
}

} }

}

Solutions to

Selected

Exercises

}

} }

}

Chapter 1. Computer Science: The Mechanization

of Abstraction

} Section 1.3

1.3.1: The static part of a data model consists of the values for the objects in the

model; the dynamic part consists of the operations that can be applied to these

values. For example, we can think of the set of integers with the operation addition

as a data model. The static part is the set of integers and the dynamic part is the

addition operator.

1.3.3: The data objects in a line-oriented text editor, such as vi, are �les consisting

of sequences of lines, where each line is a sequence of characters. A cursor identi�es

a position within a line. There are operators for positioning the cursor within a

�le. Typical operations on lines include inserting an additional line and deleting an

existing line. A line may be modi�ed by inserting, deleting, or changing characters

within it. In addition, there are operators for creating, writing, and reading �les.

} Section 1.4

1.4.1: An identi�er can be one of the names for a box. For example, an identi�er

x in C may be attached to a box containing an integer by means of a variable

declaration int x;. One of the names of that integer box is then x.

1

2 SOLUTIONS TO SELECTED EXERCISES

}

} }

}

Chapter 2. Iteration, Induction, and Recursion

} Section 2.2

2.2.1(a): With 5 elements in the array, SelectionSortmakes 4 iterations with the

loop-index i = 0; 1; 2; 3. The �rst iteration makes 4 comparisons, the second 3, the

third 2, the fourth 1, for a total of 10 comparisons. With the array 6; 8; 14; 17;23,

there are no swaps (exchanges of elements) in any iteration.

2.2.1(b): On the array 17; 23; 14; 6; 8, SelectionSort makes 4 iterations. The

numbers of comparisons and swaps made during each iteration are summarized in

the following table. We shall not regard a swap as having occurred if the selected

element is already in its proper position. However, the reader should be aware that

lines (6) { (8) of Fig. 2.2 are executed regardless of whether a swap is needed. Note

that when small = i, these lines have no e�ect.

ITERATION ARRAY AFTER ITERATION NO OF COMPARISONS NO OF SWAPS

Start 17; 23; 14; 6;8 � �

1 6; 23; 14; 17;8 4 1

2 6; 8; 14; 17; 23 3 1

3 6; 8; 14; 17; 23 2 0

4 6; 8; 14; 17; 23 1 0

2.2.3: In what follows, we use the conventions and macros of Section 1.6. To begin,

we use the cell/list macro to de�ne linked lists of characters, as:

DefCell(char, CELL, LIST);

Here is the function precedes.

Boolean precedes(LIST L, LIST M) {

if(M==NULL) return FALSE;

if(L==NULL) return TRUE;

if(L->element == M->element)

return precedes(L->next,M->next);

return (L->element < M->element);

}

2.2.5: If all n elements in the array A are the same, then SelectionSort(A, n)

makes n(n� 1)=2 comparisons but no swaps.

2.2.7: Let T be an arbitrary type. De�ne

typedef T TARRAY[MAX];

TARRAY A;

CHAPTER 2. ITERATION, INDUCTION, AND RECURSION 3

We modify SelectionSort as follows to sort elements of type T . The function

key(x) returns the key of type K for the element x. We assume that the function

lt(u,v) returns TRUE if u is \less than" v and FALSE otherwise, where u and v are

elements of type K.

void SelectionSort(TARRAY A, int n) {

int i, j, small;

T temp;

for(i=0; i<n-1; i++) {

small = i;

for(j=i+1; j<n; j++)

if(lt(key(A[j]), key(A[small])))

small=j;

temp = A[small];

A[small] = A[i];

A[i] = temp;

}

}

2.2.11:

a)

189

X

i=1

(2i� 1)

b)

n=2

X

i=1

(2i)

2

c)

k

Y

i=3

2

i

} Section 2.3

2.3.1(a): We shall prove the following statement S(n) by induction on n, for n � 1.

STATEMENT S(n):

n

X

i=1

i = n(n+ 1)=2

BASIS. The basis, n = 1, is obtained by substituting 1 for n in S(n). Doing so, we

get

P

1

i=1

i = 1. We thus see that S(1) is true.

INDUCTION. Now assume that n � 1 and that S(n) is true. We must prove

S(n + 1), which is

4 SOLUTIONS TO SELECTED EXERCISES

n+1

X

i=1

i = (n+ 1)(n + 2)=2

We can rewrite the left-hand side as

(

n

X

i=1

i) + (n+ 1)

Then, using the inductive hypothesis to replace the �rst term, we get

n(n+ 1)=2 + (n + 1) = n(n + 1) + 2(n+ 1)=2 = (n+ 1)(n+ 2)=2

which is the right-hand side of S(n + 1). We have now proven the inductive step

and thus shown that S(n + 1) is true. We conclude that S(n) holds for all n � 1.

2.3.1(b): We shall prove the following statement S(n) by induction on n, for n � 0.

STATEMENT S(n):

n

X

i=1

i

2

= n(n+ 1)(2n+ 1)=6, for all n � 0

BASIS. S(0), the basis, is

P

0

i=1

i

2

= 0, which is true by the de�nition of a sum of

zero elements.

INDUCTION. Assume that n � 0 and that S(n) is true. We now need to prove

S(n + 1), which is

n+1

X

i=1

i

2

= (n + 1)(n+ 2)(2n+ 3)=6

We can rewrite the left-hand side as

(

n

X

i=1

i

2

) + (n + 1)

2

Using the inductive hypothesis to replace the �rst term, we get

n(n+ 1)(2n+ 1)=6 + (n+ 1)

2

= (n + 1)(n(2n+ 1) + 6(n+ 1))=6

= (n + 1)(2n

2

+ 7n+ 6)=6

= (n + 1)(n+ 2)(2n+ 3)=6

The last expression is the right-hand side of S(n + 1). We have now proven the

inductive step. We therefore conclude S(n) is true for all n � 0.

2.3.3:

a) 01101 has three 1's and is therefore of odd parity.

b) 111000111 has six 1's and is of even parity.

CHAPTER 2. ITERATION, INDUCTION, AND RECURSION 5

} Section 2.4

2.4.1: Our initial expression E is

(u+ v) + ((w + (x+ y)) + z)

Using the associative law for addition as in case (b), we can pull out u to get

(u+ (v + ((w + (x+ y)) + z))

We note that v happens to be pulled out as well. With another application of the

associative law, we can pull out w:

u+ (v + (w + ((x+ y)) + z)))

The redundant parentheses around x+ y can be removed. Then, one more applica-

tion of the associative law gives us our desired result:

u+ (v + (w + (x+ (y + z))))

2.4.3: We shall prove the following statement by complete induction on n, for

n � 0.

STATEMENT S(n): If an expression E has n operator occurrences, then E has

n+ 1 operands.

BASIS. The basis is n = 0. Then E has no binary operators and one operand.

Thus, S(0) is true.

INDUCTION. We assume that n � 0 and that S(j) is true for all 0 � j � n. We

want to prove S(n + 1). Let E be an expression with n + 1 operator occurrences.

Then, E is of the form F�G, where � is a binary operator and F and G are expres-

sions constituting the operands of �. Let F have n

1

operator occurrences and G

have n

2

operator occurrences. We know that n

1

+n

2

= n, because the total number

of operator occurrences, including �, is n+1. Since n

1

and n

2

are each thus at most

n, the inductive hypothesis applies. Thus, F has n

1

+1 operands and G has n

2

+1

operands. Therefore, E has n+ 1 operator occurrences and n

1

+ 1+n

2

+ 1 = n+2

operands, proving S(n + 1). We conclude S(n) holds for all n � 0.

2.4.5: Matrix multiplication is associative but not commutative.

} Section 2.5

2.5.1: As in Fig. 2.12, we establish an invariant that is true at the top of the loop,

that is, at the time when the program tests whether i > n as part of the code for

the for-statement. The invariant, which we prove by induction on the value of the

variable i, is

STATEMENT S(j): If we reach the test i � n in the for-loop with the variable i

having the value j, then the value of the variable sum is j(j � 1)=2.

6 SOLUTIONS TO SELECTED EXERCISES

BASIS. The basis is j = 1, which occurs when we enter the for-loop for the �rst

time. At this time, sum has its initialized value 0. Thus, S(1) is true.

INDUCTION. Assume that j � 1 and that S(h) is true for 1 � h � j. We wish to

prove S(j +1). By the inductive hypothesis, sum = j(j� 1)=2 as we began the jth

iteration of the loop and i had the value j. After the assignment statement in the

body of the loop was executed sum = j(j � 1)=2 + j = j(j + 1)=2. Thus, at the

beginning of the j+ 1st iteration, sum has the value j(j +1)=2. Therefore, S(j +1)

is true.

After the nth iteration, the loop terminates with sum = n(n+1)=2. Thus, the

program correctly evaluates

P

n

i=1

i = n(n+ 1)=2.

2.5.3: The loop invariant we shall prove by induction on k, the value of variable i,

is

STATEMENT S(k): If we reach the test i � n in the for-loop with the variable i

having the value k, then x = 2

2

k�1

.

BASIS. The basis is k = 1. Upon entry to the loop, x = 2. Since 2

2

k�1

= 2

2

1�1

=

2

2

0

= 2

1

= 2, we see that S(1) holds.

INDUCTION. Assume k � 1 and S(i) is true for 1 � i � k. We want to prove

S(k + 1). By the inductive hypothesis, x = 2

2

k�1

as we entered the loop for the

kth iteration and i had the value k. After the assignment statement x = x*x was

executed, x = 2

2

k�1

� 2

2

k�1

= 2

2

k

. Thus, at the beginning of the k + 1st iteration,

where i has the value k + 1, x has the value 2

2

k

. Therefore, S(k + 1) holds. After

the nth iteration, when i gets the value n+ 1, the loop terminates and x = 2

2

n

.

} Section 2.6

2.6.2(b):

0

1

2

�1

() ()) (()

CHAPTER 2. ITERATION, INDUCTION, AND RECURSION 7

2.6.2(c):

0

1

2

3

((() ()) () ())

2.6.4:

a) < is an in�x binary operator.

b) & is a pre�x, unary operator.

c) % is an in�x, binary operator.

2.6.6:

a) By direct enumeration we can show that S starts o�

0; 5; 7; 10;12;14;15;17;19; 20; 22; 24; 25; 26; 27; 28; � � �

We shall prove that 23 is the largest integer not in S.

b) We shall prove the following statement T (n) by induction on n, for n � 24.

STATEMENT T (n): If n � 24, then n is in S.

BASIS. The basis consists of the �ve integers 24, 25, 26, 27, 28, which are in S by

part (a).

INDUCTION. Let us assume that n � 28 and that T (i) holds for T (24), T (25),

T (26); : : : ; T (n). We want to prove T (n+ 1).

Consider the integer n� 4. Since n� 4 � 24, by the inductive hypothesis n� 4

is in S. By de�nition of S, (n� 4)+ 5, or n+ 1, is in S. Therefore, T (n+ 1) holds.

We conclude that T (n) holds for all n � 24.

2.6.9(a): An arithmetic expression with no operators is covered by the basis case.

On the ith round we add those expressions whose trees have height i; that is, the

longest path from the root to a leaf has i+ 1 nodes.

} Section 2.7

2.7.1:

a) Here is a C function to compute sq(n) = n

2

, when n is a positive integer.

int sq(int n) {

if(n==1) return 1;

else return sq(n-1) + 2*n - 1;

}

8 SOLUTIONS TO SELECTED EXERCISES

b) We shall prove the following statement S(n) by induction on n.

STATEMENT S(n): sq(n) = n

2

when n � 1.

BASIS. When n = 1, the �rst line of sq returns 1.

INDUCTION. Assume that n � 1 and that S(n) holds. We want to prove S(n+1).

From the else-statement, we know sq(n + 1) = sq(n) + 2 � n� 1. By the inductive

hypothesis, we know sq(n) = n

2

. Therefore, sq(n+1) = n

2

+2(n+1)�1 = (n+1)

2

.

We have thus proved the inductive step. We conclude S(n) is true for all n � 1.

2.7.3: The function find1698 returns TRUE if the list contains the element 1698,

and returns FALSE otherwise.

Boolean find1698(LIST L) {

if(L==NULL) return FALSE;

else if(L->element==1698) return TRUE;

else return find1698(L->next);

}

2.7.5: The following procedure is adapted from Fig. 2.22. The array A and its cursor

i is replaced by L, a pointer to a list of elements. The cursor small, indicating our

current guess at the selected element, is replaced by a pointer Small that points

to the cell of the current guess. Cursor j, used to run down the list of unsorted

elements, is replaced by a pointer J, and n, the size of the array A, is implicit in the

length of the given list.

void SelectionSort(LIST L) {

LIST J, Small;

int temp;

if(L!=NULL) {/* do nothing on the empty list */

Small = L;

J = L->next;

while(J != NULL) {

if(J->element < Small->element)

Small = J;

J = J->next;

}

/* now swap the elements in cells pointed to

by L and Small */

temp = L->element;

L->element = Small->element;

Small->element = temp;

SelectionSort(L->next);

}

}

2.7.7: Procedure g(i) prints the remainder when i is divided by 2 and then calls

itself recursively on the integer part of i=2. An easy inductive proof shows that

CHAPTER 2. ITERATION, INDUCTION, AND RECURSION 9

this works correctly on all positive integers. However, if i = 0, g prints nothing.

Procedure f �xes up this problem by handling 0 as a special case.

void g(int i) {

if(i>0) {

printf("%d", i%2);

g(i/2);

}

}

void f(int i) {

if(i==0) printf("0");

else g(i);

}

} Section 2.8

2.8.1: The following table describes the sequence of events.

CALL RETURN

merge(1,2,3,4,5; 2,4,6,8,10) 1,2,2,3,4,4,5,6,8,10

merge(2,3,4,5; 2,4,6,8,10) 2,2,3,4,4,5,6,8,10

merge(3,4,5; 2,4,6,8,10) 2,3,4,4,5,6,8,10

merge(3,4,5; 4,6,8,10) 3,4,4,5,6,8,10

merge(4,5; 4,6,8,10) 4,4,5,6,8,10

merge(5; 4,6,8,10) 4,5,6,8,10

merge(5; 6,8,10) 5,6,8,10

merge(NULL; 6,8,10) 6,8,10

2.8.5: In all of the parts, the trick is to identify an appropriate measure of size for

the arguments that decreases with each recursive call.

a) A good size measure for merge(L,M) would be s the sum of the lengths of the

lists L and M. We see that merge of size s calls merge of size s � 1 which calls

merge of size s� 2, and so on, until one or the other of L or M becomes NULL.

c) A good size measure for MakeList(i,n) is n � i, the number of elements yet

to be put on the newly created list. MakeList of size m calls MakeList of size

m � 1 which calls MakeList of size m � 2 and so on until the size is 0.

} Section 2.9

2.9.1: Note: PrintList is in Fig. 2.31(a), not (b) as it states erroneously in the

�rst printing. We shall prove by induction on i the following statement S(i), for

i � 0.

10 SOLUTIONS TO SELECTED EXERCISES

STATEMENT S(i): If L is a list of length i, then PrintList(L) prints the elements

of L in order.

BASIS. When i = 0, L is NULL and PrintList(L) returns without printing any

elements.

INDUCTION. Assume that i � 0 and that S(i) is true. We now wish to prove

S(i + 1). Let L be a list of length i + 1. We can write L as (a;M), where M is a

list of length i.

PrintList(L) �rst prints a and then calls PrintList(M). By the inductive

hypothesis, PrintList(M) correctly prints the elements of M in order. We now

have shown that PrintList(L) prints the elements of L in order. This proves the

inductive step. We conclude S(i) is true for all i � 0.

2.9.3: We prove by induction on i the following statement S(i), for i � 0.

STATEMENT S(i): If L is a list of length i, then find0(L) returns TRUE if 0 is an

element on L, and returns FALSE otherwise.

BASIS. When i = 0, L is NULL. In this case, find0 correctly returns FALSE.

INDUCTION. Assume that i � 0 and that S(i) is true. We wish to prove S(i+ 1).

Let L be a list of length i + 1. We can write L as (x;M), where M is a list of

length i. If x is 0, then find0 returns TRUE. If x is not 0, then find0 calls find0(M)

which, by the inductive hypothesis, returns TRUE if and only if M contains 0. Thus,

find0(L) returns TRUE if 0 is an element of L and returns FALSE otherwise. This

proves the inductive hypothesis. We conclude S(i) is true for all i � 0.

2.9.5: The argument is essentially the same as that on p. 37 of the text, with the

exception that there are two cases to the basis, a = 0 and a = 1.

CHAPTER 3. THE RUNNING TIME OF PROGRAMS 11

}

} }

}

Chapter 3. The Running Time of Programs

} Section 3.3

3.3.1: Lines (1) � (3) each time one time unit. For line (4), the test takes one

unit, and it is executed n times. Lines (5) and (6) each take one unit and they are

executed n � 1 times. Line (7) takes one unit. Thus, the total time taken by the

program in Fig. 2.13 is 3n+ 2 units.

3.3.3: Program A takes less time than program B for all values of n � 29. For

n � 30, program A takes more time than program B. At n = 29, program A takes

5:4� 10

5

time and program B takes 8:4� 10

5

time. At n = 30, program A takes

1:1� 10

6

time and program B takes 9� 10

5

time.

3.3.5: Program A takes more time than program B for n � 3, and less time

thereafter.

