
distortion,	are	usually	not	even	attempted	in	real-time	rendering;	there’s	simply	not
enough	time.

Full-Scene	Anti-Aliasing
While	the	images	rendered	by	ray	tracing	can	be	stunning,	they	can	suffer	from	the	same
aliasing	problems	we	saw	with	2D	graphics.	Whenever	one	object	is	in	front	of	another,
each	projected	light	beam	will	either	hit	the	foreground	object	or	miss	and	hit	what	lies
behind	the	object.	Figure	4-35	shows	a	chair	on	a	rug	as	seen	from	a	particular	viewpoint.
Beams	traced	from	this	viewpoint	near	the	edge	of	the	chair	seat	hit	either	the	chair	or	the
rug,	which	assigns	the	associated	pixel	the	color	of	one	surface	or	the	other.	This	causes	a
jagged	edge	like	those	we	saw	for	2D	images.

The	renderer	can	avoid	the	jaggies	by	applying	anti-aliasing	to	the	whole	image.	There
are	many	methods	for	full-screen	anti-aliasing,	but	with	ray	tracing,	a	direct	way	to	anti-
alias	the	entire	scene	is	to	project	more	beams	from	the	viewpoint	than	necessary.	For
example,	rather	than	just	sending	out	a	beam	at	the	center	of	every	pixel,	the	renderer
might	also	send	out	beams	into	the	spaces	between	the	pixel	centers.	After	the	color	for
every	beam	is	determined,	the	final	color	of	each	pixel	is	blended	from	the	colors	of	the
center	beam	and	the	beams	at	the	neighboring	corners.	Pixels	that	lie	along	an	edge	in	the
image	are	thereby	assigned	intermediate	colors,	avoiding	the	jagged	“staircase”	effect.

Figure	4-35:	In	the	highlighted	area,	each	light	beam	trace	ends	on	the	chair	or	the	rug,
resulting	in	jaggies.

Figure	4-36	demonstrates	this	idea.	Each	circle	represents	a	beam	projected	into	a
scene.	The	pixels	are	colored	based	on	the	average	of	colors	in	the	center	and	corners	of
each	pixel,	which	results	in	the	anti-aliased	edge	shown	on	the	right.	More	beams	can	be
traced	for	even	better	results,	at	the	expense	of	more	processing	time.

Figure	4-36:	Each	pixel’s	final	color	is	a	blend	of	five	beams	traced	into	the	scene,	one	at
the	center	of	the	pixel,	and	four	at	the	corners.

Combining	the	Real	and	the	Fake
In	a	completely	computer-animated	film,	rendering	is	the	final	step	in	producing	each
frame,	but	when	CGI	is	integrated	into	live-action	films,	there’s	more	work	to	be	done.
Imagine,	for	example,	a	scene	in	which	a	computer-generated	Tyrannosaurus	rex	stalks
through	a	real	field	of	grass.

To	make	this	happen,	we	first	need	two	sequences	of	digital	images.	One	sequence
shows	the	grass	field,	and	has	either	been	shot	on	a	digital	camera	or	on	a	traditional	film
camera	and	then	subsequently	scanned.	Either	way,	the	movements	of	the	camera	are
computer	controlled,	which	allows	the	camera	movement	to	match	up	precisely	with	the
movement	of	the	virtual	camera	in	the	other	sequence,	the	computer-generated	animation
of	the	dinosaur.

Next,	the	two	sequences	are	combined,	frame-by-frame,	in	a	process	called	digital
composition.	Although	the	dinosaur	sequence	was	produced	from	3D	models,	at	this	point
both	sequences	are	simply	two-dimensional	bitmaps	and	are	combined	using	the	same
method	used	to	place	our	bugman	on	top	of	the	sunset	back	in	Figure	4-18.	Through	the
use	of	alpha	blending,	the	edges	of	the	dinosaur	in	each	frame	are	smoothly	blended	with
the	field-of-grass	background.	Without	this	blending,	the	dinosaur	will	have	a	shimmering
edge	like	that	of	a	weatherman	standing	in	front	of	the	five-day	forecast.

Digital	composition	is	used	throughout	modern	moviemaking,	even	when	no	computer-
generated	imagery	is	involved,	such	as	for	dissolves	(a	transition	where	one	scene
smoothly	fades	into	the	next).	Formerly,	dissolves	were	produced	by	a	device	known	as	an
optical	printer,	which	pointed	a	camera	at	a	screen	onto	which	several	projectors	were
aimed.	The	camera	would	make	a	new	film	that	combined	the	images	of	the	projected
films.	A	dissolve	was	accomplished	by	turning	down	the	light	in	one	projector	while
turning	up	the	light	on	another.	The	results	were	acceptable,	but	you	could	always	spot	an
optical	printer	sequence	in	a	movie	because	the	second-generation	images	would	be	blurry
compared	to	the	rest	of	the	film.	Now,	dissolves,	superimposed	titles,	and	all	sorts	of	other
movie	effects	that	you	might	not	really	think	of	as	“effects”	are	performed	with	digital
composition.

The	Ideal	of	Movie-Quality	Rendering
When	all	the	advanced	rendering	techniques	described	in	this	chapter	come	together,	the
results	can	be	stunningly	realistic,	highly	stylized,	or	anything	in	between.	The	only	real
limitation	on	CGI	is	time,	but	that’s	a	big	limitation.	The	truth	is,	what	I’ve	been	calling
movie-quality	rendering	can	be	an	unattainable	ideal	even	for	Hollywood.	Although	films
can	be	in	production	for	several	years,	there’s	only	so	much	time	that	can	be	allotted	for
each	frame.	Consider	the	computer-animated	Pixar	film	WALL-E.	With	a	running	time	of
98	minutes,	the	film	required	the	rendering	of	over	140,000	high-resolution	computer
images.	If	Pixar	wanted	to	produce	all	of	the	images	for	WALL-E	in	two	years,	it	would
have	to	render	images,	on	average,	every	eight	minutes.

Even	on	a	networked	“render	farm,”	eight	minutes	is	not	sufficient	to	use	ray	tracing,
global	illumination,	glass	refraction,	and	all	the	other	high-end	techniques	for	every	single
image.	Faced	with	these	practical	constraints,	filmmakers	pick	and	choose	which
techniques	to	use	on	each	sequence	to	maximize	visual	impact.	When	ideal	rendering	is
required,	the	time	is	spent,	but	when	the	best	effects	won’t	be	missed	or	the	budget	won’t
allow	it,	they	aren’t	used.	The	renderer	used	at	Pixar—a	program	called	RenderMan	that
was	originally	developed	at	Lucasfilm—can	forgo	ray	tracing	and	its	massive	associated
computational	effort,	but	that	means	many	of	the	realism-enhancing	effects	have	to	be
produced	some	other	way.

But	how	is	that	done?	What	kinds	of	tricks	are	needed	to	render	images	without	ray
tracing—images	that	may	not	be	perfectly	realistic	but	are	still	amazing?	To	answer	this
question,	we’ll	turn	from	Hollywood	to	the	world	of	video	games,	where	rendering	is
under	an	extreme	time	limitation.	How	extreme?	If	eight	minutes	isn’t	enough	time	to
produce	an	ideal	render,	imagine	trying	to	render	an	image	in	under	20	milliseconds.	In	the
next	chapter,	we’ll	see	how	video	games	produce	great	graphics	in	a	hurry.

5
Game	Graphics

A	modern	video	game	is	like	a	modern	movie—a	big	production	that	requires	expertise	in
many	different	technical	areas.	Teams	of	programmers	develop	code	for	audio,	artificial
intelligence,	network	connectivity,	and	so	on.	Still,	the	first	thing	you	notice	about	a	video
game	is	the	graphics.

Early	video	game	systems	like	the	Atari	2600	and	Sega	Genesis	relied	on	premade
bitmap	graphics;	that	is,	there	was	no	rendering,	not	even	the	2D	rendering	described	in
the	previous	chapter.	Instead,	if	a	video	game	needed	to	show	the	game’s	hero	walking,	an
artist	would	draw	several	bitmaps	to	be	shown	in	a	repeating	sequence.	Backgrounds,	too,
were	hand-drawn.	Displays	were	low	resolution	and	offered	only	a	few	choices	for	pixel
colors.

As	the	quality	of	displays	improved,	game	developers	turned	to	other	techniques	to
produce	their	bitmaps.	Fighting	games	like	Mortal	Kombat	would	scan	photographs	of
stunt	actors	in	costume	or	at	least	use	them	for	reference.	Some	games	in	this	era	would
actually	use	rendered	graphics,	but	not	real-time	rendering;	instead	they	would	prerender
the	bitmaps	on	more	powerful	systems	over	a	longer	period	of	time.	The	3D	game	as	we
know	it	today	was	unknown	outside	of	a	few	early	experiments.

That	started	to	change	in	the	mid-1990s.	Game	consoles	like	the	Sony	PlayStation	were
built	around	3D	graphics	capabilities	instead	of	bitmaps.	PC	gamers	began	to	purchase
what	were	then	called	graphics	accelerators—	plug-in	hardware	to	assist	in	the	creation	of
3D	graphics.	Those	early	3D	games	were	crude,	both	graphically	and	otherwise,	compared
to	games	today.	Also,	few	3D	games	were	made	for	the	PC	because	Microsoft	had	yet	to
build	DirectX,	a	standardized	interface	between	game	software	and	graphics	hardware,
which	meant	that	games	had	to	include	different	code	to	match	each	manufacturer’s
graphics	accelerator.

Even	so,	gamers	were	hooked	on	the	new	3D	gaming,	and	each	succeeding	generation
of	graphics	hardware	blew	away	the	capabilities	of	the	previous	one.	Nowhere	was	this
generational	leap	more	apparent	than	in	cut	scenes—short,	prerendered	videos	shown	at
the	beginning	of	the	game	to	set	the	scene,	or	at	critical	points	during	the	game	to	advance
the	plot.	Because	these	videos	were	prerendered	on	expensive	hardware,	just	like	the
movie	CGI	we	discussed	in	Chapter	4,	early	cut	scenes	were	much	more	impressive	than
the	graphics	during	actual	gameplay.	As	the	hardware	advanced,	though,	gameplay	visuals

began	to	match	or	even	exceed	the	cut	scenes	of	earlier	games.

These	days,	few	games	use	prerendered	cut	scenes.	Although	the	game	may	still
include	noninteractive	“movie”	sequences	to	set	up	or	advance	the	plot,	they’re	much
more	likely	to	be	rendered	in	real	time,	just	like	the	rest	of	the	game.	That’s	because	the
real-time	rendering	looks	so	good,	it’s	not	worth	it	for	game	developers	to	do	anything
else.

And	that,	I	think,	is	why	I	find	video	game	graphics	so	amazing.	They	look	as	good	as
or	better	than	the	prerendered	graphics	I	saw	in	earlier	video	games,	or	even	in	early	CGI
movies,	and	they’re	being	produced	in	real	time.	Those	two	words—real	time—look
innocent	enough,	but	they	encapsulate	an	enormous	challenge	for	a	game	renderer.	To	put
it	into	numbers:	if	your	typical	gamer	wants	a	refresh	rate	of	60	frames	per	second,	each
image	must	be	rendered	in	a	mere	1/60	of	a	second.

Hardware	for	Real-Time	Graphics
The	increasing	quality	of	real-time	graphics	is	tied	to	advancements	in	graphics	hardware.
Today’s	graphics	hardware	is	powerful	and	optimized	for	the	tasks	involved	in	3D
graphical	rendering.	Although	this	book	is	about	software,	a	brief	discussion	of	hardware
is	necessary	to	understand	why	game	graphics	work	the	way	they	do.

The	main	processor	inside	a	computer	or	video	game	console	is	the	central	processing
unit	(CPU).	These	processors	might	have	multiple	cores,	or	independent	processing
subunits.	Think	of	a	core	as	an	office	worker.	The	cores	inside	a	CPU	are	like	fast,	widely
trained	workers.	They	are	good	at	doing	just	about	any	task,	and	doing	it	very	quickly.
However,	they	are	so	expensive	that	you	can	afford	to	have	only	a	few	of	them,	usually
eight	or	fewer	in	a	typical	desktop	processor,	although	this	number	will	continue	to	rise.

By	contrast,	a	graphics	processing	unit	(GPU)	will	have	hundreds	or	even	thousands	of
cores.	These	cores	are	much	simpler,	and	individually	slower,	than	the	cores	in	a	CPU.
Think	of	them	as	workers	who	can	do	only	a	few	tasks	well,	and	don’t	do	those	tasks
especially	fast,	but	they	are	so	affordable	that	you	can	have	an	army	of	them.	This
hardware	approach	for	GPUs	was	adopted	because	there’s	only	so	much	improvement	that
can	be	made	to	the	speed	of	individual	cores.	Even	though	the	raw	speed	of	cores
increased	with	each	generation,	that	wasn’t	nearly	enough	to	close	the	performance	gap	to
allow	high-quality	real-time	rendering;	the	only	solution	was	more	cores.

CPUs,	then,	are	great	at	tasks	with	steps	that	have	to	be	completed	in	a	specified	order,
like	filling	in	a	tax	form.	GPUs,	though,	are	better	at	tasks	that	can	be	easily	divided
among	many	workers,	like	painting	the	outside	of	a	house.	Game	renderers	are	designed	to
keep	all	of	the	GPU	cores	as	busy	as	possible.

Why	Games	Don’t	Ray	Trace
We	saw	in	the	preceding	chapter	how	ray	tracing	can	produce	amazing	graphics.	But
games	don’t	ray	trace,	because	it’s	too	slow	for	real-time	rendering.	There	are	several
reasons	for	this.

One	reason	is	that	ray	tracing	doesn’t	match	up	well	with	the	“army	of	workers”	GPU
design.	For	example,	ray	tracing	sends	out	a	beam	of	light	for	each	pixel,	determines
where	that	beam	strikes,	and	from	that	point	of	impact,	sends	out	a	bunch	more	light
beams,	determines	where	they	strike,	and	so	on.	This	job	is	better	suited	for	a	CPU,
because	the	renderer	must	determine	each	point	of	impact	before	it	knows	what	beams	to
check	next.

More	broadly,	realtime	renders	should	expend	computational	effort	where	the	result
makes	a	difference	to	the	viewer.	Consider	a	computer-generated	scene	in	which	you	face
a	chair	in	the	middle	of	a	polished	wooden	floor.	A	ray	tracer,	pinballing	light	around	the
room,	would	still	indirectly	determine	the	color	of	every	point	on	the	back	of	the	chair,
because	that	data	is	necessary	for	proper	global	illumination	of	the	floor.	A	game	renderer,
though,	could	never	afford	the	luxury	of	coloring	a	surface	that	won’t	be	directly	seen.

All	Lines	and	No	Curves
To	understand	how	a	video	game	renders	without	ray	tracing,	we	start	with	the	basic
building	block	of	game	graphics:	the	triangle.	In	the	previous	chapter	we	learned	how	CGI
models	in	movies	are	made	of	lines	and	curves.	In	game	rendering,	models	are	normally
made	exclusively	of	lines.	If	you	remember	graphing	parabolas	in	high	school	algebra,
you’ll	recall	that	the	math	for	describing	curves	is	a	lot	more	complicated	than	the	math
for	describing	lines,	and	there’s	just	not	enough	time	to	deal	with	curves	in	a	game.	That’s
why	game	renderers	use	lines,	and	this	means	that	the	surfaces	defined	by	the	control
points	are	flat.	The	simplest	flat	surface	is	a	triangle,	defined	by	three	points	in	space.

Triangles	are	ubiquitous	in	games.	In	a	game,	whatever	you	think	you’re	looking	at,
you’re	actually	looking	at	millions	of	triangles,	joined	at	angles	to	create	surfaces	and
shapes.	Triangles	used	in	rendering	are	often	generically	called	polygons,	even	though
almost	all	the	polygons	are	simple	triangles.

Games	simulate	curved	surfaces	by	using	lots	and	lots	of	triangles.	A	round	tumbler,
for	example,	can	be	approximated	as	a	ring	of	interlocking	triangles,	as	shown	in	Figure	5-
1.	On	the	right,	the	outlines	of	each	triangle	are	shown	for	clarity.

Figure	5-1:	A	curved	tumbler	approximated	with	triangles

Projection	Without	Ray	Tracing
To	render	the	triangles	in	the	scene	models,	the	renderer	must	project	the	control	points
that	define	the	triangle	to	locate	these	points	on	the	screen.	Ray	tracing	projects	by
following	an	imaginary	beam	of	light	through	the	center	of	each	pixel,	but	in	this	case	we
have	to	do	something	different.

The	good	news	is	that	a	direct	mathematical	relationship	exists	between	world
coordinates	and	screen	coordinates,	and	this	makes	mapping	the	points	fairly
straightforward.	We	know	the	location—the	x,	y,	and	z	world	coordinates—of	the
viewpoint	and	of	the	point	on	the	model	we	want	to	project.	We	also	know	the	location	of
the	virtual	projection	screen.	Figure	5-2	shows	how	we	use	these	locations	to	determine
the	exact	y-coordinate	where	the	line	aimed	at	the	model	point	crosses	the	projection
screen.	In	this	example,	the	depth	(the	distance	from	the	viewpoint	along	the	z-coordinate)
of	the	projection	screen	is	four-tenths	of	the	depth	from	the	viewpoint	to	the	point	on	the
model,	as	shown	by	the	large	blocks	along	the	bottom.	Knowing	this	proportion,	we	can
calculate	the	x-	and	y-coordinates	of	the	projected	point.	The	y-coordinate	of	the	projected
point	is	four-tenths	of	the	distance	between	the	y-coordinate	of	the	viewpoint	and	the	y-
coordinate	of	the	point	on	the	model,	as	shown	by	the	shaded	boxes	on	the	projection
screen.	Also,	though	we	can’t	see	this	from	the	perspective	of	Figure	5-2,	the	x-coordinate
of	the	projected	point	will	be	four-tenths	of	the	distance	between	the	x-coordinates	of	the
viewpoint	and	model	point.

Figure	5-2:	Projecting	a	point	in	the	virtual	world	to	the	screen

Note	that	the	position	of	the	imaginary	projection	screen	in	the	virtual	world	affects	the
resulting	projection.	To	see	this	effect,	make	a	rectangle	using	the	forefinger	and	thumb	of
both	hands	and	look	through	it	while	moving	your	hands	close	and	then	farther	away.	The
farther	away	your	hands	are	from	your	eyes,	the	narrower	your	field	of	view.	In	the	same
way,	games	can	adjust	field	of	view	by	altering	the	distance	between	the	viewpoint	and	the
projection	screen	in	the	virtual	world.	For	example,	games	that	let	you	look	through
binoculars	or	a	gun	scope	accomplish	the	zoom	effect	by	moving	the	projection	screen
deeper	into	the	scene.

Rendering	Triangles
With	all	three	points	of	a	triangle	located	in	screen	space,	rendering	a	triangle	follows	the
same	rasterization	process	we	saw	in	Chapter	4	to	make	a	bitmap	out	of	a	2D	model.	In

Figure	5-3,	the	pixel	centers	inside	the	triangle	boundaries	are	colored	gray.

From	reading	the	previous	chapter,	you	probably	have	some	objections	to	this	simple
method	of	triangle	rendering.	First,	how	can	we	just	color	every	pixel	the	same—what
about	all	those	lighting	effects?	And	second,	look	at	those	jaggies—	how	do	we	get	rid	of
them?

Figure	5-3:	With	the	vertices	of	a	triangle	located	on	the	screen,	the	triangle	can	be
rendered.

These	questions	will	be	answered,	but	first	we	have	to	deal	with	a	more	fundamental
problem.	Simply	determining	where	every	triangle	is	located	on	the	screen	and	coloring	its
pixels	doesn’t	work	because	every	pixel	on	the	screen	will	probably	be	inside	more	than
one	triangle.	Consider	the	image	shown	in	Figure	5-4.	The	flowerpot	is	behind	a	cube,
which	is	behind	a	tall	cup.	Pixel	A	lies	within	four	different	triangles:	one	on	the	front	of
the	cup,	one	on	the	back	of	the	cup,	one	on	the	front	of	the	cube,	and	one	on	the	side	of	the
cube.	Likewise,	four	triangles	enclose	pixel	B.	In	each	case,	only	one	triangle	should
actually	determine	the	color	of	the	pixel.	In	order	to	render	the	image	correctly,	the
renderer	must	always	map	each	pixel	to	the	model	surface	in	the	scene	that	is	closest	to	the
viewpoint.	Ray	tracing	already	finds	the	closest	intersection	point	between	the	light	beam
and	a	model	in	the	scene,	so	this	problem	is	handled	without	any	additional	effort.	Without
ray	tracing,	though,	what	should	the	renderer	do?

Figure	5-4:	Three	overlapping	models	in	a	scene

The	Painter’s	Algorithm
A	simple	solution	is	known	as	the	painter’s	algorithm.	First,	all	of	the	triangles	in	the
scene	are	ordered	according	to	their	distance	from	the	viewpoint.	Then	the	models	are
“painted”	back	to	front,	the	way	Bob	Ross	would	paint	a	landscape	on	The	Joy	of
Painting.	This	algorithm	is	easy	for	the	programmer	to	implement,	but	it	has	several
problems.

First,	it’s	highly	inefficient:	the	renderer	will	wind	up	coloring	the	same	pixel	over	and
over	again	as	foreground	models	are	rendered	over	previous	background	models,	which	is
a	huge	waste	of	effort.

Second,	it	doesn’t	allow	for	easy	subdivision	to	keep	the	army	of	workers	busy	on	the
GPU.	The	painter’s	algorithm	requires	the	models	to	be	drawn	in	a	certain	order,	so	it’s
difficult	to	effectively	divide	the	work	among	separate	processing	units.

Third,	there’s	not	always	an	easy	way	to	determine	which	of	two	triangles	is	farther
way	from	the	viewpoint.	Figure	5-5	shows	a	perspective	view	of	two	triangles,	with
numbers	indicating	the	depth	of	each	vertex.	The	top	view	makes	it	clear	which	triangle	is
in	front,	but	because	the	depths	of	one	triangle’s	vertices	are	between	those	of	the	other
triangle,	there’s	no	easy	way	to	figure	out	which	triangle	is	closer	by	direct	comparison	of
the	vertex	depths.

Figure	5-5:	Perspective	and	top	views	of	two	triangles

Depth	Buffering
Because	of	all	the	deficiencies	of	the	painter’s	algorithm,	the	most	common	solution	to
projection	in	games	is	a	method	known	as	depth	buffering.	As	introduced	in	the	previous
chapter,	computer	graphics	require	a	bitmap	called	a	display	buffer	to	store	the	color	of
each	pixel	in	a	display.	This	technique	also	uses	a	corresponding	depth	buffer	to	track	the
depth	of	each	pixel—how	far	away	it	is	from	the	viewpoint.	Of	course,	a	screen	is	flat,	so
pixels	don’t	really	have	depth.	What	the	depth	buffer	actually	stores	is	the	depth	of	the
point	in	the	scene	that	was	used	to	determine	the	color	of	that	pixel.	This	allows	the
renderer	to	process	the	objects	in	the	scene	in	any	order.

Here’s	how	depth	buffering	would	work	with	the	example	scene	from	Figure	5-4.
Initially,	the	depth	of	each	pixel	would	be	set	to	some	maximal	value	that’s	greater	than
the	depth	of	any	actual	object	in	the	scene—let’s	say	100,000	virtual	feet.	If	the	cup	is
drawn	first,	the	depth	of	those	pixels	in	the	depth	buffer	is	set	to	the	corresponding
distances	from	the	viewpoint.	Suppose	the	flowerpot	is	drawn	next;	the	renderer	then	sets
the	depth	of	its	pixels.	We	can	picture	the	depth	buffer	as	a	grayscale	image,	where	pixels
are	darker	the	closer	they	are	to	the	viewpoint.	The	depth	buffer	at	this	stage	is	shown	in
Figure	5-6.

The	depth	buffer	solves	the	problem	of	projecting	the	right	point	onto	the	pixel.	Before
rendering	a	pixel,	the	renderer	checks	the	depth	buffer	value	for	that	pixel’s	location	to	see
if	the	new	pixel	would	be	in	front	of	or	behind	the	pixel	that’s	already	in	the	display
buffer.	When	a	new	pixel	appears	behind	the	pixel	in	that	location	in	the	display	buffer,	the
renderer	skips	it	and	moves	on.	Continuing	with	our	example,	when	the	cube	is	drawn,	the
pixels	on	the	left	side	of	the	cube	that	overlap	with	the	cup	are	not	drawn,	because	the
values	in	the	depth	buffer	show	that	the	cup’s	pixels	are	in	front	of	the	cube.	The	cube
would	overwrite	the	pixels	of	the	flowerpot,	because	the	depth	of	the	flowerpot	pixels	is
greater	than	those	of	the	cube.

Figure	5-6:	A	depth	buffer	with	two	objects	drawn.	Darker	colors	are	closer	to	the
viewpoint.

Depth	buffering	is	an	efficient	solution	to	projection	because	less	work	is	thrown	away.
Models	can	be	roughly	preordered	so	that	they	are	painted	approximately	front	to	back,	to
minimize	overwritten	pixels.	Also,	because	depth	buffers	allow	for	rendering	models	in
any	order,	work	can	more	easily	be	divided	among	the	cores	of	the	graphics	processor.	In
our	example,	different	cores	can	be	working	on	the	cup,	cube,	and	flowerpot	at	the	same
time,	and	the	right	model	will	be	projected	to	each	pixel	in	the	final	rendered	image.

Real-Time	Lighting
Now	that	the	renderer	knows	which	triangle	each	pixel	belongs	to,	the	pixel	must	be
colored.	In	real-time	rendering	this	is	known	as	pixel	shading.	Once	a	particular	pixel	has
passed	the	depth	buffer	test,	all	the	data	needed	to	color	the	pixel	is	processed	by	an
algorithm	called	a	pixel	shader.	Because	each	pixel	can	be	independently	colored,	pixel
shading	is	a	great	way	to	keep	the	army	of	workers	busy	inside	the	GPU.

The	data	needed	by	the	shader	will	vary	based	on	the	complexity	of	the	lighting	model,
including	the	location,	direction,	and	color	of	the	lights	in	the	scene.	Without	a	method
like	ray	tracing,	a	full	global	illumination	model,	in	which	reflections	from	near	surfaces
color	each	other,	isn’t	possible.	However,	shaders	can	include	the	basic	effects	of	distance,
diffuse	reflections,	and	specular	reflections.

In	Figure	5-7,	a	beam	of	light	represented	by	the	solid	arrow	reflects	from	a	triangle.
The	dashed	arrow	represents	the	normal	(or	surface	normal)	of	the	triangle	in	that
location;	a	normal	is	simply	a	perpendicular	line	pointing	away	from	the	surface.	In
Chapter	4	we	learned	how	the	angles	between	light	beams,	surfaces,	and	viewpoints	affect
diffuse	and	specular	reflections.	The	normal	is	used	by	the	pixel	shader	for	these
calculations;	so,	for	example,	in	Figure	5-7,	if	the	dark	arrow	represents	a	light	beam,	this
would	have	high	diffuse	reflection	because	the	angle	between	the	light	and	the	normal	is
small.

Figure	5-7:	A	triangle	with	a	surface	normal	(dashed	arrow)	perpendicular	to	the	triangle
surface,	and	a	light	beam	(dark	arrow)	striking	the	surface.

In	Figure	5-7,	the	normal	points	straight	up,	meaning	it	is	perpendicular	to	the	plane	of
the	triangle.	Triangles	with	straight-up	normals	for	every	point	on	the	surface	are
completely	flat,	which	makes	the	individual	triangles	clearly	visible	in	the	rendering.	For
example,	with	straight-up	normals,	the	tumbler	in	Figure	5-8	appears	faceted	like	a
gemstone.

For	a	more	rounded	appearance,	the	normals	are	bent	as	shown	in	Figure	5-9.	Here,	the
normals	at	the	corners	are	bent	outward,	and	the	normal	at	any	location	inside	the	triangle
is	a	weighted	average	of	the	normals	at	the	corner.	Because	the	normal	at	the	point	of
impact	for	the	light	beam	no	longer	points	straight	up,	the	light	beam	reflects	more
sharply.	If	this	were	part	of	a	diffuse	lighting	calculation,	the	resulting	color	would	be
brighter.

Figure	5-8:	If	the	normals	for	each	location	on	a	triangle	point	the	same	way,	this	model
will	be	rendered	as	a	series	of	flat	triangles.

Figure	5-9:	The	normal	at	the	point	of	light	impact	is	affected	by	the	bent	corner	normals,
which	changes	the	angle	of	reflection.

Bending	normals	allows	the	flat	triangle	to	reflect	light	as	though	it	were	the	bent
triangle	shown	in	Figure	5-10.

Figure	5-10:	Bending	the	normals	gives	the	triangle	a	bent	shape	so	far	as	the	lighting
calculations	are	concerned.

This	goes	only	so	far	in	fixing	the	problem,	though,	because	the	underlying	shape	is
unchanged.	Bending	normals	doesn’t	affect	which	pixels	are	matched	to	which	triangle;	it
affects	only	the	lighting	calculations	in	the	pixel	shader.	Therefore,	the	illusion	breaks
down	along	the	edges	of	a	model.	With	our	tumbler,	bending	normals	helps	the	sides	of
the	tumbler	to	appear	smooth,	but	it	doesn’t	affect	the	tumbler’s	silhouette,	and	the	rim	is
still	a	series	of	straight	lines.	Smoother	model	renderings	require	additional	techniques
that	we’ll	see	later	in	this	chapter.

Shadows
Shadowing	plays	an	important	part	in	convincing	the	viewer	to	accept	the	reality	of	an
image	by	giving	models	weight	and	realism.	Producing	shadows	requires	tracing	beams	of
light;	a	shadow	is,	after	all,	the	outline	of	an	object	between	a	light	source	and	a	surface.
Game	renderers	don’t	have	time	for	full	ray	tracing,	so	they	use	clever	shortcuts	to
produce	convincing	shadow	effects.

Consider	the	scene	outline	shown	in	Figure	5-11.	This	scene	will	be	rendered	in	a
nighttime	environment,	so	the	lamppost	on	the	left	will	cast	strong	shadows.	To	render	the
shadows	properly,	the	renderer	must	determine	which	pixels	visible	from	this	viewpoint
would	be	illuminated	by	the	lamppost	and	which	will	be	lit	only	by	other	light	sources.	In
this	example,	the	renderer	must	determine	that	the	point	labeled	Scene-A	is	not	visible
from	the	lamppost,	but	Scene-B	is.

