N

N

Solutions to
Selected
Exercises

Chapter 1. Computer Science: The Mechanization
of Abstraction

Section 1.3

1.3.1: The static part of a data model consists of the values for the objects in the
model; the dynamic part consists of the operations that can be applied to these
values. For example, we can think of the set of integers with the operation addition
as a data model. The static part is the set of integers and the dynamic part is the
addition operator.

1.3.3: The data objects in a line-oriented text editor, such as vi, are files consisting
of sequences of lines, where each line is a sequence of characters. A cursor identifies
a position within a line. There are operators for positioning the cursor within a
file. Typical operations on lines include inserting an additional line and deleting an
existing line. A line may be modified by inserting, deleting, or changing characters
within it. In addition, there are operators for creating, writing, and reading files.

Section 1.4

1.4.1: An identifier can be one of the names for a box. For example, an identifier
x in C may be attached to a box containing an integer by means of a variable
declaration int x;. One of the names of that integer box is then x.

Y

%

2 SOLUTIONS TO SELECTED EXERCISES

Chapter 2. Iteration, Induction, and Recursion

Section 2.2

2.2.1(a): With 5 elements in the array, SelectionSort makes 4 iterations with the
loop-index 7z = 0,1, 2, 3. The first iteration makes 4 comparisons, the second 3, the
third 2, the fourth 1, for a total of 10 comparisons. With the array 6, 8, 14, 17, 23,
there are no swaps (exchanges of elements) in any iteration.

2.2.1(b): On the array 17,23, 14, 6,8, SelectionSort makes 4 iterations. The
numbers of comparisons and swaps made during each iteration are summarized in
the following table. We shall not regard a swap as having occurred if the selected
element is already in its proper position. However, the reader should be aware that
lines (6) — (8) of Fig. 2.2 are executed regardless of whether a swap is needed. Note
that when small = ¢, these lines have no effect.

ITERATION | ARRAY AFTER ITERATION | NO OF COMPARISONS | NO OF SWAPS
Start 17,23,14,6,8 — —
1 6,23,14, 17,8 4 1
2 6,8,14,17,23 3 1
3 6,8,14,17,23 2 0
4 6,8,14,17,23 1 0

2.2.3: In what follows, we use the conventions and macros of Section 1.6. To begin,
we use the cell/list macro to define linked lists of characters, as:

DefCell(char, CELL, LIST);

Here is the function precedes.

Boolean precedes(LIST L, LIST M) {
if (M==NULL) return FALSE;
if (L==NULL) return TRUE;
if (L->element == M->element)
return precedes(L->next,M->next);
return (L->element < M->element);

2.2.5: If all n elements in the array A are the same, then SelectionSort(A, n)
makes n(n — 1)/2 comparisons but no swaps.

2.2.7: Let T be an arbitrary type. Define

typedef T TARRAY[MAX];
TARRAY A;

CHAPTER 2. ITERATION, INDUCTION, AND RECURSION 3

We modify SelectionSort as follows to sort elements of type T. The function
key(x) returns the key of type K for the element x. We assume that the function
1t (u,v) returns TRUE if u is “less than” v and FALSE otherwise, where u and v are
elements of type K.

void SelectionSort(TARRAY A, int n) {
int i, j, small;
T temp;
for(i=0; i<n-1; i++) {
small = i;
for(j=i+1; j<m; j++)
if (1t (key(A[j]1), key(Alsmalll)))
small=j;
temp = Alsmall];
Alsmalll = Al[il;
Ali] = temp;

k
c) H 2t
=3

Section 2.3

2.3.1(a): We shall prove the following statement S(n) by induction on n, for n > 1.

STATEMENT S(n):

3= n(n—l— 1)/2

n
1=

BASIS. The basis, n = 1, is obtained by substituting 1 for n in S(n). Doing so, we
get Eil:l t = 1. We thus see that S(1) is true.

INDUCTION. Now assume that n > 1 and that S(n) is true. We must prove
S(n + 1), which is

4 SOLUTIONS TO SELECTED EXERCISES

n+1

Y i=(n+1)(n+2)/2

=1

We can rewrite the left-hand side as

n

O+ (n+1)

=1
Then, using the inductive hypothesis to replace the first term, we get
nn+1)/2+(n+1)=n(n+1)+2(n+1)/2=(n+1)(n+2)/2

which is the right-hand side of S(n + 1). We have now proven the inductive step
and thus shown that S(n + 1) is true. We conclude that S(n) holds for all n > 1.

2.3.1(b): We shall prove the following statement S(n) by induction on n, for n > 0.

STATEMENT S(n):

i =n(n+1)(2n +1)/6, for all n. > 0
1

n

K3

BASIS. S5(0), the basis, is E?:l i2 = 0, which is true by the definition of a sum of
zero elements.

INDUCTION. Assume that n > 0 and that S(n) is true. We now need to prove
S(n + 1), which is

n+1

Y = (n+1)(n+2)(2n+3)/6

=1

We can rewrite the left-hand side as

n

O+ (n+1)?

=1
Using the inductive hypothesis to replace the first term, we get
n(n+1)(2n+1)/6+ (n+1)2
=(n+1)(n(2n+1)+6(n+1))/6
=(n+1)(2n% +7n+6)/6
=(n+1)(n+2)(2n+3)/6

The last expression is the right-hand side of S(n + 1). We have now proven the
inductive step. We therefore conclude S(n) is true for all n > 0.

2.3.3:
a) 01101 has three 1’s and is therefore of odd parity.
b) 111000111 has six 1’s and is of even parity.

CHAPTER 2. ITERATION, INDUCTION, AND RECURSION 5

Section 2.4

2.4.1: Our initial expression F is
(utv)+ (w4 (z+y) +2)

Using the associative law for addition as in case (b), we can pull out u to get

(u+t v+ ((w+(z+y)) +2)

We note that v happens to be pulled out as well. With another application of the
associative law, we can pull out w:

vt (v+ (w+((z +9) +2)))

The redundant parentheses around z + y can be removed. Then, one more applica-
tion of the associative law gives us our desired result:

ut (vt (w+(z+(y+2)))

2.4.3: We shall prove the following statement by complete induction on n, for
n > 0.

STATEMENT S(n): If an expression F has n operator occurrences, then E has
n + 1 operands.

BASIS. The basis is n = 0. Then E has no binary operators and one operand.
Thus, S(0) is true.

INDUCTION. We assume that n > 0 and that S(j) is true for all 0 < j < n. We
want to prove S(n + 1). Let E be an expression with n + 1 operator occurrences.
Then, F is of the form FOG, where 8 is a binary operator and F and G are expres-
sions constituting the operands of . Let F' have n; operator occurrences and G
have nsy operator occurrences. We know that n; +ns = n, because the total number
of operator occurrences, including 8, is n+ 1. Since n; and ny are each thus at most
n, the inductive hypothesis applies. Thus, F has n; + 1 operands and G has ny + 1
operands. Therefore, F has n+ 1 operator occurrences and n1 +1+nx+1=n+2
operands, proving S(n + 1). We conclude S(n) holds for all n > 0.

2.4.5: Matrix multiplication is associative but not commutative.

Section 2.5

2.5.1: Asin Fig. 2.12, we establish an invariant that is true at the top of the loop,
that is, at the time when the program tests whether 7 > n as part of the code for
the for-statement. The invariant, which we prove by induction on the value of the
variable i, is

STATEMENT S5(j): If we reach the test ¢ < n in the for-loop with the variable i
having the value j, then the value of the variable sumis j(j — 1)/2.

6 SOLUTIONS TO SELECTED EXERCISES

BASIS. The basis is 7 = 1, which occurs when we enter the for-loop for the first
time. At this time, sum has its initialized value 0. Thus, S(1) is true.

INDUCTION. Assume that j > 1 and that S(h) is true for 1 < h < j. We wish to
prove S(j+1). By the inductive hypothesis, sum = j(j — 1)/2 as we began the jth
iteration of the loop and i had the value j. After the assignment statement in the
body of the loop was executed sum = j(j — 1)/2+ 7 = j(j + 1)/2. Thus, at the
beginning of the j + 1st iteration, sum has the value j(j + 1)/2. Therefore, S(j +1)
is true.

After the nth iteration, the loop terminates with sum = n(n+1)/2. Thus, the
program correctly evaluates > . ;4= n(n+1)/2.

2.5.3: The loop invariant we shall prove by induction on k, the value of variable i,
is

STATEMENT S(k): If we reach the test ¢ < n in the for-loop with the variable i

having the value k, then z = 22"

BASIS. The basis is £ = 1. Upon entry to the loop, z = 2. Since 22" — 92" =
0
22" = 2! = 2, we see that S(1) holds.

INDUCTION. Assume k > 1 and S(4) is true for 1 < ¢ < k. We want to prove
S(k +1). By the inductive hypothesis, z = 227" as we entered the loop for the
kth iteration and i had the value k. After the assignment statement x = x*x was
executed, z = 2277 4 92" — 92", Thus, at the beginning of the k& + 1st iteration,
where i has the value k + 1, x has the value 22", Therefore, S(k + 1) holds. After
the nth iteration, when i gets the value n + 1, the loop terminates and z = 2%".

Section 2.6

2.6.2(b):

CHAPTER 2. ITERATION, INDUCTION, AND RECURSION 7

2.6.2(c):
3
2
oI
0 ...
cccH)y cHryoy o)y)
2.6.4:

a) < is an infix binary operator.
b) & is a prefix, unary operator.
¢) ' is an infix, binary operator.

2.6.6:
a) By direct enumeration we can show that S starts off

0,5,7,10,12,14,15,17,19, 20, 22, 24, 25, 26, 27, 28, - - -
We shall prove that 23 is the largest integer not in S.

b) We shall prove the following statement 7T'(n) by induction on =, for n > 24.

STATEMENT T'(n): If n > 24, then nisin S.

BASIS. The basis consists of the five integers 24, 25, 26, 27, 28, which are in S by
part (a).

INDUCTION. Let us assume that » > 28 and that T'(:) holds for T'(24), T(25),
T(26),...,T(n). We want to prove T(n + 1).

Consider the integer n — 4. Since n — 4 > 24, by the inductive hypothesis n — 4
is in S. By definition of S, (n —4)+ 5, or n+ 1, is in S. Therefore, T(n + 1) holds.
We conclude that T'(n) holds for all n > 24.

2.6.9(a): An arithmetic expression with no operators is covered by the basis case.
On the ith round we add those expressions whose trees have height ¢; that is, the
longest path from the root to a leaf has 2 + 1 nodes.

Section 2.7

2.7.1:
a) Here is a C function to compute sq(n) = n?, when n is a positive integer.
int sq(int n) {
if(n==1) return 1;
else return sq(n-1) + 2*n - 1;

8 SOLUTIONS TO SELECTED EXERCISES

b) We shall prove the following statement S(n) by induction on n.

STATEMENT S(n): sq(n) = n? when n > 1.
BASIS. When n = 1, the first line of sq returns 1.

INDUCTION. Assume that n > 1 and that S(n) holds. We want to prove S(n+1).
From the else-statement, we know sqg(n + 1) = sq(n) + 2 * n — 1. By the inductive
hypothesis, we know sq(n) = n?. Therefore, sq(n+1) = n?+2(n+1)—1 = (n+1)%
We have thus proved the inductive step. We conclude S(n) is true for all n > 1.

2.7.3: The function £ind1698 returns TRUE if the list contains the element 1698,
and returns FALSE otherwise.
Boolean find1698(LIST L) {
if (L==NULL) return FALSE;
else if(L->element==1698) return TRUE;
else return £ind1698(L->next) ;

2.7.5: The following procedure is adapted from Fig. 2.22. The array A and its cursor
i is replaced by L, a pointer to a list of elements. The cursor small, indicating our
current guess at the selected element, is replaced by a pointer Small that points
to the cell of the current guess. Cursor j, used to run down the list of unsorted
elements, is replaced by a pointer J, and n, the size of the array A, is implicit in the
length of the given list.

void SelectionSort(LIST L) {

LIST J, Small;
int temp;

if (L!=NULL) {/* do nothing on the empty list */
Small = L;
J = L->next;
while(J !'= NULL) {
if(J->element < Small->element)
Small = J;
J = J->next;
}
/* now swap the elements in cells pointed to
by L and Small */
temp = L->element;
L->element = Small->element;
Small->element = temp;
SelectionSort (L->next);

2.7.7: Procedure g(3) prints the remainder when 4 is divided by 2 and then calls
itself recursively on the integer part of /2. An easy inductive proof shows that

CHAPTER 2. ITERATION, INDUCTION, AND RECURSION 9

this works correctly on all positive integers. However, if ¢ = 0, g prints nothing.
Procedure f fixes up this problem by handling 0 as a special case.

void g(int i) {

if(i>0) {
printf ("%d", i%2);
g(i/2);

}

}

void f(int i) {
if (i==0) printf("0");
else g(i);

$ Section 2.8

2.8.1: The following table describes the sequence of events.

CALL RETURN
merge(1,2,3,4,5; 2,4,6,8,10) | 1,2,2,3,4,4,5,6,8,10
merge(2,3,4,5; 2,4,6,8,10) 2,2,3,4,4,5,6,8,10
merge(3,4,5; 2,4,6,8,10) 2,3,4,4,5,6,8,10
merge(3,4,5; 4,6,8,10) 3,4,4,5,6,8,10
merge(4,5; 4,6,8,10) 4,4,5,6,8,10
merge(5; 4,6,8,10) 4,5,6,8,10
merge(5; 6,8,10) 5,6,8,10
merge (NULL; 6,8,10) 6,8,10

2.8.5: In all of the parts, the trick is to identify an appropriate measure of size for
the arguments that decreases with each recursive call.

a) A good size measure for merge(L,M) would be s the sum of the lengths of the
lists L and M. We see that merge of size s calls merge of size s — 1 which calls
merge of size s — 2, and so on, until one or the other of L or M becomes NULL.

¢) A good size measure for MakeList(i,n) is n — ¢, the number of elements yet
to be put on the newly created list. MakeList of size m calls HakeList of size
m — 1 which calls MakeList of size m — 2 and so on until the size is 0.

o Section 2.9

2.9.1: Note: PrintList is in Fig. 2.31(a), not (b) as it states erroneously in the
first printing. We shall prove by induction on % the following statement S(3), for
1> 0.

10 SOLUTIONS TO SELECTED EXERCISES

STATEMENT S(2): If Lis a list of length ¢, then PrintList (L) prints the elements
of L in order.

BASIS. When 2 = 0, L is NULL and PrintList(L) returns without printing any
elements.

INDUCTION. Assume that ¢ > 0 and that S(¢) is true. We now wish to prove
S(2+1). Let L be a list of length ¢+ 1. We can write L as (a, M), where M is a
list of length <.

PrintList (L) first prints a and then calls PrintList(M). By the inductive
hypothesis, PrintList () correctly prints the elements of ¥ in order. We now
have shown that PrintList (L) prints the elements of L in order. This proves the
inductive step. We conclude S(%) is true for all ¢ > 0.

2.9.3: We prove by induction on % the following statement S(z), for ¢ > 0.

STATEMENT S(4): If L is a list of length ¢, then £ind0(L) returns TRUE if 0 is an
element on L, and returns FALSE otherwise.

BASIS. When ¢ = 0, L is NULL. In this case, £ind0 correctly returns FALSE.

INDUCTION. Assume that ¢ > 0 and that S(¢) is true. We wish to prove S(i + 1).
Let L be a list of length ¢+ 1. We can write L as (z, M), where M is a list of
length . If x is 0, then £indO returns TRUE. If x is not 0, then £ind0 calls £ind0 (M)
which, by the inductive hypothesis, returns TRUE if and only if M contains 0. Thus,
£ind0(L) returns TRUE if 0 is an element of L. and returns FALSE otherwise. This
proves the inductive hypothesis. We conclude 5(%) is true for all < > 0.

2.9.5: The argument is essentially the same as that on p. 37 of the text, with the
exception that there are two cases to the basis, a = 0 and a = 1.

N

CHAPTER 3. THE RUNNING TIME OF PROGRAMS 11

Chapter 3. The Running Time of Programs

Section 3.3

3.3.1: Lines (1) — (3) each time one time unit. For line (4), the test takes one
unit, and it is executed n times. Lines (5) and (6) each take one unit and they are
executed n — 1 times. Line (7) takes one unit. Thus, the total time taken by the
program in Fig. 2.13 is 3n + 2 units.

3.3.3: Program A takes less time than program B for all values of n < 29. For
n > 30, program A takes more time than program B. At n = 29, program A takes
5.4 x 10° time and program B takes 8.4 x 10° time. At n = 30, program A takes
1.1 x 10° time and program B takes 9 x 10° time.