TIME MAXIMUM PROBLEM SIZE MAXIMUM PROBLEM SIZE

UNITS SOLVABLE WITH PROGRAM A SOLVABLE WITH PROGRAM B

10

6

5 3

10

9

31 7

10

12

177 15

} Section 3.4

3.4.1: f

1

(n) is O

�

f

2

(n)

�

, O

�

f

3

(n)

�

, and O

�

f

4

(n)

�

. In each case, we can use wit-

nesses c = 1 and n

0

= 0.

f

2

(n) is not O

�

f

1

(n)

�

, O

�

f

3

(n)

�

, or O

�

f

4

(n)

�

. To show that f

2

(n) is not

O

�

f

1

(n)

�

, suppose that it were. Then, there would be witnesses c > 0 and n

0

such

that n

3

� cn

2

for all n � n

0

. But this implies, c � n for all n � n

0

, contradicting

our assumption that c is a constant.

f

3

(n) is not O

�

f

1

(n)

�

but it is O

�

f

2

(n)

�

and O

�

f

4

(n)

�

. To show f

3

(n) is

O

�

f

4

(n)

�

, we can use n

0

= 3 and c = 1. Remember that every even number except

2 is composite.

f

4

(n)

�

is not O

�

f

1

(n)

�

but it is O

�

f

2

(n)

�

and O

�

f

3

(n)

�

.

3.4.3: Choose c = 2 and n

0

= 0. Since f(n) � g(n) for n � 0, we know that

f(n) + g(n) � 2g(n) for n � 0. Therefore, f(n) + g(n) is O

�

g(n)

�

.

12 SOLUTIONS TO SELECTED EXERCISES

} Section 3.5

3.5.1:

a) Choose witnesses c = 1 and n

0

= 1. Because a � b, we know n

a

� n

b

for

n � n

0

. Thus, n

a

is O(n

b

).

b) Suppose there exist witnesses c > 0 and n

0

such that n

a

� cn

b

for all n � n

0

when a > b. Let d be the larger of n

0

and c

1=(a�b)

+1. Because of the assumed

big-oh relationship, we infer that d

a

� cd

b

or d

a�b

� c. But from our choice of

d, we know that d

a�b

> c, a contradiction. Thus, we conclude that n

a

is not

O(n

b

) if a > b.

3.5.3: Since T (n) is O(f(n)

�

, we know that there exist witnesses c > 0 and n

0

� 0

such that T (n) � cf(n) for all n � n

0

. Since g(n) � 0 for all n � 0, we know

g(n)T (n) � cf(n)g(n), for n � 0. Thus, g(n)T (n) is O

�

g(n)f(n)

�

.

3.5.5: Since f(n) is O

�

g(n)

�

, there exist witnesses c > 0 and n

0

� 0 such

that f(n) � cg(n) for all n � n

0

. Choose d = max(c; 1). For any value of

n, max

�

f(n); g(n)

�

is either f(n) or g(n). If max

�

f(n); g(n)

�

is f(n), we know

f(n) � cg(n) � dg(n). If max

�

f(n); g(n)

�

is g(n), we know g(n) � dg(n). Thus,

max

�

f(n); g(n)

�

is O

�

g(n)

�

.

} Section 3.6

3.6.1: The body of the for-loop

for(i=a; i<=b; i++)

is iterated b� a+ 1 times, or 0 times if a > b.

The body of the for-loop

for(i=a; i<=b; i--)

is iterated a � b+ 1 times, or 0 times if b > a.

3.6.3: If the condition C is false, the running time of the while-loop is O(1). If

the condition is true, the while-loop executes forever and the running time is not

de�ned.

3.6.5: The running time is O

�

g(n)

�

. That is, the running time is that of the branch

taken.

} Section 3.7

3.7.1: The tree is shown in Fig. S3.1. The assignment statements at the leaves (2),

(4), (5), (6), (7), (10), (11) each take O(1) time. The for-statement, (3){(4), takes

O(n) time. The if-statement, (9){(10), takes O(1) time and the while-statement,

(8){(11), takes O(n) time. The running time of the entire program represented by

CHAPTER 3. THE RUNNING TIME OF PROGRAMS 13

Block

(1)-(13)

(1)-(2)

for for

(4)-(5)

Block

While

(10)-(12)

(9)-(12)

(10)-(11)

if

3 6 7 8 13

12

11

5

Fig. S3.1. Tree showing grouping of statements of program in Fig. 3.17.

the root is O(n).

3.7.3: The tree is shown in Fig. S3.2. The assignment statements at the leaves

(2), (3), (5), and (6) each take O(1) time. As a function of i, the running time of

the while-loop is O(log i) and the running time of the for-loop is O(n logn). As a

function of n, the running time of the while-loop is O(log n) and the running time

of the for-loop is O(n logn).

} Section 3.8

3.8.1: There are several ways to attack this problem. A proof by induction on n

can be used to show that

n

X

i=1

(i + n(n+ 1)=2) = (n

3

+ 2n

2

+ n)=2

for all n � 0. Perhaps simpler is to note that the left-hand side can be written as

n

X

i=1

i +

n

X

i=1

n(n + 1)=2

The �rst term sums to n(n + 1)=2 as we saw in the introduction to Chapter 2.

The expression in the second term is independent of i. The second term is thus

n

2

(n+ 1)=2. Adding these two sums, we get

n(n+ 1)=2 + n

2

(n+ 1)=2 = (n

3

+ 2n

2

+ n)=2

14 SOLUTIONS TO SELECTED EXERCISES

block

while

block

2 3

5 6

for

(1)-(6)

(2)-(6)

(4)-(6)

(5)-(6)

Fig. S3.2. Tree showing grouping of statements of program in Fig. 3.19.

which is the expression on the right-hand side of the equality we wanted to prove.

3.8.3: Each time we go around the loop we evaluate f(n) and increment i. We

also initialize i before the loop. Initialization and incrementation of i are each O(1)

operations, and we can neglect them. The body of the loop is iterated f(n) times,

taking O(1) time per iteration, or O

�

f(n)

�

time total. Thus, the running time of

the loop is O

�

f(n)

�

plus the time to evaluate f(n) f(n) + 1 times. For example,

the answer to (a) is O

�

n� (n! + 1)

�

+ O(n!) = O(n� n!).

3.8.5: Note that bar(n; n) = (n

2

+ 3n)=2. The function bar takes O(n) time as

before. Line (8) of procedure foo takes O(n) time and the for-loop of lines (7){(8)

is iterated (n

2

+ 3n)=2 times. The evaluation of bar(n; n) in the new line (7) takes

O(n) time and can be neglected. Thus, procedure foo now takes O(n

3

) time. The

running time of main is dominated by the running time of foo and thus main takes

O(n

3

) time.

} Section 3.9

3.9.1: Let T (n) be the running time of sum(L), where n is the length of the list L.

We can de�ne T (n) by the following recurrence relation:

T (0) = O(1)

T (n) = O(1) + T (n� 1)

Replacing the big-oh's by constants, we get

CHAPTER 3. THE RUNNING TIME OF PROGRAMS 15

T (0) = a

T (n) = b+ T (n� 1), for n � 1

As we saw in this section, the solution to this recurrence is

T (n) = a+ bn, for n � 0

The running time of sum is therefore O(n).

3.9.3: Let m be the number of elements yet to be sorted. Let T (m) be the run-

ning time of SelectionSort applied to m elements. We can de�ne the following

recurrence for T (m):

T (1) = O(1)

T (m) = O(m) + T (m � 1), for m > 1

Replacing the big-oh's by constants, we get

T (1) = a

T (m) = bm+ T (m� 1), for m � 1

By repeated substitution, we �nd the solution to this recurrence is

T (m) = b(m+ 2)(m� 1)=2 + a

The running time of SelectionSort is therefore O(m

2

).

3.9.5:

int gcd(int i, int j) {

int r;

r = i % j;

if(r != 0) return gcd(j,r);

else return j;

}

For convenience, assume that i > j. (Note that this property always holds except

possibly for the �rst invocation of gcd.) Let T (i) be the running time of gcd(i; j).

Suppose gcd(i; j) calls gcd(j;m) which calls gcd(m;n). We shall show that

m � i=2. There are two cases. First, if j � i=2, then m � j � i=2. Second, If

j > i=2, then m = i MOD j = i� j � i=2.

Thus, we conclude that after every two calls to gcd, the �rst argument is

reduced by at least half. If we substitute the text of gcd for one invocation of the

recursive call, we can model the running time of gcd by the recurrence

T (i) � O(1) + T (i=2)

The solution to this recurrence is O(log i). (See Exercise 3.11.3.)

16 SOLUTIONS TO SELECTED EXERCISES

} Section 3.10

3.10.1(a):

if

(1){(6)

if

(2){(6)

block

(3){(6)

ret

(1)

ret

(2)

asgn

(3)

asgn

(4)

asgn

(5)

ret

(6)

As in the text, let T (n) be the time taken by split on list of length n. The

running time of the assignments (1), (2), (3), (4), and (6) is each O(1). The running

time of assignment (5) is T (n�2). The running time of the block-node representing

lines (3){(6) is O(1) + T (n � 2), as is the running time of the if-node representing

lines (1){(6).

} Section 3.11

3.11.1: We shall prove the following statement by induction on i.

STATEMENT S(i): If 1 � i < n, then

T (n) = T (n� i) +

i�1

X

j=0

g(n � j)

BASIS. The basis is i = 1. S(1) states that

T (n) = T (n� 1) + g(n)

This is known to be true by the de�nition of T (n).

INDUCTION. If i � n, then S(i + 1) is true vacuously (the hypothesis of the

statement S, that 1 � i � n, is false). Assume that 1 � i < n and that S(i) is true.

We wish to prove S(i + 1). From the inductive step we know

T (n) = T (n� i) +

i�1

X

j=0

g(n � j)

From the de�nition of T (n) we know

CHAPTER 3. THE RUNNING TIME OF PROGRAMS 17

T (n� i) = T (n� i� 1) + g(n� i)

Substituting this equation into the previous, we get

T (n) = T (n� i� 1) +

i

X

j=0

g(n � j)

which is S(i+1). We have thus proven the inductive step. We conclude S(i) is true

for 1 � i < n.

3.11.3: The general form of the solution is

T (n) = a+

log

2

n�1

X

j=0

g(n=2

j

)

a) When g(n) = n

2

, the sum is n

2

+n

2

=2+n

2

=4+ � � �+n

2

=(n=2), which is upper

bounded by the in�nite geometric sum with �rst term n

2

and ratio 1/2. This

sum is 2n

2

, so T (n) is O(n

2

).

c) When g(n) = 10, T (n) is O(logn).

e) When g(n) = 2

n

, T (n) is O(2

n

).

3.11.5: Suppose we guess that there is a constant c such that G(n) � c2

n

, for

n � 1. From the basis, we get the constraint 3 � 2c. From the induction, we get

the constraint

G(n) = (2

n=2

+ 1)G(n=2) � ((2

n=2

+ 1)c2

n=2

= c2

n

+ c2

n=2

If c2

n

+ c2

n=2

� c2

n

, then c � 0, contradicting the basis constraint. Thus, if we

guess that G(n) � c2

n

, we fail to �nd a solution.

3.11.9:

a) Here, c = 3, d = 2, k = 2. Thus, c < d

k

, so the solution to T (n) is of the form

O(n

2

).

b) Here, c = 10, d = 3, k = 2. Thus, c > d

k

, so the solution to T (n) is of the form

O(n

log

3

10

).

c) Here, c = 16, d = 4, k = 2. Thus, c = d

k

, so the solution to T (n) is of the form

O(n

2

log n).

18 SOLUTIONS TO SELECTED EXERCISES

}

} }

}

Chapter 4. Combinatorics and Probability

} Section 4.2

4.2.1(a): 4

3

= 64.

4.2.3: First, note that we can choose input x so that each of the eight conditions

is either true or false, as we wish. The reason is that each test asks whether x is

divisible by a di�erent prime. We may pick x to be the product of those primes

for which we would like the test to be true. It is not possible that this product is

divisible by any of the other primes.

Also note that di�erent sets of true conditions lead to di�erent values of n.

The reason is that two di�erent products of primes cannot yield the same value of

n.

Now, we can compute the answer. We are asked to choose a \color," true or

false, for each of eight conditions. We can do so in 2

8

= 256 ways.

4.2.5: 10

n

.

4.2.7: (a) 8K (c) 16M (e) 512P.

} Section 4.3

4.3.1(a): 9! = 362880.

4.3.3: There are at most �ve comparisons in any branch. This number is best

possible, since four comparisons can only distinguish 16 di�erent orders, and there

are 4! = 24 orders.

Given (a; b; c; d) to sort, the list is split into (a; c) and (b; d). The �rst thing

that happens is (a; c) is sorted, resulting in the comparison of a and c. Then,

(b; d) is sorted similarly. The third comparison is between the winners of the two

comparisons. For example, if a and b are the winners, we compare these two. If,

say, a wins, then the fourth comparison is between b and c. If b wins we are done,

but if c wins, we need a �fth comparison of b against d. The �rst three levels of the

decision tree are shown in Fig. S4.1.

} Section 4.4

4.4.1(a): 26!=(26� 3)! = 26!=23! = 26� 25� 24 = 15600.

4.4.4:

a) This is a selection without replacement; there are 6

4

= 1296 codes.

b) The number of codes without repetitions of color is 6!=(6� 4)! = 6!=2! = 360.

Thus, the number of codes with a repetition is 1296� 360 = 936.

CHAPTER 4. COMBINATORICS AND PROBABILITY 19

all orders

all orders where a < c all orders where a � c

all orders where

a < c and b < d

all orders where

a < c and b � d

all orders where

a � c and b < d

all orders where

a � c and b � d

b < d b < d

a < c

a < b a < d c < b c < d

Y N

Y YN N

Fig. S4.1. Decision tree for Exercise 4.3.3..

c) 5

4

= 625.

d) If there are only �ve colors, then the number of codes without repetition is

5!=(5� 4)! = 5!=1! = 120. Thus, the number with a repetition but no red peg

is 625� 120 = 505.

} Section 4.5

4.5.1(a): 7!=

�

3!� (7� 3)!

�

= 7!=(3!� 4!) = 5040=(6� 24) = 35.

4.5.3(a):

�

7

3

�

, which, as we learned in Exercise 4.5.1(a), is 35.

4.5.5: To begin, we need to pick the positions that are vowels. There are

�

5

2

�

= 10

ways to do so. For each of these 10 ways, we can pick the 3 consonant positions

in 21

3

= 9261 ways. We can pick the two vowel positions in 5

2

= 25 ways. Thus,

the total number of words of length �ve with vowels in two particular positions is

9261 � 25 = 231525 ways. The number of words altogether is ten times this, or

2,315,250.

4.5.7:

c = 1.0;

for(i=n; i>n-m; i--) {

c *= i;

c /= (i-n+m);

}

} Section 4.6

4.6.1(a): 5!=(3!� 1!� 1!) = 120=(6� 1� 1) = 20.

20 SOLUTIONS TO SELECTED EXERCISES

4.6.3: One way to look at this problem is that we wish to order 64 items, of which

3 are unique (the squares with pieces other than knights), two are indistinguishable

from each other (the squares with the white knights) and the remaining 59 (the

squares that do not have a piece on them) are also indistinguishable from each

other. The number of orders is thus 64!=(59!� 2!� 1!� 1!� 1!) = 64!=(59!� 2!) =

457,470,720.

4.6.5: (2n)!=(2!� 2!� � � � � 2!) (n times), or (2n)!=2

n

.

} Section 4.7

4.7.1:

a) (6 + 3)!=(6!� 3!) = 9!=(6!� 3!) = 84.

c) (6 + 3 + 4)!=(6!� 3!� 4!) = 13!=(6!� 3!� 4!) = 60060.

4.7.3: Let us reserve one apple for each of the three children. Then, we may

distribute the remaining four apples as we like. There are (4 + 2)!=(4!� 2!) = 15

ways to do so.

} Section 4.8

4.8.1(a): Begin by picking the card that is not part of the two pairs. We can do

so in 52 ways. Now, pick the ranks of the two pairs. There are only 12 remaining

ranks, so we can do so in

�

12

2

�

= 66 ways. For each of the pairs, we can pick the

two suits in

�

4

2

�

, or 6, ways. We now have the 5 cards of the hand without order,

and the number of possibilities is 52� 66� 6� 6 = 123,552.

4.8.2(a): We may pick the Ace four di�erent ways, and we may pick the 10-point

card in 16 ways. Thus, there are 4� 16 = 64 di�erent blackjacks.

4.8.4(a):

�

12

9

�

+

�

12

10

�

+

�

12

11

�

+

�

12

12

�

= 220+ 66+ 12 + 1 = 299.

4.8.7(a): First, we must pick the suit of which there is four. We can do so in 4

ways. Now, we pick the cards of the suit of four; there are

�

13

4

�

= 715 ways to do

so. For each of the suits of three, we can select the cards in

�

13

3

�

= 286 ways. Thus,

the number of hands is 4� 715� 286� 286� 286 = 66,905,856,160 ways.

} Section 4.9

4.9.1(a): 5=36.

4.9.2(a): First, there are 52 � 51 = 2652 members of the probability space. To

calculate the number of points with one or more Aces, it is easier to calculate the

number with no Ace and subtract this probability from 1. The number of deals of

two cards from the 48 that remain after removing the Aces is 48�47 = 2256. Thus,

the probability of no Ace is 2256=2652, and the probability of at least one Ace is

1� (2256=2652) = 396=2652 = 14:9%.

CHAPTER 4. COMBINATORICS AND PROBABILITY 21

4.9.3(a): The area of a circle of radius 3 inches is 9� = 28:27. The area of the

entire square is 144 square inches. Thus, the probability of hitting the circle is

28:27=144 = 19:6%.