Figure	5-11:	The	light	from	the	lamppost	should	cast	shadows	in	this	scene.

A	common	solution	to	this	problem	in	games	is	a	shadow	map,	a	quickly	rendered
image	from	the	point	of	view	of	a	light	source	looking	into	the	scene	that	calculates	only
the	depth	buffer,	not	the	display	buffer.	Figure	5-12	is	a	shadow	map	for	the	lamppost	in
Figure	5-11,	showing	the	distance	from	the	lamppost	to	every	point	in	the	scene;	as	with
the	depth	buffer,	this	is	shown	in	grayscale	with	closer	pixels	colored	darker.

Figure	5-12:	The	depth	buffer	from	a	rendering	of	the	viewpoint	of	the	lamppost

Shadow	maps	are	created	for	each	light	source	before	scene	pixels	are	colored.	When

coloring	a	pixel,	the	pixel	shader	checks	each	light’s	shadow	map	to	determine	if	the	point
being	rendered	is	visible	from	that	light.	Consider	the	points	Scene-A	and	Scene-B	in
Figure	5-11.	The	shader	computes	the	distance	from	each	of	these	points	to	the	top	of	the
lamppost	and	compares	this	distance	to	the	depth	of	the	same	points	projected	onto	the
shadow	map,	labeled	Shadow-A	and	Shadow-B	in	Figure	5-12.	In	this	case,	the	depth	of
Shadow-A	in	Figure	5-12	is	less	than	the	distance	between	Scene-A	and	the	lamppost	in
Figure	5-11,	which	means	something	is	blocking	that	light	from	reaching	Scene-A.	In
contrast,	the	depth	of	Shadow-B	matches	the	distance	from	Scene-B	to	the	lamppost.	So
Scene-A	is	in	shadow,	but	Scene-B	is	not.

I	deliberately	gave	the	shadow	map	in	Figure	5-12	a	blocky	appearance;	to	improve
performance,	shadow	maps	are	often	created	at	lower	resolutions,	making	blocky
shadows.	If	a	game	offers	a	“shadow	quality”	setting,	this	setting	most	likely	controls	the
resolution	of	the	shadow	maps.

Ambient	Light	and	Ambient	Occlusion
The	simpler	lighting	model	in	real-time	rendering	tends	to	produce	images	that	are	too
dark.	It’s	easy	to	overlook	the	effect	of	indirect	lighting	in	the	world	around	us.	For
example,	standing	outside	in	the	daytime,	you’ll	have	enough	light	to	read	even	if	you
stand	in	a	solid	shadow,	because	of	indirect	sunlight	bouncing	off	nearby	surfaces.

To	produce	images	with	natural-looking	light	levels,	a	game	renderer	will	typically
apply	a	simple	ambient	light	model.	This	lighting	is	omnipresent,	illuminating	the	surface
of	every	model	without	regard	to	light	beams	or	angles	of	incidence,	so	that	even	surfaces
missed	by	in-scene	lighting	are	not	totally	dark.	Ambient	lighting	is	used	throughout
games,	even	for	indoor	scenes.	This	is	a	situation	where	a	little	fakery	produces	a	more
realistic	result.

Ambient	lighting	can	also	be	used	to	adjust	the	mood	of	a	scene.	When	you	leave
behind	a	golden,	autumnal	field	to	enter	a	dusky	forest	in	an	open-world	game	like	World
of	Warcraft,	a	large	part	of	the	effect	is	the	ambient	lighting	changing	from	bright	yellow
to	dim	blue.

Although	the	simple	ambient	lighting	model	keeps	the	rendering	from	being	too	dark,
the	method	doesn’t	produce	any	shadows,	which	hurts	a	scene’s	realism.	Ambient
occlusion	methods	fake	shadows	from	ambient	light	by	following	the	observation	that
such	shadows	should	occur	in	crevices,	cracks,	holes,	and	the	like.	Figure	5-13	shows	the
key	idea.	Point	A	is	much	less	occluded	than	point	B	because	the	angle	through	which
light	can	reach	the	point	is	much	larger,	letting	more	light	through.	Therefore,	ambient
light	should	have	a	greater	influence	on	point	A	than	point	B.

For	a	renderer	to	measure	the	occlusion	precisely,	though,	it	would	have	to	send	out
light	beams	in	every	direction,	much	like	the	scattering	of	light	from	diffuse	lighting,	but
we	already	know	that	tracing	light	beams	is	not	an	option	for	real-time	rendering.	Instead,
a	technique	called	screen	space	ambient	occlusion	(SSAO)	approximates	the	amount	of
occlusion	for	each	pixel	after	the	main	rendering	is	over,	using	data	that	was	already
computed	earlier	in	the	rendering	process.

In	Figure	5-14	we	see	SSAO	approximation	in	action.	Note	that	the	viewpoint	is
looking	straight	down	at	the	surface.	The	dashed	arrow	is	the	normal	for	the	point	on	the
surface.	The	gray	area	is	a	hemisphere	aligned	with	that	normal,	shown	as	a	semicircle	in
this	2D	representation.	The	shader	examines	a	scattering	of	points	inside	the	hemisphere.
Each	point	is	projected	into	screen	coordinates,	just	like	the	projection	of	the	model	point
shown	back	in	Figure	5-2.	Then	the	depth	of	the	point	is	compared	to	he	depth	buffer	for
the	pixel	location,	which	tells	the	shader	whether	the	point	is	in	front	of	(shown	in	white)
or	behind	(black)	the	model	surface.	The	percentage	of	points	behind	the	surface	is	a	good
approximation	of	the	amount	of	ambient	occlusion.

Figure	5-13:	Measuring	the	occlusion	at	given	points

Figure	5-14:	Screen	space	ambient	occlusion	approximates	the	degree	of	occlusion	by	the
percentage	of	points	behind	the	model	surface.

SSAO	is	heavy	work	for	the	renderer	because	it	requires	projecting	and	examining	a	lot
of	extra	points—at	least	16	per	pixel	for	acceptable	results.	However,	the	calculations	for
each	pixel	are	independent,	which	allows	the	work	to	be	easily	divided	among	the	army	of
worker	cores.	If	a	gamer	has	the	hardware	to	handle	it,	SSAO	produces	believable	ambient
shadowing.

Texture	Mapping
Throughout	these	discussions	of	graphics,	we	have	discussed	models	as	though	their
surfaces	were	one	solid	color,	but	that	describes	few	surfaces	in	the	actual	world.	Tigers
have	stripes,	rugs	have	patterns,	wood	has	grain,	and	so	on.	To	reproduce	surfaces	with
complex	coloring,	pixel	shaders	employ	texture	mapping,	which	conceptually	wraps	a	flat
image	onto	the	surface	of	a	model,	much	like	an	advertising	wrap	on	the	side	of	a	city	bus.
To	be	clear,	texture	mapping	is	not	just	for	game	rendering;	movie	CGI	employs	it
extensively,	too.	But	texture	mapping	is	a	special	problem	for	games,	in	which	textures
have	to	be	applied	in	milliseconds.	The	sheer	number	of	textures	and	texture	operations

needed	for	a	single	frame	presents	one	of	the	greatest	challenges	of	game	rendering.

Figure	5-15	shows	a	texture	bitmap	(an	image	of	a	zigzag	pattern)	and	a	scene	in	which
the	pattern	has	been	applied.	Bitmap	images	used	for	texture	mapping	are	called	textures.
In	this	case,	the	surface	of	the	rug	rectangle	is	covered	by	a	single	large	texture,	although
for	regular	patterns	like	the	one	on	this	rug,	a	smaller	texture	can	be	applied	repeatedly	to
tile	the	surface.

The	pixel	shader	is	responsible	for	choosing	the	base	color	of	the	pixel	using	the
associated	texture;	this	base	color	is	later	modified	by	the	lighting	model.	Because	the
textured	surface	is	an	arbitrary	distance	from	the	viewpoint,	and	at	an	arbitrary	orientation,
there’s	not	a	one-to-one	correspondence	between	pixels	in	the	texture	and	pixels	on	the
model’s	surface.	Choosing	pixel	colors	in	a	textured	area	based	on	the	applied	texture	is
known	as	sampling.

Figure	5-15:	Texture	mapping.	The	zigzag	texture	on	top	is	applied	to	the	rug	object	under
the	chair.

To	illustrate	the	decisions	involved	in	sampling,	let’s	start	with	a	bitmap	of	a	robot	with
a	hat,	shown	in	Figure	5-16.	The	pixels	in	a	texture	are	called	texels.	This	20×20	texture
has	400	texels.

In	this	example,	this	texture	will	appear	as	a	painting	in	the	frame	on	the	wall	in	Figure
5-17.

Suppose	that	the	area	inside	the	frame	fills	a	10×10	block	of	pixels	in	the	rendered
image.	The	texture	will	be	applied	head-on	without	any	adjustment	for	perspective,	which

means	all	the	renderer	has	to	do	is	shrink	the	20×20	block	of	texels	to	fit	the	10×10	block
of	pixels	in	the	final	image.

Figure	5-16:	A	texture	of	a	robot	wearing	a	hat

Figure	5-17:	In	this	scene,	the	texture	of	Figure	5-16	will	be	applied	inside	the	picture
frame	on	the	wall.

Nearest-Neighbor	Sampling
Because	10×10	pixels	are	needed	to	fill	the	textured	area,	let’s	imagine	a	grid	of	100
sample	points	overlaying	the	texture.	Figure	5-18	shows	a	closeup	section	of	the	original
robot	texture	from	Figure	5-16.	Here,	the	centers	of	the	texels	are	shown	as	squares,	and
the	crosses	represent	the	sample	points	for	the	pixels	in	the	scene.	Sampling	resolves	this
mismatch	of	pixels	to	texels.

The	simplest	method	of	sampling	is	choosing	the	color	of	the	nearest	texel,	an
approach	known	as	nearest-neighbor	sampling.	This	approach	is	easy	to	implement	and
fast	to	compute,	but	tends	to	look	horrible.	In	this	example,	each	of	four	texels	is	equally
close	to	the	pixel	centers,	so	I’ve	arbitrarily	chosen	the	texel	in	the	lower	right	of	each
pixel	center.	Figure	5-19	shows	the	texels	chosen	by	this	sampling	method,	and	the	10×10-
pixel	block	that	would	appear	in	the	final	image.

As	you	can	see,	the	result	looks	more	like	a	skeletal	aerobics	instructor	than	a	robot
with	a	hat.	If	you’ve	ever	looked	closely	at	an	oil	painting,	you	may	guess	why	the
nearest-neighbor	technique	produces	such	an	unattractive	result.	Up	close,	an	oil	painting
reveals	a	wealth	of	detail,	a	multitude	of	individual	brushstrokes.	Take	a	few	steps	back,
though,	and	the	strokes	vanish	as	the	colors	blend	together	in	the	eye.	In	the	same	way,
when	a	texture	is	represented	with	fewer	pixels,	the	colors	of	neighboring	texels	should
blend.	Nearest-neighbor	sampling,	though,	simply	picks	the	color	of	one	texel	with	no
blending;	in	our	example,	three	out	of	four	texels	have	no	influence	on	the	result	at	all.

Figure	5-18:	A	close-up	section	of	the	Figure	5-16	texture.	Squares	are	texel	centers;
crosses	are	sample	points.

Figure	5-19:	The	result	of	10×10	nearest-neighbor	sampling	on	Figure	5-16.	On	the	left
are	the	selected	texels	of	the	original	texture,	and	on	the	right	is	the	resulting	bitmap.

When	a	texture	is	expanded	to	fill	a	larger	area,	the	results	are	just	as	ugly.	In	this	case,
some	of	the	texels	will	simply	be	repeated	in	the	textured	area,	producing	a	blocky	result.
To	see	the	problem,	let’s	start	with	a	triangle	and	its	representation	as	a	16×16	anti-aliased
texture,	as	shown	in	Figure	5-20.

Figure	5-20:	A	triangle	and	its	representation	as	an	anti-aliased	16×16-pixel	texture.

Now	suppose	this	texture	is	applied	over	a	32×32	area.	Ideally,	it	should	look	smoother
than	the	original,	smaller	texture;	the	greater	resolution	offers	the	opportunity	for	a	finer
edge.	As	shown	in	Figure	5-21,	though,	nearest-neighbor	sampling	puts	four	sample	points
in	each	texel,	so	every	texel	in	the	original	16×16	texture	simply	becomes	four	identically
colored	pixels	at	the	larger	size.

Figure	5-21:	When	used	to	enlarge	textures,	nearest-neighbor	sampling	merely	duplicates
pixels.

Bilinear	Filtering
A	better-looking	sampling	method	is	bilinear	filtering.	Instead	of	taking	the	color	of	the
nearest	texel,	each	texture	sample	is	a	proportional	blend	of	the	four	nearest	texels.	The
method	is	called	bilinear	because	it	uses	the	position	of	the	sample	point	along	two	axes
within	the	square	formed	by	the	four	nearest	texels.	For	example,	in	Figure	5-22,	the
sample	point	toward	the	bottom	and	just	left	of	center	results	in	the	mixing	percentages
shown.	The	final	color	of	this	sample	is	computed	from	the	colors	of	the	texels	at	the
given	percentages.

Figure	5-23	shows	the	robot	texture	after	reduction	via	bilinear	filtering.	With	only	a
fourth	of	the	original	pixels,	the	reduced	version	necessarily	lacks	detail,	but	if	you	hold
the	original	at	arm’s	length	and	compare	to	the	reduced	version	held	close,	you’ll	see	the
reduction	is	a	good	representation,	and	much	better	than	the	nearest-neighbor	result.

Figure	5-22:	Bilinear	filtering	measures	the	position	of	a	sample	point	vertically	and
horizontally	within	the	square	of	neighboring	texels,	and	uses	these	positions	to	determine
the	percentage	that	each	texel	influences	the	sample	color.

Figure	5-23:	The	robot	texture	reduced	through	bilinear	filtering

Figure	5-24	shows	a	32×32	area	blown	up	from	the	16×16	triangle	texture	using
bilinear	filtering—a	clear	improvement	over	the	chunky	nearest-neighbor	sampling.

Figure	5-24:	The	triangle	texture	expanded	through	bilinear	filtering

Mipmaps

The	examples	in	the	previous	section	show	the	limit	of	what	is	possible	with	bilinear
filtering.	For	bilinear	filtering	to	look	good,	the	texture	needs	to	be	at	least	half,	but	no
more	than	twice,	the	resolution	of	the	textured	area.	If	the	texture	is	any	smaller,	bilinear
filtering	still	produces	blocky	results.	If	the	texture	is	too	large,	even	though	four	texels
are	used	per	sample,	some	texels	won’t	contribute	to	any	samples.

Avoiding	these	problems	requires	a	set	of	different-sized	bitmaps	for	each	texture:	a
large,	full-resolution	version	for	viewing	up	close,	and	smaller	versions	for	when	the
textured	area	is	also	small.	This	collection	of	progressively	smaller	textures	is	known	as	a
mipmap.	An	example	is	shown	in	Figure	5-25.	Each	texture	in	the	mipmap	is	one-quarter
of	the	area	of	the	next	larger	texture.

Figure	5-25:	A	mipmap	is	a	collection	of	textures,	each	one-quarter	the	size	of	the
previous.

With	a	mipmap,	the	renderer	can	always	find	a	texture	that	will	produce	good	results
with	bilinear	filtering.	If	a	110×110	texture	is	needed,	for	example,	the	128×128	texture	is
shrunk.	If	a	70×70	texture	is	required,	the	64×64	texture	is	magnified.

Trilinear	Filtering
While	bilinear	filtering	and	mipmaps	work	reasonably	well,	they	introduce	a	distracting
visual	anomaly	when	transitioning	from	one	mipmap	texture	to	another.	Suppose,	in	a
first-person	game,	you’re	running	toward	a	brick	wall	that	uses	a	mipmapped	texture.	As
you	get	closer	to	the	wall,	the	smaller	texture	will	get	blown	up	more	and	more	until	you
reach	the	point	where	you	get	a	shrunk-down	version	of	the	next	larger	texture	in	the
mipmap.	Unfortunately,	a	larger	texture	that	has	been	reduced	through	bilinear	filtering
doesn’t	quite	match	a	smaller	version	of	the	same	texture	that	has	been	expanded,	so	at	the
moment	of	this	transition	the	texture	will	“pop.”	The	problem	can	also	occur	with	no
movement	at	all	on	a	surface	that	stretches	out	to	the	distance,	such	as	a	long	rug	in	a
corridor,	that	has	been	tiled	with	a	repeating	texture;	because	the	parts	of	rug	at	different
distances	are	covered	by	different	textures	in	the	mipmap,	seams	will	be	clearly	visible
where	the	textures	touch.

To	smooth	over	the	texture	transition,	the	renderer	can	blend	samples	from	different
textures	in	addition	to	blending	between	texels	in	a	texture.	Suppose	the	area	to	be
textured	is	70×70,	a	size	that	falls	between	the	64×64	and	128×128	textures	in	a	mipmap.
Instead	of	just	using	bilinear	filtering	on	the	nearer-sized	64×64	texture,	the	renderer	can
use	bilinear	filtering	on	both	the	larger	and	smaller	textures,	then	blend	the	two	resulting
samples.	As	with	the	bilinear	filtering	itself,	this	final	step	is	proportional:	in	our	example,
the	color	would	be	mostly	determined	by	the	result	from	the	64×64	texture,	with	a	little	of

the	128×128	result	mixed	in.	Because	we	are	filtering	in	two	dimensions	on	each	texture,
then	blending	the	results,	this	technique	is	known	as	trilinear	filtering.	It	is	demonstrated
in	Figure	5-26.

Trilinear	filtering	eliminates	popping	and	seaming	between	textures	in	a	mipmap,	but
because	it	requires	two	bilinear	samples	and	then	a	final	blend,	it	does	over	twice	as	much
work	as	bilinear	filtering.

Figure	5-26:	Trilinear	filtering	takes	bilinear	samples	from	the	larger	and	smaller	textures
in	a	mipmap	and	blends	the	results.

Reflections
As	discussed	in	Chapter	4,	ray	tracing	naturally	captures	all	the	effects	of	light	reflecting
from	one	surface	to	another.	Unfortunately,	the	subtle	influence	of	colors	of	nearby
surfaces	is	nearly	impossible	to	capture	without	ray	tracing,	but	game	renderers	do	have	a
way	to	fake	what	I’ll	call	clear	reflections:	the	more	obvious,	mirror-like	reflections	on
such	surfaces	as	polished	countertops,	windows,	and	of	course	mirrors	themselves.

Games	limit	which	surfaces	produce	clear	reflections.	Having	just	a	few	objects	with
such	reflections	maintains	the	realism	of	the	scene	at	a	much	lower	computational	cost.	To
reduce	the	workload	further,	renderers	use	environment	mapping,	in	which	shiny	objects
are	conceptually	placed	inside	cubes	that	are	texture-mapped	with	a	previously	rendered
image	of	the	object’s	surroundings.

Figure	5-27	shows	a	sample	situation:	a	shiny	sports	car	on	a	showroom	turntable.	To
compute	the	effect	of	clear	reflections,	the	renderer	conceptually	places	the	car	in	a	cube;
the	cube	itself	is	not	rendered,	but	used	only	to	map	reflections.	The	inside	of	the	cube	is
texture-mapped	with	an	image	of	the	showroom	interior,	as	shown	in	Figure	5-28.
Because	the	reflected	images	will	be	somewhat	distorted	anyway	by	the	surface	of	the	car
body,	viewers	won’t	notice	that	the	reflections	don’t	perfectly	match	the	rendered	world	in
which	the	car	is	placed.

Figure	5-27:	For	realism,	the	shiny	car	body	should	reflect	the	showroom.

Figure	5-28:	For	the	purpose	of	mapping	reflections,	the	car	is	considered	to	be	in	a	cube,
the	insides	of	which	are	covered	by	a	bitmap	image	of	the	showroom.

Instead	of	tracing	light	as	it	pinballs	around	the	scene,	mapping	reflections	becomes	an
indirect	texture-map	reference,	a	relatively	simple	calculation.	Of	course,	the	surface	of
the	car	is	probably	also	texture-mapped,	which	means	that	adding	reflections	is	at	least
doubling	the	per-pixel	effort,	but	the	gain	in	realism	is	usually	worth	the	extra	work.

The	job	becomes	harder	when	a	reflecting	model	is	moving,	as	would	happen	if	our	car
were	racing	down	a	desert	road	in	a	driving	game.	The	renderer	can’t	simply	paste	a	static
image	of	a	desert	inside	a	cube	and	expect	this	to	fool	the	viewer.	Because	the	viewpoint
will	be	moving	with	the	car	as	the	car	travels	down	the	road,	the	reflections	must	likewise
travel—	or	at	least	give	that	appearance.

There’s	an	old	Hollywood	trick	that	was	used	to	convey	the	illusion	of	sideways
movement	in	relation	to	the	camera.	An	actor	would	stand	on	a	treadmill	so	he	could	walk
without	going	anywhere.	Behind	him	an	illustration	of	scenery	on	a	continuous	roll	would
slide	past	at	the	same	speed	as	the	treadmill.	As	long	as	the	audience	didn’t	notice	the
same	trees	going	by,	it	looked	as	though	the	actor	was	actually	moving	sideways.

The	same	idea	can	be	applied	inside	the	cube	around	the	shiny	car.	A	portion	of	a	wide
continuous	image	is	selected,	as	shown	in	Figure	5-29.	Sliding	the	selection	“window”
across	the	wide	image	to	match	the	movement	of	the	car	creates	the	illusion	that	the	car	is
reflecting	the	arid	mountains	depicted	in	the	scene.

Figure	5-29:	Sliding	a	window	down	a	wide,	continuous	image	creates	the	effect	of
movement	in	mapped	reflections.

Faking	Curves
Nothing	in	a	video	game	destroys	realism	faster	than	a	model	with	easily	recognizable
triangles	trying	to	represent	a	rounded	shape.	Early	3D	games	were	filled	with	car	tires
shaped	like	octagons	and	human	characters	that	looked	like	they	were	made	of	toy	bricks.
We’ve	already	seen	one	part	of	the	solution	to	this	problem—bending	the	normals	of
triangle	vertices—but	producing	smooth	models	requires	a	whole	set	of	techniques.

Distant	Impostors
An	obvious	solution	to	the	problem	of	flat	triangles	is	to	break	models	down	into	so	many
small	triangles	that	the	individual	facets	are	too	small	to	be	recognized.	That	works	in
theory,	but	even	though	triangles	are	simple	shapes,	there’s	still	a	limit	to	how	many	can
be	rendered	in	the	time	allowed.	Trying	to	design	each	model	at	the	highest	possible	detail
would	slow	rendering	to	a	crawl.

A	renderer	could,	however,	use	lots	of	extra	triangles	to	smooth	out	just	those	models
closest	to	the	viewpoint.	This	is	the	idea	behind	distant	impostors.	Here,	each	object	in	a
game	is	modeled	twice—a	fully	detailed	high-triangle	model	and	a	simplified	model	with
relatively	few	triangles.	This	simplified	model	is	the	“impostor”	of	the	original,	and	is
swapped	in	for	the	high-quality	model	whenever	the	model	gets	beyond	a	certain	distance
from	the	viewpoint.

Distant	impostors	make	effective	use	of	rendering	time,	but	because	the	two	models	are
so	dissimilar,	if	a	player	is	watching	a	particular	model	while	moving	closer	to	it,	the
transition	between	the	models	can	be	visually	jarring.	Ideally,	you’d	like	to	give	the
viewer	the	feeling	that	the	distant	object	is	revealing	greater	detail	as	it	comes	closer,	but
in	practice	the	two	models	are	so	different	that	the	replacement	looks	like	one	object
magically	transforming	into	another.

Bump	Mapping
Another	technique	for	smoothing	models	keeps	the	triangle	count	the	same,	but	alters	the
lighting	calculations	at	each	pixel	to	give	the	appearance	of	an	irregular	surface.

To	understand	why	this	bump	mapping	method	can	be	so	effective,	imagine	a	game
featuring	a	hacienda	with	stucco	walls.	To	get	the	appearance	of	stucco,	the	renderer	can
apply	a	texture	made	from	an	image	of	an	actual	stucco	wall	to	the	walls	of	the	hacienda
model.	Because	stucco	is	wavy,	its	undulations	should	be	visible	under	the	scene	lighting.

Merely	applying	a	texture	to	a	flat	wall	wouldn’t	convince	the	eye;	it	would	look	like	a	flat
wall	with	a	picture	of	stucco	on	it.

Bump	mapping	allows	flat	surfaces	to	react	to	light	as	though	they	were	wavy	like
stucco,	bumpy	like	popcorn	ceilings,	crumpled,	louvered,	or	anything	else.	The	process
starts	with	a	grayscale	bitmap	the	same	size	as	the	texture	that	will	be	applied	to	the	model
surface.	This	bitmap	is	known	as	a	height	map,	because	the	brightness	of	each	pixel
indicates	the	height	of	the	surface.

The	height	map	allows	a	pixel	shader	to	approximate	the	surface	normal	at	each	pixel
location.	This	is	easiest	to	understand	in	2D.	Figure	5-30	shows	a	row	of	10	pixels.	The
numbers	at	the	bottom	represent	the	height	of	each	pixel.	The	10	points	are	shown	at
proportionate	heights,	along	with	the	surface	normals.	I’ve	added	gray	lines	to	show	how
the	normals	for	the	fourth	and	seventh	points	are	computed.	An	imaginary	line	is	drawn
between	the	two	points	on	either	side	of	a	chosen	point;	then,	the	normal	for	the	chosen
point	is	set	perpendicular	to	this	line.

Figure	5-30:	A	row	of	pixels	with	light	calculations	altered	by	bump	mapping.	The
numbers	indicate	the	artificial	height	of	each	pixel.	The	renderer	determines	the	normal	at
each	pixel	based	on	the	heights	of	neighboring	pixels.

These	bent	normals	affect	the	calculations	for	both	diffuse	and	specular	lighting,
allowing	a	flat	surface	to	react	to	light	as	though	it	were	rough	or	wavy.	As	with	previous
tricks	that	involved	bending	normals,	though,	a	surface	with	a	bump	map	is	still	a	flat
surface.	The	points	on	the	surface	are	not	actually	raised	or	lowered,	but	merely	react	to
light	as	though	they	were	pointing	in	different	directions.	As	a	player	moving	through	a
3D	scene	passes	a	bump-mapped	model,	the	lighting	on	the	surface	will	change	in	a
realistic	manner,	but	the	edges	of	the	model	will	still	be	straight,	possibly	giving	the	game
away.	Just	as	the	rim	of	the	tumbler	back	in	Figure	5-8	betrayed	the	straight	lines	on	the
model,	the	outside	corners	of	our	bump-mapped	hacienda	will	be	perfectly	straight	when
they	should	be	wavy,	because	bump	mapping	doesn’t	alter	the	shape	of	the	flat	wall.

Tessellation
Suppose	you’re	playing	a	fantasy	game,	and	all	your	attention	is	focused	on	a	huge	ogre
slowly	approaching	with	an	axe	in	his	hands.	As	a	gamer,	you	want	this	ogre	to	look	as
good	as	possible	even	as	he	gets	close	enough	to	nearly	fill	the	screen,	but	you	don’t	want
him	made	out	of	so	many	triangles	that	the	frame	rate	is	too	low	for	you	to	effectively
fight	him.

If	the	renderer	uses	a	distant	impostor,	though,	there	will	be	a	jarring	transition	that	will
remind	you	that	you’re	just	playing	a	game.	If	the	renderer	bump-maps	the	ogre	model,

the	light	will	reflect	realistically	off	the	rivets	in	his	armor,	but	the	neat	lighting	effect
won’t	hide	the	fact	that	the	model	just	has	too	few	triangles	to	be	viewed	up	close.

A	process	known	as	tessellation	solves	this	problem.	First,	each	triangle	in	the	ogre
model	is	subdivided	into	more	triangles.	The	corners	of	these	new	triangles	are	then
manipulated	independently	inward	or	outward	(that	is,	up	or	down	in	relation	to	the
original	triangle)	using	a	height	map.	Instead	of	merely	bending	normals	to	trick	the
lighting	model	as	bump	mapping	does,	tessellation	actually	produces	a	model	with	more
detail.	Figure	5-31	demonstrates	the	process	for	a	single	triangle.

This	method	is	a	great	way	to	cover	up	the	straight	lines	of	triangles	and	is	a	clear
improvement	in	appearance	over	bump	mapping	and	distant	impostors.	Because	the	model
is	actually	deformed	into	a	new,	more	complicated	shape,	even	the	edges	of	the	model	are
properly	affected,	unlike	with	bump	mapping.	Also,	unlike	the	distant	impostor	technique,
the	model	improves	gradually	as	the	distance	from	the	viewpoint	decreases,	avoiding	the
sharp	transition	when	models	are	swapped.

Figure	5-31:	A	triangle	is	tessellated,	producing	a	web	of	smaller	triangles.	These	new
triangle	vertices	are	then	manipulated	using	a	height	map	to	produce	the	more	complex
surface	on	the	bottom.

Though	you	might	think	that	tessellation	is	used	extensively	in	games,	it’s	not,	because
it	inflicts	a	much	larger	performance	hit	than	the	simpler	methods	discussed	earlier.
Creating	more	complex	models	on	the	fly	is	a	lot	more	work	than	accessing	one	of	several
premade	models	as	in	the	distant	impostor	method,	or	adjusting	normals	in	bump
mapping.

Tessellation	is	therefore	used	where	the	results	are	most	obvious.	For	example,	in	a
game	set	outdoors,	the	ground	beneath	the	avatar’s	feet	may	stretch	far	into	the	distance.
Modeling	the	ground	in	great	detail	would	require	a	huge	number	of	triangles,	creating	a
performance	bottleneck,	but	if	the	ground	model	has	a	low	triangle	count,	the	ground

closest	to	the	viewer	will	have	an	unrealistic,	angular	appearance.	Tessellation	can	smooth
out	just	the	closest	part	of	the	ground.

Anti-Aliasing	in	Real	Time
All	of	the	renderer’s	hard	work	can	go	down	the	drain	if	individual	pixels	become	clearly
visible	through	aliasing.	As	with	movie	CGI,	games	need	some	form	of	full-screen	anti-
aliasing	to	smooth	over	the	edges	of	models	and	surfaces.	With	ray	tracing,	anti-aliasing	is
conceptually	simple:	send	out	more	beams	than	pixels	and	blend	the	results.	Game
renderers,	though,	must	use	more	efficient	techniques.

