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Preface

The purpose of this book is to provide a comprehensive introduction to error correction
coding, including both classical block- and trellis-based codes and the recent developments
in iteratively decoded codes such as turbo codes and low-density parity-check codes. The
presentation is intended to provide a background useful both to engineers, who need to
understand algorithmic aspects for the deployment and implementation of error correction
coding, and to researchers, who need sufficient background to prepare them to read, un-
derstand, and ultimately contribute to the research literature. The practical algorithmic
aspects are built upon a firm foundation of mathematics, which are carefully motivated and
developed.

Pedagogical Features

Since its inception, coding theory has drawn from a rich and interacting variety of mathemat-
ical areas, including detection theory, information theory, linear algebra, finite geometries,
combinatorics, optimization, system theory, probability, algebraic geometry, graph theory,
statistical designs, Boolean functions, number theory, and modern algebra. The level of
sophistication has increased over time: algebra has progressed from vector spaces to mod-
ules; practice has moved from polynomial interpolation to rational interpolation; Viterbi
makes way for BCJR. This richness can be bewildering to students, particularly engineering
students who are unaccustomed to posing problems and thinking abstractly. It is important,
therefore, to motivate the mathematics carefully.
Some of the major pedagogical features of the book are as follows.

* While most engineering-oriented error-correction-coding textbooks clump the major
mathematical concepts into a single chapter, in this book the concepts are developed
over several chapters so they can be put to more immediate use. I have attempted
to present the mathematics “just in time,” when they are needed and well-motivated.
Groups and linear algebra suffice to describe linear block codes. Cyclic codes mo-
tivate polynomial rings. The design of cyclic codes motivates finite fields and as-
sociated number-theoretical tools. By interspersing the mathematical concepts with
applications, a deeper and broader understanding is possible.

* For most engineering students, finite fields, the Berlekamp-Massey algorithm, the
Viterbi algorithm, BCIR, and other aspects of coding theory are initially abstract
and subtle. Software implementations of the algorithms brings these abstractions
closer to a meaningful reality, bringing deeper understanding than is possible by
simply working homework problems and taking tests. Even when students grasp the
concepts well enough to do homework on paper, these programs provide a further
emphasis, as well as tools to help with the homework. The understanding becomes
experiential, more than merely conceptual.

Understanding of any subject typically improves when the student him- or herself
has the chance to teach the material to someone (or something) else. A student
must develop an especially clear understanding of a concept in order to “teach” it
to something as dim-witted and literal-minded as a computer. In this process the
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computer can provide feedback to the student through debugging and program testing
that reinforces understanding.

In the coding courses I teach, students implement a variety of encoders and decoders,
including Reed-Solomon encoders and decoders, convolutional encoders, turbo code
decoders, and LDPC decoders. As a result of these programming activities, students
move beyond an on-paper understanding, gaining a perspective of what coding the-
ory can do and how to put it to work. A colleague of mine observed that many
students emerge from a first course in coding theory more confused than informed.
My experience with these programming exercises is that my students are, if anything,
overconfident, and feel ready to take on a variety of challenges.

In this book, programming exercises are presented in a series of 13 Laboratory Exer-
cises. These are supported with code providing most of the software “infrastructure,”
allowing students to focus on the particular algorithm they are implementing.

These labs also help with the coverage of the course material. In my course I am
able to offload classroom instruction of some topics for students to read, with the
assurance that the students will learn it solidly on their own as they implement it.
(The Euclidean algorithm is one of these topics in my course.)

Research in error control coding can benefit from having a flexible library of tools
for the computations, particularly since analytical results are frequently not available
and simulations are required. The laboratory assignments presented here can form
the foundation for a research library, with the added benefit that having written major
components, the researcher can easily modify and extend them.

It is in light of these pedagogic features that this book bears the subtitle Mathematical
Methods and Algorithms.

There is sufficient material in this book for a one- or two-semester course based on the
book, even for instructors who prefer to focus less on implementational aspects and the
laboratories.

Over 150 programs, functions and data files are associated with the text. The programs
are written in Matlab,! C, or C++. Some of these include complete executables which
provide “tables” of primitive polynomials (over any prime field), cyclotomic cosets and
minimal polynomials, and BCH codes (not just narrow sense), avoiding the need to tabulate
this material. Other functions include those used to make plots and compute results in the
book. These provide example of how the theory is put into practice. Other functions include
those used for the laboratory exercises. The files are highlighted in the book by the icon

aa’a’a*a’a’a’a’a’
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as in the marginal note above. The files are available at the website

http://ftp.wiley.com/public/sci_tech_med/error_control

Other aspects of the book include the following:

IMatlab is a registered trademard of The Mathworks, Inc.



* Many recent advances in coding have resulted from returning to the perspective of
coding as a detection problem. Accordingly, the book starts off with a digital com-
munication framework with a discussion of detection theory.

* Recent codes are capable of nearly achieving capacity. It is important, therefore, to
understand what capacity is and what it means to transmit at capacity. Chapter 1 also
summarizes information theory, to put coding into its historical and modern context.
This information theory also is used in the EXIT chart analysis of turbo and LDPC
codes.

* Pedagogically, Hamming codes are used to set the stage for the book by using them
to demonstrate block codes, cyclic codes, trellises and Tanner graphs.

* Homework exercises are drawn from a variety of sources and are at a variety of
levels. Some are numerical, testing basic understanding of concepts. Others provide
the opportunity to prove or extend results from the text. Others extend concepts or
provide new results. Because of the programming laboratories, exercises requiring
decoding by hand of given bit sequences are few, since I am of the opinion that is
better to know how to tell the computer than to do it by hand. I have drawn these
exercises from a variety of sources, including problems that I faced as a student and
those which I have given to students on homework and exams over the years.

» Number theoretic concepts such as divisibility, congruence, and the Chinese remain-
der theorem are developed.

* Atpoints throughout the book, connections between the coding theoretic concepts and
related topics are pointed out, such as public key cryptography and shift register
sequences. These add spice and motivate students with the understanding that the
tools they are learning have broad applicability.

* There has been considerable recent progress made in decoding Reed-Solomon codes
by re-examining their original definition. Accordingly, Reed-Solomon codes are
defined both in this primordial way (as the image of a polynomial function) and also
using a generator polynomial having roots that are consecutive powers of a primitive
element. This sets the stage for several decoding algorithms for Reed-Solomon codes,
including frequency-domain algorithms, Welch-Berlekamp algorithm and the soft-
input Guruswami-Sudan algorithm.

* Turbo codes, including EXIT chart analysis, are presented, with both BCIR and
SOVA decoding algorithms. Both probabilistic and likelihood decoding viewpoints
are presented.

* LDPC codes are presented with an emphasis on the decoding algorithm. Density
evolution analysis is also presented.

* Decoding algorithms on graphs which subsume both turbo code and LDPC code
decoders, are presented.

* A summary of log likelihood algebra, used in soft-decision decoding, is presented.

* Space-time codes, used for multi-antenna systems in fading channels, are presented.

Courses of Study

A variety of courses of study are possible. In the one-semester course I teach, I move quickly
through principal topics of block, trellis, and iteratively-decoded codes. Here is an outline
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of one possible one-semester course:

Chapter 1: Major topics only.

Chapter 2: All

Chapter 3: Major topics.

Chapter 4: Most. Leave CRC codes and LFSR to labs.

Chapter 5: Most. Leave Euclidean algorithm to lab; skip CRT; skip RSA.
Chapter 6: Basic topics.

Chapter 12: Most. Skip puncturing, stack-oriented algorithms and trellis descriptions of
block codes

Chapter 13: Most. Skip the V.34 material.
Chapter 14: Basic definition and the BCJR algorithm.

Chapter 15: Basic definition and the sum-product decoder.

A guide in selecting material for this course is: follow the labs. To get through all 13 labs,
selectivity is necessary.

An alternative two-semester course could be a semester devoted to block codes followed
by a semester on trellis and iteratively decoded codes. A two semester sequence could move
straight through the book, with possible supplements from the research literature on topics
of particular interest to the instructor.

The reader should be aware that theorems, lemmas, and corollaries are all numbered
sequentially using the same counter in a chapter. Examples, definitions, figures, tables, and
equations each have their own counters. Definitions, proofs and examples are all terminated
by the symbol .

Use of Computers

The computer-based labs provide a means of working out some of the computational details
that otherwise might require drudgery. There are in addition many tools available, both for
modest cost and for free. The brief tutorial comptut .pdf provides an introduction to
gap and magma, both of which can be helpful to students doing homework or research in
this area.

Acknowledgments
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Introduction and Foundations



Chapter 1

A Context for Error Correction
Coding

I will make weak things become strong unto them . .. — Ether 12:27

... he denies that any error in the machine is responsible for the so-called errors in the
answers. He claims that the Machines are self correcting and that it would violate the
fundamental laws of nature for an error to exist in the circuits of relays.
— Isaac Asimov
I, Robot

1.1 Purpose of This Book

Error control coding in the context of digital communication has a history dating back to
the middle of the twentieth century. In recent years, the field has been revolutionized by
codes which are capable of approaching the theoretical limits of performance, the channel
capacity. This has been impelled by a trend away from purely combinatoric and discrete
approaches to coding theory toward codes which are more closely tied to a physical channel
and soft decoding techniques.

The purpose of this book is to present error correction/detection coding in a modern
setting, covering both traditional concepts thoroughly as well as modern developments in
soft-decision and iteratively decoded codes and recent decoding algorithms for algebraic
codes. An attempt has been made to maintain some degree of balance between the math-
ematics and their engineering implications by presenting both the mathematical methods
used in understanding the codes as well as the algorithms which are used to efficiently
encode and decode.

1.2 Introduction: Where Are Codes?

Error correction coding is the means whereby errors which may be introduced into digital
data as a result of transmission through a communication channel can be corrected based
upon received data. Error detection coding is the means whereby errors can be detected
based upon received information. Collectively, error correction and error detection cod-
ing are error control coding. Error control coding can provide the difference between an
operating communications system and a dysfunctional system. It has been a significant
enabler in the telecommunications revolution, the internet, digital recording, and space ex-
ploration. Error control coding is nearly ubiquitous in modern, information-based society.
Every compact disc, CD-ROM, or DVD employs codes to protect the data embedded in the
plastic disk. Every hard disk drive employs correction coding. Every phone call made over
a digital cellular phone employs it. Every packet transmitted over the internet has a pro-
tective coding “wrapper” used to determine if the packet has been received correctly. Even
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everyday commerce takes advantage of error detection coding, as the following examples
illustrate.

Example 1.1 The ISBN (international standard book number) is used to uniquely identify books. An
ISBN such as 0-201-36186-8 can be parsed as

0 — 20 —1-36186— 8
—— —_— ———
country  publisher book no. check

Hyphens do not matter. The first digit indicates a country/language, with O for the United States. The
next two digits are a publisher code. The next six digits are a publisher-assigned book number. The
last digit is a check digit, used to validate if the code is correct using what is known as a weighted code.

An ISBN is checked as follows: The cumulative sum of the digits is computed, then the cumulative
sum of the cumulative sum is computed. For a valid ISBN, the sum-of-the-sum must be equal to 0,
modulo 11. The character X is used for the check digit 10. For this ISBN, we have

cumulative  cumulative

digit sum sum
0 0 0
2 2 2
0 2 4
1 3 7
3 6 13
6 12 25
1 13 38
8 21 59
6 27 86
8 35 121

The final sum-of-the-sum is 121, which is equal to 0 modulo 11 (i.e., the remainder after dividing by
11 is 0). |

Example 1.2 The Universal Product Codes (UPC) employed on the bar codes of most merchandise
employ a simple error detection system to help ensure reliability in scanning. In this case, the error
detection system consists of a simple parity check. A UPC consists of a 12-digit sequence, which can
be parsed as

0 16000 66610 8
S—’ S——’ N

manufacturer  item  parity
identification number check
number

Denoting the digits as #1, ug, ..., 412, the parity digit 117 is determined such that
3(ui +u3 +us +u7 +ug +ui1) + (u2 +ug + ue + ug +u10 +u12)
is a multiple of 10. In this case,
30+64+04+64+64+0)+(1+04+0+4+6+14+8) =70.

If, when a product is scanned, the parity condition does not work, the operator is flagged so that the
object may be re-scanned. U
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0 0.2 04 0.6 0.8 1
p

Figure 1.1: The binary entropy function Hz(p).

1.3 The Communications System

Appreciation of the contributions of coding and an understanding of its limitations require
some awareness of information theory and how its major theorems delimit the performance
of a digital communication system. In fact, information theory is increasingly relevant to
coding theory, because with recent advances in coding theory it is now possible to achieve
the performance bounds of information theory, whereas in the past the bounds were more of
abackdrop to the action on the stage of coding research and practice. Part of this success has
come by placing the coding problem more fully in its communications context, marrying
the coding problem more closely to the signal detection problem, instead of treating the
coding problem mostly as one of discrete combinatorics.

Information theory treats information almost as a physical quantity which can be mea-
sured, transformed, stored, and moved from place to place. A fundamental concept of
information theory is that information is conveyed by the resolution of uncertainty. Infor-
mation can be measured by the amount of uncertainty resolved. For example, if a digital
source always emits the same value, say 1, then no information is gained by observing that
the source has produced, yet again, the output 1. Probabilities are used to mathematically
describe the uncertainty. For a discrete random variable X (i.e., one which produces discrete
outputs, such as X = 0 or X = 1), the information conveyed by observing an outcome x
is —log, P(X = x) bits. (If the logarithm is base 2, the units of information are in bits.
If the natural logarithm is employed, the units of information are in nats.) For example, if
P(X = 1) = 1 (the outcome 1 is certain), then observing X = 1 yields —log, (1) = 0 bits
of information. On the other hand, observing X = 0 in this case yields — log,(0) = co:
total surprise at observing an impossible outcome.

The entropy is the average information. For a binary source X having two outcomes
occurring with probabilities p and 1 — p, the binary entropy function, denoted as either
H>(X) (indicating that it is the entropy of the source) or Ha(p) (indicating that it is a
function of the outcome probabilities) is

Hy(X) = Hy(p) = E[~log, P(X)] = —plog,(p) — (1 — p) log, (1 — p) bis.

A plot of the binary entropy function as a function of p is shown in Figure 1.1. The peak

information of 1 occurs when p = %
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Example 1.3 A fair coin is tossed once per second, with the outcomes being ‘head’ and ‘tail’ with
equal probability. Each toss of the coin generates an event that can be described with H5(0.5) = 1
bit of information. The sequence of tosses produces information at a rate of 1 bit per second.

An unfair coin, with P(head) = 0.01 is tossed. The average information generated by each throw
in this case is H>(0.01) = 0.0808 bits.

Another unfair coin, with P(head) = 1 is tossed. The information generated by each throw in
this case is Hp(1) = O bits. O

For a source X having M outcomes x1, x2, ..., xp, with probabilities P(X = x;) =
pi,i =1,2,..., M, the entropy is

M
H(X) = E[—log, P(X)] = — Y _ p;log, p; bits. (1.1)

i=1

Note: The “bit” as a measure of entropy (or information content) is different from the “bit”
as a measure of storage. For the unfair coin having P (head) = 1, the actual information
content determined by a toss of the coin is 0: there is no information gained by observing
that the outcome is again 1. For this process with this unfair coin, the entropy rate — that is,
the amount of actual information it generates — is 0. Howeyver, if the coin outcomes were for
some reason to be stored directly, without the benefit of some kind of coding, each outcome
would require 1 bit of storage (even though they don’t represent any new information).

With the prevalence of computers in our society, we are accustomed to thinking in terms
of “bits” — e.g., a file is so many bits long, the register of a computer is so many bits wide.
But these are “bits” as a measure of storage size, not “bits” as a measure of actual information
content. Because of the confusion between “bit” as a unit of information content and “bit”
as an amount of storage, the unit of information content is sometimes called a Shannon, in
homage to the founder of information theory, Claude Shannon.}

A digital communication system embodies functionality to perform physical actions on
information. Figure 1.2 illustrates a fairly general framework for a single digital communi-
cation link. In this link, digital data from a source are encoded and modulated (and possibly
encrypted) for communication over a channel. At the other end of the channel, the data
are demodulated, decoded (and possibly decrypted), and sent to a sink. The elements in
this link all have mathematical descriptions and theorems from information theory which
govern their performance. The diagram indicates the realm of applicability of three major
theorems of information theory.

There are actually many kinds of codes employed in a communication system. In the
description below we point out where some of these codes arise. Throughout the book we
make some connections between these codes and our major focus of study, error correction
codes.

The source is the data to be communicated, such as a computer file, a video sequence, or
a telephone conversation. For our purposes, it is represented in digital form, perhaps
as a result of an analog-to-digital conversion step. Information-theoretically, sources
are viewed as streams of random numbers governed by some probability distribution.

}This mismatch of object and value is analogous to the physical horse, which may or may not be capable of
producing one “horsepower” of power, 550 ft-Ibs/sec. Thermodynamicists can dodge the issue by using the SI
unit of Watts for power, information theorists might sidestep confusion by using the Shannon. Both of these units
honor founders of their respective disciplines.
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Sometimes combined

(sometimes) coding/modulation (e.g. TCM)
(data_ (privacy/ (error (transmission
compression) securnty) protection) wavetorm generation
source . encryption | ', channel 2 o
BOce encoder _ en?u?]er . encoder | modulation
[
(source coding (capacity,
theorem, channel coding “hannel
rate distortion theorem) channe
theorem)
)
. source T, | channel e
- -+ | encryption [, ! | - demodulation/
sink decoder dc?opdcr i decoder

equalization
[}

(sometimes) Somtimes combined/iterative
decoding and modulation

Figure 1.2: A general framework for digital communications.

Every source of data has a measure of the information that it represents, which (in
principle) can be exactly quantified in terms of entropy.

The source encoder performs data compression by removing redundancy.

As illustrated in Example 1.3, the number of bits used to store the information from
a source may exceed the number of bits of actual information content. That is, the
number of bits to represent the data may exceed the number of mathematical bits —
Shannons — of actual information content.

The amount a particular source of data can be compressed without any loss of infor-
mation (lossless compression) is governed theoretically by the source coding theorem
of information theory, which states that a source of information can be represented
without any loss of information in such a way that the amount of storage required
(in bits) is equal to the amount of information content — the entropy — in bits or
Shannons. To achieve this lower bound, it may be necessary for long blocks of the
data to be jointly encoded.

Example 1.4 For the unfair coin with P(head) = 0.01, the entropy is H(0.01) = 0.0808.
Therefore, 10,000 such (independent) tosses convey 808 bits (Shannons) of information, so
theoretically the information of 10,000 tosses of the coin can be represented exactly using only
808 (physical) bits of information. O

Thus a bit (in a computer register) in principle can represent an actual (mathematical)
bit of information content, if the source of information is represented correctly.

In compressing a data stream, a source encoder removes redundancy present in the
data. For compressed binary data, 0 and 1 occur with equal probability in the com-
pressed data (otherwise, there would be some redundancy which could be exploited
to further compress the data). Thus it is frequently assumed at the channel coder that
0 and 1 occur with equal probability.
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The source encoder employs special types of codes to do the data compression, called
collectively source codes or data compression codes. Such coding techniques in-
clude Huffman coding, run-length coding, arithmetic coding, Lempel-Ziv coding,
and combinations of these, all of which fall beyond the scope of this book.

If the data need to be compressed below the entropy rate of the source, then some kind
of distortion must occur. This is called lossy data compression. In this case, another
theorem governs the representation of the data. It is possible to do lossy compression
in a way that minimizes the amount of distortion for a given rate of transmission.
The theoretical limits of lossy data compression are established by the rate-distortion
theorem of information theory. One interesting result of rate-distortion theory says
that for a binary source having equiprobable outcomes, the minimal rate to which the
data can be compressed with the average distortion per bit equal to p is

1
r=1-Hp) p=5. 1.2)

Lossy data compression uses its own kinds of codes as well.

The encrypter hides or scrambles information so that unintended listeners are unable to
discern the information content. The codes used for encryption are generally different
from the codes used for error correction.

Encryption is often what the layperson frequently thinks of when they think of “cod-
ing,” but as we are seeing, there are many other different kinds of codes.

The channel coder is the first step in the error correction or error detection process.

The channel coder adds redundant information to the stream of input symbols in a way
that allows errors which are introduced into the channel to be corrected. This book
is essentially dedicated to the study of the channel coder and its corresponding
channel decoder.

It may seem peculiar to remove redundancy with the source encoder, then turn right
around and add redundancy back in with the channel encoder. However, the redun-
dancy in the source typically depends on the source in an unstructured way and may
not provide uniform protection to all the information in the stream, nor provide any
indication of how errors occurred or how to correct them. The redundancy provided
by the channel coder, on the other hand, is introduced in a structured way, precisely
to provide error control capability.

Treating the problems of data compression and error correction separately, rather than
seeking ajointly optimal source/channel coding solution, is asymptotically optimal (as
the block sizes get large). This fact is called the source-channel separation theorem
of information theory. (There has been recent work on combined source/channel
coding for finite -— practical — block lengths, in which the asymptotic theorems are
not invoked. This work falls outside the scope of this book.)

Because of the redundancy introduced by the channel coder, there must be more
symbols at the output of the coder than at the input. Frequently, a channel coder
operates by accepting a block of k input symbols and producing at its output a block
of n symbols, with n > k. The rate of such a channel coder is

R=k/n,
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sothat R < 1.

The input to the channel coder is referred to as the message symbols (or, in the case of
binary codes, the message bits). The input may also be referred to as the information
symbols (or bits).

The modulator converts symbol sequences from the channel encoders into signals ap-
propriate for transmission over the channel. Many channels require that the signals
be sent as a continuous-time voltage, or an electromagnetic waveform in a speci-
fied frequency band. The modulator provides the appropriate channel-conforming
representation.

Included within the modulator block one may find codes as well. Some channels
(such as magnetic recording channels) have constraints on the maximum permissible
length of runs of 1s. Or they might have a restriction that the sequence must be
DC-free. Enforcing such constraints employs special codes. Treatment of such
runlength-limited codes appears in [206]; see also [157].

Some modulators employ mechanisms to ensure that the signal occupies a broad band-
width. This spread-spectrum modulation can serve to provide multiple-user access,
greater resilience to jamming, low-probability of detection, and other advantages.
(See, e.g., [386].) Spread-spectrum systems frequently make use of pseudorandom
sequences, some of which are produced using linear feedback shift registers as dis-
cussed in Section Appendix 4.A.

The channel is the medium over which the information is conveyed. Examples of channels
are telephone lines, internet cables, fiber-optic lines, microwave radio channels, high
frequency channels, cell phone channels, etc. These are channels in which information
is conveyed between two distinct places. Information may also be conveyed between
two distinct times, for example, by writing information onto a computer disk, then
retrieving it at a later time. Hard drives, diskettes, CD-ROMs, DVDs, and solid state
memory are other examples of channels.

As signals travel through a channel they are corrupted. For example, a signal may have
noise added to it; it may experience time delay or timing jitter, or suffer from attenua-
tion due to propagation distance and/or carrier offset; it may be multiply reflected by
objects in its path, resulting in constructive and/or destructive interference patterns;
it may experience inadvertent interference from other channels, or be deliberately
jammed. It may be filtered by the channel response, resulting in interference among
symbols. These sources of corruption in many cases can all occur simultaneously.

For purposes of analysis, channels are frequently characterized by mathematical mod-
els, which (it is hoped) are sufficiently accurate to be representative of the attributes of
the actual channel, yet are also sufficiently abstracted to yield tractable mathematics.
Most of our work in this book will assume one of two idealized channel models,
the binary symmetric channel (BSC) and the additive white Gaussian noise channel
(AWGN), which are described in Section 1.5. While these idealized models do not
represent all of the possible problems a signal may experience, they form a starting
point for many, if not most, of the more comprehensive channel models. The experi-
ence gained by studying these simpler channels models forms a foundation for more
accurate and complicated channel models. (As exceptions to the AWGN or BSC
rule, in Section 14.7, we comment briefly on convolutive channels and turbo equal-
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ization, while in Chapter 17, coding for quasi-static Rayleigh flat fading channels are
discussed.)

Channels have different information-carrying capabilities. For example, a dedicated
fiber-optic line is capable of carrying more information than a plain-old-telephone-
service (POTS) pair of copper wires. Associated with each channel is a quantity known
as the capacity, C, which indicates how much information it can carry reliably.

The reliable information a channel can carry is intimately related to the use of error
correction coding. The governing theorem from information theory is Shannon’s
channel coding theorem, which states essentially this: Provided that the rate R of
transmission is less than the capacity C, there exists a code such that the probability
of error can be made arbitrarily small.

As suggested by Figure 1.2, the channel encoding and modulation may be combined
in what is known as coded modulation.

The demodulator/equalizer receives the signal from the channel and converts it into a
sequence of symbols. This typically involves many functions, such as filtering, de-
modulation, carrier synchronization, symbol timing estimation, frame synchroniza-
tion, and matched filtering, followed by a detection step in which decisions about the
transmitted symbols are made. We will not concern ourselves in this book with these
important details, but will focus on issues related to channel encoding and decoding.

The channel decoder exploits the redundancy introduced by the channel encoder to correct
any errors that may have been introduced. As suggested by the figure, demodulation,
equalization and decoding may be combined. Particularly in recent work, turbo
equalizers are used in a powerful combination. This is introduced in Chapter 14.

The decrypter removes any encryption.
The source decoder provides an uncompressed representation of the data.

The sink is the ultimate destination of the data.

As this summary description has indicated, there are many different kinds of codes employed
in communications. This book treats only error correction (or detection) codes. However,
there is significant overlap in the mathematical tools employed for error correction codes
and other kinds of codes. So, for example, while this is not a book on encryption, a couple
of encryption codes are presented in this book, where they are right near our main topic.
(In fact, one public key cryptosystem is an error correction coding scheme. See Section
6.9.5.) And there is a certain duality between some channel coding methods and some
source coding methods. So studying error correction does provide a foundation for other
aspects of the communication system.

1.4 Basic Digital Communications

The study of modulation/channel/demodulation/detection falls in the realm of “digital com-
munications,” and many of its issues (e.g., filtering, synchronization, carrier tracking) lie
beyond the scope of this book. Nevertheless, some understanding of digital communica-
tions is necessary here, because modern coding theory has achieved some of its successes
by careful application of detection theory, in particular in maximum a posteriori (MAP) and
maximum likelihood (ML) receivers. Furthermore, performance of codes is often plotted
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in terms of signal to noise ratio, which is understood in the context of the modulation of a
physical waveform. Coded modulation relies on signal constellations beyond simple binary
modulation, so an understanding of them is important.

The material in this section is standard for a digital communications course. However, it
is germane to our treatment here, because these concepts are employed in the development
of soft-decision decoding algorithms.

1.4.1 Binary Phase-Shift Keying

In digital communication, a stream of bits (i.e., a sequence of 1s and 0s) is mapped to a
waveform for transmission over the channel. Binary phase-shift keying (BPSK) is a form of
amplitude modulation in which a bit is represented by the sign of the transmitted waveform.
(It is called “phase-shift” keying because the sign change represents a 180° phase shift.)
Let{...,b_2,b_1, bo, by, b, ...} represent a sequence of bits, b; € {0, 1} which arrive at
a rate of one bit every T seconds. The bits are assumed to be randomly generated with
probabilities Pi = P(b; = 1) and Pp = P(b; = 0). While typically 0 and 1 are equally
likely, we will initially retain a measure of generality and assume that Py # Py necessarily.
It will frequently be of interest to map the set {0, 1} to the set {—1, 1}. We will denote b; as
the 1-valued bit corresponding to the {0, 1}-valued bit b;. Either of the mappings

bi=@bi—1) or b =-2b-1)

may be used in practice, so some care is needed to make sure the proper mapping is under-
stood.

. Here, let a; = /Ep(2b; — 1) = —«/Eb(—l)b" = \/Ebgi be a mapping of bit b; (or
b;) into a transmitted signal amplitude. This signal amplitude multiplies a waveform ¢ (¢),
where ¢1(¢) is a unit-energy signal,

o
/ pr(0)*dr =1,
—00

which has support? over [0, T). Thus, a bit b; arriving at time i T can be represented by the
signal a;¢1(t — iT). The energy required to transmit a single bit b; is

f (aip1(1))* dt = Ep.

Thus Ej, is thus the energy expended per bit.
It is helpful to think of the transmit-

—JvEp ~ Ep 01(F) ted signals +/Epp1(t) and —/Epp;(t) as
— ! . - points /Ep and —+/Ep in a one-dimen-

“gn “pn sional signal space, where the coordinate

axis is the “p1” axis. The two points in the

Figure 1.3: Signal constellation for BPSK.  signal space are plotted with their corre-

sponding bit assignment in Figure 1.3. The

points in the signal space employed by the

modulator are called the signal constellation, so Figure 1.3 is a signal constellation with
two points (or signals).

A sequence of bits to be transmitted can be represented by a juxtaposition of ¢ (¢)

waveforms, where the waveform representing bit b; starts at time : 7. Then the sequence of

2Stl’ictly speaking, functions not having this limited support can be used, but assuming support over [0, T') makes

the discussion significantly simpler. Also, the signal g; (¢) can in general be complex, but we restrict attention here
to real signals.



1.4 Basic Digital Communications

11

s(t)
|

2! ®) apr o e
VT VEB/T !
. - -
—VE/ T4
0" “0"
(@) ()]

Figure 1.4: Juxtaposition of signal waveforms.

bits is represented by the signal

s@) = Zai<p1(t —iT). (1.3)

Example 1.5 With ¢ (¢) as shown in Figure 1.4(a) and the bit sequence {1, 1, 0, 1, 0}, the signal s (¢)
is as shown in Figure 1.4(b). 0O

1.4.2 More General Digital Modulation

The concept of signal spaces generalizes immediately to higher dimensions and to larger
signal constellations; we restrict our attention here to no more than two dimensions. Let
¥2(t) be a unit-energy function which is orthogonal to ¢ (). That is,

o [e <]
/ o) dr =1 and f P1(O@2(t) dr = 0.
—00 —-00
In this case, we are defining “orthogonality” with respect to the inner product
o0
(01(t), p2(1)) = f P1(H)2() dt.
—0o0

We say that {¢;(t), ¢2(¢)} form an orthonormal set if they both have unit energy and are
orthogonal:

(1), 01®)) =1  {p2@®), 20y =1 {¢1(®), p2(1)) = 0.

The orthonormal functions ¢4 (t) and ¢, (r) define the coordinate axes of a two-dimensional
signal space, as suggested by Figure 1.5. Corresponding to every point (x1, y1) of this
two-dimensional signal space is a signal (i.e., a function of time) s(¢) obtained as a linear
combination of the coordinate functions:

s(t) = x191(t) + y12(0).

That is, there is a one-to-one correspondence between “points” in space and their represented
signals. We can represent this as

s(t) © (x1,1).
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A#2 ()

d /‘ (x1, y1)

/

(x2, y2)

1

Figure 1.5: Two-dimensional signal space.

The geometric concepts of distance and angle can be expressed in terms of the signal space
points. For example, let

s1(8) = x101(8) + y102(8)  (i.e, 51(8) < (x1, 1))

52(8) = x201() + y202(8) (e, 52(8) © (x2,¥2)) (14
We define the squared distance between s (¢) and so(¢) as
d*(s1(t), s2(8)) = f_ : (s1() — s2())* dt, (1.5)
and the inner product between s1(¢) and s2(¢) as
10,520 = [ : 510920 dt. (1.6)

Rather than computing distance using the integral (1.5), we can equivalently and more easily
compute using the coordinates in signal space (see Figure 1.5):

d2(s1(t), 52(0)) = (x1 — x2)* + (31 — y)2. (1.7)

This is the familiar squared Euclidean distance between the points (xy, y;) and (x2, y2).
Also, rather than computing the inner product using the integral (1.6), we equivalently
compute using the coordinates in signal space:

{s1(0), 2(1)) = x1x2 + y1¥2. (1.8)

This is the familiar inner product (or dot product) between the points (x1, y1) and (x2, y2):

{(x1, y1), (x2, y2)) = X132 + y1)y2.

The point here is that we can use the signal space geometry to gain insight into the nature
of the signals, using familiar concepts of distance and angle.

We can use this two-dimensional signal space for digital information transmission as
follows. Let M = 2™, for some integer m, be the number of points in the signal constellation.
M -ary transmission is obtained by placing M points (a1x, as), k=0, 1, ..., M —1, in this
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Figure 1.6: 8-PSK signal constellation.

signal space and assigning a unique pattern of m bits to each of these points. These points
are the signal constellation. Let

S={@aw, ax),k=0,1,...,.M -1}
denote the set of points in the signal constellation.
Example 1.6 Figure 1.6 shows 8 points arranged in two-dimensional space in a constellation known

as 8-PSK (phase-shift keying). Each point has a three-bit designation. The signal corresponding to
the point (ayx, ax) is selected by three input bits and transmitted. Thus the signal

sk(®) = ape1() + azeea(t),  (a,a) €S

carries three bits of information.

Note that the assignments of bits to constellation points in Figure 1.6 is such that adjacent points
differ by only one bit. Such an assignment is called Gray code order. Since it is most probable that
errors will move from a point to an adjacent point, this reduces the probability of bit error. U

Associated with each signal sx(t) = a1x@1(t) + a2k 2(¢) and signal constellation point
(a1k, az) € S is a signal energy,

>0
Ef = / (s (D)2 dt = a?, + o,
-0

The average signal energy Ej is obtained by averaging all the signal energies, usually by
assuming that each signal point is used with equal probability:

1 M=l e ] Mol
2
Es =~ ,; /_Oosk(t)zdt = g(a%ﬁa,,_k).

The average energy per signal E; can be related to the average energy per bit Ej, by

energy per signal  E;

" number of bits/signal  m

To send a sequence of bits using M -ary modulation, the bits are partitioned into blocks
of m successive bits, where the data rate is such that m bits arrive every Ty seconds. The ith
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m-bit set is then used to index a point (a1;, a2;) € S. This point corresponds to the signal
which is transmitted over the signal interval for the m bits. These signals are juxtaposed to
form the transmitted signal:

s(t) =) _augi(t —iTy) + anga(t —iTy),  (an,az) € S. (1.9)

1

The point (ay;, az;) is thus the point set at time i. Equation (1.9) can be expressed in its signal
space vector equivalent, by simply letting s; = [a1;, a2;17 denote the vector transmitted at
time i.

In what follows, we will express the operations in terms of the two-dimensional sig-
nal space. Restricting to a one-dimensional signal space (as for BPSK transmission), or
extending to higher-dimensional signal spaces is straightforward.

In most channels, the signal s(¢) is mixed with some carrier frequency before trans-
mission. However, for simplicity we will restrict attention to the baseband transmission
case.

1.5 Signal Detection

1.5.1 The Gaussian Channel

The signal s(¢) is transmitted over the channel. Of all the possible disturbances that might
be introduced by the channel, we will deal only with additive noise, resulting in the received
signal

r(t) =s@) + n(). (1.10)

In an additive white Gaussian noise (AWGN) channel, the signal n(¢) is a white Gaussian
noise process, having the properties that

E[n(®)]=0 Vi,

N
Ru(2) = Eln()n(t — 7)] = 705@),

and all sets of samples are jointly Gaussian distributed. The quantity Ng/2 is the (two-sided)
noise power spectral density.

Due to the added noise, the signal r (¢) is typically not a point in the signal constellation,
nor, in fact, is r(¢) probably even in the signal space — it cannot be expressed as a linear
combination of the basis functions ¢; (#) and ¢, (¢). The detection process to be described
below corresponds to the geometric operations of (1) projecting r () onto the signal space;
and (2) finding the closest point in the signal space to this projected function.

At the receiver, optimal detection requires first passing the received signal through a
filter “matched” to the transmitted waveform. This is the projection operation, projecting
r(r) onto the signal space. To detect the ith signal starting at i 75, the received signal is
correlated with the waveforms @1 (¢ — i T;) and ¢2(¢ — i T) to produce the point (Ry;, Rz;)
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Figure 1.7: Correlation processing (equivalent to matched filtering).

in signal space?:

(+DT;
Ry = {r®), o1(t = iTy)) = / r@ei(t —iTs)dr,

(+DT; (.1

Roi = (r(t), p2(t — iTy)) = /T r®e2(t — iTs) dt.

The processing in (1.11) is illustrated in Figure 1.7. Using (1.9) and (1.10), it is straightfor-
ward to show that

Ri=a1+Nuy and Ry =ay + Ny, (1.12)
where (ay;, az;) is the transmitted point in the signal constellation for the ith symbol. The

point (ay;, az;) is not known at the receiver — it is, in fact, what the receiver needs to decide
— s0 at the receiver (ay;, a;) is a random variable.

The noise random variables N1; and Np; defined by
(i+1)Ts (+D)Ts
Ni; = / 1t —iTn(t)dt and Ny = f 2(t — iT5)n(r) dt
iTy iTy

have the following properties: N1; and Np; are Gaussian random variables, with

E[N;i]=0 and E[Ny;]l=0 (1.13)

and*
var[Ny;] 2 o= %’9 and  var[Ny;] = o= %. (1.14)

Also,
E[N1iN2;] =0, (1.15)

3The operation in (1.11) can equivalently be performed by passing r(¢t) through filters with impulse response
¢1(—t) and ¢ (—t) and sampling the output at time ¢t = i T;. This is referred to as a matched filter. The matched
filter implementation and the correlator implementation provide identical outputs.

4The symbol 4 means “is defined to be equal to.”
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that is, Ny; and Np; are uncorrelated and hence, being Gaussian, are independent. The
probability density function (pdf) for Nj; or Ny; is

1y
pN(n) = e 277
2no
It will be convenient to express (1.12) in vector form. Let R; = [Ry;, R2i1T (received
vector), S; = [a1;, azn ]’ (sent vector), and N; = [Ny, N2,~]T (noise vector). Then
R; =S; +N;.
Then N; is jointly Gaussian distributed, with O mean and covariance matrix
EINNT] = o2 [(1) ﬂ — o2 = Ry.

Explicitly, the pdf of the vector N; is

! 1 7 -1 ] 1 [ L o2 2 ]
n=—————exp|—xn" Ry n|=—-=exp|l—=——=my+ns5)].
pN(n) P ) p[ 70 Ry ol OXP 202( 1+ n2)
Let P(s) be used to denote P(S = s) = Ps(s) for vectors s = [a1x, ax]’ € S. Let P(s|r)
be used to denote P(S = s|R =r) = Pgr(S = s|R = r) for an observed value of the
random variable R = r. Note that conditioned on knowing that the transmitted signal is
S = s, R is a Gaussian random variable with conditional density

1
Pris(rls) = pn(r —s) -5 = TRy (r — s)]

1
= —¢X
27 AR p[
1 2
= Cexp [_F”r -~ s ] ,

where ||r —s||? is the squared Euclidean distance between rand s and Cisa quantity that does
not depend on either R or S. The quantity pgs(r|s) is called the likelihood function. The
likelihood function pg;s(r|s) is typically viewed as a function of the conditioning argument,
with the observed values r as fixed parameters.

The signal point s € S depends uniquely upon the transmitted bits mapped to the signal
constellation point. Conditioning upon knowing the transmitted signal is thus equivalent to
conditioning on knowing the transmitted bits. Thus the notation p(r|s) is used interchange-
ably with p(r|b), when s is the signal used to represent the bits b. For example, for BPSK
modulation, we could write either p(r|s = +/Ep) or p(r|b = 1) or even p(r|l; = 1), since
by the modulation described above the amplitude VEp is transmitted when the input bit is
b=1(orb=1).

(1.16)

1.5.2 MAP and ML Detection

Let S denote the transmitted value, where S € S is chosen with prior probability P (S = s),
or, more briefly, P(s). The receiver uses the received point R = r to make a decision about
what the transmitted signal S is. Let us denote the estimated decision as § = [d1, 4]7 € S.
We will use the notation P(s|r) as a shorthand for P(S = s|r).

Theorem 1.1 The decision rule which minimizes the probability of error is to choose § to
be that value of s which maximizes P(S = s|r), where the possible values of s are those in
the signal constellation S. That is,

§ = argmax P(s|r). 1.17)
seS
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Proof Let us denote the constellationas S = {s;,i = 1,2, ..., M}. Let p(r|s;) denote the
pdf of the received signal when S = s; is the transmitted signal. Let  denote the space
of possible received values; in the current case £ = R2. Let us partition the space £ into
regions 2;, where the decision rule is expressed as: set§ = s; if r € ;. That is,

Q; ={reQ: decide§ =s;}.

The problem, then, is to determine the partitions ;. By the definition of the partition, the
conditional probability of a correct answer when S = s; is sent is

PE=silS=s) = / pirls:)dr.

Denote the conditional probability of error when signal S = s; is sent as P;(£):
Pi(£) = PB #silS=s)).

Then we have
P(E&Y=1—-PE=s;S=5s;)=1 —f p(ris;) dr.

Q;

The average probability of error is

M M
PE) =Y PEPS=5)=) PS=s) [1 - / p(rISi)dr] dr
i=1 i=1 J

M
=1- Zlfg p(ris) P(S = s;)dr.