4.9.4(a): The probability is

�

5

4

�

�

�

75

16

�

=

�

80

20

�

. If we cancel common factors in nu-

merator and denominator, we get 5�20�19�18�17�60=(80�79�78�77�76),

or 1.21%.

} Section 4.10

4.10.1:

a) Among the 18 points with an odd �rst die, 9 have an even second die. Thus,

the probability is 9=18, or 50%.

c) There are six points that have 4 as the �rst die. Of these, four have a sum at

least 7. Thus, the probability is 4=6, or 66.7%.

4.10.2(a): In the region of 120 points where there are three di�erent numbers,

the probability of two 1's is 0. In the region of 90 points with two of one number,

1/6 will have two 1's. In the region of six points with all three dice the same, the

probability of at least two 1's is 1/6. Thus, the probability of at least two 1's is

0� (120=216) + (1=6)� (90=216) + (1=6)(6=216) = 7:41%.

4.10.7: An appropriate probability space, in which all points are of equal proba-

bility, is one with six points, two for each of the choices of which prisoner to shoot.

The distinction between the two points for prisoner A is the order in which the

guard will consider the other two prisoners when asked for a prisoner (other than

the questioner) who will not be shot. Thus, the two points for A can be thought of

as (A, \B-before-C") and (A, C-before-B). The remaining four points, for B and

C, are speci�ed similarly.

Now, suppose that the guard answers \B" to A's question. There are three

points that could have occurred:

(A, B-before-C), (C, A-before-B), and (C, B-before-A)

In only the �rst of these will A be shot, so the probability is still 1/3.

} Section 4.11

4.11.1(a): The probability that at least one of the events is at least the largest of

the p

i

's. The probability would be exactly max(p

1

; p

2

; : : : ; p

n

) in the case that all

the events were contained within the largest. The probability of at least one of the

events is no greater than the sum of the p

i

's, and of course it is no greater than

1. The probbility

P

n

i=1

p

i

would be reached in the case that all the events were

disjoint.

4.12.2:

a) Nothing. It could be anything between 0 and 1.

22 SOLUTIONS TO SELECTED EXERCISES

b) The probability is 1� p.

4.12.3:

a) Between 0 and 0.3.

c) Cold must be contained in both High and Dropping. Thus, Cold cannot have

probability greater than the smaller of High and Dropping, that is, 0.3. Its

probability could be as low as 0, however, for example, if High and Dropping

were disjoint.

} Section 4.12

4.12.1: Intuitively, the expected number of 1's on one die is 1/6. The tosses of dice

are independent, so we expect 1/6 of a 1 from each. In three dice, we thus expect

1/2 a 1.

Alternatively, consider the 6

3

= 216 tosses of three dice. The number of tosses

with three 1's is 1. The number of tosses with two 1's is 15, since the other die can

be any of �ve numbers, and the non-1 die can appear in any of three positions. The

number of tosses with exactly one 1 is 75. In explanation, the 1 can appear in any

of 3 positions. For each of the other two positions, there are 5 choices, for a total of

3�5�5 = 75 tosses. The expected number of 1's is thus (1�3+15�2+75�1)=216 =

(3 + 30+ 75)=216 = 108=216 = 1=2.

4.12.2: Exercise 4.12.1 suggests that the average amount of our winnings is 50

cents. However, the average amount we lose is not 50 cents. It is one dollar times

the probability that we lose. This probability is 125=216, the fraction of tosses that

do not contain a 1. This expected value is �57:9 cents, so the expected value of our

payout is �7:9 cents.

4.12.5: The game is fair. Generalizing Exercise 4.12.1, we have six independent

tosses, each with an expected 1/6 of a 1, so the expected amount recieved in each

toss is one dollar. Since we pay a dollar to play, our net expected payout is 0.

} Section 4.13

4.13.1: 383 is prime. 377 = 29� 13, and 391 = 23 � 17.

4.13.3: The number of tickets is 1 + 2 + � � �+ 11 = 66. Of these tickets, 11 have a

value of 1; i.e., the �nishing place of the holder of those tickets is 1, counting from

the bottom. 10 tickets have a value of 2, 9 have value 3, and so on. Thus, the

expected value is

P

11

i=1

i(12� i)=66. We can calculate this sum with the help of the

formulas in Exercise 2.3.1(a) and (b). It is 286=66 = 4:33. That is, the �rst pick

goes to a team that is on average a little better than fourth-worst.

CHAPTER 5. THE TREE DATA MODEL 23

}

} }

}

Chapter 5. The Tree Data Model

} Section 5.2

5.2.1: For the tree of Fig 5.5:

a) Node 1 is the root of the tree.

b) Nodes 6, 8, 9, 13, 15, 11, and 12 are the leaves.

c) Nodes 1{5, 7, 10, and 14 are the interior nodes.

d) Nodes 5 and 7 are the siblings of node 6.

e) The tree consisting of nodes 5, 10, 13, 14, and 15 is the subtree with root 5.

f) Nodes 1, 3, 5, and 10 are the ancestors of node 10.

g) Nodes 10, 13, 14, and 15 are the descendants of node 10.

h) Nodes 2, 4, 8, and 9 are to the left of node 10.

i) Nodes 6, 7, 11, and 12 are to the right of node 10.

j) Nodes 1, 3, 5, 10, 14, and 15 form the longest path (of length 5) in the tree.

k) Node 3 is of height 4.

l) Node 13 is the depth 4.

m) The tree is of height 5.

5.2.3: Let x and y be distinct leaves in a tree, and suppose x is an ancestor y.

Then there exists a path x = n

1

; n

2

; : : : ; n

k

= y of length one or more from x to y.

Thus, n

1

is a child of x, and x cannot be a leaf.

5.2.5: There is no edge connecting r to any of a; b; or c. If r is the root, then there

is no way of reaching r from a; b; or c. Similarly, if one of a; b; or c is the root,

then there is no way of reaching the root from r. Thus, the third property of the

de�nition of a tree (a tree must be connected) is violated.

5.2.7(a): The expression tree for (x+ 1)� (x� y + 4) is

�

+ +

x 1 � 4

x c

24 SOLUTIONS TO SELECTED EXERCISES

+

+ 5

� �

9 8 7 6

NODE LEFTMOST CHILD RIGHT SIBLING

1 2 -

2 4 3

3 5 -

4 8 -

5 10 6

6 - 7

7 11 -

8 - 9

9 - -

10 13 -

11 - 12

12 - -

13 - 14

14 15 -

15 - -

Fig. S5.1. Answer to Exercise 5.3.1..

5.2.7(c): The expression tree for 9� 8 + 7� 6 + 5 is

} Section 5.3

5.3.1: For each node, the leftmost child and right sibling are shown in Fig. S5.1.

5.3.5: There are 10

7

nodes, each with 4 bytes of information and two 4-byte point-

ers, or 1:2� 10

8

bytes. There would be 10

7

+ 1 NULL pointers (see Exercise 5.5.5).

CHAPTER 5. THE TREE DATA MODEL 25

} Section 5.4

5.4.1: Here is a surprisingly simple function that counts the nodes in a tree.

int count(pNODE n) {

if(n != NULL)

return(count(n->rightSibling) +

count(n->leftmostChild) + 1);

else return 0;

}

At �rst glance, the function doesn't seem to address the problem. However,

the \inductive assertion" about count is that for any node n, count(n) is the sum

of the number of nodes in the subtree rooted at n and all those subtrees rooted at

siblings of n to the right of n. The induction is straightforward, once we realize that

the induction is on the length of the longest path of leftmost-child and right-sibling

pointers extending from a node. Since the root has no siblings, the desired result

appears at the root.

Another way to look at the count function above is that the leftmost-child

and right-sibling pointers turn the tree into a binary tree with the same number of

nodes. Surely, the rule that the number of nodes in a binary tree rooted at n is 1

plus the sum of the number of nodes in the left and right subtrees makes sense.

Incidentally, this technique applies to any computation on trees that can be

expressed as an associative operator applied to the results of the children (the

operator is + in the case of count), and a �nal, unary operator (add-one in this

case). For example, the function to compute the height of a tree in Fig. 5.22 of

the text can be replaced by a simpler (but less transparent) function that computes

the height of n to be the larger of the height of the right sibling of n and 1 plus

the height of the leftmost child of n. The height will be correct at the root, but in

general, height(n) is the largest of the height of n and any siblings of n to the right.

5.4.5: The node listings are

a) Preorder: 1, 2, 4, 8, 9, 3, 5, 10, 13, 14, 15, 6, 7, 11, 12

b) Postorder: 8, 9, 4, 2, 13, 15, 14, 10, 5, 6, 11, 12, 7, 3, 1

5.4.7: First, construct the expression tree. Then the in�x and pre�x expressions

can be read o� the tree.

a) In�x expression is

�

(a+ b) � c

�

=(d� e) + f .

b) Pre�x expression is += �+abc� def .

} Section 5.5

5.5.1(a): We shall prove by structural induction

STATEMENT S(T): The procedure preorder when called on the root of T prints

the labels of the nodes of T in preorder.

26 SOLUTIONS TO SELECTED EXERCISES

BASIS. When the tree T is a single node n, line (1) prints the label of the root n.

At line (2) c is set to NULL, and consequently the body of the while-loop is not

executed.

INDUCTION. Suppose we execute preorder on a tree T with root n and children

c

1

; c

2

; : : : ; c

k

. Line (1) prints the label of node n. Line (2) sets c to c

1

. By the

inductive hypothesis while-loop proceeds to print the labels of the subtrees rooted

at c

1

; c

2

; : : : ; c

k

in preorder. This is the same as the de�nition of a preorder listing.

We conclude that preorder prints the labels of a tree in preorder.

5.5.3: We shall prove by structural induction

STATEMENT S(T): The number of nodes in T is 1 more than the sum of the

degrees of the nodes.

BASIS. When T is a single node n, the degree of n is 0.

INDUCTION. Suppose n, the root of a tree T , has nodes c

1

; c

2

; : : : ; c

k

as children.

Let numnodes(c

i

) be the number of nodes in the subtree rooted at c

i

. Let degree(c

i

)

be the sum of the degrees of the nodes in the subtree rooted at c

i

. By the inductive

hypothesis, we know that numnodes(c

i

) = degree(c

i

) + 1 for 1 � i � k. The total

number of nodes in T is 1 +

P

k

i=1

numnodes(c

i

). The sum of the degrees of all the

nodes in T is

P

k

i=1

degree(c

i

) + k. We therefore have

1 +

k

X

i=1

numnodes(c

i

) = 1 +

k

X

i=1

degree(c

i

) + k

Since the root has degree k, the latter sum is 1 plus the sum of all the nodes in T ,

proving the induction.

5.5.5:

BASIS. A leaf has 2 NULL pointers and 1 node.

INDUCTION. Let T be a tree with root r. Let r have children c

1

; : : : ; c

k

, the roots

of subtrees T

1

; : : : ; T

k

, respectively. Let T

i

, as a tree by itself, have p

i

NULL pointers

and n

i

nodes. By the inductive hypothesis, p

i

= n

i

+ 1 for i = 1; 2; : : : ; k.

When we assemble T from r and the T

i

's, we replace the NULL pointers in the

rightSibling �elds of c

1

; c

2

; : : : ; c

k�1

by non-NULL pointers. The root r has a non-

NULL leftmostChild �eld and a NULL rightSibling �eld. The number of NULL

pointers in T is thus (

P

k

i=1

p

i

) � (k � 1) + 1. Since p

i

= n

i

+ 1 by the inductive

hypothesis, the number of NULL pointers is (

P

k

i=1

n

i

) + 2. This is one greater than

the number of nodes in T , which is (

P

k

i=1

n

i

) + 1.

CHAPTER 5. THE TREE DATA MODEL 27

} Section 5.6

5.6.1:

void inorder(TREE t) {

if(t != NULL) {

inorder(t->leftChild);

printf("%d ", t->nodelabel);

inorder(t->rightChild);

}

}

5.6.3: In the code of Fig. S5.2, we assume the function pr(x) returns the precedence

associated with the node label x. We assume leaf-operands have the highest prece-

dence so no parentheses are put around them. When the left operand of the root

t has lower precedence than the root, we put parentheses around the left operand,

and the right operand is treated similarly.

void pinorder(TREE t) {

if(t != NULL) {

if(t->leftChild != NULL) {

if(pr(t->leftChild.nodelabel) <= pr(t->nodelabel))

pinorder(t->leftChild);

else {

printf("(");

pinorder(t->leftChild);

printf(")");

}

}

printf("%d ", t->nodelabel);

if(t->rightChild != NULL) {

if(pr(t->rightChild.nodelabel) <= pr(t->nodelabel))

pinorder(t->rightChild);

else {

printf("(");

pinorder(t->rightChild);

printf(")");

}

}

}

}

Fig. S5.2. Solution to Exercise 5.6.3..

28 SOLUTIONS TO SELECTED EXERCISES

} Section 5.7

5.7.2: The trees are shown in Fig. S5.3.

5.7.4:

TREE insert(ETYPE x, TREE* pT)

{

if ((*pT) == NULL) {

(*pT) = (TREE) malloc(sizeof(struct NODE));

(*pT)->element = x;

(*pT)->leftChild = NULL;

(*pT)->rightChild = NULL;

}

else if (x < (*pT)->element)

(*pT)->leftChild = insert(x, &((*pT)->leftChild));

else if (x > (*pT)->element)

(*pT)->rightChild = insert(x, &((*pT)->rightChild));

}

} Section 5.8

5.8.1: The branching factor is the maximum number of children a node can have.

The smallest tree of height h with branching factor b is a simple path of h+1 nodes.

The largest tree of height h with branching factor b > 1 is a complete b-ary tree (all

nodes on the �rst h levels have b children). There is one root, b children of the root,

b

2

children of those, and so on to depth h. The total number of nodes is

P

h

i=0

b

i

,

or (b

h+1

� 1)=(b� 1) nodes.

} Section 5.9

5.9.1:

a) Sequence of steps to insert 3:

18 18 16 9 7 1 9 3 7 5 3 initially 3 goes into A[11]

18 18 16 9 7 1 9 3 7 5 3 after bubbleUp(A,11) (no change to A)

b) Insert 20:

18 18 16 9 7 1 9 3 7 5 3 20 initially 20 goes into A[20]

20 18 18 9 7 16 9 3 7 5 3 1 after bubbleUp(A,12)

c) Delete maximum element (replacing it by A[12]):

1 18 18 9 7 16 9 3 7 5 3 initial array

18 9 18 7 7 16 9 3 1 5 3 after calling deletemax(A,11)

d) Again, delete maximum element (replacing it by A[11]):

CHAPTER 5. THE TREE DATA MODEL 29

Hairy

Bashful Sleepy

Grumpy Sleazy Sue

Doc Happy

Blinky Dopey

Pinky

Inky

Pinky

Inky

Bashful Sleepy

Grumpy Sue

Blinky

Dopey

Happy

Fig. S5.3. Solutions to Exercise 5.7.2..

3 9 18 7 7 16 9 3 1 5 initial array

18 9 16 7 7 3 9 3 1 5 after calling deletemax(A,10)

5.9.7: Clearly, bubbleDown takes O(1) time plus the time of the recursive call. The

second argument of the recursive call is at least twice the value of the second formal

parameter i. When i exceeds n=2, there is no recursive call made. Thus, no more

than log

2

n recursive calls can result from an initial call to bubbleDown. Hence, the

total time is O(log n).

} Section 5.10

5.10.1: Here is the sequence of steps made by heapsort:

30 SOLUTIONS TO SELECTED EXERCISES

3 1 4 1 5 9 2 6 5 initial array A

3 1 4 6 5 9 2 1 5 after bubbleDown(A,4,9)

3 1 9 6 5 4 2 1 5 after bubbleDown(A,3,9)

3 6 9 5 5 4 2 1 1 after bubbleDown(A,2,9)

9 6 4 5 5 3 2 1 1 after bubbleDown(A,1,9)

6 5 4 1 5 3 2 1 9 after deletemax(A,9)

5 5 4 1 1 3 2 6 9 after deletemax(A,8)

5 2 4 1 1 3 5 6 9 after deletemax(A,7)

4 2 3 1 1 5 5 6 9 after deletemax(A,6)

3 2 1 1 4 5 5 6 9 after deletemax(A,5)

2 1 1 3 4 5 5 6 9 after deletemax(A,4)

1 1 2 3 4 5 5 6 9 after deletemax(A,3)

1 1 2 3 4 5 5 6 9 after deletemax(A,2)

CHAPTER 6. THE LIST DATA MODEL 31

}

} }

}

Chapter 6. The List Data Model

} Section 6.2

6.2.1:

a) Length is 5.

b) Pre�xes are �, (2), (2,7), (2,7,1), (2,7,1,8), (2,7,1,8,2).

c) Su�xes are �, (2), (8,2), (1,8,2), (7,1,8,2), (2,7,1,8,2).

d) Sublists are �, (2), (7), (1), (8), (2), (2,7), (7,1), (1,8), (8,2), (2,7,1), (7,1,8),

(1,8,2), (2,7,1,8), (7,1,8,2), (2,7,1,8,2).

e) There are 31 distinct subsequences.

f) The �rst 2 is the head.

g) The list (7,1,8,2) is the tail.

h) There are �ve positions.

6.2.3: Pre�xes: There are always exactly n + 1 pre�xes, one each of the lengths 0

through n.