Supersampling
The	most	direct	approximation	to	casting	multiple	beams	is	known	as	supersampling	anti-
aliasing	(SSAA).	Instead	of	casting	multiple	beams	per	pixel,	supersampling	renders	an
intermediate	image	that	is	much	larger	than	the	desired	final	image.	The	color	of	each
pixel	in	the	final	image	is	a	blend	of	a	sample	of	pixels	from	the	larger	image.

Consider	the	two	white	triangles	covered	by	a	gray	triangle	shown	in	Figure	5-32.	Note
that	the	edges	of	the	white	triangles	won’t	be	visible	in	the	rendered	image	but	are	shown
here	for	clarity.

Figure	5-32:	An	arrangement	of	three	triangles

Figure	5-33	demonstrates	a	basic	rendering	of	these	triangles	at	an	8×4	resolution.
Each	pixel	is	colored	gray	or	white	depending	on	whether	the	pixel	center	lies	within	the
area	of	the	gray	triangle	in	the	foreground.

Figure	5-33:	Coloring	pixels	without	anti-aliasing

To	produce	an	8×4	supersampled	image,	the	triangles	are	first	rendered	at	a	16×8
resolution	as	shown	in	Figure	5-34.

Figure	5-34:	Supersampling	the	three	triangles.	Here,	each	pixel	in	the	final	bitmap	is
represented	by	four	subpixels	with	scattered	sample	points.

As	you	can	see,	each	pixel	in	Figure	5-33	has	become	four	smaller	pixels	in	Figure	5-
34.	These	smaller	pixels	are	called	subpixels.	Using	this	higher-resolution	rendering,	the
color	of	each	pixel	in	the	final	rendering	is	a	proportional	blend	of	the	colors	of	its	four
subpixels,	as	shown	in	Figure	5-35.

Figure	5-35:	Coloring	each	pixel	by	blending	subpixels

Supersampling	does	a	nice	job	of	smoothing	out	the	jaggies,	but	as	you	might	expect,
rendering	the	image	at	a	much	higher	resolution	incurs	a	large	performance	penalty.
Sampling	four	pixels	to	make	one	pixel	in	the	final	image	is	four	times	as	much	work	for
the	pixel	shader.	In	this	example,	I’ve	kept	things	simple	by	assigning	a	flat	color	to	each
triangle,	but	in	a	typical	game	render	each	subpixel	represents,	at	a	minimum,	a	texture
map	sample	followed	by	lighting	calculations.	Although	earlier	generations	of	video
games	commonly	used	SSAA,	it’s	rare	to	see	this	method	now.

Multisampling
In	the	previous	example	you	can	see	that	when	all	four	subpixels	are	inside	the	same
triangle,	supersampling	doesn’t	accomplish	anything.	To	reduce	the	performance	hit	of
anti-aliasing,	the	subpixel	work	can	be	limited	to	the	edges	of	triangles	where	the	jaggies
occur,	a	technique	known	as	multisample	anti-aliasing	(MSAA).

Figure	5-36	demonstrates	one	version	of	this	concept.	Two	pixels	lie	across	the	edge
between	two	triangles.	With	supersampling,	each	of	the	eight	subpixels	is	texture-sampled
and	individually	colored	by	scene	lighting.	With	multisampling,	there	are	still	eight
subpixels	for	the	two	pixels,	but	not	eight	samples.	Instead,	the	renderer	first	determines
which	triangle	contains	each	subpixel.	Each	of	the	four	subpixels	that	lie	within	the	same
triangle	is	given	the	same	color,	which	has	been	sampled	from	a	point	midway	between
the	subpixel	sample	points.	So	while	supersampling	colors	eight	subpixels	A	through	H,
multisampling	colors	only	four	subpixels	A	through	D,	which	means	substantially	less
work	in	texture	mapping	and	lighting.

Figure	5-36:	Comparing	supersampling	and	multisampling

When	all	four	subpixels	lie	within	the	interior	of	the	same	triangle,	multisampling
colors	only	one	subpixel	per	final	pixel,	introducing	little	computational	overhead.
Multisampling	puts	in	extra	effort	where	it	is	most	needed—reducing	jaggies	at	edges—
and	thus	is	an	efficient	use	of	rendering	time.

Post-Process	Anti-Aliasing
Performance	can	be	improved	even	further	by	delaying	anti-aliasing	until	the	image	is
rendered,	an	idea	known	as	post-process	anti-aliasing.	That	is,	the	image	is	first	rendered
normally	at	the	desired	final	resolution,	and	then	the	jaggies	are	identified	and	smoothed
over.	In	essence,	a	post-process	anti-aliasing	technique	decides	that	some	of	the	pixels	in
an	image	are	colored	incorrectly	based	on	nothing	more	than	the	colors	of	the	pixels
themselves.

One	such	method	is	called	fast	approximate	anti-aliasing,	or	FXAA.	(Why	that
wouldn’t	be	FAAA	is	perhaps	a	question	we’re	not	supposed	to	ask.)	The	idea	behind
FXAA	is	to	find	pixels	that	are	likely	to	be	along	the	edge	between	overlapping	triangles,
and	then	blend	neighboring	pixel	colors	to	smooth	the	jarring	transition.

FXAA	examines	each	pixel	in	the	image	separately—let’s	call	the	pixel	under
examination	the	current	pixel.	The	process	starts	by	computing	the	perceived	brightness	of
the	current	pixel	and	its	four	immediate	neighbors,	similar	to	examining	a	black-and-white
version	of	the	image.	The	brightest	and	dimmest	pixels	in	the	neighborhood	are	selected,
as	shown	in	Figure	5-37,	and	their	difference	is	compared	to	a	cut-off	value.	This	test
ensures	that	the	anti-aliasing	is	applied	only	to	pixel	neighborhoods	of	high	contrast—
areas	where	the	difference	between	the	brightest	and	dimmest	pixels	is	large.

Figure	5-37:	Checking	the	level	of	contrast	in	a	pixel’s	neighborhood

These	high-contrast	areas	likely	represent	jagged	edges	that	need	to	be	smoothed,	and
each	such	area	is	further	examined	as	shown	in	Figure	5-38.	The	3×3	block	of	pixels
centered	on	the	current	pixel	is	considered	both	as	a	set	of	three	columns	and	a	set	of	three
rows	to	determine	whether	this	is	a	horizontal	or	vertical	edge.	In	this	example,	because
the	columns	are	similar	to	each	other	but	one	row	strongly	contrasts	with	the	other	two,
this	would	be	classified	as	a	horizontal	edge.

Figure	5-38:	Looking	for	contrast	in	the	columns	and	rows	of	a	pixel	neighborhood

Because	this	is	a	horizontal	edge,	the	next	step	is	to	compare	the	pixels	above	and
below	the	current	pixel	to	find	which	contrasts	the	most	with	the	current	pixel.	In	this
case,	the	pixel	above	is	much	brighter	than	the	current	pixel,	while	the	pixel	below	is	quite
similar.	This	means	the	detected	edge	is	between	the	current	pixel	and	its	topside	neighbor.
To	anti-alias	this	edge,	the	current	pixel	will	be	replaced	by	a	bilinear	sample	between	the
pixel	centers,	shown	as	the	white	circle	in	Figure	5-39.	FXAA	examines	other	pixels	along
the	edge	to	determine	how	jagged	the	edge	is,	adjusting	the	degree	of	blending	by	placing
the	sample	point	farther	from	the	center	of	the	current	pixel.

Figure	5-39:	To	smooth	this	edge,	FXAA	will	replace	the	color	of	the	center	pixel	with	a
bilinear	sample	at	the	circle	point.

A	post-process	anti-aliasing	method	like	FXAA	is	very	fast	compared	to	supersampling
or	even	multisampling	because	it	doesn’t	create	any	sub-pixels	at	all.	However,	the	results
of	FXAA	are	not	always	as	impressive	as	other	methods.	In	particular,	FXAA	can
sometimes	blur	areas	that	weren’t	actually	aliased;	unlike	supersampling,	post-process
methods	like	FXAA	are	only	guessing	where	the	edges	are,	so	areas	of	high	contrast
within	textures	may	fool	the	algorithm.

The	Rendering	Budget
The	trade-offs	that	accompany	different	anti-aliasing	techniques	mean	that	developers	of
real-time	graphics	applications	must	choose	between	best	quality	and	best	performance.	Is

FXAA	good	enough	for	this	situation?	Or	is	MSAA	necessary?	This	choice,	though,	is	not
made	in	isolation.	More	broadly,	game	developers	must	review	all	the	techniques	available
for	real-time	rendering—lighting	and	shadows	and	anti-aliasing,	and	lots	of	other
possibilities	we	don’t	have	the	space	to	discuss,	like	motion	blur	and	particle	systems—
and	select	a	set	that	maximizes	the	quality	of	the	images	without	exceeding	the	time
allowed	for	rendering.	Within	that	1/60	of	a	second,	a	surprising	amount	of	work	can	be
done,	but	all	of	the	best-looking	techniques	can’t	be	used,	so	sacrifices	have	to	be	made
somewhere.

On	a	console	or	in	a	mobile	game,	these	choices	are	usually	all	made	by	the	game
designer.	On	PCs,	a	degree	of	choice	is	usually	afforded	to	the	user,	who	is	given	controls
to	raise	or	lower	the	resolution	of	textures,	select	the	method	of	texture	filtering,	choose
among	anti-aliasing	methods,	turn	shadows	and	reflections	on	or	off,	and	tweak	the
renderer	in	a	host	of	other	ways.	In	part,	this	control	is	given	so	the	user	can	adjust	the
render	workload	to	match	the	performance	of	the	particular	system,	since	the	PC	in
question	might	be	top	of	the	line,	or	an	aging	clunker.

Beyond	that,	though,	detailed	rendering	options	reflect	the	truth	that	beauty	is
subjective:	what	impresses	one	viewer	might	have	no	effect	on	another.	Some	gamers	are
horrified	by	jagged	edges,	for	example,	and	always	crank	up	anti-aliasing	to	the
maximum,	while	others	wouldn’t	dream	of	devoting	precious	processor	cycles	to
removing	jaggies	when	there	are	more	realistic	shadows	to	be	had	instead.	In	a	sense,
video	games	are	all	about	placing	ourselves	inside	believable	illusions,	and	what	we
believe	is	up	to	us.

What’s	Next	for	Game	Graphics
So	where	do	game	graphics	go	from	here?	We	can	expect	game	programmers	to	continue
to	be	challenged	by	advancements	in	displays.	Monitors	keep	increasing	in	resolution,
eating	away	some	of	the	benefit	of	each	new	GPU	generation.	A	special	challenge	will
come	from	virtual	reality	(VR)	headsets,	which	combine	displays	mounted	inside	helmets
with	sensors	to	track	the	gamer’s	head	movements.	VR	headsets	can	be	trouble	if	the
display	lags	behind	the	movement—our	brains	don’t	like	conflicting	information,	and
when	our	eyes	are	saying	one	thing,	and	our	inner	ear	something	else,	the	result	for	many
people	is	nausea.	In	a	game	played	on	a	normal	flat	screen,	gamers	would	prefer	a
consistently	high	frame	rate	but	don’t	get	too	bent	out	of	shape	by	sporadic	dips	in	the
number;	with	VR	devices,	an	absolutely	rock-steady	frame	rate	is	imperative.

Beyond	matching	the	needs	of	displays,	it’s	difficult	to	predict	exactly	how	game
graphics	will	progress.	Over	the	past	decade,	every	time	I’ve	played	a	new	AAA	game	(as
the	industry	calls	the	biggest-budget	titles),	I	find	myself	thinking	the	graphics	can’t	get
any	better,	that	whatever	improvements	the	next	generation	of	hardware	brings	will	be
insignificant.	And	every	time,	I’ve	been	proven	wrong.	So	I’m	confident	that	I’ll	continue
to	be	blown	away	by	the	advances	in	game	graphics,	even	if	I	can’t	be	sure	what	those
advances	will	be.

Raw	hardware	power	is	only	part	of	the	equation.	Buying	a	new	GPU	with	twice	as
many	cores	as	an	older	GPU	means	the	hardware	can	process	twice	as	many	triangles	in

the	same	allotment	of	time,	but	once	triangle	counts	get	high	enough,	doubling	them
doesn’t	improve	the	resulting	images	very	much.	Indeed,	at	some	point,	models	may	get
so	detailed	and	triangle	counts	so	high	that	the	average	triangle	will	occupy	less	than	a
one-pixel	area	on	the	screen.	When	that	happens,	it	will	call	into	question	the	whole	idea
of	rendering	the	scene	as	a	series	of	triangles.	Rather	than	projecting	three	triangle	vertices
to	determine	the	color	of	one	pixel,	renderers	may	replace	triangles	with	single	points	of
fixed	volume—imagine	building	a	sculpture	out	of	tiny	marshmallows.

What	ultimately	drives	advancements	in	game	graphics,	though,	isn’t	hardware,	but	the
creativity	of	graphics	programmers.	Many	of	the	techniques	in	Chapter	4	are	about
making	accurate,	or	at	least	plausible,	simulations	of	how	light	and	vision	work	in	the	real
world.	Game	graphics	are	just	about	making	results	that	look	good.	That	gives
programmers	enormous	leeway	to	experiment,	to	find	new	ways	to	spend	part	of	the
precious	rendering	budget,	to	find	new	tricks	to	put	silly	grins	on	the	faces	of	gamers.	I
don’t	know	for	sure	what	game	developers	are	cooking	up	for	the	next	generation	of
games,	but	I’m	sure	that	they’ll	continue	to	put	my	GPU	to	work	in	ways	that	will	thrill
and	amaze.

6
Data	Compression

Sometimes	the	hard	work	of	software	is	obvious	to	everyone,	as	it	is	with	movie	CGI	and
video	game	graphics.	You	don’t	have	to	know	anything	about	how	computers	work	to	be
impressed	with	the	visuals	in	films	like	Avatar	and	games	like	Crysis.	Sometimes,	though,
software	is	doing	its	most	amazing	work	when	it	looks	like	it’s	not	working	hard	at	all.

Watching	a	high-definition	movie	on	a	disc	or	streamed	over	the	Internet	is	something
most	of	us	take	for	granted.	Isn’t	that	just	storing	and	displaying	images?	Why	would	that
require	special	techniques?	To	understand	why	we	should	be	impressed	with	Blu-ray
video	and	Netflix	streaming,	let’s	look	at	what	video	was	like	before	these	formats	came
to	be.

Videocassettes,	the	earliest	home	video	medium,	recorded	images	on	a	roll	of	magnetic
tape.	These	were	analog	recordings—magnetic	transcriptions	of	the	same	signal	that
would’ve	been	broadcast	by	television	antennas.	The	video	resolution	was	even	lower	than
what	we	now	call	“standard	definition,”	and	as	with	other	analog	recordings	like
audiocassettes	and	vinyl	records,	the	quality	of	the	video	would	degrade	over	time.	The
one	upside	to	videocassettes	was	their	capacity:	a	longer	movie	merely	required	a	longer
spool	of	tape.

Next	came	the	LaserDisc.	About	the	size	of	LP	records,	these	discs	looked	like	larger
versions	of	today’s	DVDs	and	Blu-ray	discs,	but	like	videocassettes,	they	were	still	storing
the	analog	broadcast-format	signal.	However,	LaserDiscs	recorded	a	higher-resolution
picture	that	came	close	to	standard	definition,	and	allowed	you	to	jump	to	particular	places
in	the	video	without	having	to	rewind	or	fast-forward	the	way	you	would	with	a
videocassette.	For	a	while,	the	LaserDisc	seemed	like	the	future	of	video,	but	now
capacity	was	a	problem.	Unlike	the	effectively	limitless	capacity	of	a	magnetic	tape	roll,
LaserDiscs	could	hold	only	60	minutes	of	video	per	side,	so	watching	a	movie	meant
flipping	the	disc	halfway	through	or	even	switching	discs.

Today,	the	problem	of	capacity	is	even	more	serious.	Our	Blu-ray	discs	are	much
smaller	than	LaserDiscs,	but	our	videos	are	a	much	higher	resolution.	Let	me	put	the
problem	into	numbers.	In	high-definition	video	each	frame	is	a	1920×1080	bitmap,	a	total
of	2,073,600	pixels.	If	each	pixel	is	stored	in	three-byte	RGB	format,	one	frame	of	a	high-
definition	movie	would	require	6,220,800	bytes,	or	about	6.2	megabytes	(mega	means
“million”).	Movies	are	recorded	at	24	or	30	frames	per	second,	which	is	1,800	frames	per

minute,	108,000	frames	per	hour,	or	216,000	frames	for	a	two-hour	film.	If	each	frame	is
6,220,800	bytes,	then	216,000	frames	is	1,343,693	megabytes,	or	about	1,345	gigabytes
(giga	means	“billion”).

How	can	all	of	that	data	fit	on	a	Blu-ray	disc?	Part	of	the	answer	is	the	“blu-ray”	itself,
a	blue	laser	that’s	narrower	than	the	laser	used	on	LaserDiscs	or	even	conventional	DVDs,
allowing	more	data	to	be	packed	into	a	smaller	area,	just	as	smaller	print	allows	more
words	on	a	page.	Even	so,	a	Blu-ray	can	store	only	about	50	gigabytes(GB)	of	data,	less
than	4	percent	of	what’s	required.

Streaming	video	has	the	same	problem.	If	one	frame	of	video	is	6.2	megabytes	(MB),
and	the	video	is	running	at	30	frames	per	second,	then	streaming	requires	an	Internet
connection	of	186	megabytes	per	second	(MBps).	A	typical	home	broadband	connection	is
more	like	4MBps.	What’s	worse,	because	of	traffic	congestion	and	hiccups	in	the	network,
you	can’t	count	on	maintaining	the	full	rated	bandwidth	over	the	course	of	a	long
transmission.	Realistically,	streaming	video	should	use	no	more	than	a	couple	of	MBps	at
most.

So	how	can	we	fit	giant	amounts	of	video	data	into	these	small	containers?	The	answer
is	data	compression—storing	data	in	a	format	that	requires	fewer	bytes	than	the	original
format.	Compression	techniques	can	be	broadly	divided	into	two	categories.	With	lossless
compression,	the	compressed	data	can	be	restored	to	its	exact	original	state.	In	contrast,
lossy	compression	accepts	that	the	restored	data	may	be	slightly	different	than	the	original.
Video	streaming	and	storage	uses	a	combination	of	both	types	of	compression.	In	this
chapter,	we’ll	first	investigate	some	general	compression	techniques	using	simple
examples.	Then	we’ll	see	how	these	ideas	apply	to	video,	producing	highly	compressed
sequences	of	images	that	look	nearly	as	good	as	the	uncompressed	originals.

Run-Length	Encoding
Most	of	us	have	employed	some	form	of	lossless	compression,	though	we	wouldn’t	have
called	it	that,	because	many	techniques	for	lossless	compression	are	commonsense	ideas.
One	such	method	is	run-length	encoding.	Suppose	I	were	to	show	you	a	27-digit	number
for	one	minute	to	see	whether	you	could	remember	it	an	hour	later.	That	might	sound	hard,
but	look	at	the	number:
777,777,777,555,555,555,222,222,222

I	suspect	you	wouldn’t	try	to	remember	each	digit	individually.	Instead,	you’d	count
the	occurrences	of	each	digit,	and	remember	it	as	“nine	sevens,	nine	fives,	and	nine	twos.”

That’s	run-length	encoding	in	action.	Repeats	of	the	same	piece	of	data	(in	this	case,	a
digit)	are	called	runs,	and	when	runs	are	common,	we	can	shorten	the	data	by	recording
the	lengths	of	the	runs	rather	than	the	whole	number.	Run-length	encoding	is	lossless
compression,	because	if	we	remember	the	shorthand	version	of	the	number,	we	can
reproduce	the	number	in	its	original	form	whenever	needed.

Just	by	itself,	run-length	encoding	can	provide	excellent	compression	for	certain	types
of	images,	such	as	icons,	logos,	comic-book-style	illustrations—	any	image	with	large
blocks	of	solid	color.	When	pixels	have	the	same	color	as	their	neighbors,	we	can	reduce

the	storage	requirements	considerably.	As	an	example,	I’ll	describe	the	system	used	by	the
TGA	image	file	format.	TGA	is	short	for	Truevision	Graphics	Adapter,	an	early	piece	of
graphics	hardware	designed	for	video	editors.	The	file	format,	if	not	the	adapter,	is	still	in
use	in	the	video	industry,	and	is	probably	the	simplest	example	of	run-length	encoding	for
images.

The	image	data	in	a	TGA	file	is	compressed	on	a	row-by-row	basis.	Within	each	row,
each	run	of	two	or	more	pixels	of	exactly	the	same	color	is	identified.	The	remaining
pixels	are	called	raw	pixels.	Consider	the	selected	row	in	the	sample	image	in	Figure	6-1.
In	this	row,	there	are	several	short	runs	of	pixels,	and	several	raw	pixels	that	are	different
from	their	neighbors.

Figure	6-1:	The	selected	row	has	a	mix	of	runs	and	raw	pixels.

The	TGA	format	organizes	runs	and	raw	pixels	into	packets.	Each	packet	begins	with	a
one-byte	header.	The	leftmost	bit	of	the	header	byte	determines	whether	it	is	a	run	packet
or	a	raw	packet.	The	other	seven	bits	denote	the	size	of	the	packet	in	pixels.	Because	the
smallest	packet	has	one	pixel,	TGA	encodes	the	packet’s	size	as	one	less	than	its	actual
size;	that	is,	a	size	field	of	0000000	represents	a	size	of	1,	and	0000001	represents	2,	and
so	on.	Following	the	header	is	either	the	encoded	color	of	all	the	pixels	in	the	run,	or	for	a
raw	packet,	the	colors	of	each	individual	pixel.	Using	the	RGB	color	format,	the	row	of
pixels	from	Figure	6-1	would	be	encoded	as	shown	in	Table	6-1.

Table	6-1:	TGA	Encoding	of	Pixel	Row

Run/raw Size Red Green Blue Description

1 0000001 11111111 11111111 11111111 Run	of	two	white	pixels

1 0000010 11001100 11001100 00000000 Run	of	three	yellow	pixels

0 0000001 11111111 11111111 11111111 Raw	packet	of	two	pixels;	first	is	white

	 	 00000000 10000000 00000000 Second	pixel	in	raw	packet;	dark	green

1 0000001 00000000 00000000 11111111 Run	of	two	blue	pixels

0 0000000 11111111 11111111 11111111 One	raw	white	pixel

This	encoding	requires	23	bytes	versus	the	uncompressed	size	of	30	bytes.	This

compression	ratio	of	30:23,	or	about	4:3,	isn’t	very	high,	but	note	that	a	mere	4	bytes	are
needed	to	store	rows	where	every	pixel	is	the	same	color,	like	the	top	row	of	Figure	6-1.
The	overall	compression	ratio	of	this	bitmap	in	TGA	format	is	an	impressive	300:114,	or
about	5:2.

Dictionary	Compression
Just	by	itself,	run-length	encoding	can	compress	pictures	with	large	blocks	of	solid	colors,
but	most	of	the	images	in	movies	aren’t	like	that.	For	photographs	and	other	types	of
digital	images	with	lots	of	color	variation,	software	has	to	work	much	harder	to	find
patterns	exploitable	by	compression.	One	of	the	key	tools	is	known	as	dictionary
compression.

The	Basic	Method
Later	we’ll	see	how	dictionary	compression	is	used	on	images,	but	the	idea	is	easiest	to
understand	when	it	is	applied	to	a	text	document,	so	let’s	start	there.	An	uncompressed	text
document	is	stored	as	a	series	of	character	codes	such	as	ASCII.

We’ll	compress	this	sample	paragraph:
Those	pictures	created	by	a	computer	are	called	computer	graphics.	When	these	pictures	created	by	the
computer	are	viewed	in	a	sequence,	that	sequence	is	called	an	animation.	An	entire	movie	created	from	an
animation,	a	sequence	of	pictures	created	by	a	computer,	is	called	a	computer-animated	movie.

To	make	this	example	simpler,	I’ll	ignore	the	spaces	and	punctuation	in	this	text	and
just	worry	about	the	letters.	There	are	234	letters	in	this	paragraph;	stored	as
uncompressed	ASCII	text,	the	letters	would	require	234	bytes.	To	employ	dictionary
compression	on	this	text,	we	first	need	a	dictionary,	which	in	this	context	is	a	numbered
list	of	every	word	in	the	document	being	compressed.	Table	6-2	is	our	list	of	words,
numbered	both	in	decimal	and	binary.	Note	that	capitalization	counts:	an	and	An	are
separate	entries.

Table	6-2:	Dictionary	Compression

Position Binary-encoded	position Word

1 00000 a

2 00001 an

3 00010 An

4 00011 animated

5 00100 animation

6 00101 are

7 00110 by

8 00111 called

9 01000 computer

10 01001 created

11 01010 entire

12 01011 from

13 01100 graphics

14 01101 in

15 01110 is

16 01111 movie

17 10000 of

18 10001 pictures

19 10010 sequence

20 10011 the

21 10100 these

22 10101 Those

23 10110 viewed

24 10111 When

As	shown,	5	bits	are	sufficient	to	represent	the	range	of	positions	used.	Each	word	in
the	original	paragraph	is	replaced	with	its	position	in	this	table.	For	example,	instead	of
using	eight	ASCII	codes	(64	bits)	for	each	appearance	of	the	word	computer,	the	5-bit
dictionary	entry	is	used	instead.

The	dictionary	itself	takes	up	space,	however,	and	must	be	included	in	the	compressed
document,	so	we	save	space	only	when	a	word	appears	more	than	once.	In	this	example,
the	total	number	of	letters	for	all	words	in	our	dictionary	is	116,	requiring	116	bytes.
Replacing	each	of	the	48	words	in	the	sample	paragraph	with	a	5-bit	dictionary	reference

requires	235	bits,	or	about	30	bytes.	The	total	compressed	storage,	then,	is	146	bytes,
which	compared	to	the	original	234	uncompressed	bytes	is	a	compression	ratio	of	about
8:5.	With	longer	documents	the	savings	will	be	even	better,	because	the	text	grows	much
faster	than	the	dictionary.	A	typical	novel,	for	example,	is	about	80,000	words	long,	but
uses	a	vocabulary	of	only	a	few	thousand	words.

Huffman	Encoding
In	almost	every	text,	some	words	are	used	much	more	than	others.	A	technique	called
Huffman	encoding	takes	advantage	of	this	fact	to	improve	on	basic	dictionary
compression.

To	create	a	Huffman	code,	the	words	in	the	document	are	ranked	by	frequency.
Imagine	a	children’s	story	with	the	10-word	vocabulary	shown	in	Table	6-3.	As	with	basic
dictionary	compression,	each	word	is	assigned	a	binary	code,	but	here	shorter	codes	are
assigned	to	the	words	that	appear	most	frequently	in	the	story.

Table	6-3:	Huffman	Code	for	a	Children’s	Story

Word Frequency Binary	code

the 25% 01

a 20% 000

princess 12% 100

good 11% 110

witch 10% 111

evil 8% 0010

ate 7% 0011

magic 4% 1010

toadstool 2% 10110

forevermore 1% 10111

With	the	table	in	place,	Huffman	code	compression	is	the	same	as	basic	dictionary
compression:	each	word	is	replaced	with	its	corresponding	binary	code.	For	example,	the
encoding	for	the	princess	ate	a	magic	toadstool	would	start	with	01	for	the,	then	100	for
princess,	and	so	on.	In	full,	the	encoding	is:
011000011000101010110

As	you	may	have	noticed,	the	list	of	binary	codes	in	Table	6-3	skips	some	possible
codes,	such	as	011	or	0110.	Skipping	codes	is	necessary	to	make	this	a	prefix	code,	in
which	no	binary	code	appears	at	the	start	of	another.	For	example,	because	01	is	the	code
for	the,	other	codes	that	begin	with	01,	such	as	011	or	0110,	are	forbidden.	Because	the
individual	codes	vary	in	length,	a	prefix	code	is	necessary	to	know	where	each	code	ends.
With	our	example,	the	01	that	begins	the	bit	sequence	must	be	the	code	for	the	because	no
other	code	starts	with	01;	the	only	way	to	partition	the	whole	sequence	is	as:
01	100	0011	000	1010	10110

If	we	allowed	a	code	that	broke	the	prefix	rule,	the	sequences	could	become
ambiguous.	Suppose	forevermore	is	assigned	the	code	00.	While	this	is	a	shorter	code,	it
means	the	example	sequence	could	also	be	partitioned	as:
01	100	00	110	00	1010	10110

This	would	decode	as	the	phrase	the	princess	forevermore	good	forevermore	magic
toadstool.

By	assigning	the	shortest	codes	to	the	most	common	words,	Huffman	encoding	can
achieve	greater	compression	than	dictionary	compression	alone	when	data	can	be	stored	as
a	relatively	small	set	of	codes	and	some	codes	are	more	common	than	others.

Reorganizing	Data	for	Better	Compression
Unfortunately,	the	images	we	see	in	videos	are	not	good	candidates	for	Huffman	encoding.
Unlike	the	color-block	images	we	compressed	with	the	run-length	technique,	the	pixels	in
a	video	image	vary	across	the	full	range	of	possible	colors.	With	16	million	different
possible	RGB	colors,	it’s	unlikely	video	images	will	have	enough	repetition	to	allow
Huffman	encoding	to	work.	However,	sometimes	it’s	possible	to	create	repetition	in	varied
data	by	changing	how	the	data	is	stored.

Predictive	Encoding
For	one	such	approach,	consider	a	weather	station	that	records	the	temperature	once	per
hour,	and	over	the	course	of	one	day	stores	the	following	readings:
51,	52,	53,	54,	55,	55,	56,	58,	60,	62,	65,	67,	68,	69,	71,	70,	68,	66,	63,	61,	59,	57,	54,	51

COMPRESSION	IN	ZIP	FILES
Dictionary	compression	and	Huffman	encoding	are	at	the	heart	of	most	general
compression	schemes.	The	.zip	archive	format,	for	example,	can	choose	from	a	half-
dozen	compression	methods	but	usually	employs	an	algorithm	called	deflate.	Rather
than	replacing	duplicated	data	with	a	reference	number	from	a	list	of	words,	this
algorithm	employs	a	variation	of	dictionary	compression	called	a	sliding	window.

With	this	method,	duplicate	data	is	replaced	with	numerical	indicators	showing
where	the	data	occurred	previously.	In	the	textual	example	of	Figure	6-2,	there	are	three
duplicate	runs	of	characters.	The	first	member	of	each	pair	is	the	number	of	characters	to
go	back,	and	the	second	number	is	the	length	of	the	run.	For	example,	the	pair	5,	2

means	“go	back	five	characters,	and	copy	two	characters.”