3.3.5: Program A takes more time than program B for n < 3, and less time
thereafter.

TIME MAXIMUM PROBLEM SIZE MAXIMUM PROBLEM SIZE
UNITS SOLVABLE WITH PROGRAM A SOLVABLE WITH PROGRAM B
108 5 3
10° 31 7
1012 177 15

Section 3.4

3.4.1: fi(n)is O(fz(n)), O(fg(n)), and O(f4(n)). In each case, we can use wit-

nesses ¢ = 1 and ng = 0.

f2(n) is not O(fl(n)), O(fg(n)), or O(f4(n)). To show that fz(n) is not
O(fl (n)), suppose that it were. Then, there would be witnesses ¢ > 0 and n(such
that n3 < en? for all n > ny. But this implies, ¢ > n for all n > ng, contradicting
our assumption that ¢ is a constant.

fa(n) is not O(fl(n)) but it is O(fz(n)) and O(f4(n)). To show f3(n) is
O(f4(n)), we can use ng — 3 and ¢ = 1. Remember that every even number except
2 is composite.

f4(n)) is not O(fl(n)) but it is O(fz(n)) and O(fg(n))

3.4.3: Choose ¢ = 2 and ng = 0. Since f(n) < g(n) for n > 0, we know that
f(n) + g(n) < 2g(n) for n > 0. Therefore, f(n) + g(n) is O(g(n))

12 SOLUTIONS TO SELECTED EXERCISES

Section 3.5

3.5.1:

a) Choose witnesses ¢ = 1 and ng = 1. Because a < b, we know n? < n® for
n > ng. Thus, n® is O(n?).

b) Suppose there exist witnesses ¢ > 0 and ng such that n® < en® for all n > ng
when a > b. Let d be the larger of ng and ¢!/(*=%) 4 1. Because of the assumed
big-oh relationship, we infer that d® < cd® or d*~® < ¢. But from our choice of
d, we know that d®~% > ¢, a contradiction. Thus, we conclude that »n® is not

O(nb) if a > b.

3.5.3: Since T'(n) is O(f(n)) we know that there exist witnesses ¢ > 0 and ng > 0
such that T(n) < ¢f(n) for all n > ng. Since g(n) > 0 for all n > 0, we know

g(n)T(n) < ef(n)g(n), for n > 0. Thus, g(n)T'(n) is O(g(n)f(n))

3.5.5: Since f(n) is ((n)), there exist witnesses ¢ > 0 and no > 0 such
that f(n) < cg(n) for all n > ng. Choose d = max(c,1). For any value of
n, max(n), g(n) is either f(n) or g(n). If max(f(n),g(n)) is f(n), we know

f(n) < cg(n) < dg(n). If max(f(n),g(n)) is g(n), we know g(n) < dg(n). Thus,
max((n),g(n)) is ((n))

Section 3.6

3.6.1: The body of the for-loop
for(i=a; i<=b; i++)
is iterated b — a + 1 times, or 0 times if @ > b.
The body of the for-loop
for(i=a; i<=b; i--)
is iterated ¢ — b + 1 times, or 0 times if b > a.

3.6.3: If the condition C is false, the running time of the while-loop is O(1). If
the condition is true, the while-loop executes forever and the running time is not

defined.

3.6.5: The running time is O(g(n)) That is, the running time is that of the branch
taken.

Section 3.7

3.7.1: The tree is shown in Fig. $3.1. The assignment statements at the leaves (2),
(4), (5) (6), (7), (10), (11) each take O(1) time. The for-statement, (3)—(4), takes
O(n) time. The if-statement, (9)—(10), takes O(1) time and the while-statement,
(8)—(11), takes O(n) time. The running time of the entire program represented by

CHAPTER 3. THE RUNNING TIME OF PROGRAMS 13

Fig. S3.1. Tree showing grouping of statements of program in Fig. 3.17.

the root is O(n).

3.7.3: The tree is shown in Fig. S3.2. The assignment statements at the leaves
(2), (3), (5), and (6) each take O(1) time. As a function of ¢, the running time of
the while-loop is O(log) and the running time of the for-loop is O(nlogn). As a
function of n, the running time of the while-loop is O(logn) and the running time
of the for-loop is O(nlogn).

Section 3.8

3.8.1: There are several ways to attack this problem. A proof by induction on n
can be used to show that

n

D i+ n(n+1)/2) = (n® + 2n° + n)/2

=1
for all n > 0. Perhaps simpler is to note that the left-hand side can be written as
14

1 [

n(n+1)/2

n n

K3

The first term sums to n(n + 1)/2 as we saw in the introduction to Chapter 2.
The expression in the second term is independent of 7. The second term is thus
n?(n + 1)/2. Adding these two sums, we get

n(n+1)/2 +n?(n+1)/2 = (n® + 2n% + n)/2

14 SOLUTIONS TO SELECTED EXERCISES

Fig. S3.2. Tree showing grouping of statements of program in Fig. 3.19.

which is the expression on the right-hand side of the equality we wanted to prove.

3.8.3: Each time we go around the loop we evaluate f(n) and increment . We
also initialize ¢ before the loop. Initialization and incrementation of ¢ are each O(1)
operations, and we can neglect them. The body of the loop is iterated f(n) times,
taking O(1) time per iteration, or O(f(n)) time total. Thus, the running time of
the loop is O(f(n)) plus the time to evaluate f(n) f(n) + 1 times. For example,
the answer to (a) is O(n x (n! + 1)) + O(n!) = O(n x n!).

3.8.5: Note that bar(n,n) = (n? + 3n)/2. The function bar takes O(n) time as
before. Line (8) of procedure foo takes O(n) time and the for-loop of lines (7)—(8)
is iterated (n% + 3n)/2 times. The evaluation of bar(n, n) in the new line (7) takes
O(n) time and can be neglected. Thus, procedure foo now takes O(n®) time. The

running time of main is dominated by the running time of foo and thus main takes
O(n®) time.

Section 3.9

3.9.1: Let T(n) be the running time of sum(L), where n is the length of the list L.
We can define T'(n) by the following recurrence relation:

T(0) = O(1)
T(n) =0(1)+ T(n—1)

Replacing the big-oh’s by constants, we get

CHAPTER 3. THE RUNNING TIME OF PROGRAMS 15

T(0) =
T

a
(r)=b+T(n—1),forn>1

As we saw in this section, the solution to this recurrence is

T(n)=a+bn,forn >0
The running time of sum is therefore O(n).

3.9.3: Let m be the number of elements yet to be sorted. Let T(m) be the run-
ning time of SelectionSort applied to m elements. We can define the following
recurrence for 7'(m):

T(1) = 0(1)
T(m)=0(m)+ T(m—1),form > 1

Replacing the big-oh’s by constants, we get

T(l)=a
T(m) =bm+ T(m — 1), for m > 1

By repeated substitution, we find the solution to this recurrence is

T(m)=b(m+2)(m—-1)/2+a
The running time of SelectionSort is therefore O(m?).

3.9.5:
int ged(int i, int j) {
int r;
r=1i% j;
if(r '= 0) return gcd(j,r);

else return j;

}

For convenience, assume that ¢ > j. (Note that this property always holds except
possibly for the first invocation of gcd.) Let T'(2) be the running time of ged(%, 7).

Suppose ged(s, j) calls ged(j, m) which calls ged(m,n). We shall show that
m < 1/2. There are two cases. First, if j < ¢/2, then m < j < /2. Second, If
j>1i/2,then m=<¢MOD j =¢—j <¢/2.

Thus, we conclude that after every two calls to gcd, the first argument is
reduced by at least half. If we substitute the text of gcd for one invocation of the
recursive call, we can model the running time of gcd by the recurrence

T(i) < O(1) + T(i/2)

The solution to this recurrence is O(logz). (See Exercise 3.11.3.)

16 SOLUTIONS TO SELECTED EXERCISES

Section 3.10

3.10.1(a):

As in the text, let T'(n) be the time taken by split on list of length n. The
running time of the assignments (1), (2), (3), (4), and (6) is each O(1). The running
time of assignment (5) is T'(n—2). The running time of the block-node representing
lines (3)—(6) is O(1) + T(n — 2), as is the running time of the if-node representing
lines (1)—(6).

Section 3.11

3.11.1: We shall prove the following statement by induction on %.

STATEMENT S(3): If 1 <4 < n, then

i—1

T(n) = T(n—i)+) g(n—j)

7=0

BASIS. The basis is 4 = 1. S(1) states that
T(n) =T(n— 1)+ g(n)
This is known to be true by the definition of T'(n).

INDUCTION. If ¢ > n, then S(: + 1) is true vacuously (the hypothesis of the
statement S, that 1 < ¢ <, is false). Assume that 1 <4 < n and that S(2) is true.
We wish to prove S(¢ + 1). From the inductive step we know

i—1

T(n) = T(n—i)+) g(n—j)

7=0

From the definition of T'(n) we know

CHAPTER 3. THE RUNNING TIME OF PROGRAMS 17

T(n—i)=T(n—i—1)+g(n — i)

Substituting this equation into the previous, we get

T(n)=T(n—i-1)+ Y g(n - J)

which is S(¢+1). We have thus proven the inductive step. We conclude S(%) is true
for 1 <7< n.

3.11.3: The general form of the solution is

log,n—1

T(n)=a+ Y. g(n/2)

a) When g(n) = n?, the sum is n? + n?/2+n%/4+ ..+ n?/(n/2), which is upper
bounded by the infinite geometric sum with first term n? and ratio 1/2. This
sum is 2n?%, so T(n) is O(n?).

¢) When g(n) =10, T(n) is O(logn).

e) When g(n) = 2", T(n) is O(2").

3.11.5: Suppose we guess that there is a constant ¢ such that G(n) < ¢2", for
n > 1. From the basis, we get the constraint 3 < 2¢. From the induction, we get
the constraint

G(n) = (2*/2 + 1)G(n/2) < ((2"/2 + 1)c2™/2 = c2" + c2/?

If 2™ + ¢2"/% < 2™, then ¢ < 0, contradicting the basis constraint. Thus, if we
guess that G(n) < ¢2", we fail to find a solution.

3.11.9:
a) Here, c=3,d =2, k=2. Thus, ¢ < d¥, so the solution to T(n) is of the form
Oo(n?).

b) Here, ¢ = 10,d = 3, k = 2. Thus, ¢ > d*, so the solution to T(n) is of the form
O(nlog3 10)‘

c) Here,c=16,d =4, k = 2. Thus, c = d¥, so the solution to T(n) is of the form
O(n?logn).

N

18 SOLUTIONS TO SELECTED EXERCISES

Chapter 4. Combinatorics and Probability

Section 4.2

4.2.1(a): 43 = 64.

4.2.3: First, note that we can choose input = so that each of the eight conditions
is either true or false, as we wish. The reason is that each test asks whether z is
divisible by a different prime. We may pick to be the product of those primes
for which we would like the test to be true. It is not possible that this product is
divisible by any of the other primes.

Also note that different sets of true conditions lead to different values of n.
The reason is that two different products of primes cannot yield the same value of
n.

Now, we can compute the answer. We are asked to choose a “color,” true or
false, for each of eight conditions. We can do so in 2% = 256 ways.

4.2.5: 10™.
4.2.7: (a) 8K (c) 16M (e) 512P.

Section 4.3

4.3.1(a): 9! = 362880.

4.3.3: There are at most five comparisons in any branch. This number is best
possible, since four comparisons can only distinguish 16 different orders, and there
are 4! = 24 orders.

Given (a, b, c,d) to sort, the list is split into (a,c) and (b,d). The first thing
that happens is (a,c) is sorted, resulting in the comparison of @ and c¢. Then,
(b, d) is sorted similarly. The third comparison is between the winners of the two
comparisons. For example, if ¢ and b are the winners, we compare these two. If,
say, @ wins, then the fourth comparison is between b and c. If b wins we are done,
but if ¢ wins, we need a fifth comparison of b against d. The first three levels of the
decision tree are shown in Fig. S4.1.

Section 4.4

4.4.1(a): 26!/(26 — 3)! = 26!/23! = 26 x 25 x 24 = 15600.
4.4.4:
a) This is a selection without replacement; there are 6* = 1296 codes.

b) The number of codes without repetitions of color is 6!/(6 — 4)! = 6!/2! = 360.
Thus, the number of codes with a repetition is 1296 — 360 — 936.

CHAPTER 4. COMBINATORICS AND PROBABILITY 19

all orders
a<c
Y N
all orders where a < ¢ all orders where a > ¢
b<d b<d
Y N Y N
all orders where all orders where all orders where all orders where
a<cand b<d a<candb>d a>cand b<d a>candb>d
a<b a<d c<b c<d
Fig. S4.1. Decision tree for Exercise 4.3.3..
c) 5*=625.

d) If there are only five colors, then the number of codes without repetition is
5!/(5 — 4)! = 5!/1! = 120. Thus, the number with a repetition but no red peg

is 625 — 120 = 505.

Section 4.5

4.5.1(a): 7!/ (3! x (7=3)1) =71/(3! x 41) =

5040/(6 x 24) = 35.

4.5.3(a): (;), which, as we learned in Exercise 4.5.1(a), is 35.

4.5.5: To begin, we need to pick the positions that are vowels. There are (g) =10
ways to do so. For each of these 10 ways, we can pick the 3 consonant positions
in 213 = 9261 ways. We can pick the two vowel positions in 5% = 25 ways. Thus,

the total number of words of length five wit
9261 x 25 = 231525 ways. The number of
2,315,250.

4.5.7:
c =1.0;
for(i=n; i>n-m; i--) {
c *= 1i;
¢ /= (i-n+m);
}

Section 4.6

h vowels in two particular positions is
words altogether is ten times this, or

4.6.1(a): 5!/(3! x 1! x 1!) = 120/(6 x 1 x 1) = 20.

20 SOLUTIONS TO SELECTED EXERCISES

4.6.3: One way to look at this problem is that we wish to order 64 items, of which
3 are unique (the squares with pieces other than knights), two are indistinguishable
from each other (the squares with the white knights) and the remaining 59 (the
squares that do not have a piece on them) are also indistinguishable from each
other. The number of orders is thus 64!/(59! x 2! x 1! x 1! x 11) = 64!/(59! x 2!) =
457,470,720.

4.6.5: (2n)!/(2! x 2! x .-+ x 21} (n times), or (2n)!/2™.

Section 4.7

4.7.1:
a) (64 3)1/(6! x 3!) =9t/(6! x 3!) = 84.
c) (6+3+4)1/(6!x 3! x 4!) = 13!/(6! x 3! x 4!) = 60060.

4.7.3: Let us reserve one apple for each of the three children. Then, we may
distribute the remaining four apples as we like. There are (4 4+ 2)!/(4! x 2!) = 15
ways to do so.

Section 4.8

4.8.1(a): Begin by picking the card that is not part of the two pairs. We can do
so in 52 ways. Now, pick the ranks of the two pairs. There are only 12 remaining

ranks, so we can do so in (122) — 66 ways. For each of the pairs, we can pick the

two suits in (‘21), or 6, ways. We now have the 5 cards of the hand without order,
and the number of possibilities is 52 x 66 x 6 x 6 = 123,552,

4.8.2(a): We may pick the Ace four different ways, and we may pick the 10-point
card in 16 ways. Thus, there are 4 x 16 = 64 different blackjacks.

4.8.4(a): (D) + () + () +(12) =220+66+12+1=299.

4.8.7(a): First, we must pick the suit of which there is four. We can do so in 4

ways. Now, we pick the cards of the suit of four; there are (143) = 715 ways to do

so. For each of the suits of three, we can select the cards in (133) — 286 ways. Thus,
the number of hands is 4 x 715 x 286 x 286 x 286 — 66,905,856,160 ways.

Section 4.9

4.9.1(a): 5/36.

4.9.2(a): First, there are 52 x 51 = 2652 members of the probability space. To
calculate the number of points with one or more Aces, it is easier to calculate the
number with no Ace and subtract this probability from 1. The number of deals of
two cards from the 48 that remain after removing the Aces is 48 X 47 = 2256. Thus,
the probability of no Ace is 2256/2652, and the probability of at least one Ace is
1—(2256/2652) = 396/2652 = 14.9%.

CHAPTER 4. COMBINATORICS AND PROBABILITY 21

4.9.3(a): The area of a circle of radius 3 inches is 97 = 28.27. The area of the
entire square is 144 square inches. Thus, the probability of hitting the circle is
28.27/144 = 19.6%.

4.9.4(a): The probability is (5) x (Ig)/(gg) If we cancel common factors in nu-
merator and denominator, we get 5x20x 19 x 18 x 17 x 60/(80 x 79 x 78 X 77 x 76),

or 1.21%.