Sublists: First, suppose that all the positions of a string of length n how

di�erent symbols. Then there is one sublist of length 0, n di�erent sublists of

length 1, n� 1 di�erent sublists of length 2, n� 2 of length 3, and so on, for a total

of n(n + 1)=2 + 1. This is the maximum possible number. The minimum occurs

when all the positions hold the same symbol. Then, all sublists of the same length

are the same, and there are only n+ 1 di�erent sublists.

Subsequences: Suppose all symbols are distinct. Then every set of the n po-

sitions yields a distinct subsequence, so there are 2

n

subsequences. That is the

maximum number. If all positions hold the same symbol, then all subsequences

of the same length are the same, and we have n + 1 subsequences, the minimum

possible number.

6.2.5: 1,2,3 can represent an in�nite number of di�erent kinds of lists of lists

including ((1),(2),(3)), ((1,2),(3)), ((1),(2,3)), ((1,2,3)), (((1,2,3))), ((((1,2,3)))), and

so on.

} Section 6.3

6.3.1:

a) delete(5; L) = (3,1,4,1,9)

b) delete(1; L) = (3,4,1,5,9) or (3,1,4,5,9)

c) pop(L) removes 3 from L leaving (1,4,1,5,9)

d) push(2; L) adds 2 to the beginning of L giving (2,3,1,4,1,5,9)

e) lookup(6; L) returns FALSE.

f) LM = (3,1,4,1,5,9,6,7,8)

g) first(L) = 3; last(L) = 9

h) retrieve(3; L) = 4, the element at position 3

i) length(L) = 5

32 SOLUTIONS TO SELECTED EXERCISES

j) isEmpty(L) = FALSE

6.3.3:

a) One condition under which delete(x; insert(x; L)) = L is true would be if

insert(x; L) always added x to the beginning of L and delete(x; L) removed

the �rst occurrence of x from L.

c) first(L) is always equal to retrieve(1; L).

} Section 6.4

6.4.1:

a) Let T (n) be the running time of delete(x; L) where n is the length of list L.

The recurrence for T (n) is

T (0) = a

T (n) = b+ T (n� 1), n > 0

The solution to this recurrence is T (n) = a + bn.

6.4.3: Here is a program that inserts an element x into a sorted list L.

void insert(ETYPE x, LIST* pL) {

LIST M;

if((*pL) == NULL) {

(*pL) = (LIST) malloc(sizeof(struct CELL));

(*pL)->element = x;

(*pL)->next = NULL;

}

else if(x > (*pL)->element)

insert(x, &((*pL)->next));

else {/* insert x between cell holding pointer pL and

the cell pointed to by *pL */

M = (LIST) malloc(sizeof(struct CELL));

M->element = x;

M->next = *pL;

(*pL) = M;

}

}

6.4.5: Let p be the pointer to the cell to be deleted.

void delete(LIST p) {

if(p->next != NULL)

p->next->previous = p->previous;

p->previous->next = p->next;

}

CHAPTER 6. THE LIST DATA MODEL 33

} Section 6.5

6.5.1(b): The following procedure deletes element x from list L using linear search

to locate x.

void delete(ETYPE x, LIST* pL) {

int i, j;

i = 1;

while(i < pL->length && x != pL->A[i]) i++

if(i <= pL->length && x = pL->A[i]) {

for(j = i; j < pL->length; j++) {/* shift following

elements forward */

pL->A[j] = pL->A[j+1];

(pL->length)--;

}

}

6.5.3(a): The following function inserts x on L if there is room on L; otherwise, it

returns FALSE.

Boolean insert(ETYPE x, LIST* pL) {

int i;

if(pL->length >= MAXLENGTH)

return(FALSE);

else {

i = 1;

while(i <= pL->length {

if(x < pL->A[i]) i++;

else break;

}

/* here we have found position i, where x belongs */

(pL->length)++;

for(j=pL->length; j>i; j--) /* shift following

elements back one position in the array */

pL->A[j] = pL->A[j-1];

pL->A[i] = x;

return(TRUE);

}

}

6.5.6: We shall prove the following statement by induction on d = high � low.

STATEMENT S(d): Let d = high � low. If x is in the range A[low..high], then

the algorithm of Fig. 6.14 �nds x.

BASIS. d = 0. If high = low, and if x is in A[low..high], then

mid = b(low + high)=2c = low

34 SOLUTIONS TO SELECTED EXERCISES

In this case, line (8) of Fig. 6.14 correctly returns TRUE since x = A[mid].

INDUCTION. Suppose that d � 0 and that S(d) is true. We shall prove S(d + 1).

Suppose that x is in A[low..high] where high � low = d+ 1. Since high > low,

the block consisting of lines (3){(8) in Fig. 6.14 is executed. Line (3) computes

mid = b(low + high)=2c. There are three cases to consider.

Case 1. If x < A[mid], then x is in A[low..mid-1]. Then, by the inductive

hypothesis, the call to binsearch(x; L; low;mid� 1) on line (5) �nds x since

mid� 1� low = d

Case 2. If x > A[mid], then the call to binsearch(x; L;mid + 1; high) on line (7)

�nds x.

Case 3. If x = A[mid], line (8) �nds x and returns TRUE.

We have now proven the inductive hypothesis and conclude that S(d) is true for all

d � 0.

} Section 6.6

6.6.1: The following table shows the contents of the stack after each operation.

The top of the stack is on the right.

STACK ACTION

�

a push(a)

ab push(b)

a pop

ac push(c)

acd push(d)

ac pop

ace push(e)

ac pop

a pop

6.6.3: Let us assume that we have a well-formed pre�x expression containing num-

bers and binary operators. The following algorithm evaluates the expression.

Step 1: Push the numbers and operators from the expression (from left to right)

on to the stack until the top three symbols on the stack are a binary operator �, a

number a, and a number b (b is on top).

Step 2: Replace �ab on top of the stack by the result of applying the operator � to

a and b.

Step 3: Repeat steps (1) and (2) until no more numbers or operators remain in the

pre�x expression.

CHAPTER 6. THE LIST DATA MODEL 35

The number remaining on top of the stack is the answer.

6.6.5:

a) The function for an array-based stack of integers is:

int top(STACK* pS) {

return(pS->A[ps->top]);

}

b) For a list-based stack of integers we can write:

int top(STACK S) {

return(S->element);

}

Both implementations take O(1) time.

} Section 6.7

6.7.1: The �rst column in Fig. S6.1 shows the stack of activation records after

we have pushed an activation record for sum. The remaining columns show the

activation records just before we pop each activation record for sum o� the stack.

We use ret to name the return value.

} Section 6.8

6.8.1: Below is the contents of the queue after each command. The front of the

queue is at the left.

QUEUE ACTION

�

a enqueue(a)

ab enqueue(b)

b dequeue

bc enqueue(c)

bcd enqueue(d)

cd dequeue

cde enqueue(e)

de dequeue

e dequeue

} Section 6.9

6.9.1:

a) 4. aana is one.

36 SOLUTIONS TO SELECTED EXERCISES

A[1]

A[2]

A[3]

A[4]

j

i 1 i 1

ret ret 100

temp temp 90

i 2 i 2

ret ret 90

temp temp 70

i 3 i 3

ret ret 70

temp temp 40

i 4 i 4

ret ret 40

temp temp 0

i 5 i 5

ret ret 0

temp temp

Fig. S6.1. Stack of activation records.

b) 7. bacbcab is one.

6.9.3: There are 20 calls to L(1; 1). Let C(i; j) be the number of calls to L(i; j)

when the strings of length i and j have no symbols in common. The de�nition of

the recursive algorithm tells us that

C(i; j) = C(i� 1; j) +C(i; j � 1) whenever i > 0 and j > 0

C(1; 1) = 1

C(i; 0) = 0 for all i

C(0; j) = 0 for all j

From these observations it follows that C(i; 1) = 1 for all i � 1 and C(1; j) = 1 for

all j � 1. Thus, a simple induction on i + j shows that C(i; j) =

�

i+j�2

i�1

�

for all

i � 1 and j � 1 (note

�

0

0=1

�

). Thus, L(4; 4) calls L(1; 1)

�

6

3

�

= 20 times.

CHAPTER 6. THE LIST DATA MODEL 37

} Section 6.10

6.10.3: Let n be the maximum string length and c the number of characters per

cell. Assume both n and c are \large." There are two sources of waste space:

the space used by pointers and the unused character space in the last cell. The

average number of cells will be about n=2c, because the average word is about n=2

characters long and is packed c to a cell. There is one pointer of 4 bytes in each

cell, so the number of waste bytes due to pointers is 2n=c. The number of waste

bytes in the last cell is c=2 on the average. We must thus �nd the value of c that

minimizes

2n

c

+

c

2

If you know calculus, you know that the minimum occurs when both terms are

equal; that is, c

2

= 4n, or c = 2

p

n.

6.10.5: We are in e�ect replacing a single byte by a 4-byte integer, which costs us

3 bytes per word stored. If integers can be stored in one byte, then it is a wash; the

costs are the same.

38 SOLUTIONS TO SELECTED EXERCISES

}

} }

}

Chapter 7. The Set Data Model

} Section 7.2

7.2.1: The set ffa; bg; fag; fb; cgg contains three members fa; bg; fag; fb; cg; each

of which is also a set.

7.2.3(a): One representation is fb; c; ag. Another, using abstraction, is

fx j x is a letter, a � x, and x � c

} Section 7.3

7.3.1(a): The simplest expression for region 6 is S \ T \ R. Region 6 can also be

represented as S without regions 2, 3, or 5, that is, as

S � (((S � T) �R) [((S \ T)� R) [((S \ R)� T))

7.3.1(b): One expression for regions 2 and 4 is (S � (T [R)) [(T � (S [R)):

Another is (S [T) � (S \ T)� (S \ R) � (T \ R).

7.3.1(c): Two expressions for regions 2, 4, and 8 together are

(S � (T [R)) [(T � (R [S)) [(R� (S [T))

and

(S [T [R)� (S \ T) � (S \ R)� (T \ R)

7.3.3(a): First, we show the forward containment (S [(T \ R)) � ((S [T) \

(S [R)). Let x be in S [(T \ R). By the de�nition of union, x is either in S

or in T \ R (or in both). If x�S, then x is a member of the right-hand side of the

forward containment. If x�(T \ R); then x is in both T and R, and again a member

of the right-hand side. Thus, the forward containment holds.

Now, we show the reverse containment (S [(T \ R)) � ((S [T) \ (S [R)).

Suppose x is in (S [T) \ (S [R). By the de�nition of intersection, x is a member

of the left-hand side of the reverse containment. If x is in both T and R, then x is

again a member of the left-hand side. We conclude the reverse containment holds.

Since both the forward and reverse containments hold, we conclude

(S [(T \ R)) � ((S [T) \ (S [R)).

7.3.5: A Venn diagram with n sets divides the plane into 2

n

regions, assuming no

set is a subset of another. We shall prove this by induction on n.

BASIS. If n = 1, the Venn diagram has two regions, outside the set and inside the

set.

CHAPTER 7. THE SET DATA MODEL 39

INDUCTION. Suppose that the plane has been divided into 2

n

regions with n sets.

Now consider adding an n + 1st set. The new set partitions each of 2

n

existing

regions into two, containing those points within the new set and those without.

(Here is where the property that no set is a subset of another is used.) Therefore,

n+ 1 sets partition the plane into 2� 2

n

= 2

n+1

regions. Thus, the inductive step

is proved.

We conclude a Venn diagram with n sets divides the plane into 2

n

regions for

all n � 1.

If there are n � 2 sets such that exactly one set is a subset of another, then a

Venn diagram for the n sets would have 2

n�1

+ 2

n�2

nonempty regions. If S and

T are two of the n sets and S � T , then every member within S must be contained

with T . T can partition each of the 2

n�2

regions formed by the other sets in two,

but the 2

n�2

new regions formed by S must all be partitions of regions contained

with Y .

7.3.7: We shall represent a set of elements (integers) by a linked list of SCELLs

de�ned in the usual way by our DefCell macro:

DefCell(int, SCELL, SLIST);

We shall represent the powerset whose elements are sets by a linked list of PCELLs

de�ned by:

DefCell(SLIST, PCELL, PLIST);

To save space, we shall reuse previously constructed SLISTs wherever possible in

the construction of a new member of the powerset.

The function powerset(S) takes a linked list S of type SLIST and products as

output a PLIST that is a compact representation for the powerset of S. The function

powerset(S) uses the following recursive construction:

P(;) = f;g

Let S = fa

1

; a

2

; :::; a

n

g be a set of n elements and let a

n+1

be a new element. Then

P(S [fa

n+1

g) = P(S) [([

Q2P(S)

(fa

n+1

g [Q))

The C code is in Fig. S7.1.

The running time of powerset(S) is O(2

n

) where n is the number of elements

on the linked list S. Note that each successive element on S doubles the size of the

powerset.

7.3.9: P(P(P(;))) = f;; f;g; ff;gg; f;; f;ggg

} Section 7.4

7.4.1(a): The function union(L;M) in Fig. S7.2 is an implementation of the pseudo

code in Figure 7.5. It assumes that LIST and CELL are de�ned as in Section 7.4.

The code for the function lookup(x; L) is given in Figure 6.3 of the text.

40 SOLUTIONS TO SELECTED EXERCISES

PLIST dble(PLIST P, int e); /* applies recursion to produce

all the sets on list P and all those sets with element

e inserted */

PLIST powerset(SLIST S) {

PLIST P;

if(S == NULL) {/* create P, a list containing only the

empty set */

P = (PLIST) malloc(sizeof(struct PCELL));

P->element = NULL;

P->next = NULL;

return P;

}

/* here, S is not empty. Apply recursion using its

first element as a {n+1}*/

return dble(powerset(S->next), S->element);

}

PLIST dble(PLIST P, int e) {

SLIST newS;

PLIST newP;

if(P==NULL) return NULL;

/* now, P has at least one element. Double its tail */

P->next = dble(P->next, e);

/* Let S be the set in P->element. Create a new PCELL

to represent S union {e}. The new SCELL holds

e, and the rest of S union {e}is just a pointer

to S itself. (Note the savings in the number of

SCELLS created.) */

newS = (SLIST) malloc(sizeof(struct SCELL));

newP = (PLIST) malloc(sizeof(struct PCELL));

newS->element = e;

newS->next = P->element;

newP->element = newS;

newP->next = P;

return newP;

}

Fig. S7.1. Computing the power set.

7.4.1(b): The following pseudocode computes the intersection sets L and M .

for(each x on L)

if(lookup(x, M)

insert(x, inter);

The C implementation is similar to Fig. S7.2.

7.4.1(c): The di�erence of sets L and M can be computed as follows:

CHAPTER 7. THE SET DATA MODEL 41

LIST union(LIST L, LIST M) {

LIST union, newCell;

/* copy L to union */

union = NULL;

while(L != NULL) {

newCell = (LIST) malloc(sizeof(struct CELL));

newCell->element = L->element;

newCell->next = union;

union = newCell;

L = L->next

}

while(M != NULL) {

if(!lookup(M->element, union)) {

newCell = (LIST) malloc(sizeof(struct CELL));

newCell->element = M->element;

newCell->next = union;

union = newCell

}

M = M->next

}

}

Fig. S7.2. Taking the union of unsorted lists.

for(each x on L)

if(!lookup(x, M)

insert(x, di�erence)

Again, the C implementation is similar to Fig. S7.2.

7.4.3: If we allowed union to use portions of the lists L and M in the answer, we

could simplify the union program in Figure 7.6 by replacing line (8) by

union = M

and line (10) by

union = L

7.4.5: We can write a program almost identical to Figure 7.6 replacing union by

symmetric di�erence. However, when the �rst elements of L and M are the same

we discard both from the symmetric di�erence. Thus, we replace lines (11) and (12)

by

(11) else if(L->element == M->element)

(12) return symdiff(L.next, M.next);

42 SOLUTIONS TO SELECTED EXERCISES

} Section 7.5

7.5.1:

a) A pinochle deck contains the A, K, Q, J, 10 and 9 of each suit. The character-

istic vector is thus

10

7

1

6

0

7

1

6

0

7

1

6

0

7

1

5

b) The characteristic vector for the red cards (diamonds and hearts) is

0

13

1

26

0

13

c) The Jack of hearts and the Jack of spades are one-eyed. The King of hearts is

the suicide king. The characteristic vector for these three cards is

0

36

1010

10

10

2

7.5.3: Given a small universal set U of n elements, we could use an array of

integers int S[n] to represent a bag. S[i] would present the number of times the

ith element appears in the bag.

a) To insert another instance of the ith element, we would increment S[i] by one.

b) To delete an instance of the ith element, we would decrement S[i] by one,

provided it was not already 0.

c) To lookup the number of times element i occurs, we return S[i].

} Section 7.6

7.6.2(a): There is a substantial unevenness in the lengths of English words, and

the division into buckets is therefore not very even. The number peaks around 7

letters. For example, the 24,470 words in /usr/dict/words, 4045 have length 7.

They divide themselves into buckets as follows.

Bucket 0 1 2 3 4 5 6 7 8 9

Count 1891 1100 639 1034 2253 3138 3813 4053 3583 2970

Should one interpret the problem as assuming that a random selection of word

occurrences from a typical document (rather than from a list of all possible words)

is to be hashed, then we would instead �nd the low numbers predominated, since

most occurrences of words are short. Thus, the hash function would perform poorly

in this situation as well.