Figure	6-2:	Sliding-window	compression

The	compressed	version	of	this	text	can	be	symbolically	written	as	“Then	t[5,2]
scar[5,5]ed[16,4]m.”	Instead	of	the	number	pairs	being	stored	directly,	though,	they	are
Huffman-encoded,	so	the	most	commonly	occurring	pairs	are	assigned	shorter	codes.
The	deflate	method	is	a	highly	effective	general	compression	scheme,	capable	of
reducing	the	3,138,473	characters	in	a	raw	text	version	of	Tolstoy’s	War	and	Peace	to	a
.zip	file	of	around	930,000	bytes,	about	a	10:3	ratio.

If	we	assume	a	temperature	range	of	120	to	–50,	we	can	store	each	temperature	in	an	8-
bit	byte,	using	192	bits	total.	There	aren’t	many	duplicates	in	this	list,	though,	so	Huffman
encoding	won’t	be	effective.	The	situation	improves	if	we	rewrite	this	list	using	predictive
encoding.	For	every	temperature	after	the	first,	we’ll	record	not	the	temperature	itself,	but
its	difference	from	the	previous	temperature.	Now	the	list	looks	like	this:
(51):	1,	1,	1,	1,	0,	1,	2,	2,	2,	3,	2,	1,	1,	2,	-1,	-2,	-2,	-3,	-2,	-2,	-2,	-3,	-3

Whereas	the	original	data	had	few	duplicates,	the	predictive-encoded	data	has	many.
Now	we	can	apply	Huffman	encoding	with	excellent	results.

Quantization
Another	approach,	if	we	are	willing	to	accept	some	degradation	of	the	data,	is
quantization,	where	we	store	the	data	with	less	precision.	Suppose	the	weather	station
from	the	previous	example	also	records	daily	rainfall	amounts,	taking	the	following
readings	over	the	course	of	three	weeks:
0.01,	1.23,	1.21,	0.02,	0.01,	0.87,	0.57,	0.60,	0.02,	0.00,	0.03,	0.03,	2.45,
2.41,	0.82,	0.53,	1.29,	0.02,	0.01,	0.01,	0.04

These	readings	have	two	decimal	places,	but	maybe	we	don’t	actually	need	this	much
precision	in	the	data.	For	one	thing,	any	amount	below	0.05	might	represent	condensation
on	the	collector	rather	than	actual	rain;	likewise,	condensation	might	also	be	the	only
difference	between	readings	like	1.23	and	1.21.	So	let’s	leave	off	the	last	digit	of	every
number:
0.0,	1.2,	1.2,	0.0,	0.0,	0.8,	0.5,	0.6,	0.0,	0.0,	0.0,	0.0,	2.4,	2.4,	0.8,
0.5,	1.2,	0.0,	0.0,	0.0,	0.0

By	itself,	this	compresses	the	data,	since	storing	one	place	after	the	decimal	will	take
fewer	bits	than	storing	two.	In	addition,	the	quantized	data	also	has	several	runs	of	zeros
that	can	be	compressed	with	run-length	encoding,	and	some	duplicates	that	can	be
compressed	by	Huffman	encoding.

These	techniques	point	to	a	general	multistage	approach	for	compression.	First,

reorganize	the	data	to	increase	the	runs	and	duplicates,	by	storing	small	differences
between	numbers	rather	than	the	raw	numbers	themselves,	quantizing	the	data,	or	both.
Then	compress	the	data	with	run-length	and	Huffman	encoding.

JPEG	Images
We	now	have	almost	all	the	tools	needed	to	compress	video.	The	logical	first	step	in
compressing	a	video	is	to	compress	the	individual	images	in	the	video.	However,	we	can’t
directly	apply	predictive	encoding	and	quantization	to	digital	photographs	and	other
images	with	lots	of	subtle	color	variation;	we	need	to	convert	these	pictures	to	another
format	first.

That’s	the	idea	behind	JPEG,	a	common	compressed-image	format	designed
specifically	for	digital	photographs.	(The	name	is	the	acronym	for	the	Joint	Photography
Experts	Group	that	developed	the	format.)	The	compression	method	for	this	format	is
based	on	a	couple	of	key	observations	of	photography	and	human	perception.

First,	although	pixel	colors	may	vary	widely	throughout	an	image,	individual	pixels
tend	to	be	similar	to	their	neighbors.	If	you	take	a	picture	of	a	leafy	tree	against	a	partly
cloudy	sky,	lots	of	green	leaf	pixels	will	be	next	to	other	green	pixels,	blue	sky	pixels	will
neighbor	blue	sky	pixels,	and	gray	cloud	pixels	will	neighbor	gray	cloud	pixels.

Second,	among	neighboring	pixels,	there	will	be	more	noticeable	variation	in
brightness	levels	than	in	color	tone.	For	our	tree	photograph,	each	of	the	myriad	leaf	pixels
will	reflect	a	different	quantity	of	sunlight,	but	the	underlying	color	of	each	pixel	will	be
roughly	similar.	Also,	although	the	mechanisms	of	human	vision	are	not	completely
understood,	tests	indicate	that	we	perceive	differences	in	brightness	more	distinctly	than
differences	in	color.

High	compression	of	digital	photographs	is	possible	only	with	lossy	compression;	we
have	to	accept	some	degradation	of	the	image.	Following	these	key	observations,	though,
allows	the	JPEG	format	to	throw	away	the	data	that	is	least	likely	to	be	missed.	In	our	tree
photograph,	the	most	important	distinctions	are	the	broad	differences	between	leaf	and
sky,	or	sky	and	cloud,	not	between	two	neighboring	cloud	pixels.	After	that,	the	most
important	distinction	is	the	relative	brightness	of	pixels,	more	so	than	relative	color.	The
JPEG	format	therefore	gives	priority	to	broad	differences	over	fine	differences,	and
brightness	over	color.

A	Different	Way	to	Store	Colors
JPEG	compression	divides	images	into	8×8	blocks	of	pixels	that	are	independently
compressed.	To	compress	brightness	and	color	differently,	each	pixel’s	R,	G,	and	B	values
are	converted	to	three	other	numbers	Y,	Cb,	and	Cr.	Here,	Y	is	the	luminance	of	the	pixel,
or	how	much	light	the	pixel	produces.	Cb	is	the	blue	difference,	and	Cr	is	the	red
difference.	The	simplest	way	to	envision	the	YCbCr	system	is	to	imagine	a	dark	green
video	screen	with	three	knobs	labeled	Y,	Cb,	and	Cr	initially	set	to	zero:	turn	up	Y	and	the
screen	is	brighter;	turn	up	Cb	and	the	screen	becomes	more	blue	and	less	green;	turn	up	Cr
and	the	screen	becomes	more	red	and	less	green.	Table	6-4	lists	a	few	named	colors	in

both	systems	for	comparison.	(A	historical	note:	YCbCr	is	derived	from	the	color	system
used	in	broadcast	television.	In	the	early	days	of	color	television,	the	remaining	black-and-
white	televisions	could	properly	display	color	transmissions	by	interpreting	only	the	Y
component	of	the	signal.)

Table	6-4:	Select	Colors	in	the	RGB	and	YCbCr	Color	Systems

R G B Color	description Y Cb Cr

0 255 0 Lime	green 145 54 34

255 255 255 Pure	white 235 128 128

0 255 255 Aqua 170 166 16

128 0 0 Maroon 49 109 184

JPEG	compresses	the	Y,	Cb,	and	Cr	data	separately,	so	we	can	think	of	each	8×8	block
of	pixels	as	becoming	three	8×8	blocks	of	Y,	Cb,	and	Cr	data.	Separating	the	data	this	way
takes	advantage	of	the	greater	variation	in	brightness	than	in	color.	Under	the	YCbCr
system,	most	of	the	differences	between	the	pixels	will	be	concentrated	in	the	Y
component.	The	lower	variance	in	the	Cb	and	Cr	blocks	will	make	them	easier	to
compress,	and	because	we’re	more	sensitive	to	variations	in	luminance	than	variations	of
color,	the	Cb	and	Cr	blocks	can	be	compressed	more	heavily.

The	Discrete	Cosine	Transform
The	conversion	to	YCbCr	follows	the	observation	that	brightness	is	more	important	than
color.	To	take	advantage	of	the	greater	importance	of	broad	changes	over	narrow	changes,
though,	we	need	to	convert	each	8×8	data	blocks	yet	again.	The	discrete	cosine	transform
(DCT)	converts	the	absolute	luminance	and	color	data	into	relative	measurements	of	how
these	values	differ	from	pixel	to	pixel.	Although	this	transformation	is	applied	to	an	entire
8×8	block	of	numbers,	I’ll	first	illustrate	the	idea	with	a	single	row	of	eight	numbers	from
the	luminance	(Y)	block,	shown	as	shades	of	gray	in	Figure	6-3.

Figure	6-3:	A	row	of	luminance	levels

To	begin	the	DCT,	we	subtract	128	from	each	number,	which	has	the	effect	of	moving
the	0–255	range	to	a	range	centered	around	0,	so	that	maximum	brightness	is	127	and
absolute	black	is	–128.	The	resulting	luminance	levels	for	the	row	are	depicted	as	a	line
chart	in	Figure	6-4.

Figure	6-4:	Subtracting	128	from	each	luminance	level	centers	the	range	of	possible
numbers	around	0.

The	DCT	produces	eight	new	numbers	that	each	combine	the	eight	luminance	levels	in
a	different	way.	Figure	6-5	shows	the	DCT	of	the	previous	figure.

Figure	6-5:	The	discrete	cosine	transform	of	the	data	in	Figure	6-4.

Note	that	the	numbers	are	labeled	with	a	range	from	“coarse”	to	“fine.”	The	leftmost
number	in	the	DCT	is	the	simplest	combination	of	the	luminance	levels:	their	sum.	Thus,
the	first	number	is	the	overall	brightness	of	the	pixels,	and	will	be	positive	for	a	bright	row
of	pixels	and	negative	for	a	dark	row.	The	second	number	effectively	compares	the
luminance	levels	on	the	left	end	of	the	row	against	those	on	the	right,	and	is	positive	in
this	example	because	our	luminance	levels	are	brighter	on	the	left	than	on	the	right.	The
rightmost	number	effectively	compares	each	luminance	value	against	its	immediate
neighbors,	and	is	close	to	0	here	because	the	numbers	in	Figure	6-4	change	gradually.

These	DCT	numbers	are	the	coefficients	that	result	from	an	operation	called	matrix
multiplication.	If	your	eyes	just	glazed	over,	don’t	worry:	the	operation	involves	nothing
more	than	multiplication	and	addition.	We	produce	each	coefficient	by	multiplying	the
luminance	values	by	a	different,	predetermined	vector.	In	this	context,	a	vector	is	just	an
ordered	list	of	numbers.	The	eight	vectors	used	in	the	DCT	are	illustrated	in	Figure	6-6.
(The	numbers	in	each	vector	are	related	to	the	cosine	function	from	trigonometry,	which	is
where	the	discrete	cosine	transform	gets	its	name,	but	we	can	safely	ignore	that	for	this
discussion.)

Figure	6-6:	The	vectors	needed	for	our	single-row	DCT

To	produce	a	coefficient	for	our	luminance	row,	we	multiply	each	number	in	a	vector
by	the	luminance	in	the	same	position.	For	example,	Table	6-5	shows	the	computation	of
the	Vector	2	coefficient	for	our	luminance	row.	Each	number	from	the	luminance	row	is
multiplied	by	the	number	in	the	same	position	in	Vector	1;	then,	these	products	are
summed	to	get	157.386.

Table	6-5:	Computing	the	Coefficient	for	Vector	2

Position Luminance	(from	Figure	6-4) Vector Product

1 76 0.49 37.24

2 127 0.416 52.832

3 127 0.278 35.306

4 76 0.098 7.448

5 25 –0.098 –2.45

6 –26 –0.278 7.228

7 –77 –0.416 32.032

8 25 –0.49 –12.25

Total 	 	 157.386

Looking	at	the	vectors	of	Figure	6-6,	you	can	see	how	each	combines	the	luminance
levels	differently.	Because	every	number	in	Vector	1	is	the	same	positive	number,	the
Vector	1	coefficient	becomes	a	measure	of	overall	brightness.	Because	Vector	2’s	numbers
gradually	sweep	from	high	to	low,	the	second	coefficient	will	be	positive	when	luminance
tends	to	fall	off	from	the	left	to	right	in	the	pixel	row,	and	negative	when	luminance	tends
to	increase.	Vector	3’s	coefficient	is	a	measure	of	how	the	ends	of	the	row	differ	from	the
middle,	and	so	on.	You’ve	already	seen	the	resulting	coefficients	charted	in	Figure	6-5;
Table	6-6	shows	the	result	numerically.

Table	6-6:	Coefficients	from	the	Discrete	Cosine	Transform	of	the	Sample	Luminance
Row

Vector	number Coefficient

1 124.804

2 157.296

3 –9.758

4 –87.894

5 18.031

6 –49.746

7 23.559

8 –13.096

The	process	is	reversible:	we	can	retrieve	the	original	luminance	numbers	from	Figure
6-4	by	multiplying	the	eight	coefficients	against	eight	different	vectors,	a	process	called
the	inverse	discrete	cosine	transform	(IDCT).	Table	6-7	shows	how	the	second	luminance
value,	127,	is	extracted	from	the	coefficients.

Table	6-7:	Computing	the	Second	Luminance	Value	from	the	Coefficients

Position Coefficient Vector Product

1 124.804 0.354 44.125

2 157.296 0.416 65.393

3 –9.758 0.191 –1.867

4 –87.894 –0.098 8.574

5 18.031 –0.354 –6.375

6 –49.746 –0.49 24.395

7 –23.559 –0.462 –10.833

8 –13.096 –0.278 3.638

Total 	 	 127

The	DCT,	then,	gives	us	a	different	way	of	storing	the	same	numbers:	as	the
relationship	between	the	data	rather	than	the	data	itself.	Why	is	this	useful?	Remember
that	fine	distinctions	between	pixels	are	less	noticeable	than	broader	distinctions.	Later,
you’ll	see	how	the	DCT	allows	the	JPEG	format	to	compress	the	fine	details	more	than	the
broad.

The	DCT	for	Two	Dimensions
JPEG	compression	works	not	on	rows	of	pixels	but	on	8×8	pixel	blocks,	so	now	let’s	see
how	the	DCT	operates	in	two	dimensions.	The	one-dimensional	DCT	multiplies	eight
vectors	with	the	original	eight	numbers	to	produce	eight	coefficients.	The	two-dimensional
DCT,	though,	requires	64	matrices,	each	matrix	being	an	8×8	table	of	numbers.	Like	the
vectors,	each	matrix	will	multiply	all	64	pieces	of	data	in	the	8×8	block.

The	matrices	themselves	are	two-dimensional	combinations	of	the	vectors	we	saw
earlier.	This	is	easiest	to	understand	pictorially.	Figure	6-7	shows	the	combination	of	a
horizontal	Vector	1	and	a	vertical	Vector	1.	Because	the	numbers	in	Vector	1	are	all	the
same,	the	numbers	in	the	resulting	matrix	are	as	well.	In	these	matrix	illustrations,	lighter
gray	means	a	higher	number.

Figure	6-7:	The	matrix	combination	of	Vector	1	and	itself

In	Figure	6-8,	horizontal	Vector	1	is	combined	with	vertical	Vector	2.	The	resulting
matrix	gradually	varies	from	top	to	bottom	as	Vector	2	gradually	varies,	but	doesn’t	vary
left	to	right	because	the	numbers	in	Vector	1	don’t	vary.

Figure	6-8:	The	matrix	combination	of	Vector	1	and	Vector	2

Figure	6-9	shows	a	last	example,	Vector	8	combined	with	Vector	8.	Because	Vector	8
swings	back	and	forth	from	positive	to	negative,	the	combination	matrix	has	a
checkerboard	quality.

Figure	6-9:	The	matrix	combination	of	Vector	8	and	itself

The	two-dimensional	DCT	replaces	each	of	the	64	numbers	in	an	8×8	block	with	a
matrix	coefficient.	Figure	6-10	shows	which	matrices	are	used	for	a	few	locations.	Similar
to	the	one-dimensional	DCT,	the	coefficient	in	the	upper	left,	which	is	the	same	shown	in
Figure	6-7,	sums	all	the	numbers	in	the	original	block	equally.	As	we	progress	downward
and	to	the	right,	the	distinctions	being	measured	grow	finer.

Figure	6-10:	Some	of	the	matrices	used	in	the	two-dimensional	DCT

To	demonstrate	the	two-dimensional	DCT,	I’ll	use	just	the	luminance	values	of	the
pixel	block	shown	in	Figure	6-11.

Figure	6-11:	A	block	of	pixels	and	the	associated	luminance	(Y)	block

Figure	6-12	shows	the	same	luminance	block	with	128	subtracted	from	each	number	to
make	a	range	from	–127	to	128	centered	around	0.

Figure	6-12:	The	luminance	block	from	Figure	6-11	with	the	range	of	possible	values
centered	around	0

Figure	6-13	shows	the	luminance	block	after	DCT.	Each	number	is	the	coefficient
resulting	from	multiplying	the	matrix	of	luminance	values	in	Figure	6-12	with	one	of	the
matrices	from	Figure	6-10.	Remember	that	these	numbers,	too,	are	centered	around	0.	So
the	132	in	the	upper	left,	for	example,	indicates	a	high	luminance	level	for	the	block	as	a
whole.	Notice	that	the	numbers	in	the	upper	left	are	largest	in	magnitude	(furthest	from	0
in	either	direction),	indicating	that	broad	luminance	differences	are	much	greater	than	the
fine	differences	in	this	pixel	block.	This	result	is	typical	of	JPEG-encoded	photographs.

Figure	6-13:	The	DCT	of	the	block	in	Figure	6-12

Compressing	the	Results
Now	the	real	compression	can	begin,	the	first	step	of	which	is	quantization.	Figure	6-14
shows	the	8×8	block	of	divisors	used	for	quantizing	the	luminance	block.	Each	number	in
the	coefficient	block	of	Figure	6-13	is	divided	by	the	number	in	the	same	position	in
Figure	6-14,	with	results	rounded	to	the	nearest	whole	number.	This	degrades	the	image
through	quantization	error,	but	note	that	the	divisors	in	Figure	6-14	are	smallest	in	the

upper	left.	Thus,	the	quantization	error	is	most	pronounced	in	the	coefficients	that	measure
the	finest	distinctions,	where	the	error	is	least	likely	to	be	noticed.	The	actual	values	of	the
divisors	varies	according	to	the	compression	quality,	with	larger	divisors	used	to	quantize
the	Cr	and	Cb	blocks,	but	the	divisor	block	always	follows	this	general	pattern	(lower
values	in	the	upper	left,	higher	in	the	bottom	right).

Figure	6-14:	The	divisors	used	to	quantize	luminance	blocks

The	result	of	quantization	for	our	sample	block	is	shown	in	Figure	6-15.

You	can	see	how	suitable	these	numbers	are	for	run-length	and	Huffman	encoding.
Most	of	the	coefficients	have	been	quantized	all	the	way	down	to	0,	with	many	duplicate
coefficients	among	the	rest.

After	quantization,	nonzero	results	tend	to	cluster	in	the	upper	left	of	the	matrix,	so	the
quantized	numbers	are	listed	in	the	zigzag	pattern	shown	in	Figure	6-16.

Figure	6-15:	The	quantized	luminance	block

Figure	6-16:	Storing	coefficients	in	a	zigzag	order

This	zigzag	pattern	tends	to	produce	a	very	long	run	of	zeros	at	the	end,	as	it	does	in
our	example:
8	10	-7	-7	6	-4	0	-2	1	-2	-1	-1	1	-1	0	0	1	0	0	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

To	encode	the	runs	of	zeros,	we	replace	each	nonzero	entry	in	the	list	by	a	pair	of
numbers:	the	number	of	zeros	skipped	(possibly	none),	and	the	coefficient	itself.	For
example,	the	eighth	number	in	our	list	is	a	–2	that	is	preceded	by	one	0.	This	would
become	the	number	pair	1,	–2.	At	this	stage,	our	list	looks	like	this:
0,	8
0,	10
0,	-7
0,	-7
0,	6
0,	-4
1,	-2
0,	1
0,	-2
0,	-1
0,	-1
0,	1
0,	-1
1,	-1
2,	1
2,	-1
(all	the	rest	are	zero)

Some	of	these	number	pairs,	such	as	0,	–1,	appear	very	frequently	in	these	lists
compared	to	other	pairs	like	0,	10.	For	maximum	compression,	the	JPEG	standard	defines
a	Huffman	encoding	for	every	possible	number	pair	in	these	lists.	The	common	0,	–1	pair,
for	example,	becomes	the	short	Huffman	code	001,	while	the	uncommon	0,	10	pair
becomes	the	longer	code	10110010.	There’s	also	a	special	code,	1010,	to	signal	that	all	the
rest	of	the	coefficients	in	the	list	are	0.	The	Huffman	encoding	for	our	list	is	shown	in
Table	6-8.

Table	6-8:	The	Huffman	Encoding	of	the	Coefficients	from	Figure	6-15

Zeros	skipped Coefficient Huffman	encoding

0 8 10110000

0 10 10110010

0 –7 100111

0 –7 100111

0 6 100010

0 –4 100100

1 –2 11100110

0 1 000

0 –2 0110

0 –1 001

0 –1 001

0 1 000

0 –1 001

1 –1 11001

2 1 110110

2 –1 110111

(Nothing	left	but	zeros) 	 1010

All	of	the	bits	in	the	rightmost	column,	strung	together,	represent	the	compressed
encoding	of	our	original	luminance	block.	The	original	block	represented	the	luminance
levels	as	64	bytes,	or	512	bits	total.	In	contrast,	the	encoding	in	Table	6-8	uses	a	mere	88
bits.

The	two	color	blocks,	Cr	and	Cb,	would	show	even	higher	compression	because	the
divisors	used	on	the	color	blocks	are	even	larger,	which	produces	smaller	numbers	with
shorter	Huffman	codes	and	more	zeros	for	the	run-length	encoding.	Overall,	JPEG	images
typically	achieve	a	10:1	compression	ratio.	The	amount	of	compression	can	be	increased

or	reduced	by	using	smaller	or	larger	divisors	than	those	shown	in	Figure	6-14.	These
divisors	are	adjusted	by	the	“quality”	slider	in	image-manipulation	programs.	Sliding	the
control	to	“low	quality”	increases	the	divisors,	reducing	the	file	size	while	increasing	the
quantization	error.

JPEG	Picture	Quality
High	compression	is	great	only	if	the	restored	image	is	indistinguishable	from	the	original,
or	nearly	so.	Typically	the	alterations	JPEG	compression	makes	to	an	image	are	difficult
to	see.	To	get	a	feel	for	the	changes	introduced	by	compression,	let’s	compare	the	original
block	of	luminance	values	to	the	block	that	results	from	compressing	and	decompressing,
as	shown	in	Figure	6-17.

Figure	6-17:	The	original	luminance	block,	and	the	result	of	compressing	and
decompressing	the	block

Since	it’s	tough	to	visually	compare	these	two	blocks	of	numbers,	Figure	6-18	shows
the	differences	as	a	grayscale	matrix.	As	you	can	see,	most	of	the	matrix	is	neutral	gray,
indicating	numbers	very	close	to	the	original.

Figure	6-19:	The	amount	of	error	in	each	location	of	the	luminance	block

The	best	evidence	for	the	quality	of	JPEGs	is	shown	in	Figure	6-19.	On	the	top	is	an
uncompressed	digital	photograph.	Because	this	photo	is	in	grayscale,	we	don’t	need	RGB

pixel	color,	just	a	single	byte	indicating	the	grayscale	level.	At	a	resolution	of	975×731,
this	uncompressed	photo	requires	just	under	713	kilobytes	of	storage.	In	the	middle	is	a
compressed	JPEG	version	of	the	original	photo,	requiring	just	75	kilobytes	of	storage,
which	is	virtually	indistinguishable	from	the	original.	The	photo	on	the	bottom	is	a	low-
quality	JPEG	using	larger	divisors.	While	the	photo	takes	up	only	about	7	kilobytes,
compression	artifacts	are	clearly	visible.	Many	of	the	individual	8×8	pixel	blocks	have
been	reduced	to	solid	squares	of	the	same	gray	level.	In	general,	JPEG	can	result	in	a	10:1
compression	ratio	without	sacrificing	visual	quality.

Compressing	High-Definition	Video
The	JPEG	format	does	a	fantastic	job	of	compressing	images	with	only	small	sacrifices	in
quality,	but	for	high-definition	video	we	need	even	more	compression.	Remember,
uncompressed	high-definition	video	requires	about	186MBps.	Individually	compressing
each	image	as	a	JPEG	would	reduce	that	requirement	to	about	18MBps—a	big
improvement,	but	for	streaming	or	disc	storage	we	need	to	shrink	the	data	to	just	a	few
MBps	per	second.

Figure	6-18:	An	uncompressed	photo	(top),	high-quality	JPEG	compression	(middle),	and
low-quality	JPEG	compression	(bottom)

Temporal	Redundancy
To	hit	this	target,	video	compression	techniques	take	advantage	of	similarities	between
images	in	sequence.	Figure	6-20	shows	an	image	sequence	from	a	movie’s	opening
credits.

Figure	6-20:	A	few	frames	of	an	opening	title	sequence

Each	of	these	images	will	be	shown	for	several	seconds;	which	means	that	the
sequence	will	contain	many	duplicate	frames	in	a	row.	Also,	even	as	the	video	transitions
from	one	image	to	the	next,	most	of	the	picture	remains	unchanged.	Only	the	area	in	the
center	varies.

Now	consider	the	image	sequence	shown	in	Figure	6-21.	Although	each	frame	differs
from	the	next,	the	same	elements	are	present	in	each	frame,	just	in	different	places	on	the
screen.

Figure	6-21:	An	image	sequence	with	a	moving	object

These	examples	show	two	different	forms	of	temporal	redundancy,	continuity	of	data
from	one	frame	to	the	next.	Compression	that	exploits	such	redundancy	is	called	temporal
compression,	and	as	we’ll	see	in	the	next	section,	it’s	the	key	to	achieving	the	compression
ratios	needed	for	video	streaming	and	storage.

MPEG-2	Video	Compression
One	method	of	temporal	compression	is	employed	by	MPEG-2,	a	common	video	format
supported	by	Blu-ray	discs	and	digital	broadcast	television.	More	advanced	techniques
exist,	but	they	are	extensions	of	the	ideas	demonstrated	here.

Groups	of	Frames

MPEG-2	videos	are	divided	into	sequences	of	around	15	frames	called	groups	of	pictures
(GOPs).	Exactly	one	frame	in	each	GOP	is	selected	to	be	a	basic	JPEG-encoded	image
called	an	intracoded	frame	(I-Frame).	This	frame	is	the	rock	upon	which	the	rest	of	the
GOP	is	built.	All	of	the	other	frames	use	temporal	compression,	which	means	they	are
stored	not	as	the	absolute	colors	of	the	pixels	in	the	image,	but	by	how	those	colors	differ

from	those	in	another	image	in	the	GOP,	as	we’ll	see	shortly.

The	other	frames	in	the	group	are	assigned	one	of	two	types,	predicted	frames	(P-
Frames)	and	bidirectional	frames	(B-Frames).	A	P-Frame	stores	the	difference	between	its
pixels	and	those	of	a	previous	frame,	while	a	B-Frame	stores	the	difference	between	its
pixels	and	those	of	a	previous	and	a	later	frame.

A	GOP	is	shown	in	Figure	6-22,	with	arrows	indicating	the	frames	referenced	by	the
temporal	compression.	As	you	can	see,	everything	depends	on	the	I-Frame.	During
playback,	it	must	be	decoded	before	any	other	image	in	the	GOP,	after	which	the	frames
that	directly	reference	the	I-Frame	can	be	decoded,	and	so	on.

Figure	6-22:	A	GOP,	or	group	of	pictures

Grouping	pictures	this	way	simplifies	encoding	and	decoding,	and	also	limits	the
length	of	the	reference	“chain.”	Just	like	a	photocopy	of	a	photocopy,	the	longer	the	chain
of	temporal	compression,	the	fuzzier	the	image	gets.	The	regular	appearance	of	I-Frames
is	also	what	allows	you	to	see	images	as	you	fast-forward	or	rewind;	the	video	player	just
picks	out	the	I-Frames,	which	can	be	decoded	and	displayed	independently	of	the	other
frames	in	its	GOP.

The	MPEG	specification	gives	encoding	software	wide	discretion	in	forming	GOPs.
The	number	of	I-Frames,	which	directly	determines	the	size	of	GOPs,	is	up	to	the	encoder,
as	is	the	number	of	B-Frames	between	the	other	frame	types.	Like	the	divisors	used	in
JPEG	quantization,	the	ability	to	change	the	relative	numbers	of	the	three	frame	types
offers	a	trade-off	between	quality	and	compression.	In	applications	where	compression	is
paramount,	like	videoconferencing,	I-Frames	are	rare	and	B-Frames	are	common,	while	in
a	Blu-ray,	the	encoder	will	use	as	many	I-Frames	as	possible	while	still	fitting	all	the	video
data	on	the	disc.

Temporal	Compression

So	how	does	the	temporal	compression	of	P-Frames	and	B-Frames	work?	In	this	example,
we’re	compressing	a	P-Frame	by	referencing	an	I-Frame.	First,	the	pixels	in	the	P-Frame
are	divided	into	16×16	macroblocks.	For	each	macroblock,	the	I-Frame	is	searched	for	a
matching	block	of	pixels	with	the	same	color	data.	This	matching	block	may	not	appear	in
exactly	the	same	place	in	the	I-Frame,	though,	so	it	is	indicated	by	its	offset:	the	difference
between	the	location	in	the	P-Frame	and	the	location	in	the	I-Frame,	expressed	in	screen
coordinates.	For	example,	an	offset	of	–100,	50	indicates	that	the	macroblock’s	location	in
the	I-Frame	is	100	pixels	left	and	50	pixels	down	from	its	location	in	the	P-Frame,	as
shown	in	Figure	6-23.

Figure	6-23:	A	macroblock	in	a	P-Frame	referencing	a	matching	block	of	pixels	in	a
previous	frame

In	most	cases,	an	exact	match	won’t	be	found,	so	in	addition	to	storing	the	location	of
the	best	match,	the	differences	between	the	two	macroblocks	must	also	be	stored.	Figure
6-24	shows	a	luminance	block	from	the	P-Frame	and	the	best	match	in	the	I-Frame.	(I’m
using	8×8	blocks	instead	of	a	full	16×16	macroblock	to	keep	the	example	manageable.)