Section 4.10

4.10.1:

a) Among the 18 points with an odd first die, 9 have an even second die. Thus,
the probability is 9/18, or 50%.

¢) There are six points that have 4 as the first die. Of these, four have a sum at
least 7. Thus, the probability is 4/6, or 66.7%.

4.10.2(a): In the region of 120 points where there are three different numbers,
the probability of two 1’s is 0. In the region of 90 points with two of one number,
1/6 will have two 1’s. In the region of six points with all three dice the same, the
probability of at least two 1’s is 1/6. Thus, the probability of at least two 1’s is
0 x (120/216) + (1/6) x (90/216) + (1/6)(6/216) = 7.41%.

4.10.7: An appropriate probability space, in which all points are of equal proba-
bility, is one with six points, two for each of the choices of which prisoner to shoot.
The distinction between the two points for prisoner A is the order in which the
guard will consider the other two prisoners when asked for a prisoner (other than
the questioner) who will not be shot. Thus, the two points for 4 can be thought of
as (A4, “B-before-C”) and (A, C-before-B). The remaining four points, for B and
C, are specified similarly.

Now, suppose that the guard answers “B” to A’s question. There are three
points that could have occurred:

(A, B-before-C), (C, A-before-B), and (C, B-before-A)
In only the first of these will A be shot, so the probability is still 1/3.

Section 4.11

4.11.1(a): The probability that at least one of the events is at least the largest of
the p;’s. The probability would be exactly max(p1,p2,...,Psn) in the case that all
the events were contained within the largest. The probability of at least one of the
events is no greater than the sum of the p;’s, and of course it is no greater than
1. The probbility 37 | p; would be reached in the case that all the events were
disjoint.

4.12.2:

a) Nothing. It could be anything between 0 and 1.

22 SOLUTIONS TO SELECTED EXERCISES

b) The probability is 1 — p.
4.12.3:
a) Between 0 and 0.3.

¢) Cold must be contained in both High and Dropping. Thus, Cold cannot have
probability greater than the smaller of High and Dropping, that is, 0.3. Its
probability could be as low as 0, however, for example, if High and Dropping
were disjoint.

Section 4.12

4.12.1: Intuitively, the expected number of 1’s on one die is 1/6. The tosses of dice
are independent, so we expect 1/6 of a 1 from each. In three dice, we thus expect
1/2 a 1.

Alternatively, consider the 63 = 216 tosses of three dice. The number of tosses
with three 1’s is 1. The number of tosses with two 1’s is 15, since the other die can
be any of five numbers, and the non-1 die can appear in any of three positions. The
number of tosses with exactly one 11is 75. In explanation, the 1 can appear in any
of 3 positions. For each of the other two positions, there are 5 choices, for a total of
3x5x5=T5tosses. The expected number of 1’sis thus (1x3+15x2+75x1)/216 =
(3 + 30 + 75)/216 = 108/216 = 1/2.

4.12.2: Exercise 4.12.1 suggests that the average amount of our winnings is 50
cents. However, the average amount we lose is not 50 cents. It is one dollar times
the probability that we lose. This probability is 125/216, the fraction of tosses that
do not contain a 1. This expected value is —57.9 cents, so the expected value of our
payout is —7.9 cents.

4.12.5: The game is fair. Generalizing Exercise 4.12.1, we have six independent
tosses, each with an expected 1/6 of a 1, so the expected amount recieved in each
toss is one dollar. Since we pay a dollar to play, our net expected payout is 0.

Section 4.13

4.13.1: 383 is prime. 377 = 29 x 13, and 391 = 23 * 17.

4.13.3: The number of tickets is 1 +2 + --- + 11 = 66. Of these tickets, 11 have a
value of 1; i.e., the finishing place of the holder of those tickets is 1, counting from
the bottom. 10 tickets have a value of 2, 9 have value 3, and so on. Thus, the
expected value is Ellil 7(12 —¢)/66. We can calculate this sum with the help of the
formulas in Exercise 2.3.1(a) and (b). It is 286/66 = 4.33. That is, the first pick
goes to a team that is on average a little better than fourth-worst.

N

CHAPTER 5. THE TREE DATA MODEL

Chapter 5. The Tree Data Model

Section 5.2

5.2.1: For the tree of Fig 5.5:

Node 1 is the root of the tree.

Nodes 6, 8, 9, 13, 15, 11, and 12 are the leaves.
Nodes 1-5, 7, 10, and 14 are the interior nodes.
Nodes 5 and 7 are the siblings of node 6.

ceoTe

[

Nodes 1, 3, 5, and 10 are the ancestors of node 10.
Nodes 10, 13, 14, and 15 are the descendants of node 10.
Nodes 2, 4, 8, and 9 are to the left of node 10.

Nodes 6, 7, 11, and 12 are to the right of node 10.

o e = o
vvvsvvv

Node 3 is of height 4.
Node 13 is the depth 4.
The tree is of height 5.

—
~—

B

23

The tree consisting of nodes 5, 10, 13, 14, and 15 is the subtree with root 5.

Nodes 1, 3, 5, 10, 14, and 15 form the longest path (of length 5) in the tree.

5.2.3: Let z and y be distinct leaves in a tree, and suppose z is an ancestor .
Then there exists a path @ = nj,ns,...,ng = y of length one or more from z to y.

Thus, n; is a child of z, and z cannot be a leaf.

5.2.5: There is no edge connecting r to any of a, b, or c. If r is the root, then there
is no way of reaching r from a,b, or c¢. Similarly, if one of a, b, or ¢ is the root,
then there is no way of reaching the root from r. Thus, the third property of the

definition of a tree (a tree must be connected) is violated.

5.2.7(a): The expression tree for (z + 1) X (z —y +4) is

24 SOLUTIONS TO SELECTED EXERCISES

NODE LEFTMOST CHILD RIGHT SIBLING
1 2 -
2 4 3
3 5 -
4 8 -
5 10 6
6 - 7
7 11 -
8 - 9
9 - -
10 13 -
11 - 12
12 - -
13 - 14
14 15 -
15 - -

Fig. S5.1. Answer to Exercise 5.3.1..

5.2.7(c): The expression tree for 9 x 8 + 7 x 6 + 5 is

Section 5.3

5.3.1: For each node, the leftmost child and right sibling are shown in Fig. S5.1.

5.3.5: There are 107 nodes, each with 4 bytes of information and two 4-byte point-
ers, or 1.2 x 10% bytes. There would be 107 + 1 NULL pointers (see Exercise 5.5.5).

%

CHAPTER 5. THE TREE DATA MODEL 25

Section 5.4

5.4.1: Here is a surprisingly simple function that counts the nodes in a tree.

int count(pNODE n) {
if(n !'= NULL)
return(count (n->rightSibling) +
count (n->leftmostChild) + 1);
else return 0;

}

At first glance, the function doesn’t seem to address the problem. However,
the “inductive assertion” about count is that for any node =, count(n) is the sum
of the number of nodes in the subtree rooted at n and all those subtrees rooted at
stblings of n to the right of n. The induction is straightforward, once we realize that
the induction is on the length of the longest path of leftmost-child and right-sibling
pointers extending from a node. Since the root has no siblings, the desired result
appears at the root.

Another way to look at the count function above is that the leftmost-child
and right-sibling pointers turn the tree into a binary tree with the same number of
nodes. Surely, the rule that the number of nodes in a binary tree rooted at n is 1
plus the sum of the number of nodes in the left and right subtrees makes sense.

Incidentally, this technique applies to any computation on trees that can be
expressed as an associative operator applied to the results of the children (the
operator is + in the case of count), and a final, unary operator (add-one in this
case). For example, the function to compute the height of a tree in Fig. 5.22 of
the text can be replaced by a simpler (but less transparent) function that computes
the height of n to be the larger of the height of the right sibling of n and 1 plus
the height of the leftmost child of n. The height will be correct at the root, but in
general, height(n) is the largest of the height of n and any siblings of n to the right.

5.4.5: The node listings are

a) Preorder: 1, 2,4, 8,9, 3, 5, 10, 13, 14, 15, 6, 7, 11, 12
b) Postorder: 8,9, 4, 2, 13, 15, 14, 10, 5, 6, 11, 12, 7, 3, 1

5.4.7: First, construct the expression tree. Then the infix and prefix expressions
can be read off the tree.

a) Infix expression is ((a +b) % c)/(d —e)+f.
b) Prefix expression is +/ * +abc — def.

Section 5.5

5.5.1(a): We shall prove by structural induction

STATEMENT S(7T): The procedure preorder when called on the root of T prints
the labels of the nodes of T in preorder.

26 SOLUTIONS TO SELECTED EXERCISES

BASIS. When the tree T is a single node n, line (1) prints the label of the root n.
At line (2) c is set to NULL, and consequently the body of the while-loop is not
executed.

INDUCTION. Suppose we execute preorder on a tree 7' with root n and children
€1,€2,...,¢,. Line (1) prints the label of node n. Line (2) sets ¢ to ¢;. By the
inductive hypothesis while-loop proceeds to print the labels of the subtrees rooted
at ¢1,ca,...,cx in preorder. This is the same as the definition of a preorder listing.
We conclude that preorder prints the labels of a tree in preorder.

5.5.3: We shall prove by structural induction

STATEMENT S(T): The number of nodes in T is 1 more than the sum of the
degrees of the nodes.

BASIS. When T is a single node n, the degree of n is 0.

INDUCTION. Suppose n, the root of a tree T, has nodes ¢y, c2, ..., c; as children.
Let numnodes(c;) be the number of nodes in the subtree rooted at ¢;. Let degree(c;)
be the sum of the degrees of the nodes in the subtree rooted at ¢;. By the inductive
hypothesis, we know that numnodes(c;) = degree(c;) + 1 for 1 < ¢ < k. The total
number of nodes in T is 1+ Elenumnodes(ci). The sum of the degrees of all the

nodes in T is Eledegree(ci) + k. We therefore have

k k
1+ Znumnodes(ci) =1+ Zdegree(ci) +k

i=1 i=1

Since the root has degree k, the latter sum is 1 plus the sum of all the nodes in T,
proving the induction.

5.5.5:
BASIS. A leaf has 2 NULL pointers and 1 node.

INDUCTION. Let T be a tree with root . Let r have children ¢y,..., cx, the roots
of subtrees 77, ..., Ty, respectively. Let T;, as a tree by itself, have p; NULL pointers
and n; nodes. By the inductive hypothesis, p; = n; + 1 fori=1,2,..., k.

When we assemble T from r and the T;’s, we replace the NULL pointers in the
rightSibling fields of ¢4, ¢2, ..., cx—1 by non-NULL pointers. The root r has a non-
NULL leftmostChild field and a NULL rightSibling field. The number of NULL
pointers in T is thus (Elepi) —(k—1)+ 1. Since p; = n; + 1 by the inductive
hypothesis, the number of NULL pointers is (Ele n;) + 2. This is one greater than
the number of nodes in 7', which is (Ele n;) + 1.

%

CHAPTER 5. THE TREE DATA MODEL 27

Section 5.6

5.6.1:
void inorder(TREE t) {
if(t !'= NULL) {
inorder (t->leftChild);
printf("%d ", t->nodelabel);
inorder(t->rightChild);

5.6.3: In the code of Fig. S5.2, we assume the function pr(x) returns the precedence
associated with the node label x. We assume leaf-operands have the highest prece-
dence so no parentheses are put around them. When the left operand of the root
t has lower precedence than the root, we put parentheses around the left operand,
and the right operand is treated similarly.

void pinorder(TREE t) {
if(t != NULL) {
if (t->leftChild !'= NULL) {
if (pr(t->leftChild.nodelabel) <= pr(t->nodelabel))
pinorder(t->leftChild);
else {
printf (" (");
pinorder(t->leftChild);
printf(")");
}
}
printf("%d ", t->nodelabel);
if (t->rightChild != NULL) {
if (pr(t->rightChild.nodelabel) <= pr(t->nodelabel))
pinorder(t->rightChild) ;
else {
printf (" (");
pinorder(t->rightChild) ;
printf(")");

Fig. S5.2. Solution to Exercise 5.6.3..

28 SOLUTIONS TO SELECTED EXERCISES

Section 5.7

5.7.2: The trees are shown in Fig. S5.3.

5.7.4:

TREE insert(ETYPE x, TREE* pT)
{
if ((*pT) == NULL) {
(*pT) = (TREE) malloc(sizeof(struct NODE));
(*pT)->element = x;
(*pT)->leftChild = NULL;
(*pT)->rightChild = NULL;
}
else if (x < (*pT)->element)
(*pT)->leftChild = insert(x, &((*pT)->leftChild));
else if (x > (*pT)->element)
(*pT)->rightChild = insert(x, &((*pT)->rightChild));

Section 5.8

5.8.1: The branching factor is the maximum number of children a node can have.
The smallest tree of height A with branching factor b is a simple path of A+ 1 nodes.
The largest tree of height A with branching factor b > 1 is a complete b-ary tree (all
nodes on the first h levels have b children). There is one root, b children of the root,

b? children of those, and so on to depth A. The total number of nodes is E:-L:O b,
or (b**t1 —1)/(b— 1) nodes.

Section 5.9

5.9.1:
a) Sequence of steps to insert 3:

18181697193753 initially 3 goes into A[11]
18181697193753 after bubbleUp(4,11) (no change to 4)

b) Insert 20:

1818169719375320 initially 20 goes into 4[20]
2018189716937531 after bubbleUp(4,12)

¢) Delete maximum element (replacing it by A[12]):

11818971693 753 initial array
18918771693153 after calling deletemax(4,11)

d) Again, delete maximum element (replacing it by A[11]):

CHAPTER 5. THE TREE DATA MODEL 29

Hairy
/ \
Bashful Sleepy
I RN
Grumpy Sleazy Sue
/
Doc Happy
/N AN
Blinky Dopey Inky
AN
Pinky
Happy
/ \
Bashful Sleepy
I RN
Grumpy Inky Sue
/ AN
Dopey Pinky
/
Blinky

Fig. S5.3. Solutions to Exercise 5.7.2..

391877169315 initial array
189167739315 after calling deletemax(4,10)

5.9.7: Clearly, bubbleDown takes O(1) time plus the time of the recursive call. The
second argument of the recursive call is at least twice the value of the second formal
parameter i. When i exceeds n/2, there is no recursive call made. Thus, no more
than log, n recursive calls can result from an initial call to bubbleDown. Hence, the
total time is O(logn).

Section 5.10

5.10.1: Here is the sequence of steps made by heapsort:

30 SOLUTIONS TO SELECTED EXERCISES

314159265 initial array A
314659215 after bubbleDown(A,4,9)
319654215 after bubbleDown(A,3,9)
369554211 after bubbleDown(4,2,9)
964553211 after bubbleDown(A,1,9)
654153219 after deletemax(4,9)
5541132609 after deletemax(A,8)
524113569 after deletemax(A,7)
423115569 after deletemax(A,6)
321145569 after deletemax(A,5)
211345569 after deletemax(A,4)
112345569 after deletemax(4,3)
112345569 after deletemax(4,2)

N

CHAPTER 6. THE LIST DATA MODEL 31

Chapter 6. The List Data Model

Section 6.2

6.2.1:

a) Length is 5.

b) Prefixes are ¢, (2), (2,7), (2,7,1), (2,7,1,8), (2,7,1,8,2).

c) Suffixes are €, (2), (8,2), (1,8,2), (7,1,8,2), (2,7,1,8,2).

d) Sublists are €, (2), (7), (1), (), (2), (2,7), (7,1), (1,8), (8,2), (2,7,1), (7,1,8),

(1,8,2), (2,7,1,8) (7,1,8,2), (2,7,1,8,2).
) There are 31 distinct subsequences.
) The first 2 is the head.
) The list (7,1,8,2) is the tail.
)

There are five positions.

6.2.3: Prefixes: There are always exactly n + 1 prefixes, one each of the lengths 0
through n.

Sublists: First, suppose that all the positions of a string of length n how
different symbols. Then there is one sublist of length 0, n different sublists of
length 1, n — 1 different sublists of length 2, n — 2 of length 3, and so on, for a total
of n(n+1)/2+ 1. This is the maximum possible number. The minimum occurs
when all the positions hold the same symbol. Then, all sublists of the same length
are the same, and there are only n + 1 different sublists.

Subsequences: Suppose all symbols are distinct. Then every set of the n po-
sitions yields a distinct subsequence, so there are 2" subsequences. That is the
maximum number. If all positions hold the same symbol, then all subsequences
of the same length are the same, and we have n 4+ 1 subsequences, the minimum
possible number.