CHAPTER 7. THE SET DATA MODEL 43

7.6.3(a):

void bucketDelete(ETYPE x, LIST* pL) {

if((*pL) != NULL) {

if((*pL)->element == x) (*pL) = (*pL)->next;

else delete(x, (*pL)->next);

}

}

void delete(ETYPE x, HASHTABLE S) {

bucketDelete(x, &(S[h(x)]));

}

7.6.3(b):

Boolean bucketLookup(ETYPE x, LIST L) {

if(L == NULL) return FALSE;

else if(L->element == x) return TRUE;

else return lookup(x, L->next);

}

Boolean lookup(ETYPE x, HASHTABLE S) {

return bucketLookup(x, S[h(x)]);

}

} Section 7.7

7.7.1: Let A = fag and B = fb; ag. Then A� B = f(a; b)g and B � A = f(b; a)g.

7.7.3:

a) R is a partial function because every node in a tree has at most one parent.

b) R is not a total function from S to S because the root of a tree has no parent.

c) T is never a one-to-one correspondence because R is not a total function from

S to S.

d) The graph for R is isomorphic to the tree.

7.7.5: F is a partial function from S to T with the following properties:

1. For every element ((a; b); c) in S there is an element (a; (b; c)) in T such that

F (((a; b); c)) = (a; (b; c)).

2. For every element (a; (b; c)) in T there is an element ((a; b); c) in S such that

F (((a; b); c)) = (a; (b; c)).

3. For no b in T are there two distinct elements x

1

and x

2

in S such that F (x

1

) =

F (x

2

) = b.

Hence F is a one-to-one correspondence from S to T .

44 SOLUTIONS TO SELECTED EXERCISES

7.7.7:

a) The graph of the inverse of R is obtained by reversing the directions of the arcs

in the graph for R.

b) The inverse need not be a function. If R is a total function from domain A to

range B, there may be a b in B for which there is no a in A such that (a; b) is

in R.

If R is a one-to-one correspondence from A to B, then its inverse is a total

function from B to A.

} Section 7.8

7.8.1(a):

void delete(DTYPE a, LIST* F) {

if((*F) != NULL)

if((*F)->domain == a) (*F) = (*F)->next;

else delete(a, (*F)->next);

}

7.8.1(b):

RTYPE lookup(DTYPE a, LIST F) {

if(F == NULL) return UNDEFINED;

else if(F->domain == a) return F->range;

else return lookup(a, F->next);

}

Here we assume RTYPE includes the value UNDEFINED.

7.8.3(a):

void insertBucket(DTYPE a, RTYPE b, LIST* pL) {

if((*pL) == NULL) {

(*pL) = (LIST) malloc(sizeof(struct CELL));

(*pL)->domain= a;

(*pL)->range= b;

(*pL)->next= NULL;

}

else if((*pL)->domain == a) (*pL)->range = b;

else insertBucket(a, b, (*pL)->next);

}

void insert(DTYPE a, RTYPE b, HASHTABLE F) {

insertBucket(a, b, &(F[h(a)]));

}

CHAPTER 7. THE SET DATA MODEL 45

7.8.3(b):

void deleteBucket(DTYPE a, LIST* pL) {

if((*pL) != NULL)

if((*pL)->domain == a) (*pL) = (*pL)->next;

else deleteBucket(a, (*pL)->next)

}

void delete(DTYPE a, HASHTABLE F) {

deleteBucket(A, &(F[h(a)]));

}

} Section 7.9

7.9.1: This is just a slight rewrite of the function lookup from Fig. 7.24. Here

we search the range rather than the domain for the value b and produce a list of

varieties v such that (v; b) is in L.

PLIST lookup(PVARIETY p, RLIST L) {

PLIST P;

if(L == NULL) return NULL;

else if(L->pollinizer == b) {

P = (PLIST) malloc(sizeof(struct PCELL));

P->variety = L->variety;

P->next = lookup(b, L->next);

return P;

}

else return lookup(b, L->next);

}

7.9.3(a):

void insertP(PVARIETY p, PLIST* pL) {

if((*pL) == NULL) {

(*pL) = malloc(sizeof(struct PCELL));

(*pL)->pollinizer = p;

(*pL)->next = NULL;

}

else if((*pL)->pollinizer != p)

insert P(p, L->next);

}

void insert(PVARIETY v, PVARIETY p, PLIST Pollinizers[]) {

insertP(p, Pollinizers[p]);

}

7.9.5: We shall prove by induction on n:

46 SOLUTIONS TO SELECTED EXERCISES

STATEMENT S(n): On a list L of length v, lookup(a; L) returns a list of all the

elements b such that (a; b) is on L.

BASIS. n = 0. When L is empty, statements (1) and (2) return NULL as the value

of lookup(a; L).

INDUCTION. We assume S(n) and prove S(n + 1). Suppose L is a list of length

n+ 1. The initial call lookup(a; L) looks at the �rst cell of L. There are two cases

to consider:

(1) If L->variety matches a, then a new cell P is created, a pointer to which

becomes the output of lookup. The �rst component of P is set to the value

of L->pollinizer and the second component is set to point to the list of b's

created by the recursive call to the tail of L. The tail of L is of length n and so

by the inductive hypothesis, the recursive call correctly returns the list of all

b's such that (a; b) is on the tail of L. The list returned for all of L is therefore

correct and the inductive step has been proved.

(2) If L->variety does not match a, then the output of lookup is the value returned

by a recursive call to the tail of L, which is of length n. By the inductive

hypothesis, lookup returns the correct value for the tail of L. Therefore, the

list returned for all of L is correct and the inductive step has been proved.

7.9.7: For dictionaries and functions: With linked lists, the operations insert,

delete, and lookup, each take O(n) time on average with characteristic vectors,

these operations each take O(1) time. With the hash table representation, each

takes O(n=B) time on average, but can take O(n) time in the worst case. Here n

is the number of pairs in the function and B is the number of buckets in the hash

table.

For relations: The same observations apply to the linked-list representation of

relations. With characteristic vectors, lookup takes O(1) time but an insert or delete

takes O(n) time on average because we have to search the entire list for a given

domain value to make sure that a pair (a; b) is not already present. The parameter

b is the average number of b's for a given a. With the hash-table implementation

each operation takes O(max(n; n=B)) time on average.

} Section 7.10

7.10.1: Let R be the relation such that aRa for element a. Then R is re
exive on

the domain fag but not on the domain fa; bg.

7.10.3:

a) R is not re
exive because abcdRabcd is false when b 6= a.

b) R is not symmetric because if abcdRbcda is true, then bcdaRabcd is false when

a; b; c and d are distinct letters.

c) R is not transitive because if abcdRbcda and bcdaRcdab are true then abcdRcdab

is false when a; b; c and d are distinct.

d) R is not antisymmetric nor transitive. Hence R is not a partial order.

e) R is not an equivalence relation because it is not symmetric or transitive.

CHAPTER 7. THE SET DATA MODEL 47

7.10.5: The problem with the \proof" is that there may be no y such that xRy.

Let D be the domain fag and let R by the empty relation on D. Trivially, R is a

symmetric and transitive relation on D.

7.10.7: To count the number of arcs in the full graph, we need to count the number

of pairs of sets (S; T) such that S � T � U . Each of the n elements of U may be

placed in one of the following three sets; S, T � S, and U � T . By the method of

Section 4.2, there are 3

n

ways to make this assignment. Thus, the full graph for

�

U

has 3

n

arcs.

In the reduced graph, each set has n arcs, one to each of the sets formed by

inserting or deleting one of the n elements of U . Since each arc is thus counted twice,

once for each end, the number of arcs is n2

n

=2 = n2

n�1

. Therefore, 3

n

� n2

n�1

arcs are saved.

7.10.9: We shall prove by induction on n

STATEMENT S(n): If a

0

Ra

1

; a

1

Ra

2

; :::; a

n�1

Ra

n

and R is transitive, then a

0

Ra

n

.

BASIS. n = 1. Clearly, a

0

Ra

1

is true.

INDUCTION. We assume S(n) and prove S(n + 1). Consider the sequence of

n + 1 pairs a

0

Ra

1

; a

1

Ra

2

; :::; a

n�1

Ra

n

; a

n

Ra

n+1

. >From the inductive hypothesis,

we know a

0

Ra

n

. By transitivity a

0

Ra

n

and a

n

RA

n+1

imply a

0

Ra

n+1

, proving the

inductive step.

7.10.11:

a) R is not re
exive because aRa is false.

b) R is symmetric because if aRb then a and b have the common divisor in both

situations.

c) R is not transitive. For example, 2R6 and 6R9 but 2R9 is false since 2 and 9

do not have a common divisor other than 1.

d) R is not a partial order since R is neither transitive nor antisymmetric.

e) R is not equivalence relation since it is neither re
exive nor transitive.

} Section 7.11

7.11.1: Let A be a set of sets and let E be an equipotence relation on A; that is,

S E T if there is a 1-1 correspondence from S to T . We shall show that E is (a)

re
exive, (b) symmetric, and (c) transitive.

a) S E S for every set S in A because we can de�ne the identity function f(x) = x

for all x in S as a 1-1 correspondence from S to itself.

b) If S E T , then T E S. Since S E T , there is a 1-1 correspondence from S to

T . We can show that f

�1

, the inverse of f , is a 1-1 correspondence from T to

S.

c) If S E T and T E R, then we shall show S E R. Let f be a 1-1 correspondence

from S to T and g a 1-1 correspondence from T to R.

48 SOLUTIONS TO SELECTED EXERCISES

We need to show the composition of f and g is a 1-1 correspondence from S to R.

i) Since f and g are both total functions, for every x in S, element g(f(s)) is R.

ii) Let z be an element in R. Then x = f

�1

(g

�1

(z)) is an element in S such that

g(f(x)) = z.

iii) There is no z in R for which there exist x

1

and x

2

in S such that g(f(x

1

)) = z.

If there were, then either f or g would not be a 1-1 correspondence.

Since E is re
exive, symmetric, and transitive, it is an equivalence relation.

7.11.3: (a) The 1-1 correspondence is f(i) = i

2

.

(b) Start with the pairing function of Example 7.41. For convenience, rewrite

it in terms of x and y rather than i and j. Then the pair (x; y) is associated with

natural number (x + y)(x + y + 1)=2 + x. Now, to �nd a unique natural number

for the triple (i; j; k), start by associating j and k with a natural number z. Using

the pairing function, let z = (j + k)(j + k + 1)=2 + j. Then, pair i with z, giving

(i+ z)(i+ z + 1)=2+ i, or in terms of i, j, and k:

�

i+ (j + k)(j + k+ 1)=2+ j

��

i+

(j + k)(j + k + 1)=2 + j + 1

�

=2 + i.

7.11.6: Let S

i

be the set of size i that is a subset of S. De�ne a sequence of

members of S which we call x

1

; x

2

; : : : ; as follows: x

i

is the least member of S

i

that

is not one of x

1

; x

2

; : : : ; x

i�1

. Since there are only i� 1 of the latter integers, there

must be at least one integer in S

i

that is not any of them. Thus, we can �nd x

i

for

any positive integer i, and all of the x

i

's are distinct.

Now, consider the 1-1 correspondence f(a) de�ned as follows:

1. If a = x

i

for some i, then f(a) = x

i+1

.

2. If a is not one of the x

i

's, then f(a) = a. Clearly f is a 1-1 correspondence,

and its range is S � fx

1

g. Thus, S has a 1-1 correspondence with one of its

subsets.

CHAPTER 8. THE RELATIONAL DATA MODEL 49

}

} }

}

Chapter 8. The Relational Data Model

} Section 8.2

8.2.1:

a) For the relation StudentId-Name-Address-Phone we de�ne the record structure:

struct {

int StudentId;

char Name[30];

char Address[50];

char Phone[10];

}

c) For Course-Day-Hour:

struct {

char Course[5];

char Day[2];

char Hour[4];

}

} Section 8.3

8.3.1:

a) fStudentId, Addressg would be a key assuming that a student has only one

phone at a given address.

b) We could use the relation scheme

StudentId-Name-HomeAddress-LocalAddress-HomePhone-LocalPhone

StudentId is a key for this relation.

c) We need to separate the scheme into three schemes:

StudentId-Name

StudentId-Address

StudentId-Phone

Any other decomposition either has redundancy or does not allow us to asso-

ciate names, ID's, addresses, and phones properly. StudentId is a key for each

scheme.

} Section 8.4

8.4.1: For Exercise 8.3.2, we suggest a database scheme with three relations:

50 SOLUTIONS TO SELECTED EXERCISES

1) LicenseNo, Name, Address

2) SerialNo, Manf, Model, RegNo

3) LicenseNo, RegNo

The �rst relation associates a name and address with each driver, identi�ed by the

license number. LicenseNo is a key for the �rst relation. This attribute can serve

as the domain for this relation with (Name, Address) forming the range.

Let us assume there are one million drivers and two million automobiles. As a

primary index structure for the �rst relation we could use a hash table on LicenseNo.

We could use 500,000 buckets assuming each bucket would contain 2 tuples on

average. This data structure would allow queries (1) and (3) to be answered in

O(1) time on average.

The second relation associates with each automobile its manufacturer, model

number, and registration number. Each of SerialNo or RegNo could serve as a key.

As a primary index structure, we can choose a hash table on registration number.

We could use 500,000 buckets assuming each bucket would contain 4 SerialNo-

Manf-Model-RegNo{tuples on average. This structure would allow query (5) to be

answered in O(1) time.

The third relation records the automobiles owned by each driver. Since an

automobile can have joint owners, and a person can own several automobiles,

fLicenseNo, RegNog is the key. We suggest a hash table with 500,000 buckets

and key RegNo as a primary index structure. The hash table is indexed by regis-

tration number and would allow query (6) to be answered in O(1) time on average,

assuming the average number of owners per automobile is a small constant.

Note that query (4) can be answered in O(k) time by �rst consulting the third

relation to obtain the k LicenseNo's for a given registration number, and then

consulting the �rst relation to determine the name of each driver.

Only query (2) cannot be answered in O(1) time with this database scheme.

For that, we would need a fourth, redundant relation scheme | fName, LicenseNog,

with primary index on Name (which is not a key). Alternatively, and preferably,

we would add a secondary index on Name, as discussed in Section 8.5, to the �rst

relation.

} Section 8.5

8.5.1: The following declaration of the standard kind of cells

DefCell(TUPLELIST, SNAME, SNAMELIST);

Lets us create a linked list of SNAME (\same name") cells, each of which has as

element a pointer to a tuple with that name.

We change the declaration of NODE in Fig. 8.5 of the text by making the second

�eld be the header of a linked list of SNAME cells:

typedef struct NODE *TREE;

struct NODE {

char Name[30];

SNAMELIST tuples;

TREE lc, rc;

}

CHAPTER 8. THE RELATIONAL DATA MODEL 51

Here is an outline of a function printTuples(x; T) that prints all the tuples in the

binary tree T that have x for the Name attribute.

void printTuples(char x[], TREE T) {

if(T != NULL)

if(eq(x, T->Name)) printList(T->tuples);

else if(lt(x, T->Name)) printTuples(x, T->lc);

else printTuples(x, T->rc);

}

The functions eq(x; y) and lt(x; y) determine whether x = y or x < y, respectively,

where x and y are names. The function printList(p) lists all of the SNAP tuples

pointed to by the elements of the SNAMELIST pointed to by p.

8.5.3: For the relations and primary index structures in Exercise 8.4.1

i) Make Name a secondary index of relation (1).

ii) The primary index for relation (1) on LicenseNo serves.

iii) Make LicenseNo a secondary index of relation (3).

iv) Make Address a secondary index of relation (1).

v) The primary index for relation (3) on RegNo serves.

} Section 8.6

8.6.1: Suppose the Course-StudentId-Grade relation has an index on Course alone.

Then one way to �nd C. Brown's grade in CS101 is to proceed in two stages. In

stage (1), we use step (1) of Fig. 8.9 to �nd the tuples in the SNAP relation with

C. Brown in the Name �eld. Suppose that there are k such tuples. Since there is

an index on Name, these tuples can be found in O(k) time.

In stage (2), we use the index on Course to �nd all tuples in the CSG relation

with CS101 in the Course �eld. Assuming that there are c such tuples, these tuples

can be found in O(c) time. For each CSG tuple found, we check the StudentId �eld

to see if it matches one of the StudentId's found in stage (1). If it does, we print the

associated grade. The comparison of StudentId's for one CSG tuple can be done

in O(k) time. Thus, the grades of all C. Brown's in CS101 can be found in O(ck)

time.

Now, suppose the Course-StudentId-Grade relation has an index on StudentId

alone. Then to �nd C. Brown's grade in CS101, we proceed in two stages. Stage

(1) is the same as the �rst stage when the index is on Course. We �nd the k tuples

in the SNAP relation with C. Brown in the Name �eld. In stage (2) we use the

StudentId of each tuple found in stage (1) to index the CSG relation. If the Course

�eld contains CS101, we print the grade. If there are a total of d tuples in the

CSG relation that match the StudentId of a C. Brown, then the entire query can

be answered in O(k + d) time.

8.6.3: We use three stages to �nd the prerequisites of the courses taken by C. Brown.

In stage (1) we �nd all tuples in the StudentId-Name-Address-Phone relation that

have C. Brown in the Name �eld. If there are n tuples in the SNAP relation, then

52 SOLUTIONS TO SELECTED EXERCISES

stage (1) takes O(n) time. Let us assume k tuples with C. Brown in the Name �eld

are found.

In stage (2) we search through the Course-StudentId-Grade relation to �nd all

tuples whose StudentId matches the StudentId �eld of the k tuples found in stage

(1). If there are m tuples in the CSG relation, then stage (2) takes O(km). Let us

assume c CSG-tuples are found.