Figure	6-24:	A	luminance	block	and	its	best	match	in	a	prior	frame

Next,	a	block	of	differences	is	computed:	each	number	in	the	I-Frame	block	is
subtracted	from	the	number	in	the	same	position	in	the	P-Frame	block.	The	result	for	our
example	is	shown	in	Figure	6-25.

Figure	6-25:	The	difference	between	the	two	luminance	blocks	in	Figure	6-24

Because	the	blocks	are	a	close	match,	these	values	are	all	small.	This	is	a	form	of
predictive	encoding,	just	like	the	list	of	temperatures	shown	earlier	in	the	chapter.	By
storing	differences,	we’ve	made	the	range	of	data	much	smaller,	and	therefore	more	easily
compressed.	When	we	apply	the	DCT	and	quantize	the	results,	the	numbers	are	downright
tiny,	as	shown	in	Figure	6-26.

Figure	6-26:	The	result	of	quantizing	the	block	in	Figure	6-25	and	applying	the	DCT

This	block	is	highly	susceptible	to	the	last	stage	of	compression:	the	combination	of
run-length	and	Huffman	encoding.	As	shown	in	Table	6-9,	the	original	luminance	block
has	been	reduced	to	a	mere	39	bits.

Table	6-9:	The	Huffman	Encoding	of	the	Numbers	in	Figure	6-26

Run	length Coefficient Huffman	encoding

4 1 1110110

1 –1 11001

0 1 000

0 1 000

0 –1 001

1 1 11000

7 1 111110100

(Nothing	left	but	zeros) 	 1010

Not	every	macroblock	in	the	P-Frame	is	encoded	in	this	way.	In	some	cases,	a
macroblock	may	not	be	similar	enough	to	any	block	of	pixels	in	the	previous	frame	to
save	any	space	by	storing	the	difference.	Those	macroblocks	can	be	recorded	directly,	like
the	macroblocks	in	an	I-Frame.	For	a	B-Frame,	matching	macroblocks	can	be	found	in	a
previous	frame	or	a	later	frame,	which	improves	the	odds	of	a	close	match.

Video	Quality	with	Temporal	Compression
Temporal	compression	depends	upon	temporal	redundancy—sequences	of	frames	with
few	changes.	For	this	reason,	some	videos	compress	much	better	than	others.	Movies	with
lots	of	camera	movement,	like	Cloverfield	or	The	Blair	Witch	Project,	are	difficult	to
compress,	while	movies	with	long	takes	where	the	camera	doesn’t	move,	like	2001:	A
Space	Odyssey,	are	ideal.

Ultimately,	video	compression	is	a	bit	of	an	art	as	well	as	a	science.	As	stated	earlier,
different	MPEG-2	encoders	can	produce	different	results	for	the	same	sequence	of	images.
Shorter	GOPs,	with	more	I-Frames	and	fewer	B-Frames,	produce	better-looking	video
than	longer	GOPs,	but	longer	GOPs	mean	better	compression.	An	encoder	can	vary	the
mix	of	frames	even	within	the	same	video,	using	longer	GOPs	when	there’s	high	temporal
redundancy	and	shorter	GOPs	when	there	isn’t.	Also,	good	encoders	will	try	to	line	up
GOP	boundaries	with	sharp	cuts	in	a	movie;	if	you’ve	ever	seen	a	video	that	was
momentarily	very	blocky	when	the	scene	changed,	it’s	likely	because	a	GOP	stretched
over	the	cut.

There’s	also	the	question	of	performance,	especially	if	the	video	is	being	compressed	in
real	time,	as	with	a	live	event.	There	might	not	be	enough	time	to	find	the	absolute	best

match	for	a	macroblock	in	the	other	frame.

Playback	quality	can	vary	as	well.	For	example,	because	of	how	frames	are	broken	into
individually	processed	macroblocks,	seams	may	appear	along	the	borders	of	the	blocks.
To	reduce	this	effect,	a	decoder	may	apply	a	deblocking	filter.	This	smoothes	block
boundaries	by	averaging	pixel	colors,	much	like	the	anti-aliasing	methods	shown	in
previous	chapters.	The	strength	of	the	filter	can	be	adjusted	based	on	the	likelihood	of	a
clean	boundary.	In	a	B-Frame,	for	example,	if	one	block	references	the	previous	frame
while	an	adjacent	block	references	the	next	frame,	there’s	a	greater	likelihood	of	a	rough
boundary,	which	calls	for	stronger	filtering.

In	other	cases,	the	resolution	of	the	video	and	the	display	resolution	may	not	match.
For	example,	when	you’re	streaming	an	episode	of	the	old	cop	show	Adam-12	(it’s	not	just
me,	right?)	on	a	high-definition	television,	either	the	television	or	the	player	has	to	convert
the	original	640×480	images	to	fill	the	1920×1080	display.	This	is	the	same	problem	we
solved	in	Chapter	5	with	texture	mapping—applying	a	bitmap	to	a	larger	area—and	video
devices	can	employ	the	same	sorts	of	techniques.	Early	high-definition	players	effectively
used	nearest-neighbor	sampling,	which	produced	poor	results.	Newer	players	employ
techniques	similar	to	trilinear	filtering.	Instead	of	blending	between	bilinear	samples	from
two	different	levels	in	a	mipmap,	however,	they	blend	between	successive	frames.	This	is
especially	effective	in	smoothing	objects	in	motion.

Although	not	as	computationally	intense	as	the	original	encoding,	playing	back	a
temporally	compressed	video	is	still	a	lot	of	work	for	a	processor.	Also,	the	structure	of	a
GOP	requires	decoding	the	frames	out	of	order.	This	in	turn	requires	that	frames	be
buffered,	held	in	a	queue	prior	to	display.	For	streaming	video,	much	larger	buffers	are
used	so	that	minor	hiccups	in	the	network	don’t	disrupt	playback.

The	Present	and	Future	of	Video	Compression
The	latest	video	compression	standard,	known	as	H.264	or	MPEG-4,	extends	the
techniques	used	in	MPEG-2	but	isn’t	fundamentally	different.	The	primary	differences
improve	the	quality	of	macroblock	matching.	Instead	of	being	matched	against	just	one	or
two	other	frames,	macroblocks	can	be	matched	against	32	other	frames.	Also,	the	16×16
macroblocks	themselves	can	be	broken	down	into	separately	matched	8×8	blocks.

Through	such	improvements,	MPEG-4	can	often	achieve	twice	the	compression	ratio
of	MPEG-2	with	the	same	quality	result.	For	that	reason,	MPEG-4	is	an	industry	standard
for	both	streaming	and	storage.	Most	Blu-ray	videos	use	it,	as	do	YouTube	and	Netflix.	Its
chief	competition	is	a	format	called	Theora,	which	uses	similar	compression	methods	but
is	freely	licensed,	unlike	the	proprietary	MPEG-4.

Today’s	compression	formats	do	an	amazing	job	at	shrinking	video	data,	but	they	do	so
at	a	high	computational	cost.	The	next	time	you	watch	a	clip	on	YouTube,	think	about	a
GOP,	all	the	macroblocks	being	copied	and	updated	from	one	frame	to	the	next,	and	all	the
number	crunching	that	goes	into	performing	the	DCT	over	and	over	again.	It’s	a	dizzying
amount	of	calculation	just	to	show	a	cat	falling	off	a	piano.

Even	more	computational	horsepower	will	be	needed	in	the	future.	The	new	ultra	high

definition	(UHD)	format,	seen	in	theaters	in	films	like	Peter	Jackson’s	Hobbit	series,	is
starting	to	trickle	down	to	home	video.	UHD	images	are	3840×2160,	which	is	four	times
the	number	of	pixels	as	current	high	definition.	The	frame	rate	will	also	increase,	from
today’s	24	or	30	fps	to	48,	60,	or	even	120	fps.	UHD	video	could	increase	the	bit
requirements	from	today’s	1,400Mbps	to	over	23,000,	which	will	require	a	corresponding
increase	in	bandwidth	and	disc	storage	capacity—unless	someone	clever	comes	up	with	an
even	better	way	for	software	to	shrink	the	data.

7
Search

This	chapter	is	about	a	topic	that,	perhaps	more	than	any	other	subject	covered	in	this
book,	we	all	take	for	granted:	finding	the	data	we	want,	known	as	a	search.	Searching
happens	so	often,	and	so	quickly,	that	it’s	easy	to	miss	the	magic.	When	a	word	processor
underlines	a	misspelled	word	that	you	just	typed,	a	fast	search	has	taken	place	behind	the
scenes.	When	you	enter	part	of	a	filename	and	get	a	list	of	matching	files	on	your	laptop’s
hard	drive,	that’s	another	near-instant	search.	And	then	there’s	the	ultimate	search
achievement:	the	Web.	The	Web	is	so	unfathomably	large	that	we	can	only	guess	its	true
size,	and	yet,	web	search	engines	can	find	relevant	web	pages	in	a	fraction	of	a	second.

How	does	software	find	what	we	want	so	fast?

Defining	the	Search	Problem
Let’s	start	by	getting	our	terminology	straight.	A	collection	of	data	is	known,	appropriately
enough,	as	a	data	collection.	Each	item	in	the	data	collection	is	a	record.	A	record	is
uniquely	identified	by	a	key	(no	relation	to	the	cryptography	term).	A	search	retrieves	the
record	that	matches	a	given	key.	For	a	real-world	example,	when	you	use	a	dictionary	the
word	you’re	looking	up	is	the	key,	and	the	definition	of	that	word	is	the	record.

The	main	goal	of	searching	is	to	find	the	right	record.	But	the	speed	of	the	search	is
just	as	important.	If	searches	could	go	on	indefinitely,	searching	would	be	simple.	But	as
the	wait	time	increases,	so	does	our	frustration.	The	length	of	time	we’ll	wait	on	a	search
varies,	but	it’s	never	very	long,	and	in	many	situations,	the	search	must	appear	to	finish
instantaneously.

Putting	Data	in	Order
Efficient	searching	requires	well-organized	data.	When	you	visit	a	bookstore,	for	example,
finding	a	novel	by	a	particular	author	is	easy	if	the	store	has	ordered	the	shelves	by
authors’	last	names.	For	one	thing,	you	know	where	to	start	looking.	Once	you	look	at	the
first	book	on	the	shelf	and	see	how	close	its	author’s	name	is	alphabetically	to	the	author
you	seek,	you	would	have	a	good	idea	where	to	look	next.

If	the	store	didn’t	shelve	its	books	in	any	particular	order,	then	finding	a	book	would	be

hard	work.	The	best	option	is	to	start	at	one	end	of	the	shelf	and	examine	every	single
book,	which	is	known	as	a	sequential	search.	In	the	worst	case,	the	book	you	want	isn’t
even	on	the	shelf,	but	you	wouldn’t	know	that	until	you’ve	looked	through	the	whole
collection.

Therefore,	putting	the	data	collection	in	a	particular	order,	known	as	sorting,	is
essential	for	efficient	searching.	There	are	many	different	ways	to	sort;	entire	books	have
been	written	to	describe	different	sorting	algorithms	for	software.	We’ll	look	at	two
methods	here.

Selection	Sort
If	I	asked	you	to	put	a	list	of	numbers	in	order,	you	would	most	likely	use	what	is	known
as	a	selection	sort.	First,	you’d	scan	the	list	to	find	the	lowest	number,	and	then	you’d
cross	the	number	out	and	copy	it	to	a	new	list.	You	would	repeat	the	process	until	all	the
numbers	were	in	order	in	the	new,	sorted	list.

The	first	three	steps	of	a	selection	sort	of	nine	numbers	are	shown	in	Figure	7-1.	In	the
first	step,	the	lowest	number	is	copied	to	the	beginning	of	a	new	list.	In	the	steps	that
follow,	the	lowest	remaining	numbers	are	copied	to	the	new	list.

Figure	7-1:	The	first	three	steps	in	a	selection	sort	of	nine	numbers

Quicksort

While	selection	sort	is	easy	to	understand,	software	rarely	uses	it	because	it	isn’t	efficient.
Each	step	requires	us	to	process	every	number	in	the	unsorted	list,	and	for	that	effort	all
we	get	is	one	number	in	its	correct	position.

A	better	sorting	method,	called	quicksort,	partially	orders	all	of	the	data	processed
during	each	pass,	reducing	later	effort	and	time.	Instead	of	scanning	the	entire	list	for	the
lowest	number,	we	select	a	number	in	the	list	to	be	the	pivot.	We	use	the	pivot	to	partition
the	list,	dividing	the	list	around	the	pivot.	Numbers	that	are	less	than	the	pivot	go	to	the
front	of	the	list,	and	those	that	are	greater	go	to	the	back.

For	this	example	we’ll	use	the	same	list	of	numbers	used	in	the	selection	sort.	Figure	7-
2	shows	the	first	step	of	partitioning.	Different	versions	of	quicksort	select	the	pivot	in
different	way;	we’ll	keep	things	simple	and	use	the	first	number	in	the	list,	47,	as	the
pivot.	The	next	number,	93,	is	copied	to	the	end	of	the	new	list	because	it	is	greater	than
47.

Figure	7-2:	The	number	93	is	more	than	the	pivot,	so	it	moves	to	the	end	of	the	new	list.

In	Figure	7-3,	56	is	also	greater	than	47,	so	it’s	copied	to	the	next	space	on	the	end.

Figure	7-3:	The	number	56	is	more	than	the	pivot,	so	it	moves	to	the	end	of	the	new	list.

In	Figure	7-4,	33	is	less	than	47,	so	it’s	copied	to	the	front	of	the	new	list.

Figure	7-4:	The	number	33	is	less	than	the	pivot,	so	it	moves	to	the	front	of	the	new	list.

Figure	7-5	combines	the	next	five	steps.	Three	of	the	remaining	numbers	go	to	the
front	of	the	list	and	two	go	to	the	back.	This	leaves	a	gap	for	one	more	number.

Figure	7-5:	The	remaining	numbers	in	the	list	are	partitioned.

In	Figure	7-6,	this	gap	is	filled	with	47,	the	pivot.	This	completes	the	initial
partitioning.

Figure	7-6:	The	pivot	fills	the	open	space	in	the	new	list.

This	new	list	isn’t	sorted,	but	it’s	in	better	shape	than	before.	The	pivot	is	in	its	correct
sorted	position,	indicated	by	the	shading.	The	first	four	numbers	in	the	list	are	less	than	47,
and	the	last	four	are	greater	than	47.	A	single	partitioning	does	more	than	put	one	number
in	its	correct	place,	like	one	step	of	a	selection	sort;	it	also	divides	the	remaining	numbers
in	the	list	into	sublists,	as	shown	in	Figure	7-7.	These	sublists	can	be	sorted	independently.
Sorting	two	shorter	lists	requires	less	effort	than	sorting	one	longer	list.	If	you	doubt	this,
consider	an	extreme	case:	would	you	rather	sort	50	short	lists	of	2	numbers,	or	1	long	list
of	100	numbers?

Figure	7-7:	Partitioning	has	transformed	the	list	into	two	separate,	smaller	lists	that	can
be	sorted	independently.

The	two	sublists	are	now	independently	partitioned.	In	Figure	7-8,	the	first	number	in
the	sublist,	33,	becomes	the	new	pivot	and	the	four	numbers	of	sublist	1	are	partitioned.
This	puts	22	and	11	to	the	left	of	the	33,	and	45	to	the	right.

Figure	7-8:	Partitioning	sublist	1	of	Figure	7-7

In	Figure	7-9,	sublist	2	is	partitioned	using	74	as	a	pivot.

Figure	7-9:	Partitioning	sublist	2	of	Figure	7-7

These	partitions	put	both	of	their	pivots	in	their	correct	sorted	places	in	the	list.	The
partitions	also	create	four	new	sublists,	as	shown	in	Figure	7-10.

Figure	7-10:	Now	four	sublists	remain.	Single-number	sublists	are	trivial.

Sublists	4	and	6	contain	a	single	number,	which	means	there’s	nothing	to	partition.	In
Figure	7-11,	sublists	3	and	5	are	partitioned.

Figure	7-11:	Only	two	trivial	sublists	remain,	which	means	the	whole	list	is	sorted.

Now	we	have	just	two	single-number	sublists	left,	which	means	that	the	sort	is

complete.

In	this	example,	the	pivots	evenly	divided	their	partitions,	but	quicksort	isn’t	always	so
lucky.	Sometimes	the	split	is	uneven,	and	in	the	worst	case,	the	pivot	could	be	the	lowest
or	highest	number	in	the	list,	which	means	the	partitioning	produces	the	same	result	as	a
step	in	a	selection	sort.	But	most	partitions	will	be	roughly	even,	which	tends	to	result	in	a
much	faster	sort.

More	generally,	quicksort	scales	much	better	than	selection	sort.	For	any	sorting
method,	sorting	time	increases	as	the	size	of	the	data	collection	increases,	but	selection
sort	slows	down	much	more	than	quicksort.	Let’s	say	a	particular	computer	can	sort
10,000	records	in	around	a	second	using	either	method.	On	the	same	computer,	a	selection
sort	of	1,000,000	records	would	take	nearly	3	hours,	while	a	quicksort	would	take	only
about	11	minutes.

Binary	Search
When	data	is	in	order,	software	can	find	a	particular	record	easily.	One	simple	search
method	for	ordered	data	is	binary	search.	The	word	binary	in	this	case	doesn’t	refer	to
binary	numbers,	but	to	choosing	between	two	alternatives.

Figure	7-12	shows	binary	search	in	action.	The	record	we	want	has	a	key	of	48.
Initially,	all	we	know	is	that	the	data	in	the	collection	is	ordered	on	our	key,	so	the	record
could	appear	anywhere.	In	step	1,	we	examine	the	record	in	the	middle	of	the	collection.	If
this	record	had	a	key	of	48,	we	would	we	be	done,	but	this	is	unlikely.	However,	because
this	record	has	a	key	of	62,	which	is	larger	than	48,	we	know	that	the	desired	record	must
appear	among	the	first	seven	records.	Thus,	examining	one	record	has	eliminated	not	just
that	record	from	consideration,	but	also	the	seven	records	that	appear	later	in	the
collection.

In	step	2,	we	examine	the	fourth	record,	the	midpoint	of	the	remaining	seven	records.
This	record	has	a	key	of	23,	which	is	lower	than	48.	Therefore	the	desired	record	must	be
in	the	three	records	between	23	and	62.

In	step	3,	we	examine	the	middle	of	these	remaining	three	records,	which	has	a	key	of
47.	This	tells	us	the	desired	record	must	be	the	one	record	between	47	and	62.	If	that
record	did	not	have	a	key	of	48,	it	would	mean	the	collection	did	not	include	a	record	with
that	key.

Figure	7-12:	Binary	search	taking	four	steps	to	find	a	particular	record	in	a	collection	of
size	15

Each	step	in	a	binary	search	eliminates	half	of	the	records	from	consideration,	which
means	binary	search	scales	fantastically	well.	With	a	sequential	search,	doubling	the	size
of	a	data	collection	doubles	the	time	needed	for	the	average	search.	With	binary	search,
doubling	the	number	of	records	requires	just	one	more	step.	If	we	start	with	31	records,	for
example,	after	examining	the	middle	record,	either	we	get	lucky	and	find	the	desired
record,	or	we	find	out	whether	the	desired	record	is	in	the	first	or	last	15	records.	Either
way	we	would	now	have	only	15	records	left	to	search,	putting	us	back	where	we	started
in	Figure	7-12.	For	huge	data	collections,	the	difference	between	binary	and	sequential
search	is	dramatic.	A	sequential	search	of	1,000,000	records	will	examine	500,000	records
on	average,	while	a	binary	search	of	1,000,000	records	will	examine	no	more	than	20.

Indexing
To	keep	the	figures	simple,	our	examples	to	this	point	have	used	just	record	keys.	In
practice,	though,	the	rest	of	the	record	has	to	be	stored	somewhere,	and	this	can	cause
problems.	To	see	why,	we	have	to	understand	the	choice	software	faces	when	allocating
storage	space	for	data,	whether	in	main	memory,	on	a	hard	drive,	or	anywhere	else.

Fixed-size	storage	allocation	assigns	each	record	the	same	amount	of	space	and	is	used
for	data	that	is	either	always	the	same	size	or	has	a	small	maximum	size.	Credit	card
numbers,	for	example,	are	always	16	digits.	The	names	of	credit	card	owners,	on	the	other
hand,	vary	in	size,	but	there	are	only	so	many	letters	that	will	fit	on	the	card.	Both	card
numbers	and	card-holder	names	could	be	stored	in	a	fixed	number	of	bytes.	In	Figure	7-
13,	the	maximum	size	of	a	last	name	is	15	characters,	just	long	enough	for	Hammond-
Hammond.	The	other	names	are	shorter,	resulting	in	wasted	bytes,	shown	as	shaded

squares.	Because	the	space	needed	to	store	a	name	is	small,	though,	this	wasted	space	is	of
no	great	concern.

Figure	7-13:	Fixed	allocation	of	storage	results	in	wasted	space

Variable-size	storage	allocation	exactly	fits	the	data.	Consider	a	collection	of	MP3
files.	Roughly	speaking,	the	longer	the	song,	the	larger	the	MP3	file.	A	short	pop	song
might	be	3	or	4MB,	while	a	progressive-rock	epic	might	be	as	large	as	20MB.	We
wouldn’t	want	to	store	song	data	in	fixed	space	because	this	would	waste	too	much	space
for	shorter	songs,	and	this	would	limit	the	length	of	a	song.	Instead,	the	data	should	be
stored	in	just	as	much	space	as	needed.

Variable-size	storage	allocation	uses	space	efficiently,	but	fixed-size	storage	allocation
is	required	for	software	to	use	efficient	search	methods.	When	all	the	records	in	a
collection	are	the	same	size,	software	can	quickly	find	a	record	in	a	particular	position.

This	is	because	storage	locations	are	identified	by	numerical	addresses.	Every	byte	in
digital	storage—whether	in	a	computer’s	main	memory,	or	on	a	flash	drive	or	hard	drive—
can	be	precisely	located	by	its	address.	If	a	computer	has	8GB	of	main	memory,	for
example,	those	bytes	are	numbered	from	zero	to	just	over	eight	trillion.	Collections	of
fixed-size	records	are	stored	contiguously,	which	makes	finding	a	record’s	address	simple.
Suppose	a	collection	has	100	records,	each	20	bytes	in	size,	and	the	collection	begins	at
address	1,000.	That	puts	the	first	record	at	address	1,000,	the	second	at	1,020,	the	third	at
1,040,	and	so	on.	We	can	calculate	the	address	of	any	record	by	multiplying	its	position
number	by	20	and	adding	the	result	to	1,000.	In	this	way,	software	can	quickly	locate	any
record	in	any	collection	of	fixed-size	records.

Finding	records	quickly	is	essential	for	a	method	like	binary	search.	Without	fixed-size
records,	the	only	way	to	find	a	record	in	a	particular	position	is	to	start	from	the	beginning
of	the	data	collection	and	count	the	records.	That’s	just	a	sequential	search,	and	defeats	the
point.

Choosing	between	fixed-size	and	variable-size	storage	allocation	means	choosing
between	efficient	search	and	efficient	storage.	However,	a	technique	called	indexing	gives
us	both.	Indexing	separates	the	keys	from	the	rest	of	the	records,	much	as	a	library	card
catalog	allows	patrons	to	search	for	books	on	cards	before	ultimately	retrieving	the	books
from	the	shelves.

An	index	is	a	table	of	record	keys	and	addresses.	The	addresses	themselves	are	stored
as	binary	numbers	with	a	fixed	number	of	bits.	For	example,	when	Microsoft	releases
versions	of	Windows	in	“32-bit”	and	“64-bit”	editions,	those	bit	counts	refer	to	the	size	of
the	addresses	for	main	memory.	Because	the	addresses	are	a	fixed	size,	we	can	store	the
addresses	and	keys	together	in	an	index	of	fixed-size	records	that	can	be	searched
efficiently	using	a	method	like	binary	search.	The	rest	of	each	record’s	data	is	stored	in	a
variable-size	allocation.	This	produces	a	data	collection	that	is	efficient	for	storage	and

searching.

Figure	7-14	shows	an	indexed	data	collection	of	four	songs.	On	the	left,	the	index
contains	the	song	titles	and	the	addresses	for	the	remaining	data	of	each	song,	such	as	the
artist	name	and	the	encoded	music.	On	the	right	is	a	block	of	memory	cells	numbered
from	1	to	400.	The	arrows	point	to	each	address.

As	shown	in	the	example,	this	split	data	allocation	allows	each	record	to	use	as	much
or	as	little	space	as	needed.	It	even	allows	the	index	and	remaining	data	to	be	on	different
storage	devices.	For	example,	the	index	might	be	kept	in	a	computer’s	fast	main	memory,
while	the	encoded	music	data	is	left	on	its	relatively	slow	hard	drive.	Because	only	the
index	is	needed	for	search,	such	an	arrangement	allows	for	efficient	search	while	using	the
minimum	amount	of	main	memory.

Figure	7-14:	An	indexed	data	collection	of	digital	music

We	can	also	have	multiple	indexes	for	the	same	data	collection.	The	arrangement	in
Figure	7-14	allows	individual	songs	to	be	quickly	located	by	song	title,	but	doesn’t	help	us
search	for	a	song	based	on	artist	name	or	album	title.	Data	collections	can	have	multiple
indexes	for	different	search	criteria,	and	because	the	main	record	data	is	simply	referenced
by	an	address,	having	multiple	indexes	doesn’t	greatly	affect	the	total	storage
requirements	for	the	data	collection.

Hashing
Although	ordered	data	is	required	for	efficient	searching,	sorting	data	takes	time.	So	far
we’ve	discussed	sorting	as	though	data	collections	need	to	be	sorted	just	once.	Sometimes
that	is	the	case;	for	example,	a	word	processor	needs	a	list	of	correctly	spelled	words	for
spell	checking,	but	that	list	is	created	once	and	supplied	as	part	of	the	application.	A
spellcheck	word	list	is	a	static	data	collection,	one	that	changes	infrequently.	However,
many	of	the	collections	we	search	are	dynamic—records	are	frequently	added	or	removed.
Because	efficient	searching	requires	ordered	data,	collections	must	be	re-sorted	following
each	addition	or	removal.	When	insertions	and	deletions	are	common,	the	time	spent	re-

sorting	the	data	collection	can	negate	the	benefit	of	a	faster	search.	In	such	cases,	it	may
be	better	to	structure	the	data	to	facilitate	frequent	changes.

One	data	structure	that	eases	additions	and	removals	of	records	involves	hash
functions,	which	were	introduced	in	Chapter	2.	For	this	example	let’s	imagine	a	hash
function	that	produces	a	mere	3-bit	hash,	equivalent	to	a	decimal	number	in	the	range	of	0
to	7.	We	can	use	this	to	store	records	in	a	hash	table	with	slots	for	8	records.	A	slot	is	a
place	where	a	record	could	be	stored.

To	store	a	record	in	the	hash	table,	we	hash	the	record’s	key	to	determine	which	slot	to
use.	Suppose	we	are	storing	MP3	files	with	song	titles	as	the	keys.	Four	titles	and	their
associated	hash	codes	are	shown	in	Table	7-1.

Table	7-1:	Hash	Codes	for	Sample	Song	Titles

Song	title Hash	code

Life	on	Mars 6

Nite	Flights 4

Surrender 1

The	True	Wheel 4

Figure	7-15	shows	the	hash	table	after	the	insertion	of	the	first	three	songs	from	Table
7-1.	The	first	column	in	each	record	is	a	bit,	which	is	1	if	the	slot	is	in	use	and	0	if	not.
The	second	column	is	the	title,	and	the	third	column	holds	the	address	of	the	remaining
data.

Figure	7-15:	An	eight-slot	hash	table

The	beauty	of	a	hash	table	is	that	a	search	doesn’t	really	require	searching.	We	just	run
the	key	through	the	hash	function	and	the	result	tells	us	where	the	record	should	be.	If
there’s	no	record	in	that	slot,	we	know	right	away	that	the	collection	doesn’t	contain	a
record	with	that	key.	Even	better,	hash	tables	avoid	the	effort	of	sorting.	This	makes	a	hash
table	an	excellent	choice	for	a	collection	with	frequent	additions	and	deletions	of	records.

However,	we	haven’t	inserted	the	fourth	song	in	the	list.	The	song	title	“The	True
Wheel”	hashes	to	4,	the	same	number	as	“Nite	Flights.”	As	you	may	remember	from
Chapter	2,	a	hash	function	is	not	guaranteed	to	produce	a	different	hash	value	for	every
input,	and	indeed,	some	matching	hash	values,	or	collisions,	are	inevitable.	Since	we	can
put	only	one	record	in	a	slot,	we	need	a	rule	for	handling	collisions.	The	simplest	rule	is	to
use	the	first	empty	slot	after	the	collision	point.	Because	slot	4	is	already	occupied	with
“Nite	Flights,”	we	would	place	“The	True	Wheel”	in	the	next	open	slot,	which	is	slot	5,	as
shown	in	Figure	7-16.

Figure	7-16:	Resolving	a	collision.	The	second	song	that	hashes	to	4	is	placed	in	the	next
empty	slot,	which	is	slot	5.

This	handles	the	collision	problem,	but	it	complicates	the	use	of	the	hash	table.

With	this	collision	rule	in	place,	finding	a	record	is	no	longer	a	one-step	process.	Each
search	still	starts	at	the	slot	indicated	by	the	hash	code,	but	then	checks	the	slots	one	by
one	until	it	finds	the	matching	song	title.	If	the	search	reaches	an	empty	slot,	the	song	isn’t
in	the	collection.

Collisions	can	also	cause	records	to	be	stored	far	from	the	position	indicated	by	the
hash	code.	For	example,	if	a	title	with	a	hash	code	of	5	is	inserted	into	the	table	shown	in
Figure	7-16,	even	though	no	previous	song	title	has	hashed	to	5,	the	slot	is	already	filled
by	“The	True	Wheel,”	and	the	new	song	would	move	all	the	way	to	slot	7.	As	a	hash	table
fills,	these	situations	become	more	common,	degrading	search	performance;	in	effect,
some	hash	table	searches	become	miniature	sequential	searches.