The probability of a correct answer is

M M
PC)=1—-P¢) = Z/ p(ris))P(S =s;)dr = Z/ P(S =s;|r)p(r)dr.
i=1 7% i=1 Y%

Since p(r) > 0, to maximize P (C), the region of integration ; should be chosen precisely
so that it covers the region where P(S = s;|r) is the largest possible. That is,

Qi ={r: PS=s;Ir) > P(S =sjlr),i # j}.
This is equivalent to (1.17). O
Using Bayes’ rule we can write (1.17) as
. PR|s(r|S)P(s)
= P(s|r) = argmax —————————.
S=a Tezg{ (sr) & seS Pr(T)
Since the denominator of the last expression does not depend on s, we can further write

§ = argmax pg|s(r|s) P(s). (1.18)
seS

This is called the maximum a posteriori (MAP) decision rule. In the case that all the prior
probabilities are equal (or are assumed to be equal), this rule can be simplified to

§ = argmax pgris(r(s).
seS




18

A Context for Error Correction Coding

p(rls:\:/E_b) p(rls = VEp)
NN
—VEp VEy,

(a) Conditional densities.

pGls = —VER)P(s = —/Ep)
p(rls = VEp)P(s = VEp)

VB T VB

(b) Weighted conditional densities.

Figure 1.8: Conditional densities in BPSK modulation.

This is called the maximum likelihood (ML) decision rule.

Note: We will frequently suppress the subscript on a probability density function or dis-
tribution function, letting the arguments themselves indicate the intended random variables.
We could thus write p(r|s) in place of pgis(r]s).

Once the decision § is made, the corresponding bits are determined by the bit-to-
constellation mapping. The output of the receiver is thus an estimate of the bits.

By the form of (1.16), we see that the ML decision rule for the Gaussian noise channel
selects that point § € S which is closest to r in squared Euclidean distance, ||r — §||2.

1.5.3 Special Case: Binary Detection

For the case of binary transmission in a one-dimensional signal space, the signal constellation
consists of the points S = {s/E}p, —+/Ep}, corresponding, respectively, to the bitb = 1 or

b = 0 (respectively, using the current mapping). The corresponding likelihood functions
are

1 _ 2 1 _. 2
p(rls = VEp) = o 27 VB p(rls = —/Ep) = 5—e 27TV

These densities are plotted in Figure 1.8(a). We see r|s = +/E} is a Gaussian with mean
v'Ep. The MAP decision rule compares the weighted densities p(r|s = «/Ep)P(s = ~/Ep)
and p(ris = —v/Ep)P(s = —/Ep). Figure 1.8(b) shows these densities in the case that
P(s = —/Ep) > P(s = +/Ep). Clearly, there is a threshold point 7 at which

p(rls = VEp)P(s = J/Ep) = p(rls = —/Ep) P(s = —/Ep).

In this case, the decision rule (1.18) simplifies to
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- JEp(Ge,b;=1) ifr>1 (1.19)
" | =VEp (e, bi =0) ifr <. '
The threshold value can be computed explicitly as
2
P(s = —/E
r=-2 P b) (1.20)

T 2JE | PG =+Ep

In the case that P(s = /Ep) = P(s = —./E}), the decision threshold is at T = 0, as
would be expected.

Binary detection problems are also frequently expressed in terms of likelihood ratios.
For binary detection, the problem is one of determining, say, if » = 1 or if » = 0. The
detection rule (1.18) becomes a test between

prib=1)P( =1)and P(r|b = 0)P(b = 0).

This can be expressed as a ratio,

pirib=DHPB=1)

prlb=0)P(b=0)
In the case of equal priors, we obtain the likelihood ratio
_prib=1

p(rlb=0)

For many channels, it is more convenient to use the log likelihood ratio
pirib=1
prlb=0)

L(r)

A(r) =log

where the natural logarithm is usually used. The decision is made that b=1ifA(r) >0
andb =0if A(r) <O0.
For the Gaussian channel with BPSK modulation, we have

pla=VE) _\ exp(= 5,20 = VE»)D)  2JE,
p(rla = —/Ep) exp(—515(r + VEp)?) o2
where L, = 20@ is called the channel reliability>.

The quantity A(r) = L.r can be used as soft information in a decoding system. The
quantity sign(A(r)) is referred to as hard information in a decoding system. Most early
error correction decoding algorithms employed hard information — actual estimated bit
values — while there has been a trend toward increasing use of soft information decoders,
which generally provide better performance.

A(r) = log r=>Lr, (1.21)

1.5.4 Probability of Error for Binary Detection

Even with optimum decisions at the demodulator, errors can still be made with some prob-
ability (otherwise, error correction coding would not ever be needed). For binary detection
problems in Gaussian noise, the probabilities can be expressed using the Q(x) function,
which is the probability that a unit Gaussian N ~ A (0, 1) exceeds x:

5In some sources (e. g. [134]) the channel reliability L. is expressed alternatively as equivalent to 2E}/ o2, This
is in some ways preferable, since it is unitless.
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p(R\s =a)P(s =a) p(R|s=b)P(s =b)
a r\ b

PE|ls=a)P(s =a)

Figure 1.9: Distributions when two signals are sent in Gaussian noise.

1 o, 0(x)
Q(x) = P(N >x) = E/ e~ 2dn. \

X

The Q function has the properties that
1
QW) =1-0(-x) QO =3 Q(-oc0) =1 Q(o0) =0.

For a Gaussian random variable Z with mean w and variance 02, Z ~ N(u,o?), it is
straightforward to show that

1 e -
P(Z >x) = ma f e—(z—M)Z/zcﬂ dz=0 (x _ M) ]
X

Suppose there are two points 2 and b along an axis, and that
R=s5s+N,

where 5 is one of the two points, and N ~ N (0, 02). Thedistributions P(R|s = a)P(s = a)
and P(R|s = b)P(s = b) are plotted in Figure 1.9. A decision threshold 7 is also shown.
When a is sent, an error is made when R > 1. Denoting £ as the error event, this occurs
with probability

m —
PEls=a)=P(R>1)= J;ng e—#(r—a)zdr _ Q(T Ua)‘

When b is sent, an error is made when R < t, which occurs with probability

P(“:'S:b)=P<R<f>=1—P<R>r>=1—Q(T;b)=Q(b_r)-

o

The overall probability of error is

PE)=PE|ls=a)P(s=a)+ P(E|ls=b)P(s =b)

:Q(’ )P(s_a)+Q( - )P(s_b)

An important special case is when P(s = a) = P(s = b) = % Then the decision
threshold is at the midpoint T = (a + b)/2. Let d = |b — a| be the distance between the
two signals. Then (1.22) can be written

(1.22)

d
PE)=0Q (5;) . (1.23)
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Probability of bit error

E/N, (dB)

Figure 1.10: Probability of error for BPSK signaling.

Even in the case that the signals are transmitted in multidimensional space, provided that
the covariance of the noise is of the form 021, the probability of error is still of the form
(1.23). That is, if

R=s+N

are n-dimensional vectors, with N ~ A(0, el ), and S € {a, b} are two equiprobable
transmitted vectors, then the probability of decision error is P(£) = Q (%), where d =
la — b|| is the Euclidean distance between vectors. This formula is frequently used in
characterizing the performance of codes.

For the particular case of BPSK signaling, we have a = —«/Ej, b = /Ej, and
d = 2./E}. The probability P(£) is denoted as Py, the “probability of a bit error.” Thus,

Pb=Q(’+‘/_)P( J_>+Q(“/_ )P(JE_b) (1.24)

When P(/Ep) = P(—+/Ep), then T = 0. Recalling that the variance for the channel is
expressed as 02 = —I%Q, we have for BPSK transmission

2
Py = Q(/Eo/o) = Q (,/Ni:) . (1.25)

The quantity E,/Np is frequently called the (bit) signal-to-noise ratio (SNR).
Figure 1.10 shows the probability of bit error for a BPSK as a function of the signal-
to-noise ratio in dB (decibel), where

Ep/No dB = 10log;o Ep/Np,
for the case P(\/Ep) = P(—+/Ep).
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Box 1.1: The Union Bound

For sets A and B, we have P(A U B) = P(A) + P(B) — P(A N B).

Then, since P(A N B) > 0, clearly P(AU B) < P(A) + P(B).

1.5.5 Bounds on Performance: The Union Bound

For some signal constellations, exact expressions for the probability of error are difficult
or inconvenient to obtain. In many cases it is more convenient to obtain a bound on the
probability of error using the union bound. (See Box 1.1.) Consider, for example, the 8-PSK
constellation in Figure 1.11. If the point labeled s is transmitted, then an error occurs if
the received signal falls in either shaded area. Let A be the event that the received signal
falls on the incorrect side of threshold line L and let B be the event that the received signal
falls on the incorrect side of the line L. Then

Pr(symbol decoding error|sg sent) = P(A U B).

The events A and B are not disjoint, as is apparent from Figure 1.11. The exact probability

L2

N }/
A

,
Figure 1.11: Probability of error bound for 8-PSK modulation.

computation is made more difficult by the overlapping region. Using the union bound,
however, the probability of error can bounded as

Pr(symbol decoding error|sg sent) < P(A) + P(B)

The event A occurs with the probability that the transmitted signal falls on the wrong side of
the line Ly; similarly for B. Assuming that the noise is independent Gaussian with variance
o? in each coordinate direction, this probability is

dmin
P(A)=Q< 7o )
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~ bits

Figure 1.12: A binary symmetric channel.

where dpin is the minimum distance between signal points. Denote the probability of a
symbol error by P;. Assuming that all symbols are sent with equal probability, we have
P = Pr(symbol decoding error|sy sent), where the probability is bounded by

P, <20 (d‘““‘) . (1.26)

20

The factor 2 multiplying the @ function is the number of nearest neighbors around each
constellation point. The probability of error is dominated by the minimum distance between
points: better performance is obtained with larger distance. As Es/Np (the symbol SNR)
increases, the probability of falling in the intersection region decreases and the bound (1.26)
becomes increasingly tight.

For signal constellations larger than BPSK, it common to plot the probability of a symbol
error vs. the SNR in E;/Np, where E; is the average signal energy. However, when the bits
are assigned in Gray code order, then a symbol error is likely to be an adjacent symbol, so
that only a single bit error occurs

P, ~ P; for sufficiently large SNR. 1.27n

More generally, the probability of detection error for a symbol s which has K neighbors
in signal space at a distance dp;in from it can be bounded by

P, <KQ (d—zm—‘ﬁ) , (1.28)

o]

and the bound becomes increasingly tight as the SNR increases.

1.5.6 The Binary Symmetric Channel

The binary symmetric channel (BSC) is a simplified channel model which contemplates
only the transmission of bits over the channel; it does not treat details such as signal spaces,
modulation, or matched filtering. The BSC accepts 1 bit per unit of time and transmits that
bit with a probability of error p. A representation of the BSC is shown in Figure 1.12. An
incoming bit of O or 1 is transmitted through the channel unchanged with probability 1 — p,
or flipped with probability p. The sequence of output bits in a BSC can be modeled as

Ri = Si + Ni, (1.29)

where R; € {0, 1} are the output bits, S; € {0, 1} are the input bits, N; € {0, 1} represents
the possible bit errors, where N; is 1 if an error occurs on bit i. The addition in (1.29) is
modulo 2 addition, according to the addition table

04+0=0 0+1=1 1+1=0,
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so that if N; = 1, then R; is the bit complement of S;. The BSC is an instance of a
memoryless channel. This means each of the errors NN; is statistically independent of all the
other N;. The probability that bit i has an error is P(N; = 1) = p, where p is called the
BSC crossover probability. The sequence {N;, i € Z} can be viewed as an independent and
identically distributed (i.i.d.) Bernoulli(p) random process.

Suppose that S is sent over the channel and R is received. The likelihood function
P(R|S) is

1—p ifR=S
P(R|S) = p L (1.30)
p if R #S.
Now suppose that the sequence s = [sy1, 53, ..., s,] is transmitted over a BSC and that
the received sequence is R = [ry, rp, ..., r,]. Because of independent noise samples, the
likelihood function factors,
n
PRIS) = [ [ P(RiIS). (1.31)
i=1

Each factor in the product is of the form (1.30). Thus there is a factor (1 — p) every time R;
agrees with .S;, and a factor p every time R; differs from S;. To represent this, we introduce
the Hamming distance.

Definition 1.1 The Hamming distance between a sequence X = [x1,x2,...,X,] and a
sequence y = [¥1, ¥2, - .., Y] is the number of positions that the corresponding elements
differ:
n
du(x,y) = Y _[xi # yil. (1.32)
i=1

Here we have used the notation (Iverson’s convention [126])

1 ifx; #y;

[xi # yi]l = IO i = y;.

O
Using the notation of Hamming distance, we can write the likelihood function (1.31) as
PRIS) = (1 - py@®S  plu®S
[ —

e —’
number of places number of places

they are the same  they differ
The likelihood function can also be written as

p \HRS
PR|S) = (i—_p) (1—p)".

Consider now the detection problem of deciding if the sequence S; or the sequence S
was sent, where each occur with equal probability. The maximum likelihood decision rule

says to choose that value of S for which Tf—pd” ®-5(1 — p)n is the largest. Assuming that

p< %, this corresponds to choosing that value of S for which d g (R, S) is the smallest, that
is, the vector S nearest to R in Hamming distance.

We see that for detection in a Gaussian channel, the Euclidean distance is the appropriate
distance for detection. For the BSC, the Hamming distance is the appropriate distance for
detection.
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(a) Modulation, channel, and demodulation
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! (e.g. AWGN) or Correlator (e.g. MAP or
] ML)
ST
“5 ___________________ e
|
' —
0 =P o
bits | D ! bits
! I
| 1-p |

(b) An equivalent BSC model

Figure 1.13: (a) System diagram showing modulation, channel, and demodulation; (b) BSC
equivalent.

1.5.7 The BSC and the Gaussian Channel Model

At a sufficiently coarse level of detail, the modulator/demodulator system with the additive
white Gaussian noise channel can be viewed as a BSC. The modulation, channel, and
detector collectively constitute a “channel” which accepts bits at the input and emits bits at
the output. The end-to-end system viewed at this level, as suggested by the dashed box in
Figure 1.13(b), forms a BSC. The crossover probability p can be computed based on the
system parameters,

p = P(bit out = Olbitin = 1) = P(bit out = 1jbitin = 0) = P, = Q(/2Ep/Np).

In many cases the probability of error is computed using a BSC with an “internal” AWGN
channel, so that the probability of error is produced as a function of E;/Np.

1.6 Memoryless Channels

A memoryless channel is one in which the output r,, at the nth symbol time depends only
on the input at time n. Thus, given the input at time », the output at time r is statistically
independent of the outputs at other times. That is, for a sequence of received signals

R=(R1’R21~'~sRm)

bits

bits
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Figure 1.14: Energy for a coded signal.

depending on transmitted signals S1, 52, . . ., Sm, the likelihood function
P(Rl, R2; Ty Rm|S1, S29 vy Sm)

can be factored as

m
p(R1, Rz, ..., RIS, S2. .., Sm) = [ | P(RIS).
i=1
Both the additive Gaussian channel and the binary symmetric channel that have been in-
troduced are memoryless channels. We will almost universally assume that the channels

are memoryless channels. The bursty channels discussed in Chapter 10 and the convolutive
channel introduced in Chapter 14 are exceptions to this.

1.7 Simulation and Energy Considerations for Coded Signals

In channel coding, k input bits yield » output bits, where n > k. Let R = k/n be the code
rate. A transmission budget which allocates Ej Joules/bit for the uncoded data must spread
that energy over more coded bits. Let

E. =RE,

denote the “energy per coded bit.” We thus have E; < Ej. Consider the framework
shown in Figure 1.14. From point ‘a’ to point ‘b, there is conventional (uncoded) BPSK
modulation scheme, except that the energy per bit is E.. Thus, at point ‘b’ the probability

of error can be computed as
[2E
Pb,coded = Q ( _]—V—C> .

Since E. < Ep, this is worse performance than uncoded BPSK would have had. Figure
1.15 shows the probability of error of coded bits for R = 1/2 and R = 1/3 error correction
codes at point ‘b’ in Figure 1.14. At the receiver, the detected coded bits are passed to
the channel decoder, the error correction stage, which attempts to correct errors. Clearly, in
order to be of any value the code must be strong enough so that the bits emerging at point
‘c’ of Figure 1.14 can compensate for the lower energy per bit in the channel, plus correct
other errors. Fortunately, we will see that this is in fact the case.
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Figure 1.15: Probability of error for coded bits, before correction.

Now consider how this system might be simulated in software. It is common to simulate
the modulator at point ‘a’ of Figure 1.14 as having fixed amplitudes and to adjust the variance
o of the noise 7 in the channel. One of the primary considerations, therefore, is how to set

2
o,

Frequently it is desired to simulate performance at a particular SNR, E;/Np. Let y =

Ep/Np denote the desired signal to noise ratio at which to simulate. Frequently, this is

expressed in dB, so we have
y = 10(SNR,dB)/10.

Recalling that 62 = Ny /2, and knowing y, we have

y - 202’
SO E
ot B,
2y
Since Ep = E./R, we have
2 _ E,
2Ry’

It is also common in simulation to normalize, so that the simulated signal amplitude is
E.=1.

1.8 Some Important Definitions and a Trivial Code:
Repetition Coding

In this section we introduce the important coding concepts of code rate, Hamming distance,
minimum distance, Hamming spheres, and the generator matrix. These concepts are intro-
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duced by means of a simple, even trivial, example of an error correction code, the repetition
code.

Let F, denote the set (field) with two elements in it, O and 1. In this field, arithmetic
operations are defined as:

0+0=0 O0+1=1 140=1 141=0
0-0=0 0-1=0 1-0=0 1-1=1.
Let IF5 denote the (vector) space of n-tuples of elements of .

An (n, k) binary code is a set of 2¥ distinct points in F3. Another way of putting this:
An (n, k) binary code is a code that accepts k bits as input and produces » bits as output.

Definition 1.2 The rate of an (n, k) code is

k
R=-=.
n

O

The (n, 1) repetition code, where » is odd, is the code obtained by repeating the 1-bit

input n times in the output codeword. That is, the codeword representing the input O is a

block of n Os and the codeword representing the input 1 is a block of » 1s. The code C
consists of the set of two codewords

¢ ={0,0,...,01,[1,1,...,1]} C F}.

Letting m denote the message, the corresponding codeword is

c=[m,mm,...,m].
N e
n copies

This is a rate R = 1/n code.
Encoding can be represented as a matrix operation. Let G be the 1 x n generator matrix
given by
G = [1 1 .- 1] .

Then the encoding operation is
c=mG.

1.8.1 Detection of Repetition Codes Over a BSC

Let us first consider decoding of this code when transmitted through a BSC with crossover
probability p < 1/2. Denote the output of the BSC by

r=c¢+4n,

where the addition is modulo 2 and n is a binary vector of length »n, with 1 in the positions
where the channel errors occur. Assuming that the codewords are selected with equal
probability, maximum likelihood decoding is appropriate. As observed in Section 1.5.6,
the maximum likelihood decoding rule selects the codeword in C which is closest to the
received vector r in Hamming distance. For the repetition code, this decoding rule can be
expressed as a majority decoding rule: If the majority of received bits are 0, decode a 0;
otherwise, decode a 1. For example, take the (7, 1) repetition code and let m = 1. Then the
codewordis ¢ =[1,1, 1,1, 1, 1, 1]. Suppose that the received vector is

r=[1,0,1,1,0,1,1].
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Hamming “sphere” for (1,1,1)

Hamming “sphere” for (0,0,0)

(a) The code as points in space. (b) The Hamming spheres around the points.
Figure 1.16: A (3, 1) binary repetition code.

Since 5 out of the 7 bits are 1, the decoded value is
m=1.
An error detector can also be established. If the received vector ris not one of the codewords,
we detect that the channel has introduced one or more errors into the transmitted codeword.
The codewords in a code C can be viewed as points in n-dimensional space. For example,
Figure 1.16(a) illustrates the codewords as points (0, 0, 0) and (1, 1, 1) in 3-dimensional
space. (Beyond three dimensions, of course, the geometric viewpoint cannot be plotted, but

it is still valuable conceptually.) In this geometric setting, we use the Hamming distance
to measure distances between points.

Definition 1.3 The minimum distance dyip of a code C is the smallest Hamming distance
between any two codewords in the code:

dmin = min dH(Ci,C').
¢;,€;€C,C#¢C; /

a
The two codewords in the (n, 1) repetition code are clearly a (Hamming) distance n
apart.
In this geometric setting the ML decoding algorithm may be expressed as: Choose the
codeword € which is closest to the received vector r. That is,

¢ = argmindg(r, ¢).
ceC

A different decoder is based on constructing a sphere around each codeword.

Definition 1.4 The Hamming sphere of radius # around a codeword ¢ consists of all vectors
which are at a Hamming distance < ¢ from c. d

For example, for the (3, 1) repetition code, the codewords and the points in their Ham-
ming spheres are

Codeword Points in its sphere
0,000  (0,0,0,(0,0,1),(0,1,0),(1,0,0)
(1,1,1) (1,1,1),(1,1,0),(1,0,1),(0,1,1),
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Figure 1.17: A representation of decoding spheres.

as illustrated in Figure 1.16(b).

‘When the Hamming spheres around each codeword are all taken to have the same radius,
the largest such radius producing nonoverlapping spheres is determined by the separation
between the nearest two codewords in the code, dpin. The radius of the spheres in this case
ist = | (dmin — 1)/2], where the notation | x ] means to take the greatest integer < x. Figure
1.17 shows the idea of these Hamming spheres. The black squares represent codewords in
n-dimensional space and black dots represent other vectors in n-dimensional space. The
dashed lines indicate the boundaries of the Hamming spheres around the codewords. If a
vector r falls inside the sphere around a codeword, then it is closer to that codeword than
to any other codeword. By the ML criterion, r should decode to that codeword inside the
sphere. When all the spheres have radius ¢ = | (dmin — 1)/2], this decoding rule referred to
as bounded distance decoding.

The decoder will make a decoding error if the channel noise moves the received vector r
into a sphere other than the sphere the true codeword is in. Since the centers of the spheres
lie a distance at least diin apart, the decoder is guaranteed to decode correctly provided that
no more than ¢ errors occur in the received vector r. The number ¢ is called the random
error correction capability of the code. If dmiy is even and two codewords lie exactly diin
apart and the channel introduces dmin/2 errors, then the received vector lies right on the
boundary of two spheres. In this case, given no other information, the decoder must choose
one of the two codewords arbitrarily; half the time it will make an error.

Note from Figure 1.17 that in a bounded distance decoder there may be vectors that
fall outside the Hamming spheres around the codewords, such as the vector labeled v;. If
the received vector r = vy, then the nearest codeword is ¢;. A bounded distance decoder,
however, would not be able to decode if r = vy, since it can only decode those vectors that
fall in spheres of radius ¢. The decoder might have to declare a decoding failure in this case.

A true maximum likelihood (ML) decoder, which chooses the nearest codeword to the
received vector, would be able to decode. Unfortunately, ML decoding is computationally
very difficult for large codes. Most of the algebraic decoding algorithms in this book are
only bounded distance decoders. An interesting exception are the decoders presented in
Chapters 7 and 11, which actually produce lists of codeword candidates. These decoders
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are called list decoders.
If the channel introduces fewer than d;, errors, then these can be detected, since r
cannot be another codeword in this case. In summary, for a code with minimum distance

dmin .

Guaranteed etror correction capability: ¢ = | (dmin — 1)/2]
Guaranteed error detection capability:  dpyip — 1

Having defined the repetition code, let us now characterize its probability of error per-
formance as a function of the BSC crossover probability p. For the (n, 1) repetition code,
dmin = n,and t = (n — 1)/2 (remember r is odd). Suppose in particular that n = 3, so that
t = 1. Then the decoder will make an error if the channel causes either 2 or 3 bits to be in
error. Using P to denote the probability of decoding error for a code of length n, we have

Pe3 = Prob(2 channel errors) + Prob(3 channel errors)
=3p’(1 - p) + p* =3p* - 2p’.

Ifp < % then Pe3 < p, that is, the decoder will have fewer errors than using the channel
without coding.

Let us now examine the probability of decoding error for a code of length n. Note that
it doesn’t matter what the transmitted codeword was; the probability of error depends only
on the error introduced by the channel. Clearly, the decoder will make an error if more than
half of the received bits are in error. More precisely, if more than ¢ bits are in error, the
decoder will make an error. The probability of error can be expressed as

n
P = Z Prob(i channel errors occur out of n transmitted bits).
i=t+1

The probability of exactly i bits in error out of » bits, where each bit is drawn at random

with probability p is®
(’7)1}"(1 -p,
i

=y (’Z)p"(l—p)”—"

i=t+1

so that

v
£}
Il

n p 141 _ .
( )(1 -pr (—) + terms of higher degree in p.
t+1 1-p

It would appear that as the code length increases, and thus ¢ increases, the probability of
decoder error decreases. (This is substantiated in Exercise 1.16b.) Thus, it is possible to
obtain arbitrarily small probability of error, but at the cost of avery lowrate: R=1/n — 0
as PN — 0.

Let us now consider using this repetition code for communication over the AWGN
channel. Let us suppose that the transmitter has P = 1 Watt (W) of power available and
that we want to send information at 1 bit/second. There is thus Ep = 1 Joule (J) of energy
available for each bit of information. Now the informationis coded using an (n, 1) repetition

6The binomial coefficient is (7) = ﬁlT)v
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code. To maintain the information rate of 1 bit/second, we must send n coded bits/second.
With » times as many bits to send, there is still only 1 W of power available, which must be
shared among all the coded bits. The energy available for each coded bit, which we denote
as E.,is E. = Ep/n. Thus, because of coding, there is less energy available for each bit
to convey information! The probability of error for the AWGN channel (i.e., the binary
crossover probability for the effective BSC) is

p = Q2E;/No) = Q(y2Ep/nNo).

The crossover probability p is higher as a result of using a code! However, the hope is that
the error decoding capability of the overall system is better. Nevertheless, for the repetition
code, this hope is in vain.

Figure 1.18 shows the probability of error for repetition codes (here, consider only the
hard-decision decoding). The coded performance is worse than the uncoded performance,
and the performance gets worse with increasing n.

] — Uncoded : L

—o— Rep n=3, soft R
4 | = Repn=11, soft | '
‘1 -o- Repn=3,hard |:
-= - Repn=11, hard

Probability of bit error
=

6
SNR, dB

Figure 1.18: Performance of the (3, 1) and (11, 1) repetition code over BSC using both
hard- and soft-decision decoding.

1.8.2 Soft-Decision Decoding of Repetition Codes Over the AWGN

Let us now consider decoding over the AWGN using a soft-decision decoder. Since the
repetition code has a particularly simple codeword structure, it is straightforward to describe
the soft-decision decoder and characterize its probability of error.

The likelihood function is

plo) = [ [ pGilen,
i=1

so that the log likelihood ratio

prim =1)

Afr) =1
) =108 L aim =0)
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can be computed using (1.21) as

n
A =Lc Y ri.
i=1

Then the decoder decides 71 = 1if A(r) > 0, or it = 0if A(r) < 0. Since the threshold is
0 and L, is a positive constant, the decoder decides

. [y im0
m= ]
0 if Y7 ,ri<0.

The soft-decision decoder performs superior to the hard-decision decoder. Suppose the
vector (—vE¢, —v/E;, ..., —+/Ec) is sent (corresponding to the all-zero codeword). If
one of the r; happens to be greater than 0, but other of the r; are correspondingly less than
0, the erroneous positive quantities might be canceled out by the other symbols. In fact,
it is straightforward to show (see Exercise 1.18) that the probability of error for the (n, 1)
repetition code with soft-decision decoding is

Py = Q(y2Ep/No). (1.33)

That is, it is the same as for uncoded transmission — still not effective as a code, but better
than hard-decision decoding.

1.8.3 Simulation of Results

While it is possible for these simple codes to compute explicit performance curves, it is
worthwhile to consider how the performance might also be simulated, since other codes
that we will examine may be more difficult to analyze. The program here illustrates a
framework for simulating the performance of codes. The probability of error is estimated
by running codewords through a simulated Gaussian channel until a specified number of
errors has occurred. Then the estimated probability of error is the number of errors counted
divided by the number of bits generated.

Figure 1.18 shows the probability of error for uncoded transmission and both hard- and
soft-decision decoding of (3, 1) and (11, 1) codes.

1.8.4 Summary

This lengthy example on a nearly useless code has introduced several concepts that will be
useful for other codes:

 The concept of minimum distance of a code.

The probability of decoder error.

The idea of a generator matrix.

The fact that not every code is good!”

 Recognition that soft-decision decoding is superior to hard-input decoding in terms
of probability of error.

7Despite the fact that these are very low-rate codes and historically of little interest, repetition codes are an
essential component of a very powerful, recently introduced code, the repeat accumulate code introduced in
Section 15.14.
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Prior to the proof of Shannon’s channel coding theorem and the research it engendered,
communication engineers were in a quandary. It was believed that to obtain totally reliable
communication, it would be necessary to transmit very slow rates, essentially employing
repetition codes to catch any errors and using slow symbol rate to increase the energy per
bit. However, Shannon’s theorem dramatically changed this perspective, indicating that it
is not necessary to slow the rate of communication to zero. It is only necessary to use better
codes.

1.9 Hamming Codes

As a second example we now introduce Hamming codes. These are codes which are much
better than repetition codes and were the first important codes discovered. Hamming codes
lie at the intersection of many different kinds of codes, so we will use them also to introduce
several important themes which will be developed throughout the course of this book.

A (7, 4) Hamming code produces 7 bits of output for every 4 bits of input. Hamming
codes are linear block codes, which means that the encoding operation can be described in
terms of a 4 x 7 generator matrix, such as

1101000
01107100

G=lo001 1010 (1.34)
0001101

The codewords are obtained as linear combination of the rows of G, where all the operations
are computed modulo 2 in each vector element. That is, the code is the row space of G. For
a message vector m = [m, ma, m3, mg) the codeword is
¢ =mG.
For example, if m = [1, 1, 0, 0] then
c¢=[1,1,0,1,0,0,0] +[0,1,1,0,1,0,0] =[1,0,1,0,1,0,0].

It can be verified that the minimum distance of the Hamming code is dpin = 3, so the code
is capable of correcting 1 error in every block of » bits.

The codewords for this code are

[07 0? O’ 0’ 0’ 0’ 0]’ [15 l? 0, 1’ 0’ 0! 0]7 [09 19 1’ 0? 1’ 07 0]’ [17 0’ 1’ 1’ 1! 07 0]

[0,0,1,1,0,1,01,(1,1,1,0,0,1,01,[0,1,0,1,1,1,01,[1,0,0,0, 1, 1, 0]

[0,0,0,1,1,0,1},[1,1,0,0,1,0,11,[0,1,1,1,0,0,11,{1,0,1, 0,0, 0, 1]

0,0,1,0,1,1,11,{1,1,1,1,1,1,11,[0,1,0,0,0, 1,11, [1,0,0, 1,0, 1, 1].
The Hamming decoding algorithm presented here is slightly more complicated than for the
repetition code. (There are other decoding algorithms.)

Every (n, k) linear block code has associated with it a (n — k) x n matrix H called the
parity check matrix, which has the property that

(1.35)

vHT = 0ifand only if the vector v is a codeword. (1.36)

The parity check matrix is not unique. For the generator G of (1.34), the parity check matrix
can be written as

1 011100
H={0 1 0 11 1 0}. (1.37)
0010111
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It can be verified that GHT = 0.
The matrix H can be expressed in terms of its columns as

H=[h1 h, hi hy hs hg h7].

It may be observed that the columns of H consist of the binary representations of the numbers
1 through 7 = n, though not in numerical order. On the basis of this observation, we can
generalize to other Hamming codes. Hamming codes of length n = 2™ — 1 and dimension
k = 2" —m — 1 exist for every m > 2, having parity check matrices whose columns are
binary representations of the numbers from 1 through .

1.9.1 Hard-input Decoding Hamming Codes
Suppose that a codeword ¢ is sent and the received vector is
r = ¢ + n (addition modulo 2).
The first decoding step is to compute the syndrome
s=rHT = (c+n)HT =nHT.

Because of property (1.36), the syndrome depends only on the error n and not on the
transmitted codeword. The codeword information is “projected away.”

Since a Hamming code is capable of correcting only a single error, suppose that n is all
zeros except at a single position,

n=[ng,nz,n3,...,n71=1[0,...,0,1,0,...,0]

where the 1 is equal to n;. (That is, the error is in the ith position.)
Let us write HT in terms of its rows:

hy
HT = h,zT
b7
Then the syndrome is
!
s=rHT =nHT =[m1 n2 ... na 2 =h!.
h:T

The error position i is the column i of H that is equal to the (transpose of) the syndrome s” .

Algorithm 1.1 Hamming Code Decoding

1. For the received binary vector r, compute the syndrome s = rH T, If s = 0, then the decoded
codewordis € =r.

2. If s # 0, then let i denote the column of H which is equal to s7 . There is an error in position
i of r. The decoded codeword is € = r + n;, where n; is a vector which is all zeros except for
a 1 in the ith position.

This decoding procedure fails if more than one error occurs.
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Example 1.7 Suppose that the message
m = [my,my, m3,mq] =[0,1,1,0]
is encoded, resulting in the codeword
¢=[0,1,1,0,1,0,01+[0,0,1,1,0,1,01 =[0, 1,0, 1,1,1,0].
When c is transmitted over a BSC, the vector
r=1[0111,1,1,0]

is received. The decoding algorithm proceeds as follows:
1. Thesyndromes =1[0,1,1,1,1,1,0]1HT =1, 0, 1] is computed.
2. This syndrome corresponds to column 3 of H. The decoded value is therefore

€=r+10,0,1,0,0,0,01=[0,1,0,1,1, 1,0],

which is the transmitted codeword.

O

The expression for the probability of bit error is significantly more complicated for Hamming
codes than for repetition codes. We defer on the details of these computations to the
appropriate location (Section 3.7) and simply plot the results here. The available energy per
encoded bit is

E; = Ep(k/n) = 4/TEp,

s0, as for the repetition code, there is less energy available per bit. This represents a loss of
10logq(4/7) = —2.4 dB of energy per transmitted bit compared to the uncoded system.
Note, however, that the decrease in energy per bit is not as great as for the repetition code,
since the rate is higher. Figure 1.19 shows the probability of bit error for uncoded channels
(the solid line), and for the coded bits — that is, the bits coded with energy E per bit — (the
dashed line). The figure also shows the probability of bit error for the bits after they have
been through the decoder (the dash-dot line). In this case, the decoded bits do have a lower
probability of error than the uncoded bits. For the uncoded system, to achieve a probability
of error of P, = 107° requires an SNR of 10.5 dB, while for the coded system, the same
probability of error is achieved with 10.05 dB. The code was able to overcome the 2.4 dB
of loss due to rate, and add another 0.45 dB of improvement. We say that the coding gain
of the system (operated near 10 dB) is 0.45 dB: we can achieve the same performance as
a system expending 10.5 dB SNR per bit, but with only 10.05 dB of expended transmitter
energy per bit.

Also shown in Figure 1.19 is the asymptotic (most accurate for large SNR) performance
of soft-decision decoding. This is somewhat optimistic, being better performance than
might be achieved in practice. But it does show the potential that soft-decision decoding
has: it is significantly better than the hard-input decoding.

1.9.2 Other Representations of the Hamming Code

In the brief introduction to the Hamming code, we showed that the encoding and decoding
operations have matrix representations. This is because Hamming codes are linear block
codes, which will be explored in Chapter 3. There are other representations for Hamming
and other codes. We briefly introduce these here as bait and lead-in to further chapters.
As these representations show, descriptions of codes involve algebra, polynomials, graph
theory, and algorithms on graphs, in addition to the linear algebra we have already seen.
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Figure 1.19: Performance of the (7, 4) Hamming code in the AWGN channel.

An Algebraic Representation

The columns of the parity check matrix H can be represented using special symbols. That
is, we could write

1
H=1\0
0

O = O

1 1T 10
0111
1 011

- o0

as

H=[ﬂ1 By B3 Bs Bs PBs 57]’

where each B; represents a 3-tuple. Then the syndrome s = rH can be represented as

7

§ = Zriﬁi.

i=1

Then s = 3; for some j, which indicates the column where the error occurred. This turns
the decoding problem into a straightforward algebra problem.

A question we shall take up later is how to generalize this operation. That is, can codes
be defined which are capable of correcting more than a single error, for which finding the
errors can be computed using algebra? In order to explore this question, we will need to
carefully define how to perform algebra on discrete objects (such as the columns of H)
so that addition, subtraction, multiplication, and division are defined in a meaningful way.
Such algebraic operations are defined in Chapters 2 and 5.

A Polynomial Representation

Examination of the codewords in (1.35) reveals an interesting fact: if ¢ is a codeword, then
s0 is every cyclic shift of €. For example, the codeword [1, 1,0, 1, 0, 0, 0] has the cyclic
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shifts
[07 19 11 0) 1907 O]’ [09 0’ 1, 1’0, 1’ 0]1 [O’ 0’ 0? 1’ 1’09 1]9 [1907 0? 0’ 19 1! 0]’
[0,1,00,0,1,1],11,0,1,0,0,0, 1],

which are also codewords. Codes for which all cyclic shifts of every codeword are also
codewords are called cyclic codes. As we will find in Chapter 4, Hamming codes, like most
block codes of modern interest, are cyclic codes. In addition to the representation using a
generator matrix, cyclic codes can also be represented using polynomials. For the (7, 4)
Hamming code, there is a generator polynomial g(x) = x3 + x + 1 and a corresponding
parity-check polynomial h(x) = x*+x2+x+1, which is a polynomial such that & (x) g (x) =
x” + 1. The encoding operation can be represented using polynomial multiplication (with
coefficient operations modulo 2). For this reason, the study of polynomial operations and
the study of algebraic objects built out of polynomials is of great interest. The parity check
polynomial can be used to check if a polynomial is a code polz/nomial: A polynomial r(x)
is a code polynomial if and only if r (x)k(x) is a multiple of x’ + 1. This provides a parity
check condition: compute r(x)k(x) modulo x’ + 1. If this is not equal to 0, then r(x) is
not a code polynomial.

Example 1.8 The message m = [mg, m1, mp, m3] = [0, 1, 1, 0] can be represented as a polynomial
as
m(x) =mg+mx +m23\¢2-|-m3x3 =0-14+1-x+1-x240-x3 =x +x%

The code polynomial is obtained by c(x) = m(x)g(x), or

cx) =(x +x2)(l+x +x3) =(x +x2+x4)+(x2+x4+x5)
=x+2x2+x3+x4+x5 =x+x3+x4+x5,

(where 2x2 = 0 modulo 2), which corresponds to the code vector ¢ = [0, 1,0, 1, 1, 1, 0]. O

A Trellis Representation

As we will see in Chapter 12, there is a graph associated with a block code. This graph is
called the Wolf trellis for the code. We shall see that paths through the graph correspond
to vectors v that satisfy the parity check condition vHT = 0. For example, Figure 1.20
shows the trellis corresponding to the parity check matrix (1.37). The trellis states at the kth
stage are obtained by taking all possible binary linear combinations of the first £ columns
of H. In Chapter 12, we will develop decoding a algorithm which essentially finds the best
path through the graph. One such decoding algorithm is called the Viterbi algorithm. Such
decoding algorithms will allow us to create soft-decision decoding algorithms for block
codes.

The Viterbi algorithm is also used for decoding codes which are defined using graphs
similar to that of Figure 1.20. Such codes are called convolutional codes.

The Tanner Graph Representation

Every linear block code also has another graph which represents it called the Tanner graph.
For a parity check matrix, the Tanner graph has one node to represent each column of H
(the “bit nodes™) and one node to represent each row of H (the “check nodes™). Edges occur
only between bit nodes and check nodes. There is an edge between a bit node and a check
node if there is a 1 in the parity check matrix at the corresponding location. For example, for
the parity check matrix of (1.37), the Tanner graph representation is shown in Figure 1.21.
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Figure 1.20: The trellis of a (7, 4) Hamming code.

Algorithms to be presented in Chapter 15 describe how to propagate information through
the graph in order to perform decoding. These algorithms are usually associated with codes
which are iteratively decoded, such as turbo codes and low-density parity-check codes.
These modern families of codes have very good behavior, sometimes nearly approaching
capacity.

Ct
€2 21
Cc3
C4 22
‘s 3
C6
c7

bit check
nodes nodes

Figure 1.21: The Tanner graph for a (7, 4) Hamming code.

1.10 The Basic Questions

The two simple codes we have examined so far bring out issues relevant for the codes we
will investigate:

1.
2.
3.
4.

How is the code described and represented?
How is encoding accomplished?
How is decoding accomplished? (This frequently takes some cleverness!)

How are codewords to be represented, encoded, and decoded, in a computationally
tractable way?
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5. What is the performance of the code? What are the properties of the code? (e.g.,
How many codewords? What are the weights of the codewords?)

. Are there other families of codes which can provide better coding gains?

6

7. How can these codes be found and described?

8. Are there constraints on allowable values of n, k, and dmin?
9

. Is there some limit to the amount of coding gain possible?

10. For a given available SNR, is there a lower limit on the probability of error that can
be achieved?

Questions of this nature shall be addressed throughout the remainder of this book, presenting
the best answers available at this time.

1.11 Historical Milestones of Coding Theory

We present in Table 1.1 a brief summary of major accomplishments in coding theory and
some of the significant contributors to that theory, or expositors who contributed by bringing
together the significant contributions to date. Some dates and contributions may not be
exactly as portrayed here; it is difficult to sift through the sands of recent history. Also,
significant contributions to coding are made every month, so this cannot be a complete list.

1.12 A Bit of Information Theory

The channel coding theorem governs the ultimate limits of error correction codes. To
understand what it implies, we need to introduce a little bit of information theory and state
some results. However, it lies beyond the scope of the book to provide a full in-depth
coverage.