[¢]

=l PN

6.2.5: 1,2,3 can represent an infinite number of different kinds of lists of lists

including ((1),(2),(3)), ((1,2),(3)), ((1),(2,3)), ((1,2,3)), (((1,2,3))), ((((1,2,3)))), and

SO on.

Section 6.3

-
&
[y

=3
— e .

delete(5, L) = (3,1,4,1,9)

delete(1,L) = (3,4,1,5,9) or (3,1,4,5,9)

pop(L) removes 3 from L leaving (1,4,1,5,9)

push(2, L) adds 2 to the beginning of L giving (2,3,1,4,1,5,9)
lookup(6, L) returns FALSE.

LM = (3,1,4,1,5,9,6,7,8)

first(L) = 3; last(L) = 9

retrieve(3, L) = 4, the element at position 3

length(L) =5

H. ._.1
=Erzoess
22

32 SOLUTIONS TO SELECTED EXERCISES

j) isEmpty(L) = FALSE

6.3.3:

a) One condition under which delete(z, insert(z,L)) = L is true would be if
insert(z, L) always added z to the beginning of L and delete(z, L) removed
the first occurrence of z from L.

¢) first(L) is always equal to retrieve(l, L).

Section 6.4

6.4.1:

a) Let T(n) be the running time of delete(z, L) where n is the length of list L.
The recurrence for T'(n) is

T(0)=a
T(n)=b+T(n—1),n>0

The solution to this recurrence is T'(n) = a + bn.

6.4.3: Here is a program that inserts an element z into a sorted list L.

void insert(ETYPE x, LIST* pL) {
LIST M;

if ((*pL) == NULL) {
(*pL) = (LIST) malloc(sizeof(struct CELL));
(*pL)->element = x;
(*pL)->next = NULL;
}
else if(x > (*pL)->element)
insert(x, &((*pL)->next));
else {/* insert x between cell holding pointer pL and
the cell pointed to by *pL */
M = (LIST) malloc(sizeof(struct CELL));
M->element = x;
M->next = *pL;
(*pL) = M;

6.4.5: Let p be the pointer to the cell to be deleted.

void delete(LIST p) {
if (p—>next != NULL)
pP—>next->previous = p—>previous;
p->previous—>next = p->next;

CHAPTER 6. THE LIST DATA MODEL 33

$ Section 6.5

6.5.1(b): The following procedure deletes element z from list L using linear search
to locate z.
void delete(ETYPE x, LIST* pL) {
int i, j;
i=1;
while(i < pL->length && x !'= pL->A[i]) i++
if(i <= pL->length && x = pL->A[i]) {
for(j = i; j < pL->length; j++) {/* shift following
elements forward */
pL->A[j]1 = pL->A[j+1];
(pL->length)--;

}

6.5.3(a): The following function inserts = on L if there is room on L; otherwise, it
returns FALSE.
Boolean insert(ETYPE x, LIST* pL) {
int i;
if (pL->length >= MAXLENGTH)
return(FALSE) ;
else {
i=1;
while(i <= pL->length {
if(x < pL->A[i]) i++;
else break;

}

/* here we have found position i, where x belongs */
(pL->length)++;
for(j=pL->length; j>i; j—-) /* shift following
elements back one position in the array */
pL->A[j]1 = pL->A[j-1];
pL->A[i] = x;
return(TRUE) ;

}

6.5.6: We shall prove the following statement by induction on d = high — low.
STATEMENT S5(d): Let d = high — low. If z is in the range A[low..highl], then
the algorithm of Fig. 6.14 finds z.

BASIS. d = 0. If high = low, and if z is in A[low. .high], then
mid = |(low + high)/2| = low

34 SOLUTIONS TO SELECTED EXERCISES

In this case, line (8) of Fig. 6.14 correctly returns TRUE since z = A[mid).

INDUCTION. Suppose that d > 0 and that S(d) is true. We shall prove S(d + 1).
Suppose that z is in A[low..high] where high — low = d + 1. Since high > low,
the block consisting of lines (3)-(8) in Fig. 6.14 is executed. Line (3) computes
mid = |(low + high)/2|. There are three cases to consider.

Case 1. If z < A[mid], then z is in A[low..mid-1]. Then, by the inductive
hypothesis, the call to binsearch(z, L, low, mid — 1) on line (5) finds z since

mid—1—low=d

Case 2. If ¢ > A[mid], then the call to binsearch(z, L, mid + 1, high) on line (7)
finds z.

Case 3. If z = A[mid), line (8) finds z and returns TRUE.

We have now proven the inductive hypothesis and conclude that S(d) is true for all
d>0.

Section 6.6

6.6.1: The following table shows the contents of the stack after each operation.
The top of the stack is on the right.

STACK ACTION
€

a push(a)
ab push(b)

a pop

ac push(c)

acd push(d)
ac pop

ace push(e)

ac pop

a pop

6.6.3: Let us assume that we have a well-formed prefix expression containing num-
bers and binary operators. The following algorithm evaluates the expression.

Step 1: Push the numbers and operators from the expression (from left to right)
on to the stack until the top three symbols on the stack are a binary operator 6, a
number @, and a number b (b is on top).

Step 2: Replace fab on top of the stack by the result of applying the operator 8 to
a and b.

Step 3: Repeat steps (1) and (2) until no more numbers or operators remain in the
prefix expression.

%

CHAPTER 6. THE LIST DATA MODEL

The number remaining on top of the stack is the answer.

6.6.5:
a) The function for an array-based stack of integers is:

int top(STACK* pS) {
return(pS->A[ps->topl);
}

b) For a list-based stack of integers we can write:

int top(STACK S) {
return(S->element) ;

}

Both implementations take O(1) time.

Section 6.7

35

6.7.1: The first column in Fig. S6.1 shows the stack of activation records after
we have pushed an activation record for sum. The remaining columns show the
activation records just before we pop each activation record for sum off the stack.

We use ret to name the return value.

Section 6.8

6.8.1: Below is the contents of the queue after each command. The front of the

queue is at the left.

QUEUE ACTION

€

a enqueue(a)
ab enqueue(b)
b dequeue

be enqueue(c)
bed enqueue(d)
cd dequeue
cde enqueue(e)
de dequeue

e dequeue

Section 6.9

6.9.1:
a) 4. aanais one.

36 SOLUTIONS TO SELECTED EXERCISES

Al1]
Af2]
A[3]
Al4]

i 1 i 1
ret ret 100
temp temp 90

ret ret 90
temp temp 70

ret ret 70
temp temp 40

ret ret 40
temp temp O

i 5 i 5
ret ret 0
temp temp

Fig. S6.1. Stack of activation records.

b) 7. bacbcab is one.

6.9.3: There are 20 calls to L(1,1). Let C(z,7) be the number of calls to L(%, 5)
when the strings of length i and j have no symbols in common. The definition of
the recursive algorithm tells us that

C3t,7)=C(i—1,7)+C(4,7 — 1) whenever ¢ >0and j >0
c(1,1) =1

C(3,0) =0 for all ¢

C(0,7) =0 for all j

From these observations it follows that C(7,1) =1 for all > 1 and C(1,) = 1 for
all j > 1. Thus, a simple induction on % + j shows that C(¢,j) = (141—1;2) for all
t>1and j > 1 (note (021)). Thus, L(4,4) calls L(1,1) (g) = 20 times.

CHAPTER 6. THE LIST DATA MODEL 37

Section 6.10

6.10.3: Let n be the maximum string length and ¢ the number of characters per
cell. Assume both n and ¢ are “large.” There are two sources of waste space:
the space used by pointers and the unused character space in the last cell. The
average number of cells will be about n/2¢, because the average word is about n/2
characters long and is packed ¢ to a cell. There is one pointer of 4 bytes in each
cell, so the number of waste bytes due to pointers is 2n/c. The number of waste
bytes in the last cell is ¢/2 on the average. We must thus find the value of ¢ that
minimizes

2n ¢

c 2

If you know calculus, you know that the minimum occurs when both terms are
equal; that is, ¢ = 4n, or ¢ = 24/n.

6.10.5: We are in effect replacing a single byte by a 4-byte integer, which costs us
3 bytes per word stored. If integers can be stored in one byte, then it is a wash; the
costs are the same.

N

38 SOLUTIONS TO SELECTED EXERCISES

Chapter 7. The Set Data Model

Section 7.2

7.2.1: The set {{a, b}, {a}, {b,c}} contains three members {a, b}, {a}, {b, c}, each

of which is also a set.
7.2.3(a): One representation is {b, ¢, a}. Another, using abstraction, is

{z |z is aletter, a < z,and z < ¢

Section 7.3

7.83.1(a): The simplest expression for region 6 is S N T N R. Region 6 can also be
represented as S without regions 2, 3, or 5, that is, as

S—(((S-T)-R)U((SNT)~ R)U((SNR) - T))

7.3.1(b): One expression for regions 2 and 4is (S — (T U R)) U (T — (S U R)).
Anotheris (SUT)—(SNT)—(SNR)—(TNR).

7.83.1(c): Two expressions for regions 2, 4, and 8 together are
(S—(TURHU(T—-(RUSHHU(R-(SUT))
and

(SUTUR)—(SNT)—(SNR)—(TNR)

7.3.3(a): First, we show the forward containment (SU (T N R)) C ((SUT) N
(S UR)). Let z bein S U (T N R). By the definition of union, z is either in S
orin T N R (or in both). If zeS, then z is a member of the right-hand side of the
forward containment. If ze(T' N R), then z is in both 7" and R, and again a member
of the right-hand side. Thus, the forward containment holds.

Now, we show the reverse containment (S U (T N R)) D ((SUT) N (S U R)).
Suppose z isin (S U T) N (S U R). By the definition of intersection, z is a member
of the left-hand side of the reverse containment. If z is in both 7 and R, then z is
again a member of the left-hand side. We conclude the reverse containment holds.

Since both the forward and reverse containments hold, we conclude

(SU(TNR)Y=((SUT)N(SUR)).

7.3.5: A Venn diagram with n sets divides the plane into 2" regions, assuming no
set i1s a subset of another. We shall prove this by induction on n.

BASIS. If n = 1, the Venn diagram has two regions, outside the set and inside the
set.

CHAPTER 7. THE SET DATA MODEL 39

INDUCTION. Suppose that the plane has been divided into 2™ regions with n sets.
Now consider adding an n + 1st set. The new set partitions each of 2™ existing
regions into two, containing those points within the new set and those without.
(Here is where the property that no set is a subset of another is used.) Therefore,
n + 1 sets partition the plane into 2 x 2" = 271! regions. Thus, the inductive step
is proved.

We conclude a Venn diagram with n sets divides the plane into 2™ regions for
all n > 1.

If there are n > 2 sets such that exactly one set is a subset of another, then a
Venn diagram for the n sets would have 2"~ ! 4 2"~2 nonempty regions. If S and
T are two of the n sets and S C T, then every member within S must be contained
with T. T can partition each of the 2"~ 2 regions formed by the other sets in two,
but the 2"~ 2 new regions formed by S must all be partitions of regions contained
with V.

7.3.7: We shall represent a set of elements (integers) by a linked list of SCELLs
defined in the usual way by our DefCell macro:

DefCell(int, SCELL, SLIST);

We shall represent the powerset whose elements are sets by a linked list of PCELLs
defined by:

DefCell(SLIST, PCELL, PLIST);

To save space, we shall reuse previously constructed SLISTs wherever possible in
the construction of a new member of the powerset.

The function powerset(S) takes a linked list S of type SLIST and products as
output a PLIST that is a compact representation for the powerset of S. The function
powerset(S) uses the following recursive construction:

P(0) = {0}

Let S = {a1,a2,...,a,} be a set of n elements and let a,, 11 be a new element. Then

P(S U{ans1}) = P(S) U (Ugcp(s) ({ans1} U Q)

The C code is in Fig. ST7.1.

The running time of powerset(S) is O(2™) where n is the number of elements
on the linked list S. Note that each successive element on S doubles the size of the
powerset.

7.3.9: P(P(P(0))) = {0,{0},{{0}}, {0, {0}}}
Section 7.4

7.4.1(a): The function union(L, M) in Fig. S7.2is an implementation of the pseudo
code in Figure 7.5. It assumes that LIST and CELL are defined as in Section 7.4.
The code for the function lookup(z, L) is given in Figure 6.3 of the text.

40 SOLUTIONS TO SELECTED EXERCISES

PLIST dble(PLIST P, int e); /* applies recursion to produce
all the sets on list P and all those sets with element
e inserted */

PLIST powerset (SLIST S) {
PLIST P;

if(S == NULL) {/* create P, a list containing only the
empty set */

P = (PLIST) malloc(sizeof(struct PCELL));
P->element = NULL;
P->next = NULL;
return P;

}

/* here, S is not empty. Apply recursion using its
first element as a_{n+1}*/

return dble(powerset(S->next), S->element);

}

PLIST dble(PLIST P, int e) {
SLIST newS;
PLIST newP;

if (P==NULL) return NULL;

/* now, P has at least one element. Double its tail */

P->next = dble(P->next, e);

/* Let S be the set in P->element. Create a new PCELL
to represent S union {e}. The new SCELL holds
e, and the rest of S union {e}is just a pointer
to S itself. (Note the savings in the number of
SCELLS created.) */

newS = (SLIST) malloc(sizeof(struct SCELL));

newP = (PLIST) malloc(sizeof(struct PCELL));

newS->element = e;

newS->next = P->element;

newP->element = newS;

newP->next = P;

return newP;

Fig. S7.1. Computing the power set.

7.4.1(b): The following pseudocode computes the intersection sets L and M.

for(each z on L)
if (Lookup(x, M)
insert(x, inter);

The C implementation is similar to Fig. S7.2.
7.4.1(c): The difference of sets L and M can be computed as follows:

CHAPTER 7. THE SET DATA MODEL 41

LIST union(LIST L, LIST M) {
LIST union, newCell;

/* copy L to union */
union = NULL;
while(L !'= NULL) {
newCell = (LIST) malloc(sizeof(struct CELL));
newCell->element = L->element;
newCell->next = union;
union = newCell;
L = L->next
}
while(M !'= NULL) {
if (!lookup(M->element, union)) {
newCell = (LIST) malloc(sizeof(struct CELL));
newCell->element = M->element;
newCell->next = union;
union = newCell
}
M = M->next
}

Fig. S87.2. Taking the union of unsorted lists.

for(each z on L)
if(Nlookup(x, M)

insert(x, difference)
Again, the C implementation is similar to Fig. S7.2.
7.4.3: If we allowed union to use portions of the lists L and M in the answer, we
could simplify the union program in Figure 7.6 by replacing line (8) by

union = M

and line (10) by

union = L

7.4.5: We can write a program almost identical to Figure 7.6 replacing union by
symmetric difference. However, when the first elements of L and M are the same
we discard both from the symmetric difference. Thus, we replace lines (11) and (12)
by

(11) else if (L->element == M->element)

(12) return symdiff(L.next, M.next);

42 SOLUTIONS TO SELECTED EXERCISES

Section 7.5

7.5.1:
a) A pinochle deck contains the A, K, Q, J, 10 and 9 of each suit. The character-
istic vector is thus

1071%071%071%071°

b) The characteristic vector for the red cards (diamonds and hearts) is

013126013

¢) The Jack of hearts and the Jack of spades are one-eyed. The King of hearts is
the suicide king. The characteristic vector for these three cards is

0%610101°102

7.5.3: Given a small universal set U of n elements, we could use an array of
integers int S[n] to represent a bag. S[i] would present the number of times the
ith element appears in the bag.

a) To insert another instance of the ith element, we would increment S[i] by one.

b) To delete an instance of the i¢th element, we would decrement S[i] by one,
provided it was not already 0.

¢) To lookup the number of times element 7 occurs, we return S[i].

Section 7.6

7.6.2(a): There is a substantial unevenness in the lengths of English words, and
the division into buckets is therefore not very even. The number peaks around 7
letters. For example, the 24,470 words in /usr/dict/words, 4045 have length 7.
They divide themselves into buckets as follows.

Bucket 0 1 2 3 4 5 6 7 8 9
Count 1891 1100 639 1034 2253 3138 3813 4053 3583 2970

Should one interpret the problem as assuming that a random selection of word
occurrences from a typical document (rather than from a list of all possible words)
is to be hashed, then we would instead find the low numbers predominated, since
most occurrences of words are short. Thus, the hash function would perform poorly
in this situation as well.