Collisions	also	complicate	the	deletion	of	records.	Suppose	“Nite	Flights”	is	removed
from	the	hash	table	of	Figure	7-16.	The	obvious	way	to	remove	a	record	is	just	to	mark	the
slot	“empty”	again,	but	that	doesn’t	work.	To	see	why,	remember	that	the	song	title	“The
True	Wheel”	hashed	to	4,	and	the	song	was	stored	in	slot	5	only	because	slot	4	was
occupied	at	the	time.	A	search	for	“The	True	Wheel”	will	begin	at	slot	4	as	indicated	by
the	hash	code,	find	the	slot	empty,	and	end	the	search	unsuccessfully.	The	song	is	still	in
the	index	table,	but	can’t	be	found	by	a	hash	search.

To	avoid	this	problem,	we	can	remove	the	song	data	but	keep	the	slot	marked	as
occupied,	as	shown	in	Figure	7-17.

Slot	4	is	now	what	is	called	a	tombstone.	By	leaving	the	slot	marked	as	occupied	while
deleting	the	data,	we	ensure	that	searches	still	work.	However,	tombstones	waste	space.

Furthermore,	because	the	table	never	really	frees	any	record	slots,	the	performance	issues
of	congestion	remain.

For	these	reasons,	hash	tables	are	periodically	rehashed.	Once	a	certain	percentage	of
the	slots	in	a	table	are	occupied,	a	new,	larger	table	is	created,	and	each	key	in	the	original
table	is	hashed	with	a	new	hash	function,	producing	a	fresh,	sparsely	populated	table
without	any	tombstones.

Figure	7-17:	Leaving	slot	4	marked	as	occupied	after	deletion	of	its	data

Web	Search
All	of	the	techniques	shown	in	this	chapter	are	needed	for	efficiently	searching	large	data
collections,	and	no	collection	is	larger	than	the	Web.	A	search	engine	such	as	Google
depends	upon	a	vast	index,	where	the	keys	are	search	terms,	the	addresses	are	URLs,	and
the	web	pages	are	the	records.	The	size	of	the	Google	index	is	estimated	at	around	100
petabytes,	or	100,000,000	gigabytes.	To	find	something	in	an	index	this	large	requires	all
of	the	best	search	techniques.	Although	these	techniques	help	illustrate	how	an	index	this
large	could	be	searched,	they	don’t	tell	us	how	the	index	was	created	in	the	first	place.

Search	engines	use	robots,	programs	that	run	without	direct	human	intervention,	to
build	their	indexes.	The	robots	crawl	all	over	the	Web.	Starting	at	some	particular	web
page,	they	make	a	list	of	all	the	links	on	that	page.	Those	linked	pages	are	then	processed
to	find	links	to	other	pages,	and	so	on.	Eventually	the	robot	has	links	to	most	of	the
content	on	the	Web.

Some	content,	though,	is	more	difficult	to	locate.	Some	pages	can’t	be	reached	from	a
site’s	home	page	but	are	instead	found	through	the	site’s	own	search	engine.	A	news	site,
for	example,	may	not	link	to	older	articles	but	does	provide	a	local	search	for	its	archives.
This	unlinked	but	valuable	content	is	known	as	the	deep	web.	Incorporating	deep	web
content	into	a	search	engine	index	usually	requires	some	assistance	from	the	site.	Site
managers	have	several	ways	to	provide	web-crawling	robots	a	“table	of	contents”	for	all
the	pages	on	the	site,	such	as	a	document	called	a	Sitemap.	This	document	is	named	after
the	site	map	page	some	sites	provide	for	users	to	quickly	find	the	content	they	are	looking
for,	but	has	a	specific	format	that’s	easy	for	robots	to	process.	Sitemaps	keep	search
engines	updated	with	content	changes	and	are	especially	useful	for	sites	with	deep	content
that	would	otherwise	be	left	out	of	search	engine	indexes.

Ranking	Results
As	robots	gather	pages,	search	engines	mine	the	pages	for	keywords,	counting	how	often
each	keyword	appears	on	each	page.	Early	search	engines	employed	little	more	than	a	list
of	keywords	along	with	their	page	counts.	If	you	searched	for	cake,	the	page	where	cake
most	often	appeared	would	be	at	the	top	of	the	returned	list.	That’s	logical	enough,	but	a
mere	word	count	doesn’t	produce	what	we	now	consider	to	be	good	search	results.

The	first	problem	is	that	it’s	too	easy	for	someone	to	exploit	the	system	for	personal
gain.	Suppose	the	operator	of	a	site	selling	knockoff	pharmaceuticals	wants	to	get	a	lot	of
traffic	and	doesn’t	care	how	it’s	done.	When	the	operator	discovers	that	legions	of	people
are	searching	for	omelette	recipe,	the	operator	might	put	those	words	on	the	home	page	as
many	times	as	possible,	even	hiding	the	words	in	the	behind-the-scenes	formatting	code.
As	a	result,	the	site	might	be	among	the	first	returned	on	searches	for	omelette	recipes,
even	though	no	such	recipes	appear	on	the	site.	Word	counts	do	not	guarantee	a	match
between	search	terms	and	content.

Another	website	operator	might	build	a	site	that	is	legitimately	about	omelettes,	but	it’s
filled	with	content	stolen	from	Wikipedia,	in	order	to	generate	revenue	from	ads	about	a
zero-cholesterol	egg	substitute.	In	this	case,	the	word	count	correctly	connects	the	search
term	to	matching	content,	but	the	quality	of	the	content	is	poor.

The	underlying	issue	is	that	the	websites	are	self-reporting	the	nature	and	the	quality	of
their	content.	What’s	missing	is	the	opinion	of	a	disinterested	viewer.	Ideally,	search
engines	could	employ	an	army	of	reviewers	to	determine	what	pages	are	about	and	how
well	they	cover	their	chosen	topics.	The	Web	is	so	vast	and	ever-changing,	though,	that
this	is	a	practical	impossibility.

Instead,	search	engines	rely	on	the	opinions	of	other	websites.	They	acquire	these
opinions	in	the	form	of	inbound	links.	The	number	of	links	to	a	particular	page	is	a	good
metric	for	how	that	page	is	regarded	by	the	online	community.	In	Figure	7-18,	page	C	has
four	inbound	links,	page	D	has	none,	and	each	of	the	others	has	one.	On	this	basis	alone,
page	C	appears	to	be	the	most	valued	resource,	while	A,	B,	and	E	appear	equally	useful.

Figure	7-18:	The	number	of	links	pointing	to	a	page	is	one	factor	used	by	search	engines
to	determine	ranking.

There’s	more	to	the	story	though.	A	page	with	a	high	inbound	link	count	grants	more
points	to	the	pages	it	links	to.	In	the	previous	figure,	three	pages	have	only	one	inbound
link,	but	the	quality	of	each	link	is	different.	Page	E	is	linked	from	page	C,	which	has	a
high	inbound	link	count,	while	pages	A	and	B	are	linked	only	from	each	other.	Factoring
the	quality	of	each	link	into	the	link	count	helps	to	foil	link	farming,	in	which	large
numbers	of	pointless	websites	are	created,	often	through	free	host	services,	for	the	purpose
of	increasing	a	target	site’s	inbound	link	count.

In	effect,	this	turns	the	Web	into	a	collection	of	self-organized	expert	communities.
When	a	number	of	well-regarded	cooking	sites	begin	linking	to	a	new	omelette-focused
site,	which	in	turn	links	back	to	omelette-related	content	in	the	established	sites,	the	new
site	is	inducted	into	the	online	cooking	community.	Thereafter,	the	new	site’s	links	count
as	much	as	the	older,	established	sites.

Using	the	Index	Effectively
While	building	the	index	is	the	bulk	of	the	work	of	making	a	search	engine,	how	the	index
is	used	during	a	search	is	just	as	important.	Good	search	results	require	attention	to	detail.

For	one	thing,	a	search	engine	cannot	merely	use	the	supplied	search	terms	as
keywords.	Consider	the	differences	in	word	forms.	You	might	type	frozen	rain	in	a	search
box,	but	most	pages	with	relevant	information	use	the	form	freezing	rain.	By	linking
together	different	forms	of	keywords	in	its	index,	a	search	engine	can	maximize	the
usefulness	of	results.	This	idea	applies	to	synonymous	terms	as	well.	Because	the	words
insomnia	and	sleeplessness	mean	the	same	thing,	searching	for	either	term	produces
similar	results,	even	though	some	pages	predominantly	use	one	word	or	the	other.	For
example,	the	Wikipedia	article	on	insomnia	appears	in	the	first	few	results	for	either
search	term,	even	though,	at	the	time	of	this	writing,	the	word	sleeplessness	appears	only
twice	in	the	article,	while	the	word	insomnia	appears	over	200	times.

The	results	from	these	search	terms	are	not	identical,	though.	A	search	for	insomnia
will	also	include	links	to	the	2002	film	Insomnia,	but	these	links	aren’t	returned	by	a
search	for	sleeplessness.	That	result	makes	sense—presumably,	no	one	searching	for	the
film	would	have	entered	a	synonym	of	the	film’s	title—but	how	can	a	search	engine	know
the	two	terms	are	linked	in	some	ways	but	not	others?

Tracking	how	search	terms	are	combined	can	yield	valuable	clues.	If	searchers
frequently	add	the	terms	movie	or	film	to	the	term	insomnia,	then	searches	for	just
insomnia	may	indicate	someone	interested	in	the	film	and	not	the	medical	condition.

Furthermore,	the	links	on	a	search	results	page	are	not	actually	direct	links	to	the	listed
pages.	Instead,	they	are	pass-through	links.	For	example,	if	you	search	Google	for
insomnia,	then	click	on	the	link	for	the	Wikipedia	entry,	you’ll	first	be	taken	to	the
google.com	server,	which	will	then	redirect	you	to	wikipedia.org.	Google	tracks	which
result	you	selected,	and	this	data,	collected	from	countless	users	over	time,	allows	Google
to	fine-tune	the	results,	keeping	the	links	that	users	actually	find	useful	near	the	top.

http://wikipedia.org

Search	engines	can	also	make	use	of	the	location	of	the	person	searching.	For	example,
when	you	search	for	smiley’s	pizza	while	you’re	standing	in	a	particular	town,	the	search
engine	appends	the	town’s	name	to	the	search,	so	that	the	results	are	localized,	instead	of
returning	the	websites	of	the	most	popular	pizzerias	with	that	name	in	the	entire	world.

What’s	Next	for	Web	Search
As	impressive	as	current	web	search	capabilities	are,	there’s	still	room	for	improvement.

For	example,	images	provide	unique	challenges	for	search	engines.	Currently,	image
files	are	indexed	based	on	accompanying	text.	A	search	engine	might	gather	clues	from	an
image’s	filename,	or	make	educated	guesses	based	on	the	text	surrounding	the	image	on
the	page.

We	can	soon	expect	the	use	of	computer	vision	techniques	in	web	indexes.	Such
software	techniques	transform	an	image	into	a	description	of	the	image.	In	some	ways	this
is	the	reverse	of	the	graphics	techniques	described	in	Chapters	4	and	5,	where
mathematical	models	were	rendered	into	images.	With	computer	vision,	images	are
simplified	into	mathematical	descriptions	that	are	then	categorized	by	pattern.	Such
software	is	currently	used	in	self-governing	robots,	so	that	they	can	recognize	an	object
they	have	been	sent	to	retrieve.	Future	search	engines	may	process	the	Web’s	images	using
these	techniques,	identifying	both	general	subjects	(“clear	sky,”	“kittens”)	and	specific
subjects	(“Eiffel	Tower,”	“Abraham	Lincoln”)	within	the	images.

Indexes	will	also	be	updated	faster.	Currently	web	indexes	update	only	when	a	web-
crawling	robot	passes	through.	In	the	future,	indexes	may	be	updated	in	near	real	time,	so
that	conversations	quickly	developing	throughout	social	media	can	be	indexed	as	they
happen.	Eventually,	real-time	search	may	be	combined	with	artificial	intelligence	to
automatically	generate	basic	news	stories	from	social	media	for	fast-breaking	events	like
natural	disasters.

But	those	are	tomorrow’s	marvels.	The	Web	and	its	search	engines	are	the	marvel	of
today,	a	powerhouse	of	information	unfathomable	just	a	few	decades	ago.

8
Concurrency

Usually	we	can	tell	when	software	is	doing	something	interesting,	even	if	we	don’t	know
how	it’s	done.	We	know	that	computers	make	graphics,	encrypt	our	transmissions,	and
stream	our	videos.	What	we	miss,	though,	is	that	these	tasks	often	involve	multiple
programs,	multiple	processors,	or	even	multiple	computers	connected	via	a	network,
accessing	the	same	data	at	the	same	time.

This	overlapping	access	of	data,	known	as	concurrency,	is	a	vital	part	of	modern
technology.	High-performance	tasks	like	graphics	and	shared	resources	like	websites
wouldn’t	be	possible	without	it.	But	concurrency	causes	big	problems	when	it’s	not
carefully	managed.	In	this	chapter,	we’ll	see	how	results	can	become	scrambled	when
multiple	processors	access	the	same	data.	Then	we’ll	look	at	the	clever	software	(and
hardware)	techniques	that	keep	processors	from	getting	in	each	other’s	way.

Why	Concurrency	Is	Needed
Situations	that	require	concurrency	fall	into	three	basic	categories:	performance,	multiuser
environments,	and	multitasking.

Performance
Concurrency	is	needed	when	there’s	more	work	to	do	than	a	single	processor	can	handle.
Until	recently,	the	number	of	instructions	a	processor	could	execute	in	a	second	was
steadily	increasing,	but	now	the	pace	of	improvement	has	slowed.	In	order	to	execute
more	instructions	in	the	same	amount	of	time,	a	processor	has	to	run	faster.	The	faster	it
runs,	the	more	power	courses	through	it	and	the	hotter	it	gets,	which	can	eventually
damage	the	components.

To	mitigate	that	problem,	the	size	of	the	components	in	the	processor	keeps	getting
smaller	so	that	they	draw	less	current	and	remain	relatively	cool.	But	it’s	getting	difficult
to	make	processor	components	any	smaller,	which	in	turn	makes	it	difficult	to	make	them
run	any	faster.	When	a	single	processor	can’t	get	the	job	done,	the	only	solution	is	to	use
multiple	processing	cores.	We	saw	this	with	video	game	graphics	in	Chapter	5,	but	it’s	not
just	high-end	game	graphics	that	need	multiple	processors.	Even	today’s	basic	graphics

tasks	may	require	multiple	processor	cores.

Multiuser	Environments
Concurrency	also	allows	networked	computer	systems	to	work	together.	Suppose	you	are
playing	an	online	game	such	as	World	of	Warcraft.	The	game	tracks	each	player’s	actions
as	well	as	those	of	the	computer-controlled	monsters.	The	game’s	servers	tally	every	spell
and	axe	swing,	and	calculate	the	damage	done,	the	monsters	slain,	and	the	loot	dropped.

Concurrency	is	required	here	because	the	processor	in	every	player’s	computer	must
share	the	data	of	nearby	players	and	computer-controlled	creatures.

Multitasking
Concurrency	can	occur	even	in	situations	where	only	one	processor	is	involved.	Modern
computers	multitask,	which	means	they	are	constantly	switching	between	different
programs,	even	when	we	think	we’re	doing	only	one	thing	on	the	computer	at	a	time.	For
example,	multitasking	is	what	allows	your	email	client	to	receive	a	new	message	while
you	surf	the	Web.	In	these	cases,	whether	or	not	the	computer	has	multiple	processor
cores,	it’s	definitely	running	multiple	processes—different	programs	with	overlapping
executions.

Printing	is	another	typical	example.	When	you	print	a	recipe	from	a	website,	the
software	that	manages	the	printer,	known	as	the	driver,	collects	the	print	data	in	an	orderly
queue	and	then	passes	it	on	to	the	printer	as	needed.	This	is	called	print	spooling.	Without
print	spooling,	the	browser	could	send	the	data	only	as	fast	as	the	printer	processed	it,
which	means	that	you	would	have	to	wait	for	the	print	job	to	finish	before	you	could	do
anything	else	with	the	browser.

Print	spooling	can’t	work	without	concurrency.	You	can	think	of	a	print	spool	as	one	of
those	carousels	that	sit	in	the	window	between	the	front	counter	and	the	kitchen	in	a	short-
order	restaurant,	like	the	one	shown	in	Figure	8-1.	Someone	in	the	front	puts	new	orders
on	the	carousel,	and	someone	in	the	back	takes	down	the	orders	as	they	are	fulfilled.	The
shared	data	storage	of	the	carousel	allows	the	order	takers	and	the	cooks	to	work
independently.

Figure	8-1:	An	order-ticket	carousel

This	arrangement	is	known	as	a	shared	buffer	and	is	frequently	used	behind	the	scenes
in	software.	For	example,	suppose	you	are	typing	an	email,	but	your	computer
momentarily	slows	down	so	that	nothing	you	typed	appears	on	screen.	Then	the	system
catches	up,	and	everything	you	typed	is	now	in	the	email.	That	happens	because	the
keyboard	doesn’t	communicate	directly	with	the	email	program,	but	uses	the	operating
system	as	an	intermediary.	The	operating	system	queues	the	keystrokes	in	a	shared	buffer
so	the	email	program	can	access	them	when	ready.

Multitasking	also	allows	programs	to	sit	in	the	background	and	interrupt	you	when
something	significant	happens.	When	a	new	email	alert	appears	in	the	corner	of	your
desktop’s	screen	while	you	are	working	in	a	word	processor,	or	your	phone	signals	a
newly	received	text	message	while	you’re	playing	a	game,	that’s	multitasking	at	work.

Beyond	the	performance	benefits	of	multiple	processors	and	distributed	processing,	the
importance	of	multitasking	means	some	form	of	concurrency	is	required	to	provide	the
basic	computing	functionality	we	rely	on	daily.

How	Concurrency	Can	Fail
Although	concurrency	is	a	vital	part	of	everyday	computing,	it	creates	enormous
headaches	for	software	and	can	produce	serious	problems	if	proper	safeguards	aren’t	in
place	to	prevent	them.

The	underlying	issue	is	how	data	is	copied	when	it’s	used	in	calculations.	Essentially,
all	a	computer	processor	does	is	retrieve	numbers	from	storage	and	either	perform	math
with	them	or	compare	them.	To	do	these	tasks,	though,	it	must	copy	the	numbers	from
wherever	they	are	stored	to	locations	inside	the	processor.	Stored	data	isn’t	changed
directly.	Instead,	the	computer	fetches	the	value	from	main	memory,	or	a	hard	drive,	or
across	a	network,	and	delivers	it	to	the	innermost	part	of	the	processor.	The	processor
performs	the	math	on	this	internal	copy,	and	then	sends	the	updated	value	back	to	storage
to	replace	the	original	data.

Suppose	you’re	playing	a	first-person	shooter	game.	You	have	300	bullets	in	reserve
when	you	run	over	an	ammo	clip,	picking	up	20	more	bullets.	Figure	8-2	shows	the	steps
involved.	To	update	your	bullet	count,	the	processor	first	retrieves	your	current	bullet
count	and	the	number	of	bullets	in	the	clip	from	their	places	in	storage,	shown	in	step	1.
These	values	are	fed	into	the	inputs	of	an	“adder”	circuit	in	the	processor,	as	shown	in	step
2,	which	performs	the	actual	math.	Then	the	result	is	sent	back	to	main	memory,	replacing
the	old	value	in	the	bullet	count	storage	location,	as	shown	in	step	3.

Figure	8-2:	Three	steps	to	update	a	number	from	300	to	320

This	update	sequence	causes	problems	when	multiple	processes	attempt	to	make
alterations	to	the	same	storage	location.	Take,	for	example,	a	massively	multiplayer	online
game	(MMO).	Trina	Orcslayer	and	Skylar	Rockguardian	are	two	players.	They	are	both
officers	of	the	same	“guild,”	and	this	game	allows	guilds	to	hold	shared	bank	accounts
across	multiple	game	servers.	On	Friday	morning,	the	balance	of	the	guild	account	is
exactly	10,000	gold,	and	Skylar	and	Trina	each	have	500	gold	in	their	personal	accounts.
Sometime	that	day,	Skylar	withdraws	300	gold	from	the	guild	account	while	Trina
deposits	200	gold	into	it.	If	these	are	the	only	transactions	that	happen,	the	final	balance
should	be	9,900	in	the	guild	account	(10,000	–	300	+	200),	800	in	Skylar’s	account	(500	+
300),	and	300	in	Trina’s	account	(500	–	200).

And	that’s	what	will	happen	if	the	transactions	are	kept	separate.	Suppose	Skylar
makes	the	withdrawal	in	the	morning,	and	Trina	makes	her	deposit	that	afternoon.	We
won’t	get	into	programming	here,	but	let’s	consider	the	steps	that	the	game	software	will
take	to	carry	out	these	transactions.	Let’s	start	with	Skylar’s	withdrawal:

1.			Retrieve	the	balance	of	the	guild	account.	Call	this	Skylar’s	copy.

2.			Subtract	300	gold	from	Skylar’s	copy.

3.			Add	300	gold	to	Skylar’s	personal	stash.

4.			Update	the	guild	bank	balance	to	Skylar’s	copy.

Now	suppose	Trina	makes	the	deposit	in	the	afternoon.	The	steps	of	her	transaction
are:

1.			Retrieve	the	balance	of	the	guild	account.	Call	this	Trina’s	copy.

2.			Subtract	200	gold	from	Trina’s	personal	stash.

3.			Add	200	gold	to	Trina’s	copy.

4.			Update	the	guild	bank	balance	to	Trina’s	copy.

In	this	example	everything	works	fine.	But	what	happens	if	Skylar	and	Trina	perform
their	transactions	at	the	same	time?	In	that	case,	the	final	balance	of	the	guild	account
could	be	incorrect.	This	happens	if	the	original	guild	balance	of	10,000	gold	is	retrieved
for	calculation	by	both	processes	before	either	of	them	completes	the	transaction.

Take	a	look	at	the	details	shown	in	Table	8-1.	When	Trina	and	Skylar	initiate
transactions	at	the	same	time,	the	same	10,000	balance	is	retrieved	into	their	separate
copies	of	the	balance.	Trina’s	copy	is	increased	to	10,200,	while	Skylar’s	copy	is
decreased	to	9,700.	Then	both	of	the	updated	figures	overwrite	the	guild	account	balance.
In	the	example	shown	in	the	table,	Skylar’s	updated	number	arrives	last,	which	means
9,700	is	the	new	account	balance	and	200	gold	has	simply	vanished.

It	could	have	worked	out	the	other	way—Trina’s	copy	could	have	arrived	after
Skylar’s,	increasing	the	guild’s	gold	balance,	but	of	course	neither	result	is	correct.	The
only	correct	final	balance	is	9,900	gold,	the	balance	that	corresponds	to	the	two
transactions	occurring	separately.

Situations	similar	to	this	example	are	possible	whenever	two	or	more	processes	use	the
same	data	simultaneously.	The	general	term	for	this	situation	is	a	race	condition,	since	all
the	processes	involved	are	racing	to	complete	their	task	first.	In	this	case	the	process	that
finishes	last	“wins,”	because	it	determines	the	final	value	of	the	data.

While	this	example	features	two	different	processors,	Trina’s	and	Skyler’s,	it’s
important	to	note	that	race	conditions	can	happen	even	with	a	single	processor.	Because
multitasking	involves	switching	the	processor	to	a	different	program	many	times	a	second,
multiple	processes	operating	on	the	same	data	could	interleave,	creating	a	race	condition.

Table	8-1:	The	Danger	of	Overlapping	Bank	Transactions

Step Description
Skylar’s Trina’s Guild

copy copy balance

Trina
1 Retrieve	the	guild	balance	from	the	bank. 	 10,000 10,000

Skylar
1 Retrieve	the	guild	balance	from	the	bank. 10,000 	 10,000

Trina
2 Subtract	200	gold	from	Trina’s	stash. 	 10,000 10,000

Trina
3

Add	200	gold	to	Trina’s	copy	of	the	guild
balance. 	 10,200 10,000

Skylar
2

Subtract	300	gold	from	Skylar’s	copy	of	the
guild	balance. 9,700 	 10,000

Skylar
3 Add	300	gold	to	Skylar’s	stash. 9,700 	 10,000

Trina
4

Send	Trina’s	copy	of	the	guild	balance	to	the
bank. 	 10,200 10,200

Skylar
4

Send	Skylar’s	copy	of	the	guild	balance	to	the
bank. 9,700 	 9,700

Making	Concurrency	Safe
In	order	to	make	concurrency	useful,	then,	we	need	to	prevent	race	conditions.	This
requires	enforcing	rules	on	how	processes	can	access	data.	The	tighter	the	restrictions,	the
easier	it	is	to	prevent	problems	from	occurring,	but	these	restrictions	can	have	an	adverse
effect	on	performance.

Read-Only	Data
One	possible	restriction	is	to	allow	processes	to	retrieve	data	simultaneously,	but	prohibit
them	from	changing	it;	this	is	known	as	read-only	data.	This	eliminates	the	possibility	of	a
race	condition	but	at	an	enormous	cost.	Most	applications	that	require	shared	data	access
simply	can’t	work	without	the	ability	to	change	the	data.	So	this	method	is	rarely
considered.	However,	as	we’ll	see	later,	distinguishing	which	processes	want	to	change
data	from	those	that	merely	want	to	read	data	can	improve	the	performance	of
concurrency.

Transaction-Based	Processing

Another	straightforward,	comprehensive	solution	eliminates	simultaneous	data	access
entirely.	The	race	condition	occurs	in	the	example	because	Skylar’s	and	Trina’s
transactions	overlap.	What	if	we	prevent	overlapping	transactions?	To	enforce	this	rule,
once	any	bank	transaction	begins,	we	wait	for	it	to	signal	its	completion	before	any	other
transaction	may	start.	For	example,	the	steps	in	Skylar’s	process	now	might	look	like	this:

1.			Signal	Start	Transaction	to	the	bank	server.

2.			Retrieve	the	balance	of	the	guild	account.	Call	this	Skylar’s	copy.

3.			Subtract	300	gold	from	Skylar’s	copy.

4.			Add	300	gold	to	Skylar’s	personal	stash.

5.			Update	the	guild	bank	balance	to	Skylar’s	copy.

6.			Signal	End	Transaction	to	the	bank	server.

The	steps	in	Trina’s	process	would	be	likewise	bracketed:

1.			Signal	Start	Transaction	to	the	bank	server.

2.			Retrieve	the	balance	of	the	guild	account.	Call	this	Trina’s	copy.

3.			Subtract	200	gold	from	Trina’s	personal	stash.

4.			Add	200	gold	to	Trina’s	copy.

5.			Update	the	guild	bank	balance	to	Trina’s	copy.

6.			Signal	End	Transaction	to	the	bank	server.

The	bank	server	process	enforces	the	transaction	rules.	When	no	transaction	is	under
way,	a	signal	to	start	a	new	transaction	is	immediately	accepted.	So	if	Trina’s	transaction
began	during	an	idle	period,	it	would	continue.	If,	however,	the	start	transaction	signal
from	Skylar’s	process	arrived	while	Trina’s	transaction	was	being	processed,	Skylar’s
transaction	would	have	to	wait	until	Trina’s	transaction	finished.	And	if	other	transactions
arrived	during	this	time,	the	bank	server	would	put	them	in	a	queue,	to	process	them	in	the
order	in	which	they	arrived.

This	rule	transforms	the	guild	bank	into	the	equivalent	of	a	lobby	with	a	single	teller.	If
a	customer	arrives	and	the	teller	is	available,	the	customer	gets	immediate	service;
otherwise,	the	customer	must	wait	until	the	teller	is	free.	This	prevents	race	conditions	but
robs	the	system	of	the	performance	benefit	of	having	multiple	processors.	Just	as	having
one	teller	in	a	busy	bank	means	a	long	wait	for	each	customer,	allowing	only	one
transaction	through	the	bank	server	at	a	time	means	a	relatively	long	wait	for	each
transaction.

The	rule	is	much	too	strict.	At	any	given	time,	the	bank	may	be	handling	a	large
number	of	transactions,	and	few	(if	any)	of	them	involve	the	same	accounts.	This	rule
prevents	race	conditions	by	preventing	all	overlapping	transactions,	even	when	the	overlap
is	harmless.

Semaphores

Another	idea	takes	advantage	of	the	fact	that	most	of	the	transactions	are	not	interacting
with	the	same	data.	If	the	transaction	rule	is	like	a	bank	with	a	single	teller,	a	better	rule
would	be	like	a	bank	where	every	account	has	its	own	personal	teller.	Two	or	more
customers	attempting	to	access	the	same	account	at	the	same	time	will	form	a	queue,	but
customers	accessing	different	accounts	won’t	slow	each	other	down	at	all.

The	secret	ingredient	behind	this	technique	is	a	special	type	of	data	called	a	semaphore.
In	nautical	language,	semaphores	are	flags	that	ships	hoist	to	signal	other	ships;	in
software,	semaphores	are	the	numerical	equivalent	of	flags,	signaling	whether	or	not
logically	connected	data	is	in	use.	The	simplest	type	of	semaphore	has	just	two	possible
values,	0	or	1,	and	is	called	a	binary	semaphore.

How	Semaphores	Prevent	Race	Conditions

Returning	to	our	guild	bank	account,	we	can	avoid	the	race	condition	by	creating
semaphores	on	the	bank	server	for	each	of	the	account	balances.	Each	semaphore	begins
with	a	value	of	1.

Before	requesting	an	account	balance,	a	process	must	first	acquire	the	semaphore
associated	with	that	account.	This	acquire	operation	will	check	the	value	of	the
semaphore.	If	the	semaphore	is	1,	it	means	no	other	process	is	using	the	associated
balance;	in	this	case,	the	semaphore	changes	to	0,	and	the	process	will	be	allowed	to
continue.

If	the	semaphore	is	already	0,	though,	it	means	another	process	is	currently	accessing
the	associated	balance.	In	this	case,	the	software	will	have	to	wait.

When	a	process	completes	its	transaction,	it	releases	the	semaphore,	which
immediately	sets	its	value	back	to	1.	This	allows	one	of	the	processes	waiting	for	the
semaphore	to	continue.