In stage (3) we search through the Course-Prerequisite relation to �nd all tuples

whose Course component matches the Course component of one of the c CSG-

tuples found in stage (2). For each CP -tuple found, we print the Prerequisite �eld.

Assuming that there are p tuples in the CP relation, this stage takes O(cp) time.

This three-stage process takes O(n+ km + cp) time.

} Section 8.7

8.7.1:

a) �

Course = \CS101" AND Day = \M"

(CDH)

b) �

Day = \M" AND Hour = \9AM"

(CDH)

c) CDH = CDH � �

Course = \CS101"

(CDH)

8.7.3:

a) The courses taken by C. Brown can be expressed by the relational-algebra

expression

X = �

Course

(�

Name = \C.Brown"

(SNAP) ./ CSG)

The prerequisites of courses taken by C. Brown can then be expressed by

�

Prerequisite

(X ./ CP)

Here, we must understand that X is a relation with attribute Course, so the

join is on equality of the one column of X with the Course attribute of CP .

b) The students taking courses in Turing Aud. can be expressed by

Y = �

StudentId

(CSG ./ �

Room = \Turing Aud."

(CR))

The phone number of these students is given by

�

Phone

(Y ./ SNAP)

Here, Y is a relation with attribute StudentId.

c) The prerequisites of CS206 can be expressed by:

Z = �

Prerequisite

(�

Course = \CS206"

(CP)))

The prerequisites of these courses are given by

�

Prerequisite

(Z ./ CP)

Here, Z must be regarded as a relation with attribute Course, not Prerequisite.

CHAPTER 8. THE RELATIONAL DATA MODEL 53

} Section 8.8

8.8.1:

a) Use the primary index to �nd in O(1) time each tuple in the StudentId-Name-

Address-Phone relation with StudentId = 12345. Include the tuple in the

answer if the address is not 45 Kumquat Blvd.

b) Use the secondary index on Phone to �nd in O(1) time each tuple in the SNAP

relation with Phone = 555-1357. Include the type in the answer if the name

matches C. Brown.

c) Neither index helps. The easiest (and fastest) way to proceed is to iterate

through each of the tuples in the SNAP relation, selecting those tuples where

Name = \C. Brown" is true or Phone = 555-1357 is true (or both are true). If

there are n tuples in the SNAP relation, then this process takes O(n) time.

8.8.3:

a) There are two nested loops, each of which iterates n times. The body of the

inner loop is a comparison of tuples and so takes O(1) time. The total time is

thus O(n

2

).

b) We can sort the relations in O(n log n) time. As we compare tuples, we �nd

O(n

3=2

) matches, and this time dominates the sorting. The total time is thus

O(n

3=2

).

c) We must consider each of the n tuples in S. For each one, we look up the

matching tuples in R through the index, taking time proportional to the number

of matching tuples found. Since there are n

3=2

matches in all, the sum of the

number of matches, over all tuples in S, is n

3=2

, and thus the total time is

O(n

3=2

).

d) Same as (c).

8.8.5:

a) Suppose R and S each have the scheme fA;Bg and S has an index on attribute

A. To compute R \ S consider each tuple (a; b) in R and use the index on a to

�nd all tuples (a; x) in S. Include (a; b) in R \ S if((a; b) is also in S. If A is a

key for relation S, then in this way we can compute R \ S in time proportional

to the sum of the sizes of R and S.

b) The answer is similar to part (a) except we include (a; b) in R � S if (a; b) is

not in S.

} Section 8.9

8.9.3: We have, in the solution to Exercise 8.7.1, described each expression with

the selections and projections pushed down as far as they go.

8.9.5: First, we prove that if a tuple t is in �

C

(R ./ S) it is in �

C

(R) ./ S. Since t

is in �

C

(R ./ S), t satis�es condition C and is in R ./ S. If t is in R ./ S, then there

are tuples r in R and s in S that agree with t on their common attributes, and also

54 SOLUTIONS TO SELECTED EXERCISES

agree with each other on the join attribute. Since �

C

(R) makes sense, condition C

must involve only attributes of r. Since r and t agree on common attributes, and t

satis�es C, r also satis�es C. Thus, in �

C

(R) ./ S, tuples r and s join to make t,

proving that t is in �

C

(R) ./ S.

Conversely, suppose t is in �

C

(R) ./ S. Then there are r in �

C

(R) and s in S

that agree with t and with each other on common attributes. Since r is in �

C

(R),

r must by in R and must satisfy C. Therefore, t, which agrees with r on whatever

attributes C mentions, must also satisfy C. When we join R ./ S, r in R and s in

S join to form t. Since t satis�es C, we conclude that t is in �

C

(R ./ S).

8.9.7: Let R be the relation f(a; b); (a; c)g and S the relation f(a; c)g. Both relations

have attributes A and B. Here, �

A

(R�S) = fag but �

A

(R)��

A

(S) = fag�fag = ;.

Thus, �

A

(R � S) 6= �

A

(R) � �

A

(S).

CHAPTER 9. THE GRAPH DATA MODEL 55

}

} }

}

Chapter 9. The Graph Data Model

} Section 9.2

9.2.1:

a) There are 8 arcs.

b) There are 2 simple paths: ad and abcd.

c) Nodes a and e are predecessors of node b.

d) Nodes c and f are successors of node b.

e) There are 5 simple cycles: abfa, abcdefa, adefa, bcdeb, adebfa.

f) abfabfa is the only nonsimple cycle of length at most 7.

9.2.3: A complete directed graph has an arc from each node to every other node

including itself. A complete directed graph has the maximum possible number of

arcs: an n-node complete graph has n

2

arcs. Thus, a 10-node graph has at most

100 arcs. The smallest number of arcs any graph can have is zero.

9.2.5: The number number of arcs an n-node acyclic directed graph can have is

�

n

2

�

= n(n � 1)=2. To see this, we can start with a complete n-node undirected graph

in which there is an edge between every pair of distinct nodes. Such a graph has

�

n

2

�

edges. We can then assign a direction to each edge fi; jg so that the edge is

directed from node i to node j if i < j. We can show that the resulting directed

graph is acyclic and has the maximum possible number of edges.

9.2.7: The cycle (0; 1; 2; 0) can also be written as the cycles (1; 2; 0; 1) and (2; 0; 1; 2).

9.2.9: Let S be the relation de�ned on the subset of the nodes of the graph that

are involved in simple cycles. To show that S is an equivalence relation, we need to

show that it is re
exive, symmetric, and transitive.

a) Re
exivity. If node u is involved in a simple cycle, then there is a simple cycle

that begins and ends at u. Thus, uSu.

b) Symmetry. If uSv, then vSu because u and v are included in the same simple

cycle.

c) Transitivity. Suppose uSv and vSu. Then there are two intersecting simple

cycles that include nodes u and w. Let a and b be the �rst and last nodes of

intersection on the simple cycle from u to v to u. Then u� a� w � b� u is a

simple cycle that includes u and w. Therefore, uSw.

} Section 9.3

9.3.1(a): An appropriate type de�nition is

56 SOLUTIONS TO SELECTED EXERCISES

typedef struct CELL *LIST;

struct CELL {

NODE nodeName;

LIST next;

};

LIST successors[MAX];

a

b

c

d

e

f

b d �

c f �

d �

e �

b f �

a �

successors

9.3.1(b): An appropriate de�nition of the adjacency matrix would be

BOOLEAN arcs[MAX][MAX];

a b c d e f

a 0 1 0 1 0 0

b 0 0 1 0 0 1

c 0 0 0 1 0 0

d 0 0 0 0 1 0

e 0 1 0 0 0 1

f 1 0 0 0 0 0

9.3.3(a): Appropriate type de�nitions for the lists of cells are

typedef struct CELL *LIST;

struct CELL {

NODE nodeName;

char arcLabel[3];

LIST next;

};

Note that we must leave room for the null character '\0' at the end of the two-

character arc label. (We have not shown the null character in the following �gures.)

We declare the array of list headers by

CHAPTER 9. THE GRAPH DATA MODEL 57

struct {

char nodeLabel;

LIST successor;

} headers[MAX];

A

B

C

D

E

F

0

1

2

3

4

5

1 ab 3 ad �

2 bc 5 bf �

3 cd �

4 de �

1 eb 5 ef �

0 fa �

headers

9.3.3(b): An appropriate de�nition of the adjacency matrix would be

typedef char ARCTYPE[3];

ARCTYPE arcs[MAX][MAX];

a b c d e f

a - ab - ad - -

b - - bc - - bf

c - - - cd - -

d - - - - de -

e - eb - - - ef

f fa - - - - -

9.3.5: We shall prove by induction on n

STATEMENT S(n): In an undirected graph with n nodes and e edges, the sum of

the degrees of the nodes is 2e.

BASIS. For the basis, we choose n = 1. A single-node graph has 0 edges and the

sum of the degrees of the nodes is 0.

INDUCTION. Assume S(n) holds for all graphs of n nodes. Consider any graph G

of n+ 1 nodes and pick a node x in G with m edges incident on x.

58 SOLUTIONS TO SELECTED EXERCISES

If we remove x and all edges incident on x from G, we are left with a graph G

0

of n nodes and e edges. By the inductive hypothesis, the sum of the degrees of the

nodes of G

0

is 2e. When we restore x to G

0

along with its incident edges, we see

that G has m + e edges and the sum of the degrees of its nodes is 2(m + e). This

proves the inductive step.

9.3.7: For an undirected graph, an edge appears twice in an adjacency-matrix and

an adjacency-list representation.

a) Function to insert edge (a; b) into an adjacency matrix:

void insert(NODE a, NODE b, BOOLEAN edges[MAX][MAX])

{

edges[a][b] = TRUE;

edges[b][a] = TRUE;

}

The delete function is similar except we make the two entries in the array FALSE.

b) Function to insert edge (a; b) for an adjacency-list representation:

void insert(NODE a, NODE b, LIST successors[]);

{

insertList(b, &successors[a]);

insertList(a, &successors[b]);

}

For insertList we can use the function in Fig. 6.5.

The delete function is similar.

} Section 9.4

9.4.1: There are two connected components:

Escanba, Marquette, Menominee, Sault Ste. Marie

and

Ann Arbor, Battle Creek, Detroit, Flint, Grand Rapids,

Kalamazoo, Lansing, Saginaw

} Section 9.5

9.5.6:

a) It is easy to see why a node of odd degree inhibits an Euler circuit. The circuit

must visit the node some number of times, and each time it visits, it enters and

leaves on two di�erent edges (the direction in which we traverse the circuit is

arbitrary, but once we pick a direction, the edges incident upon a node v can

be identi�ed as entering or leaving). It follows that there are as many entering

edges as leaving edges for a node v, and therefore the number of edges incident

upon v is even.

CHAPTER 9. THE GRAPH DATA MODEL 59

For the converse, we need to show how to construct an Euler circuit when all the

degrees are even. We do so in part (b), where we are asked not only to produce an

algorithm to construct Euler circuits, but to design an e�cient algorithm.

b) We need to use an appropriate data structure: adjacency lists, plus a list of

all the edges. We also need to generalize the notion of an Euler circuit to

cover the case in which the graph has more than one connected component.

In that case, we say an \Euler circuit" for the graph is an Euler circuit for

each connected component. Start with any edge, say fv

0

; v

1

g, and arbitrarily

pick one of the nodes, say v

0

, as the beginning of a path. Extend the path to

nodes v

2

; v

3

; : : :, without reusing any edge, which we may do since every time

we enter a node, we know it has even degree so there is an unused edge by

which to leave. Eventually, we repeat a node on the path, say v

i

.

Now, remove the edges of the cycle, say v

i

; v

i+1

; : : : ; v

k

; v

i

, but leave the nodes.

Recursively �nd an \Euler circuit" for the remaining graph, but start with the

portion of the path already constructed, v

0

; v

1

; : : : ; v

i

. Note that we quote \Euler

circuit," because the resulting graph may not be connected. Finally, we need to as-

semble an Euler circuit for the entire graph. We use the removed cycle v

i

; : : : ; v

k

; v

i

as a base and follow it around. Each time we visit a node, say v

j

, if we have not

previously visited any nodes from its connected component, we follow the Euler

circuit for this connected component, starting and ending at v

j

. Then we continue

around the cycle to v

j+1

. When we return around the cycle to v

i

, we have an Euler

circuit for the entire graph.

} Section 9.6

9.6.3:

a)

Tree arcs: ab, bc, cd, de, ef

Forward arcs: ad, bf

Backward arcs: eb, fa

There are no cross arcs

b)

Tree arcs: ab, bf , bc, cd, de

Forward arcs: ad

Backward arcs: eb, ef , fa

There are no cross arcs

c)

Tree arcs: de, ef , fa, ab, bc

Forward arcs: eb

Backward arcs: ad, bf , cd

There are no cross arcs

60 SOLUTIONS TO SELECTED EXERCISES

} Section 9.7

9.7.1: There are four topological orders:

dcebfa

dcefba

decbfa

decfba

9.7.3: The connected components are

Escanba, Marquette, Menominee, Sault Ste. Marie

and

Ann Arbor, Battle Creek, Detroit, Flint, Grand Rapids

Kalamazoo, Lansing, Saginaw

} Section 9.8

9.8.1:

CITY DISTANCE

Detroit 0

Ann Arbor 28

Escanba INFTY

Flint 58

Grand Rapids 138

Kalamazoo 138

Lansing 78

Marquette INFTY

Menominee INFTY

Saginaw 89

Sault Ste. Marie INFTY

9.8.3(b):

SPECIFIES TIME

AF 0

AA 0.8

HH 1.0

AR 1.3

HE 2.2

AB 1.2

HS 2.9

CHAPTER 9. THE GRAPH DATA MODEL 61

} Section 9.10

9.10.1:

a) The chromatic number of the graph in Fig. 9.4 is 3.

b) The clique number is 3.

c) f Maili, Pearl City, Wahiawa g and f Hilo, Kamuela, Kona g are both cliques

of size 3.

62 SOLUTIONS TO SELECTED EXERCISES

}

} }

}

Chapter 10. Patterns, Automata, and Regular Ex-

pressions

} Section 10.2

10.2.1:

a) The following automaton accepts strings of 0's and 1's having an even number

of 1's:

0 1

start 1

0 0

1

This automaton is in state 0 if it has seen an even number of 1's and it is in

state 1 if it has seen an odd number of 1's.

b) The following automaton accepts any string of 0's and 1's that does not contain

111 as a substring:

0 1 2 3

start 1 1 1

0 f0; 1g

0

0

In this automaton, state 0 means the previous input symbol was not a 1, state

1 means the previous input symbol was a 1 and the one before that was not a

1, state 2 means the two previous input symbols were 1's, and state 3 means

the three previous input symbols were 1's.

} Section 10.3

10.3.3: The nondeterministic automaton in Fig. (a) accepts all strings of letters

ending in father, man, or son.

CHAPTER 10. PATTERNS, AUTOMATA, AND REGULAR EXPRESSIONS 63

0

�

start

1 2 2 2 2 2

f a t h e r

7 8 9

m a n

10 11 12

s o n

Fig. (a). Automaton accepting strings ending in father, man, or son.

0 0 0 1 0 0 0 0

s u m m a n d

Fig. (b). Simulation of automaton of Fig. 10.10.

0 0 0 0 0 0 0 0

s u m m a n d

1 1 2 3

Fig. (c). Simulation of automaton of Fig. 10.11.

10.3.5: Figures (b) and (c) simulate the automata in Figs. 10.10 and 10.11, re-

spectively.

} Section 10.4

10.4.3(a): A deterministic automaton for Fig. 10.24(a) is shown in Fig. (d).

} Section 10.5

10.5.1: The two regular expressions (ac j abc j abbc) and a(c j b(c j bc)) also

de�ne the same language.

64 SOLUTIONS TO SELECTED EXERCISES

f0g f0; 1g

start fa,bg

fa,bg

Fig. (d). Solution to Exercise 10.4.3(a).

10.5.3:

a) b*((aa*b*)*

b) (0 j 1 j � � � j 9)(0 j 1 j � � � j 9)*.(0 j 1 j � � � j 9)*

c) 0*(10*10*)*

10.5.5:

a) (a j (bc)) j (de)

b) (a j (b*)) j ((a j b)*a)

10.5.7:

a) ; j � de�nes either the empty set or the set containing the empty string.

c) (a j b)* de�nes the set of all strings of a's and b's (including the empty string).

e) (a*ba*b)*a* de�nes the set of all strings of a's and b's containing an even

number of b's.

g) R** is the same as R*, that is, the set consisting of the concatenation of zero

or more strings from the set de�ned by R.

} Section 10.6

10.6.1:

a) Single-character operators and punctuation symbols in C:

!"#$%&'()*+,-./:;<=>?[]^{}~

c) Lower-case consonants:

[bcdfghjklmnpqrstvwxyz]

} Section 10.7

10.7.1: We �rst show the forward containment L((S j T)R � L(SR j TR). If x is

in L((S j T)R), then x = yr where y is in L(S) or L(T) and r is in L(R). If y is in

L(S), then x is in L(SR). If y is in L(T), then x is in L(TR). In either case, x is

in L(SR j TR). Thus, the forward containment holds.

CHAPTER 10. PATTERNS, AUTOMATA, AND REGULAR EXPRESSIONS 65

We now show the reverse containment L((S j T)R) � L(SR j TR). If x is in

L(SR j TR), then x is in either L(SR) or L(TR). If x is in L(SR), then x = sr

where s is in L(S) and r is in L(R). Thus, x is in L((S j T)R. Similarly, if x

is in L(TR), we can show x is in L((S j T)R. We have now shown the reverse

containment holds.