1.12.1 Information Theoretic Definitions for Discrete Random Variables
Entropy and Conditional Entropy

We first present information-theoretic concepts for discrete random variables. Let X be
a discrete random variable taking values in a set Ay = {x1, X2, ..., X, } with probability
P(X = x;) = p;. We have seen that the entropy is

H(X)=E[-log, P(X)] =— Z P(X = x)log, P(X = x) (bits).
xeAy

The entropy represents the uncertainty there is about X prior to its measurement; equiva-
lently, it is the amount of information gained when X is measured.

Now suppose that Y = f(X) for some probabilistic function f(X). For example, ¥
might be the output of a noisy channel that has X as the input. Let A, denote the set of
possible Y outcomes. We define H (X|y) as the uncertainty remaining about X when Y is
measured as ¥ = y:

H(X|y) = E[—log, Pxy(X|y)] = — Z Px|y (x|y) log, Px|y (x|y) (bits).
xe Ay
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Table 1.1: Historical Milestones

Year  Milestone Year  Milestone
1948 Shannon publishes “A Mathematical Theory of 1975  Sugiyama et al. propose the use of the Euclidean
Communication” [309] algorithm for decoding [324]
1950  Hamming describes Hamming codes [137] 1977  MacWilliams and Sloane produce the encyclopedic
1954  Reed [284] and Muller [248] both present Reed- The Theory of Error Correcting Codes [220]
Muller codes and their decoders Voyager deep space mission uses a concatenated
1955  Elias introduces convolutional codes [76] RS/convolutional code (see [231])
1957  Prange introduces cyclic codes [271] 1978  Wolf introduces a trellis description of block codes
1959 A. Hocquenghem [151} and ... [377]
1960  Bose and Ray-Chaudhuri [36] describe BCH codes 1980 14,400 BPS modem commercially available (64-
Reed&Solomon produce eponymous codes [286) QAM) (see [100])
Peterson provides a solution to BCH decoding [261] Sony and Phillips standardize the compact disc, in-
1961  Peterson produces his book [260], later extended and cluding a shortened Reed-Solomon code
revised by Peterson and Weldon [262] 1981  Goppa introduces algebraic-geometry codes [123,
1962 Gallager introduces LDPC codes {112] 124]
2400 BPS modem commercially available (4-PSK) 1982 Ungerboeck describes trellis-coded modulation
(see [100D) [345]
1963  The Fano algorithm for decoding convolutional 1983  Lin & Costello produce their engineering textbook
codes introduced [80] [203]
Massey unifies the study of majority logic decoding Blahut publishes his textbook [33]
[224] 1984 14,400 BPS TCM modem commercially available
1966  Forney produces an in-depth study of concatenated (128-TCM) (see [100})
codes [87] and introduces generalized minimum dis- 1985 19,200 BPS TCM modem commercially available
tance decoding [88] (160-TCM) (see [100])
1967  Berlekamp introduces a fast algorithm for 1993 Berrou, Glavieux, and Thitimajshima announce
BCH/Reed-Solomon decoding [22] turbo codes [28]
Rudolph initjates the study of finite geometries for 1994  The Z4 linearity of families of nonlinear codes is
coding [299] announced [138]
4800 BPS modem commercially available (8-PSK) 1995  MacKay resuscitates LDPC codes [218]
(see {100]) Wicker publishes his textbook [373]
1968  Berlekamp produces Algebraic Coding Theory [25] 1996 33,600 BPS modem (V.34) modem is commercially
Gallager produces Information theory and reliable available (see [98])
communication [111] 1998  Alamouti describes a space-time code {3]
1969  Jelinek describes the stack algorithm for decoding 1999  Guruswami and Sudan present a list decoder for RS
convolutional codes [165] and AG codes [128]
Massey introduces his algorithm for BCH decoding 2000  Aji and McEliece [2] (and others [195]) synthesize
[222] several decoding algorithms using message passing
Reed-Muller code flies on Mariner deep space ideas
probes using Green machine decoder 2002  Hanzo, Liew, and Yeap characterize turbo algorithms
1971 Viterbi introduces the algorithm for ML decoding of in [141]
convolutional codes [359] 2003 Koetter and Vardy extend the GS algorithm for soft-
9600 BPS modem commercially available (16~ decision decoding of RS codes [191]
QAM) (see [100]) 2004  Lin&Costello second edition [204]
1972 The BCIR algorithm is described in the open litera- 2005  Moon produces what is hoped to be a valuable book!
ture [10]
1973 Forney elucidates the Viterbi algorithm [89]

Then the average uncertainty in X, averaged over the outcomes Y, is called the conditional
entropy, H(X|Y), computed as

HX|Y)= Y HXI)Pr(y)=— Y Y Pxyr(xly)Pr(y)log; Pxy(x]y)
)’E-Ay yE.AyxE.Ax

=" Z Z Py y(x, y)log, Pxy(x|y) (bits).

yeA, xed;

Relative Entropy, Mutual Information, and Channel Capacity

Definition 1.5 An important information-theoretic quantity is the Kullback-Leibler dis-
tance D(P|| Q) between two probability mass functions, also known as the relative entropy

or the cross entropy.

Let P(X) and Q(X) be two probability mass functions on the
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outcomes in A,. We define

P(X)

P
D(P||Q) = Ep [log—] = ¥ PX)log 22
xeA,

0(x)’

2(X)
O

Lemma 1.2 D(P||Q) > 0, with equality if and only if P = Q; that is, if the two distribu-
tions are the same.

Proof We use the inequality logx < x — 1, with equality only at x = 1. This inequal-

ity appears so frequently in information theory it has been termed the information theory
inequality. Then

P(x) o)
D(P = P(x)log—— = — P(x)log ——
(Pl|Q) X,% () log 5 ZA (x)log T

> Y P@) [1 - %3] (information theory inequality)

x€A; Px)
=Y P(x)-Qkx) =0.
x€A;

O

Definition 1.6 The mutual information between a random variable X and Y is the Kullback-
Leibler distance between the joint distribution P(X, ¥) and the product of the marginals
P(X)P(Y):

I(X;Y)=D(P(X, D)||P(X)P(Y)). (1.38)

O
If X and Y are independent, so that P(X,Y) = P(X)P(Y), then I(X; ¥) = 0. That s,
Y tells no information at all about X.
Using the definitions, it is straightforward to show that the mutual information can also
be written as
I(X;Y) = HX) - H(X|Y).

The mutual information is the difference between the average uncertainty in X and the
uncertainty in X there still is after measuring Y. Thus, it quantifies how much information
Y tells about X. Since the definition (1.38) is symmetric, we also have

IX;Y)=H(X)-H(Y|X).

Inlight of Lemma 1.2, we see that mutual information 7 (X; Y) can never be negative.
With the definition of the mutual information, we can now define the channel capacity.

Definition 1.7 The channel capacity C of a channel with input X and output Y is defined
as the maximum mutual information between X and Y, where the maximum is taken over
all possible input distributions.
C = max I(X;Y).
Px(x)
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For the BSC with crossover probability p, it is straightforward to show (see Exercise
1.31) that the capacity is

C =1- Hy(p).|

1.12.2 Information Theoretic Definitions for Continuous Random Variables

Let Y be a continuous random variable taking on values in an (uncountable) set .Ay, with
pdf py(y). The differential entropy is defined as

H(Y) = —E[log; py(»)] = — ./A pr(y)log; py(y)dy.

¥

Whereas entropy for discrete random variables is always nonnegative, differential entropy
(for a continuous random variable) can be positive or negative.

Example 1.9 Let Y ~ A(0, 02). Then

H{Y)=-E [log2 ! e“Yz/ZUz] =—E [logz ! + logz(e)(~2%)(Y2)]
To o}

V2no
1 2;, 1 2
= log; (e) 352 E{Y“]1+ > log, 270

1 1 1
= 5 loga (@) + 5 log 2ra? = 5 log 2mea? (bits).

O

It can be shown that, for a continuous random variable with mean 0 and variance o2, the
Gaussian V(0, 0'2) has the largest differential entropy.

Let X be a discrete-valued random variable taking on values in the alphabet .4, with
probability Pr(X = x) = Px(x),x € A; and let X be passed through a channel which
produces a continuous-valued output Y for ¥ € A,. A typical example of this is the additive
white Gaussian noise channel, where

Y=X+N,

and N ~ N(0,02). Let

pxy(x,y) = pyx(ylx) Px(x)
denote the joint distribution of X and Y and let

pr(») = Y pxr(x,y)= Y pxy(yIx)Px(x)

xeA, xeA,

denote the pdf of Y. Then the mutual information I (X; Y) is computed as
pxy(x,y)
IX;Y)y=D X, N|Px(X)py (Y =f (x, ¥)logy ————dy
(X;¥) = D(pxy(X, V|| Px(X) py () AYAZPXY Mlogs — B

prix(ylx)
ved, POIX)Px(x")

= Z prix(y|x)Px(x)log, ¥

xeAy yeAy
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Example 1.10 Suppose Ay = {a, —a} (e.g., BPSK modulation with amplitude a) with probabilities
P(X =a)= P(X = —a) = }. Let N ~ N'(0, 5?) and let

Y=X+N.

Because the channel has only binary inputs, this is referred to as the binary additive white Gaussian
noise channel (BAWGNC). Then

L [ p(yla) pQyI—a)
IX:Y) = f la) o + pOyl — a)log
2 [ oo T TG0l + p Ol - @) 2T(rGla) + plyl — a)
1 xX0
=3 / plyla)logy p(yla) + p(y| —a) logy p(y| — a) (1.39)
-0
1
—(p(yla) + p(y!| — a)) log, [E(p(yla) +p(yl - a)):l dy
1 00 1
=5 [—H(Y) —H®Y) - f (p(yla) + p(y| — a)) log; [E(p(yla) +p(yl - a))] dy]
—0Q
00 1
=|- / ¢ (y, Ep, 02) logy ¢(y, Ep, 02 dy — 5 log) 2rea? (bits), (1.40)
—00

where we define the function

¢(}’, a, 02) =

[e—(y—a)z/za2 + e—(y+a)2/2a2] .

8o

O

‘When both the channel input X and the output Y are continuous random variables, then the
mutual information is

I(X;Y)=D(PXY(X.Y)|IPx(x)PY(Y))=/A /APXY(x,y)logz pxy(x,y)
X Y

py () px(x)

Example 1.11 Let X ~ N (0, af) and N ~ N(O, a,%), independent of X. Let Y = X 4+ N. Then
Y ~N(©,02+02).

IX;Y)=HY)-H{Y|X)=HY)-H(X+N|X) =H({)—- HN|X) = H(Y) -~ H(N)

1 1
=3 logy Zneayz -3 logy 27:ea,%

1 o2
=|=logy [1+ —’; (bits). (1.41)
2 of

The quantity af represents the average power in the transmitted signal X and 0,12 represents the
average power in the noise signal N. This channel is called the additive white Gaussian noise channel
(AWGNC). O

As for the discrete channel, the channel capacity C of a channel with input X and output
Y is the maximum mutual information between X and Y, where the maximum is over all
input distributions. In Example 1.10, the maximizing distribution is, in fact, the uniform
distribution, P(X = a) = P(X = —a) = %, so (1.40) is the capacity for the BAWGNC. In
Example 1.11, the maximizing distribution is, in fact, the Gaussian distribution (since this
maximizes the entropy of the output), so (1.41) is the capacity for the AWGNC.

y
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1.12.3 The Channel Coding Theorem

The channel capacity has been defined as the maximum mutual information between the
input and the output. But Shannon’s the channel coding theorem, tells us what the capacity
means. Recall that an error correction code has a rate R = k/n, where k is the number of
input symbols and # is the number of output symbols, the length of the code. The channel
coding theorem says this:

Provided that the coded rate of transmission R is less than the channel capacity,
for any given probability of error € specified, there is an error correction code
of length ng such that there exist codes of length n exceeding ng for which the
decoded probability of error is less than e.

That is, provided that we transmit at a rate less than capacity, arbitrarily low probabilities of
error can be obtained, if a sufficiently long error correction code is employed. The capacity
is thus the amount of information that can be transmitted reliably through the channel per
channel use.

A converse to the channel coding theorem states that for a channel with capacity C, if
R > C, then the probability of error is bounded away from zero: reliable transmission is
not possible.

The channel coding theorem is an existence theorem; it tells us that codes exist that
can be used for reliable transmission, but not how to find practical codes. Shannon’s
remarkable proof used random codes. But as the code gets long, the decoding complexity of
a truly random (unstructured) code goes up exponentially with the length of the code. Since
Shannon’s proof, engineers and mathematicians have been looking for ways of constructing
codes that are both good (meaning they can correct a lot of errors) and practical, meaning
that they have some kind of structure that makes decoding of sufficiently low complexity
that decoders can be practically constructed.

Figure 1.22 shows a comparison of the capacity of the AWGNC and the BAWGNC
channels as a function of E./0? (an SNR measure). In this figure, we observe that the
capacity of the AWGNC increases with SNR beyond one bit per channel use, while the
BAWGNC asymptotes to a maximum of one bit per channel use — if only binary data is
put into the channel, only one bit of useful information can be obtained. It is always the
case that

Cawene > CBawGNC-

Over all possible input distributions, the Gaussian distribution is information maximizing,
so CawgNc is an upper bound on capacity for any modulation or coding that might be
employed. However, at very low SNRs, Cawgne and CawgNc are very nearly equal.

Figure 1.22 also shows the capacity of the equivalent BSC, with crossover probability
P = Q(/E:/0?) and capacity Cgsc = 1 — Ha(p). This corresponds to hard-input
decoding. Clearly, there is some loss of potential rate due to hard-input decoding, although
the loss diminishes as the SNR increases.

1.12.4 “Proof"” of the Channel Coding Theorem

In this section we present a “proof” of the channel coding theorem. While mathematically
accurate, it is not complete. The arguments can be considerably tightened, but are suffi-
cient to show the main ideas of coding. Also, the proof is only presented for the discrete
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Figure 1.22: Capacities of AWGNC, BAWGNC, and BSC.

input/discrete channel case. The intuition, however, generally carries over to the Gaussian
channel.

An important preliminary concept is the “asymptotic equipartition property” (AEP). Let
X be a random variable taking values in a set A,. Let X = (X1, X5, ..., X;) be an i.i.d.
(independent, identically distributed) random vector and let x denote an outcome of X.

Theorem 1.3 (AEP) As n — 0o, there is a set of “typical” outcomes T for which

PX=x)~27"HX)  geT, (1.42)

By the AEP, most of the probability is “concentrated” in the typical set. That is, a “typical”
outcome is likely to occur, while an outcome which is not “typical” is not likely to occur.
Since the “typical” outcomes all have approximately the same probability (1.42), there must
be approximately 2% X) outcomes in the typical set 7.8

Proof We sketch the main idea of the proof. Let the outcome space for a random variable ¥
be Ay = {b1, by, ..., bk}, occurring with probabilities P; = P(Y = b;). Out of n samples
of the i.i.d. variable Y, let n; be the number of outcomes that are equal to b;. By the law of
large numbers,® when n is large,

"o~ P (1.43)
n

8This observation is the basis for lossless data compression occurring in a source coder.

9Thorough proof of the AEP merely requires putting all of the discussion in the formal language of the weak
law of large numbers.
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The product of n observations can be written as
n
VIV Yn = b'f'b;z . b’[’(K - [binl/n)bglz/n) .. -bg’K/n)]

— [z%logzblz%logz by . 22,{110g2 bK]n [2211(:] ';—ilogzbi]n

~ [azR rroeb ]t by (1.43)
_ [2E[Iog2 Y]]" ‘ (1.44)

Now suppose that Y is, in fact, a function of a random variable X, ¥ = f(X). In particular,
suppose f(x) = px{(x) = P(X = x). Then by (1.44),

yv2e e = FODFGD) - fm) = [ [ pxtx) w [25008px 1" 2 gm0,

i=1
This establishes (1.42). 0

Let X be a binary source with entropy H (X) and let each X be transmitted through a
memoryless channel to produce the output Y. Consider transmitting the sequence of i.i.d.
outcomes xi, X2, ..., X;. While the number of possible sequences is M = 2", the typical
set has only about 2"# (X) sequences in it. Let the total possible number of output sequences
Y = ¥1, Y2, ..., ¥n be N. There are about 2"7¥) < N typical output sequences. For each
typical output sequence y there are approximately 2 XIY) input sequences that could have
caused it. Furthermore, each input sequence x typically could produce 2"#Y1X) oytput
sequences. This is summarized in Figure 1.23(a).

Now let X be coded by arate- R code to produce a coded sequence which selects, out of
the 2" possible input sequences, only 2" of these. In Figure 1.23(b), these coded sequences
are denoted with filled squares, M. The mapping which selects the 2”& points is the code.
Rather than select any particular code, we contemplate using all possible codes at random
(using, however, only the typical sequences). Under the random code, a sequence selected
at random is a codeword with probability

R
2" onR-H)

nH(X)

Now consider the problem of correct decoding. A sequencey is observed. It can be decoded
correctly if there is only one code vector x that could have caused it. From Figure 1.23(b),
the probability that none of the points in the “fan” leading to y other than the original code
point is a message is

P = (probability a point X is not a codeword)(*Ypical number of inputs for this y)

=(1- 2"(R—H(X)))2nH<XIY>_

If we now choose R < maxp,(x) H(X) — H(X]|Y), that is, choose R < the capacity C,
then

R—HX)+ H{X|Y) <0
for any input distribution Px (x). In this case,

R-HX)=-HX|Y)—n
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for some 7 > 0. Then
P=(- 2”(—H(X|Y)_n))2nH(X{Y)'

Expanding out using the binomial expansion,

P =1 = 2rHEIDnCHXIN = 4 higher order terms,

SO as 1 —> 00,
P—>1-2"" 1,

Thus the probability that none of the points except the original code point leading to y
is a codeword approaches 1, so that the probability of decoding error — due to multiple
codewords mapping to a single received vector — approaches 0.

We remark that if the average of an ensemble approaches zero, then there are elements
in the ensemble that must approach 0. Thus there are codes (not randomly selected) for
which the probability of error approaches zero as n — oc.

There are two other ways of viewing the coding rate requirement. The 2"H# (1% typical
sequences resulting from transmitting a vector x must partition the 22 typical output se-
quences, so that each observed output sequence can be attributed to a unique input sequence.
The number of subsets in this partition is

2nH Y)

2 — gn(HI)-H(Y|X)
nH(Y|X) ’
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so the condition R < H(Y) — H(Y|X) must be enforced. Alternatively, the 2*7(X) typical
input sequences must be partitioned so that the 2"# (X1Y) typical input sequences associated
with an observation y are disjoint. There must be 2#(# (X)—HXIY)) distinct subsets, so again
the condition R < H(X) — H(X|Y) must be enforced.

Let us summarize what we learn from the proof of the channel coding theorem:

* Aslongas R < C, arbitrarily reliable transmission is possible.

* The code lengths, however, may have to be long to achieve the desired reliability. The
closer R is to C, the larger we would expect # to need to be in order to obtain some
specified level of performance.

* Since the theorem was based on ensembles of random codes, it does not specify what
the best code should be. We don’t know how to “design” the best codes, we only
know that they exist.

* However, random codes have a high probability of being good. So we are likely to
get a good code simply by picking one at random!

So what, then, is the issue? Why the need for decades of research in coding theory, if
a code can simply be selected at random? The answer has to do with the complexity of
representing and decoding the code. To represent a random code of length n, there must
be memory to store all the codewords, which requires n2%” bits. Furthermore, to decode
areceived word y, ML decoding for a random code requires that a received vector y must
be compared with all 28" possible codewords. For a R = 1/2 code with n = 1000 (a
relatively modest code length and a low-rate code), 2°% comparisons must be made for
each received vector. This is prohibitively expensive, beyond practical feasibility for even
massively parallel computing systems, let alone a portable communication device.

Ideally, we would like to explore the space of codes parameterized by rate, probability of
decoding error, block length (which governs latency), and encoding and decoding complex-
ity, identifying thereby all achievable tuples of (R, P, n, x &, xp), where P is the probability
of error and x g and xp are the encoding and decoding complexities. This is an overwhelm-
ingly complex task. The essence of coding research has taken the pragmatic stance of
identifying families of codes which have some kind of algebraic or graphical structure that
will enable representation and decoding with manageable complexity. In some cases what
is sought are codes in which the encoding and decoding can be accomplished readily using
algebraic methods — essentially so that decoding can be accomplished by solving sets of
equations. In other cases, codes employ constraints on certain graphs to reduce the encod-
ing and decoding complexity. Most recently, families of codes have been found for which
very long block lengths can be effectively obtained with low complexity using very sparse
representations, which keep the decoding complexity in check. Describing these codes and
their decoding algorithms is the purpose of this book.

The end result of the decades of research in coding is that the designer has a rich palette
of code options, with varying degrees of rate and encode and decode complexity. This book
presents many of the major themes that have emerged from this research.

1.12.5 Capacity for the Continuous-Time AWGN Channel

Let X; be a zero-mean random variable with E [Xl.z] = af which is input to a discrete
AWGN channel, so that
R; = Xi + Ny,
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where the N; are i.i.d. N; ~ N (0, 03). The capacity of this channel is

1 o?
C = —log,(1 + —%) bits/channel use.
5 0g,( +J’%) its/channel use

Now consider sending a continuous-time signal x (f) according to

x(H) =Y Xigi(t),

i=1

where the ¢; () functions are orthonormal over [0, T']. Let us suppose that the transmitter
power available is P watts, so that the energy dissipated in T seconds is E = PT. This

energy is also expressed as
T n
E= / xHtydt =Y X2,
0 .
i=1

‘We must therefore have
n
Y xt=rPT
i=1

ornE[X?] = PT,sothatc? = PT/n.

Now consider transmitting a signal x (¢) through a continuous-time channel with band-
width W. By the sampling theorem (frequently attributed to Nyquist, but in this context it
is frequently called Shannon’s sampling theorem), a signal of bandwidth W can be exactly
characterized by 2W samples/second — any more samples than this cannot convey any
more information about this bandlimited signal. So we can get 2W independent channel
uses per second over this bandlimited channel. There are n = 2WT symbols transmitted
over T seconds.

If the received signal is

R(@®) =x(®)+ N@®)

where N (¢) is a white Gaussian noise random process with two-sided power spectral density
No/2, then in the discrete-time sample

Ri=xi+ N,

where R; = fOT R(t)@;i(t) dt, the variance of N; is 0% = No/2. The capacity for this
bandlimited channel is

1 PT
C= (— log, (1 + PT/n bits/channel use | (2W channel uses/second)
2 No/2

2PT
= Wlog, (1 + n_No—) bits/second.

Now using n = 2WT we obtain
C = Wlog,(1 + P/NoW) bits/second. (1.45)

Since P is the average transmitted power, in terms of its units we have

__energy

= = (energy/bit)( bits/second).
second
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Since E}, is the energy/bit and the capacity is the rate of transmission in bits per second, we
have P = E;C, giving

CEp
C=WI 1+ ——1. 1.46
ng( + WNo) (1.46)

Let n = C/ W be the spectral efficiency in bits/second/Hz; this is the data rate available for
each Hertz of channel bandwidth. From (1.46),

Ey
= log,(1 —
n g, (1 + ﬂNO)

or o 1
Ep/Np = . (1.47)
n

For BPSK the spectral efficiency is n = 1 bit/second/Hz, so (1.47) indicates that it is theo-
retically possible to transmit arbitrarily reliably at E, /Ny = 1, which is 0 dB. In principle,
then, it should be possible to devise a coding scheme which could transmit BPSK-modulated
signals arbitrarily reliably at an SNR of 0 dB. By contrast, for uncoded transmission when
Ej/ Ny = 9.6 dB the BPSK performance shown in Figure 1.10 has P, = 10—, There is at
least 9.6 dB of coding gain possible. The approximately 0.44 dB of gain provided by the
(7,4) Hamming code of Section 1.9 falls over 9 dB short of what is theoretically possible!

1.12.6 Transmission at Capacity with Errors

By the channel coding theorem, zero probability of error is attainable provided that the
transmission rate is less than the capacity. What if we allow a non-vanishing probability of
error. What is the maximum rate of transmission? Or, equivalently, for a given rate, which
is the minimum SNR that will allow transmission at that rate, with a specified probability
of error?

The theoretical tools we need to address these questions are the separation theorem
and rate-distortion theory. The separation theorem says that we can consider separately
and optimally (at least, asymptotically) data compression and error correction. Suppose
that the source has a rate of r bits/second. First compress the information so that the bits
of the compressed signal match the bits of the source signal with probability p. From
rate distortion theory, this produces a source at rate 1 — Ha(p) per source bit (see (1.2)).
These compressed bits, at a rate r(1 — H2(p)) are then transmitted over the channel with
vanishingly small probability of error. We must therefore have r(1 — Ha(p)) < C. The
maximum rate achievable with average distortion (i.e., probability of bit error) p, which we

denote as C‘P) is therefore c

1-Hxp)
Figure 1.24 shows the required SNR Ej/Np for transmission at various rates for both the
BAWGNC and the AWGNC. For any given line in the plot, the region to the right of the plot
is achievable — it should theoretically be possible to transmit at that probability of error
at that SNR. Curves such as these therefore represent a goal to be achieved by a particular
code: we say that we are transmitting at capacity if the performance falls on the curve.

‘We note the following from the plot:

cP —

At very low SNR, the binary channel and the AWGN channel have very similar
performance. This was also observed in conjunction with Figure 1.22.
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Figure 1.24: Capacity lower bounds on P, as a function of SNR.

* The higher the rate, the higher the required SNR.

* The vertical asymptote (as P, — 0) is the capacity C for that channel.

1.12.7 The Implication of the Channel Coding Theorem

The implication of the channel coding theorem, fundamentally, is that for a block code of
length n and rate R = k/n, the probability of a block decoding error can be bounded as

P(E) <27 "Ex(R) (1.48)

where E,(R) is a positive function of R for R < C. Work on a class of codes known as
convolutional codes — to be introduced in Chapter 12 has shown (see, e.g., [357]) that

P(E) < 2(m+1)nEC(R), (1.49)

where m is the memory of the code and E.(R) is positive for R < C. The problem, as we
shall see (and what makes coding such a fascinating topic) is that, in the absence of some
kind of structure, as either n or m grow, the complexity can grow exponentially.
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Programming Laboratory 1:

Simulating a Communications
Channel

Objective

In this lab, you will simulate a BPSK communication sys-
tem and a coded system with a Hamming code employing
hard-input decoding rules.

Background

Reading: Sections 1.5, 1.7, 1.9.

In the case of BPSK, an exact expression for the prob-
ability of error is available, (1.25). However, in many more
interesting communication systems, a closed form expres-
sion for the probability of error is not available or is difficult
to compute. Results must be therefore obtained by simula-
tion of the system.

One of the great strengths of the signal-space viewpoint
is that probability of error simulations can be made based
only on points in the signal space. In other words, it suffices
to simulate random variables as in the matched filter output
(1.12), rather than creating the continuous-time functions as
in (1.10). (However, for other kinds of questions, a simu-
lation of the continuous-time function might be necessary.
For example, if you are simulating the effect of synchro-
nization, timing jitter, delay, or fading, simulating the time
signal is probably necessary.)

A framework for simulating a communication system
from the signal space point of view for the purpose of com-
puting the probability of error is as follows:

Algorithm 1.2 Outline for simulating digital communica-
tions

1 Initialization: Store the points in the signal constellation.
Fix Ep, (typically E, = 1).

2 FOR each signal-to-noise ratio y = Ep/Np:

3 Compute Ng = Ej/y and ot = Np/2.

4+ DO:

5 Generate some random bit(s) (the “transmitted” bits)
according to the bit probabilities

6 Map the bit(s) into the signal constellation
(e.g..BPSK or 8-PSK) to create signal s

7 Generate a Gaussian random vector n (noise) with
variance o2 = Np/2 in each signal direction.

8 Add the noise to the signal to create the matched filter output
signalr=s+n.

9 Perform a detection on the symbol
(e.g., find closest point in signal constellation to r)

10 From the detected symbol, determine the detected bits

11 Compare detected bits with the transmitted bits

12 Accumulate the number of bits in error

13 UNTIL at least N bit errors have been counted.
14 The estimated probability of error at this SNR is

P, » humber of errors counted
¢ ™ number of bits generated
15End FOR

As a general rule, the more errors N you count, the
smaller will be the variance of your estimate of the prob-
ability of error. However, the bigger N is, the longer the
simulation will take to run. For example, if the probabil-
ity of error is near 1076 at some particular value of SNR,
around one million bits must be generated before you can
expect an error. If you choose N = 100, then 100 million
bits must be generated to estimate the probability of error,
for just that one point on the plot!

Use of Coding in Conjunction with the BSC

For an (n, k) code having rate R = k/n transmitted with
energy per bit equal to Ep, the energy per coded bit is
E; = EpR. It is convenient to fix the coded energy per
bit in the simulation. To simulate the BSC channel with
coding, the following outline can be used.

Algorithm 1.3 Outline for simulating (n, k)-coded digital
communications

1 Initialization: Store the points in the signal constellation.
Fix E. (typically E; = 1). Compute R.
2 FOR each signal-to-noise ratio y = Ep/Np:
3 Compute Ny = Ec/(Ry) and 02 = Np/2.
4 Compute the BSC crossover probability p = Q(/2E¢/Np).
s DO:
6  Generate a block of k “transmitted” input bits
and accumulate the number of bits generated
7 Encode the input bits to n codeword bits
8 Pass the » bits through the BSC
(flip each bit with probability p)
9 Run the # bits through the decoder to produce k output bits
10 Compare the decoded output bits with the input bits
i1 Accumulate the number of bits in error
12 UNTIL at least N bit errors have been counted.
13 The estimated probability of error is
P, ~ Dumber of errors counted

number of bifs generated
14End FOR

The encoding and decoding operations depend on the
kind of code used. In this lab, you will use codes which are
among the simplest possible, the Hamming codes.

Since for linear codes the codeword is irrelevant, the
simulation can be somewhat simplified by assuming that
the input bits are all zero, so that the codeword is also all
zero. For the Hamming code, the simulation can be arranged
as follows:
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Algorithm 1.4 Outline for simulating (n, k) Hamming-
coded digital communications

i Fix E¢ (typically E; = 1). Compute R.
2 FOR each signal-to-noise ratio y = Ep/Np:
3 Compute Ny = E¢c/(Ry) and o2 = Ny/2.

4 Compute the BSC crossover probability p = Q(vZEc/Np).
s DO:
6 Generate r as a vector of n random bits which are 1

with probability p

7 Increment the number of bits generated by k.

8 Compute the syndrome s =rH” .

9 If s # 0, determine the error location based on the column
of H which is equal to s and complement that bit of r

10 Count the number of decoded bits (out of k) in r which
match the all-zero message bits

1t Accumulate the number of bits in error.

12 UNTIL at Jeast N bit errors have been counted.

13 Compute the probability of error.

14End FOR

The coding gain for a coded system is the difference
in the SNR required between uncoded and coded systems
achieving the same probability of error. Usually the coding
gain is expressed in dB.

Assignment

Preliminary Exercises Show that if X is a random vari-
able with mean 0 and variance 1 then

Y=aX+b

is a random variable with mean b and variance a2.

Programming Part
BPSK Simulation

1) Write a program that will simulate a BPSK communi-
cation system with unequal prior bit probabilities. Using
your program, create data from which to plot the probabil-
ity of bit error obtained from your simulation for SNRs in
the range from O to 10 dB, for the three cases that Py = 0.5
(in which case your plot should look much like Figure 1.10),
Py = 0.25, and Py = 0.1. Decide on an appropriate value
of N.

2) Prepare data from which to plot the theoretical proba-
bility of error (1.24) for the same three values of Py. (You
may want to combine these first two programs into a single
program.)

3) Plot the simulated probability of error on the same axes
as the theoretical probability of error. The plots should
have Ej/Np in dB as the horizontal axis and the probabil-
ity as the vertical axis, plotted on a logarithmic scale (e.g.,
semilogy in Matlab).

4) Compare the theoretical and simulated results. Com-
ment on the accuracy of the simulation and the amount of
time it took to run the simulation. Comment on the impor-
tance of theoretical models (where it is possible to obtain
them).

5) Plot the probability of error for Py = 0.1, Py = 0.25
and Py = 0.5 on the same axes. Compare them and com-
ment.

8-PSK Simulation

1) Write a program that will simulate an 8-PSK communi-
cation system with equal prior bit probabilities. Use a signal
constellation in which the points are numbered in Gray code
order. Make your program so that you can estimate both the
symbol error probability and the bit error probability. De-
cide on an appropriate value of N.

2) Prepare data from which to plot the bound on the prob-
ability of symbol error Ps using (1.26) and probability of
bit error Py, using (1.27).

3) Plot the simulated probability of symbol error and bit
error on the same axes as the bounds on the probabilities of
error.

4) Compare the theoretical and simulated results. Com-
ment on the accuracy of the bound compared to the simula-
tion and the amount of time it took to run the simulation.

Coded BPSK Simulation

1) Write a program that will simulate performance of the
(7,4) Hamming code over a BSC channel with channel
crossover probability p = Q(/2Ep/Nyp) and plot the prob-
ability of error as a function of Ej/Ng in dB. On the same
plot, plot the theoretical probability of error for uncoded
BPSK transmission. Identify what the coding gain is for a
probability of error P, = 1073,

2) Repeat this for a (15, 11) Hamming code. (See page 97
and equations (3.6) and (3.4).)

Resources and implementation Suggestions

e A unit Gaussian random variable has mean zero and
variance 1. Given a unit Gaussian random variable, using
the preliminary exercise, it is straightforward to generate a
Gaussian random variable with any desired variance.

The function gran provides a unit Gaussian random
variable, generated using the Box-Muller transformation of
two uniform random variables. The function gran2 re-
turns two unit Gaussian random variables. This is useful
for simulations in two-dimensional signal constellations.

o There is nothing in this lab that makes the use of C++ im-
perative, as opposed to C. However, you may find it useful
to use C++ in the following ways:

o Create an AWGN class torepresent a 1-D or 2-D channel.
e Create a BSC class.



Lab 1: Simulating a Communications Channel

55

e Create a Hamming code class to take care of encoding
and decoding (as you learn more about coding algorithms,
you may want to change how this is done).

e In the literature, points in two-dimensional signal con-
stellations are frequently represented as points in the com-
plex plane. You may find it convenient to do similarly, using
the complex number capabilities that are present in C4++.

e Since the horizontal axis of the probability of error plot is
expressed as a ratio Ej, /Ny, there is some flexibility in how
to proceed. Given a value of Ej,/Np, you can either fix Ny
and determine Ep, or you can fix Ej and determine Ny. An
example of how this can be done isin testrepcode. cc.
e The function ur an generates a uniform random number
between 0 and 1. This can be used to generate a bit which
is 1 with probability p.
o The Q function, used to compute the theoretical proba-
bility of error, is implemented in the function gf.
o There are two basic approaches to generating the se-
quence of bits in the simulation. One way is to generate and
store a large array of bits (or their resulting signals) then
processing them all together. This is effective in a language
such as Matlab, where vectorized operations are faster than
using £ or loops. The other way, and the way recommended
here, is to generate each signal separately and to process it
separately. This is recommended because it is not necessar-
ily known in advance how many bits should be generated.
The number of bits to be generated could be extremely large
— in the millions or even billions when the probability of
error is small enough.
o For the Hamming encoding and decoding opera-
tion, vector/matrix multiply operations over GF(2) are
required, such as ¢ = mG. (GF(2) 1is addi-
tion/subtraction/multiplication/division modulo 2.) These
could be done in the conventional way using nested for
loops. However, for short binary codes, a computational
simplification is possible. Write G in terms of its columns
as

G=[g1 & &)
Then the encoding process can be written as a series of vec-
tor/vector products (inner products)

c={ct,c2,...,cn]
= [mg, mg, mg] .

Let us consider the inner product operation: it consists of

element-by-element multiplication, followed by a sum.
Let m be an integer variable, whose bits represent the

elements of the message vector m. Also, let g[7] be an in-

teger variable in C whose bits represent the elements of the

column gi.. Then the element-by-element multiplication in-
volved in the product mg; can be written simply using the
bitwise-and operator & in C. How, then, to sum up the ele-
ments of the resulting vector? One way, of course, is to use
a for loop, such as:

// Compute c=m*G, where m is a bit-vector,
// and G is represented by g[i]
c = 0; // set vector of bits to 0
for{(i = 0; 1 < n; i++) {
mg =m & g[i];
// mod-2 multiplication
// of all elements
bitsum=0;
for(j = 0, mask=1; j < n; Jj++) {
// mask selects a single bit
if (mg & mask) {
bitsum++;
// accumulate if the bit != 0
}
mask <<= 1;
// shift mask over by 1 bit
}
bitsum = bitsum % 2; // mod-2 sum
¢ = c | bitsum*(l<<i};
// assign to vector of bits ...

However, for sufficiently small codes (such as in this
assignment) the inner for loop can be eliminated by pre-
computing the sums. Consider table below. For a given
number m, the last column provides the sum of all the bits
in m, modulo 2.

m m (binary) >m s[m]=3"m (mod 2)
0 0000 0 0
1 0001 1 1
2 0010 1 1
3 0011 2 0
4 0100 1 1
5 0101 2 0
6 0110 2 0
7 0111 3 1
8 1000 1 1
9 1001 2 0
10 1010 2 0
11 1011 3 1
12 1100 2 0
13 1101 3 1
14 1110 3 1
15 1111 4 0

To use this in a program, precompute the table of bit
fums, then use this to look up the result. An outline fol-
owSs:

// Compute the table s, having all
// the pbit sums modulo 2
/.

// Compute c=m*G, where

// m is a bit-vector, and

// G is represented by gl[i]

c = 0;

for(i = 0; 1 < n; i++) {
c=c | s[m & gfi]ll*(l<<i};
// assign to vector of bits
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1.13 Exercises

1.1 Weighted codes. Let sq, 52, ..., s, be a sequence of digits, each in the range 0 < s; < p, where
p is a prime number. The weighted sum is

W=nsi+(n—Dsp+n—-2)s3+--++285-1 +5n.

The final digit s, is selected so that W modulo p is equal to 0. Thatis, W = 0 (mod p). W is
called the checksum.

(a) Show that the weighted sum W can be computed by computing the cumulative sum sequence
t],’z,...,tnby
fp=s1,00=81+8,... . th=851+52+ 5,

then computing the cumulative sum sequence
w) =, wp=1+1H,..., Wy =tl+t2+"'+tn,

with W = wp.

(b) Suppose that the digits s and sy are interchanged, with s; # sg41, and then a new
checksum W’ is computed. Show that if the original sequence satisfies W = 0 (mod p),
then the modified sequence cannot satisfy W’ = 0 (mod p). Thus, interchanged digits
can be detected.

(c) For a sequence of digits of length < p, suppose that digit s is altered to some s,’c # Sk,
and a new checksum W' is computed. Show that if the original sequence satisfies W = 0
(mod p), then the modified sequence cannot satisfy W/ = 0 (mod p). Thus, a single
modified digit can be detected. Why do we need the added restriction on the length of the
sequence?

(d) See if the ISBN 0-13-139072-4 is valid.

(e) See if the ISBN 0-13-193072-4 is valid.

1.2 See if the UPCs 0 59280 00020 0 and 0 41700 00037 9 are valid.

1.3 A coin having P(head) = 0.001 is tossed 10,000 times, each toss independent. What is the
lower limit on the number of bits it would take to accurately describe the outcomes? Suppose it
were possible to send only 100 bits of information to describe all 10,000 outcomes. What is the
minimum average distortion per bit that must be accrued sending the information in this case?

1.4 Show that the entropy of a source X with M outcomes described by (1.1) is maximized when all
the outcomes are equally probable: p1 = p» = -+ = py.

1.5 Show that (1.7) follows from (1.5) using (1.4).

1.6 Show that (1.12) is true and that the mean and variance of N1; and Np; are as in (1.13) and (1.14).

1.7 Show that the decision rule and threshold in (1.19) and (1.20) are correct.

1.8 Show that (1.24) is correct.

1.9 Show that if X is a random variable with mean O and variance 1 that ¥ = aX + b is a random
variable with mean b and variance aZ.

1.10 Show that the detection rule for 8-PSK

§ = argmaxr’s

seS
follows from (1.18) when all points are equally likely.
1.11 Consider a series of M BSCs, each with transition probability p, where the outputs of each BSC
is connected to the inputs of the next in the series. Show that the resulting overall channel is a

BSC and determine the crossover probability as a function of M. What happens as M — o0?
Hint: To simplify, consider the difference of (x + y)” and (x — y)".
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1.12 [246] Bounds and approximations to the Q function. For many analyses it is useful to have

analytical bounds and approximations to the Q function. This exercise introduces some of the
most important of these.

(a) Show that

.\/—— 1 _x2/2 Nl 1 _ 2/2
2T Q(x) = —e - —e Yiedy x>0
x x Y
Hint: integrate by parts.
(b) Show that

1 2 1
0 <f —e” 2dy < —3e—"2/2.
x Y X
(c¢) Hence conclude that
1

L2012 < o) < —
2rx N2mx

(d) Plot these lower and upper bounds on a plot with Q(x) (use a log scale).

(e) Another useful bound is Q(x) < %e_xz/ 2. Derive this bound. Hint: Identify [Q(a)]2 as
the probability that the zero-mean unit-Gaussian random variables lie in the shaded region
shown on the left in Figure 1.25, (the region [«, 00) X [¢, c0)). This probability is exceeded
by the probability that (x, y) lies in the shaded region shown on the right (extended out to
o0). Evaluate this probability.

y ¥
A

[Q()]?
V2

Y=

Y

o ﬁa

Figure 1.25: Regions for bounding the Q function.