Using	semaphores,	Skylar’s	process	would	look	like	this:

1.			Acquire	the	semaphore	for	the	guild	account.

2.			Retrieve	the	balance	of	the	guild	account.	Call	this	Skylar’s	copy.

3.			Subtract	300	gold	from	Skylar’s	copy.

4.			Add	300	gold	to	Skylar’s	personal	stash.

5.			Update	the	guild	bank	balance	to	Skylar’s	copy.

6.			Release	the	semaphore	for	the	guild	account.

And	Trina’s:

1.			Acquire	the	semaphore	for	the	guild	account.

2.			Retrieve	the	balance	of	the	guild	account.	Call	this	Trina’s	copy.

3.			Subtract	200	gold	from	Trina’s	personal	stash.

4.			Add	200	gold	to	Trina’s	copy.

5.			Update	the	guild	bank	balance	to	Trina’s	copy.

6.			Release	the	semaphore	for	the	guild	account.

In	this	way,	Skylar	and	Trina	are	prevented	from	accessing	the	guild	balance	at	the
same	time,	preventing	the	race	condition.	Additionally,	neither	transaction	will	affect	any
other	transaction	that	doesn’t	deal	with	this	particular	account.

How	Semaphores	Are	Made

Now	let’s	look	at	how	semaphores	are	actually	made.	If	semaphores	aren’t	implemented
with	care,	they	can	produce	the	very	race	conditions	they	are	intended	to	prevent.
Although	the	acquire	operation	is	just	one	step	for	Skylar’s	and	Trina’s	processes,	in
reality,	it	takes	several	steps	itself:

1.			Retrieve	the	value	of	the	semaphore.

2.			If	the	value	is	0,	go	back	to	step	1	and	try	again.

3.			Set	the	semaphore	to	0.

Now	consider	what	happens	if	both	Skylar’s	and	Trina’s	processes	attempt	to	acquire
the	guild	account	semaphore	at	the	same	time.	If	the	semaphore	had	a	value	of	1,	both
processes	could	retrieve	this	initial	value	(in	step	1)	before	either	had	a	chance	to	check
the	value	and	set	it	to	0.	In	this	case,	both	processes	would	think	that	they	were	the	only
process	that	had	acquired	the	semaphore,	and	were	therefore	free	to	do	whatever	they
wanted	with	the	accompanying	bank	balance.	We’re	right	back	where	we	started.

To	make	a	semaphore,	then,	software	needs	some	help	from	hardware.	The	processor
on	the	bank	server	must	be	able	to	implement	the	acquire	and	release	operations	in	such	a
way	that	nothing	can	interrupt	them.	This	is	known	as	making	the	operations	atomic,
which	in	this	sense	means	indivisible.

Modern	processors	implement	a	hardware	operation	known	as	test-andset.	This	sets	a
byte	in	main	memory	to	a	particular	value,	while	retrieving	the	previous	value	for
inspection.	Test-and-set	makes	semaphores	possible.	In	the	list	of	semaphore	steps,	the
problem	is	the	potential	interruption	between	steps	1	and	3.	If	two	different	processes
execute	the	first	step	before	either	reaches	the	third	step,	both	will	be	able	to	alter	the	data
that	the	semaphore	is	supposed	to	protect.	Using	the	atomic	test-and-set	operation,	though,
a	semaphore	acquire	operation	can	be	implemented	like	this:

1.			Using	test-and-set,	set	the	semaphore	to	0	and	retrieve	the	old	value.

2.			If	the	old	value	was	0,	go	back	to	step	1	and	try	again.

Now	the	race	condition	cannot	happen.	If	two	processes	attempt	to	acquire	the	same
semaphore	at	the	same	time,	they	will	each	execute	the	test-and-set	in	step	1.	Both
operations	will	set	the	semaphore	value	to	0,	but	only	the	semaphore	that	tests-and-sets
first	will	retrieve	a	1.	The	other	process	will	retrieve	a	0.	One	process	will	immediately
continue,	while	the	other	will	have	to	wait.

The	Problem	of	Indefinite	Waits
A	process	acquiring	a	semaphore	using	this	two-step	plan—continuously	checking	the

semaphore’s	value	until	it	changes	back	to	1—is	said	to	be	in	a	spin	lock.	This	is	the
simplest	way	to	wait	for	a	semaphore	to	become	available,	but	it	has	two	major	problems.
First,	it	wastes	processor	time.	A	process	in	a	spin	lock	is	continuously	executing	code,	but
the	code	isn’t	doing	anything	useful.	Secondly,	spin	locks	can	be	unfair.	In	some	cases,
some	processes	cannot	check	the	semaphore	as	fast	as	others.	Perhaps	the	process	is
executing	on	a	slower	processor,	or	perhaps	the	process	is	communicating	with	a	server
across	a	slower	network.	Regardless	of	the	reason,	if	a	semaphore’s	resource	is	so	popular
that	multiple	processes	are	always	waiting,	a	slower-checking	process	might	never	be	able
to	snag	the	semaphore.	This	is	known	as	starvation;	picture	the	least-assertive	person	at	a
busy	restaurant	with	only	one	waiter,	and	you’ll	get	the	idea.

Orderly	Queues
Avoiding	starvation	requires	a	more	organized	approach	to	waiting.	Banks	organize	the
wait	in	their	lobbies	with	cordons,	forming	groups	of	waiting	customers	into	orderly
queues.	Semaphores	can	be	designed	to	do	the	same	thing.	Rather	than	waste	time
continually	checking	the	value	of	the	semaphore,	many	acquire	operations	written	so	that
when	they	do	not	succeed	immediately,	they	put	their	process	to	sleep,	so	to	speak.	Putting
a	computer	or	phone	to	sleep	means	suspending	all	running	applications	in	a	way	that
allows	the	applications	to	be	restored	quickly.	In	the	same	way,	if	a	process	cannot
immediately	acquire	a	semaphore,	it	will	be	suspended	and	flushed	out	of	the	processor,
but	its	internal	data	will	remain	in	storage.

To	accomplish	this,	the	computer’s	operating	system	assigns	each	process	a	unique
identification	number.	When	an	acquire	operation	has	to	wait,	the	process	identifier	is
placed	at	the	end	of	that	semaphore’s	wait	list.	When	the	process	currently	holding	that
semaphore	releases	it,	the	first	process	on	the	list	is	awakened.	In	this	way,	processes
acquire	the	semaphore	in	the	same	order	they	request	it.	A	process	may	have	to	wait	to
acquire	a	popular	semaphore,	but	will	eventually	get	to	the	top	of	the	list—	it	won’t	starve.

Starvation	from	Circular	Waits
Although	semaphores	prevent	race	conditions	when	implemented	and	used	correctly,	they
can	cause	starvation	when	processes	need	to	access	multiple	pieces	of	data	that	are
protected	by	semaphores.

Suppose	Skylar	and	Trina’s	guild	opens	a	second	account	that	is	accessible	to	lower-
ranked	guild	officers,	so	now	the	guild	has	a	main	account	and	a	secondary	account.	The
banking	system	has	implemented	semaphores	for	each	individual	account,	eliminating	the
chance	of	a	race	condition	on	any	guild	transactions.

But	on	a	particular	day,	Skylar	and	Trina	are	each	transferring	200	gold	from	one
account	to	the	other	in	opposite	directions.	Both	transactions	involve	debiting	one	account
and	crediting	the	other.	Skylar’s	transaction	would	have	these	steps:

1.			Acquire	the	semaphore	of	the	main	account	balance.

2.			Retrieve	the	balance	of	the	main	account.

3.			Acquire	the	semaphore	of	the	secondary	account	balance.

4.			Retrieve	the	balance	of	the	secondary	account.

5.			Add	200	gold	to	the	secondary	account	balance.

6.			Subtract	200	gold	from	the	main	account	balance.

7.			Update	the	secondary	account	balance.

8.			Update	the	main	account	balance.

9.			Release	the	semaphore	of	the	secondary	account.

10.	Release	the	semaphore	of	the	main	account.

Trina’s	transaction	would	run	like	this:

1.			Acquire	the	semaphore	of	the	secondary	account	balance.

2.			Retrieve	the	balance	of	the	secondary	account.

3.			Acquire	the	semaphore	of	the	main	account	balance.

4.			Retrieve	the	balance	of	the	main	account	balance.

5.			Add	200	gold	to	the	main	account	balance.

6.			Subtract	200	gold	from	the	secondary	account	balance.

7.			Update	the	main	account	balance.

8.			Update	the	secondary	account	balance.

9.			Release	the	semaphore	of	the	main	account.

10.	Release	the	semaphore	of	the	secondary	account.

Because	all	shared	value	access	is	properly	bracketed	by	the	acquisition	and	release	of
associated	semaphores,	no	race	conditions	can	occur	from	the	overlapping	execution	of
these	transactions.	However,	suppose	both	transactions	begin	around	the	same	time	and
the	first	few	steps	interleave	as	shown	in	Table	8-2.

Table	8-2:	Multiple	Semaphores	Leading	to	Indefinite	Waiting

Step Description Main	account
semaphore

Secondary	account
semaphore

	 Initial	state. 1 1

Skylar
1

Acquire	the	semaphore	of	the	main
account	balance. 0 1

Skylar
2

Retrieve	the	balance	of	the	main
account. 0 1

Trina Acquire	the	semaphore	of	the	secondary 0 0

1 account	balance.

Trina
2

Retrieve	the	balance	of	the	secondary
account. 0 0

Skylar
3

Acquire	the	semaphore	of	the	secondary
account	balance. 0 0

Trina
3

Acquire	the	semaphore	of	the	main
account	balance. 0 0

I’ve	shown	only	these	steps	because	these	are	the	only	steps	that	would	occur.	Both
Skylar’s	and	Trina’s	processes	would	halt	at	step	3,	because	both	are	trying	to	acquire
semaphores	that	aren’t	available.	What’s	worse	is	that	they	can	never	become	available,
because	each	is	being	held	by	the	other	process.	This	is	like	waiting	for	traffic	to	clear	so
you	can	turn	left	on	a	two-lane	road,	but	someone	going	the	other	way	wants	to	turn	left
behind	you,	as	shown	in	Figure	8-3.

Figure	8-3:	If	both	white	cars	are	waiting	to	turn	left,	traffic	is	stopped.

Because	neither	process	in	this	example	can	continue	until	the	other	process	completes,
this	situation	is	known	as	a	circular	wait.	In	this	case,	the	circular	wait	involves	only	two
processes,	but	circular	waits	sometimes	involve	many	processes,	and	is	therefore	difficult
to	detect	or	foresee.	A	circular	wait	is	one	form	of	deadlock,	which	describes	a	situation	in
which	a	process	cannot	be	expected	to	continue.	Circular	waits	are	one	way	that
concurrency	can	cause	deadlocks,	and	unless	precautions	are	taken,	a	circular	wait	can
occur	whenever	processes	hold	multiple	semaphores	at	once.	Fortunately,	such
precautions	can	be	easy	to	implement.

One	solution	is	a	rule	by	which	semaphores	must	be	acquired	in	some	specified	order.
In	our	example,	the	game’s	bank	management	system	can	internally	assign	each	account	a
number,	and	require	processes	to	acquire	account	semaphores	in	numerical	order.	Or,	put
more	broadly,	a	process	can	acquire	an	account’s	semaphore	only	when	it	does	not
currently	hold	a	semaphore	for	an	account	with	a	higher	number.	This	rule	prevents	the
circular	wait	in	the	previous	example.	Let’s	suppose	the	main	account	is	39785	and	the
secondary	account	is	87685.	Because	the	main	account	number	is	lower,	both	Skylar’s	and
Trina’s	processes	would	attempt	to	acquire	its	semaphore	first.	If	both	processes	tried	at
the	same	time,	only	one	process	would	succeed.	That	process	would	then	acquire	the
semaphore	for	the	secondary	account	and	complete	the	transaction,	at	which	point	both
account	semaphores	would	be	released,	allowing	the	other	process	to	continue	through
completion.

Performance	Issues	of	Semaphores
With	the	proper	rules	in	place,	semaphores	enable	concurrency	without	fear	of	race
conditions,	deadlock,	or	starvation.	However,	in	situations	where	we	are	trying	to	boost
performance	by	having	multiple	processors	work	together	on	the	same	job,	enforcing	these
semaphore	rules	can	limit	the	performance	benefit	we	hoped	to	create.	Instead	of	lots	of
processors	working	together,	we	are	left	instead	with	lots	of	processors	waiting	in	line	for
an	opportunity	to	work.	Concurrent	software	can	mitigate	these	performance	issues	by
creating	additional	rules.

Sometimes	a	process	needs	access	to	a	piece	of	data	but	doesn’t	need	to	change	it.	In
our	running	guild	bank	example,	suppose	Skylar	and	Trina	are	both	inspecting	the	main
guild	account	at	the	same	time—that	is,	neither	player	is	depositing	or	withdrawing,	but	is
merely	checking	the	balance.	In	this	case,	no	danger	arises	from	the	simultaneous	access
of	the	account.	Even	though	the	processes	would	have	potentially	overlapping	retrieval
operations,	as	long	as	neither	one	of	them	updated	the	balance,	everything	would	be	fine.

Allowing	simultaneous	access	during	“read-only”	situations	greatly	improves
multiprocessor	performance,	and	requires	only	a	modification	of	the	semaphore	concept.
Instead	of	having	one	semaphore	for	each	piece	of	data	to	be	shared,	we’ll	have	two:	a
read	semaphore	and	a	write	semaphore,	subject	to	the	following	rules:

•	Acquiring	the	associated	write	semaphore	allows	data	to	be	retrieved	or	updated,	just
like	how	the	semaphores	worked	in	previous	examples.

•	Acquiring	the	associated	read	semaphore	allows	data	to	be	retrieved,	but	not	updated.

•	A	write	semaphore	can	be	acquired	only	when	no	process	holds	a	semaphore	(of	either
type)	for	that	data.

•	A	read	semaphore	can	be	acquired	only	when	no	process	holds	a	write	semaphore	for
that	data.

Following	these	rules	means	that	at	any	given	time,	either	one	process	will	have
acquired	the	write	semaphore	for	a	piece	of	data	or	one	or	more	processes	will	have
acquired	read	semaphores	for	that	data.	At	first,	this	appears	to	be	what	we	want.	So	long
as	processes	are	merely	looking	at,	but	not	changing	data,	they	can	share	access.	Once	a
process	needs	to	change	the	data,	all	other	processes	are	locked	out	until	the	updating
process	completes	its	work.

Unfortunately,	these	rules	potentially	reintroduce	the	starvation	problem.	As	long	as
read-only	processes	keep	arriving,	a	process	that	needs	a	write	semaphore	might	wait
indefinitely.	To	prevent	this	from	happening,	we	can	modify	the	last	rule	as	follows:	“a
read	semaphore	can	be	acquired	only	when	no	process	is	holding	or	waiting	for	a	write
semaphore.”	In	other	words,	once	a	process	attempts	to	acquire	a	write	semaphore,	all
processes	arriving	later	must	wait	behind	it.

Another	potential	concern	for	performance	is	known	as	granularity,	which	in	this
context	refers	to	whether	we	lock	up	individual	pieces	or	collections	of	data.	For	example,
the	bank	system	could	use	semaphores	to	protect	individual	data	elements,	such	as	the
balance	of	the	main	guild	account,	or	it	could	apply	a	single	read/write	pair	for	all	data

related	to	a	particular	guild’s	finances,	such	as	the	balances	of	all	guild	accounts,	the	list	of
guild	officers	who	are	allowed	to	access	that	account,	and	so	on.

Protecting	data	as	a	group	can	cause	more	waiting,	because	a	process	that	may	need
only	one	or	two	numbers	in	a	data	group	will	have	to	lock	up	all	the	data	in	the	group,
potentially	blocking	another	process	that	needs	other,	nonoverlapping	data	from	the	group.
Very	fine	granularity	can	also	hinder	performance.	Acquiring	and	releasing	semaphores
takes	time,	and	with	lots	of	semaphores,	it’s	possible	for	processes	to	spend	most	of	their
time	dealing	with	them.	Developers	must	therefore	carefully	determine	the	best
granularity	for	a	particular	application.

What’s	Next	for	Concurrency
For	several	reasons,	we	can	expect	concurrency	to	be	an	even	greater	concern	for	the
future.

These	days,	multiple	processing	cores	can	be	found	even	in	our	simplest	computing
devices.	The	push	for	more	processing	power	will	continue,	and	until	the	arrival	of	a	new
processing	paradigm	like	quantum	computing,	more	processing	power	will	mean	more
processor	cores.

Multitasking	is	now	the	norm.	We	expect	our	computing	devices	to	run	multiple
applications	at	the	same	time,	and	to	interrupt	our	foreground	tasks	when	something
interesting	happens	in	the	background.

Data	and	devices	are	becoming	more	connected	than	ever.	Data	and	processing	are
increasingly	being	moved	from	client	devices	onto	servers	or	clouds	of	interconnected
servers.	In	computer	gaming,	socialization	is	the	new	paradigm,	and	in	some	games,	even
single-player	game	modes	require	an	Internet	connection.

In	short,	properly	handling	concurrency	is	becoming	essential	in	everyday	computing.
What	looks	like	a	single	computer	running	a	single-user	application	may	contain	a
multiprocessor	that	provides	a	multitasking	environment	with	shared	cloud	storage	for
data.	The	vital	power	of	concurrency	is	thus	often	invisible.	As	the	trend	toward	even
greater	concurrency	continues,	we	may	take	for	granted	the	way	in	which	so	many
processes	work	together	without	running	into	one	another.	But	future	improvements	in
computing	depend	upon	further	advancements	in	concurrency	control.	We	don’t	know	yet
whether	current	methods	of	preventing	deadlock,	starvation,	and	race	conditions	will	be
sufficient	as	concurrency	increases.	If	current	methods	are	inadequate	for	solving	future
challenges,	they	will	become	the	bottleneck	until	better	methods	are	developed.

9
Map	Routes

Because	we	can	instantly	get	directions	using	sites	like	Google	Maps,	we	forget	that	not
long	ago	people	often	got	lost	driving	to	unfamiliar	destinations.	Now	software	plans	our
route	for	us	and	even	alters	the	route	mid-trip	if	an	accident	or	road	closure	blocks	our
way.

In	computing,	this	task	is	called	finding	the	shortest	path.	Despite	the	name,	the	goal
isn’t	always	to	find	the	shortest	path,	but	more	generally	to	minimize	the	cost,	where	the
definition	of	cost	varies.	If	the	cost	is	time,	the	software	finds	the	fastest	route.	If	the	cost
is	distance,	the	software	minimizes	the	mileage,	truly	finding	the	shortest	path.	By
changing	how	cost	is	defined,	the	same	software	methods	can	find	routes	to	match
different	goals.

What	a	Map	Looks	Like	to	Software
Although	software	can	provide	directions,	it	can’t	actually	read	a	map.	Instead,	it	uses
tables	of	data.	To	see	how	we	get	from	a	map	to	a	table	of	data,	let’s	begin	with	Figure	9-
1,	which	shows	a	portion	of	a	city	map	for	a	simple	routing	problem.	The	goal	is	to	find
the	quickest	route	from	the	corner	of	3rd	Street	and	West	Avenue	to	the	corner	of	1st
Street	and	Morris	Avenue.	The	numbered	arrows	alongside	the	streets	show	the	average
driving	time	in	seconds	between	intersections.	Note	that	1st	Street	and	Morris	Avenue	are
one-way	streets.

Figure	9-1:	A	simple	routing	problem:	find	the	fastest	route	from	3rd	and	West	to	1st	and
Morris.

To	produce	a	data	table	that	can	be	processed	by	software,	we	first	reconceptualize	the
map	as	the	directed	graph	shown	in	Figure	9-2.	Here,	the	street	intersections	are
represented	as	points	labeled	A	through	I.	The	arrows	in	Figure	9-1	become	connections
between	points	on	the	graph,	known	as	edges.

Figure	9-2:	The	map	from	Figure	9-1	as	a	directed	graph

Using	the	directed	graph,	we	put	the	data	into	the	tabular	form	shown	in	Table	9-1.
This	table	contains	all	of	the	information	from	the	map	in	Figure	9-2	that	software	needs
to	find	the	fastest	route.	In	Figure	9-2,	for	example,	travel	time	from	A	to	B	is	23	seconds;
the	same	information	is	provided	by	the	first	row	of	the	table.	Note	that	travel	in
impossible	directions,	such	as	from	H	to	G,	is	not	listed.

Table	9-1:	The	Data	from	the	Directed	Graph	of	Figure	9-2	in	Tabular	Form

From To Time

A B 23

A D 19

B A 15

B C 7

B E 11

C B 9

D A 14

D E 17

D G 18

E B 18

E D 9

E F 33

E H 21

F C 12

F E 26

G D 35

G H 25

H E 35

H I 28

I F 14

Best-First	Search
Now	we’re	ready	to	find	the	quickest	route	on	the	map,	which	means	finding	the	lowest-
cost	path	from	A	to	I	on	our	graph.	Many	methods	exist	for	solving	this	problem;	the
variation	I’ll	describe	is	a	type	of	algorithm	called	a	best-first	search.	Calling	this
algorithm	a	“search”	may	be	a	little	misleading,	because	this	method	doesn’t	aim	for	the
destination.	Instead,	at	each	step	it	finds	the	best	new	route	from	the	starting	point	to	any
point	it	hasn’t	already	routed	to.	Eventually,	this	procedure	stumbles	upon	a	route	to	the
destination,	which	will	be	the	cheapest	route	possible	from	the	start	to	the	goal.

Here’s	how	best-first	search	works	for	our	example.	All	routes	starting	at	A	must	first
travel	to	either	B	or	D.	The	algorithm	starts	by	comparing	these	two	choices,	as	shown	in
Figure	9-3.

Figure	9-3:	The	first	step	in	our	best-first	search.	Starting	from	A,	we	can	travel	either	to
B	or	D.

In	these	figures,	black	circles	mark	the	points	we’ve	found	the	best	paths	to,	while	gray
circles	indicate	points	we	can	reach	directly	from	one	of	the	marked	(black)	points.	The
numbers	inside	the	circles	represent	the	cost	of	the	route	to	that	point.	In	each	step,	the
search	examines	all	edges	extending	from	marked	to	unmarked	points	to	find	the	edge	that
produces	the	lowest-cost	route.	In	this	first	step,	the	choice	is	between	the	A-to-B	edge
and	the	A-to-D	edge.	Because	the	travel	time	to	D	is	less	than	the	travel	time	to	B,	the
lowest-cost	route	is	from	A	to	D,	as	shown	in	Figure	9-4.

We’ve	just	found	the	cheapest	possible	route	from	A	to	D.	No	matter	what	the	rest	of
the	graph	looks	like,	it	can’t	contain	a	lower-cost	route	from	A	to	D,	because	this	is	the
lowest-cost	route	of	all	routes	starting	from	A.	In	the	same	way,	each	step	will	produce	a
new	route	that	will	be	the	lowest-cost	route	possible	from	A	to	some	other	point.

In	the	second	step,	there	are	four	edges	to	consider:	the	A-to-B	edge	and	the	three
edges	extending	from	D.	Again,	the	algorithm	will	choose	the	edge	that	creates	the	fastest
new	route.	In	considering	the	edges	extending	from	D,	we	have	to	include	the	19	seconds
from	A	to	D.	For	example,	the	time	required	to	travel	from	A	to	E	through	D	is	the	sum	of
the	A-to-D	edge	time	(19)	and	the	D-to-E	edge	time	(17),	which	is	36	seconds.

Note	that	one	edge	from	D	leads	back	to	A.	In	Figure	9-4,	the	circle	at	the	end	of	that
edge	is	white	to	indicate	that	it	will	never	be	chosen.	There’s	no	benefit	in	taking	a	round
trip	back	to	our	starting	point.	More	generally,	once	a	point	has	been	included	in	a	route
(marked	black	in	the	figures),	later	appearances	of	that	point	are	ignored,	because	a	better
route	to	it	has	already	been	found.

At	this	stage,	the	lowest-cost	new	route	is	made	using	the	A-to-B	edge.	This	brings	us
to	the	stage	shown	in	Figure	9-5.	Again,	because	we’ve	found	the	lowest-cost	route	of	all
remaining	routes,	that	makes	this	A-to-B	route	the	fastest	possible	way	to	get	from	A	to	B.

Figure	9-4:	In	the	second	step	of	our	search,	the	best	new	route	leads	to	D.	Marking	D
exposes	three	new	routing	possibilities,	one	of	which	leads	back	to	our	starting	point.

Figure	9-5:	The	third	step	in	our	best-first	search	finds	the	best	route	to	point	B.

We	have	six	edges	to	consider	next,	although	the	edges	leading	back	to	A	aren’t
contenders.	The	best	choice	uses	the	B-to-C	edge	to	make	an	A-to-C	route	of	30	seconds,
as	shown	in	Figure	9-6.

Figure	9-6:	The	fourth	step	in	our	search	finds	the	best	route	to	point	C.

Finding	the	fastest	route	to	C	doesn’t	help	us	reach	our	ultimate	goal,	though.	From	C,
we	can	only	return	to	B,	to	which	we	already	know	the	fastest	route.

At	this	stage,	the	fastest	new	route	is	the	one	going	through	B	to	E,	as	shown	in	Figure
9-7.

Figure	9-7:	The	fifth	step	in	our	best-first	search	finds	the	best	route	to	E.

This	process	continues	until	we	have	reached	the	state	shown	in	Figure	9-8.	At	this
stage,	the	lowest-cost	new	route	uses	the	edge	from	H	to	I,	which	means	we’ve	finally

identified	the	best	route	from	A	to	I.

Figure	9-8:	The	ninth	and	final	step	in	our	best-first	search	reaches	point	I.

As	shown,	the	fastest	route	from	A	to	I	is	A-B-E-H-I.	Looking	at	our	original	map	in
Figure	9-1	and	its	graph	equivalent	in	Figure	9-2,	we	can	see	that	this	corresponds	to
taking	3rd	Street	to	Kentucky	Avenue,	taking	a	left	on	1st	Street,	and	driving	one	block	to
our	destination.

Reusing	Prior	Search	Results
In	this	example,	the	best-first	search	found	not	only	the	fastest	route	from	A	to	I,	but	also
the	fastest	route	to	every	other	point	on	the	map.	Although	this	is	an	unusual	result,	the
best-first	process	typically	produces	a	surplus	of	information.	At	a	minimum,	the	search
results	will	also	provide	the	best	routes	between	intermediate	points	that	lie	along	the
route	between	the	start	and	destination	points.	In	our	example,	the	best	route	from	A	to	I
contains	the	best	routes	from	B	to	H,	and	from	E	to	I,	and	so	on.	For	this	reason,	the
results	of	best-first	searches	can	be	stored	for	later	use.

We	can	even	use	this	data	in	searches	involving	points	that	weren’t	part	of	the	original
map	data.	To	see	why,	consider	Figure	9-9.	This	is	the	same	directed	graph	in	Figure	9-2
except	that	it	includes	a	new	point,	J,	that	has	edges	to	A	and	B.

Figure	9-9:	The	directed	graph	from	Figure	9-2	with	an	additional	point,	J

Suppose	we	need	to	find	the	fastest	route	from	J	to	I.	Any	route	from	J	begins	by	going
to	either	A	or	B.	We	already	know	the	fastest	routes	from	A	and	B	to	I	from	the	results	in
Figure	9-8.	The	fastest	route	from	A	to	I	takes	83	seconds.	The	fastest	route	from	B	to	I
takes	60	seconds;	we	find	this	by	subtracting	the	A-to-B	edge	time	of	23	seconds	from	the
total	A-to-I	time	of	83	seconds.

This	means	that	the	J-to-I	route	that	starts	by	heading	to	A	takes	102	seconds—19
seconds	to	reach	A,	and	83	seconds	to	follow	the	best	route	from	A	to	I.	The	route	that
heads	directly	to	B	takes	96	seconds:	36	seconds	to	reach	B,	and	60	seconds	from	there	to
reach	I.	Using	the	previous	search	results	makes	finding	the	fastest	J-to-I	route	much
simpler.

Finding	All	the	Best	Routes	at	Once
In	general,	then,	storing	past	search	results	benefits	future	searches.	This	idea	can	be
extended	to	efficiently	find	the	best	routes	between	any	two	points	on	a	given	map,	which
is	known	as	the	all-pairs	shortest	paths	problem.

Floyd’s	Algorithm
We’ll	solve	the	all-pairs	shortest	paths	problem	using	Floyd’s	algorithm	(sometimes	called
the	Floyd-Warshall	algorithm),	which	starts	with	simple	routes	of	individual	edges,	then
builds	longer	routes	by	connecting	the	existing	routes	using	each	point	on	the	map	in	turn.
This	method	uses	a	grid,	the	initial	state	of	which	is	shown	in	Figure	9-10.	At	each	step	in
the	process,	the	grid	contains	the	costs	of	the	best	routes	between	every	pair	of	points.	At
the	start,	the	only	known	routes	are	the	edges	that	directly	connect	points,	the	same	data
from	Figure	9-2	and	Table	9-1.	For	example,	the	23	in	row	A,	column	B,	represents	the
cost	of	travel	from	A	to	B.	The	cost	is	0	where	the	“from”	and	“to”	points	are	the	same.

Figure	9-10:	The	initial	grid	of	numbers	for	Floyd’s	algorithm.	At	this	stage	the	only
routes	in	the	grid	are	the	direct	connections	between	points.

As	the	process	continues,	this	grid	will	be	filled	in	and	modified.	New	routes	will	be
added	where	none	initially	exist,	such	as	from	A	to	F.	Routes	with	lower	costs	will	replace
existing	routes;	if	we	can	find	a	way	to	get	from	G	to	D	in	less	than	35	seconds,	for
example,	we’ll	replace	the	35	currently	in	the	grid.

We	start	by	considering	point	A	as	a	route	connector.	From	Figure	9-10,	we	can	see

that	B	and	D	have	routes	to	A.	Because	A	has	routes	back	to	B	and	D,	A	can	connect	B	to
D	and	D	to	B.	These	new	routes	are	shown	as	gray	squares	in	Figure	9-11.

Figure	9-11:	Discovering	new	routes	using	point	A	as	a	connector

The	cost	of	new	routes	is	the	sum	of	the	costs	of	the	two	routes	we	are	connecting.	In
Figure	9-11,	the	cost	of	the	B-to-D	route	(34)	is	the	cost	of	the	B-to-A	route	(15)	plus	the
cost	of	the	A-to-D	route	(19),	as	indicated	by	the	arrows.	The	cost	of	the	D-to-B	route	(37)
is	computed	the	same	way,	as	the	sum	of	the	D-to-A	route	(14)	and	the	A-to-B	route	(23).

In	the	next	step,	we	use	point	B	to	connect	existing	routes.	This	produces	a	whopping
eight	new	routes,	as	shown	in	Figure	9-12.