} Section 10.8

10.8.1:

a) Automaton for aaa:

0 1 2 3 4 5

start a � a � a

c) Automaton for (0 j 1 j 1*)*:

0

1

8

2

5

9

3

6

10

4

11

7

start

�

�

�

�

�

0

1

1

�

�

�

�

�

�

�

} Section 10.9

10.9.1:

a) (� - a)*a(� - e)*e(� - i)*i(� - o)*o(� - u)*u

c) �*man

e) (� - a)*a(� - a)*a

g) �*man

66 SOLUTIONS TO SELECTED EXERCISES

}

} }

}

Chapter 11. Recursive Description of Patterns

} Section 11.2

11.2.1: In Pascal, an identi�er is a string of letters and digits, beginning with a

letter. We can de�ne an identi�er with the following grammar.

<Letter> ! A j B j � � � j Z j a j b j � � � j z

<Digit> ! 0 j 1 j � � � j 9

<Identifier< ! <Identifier><Letter>

<Identifier< ! <Identifier><Digit>

<Identifier< ! <Letter>

Strictly speaking, a Pascal reserved word such as program or begin cannot

be used as an identi�er. Expressing this restriction grammatically would greatly

complicate the grammar, and in Pascal compilers, this type of error is caught by

other means.

11.2.3: In Pascal, a real number begins with an optional sign, followed by one

or more digits, followed by a decimal point, followed by one or more digits (e.g.,

0.1, 1.0, 3.14). In addiition, a real number may have at its end a scale factor

consisting of an upper case E, followed by an optional sign, followed by one or more

integers (e.g., 0.1E2, 1.0E-2). To allow reals as operands, we can add the following

productions to the grammar of Fig. 11.2 of the text:

<Expression> ! <Real>

<Real> ! <OptSign> <Number> <Number> <ScaleFactor>

<OptSign> ! + j - j �

<ScaleFactor> ! E <OptSign> <Number>

11.2.7: The following productions de�ne for-statements (only):

<Statement> ! for variable := <Expression> to <Expression>

do <Statement>

<Statement> ! for variable := <Expression> downto<Expression>

do <Statement>

} Section 11.3

11.3.1: The new strings for the languages S and L are tabulated in Fig. (a).

CHAPTER 11. RECURSIVE DESCRIPTION OF PATTERNS 67

S L

Round 4: wcdwcdwcds wcdwcds

wcdbse bse

bs;wcdse s;wcds;s

bs;se s;wcds;wcds

bwcdse s;wcds;wcdwcds

s;wcds;bse

s;s;s

s;s;wcds

s;s;wcdwcds

s;s;bse

wcds;s

wcds;wcds

wcds;wcdwcds

wcds;bse

s;wcdwcds

s;bse

(a) Words added on round 4.

11.3.3:

Fig. 11.3 Fig. 11.4

Round 1: � �

Round 2: () ()

Round 3: ()() (())

(()) ()()

(())()

On round 3, the grammars generate di�erent sets of strings. Thus, the answer to

the question is \no." In fact, all all subsequent rounds the sets of strings generated

by the two grammars are di�erent. However, the sets of strings generated taken

over all the rounds are the same; both sets are the set of all balanced parenthesis

strings.

11.3.5: Suppose we are generating round r. If we make a substitution that uses

only strings available on round r � 2 or earlier, then the same substitution could

have been made on round r � 1. Thus, the string generated by this substitution

must have appeared on round r � 1 or on some round earlier than that.

} Section 11.4

11.4.1(a): The parse tree for 35+21 is shown in Fig. (b).

68 SOLUTIONS TO SELECTED EXERCISES

<E>

<E> <E>

<N> <N>

<N> <D> <N> <D>

<D>

<D>

3

5

2

1

+

(b) Parse tree for 35+21.

(

(

 (

�

�

�

)

)

)

�

(c) Parse tree for (()()).

11.4.3(a): The parse tree for (()()) is shown in Fig. (c).

} Section 11.5

11.5.1(a): The parse tree for (1+2)/3 is shown in Fig. (d).

11.5.3: We introduce a new syntactic category, say <C> (\comparison"), which is

either an expression or a comparison operator between two expressions. In line (3)

of Fig. 11.22 of the text, we replace the productions for <F> by

<F> ! (<C>) j <N>

CHAPTER 11. RECURSIVE DESCRIPTION OF PATTERNS 69

<E>

<T> <F>

<D>

3

/

<T>

<F>

<F>

<N><N>

<N>

<D>

<E>

<E>

<N>

<D>

)(

<T>

<F>

<T>

+

1

2

(d) Parse tree for (1+2)/3.

Then, we introduce the productions for <C>:

<C> ! <E> <Cop> <E> j <E>

<Cop> ! = j <> j < = j > = j < j >

11.5.7: The string 010 has two parse trees, one in which the �rst two characters

are grouped �rst into a string, and the other in which the last two characters are

grouped �rst.

11.5.9: There are an in�nite number of parse trees for the empty string. We can

replace one by two 's as often as we like and then make each of the

's be replaced by the empty string.

70 SOLUTIONS TO SELECTED EXERCISES

Call 1

Call 2

Call 3 Call 4

Call 5

(()) ENDM

(e) Sequence of calls made on input (()).

} Section 11.6

11.6.1(a): The structure of the calls is shown in Fig. (e).

11.6.3: In the �rst case, the productions

<Number> ! <Digit> <Number> j <Digit>

when we see a <Digit> as the next input, there is no way to tell which production

to use, so the grammar is not parsable by a recursive descent parser.

In the seond case, the productions

<Number> ! <Number> <Digit> j �

when we see a<Digit> we cannot tell how many times to apply the �rst production,

so we go into an in�nite loop. That is, when the lookahead symbol is a digit, and

we have to expand <Number>, we must pick the �rst production, and we are then

faced with the same situation we started with: a digit as lookahead with <Number>

as the syntactic category to expand.

} Section 11.7

11.7.1(a):

STACK LOOKAHEAD REMAINING INPUT

1) <S> b seENDM

2) b<L>e b seENDM

3) <L>e s eENDM

4) <S><T>e s eENDM

5) s<T>e s eENDM

6) <T>e e ENDM

7) e e ENDM

8) � ENDM �

CHAPTER 11. RECURSIVE DESCRIPTION OF PATTERNS 71

STACK LOOKAHEAD REMAINING INPUT

1) <S> b bs;se;seENDM

2) b<L>e b bs;se;seENDM

3) <L>e b s;se;seENDM

4) <S><T>e b s;se;seENDM

5) b<L>e<T>e b s;se;seENDM

6) <L>e<T>e s ;se;seENDM

7) <S><T>e<T>e s ;se;seENDM

8) s<T>e<T>e s ;se;seENDM

9) <T>e<T>e ; se;seENDM

10) ;<L>e<T>e ; se;seENDM

11) <L>e<T>e s e;seENDM

12) <S><T>e<T>e s e;seENDM

13) s<T>e<T>e s e;seENDM

14) <T>e<T>e e ;seENDM

15) e<T>e e ;seENDM

16) <T>e ; seENDM

17) ;<L>e ; seENDM

18) <L>e s eENDM

19) <S><T>e s eENDM

20) s<T>e s eENDM

21) <T>e e ENDM

22) e e ENDM

23) � ENDM seENDM

Fig. (f)

11.7.1(c): See Fig. (f).

11.7.5: We factor the �rst two productions to get

<Statement> ! if condition then <Statement> <Tail>

<Statement> ! simpleStat

<Tail> ! else <Statement> j �

When <Statement> is on top of the stack, the lookahead symbol, if or simpleStat,

tells us which production for <Statement> to use. When we need to expand a

<Tail>, we make the �rst choice on lookahead else and the second choice (�) on

any other lookahead.

72 SOLUTIONS TO SELECTED EXERCISES

} Section 11.8

11.8.1(a):

<A> ! a

 ! b

<C> ! <A> j

<D> ! <C> <D> j �

<E> ! <D> <A>

11.8.1(c):

<A> ! a

 ! b

<C> ! c

<D> ! <A> <D> j �

<E> ! <E> j �

<F> ! <C> <F> j �

<G> ! <D> <E>

<H> ! <G> <F>

11.8.3: If L were de�ned by a regular expresion, then it would also be de�ned by

a �nite automaton. Suppose the language L = f0

n

10

n

j n � 0g is the language of

some �nite automaton A. Let A have m states. Consider what happens when A

has input 0

m

10

m

. This string is in the language L, so there is a path with label

0

m

10

m

from the start state of A to some �nal state f . Consider the �rst m + 1

states along this path. As A has only m di�erent states, there will be two numbers

of 0's, say i and j, with 0 � i < j � m, such that after following i 0's and again

after following a total of j 0's, A is in the same state, say s.

Now, consider what happens when the input to A is 0

m�j+i

10

m

. The �rst i

0's get us to state s. The remainder of the input, 0

m�j

10

m

takes us to state f ,

because we know that when the input was 0

m

10

m

, A went from state s to state f

after reading the �rst j 0's. Thus, A accepts 0

m�j+i

10

m

, which is not in L, since

j > i. We contradict our assumption that A accepts language L. Since we assumed

nothing but that A did accept L, we conclude that no automaton accepts L. Hence,

L cannot be accepted by a regular expression.

CHAPTER 12. PROPOSITIONAL LOGIC 73

}

} }

}

Chapter 12. Propositional Logic

} Section 12.3

12.3.1(a): In this and the next answer we use 0 for FALSE and 1 for TRUE. The

function has domain consisting of pairs of truth values, for p and q respectively, and

a range that is a truth value. This function can therefore be represented as the set

f

�

(0; 0); 0

�

;

�

(0; 1); 0

�

;

�

(1; 0); 1

�

;

�

(1; 1); 1

�

g.

12.3.1(c): f

�

(0; 0); 1

�

;

�

(0; 1); 0

�

;

�

(1; 0); 0

�

;

�

(1; 1); 1

�

g.

} Section 12.4

12.4.1(a): A row has 1 unless both of the given columns have 1 in that row.

12.4.1(c): A row has 1 if the two given columns agree in the row, and 0 if not.

12.4.3: The logical expression p AND NOT q corresponds to the set expression P�Q.

12.4.5: Here are the 16 Boolean functions of two variables.

p q f

0

f

1

f

2

f

3

f

4

f

5

f

6

f

7

f

8

f

9

f

10

f

11

f

12

f

13

f

14

f

15

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Functions f

0

, f

5

, f

10

, and f

15

do not depend on the �rst argument. That is, these

columns agree in the rows for pq = 00 and pq = 10, and they also agree in the rows

for pq = 01 and pq = 11. Functions f

0

, f

3

, f

12

, and f

1

5 do not depend on their

second argument.

12.4.7:

STATEMENT S(b): There are a

b

ways to paint b houses using a colors.

BASIS. b = 1. There are a colors for one house.

INDUCTION. Assume S(b) and prove S(b + 1). Consider the (b + 1)st house. For

each color choice for this house, there are, by the inductive hypothesis, a

b

ways to

paint the remaining houses. Thus there are b� a

b

= a

b+1

color choices for the b+1

houses.

} Section 12.5

12.5.1: a = �p�qr + p�q�r + p�qr + pq�r + pqr; b = �p�q�r + �p�qr + �pq�r.

74 SOLUTIONS TO SELECTED EXERCISES

12.5.3(a): Suppose we have an expression involving two variables p and q, and

we try to construct other functions of p and q by applying the � operator to two

previously constructed columns of a truth table. It turns out that the columns we

can obtain are rather limited, as the following table shows.

p q p � q p � p

0 0 1 1

0 1 0 1

1 0 0 1

1 1 1 1

We notice that if we combine any of the four rows above with the � operator, we get

one of the same four rows. Thus, none of the other 12 functions of two variables can

be expressed with only the � operator, and therefore this operator is not complete.

For example, it cannot express p AND q.

12.5.3(c): Using NOR, we can express NOT p as p NOR FALSE. Also, p OR q is

(p NOR q) NOR FALSE; p AND q is (p NOR FALSE) NOR (q NOR FALSE). Thus, NOR is

complete.

12.5.5: Consider two monotone functions f and g of variables p

1

; p

2

; : : : ; p

n

. Also,

consider a truth table with 2

n

rows and columns for f and g. Let r

1

and r

2

be rows

of this table, and suppose that r

2

has 1 for any variable p

i

whenever r

1

has 1 for

p

i

. Then the monotonicity of f says that if f is 1 in row r

1

, then it must also be

1 in row r

2

; a similar statement holds for g. We must show that if the column for

f AND g has 1 in row r

1

, then it also has 1 in row r

2

, and similarly for the column

for f OR g.

The only way f AND g can be in row r

1

1 is if both f and g to be 1 in this row.

But then, both f and g have 1 in row r

2

, and therefore f AND g has 1 there.

Now consider f OR g. This column can have 1 in row r

1

if either f or g or both

have 1 there. But then, at least one of f and g have 1 in row r

2

, and so does f OR g.

} Section 12.6

12.6.1(a): The Karnaugh map is shown in Fig. (a).

12.6.1(c): The Karnaugh map is shown in Fig. (c).

12.6.1(e): The Karnaugh map is shown in Fig. (e).

12.6.3: First, a product is of the right form to be an implicant; it is a product of

literals. The function f represented by this hypothetical sum-of-products expression

can be written f = P + E, where P is the product in question, and E is the sum

of all the other products. Whenever an assignment of truth values to the variables

makes P true, it surely makes P +E true, by the de�nition of \or." Thus, f is true

whenever the product P is true, which means P is an implicant of f .

CHAPTER 12. PROPOSITIONAL LOGIC 75

rs

00

01

11

10

00 01 11 10

0 1 1 1

1 1 1

1 0 1

1 1

1

1

11

pq

(a) Karnaugh map for Exercise 12.6.1(a).

rs

00

01

11

10

00 01 11 10

0 1 1

1 1

11

1

pq

0

0 0

0 1

0 1 0

(c) Karnaugh map for Exercise 12.6.1(c).

12.6.5:

(a) (p + q + r + s)(�p+ �q + �r + �s)

(c) (p + q + r + s)(p + q + �r + �s)(p + �q + r + �s)(p + �q + �r + s)(�p + �q + r +

s)(�p + q + �r + s)(�p + q + r + �s)

(e) (�p+ �q)(�p+ �r)

76 SOLUTIONS TO SELECTED EXERCISES

rs

00

01

11

10

00 01 11 10

1 1 1

1 1 1

0

1

11

pq

1

00 0

0 0

(e) Karnaugh map for Exercise 12.6.1(e).

} Section 12.7

12.7.1: (a) pqr ! p + q is a tautology; (c) (p ! q) ! p is not a tautology. In

particular, expression (c) is false when p is true and q is false.

} Section 12.8

12.8.1: As an example, here is the truth table for (12.4).

p q p � q �p � �q (p � q) � (�p � �q)

0 0 1 1 1

0 1 0 0 1

1 0 0 0 1

1 1 1 1 1

12.8.5(a):

1) From (12.15) (1 + q) � 1

2) From (12.10) (p1) � p

3) Substitute 1 + q for 1 (line 1)

�

p(1 + q)

�

� p

4) From (12.9) (p1 + pq) � p

5) From (12.10) (p + pq) � p

12.8.7: We shall prove the following, which is (12.20c), by induction on k.

STATEMENT S(k):

�

NOT (p

1

p

2

� � �p

k

)

�

� (�p

1

+ �p

2

+ � � �+ �p

k

)

CHAPTER 12. PROPOSITIONAL LOGIC 77

BASIS. k = 2. NOT (p

1

p

2

) � (�p

1

+ �p

2

) by (12.20a).

INDUCTION. We assume S(k) and prove S(k + 1), which says that

�

NOT (p

1

p

2

� � �p

k+1

)

�

� (�p

1

+ �p

2

+ � � �+ �p

k+1

)

To begin,

�

NOT (p

1

p

2

� � �p

k+1

)

�

�

�

NOT (p

1

p

2

� � �p

k

) + �p

k+1

�

(1)

by (12.20a), with p

1

p

2

� � �p

k

in place of p and p

k+1

in place of q.

By the inductive hypothesis,

�

NOT (p

1

p

2

� � �p

k

)

�

� (�p

1

+ �p

2

+ � � �+ �p

k

). When

we make this substitution in (1) and use the associative law of +, we get exactly

S(k + 1).

We can also look at the proof from the point of view of truth tables. It is easy

to observe that both sides of S(k) have value 1 except when all of the p

i

's are 1.

The two proofs for (12.20d) have essentially the same ideas.

12.8.9: The question is ill formed in two ways. First, there is the matter of a typo;

k should be n. More serious, there is a simple, noninductive proof of (12.24b), given

(12.24a). By (12.24a), with p

1

p

2

� � �p

n

in place of p, we have (p

1

p

2

� � �p

n

! q) �

�

NOT (p

1

p

2

� � �p

n

) + q

�

. By (12.20c) and the associative law of +, (p

1

p

2

� � �p

n

!

q) � (�p

1

+ �p

2

+ � � �+ �p

n

+ q).

12.8.11:

(a) (w�x+ w�xy + �z�xw) � (w�x+ �z�xw) � (w�x)

(b)

�

(w + �x)(w + y + �z)(�w + �x+ �y)(�x)

�

�

�

(w + �x)(w + y + �z)(�x)

�

�

�

(w +

y + �z)(�x)

�

} Section 12.9

12.9.1: It is evident that when we replace AND by OR, OR by AND, 0 by 1 and 1 by

0, we turn (12.25) into (12.27), and vice-versa. Thus, these expressions are duals of

each other.