1.13 Let V»(n, t) be the number of points in a Hamming sphere of “radius” ¢ around a binary codeword
of length n. That is, it is the number of points within a Hamming distance ¢ of a binary vector.
Determine a formula for Vo (n, t).

1.14 Show that the Hamming distance satisfies the triangle inequality. That is, for three binary vectors
X, ¥, and z of length n, show that

dp(x,z) <dg(x,y) +dg(y. o).

1.15 Show that for BPSK modulation with amplitudes +./E,, the Hamming distance dy and the
Euclidean distance dg between a pair of codewords are related by dp = 24/Ecdp.
1.16 In this problem, we will demonstrate that the probability of error for a repetition code decreases

exponentially with the code length. Several other useful facts will also be introduced by this
problem.
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(a) Show that

np
2~ (P) = (1 = py* (L) .
1-p

(b) Justify the steps of the proof of the following fact:

then Z (n < pniaip),
i

O<i<pn

DI

f0<p=<

l=(p+0-p)*> Y (?)p"(l-p)”"’

0<i<pn

= © (Da-er ()"

0<i<pn
n
— p—nHa(p) ( )
X\
O<i<pn

(c) Show that the probability of error for a repetition code can be written as

(1)
Pl= 3" (7)(1 - p) p 7,
j=0 N
where r = |(n — 1)/2].
(d) Show that
P < [2/p=p)]

1.17 [220, p. 14] Identities on (}). We can define

x-DE _i)!'"(x =m+D it m is a positive integer

x
()= 1 ifm=0
m
0

otherwise.

Show that
@ (f) = #lk)' if k is a nonnegative integer.
(b) (Z) = 0if n is an integer and k > £ is a nonzero integer.
+1
© )+ G20 =70
k(~ +k—1
@ D) =)
() ZZ=0 (Z) =2".
® >k even (Z) =2k odd (Z) =2""lifn>1.
® Ykoo-DFE) =0ifn > 1.
1.18 Show that for soft-decision decoding on the (r, 1) repetition code, (1.33) is correct.

1.19 For the (n, 1) code used over a BSC with crossover probability p, what is the probability that an
error event occurs which is not detected?

1.20 Hamming code decoding.

(a) For Gin(1.34)and H in (1.37), verify that GH T = 0. (Recall that operations are computed
modulo 2.)
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(b) Letm = [1, 1,0, 0]. Determine the transmitted Hamming codeword when the generator
of (1.34) is used.

(c) Letr =[1,1,1,1,1,0,0). Using Algorithm 1.1, determine the transmitted codeword c.
Also determine the transmitted message m.

(d) The message m = [1,0, 0, 1] is encoded to form the codeword ¢ = [1,1,0,0,1,0, 1].
The vector r = [1,0, 1,0, 1,0, 0] is received. Decode r to obtain ¢. Is the codeword &
found the same as the original ¢? Why or why not?

1.21 For the (7, 4) Hamming code generator polynomial g(x) = 1 + x + x3, generate all possible
code polynomials c(x). Verify that they correspond to the codewords in (1.35). Take a nonzero
codeword c(x) and compute c(x)h(x) modulo %7 + 1. Do this also for two other nonzero
codewords. What is the check condition for this code?

1.22 Isitpossible that the polynomial g(x) = A xd+x%+1isa generator polynomial for a cyclic
code?

1.23 For the parity check matrix

1 01 0
H=|0 1 0 1
0110

-0 O

draw the Wolf trellis and the Tanner graph.
1.24 Let X be arandom variable taking on the values 4y = {a, b, ¢, d} with probabilities

P(X=a)=% P(X=b)=% P(X=c)=% P(X=d)=%.

Determine H(X). Suppose that 100 measurements of independent draws of X are made per
second. Determine what the entropy rate of this source is. Determine how to encode the X data
to achieve this rate.

1.25 Show that the information inequality log x < x — 1 is true.

1.26 Show that for a discrete random variable X, H(X) > 0.

1.27 Show that I(X;Y) > 0 and that 7(X; Y) = O only if X and Y are independent. Hint: Use the
information inequality.

1.28 Show that the formulas I(X; Y) = H(X) — H(X|Y) and I(X; Y) = H(Y) — H(Y|X) follow
from the definition (1.38).

1.29 Show that H(X) > H(X|Y). Hint: Use the previous two problems.

1.30 Show that the mutual information 7(X; Y) can be written as

Pyx (y1x)
I(Xx:y) = Px (x) Pyix(y|x) 1o
: x;; . y;A i 52 Zx’e.Ax PX(x,)PY1X(}’|x/)
X Yy

1.31 For a BSC with crossover probability p having input X and output Y, let the probability of the
inputsbe P(X =0) =gand P(X =1)=1—gq.

(a) Show that the mutual information is
I(X;Y) = HY) + plogy p+ (1 — p)logy (1 — p)
(b) By maximizing over g show that the channel capacity per channel use is
C =1— Hy(p) (bits).

1.32 Consider the channel model shown here, which accepts three different symbols.
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Transmitted pr Received
Symbols Symbols

q
p

The first symbol is not affected by noise, while the second and third symbols have a probability
p of not being corrupted, and a probability g of being changed into the other of the pair. Let
o = —plog p — qlogg, and let P be the probability that the first symbol is chosen and let Q be
the probability that either of the other two is chosen, so that P +2Q = 1.

(a) Show that H(X) = —Plog P —2Q1log Q.
(b) Show that H(X|Y) = 2Qa.

(c) Choose the input distribution (i.e., choose P and Q) in such a way to maximize I (X; Y) =
H(X)— H(X|Y)) subject to P + 2Q = 1. What is the capacity for this channel?

1.33 Let X ~ U(—a, a) (that is, X is uniformly distributed on [—a, a]). Compute H(X). Compare
H(X) with the entropy of a Gaussian distribution having the same variance.

1.34 Let g(x) denote the pdf of a random variable X with variance o2, Show that
1
H(X) < 5 log 2mec?.

with equality if and only if X is Gaussian. Hint: Let p(x) denote the pdf of a Gaussian r.v. with
variance o2 and consider D(gl|p). Also, note that log p(x) is quadratic in x.

1.35 Show that H(X + N|X) = H(N).

1.14 References

The information age was heralded with Shannon’s work [309]. Thorough coverage of
information theory appears in [59], [111} and [382]. The books [228] and [357] place
coding theory in its information theoretic context. Our discussion of the AEP follows {15],
while our “proof” of the channel coding theorem closely follows Shannon’s original [309].
More analytical proofs appear in the textbooks cited above. See also {350]. Discussion
about tradeoffs with complexity are in [288], as is the discussion in Section 1.12.6.

The detection theory and signal space background is available in most books on digital
communication. See, for example, [276, 15, 246, 267].

Hamming codes were presented in [137]. The trellis representation was presented first in
[377]; athorough treatment of the concept appears in [205]. The Tanner graph representation
appears in [330]; see also [112]. Exercise 1.16b comes from [350, p. 21].

The discussion relating to simulating communication systems points out that such sim-
ulations can be very slow. Faster results can in some cases be obtained using importance
sampling. Some references on importance sampling are [84, 211, 308, 316].
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Chapter 2

Groups and Vector Spaces

2.1 Introduction

Linear block codes form a group and a vector space. Hence, the study of the properties of
this class of codes benefits from a formal introduction to these concepts. The codes, in turn,
reinforce the concepts of groups and subgroups that are valuable in the remainder of our
study.

Our study of groups leads us to cyclic groups, subgroups, cosets, and factor groups.
These concepts, important in their own right, also build insight in understanding the con-
struction of extension fields which are essential for some coding algorithms to be developed.

2.2 Groups

A group formalizes some of the basic rules of arithmetic necessary for cancellation and
solution of some simple algebraic equations.

Definition 2.1 A binary operation * on a set is a rule that assigns to each ordered pair of
elements of the set (a, b) some element of the set. (Since the operation returns an element
in the set, this is actually defined as closed binary operation. We assume that all binary
operations are closed.) O

Example 2.1 On the set of positive integers, we can define a binary operation * by a xb = min(a, b).

O

Example 2.2 On the set of real numbers, we can define a binary operation * by a * b = a (i.e., the
first argument). O

Example 2.3 On the set of real numbers, we can define a binary operation * by a * b = a + b. That
is, the binary operation is regular addition. a

Definition 2.2 A group (G, *) is a set G together with a binary operation * on G such that:

G1 The operator is associative: forany a,b,c € G, (axb) xc = a * (b xc).

G2 Thereis an element ¢ € G called the identity element such thata *x ¢ = e xa = a for
alla € G.

G3 For every a € G, there is an element » € G known as the inverse of a such that
a * b = e. The inverse of a is sometimes denoted as a~! (when the operator * is
multiplication-like) or as —a (when the operator * is addition-like).
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Where the operation is clear from context, the group (G, *) may be denoted simply as G.

It should be noted that the notation % and a~! are generic labels to indicate the concept.
The particular notation used is modified to fit the concept. Where the group operation
is addition, the operator + is used and the inverse of an element a is more commonly
represented as —a. When the group operation is multiplication, either - or juxtaposition is
used to indicate the operation and the inverse is denoted as a 1.

Definition 2.3 If G has a finite number of elements, it is said to be a finite group. The

order of a finite group G, denoted |G|, is the number of elements in G. O
This definition of order (of a group) is to be distinguished from the order of an element,
given below. a

Definition 2.4 A group (G, ) is commutative if a x b = b+ a foreverya, b € G. a

Example 2.4 The set (Z, +), which is the set of integers under addition, forms a group. The identity
element is 0, since 0 +a = a + 0 = a for any a € Z. The inverse of any a € Z is —a.
This is a commutative group. O

As a matter of convention, a group that is commutative with an additive-like operator is said
to be an Abelian group (after the mathematician N.H. Abel).

Example 2.5 The set (Z, -), the set of integers under multiplication, does not form a group. There is
a multiplicative identity, 1, but there is not a multiplicative inverse for every element in Z. a

Example 2.6 The set (Q \ {0}, -}, the set of rational numbers excluding 0, is a group with identity
element 1. The inverse of an elementaisa™! =1 /a. g

The requirements on a group are strong enough to introduce the idea of cancellation. In a
group G, if a x b = a * ¢, then b = c (this is left cancellation). To see this, let a1 be the
inverse of g in G. Then

a—l*(a*b)=a"1*(a*c)=(a“1*a)*c=e*c=c

anda~!x(a*b) = (a~!%a) xb = exb = b, by the properties of associativity and identity.

Under group requirements, we can also verify that solutions to linear equations of the
form a % x = b are unique. Using the group properties we get immediately that x = a~1b.
If x; and x, are two solutions, such that a * x; = b = a x x3, then by cancellation we get
immediately that x; = x».

Example 2.7 Let (Zs, +) denote addition on the numbers {0, 1, 2, 3, 4} modulo 5. The operation is
demonstrated in tabular form in the table below:

+]0 1 2 3 4
0/0 1 2 3 4
1|1 2 3 4 0
212 3 4 0 1
3(3 4 0 1 2
414 0 1 2 3

Clearly Ois the identity element. Since O appears in each row and column, every element has an inverse.
By the uniqueness of solution, we must have every element appearing in every row and column, as it
does. By the symmetry of the table it is clear that the operation is Abelian (commutative). Thus we
verify that (Zs, +) is an Abelian group.

(Typically, when using a table to represent a group operation a # b, the first operand a is the row
and the second operand b is the column in the table.) a
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In general, we denote the set of numbers 0, 1, ..., n — 1 with addition modulo n by (Z,, +)
or, more briefly, Zy,.

Example 2.8 Consider the set of numbers {1, 2, 3, 4, 5} using the operation of multiplication modulo
6. The operation is shown in the following table:

N AW -

oW N ==
AN O P NN
W o WO WwWw
N RO AR
— N W R n|wn

The number 1 acts as an identity, but this does not form a group, since not every element has a
multiplicative inverse. In fact, the only elements that have a multiplicative inverse are those that are
relatively prime to 6, that is, those numbers that don’t share a divisor with 6 other than one. We will
see this example later in the context of rings. O

One way to construct groups is to take the Cartesian, or direct, product of groups.
Given groups (G1, *}, {(G7, %}, ..., {Gy, %), the direct product group G; x G2 x -+ - X G,
has elements (ag, az, . .., a,), where each a; € G;. The operation in G is defined element-
by-element. That is, if

(a1,a2,...,a.) € Gand (by,b2,...,b;) € G,

then
(al,aZ,-'-»ar)*(blawa--’br) = (al*bl,az*sz---,ar*br)-

Example 2.9 The group (Zy x Z, +) consists of two-tuples with addition defined element-by-
element modulo two. An addition for the group table is shown here:

+ |00 O @O (@D
00 @00 @©1) 0,0 ab
on oy ©y d@1n a0
1,0 | 1,0 Q1 ©0 ©ob
@y | 4D 1,0 ©1) 00

This group is called the Klein 4-group. o

Example 2.10 This example introduces the idea of permutations as elements in a group. It is inter-
esting because it introduces a group operation that is function composition, as opposed to the mostly
arithmetic group operations presented to this point.

A permutation of a set A is a one-to-one, onto function (a bijection) of a set A onto itself. It is
convenient for purposes of illustration to let A be a set of n integers. For example,

A=1{1,2734}

A permutation p can be written in the notation
{1 2 3 4
P=\3 4 1 2)

1-3 224 351 4->2.

which means that
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There are n! different permutations on n distinct elements.
We can think of p as an operator expressed in prefix notation. For example,

pol=3 or po4d=2

{1 2 3 4
P2=\4 3 1 2
The composition permutation pj o pq first applies pq, then p7, so that
o_123401234_1234
ProPr=14 3 1 2)°\3 4 1 2)7\U 2 4 3

This is again another permutation, so the operation of composition of permutations is closed under
the set of permutations. The identity permutation is

(1 23 4
=\ o2 3 4

There is an inverse permutation under composition. For example,

-1_(1 2 3 4
b= (3 4 1 2) '
It can be shown that composition of permutations is associative: for three permutations p1, py and
p3, then (p o p2) o p3 = p1 o (p20 p3).
Thus the set of all n! permutations on » elements forms a group, where the group operation is
function composition. This group is referred to as the symmetric group on n letters. The group is
commonly denoted by Sp,.

It is also interesting to note that the composition is nor commutative. This is clear from this
example since

Let p; = pand

p20op1# p1op:.
So §4 is an example of a non-commutative group. O

2.2.1 Subgroups

Definition 2.5 A subgroup (H, *) of a group (G, *) is a group formed from a subset of
elements in a group G with the same operation *. Notationally, we may write H < G to
indicate that H is a subgroup of G. (There should be no confusionusing < with comparisons
between numbers because the operands are different in each case.) a

If the elements of H are a strict subset of the elements of G (i.e., H C G but not
H = G), then the subgroup is said to be a proper subgroup. If H = G, then H is an
improper subgroup of G. The subgroups H = {e} C G (e is the identity) and H = G are
said to be trivial subgroups.

Example 2.11 Let G = (Zg, +), the set of numbers {0, 1, 2, 3, 4, 5} using addition modulo 6. Let
H = ({0, 2, 4}, +), with addition taken modulo 6. As a set, H C G. It can be shown that H forms a

group.
Let K = {{0, 3}, +)}, with addition taken modulo 6. Then X is a subgroup of G. O

Example 2.12 A variety of familiar groups can be arranged as subgroups. For example,

{(Z,+) < (Q, +) < (R, +) < (C, +).
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Example 2.13 The group of permutations on 4 letters, Sy, has a subgroup formed by the permutations

(1 2 3 4 (1 2 3 4
PO=R1 2 3 4 PL=\2 3 4 1
(1 2 3 4 (1 2 3 4
P2=\3 4 1 2 P3=\4 1 2 3
(1 2 3 4 (1 2 3 4
PA=10 1 4 3 P5=\4 3 2 1
1 2 3 4 1 2 3 4
P6=(3214) "7_<1432) @

Compositions of these permutations is closed. These permutations correspond to the ways that the
corners of a square can be moved to other corners by rotation about the center and reflection across
edges or across diagonals (without bending the square). The geometric depiction of these permutations
and the group operation table are shown here:

pa
Po_PL P2 P3 P4 P5 P6 P ‘g '/E\ 3.7

Po|P0o PL P2 P3 P4 PS5 P6 PT N

pL|pPt P2 P3 PO Pl P6 P4 D5 AN

p2{P2 P3 PO PL PS P4 PT D6 I RN | _) P

p3s | p3 po P1 P2 pP6 P71 PS5 P4 AN

pa|\ps Ps Ps P71 Po P2 Pl P3 A EERN

ps|ps P1 P4 Ps P2 PO P3Pl 1 . 2

P6 | Ps Ps PT P4 P3 Pl Po P2 (- N D)

pr|d> ps ps ps P1 P3 P2 PO 1 Pl bs

This group is known as Dy. Dy has a variety of subgroups of its own. (Can you find them?)
O

2.2.2 Cyclic Groups and the Order of an Element

In a group G with operation x or multiplication operation we use the notation a” to indicate
axaxax---*a, with the operand a appearing n times. Thus a! = a, a® = a % a, etc. We
take a® to be the identity element in the group G. We use a2 to indicate (@~ 1)(a~!), and
a~" to indicate (a—1)".

For a group with an additive operator +, the notation na is often used, which means
a+a+a+---+ a, with the operand appearing n times. Throughout this section we use
the a” notation; making the switch to the additive operator notation is straightforward.

Let G be a group and let a € G. Any subgroup containing a must also contain aZ, a3,
and so forth. The subgroup must contain ¢ = aa~!, and hence a=2, a3, and so forth, are
also in the subgroup.

Definition 2.6 For any a € G, the set {a"|n € Z} generates a subgroup of G called the
cyclic subgroup. The element 4 is said to be the generator of the subgroup. The cyclic
subgroup generated by a is denoted as (a). O

Definition 2.7 If every element of a group can be generated by a single element, the group
is said to be cyclic. O

Example 2.14 The group (Zs, +) is cyclic, since every element in the set can be generated by a = 2
(under the appropriate addition law):

2, 242=4, 242+42=1, 2+42424+2=3, 242424+2+42=0.
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Figure 2.1: An illustration of cosets.

In this case we could write Zs = (2). Observe that there are several generators for Zs. a

The permutation group S3 is not cyclic: there is no element which generates the whole

group.

Definition 2.8 In a group G, with a € G, the smallest n such that a™ is equal to the identity

in G is said to be the order of a. If no such n exists, a is of infinite order. O
The order of an element should not be confused with the order of a group, which is the

number of elements in the group.

In Zs, the computations above show that the element 2 is of order 5. In fact, the order
of every nonzero element in Zs is 5.

Example 2.15 Let G = (Zg, +}. Then
(2)=1{0,2,4} (3)=1{0,3} (5)=1{0,1,2,3,4,5} = Zs.

It is easy to verify that an element a € Zg is a generator for the whole group if and only if a and 6 are
relatively prime. O

2.2.3 Cosets

Definition 2.9 Let H be a subgroup of (G, x) (where G is not necessarily commutative)
and let a € G. The left coset of H, a x H, is the set {a x hlh € H}. The right coset of H
is similarly defined, H xa = {h xalh € H}. O

Of course, in a commutative group, the left and right cosets are the same.

Figure 2.1 illustrates the idea of cosets. If G is the group (R3, +) and H is the white
plane shown, then the cosets of H in G are the translations of H.

Let G be a group and let H be a subgroup of G. Let a x H be a (left) coset of H in
G. Then clearly b € a x H if and only if b = a * h for some h € H. This means (by
cancellation) that we must have

alxbeH.
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Thus to determine if a and b are in the same (left) coset of H, we determine if alxbeH.

Example 2.16 Let G = (Z, +) and let
So=3Z={...,—6,-3,0,3,6,...}.
Then Sp is a subgroup of G. Now let us form the cosets
Si=8+1={...-5-2,1,47,...}.

and
S$H=8+2={..,—4-1,2,58,...}.
Note that neither S; nor $; are groups (they do not contain the identity). The sets Sp, S1, and S
collectively cover the original group,
G=5US1US.

Let us check whether a = 4 and b = 6 are in the same coset of So by checking whether
(—a) + b € Sy. Since —a + b =2 ¢ Sy, a and b are not in the same coset. O

2.2.4 Lagrange’s Theorem

Lagrange’s theorem prescribes the size of a subgroup compared to the size of its group.
This little result is used in a variety of ways in the developments to follow.

Lemma 2.1 Every coset of H in a group G has the same number of elements.

Proof We will show that every coset has the same number of elements as H. Leta xh1 €
a* H andleta xhy € a x H be two elements in the coseta x H. If a ¥ h; = a * h then by
cancellation we must have k| = hy. Thus the elements of a coset are uniquely identified
by the elements in H. O

We summarize some important properties about cosets:
Reflexive An element a is in the same coset as itself.
Symmetric If g and b are in the same coset, then b and a are in the same coset.

Transitive If ¢ and b are in the same coset, and b and ¢ are in the same coset, then a and ¢
are in the same coset.

Reflexivity, symmetricity, and transitivity are properties of the relation “in the same coset.”

Definition 2.10 A relation which has the properties of being reflexive, symmetric, and
transitive is said to be an equivalence relation. ]

An important fact about equivalence relations is that every equivalence relation partitions
its elements into disjoint sets. Let us consider here the particular case of cosets.

Lemma 2.2 The distinct cosets of H in a group G are disjoint.

Proof Suppose A and B are distinct cosets of H; thatis, A # B. Assume that A and B are
not disjoint, then there is some element ¢ which is common to both. We will show that this
implies that A C B. Letb € B. Forany a € A, a and ¢ are in the same coset (since ¢ is in
A). And c and b are in the same coset (since c is in B). By transitivity, a and b must be in
the same coset. Thus every element of A is in B, so A C B. Turning the argument around,
we find that B C A. Thus A = B.

This contradiction shows that distinct A and B must also be disjoint. a
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Theorem 2.3 Lagrange’s theorem Let G be a group of finite order and let H be a subgroup
of G. Then the order of H divides' the order of G. That is, |H| divides |G|.

Proof The set of cosets partition G into disjoint sets, each of which has the same number
of elements, |H|. These disjoint sets completely cover G, since every element g € G is in
some coset, g * H. So the number of elements of G must be equal a multiple of |[H|. [

Lagrange’s theorem can be stated more succinctly using a notation which we now introduce:
Definition 2.11 The vertical bar | means divides. We write a | b if q divides b (without
remainder). O

Then Lagrange’s theorem can be written: If |G| < oo and H < G, then |H| l |Gl.
One implication of Lagrange’s theorem is the following.

Lemma 2.4 Every group of prime order is cyclic.

Proof Let G be of prime order, let ¢ € G, and denote the identity in G by e. Let H = (a},
the cyclic subgroup generated by a. Thena € H and e € H. But by Theorem 2.3, the order
of H must divide the order of G. Since G is of prime order, then we must have |H| = |G|;
hence a generates G, so G is cyclic. O

2.2.5 Induced Operations; iIsomorphism

Example 2,17 Let us return to the three cosets Sp, Sy, and Sp defined in Example 2.16. We thus have
a set of three objects, S = {Sp, S1, S2}. Let us define an addition operation on S as follows: for A, B
and C € S,

A+B=C ifandonlyifea+b=cforanya € A,b € Bandsomec € C.

That is, addition of the sets is defined by representatives in the sets. The operation is said to be the
induced operation on the cosets. For example,

S1+ 52 = So,
taking as representatives, for example, 1 € S1,2 € S; and noting that 1 +2 = 3 € Sp. Similarly,
S1+ 851 =82

taking as representatives 1 € §7 and noting that 1 + 1 = 2 € S,. Based on this induced operation, an
addition table can be built for the set S:

+ I So S1 &
So | So S1 S2
S1 {81 S So
$H18% S H

Tt is clear that this addition table defines a group, which we can call {S, +). Now compare this addition
table with the addition table for Z3:

1 That is, divides without remainder
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Box 2.1: One-to-One and Onto Functions

Definition 2.13 A function ¢ : G — § is said to be one-to-one if ¢ (a) = ¢(b)
implies a = b for every a and b in G. That is, two distinct values a, b € G with
a # b do not map to the same value of ¢. A one-to-one function is also called a
surjective function. O
A contrasting example is ¢ (x) = x2, where ¢ : R — R, which is not one-to-one
since 4 = ¢(2) and 4 = ¢ (—2).

Definition 2.14 A function ¢ : G — G is said to be onto if for every g € G,
there is an element a € G such that ¢(a) = g. An onto function is also called

an injective function. O
That is, the function goes onto everything in G. A contrasting exampleis ¢ (x) =
x2, where ¢ : R — R, since the point g = —3 is not mapped onto by ¢ from

any point in R.

Definition 2.15 A function which is one-to-one and onto (i.e., surjective and
injective) is called bijective. g
Bijective functions are always invertible. If ¢ : G — G is bijective, then
|G| = |G| (the two sets have the same cardinality).

Structurally, the two addition tables are identical: entries in the second table are obtained merely
by replacing Sy with k, for k = 0, 1, 2. We say that the group (S, +) and the group (Z3, +) are
isomorphic. O

Definition 2.12 Two groups (G, *) and (G, o) are said to be (group) isomorphic if there
exists a one-to-one, onto function ¢ : G — § called the isomorphism such that for every
a,begG,

¢(ax l?) =¢@)o ). 22
operation  gperation
inG ing
The fact that groups G and G are isomorphic are denoted by G = G. a

We can thus write S = Z3 (where the operations are unstated but understood from context).

‘Whenever two groups are isomorphic they are, for all practical purposes, the same thing.
Different objects in the groups may have different names, but they represent the same sorts
of relationships among themselves.

Definition2.16 Let (G, %) bea group, H asubgroupandletS = {Ho = H, H1, Ha, ..., Hy}
be the set of cosets of H in G. Then the induced operation between cosets A and B in S
is defined by

AxB =Cifandonlyifaxb=c

foranya € A, b € B and some ¢ € C, provided that this operation is well defined. The
operation is well defined if foreverya € A andb € B,axb € C, there is thus no ambiguity
in the induced operation. a

For commutative groups, the induced operation is always well defined. However, the
reader should be cautioned that for noncommutative groups, the operation is well defined
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only for normal subgroups.?

Example 2.18 Consider the group G = (Zg, +) and let H = {0, 3}. The cosets of H are
Hy=1{0,3} Hi=1+H={1,4 Hy=2+H={25}

Then, under the induced operation, for example, Hy + Hy = Hj since2+2 =4 and 4 € H;. We
could also choose different representatives from the cosets. We get

5+5=4

in G. Since 5 € Hy and 4 € Hy, we again have Hy + Hy = Hj. If by choosing different elements
from the addend cosets we were to end up with a different sum coset, the operation would not be well
defined. Let us write the addition table for Zg reordered and separated out by the cosets. The induced
operation is clear. We observe that Hy, H; and H; themselves constitute a group, with addition table
also shown.

Hy H Hy
+]/0 311 412 5
Ho 010 311 412 5 + | Hy Hy Hp
313 0{4 15 2 Hy | Hy H H
H 1)1 472 513 0O Hy | HH Hy Hy
414 115 210 3 Hy | Hb Hy H
H, 212 513 04 1
515 20 3|1 4
The group of cosets is clearly isomorphic to (Z3, +): {Hy. H1, Hz2} = Z3. a

From this example, we see that the cosets themselves form a group.

Theorem 2.5 If H is a subgroup of a commutative group (G, %), the induced operation %
on the set of cosets of H satisfies

(axb)*H =(axH)x(bx H).

The proof is explored in Exercise 2.13. This defines an operation. Clearly, H itself acts as
an identity for the operation defined on the set of cosets. Also, by Theorem 2.5, (a x H) *
(@ 'xH) = (axa~Y)x H = H, so every coset has an inverse coset. Thus the set of cosets
of H form a group.

Definition 2.17 The group formed by the cosets of H ina commutative® group G with the
induced operation is said to be the factor group of G modulo H, denoted by G/H. The
cosets are said to be the residue classes of G modulo H. ]

In the last example, we could write Z3z = Z¢/Hp. From Example 2.17, the group of
cosets was also isomorphic to Z3, so we can write

Z/3Z = Zs.

In general, it can be shown that
Z)nZ = Zy.

ZA subgroup H of a group G is normal if g‘1 Hg = H forall g € G. Clearly all Abelian groups are normal.
30r of a normal subgroup in a noncommutative group.
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Figure 2.2: A lattice partitioned into cosets.

Example 2.19 A lattice is formed by taking all possibie integer linear combinations of a set of basis
vectors. Thatis, let vq, vo, ..., v, be a set of linearly independent vectors, let V = [vl, Vo, e, v,,] .
Then a lattice is formed from these basis vectors by

A={Vz:zeZ"}.

For example, the lattice formed by V = [(1) ? ] is the set of points with integer coordinates in the plane,
denoted as Z2.
For the lattice A = ZZ, let A’ =272 bea subgroup. Then the cosets

So= A" (denoted by e) 51 =(1,0)+ A’ (denoted by o)
S =(0,1)+ A’ (denoted by [) S§3=(1,1)+ A’ (denoted by O)
are indicated in Figure 2.2. It is straightforward to verify that

AN =T x Zs.

Such decompositions of lattices into subsets find application in trellis coded modulation, as we
shall see in Chapter 13. O

2.2.6 Homomorphism

For isomorphism, two sets G and G are structurally the same, as defined by (2.2), and they
have the same number of elements (since there is a bijective function¢ : G — G). From an
algebraic point of view, G and G are identical, even though they may have different names
for their elements.

Homomorphism is a somewhat weaker condition: the sets must have the same algebraic
structure, but they might have different numbers of elements.

Definition 2.18 The groups (G, *) and (G, ¢} are said to be (group) homomorphic if there
exists a function (that is not necessarily one-to-one) ¢ : G — G called the homomorphism
such that

¢laxb) =¢a)o (D). (2.3)

operation  operation
inG ing
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O

Example 2.20 Let G = (Z,+) and let G = (Zp, +). Let ¢ : G — G be defined by ¢(a) = a
mod 7, the remainder when a is divided by n. Let a, b € Z. We have (see Exercise 2.32)

¢(a+b) =¢(a) +¢(b).

Thus (Z, +) and {Z,, +) are homomorphic, although they clearly do not have the same number of
elements. 0

Theorem 2.6 Let (G, x) be a commutative group and let H be a subgroup, so that G/H
is the factor group. Let ¢ : G — G/H be defined by ¢(a) = ax H. Then ¢ is a
homomorphism. The homomorphism ¢ is said to be the natural or canonical homomorphism.

Proof Leta, b € G. Then by Theorem 2.5
¢laxb) =¢a)xodd).

operation  gperation
inG inG/H

O

Definition 2.19 The kernel of a homomorphism ¢ of a group G into a group G is the set
of all elements of G which are mapped onto the identity element of G by ¢. O

Example 2.21 For the canonical map Z — Z, of Example 2.20, the kernel is nZ, the set of multiples
of n. O

2.3 Fields: A Prelude

We shall have considerably more to say about fields in Chapter 5, but we introduce the
concept here since fields are used in defining vector spaces and simple linear block codes.

Definition 2.20 A field (F, +, -) is a set of objects F on which the operations of addition
and multiplication, subtraction (or additive inverse), and division (or multiplicative inverse)
apply in a manner analogous to the way these operations work for real numbers.

In particular, the addition operation + and the multiplication operation - (or juxtaposi-
tion) satisfy the following :

F1 Closure under addition: Foreverya and binF, a + b is alsoin F.

F2 Additive identity: There is an element in F, which we denote as 0, such thata + 0 =
O+a=aforeveryaeF.

F3 Additive inverse (subtraction): For every a € F, there exists an element b in IF such that
a+ b =b+a=0. The element b is frequently called the additive inverse of a and
is denoted as —a.

F4 Associativity: (a+b) +c=a+ (b+c) foreverya,b,c € F.
F5 Commutativity: @ + b = b + a foreverya, b € F.
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The first four requirements mean that the elements of FF form a group under addition; with
the fifth requirement, a commutative group is obtained.

F6 Closure under multiplication: Foreverya andbinF, a - bis also in F.

F7 Multiplicative identity: There is an element in IF, which we denote as 1, such that
a-1=1-a=aforeverya € Fwitha # 0.

F8 Multiplicative inverse: Forevery a € F with a # 0, there is an element » € F such that

a-b=0>b-a=1. The element b is called the multiplicative inverse, or reciprocal, of

a and is denoted as a .

F9 Associativity: (a-b)-c =a-(b-c)foreverya,b,c € F.
F10 Commutativity: a -b = b -a foreverya,b € F.

Thus the non-zero elements of IF form a commutative group under multiplication.

F11 Multiplication distributes over addition: a- (b +c¢) =a-b+a-c

The field (I, +, -) is frequently referred to simply as F. A field with g elements in it may
be denoted as IF,. g

Example 2.22 The field with two elements in it, F) = Z3 = G F(2) has the following addition and
multiplication tables

+ /0 1 10 1
00 1 00 O
11 0 110 1
——— [ —
“exclusive or” “and”
The field GF(2) is very important to our work, since it is the field where the operations involved in
binary codes work. However, we shall have occasion to use many other fields as well. O

Example 2.23 The field F5 = Zs = G F(5) has the following addition and multiplication tables:

+]0 1 2 3 4 -0 1 2 3 4
0l0 1 2 3 4 00 0 0 0 0
1|1 2 3 40 101 2 3 4
212 3 4 01 210 2 4 1 3
313 401 2 310 3 1 42
414 01 2 3 410 4 3 21

|

There are similarly constructed fields for every prime p, denoted by either GF (p) or F .

Example 2.24 A field with four elements can be constructed with the following operation tables:

+](0 1 2 3 o 1 2 3
0/0 1 2 3 0/00 0D
110 3 2 1{0 1 2 3 (2.4)
202 3 0 1 210 2 3 1
33 210 3]0 3 1 2



2.4 Review of Linear Algebra

This field is called G F(4). Note that it is definitely rot the same as {(Z4, +, -)! (Why not?) We learn
in Chapter 5 how to construct such a field.

O

Just as for groups, we can define the concepts of isomorphism and homomorphism. Two
fields (F, +, -) and (F, +, -) are (field) isomorphic if there exists a bijective function ¢ :
F — F such that foreverya,b € F,

¢>(a+1.7) =¢(a)+ ¢(b) *( ab') =¢(a)pD).
operation  operation operation operation
in F inF in F in F

For example, the field F defined on the elements {—1, 1} with operation tables

is isomorphic to the field GF(2) defined above, with ¢ mapping 0 — —1 and 1 — 1.
Fields F and F are homomorphic if such a structure-preserving map ¢ exists which is not
necessarily bijective.

2.4 Review of Linear Algebra

Linear block codes are based on concepts from linear algebra. In this section we review
concepts from linear algebra which are immediately pertinent to our study of linear block
codes.

Up to this point, our examples have dealt primarily with binary alphabets having the
symbols {0, 1}. As your algebraic and coding-theoretic skills are deepened you will learn
that larger alphabets are feasible and often desirable for good codes. However, rather than
present the algebra first and the codes second, it seems pedagogically worthwhile to present
the basic block coding concepts first using binary alphabets and introduce the algebra for
larger alphabets later. For the sake of generality, we present definitions in terms of larger
alphabets, but for the sake of concrete exposition we present examples in this chapter using
binary alphabets. For now, understand that we will eventually need to deal with alphabets
with more than two symbols. We denote the number of symbols in the alphabet by ¢, where
g = 2 usually in this chapter. Furthermore, the alphabets we use usually form a finite field,
denoted here as F,;, which is briefly introduced in Box 12.1 and thoroughly developed in
Chapter 5.

Definition 2.21 Let V be a set of elements called vectors and let I be a field of elements
called scalars. An addition operation + is defined between vectors. A scalar multiplication
operation - (or juxtaposition) is defined such that for a scalar ¢ € IF and a vector v € V,
a-v € V. Then V is a vector space over F if 4- and - satisfy the following:

V1 V forms a commutative group under +.

V2 For any elementa € Fandve V,a-ve V.

Combining V1 and V2, we must have a - v+ b -w € V for every v,w € V and
a,bel.
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V3 The operations + and - distribute:
(a+b)-v=a-v+b-v and a-(u+v)=a-u+a-v
for all scalars a, b € F and vectorsv,u € V.

V4 The operation - is associative: (a-b)-v=a-(b-v)foralla,beFandve V.

F is called the scalar field of the vector space V. O
Example 2.25
1. The set of n-tuples (vg, vy, ..., Vp—1), with elements v; € R forms a vector space which we

denote as R", with addition defined element-by-element,
0, Y1y« v Vp—1) + (g, 41, ..., Up—1) = (Vo + g, V1 + U1, ..., Up—1 + Up—1),
and scalar multiplication defined by
a-(vg,v1,...,0—1) = (avg, avy,...,avy_1). 2.5)

2. The set of n-tuples of (vg, vy, ..., vp—1) with elements v; € [F, forms a vector space which
we denote as F3. There are 2" elements in the vector space F5. For n = 3, the elements of the
vector space are

0,0,00 (0,0,1) (0, 1,00 (0, 1,1)
(1,0,00 (1,0, (1,1,00 (1.4, D
3. In general, the set V = F} of n-tuples of elements of the field Fy with element-by-element

addition and scalar multiplication as in (2.5) constitutes a vector space. We call an n-tuple of
elements of F; simply an n-vector.

O
Definition 2.22 Let vy, v, ..., V¢ be vectors in a vector space V and letaj, a3, ..., ai be
scalars in F. The operation
aivy +azxva + - - apvi
is said to be a linear combination of the vectors. O
Notationally, observe that the linear combination
aivy +axva + - apvg
can be obtained by forming a matrix G by stacking the vectors as columns,
G=[vi v2 - W]
then forming the product with the column vector of coefficients:
o]
a
aivi +ayvyp + - Qg Vg = [V1 vy - Vk] . 2.6)
L % |

Alternatively, the vectors v; can be envisioned as row vectors and stacked as rows. The
linear combination can be obtained by the product with a row vector of coefficients:

™

Vi
v2

aivy + azvy + .. ~aARVE = [al a - ak]
Vi
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Definition 2.23 Let V be a vector space. A set of vectors G = {vy1, vz, ..., V¢}, each
in V, is said to be a spanning set for V if every vector v € V can be written as a linear
combination of the vectors in G. That is, for every v € V, there exists a set of scalars

ai,az,...,agsuchthatv =ajvy + axvy + - - - + ap k.
For a set of vectors G, the set of vectors obtained from every possible linear combination
of vectors in G is called the span of G, span(G). a

It may be verified that the span of a set of vectors is itself a vector space. In light of the
notation in (2.6), it is helpful to think of G as a matrix whose columns are the vectors v;,
and not simply as a set of vectors. If G is interpreted as a matrix, we take span(G) as the set
of linear combinations of the columns of G. The space obtained by the linear combination
of the columns of a matrix G is called the column space of G. The space obtained by the
linear combination of the rows of a matrix G is called the row space of G.

It may be that there is redundancy in the vectors of a spanning set, in the sense that not
all of them are needed to span the space because some of them can be expressed in terms
of other vectors in the spanning set. In such a case, the vectors in the spanning set are not
linearly independent:

Definition 2.24 A set of vectors vy, Vo, . .., V¢ is said to be linearly dependent if a set of
scalars {a1, ay, .. ., ax} exists, with not all a; = 0 such that

aivi+axyva+ - +arvy = 0.

A set of vectors which is not linearly dependent is linearly independent. O
From the definition, if a set of vectors {vy, ..., v} is linearly independent and there
exists a set of coefficients {a1, ..., ar} such that

aivi+ava + -+ agvg = 0,
then it must be the case thatay = a3 = --- =a = 0.

Definition 2.25 A spanning set for a vector space V that has the smallest possible number
of vectors in it is called a basis for V.
The number of vectors in a basis for V is the dimension of V. O
Clearly the vectors in a basis must be linearly independent (or it would be possible to
form a smaller set of vectors).

Example 2.26 Let V = 1F4, the set of binary 4-tuples and let

1 0 1
0 1 1
G= 1{°(1[’|0
0 0 0
be a set of vectors.
Let W = span(G);
0 1 0 1
0 0 1 1
W=lo|"[t|']1]"|o
0 0 0 0

It can be verified that W is a vector space.
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The set G is a spanning set for W, but it is not a spanning set for V. However, G is not a basis for
W the set G has some redundancy in it, since the third vector is a linear combination of the first two:

+

OO

-
1
e
0—

|
O = O =

The vectors in G are not linearly independent. The third vector in G can be removed, resulting in the
set

G =

S = O =

0
1

SRRk
0_

which has span(G’) = W.
No spanning set for W has fewer vectors in it than does G, so dim(W) = 2. O

Theorem 2.7 Let V be a k-dimensional vector space defined over a scalar field with a finite
number of elements q in it. Then the number of elements in V is |V| = g*.

Proof Every vector v in V can be written as
V=av] +ayvy+ -+ apvi.
Thus the number of elements in V is the number of distinct k-tuples (ai, ap, ..., ax) that

can be formed, which is g*. O

Definition 2.26 Let V be a vector space over a scalar field F and let W C V be a vector
space. That is, for any wy and wy € W, aw; + bwy € W forany a,b € F. Then W is
called a vector subspace (or simply a subspace) of F. ]

Example 2.27 The set W in Example 2.26 is a vector space, and is a subset of V. So W is a vector
subspace of V.
Note, as specified by Theorem 2.7, that W has 4 = 22 elements in it. g

We now augment the vector space with a new operator called the inner product, creating
an inner product space.