Figure	9-12:	Discovering	new	routes	using	point	B	as	a	connector

As	with	the	previous	step,	the	cost	of	each	new	route	is	the	sum	of	the	costs	of	the	two
routes	we	are	connecting.	For	example,	the	cost	of	the	new	A-to-E	route	(34)	is	the	sum	of
the	A-to-B	cost	(23)	and	the	B-to-E	cost	(11).

In	the	next	step,	using	C	to	connect	existing	routes	reveals	three	new	routes,	as	shown
in	Figure	9-13.

Figure	9-13:	Discovering	new	routes	using	point	C	as	a	connector

In	the	next	step,	we	have	our	first	instance	of	a	better	route.	Previously	we	found	a	33-
second	route	from	E	to	A.	In	this	step,	we	discover	a	23-second	route	from	E	to	A	through
D,	and	update	the	grid	with	the	lower	cost.	Nine	new	routes	are	also	found,	bringing	us	to
the	state	shown	in	Figure	9-14.

Figure	9-14:	Discovering	new	routes	using	point	D	as	a	connector

This	process	continues,	using	the	points	E	through	I	to	connect	routes	in	turn,	resulting
in	the	complete	grid	shown	in	Figure	9-15.	By	relating	the	points	back	to	the	street	names
on	the	original	map,	routing	software	can	use	this	grid	to	provide	the	fastest	time	between
any	two	locations	on	the	map.	If	you	want	to	know	how	many	seconds	it	should	take	to	get
from	the	corner	of	1st	and	West	to	the	corner	of	3rd	and	Morris,	the	software	will	translate
this	into	a	query	about	the	G-to-C	route	on	the	graph.	Then	the	answer	can	be	found	right
there	in	the	grid:	77	seconds.

Figure	9-15:	The	complete	grid	produced	by	Floyd’s	algorithm,	showing	the	fastest	time
possible	from	each	point	to	every	other	point

Storing	Route	Directions
What	this	grid	doesn’t	tell	you,	as	you	may	have	noticed,	is	what	that	fastest	route	is—
only	how	much	time	it	takes.	For	example,	you	can	see	that	the	fastest	route	from	A	to	I
takes	83	seconds,	but	does	that	route	begin	by	going	east	or	south,	and	where	do	you	make
the	first	turn?	In	order	to	record	the	route	itself,	we	must	record	the	initial	direction	of	the
routes	when	updating	route	times	in	the	grid.

Figure	9-16	shows	the	starting	grid.	As	before,	the	grid	will	be	used	to	store	the	costs
of	the	best	routes	found	so	far,	but	now	it	will	also	store	the	initial	direction	of	travel	for
each	route.	This	starting	grid	contains	just	the	edges	of	the	original	graph.	The	23	and	B	in
the	second	column	of	the	first	row	means	the	best	route	from	A	to	B	costs	23	and	starts	by
heading	toward	B.

Figure	9-16:	The	initial	grid	for	Floyd’s	algorithm,	amended	to	store	the	direction	of
travel	for	each	route

In	Figure	9-17,	we	use	A	to	connect	existing	routes,	as	we	did	in	Figure	9-11.	But	now,
adding	or	updating	a	route	in	the	grid	means	recording	the	direction	as	well.	The	new
route	from	B	to	D,	for	example,	begins	by	going	to	A.	The	logic	is:	“We’ve	just
discovered	a	route	from	B	to	D	that	goes	through	A.	The	fastest	known	route	from	B	to	A
heads	directly	to	A.	Therefore,	the	route	from	B	to	D	must	also	start	by	going	to	A.”

Figure	9-17:	Discovering	new	routes	using	point	A	as	a	connector

Skipping	over	the	steps	for	B	and	C,	Figure	9-18	shows	the	grid	just	after	we’ve	added
the	routes	for	D.	Here	we’ve	found	a	new	route	from	B	to	G	that	takes	52	seconds.
Because	this	new	route	goes	through	D,	the	route	must	begin	the	same	way	the	route	to	D
begins—by	traveling	to	A.

Figure	9-18:	Discovering	new	routes	using	point	D	as	a	connector

Figure	9-19	shows	the	completed	grid,	with	the	times	removed	for	clarity.

Figure	9-19:	The	complete	routing	grid	produced	by	Floyd’s	algorithm,	showing	the

direction	of	travel.	The	fastest	route	from	A	to	I	is	highlighted.

The	fastest	route	from	A	to	I	is	highlighted	in	the	grid.	We	start	at	row	A,	column	I,	and
see	the	fastest	route	from	A	to	I	starts	by	going	to	B.	So	then	we	look	at	row	B	and	see	the
fastest	route	from	B	to	I	heads	to	E.	The	route	from	E	heads	to	H,	and	the	route	from	H
reaches	I.	Using	this	grid	is	like	stopping	at	every	street	corner	and	asking,	“Which	way
should	I	turn?”

The	Future	of	Routing
Today’s	software	can	provide	accurate	directions	in	an	instant,	so	what	can	tomorrow’s
mapping	software	possibly	do	better?

Improvements	in	mapping	will	come	from	improvements	in	data.	For	example,	if	the
software	has	access	to	hourly	traffic	data,	it	can	tailor	directions	to	the	time	of	the	trip.

Real-time	traffic	data	may	also	be	integrated	into	mapping	software.	For	example,	most
mapping	programs	don’t	know	about	traffic	issues	until	the	user	requests	a	new	route.	In
the	future,	your	mapping	software	may	find	out	about	accidents	and	road	closures	before
you	do	and	route	you	around	the	problems.	Weather	data	may	also	be	included	to	provide
more	accurate	estimates	of	travel	time,	and	to	accommodate	the	preferences	of	drivers
who	wish	to	avoid	driving	in	heavy	rain	or	other	troubling	conditions.

Routing	is	just	a	small	part	of	a	larger	area	of	software	called	geographic	information
systems	(GIS),	which	uses	software	to	answer	questions	about	maps	and	location-tagged
data.	Some	GIS	tasks	have	nothing	to	do	with	routing,	such	as	determining	if	an	area
contains	enough	potential	customers	to	support	a	new	grocery	store.	But	many	interesting
GIS	projects	combine	the	map	routing	concepts	from	this	chapter	with	data	about	what’s
inside	buildings	along	a	map’s	roadways.	By	tracking	where	schoolchildren	live,	for
example,	GIS	software	can	plan	the	most	efficient	routes	for	school	buses.

In	the	future,	routing	software	may	expand	to	encompass	more	of	the	abilities	of
general	GIS	tools.	When	you	need	a	route	for	a	long	drive	out	of	town,	the	software	may
not	provide	just	the	turns	you	need	to	take,	but	also	highlight	places	where	you	might	want
to	stop,	like	the	best-priced	gas	stations	and	the	restaurants	that	serve	your	favorite	food.

Index

Numbers
2001:	A	Space	Odyssey,	142

2D	graphics,	61–69

3D	graphics,	69.	See	also	rendering

A
acquire	operation,	168,	170

adder	circuit,	164

additive	color	mixing,	60

AES	(Advanced	Encryption	Standard),	9–18,	55

block	chaining,	15,	55

combining	with	RSA,	48–49

data	organization	under,	11

key	expansion,	13–14

overview,	12

performance	vs.	RSA,	48

possible	weaknesses,	17–18

S-box,	13,	14

security	of,	16

aliasing,	66,	80,	99

all-pairs	shortest	path,	183.	See	also	Floyd’s	algorithm

alpha	blending,	67–68,	82

alpha	channel,	68,	78,	82

alpha	level,	67

ambient	lighting,	96–97

ambient	occlusion,	96

American	Standard	Code	for	Information	Interchange	(ASCII),	12,	20–22,	119–120

AND	(bitwise	operation),	23,	25

angle	of	incidence,	74,	75

angle	of	reflectance,	74

animation

cel,	59

ink	and	paint,	59,	65

interpolation,	63

anti-aliasing,	66–67

alpha	blending,	67–68

full-screen,	80

FXAA,	111

multisampling,	111

post-process,	111

real-time,	108–113

supersampling,	109

ASCII	(American	Standard	Code	for	Information	Interchange),	12,	20–22,	119–120

atomic	operation,	169

attacks,	2

brute-force,	5,	16,	20,	47

collision,	26

dictionary,	28

frequency	analysis,	6,	9,	15,	17

known-plaintext,	6

man-in-the-middle,	52,	56

related-key,	17

timing,	17

authentication,	19,	26,	34.	See	also	RSA

authority,	51,	53

avalanche,	17,	21

Avatar,	69

axis,	61

B
best-first	search,	178–181

marked	points,	178,	179,	180

reusing	results,	181–182

surplus	information,	181

B-frame,	139

bidirectional	frame,	139

bilinear	filtering,	101

in	FXAA,	112

binary,	10

ASCII,	12

bit,	10

byte,	10

search,	151

binary	addition,	22

binary	search,	151–152,	153

binary	semaphore,	168

bit,	10

bitmap,	61,	116

alpha	channel,	68,	78,	82

coordinate,	61

depth	buffer,	91,	95,	96

display	buffer,	61

height	map,	106

mipmap,	102

origin,	61

resolution,	61

shadow	map,	95

texture,	97

translucency,	68,	78

bitwise	operations,	11

AND,	23,	25

binary	addition,	22

NOT,	23,	25

OR,	23,	25

rotation,	14

XOR,	11,	14,	15

bitwise	rotation,	14

Blair	Witch	Project,	The,	142

block	chaining,	15

blue	difference	(Cb),	124

Blu-ray,	116,	143

brute	force	attack,	5,	16,	20,	47

buffer,	shared,	163

buffering,	143

bump	mapping,	106,	107

byte,	10

C
Cb	(blue	difference),	124

cel	animation,	59

central	processing	unit.	See	CPU	(central	processing	unit)

certificate,	53

CGI	(computer-generated	imagery),	57–59,	82–83.	See	also	3D	graphics;	rendering

chain	merging,	31

cipher	key.	See	key	(encryption)

ciphertext,	2,	3,	8

circular	wait,	172

clear	reflection,	103

client,	52

Cloverfield,	142

code	book,	9

coefficient,	126

collision,	20,	26

collision	attack,	26

color

additive,	60

RGB,	60,	116,	124

subtractive,	60,	76

YCbCr,	124

composite	number,	40

compression,	116

deflate,	122

dictionary,	118–122

Huffman	encoding,	120,	134

of	JPEG	pixel	blocks,	132

lossless,	116

lossy,	116,	124

MPEG-2,	138

predictive	encoding,	122

quantization,	123,	132

run-length	encoding,	117,	123,	133,	142

sliding	window,	122

temporal,	138

TGA	file	format,	117

.zip	file	format,	122

compression	ratio,	118

dictionary	compression,	120

JPEG,	135

MPEG-4,	143

TGA,	118

.zip	file,	122

computer	security.	See	security

computer	vision,	160

computer-generated	imagery	(CGI),	57–59,	82–83.	See	also	3D	graphics;	rendering

concurrency,	161

atomic	operation,	169

deadlock,	172

multitasking,	162–163,	174

multiuser	environments,	162

performance,	162

print	spooling,	162

problems	of,	163–166

race	condition,	165–169

read-only	data,	166,	173

semaphore,	168–174

shared	buffer,	163

starvation,	170,	172,	173

transaction,	166–167

control	point,	62

coordinates,	61

axis,	61

control	point,	62

conversion,	61,	71,	88,	96

interpolation,	63

local,	62

model,	62

origin,	61

projection,	71

scaling,	64

screen,	61,	88,	96

translation,	64

world,	70,	88

x,	61

y,	61

z,	69

coprime	number,	40

core,	86,	162,	174

cost,	175,	178,	183,	184

computing	route	cost,	179,	182

defining	per	problem,	175

CPU	(central	processing	unit),	86

adder,	164

core,	86,	162,	174

performance	characteristics,	86

test-and-set,	169

updating	data,	163,	165

Cr	(red	difference),	124

crack,	17

crib,	6,	9,	16

cut	scene,	86

D
data	collection,	146

dynamic,	154

hash	table,	154

static,	154

data	compression.	See	compression

DCT	(discrete	cosine	transform),	125–131,	141

deadlock,	172

deblocking	filter,	143

decimal,	10

decryption,	2

deep	web,	157

deflate,	122

depth	buffer,	91,	95,	96

depth	buffering,	91–92

dictionary,	28

dictionary	attack,	28

dictionary	compression,	118–122

diffuse	reflection,	74,	77,	92,	93,	107

diffusion,	16

digital	composition,	82

digital	image,	59

digital	signature,	25–26,	53

validation,	53

weaknesses,	26

direct	lighting,	76

directed	graph,	176

coverting	to	table,	176

edge,	176

point,	176

discrete	cosine	transform	(DCT),	125–131,	141

display	buffer,	61

dissolve,	82

distance	effect,	72–73,	92

distant	impostor,	106,	108

dynamic	data	collection,	154

E
edge,	176

encryption,	2

avalanche,	17

crack,	17

diffusion,	16

key.	See	key	(encryption)

one-time	pad,	9

public-key,	38

RSA.	See	RSA

shared	key	problem,	18,	37

substitution,	6

symmetric	key,	18

transposition,	2

environment	mapping,	103–105

exclusive-or.	See	XOR

F
factor,	40,	41

fast	approximate	anti-aliasing	(FXAA),	111

field	of	view,	89

finding	the	shortest	path,	175

fixed-size	storage,	152,	153

Floyd’s	algorithm,	183–189

connecting	routes,	183,	187

grid,	183,	186

improving	routes,	185

route	directions,	186–189

focus,	79

fps	(frames	per	second),	59,	116,	144

frame,	59,	116

buffering,	143

macroblock,	139

frame	rate,	59

frames	per	second	(fps),	59,	116,	144

frequency	analysis,	6,	9,	15,	17

full-screen	anti-aliasing,	80

functions,	39

hash,	20–21

invertible,	39–42

one-way,	39,	42

square,	39

square	root,	39

trapdoor,	40

FXAA	(fast	approximate	anti-aliasing),	111

G
geographic	information	systems	(GIS),	189

global	illumination	model,	76

GPU	(graphics	processing	unit),	87,	90

granularity,	173

graph,	directed.	See	directed	graph

graphics	accelerator,	86

graphics	processing	unit	(GPU),	87,	90

group	of	pictures,	138

H
H.264	standard,	143

handshaking,	52–54

hash	chaining,	29–31

chain	merging,	31

reduction	function,	29,	31

hash	table,	29,	31

hashing,	20–23,	154–156

avalanche,	17,	21

collision,	20,	26

desirable	properties,	20–21

digital	signature.	See	digital	signature

encoded	password,	21

irreversibility,	20,	25

iterative,	32–33

keyed,	55

MAC,	55

MD5.	See	MD5

reduction	function,	29,	31

rehashing,	156

salt,	34,	35

slot,	154

tombstone,	156

height	map,	106

HTTPS,	52–56

authority,	53

certificate,	53

handshaking,	52–54

issuer,	53

MAC,	55

master	secret,	54

premaster	secret,	53

security	of,	55–56

session,	52

transmission,	54–56

Huffman	encoding,	120,	142

code	creation,	120

in	JPEG,	134

I
IDCT	(inverse	discrete	cosine	transform),	127

I-frame,	138,	139

images

digital,	51–60

searching	for,	160

inbound	link,	158

indexing,	152–154

indirect	lighting,	76

ink	and	paint,	59,	65

interpolation,	63

intracoded	frame,	138

inverse	discrete	cosine	transform	(IDCT),	127

issuer,	53

iterative	hashing,	32–33

J
jaggies,	66,	80,	89,	109,	112

Joint	Photography	Experts	Group,	123

JPEG,	123–136

adjusting	quality,	135

compressing	pixel	blocks,	132

compression	ratio,	135

DCT,	125

picture	quality,	135–136

Jurassic	Park,	57–58

K
Kerckhoffs’s	principle,	4,	5,	27,	33

key	(encryption),	4

AES,	9–14

asymmetric,	38

code	book,	9

expansion,	9

keyed	hashing,	55

MAC,	55

private,	38,	44,	45,	50

public,	38,	43,	44,	45,	50

related-key	attack,	17

shared	key	problem,	18,	37

size,	20,	47

symmetric,	18

key	(search),	146,	151

key	expansion,	9

keyframe,	59

known-plaintext	attack,	6

L
Lady	and	the	Tramp,	59

LaserDisc,	116

LCD	(liquid	crystal	display),	60

light-emitting	diode	(LED),	60

lighting,	71–80

ambient,	96–97

angle	of	incidence,	74,	75

angle	of	reflectance,	74

bump	mapping,	106,	107

diffuse	reflection,	74,	77,	92,	93,	107

direct,	76

distance	effect,	72–73,	92

indirect,	76

model,	72

normal,	92,	93,	107

ray	tracing.	See	ray	tracing

real-time,	92–97

reflection,	80

clear,	103

environment	mapping,	103–105

shadow.	See	shadow

specular	reflection,	75,	77,	92,	107

link	farming,	159

links

farming,	159

inbound,	158

pass-through,	159

liquid-crystal	display	(LCD),	60

local	coordinate,	62

lossless	compression,	116

lossy	compression,	116,	124

luminance,	124

M
MAC,	55

macroblock,	139

deblocking	filter,	143

man-in-the-middle	attack,	52,	56

map

converting	to	table,	176

directed	graph,	176

routing.	See	routing

massively	multiplayer	online	game	(MMO),	164

master	secret,	54

matrix,	128

matrix	multiplication,	126

MD5,	21–25

digital	signature,	25–26

encoding	password	for,	21–22

quality	of,	25

round,	24–25

message	authentication	code,	55

mipmap,	102

MMO	(massively	multiplayer	online	game),	164

model,	61–63,	70,	87

ambient	light,	96

bump	mapping,	106

control	point,	62

distant	impostor,	106

drawing,	transforming	into,	62,	88,	93,	105

global	illumination,	76

interpolation,	63

lighting,	72

line,	62

scaling,	64

tessellation,	107–108

translation,	64

Mortal	Kombat,	85

movie-quality	rendering,	70,	82–83

MPEG-2,	138–142

adjusting	quality,	139

B-frame,	139

GOP,	138,	142

I-frame,	138,	139

macroblock,	139

P-frame,	139

MPEG-4,	143

multisample	anti-aliasing	(MSAA),	110–111

vs.	supersampling,	111

multitasking,	162–163,	174

N
nearest-neighbor	sampling,	99–100,	101,	143

normal,	92,	93,	107

NOT	(bitwise	operation),	23,	25

numerical	address,	153

O
offset,	139

one-time	pad,	9

one-way	function,	39,	42

optical	printer,	82

OR	(bitwise	operation),	23,	25

origin,	61

P
packet,	118

painter’s	algorithm,	90

partition,	147

pass-through	link,	159

password,	6,	19

common,	28,	29

encoding,	21–22

hashing,	20–23

salt,	34,	35

storage	service,	35–36

table,	26,	27

performance	scaling,	150

persistence	of	vision,	59

P-frame,	139

Phineas	and	Ferb,	69

pivot,	147

pixel,	59,	66

alpha	channel,	68

alpha	level,	67,	78,	82

bitmap,	61

contrast,	112

depth,	91,	95,	96

luminance,	124

raw,	117

run,	117

sampling,	97

shader,	92.	See	also	lighting

subpixel,	110

texel,	98

variation	in	photographs,	123

plaintext,	2,	3,	4,	8,	27,	28

known-plaintext	attack,	6

polyalphabetic	substitution,	7–9

polygon,	88.	See	also	triangle

post-process	anti-aliasing,	111

precomputed	hash	table,	29,	31

predicted	frame,	139

predictive	encoding,	122

prefix	code,	121

premaster	secret,	53

prime	number,	40

as	factor,	41

coprime,	40

prime-product,	42,	44,	45

print	spooling,	162

private	key,	38,	44,	45,	50

process,	162

projection,	71,	88,	96

field	of	view,	89

ray	tracing,	77

public	key,	38,	43,	44,	45,	50

Q
quantization,	123,	132,	141

queue,	163,	170

quicksort,	147–150

partition,	147

pivot,	147

sublist,	149

R
race	condition,	165–169

rasterization,	65–68,	89

raw	pixel,	117

ray	tracing,	77–81,	105

anti-aliasing,	80

focus,	79

laws	of	optics,	79

performance,	87

projection,	77

reflection,	80

shadow,	79

read	semaphore,	173

read-only	data,	166,	173

real-time	lighting,	92–97

record,	146

red	difference	(Cr),	124

reduction	function,	29,	31

reflection,	80

clear,	103

environment	mapping,	103–105

rehashing,	156

related-key	attack,	17

release	operation,	168

renderer,	69

rendering,	69

2D,	61–69

budget,	113

depth	buffering,	91–92

depth	ordering,	89–92

field	of	view,	89

focus,	79

lighting,	71–80

movie-quality,	70,	82–83

pixel	shader,	92

polygon,	88

projection,	71

rasterization,	89

ray	tracing,	77–81

realism,	72,	79,	94,	96,	105

reflection,	80

translucency,	78

triangle,	88,	90

viewpoint,	71

resolution,	61

RGB	color	system,	60,	124

vs.	YCbCr,	124

Rivest,	Shamir,	and	Adleman	method.	See	RSA	(Rivest,	Shamir,	and	Adleman	method)

robot,	157,	160

rotation,	14

routing

cost,	175,	178,	179,	182,	183,	184

directed	graph,	176

finding	the	shortest	path,	175

using	real-time	data,	189

RSA	(Rivest,	Shamir,	and	Adleman	method),	42–51

authentication,	49–51

authority,	51

bidirectional	transmission,	47

combining	with	AES,	48–49

effectiveness,	45–47

encryption	process,	44–45

key	creation,	42–44

key	size,	47

performance,	47–48

prime-product,	42,	44,	45

real-world	use,	47–49

totient,	43,	45

run	of	pixels,	117

run-length	encoding,	117,	123,	133,	142

S
salt	method,	34,	35

sampling,	97

bilinear	filtering,	101,	112

mipmap,	102

nearest-neighbor,	99–100,	101,	143

trilinear	filtering,	102–103

S-box,	13,	14

scaling,	64,	150

screen	coordinate,	61,	88,	96

screen	space	ambient	occlusion	(SSAO),	96–97

search,	29,	145

all-pairs	shortest	path,	183

best-first,	178–181

binary,	151–152,	153

engine,	157

images,	160

location	use,	160

page	ranking,	158–159

robot,	157,	160

sequential,	146,	153

Sitemap,	157

storage	requirements,	153

term,	159–160

Web,	157–160

security,	1,	17,	19,	35

of	AES,	16

best	practices,	6,	27,	29,	34,	56

single	point	of	defense,	27

Web,	52–56

selection	sort,	146

performance	scaling,	150

semaphore,	168–174

acquire,	168,	170

binary,	168

circular	wait,	172

granularity,	173

implementation,	169

performance,	172–174

read,	173

release,	168

spin	lock,	169

test-and-set,	169

wait	list,	170

write,	173

sequential	search,	146,	153

server,	52

session,	52

shadow,	79,	94–97

ambient	occlusion,	96

mapping,	94–95

quality,	95

shadow	map,	95

shared	buffer,	163

shared	key	problem,	18,	37

signature.	See	digital	signature

simple	substitution,	6

Simpsons,	The,	69

single	point	of	defense,	27

Sitemap,	157

sliding	window,	122

slot,	154

sort,	146

quicksort,	147

selection	sort,	146

specular	reflection,	75,	77,	92,	107

spin	lock,	169

square	function,	39

square	root	function,	39

SSAA	(supersampling	anti-aliasing),	109–110

vs.	multisampling,	111

SSAO	(screen	space	ambient	occlusion),	96–97

starting	variable,	15

starvation,	170,	172,	173

static	data	collection,	154

storage

address,	153

fixed-size,	152,	153

requirements	for	search,	153

variable-size,	152,	153

subpixel,	110

substitution,	6–9

polyalphabetic,	7

S-box,	13

simple,	6

tabula	recta,	7

subtractive	color	mixing,	60,	76

supersampling	anti-aliasing	(SSAA),	109–110

vs.	multisampling,	111

surface	normal.	See	normal

symmetric	key,	18

T
tabula	recta,	7

temporal	compression,	138

temporal	redundancy,	138,	142

tessellation,	107–108

test-and-set,	169

texel,	98

texture	mapping,	97–103,	143

bump	mapping,	106

sampling,	97

TGA	file	format,	117

compression	ratio,	118

packet,	118

Theora,	143

timing	attack,	17

tombstone,	156

Toon	Boom,	69

Toonz,	69

totient,	43,	45

transaction,	164,	166–167

translation,	64

translucency,	68,	78

transposition,	2–6

rotation,	14

trapdoor	function,	40

triangle,	88,	90,	107

trilinear	filtering,	102–103,	143

trivial	factor,	40

tweening,	59

automatic,	63–64

U
ultra	high	definition	video	(UHD),	144

V
variable-size	storage,	152,	153

vector,	126

video	streaming,	116

videocassette,	115

view	angle,	74

viewpoint,	71

virtual	camera,	71

W
War	and	Peace,	122

web	search,	157–160

web	session,	52

world	coordinate,	70,	88

write	semaphore,	173

X
x-axis,	61

x-coordinate,	61

XOR	(bitwise	operation),	11,	14,	15

Y
y-axis,	61

YCbCr	color	system,	124

vs.	RGB,	124

y-coordinate,	61

Y	(luminance),	124

Z
z-coordinate,	69

.zip	file	format,	122

	Title Page
	Copyright Page
	About the Author
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	Who This Book Is For
	Topics Covered
	Behind the Magic

	Chapter 1: Encryption
	The Goal of Encryption
	Transposition: Same Data, Different Order
	Cipher Keys
	Attacking the Encryption

	Substitution: Replacing Data
	Varying the Substitution Pattern
	Key Expansion

	The Advanced Encryption Standard
	Binary Basics
	Decimal Versus Binary
	Bitwise Operations
	Converting Data to Binary Form

	AES Encryption: The Big Picture
	Key Expansion in AES
	AES Encryption Rounds
	Block Chaining
	Why AES Is Secure
	Possible AES Attacks

	The Limits of Private-Key Encryption

	Chapter 2: Passwords
	Transforming a Password into a Number
	Properties of Good Hash Functions
	Full Use of All Bits
	No Reversibility
	Avalanche

	The MD5 Hash Function
	Encoding the Password
	Bitwise Operations
	Binary Addition
	Bitwise NOT
	Bitwise OR
	Bitwise AND

	MD5 Hashing Rounds
	Meeting the Criteria of a Good Hash Function

	Digital Signatures
	The Problem of Identity
	Collision Attacks

	Passwords in Authentication Systems
	The Dangers of Password Tables
	Hashing Passwords
	Dictionary Attacks
	Hash Tables
	Hash Chaining
	Iterative Hashing
	Salting Passwords
	Are Password Tables Safe?

	Password Storage Services
	A Final Thought

	Chapter 3: Web Security
	How Public-Key Cryptography Solves the Shared Key Problem
	Math Tools for Public-Key Cryptography
	Invertible Functions
	One-Way Functions
	Trapdoor Functions
	Prime Numbers
	Coprime Numbers
	Prime Factors

	The RSA Encryption Method
	Creating the Keys
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5

	Encrypting Data with RSA
	Step 1
	Step 2
	Step 3
	Step 4

	RSA Effectiveness
	RSA Use in the Real World
	Bidirectional Transmission
	Key Size
	Long Plaintexts and Performance
	Combining Systems

	RSA for Authentication
	Authentication Using RSA
	Identity Authorities

	Security on the Web: HTTPS
	Handshaking
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5

	Transmitting Data Under HTTPS
	Data Encryption
	Block Chaining
	Message Authentication Code

	The Shared Key Problem Solved?

	Chapter 4: Movie CGI
	Software for Traditional Animation
	How Digital Images Work
	How Colors Are Defined
	How Software Makes Cel Animations
	Transforming Drawings into Models
	Automatic Tweening
	Positioning and Scaling
	“Ink and Paint” for Digital Images
	Blending into Any Background

	From Cel Animation Software to Rendered 2D Graphics

	Software for 3D CGI
	How 3D Scenes Are Described
	The Virtual Camera
	Direct Lighting
	The Distance Effect
	The Diffuse Reflection Effect
	The Specular Reflection Effect

	Global Illumination
	How Light Is Traced
	Why Light Is Traced Backward
	How Ray Tracing Models Real-World Effects

	Full-Scene Anti-Aliasing

	Combining the Real and the Fake
	The Ideal of Movie-Quality Rendering

	Chapter 5: Game Graphics
	Hardware for Real-Time Graphics
	Why Games Don’t Ray Trace
	All Lines and No Curves
	Projection Without Ray Tracing
	Rendering Triangles
	The Painter’s Algorithm
	Depth Buffering

	Real-Time Lighting
	Shadows
	Ambient Light and Ambient Occlusion
	Texture Mapping
	Nearest-Neighbor Sampling
	Bilinear Filtering
	Mipmaps
	Trilinear Filtering

	Reflections
	Faking Curves
	Distant Impostors
	Bump Mapping
	Tessellation

	Anti-Aliasing in Real Time
	Supersampling
	Multisampling
	Post-Process Anti-Aliasing

	The Rendering Budget
	What’s Next for Game Graphics

	Chapter 6: Data Compression
	Run-Length Encoding
	Dictionary Compression
	The Basic Method
	Huffman Encoding

	Reorganizing Data for Better Compression
	Predictive Encoding
	Quantization

	JPEG Images
	A Different Way to Store Colors
	The Discrete Cosine Transform
	The DCT for Two Dimensions
	Compressing the Results
	JPEG Picture Quality

	Compressing High-Definition Video
	Temporal Redundancy
	MPEG-2 Video Compression
	Groups of Frames
	Temporal Compression

	Video Quality with Temporal Compression

	The Present and Future of Video Compression

	Chapter 7: Search
	Defining the Search Problem
	Putting Data in Order
	Selection Sort
	Quicksort

	Binary Search
	Indexing
	Hashing
	Web Search
	Ranking Results
	Using the Index Effectively

	What’s Next for Web Search

	Chapter 8: Concurrency
	Why Concurrency Is Needed
	Performance
	Multiuser Environments
	Multitasking

	How Concurrency Can Fail
	Making Concurrency Safe
	Read-Only Data
	Transaction-Based Processing
	Semaphores
	How Semaphores Prevent Race Conditions
	How Semaphores Are Made

	The Problem of Indefinite Waits
	Orderly Queues
	Starvation from Circular Waits

	Performance Issues of Semaphores
	What’s Next for Concurrency

	Chapter 9: Map Routes
	What a Map Looks Like to Software
	Best-First Search
	Reusing Prior Search Results

	Finding All the Best Routes at Once
	Floyd’s Algorithm
	Storing Route Directions

	The Future of Routing

	Index