12.9.3: We use the following propositional variables with their intuitive meanings:

p: \x is a perfect square."

e: \x is even."

d: \x is divisible by 4."

We want to prove the theorem pe ! d. Since we are asked for a proof by contra-

diction, we want to show

�

NOT (pe ! d)

�

! 0. The left side is equivalent to pe

�

d,

so we can instead prove pe

�

d ! 0. This is as far as we can go using propositional

logic alone. Now we must use some of the things we know about numbers.

We start with p, e, and

�

d and derive a contradiction. Proposition p says that

x is a perfect square, so x = n

2

for some integer n. If n is odd, then n

2

is odd.

But we assume e, which says that x = n

2

is even. Thus, n is even. (This is a little

proof by contradiction within the main proof.) If n is even, then n = 2m for some

integer m. Thus, x = n

2

= 4m

2

. That says x is divisible by 4, or d. Since we also

assumed

�

d, we have d

�

d, which is equivalent to 0. We have now proved pe

�

d! 0.

78 SOLUTIONS TO SELECTED EXERCISES

12.9.5(a): In what follows, we use the associative and commutative laws of +

many times; we shall not make these uses explicit. pq+ r+ �q�r+ �p�r is equivalent to

pq+r+�q+�p�r by (12.19b) with r in place of p. That is equivalent to pq+r+�q+ �p for

the same reason. Another use of (12.19b) transforms this expression to p+r+�q+ �p.

Now, (12.25) lets us replace p+ �p by 1. Finally, (1 + r + �q) � 1 by (12.15).

12.9.7: Suppose 2

k

cases are de�ned by the propositional variables p

1

; p

2

; : : : ; p

k

,

which may be true or false in any combination. The general case analysis law is

�

AND

2

k

�1

i=0

�

C

i

� q

where each C

i

is of the form x

1

x

2

� � �x

k

! q. Each x

j

is either p

j

or �p

j

; it is p

j

if

the jth bit from the right in the binary integer i is 1, and it is �p

j

if that bit is 0.

For k = 2 we have

�

(p

1

p

2

! q) AND (p

1

�p

2

! q) AND (�p

1

p

2

! q) AND (�p

1

�p

2

! q)

�

� q

If q is false, then the left side of this equivalence is false for any truth assignment to

the p's, as there must be one of the implications whose left side is true and whose

right side (q) is false. Thus, the equivalence is true when q is false.

When q is true, each of the implications on the left must be true, because an

implication cannot be false if its right side is true. Thus, the equivalence is again

true, and we have proved it is a tautology. Note this proof applies to the general

case as well as the case k = 2.

} Section 12.10

12.10.1(a):

1) p! q Hypothesis

2) (p! q) � (�p+ q) Law 12.24(a)

3) �p+ q (d) with lines (1) and (2)

4) p! r Hypothesis

5) (p! r) � (�p+ r) Law 12.24(a)

6) �p+ r (d) with (4) and (5)

7) (�p+ q) AND (�p+ r) (c) with (3) and (6)

8) (�p+ q) AND (�p+ r) � (�p+ qr) Law 12.14

9) �p+ qr (d) with (7) and (8)

10) (�p+ qr) � (p! qr) Law 12.24(a)

11) p! qr (d) with (9) and (10)

CHAPTER 12. PROPOSITIONAL LOGIC 79

12.10.1(b):

1) p! (q + r) Hypothesis

2)

�

p! (q + r)

�

� (�p+ q + r) Law 12.24(a)

3) �p+ q + r (d) with (1) and (2)

4) p! (q + �r) Hypothesis

5)

�

p! (q + �r)

�

� (�p+ q + �r) Law 12.24(a)

6) �p+ q + r (d) with (4) and (5)

7) (�p+ q + r)(�p+ q + �r) (c) with (3) and (6)

8)

�

(�p+ q + r)(�p+ q + �r)

�

� (�p + q + r�r) Law 2.14

9) �p+ q + r�r (d) with (7) and (8)

10) (r�r) � 0 Law 12.27

11) �p+ q + 0 Substitution into (7), using (10)

12) �p+ q Law 12.11

13) (�p+ q) � (p! q) Law 12.24(a)

14) p! q (d) with (12) and (13)

} Section 12.11

12.11.1:

p q r p+ q �p + r (p+ q)(�p+ r) q + r

�

(p+ q)(�p + r)

�

! (q + r)

0 0 0 0 1 0 0 1

0 0 1 0 1 0 1 1

0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 1

1 0 0 1 0 0 0 1

1 0 1 1 1 1 1 1

1 1 0 1 0 0 1 1

1 1 1 1 1 1 1 1

12.11.3: The following clauses come from Exercise 12.11.2:

1) (a + c+

�

t)

2) (b + c+ �s)

3) (�a + t)

4) (

�

b + s)

5) (�c + s)

6) (�c + t)

7) (a + b+ c+ o)

We can then apply resolution to these clauses to derive the following. We show

clauses that are needed to derive minimal clauses, even if they are not themselves

minimal, but we do not show all the (nonminimal) clauses.

80 SOLUTIONS TO SELECTED EXERCISES

8) (a+ s +

�

t) From (1) and (5)

9) (b+ �s + t) From (2) and (6)

10) (a+ b + s + o) From (5) and (7)

11) (a+ s + o) From (4) and (10)

12) (s + t+ o) From (3) and (11)

13) (a+ b + t+ o) From (6) and (7)

14) (b+ t + o) From (3) and (13)

Of these, only (8), (9), (11), (12), and (14) are minimal. These �ve clauses form

the answer to the question.

CHAPTER 13. USING LOGIC TO DESIGN COMPONENTS 81

}

} }

}

Chapter 13. Using Logic to Design Components

} Section 13.3

13.3.1(a):

x

y

z

13.3.1(b): The solution is shown in Fig. (a).

13.3.3: The output will become 1 as soon as one of x and y (or both) becomes 1.

The output will then remain 1 no matter what happens to x and y.

} Section 13.4

13.4.1(a): The solution appears in Fig. (b).

13.4.1(c): Note that

�

x+ �y�x(y+z)

�

� (x+ �yz). thus, the circuit in Fig. (c) serves.

13.4.3(b): Start with expression �xyc+ x�yc+ xy�c+ xyc. Two uses of Law (12.17),

the idempotence of OR, applied to xyc, gives us

82 SOLUTIONS TO SELECTED EXERCISES

w x y z

wxy wxz wyz xyz

(a) Solution to Exercise 13.3.1(b).

x y z

(b) Solution to Exercise 13.4.1(a).

�xyc + x�yc + xy�c + xyc + xyc+ xyc

If we use the associative and commutative laws of OR, and then use the distributive

law of AND over OR, we can rearrange these terms as

yc(�x+ x) + xc(�y + y) + xy(�c + c)

Finally, three uses of the law of the excluded middle (12.25), transforms the above

into yc + xc+ xy.

CHAPTER 13. USING LOGIC TO DESIGN COMPONENTS 83

x y z

(c) Solution to Exercise 13.4.1(c).

} Section 13.5

13.5.1: Using OR-gates with fan-in k, we can take the OR of n inputs with delay

log

k

n, by using a complete k-ary tree of OR-gates. If we used a cascading circuit

like that shown in Fig. 13.13 of the text, the delay would be (n� k)=(k � 1) + 1.

13.5.3: Let 2

k

be the smallest power of 2 that is no less than n. Then we can

take the OR of n inputs with k levels of 2-input OR-gates. That k levels is su�cient

should be obvious. With that many levels, we can take the OR of 2

k

inputs, which

is at least n inputs. If n is strictly less than 2

k

, we can set 2

k

� n of the inputs

to 0. That may let us eliminate some of the OR-gates. Elimination of gates cannot

increase the number of levels.

Also, we cannot take the OR of n inputs in fewer than k levels. In k � 1 levels,

we can only take the OR of 2

k�1

inputs, which is strictly less than n inputs, because

we chose k so that 2

k

is the smallest power of 2 equal to or greater than n.

} Section 13.6

13.6.5: We shall show by induction on n that

STATEMENT S(n): If n is a power of 2, then G(n) = 3n log

2

n + 15n� 6.

84 SOLUTIONS TO SELECTED EXERCISES

BASIS. n = 1. G(1) is de�ned to be 9, and S(1) says that G(1) = 0 + 15� 6 = 9.

INDUCTION. We assume S(n) and prove S(2n). By de�nition, G(2n) = 2G(n) +

6n+ 6. By the inductive hypothesis, G(n) = 3n log

2

n+ 15n� 6. Substituting this

formula for G(n) gives

G(2n) = 2(3n log

2

n+ 15n� 6) + 6n+ 6 = 6n log

2

n+ 36n� 6

The above formula for G(2n) is equal to 3(2n) log

2

(2n) + 15(2n)� 6, which is the

statement S(2n).

} Section 13.7

13.7.1(a): A 2-MUX is constructed from 1-MUX's as follows.

1-MUX 1-MUX

1-MUX

y

0

y

1

y

3

y

2

x

2

x

2

x

1

y

(x

1

x

2

)

2

13.7.3: In Fig. (d) is the suggestion of a circuit that follows the second strategy of

the hint. Two one-hot decoders for d inputs each are used. The �rst has inputs from

the �rst d of 2d bits and the second has inputs from the last d bits. Their outputs,

y

1

; : : : ; y

2

d
and z

1

; : : : ; z

2

d
are combined in all possible ways through AND-gates, to

create 2

2d

outputs, one for each possible setting of the 2d inputs.

Now, let us consider the gate count and delay for this circuit. For the case

d = 1, there is an obvious basis circuit that uses only a single inverter; it has count

1 and delay 1. For the inductive step, the delay increases by only 1 going from d to

2d inputs. Thus, the delay for d inputs is easily seen to be 1 + log

2

d.

For the gate count, note that the circuit for 2d input uses twice the gates of

the d-input circuit, plus 2

2d

AND-gates at the last level. Thus, the recurrence for

G(d), the number of gates in the d-input circuits, is

BASIS. G(1) = 1.

INDUCTION. G(2d) = 2G(d) + 2

2d

.

CHAPTER 13. USING LOGIC TO DESIGN COMPONENTS 85

One-Hot

. . .

. . .

One-Hot

. . .

. . .

x

1

x

d

x

d+1

x

2d

y

1

y

2

d z

1

z

2

d

. . .

(d) Recursive construction of a one-hot decoder.

The solution to this recurrence, as we can show by repeated expansion, is

G(d) = d+ 2

d

+ 2� 2

d=2

+ 4� 2

d=4

+ 8� 2

d=8

+ � � �

We cannot �nd a convenient closed form for this series, but we note that 2

d

is the

dominant term, so G(d) is slightly more than 2

d

.

13.7.5: The trick is to compute the exact number of inputs that are 1. If the inputs

are x

1

; : : : ; x

n

, then the outputs are y

0

; y

1

; : : : ; y

n

, where y

i

means that exactly i of

the x's are 1.

BASIS. n = 1. y

0

=NOT x

1

, and y

1

= x

1

. Thus, a single gate and a delay of 1

su�ce for the n = 1 case.

INDUCTION. Suppose we have a circuit for n inputs and we want one for 2n inputs.

We take two copies of the n-input circuit, and feed half the inputs to each. We get

outputs u

0

; u

1

; : : : ; u

n

from the �rst and v

0

; v

1

; : : : ; v

n

from the second. We can

combine each u

i

with each v

j

, using (n+ 1)

2

AND-gates. The AND-gate for u

i

and v

j

is one way that i+ j of the 2n inputs can be 1.

If we have OR-gates that can take any number of inputs, we can OR together

all the ways that k of the inputs can be 1. For example, zero 1's can only occur

when both u

0

and v

0

are 1. That is, y

0

= u

0

v

0

. One 1 can occur when either

u

0

= 1 and v

1

= 1, or u

1

= 1 and v

0

= 1. That is, y

1

= u

0

v

1

+ u

1

v

0

. Similarly,

y

2

= u

0

v

2

+u

1

v

1

+ u

2

v

0

. Then, 2n� 1 OR-gates are needed, one for each but the y

0

and y

2n

outputs.

If we restrict ourselves to 2-input OR-gates, then we need to combine the terms

86 SOLUTIONS TO SELECTED EXERCISES

in trees of OR-gates. As the middle output, y

n

, has n + 1 terms, we need O(log n)

levels. We can calculate the exact number of 2-input OR-gates needed by the fol-

lowing trick. We note that there are (n+ 1)

2

inputs to the trees of OR-gates. Each

2-input OR-gate reduces the number of lines by 1, and at the output there are 2n+1

lines left. Thus, there are exactly 2-input n

2

OR-gates.

Now, let us count the levels and gates, both for the case of 2-input OR-gates,

and multi-input OR-gates. In the latter case, the recurrence for delay is

D(1) = 1

D(2n) = D(n) + 2

with a solution D(n) = 2 log

2

n+ 1.

For 2-input gates, we need O(log n) levels when we double the number of inputs,

so we get a recurrence of the form

D(1) = 1

D(2n) = D(n) + O(logn)

lp The solution to this recurrence is D(n) = O

�

(log n)

2

�

.

For the gate count, assuming multi-input OR gates, we need (n+ 1)

2

AND-gates

and 2n � 1 OR-gates, or n

2

+ 4n gates in all. These are in addition to the gates in

two subcircuits for n inputs each. The recurrence is

G(1) = 1

G(2n) = 2G(n) + n

2

+ 4n

The solution is G(n) = 2n

2

+ n(4 log

2

n� 1).

Finally, if we use only 2-input OR-gates, then the gates used outside the two

subcircuits is 2n

2

+ 2n+ 1, but the solution to the recurrence for gate count is still

O(n

2

).

} Section 13.8

13.8.1:

load

in

out

CHAPTER 14. PREDICATE LOGIC 87

}

} }

}

Chapter 14. Predicate Logic

} Section 14.2

14.2.1:

a) CS205 is a variable

b) cs205 is a constant

c) 205 is a constant

d) \cs205" is a constant

e) p(X;x) is a nonground atomic formula

f) p(3; 4; 5) is a ground atomic formula

g) \p(3; 4; 5)" is a constant

} Section 14.3

14.3.1: A suitable logical expression is:

�

csg(\PH100"; S;G) AND snap(S; \L. Van Pelt"; A; P

�

! answer(G)

answer is true when G = C+. For this we use

S = 67890

G = \C+"

A = \34 Pear Ave."

P = \555-5678"

} Section 14.4

14.4.1:

a) (8X)(9Y) NOT (p(X) OR p(Y) AND q(X))

b) (9X)(NOT p(X) AND ((9Y)p(Y) OR (9X)q(X;Z)))

14.4.3: (9X)(NOT p(X) AND ((9Y)p(Y) OR (9W)q(W;Z)))

14.4.5:

a) (8C)csg(C, \C. Brown", \A")

b) (9C) NOT csg(C, \C. Brown", \A")

} Section 14.5

14.5.1(a): Consider the interpretation I

1

:

88 SOLUTIONS TO SELECTED EXERCISES

1. D = fa; bg

2. loves(X;Y) is true if XY is one of aa; ab; bc; bb

Under this interpretation (\everyone loves everyone"), expression (a) is true.

Now consider the interpretation I

2

:

1. D = fa; bg

2. loves(X;Y) is true if XY is one of ba; bb

Under this interpretation (\a is a misanthrope), expression (a) is false.

14.5.1(b): Interpretation I

1

:

1. D = fag

2. p(a) is true

Under I

1

, expression (b) is true.

Interpretation I

2

:

1. D = fag

2. p(a) is false

Under I

2

, expression (b) is false.

14.5.1(c): Interpretation I

1

:

1. D = fag

2. p(a) is true

Under I

1

, expression (c) is true.

Interpretation I

2

:

1. D = fa; bg

2. p(a) is true, p(b) is false

Under I

2

, expression (b) is false because p(a)! (8X)p(X) is false.

14.5.1(d): Interpretation I

1

:

1. D = fa; b; cg

2. p(X;Y) is true if XY is one of ab; bc; ac

Under I

1

, expression (d) is true.

Interpretation I

2

:

1. D = fa; b; cg

2. p(X;Y) is true if XY is one of ab; bc

Under I

2

, expression (d) is false.

} Section 14.6

14.6.1:

a) (r OR s) � (s OR r) is a tautology in propositional logic (law 12.7). The

predicate logic expression (p(X) OR q(Y)) � (q(Y) OR p(X)) is derived by

substituting p(X) for r and q(Y) for s.

CHAPTER 14. PREDICATE LOGIC 89

b) (r AND s) � r is a tautology in propositional logic (law 12.16). The expression

(p(X;Y) AND p(X;Y)) � p(X;Y) results by substituting p(X;Y) for r.

c) (r ! FALSE) � NOT r is a tautology in propositional logic (law 12.24(a) with

FALSE in place of q). The expression (p(X) ! FALSE) � NOT p(X) follows by

substituting p(X) for r.

} Section 14.7

14.7.1:

a) (9X)

�

�

NOT p(X)

�

AND

�

(9Y)(p(Y)

�

OR (9W)

�

q(W;Z)

�

�

�

b) (9X)((9Y)p(Y) OR (9Z)q(Z) OR r(X))

14.7.3: Technically, law (14.12) does not allow us to change the binding of any

variable occurrence. Thus, law (14.12) does not allow us to conclude

�

p(X;Y) AND (8X)q(X)

�

� (8X)

�

p(X;Y) AND q(X)

�

However, the two expressions are equivalent for other reasons.