Definition 2.27 Letu = (ug, uy,...,uny—1) and v = (vg, v1, ..., Up—1) be vectors in a
vector space V, where u;, v; € F. The inner product is a function the accepts two vectors
and returns a scalar. It may be written as (u, v) or as u - v. It is defined as

n—1

(u,v):u-v:Zui-vi.

i=0

It is straightforward to verify the following properties:

1. Commutativity: u-v=v-u
2. Associativity: a-(@-v) =(a-u)-v

3. Distributivity: u- (v+w) =u-v+u-w.
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In physics and elementary calculus, the inner product is often called the dot product and is
used to describe the physical concept of orthogonality. We similarly define orthogonality
for the vector spaces of interest to us, even though there may not be a physical interpretation.

Definition 2.28 Two vectors u and v are said to be orthogonal ifu-v =0. Whenu and v
are orthogonal, this is sometimes denoted asu L v. O

Combining the idea of vector subspaces with orthogonality, we get the concept of a dual
space:

Definition 2.29 Let W be a k-dimensional subspace of a vector space V. The set of all
vectors u € V which are orthogonal to all the vectors of W is called the dual space of W
(sometimes called the orthogonal complement of W or nullspace), denoted W-. (The
symbol W+ is sometimes pronounced “W perp,” for “perpendicular.”) That is,

WJ'={ueV:u-w=OforallweW}.

d

Geometric intuition regarding dual spaces frequently may be gained by thinking in three-

dimensional space R? and letting W be a plane through the origin and W+ a line through
the origin orthogonal to the plane.

Example 2.28 Let V = ]Fg and let W be as in Example 2.26. Then it can be verified that

0 0] 17 17

1 0 0 1 1

W==1lo|"|o|"]1]" |1

o] [1] o] L
Note that _ _
o]
L ol |1
W-— = span ol 11
1] |o]

and that dim(W1) = 2. O

This example demonstrates the important principle stated in the following theorem.

Theorem 2.8 Let V be a finite-dimensional vector space of n-tuples, F*, with a subspace
W of dimension k. Let U = W+ be the dual space of W. Then

dim(W+) = dim(V) — dim(W) =n — k.
Proof Let g1, g2, ..., gk be abasis for W and let
G=[g1 & - &

This is arank k matrix, meaning that the dimension of its column space is k¥ and the dimension
of its row space is k. Any vector w € W is of the form w = Gx for some vector x € F*.
Any vector u € U must satisfy u/ Gx = 0 for all x € F¥. This implies that u G = 0.
(That is, u is orthogonal to every basis vector for W.)

Let {hy,h3, ..., h,} be a basis for W+, then extend this to a basis for the whole n-
dimensional space, {hy, hy, ..., h,, f1, 2, ..., £, }. Every vector v in the row space of G
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is expressible (not necessarily uniquely) as v = b” G for some vector b € V. But since
{hi,hy, ..., h, f1,f,... £} spans V, b must be a linear combination of these vectors:

b =aihy + ahy + - -a;hy +ar1fy + -+ anfy—s.
So a vector v in the row space of G can be written as

v=ahlG+ahlG + -+ anf’.

n—r

G,
from which we observe that the row space of G is spanned by the vectors
]G, blG,....0'G fG,... .t G}

The vectors {hy, hy, ..., h,}arein Wi, so thathiTG =0fori =1,2,...,r. Theremaining
vectors {f7 G, ..., £]_ G} remain to span the k-dimensional row space of G. Hence, we
must have n — r > k. Furthermore, these vectors are linearly independent, because if there

is a set of coefficients {a;} such that
a1(fTG) + -+ anr (€1_,G) =0,

then
(@fl +---+anrtl_)G=0.

But the vectors f; are not in W, so we must have
arfT + - +ay £, =0.

Since the vectors {f;} are linearly independent, we must have a1 = a2 = --- = ap— = 0.
Therefore, we must have dim span({flTG, e, fnT_rG}) =k, son—r =k. O

2.5 Exercises

2.1 A group can be constructed by using the rotations and reflections of a regular pentagon into itself.
The group operator is “followed by” (e.g., a reflection p “followed by” a rotation r). This is a
permutation group, as in Example 2.10.

(a) How many elements are in this group?

(b) Construct the group (i.e., show the “multiplication table” for the group).
(c) Isitan Abelian group?

(d) Find a subgroup with five elements and a subgroup with two elements.
(e) Are there any subgroups with four elements? Why?

2.2 Show that only one group exists with three elements “up to isomorphism.” That is, there is only
one way of filling out a binary operation table that satisfies all the requirements of a group.

2.3 Show that there are two groups with four elements, up to isomorphism. One of these groups is
isomorphic to Z4. The other is called the Klein 4-group.

2.4 Prove that in a group G, the identity element is unique.
2.5 Prove that in a group G, the inverse a~1 of an element a is unique.
2.6 Let G = {Z16. +), the group of integers modulo 16. Let H = {4), the cyclic group generated by
the element 4 € G.
(a) List the elements of H.
(b) Determine the cosets of G/H.
(c) Draw the “addition” table for G/H.
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2.7
2.8
29

2.10

2.11

212
2.13
2.14
215
2.16

2.17

2.18

2.19

2.20

221
222

2.23
224

2.25

2.26

(d) To what group is G/H isomorphic?

Show that if G is an Abelian group and G is isomorphic to G, then G is also Abelian.

Let G be a cyclic group and let G be isomorphic to G. Show that G is also a cyclic group.

Let G be a cyclic group with generator a and let G be a group isomorphicto G. If ¢ : G — G is
an isomorphism, show that for every x € G, ¢(x) is completely determined by ¢ (a).

An automorphism of a group G is an isomorphism of the group with itself, ¢ : G — G. Using
Exercise 2.9, how many automorphisms are there of Z»? of Zg? of Zg? of Z17?

[106] Let G be a finite Abelian group of order 7, and let r be a positive integer relatively prime
to n (i.e., they have no factors in common except 1). Show that the map ¢r : G — G defined
by ¢r(a) = a is an isomorphism of G onto itself (an automorphism). Deduce that the equation
x" = a always has a unique solution in a finite Abelian group G if r is relatively prime to the
order of G.

Show that the induced operation defined in Definition 2.16 is well defined if G is commutative.
Prove Theorem 2.5.

Show for the lattice with coset decomposition in Figure 2.2 that A/A’ = Zy x Z;.

Let G be a cyclic group with generator @ and let ¢ : G — G’ be a homomorphism onto a

group G’. Show that the value of ¢ on every element of G is determined by the value of the
homomorphism ¢ (a).

Let G beagroup andleta € G. Let ¢ : Z — G be defined by ¢(n) = a". Show that ¢ is a
homomorphism. Describe the image of ¢ in G.

Show that if G, G’ and G” are groups and ¢ : G — G’ and ¥ : G’ - G are homomorphisms,
then the composite function ¢ o ¢ : G — G” is a homomorphism.

Consider the set § = {0, 1, 2, 3} with the operations

+]/0 1 2 3 -lo 1 2 3
0/0 1 2 3 00 0 0 O
11 2 3 0 1{0 1 2 3
212 3 0 1 210 2 3 1
313 0 1 2 3]0 3 1 2

Is this a field? If not, why not?

Construct the addition and multiplication tables for {(Z4, +, -) and compare to the tables in (2.4).
Does (Z4, +, -} form a field?

Use the representation of G F(4) in (2.4) to solve the following pair of equations:
2x+y=3
x+2y=3.

Show that the vectors in a basis must be linearly independent.

Let G = {v1, va, ..., V¢} be a basis for a vector space V. Show that for every vector v € V,
there is a unique representation for v as a linear combination of the vectors in G.

Show that if u is orthogonal to every basis vector for W, thenu L W.

The dual space WL of W is the set of vectors which are orthogonal to every vector in W. Show
that the dual space W of a vector space W C V is a vector subspace of V.

Show that the set of binary polynomials (i.e., polynomials with binary coefficients, with operations
in GF(2)) with degree less than r forms a vector space over G F(2) with dimension r.

What is the dimension of the vector space spanned by the vectors
{(1,1,0,1,0,1),(0,1,0,1,1,1),(1,1,0,0, 1, 1),(0, 1, 1, 1,0, 1), (1,0, 0, 0, 0, 0)}
over GF(2)?
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2.27

2.28

2.29

230

2.31

232

2.33

Find a basis for the dual space to the vector space spanned by
{1,1,1,0,0),(0,1,1,1,0), (0,0, 1, 1, D}.

Let S = {v1, v2, ..., v, } be an arbitrary basis for the vector space V. Let v be an arbitrary vector
in v; it may be expressed as the linear combination

v=avi +aavy + -+ apvn.

Develop an expression for computing the coefficients {g;} in this representation.

Is it true that if X, y and z are linearly independent vectors over GF(q) then so also are X+,
y +zand z + x?

Let V be a vector space and let v, v2, ..., Vi € V. Show that span{{vy, v2, ..., ¥¢}) is a vector
space.

Let U and V be linear subspaces of a vector space S. Show that the intersection U NV is also a
subspace of S.

Let G = (Z,+) and let G = (Z,, +). Let ¢ : G — G be defined by ¢(a) = a mod n. Show
that ¢(a + b) = ¢(a) + ¢ (b).

In this exercise, let X - y denote the inner product over the real numbers. Let x and y be vectors
of length n with elements from the set {—1, 1}. Show that dy (x,y) = "5-¥.

2.6 References

Group theory is presented in a variety of books; see, for example, [31] or [106]. Our
summary of linear algebra was drawn from [373, 33] and [246]. Some of the exercises were
drawn from [373] and [106].



Chapter 3

Linear Block Codes

3.1 Basic Definitions

Consider a source that produces symbols from an alphabet .4 having g symbols, where .4
forms a field. We refer to a tuple (cg, c1, ..., cn-1) € A" with n elements as an n-vector
or an n-tuple.

Definition 3.1 An (n, k) block code C over an alphabet of g symbols is a set of g* n-vectors
called codewords or code vectors. Associated with the code is an encoder which maps a
message, a k-tuple m € A%, to its associated codeword. O

For a block code to be useful for error correction purposes, there should be a one-to-one
correspondence between a message m and its codeword ¢. However, for a given code C,
there may be more than one possible way of mapping messages to codewords.

A block code can be represented as an exhaustive list, but for large & this would be
prohibitively complex to store and decode. The complexity can be reduced by imposing
some sort of mathematical structure on the code. The most common requirement is linearity.

Definition 3.2 A block code C over a field I, of g symbols of length n and g* codewords
is a g-ary linear (n, k) code if and only if its g* codewords form a k-dimensional vector
subspace of the vector space of all the n-tuples 7. The number # is said to be the length of
the code and the number & is the dimension of the code. The rate of the code is R = k/n.
a
In some literature, an (n, k) linear code is denoted using square brackets, [, k].
For a linear code, the sum of any two codewords is also a codeword. More generally,
any linear combination of codewords is a codeword.

Definition 3.3 The Hamming weight wt(c) of a codeword ¢ is the number of nonzero
components of the codeword. The minimum weight wpi, of a code C is the smallest
Hamming weight of any nonzero codeword: wpin = Mineec, 0 Wt(€). O

Recall from Definition 1.3 that the minimum distance is the smallest Hamming distance
between any two codewords of the code.

Theorem 3.1 For a linear code C, the minimum distance dpiy, satisfies dmin = Wmin- That
is, the minimum distance of a linear block code is equal to the minimum weight of its nonzero
codewords.

Proof The result relies on the fact that linear combinations of codewords are codewords. If
¢; and ¢; are codewords, then so is ¢; — ¢;. The distance calculation can then be “translated
to the origin™:

dmin = min  dg(c;,¢j) = min  dg(e; —¢j,¢; —c¢;) = min_ w(c).
ci.c;€C, i) ci.¢;eC, e ceC,c#0
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O

An (n, k) code with minimum distance dmin is sometimes denoted as an (n, k, dyin) code.
As described in Section 1.8.1, the random error correcting capability of a code with
minimum distance dpin 18 ¥ = | (dmin — 1)/21.

3.2 The Generator Matrix Description of Linear Block Codes

Since a linear block code C is a k-dimensional vector space, there exist & linearly independent
vectors which we designate as go, g1, - - -, -1 such that every codeword ¢ in C can be
represented as a linear combination of these vectors,

¢ =mogo +mig1 + -+ + Mr_18k—1, 3.1

where m; € F,. (For binary codes, all arithmetic in (3.1) is done modulo 2; for codes of
F,, the arithmetic is done in IF,.) Thinking of the g; as row vectors! and stacking up, we
form the k x n matrix G,

go
g1
8k—-1
Let
m= [mo mp - mk_l].
Then (3.1) can be written as
¢ =mgG, 3.2)

and every codeword ¢ € C has such a representation for some vector m. Since the rows
of G generate (or span) the (n, k) linear code C, G is called a generator matrix for C.
Equation (3.2) can be thought of as an encoding operation for the code C. Representing the
code thus requires storing only k vectors of length n (rather than the g* vectors that would
be required to store all codewords of a nonlinear code).

Note that the representation of the code provided by G is not unique. From a given
generator G, another generator G’ can be obtained by performing row operations (nonzero
linear combinations of the rows). Then an encoding operation defined by ¢ = mG’ maps
the message m to a codeword in C, but it is not necessarily the same codeword that would
be obtained using the generator G.

Example 3.1 The (7,4) Hamming code of Section 1.9 has the generator matrix

0
3.3)

OO D =
=Nl
D = O
— e D
—_—O = O
(=R - ]

0
0
1
To encode the message m = [1 0 0 1], add the first and fourth rows of G (modulo 2) to obtain

c=ft 1 0 0 1 0 1j.

'Most signal processing and communication work employs column vectors by convention. However, a venerable
tradition in coding theory has employed row vectors and we adhere to that through most of the book.
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Another generator is obtained by replacing the first row of G with the sum of the first two rows of G:

G =

= O e
O - OO

0
0
0
1

oo o
SO O
S = =
—_— k= =

For m the corresponding codeword is
¢=mG¢'=[1 0 1 0 0 0 1].

This is a different codeword than ¢, but is still a codeword in C. O

Definition 3.4 Let C be an (r, k) block code (not necessarily linear). An encoder is sys-
tematic if the message symbols mg, m1, ..., mg.—1 may be found explicitly and unchanged
in the codeword. That is, there are coordinates ig, i1, - .., ix—1 (Which are most frequently
sequential, ig, i + 1, ..., ip + k — 1) such that ¢;; = mg, ¢iy =my, ..., ¢y, = Mp—1.

For a linear code, the generator for a systematic encoder is called a systematic generator.

g

It should be emphasized that being systematic is a property of the encoder and not a
property of the code. For a linear block code, the encoding operation represented by G is
systematic if an identity matrix can be identified among the rows of G. Neither the generator
G nor G’ of Example 3.1 are systematic.

Frequently, a systematic generator is written in the form

P00 po1 o+ pon—k-1 1 0 0
P10 P11 '+ Pin-k-1 0 1.0 --- 0

G=|[P Ik]= P20 p21 0 prrk-r 0 0 1 - Of 0 (34
Pk-1,0 Pk-1,1 *** Pi-tin—k-1 0 0 O ... 1

where I is the k x k identity matrix and P is a k x (n — k) matrix which generates parity
symbols. The encoding operation is

c=m[P L]=[mP mj.

The codeword is divided into two parts: the part m consists of the message symbols, and
the part m P consists of the parity check symbols.

Performing elementary row operations (replacing a row with linear combinations of
some rows) does not change the row span, so that the same code is produced. If two
columns of a generator are interchanged, then the corresponding positions of the code are
changed, but the distance structure of the code is preserved.

Definition 3.5 Two linear codes which are the same except for a permutation of the com-
ponents of the code are said to be equivalent codes.
' O
Let G and G’ be generator matrices of equivalent codes. Then G and G’ are related by
the following operations:

1. Column permutations,

2. Elementary row operations.
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Given an arbitrary generator G, it is possible to put it into the form (3.4) by performing
Gaussian elimination with pivoting.

Example 3.2 For G of (3.3), an equivalent generator in systematic form is

110 1000

s o011 0100

=111 0010 35
101 00 01

For the Hamming code with this generator, let the message be m = [mo, my, my, m3] and let the
corresponding codeword be ¢ = [co, Clyevns 06] . Then the parity bits are obtained by

co =mo+my +m3
c1 =mo+my+m;
c2=m]+mz+m3

and the systematically encoded bits are c3 = mg, c4 = m1, c5 = mp and cg = m3. O

3.2.1 Rudimentary impiementation

Implementing encoding operations for binary codes is straightforward, since the multiplica-
tion operation corresponds to the and operation and the addition operation corresponds to
the exclusive-or operation. For software implementations, encoding is accomplished
by straightforward matrix/vector multiplication. This can be greatly accelerated for binary
codes by packing several bits into a single word (e.g., 32 bits in an unsigned int of
four bytes). The multiplication is then accomplished using the bit exclusive-or opera-
tion of the language (e.g., the ~ operator of C). Addition must be accomplished by looping
through the bits, or by precomputing bit sums and storing them in a table, where they can
be immediately looked up.

3.3 The Parity Check Matrix and Dual Codes

Since a linear code C is a k-dimensional vector subspace of F, by Theorem 2.8 there must
be a dual space to C of dimension n - k.

Definition 3.6 The dual space to an (x, k) code C of dimension k is the (n, n — k) dual

code of C, denoted by CL. A code C such that C = C* is called a self-dual code. ]
As a vector space, C1 has a basis which we denote by {hg, hy, ..., h,_x_1}. We form
a matrix H using these basis vectors as rows:
ho
h;
H = .
hy,_r—1

This matrix is known as the parity check matrix for the code C. The generator matrix and
the parity check matrix for a code satisfy

GH” =0/
The parity check matrix has the following important property:
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Theorem 3.2 Let C be an (n, k) linear code over Fy and let H be a parity check matrix for
C. Avectorv € ¥ is a codeword if and only if

vHT = 0.
That is, the codewords in C lie in the (left) nullspace of H.

(Sometimes additional linearly dependent rows are included in H, but the same result still
holds.)
Proof Let ¢ € C. By the definition of the dual code, h - ¢ = 0 forall h € Ct. Any row
vector h € C! can be written as h = xH for some vector X. Since X is arbitrary, and in fact
can select individual rows of H, we must have chiT =0fori =0,1,...,n—k—1. Hence
cHT = 0.

Conversely, suppose that vHT = 0. Then vhiT =0fori=0,1,...,n —k —1, sothat
v is orthogonal to the basis of the dual code, and hence orthogonal to the dual code itself.
Hence, v must be in the code C. O

When G is in systematic form (3.4), a parity check matrix is readily determined:
H=[I, -PT]. (3.6)

(For the field IF;, —1 = 1, since 1 is its own additive inverse.) Frequently, a parity check
matrix for a code is obtained by finding a generator matrix in systematic form and employing
(3.6).

Example 3.3 For the systematic generator G of (3.5), a parity check matrix is

1 0 1 0 11
H=10 0 11 1 0f. 3.7
0 1 01 1

1
It can be verified that G”HT = 0. Furthermore, even though G is not in systematic form, it still
generates the same code so that GH T =0 . Hisa generator for a (7, 3) code, the dual code to the
(7, 4) Hamming code. O

o = O

The condition cH” = 0 imposes linear constraints among the bits of ¢ called the parity
check equations.

Example 3.4 The parity check matrix of (3.7) gives rise to the equations
cgt+cztes+eceg=0
c1+ez+ca+es=0
c2+catces+cg=0
or, equivalently, some equations for the parity symbols are
co=c3+c5+cq
€l =c3+cs4+cs
¢y =c¢4+c5+ce.
a

A parity check matrix for a code (whether systematic or not) provides information about
the minimum distance of the code.
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Theorem 3.3 Let a linear block code C have a parity check matrix H. The minimum
distance dmiy of C is equal to the smallest positive number of columns of H which are
linearly dependent. That is, all combinations of dmin — 1 columns are linearly independent,
so there is some set of dpin columns which are linearly dependent.

Proof Let the columns of H be designated as hg, hy, ..., hy,—1. Then since cHT = 0 for
any codeword ¢, we have

0 = cohg + cthy + - - + cp—1hp—1.

Let ¢ be the codeword of smallest weight, w = wt(c) = dyyjn, with nonzero positions only
atindices iy, is,...,1,. Then

cihy +cphy, +---¢i b, =0.

Clearly, the columns of H corresponding to the elements of ¢ are linearly dependent.
On the other hand, if there were a linearly dependent set of u < w columns of H, then
there would be a codeword of weight u. a

Example 3.5 For the parity check matrix H of (3.7), the parity check condition is

[1 0 07

010

0 0 1

cHT = [co, c1, €2, €3, ¢4, C5, c6] 1 1 0
01 1

1 1 1
|1 0 1]

=¢o[1, 0,01 +¢1[0, 1, 0] + c2[0, 0, 11+ ¢3[1, 1, 0] + 410, 1, 1] + ¢5[1, 1, 1] + ¢6[1, 0, 1]

The first, second, and fourth rows of H7 are linearly dependent, and no fewer rows of H are linearly
dependent. a

3.3.1 Some Simple Bounds on Block Codes

Theorem 3.3 leads to a relationship between dyn, 7, and k:

Theorem 3.4 The Singleton bound. The minimum distance for an (n, k) linear code is
bounded by

dmin <n —k + 1. (3.8)

Note: Although this bound is proved here for linear codes, it is also true for nonlinear codes.
(See [220])

Proof An (n, k) linear code has a parity check matrix with n — k linearly independent
rows. Since the row rank of a matrix is equal to its column rank, rank(H) = n — k. Any
collection of n — k + 1 columns must therefore be linearly dependent. Thus by Theorem
3.3, the minimum distance cannot be larger thann — k + 1. O

A code for which din = n —k + 1 is called a maximum distance separable (MDS) code.

Thinking geometrically, around each code point is a cloud of points corresponding to
non-codewords. (See Figure 1.17.) For a g-ary code, there are (g — 1)n vectors at a
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Hamming distance 1 away from a codeword, (g — 1)2(5) vectors at a Hamming distance 2

away from a codeword and, in general, (g — l)l ('l') vectors at a Hamming distance ! from a
codeword.

Example 3.6 Let C be a code of length n = 4 over GF (3), so ¢ = 3. Then the vectors at a Hamming
distance of 1 from the [0, 0, 0, 0] codeword are
{1,0,0,0],0,1,0,0],[0,0,1,0],[0,0,0, 1]
[2,0,0,0]10,2,0,01,10,0,2,0],[0,0,0, 2].
a

The vectors at Hamming distances < ¢ away from a codeword form a “sphere” called the
Hamming sphere of radius ¢. The number of codewords in a Hamming sphere up to radius
t for a code of length # over an alphabet of g symbols is denoted V, (n, t), where

t
AEDY (;‘) (g - ). (3.9)

Jj=0
The bounded distance decoding sphere of a codeword is the Hamming sphere of radius ¢t =
L(dmin — 1)/2] around the codeword. Equivalently, a code whose random error correction
capability is # must have a minimum distance between codewords satisfying dmin > 2¢ + 1.
The redundancy of a code is essentially the number of parity symbols in a codeword.
More precisely we have
r=n-— logq M,

where M is the number of codewords. For a linear code we have M = qk ,sor=n—k.

Theorem 3.5 (The Hamming Bound) A t-random error correcting q-ary code C must
have redundancy r satisfying
r = log, V4(n,t).

Proof Each of M spheres in C has radius ¢. The spheres do not overlap, or else it would
not be possible to decode ¢ errors. The total number of points enclosed by the spheres must
be < ¢”. We must have
MV,(n,t) <q"
0
q"/M = V4(n, 1),
from which the result follows by taking log, of both sides. g

A code satisfying the Hamming bound with equality is said to be a perfect code. Actu-
ally, being perfect codes does not mean the codes are the best possible codes; it is simply a
designation regarding how points fall in the Hamming spheres. The set of perfect codes is
actually quite limited. It has been proved (see [220}) that the entire set of perfect codes is:

1. The set of all n-tuples, with minimum distance = 1 and ¢t = 0.

Odd-length binary repetition codes.

Binary Hamming codes (linear) or other nonlinear codes with equivalent parameters.
The binary (23, 12, 7) Golay code G»3.

The ternary (i.e., over GF(3)) (11, 6, 5) code G 11 and the (23,11,5) code G3. These
codes are discussed in Chapter 8.

w»ok e
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Box 3.1: Error Correction and Least-Squares

The hard-input decoding problem is: Given r = mG + e, compute m. Readers
familiar with least-squares problems (see, e.g., [246]) will immediately rec-
ognize the structural similarity of the decoding problem to least-squares. If a
least-squares solution were possible, the decoded value could be written as

m =rGT(GGT)!,

reducing the decoding problem to numerical linear algebra. Why cannot least-
squares techniques be employed here? In the first place, it must be recalled
that in least squares, the distance function d is induced from an inner product,
dx,y) = x —y,x — y)l/ 2 while in our case the distance function is the
Hamming distance — which measures the likelihood — which is not induced
from an inner product. The Hamming distance is a function Fy x Fy — N, while
the inner product is a function F§ x Fg — F7: the codomains of the Hamming

distance and the inner product are different.

3.4 Error Detection and Correction over Hard-Input Channels

Definition 3.7 Let r be an n-vector over F,; and let H be a parity check matrix for a code

C. The vector
(3.10)

is called the syndrome of r. |

By Theorem 3.2, s = 0 if and only if r is a codeword of C. In medical terminology, a
syndrome is a pattern of symptoms that aids in diagnosis; here s aids in diagnosing if r is a
codeword or has been corrupted by noise. As we will see, it also aids in determining what
the error is.

3.4.1 Error Detection

The syndrome can be used as an error detection scheme. Suppose that a codeword ¢ in a
binary linear block code C over F, is transmitted through a hard channel (e.g., a binary code
over a BSC) and that the n-vector r is received. We can write

r=c+e,

where the arithmetic is done in IF, and where e is the error vector, being 0 in precisely the
locations where the channel does not introduce errors. The received vector r could be any
of the vectors in IF3. since any error pattern is possible. Let H be a parity check matrix for
C. Then the syndrome

s=rHT = (c+e)HT =eH.

From Theorem 3.2, s = 0 if r is a codeword. However, if s # 0, then an error condition has
been detected: we do not know what the error is, but we do know that an error has occurred.

3.4.2 Error Correction: The Standard Array

Let us now consider one method of decoding linear block codes transmitted through a hard
channel using maximum likelihood (ML) decoding. As discussed in Section 1.8.1, ML
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decoding of a vector r consists of choosing the codeword ¢ € C that is closest to r in
Hamming distance. That is,

¢ = argmindg(c, r).
ceC

Let the set of codewords in the code be {cg, €1, ..., ¢yr~1}, where M = qk. Let us take
¢p = 0, the all-zero codeword. Let V; denote the set of n-vectors which are closer to the
codeword c; than to any other codeword. (Vectors which are equidistant to more than one
codeword are assigned into a set V; atrandom.) The sets {V;,i =0, 1, ..., M — 1} partition
the space of n-vectors into M disjoint subsets. If r falls in the set V;, then, being closer to
¢; than to any other codeword, r is decoded as ¢;. So, decoding can be accomplished if the
V; sets can be found.

The standard array is a representation of the partition {V;}. Itis a two-dimensional array
in which the columns of the array represent the V;. The standard array is built as follows,
First, every codeword ¢; belongs in its own set V;. Writing down the set of codewords thus
gives the first row of the array. Now, from the remaining vectors in ]F(ZI, find the vector e; of
smallest weight. This must lie in the set Vg, since it is closest to the codeword ¢g = 0. But

dp(er +¢;, ¢;) =dp(er, 0),

for each i, so the vector e; + ¢; must also lie in V; for each i. So e + ¢; is placed into each
V;. The vectors e1 +¢; are included in their respective columns of the standard array to form
the second row of the standard array. The procedure continues, selecting an unused vector
of minimal weight and adding it to each codeword to form the next row of the standard
array, until all ¢" possible vectors have been used in the standard array. In summary:

1. Write down all the codewords of the code C.

2. Select from the remaining unused vectors of IF‘Z one of minimal weight, e. Write e in
the column under the all-zero codeword, then add e to each codeword in turn, writing
the sum in the column under the corresponding codeword.

3. Repeat step 2 until all g" vectors in Fy have been placed in the standard array.

Example 3.7 For a (7, 3) code, a generator matrix is

01 111 00
G=|1 0 1 1 0 1 O
1 1 01 0 0 1
The codewords for this code are
row 1 0000000 [ 0111100 1011010 1100110 1101001 1010101 0110011 0001111

From the remaining 7-tuples, one of minimal weight is selected; take (1000000). The second row

is obtained by adding this to each codeword:
rowl 0000000 | 0111100 1011010 1100110 1101001 1010101 0110011  0O0OL1l1
fow2 1000000 | I111100 0011010 0I00I10 0101001  00I0IO1 1110011 1001111

Now proceed until all 2" vectors are used, selecting an unused vector of minimum weight and
adding it to all the codewords. The result is shown in Table 3.1.
(The horizontal lines in the standard array separate the error patterns of different weights.) [

We make the following observations:

aa‘a’a'a’ata’a’a’
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Table 3.1: The Standard Array for a Code

row 1 0000000 | 0111100 1011010 1100110 1101001 1010101 0110011 0001111

Tow 2 1000000 | 1111100 0011010 0100110 0101001 0010101 1110011 1001111
row 3 0100000 | 0011100 1111010 1000110 1001001 1110101  001001f 0101111
1ow 4 0010000 | 0101100 1001010 1110110 1111001 1000101 0100011 0011111
row 5 0001000 | 0110100 1010010 1101110 1100001 1011101 0111011 0000111
ow 6 0000100 | 0111000 1011110 1100010 1101101 1010001 0110111 0001011
row 7 0000010 | 0111110 1011000 1100100 1101011 1010111 0110001 0001101
row 8§ 0000001 { 0111101 1011011 1100111 1101000 1010100 0110010 0001110

row 9 1100000 | 1011100 0111010 0000110 0001001 0110101 1010011 1101111
row 10 1010000 | 1101100 0001010 0110110 0111001 0000101 1100011 1011111
row 11 0110000 | 0001100 1101010 1010110 1011001 1100101 0000011  OI11111
row 12 1001000 | 1110100 0010010 0101110 0100001 0011101 1111011 1000111
row 13 0101000 | 0010100 1110010 1001110 1000001 1111101 0011011 0100111
row 14 0011000 | 0100100 1000010 1111110  111000F 1001101 0101011 001011l
row 15 1000100 | 1111000 0011110 0100010 0101101 0010001 1110111 1001011

row 16 1110000 | 1001100 0101010 0010110  001100f 0100101 1000011 1111111

. There are ¢g* codewords (columns) and ¢” possible vectors, so there are g rows in
the standard array. We observe, therefore, that: an (n, k) code is capable of correcting
g™~ different error patterns.

. The difference (or sum, over G F(2)) of any two vectors in the same row of the
standard array is a code vector. In a row, the vectors are ¢; + e and ¢; + e. Then

(ci +e)—(¢cj+e =¢ —¢j,
which is a codeword, since linear codes form a vector subspace.

. No two vectors in the same row of a standard array are identical. Because otherwise
we have

e+¢ =e+cj, withi # j,
which means ¢; = ¢;, which is impossible.

. Every vector appears exactly once in the standard array. We know every vector must
appear at least once, by the construction. If a vector appears in both the /th row and
the mth row we must have

e +C =e, +¢Cj
for some i and j. Let us take / < m. We have
en =€ +¢ —Cj =€ +¢

for some k. This means that e, is on the /th row of the array, which is a contradiction.

The rows of the standard array are called cosets. Each row is of the form

e+C={e+c:cel}

That is, the rows of the standard array are translations of C. These are the same cosets we
met in Section 2.2.3 in conjunction with groups.

The vectors in the first column of the standard array are called the coset leaders. They

represent the error patterns that can be corrected by the code under this decoding strategy.
The decoder of Example 3.7 is capable of correcting all errors of weight 1, 7 different error
patterns of weight 2, and 1 error pattern of weight 3.
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To decode with the standard array, we first locate the received vector r in the standard
array. Then identify
r=e+c¢

for a vector e which is a coset leader (in the left column) and a codeword ¢ (on the top row).
Since we designed the standard array with the smallest error patterns as coset leaders, the
error codeword so identified in the standard array is the ML decision. The coset leaders are
called the correctable error patterns.

Example 3.8 For the code of Example 3.7, let
r=[0,0,1,1,0,1,1]

(shown in bold in the standard array) then its coset leader is e = [0, 1, 0, 1, 0, 0, 0] and the codeword
ise =1[0,1,1,0, 0,1, 1], which corresponds to the message m = [0, 1, 1], since the generator is
systematic. O

Example 3.9 It is interesting to note that for the standard array of Example 3.7, not all (;) =21
patterns of 2 errors are correctable. Only 7 patterns of two errors are correctable. However, there is
one pattern of three errors which is correctable.

The minimum distance for this code is clearly 4, since the minimum weight of the nonzero
codewords is 4. Thus, the code is guaranteed to correct only |(4 — 1)/2] = 1 error and, in fact it
does correct all patterns of single errors. O

As this decoding example shows, the standard array decoder may have coset leaders with
weight higher than the random-error-correcting capability of the code t = | (dmin — 1)/2].
This observation motivates the following definition.

Definition 3.8 A complete error correcting decoder is a decoder that given the received
word r, selects the codeword ¢ which minimizes dg (r, ¢). That s, it is the ML decoder for
the BSC channel. O

If a standard array is used as the decoding mechanism, then complete decoding is
achieved. On the other hand, if the rows of the standard array are filled out so that all
instances of up to ¢ errors appear in the table, and all other rows are left out, then a bounded
distance decoder is obtained.

Definition 3.9 A t-error correcting bounded distance decoder selects the codeword ¢
given the received vector r if dg(r, ¢) < ¢. If no such c exists, then a decoder failure is
declared. O

Example 3.10 InTable 3.1, only up to row 8 of the table would be used in a bounded distance decoder,
which is capable of correcting up to t = | (dmin — 1)/2] = [(4 — 1)/2] = 1 error. A received vector
r appearing in rows 9 through 16 of the standard array would result in a decoding failure. a

A perfect code can be understood in terms of the standard array: it is one for which
there are no “leftover” rows: all (}) error patterns of weight ¢ and all lighter error patterns
appear as coset leaders in the table, with no “leftovers.” What makes it “perfect” then, is
that the bounded distance decoder is also the ML decoder.

The standard array can, in principle, be used to decode any linear block code, but suffers
from a major problem: the memory required to represent the standard array quickly become
excessive, and decoding requires searching the entire table to find a match for a received
vector r. For example, a (256, 200) binary code — not a particularly long code by modern
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standards — would require 22°° & 1.2 x 1077 vectors of length 256 bits to be stored in it
and every decoding operation would require on average searching through half of the table.

A first step in reducing the storage and search complexity (which doesn’t go far enough)
is to use syndrome decoding. Let e + ¢ be a vector in the standard array. The syndrome
for this vectoris s = (e + ¢)HT = eH”. Furthermore, every vector in the coset has the
same syndrome: (e + ¢)HT = eHT. We therefore only need to store syndromes and their
associated error patterns. This table is called the syndrome decoding table. It has g™~ rows
but only two columns, so it is smaller than the entire standard array. But is still impractically
large in many cases.

With the syndrome decoding table, decoding is done as follows:

1. Compute the syndrome,s =rH 7T
2. In the syndrome decoding table look up the error pattern e corresponding to s.
3. Thenec=r+e.

Example 3.11 For the code of Example 3.7 a parity check matrix is

1 0 00 0 11
01 0 01 01
H=loo 1011 0
0 0 0 1 1 11
The syndrome decoding table is
Error Syndrome

0000000 0000
1000000 1000
0100000 0100
0010000 0010
0001000 0001
0000100 0111
0000010 1011
0000001 1101
1100000 1100
1010000 1010
0110000 0110
1001000 1001
0101000 0101
0011000 0011
1000100 1111
1110000 1110

Suppose thatr = [0, 0, 1, 1, 0, 1, 1], as before. The syndrome is
s=rHT =[0 1 0 1],

(in bold in the table) which corresponds to the coset leader e = [0 1 01 0 O 0]. The
decoded codeword is then

€=100,0,1,1,0,1,11+[0,1,0,1,0,0,0] = [0, 1, 1,0,0, 1, 1],

as before. O

Despite the significant reduction compared to the standard array, the memory requirements
for the syndrome decoding table are still very high. It is still infeasible to use this technique
for very long codes. Additional algebraic structure must be imposed on the code to enable
decoding long codes.
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3.5 Weight Distributions of Codes and Their Duals

The weight distribution of a code plays a significant role in calculating probabilities of error.

Definition 3.10 Let C be an (n, k) code. Let A; denote the number of codewords of weight
i in C. Then the set of coefficients {Ag, A1, ..., An} is called the weight distribution for
the code.

It is convenient to represent the weight distribution as a polynomial,

A(R) = Ag+ A1z + Aoz + -+ + ApZ". (3.11)

This polynomial is called the weight enumerator. O
The weight enumerator is (essentially) the z-transform of the weight distribution se-
quence.

Example 3.12 For the code of Example 3.7, there is one codeword of weight 0. The rest of the
codewords all have weight 4. So Ag = 1, A4 = 7. Thus

AR) =1+ 7%
a

There is a relationship, known as the MacWilliams identity, between the weight enumerator
of a linear code and its dual. This relationship is of interest because for many codes it is
possible to directly characterize the weight distribution of the dual code, from which the
weight distribution of the code of interest is obtained by the MacWilliams identity.

Theorem 3.6 (The MacWilliams Identity). Let C be an (n, k) linear block code over F,
with weight enumerator A(z) and let B(z) be the weight enumerator of Ct. Then

1-z
B)=q*1+@-D)"A| ————— |, 3.12
@ =¢7"(0+@-12) (1+(q_1)z) (3.12)
or, turning this around algebraically,
1—z
AR =¢ "R ~1 "B(——). 3.13
(R)=gq 1+ —-b2) T+ @ —-1)% (3.13)

The proof of this theorem reveals some techniques that are very useful in coding. We give
the proof for codes over I, but it is straightforward to extend to larger fields (once you
are familiar with them). The proof relies on the Hadamard transform. For a function f
defined on F?, the Hadamard transform f of f is

fay = Y 0 fwy = Y (- fy), uel,
vel3 velF;
where the sum is taken over all 2" n-tuples v = (vo, v1, . . ., Us—1), Where each v; € F}.

Lemma 3.7 IfC is an (n, k) binary linear code and f is a function defined on FJ,

> fw =g Y .

ueCt ueC

Here |C| denotes the number of elements in the code C.
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Proof of lemma.

> fw

Yy rm =3 fm Y -n

ueC ueC velF} velF} ueC
=Y YD+ Y @ Y =nen,
veCl ueC veC\{0} ueC

where ) has been partitioned into two disjoint sets, the dual code C 1 and the nonzero
elements of the code, C \ {0}. In the first sum, (u, v) = 0, so the inner sum is |C|. In the
second sum, for every v in the outer sum, (u, v) takes on the values 0 and 1 equally often
as u varies over C in the inner sum, so the inner sum is 0. Therefore

Y fw=) frmdm=icY f®.

ueC veCL ueC veCL

Proof of Theorem 3.6. Note that the weight enumerator can be written as

AR =) ",

ceC
Let f(u) = z*®, Taking the Hadamard transform we have
fay = 3 (v,
vel]

Writing out the inner product and the weight function explicitly on the vectorsu = (ug, u1,

..., Up—1yand v = (vg, v1, ..., Up—1) we have
. n—1 n—1
A n—1 . Ly .
fw = T 0T e = 3 [,
vel} i=0 veF} i=0

The sum over the 2" values of v € F; can be expressed as n nested summations over the
binary values of the elements of v:

1 1 1 n-1
f(ll) = Z Z Z l_[(_l)uivizui.

v3=0 v;=0 Up—1=0 i=0

Now the distributive law can be used to pull the product out of the summations?,

n—-1 1
fay =TT 3o nHmizm,

i=0 v;=0

If u; = 0 then the inner sum is 1 + z. If u; = 1 then the inner sum is 1 — z. Thus

R _ wt(u)
fa) =1 +2)"™M®q - H™® = (1‘1’2) (1+2)"

2The distributive law reappears in a generalized way in Chapter 16. We make the interesting observation here
that the use of the distributive law gives rise to a “fast” Hadamard transform, analogous to and similarly derived
as the fast Fourier transform.
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Now applying Lemma 3.7 we obtain

1 1-\"™ 1 1-z
B(z) = —(1+2)" —= =— "Al—).
@) = G 1+2) §(1+z) g1+ A(1+z)

3.6 Hamming Codes and Their Duals

We now formally introduce a family of binary linear block codes, the Hamming codes, and
their duals.

Definition 3.11 For any integer m > 2, a 2™ — 1,2™ — m — 1, 3) binary code may be
defined by its m x n parity check matrix H, which is obtained by writing all possible binary
m-tuples, except the all-zero tuple, as the columns of H . For example, simply write out the
m-bit binary representation for the numbers from 1 to » in order. Codes equivalent to this

construction are called Hamming codes. ]
For example, when m = 4 we get
1 0101010101010 1
H= 06110011001 100T11
0001111000011 11
6 000O0O0O0O1 1111111
1 2 3 4 5 6 7 8 9 10 " 12 13 14 15

as the parity check matrix for a (15, 11) Hamming code. However, it is usually convenient
to reorder the columns — resulting in an equivalent code — so that the identity matrix which
is interspersed throughout the columns of H appears in the first m columns. We therefore
write

— e OO

1 0
01
11
11

-0 O O
OO O
= O = OO
o - OO
v DO =
[P e S S o
o O == O
9D et e e
v o—0 O
-0 = O
— O e =
—_ =

It is clear from the form of the parity check matrix that for any m there exist three columns
which add to zero; for example,

1 0 1
0 1 1
O’O’a“do’
0 0 0

so by Theorem 3.3 the minimum distance is 3; Hamming codes are capable of correcting 1
bit error in the block, or detecting up to 2 bit errors.
An algebraic decoding procedure for Hamming codes was described in Section 1.9.1.
The dual to a 2™ — 1,2" — m — 1) Hamming code is a (2™ — 1, m) code called a
simplex code or a maximal-length feedback shift register code.