CHAPTER 7. THE SET DATA MODEL 43

7.6.3(a):

void bucketDelete(ETYPE x, LIST* pL) {
if ((*pL) !'= NULL) {
if ((*pL)->element == x) (*pL) = (*pL)->next;
else delete(x, (*pL)->next);

}

void delete(ETYPE x, HASHTABLE S) {
bucketDelete(x, &(S[h(x)]1));
}

7.6.3(b):

Boolean bucketLookup(ETYPE x, LIST L) {
if (L. == NULL) return FALSE;
else if(L->element == x) return TRUE;
else return lookup(x, L->next);

}

Boolean lookup(ETYPE x, HASHTABLE S) {
return bucketLookup(x, S[h(x)]1);
}

Section 7.7

7.7.1: Let A = {a} and B = {b,a}. Then A x B = {(a,b)} and B x A = {(b,a)}.

7.7.3:
a) R is a partial function because every node in a tree has at most one parent.
b) R is not a total function from S to S because the root of a tree has no parent.

¢) T is never a one-to-one correspondence because R is not a total function from
S to S.

d) The graph for R is isomorphic to the tree.
7.7.5: F is a partial function from S to T with the following properties:

1. For every element ((a,b),c) in S there is an element (a, (b,c)) in T such that

F(((a,0), ¢)) = (a, (b, ¢))-

2. For every element (a,(b,c)) in T there is an element ((a,b),c) in S such that

F(((a,0), ¢)) = (a, (b, ¢))-

3. Forno bin T are there two distinct elements z; and z3 in S such that F(z1) =

Hence F' is a one-to-one correspondence from S to T.

44 SOLUTIONS TO SELECTED EXERCISES

7.7.7:

a) The graph of the inverse of R is obtained by reversing the directions of the arcs
in the graph for R.

b) The inverse need not be a function. If R is a total function from domain A to
range B, there may be a bin B for which there is no a in A4 such that (a,b) is
in R.

If R is a one-to-one correspondence from A to B, then its inverse is a total
function from B to A.

Section 7.8

7.8.1(a):

void delete(DTYPE a, LIST* F) {
if ((*F) != NULL)
if ((¥F)->domain == a) (*F) = (*F)->next;
else delete(a, (*F)->next);
}

7.8.1(b):

RTYPE lookup(DTYPE a, LIST F) {
if (F == NULL) return UNDEFINED;
else if (F->domain == a) return F->range;
else return lookup(a, F->next);

Here we assume RTYPE includes the value UNDEFINED.
7.8.3(a):

void insertBucket(DTYPE a, RTYPE b, LIST* pL) {
if ((*pL) == NULL) {
(*pL) = (LIST) malloc(sizeof(struct CELL));
(*pL)->domain= a;
(*pL)->range= b;
(*pL)->next= NULL;
}
else if ((*#pL)->domain == a) (*pL)->range = b;
else insertBucket(a, b, (*pL)->next);

}

void insert(DTYPE a, RTYPE b, HASHTABLE F) {
insertBucket(a, b, &(F[h(a)l));
}

CHAPTER 7. THE SET DATA MODEL 45

7.8.3(b):

void deleteBucket(DTYPE a, LIST* pL) {
if ((*pL) != NULL)
if ((*pL)->domain == a) (*pL) = (*pL)->next;
else deleteBucket(a, (*pL)->next)
}

void delete(DTYPE a, HASHTABLE F) {
deleteBucket (4, &(F[h(a)]));
}

Section 7.9

7.9.1: This is just a slight rewrite of the function lockup from Fig. 7.24. Here
we search the range rather than the domain for the value b and produce a list of
varieties v such that (v,b) is in L.

PLIST lookup(PVARIETY p, RLIST L) {
PLIST P;

if (L. == NULL) return NULL;
else if (L->pollinizer == b) {
P = (PLIST) malloc(sizeof(struct PCELL));
P->variety = L->variety;
P->next = lookup(b, L->next);
return P;
}

else return lookup(b, L->next);

}

7.9.3(a):
void insertP(PVARIETY p, PLIST* pL) {
if ((*pL) == NULL) {
(*pL) = malloc(sizeof (struct PCELL));
(*pL)->pollinizer = p;
(*pL)->next = NULL;
}
else if ((#pL)->pollinizer != p)
insert P(p, L->next);
}

void insert(PVARIETY v, PVARIETY p, PLIST Pollinizers[]) {

insertP(p, Pollinizers[pl);
}

7.9.5: We shall prove by induction on n:

46 SOLUTIONS TO SELECTED EXERCISES

STATEMENT S(n): On a list L of length v, lookup(a, L) returns a list of all the
elements b such that (a,b) is on L.

BASIS. n = 0. When L is empty, statements (1) and (2) return NULL as the value
of lookup(a, L).

INDUCTION. We assume S(n) and prove S(n + 1). Suppose L is a list of length
n + 1. The initial call lookup(a, L) looks at the first cell of L. There are two cases
to consider:

(1) If L->variety matches a, then a new cell P is created, a pointer to which
becomes the output of lookup. The first component of P is set to the value
of L->pollinizer and the second component is set to point to the list of b’s
created by the recursive call to the tail of L. The tail of L is of length n and so
by the inductive hypothesis, the recursive call correctly returns the list of all
b’s such that (a,b) is on the tail of L. The list returned for all of L is therefore
correct and the inductive step has been proved.

(2) IfL->varietydoes not match a, then the output of lookup is the value returned
by a recursive call to the tail of L, which is of length n. By the inductive
hypothesis, lookup returns the correct value for the tail of L. Therefore, the
list returned for all of L is correct and the inductive step has been proved.

7.9.7. For dictionaries and functions: With linked lists, the operations insert,
delete, and lookup, each take O(n) time on average with characteristic vectors,
these operations each take O(1) time. With the hash table representation, each
takes O(n/B) time on average, but can take O(n) time in the worst case. Here n
is the number of pairs in the function and B is the number of buckets in the hash
table.

For relations: The same observations apply to the linked-list representation of
relations. With characteristic vectors, lookup takes O(1) time but an insert or delete
takes O(n) time on average because we have to search the entire list for a given
domain value to make sure that a pair (a, b) is not already present. The parameter
b is the average number of b’s for a given a. With the hash-table implementation
each operation takes O(maz(n,n/B)) time on average.

Section 7.10

7.10.1: Let R be the relation such that aRa for element a. Then R is reflexive on
the domain {a} but not on the domain {a, b}.

7.10.3:

a) R is not reflexive because abcdRabed is false when b # a.

b) R is not symmetric because if abcdRbcda is true, then bedaRabed is false when
a,b,c and d are distinct letters.

¢) Ris not transitive because if abcd Rbeda and beda Redab are true then abed Redab
is false when q, b, c and d are distinct.

d) R is not antisymmetric nor transitive. Hence R is not a partial order.

e) R is not an equivalence relation because it is not symmetric or transitive.

CHAPTER 7. THE SET DATA MODEL 47

7.10.5: The problem with the “proof” is that there may be no y such that zRy.
Let D be the domain {a} and let R by the empty relation on D. Trivially, R is a
symmetric and transitive relation on D.

7.10.7: To count the number of arcs in the full graph, we need to count the number
of pairs of sets (S, T) such that S C T C U. Each of the n elements of U may be
placed in one of the following three sets; S, T'— S, and U — T. By the method of
Section 4.2, there are 3™ ways to make this assignment. Thus, the full graph for
Cyp has 3" arcs.

In the reduced graph, each set has n arcs, one to each of the sets formed by
inserting or deleting one of the n elements of U. Since each arc is thus counted twice,
once for each end, the number of arcs is n2"/2 = n2"~1. Therefore, 3" — n2"~1
arcs are saved.

7.10.9: We shall prove by induction on n

STATEMENT S(n): If apRa1, a1Ray, ..., an_1Ra, and R is transitive, then aoRay,.
BASIS. n = 1. Clearly, agRa; is true.

INDUCTION. We assume S(n) and prove S(n + 1). Consider the sequence of
n + 1 pairs agRa1,a1Ras, ...,an_1Ran, anRay 1. From the inductive hypothesis,
we know aoRa,. By transitivity aoRa, and a,RA, 1 imply agRan 1, proving the
inductive step.

7.10.11:
a) R is not reflexive because aRa is false.

b) R is symmetric because if aRb then a and b have the common divisor in both
situations.

¢) R is not transitive. For example, 2R6 and 6R9 but 2R9 is false since 2 and 9
do not have a common divisor other than 1.

d) R is not a partial order since R is neither transitive nor antisymmetric.

e) R is not equivalence relation since it is neither reflexive nor transitive.

Section 7.11

7.11.1: Let A be a set of sets and let F be an equipotence relation on A; that is,

S E T if there is a 1-1 correspondence from S to T. We shall show that E is (a)

reflexive, (b) symmetric, and (c) transitive.

a) S E S forevery set Sin A because we can define the identity function f(z) = z
for all in S as a 1-1 correspondence from S to itself.

b) IfS ET,then T E S. Since S E T, there is a 1-1 correspondence from S to
T. We can show that f~!, the inverse of f, is a 1-1 correspondence from T to
S.

¢) IfS ETandTFE R, then we shall show S E R. Let f be a 1-1 correspondence
from S to T and ¢ a 1-1 correspondence from T to R.

48 SOLUTIONS TO SELECTED EXERCISES

We need to show the composition of f and ¢ is a 1-1 correspondence from S to R.

i) Since f and g are both total functions, for every z in S, element g(f(s)) is R.

ii) Let z be an element in R. Then z = f~1(g71(2)) is an element in S such that
g9(f(=)) = z.

ili) There is no z in R for which there exist z; and z; in S such that g(f(z1)) = 2.
If there were, then either f or ¢ would not be a 1-1 correspondence.

Since E is reflexive, symmetric, and transitive, it is an equivalence relation.
7.11.3: (a) The 1-1 correspondence is f(i) = 2.

(b) Start with the pairing function of Example 7.41. For convenience, rewrite
it in terms of # and y rather than ¢ and j. Then the pair (z,y) is associated with
natural number (z + y)(z + y + 1)/2 + z. Now, to find a unique natural number
for the triple (%, J, k), start by associating j and k with a natural number z. Using
the pairing function, let z = (j + k)(+ ¥ + 1)/2 4+ j. Then, pair ¢ with z, giving
(¢+2)(t+2+41)/2+4 14, or in terms of 4, 7, and k: (i—l— G+R)G+E+ 1)/2—|—j) (i—l—
GHE)G+E+1)/24+5+1)/2+4

7.11.6: Let S; be the set of size 7 that is a subset of S. Define a sequence of
members of S which we call z1, 2z, ..., as follows: z; is the least member of S; that
is not one of z1, z3,...,z;_1. Since there are only 7 — 1 of the latter integers, there
must be at least one integer in S; that is not any of them. Thus, we can find z; for
any positive integer 2, and all of the z;’s are distinct.

Now, consider the 1-1 correspondence f(a) defined as follows:

1. If a = ; for some i, then f(a) = zit1.

2. If ais not one of the z;’s, then f(a) = a. Clearly f is a 1-1 correspondence,
and its range is S — {z1}. Thus, S has a 1-1 correspondence with one of its
subsets.

CHAPTER 8. THE RELATIONAL DATA MODEL 49

5 Chapter 8. The Relational Data Model

$ Section 8.2

8.2.1:
a) For the relation StudentId-Name-Address-Phone we define the record structure:

struct {
int StudentId;
char Name[30];
char Address[50];
char Phone[10];

}

¢) For Course-Day-Hour:

struct {
char Coursel[5];
char Day[2];
char Hourl[4];

$ Section 8.3

8.3.1:
a) {Studentld, Address} would be a key assuming that a student has only one
phone at a given address.

b) We could use the relation scheme
Studentld-Name-HomeAddress-LocalAddress-HomePhone-LocalPhone
StudentId is a key for this relation.

¢) We need to separate the scheme into three schemes:

StudentId-Name
StudentId-Address
StudentId-Phone

Any other decomposition either has redundancy or does not allow us to asso-
ciate names, ID’s, addresses, and phones properly. Studentld is a key for each
scheme.

$ Section 8.4

8.4.1: For Exercise 8.3.2, we suggest a database scheme with three relations:

50 SOLUTIONS TO SELECTED EXERCISES

1) LicenseNo, Name, Address
2) SerialNo, Manf, Model, RegNo
3) LicenseNo, RegNo

The first relation associates a name and address with each driver, identified by the
license number. LicenseNo is a key for the first relation. This attribute can serve
as the domain for this relation with (Name, Address) forming the range.

Let us assume there are one million drivers and two million automobiles. As a
primary index structure for the first relation we could use a hash table on LicenseNo.
We could use 500,000 buckets assuming each bucket would contain 2 tuples on
average. This data structure would allow queries (1) and (3) to be answered in
O(1) time on average.

The second relation associates with each automobile its manufacturer, model
number, and registration number. Each of SerialNo or RegNo could serve as a key.
As a primary index structure, we can choose a hash table on registration number.
We could use 500,000 buckets assuming each bucket would contain 4 SerialNo-
Manf-Model-RegNo-tuples on average. This structure would allow query (5) to be
answered in O(1) time.

The third relation records the automobiles owned by each driver. Since an
automobile can have joint owners, and a person can own several automobiles,
{LicenseNo, RegNo} is the key. We suggest a hash table with 500,000 buckets
and key RegNo as a primary index structure. The hash table is indexed by regis-
tration number and would allow query (6) to be answered in O(1) time on average,
assuming the average number of owners per automobile is a small constant.

Note that query (4) can be answered in O(k) time by first consulting the third
relation to obtain the k& LicenseNo’s for a given registration number, and then
consulting the first relation to determine the name of each driver.

Only query (2) cannot be answered in O(1) time with this database scheme.
For that, we would need a fourth, redundant relation scheme — {Name, LicenseNo},
with primary index on Name (which is not a key). Alternatively, and preferably,
we would add a secondary index on Name, as discussed in Section 8.5, to the first
relation.

Section 8.5

8.5.1: The following declaration of the standard kind of cells
DefCell(TUPLELIST, SNAME, SNAMELIST);

Lets us create a linked list of SNAME (“same name”) cells, each of which has as
element a pointer to a tuple with that name.
We change the declaration of NODE in Fig. 8.5 of the text by making the second
field be the header of a linked list of SNAME cells:
typedef struct NODE *TREE;
struct NODE {
char Name[30];
SNAMELIST tuples;
TREE 1lc, rc;

CHAPTER 8. THE RELATIONAL DATA MODEL 51

Here is an outline of a function printTuples(z,T) that prints all the tuples in the
binary tree T that have z for the Name attribute.

void printTuples(char x[], TREE T) {
if (T !'= NULL)
if(eq(x, T->Name)) printList(T->tuples);
else if(1t(x, T->Name)) printTuples(x, T->1c);
else printTuples(x, T->rc);

}

The functions eq(z, y) and lt(z,y) determine whether z = y or z < y, respectively,
where z and y are names. The function printList(p) lists all of the SNAP tuples
pointed to by the elements of the SNAMELIST pointed to by p.

8.5.3: For the relations and primary index structures in Exercise 8.4.1
i) Make Name a secondary index of relation (1).

ii) The primary index for relation (1) on LicenseNo serves.

ili) Make LicenseNo a secondary index of relation (3).

iv) Make Address a secondary index of relation (1).

v) The primary index for relation (3) on RegNo serves.

Section 8.6

8.6.1: Suppose the Course-Studentld-Grade relation has an index on Course alone.
Then one way to find C. Brown’s grade in CS101 is to proceed in two stages. In
stage (1), we use step (1) of Fig. 8.9 to find the tuples in the SN AP relation with
C. Brown in the Name field. Suppose that there are k such tuples. Since there is
an index on Name, these tuples can be found in O(k) time.

In stage (2), we use the index on Course to find all tuples in the CSG relation
with CS101 in the Course field. Assuming that there are ¢ such tuples, these tuples
can be found in O(c) time. For each CSG tuple found, we check the StudentId field
to see if it matches one of the StudentId’s found in stage (1). If it does, we print the
associated grade. The comparison of Studentld’s for one CSG tuple can be done
in O(k) time. Thus, the grades of all C. Brown’s in CS101 can be found in O(ck)
time.

Now, suppose the Course-StudentId-Grade relation has an index on StudentId
alone. Then to find C. Brown’s grade in CS101, we proceed in two stages. Stage
(1) is the same as the first stage when the index is on Course. We find the k& tuples
in the SN AP relation with C. Brown in the Name field. In stage (2) we use the
Studentld of each tuple found in stage (1) to index the C'SG relation. If the Course
field contains CS101, we print the grade. If there are a total of d tuples in the
CSG@ relation that match the Studentld of a C. Brown, then the entire query can
be answered in O(k + d) time.

8.6.3: We use three stages to find the prerequisites of the courses taken by C. Brown.
In stage (1) we find all tuples in the StudentId-Name-Address-Phone relation that
have C. Brown in the Name field. If there are n tuples in the SN AP relation, then

52 SOLUTIONS TO SELECTED EXERCISES

stage (1) takes O(n) time. Let us assume k tuples with C. Brown in the Name field
are found.