Example 3.13 The parity check matrix of the (7, 4) Hamming code of (3.7) can be used as a generator
of the (7, 3) simplex code with codewords
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0000000 1001011
0101110 0010111
1100101 1011100
0111001 1110010
Observe that except for the zero codeword, all codewords have weight 4. d

In general, all of the codewords of the (2™ — 1, m) simplex code have weight 2™~! (see Ex-
ercise 3.12) and every pair of codewords is at a distance 2™~ ! apart (which is why it is called
a simplex). For example, for the m = 2 case, the codewords {(000), (101), (011), (110)}
form a tetrahedron. Thus the weight enumerator of the dual code is

B =1+@" -1 . (3.14)

From the weight enumerator of the dual, we find using (3.13) that the weight distribution
of the Hamming code is

1
A@) = ——[1+2)" +n(1l —2)(1 — 2"~ V/2, (3.15)
n+1
Example 3.14 For the (7,4) Hamming code the weight enumerator is

A(z) = % [(1 +2)7 +7(1 - 2)(1 - z2)3] =1+73 +7 +7". (3.16)

Example 3.15 For the (15,11) Hamming code the weight enumerator is

1
A@) = (@ +2P 4150 -1 - 22)7)
= 143525 + 1052% + 16825 + 28020 + 43577 + 43578 + 280° + 168710 317
+ 105711 4+ 35712 4 715,

3.7 Performance of Linear Codes

There are several different ways that we can characterize the error detecting and correcting
capabilities of codes at the output of the channel decoder [373].

P(E) is the probability of decoder error, also known as the word error rate. This is
the probability that the codeword at the output of the decoder is not the same as the
codeword at the input of the encoder.

Py(E) or Py is the probability of bit error, also known as the bit error rate. This is the
probability that the decoded message bits (extracted from a decoded codeword of a
binary code) are not the same as the encoded message bits. Note that when a decoder
error occurs, there may be anywhere from 1 to k£ message bits in error, depending on
what codeword is sent, what codeword was decoded, and the mapping from message
bits to codewords.

P, (E) is the probability of undetected codeword error, the probability that errors oc-
curring in a codeword are not detected.
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P;(E) is the probability of detected codeword error, the probability that one or more
errors occurring in a codeword are detected.

P,, isthe undetected bit error rate, the probability that a decoded message bit is in efror
and is contained within a codeword corrupted by an undetected error.

P4, is the detected bit error rate, the probability that a received message bit is in error
and is contained within a codeword corrupted by a detected error.

P(F) is the probability of decoder failure, which is the probability that the decoder is
unable to decode the received vector (and is able to determine that it cannot decode).

In what follows, bounds and exact expressions for these probabilities will be developed.

3.7.1 Error detection performance

All errors with weight up to dmin — 1 can be detected, so in computing the probability of
detection only error patterns with weight dm;y or higher need be considered. If a codeword
¢ of a linear code is transmitted and the error pattern e happens to be a codeword, e = ¢/,
then the received vector

r=c+c¢

is also a codeword. Hence, the error pattern would be undetectable. Thus, the probability
that an error pattern is undetectable is precisely the probability that it is a codeword.

We consider only errors in transmission of binary codes over the BSC with crossover
probability p. (Extension to codes with larger alphabets is discussed in [373].) The proba-
bility of any particular pattern of j errors in a codeword is p/ (1 — p)"~/. Recalling that A j
is the number of codewords in C of weight j, the probability that j errors form a codeword
is Ajp/(1 — p)*~/. The probability of undetectable error in a codeword is then

n
PAE)= Y Ajpl(1-p). (3.18)
J=dmin
The probability of a detected codeword error is the probability that one or more errors occur
minus the probability that the error is undetected:

n

PiE)= (’J'.)pf(l ~ P = Pu(E) =1~ (1= p)" — Py(E).

j=1

Computing these probabilities requires knowing the weight distribution of the code, which
is not always available. It is common, therefore, to provide bounds on the performance. A
bound on P,(E) can be obtained by observing that the probability of undetected error is
bounded above by the probability of occurrence of any error patterns of weight greater than
or equal to dmin. Since there are (;') different ways that j positions out of n can be changed,

n

P(E)< ) ('})pf(1~p)"‘f. (3.19)

J=dmin

A bound on Py(E) is simply
Pi(E)y<1—-(1-p"



100

Linear Block Codes

aa’a’a‘a’a’a’a'n’
01010 —= 00008

“

o l0gilgilglgigidgls

probdetH1S5.m

probdet.m

Example 3.16 For the Hamming (7, 4) code with A(z) = 1 + 723 + 7z* + 7,
PUE)=Tp°(1 - p* +7p* 1 — p)* + p'.
If p = .01 then P, (E) =~ 6.79 x 10—, The bound (3.19) gives P, (E) < 3.39 x 1073, O

The corresponding bit error rates can be bounded as follows. The undetected bit error
rate P,, can be lower-bounded by assuming the undetected codeword error corresponds to
only a single message bit error. P,, can be upper-bounded by assuming that the undetected
codeword error corresponds to all k message bits being in error. Thus

1
EPu(E) < Py, < P(E).

Similarly for Py, :
1
EPd(E) < Py, = Pa(E).

Example 3.17 Figure 3.1 illustrates the detection probabilities for a BSC derived from a BPSK
system, with p = Q(/2RE}/Ny), for a Hamming (15,11) code. The weight enumerator is in (3.17).
For comparison, the probability of an undetected error for the uncoded system is shown, in which
any error is undetected, s0 Py uncoded = 1 ~— (1 — Puncoded)k’ where puncoded = Q(+/2Ep/Np).
Note that the upper bound on P, is not very tight, but the upper bound on Py is tight — they are
indistinguishable on the plot, since they differ by P, (E), which is orders of magnitude smaller than
P;(E). The uncoded probability of undetected error is much greater than the coded P,. O

10° ; . :

z
3
g ~
<]
0.
10" - |___P(E) upperbound <
T P 4(E) upper bound
——— P _(E) uncoded
107" ‘ . ‘ |

0 2 4 6
E/N,(dB)

Figure 3.1: Error detection performance for a (15,11) Hamming code.

3.7.2 Error Correction Performance

An error pattern is correctable if and only if it is a coset leader in the standard array for
the code, so the probability of correcting an error is the probability that the error is a coset
leader. Let «; denote the number of coset leaders of weight i. The numbers «g, o1, ..., ay,
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are called the coset leader weight distribution. Over a BSC with crossover probability
P, the probability of j errors forming one of the coset leaders is o; p/ (1 — p)*~J. The
probability of a decoding error is thus the probability that the error is not one of the coset
leaders

P(E)=1-) a;p/(1-py"~.
j=0

This result applies to any linear code with a complete decoder.

Example 3.18 For the standard array in Table 3.1, the coset leader weight distribution is
=1 a1=7 wp=T7 az3=1.
If p = 0.01, then P(E) = 0.0014. ]

Most hard-decision decoders are bounded-distance decoders, selecting the codeword ¢
which lies within a Hamming distance of | (dmin — 1)/2] of the received vector r. An exact
expression for the probability of error for a bounded-distance decoder can be developed as
follows. Let Pl’ be the probability that a received word r is exactly Hamming distance [
from a codeword of weight ;.

Lemma 3.8 /373, p. 249]

L, :
. n— i\ . L
P=Y (l ir)( ) J)pj—l+2r(1 _ pyrit,

r=0

Proof Assume (without loss of generality) that the all-zero codeword was sent. Let ¢ be
a codeword of weight j, where j # 0. Let the coordinates of ¢ which are 1 be called the
1-coordinates and let the coordinates of ¢ which are 0 be called the O-coordinates. There
are thus j 1-coordinates and n — j 0-coordinates of ¢. Consider now the ways in which
the received vector r can be a Hamming distance / away from ¢. To differ in / bits, it must
differ in an integer r number of O-coordinates and ! — r 1-coordinates, where 0 <r < L
The number of ways that r can differ from ¢ in r of the O-coordinates is (7). The total
probability of r differing from ¢ in exactly r 0-coordinates is

(n - J)pr(l _ p)n—j—-r'
r

The number of ways that r can differ from cin ! —r of the 1-coordinates is { i (lj_r))) =(7,)
Since the all-zero codeword was transmitted, the / — r coordinates of r must be O (there
was no crossover in the channel) and the remaining j — (! — r) bits must be 1. The total
probability of r differing from ¢ in exactly I — r 1-coordinates is

(l ] )pj—l+r(1 - p)l—r‘
—-r

The probability Plj is obtained by multiplying the probabilities on the 0-coordinates and the
1-coordinates (they are independent events since the channel is memoryless) and summing



102

Linear Block Codes

overr:

i . .
Pl] — Z (n ] ])pr(l _ p)n—j—r(lir)pj—-l+r(l _ p)l—r

! , ,
— (l -] > (n - ])pj—l+27(l _ p)n+l—j-2r'
0 —-r r

The probability of error is now obtained as follows.

Theorem 3.9 For a binary (n, k) code with weight distribution {A;}, the probability of
decoding error for a bounded distance decoder is

n L(dm‘m —1) /2.‘ .
P(E)= ) 4; Y. P (3.20)

j =dmin =0

Proof Assume that the all-zero codeword was sent. For a particular codeword of weight
J # 0, the probability that the received vector r falls in the decoding sphere of that codeword

18
L(dmin—1)/2]

P/.
1=0
Then the result follows by adding up over all possible weights, scaled by the number of
codewords of weight j, A;. O
The probability of decoder failure for the bounded distance decoder is the probability that
the received codeword does not fall into any of the decoding spheres,

L (dmin—1)/2] o\ ‘
PF)=1- Y ( .)pf(l -p"i— P
=0 J S e’
. - probability of
probability of falling in the
falling in correct incorrect
decoding sphere decoding sphere

Exact expressions to compute Py (E) require information relating the weight of the mes-
sage bits and the weight of the corresponding codewords. This information is summarized
in the number 8;, which is the total weight of the message blocks associated with codewords
of weight j.

Example 3.19 For the (7, 4) Hamming code, 83 = 12, 84 = 16, and 7 = 4. That is, the total
weight of the messages producing codewords of weight 3 is 12; the total weight of messages producing
codewords of weight 4 is 16. a

Modifying (3.20) we obtain

n L(dmin—=1)/2]

P,,(E):% D D

J=dmin =0
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(See hamcode74pe.m.) Unfortunately, while obtaining values for 8; for small codes
is straightforward computationally, appreciably large codes require theoretical expressions
which are usually unavailable.

The probability of decoder error can be easily bounded by the probability of any error
patterns of weight greater than | (dyin — 1)/2]:

P(E)<s ) (;)pj(l—p)"_j.

J=L(dmin+1)/2]

An easy bound on probability of failure is the same as the bound on this probability of error.

Bounds on the probability of bit error can be obtained as follows. A lower bound is
obtained by assuming that a decoder error causes a single bit error out of the k message
bits. An upper bound is obtained by assuming that all kK message bits are incorrect when the
block is incorrectly decoded. This leads to the bounds

%P(E) < Py(E) < P(E).

3.7.3 Performance for Soft-Decision Decoding

While all of the decoding in this chapter has been for hard-input decoders, it is interesting to
examine the potential performance for soft-decision decoding. Suppose the codewords of
an (n, k, dmin) code C are modulated to a vector s using BPSK having energy E. = RE, per
coded bit and transmitted through an AWGN with variance 62 = Np/2. The transmitted
vector § is a point in n-dimensional space. In Exercise 1.15, it is shown that the Euclidean
distance between two BPSK modulated codewords is related to the Hamming distance

between the codewords by
dg =2/ E.dy.

Suppose that there are K codewords (on average) at a distance din from a codeword. By
the union bound (1.28), the probability of a block decoding error is given by

dE min 2RdminE

Neglecting the multiplicity constant K, we see that we achieve essentially comparable
performance compared to uncoded transmission when

E RdyinE
il for uncoded = Slmin"b
Ny o

for coded.

The asymptotic coding gain is the factor by which the coded Ep/Ny can be decreased to
obtain equivalent performance. (It is called asymptotic because it applies only as the SNR
becomes large enough that the union bound can be regarded as a reasonable approximation.)
In this case the asymptotic coding gain is

Rdmin.

Recall that Figure 1.19 illustrated the advantage of soft-input decoding compared with
hard-input decoding.
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3.8 Erasure Decoding

An erasure is an error in which the error location is known, but the value of the error is not.
Erasures can arise in several ways. In some receivers the received signal can be examined
to see if it falls outside acceptable bounds. If it falls outside the bounds, it is declared as an
erasure. (For example, for BPSK signaling, if the received signal is too close to the origin,
an erasure might be declared.)

Example 3.20 Another way that an erasure can occur in packet-based transmission is as follows.

Suppose that a sequence of codewords ¢1, €2, ..., ¢y are written into the rows of a matrix
€10 1 Ci2 Cin-1
€20 21 €22 T C2n-1
CNO | N1 CN2 e CNn—1

then the columns are read out, giving the data sequence

[c10. €20, -- -, cnol len, eats - - - entls [e2, €220 s en2 oo [ein—1, €214 - .- ENR—1].

Suppose that these are now sent as a sequence of n data packets, each of length N, over a channel
which is susceptible to packet loss, but where the loss of a packet is known at the receiver (such as the
internet using a protocol that does not guarantee delivery, such as UDP). At the receiver, the packets
are written into a matrix in column order — leaving an empty column corresponding to lost packets
— then read out in row order. Suppose in this scheme that one of the packets, say the third, is lost in
transmission. Then the data in the receiver interleaver matrix would look like

€10 c11 €12 Cln—1
€20 €21 €22 T C2n—1
CNO | N1 cN2 | " CNn—1

where the gray boxes indicate lost data. While a lost packet results in an entire column of lost data,
it represents only one erased symbol from the de-interleaved codewords, a symbol whose location is
known. O

Erasures can also sometimes be declared using concatenated coding techniques, where an
outer code declares erasures at some symbol positions, which an inner code can then correct.

Consider the erasure capability for a code of distance dpi,. A single erased symbol
removed from a code (with no additional errors) leaves a code with a minimum distance at
least diin — 1. Thus f erased symbols can be “filled” provided that f < dpin. For example,
a Hamming code with din = 3 can correct up to 2 erasures.

Now suppose that there are both errors and erasures. For a code with dy, experiencing
a single erasure, there are still n — 1 unerased coordinates and the codewords are separated
by a distance of at least diiy — 1. More generally, if there are f erased symbols, then the
distance among the remaining digits is at least dmi, — f. Letting 75 denote the random error
decoding distance in the presence of f erasures, we can correct up to

tf = (dmin— f —1)/2]
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Box 3.2: The UDP Protocol

UDP — user datagram protocol — is one of the protocols in the TCP/IP protocol
suite. The most common protocol, TCP, ensures packet delivery by acknowledg-
ing each packet successfully received, retransmitting packets which are garbled
or lost in transmission. UDP, on the other hand, is an open-ended protocol which
does not guarantee packet delivery. For a variety of reasons, it incurs lower
delivery latency and as a result, it is of interest in near real-time communication
applications. The application designer must deal with dropped packets using,
for example, error correction techniques.

errors. If there are f erasures and e errors, they can be corrected provided that
2e¢ + f < dmin. 3.21)

Since correcting an error requires determination of both the error position and the error
value, while filling an erasure requires determination only of the error value, essentially
twice the number of erasures can be filled as errors corrected.

3.8.1 Binary Erasure Decoding

We consider now how to simultaneously fill f erasures and correct e errors in a binary
code with a given decoding algorithm [373, p. 229]. In this case, all that is necessary is to
determine for each erasure whether the missing value should be a one or a zero. An erasure
decoding algorithm for this case can be described as follows:

1. Place zeros in all erased coordinates and decode using the usual decoder for the code.
Call the resulting codeword co.

2. Place ones in all erased coordinates and decode using the usual decoder for the code.
Call the resulting codeword ¢;.

3. Find which of ¢g and ¢; is closest to r. This is the output code.

Let us examine why this decoder works. Suppose we have (2e + f) < dmin (80 that correct
decoding is possible). In assigning 0 to the f erased coordinates we thereby generated eg
errors, ep < f, so that the total number of errors to be corrected is (eg + €). In assigning 1
to the f erased coordinates, we make e errors, e; < f, so that the total number of errors to
be corrected is (e; + ¢). Note that eg + ¢; = f, so that either eg or e; is less than or equal
to f/2. Thus either

2e+ep) <2(e+ f/2) or 2e+er) <2+ f/2),

and 2(e + f/2) < dmin, so that one of the two decodings must be correct.
Erasure decoding for nonbinary codes depends on the particular code structure. For
example, decoding of Reed-Solomon codes is discussed in Section 6.7.

3.9 Modifications to Linear Codes

We introduce some minor modifications to linear codes. These are illustrated for some
particular examples in Figure 3.2.
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Definition 3.12 An (, k, d) code is extended by adding an additional redundant coordinate,
producing an (n + 1, k,d 4 1) code. O

Example 3.21 We demonstrate the operations by modifying a (7, 4, 3) Hamming code. The parity
check matrix for an extended Hamming code, with an extra check bit that checks the parity of all the
bits, can be written

10010110
H = 01011100
“1]o0 01011 10
11111 111
The last row is the overall check bit row. By linear operations, this can be put in equivalent systematic
form
1 0 00 1L 1 01
H= 010 0 0 1 1 1
“{fo o1t 011 10
000110 11
with the corresponding generator
1 0111000
G = 111001 00
01110010
1101 0 0 01
See Figure 3.2. g

Definition 3.13 A code is punctured by deleting one of its parity symbols. An (#, k) code
becomes an (n — 1, k) code. ]

Puncturing an extended code can return it to the original code (if the extended symbols
are the ones punctured.) Puncturing can reduce the weight of each codeword by its weight
in the punctured positions. The minimum distance of a code is reduced by puncturing if
the minimum weight codeword is punctured in a nonzero position. Puncturing an (n, k, d)
code p times can result in a code with minimum distance as small as d — p.

Definition 3.14 A code is expurgated by deleting some of its codewords. It is possible to
expurgate a linear code in such a way that it remains a linear code. The minimum distance
of the code may increase. O

Example 3.22 If all the odd-weight codewords are deleted from the (7, 4) Hamming code, an even-
weight subcode is obtained.
O

Definition 3.15 A code is augmented by adding new codewords. It may be that the new
code is not linear. The minimum distance of the code may decrease. O

Definition 3.16 A code is shortened by deleting a message symbol. This means that a row
is removed from the generator matrix (corresponding to that message symbol) and a column
is removed from the generator matrix (corresponding to the encoded message symbol). An
(n, k) code becomes an (n — 1, k — 1) code.

Shortened cyclic codes are discussed in more detail in section 4.12. O

Definition 3.17 A code is lengthened by adding a message symbol. This means that a
row is added to the generator matrix (for the message symbol) and a column is added to
represent the coded message symbol). An (n, k) code becomes an (n + 1, k + 1) code. O
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Hamming 2" —1,2" - 1—m, 3)
M 1 0 1 0 0 0]
G=|0 1 1 0 100
“41 1 1 0 0 1 O
1 010 0 0 1 Extend by addin
ngcﬂﬁ%&tg - - an overal pa.ritygcheck
some codewords 1001 0 1
(e.g., odd-weight H=|(0 1 1 1 1
codewords 001 0 1 1 1]
Altﬁment by Puncture by
adding new codewords deletin,
(e.g., odd-weight codewords) a parity chec
Lengthen
by addin

Even weight subcode y accing Extended Hammin,

LIRS L e cmessage | BRI 1o i
- - 1 0111 0 0 O
Lo 11100 |l 1100100

G=|1 110 0 10 o1 110 0 1 0
o 111001 110100 0 1]
0 0 0 1 1 0] 1 000 1 1 0 1]
010 0 0 1 1| [ /010 0 0 1 1 1

H=lo 0 10 1 1 1 F=lo o101 110
0 0 0 1 1 0 1 Shorten 00 0 1 1 0 1 1
- - the code N

by deleting
message
coordinates

Figure 3.2: Demonstrating modifications on a Hamming code.

3.10 Best Known Linear Block Codes

Tables of the best known linear block codes are available. An early version appears in [220].
More recent tables can be found at [37].

3.11 Exercises

3.1 Find, by trial and error, a set of four binary codewords of length three such that each word is at
least a distance of 2 from every other word.

3.2 Find a set of 16 binary words of length 7 such that each word is at least a distance of 3 from every
other word. Hint: Hamming code.

3.3 Perhaps the simplest of all codes is the binary parity check code, a (n, n—1) code, where k = n—1.
Given a message vectorm = (mq, m1, ..., mg_1), thecodewordise = (mg, my, ..., mg_1, b),
where b = Zk;(l) m ; (arithmetic in G F(2)) is the parity bit. Such a code is called an even parity
code, since alI] odewords have even parity — an even number of 1 bits.

(a) Determine the minimum distance for this code.
(b) How many errors can this code correct? How many errors can this code detect?
(¢) Determine a generator matrix for this code.

(d) Determine a parity check matrix for this code.
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34
35

3.6

37

3.8

(e) Suppose that bit errors occur independently with probability p.. The probability that a
parity check is satisfied is the probability that an even number of bit errors occur in the
received codeword. Verify the following expression for this probability:

” . 14 (1=2p)"
> (?)P'c(1~pc)”"=—+—i—m—.

2
i=0,i even

For the (n, 1) repetition code, determine a parity check matrix.

[373] Let p = 0.1 be the probability that any bit in a received vector is incorrect. Compute
the probability that the received vector contains undetected errors given the following encoding
schemes:

(a) No code, word length n = 8.
(b) Even parity (see Exercise 3), word length n = 4.
(c) Odd parity, word length n = 9. (Is this a linear code?)
(d) Even parity, word length = n.
[204] Let C; be an (n1, k, d1) binary linear systematic code with generator Gy = [P;  Ii]. Let

C be an (ny, k, d3) binary linear systematic code with generator G = [Pz Ik]. Form the
parity check matrix for an (n] + n2, k) code as

5
H= Im +ny—k I
Py
Show that this code has minimum distance at least di + d5.
The generator matrix for a code over G F(2) is given by

1110 10
G=|1 0 0 1 1 1
0 01 011

Find a generator matrix and parity-check matrix for an equivalent systematic code.
The generator and parity check matrix for a binary code are given by

1 01 011 1 101 10
G=|0 1 1 1 0 1 H={1 0 1 0 1 1. (3.22)
611 01 0 01 0 011

This code is small enough that it can be used to demonstrate several concepts from throughout
the chapter.

(a) Verify that H is a parity check matrix for this generator.

(b) Draw a logic diagram schematic for an implementation of an encoder for the nonsystematic
generator G using ‘and’ and ‘xor’ gates.

(c) Draw a logic diagram schematic for an implementation of a circuit that computes the
syndrome.

(d) List the vectors in the orthogonal complement of the code.
(e) Form the standard array for this code.
(f) Form the syndrome decoding table for this code.

(g) How many codewords are there of weight 0, 1, ..., 67 Determine the weight enumerator
A@).
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(h) Using the generator matrix in (3.22), find the codeword with m = [1, 1, 0] as message bits.
(i) Decode the received word r = [1, 1, 1, 0, 0, 1] using the generator of (3.22).
(j) Determine the weight enumerator for the dual code.

(k) Write down an explicit expression for P, (E) for this code. Evaluate this when p = 0.01.
(I) Write down an explicit expression for Pj(E) for this code. Evaluate this when p = 0.01.

(m) Write down an explicit expression for P(E) for this code. Evaluate this when p = 0.01.

(n) Write down an explicit expression for P(E) for this code, assuming a bounded distance
decoder is used. Evaluate this when p = 0.01.

(0) Write down an explicit expression for P(F) for this code. Evaluate this when p = 0.01.
(p) Determine the generator G for an extended code, in systematic form.
(q) Determine the generator for a code which has expurgated all codewords of odd weight.
Then express it in systematic form.
3.9 [203] Let a systematic (8, 4) code have parity check equations

cg=my+my+m3
cr=mg+mp+my
¢ =mg+mi-+m3
3 =mg+my +ms.
(a) Determine the generator matrix G in for this code in systematic form. Also determine the
parity check matrix H.
(b) Using Theorem 3.3, show that the minimum distance of this code is 4.
(¢) Determine A(z) for this code. Determine B(z).
(d) Show that this is a self-dual code.
3.10 Show that a self-dual code has a generator matrix G which satisfies GGT =o.

3.11 Given a code with a parity-check matrix H, show that the coset with syndrome s contains a vector
of weight w if and only if some linear combination of w columns of H equals s.

3.12 Show that all of the nonzero codewords of the (2™ — 1, m) simplex code have weight 2m=1_ Hint:
Start with m = 2 and work by induction.

3.13 Show that (3.13) follows from (3.12).
3.14 Show that (3.15) follows from (3.14) using the MacWilliams identity.
3.15 Let f(u1, u2) = ujus, for u; € Fy. Determine the Hadamard transform fof f-
3.16 The weight enumerator A(z) of (3.11) for a code C is sometimes written as Wu(x,y) =
g AixTHY
(a) Show that A(z) = Wu(x, y)|x=1,y=z.

(b) Let Wg(x,y) = ;’=0 B,-x"‘i yi be the weight enumerator for the code dual to C. Show
that the MacWilliams identity can be written as

1
Wp(x,y) = q—kWA(x +y,x-y

or
1
WaG,y) = S Wals +7.x =), (3.23)

(¢) In the following subproblems, assume a binary code. Let x = 1 in (3.23). We can write
n . 1 & . ,
YA =g D B+ A=Y (3.24)
i=0 i=0

Set y = 1 in this and show that >/, ’%,g = 1. Justify this result.
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(d) Now differentiate (3.24) with respect to y and set y = 1 to show that

n .
lAi 1
2 5 =3B
i=1
If By = 0, this gives the average weight.

(e) Differentiate (3.24) v times with respect to y and set y = 1 to show that
n . v .
i\ A; 1 ifn—1i
> ()5 =z 2ev(l))a
i=v i=0

0 n<0

x" n>0

Hint: Define (x)%. = . We have the following generalization of the product

rule for differentiation:

dl)
dyY

d ! . 1 .
Piy+b)d = ”) P p=ji__ 4 =D
O+af(y+b ]E:O(j (p_j)!(y+a)+ (q_(v_j))!(y+ )+

(H Now set y = 1in (3.23) and write

n n

) 1 . )
E A" = Tk E Bi(x + D" (x — 1)
i=0 i=0

Differentiate v times with respect to x and set x = 1 to show that

n—v . v .
Z(" ')A,- =2’<—"Z<" ’)B,-, v=0,1,...,n. (3.25)
iz N Y = V'V

3.17 Let C be a binary (n, k) code with weight enumerator A(z) and let C be the extended code of
lengthn 4 1,

n
C=1(co.Cly...rcn):(COs--vsCne1) eC,Zci =0
i=0
Determine the weight enumerator for C.

3.18 [204] Let C be a linear code with both even- and odd-weight codewords. Show that the number
of even-weight codewords is equal to the number of odd-weight codewords.

3.19 Show that for a binary code, P, (E) can be written as:
@ Pu(E)=(1-py[A(125)-1]
(b) and Py(E) =2F""B(1-2p) — (1 - p)".
3.20 [373] Find the lower bound on required redundancy for the following codes.

(a) A single-error correcting binary code of length 7.

(b) A single-error correcting binary code of length 15.

(c) A triple-error correcting binary code of length 23.

(d) A triple-error correcting 4-ary code (i.e., ¢ = 4) of length 23.

3.21 Show that all odd-length binary repetition codes are perfect.
3.22 Show that Hamming codes achieve the Hamming bound.
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3.23 Determine the weight distribution for a binary Hamming code of length 31. Determine the weight
distribution of its dual code.

3.24 The parity check matrix for a nonbinary Hamming code of length n = (g™ — 1)/(g — 1) and
dimension & = (g™ — 1)/(q — 1) — m with minimum distance 3 can be constructed as follows.
For each g-ary m-tuple of the base-q representation of the numbers from 1 to g™ — 1, select those
for which the first nonzero element is equal to 1. The list of all such m-tuples as columns gives
the generator H.

(a) Explain why this gives the specified length n.

(b) Write down a parity check matrix in systematic form for the (5, 3) Hamming code over the
field of four elements.

(¢) Write down the corresponding generator matrix. Note: in this field, every element is its
own additive inverse: 1 +1=0,24+2=0,3+3=0.

3.25 [204] Let G be the generator matrix of an (n, k) binary code C and let no column of G be all
zeros. Arrange all the codewords of C as rows of a 2k xn array.
(a) Show that no column of the array contains only zeros.
(b) Show that each column of the array consists of 2%=1 zer0s and 21 ones.

(c) Show that the set of all codewords with zeros in particular component positions forms a
subspace of C. What is the dimension of this subspace?

(d) Show that the minimum distance d,,;, of this code must satisfy the following inequality,
known as the Plotkin bound:

n 2k -1

2k -1’

3.26 [204] Let " be the ensemble of all the binary systematic linear (r, k) codes.

dmin <

(a) Prove that a nonzero binary vector v is contained in exactly 2k=D(®~k) of the codes in T
or it is in none of the codes in I.

(b) Using the fact that the nonzero n-tuples of weight d — 1 or less can be in at most

d—1
k=D (n—k) § (7
2\

(n, k) systematic binary linear codes, show that there exists an (n, k) linear code with
minimum distance of at least d if the following bound is satisfied:

d-1
Z (n) < onk,
i=1 !

(c) Show that there exists an (n, k) binary linear code with minimum distance at least d that
satisfies the following inequality:

d
n
ok < ( ) .
=3(!
i=0
This provides a lower bound on the minimum distance attainable with an (z, k) linear code

known as the Gilbert-Varshamov bound.
3.27 Define a linear (5,3) code over G F(4) by the generator matrix

1 0 011
G=(0 1 0 1 2
001 1 3
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(a) Find the parity-check matrix.

(b) Prove that this is a single-error-correcting code.
(c) Prove that it is a double-erasure-correcting code.
(d) Prove that it is a perfect code.

3.28 [203] Let H be the parity check matrix for an (n, k) linear code C. Let C’ be the extended code
whose parity check matrix H’ is formed by

0
0 H

H =
0
11 1 - 1

(a) Show that every codeword of C’ has even weight.

(b) Show that C’ can be obtained from C by adding an extra parity bit called the overall parity
bit to each codeword.

3.29 The [ulu + v] construction: Let C;, i = 1, 2 be linear binary (#, k;) block codes with generator
matrix G; and minimum distance d;. Define the code C by

C=|C1|C1+C3| = {[uju+v]:uely,vell

(a) Show that C has the generator

_6G1 Gi
o=[o &)

(b) Show that the minimum distance of C is

dmin = min(2dy, dy).

3.12 References

The definitions of generator, parity check matrix, distance, and standard arrays are standard;
see, for example, [203, 373]. The MacWilliams identity appeared in [219]. Extensions to
nonlinear codes appear in [220]. The discussion of probability of error in Section 3.7 is
drawn closely from [373]. Our discussion on modifications follows [373], which, in turn,
draws from [25]. Our analysis of soft-input decoding was drawn from [15]. Classes of
perfect codes are in [337].



Chapter4

Cyclic Codes, Rings, and
Polynomials

4.1 Introduction

We have seen that linear block codes can be corrected using the standard array, but that for
long codes the storage and computation time can be prohibitive. Furthermore, we have not
yet seen any mechanism by which the generator or parity check matrix can be designed
to achieve a specified minimum distance or other criteria. In this chapter, we introduce
cyclic codes, which have additional algebraic structure to make encoding and decoding
more efficient. Following the introduction in this chapter, additional algebraic tools and
concepts are presented in Chapter 5, which will provide for design specifications and lead
to efficient algebraic decoding algorithms.

Cyclic codes are based on polynomial operations. A natural algebraic setting for the
operations on polynomials is the algebraic structure of a ring.

4.2 Basic Definitions

Given a vector ¢ = (¢, €1, ..., Cn—2, Cn—1) € GF{q)", the vector
¢ = (cn-1,¢0,€1,...,Cn=2)

is said to be a cyclic shift of ¢ to the right. A shift by » places to the right produces the
VECtOr (Cr—ry Cn—rd-1s -+ +5 Cn=1,C05 Cly + + - Cn—r—1)-

Definition 4.1 An (n, k) block code C is said to be cyclic if it is linear and if for every
codewordc = (cg, ¢1, .. ., cu—1) In C, its right cyclic shift ¢ = (¢,—1, ¢, - . ., Cr—2) is also
inC. O

Example 4.1 We observed in Section 1.9.2 that the Hamming (7,4) code is cyclic; see the codeword
list in (1.35). ]

The operations of shifting and cyclic shifting can be conveniently represented using poly-
nomials. The vector

¢ =1(co,C1y...,Cn=1)
is represented by the polynomial
cx)=co+cix+---+ Cn1x"L,
using the obvious one-to-one correspondence. We write this correspondence as

-1
(€0, €1y -+ -y Cam1) € CO+C1X + -+ Cpo1x™ .
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Box 4.1: The Division Algorithm

Let p(x) be a polynomial of degree r and let d(x) be a polynomial of degree
m. That is, deg(p(x)) = n and deg(d(x)) = m. Then the “division algorithm”
for polynomials asserts that there exist polynomials g (x) (the quotient) and r (x)
(the remainder), where 0 < deg(r(x)) < m and

p(x) = g(x)d(x) +r(x).

The actual “algorithm” is polynomial long division with remainder. We say that
p(x) is equivalent to r (x) modulo d{(x) and write this as

p{x) =r(x) mod d(x)

or
p(x) (mod d(x)) =r(x).

If r(x) = 0, then d(x) divides p(x), which we write as d(x) | p(x). If d(x) does
not divide p(x) this is denoted as d(x) / p(x).

A (noncyclic) shift is represented by polynomial multiplication:
xe(x) = cox +c1x2 + -+ cp1x”

SO
©,co,¢1,-..,Cn—1) © cox + c1)c2 + - teop1x”.

To represent the cyclic shift, we move the coefficient of x” to the constant coefficient position
by taking this product modulo x — 1. Dividing xc(x) by x” — 1 using the usual polynomial
division with remainder (i.e., the “division algorithm;” see Box 4.1), we obtain
xe(x) = enog " = 1) + (cox + c1x® + -+ + cn—2x" L+ cn1)
—— S ’

—
quotient remainder

so that the remainder upon dividing by x” — 1 is

xc(x) (mod x" —1) = ¢cp_1 4+ cox + - + canx" L.

4.3 Rings

We now introduce an algebraic structure, the ring, which is helpful in our study of cyclic
codes. We have met the concept of a group in Chapter 2 . Despite their usefulness in a
variety of areas, groups are still limited because they have only one operation associated
with them. Rings, on the other hand, have two operations associated with them.

Definition 4.2 A ring (R, +, -} is a set R with two binary operations + (addition) and -
(multiplication) defined on R such that:

R1 (R, +) is an Abelian (commutative) group. We typically denote the additive identity
as 0.
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R2 The multiplication operation - is associative: (a-b)-c =a-(b-c)foralla,b,c € R.
R3 The left and right distributive laws hold:
a(b+c¢) =ab+ ac,
(a + b)c = (ac) + (bo).

A ring is said to be a commutativeringifa -b = b -a foreverya, b € R.

The ring (R, +, -} is frequently referred to simply as R.

A ring is said to be a ring with identity if - has an identity element. This is typically
denoted as 1. a

Notice that we do not require that the multiplication operation form a group: there may
not be multiplicative inverses in a ring (even if it has an identity). Nor is the multiplication
operation necessarily commutative. All of the rings that we deal with in this book are rings
with identity.

Some of the elements of a ring may have a multiplicative inverse. An element a in a
ring having a multiplicative inverse is said to be a unit.

Example 4.2 The set of 2 x 2 matrices under usual definitions of addition and multiplication form a
ring. (This ring is not commutative, nor does every element have an inverse.) U

Example 4.3 (Zg, +, -) forms a ring.

+(0 1 2 3 4 35 -0 1 2 3 4 3
6|0 1 2 3 4 5 0{0 0 0 0 0 O
1(1 2 3 4 5 0 10 1 2 3 4 5
212 3 4 5 01 210 2 4 0 2 4
3|13 45 01 2 3/0 3 03 0 3
414 5 01 2 3 4|10 4 2 0 4 2
5/5 01 2 3 4 510 5 4 3 2 1

It is clear that multiplication under Zg does not form a group. But Zg still satisfies the requirements
to be aring. g

Definition 4.3 Let R be aring and leta € R. For aninteger n, let na denotea+a+---+a
with n arguments. If a positive integer exists such that na = 0 for all @ € R, then the
smallest such positive integer is the characteristic of the ring R. If no such positive integer
exists, the R is said to be a ring of characteristic 0. (]

Example 4.4 In the ring Zg, the characteristic is 6. In the ring (Zy, +, -}, the characteristic is n. In
the ring Q, the characteristic is 0. O

4.3.1 Rings of Polynomials
Let R be aring. A polynomial f(x) of degree n with coefficients in R is

n
fx) =) aix',
i=0
where a, # 0. The symbol x is said to be an indeterminate.

Definition 4.4 The set of all polynomials with an indeterminate x with coefficients in a
ring R, using the usual operations for polynomial addition and multiplication, forms a ring
called the polynomial ring. It is denoted as R[x]. ]
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Example 4.5 Let R = (Zg, +, -} and let § = R[x] = Zg[x]. Then some elements in § are: 0, 1, x,
1+ x,4+ 2x, 5 + 4x, etc. Example operations are
“@+2x)+(G5+4x) =3

(4 4 2x)(5 + dx) = 2 + 2x + 2x2.
O

Example 4.6 7Z>[x] is the ring of polynomials with coefficients that are either 0 or 1 with operations
modulo 2. As an example of arithmetic in this ring,

A+004+x) =1+x+x+x2=1+x2
since x + x = 0 in Z3. ]
It is clear that polynomial multiplication does not, in general, have an inverse. For example,
in the ring of polynomials with real coefficients R[x], there is no polynomial solution f(x)

io
FEEE+3x+ 1) =x3 +2x + 1.

Polynomials can represent a sequence of numbers in a single collective object. One rea-
son polynomials are of interest is that polynomial multiplication is equivalent to convolution.

The convolution of the sequence
a= {aO» ag, az, ... aan}

with the sequence
b = {bo,b1,b2, ...

can be accomplished by forming the polynomials

i3 bm}

a(x) = ap +aix +ax? + - - + apx”
b(x) = by + bix +byx? + - + bpx™
and multiplying them
c(x) = a(x)b{x).
Then the coefficients of

cx) =co+c1x+ex? 4+ Cnamx ™

are equal to the values obtained by convolving a * b.

4.4 AQuotient Rings

Recall the idea of factor groups introduced in Section 2.2.5: Given a group and a subgroup,
a set of cosets was formed by “translating” the subgroup. We now do a similar construction
over a ring of polynomials. We assume that the underlying ring is commutative (to avoid
certain technical issues). We begin with a particular example, then generalize.

Consider the ring of polynomials G F(2){x] (polynomials with binary coefficients) and
a polynomial x> — 1.} Let us divide the polynomials up into equivalence classes depending
on their remainder modulo x3 + 1. For example, the polynomials in

So={0,x3+1,x4+x,x5+x2,x6+x3,...}

'n a ring of characteristic 2, x" — 1 = x® + 1. However, in other rings, the polynomial should be of the form
=1
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all have remainder 0 when divided by x3 + 1. We write So = (x> + 1), the set generated by
x3 4+ 1. The polynomials in

Si = {1,x3,x4+x + l,x5 +x2+1,x8+23+ 1,...}
all have remainder 1 when divided by x3 + 1. We can write
Si=1+8 =1+ +1).
Similarly, the other equivalence classes are

Szz{x,x3+x+1,x4,x5+x2+x,x6+x3+x,...}

=x+So
Ss=x+1L,3+x,x + 1,0+ Fx+ 1,20+ 41,0

=x+14+5
S4={x2,x3+x2+1,x4+x2+x,x5,x6+x3+x2,...}

=x2+S()
S5={x2+1,x3+x2,x4+x2+x+1,x5+1,x6+x3+x2+1,...}

=x2+14+5
S6={x2+x,x3-|—x2+x+1,x4+x2,x5+x,x6+x3+x2+x,...}

=x2+x+So
S7={x2-|~x-+-1,x3+x2+x,x4+x2+1,x5+x+1,x6+x3+x2+x+1,...}

=xl+x+1+8

Thus, S, S1, .. ., 57 formthe cosets of (G F(2)[x], +) modulo the subgroup (x34+1). These
equivalence classes exhaust all possible remainders after dividing by x 3 4+ 1. Itis clear that
every polynomial in G F (2)[x] falls into one of these eight sets.

Just as we defined an induced group operation for the cosets of Section 2.2.5 to create the
factor group, so we can define induced ring operations for both + and - for the equivalence
classes of polynomials modulo x> + 1 by operation on representative elements. This gives
us the following addition and multiplication tables.

+ (S S1 S 8 S2 0S5 S 57 1S S1 S 85 84 S5 S &
So|So S1 S 8§35 S40 0S5 S S SolSo So So So So So So So
S1 |81 So S3 S2 S5 S4 §7 Se St S S1 S22 S35 S4 S5 S 57
218 S35 So S1 S 7 S40Ss S218 S» S4 S¢ S1 S5 S5 &7
S318 S S1 So §7 S S5 5 S3 1S S3 S S5 Ss S¢ 5 So
S4 1S4 S5 S¢ S7 So S1 S22 083 Si|So Si S1 S5 S S 55087
Ss|Ss Sa §7 S¢ S1 So S35 S Ss|So Ss S3 S¢ S¢ 53 0S5 So
Ss|Se S7 Sa S5 S22 S3 So 1 Ss|So S¢ S5 S35 S3 S5 S¢ So
718 S¢ S5 S4 S3 S S1 S S5 1S S7 & S §7 S S S7

Let R = {Sp, S1, ..., S7}. From the addition table, (R, +) clearly forms an Abelian group,
with So as the identity. For the multiplicative operation, S1 clearly acts as an identity.
However, not every element has a multiplicative inverse, so (R \ Sp, -} does not form a
group. However, (R, +, -) does define a ring. The ring is denoted as GF (2){x]/ (x3+1)
or sometimes by G F(2)[x]/ (x3 4+ 1), the ring of polynomials in GF (2)[x] modulo x4+ 1.
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We denote the ring GF (2)[x]/{x" — 1) by R,. We denote the ring Fg[x]/{(x" — 1) as Ry 4.

Each equivalence class can be identified uniquely by its element of lowest degree.

So & 0 S1 o1

Sy o x S3ex+1

S4<—>x2 S5<—>x2+1
S6<->x2+x S o xl+x+1

Let R =1{0,1,x,x+ 1, x2, x2+1, x2 4+ X, x4+ x+ 1}. Define the addition operation
in R as conventional polynomial addition, and the multiplication operation as polynomial
multiplication, followed by computing the remainder modulo x3 + 1. Then (R, +, -) forms
aring.

Definition 4.5 Two rings (R, +, -) and (R, +, -) are said to be (ring) isomorphic if there
exists a bijective function ¢ : G — G called the isomorphism such that forevery a, b € R,

¢la+b)=¢@+¢b) ¢(&3) = ¢(a) - 9(b) 4.1
operation  operation operation  gperation
in R inR in R inR
Ring homomorphism is similarly defined: the function ¢ no longer needs to be bijective,
but (4.1) still applies. g

Clearly the rings R (where operation is by representative elements, defined in the tables
above) and R (defined by polynomial operations modulo x> + 1) are isomorphic.

Note that we can factor x> + 1 = (x + 1)(x% + x + 1). Also note from the table that in
R, 8387 = So. Equivalently, in R,

E+DE*P+x+1)=0.

This is clearly true, since to multiply, we compute the conventional product (x + D2+
x+1) = x3 + 1, then compute the remainder modulo x3 + 1, which is 0. We shall make
use of analogous operations in computing syndromes.

More generally, for a field F, the ring of polynomials F[x] can be partitioned by a
polynomial f(x) of degree m into a ring consisting of ¢™ different equivalence classes,
with one equivalence class for each remainder modulo f(x), where ¢ = |F|. This ring is
denoted as Fx]/{f(x)) or F[x]/f(x). A question that arises is under what conditions this
ring is, in fact, a field? As we will develop much more fully in Chapter 5, the ring F[x]/f (x)
is a field if and only if f(x) cannot be factored over F(x]. In the example above we have

BHl=x+DE*+x+1),

50 x> + 1 is reducible and we do not get a field.

4.5 Ideals in Rings

Definition 4.6 Let R be a ring. A nonempty subset I C R is an ideal if it satisfies the
following conditions:

I1 7 forms a group under the addition operation in R.
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I2 Foranya €  andanyr € R,ar € I.

Example 4.7

1. For any ring R, 0 and R are (trivial) ideals in R.

2. Thesetl = {0, O+t 32 4x+ 1} forms anideal in Rg. Forexample, let 1 4+x +x% € Rg.
Then

(1+x+x2)(x5+x4+x3+x2+x+1)=x7+x5+x4+x3+x2+1 (modx6+1)
=x5+x4+x3+x2+x+161.

d

Example 4.8 Let R be a ring and let R[x1, x2, ..., x»] be the ring of polynomials in the » indeter-
minates x1, X2, ..., Xzn.

Ideals in a the polynomial ring R[x1, ..., xn] are often generated by a finite number of polyno-
mials. Let f1, f2, ..., fs be polynomials in R[x1,...,x,]. Let {f1, f2, ..., fs) be the set

s
(i for s Y=Y hifi thi,... hs € RIx1, .., 2n]
i=1

That is, it is the set of all polynomials which are linear combinations of the { f;}. The set {(f1,..., fs)
is an ideal.

Thus, an ideal is similar to a subspace, generated by a set of basis vectors, except that to create a
subspace, the coefficients are scalars, whereas for an ideal, the coefficients are polynomials. g

The direction toward which we are working is the following:

Cyclic codes form ideals in a ring of polynomials.

In fact, for cyclic codes the ideals are principal, as defined by the following.

Definition 4.7 An ideal I in a ring R is said to be principal if there exists some g € 1
such that every element a € I can be expressed as a product a = mg for some m € R. For
a principal ideal, such an element g is called the generator element. The ideal generated
by g is denoted as (g):

() ={hg:h eR}.

Theorem 4.1 Let I be an ideal in Fy[x1/(x" — 1). Then

1. There is a unique monic polynomial g(x) € I of minimal degree.”
2. 1 is principal with generator g(x).
3. g(x) divides (x" — 1) in Fg[x].

2 A polynomial is monic if the coefficient of the leading term — the term of highest degree — is equal to 1.
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Proof There is at least one ideal (so the result is not vacuous, since the entire ring is an
ideal). There is a lower bound on the degrees of polynomials in the ideal. Hence there must
be at least one polynomial in the ideal of minimal degree, which may be normalized to be
monic. Now to show uniqueness, let g(x) and f(x) be monic polynomials in I of minimal
degree with f # g. Then A(x) = g(x) — f(x) must be in I since I forms a group under
addition, and & (x) must be of lower degree, contradicting the minimality of the degree of g
and f.

To show that 7 is principal, we assume (to the contrary) that there is an f (x) € [ thatis
not a multiple of g(x). Then by the division algorithm

f&x) =mx)gx)+rx)

with deg(r) < deg(g). But m(x)g(x) € I (definition of anideal) andr = f —mg € [
(definition of ideal), contradicting the minimality of the degree of g, unless r = 0.

To show that g(x) divides (x™ — 1), we assume to the contrary that g(x) does not divide
(x" — 1). By the division algorithm

x"—1=h(x)gx)+r(x)

with 0 < deg(r) < deg(g). But h(x)g(x) € I andr(x) = (x" — 1) — h(x)g(x) is the
additive inverse of h(x)g(x) € I, and so is in I, contradicting the minimality of the degree
of g. O

If a monic polynomial g(x) divides (x" — 1), then it can be used to generate an ideal:
I'= (g(x)).

Inthering Fy[x]/(x" —1), different ideals can be obtained by selecting different divisors
g(x)of x® — 1.

Example 4.9 By multiplication, it can be shown that in G F(2)[x],
Tl=+DE +x+ D3+ 22+ 1),

In the ring G F (2)[x1/ (x7 + 1), there are ideals corresponding to the different factorizations of xT 41,
so there are the following nontrivial ideals:

x+1) (x3+x+1) (x3+x2+1)

(x+DE+x+1D) (G+DE+x2+1D) (G +x+DEE +x2 + D).

4.6 Algebraic Description of Cyclic Codes

Let us return now to cyclic codes. As mentioned in Section 4.1, cyclic shifting of a polyno-
mial ¢(x) can be represented by xc(x) modulo x” — 1. Now think of ¢(x) as an element of
GF(q)[x]/(x" — 1). Then in that ring, xc(x) is a cyclic shift, since operations in the ring
are defined modulo x” — 1. Any power of x times a codeword yields a codeword so that,
for example,

(Cn=1,€0,€C1, ..., Cn-2) < xc{x)

(Cn—2, Cn—1, COy v v Cﬂ—3) <~ xzc(x)

(€1,€2, -+, €n1, c0) < x"le(x),
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where the arithmetic on the right is done in the ring GF(g)[x]/(x" — 1). Furthermore,
multiples of these codewords are also codewords, so that a1xc(x) is a codeword for a1 €
GF(q), azx*c(x) is a codeword fora; € GF (g), etc. Furthermore, any linear combination
of such codewords must be a codeword (since the code is linear. Let C be a cyclic code over
GF(gq) and let c(x) € GF(g)[x]/(x" — 1) be a polynomial representing a codeword in C.
If we take a polynomial a(x) € GF(q)[x]/(x" — 1) of the form

a(x) =ap+a1x + -+ ap_1x""!

then
c(x)a(x)

is simply a linear combination of cyclic shifts of ¢(x), which is to say, a linear combination
of codewords in C. Thus c(x)a(x) is also a codeword. Since linear codes form a group
under addition we see that a cyclic code is an ideal in G F(g)[x]/(x™ — 1). From Theorem
4.1, we can immediately make some observations about cyclic codes:

* An (n, k) cyclic code has a unique minimal monic polynomial g(x), which is the
generator of the ideal. This is called the generator polynomial for the code. Let the
degreeof gbe n — k,

g(x) = go+ g1x + gax* + -+ + gnix" ¥,

and let r = n — k (the redundancy of the code).
* Every code polynomial in the code can be expressed as a multiple of the generator
c(x) =mx)g(x),
where m(x) is a message polynomial. The degree of m(x) is (strictly) less than &,
m(x) =mo+mix + -+ my_1x*71

There are k independently selectable coefficients in m(x), so the dimension of the
code is k. Then c¢(x) = m(x)g(x) has degree < n — 1, so that n coded symbols can
be represented:

cx)=coterx+eax® 4o +epyx™!
= (80 + &1% + - + gnkxX" F)(mo + mix +max? + -+ + myp_1xF1.

¢ The generator is a factor of x" — 1in GF(q)[x].

Example 4.10 We consider cyclic codes of length 15 with binary coefficients. By multiplication it
can be verified that

B 1l=U+00+x+2)A +x +xHA+x + 2+ 3 +xHA + 3 + Y.

So there are polynomials of degrees 1, 2, 4, 4, and 4 which can be used to construct generators. The
product of any combination of these can be used to construct a generator polynomial. If we want a
generator of, say, degree 10, we could take

gx)=(1+x +x2)(1 +x +x4)(1 +x +x2 +x3 +x4).
If we want a generator of degree 5 we could take

gx) =1+ +x+xY
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or
gx) =1+ +x+x2+x> +x4.

In fact, in this case, we can get generator polynomials of any degree from 1 to 15. So we can construct
the (n, k) codes
s, 1, (15,2),...,(15,15).

4.7 Nonsystematic Encoding and Parity Check

A message vector m = [mo mp ... mk_l] corresponds to a message polynomial

m(x) =mo+ - +mp_gx*L.

Then the code polynomial corresponding to m(x) is obtained by the encoding operation
of polynomial multiplication:
c(x) =m(x)g(x)
= (mog(x) + m1xg(x) + - --mp_1x* "1 g (x)).
This is not a systematic encoding operation; systematic encoding is discussed below. The
encoding operation can be written as
g(x)
xg(x)
x2g(x)
cxy=[mo my my --- mq]| *°8
g )
This can also be expressed as
(80 &1 - &

g 81 - &

g 81 - &
cmz[mo’m19"'7mk—1] ., ., .. 4

g 81 - &
g0 81 -+ 8r]

(where empty locations are equal to 0) or
¢ =mG,

where G is a k x n matrix. A matrix such as this which is constant along the diagonals is
said to be a Toeplitz matrix.

Example 4.11 Letr = 7 and let
g =@ +x+Dx+ D =142+ +x4
so that the code is a (7, 3) code. Then a generator matrix for the code can be expressed as
1 01 1100
G=|0 1 0 1 1 1 0].
001 01 11

The codewords in the code are as shown in Table 4.1.
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Table 4.1: Codewords in the Code Generated by g(x) = 1 + x2 4+ x3 x4

m m(x)g(x) code polynomial codeword
0,0,0) 0g(x) 0 0000000
(1,0,0) 1g(x) 1+x24+x34+x* 1011100
0,1,0) xg(x) x+x34+x4+x5 0101110
1,1,0) (x4 Dgkx) 14+ x+x2+x° 1110010
0,0,1) x2%g(x) x2+ x4+ x5 +x% 0010111
1,0,1) 2+ Dgx) 1+x3+x°+x% 1001011
0,1,1) (*+x)gx) x+x2+x34+x5 0111001

a1, @2+x+Dgkx) 14+x4+x*+x° 1100101

For a cyclic code of length n with generator g(x), there is a corresponding polynomial
h(x) of degree k satisfying 2 (x)g(x) = x™ — 1. This polynomial is called the parity check
polynomial. Since codewords are exactly the multiples of g(x), then for a codeword,

c(h(x) =mx)g(x)h(x) =mx)(x" —1) =0 (in GF(Qx]/(x" — 1)).

Thus a polynomial 7 (x) can be examined to see if it is a codeword: r(x) is a codeword if
and only if r (x)h{x) (mod x" — 1) is equal to O.

As for linear block codes, we can define a syndrome. This can be accomplished several
ways. One way is to define the syndrome polynomial corresponding to the received data
r(x) as

s(x) = r(x)h(x) (mod x" —1). 4.2)

s(x) is identically zero if and only if r (x) is a codeword.

Let us construct a parity check matrix corresponding to the parity check polynomial
h(x). Let c(x) represent a code polynomial in C, so c¢(x) = m(x)g(x) for some message
m{x) =mo+mx+--- mk_lxk‘l. Then

c(X)h(x) = m(x)g(Xh(x) =mx)(x" — 1) =m(x) — m(x)x".

Since m(x) has degree less than k, then powers xk xk+1 . x"=1 do not appear’ in

m(x) — m(x)x". Thus the coefficients of xk, x%+1 . x"=1in the product c(x)Ah(x) must
be 0. Thus
k
> hici=0forl=kk+1,...,n—1. (4.3)
i=0

This can be expressed as

hy hi-1 he— -+ ho o

he  hgr hg—m -+ ho c1
hi  he-1 he—2 -+ ho 2 | =o. (4.4)

he  hi-1 hk—2 -+ ho] [tn-1

3This “trick” of observing which powers are absent is a very useful one, and we shall see it again.
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Thus the parity check matrix H can be expressed as the {(n — k) x n Toeplitz matrix

he hi—i hg—z -+ ho
hk hig1 hi—2 ho
H= he  hi-1 hi—2 -+ ho
he  hk-1 hxg—2 -+ ho

Example 4.12 For the (7,4) cyclic code of Example 4.11 generated by g(x) = x4 x4 x4+ 1, the
parity check polynomial is

7
x'+1 3 2

) ¥ +x3+x24+1 *

The parity check matrix is
1 1 0 1
1 1 0 1
H= 11 01
1 1 0 1

It can be verified that GHT = 0 (in GF(2)). O

4.8 Systematic Encoding

With only a little more effort, cyclic codes can be encoded in systematic form. We take the
message vector and form a message polynomial from it,

m = (mg, My, ..., Mp_1) < m(x) =mg+mx +---+ mk_1xk‘1.
Now take the message polynomial and shift it to the right n — k positions:

" Fmx) = mox™F + mix" 4oL
Observe that the vector corresponding to this is

0,0,...,0,mg,my, ..., me—1) < x"*m(x).
e, s’
n—k

Now divide x"*m (x) by the generator g(x) to obtain a quotient and remainder
X" Km(x) = g(0)g(x) +d(x),

where ¢ (x) is the quotient and d(x) is the remainder, having degree less than n — k. We use
the notation Ry (x)[-] to denote the operation of computing the remainder of the argument
when dividing by g(x). Thus we have

d(x) = Rg)[x" *m(x)].
By the degree of d(x), it corresponds to the code sequence
(do,dr,...,dn-%-1,0,0,...,0) & d(x).

Now form
x"Fmx) - d(x) = g(x)g(x).
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Since the left-hand side is a multiple of g(x), it must be a codeword. It has the vector
representation

(=do, —d1, ..., —dn—t—1,m0, M1, ..., m_1) <> X" Fm(x) - d(x).
The message symbols appear explicitly in the last k positions of the vector. Parity symbols
appear in the first n — k positions. This gives us a systematic encoding.
Example 4.13 We demonstrate systematic coding in the (7, 3) code from Example 4.11. Letm =
(1,0,1)  m(x) =1 +x2.
1. Compute " Fm(x) = x*m(x) = x* + x5.
2. Employ the division algorithm:
Al =4 +xH0+ 2+ 3 +xH+ A+ 0.
The remainder is (1 + x).
3. Then the code polynomial is
e®) =x"Fmx) —d®) = 1+x +6* +x5 < (1,1,0,0,1,0, 1.
[
m

O

A systematic representation of the generator matrix is also readily obtained. Dividing
x"~k+ by g(x) using the division algorithm we obtain

X — g (gx) + bi(x),  i=0,1,...,k~1,
where b;(x) = bio + bi1x +---+ bi,n_k_lx"‘k'l is the remainder. Equivalently,
X bi(x) = qi(0)g (),
so x" %+ _ p;(x) is a multiple of g(x) and must be a codeword. Using these codewords

fori =0,1,...,k — 1 to form the rows of the generator matrix, we obtain
—by,0 —-bpy -+ —bopst-1 1 0 0 --- 0
~b10 —b11 -+ —bipik-1 0 1 0 0
G=| b0 —-b21 - —-bpg1 001 --- 0
—bg_10 =br-11 -+ —bp—1pst-1 0 0 O ... 1
The corresponding parity check matrix is
1 00 --- 0 bo,0 b1o b0 br-1,0
010 -0 bo,1 b1 bt br_11
g=10 0 1 -~ 0 Do b12 by o bk-12
0 0 0 -+ 1 bopei-1 brn-k-1 b2pn-k—1 -+ br-1n—k-1

Example4.14 Letg(x) =1+ x + x3. The b; (x) polynomials are obtained as follows:

i=0: x3 =gx) + (1 +x) bo(x) =1+x
i=1: x* =xg(x)+(x+x2) bl(x)=x+x2
i=2: =2+ Dgl) + 1 +x +x2) by(x) =1+ x +x*

i=3: =03 +x+Dgl)+ 1 +x%) by(x) = 1 + x2



126 Cyclic Codes, Rings, and Polynomials

The generator and parity matrices are

10008 pes aon

G = H={0 1 O 1 1 1 01.
L 0010 0 0 1 0 1 1 1
1 01 0 0 0 1

For systematic encoding, error detection can be readily accomplished. Consider the systematically-
encoded codeword

¢ = (_d07 _dla ey =Ap_k—-1,MQ, M1, ..., mk—-l) = (_d7 m)
We can perform error detection as follows:

1. Estimate a message based on the systematic message part of r. Call this m’.

2. Encode m’. Compare the parity bits from this to the received parity bits. If they don’t
match, then an error is detected.

4.9 Some Hardware Background

One of the justifications for using cyclic codes, and using the polynomial representation
in general, is that there are efficient hardware configurations for performing the encoding
operation. In this section we present circuits for computing polynomial multiplication and
division. In Section 4.10, we put this to work for encoding operations. Some of these
architectures are also used in conjunction with the convolutional codes, to be introduced in
Chapter 12.

4.9.1 Computational Building Blocks

The building blocks employed here consist of three basic elements. We express the opera-
tions over an arbitrary field F.

One-bit memory storage The symbol E):! is a storage element which holds one symbol in
the field F. (Most typically, in the field G F(2), it is one bit of storage, like a D flip-
flop.) The @ holds its symbol of information (either a O or a 1) until a clock signal
(not portrayed in the diagrams) is applied. Then the signal appearing at the input
is “clocked” through to the output and also stored internally. In all configurations
employed here, all of the @ elements are clocked simultaneously. As an example,

consider the following system of five [D] elements:

0_p D D D D

This cascaded configuration is called a shift register. In this example, the connection
on the left end is permanently attached to a “0”. If the storage elements are initially
loaded with the contents (1, 0, 1, 0, 0), then as the memory elements are clocked, the
contents of the shift register change as shown here:
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Initial 0 _.| 1 0 1 0 0

. 0
Shift1 0 0 1 0 1 0
shift2 0 _.[ 0 ] 0 Tt

. 0
Shift3 0 _.] 0 0 0 1 0 —
shift4 0 [ o 0 0 0 -
Shifts O _,.| 0 0 0 0 0 0

This is frequently represented in tabular form:

Initial: 1 0 1 O O
Shift1: 0 1 0 1 O
Shift2: 0 0 1 0 1
Shift3: 0 0 O 1 O
Shift4: 0 0 O 0 1
Shifts: 0 0 0 0 O

Further clockings of the system result in no further changes: the state (the contents
of the memory elements) of the system remains in the all-zero state.

Adder The symbol @ has two inputs and one output, which is computed as the sum of
the inputs (in the field IF).

Multiplication The symbol has one input and one output, which is computed as the
product of the input and the number g; (in the field F). For the binary field the
coefficients are either O or 1, represented by either no connection or a connection,
respectively.

4.9.2 Sequences and Power series

In the context of these implementations, we represent a sequence of numbers {ag, a1, a2,
..., an} by apolynomial y(x) = ap +a1x + -+ ax® = Y i, a;x'. Multiplication by
x yields

xy(x) = aox +aix* +---+ anpx"t1,

which is a representation of the sequence {0, ag, a1, . . ., an} — a right-shift or delay of the
sequence. The x may thus be thought of as a “delay” operator (just as z~L in the context
of Z-transforms). Such representations are sometimes expressed using the variable D (for
“delay”) as y(D) = ap + a1 D + - - - + a, D". This polynomial representation is sometimes
referred to as the D-transform. Multiplication by D (= x) represents a delay operation. )
There are two different kinds of circuit representations presented below for polynomial
operations. In some operations, it is natural to deal with the /ast element of a sequence first.
That is, for a sequence {ap, a1, . . ., ax}, represented by a(x) = ap+ajx +--- + agx®, first



128

Cyclic Codes, Rings, and Polynomials

a(x)

ax enters the processing, then ag_1, and so forth. This seems to run counter to the idea of x
as a “delay,” where temporally a¢p would seem to come first. But when dealing with a block
of data, it is not a problem to deal with any element in the block and it is frequently more
convenient to use this representation.

On the other hand, when dealing with a stream of data, it may be more convenient to
deal with the elements “in order,” first ag, then a;, and so forth.

The confusion introduced by these two different orders of processing is exacerbated
by the fact that two different kinds of realizations are frequently employed, each of which
presents its coefficients in opposite order from the other. For (it is hoped) clarity, represen-
tations for both last-element-first and first-element-first realizations are presented here for
many of the operations of interest.

4.9.3 Polynomial Multiplication
Last-Element-First Processing
Leta(x) = ap+ aix + - - -agx* and let h(x) = hg + hix + - + h,x". The product
b(x) = a(x)h(x)

= apho + (aoh1 + arho)x + - - + (axhr—1 + ak-1h) X" 71 4 agh, x™F
can be computed using a circuit as shown in Figure 4.1. (This circuit should be familiar to
readers acquainted with signal processing, since it is simply an implementation of a finite
impulse response filter.) The operation is as follows: The registers are first cleared. The
last symbol ai is input first. The first output is azh,, which is the last symbol of the product
a(x)h(x). At the next step, ax—1 arrives and the output is ax—1h, + axh,—1. At the next
step, ax—p arrives and the output is (ax—2h, + ag—1hr-1 + arhr—_2), and so forth. After ag

is clocked in, the system is clocked r times more to produce a total of k + r + 1 outputs.
A second circuit for multiplying polynomials is shown in Figure 4.2. This circuit has the

(+) ) W (+) (+)—be)

(last-element

@ first)

(last-

first)

element

Figure 4.1: A circuit for multiplying two polynomials, last-element first.

advantage for hardware implementation that the addition is not cascaded through a series
of addition operators. Hence this configuration is suitable for higher-speed operation.

First-Element-First Processing

The circuits in this section are used for filtering streams of data, such as for the convolutional
codes described in Chapter 12.

Figure 4.3 shows a circuit for multiplying two polynomials, first-element first. Note that
the coefficients are reversed relative to Figure 4.1. In this case, ag is fed in first, resulting
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a(D)
(last-element

O (=) ()

D Df—=ses—(+) D+ D b(D)

(last-element
first)

Figure 4.2: A circuit for multiplying two polynomials, last-element first, with high-speed
operation.

(first-element
first)

b(x)
o o 9 /D f:‘_\

(+) +

D D s« o o—l D D

a(x)

(first-element
first)

Figure 4.3: A circuit for multiplying two polynomials, first-element first.

in the output aghg at the first step. At the next step, @1 is fed in, resulting in the output
aghy + a1hg, and so forth.

Figure 4.4 shows another high speed circuit for multiplying two polynomials, first-
element first.

It may be observed that these filters are FIR (finite impulse response) filters.

4.9.4 Polynomial division

Last-Element-First Processing

Computing quotients of polynomials, and more importantly, the remainder after division,
plays a significant role in encoding cyclic codes. The circuits of this section will be applied
to that end.
Figure 4.5 illustrates a device for computing the quotient and remainder of the polyno-
mial division
d(x)

g(x)’
where the dividend d (x) represents a sequence of numbers

d(x) = do + dix + dox® + - - + dnx™,
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a(x)

(first-element

SNON® ©

D o Db—reooe D D 6 b(x)

(first-element
first)

Figure 4.4: A circuit for multiplying two polynomials, first-element first, with high-speed
operation.

and the divisor g(x) represents a sequence of numbers
g(x) = go + g1x + g2x” + -+ + gpx”.

The coefficient g, is nonzero; for binary polynomials the coefficient — g;l has the value of
1. The polynomial g(x) is sometimes called the connection polynomial. The remainder
r(x) must be of degree < p — 1, since the divisor has degree p:

r(x) =ro+rix + - +rp_1xP71,
and the quotient g (x) can be written
Q(x) =qo+qx+---+ qn—pxn_P-

Readers familiar with signal processing will recognize the device of Figure 4.5 as an im-
plementation of an all-pole filter.

The division device of Figure 4.5 operates as follows:

1. All the memory elements are initially cleared to 0.

2. The coefficients of d(x) are clocked into the left register for p steps, starting with d,,
the coefficient of x” in d (x). This initializes the registers and has no direct counterpart
in long division as computed by hand.

3. The coefficients of d(x) continue to be clocked in on the left. The bits which are
shifted out on the right represent the coefficients of the quotient d(x)/g(x), starting
from the highest-order coefficient.

4. After all the coefficients of d(x) have been shifted in, the contents of the memory
elements represent the remainder of the division, with the highest-order coefficient
rp—1 on the right.

Example 4.15 Consider the division of the polynomial d(x) = x8 +x7 4+ x5 + x + 1 by g(x) =
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ro r1 rp—2 rp—1

d(x)

q(x)
o O Cl e O (&) ()
element
=D O © @

Figure 4.5: A circuit to perform polynomial division.

D D D D D

Figure 4.6: A circuit to divide by g(x) = x> +x + 1.

x° +x+1. The polynomial long division is

x+ 18+ x7+ 15A+ x+1
x84 x4+x3
4+ X+ x4+x3B+ x+1
x?+ x3+ x2 “3)
O+ x4 2ot x+1
X+ x+1
x4+ .\‘ZD

The circuit for performing this division is shown in Figure 4.6. The operation of the circuit is detailed
in Table 4.2. The shaded components of the table correspond to the shaded functions in the long
division in (4.5). The Input column of the table shows the coefficient of the dividend polynomial
d(x), along with the monomial term x! that is represented, starting with the coefficient of %8, The
Register column shows the shift register contents, along with the polynomial represented. As the
algorithm progresses, the degree of the polynomial represented by the shift register decreases down
to a maximum degree of p — 1.

Initially, the shift register is zeroed out. After 5 shifts, the shift registers hold the top coefficients
of d(x), indicated by A in the table, and also shown highlighted in the long division. The shift register
holds the coefficient of the highest power on the right, while the long division has the highest power
on the left. With the next shift, the divisor polynomial g(x) is subtracted (or added) from the dividend.
The shift registers then hold the results B. The operations continue until the last coefficient of d(x)
is clocked in. After completion, the shift registers contain the remainder, r (x), shown as D. Starting
from step 5, the right register output represents the coefficients of the quotient. O
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Table 4.2: Computation Steps for Long Division Using a Shift Register Circuit

Input Symbol on jth Output Symbol on
Shift Shift Register Contents After j Shifts Jjth Shift
polynomial polynomial polynomial

j | bit term bits representation bit term
0| - - 0 0 0 0O

1)1 (x%) 1 0 0 00

2] 1 7 1 1 0 0 0

310 (x%) 01 1 0 0

411 (x3) 1 011 0

500 x4 01 0 1 1 A xS+x74+48 1 X3
6| 0 (x3) 1 1 1 0 1 B x34xt+x5+47 1 x?
71 0 (x?) 1 01 1 0 C  x%24x%+x° 0 x!
8| 1 xh 1 1 0 1 1 x+x2+x4+x° 1 x°
9| 1 1 0 01 0 1 D: x2+4x4

4.9.5 Simultaneous Polynomial Division and Multiplication
First-Element-First Processing

Figure 4.7 shows a circuit that computes the output

b(x) = a(x) ),
gx)

where

h(x) _ ho+hix + -+ hyxt

g(x)  got+gix+---+ g’
with go = 1. (If go = 0, then a non-causal filter results. If gg # 0 and g¢ # 1, then a
constant can be factored out of the denominator.) This form is referred to as the controller
canonical form or the first companion form in the controls literature [109, 181].  Figure
4.8 also computes the output

h
b(x) = a(x) ﬂ
gx)
This form is referred to as the alternative first companion form or the observability form in
the controls literature.

Example 4.16 Figure 4.9 shows the controller form for a circuit implementing the transfer function

Hx) I1+x
X)= ——.
14+x3 +x4
For the input sequence a(x) = 1 + x + x2 the output can be computed as
1+x (1+x+x2)(1+x) 1+x3
b(x) = alx) 35 .4 ERY! = 3, .4
14 x°4x 1+x>+x 14 x°+x

=142 B0
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(first-element

first)

a(x) O+

b(x)

..|..

RO AN OROC

OO

Figure 4.7: Realizing h(x)/g(x) (first-element first), controller canonical form.

as can be verified using the long division { 4 x3 4 x#{1 4 x3 . The operation of the circuit with this
input is detailed in the following table. The column labeled ‘b’ shows the signal at the point ‘b’ in

Figure 4.9.

k a b output nextstate || k& g b output next state
0000 5 0 0 0(x) 001l

01 1 1 1000 6 0 0 0% 0001

1 1 1 0@ 1100 7 0 1 17 1000

2 1 1 0% 1110 8 0 0 1% 0100

30 1 0@dH 1111 9 0 0 0% 0010

4 0 0 1Y o111 10 0 1 119 1001

Figure 4.10 shows a circuit in the observability form. The following table details its operation for the
same input sequence a(x) = 1+ x + x2.

k a, output nextstate || kK a; output  next state
0000 5 0 0() 0110

0 1 1 1101 6 0 0% oon

1 1 0@ 0111 7 0 1) 1101

2 1 0@&%) 0010 8 0 1&% 1010

30 0@&3) 0001 9 0 0@% o101

4 0 1Y 1100 10 0 10 1110

]

Circuits for simultaneous multiplication and division last-element-first can be obtained
by combining the circuit of Figure 4.1 with the circuit of Figure 4.5. An example is given
in Section 4.12.

4.10 Cyclic Encoding

Letglx) =14+gix+---+ gn_k_1x"“k‘1 + x" % be the generator for a cyclic code.

Nonsystematic encoding of the message polynomial m(x) = mo +mix + -+ +mp—1x

k-1

(first-element
first)
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(first-element
first)

a(x)

DD————---DD

Figure 4.8: Realizing /2 (x)/g(x) (first-element first), observability form.
o b()

“(i-@b D \f D D D
L (+>—j

Figure 4.9: Circuit realization of H(x) = (1 +x)/(1 + x3 + x4), controller form.

___.b(x)
(first-element
first)

can be accomplished by shifting m(x) (starting from the high-order symbol mj_1) into
either of the circuits shown in Figures 4.1 or 4.2, redrawn with the coefficients of g(x) in
Figure 4.11.

To compute a systematic encoding, the steps are:

1. Compute x"*m(x)

2. Divide by g(x) and compute the remainder, d(x).

3. Compute x" *m(x) — d(x).
Figure 4.12 shows a block diagram of a circuit that accomplishes these steps. The connection

structure is the same as the polynomial divider in Figure 4.5. However, instead of feeding
the signal in from the left end, the signal is fed into the right end, corresponding to a shift of

a(x) b
D .@. D D D _bx)

Figure 4.10: Circuit realization of H(x) = (1 + x)/(1 + x3 + x%), observability form.
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D O—H

m(x)

m(x)

81

DI{(+){ Do D

Figure 4.11: Nonsystematic encoding of cyclic codes.

c(x)

D

x"~k. This shifted signal is then divided by the feedback structure. The steps of operation
are as follows:

1. With the gate “open” (allowing the signal to pass through) and the switch in position
A, the message symbols my—1, mg—2, ..., mg are fed (in that order) into the feedback
system and simultaneously into the communication channel. When the message has
been shifted in, the n — k symbols in the register form the remainder — they are the
parity symbols.

2. The gate is “closed,” removing the feedback. The switch is moved to position B. (For
binary field, the —1 coefficients are not needed.)

3. The system is clocked n — k times more to shift the parity symbols into the channel.

Example 4.17 For the (7, 4) binary Hamming code with generator g(x) = 1+x +x3, the systematic
encoder circuit is shown in Figure 4.13. For the message m = (0, 1, 1, 1) with polynomial m(x) =
x + x2 + x3, the contents of the registers are shown here.

Input Register contents
0 0 O (initial state)
1 1 1 0
1 1 0 1
1 0 1 O
0 |0 0 1 (parity bits, d(x) = x2)

The sequence of output bits is
¢=(0,0,1, 0,1, 1, 1).
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gate

Q ——1

D D Df~se+~(+)~{D(+)+D +
A
" m(x)
d d
(\ codewor
\ c(x)
-1
B

Figure 4.12: Circuit for systematic encoding using g(x).

L gate
D \+
A
" *mx) -
codeword
N
\ c(x)
L—»o
B

Figure 4.13: Systematic encoder for the (7, 4) code with generator g(x) = 1+ x + x3.

Systematic encoding can also be accomplished using the parity check polynomial 2 (x) =
ho+hix+---+ hkxk. Since h; = 1, we can write the condition (4.3) as

k—1
k==Y hc—i I=kk+1,...,n—1 (4.6)

i=0
Given the systematic part of the message ¢,—x = mg, Ch—g+1 = M1, ..., Ch—1] = Mi-1,
the parity check bits cg, c1, ..., ch—g~1 can be found from (4.6). A circuit for doing the

computations is shown in Figure 4.14. The operation is as follows.

1. With gate 1 open (passing message symbols) and gate 2 closed and with the syndrome
register cleared to 0, the message m(x) = mg + m1x + --- + mg_1x*~! is shifted
into simultaneously the registers and into the channel, starting with the symbol mg_j.
At the end of k shifts, the registers contain the symbols mq, my, ..., mg_1, reading
from left to right.

2. Then gate 1 is closed and gate 2 is opened. The first parity check digit

Cn—k—1 = —(hoCa—1 + h1cp—2+ -+ + hg—1cn—k)
= —(mg-1 +himg_2 + -+ + hg_1mg)
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gate 2

m(x) J
gate 1 D D Do oo D D

c(x)

Figure 4.14: A systematic encoder using the parity check polynomial.

gate 2 + +
m(x)
— gate 1 DM~ D D D
c(x)

Figure 4.15: A systematic encoder for the Hamming code using h(x).

is produced and appears at the point labeled A. ¢, —x—1 is simultaneously clocked into
the channel and into the buffer register (through gate 2).

3. The computation continues until all n — k parity check symbols have been produced.

Example 4.18 For the (7, 4) code generator g(x) = x3 +x 41, the parity check polynomial is

=1
BHx+1
Figure 4.15 shows the systematic encoder circuit. (The —1 coefficient is removed because of the
binary field.) Suppose m(x) = x + %2 4 x3. The bits (0,1,1,1) are shifted in (with the 1 bit shifted
first). Then the contents of the registers are shown here.

hix) = =x4+x2+x+1.

Registers Output
0 1 1 1] (initial)
1 0 1 1 1
0 1 0 1 0
0 0 1 0 0

The sequence of output bits is
c=(0,0,1,0,1,L 1D,

which is the same as produced by the encoding in Example 4.17. a

4.11 Syndrome Decoding

We now examine the question of decoding binary cyclic codes. Recall that for any linear
code, we can form a standard array, or we can use the reduced standard array using syn-
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dromes. For cyclic codes it is possible to exploit the cyclic structure of the codes to further
decrease the memory requirements.

Recall that the syndrome was initially defined as s(x) = r(x)h(x) (mod x™ — 1).
However, we can define the syndrome an alternative way. Since a codeword must be a
multiple of g(x), when we divide r(x) by g(x), the remainder is zero exactly when r(x) is
a codeword. Thus we can employ the division algorithm to obtain a syndrome. We write

r(x) = qx)gx) + s(x),
where g (x) is the quotient (which is usually not used for decoding) and s (x) is the remainder
polynomial having degree less than the degree of g(x):

sxy=so+s1x+---+ s,,_k_lx"_k_l.

Thus, to compute the syndrome we can use polynomial division. A circuit such as that in

Figure 4.5 can be used to compute the remainder.
We have the following useful result about cyclic codes and syndromes.

Theorem 4.2 Let s(x) be the syndrome corresponding tor(x), sor(x) = g(x)g(x) +s{x).
Let r‘D(x) be the polynomial obtained by cyclically right-shifting r (x) and let sV (x) denote
its syndrome. Then sV (x) is the remainder obtained when dividing xs(x) by g(x). In other
words, syndromes of shifts of r(x) (mod x" — 1) are shifts of s(x) (mod g(x)).

Proof Withr(x)=ro+rix+--- r,,_lx”_1 the cyclic shift r(l)(x) is

rOW) =ryo1 +rox + - +rpo2x™ Y,

which can be written as
rO) = xr(x) = rp_1(x" = 1).

Using the division algorithm and the fact that x* — 1 = g(x)h(x),
gV )g®) + 5V (x) = x[g(X)g(x) + s(x)] = r-18®A (),
where sV (x) is the remainder from dividing 7 (x) by g(x). Rearranging, we have
xs(x) = [g V() + ra-1h(x) — xg()1g(x) + 5D x).
Thus s (x) is the remainder from dividing xs(x) by g(x), as claimed. ]

By induction, the syndrome s® (x) that corresponds to cyclically shifting r(x) i times to
produce r ¥ (x) is obtained from the remainder of x’s(x) when divided by g(x). This can
be accomplished in hardware simply by clocking the circuitry that computes the remainder
s(x) i times: the shift register motion corresponds to multiplication by x, while the feedback
corresponds to computing the remainder upon division by g(x).

Example 4.19 For the (7,4) code with generator g(x) = S +x+1,let r(x)y=x +x2+x% x5 +x8
be the recetved vector. That is, r = (0,1,1,0,1,1,1). Then the cyclic shifts of r(x) and their
corresponding syndromes are shown here.
Polynomial Syndrome
r(x)=x+x2+x4+x5+x6 s(x) =x
r(l)(x) =1+x2 +x3 +x3 + %8 s(l)(x) = x2
r(z)(x)=1+x+x3+x4-f-x6 s(z)(x)=1+x
r(3)(x)=1+x +x2 x4 x5 s(3)(x)=x+x2
r(“)(x)=x+x2-§-x3+x5-}-x6 s(4)(x)=1+x+x2
r(5)(x)=l+x2+x3+x4—f-x6 s(s)(x)=l+x2
r(6)(x)=1+x-§-x3+x4+x5 s(6)(x)=1
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Figure 4.16 shows the circuit which divides by g(x), producing the remainder s (x) = sg +s1x + sox2
in its registers. Suppose the gate is initially open and r (x) is clocked in, producing the syndrome s(x).
Now the gate is closed and the system is clocked 6 more times. The registers contain successively the
syndromes s @ (x) corresponding to the cyclically shifted polynomials » @ (x), as shown in Table 4.3.

O

O gate 4@_

oitE

S0 51 52

Figure 4.16: A syndrome computation circuit for a cyclic code example.

Table 4.3: Computing the Syndrome and Its Cyclic Shifts

Clock Input | Registers | Syndrome
Initial: 0 0 O
1 1 1 0 0
2 1 1 1 0
3 1 1 1 1
4 0 1 0 1
5 1 0 0 O
6 1 1 0 0
7 0 0 1 0fsx)=x
................. (turn off gate)
8 0 0 1] sWx)=x2
9 1 1 0|sPDm=1+x
10 0 1 1] s®@) =x+x2
11 1 1 1| s®@)=1+x+x2
12 1 0 1]s®O@=1+x2
13 0 0 0| s®) =0 (syndrome adjustment)

We only need to compute one syndrome s for an error e and all cyclic shifts of e, so the
size of the syndrome table can be reduced by n. Furthermore, we can compute the shifts
necessary using the same circuit that computes the syndrome in the first place.