In stage (2) we search through the Course-StudentId-Grade relation to find all
tuples whose StudentId matches the Studentld field of the k tuples found in stage
(1). If there are m tuples in the C'SG r1elation, then stage (2) takes O(km). Let us
assume ¢ CSG-tuples are found.

In stage (3) we search through the Course-Prerequisite relation to find all tuples
whose Course component matches the Course component of one of the ¢ CSG-
tuples found in stage (2). For each C P-tuple found, we print the Prerequisite field.
Assuming that there are p tuples in the C'P relation, this stage takes O(cp) time.
This three-stage process takes O(n + km + cp) time.

Section 8.7

8.7.1:
a) OCourse = “CS101” AND Day = «Mm» (CDH)

b) ODay = “M” AND Hour = “QAM”(CDH)

C) CDH = CDH - O Course = “CSlOl”(CDH)

8.7.3:
a) The courses taken by C. Brown can be expressed by the relational-algebra
expression

X = 7rCourse(o’Name = “C.Brown”(SNAP) > CSG)

The prerequisites of courses taken by C. Brown can then be expressed by

7rPrerequisite(AX’ > CP)

Here, we must understand that X is a relation with attribute Course, so the
join is on equality of the one column of X with the Course attribute of CP.

b) The students taking courses in Turing Aud. can be expressed by

Y = 7rStudentId(C’SG’ >l ORoom = “Turing Aud.” (CR))

The phone number of these students is given by

WPhone(Y > SNAP)
Here, Y is a relation with attribute StudentlId.

¢) The prerequisites of C5206 can be expressed by:

Z = UPrerequisite(ﬂ-Course = “CSZOG”(CP)))

The prerequisites of these courses are given by

7rPrerequisite(Z > CP)

Here, Z must be regarded as a relation with attribute Course, not Prerequisite.

CHAPTER 8. THE RELATIONAL DATA MODEL 53

Section 8.8

8.8.1:

a)

b)

Use the primary index to find in O(1) time each tuple in the Studentld-Name-
Address-Phone relation with Studentld = 12345. Include the tuple in the
answer if the address is not 45 Kumquat Blvd.

Use the secondary index on Phone to find in O(1) time each tuple in the SN AP
relation with Phone = 555-1357. Include the type in the answer if the name
matches C. Brown.

Neither index helps. The easiest (and fastest) way to proceed is to iterate
through each of the tuples in the SN AP relation, selecting those tuples where
Name = “C. Brown” is true or Phone = 555-1357 is true (or both are true). If
there are n tuples in the SN AP relation, then this process takes O(n) time.

8.8.3:

a)

b)

There are two nested loops, each of which iterates n times. The body of the
inner loop is a comparison of tuples and so takes O(1) time. The total time is
thus O(n?).

We can sort the relations in O(nlogn) time. As we compare tuples, we find
O(ns/z) matches, and this time dominates the sorting. The total time is thus

O(ns/z).

We must consider each of the n tuples in S. For each one, we look up the
matching tuples in R through the index, taking time proportional to the number
of matching tuples found. Since there are n3/? matches in all, the sum of the

number of matches, over all tuples in S, is n3/2, and thus the total time is
0(n3/?).

d) Same as (c).

8.8.5:

a)

Suppose R and S each have the scheme {4, B} and S has an index on attribute
A. To compute R N S consider each tuple (a,b) in R and use the index on a to
find all tuples (a,z) in S. Include (a,b) in RN S if((a,b) is alsoin S. If Ais a
key for relation S, then in this way we can compute R N S in time proportional
to the sum of the sizes of R and S.

The answer is similar to part (a) except we include (a,b) in R — S if (a,b) is
not in S.

Section 8.9

8.9.3: We have, in the solution to Exercise 8.7.1, described each expression with
the selections and projections pushed down as far as they go.

8.9.5: First, we prove that if a tuple ¢ is in o¢(R < S) it is in o¢(R) < S. Since ¢
is in o¢(R >a S), ¢ satisfies condition C and isin R S. Iftisin R <t S, then there
are tuples 7 in R and s in S that agree with ¢ on their common attributes, and also

54 SOLUTIONS TO SELECTED EXERCISES

agree with each other on the join attribute. Since o¢(R) makes sense, condition C
must involve only attributes of r. Since r and ¢ agree on common attributes, and ¢
satisfies C, r also satisfies C. Thus, in o¢(R) > S, tuples r and s join to make ¢,
proving that ¢ is in o¢(R) >4 S.

Conversely, suppose ¢ is in o¢(R) > S. Then there are r in o¢(R) and sin S
that agree with ¢ and with each other on common attributes. Since r is in o¢(R),
r must by in R and must satisfy C. Therefore, ¢, which agrees with r on whatever
attributes C' mentions, must also satisfy C. When we join R« S, 7 in R and s in
S join to form t. Since ¢ satisfies C, we conclude that ¢ is in o¢ (R < S).

8.9.7: Let R be the relation {(a, b), (@, ¢)} and S the relation {(a, c)}. Both relations
have attributes A and B. Here, m4(R—S) = {a} but m4(R)—74(S) ={a}—{a} = 0.
Thus, m4(R — S5) # 74(R) — 74(5).

N

CHAPTER 9. THE GRAPH DATA MODEL 55

Chapter 9. The Graph Data Model

Section 9.2

9.2.1:

There are 8 arcs.

o o
S N

There are 2 simple paths: ad and abcd.

(g}
~—

Nodes a and e are predecessors of node b.

o
~—

Nodes ¢ and f are successors of node b.
There are 5 simple cycles: abfa, abcdefa, adefa, bedeb, adebfa.
f) abfabfa is the only nonsimple cycle of length at most 7.

€

~—

9.2.3: A complete directed graph has an arc from each node to every other node
including itself. A complete directed graph has the maximum possible number of
arcs: an n-node complete graph has n? arcs. Thus, a 10-node graph has at most
100 arcs. The smallest number of arcs any graph can have is zero.

9.2.5: The number number of arcs an n-node acyclic directed graph can have is (g)
= n(n — 1)/2. To see this, we can start with a complete n-node undirected graph
in which there is an edge between every pair of distinct nodes. Such a graph has
(?) edges. We can then assign a direction to each edge {i,;} so that the edge is
directed from node ¢ to node j if 2 < j. We can show that the resulting directed
graph is acyclic and has the maximum possible number of edges.

9.2.7: The cycle (0, 1,2, 0) can also be written as the cycles (1,2,0,1)and (2,0, 1, 2).

9.2.9: Let S be the relation defined on the subset of the nodes of the graph that

are involved in simple cycles. To show that S is an equivalence relation, we need to

show that it is reflexive, symmetric, and transitive.

a) Reflexivity. If node u is involved in a simple cycle, then there is a simple cycle
that begins and ends at u. Thus, uSu.

b) Symmetry. If uSv, then vSu because u and v are included in the same simple
cycle.

¢) Transitivity. Suppose uSv and vSu. Then there are two intersecting simple
cycles that include nodes v and w. Let a and b be the first and last nodes of
intersection on the simple cycle from u to v to u. Thenu —a—w—-b—uisa
simple cycle that includes v and w. Therefore, uSw.

Section 9.3

9.3.1(a): An appropriate type definition is

56 SOLUTIONS TO SELECTED EXERCISES

typedef struct CELL *LIST;
struct CELL {

NODE nodelName;

LIST next;
};

LIST successors[MAX];

Successors

o

Iy

iy

&

i

&

|
!
:

iy

9.3.1(b): An appropriate definition of the adjacency matrix would be
BOOLEAN arcs[MAX] [MAX];

O R O © © R o
o o o R, © R|a,
o o R o o ol
O R, © O R Ofw

- 0 QL 0 o9
— o 0o o © ofla
o o 0o o~ oo

9.3.3(a): Appropriate type definitions for the lists of cells are

typedef struct CELL *LIST;
struct CELL {

NODE nodelName;

char arcLabell3];

LIST next;
};

Note that we must leave room for the null character >\0’ at the end of the two-
character arc label. (We have not shown the null character in the following figures.)

We declare the array of list headers by

CHAPTER 9. THE GRAPH DATA MODEL 57

struct {
char nodeLabel;
LIST successor;
} headers[MAX];

headers

9.3.3(b): An appropriate definition of the adjacency matrix would be

typedef char ARCTYPE[3];
ARCTYPE arcs[MAX] [MAX];

a b c d e f
a - ab - ad - -
b - - bc - - bf
c - - - cd - -
d - - - - de -
e - eb - - - ef
f fa - - - - -

9.3.5: We shall prove by induction on n

STATEMENT S(n): In an undirected graph with n nodes and e edges, the sum of
the degrees of the nodes is 2e.

BASIS. For the basis, we choose n = 1. A single-node graph has 0 edges and the
sum of the degrees of the nodes is 0.

INDUCTION. Assume S(n) holds for all graphs of n nodes. Consider any graph G
of n+ 1 nodes and pick a node z in G with m edges incident on z.

58 SOLUTIONS TO SELECTED EXERCISES

If we remove z and all edges incident on z from G, we are left with a graph G’
of n nodes and e edges. By the inductive hypothesis, the sum of the degrees of the
nodes of G’ is 2e. When we restore £ to G’ along with its incident edges, we see
that G has m + e edges and the sum of the degrees of its nodes is 2(m + €). This
proves the inductive step.

9.3.7: For an undirected graph, an edge appears twice in an adjacency-matrix and
an adjacency-list representation.
a) Function to insert edge (a,b) into an adjacency matrix:

void insert(NODE a, NODE b, BOOLEAN edges[MAX] [MAX])
{
edges [a] [b]
edges [b] [al

TRUE;
TRUE;

}

The delete function is similar except we make the two entries in the array FALSE.
b) Function to insert edge (a, b) for an adjacency-list representation:

void insert(NODE a, NODE b, LIST successorsl[]);
{
insertList (b, &successorsl[al);
insertList(a, &successors[b]l);

For insertList we can use the function in Fig. 6.5.
The delete function is similar.

Section 9.4

9.4.1: There are two connected components:
Escanba, Marquette, Menominee, Sault Ste. Marie

and

Ann Arbor, Battle Creek, Detroit, Flint, Grand Rapids,
Kalamazoo, Lansing, Saginaw

Section 9.5

9.5.6:

a) Itis easy to see why a node of odd degree inhibits an Euler circuit. The circuit
must visit the node some number of times, and each time it visits, it enters and
leaves on two different edges (the direction in which we traverse the circuit is
arbitrary, but once we pick a direction, the edges incident upon a node v can
be identified as entering or leaving). It follows that there are as many entering
edges as leaving edges for a node v, and therefore the number of edges incident
upon v is even.

CHAPTER 9. THE GRAPH DATA MODEL 59

For the converse, we need to show how to construct an Euler circuit when all the
degrees are even. We do so in part (b), where we are asked not only to produce an
algorithm to construct Euler circuits, but to design an efficient algorithm.

b) We need to use an appropriate data structure: adjacency lists, plus a list of
all the edges. We also need to generalize the notion of an Euler circuit to
cover the case in which the graph has more than one connected component.
In that case, we say an “Euler circuit” for the graph is an Euler circuit for
each connected component. Start with any edge, say {vo, v1}, and arbitrarily
pick one of the nodes, say vg, as the beginning of a path. Extend the path to
nodes vy, v3, ..., without reusing any edge, which we may do since every time
we enter a node, we know it has even degree so there is an unused edge by
which to leave. Eventually, we repeat a node on the path, say v;.

Now, remove the edges of the cycle, say v;, viy1,..., Uk, vi, but leave the nodes.
Recursively find an “Euler circuit” for the remaining graph, but start with the
portion of the path already constructed, vg, v1,...,v;. Note that we quote “Euler
circuit,” because the resulting graph may not be connected. Finally, we need to as-
semble an Euler circuit for the entire graph. We use the removed cycle v;, ..., vg, v;
as a base and follow it around. Each time we visit a node, say v;, if we have not
previously visited any nodes from its connected component, we follow the Euler
circuit for this connected component, starting and ending at v;. Then we continue
around the cycle to v; 1. When we return around the cycle to v;, we have an Euler
circuit for the entire graph.

Section 9.6

9.6.3:

a)
Tree arcs: ab, be, cd, de, ef
Forward arcs: ad, bf
Backward arcs: eb, fa
There are no cross arcs

Tree arcs: ab, bf, be, cd, de
Forward arcs: ad
Backward arcs: eb, ef, fa
There are no cross arcs

Tree arcs: de, ef, fa, ab, bc
Forward arcs: eb

Backward arcs: ad, bf, cd
There are no cross arcs

60 SOLUTIONS TO SELECTED EXERCISES

Section 9.7

9.7.1: There are four topological orders:

dcebfa
dcefba
decbfa
decfba

9.7.3: The connected components are

Escanba, Marquette, Menominee, Sault Ste. Marie

and

Ann Arbor, Battle Creek, Detroit, Flint, Grand Rapids
Kalamazoo, Lansing, Saginaw

Section 9.8

9.8.1:
CITY DISTANCE
Detroit 0
Ann Arbor 28
Escanba INFTY
Flint 58
Grand Rapids 138
Kalamazoo 138
Lansing 78
Marquette INFTY
Menominee INFTY
Saginaw 89
Sault Ste. Marie INFTY
9.8.3(b):
SPECIFIES TIME
AF 0
AA 0.8
HH 1.0
AR 1.3
HE 2.2
AB 1.2
HS 2.9

CHAPTER 9. THE GRAPH DATA MODEL 61

Section 9.10

9.10.1:

a) The chromatic number of the graph in Fig. 9.4 is 3.

b) The clique number is 3.

¢) { Maili, Pearl City, Wahiawa } and { Hilo, Kamuela, Kona } are both cliques
of size 3.

Y

%

62 SOLUTIONS TO SELECTED EXERCISES

Chapter 10. Patterns, Automata, and Regular Ex-
pressions

Section 10.2

10.2.1:
a) The following automaton accepts strings of 0’s and 1’s having an even number
of 1’s:

This automaton is in state 0 if it has seen an even number of 1’s and it is in
state 1 if it has seen an odd number of 1’s.

b) The following automaton accepts any string of 0’s and 1’s that does not contain
111 as a substring:

In this automaton, state 0 means the previous input symbol was not a 1, state
1 means the previous input symbol was a 1 and the one before that was not a
1, state 2 means the two previous input symbols were 1’s, and state 3 means
the three previous input symbols were 1’s.

Section 10.3

10.3.3: The nondeterministic automaton in Fig. (a) accepts all strings of letters
ending in father, man, or son.

CHAPTER 10. PATTERNS, AUTOMATA, AND REGULAR EXPRESSIONS 63

Fig. (a). Automaton accepting strings ending in father, man, or son.

0-%0-%0-% 1% 0-3%0-%0-%

Fig. (b). Simulation of automaton of Fig. 10.10.

0—>0—>0—>0—>0—>0—>0—d>0

NN

1 —» 2 —» 3

Fig. (c¢). Simulation of automaton of Fig. 10.11.

10.3.5: Figures (b) and (c) simulate the automata in Figs. 10.10 and 10.11, re-
spectively.

Section 10.4

10.4.3(a): A deterministic automaton for Fig. 10.24(a) is shown in Fig. (d).

Section 10.5

10.5.1: The two regular expressions (ac | abe | abbe) and a(c | b(e | be)) also
define the same language.

64 SOLUTIONS TO SELECTED EXERCISES

Fig. (d). Solution to Exercise 10.4.3(a).

10.5.3:
a) b*((aa*b*)*

b) (0|1]---|9)(0[1]---]9)*(0[1]---]9)*
c) 0*(10%10%)*
10.5.5:

a) (a](bc)) | (de)
b) (a|(b¥)) | ((a|b)*a)

10.5.7:
a) 0] € defines either the empty set or the set containing the empty string.

c) (a|b)* defines the set of all strings of a’s and b’s (including the empty string).

e) (a*ba*b)*a* defines the set of all strings of a’s and b’s containing an even
number of b’s.

g) R**is the same as R*, that is, the set consisting of the concatenation of zero
or more strings from the set defined by R.

Section 10.6

10.6.1:

a) Single-character operators and punctuation symbols in C:
Paghg’ () *+,-. /1 5<=>7[1~{}~

¢) Lower-case consonants:

[bedfghjklmnpqrstvwxyz]

Section 10.7

10.7.1: We first show the forward containment L((S | T)R C L(SR | TR). If z is
in L((S | T)R), then z = yr where y is in L(S) or L(T) and 7 is in L(R). If y is in
L(S), then z is in L(SR). If y is in L(T), then z is in L(TR). In either case, is
in L(SR | TR). Thus, the forward containment holds.

CHAPTER 10. PATTERNS, AUTOMATA, AND REGULAR EXPRESSIONS 65

We now show the reverse containment L((S | T)R) O L(SR | TR). If z is in
L(SR | TR), then z is in either L(SR) or L(TR). If z is in L(SR), then z = sr
where s is in L(S) and r is in L(R). Thus, z is in L((S | T)R. Similarly, if z
is in L(TR), we can show z is in L((S | T)R. We have now shown the reverse
containment holds.

Section 10.8

10.8.1:
a) Automaton for aaa:

¢) Automaton for (0 |1 | 1*)*:

Section 10.9
10.9.1:
a) (A - a)*a(A - e)*e(A - I)*i(A - 0)*o(A - u)*u
) A*man
e) (A-a)*a(A-a)*a
)

A*man

Y

%

66 SOLUTIONS TO SELECTED EXERCISES

Chapter 11. Recursive Description of Patterns

Section 11.2

11.2.1: In Pascal, an identifier is a string of letters and digits, beginning with a
letter. We can define an identifier with the following grammar.

<Letter> — A|B|---|Z|a|b|---]|z
<Digit> —0|1]---|9

<Identifier< — <Identifier><Letter>
<Identifier< — <Identifier><Digit>
<Identifier< — < Letter>

Strictly speaking, a Pascal reserved word such as program or begin cannot
be used as an identifier. Expressing this restriction grammatically would greatly
complicate the grammar, and in Pascal compilers, this type of error is caught by
other means.

11.2.3: In Pascal, a real number begins with an optional sign, followed by one
or more digits, followed by a decimal point, followed by one or more digits (e.g.,
0.1, 1.0, 3.14). In addiition, a real number may have at its end a scale factor
consisting of an upper case E, followed by an optional sign, followed by one or more
integers (e.g., 0.1E2, 1.0E-2). To allow reals as operands, we can add the following
productions to the grammar of Fig. 11.2 of the text:

<FEzpression> — <Real>

<Real> — <OptSign> <Number> <Number> <ScaleFactor>
<OptSign> — + |- | ¢

<ScaleFactor> — E <OptSign> <Number>

11.2.7: The following productions define for-statements (only):

< Statement> — for variable := < Ezpression> to <Ezpression>
do < Statement>

< Statement> — for variable := < Ezpression> downto < Ezpression>
do < Statement>

Section 11.3

11.3.1: The new strings for the languages S and L are tabulated in Fig. (a).

CHAPTER 11. RECURSIVE DESCRIPTION OF PATTERNS

S L
Round 4: wcdwcdwcds wcdweds
wcdbse bse
bs;wcdse s;wcds;s
bs;se s;wcds;weds
bwcdse s;wcds ;wedweds

s;wcds ;bse
;838
s;s;wcds
s;s;wcdweds
s;s;bse
wcds;s

wcds ;weds
wcds ;wedweds
wcds ;bse
s;wcdwcds

s;bse

(a) Words added on round 4.

11.3.3:
Fig. 11.3 | Fig. 11.4
Round 1: € €
Round 2: O O
Round 3: 00)
) 00
;Mo

67

On round 3, the grammars generate different sets of strings. Thus, the answer to
the question is “no.” In fact, all all subsequent rounds the sets of strings generated
by the two grammars are different. However, the sets of strings generated taken
over all the rounds are the same; both sets are the set of all balanced parenthesis

strings.

11.3.5: Suppose we are generating round r. If we make a substitution that uses
only strings available on round r — 2 or earlier, then the same substitution could
have been made on round r — 1. Thus, the string generated by this substitution
must have appeared on round r — 1 or on some round earlier than that.

Section 11.4

11.4.1(a): The parse tree for 35+21 is shown in Fig. (b).

68 SOLUTIONS TO SELECTED EXERCISES

>
 + <pB>
<N> <N>
/\ /\
<N> <> <r> <>
<D> 5 <f> 1
2
3

(b) Parse tree for 35+21.

T N
()
T N
() ‘e
N
e//// ()

(c) Parse tree for (() (D).

11.4.3(a): The parse tree for (() ()) is shown in Fig. (c).

Section 11.5

11.5.1(a): The parse tree for (1+2)/3 is shown in Fig. (d).

11.5.3: We introduce a new syntactic category, say <C> (“comparison”), which is
either an expression or a comparison operator between two expressions. In line (3)
of Fig. 11.22 of the text, we replace the productions for <F> by

<F> — (<C>) | <N>

CHAPTER 11. RECURSIVE DESCRIPTION OF PATTERNS 69

<E>
|
<T>
T
<T> / <F>
<F> <N>

<E> + <T> 3
<T> <F>

<F> <N>

<N> <D>

<D> 2

1

(d) Parse tree for (1+2)/3.

Then, we introduce the productions for <C>:

<C> — <E> <Cop> <E> | <E>
<Cop> —»=| <> | <= >=| < | >

11.5.7: The string 010 has two parse trees, one in which the first two characters
are grouped first into a string, and the other in which the last two characters are
grouped first.

11.5.9: There are an infinite number of parse trees for the empty string. We can
replace one by two ’s as often as we like and then make each of the
’s be replaced by the empty string.

70 SOLUTIONS TO SELECTED EXERCISES

Call 3

Call 4

Call 5

Call 2

Call 1

(e) Sequence of calls made on input (()).

Section 11.6

11.6.1(a): The structure of the calls is shown in Fig. (e).

11.6.3: In the first case, the productions

<Number> — <Digit> < Number> | <Digit>

ENDM

when we see a <Digit> as the next input, there is no way to tell which production
to use, so the grammar is not parsable by a recursive descent parser.
In the seond case, the productions

<Number> — <Number> <Digit> | €

when we see a <Digit> we cannot tell how many times to apply the first production,
so we go into an infinite loop. That is, when the lookahead symbol is a digit, and
we have to expand <Number>, we must pick the first production, and we are then
faced with the same situation we started with: a digit as lookahead with < Number>
as the syntactic category to expand.

Section 11.7

11.7.1(a):

STACK LOOKAHEAD REMAINING INPUT
1) <S> b seENDM
2) b<L>e b seENDM
3) <L>e s eENDM
4) | <S><T>e s eENDM
5) s<T>e s eENDM
6) <T>e e ENDM
7 e e ENDM
8) € ENDM €

CHAPTER 11. RECURSIVE DESCRIPTION OF PATTERNS

STACK LOOKAHEAD REMAINING INPUT

1) <S> b bs;se;seENDM
2) b<L>e b bs;se;seENDM
3) <L>e b s;se;seENDM
4) <8S><T>e b s;se;seENDM
5) b<L>e<T>e b s;se;seENDM
6) <L>e<T>e s ;se;seENDM
T | <S><T>e<T>e s ;se;seENDM
8) s<T>e<T>e s ;se;seENDM
9) <T>e<T>e ; se;seENDM
10) i<L>e<T>e ; se;seENDM
11) <L>e<T>e s e;seENDM
12) | <S8><T>e<T>e s e;seENDM
13) s<T>e<T>e s e;seENDM
14) <T>e<T>e e ; seENDM
15) e<T>e e ; seENDM
16) <T>e : seENDM
17) s<L>e : seENDM
18) <L>e s eENDM
19) <8><T>e s eENDM
20) s<T>e s eENDM
21) <T>e e ENDM
22) e e ENDM
23) € ENDM seENDM

Fig. (f)

11.7.1(c): See Fig. (f).
11.7.5: We factor the first two productions to get

< Statement> — if condition then <Statement> <Tail>
< Statement> — simpleStat

<Tail> — else <Statement> | ¢

When < Statement> is on top of the stack, the lookahead symbol, if or simpleStat,
tells us which production for < Statement> to use. When we need to expand a
<Tail>, we make the first choice on lookahead else and the second choice (¢) on
any other lookahead.

72 SOLUTIONS TO SELECTED EXERCISES

Section 11.8

11.8.1(a):

<A> — a

 —b

<C> — <A> |
<D> — <C> <D> | e
<E> — <D> <A>

11.8.1(c):
<A> — a
 —b
<C> —c
<D> — <A><D> | e

<E> — <E> |¢
<F>— <C><F>|e€
<G> — <D> <E>
<H> — <G> <F>

11.8.3: If L were defined by a regular expresion, then it would also be defined by
a finite automaton. Suppose the language L = {0™"10™ | n > 0} is the language of
some finite automaton A. Let A have m states. Consider what happens when A
has input 0™10™. This string is in the language L, so there is a path with label
0™10™ from the start state of A to some final state f. Consider the first m + 1
states along this path. As A has only m different states, there will be two numbers
of 0’s, say ¢ and j, with 0 < 2 < j < m, such that after following ¢ 0’s and again
after following a total of j 0’s, A is in the same state, say s.

Now, consider what happens when the input to A is 0™~ 71¢10™. The first ¢
0’s get us to state s. The remainder of the input, 0™~710™ takes us to state f,
because we know that when the input was 0™10™, A went from state s to state f
after reading the first j 0’s. Thus, A accepts 0™~7+¢10™, which is not in L, since
j > t. We contradict our assumption that A accepts language L. Since we assumed
nothing but that 4 did accept L, we conclude that no automaton accepts L. Hence,
L cannot be accepted by a regular expression.

N

CHAPTER 12. PROPOSITIONAL LOGIC 73

Chapter 12. Propositional Logic

Section 12.3

12.3.1(a): In this and the next answer we use 0 for FALSE and 1 for TRUE. The
function has domain consisting of pairs of truth values, for p and ¢ respectively, and
a range that is a truth value. This function can therefore be represented as the set

{((0,0),0), ((0,1),0), ((1,0),1), ((1,1),1)}.
12.8.1(c): {((0,0),1), ((0,1),0), ((1,0),0), ((1,1),1)}.

Section 12.4

12.4.1(a): A row has 1 unless both of the given columns have 1 in that row.
12.4.1(c): A row has 1 if the two given columns agree in the row, and 0 if not.
12.4.3: The logical expression p AND NOT ¢ corresponds to the set expression P —@Q.

12.4.5: Here are the 16 Boolean functions of two variables.

pq|fofifofsafalfs fofrfa fo fio fir fi2 fiz fia fis
00(0 1 01 0101 01 O 1 0 1 0 1

0100110011001 1 0 0 1 1
100 0001 11100 0 0 1 1 1 1
1170 0000O0OO0OO0OI1T1 1 1 1 1 1 1

Functions fy, f5, fi0, and fi5 do not depend on the first argument. That is, these
columns agree in the rows for pg = 00 and pg = 10, and they also agree in the rows
for p¢g = 01 and pg = 11. Functions fy, f3, fi2, and f15 do not depend on their
second argument.

12.4.7:

STATEMENT S(b): There are a® ways to paint b houses using a colors.

BASIS. b = 1. There are a colors for one house.

INDUCTION. Assume S(b) and prove S(b+ 1). Consider the (b + 1)st house. For
each color choice for this house, there are, by the inductive hypothesis, a® ways to

paint the remaining houses. Thus there are b x a® = a®*? color choices for the b+ 1
houses.

Section 12.5

12.5.1: a = pqr + pgF + pgr + pq7 + pqr; b = pqr + pqr + pqrF.

74 SOLUTIONS TO SELECTED EXERCISES

12.5.3(a): Suppose we have an expression involving two variables p and g, and
we try to construct other functions of p and ¢ by applying the = operator to two
previously constructed columns of a truth table. It turns out that the columns we
can obtain are rather limited, as the following table shows.

p q p=gq p=Pp
0 0 1 1
0 1 0 1
1 0 0 1
1 1 1 1

We notice that if we combine any of the four rows above with the = operator, we get
one of the same four rows. Thus, none of the other 12 functions of two variables can
be expressed with only the = operator, and therefore this operator is not complete.
For example, it cannot express p AND g.

12.5.3(c): Using NOR, we can express NOT p as p NOR FALSE. Also, p OR g is
(p NOR g) NOR FALSE; p AND ¢ is (p NOR FALSE) NOR (g NOR FALSE). Thus, NOR is
complete.

12.5.5: Consider two monotone functions f and g of variables p1, ps,...,ps. Also,
consider a truth table with 2™ rows and columns for f and ¢g. Let r; and r; be rows
of this table, and suppose that r; has 1 for any variable p; whenever r; has 1 for
p;. Then the monotonicity of f says that if f is 1 in row 71, then it must also be
1 in row rs; a similar statement holds for g. We must show that if the column for
f AND g has 1 in row 7y, then it also has 1 in row r3, and similarly for the column
for f OR g.

The only way f AND g can be in row 71 1is if both f and g to be 1 in this row.
But then, both f and g have 1 in row ry, and therefore f AND g has 1 there.

Now consider f OR g. This column can have 1 in row r; if either f or g or both
have 1 there. But then, at least one of f and g have 1 in row r3, and so does f OR g.

Section 12.6

12.6.1(a): The Karnaugh map is shown in Fig. (a).
12.6.1(c): The Karnaugh map is shown in Fig. (c).
12.6.1(e): The Karnaugh map is shown in Fig. (e).

12.6.3: First, a product is of the right form to be an implicant; it is a product of
literals. The function f represented by this hypothetical sum-of-products expression
can be written f = P + E, where P is the product in question, and E is the sum
of all the other products. Whenever an assignment of truth values to the variables
makes P true, it surely makes P + F true, by the definition of “or.” Thus, f is true
whenever the product P is true, which means P is an implicant of f.

CHAPTER 12. PROPOSITIONAL LOGIC 75

rs

00 01 11 10
00 0 1 1 1
01 1 1 1 1
pq
11 1 1 0 1
10 1 1 1 | 1]

(a) Karnaugh map for Exercise 12.6.1(a).

rs

00 01 11 10

o o [o [
01010

11 0 1 1 1

10 0 1 0

pq

(c) Karnaugh map for Exercise 12.6.1(c).

a)(p+q+r+s)(p+q+7+53)
(Pta+r+s)pta+7+38)(p+a+r+5)p+d+7r+s)(p+q+r+

7+s)(p+q+r+35)

e) P+ q)(p+7)

+

76 SOLUTIONS TO SELECTED EXERCISES

rs
00 01 11 10
00 ‘ 1 1 1 1
01 1 1 1 1

pq
11 0 0 0 0
10 1 1 0 0

(e) Karnaugh map for Exercise 12.6.1(e).

Section 12.7

12.7.1: (a) pgr — p+ ¢ is a tautology; (¢) (p — ¢g) — p is not a tautology. In
particular, expression (c) is false when p is true and g is false.

Section 12.8

12.8.1: As an example, here is the truth table for (12.4).

P a4 | pP=q P=7 (p=q)=(p=7)

0 o 1 1 1

0 1 0 0 1

1 0 0 0 1

1 1 1 1 1

12.8.5(a):

1) From (12.15) (1+g¢)=1
2) From (12.10) (p)=p
3) Substitute 1 + ¢ for 1 (line 1) (p(l + q)) =p
4) From (12.9) (Pl+pg)=p
5) From (12.10) (p+pg)=p

12.8.7: We shall prove the following, which is (12.20c), by induction on k.

STATEMENT S(k): (NOT (pipz---px)) = (Pr+ P2+ + Px)

CHAPTER 12. PROPOSITIONAL LOGIC 77

BASIS. k = 2. NOT (pip2) = (p1 + P2) by (12.20a).

INDUCTION. We assume S(k) and prove S(k + 1), which says that
(NUT (p1p2 -~ ‘Pk+1)) =@1+P2+ -+ Prt1)
To begin,
(NOT (p1p2---Prt1)) = (NOT (p1p2---Pr) + Prt1) (1)

by (12.20a), with p1p; - - - pg in place of p and px41 in place of g.

By the inductive hypothesis, (I\IOT (p1p2 -~ -pk)) =(p1+P2+ - +Px) When
we make this substitution in (1) and use the associative law of +, we get exactly
S(k + 1).

We can also look at the proof from the point of view of truth tables. It is easy
to observe that both sides of S(k) have value 1 except when all of the p;’s are 1.
The two proofs for (12.20d) have essentially the same ideas.

12.8.9: The question is ill formed in two ways. First, there is the matter of a typo;
k should be n. More serious, there is a simple, noninductive proof of (12.24b), given
(12.24a). By (12.24a), with pip2 - -p, in place of p, we have (p1p2---pn — ¢q) =
(I\IOT (p1p2--pn) + q). By (12.20c) and the associative law of +, (p1p2 - pn —
Q)= (Pr1+P2t+ - +Put9)
12.8.11:

(a) (wE + wzy + zZw) = (wE + zzw) = (W)

(b) (w+a)(w+y+2)(@+2+7)(3) = (w+2)(w+y+2) (@) = ((w+
y +2)(z))

Section 12.9

12.9.1: It is evident that when we replace AND by OR, OR by AND, 0 by 1 and 1 by
0, we turn (12.25) into (12.27), and vice-versa. Thus, these expressions are duals of
each other.

12.9.3: We use the following propositional variables with their intuitive meanings:

p: “x is a perfect square.”
e: “zis even.”
d: “z is divisible by 4.”

We want to prove the theorem pe — d. Since we are asked for a proof by contra-
diction, we want to show (I\IOT (pe — d)) — 0. The left side is equivalent to ped,
so we can instead prove ped — 0. This is as far as we can go using propositional
logic alone. Now we must use some of the things we know about numbers.

We start with p, e, and d and derive a contradiction. Proposition p says that
z is a perfect square, so £ = n? for some integer n. If n is odd, then n? is odd.
But we assume e, which says that z = n? is even. Thus, n is even. (This is a little
proof by contradiction within the main proof.) If n is even, then n = 2m for some
integer m. Thus, z = n? = 4m?. That says z is divisible by 4, or d. Since we also
assumed d, we have dd, which is equivalent to 0. We have now proved ped — 0.

78 SOLUTIONS TO SELECTED EXERCISES

12.9.5(a): In what follows, we use the associative and commutative laws of +
many times; we shall not make these uses explicit. pq + r + gF + p7 is equivalent to
pg+7+§+pF by (12.19b) with r in place of p. That is equivalent to pg+r+g+p for
the same reason. Another use of (12.19b) transforms this expression to p+r+g+p.
Now, (12.25) lets us replace p+ 5 by 1. Finally, (14 r+ q) = 1 by (12.15).

12.9.7: Suppose 2* cases are defined by the propositional variables pq, ps, ..., Pk,
which may be true or false in any combination. The general case analysis law is

(ANDfigl) Ci=gq

where each C; is of the form 2,25 ---2; — ¢. Each z; is either p; or p;; it is p; if
the jth bit from the right in the binary integer ¢ is 1, and it is p; if that bit is 0.

For k = 2 we have
((pp2 — q) AND (p1p2 — q) AND (P1p2 — q) AND (P152 — q)) = ¢

If ¢ is false, then the left side of this equivalence is false for any truth assignment to
the p’s, as there must be one of the implications whose left side is true and whose
right side (g) is false. Thus, the equivalence is true when g is false.

When q is true, each of the implications on the left must be true, because an
implication cannot be false if its right side is true. Thus, the equivalence is again
true, and we have proved it is a tautology. Note this proof applies to the general
case as well as the case £ = 2.

Section 12.10

12.10.1(a):

1) p—q Hypothesis
2) (p—aq)=(p+4) Law 12.24(a)
3) D+gq (d) with lines (1) and (2)
4) p—or Hypothesis
5) (p—r)=(@+r) Law 12.24(a)
6) ptr (d) with (4) and (5)
7) (B+q) AND (5 +r) (c) with (3) and (6)
8) (p+q)AND (5+)= (P+ gr) Law 12.14
9) p+ar (d) with (7) and (8)

10) (P+ar)=(p—qr) Law 12.24(a)

11) p—ar (d) with (9) and (10)

%

CHAPTER 12. PROPOSITIONAL LOGIC 79

12.10.1(b):

1) p—(g+r) Hypothesis

2) (p—(@+r)=@+qg+r) Law 12.24(a)

3) ptag+r (d) with (1) and (2)
4) p—(qg+7) Hypothesis

5) (p—(¢+7)=(+a+7) Law 12.24(a)

6) pt+g+r (d) with (4) and (5)
) (p+a+r)ptq+7) (c) with (3) and (6)
8) (P+a+r)P+q+7)=B+qg+r7) Law2.14

9) ptg+rF (d) with (7) and (8)
10) (r7) =0 Law 12.27
11) p+4¢+0 Substitution into (7), using (10)
12) p+gq Law 12.11
13) (P+q)=(p—4q) Law 12.24(a)
14) p—gq (d) with (12) and (13)

Section 12.11

12.11.1:
p g r | ptg ptr (p+g)F+r) a+r ((P+a)F+7)) —(a+7)
0 0 O 0 1 0 0 1
0 0 1 0 1 0 1 1
0 1 0 1 1 1 1 1
0 1 1 1 1 1 1 1
1 0 0 1 0 0 0 1
1 0 1 1 1 1 1 1
1 1 0 1 0 0 1 1
1 1 1 1 1 1 1 1
12.11.3: The following clauses come from Exercise 12.11.2:

) (etetd)

2) (b+c+53)

3) (@+1)

4) (b+9)

5) (e+9)

6) (e+1)

7 (a+b+c+o)

We can then apply resolution to these clauses to derive the following. We show
clauses that are needed to derive minimal clauses, even if they are not themselves
minimal, but we do not show all the (nonminimal) clauses.

80 SOLUTIONS TO SELECTED EXERCISES

8) (a+s+1) From (1) and (5)
9) (b+5+1%) From (2) and (6)
10) (e+b+s+o0) From (5)and (7)
11) (e+s+o0) From (4) and (10)
12) (s+t+o0) From (3) and (11)
13) (e+b+t+0) From (6) and (7)
14) (b+t+o) From (3) and (13)

Of these, only (8), (9), (11), (12), and (14) are minimal. These five clauses form
the answer to the question.

CHAPTER 13. USING LOGIC TO DESIGN COMPONENTS 81

& Chapter 13. Using Logic to Design Components

¢

$ Section 13.3

13.3.1(a):

C—

O—<

13.3.1(b): The solution is shown in Fig. (a).

13.3.3: The output will become 1 as soon as one of z and y (or both) becomes 1.
The output will then remain 1 no matter what happens to z and y.

$ Section 13.4

13.4.1(a): The solution appears in Fig. (b).
13.4.1(c): Note that (m—i—yfz(y—l—z)) = (z+gz). thus, the circuit in Fig. (c) serves.

13.4.3(b): Start with expression Zyc + zfc + zyc + zyc. Two uses of Law (12.17),
the idempotence of OR, applied to zyc, gives us

82 SOLUTIONS TO SELECTED EXERCISES

w &z Yy z
S
VA VAR
A\
/' 1WA\
T
O N
N2y

WLy WLz wYz TYz

(a) Solution to Exercise 13.3.1(Db).

N~

(b) Solution to Exercise 13.4.1(a).

Zyc + zyc + zyc + zyc + ryc + ryc

If we use the associative and commutative laws of OR, and then use the distributive
law of AND over OR, we can rearrange these terms as

ye(Z+z) + ze(§+y) + zy(c+¢)

Finally, three uses of the law of the excluded middle (12.25), transforms the above
into yc + zc + zy.

CHAPTER 13. USING LOGIC TO DESIGN COMPONENTS 83

(c) Solution to Exercise 13.4.1(c).
Section 13.5

13.5.1: Using OR-gates with fan-in k, we can take the OR of n inputs with delay
log, n, by using a complete k-ary tree of OR-gates. If we used a cascading circuit
like that shown in Fig. 13.13 of the text, the delay would be (n — k)/(k — 1) + 1.

13.5.3: Let 2% be the smallest power of 2 that is no less than n. Then we can
take the OR of n inputs with k levels of 2-input OR-gates. That k levels is sufficient
should be obvious. With that many levels, we can take the OR of 2* inputs, which
is at least n inputs. If n is strictly less than 2%, we can set 2¥ — n of the inputs
to 0. That may let us eliminate some of the OR-gates. Elimination of gates cannot
increase the number of levels.

Also, we cannot take the OR of n inputs in fewer than k levels. In k& — 1 levels,
we can only take the OR of 2~ inputs, which is strictly less than » inputs, because
we chose k so that 2% is the smallest power of 2 equal to or greater than n.

Section 13.6
13.6.5: We shall show by induction on n that

STATEMENT S(n): If nis a power of 2, then G(n) = 3nlog,n + 15n — 6.

84 SOLUTIONS TO SELECTED EXERCISES

BASIS. n = 1. G(1) is defined to be 9, and S(1) says that G(1) =0+ 15— 6 =9.

INDUCTION. We assume S(n) and prove S(2n). By definition, G(2n) = 2G(n) +
6n + 6. By the inductive hypothesis, G(n) = 3nlog, n + 15n — 6. Substituting this
formula for G(n) gives

G(2n) = 2(3nlogyn + 15n — 6) + 6n+ 6 = 6nlog, n+ 36n — 6

The above formula for G(2n) is equal to 3(2n)log,(2n) + 15(2n) — 6, which is the
statement S(2n).

Section 13.7

13.7.1(a): A 2-MUX is constructed from 1-MUX’s as follows.

Yo ' Y2 Y3
L2 — 1-MUX L2 — 1-MUX
L1 — 1-MUX
y(zlzz)z

13.7.3: In Fig. (d) is the suggestion of a circuit that follows the second strategy of
the hint. Two one-hot decoders for d inputs each are used. The first has inputs from
the first d of 2d bits and the second has inputs from the last d bits. Their outputs,
Yls--.,Yga and z1,...,25e are combined in all possible ways through AND-gates, to
create 22¢ outputs, one for each possible setting of the 2d inputs.

Now, let us consider the gate count and delay for this circuit. For the case
d = 1, there is an obvious basis circuit that uses only a single inverter; it has count
1 and delay 1. For the inductive step, the delay increases by only 1 going from d to
2d inputs. Thus, the delay for d inputs is easily seen to be 1+ log, d.

For the gate count, note that the circuit for 2d input uses twice the gates of
the d-input circuit, plus 22¢ AND-gates at the last level. Thus, the recurrence for
G(d), the number of gates in the d-input circuits, is

BASIS. G(1) = 1.

INDUCTION. G(2d) = 2G(d) + 2%4.

CHAPTER 13. USING LOGIC TO DESIGN COMPONENTS 85

L1 L4 Ld+41 L2d

One-Hot One-Hot

(d) Recursive construction of a one-hot decoder.

The solution to this recurrence, as we can show by repeated expansion, is
Gd)=d+22+2x2¥2 p4x2¥* ygx2¥8 ...

We cannot find a convenient closed form for this series, but we note that 2¢ is the
dominant term, so G(d) is slightly more than 29.

13.7.5: The trick is to compute the exact number of inputs that are 1. If the inputs
are 1, ...,2&y, then the outputs are yo, y1, ..., Yn, where y; means that exactly ¢ of
the z’s are 1.

BASIS. n = 1. yo =NOT =z, and y; = z;. Thus, a single gate and a delay of 1
suffice for the n = 1 case.

INDUCTION. Suppose we have a circuit for n inputs and we want one for 2n inputs.
We take two copies of the n-input circuit, and feed half the inputs to each. We get
outputs ug, #1,..., U, from the first and vg,v1,...,v, from the second. We can
combine each u; with each v;, using (n+ 1)? AND-gates. The AND-gate for u; and v,
is one way that ¢ + j of the 2n inputs can be 1.

If we have OR-gates that can take any number of inputs, we can OR together
all the ways that & of the inputs can be 1. For example, zero 1’s can only occur
when both ug and vg are 1. That is, yo = uovg. One 1 can occur when either
uo = 1 and v; = 1, or 43 = 1 and vg = 1. That is, y; = w1 + u1v9. Similarly,
Y2 = UoVz + U1v1 + u2v0. Then, 2n — 1 OR-gates are needed, one for each but the yg
and y,, outputs.

If we restrict ourselves to 2-input OR-gates, then we need to combine the terms

86 SOLUTIONS TO SELECTED EXERCISES

in trees of OR-gates. As the middle output, y,, has n 4+ 1 terms, we need O(logn)
levels. We can calculate the exact number of 2-input OR-gates needed by the fol-
lowing trick. We note that there are (n + 1)? inputs to the trees of OR-gates. Each
2-input OR-gate reduces the number of lines by 1, and at the output there are 2n+1
lines left. Thus, there are exactly 2-input n? OR-gates.

Now, let us count the levels and gates, both for the case of 2-input OR-gates,
and multi-input OR-gates. In the latter case, the recurrence for delay is
D(1) =1
D(2n) = D(n) + 2

with a solution D(n) = 2log,n + 1.
For 2-input gates, we need O(log n) levels when we double the number of inputs,
so we get a recurrence of the form
D(1) =1
D(2n) = D(n) + O(logn)

Ip The solution to this recurrence is D(n) = O((log n)?).

For the gate count, assuming multi-input OR gates, we need (n + 1)? AND-gates
and 2n — 1 OR-gates, or n% 4 4n gates in all. These are in addition to the gates in
two subcircuits for n inputs each. The recurrence is

G1)=1
G(2n) = 2G(n) + n? + 4n

The solution is G(n) = 2n? + n(4logyn — 1).
Finally, if we use only 2-input OR-gates, then the gates used outside the two
subcircuits is 2n% + 2n + 1, but the solution to the recurrence for gate count is still

Oo(n?).

Section 13.8

13.8.1:

load

in

out

N

CHAPTER 14. PREDICATE LOGIC

Chapter 14. Predicate Logic

Section 14.2

14.2.1:

a) C€S205 is a variable

b) ¢s205 is a constant

¢) 205 is a constant

d) “cs205” is a constant

e) p(X,z)is a nonground atomic formula
f) p(3,4,5)is a ground atomic formula
g) “p(3,4,5)” is a constant

Section 14.3

14.3.1: A suitable logical expression is:
(csg(“PHlOO”, S, G) AND snap(S, “L. Van Pelt”, 4, P) — answer(G)

answer is true when G = C+. For this we use

S = 67890

G — “C_i_”

A = “34 Pear Ave.”
P = “555-5678”

Section 14.4

14.4.1:

a) (VX)(3Y) NOT ((X) OR p(¥') ATD (X))

b) (3X)(NOT p(X) AND ((3¥)p(Y) OR (3X)a(X, 2)))
14.4.3: (3X)(NOT p(X) AND ((3Y)p(Y) OR (IW)g(W, 2)))
14.4.5:

a) (VC)esg(C, “C. Brown”, “A”)

b) (3C) NOT csg(C, “C. Brown”, “A”)

Section 14.5

14.5.1(a): Consider the interpretation I:

87

88 SOLUTIONS TO SELECTED EXERCISES

1. D = {a, b}
2. loves(X,Y) is true if XY is one of aa, ab, be, bb

Under this interpretation (“everyone loves everyone”), expression (a) is true.

Now consider the interpretation I:

1. D = {a, b}
2. loves(X,Y) is true if XY is one of ba, bb

Under this interpretation (“a is a misanthrope), expression (a) is false.

14.5.1(b): Interpretation I:
1. D = {a}
2. p(a) is true

Under Iy, expression (b) is true.

Interpretation I:

1. D = {a}
2. p(a) is false

Under I, expression (b) is false.

14.5.1(c): Interpretation I:
1. D = {a}
2. p(a) is true

Under I, expression (c) is true.

Interpretation I:

1. D = {a, b}
2. p(a) is true, p(b) is false

Under I, expression (b) is false because p(a) — (VX)p(X) is false.

14.5.1(d): Interpretation I;:

1. D = {a,b,c}
2. p(X,Y) is true if XY is one of ab, b, ac

Under Iy, expression (d) is true.

Interpretation I:
1. D = {a,b,c}
2. p(X,Y) is true if XY is one of ab, bc

Under I, expression (d) is false.

Section 14.6

14.6.1:

a) (r OR s) = (s OR r) is a tautology in propositional logic (law 12.7). The
predicate logic expression (p(X) OR ¢(Y)) = (¢(Y) OR p(X)) is derived by
substituting p(X) for » and ¢(Y) for s.

CHAPTER 14. PREDICATE LOGIC 89

b) (r AND s) = r is a tautology in propositional logic (law 12.16). The expression
(p(X,Y) AND p(X,Y)) = p(X,Y) results by substituting p(X,Y) for r.

¢) (r — FALSE) = NOT r is a tautology in propositional logic (law 12.24(a) with
FALSE in place of ¢). The expression (p(X) — FALSE) = NOT p(X) follows by
substituting p(X) for 7.

Section 14.7

14.7.1:
9 (30 (rom p(x)) a0 ((3¥)(p(1) 0B (W) (a(W; 2))))
b) (EX)((3Y)p(¥) OR (32)a(2) OR r(X))

14.7.3: Technically, law (14.12) does not allow us to change the binding of any
variable occurrence. Thus, law (14.12) does not allow us to conclude

(p(X,) AND (¥X)q(X)) = (¥X)(p(X,Y) AND (X))

However, the two expressions are equivalent for other reasons.