This observation also indicates a means of producing error correcting hardware. Con-
sider the decoder shown in Figure 4.17. This decoder structure is called a Meggitt decoder.

The operation of the circuit is as follows. The error pattern detection circuit is a com-
binatorial logic circuit that examine the syndrome bits and outputs a 1 if the syndrome
corresponds to an error in the highest bit position, e, = 1.

» With gate 1 open and gate 2 closed and with the syndrome register cleared to 0,
the received vector is shifted into the buffer register and the syndrome register for n
clocks. At the end of this, the syndrome register contains the syndrome for r(x).
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g(x) connections

+ Syndrome register (n — k stages) —}

Syndrome e
odification
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Figure 4.17: Cyclic decoder when r(x) is shifted in the left end of the syndrome register.

» Now gate 1 is closed and gate 2 is opened. The error pattern detection circuit outputs
en—1 = 1if it has determined that the (current) highest bit position is in error, so
that e(x) = x"~!. The modified polynomial, denoted by r1(x), is r1 (x) = ro +
FIX 4 - Tpe2x® 2 4 (rp_1 + en—1)x™1. Now cyclically shift 7{(x) to produce
rl(l)(x) = (rp-1 +en—1) +rox +---+ Fn—2x™1. The corresponding syndrome
sfl) (x) is the remainder of rl(l) (x) divided by g(x). Since the remainder of xr(x) is
s(D(x) and the remainder of xx"! is 1, the new syndrome is

sV =sV) +1.

Therefore, the syndrome register can be adjusted so that it reflects the modification
made tor(x) by adding a 1 to the left end of the register. (If only single error correction
is possible, then this update is unnecessary.)

The modified value is output and is also fed back around through gate 2.

* Decoding now proceeds similarly on the other bits of 7 (x). As each error is detected,
the corresponding bit is complemented and the syndrome register is updated to reflect
the modification. Operation continues until all the bits of the buffer register have been
output.

At the end of the decoding process, the buffer register contains the corrected bits.
The key to decoding is designing the error pattern detection circuit.

Example 4.20 Consider again the decoder for the code with generator g(x) = x> 4+ x4+ 1. The
following table shows the error vectors and their corresponding syndrome vectors and polynomials.
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r(x)
gate 1 + D D D H
Error pattern
U detection circuit
]' gate 2

gate 2

Figure 4.18: Decoder for a (7,4) Hamming code, input on the left.

€ITor error polynomial  syndrome syndrome polynomial
0000000 e(x) =0 000 s(x) =0

1000000 e(x) =1 100 s(x) =1

0100000 e(x) =x 010 s(x)=x

0010000 e(x) = x2 001 s(x) = x2

0001000 e(x) = x> 110 s =1+x
0000100  e(x) = x4 011 s(x) =x +x2
0000010  e(x) = x° 111 s(x) =1+ x + x2
0000001  e(x) = x© 101 s(x) =1+ x2

(From this table, we recognize that the received polynomial r(x) in Example 4.19 has an error in the
second bit, since 5(x) = x is the computed syndrome). However, what is of immediate interest is the
error in the last position, e = (0000001) or e(x) = x6, with its syndrome s(x) = 1 + x2. In the
decoder of Figure 4.18, the pattern is detected with a single 3-input and gate with the middle input
inverted. When this pattern is detected, the outgoing right bit of the register is complemented and the
input bit of the syndrome register is complemented. The decoding circuit is thus as shown in Figure
4.18.

Suppose now that 7 (x) = x + x2+xt+ x5+ x5, asin Example 4.19. As this is shifted in, the
syndrome s(x) = x is computed. Now the register contents are clocked out, producing in succession
the syndromes shown in Table 4.3. At clock tick 12 (which is 5 ticks after the initial the pattern was
shifted in), s (x) = 1 + x? appears in the syndrome register, signaling an error in the right bit of
the register. The bit of the buffer register is complemented on its way to output, which corresponds
to the second bit of the received codeword. The next syndrome becomes 0, corresponding to a vector
with no errors. The corrected codeword is thus

c(x) = x% +x4 +x5 +x6,

corresponding to a message polynomial m(x) = x + x% 4+ x3.

The overall operation of the Meggitt decoder of Figure 4.18 is shown in Table 4.4. The input is
shifted into the syndrome register and the buffer register. (The erroneous bit is indicated underlined.)
After being shifted in, the syndrome register is clocked (with no further input) while the buffer register
is cyclically shifted. At step 12, the syndrome pattern is detected as corresponding to an error in the
right position. This is corrected. The syndrome is simultaneously adjusted, so that no further changes
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are made in the last two steps.

Table 4.4: Operation of the Meggitt decoder, Input from the Left

syndrome | puffer
step | input | register | register
1 1 100 1000000
2 1 110 1100000
3 1 111 1110000
4 0 101 0111000
5 1 000 1011100
6 1 100 1101110
7 0 010 0110111
8 001 1011011
9 110 1101101
10 011 1110110
11 111 0111011
12 101 1011101 (error corrected)
13 000 0101110
14 000 0010111

O

In some cases, the Meggitt decoder is implemented with the received polynomial shifted
in to the right of the syndrome register, as shown in Figure 4.19. Since shifting r(x) into
the right end of the syndrome register is equivalent to multiplying by x"~¥, the syndrome
after 7 (x) has been shifted in is s*~% (x), the syndrome corresponding to r®=0 (x). Now
decoding operates as before: if 5=k (x) corresponds to an error pattern with e(x) with
en—1 = 1, then bit r,_; is corrected. The effect of the error must also be removed from
the syndrome. The updated syndrome, denoted s{"_k) (x) is the sum of s*~% (x) and the
remainder resulting from dividing x"~*~1 by g(x). Since x"~*~1 has degree less than the
degree of g(x), this remainder is, in fact, equal to x"*=1 The updated syndrome is thus

s () = 0 () 4 x kD),

This corresponds to simply updating the right coefficient of the syndrome register.

Example 4.21 When the error pattern e(x) = x© is fed into the right-hand side of the syndrome
register of a (7, 4) Hamming code, it appears as x3x% = x°. The remainder upon dividing x° by g(x)
is s& x) = Rg(x)[x9] = x2. Thus, the syndrome to look for in the error pattern detection circuit is
x2. Figure 4.20 shows the corresponding decoder circuit. t

If this decoder is used with the received polynomial r(x) = x + x2 + x* + x> + 6
(as before), then the syndrome register and buffer register contents are as shown in Table
4.5. Initially the received polynomial is shifted in. As before, the erroneous bit is shown
underlined. After step n = 7, the syndrome register is clocked with no further input. At
step 12, the syndrome pattern detects the error in the right position. This is corrected in the
buffer register adjusted in the syndrome register.
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Syndrome
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Syndrome register (n — k stages)
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corrected
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Figure 4.19: Cyclic decoder when r (x) is shifted into the right end of the syndrome register.

Example 4.22 We present decoders for the (31,26) Hamming code generated by g(x) = 1 +x24x5.
Figure 4.21(a) shows the decoder when the received polynomial is shifted in on the left. The error
pattern e(x) = %30 results in the syndrome s(x) = Rg(x)[xg’o] =x* +x;
Figure 4.21(b) shows the decoder when the received polynomial is shifted in on the right. The
error pattern e(x) = x30 results in the shifted syndrome

5(0) = Ry(n)[x0x%] = Ry () 1] = 2.

4.12 Shortened Cyclic Codes

Shortened block codes were introduced in Section 3.9. In this section we deal in particular
about shortened cyclic codes [204]. Let C be an (n, k) cyclic code and let ¢’ C C be the
set of codewords for which the / high-order message symbols are equal to 0. That is, the
symbols mg_;, Mg—j+1, ..., Mk—2, mi—1 are all set to 0, so all messages are of the form

m(x) = mo +mix + - - +mp_y_x¥717L
There are 2¢— codewords in C’, forming a linear (n — I, k — I) subcode of C. The minimum
distance of C’ is at least as large as that of C. C’ is called a shortened cyclic code.

The shortened cyclic code C’ is not, in general, cyclic. However, since C is cyclic, the
encoding and decoding of C’ can be accomplished using the same cyclic-oriented hardware
as for C, since the deleted message symbols do not affect the parity-check or syndrome
computations. However, care must be taken that the proper number of cyclic shifts is used.

Letr(x) =ro+rix+---+ Fn—i—1x"~1=1 be the received polynomial. Consider a
decoder in which r (x) is clocked into the right end of the syndrome register, as in Figure 4.19.
Feeding r(x) into the right end of the corresponds to multiplying r(x) by x"*. However,
since the code is of length n — I, what is desired is multiplication by xn= k=D — yn—kH
Thus, the syndrome register must be cyclically clocked another [ times after 7 (x) has been
shifted into the register. While this is feasible, it introduces an additional decoder latency
of I clock steps. We now show two different methods to eliminate this latency.
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Figure 4.20: Hamming decoder with input fed into the right end of the syndrome register.

Method 1: Simulating the Extra Clock Shifts

In this method, r(x) is fed into the syndrome computation register in such a way in n — k
shifts the effect of n — k 4/ shifts is obtained.

Using the division algorithm to divide xkH () by g(x) we obtain

() = qr(0)g () + s (), 4.7)

where s #~%+) (x) is the remainder and is the desired syndrome for decoding the digitr,—;—;.
Now divide x"* %+ by g(x),

" = g 0g(x) + p(x),

where p(x) = po+ p1x +- - -+ pp—f—1x" ¥ 1

as

is the remainder. This can also be expressed

p(x) =x"" 4 gr(x)g(x) 4.8)
(for binary operations). Multiply (4.8) by r(x) and use the (4.7) to write
PEIF(x) = [q1(x) + 2(X)r)]g(x) + s (x).

From this equation, it is seen that the desired syndrome s”~*+/ (x) can be obtained by

multiplying 7 (x) by p(x) then computing the remainder modulo g(x). Combining the first-
element-first circuits of Figures 4.1 and 4.5 we obtain the circuit shown in Figure 4.22.

The error pattern detection circuit for this implementation is the same as for the unshort-
ened code.

Example 4.23 Consider the Hamming (7, 4) code generated by g = 1+ x + x3 whose decoder is
shown in Figure 4.20. Shortening this code by I = 2, a (5,2) code is obtained. To find p(x) we have
p() = Rgony X" ¥ H] = Ry() 1 = 2% + x + 1.

Figure 4.23 shows the decoder for this code. d
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Figure 4.21: Meggitt decoders for the (31,26) Hamming code.
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Table 4.5: Operation of the Meggitt Decoder, Input from the Right

syndrome | puffer
step | input | register | register
1 1 110 1000000
2 1 101 1100000
3 1 010 1110000
4 0 001 0111000
5 1 000 1011100
6 1 110 1101110
7 0 011 0110111
8 111 1011011
9 101 1101101
10 100 1110110
11 010 0111011
12 001 1011101 (error corrected)
13 000 0101110
14 000 0010111

r(x)

(high order

DD——»---DD

o s 0 gate

Figure 4.22: Multiply r (x) by p(x) and compute the remainder modulo g(x).
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r(x)

gate 1 _‘ Error pattern
detection circuit

gate 2

Figure 4.23: Decoder for a shortened Hamming code.

Method 2: Changing the Error Pattern Detection Circuit

Another way to modify the decoder is to change the error pattern detection circuit so that
it looks for patterns corresponding to the shifted input, but still retains the usual syndrome
computation circuit. The error pattern detection circuit is designed to produce a 1 when
the syndrome register corresponds to a correctable error pattern e(x) with an error at the
right-position, that is, at position x”~/~1. When this happens, the received digit 7,-_1 is
corrected and the effect of the error digit e,—;—1 is removed from the syndrome register via
syndrome modification.

Lete(x) = x"~~1. Since thisisinput on the right end, this is equivalent to "~ 1x" % =
x2=1-k=1The syndrome pattern to watch for is obtained by o (x) = Rg(x)[xz”_l_k‘l].

Example 4.24 Consider again the (7,4) Hamming code shortened to a (5,2) code. The error pattern
at position x” /=1 = x4 appearing on the right-hand side as x2*~/=%=1 = x7_ The syndrome to
watch for is

o(x) = Rg(x)[x7] =1

4.13 Binary CRC Codes

The term Cyclic Redundancy Check (CRC) code has come to be jargon applied to cyclic
codes used as error detection codes: they indicate when error patterns have occurred over a
sequence of bits, but not where the errors are nor how to correct them. They are commonly
used in networking in conjunction with protocols which call for retransmission of erroneous
data packets. Typically CRCs are binary codes, with operations taking place in GF(2). A
CRC is a cyclic code, that is, the code polynomials are multiples of a generator polynomial
g(x) € GF()[x].

CRCs are simply cyclic codes, so the same encoding and decoding concepts as any other
cyclic code applies. In this section, however, we will introduce an efficient byte-oriented
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algorithm for computing syndromes.

We use the notation Rg(y)[-] to denote the operation of computing the remainder of the
argument when dividing by g(x). The entire cyclic encoding operation can thus be written,
as described in Section 4.8, as

c(x) = x"m(x) + Rg(x)[x"m(x)].
Example 4.25 Letg(x) = 164 15 45241 andm(x) = a4 Bl 104 x84 x5 +x24x+1
corresponding to the message bits

m=1[0,1,1011,0,1,0,0,1,0,0,1,1,1]

= [m15, miq, -+ ,my, mpl.

The vector m is written here with mq on the right. Since deg(g(x)) = n — k = 16, to encode we first
multiply m(x) by x16:

x6mix) = 230 4 229 4 127 4 x26 4§ x4 4 221 4 fI8 17 (16 4.9)
then divide by g(x) to obtain the remainder
d(x)=x14+x13+x11+x10+x9+x7+x6+x4+x2. 4.10)
The code polynomial is
c@) = x¥m(x) +d(x)
= x30 +x29 +x27 +x26 +x24 +x21 +x18 +x17 +x16
+xl4+x13+x11+x10+x9+x7+x6+x4+x2
The operation can also be represented using bit vectors instead of polynomials. From (4.9),
x%m(x) «0,1,1,0,1,1,0,1,0,0,1,0,0,1, 1,10, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
(with the highest power of x corresponding to the bit on the left of this vector) and from (4.10),
d(x) +[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,000,1,1,0,1,1,1,0,1,1,0,1,0,1,0, 0]
Adding these two vectors we find
¢=1[0,1,1,0,1,1,0,1,0,0,1,0,0,1,1,1}0,1,1,0,1,1,1,0,1,1,0,1,0, 1,0, 0L
The message vector m is clearly visible in the codeword c.
Suppose now that the effect of the channel is represented by
r(x) =c(x) + ex).

To see if any errors occurred in transmission over the channel, r(x) is divided by g(x) to
find s(x) = Rgy(x)fr(x)]. The polynomial s(x) is the syndrome polynomial. Note that

s(x) = Reylr(x)] = Ryyle(x) + e(x)] = Ryplc(x)] + Rgmle(x)] = Rg(x)le(x)],

since Rg(y)[c(x)] = 0 for any code polynomial c(x).

If s(x) # 0, then e(x) # 0, that is, one or more errors have occurred and they have been
detected. If s(x) = 0, then it is concluded r (x) has not been corrupted by errors, so that the
original message m (x) may be immediately extracted from r (x).
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Note, however, that if an error pattern occurs which is exactly one of the code polyno-
mials, say e(x) = ¢1(x) for some code polynomial ¢ (x), then

§(x) = Rg(x)[c(x) + c1(x)] = Ry(nyle(x)] + Rew)le1(x)] = 0.

In other words, there are error patterns that can occur which are not detected by the code:
an error pattern is undetectable if and only if e(x) is a code polynomial.
Let us consider how many such undetected error patterns there are.

» Suppose there is a single bit in error, e(x) = x? for0 <i <n — 1. If the polynomial
g(x) has more than one nonzero term it cannot divide x* evenly, so there is a nonzero
remainder. Thus all single-bit errors can be detected.

* Suppose that g(x) has (1 4+ x) as a factor. Then it can be shown that all codewords
have even parity, so that any odd number of bit errors can be detected.

* A burst error of length B is any error pattern for which the number of bits between
the first and last errors (inclusive) is B. For example, the bit sequence ...,0,0,1,1,0,1,
1,0,1,0,...has a burst error of length 7.

Let e(x) be an error burst of length » = n — k or less. Then
e(x)=x(1+ex+---+ en_k_lxn—k—l)

for some i, 0 < i < k. Since g(x) is of degree n — k and has a non-zero constant
term, that is

gy =1+ gix+ -+ gnog1x"F 4 xm7K,
then R (x)[e(x)] cannot be zero, so the burst can be detected.

* Consider now a burst of errors of length n — k + 1, with error polynomial e(x) =
x'(1+e1x +- - ep_g_1x" %71 4+ x"7k) There are 2"~*~! possible error patterns of
this form for each value of i. Of these, all but error bursts of the form e(x) = x*g(x)

are detectable. The fraction of undetectable bursts of length n — k + 1 is therefore
o—(n—k=1)

* For bursts of length [ > n — k + 1 starting at position i, all 2/~2 of the bursts are
detectable except those of the form

e(x) =x'a(x)g(x)

for some a(x) = ap + a1x + - - -al_n+k_1xl—"+k_l with ag = a;—p+r—1 = 1. The

number of undetectable bursts is 2/~"1t¥=2, 5o the fraction of undetectable bursts is
2—n+k‘

Example 4.26 Let g(x) = x16 4 x15 4 %2 + 1. This can be factored as gx)=A4+x)(1+x +x15y,
so the CRC is capable of detecting any odd number of bit errors. It can be shown that the smallest
integer m such that g(x) divides 1+ x™ is m = 32767, So by Exercise 4.37, the CRC is able to detect
any pattern of two errors — a double error pattern — provided that the code block length n < 32767.
All burst errors of length 16 or less are detectable. Bursts of length 17 are detectable with probability
0.99997. Bursts of length > 18 are detectable with probability 0.99998. g

Table 4.6 [373, p. 123], [281] lists commonly used generator polynomials for CRC codes
of various lengths.
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Table 4.6: CRC Generators

CRC Code Generator Polynomial

CRC-4 g =x*+x3 +x2+x+1
CRC-7 gx)=xT+x04+x4+1

CRC-8 g) =x8 +x7 a0+ x4 2241
CRC-12 g) =x2 x4 3 22+ x+1

CRC-ANSI  g(x)=x"0 4+ x5 4+x24+1

CRC-CCITT gx) =x104+x124 %541

CRC-SDLC  g(x) =x0 +xB5 4+ xB 4574 x4+ 22+ x+1

CRC-24 gx) =x¥# 4 xB 4 x4 12,841

CRC-32a g(x) = X324 w30 222 15 2 e T X x5+ x

CRC-32b g(x) — x32 +x26 +x23 +x22 +x16 +x12 +x11 +x10 _+_x8+
T+ x4

4.13.1 Byte-Oriented Encoding and Decoding Algorithms

The syndrome computation algorithms described above are well-adapted to bit-oriented
hardware implementations. However, CRCs are frequently used to check the integrity
of files or data packets on computer systems which are intrinsically byte-oriented. An
algorithm is presented here which produces the same result as a bit-oriented algorithm, but
which operates on a byte at a time. The algorithm is faster because it deals with larger pieces
of data and also because it makes use of parity information which is computed in advance
and stored. It thus has higher storage requirements than the bitwise encoding algorithm but
lower operational complexity; for a degree 16 polynomial, 256 two-byte integers must be
stored.

Consider a block of N bytes of data, as in a file or a data packet. We think of the first
byte of data as corresponding to higher powers of x in its polynomial representation, since
polynomial division requires dealing first with highest powers of x. This convention allows
the file to be processed in storage order. The data are stored in bytes, as in

do,dy,...,dn-1,

where d; represents an 8-bit quantity. For a byte of data d;, letd; 7,d;g, . .., di o denote the
bits, where d; o is the least-significant bit (LSB) and d; 7 is the most significant bit (MSB).
The byte d; has a corresponding polynomial representation

bip1(x) =digx” +diex®+ - +di1x +dio.

The algorithm described below reads in a byte of data and computes the CRC parity
check information for all of the data up to that byte. It is described in terms of a CRC
polynomial g(x) of degree 16, but generalization to other degrees is straightforward. For
explicitness of examples, the generator polynomial g(x) = x 6 +x15+x2+ 1 (CRC-ANSI)
is used throughout. Let m[l(x) denote the message polynomial formed from the 8 bits of
the first i data bytes {dp, d1,...,di—1},

m(x)y = do7x¥ 1 +doex¥ 2+ - +di_11x +di10,
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and let p'l(x) denote the corresponding parity polynomial of degree < 15,
PUx) = pldx®® + plixt 4. 4 plily 4 plil.
By the operation of cyclic encoding,
PG = ReolxSmi(x)],

that is, _ .
mli(x) = g(x)gx) + p(x) (4.11)

for some quotient polynomial g (x).

Let us now augment the message by one more byte. This is done by shifting the
current message polynomial eight positions (bits) and inserting the new byte in the empty
bit positions. We can write

m e = e + b
Shift 8 positions  add new byte
where b; | (x) represents the new data. The new parity polynomial is computed by
PHIG) = Roo 61 mP 1 (0)] = R [r 1063 m (x) + b1 ()1, 4.12)
Using (4.11), we can write (4.12) as
PHI@) = R g (0)q () + x*p1x) + x1%141 ()]
This can be expanded as
PP = Ry x®8 (0 ()] + R lx*p(x) + 16111 (1)),

or
PG = Ry [x8p () + x 10841 (x)]

since g(x) evenly divides xsg(x)q(x). The argument can be expressed in expanded form
as ) ) ] )
2 pla) + x1%ip1 () = plIx® + plx2 4 4 plil® 4 plil,38
+diaxB +diex? + -+ dix!7 + diox1®
=(d;7+ pgis])x23 + (dis + pgibxzz 4+ 4+ dio+ Pg[;i])x16
+pUIetS 4 plil1e plxt,

Nowlets; =d;; + plygforj =0,1,...,7. Then

xsp[i](x)+x16b,-+1(x) =t7x23+t6x22+---+tox16+p§i]x15+p£i]xl4+---+pg]x8.
The updated parity is thus
Py = Rg(x)[t7x23+t6x22+---+t0x16+pgi]x15+p£i]x14+---+p([)i]x8]
= Rgoo[t7x™ + t6x™ + -+ + 102161 + Ry [V 1% + pllx 14 4 ... 4 plile®)
_ g(x)[t7x23+t6x22+---+tox16]+p-[,i]x15+pgi]xl4+---+p([)i]x8,

where the last equality follows since the degree of the argument of the second Ry(y) is less
than the degree of g(x).
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Table 4.7: Lookup Table for CRC-ANSI. Values for f and R(¢) are expressed in hex.

t R(t) t R() t R(1) t R(t) t R(t) t R() t R(t) t R(t)

0 0000 |1 8005 | 2 800f | 3 000a | 4 801b | 5 00le | 6 0014 | 7 8011
8 8033 | 9 0036 | a 003¢c | b 8039 | ¢ 0028 | d 802d | e 8027 | f 0022
10 8063 11 0066 | 12 006c | 13 8069 | 14 0078 | 15 807d | 16 8077 | 17 0072
18 0050 | 19 8055 | la 805f | 1b 005a Ic  804b | 1d  004e le 0044 | If 8041
20 803 | 21 Q06 | 22 00cc | 23 80cY9 | 24 0048 | 25 80dd | 26 8047 | 27 0042
28  00f0 29  80f5 2a  8Off 2b  00fa 2c 80eb | 2d OOce | 2¢ 00ed | 2f  8Oel
30 00a0 | 31 80aS | 32 80af | 33 O0aa | 34 80bb | 35 (QObe | 36 00b4 | 37 80b1
38 8093 (39 0096 | 32 009c | 3b 8099 | 3¢ 0088 | 3d 808d | 3e 8087 | 3f 0082
40 8183 | 41 0186 | 42 018 | 43 8189 | 44 0198 | 45 819d | 46 8197 | 47 0192
48 01b0 | 49 81b5 | 4a BIbf | 4b (Olba | 4c 8lab | 4d Olaec | 4e Olad | 4f  8lal
50 0te0 | St 8te5 | 52 8lef | 53 0Olea | 54 8lfb 55  Olfe 56 014 57  81f1

58 81d3 | 59 O1d6 | Sa Oldc | 5Sb  81d9 | 5¢ Olc8 | 5d 8led | 5¢  81c7 | 5f 0lc2
60 0140 61 8145 62 814f 63 0l4a 64 815b 65 015¢ 66 0154 67 8151
68 8173 | 69 0176 | 6a 017c | 6b 8179 | 6c 0168 | 6d 8led | 6e 8167 | 6f 0162
70 8123 | 71 0126 | 72 0l2c | 73 8129 | 74 0138 | 75 813d | 76 8137 | 77 0132
78 0110 79 8115 Ta 811f 7b Olla 7c 810b 7d 010e Te 0104 7t 8101
80 8303 | 81 0306 | 82 030c | 83 8309 | 84 0318 | 8 831d | 86 8317 | 87 0312
88 0330 | 89 8335 | 8  833f | 8 033a | 8 832b | 8 032¢ | 8¢ 0324 | 8f 8321
90 0360 | 91 8365 | 92 836f | 93 036a | 94 837b | 95 037e | 96 0374 | 97 8371
98 8353 | 99 0356 | 9a 035c | 9b 8359 | 9c 0348 | 9d 834d | 9¢ 8347 | Oof 0342
a0 03¢0 | al 83c5 | a2 83¢f | a3 03¢ca | a4 83db | a5 03de | a6 03d4 | a7  83dl
a8  83f3 a9  03f6 aa  03fc ab 839 ac  03e8 ad  83ed | ae 83e7 af  03e2
b0 8323 | bl 03a6 | b2 03ac | b3 8329 | b4 03b8 | b5 83bd | b6 83b7 | b7  03b2
b8 0390 | b9 8395 | ba 839f | bb 039a | bc 838 | bd 038 | be 0384 | bf 8381
c0 0280 | cl 8285 | c2 B28f | ¢3 0282 | ¢4 829b | c5 02% | c6 0294 | ¢7 8291
c8 82b3 | ¢9 02b6 | ca O2bc | cb 8269 | cc  02a8 | cd 82ad | ce  82a7 | of 02a2
d0  82e3 | dl 026 | d2 0O2c | d3 829 | d4 028 ds  82Md d6 8217 d7 0212
d8 02d0 | d9 82d5 | da 82df | db 02da | dc  82c¢b | dd 02ce | de  02c4 | df  82cl
e0 8243 el 0246 e2 024c¢ e3 8249 e4 0258 es5 825d eb 8257 e7 0252
e8 0270 e9 8275 ea 827f eb 027a ec 826b | ed  026e ee 0264 ef 8261
0 0220 | f1 8225 | 12 822f | 13 022a | f4 823b | 15 023e | f6 0234 | 7 8231
8 8213 | M 0216 | fa 02lc | f 8219 | fc 0208 | fd 820d | fe 8207 | ff 0202

There are 28 = 256 possible remainders of the form
Reoy[t7xB + 16x% + - - - + 1o 6] (4.13)

For each 8-bit combination t = (7, t, . . ., tp), the remainder in (4.13) can be computed
and stored in advance. For example, whenz = 1 (i.e., fp = 1 and other #; are 0) we find

Reylx18] = x5 +x2 +1,

which has the representation in bits [1,0,0,0, 0,0,0,0, 0,0,0,0, 0,1,0,1], or in hex, 8005.
Table 4.7 shows the remainder values for all 256 possible values of ¢, where the hex number
R(¢) represents the bits of the syndrome. Let 7 (x) = t7x23 + t6x2% + - - - + 0x 16 and let
R(t) = Ry [(x)] (i-e., the polynomial represented by the data in Table 4.7). The encoding
update rule is summarized as

Py = R(e) + pllxlS 4 pllelé .y plilys,

The algorithm described above in terms of polynomials can be efficiently implemented in
terms of byte-oriented arithmetic on a computer. The parity check information is represented
intwobytes, crcl and crc0, with crcl representing the high-order parity byte. Together,
fcrcl, crc0] forms the two-byte (16 bit) parity. Also, let R(¢) denote the 16-bit parity
corresponding to the ¢, as in Table 4.7. The operation & indicates bitwise modulo-2 addition
(i.e., exclusive or). The fast CRC algorithm is summarized in Algorithm 4.1.
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Algorithm 4.1 Fast CRC encoding for a stream of bytes

Input: A sequence of bytes dy, dy, ..., dy.

1 Initialization: Clear the parity information: Set [crc1, crc0]=[0,0].
2 Fori=0toN:

3 Compute t =dy—;® crcl

4 [cxecl, crc0l=[crc0,0] BR()

s End

¢ Output: Return the 16-bit parity [crcl, crc0].

Example 4.27 A file consists of two bytes of data, dg = 39 andd; = 109, or in hexadecimal notation,
dp =271¢ and di = 6D16. This corresponds to the bits

01101101 00100111,
N e’ N s’
dj do
with the least-significant bit on the right, or, equivalently, the polynomial
x14+x13+x11+x10+x8+x5+x2+x+1‘
(It is the same data as in Example 4.25.) The steps of the algorithm are as follows:
v crel,crc0=1[0,0]
2 i=0
3 t=d1®crcl=6D1g+0==6D
4 [crcl, crel] = [cre0, 0] ® R(¢) = [0, 0]6816D ¢
2 i=1:
3 t=dop®crcl =2716® 8115 = Aby4
4 [crcl, crcl] = [crcO, 0] & R(¢) = [6D16, 01603D416 = 6ED41¢
s Return 6ED41¢.
The return value corresponds to the bits

011011101101 0100

which has polynomial representation
p(x)=x14+x13+x11+x10+x9+x7+x6+x4+x2.
This is the same parity as obtained in Example 4.25. |

4.13.2 CRC Protecting Data Files or Data Packets

When protecting data files or data packets using CRC codes, the CRC codeword length is
selected in bytes. As suggested in Example 4.26, for the CRC-16 code the number of bits
in the codeword should be less than 32767, so the number of bytes in the codeword should
be less than 4095. That is, the number of message bytes should be less than 4093. Let
K denote the number of message bytes and let N denote the number of code bytes, for
example, N = K + 2.

The encoded file is, naturally, longer than the unencoded file, since parity bytes is
included. In encoding a file, the file is divided into blocks of length K. Each block of data is
written to an encoded file, followed by the parity bytes. At the end of the file, if the number
of bytes available is less than K, a shorter block is written out, followed by its parity bytes.

In decoding (or checking) a file, blocks of N bytes are read in and the parity for the
block is computed. If the parity is not zero, one or more error has been detected in that
block. At the end of the file, if the block size is shorter, the appropriate block length read in
is used.
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a b d  {ym}
D + D + D + D

OO C N O

Figure 4.24: Linear feedback shift register.

Appendix 4.A Linear Feedback Shift Registers

Closely related to polynomial division is the linear feedback shift register (LFSR). This is
simply a divider with no input — the output is computed based on the initial condition of
its storage elements. With proper feedback connections, the LFSR can be used to produce
a sequence with many properties of random noise sequences (for example, the correlation
function approximates a § function). These pseudonoise sequences are widely used in spread
spectrum communication and as synchronization sequences in common modem protocols.
The LFSR can also be used to provide an important part of the representation of Galois
fields, which are fundamental to many error correction codes (see Chapter 5). The LFSR
also re-appears in the context of decoding algorithms for BCH and Reed-Solomon codes,
where an important problem is to determine a shortest LFSR and its initial condition which
could produce a given output sequence. (See Chapter 6).

Appendix 4.A.1 Basic Concepts

A binary linear feedback shift register (LFSR) circuit is built using a polynomial division
circuit with no input. Eliminating the input to the division circuit of Figure 4.5, we obtain
the LFSR shown in Figure 4.24. Since there is no input, the output generated is due to the
initial state of the registers. Since there are only a finite number of possible states for this
digital device, the circuit must eventually return to a previous state. The number of steps
before a state reappears is called the period of the sequence generated by the circuit. A
binary LFSR with p storage elements has 2? possible states. Since the all-zero state never
changes it is removed from consideration, so the longest possible period is 27 — 1.

Example 4.28 Figure 4.25 illustrates the LFSR with connection polynomial g(x) = 1+x +x2 +x*.
Table 4.8 shows the sequence of states and the output of the LFSR when it is loaded with the initial
condition (1, 0, 0, 0). The sequence of states repeats after 7 steps, so the output sequence is periodic
with period 7. Table 4.9 shows the sequence of states for the same connection polynomial when the
LFSR is loaded with the initial condition (1, 1, 0, 0), which again repeats after 7 steps. Of the 15
possible nonzero states of the LFSR, these two sequences exhaust all but one of the possible states.
The sequence for the last remaining state, corresponding to an initial condition (1, 0, 1, 1), is shown
in Table 4.10; this repeats after only one step. |

Example 4.29 Figure 4.26 illustrates the LFSR with connection polynomial g(x) = 1 + x + x*.
Table 4.11 shows the sequence of states and the output of the LFSR when it is loaded with the initial
condition (1, 0, 0, 0). In this case, the shift register sequences through 15 states before it repeats. [
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I—~D~—<—+P‘DAGP—D D

Figure 4.25: Linear feedback shift register with g(x) =14+ x + x% + x4

Table 4.8: LFSR Example with g(x) = 1+ x 4+ x2 + x* and Initial State 1.
Count State Output
0 0

NN R W N
= O e OO O e
== = OO
OO~ = O = OO
Ofmr =, O OO0
Q= — O = O OO

Definition 4.8 A sequence generated by a connection polynomial g(x) of degree n is said
to be a maximal length sequence if the period of the sequence is 2" — 1. O
Thus, the output sequence of Example 4.29 is a maximal-length sequence, while the
output sequences of Example 4.28 are not. A connection polynomial which produces a
maximal-length sequence is a primitive polynomial. A program to exhaustively search for
primitive polynomials modulo p for arbitrary (small) p is primfind.
The sequence of outputs of the LFSR satisfy the equation
p-1
Ym =) &j¥m-ptj- (4.14)
j=0
This may be seen as follows. Denote the output sequence of the LFSR in Figure 4.24 by
{ym}. For immediate convenience, assume that the sequence is infinite {..., y_2, y_1, Yo,
¥1, Y2, . . .} and represent this sequence as a formal power series

et .
Y@ = Y yixt.
i=—00

Table 4.9: LESR Example with g(x) = 1 4+ x + x2 + x* and Initial State 1 + x
Count State Output
0

—l D e = = OO
SloO—R, O == =0
O O b = = OO
SO= O === OO

1
1
0
1
0
0
1
1

NN R W

aaia'a‘a’a’a’ala’

- il
g0 g ilg i3g g isg s

primitive.txt
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Table 4.10: LFSR Example with g(x) =14 x + x2 + x* and Initial State 1 + x2 + x3
Count State Output
0 1 0 1 1 1
1 1 0 1 1 1

]—-D—QP—D pl—{p

Figure 4.26: Linear feedback shift register with g(x) = 1 + x + x*.

Consider the output at point ‘a’ in Figure 4.24. Because of the delay x, at point ‘a’ the signal
is
goxy(x),

where the factor x represents the delay through the memory element. At point ‘b’, the signal
is

g0x"y(x) + g1xy(x)
Continuing likewise through the system, at the output point ‘d’ the signal is
(g0x? + gixP ™ 4 -+ gp_1)y(x),
which is the same as the output signal:
(gox? + g1xP™1 + - gp10)y(x) = y(x). (4.15)

Equation (4.15) can be true only if coefficients of corresponding powers of x match. This
produces the relationship

p-1
Yi= ) 8i¥i-pti- (4.16)
j=0

Letting g;‘ = gp—j, (4.16) can be written in the somewhat more familiar form as a convo-
lution,

p
Yi=) &lVi-j (4.17)
j=1
Equation (4.17) can also be re-written as
p
> gy =0 (4.18)
rd

with the stipulation that g§ = 1.

The polynomial g*(x) with coefficients g;-‘ = gp-j is sometimes referred to as the
reciprocal polynomial. That is, g*(x) has its coefficients in the reverse order from g(x).
(The term “reciprocal” does not mean that 2(x) is a multiplicative inverse of g (x); it is just
a conventional name.) The reciprocal polynomial of g(x) is denoted as g*(x). If g(x) is
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Table 4.11: LFSR example with g(x) = 1+ x + x* and initial state 1

Count State Output
0 1 0 0 0 0
1 01 0 0 0
2 0 0 1 0 0
3 0 0 0 1 1
4 1 1 0 0 0
5 0 1 1 0 0
6 0 0 1 1 1
7 1 1 0 1 1
8 1 01 0 0
9 01 0 1 1
10 1 11 0 0
11 0 1 1 1 1
12 1 1 1 1 1
13 1 0 1 1 1
14 1 0 0 1 1
15 1 0 0 O 0

a polynomial of degree p with non-zero constant term (i.e., go = 1 and g, = 1), then the
reciprocal polynomial can be obtained by

8" (x) = xPg(1/x).

It is clear in this case that the reciprocal of the reciprocal is the same as the original polyno-
mial. However, if go = 0, then the degree of x?g(1/x) is less than the degree of g(x) and
this Jatter statement is not true.

With the understanding that the output sequence is periodic with period 27 — 1, so that
Y—1 = yar—2, (4.18) is true for all i € Z. Because the sum in (4.18) is equal to O for all i,
the polynomial g*(x) is said to be an annihilator of y(x).

Example 4.30 For the coefficient polynomial g(x) = 1+ x + x% + x4, the reciprocal polynomial is
) =1+x2+ %3 + x* and the LFSR relationship is

Yi=Yi—2+yi-3+yi—4 foralli e Z 4.19)

For the output sequence of Table 4.8 {0,0,0,1,0, 1,1, 0, ...}, it may be readily verified that (4.19)
is satisfied. O

The LFSR circuit diagram is sometimes expressed in terms of the reciprocal polynomials,
as shown in Figure 4.27. It is important to be careful of the conventions used.

Appendix 4.A.2 Connection With Polynomial Division

The output sequence produced by an LFSR has a connection with polynomial long division.
To illustrate this, let us take g(x) = 1+ x + x2 + x4 asin Example 4.28. The reciprocal
polynomialis g*(x) = 1 +x2 + x3 + x4, Let the dividend polynomial be d(x) = x3. (The
relationship between the sequence and the dividend are explored in Exercise 4.43.) The
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a b d {ym}

D + D -+ o~(+)—~{D—(+)—D

O® OBNONN &

Figure 4.27: Linear feedback shift register, reciprocal polynomial convention.

power series obtained by dividing d(x) by g*(x), with g*(x) written in order of increasing
degree, is obtained by formal long division:

x3+ x5+x6
14+ x2 4 x3 + 2423
x3+ x5+x6+x7
2+ x04 17
x5_+_ x7+x8+x9
x6+ x8+x9
x6+ x8+x9+x10

510

The quotient polynomial corresponds to the sequence {0,0,0,1,0,1, 1,...}, the same as
the output sequence shown in Table 4.8.
Let yo, y1, . .. be an infinite sequence produced by an LFSR, which we represent with

yE) =yo+yx +yx? +--- = > o2 o ynx". Furthermore, represent the initial state of
the shift register as y_1, y—2, ..., y—p. Using the recurrence relation (4.17) we have

xX p P [o,0]

YO =YY gk =Y gl Yy jx"
n=0 j=1 j=1 n=0
P 00
=D g [(y—jx_j +odyoxTh+ Zynx”]
=1 n=0

J:
p I .
= Zg}*xf [()’—jx_] ety Th+ y(x)]
j=1

so that
gt £t yxh
yix) = > :
T g;x] 4.20
4 * ) i i-1 ( . )
_Zj:]gj(y—_]+y_.1+1x+...+y_1x )
g*(x) :

Example 4.31 Returning to Example 4.28, with the periodic sequence y_1 =1, y_y=1,y_3=0



Appendix 4.A Linear Feedback Shift Registers

159

and y_4 = 1. From (4.20) we find

x3 %3

g*(x) = 14+ x2 4 x3 424

y(x) =
as before. O

Theorem 4.3 Let y(x) be produced by a LESR with connection polynomial g(x) of degree
p. If y(x) is periodic with period N then g*(x) | (x¥ — 1)d(x), where d(x) is a polynomial
of degree < p.

Proof By the results above, y(x) = 8‘,{,(();)) for a polynomial d(x) with deg(d(x)) < p. If
y(x) is periodic then

) = o+ yx 4+ yvax¥ D+ xN (v + yix + -+ yyo1x¥Y
+x*¥ (30 + y1x + -ty 4
=Go+yx+-+ymx¥ DU+ 42 4.0

o+ yix -+ yyv-1xV )
N —1 ’

So

dx) __Gotyx+---+ynv-1x¥h

g*(x) xN 1
org*(x)yo+yix+ - +yy_1x¥ = —d(x)(xN = 1), establishing the result. d
For a given d(x), the period is the smallest N such that g*(x)\ &N — Dd).

Example 4.32 The polynomial g*(x) = 1 + x2 + x> + x4 can be factored as
g5 ) = A+ 01 +x+x3).

Taking N = 1 and d(x) = 1 + x + x> we see that y(x) has period 1. This is the sequence shown in
Table 4.10. We note that g*(x) | x7 —1, so that any d(x) of appropriate degree will serve. 0

As a sort of converse to the previous theorem, we have the following.

Theorem 4.4 Ifg*(x) { xN~1, theny(x) = ﬁ is periodic with period N or some divisor
of N.

Proof Let g(x) = ’;f(})l =0+ y1x + -+ - yn—1xV~L. Then

1 y+n + - yn—1xN1

=o+yix+--yn—1xVHA+xV +x2V 4.

grx) 1—xN
= 0o+ yix+-yv-1x" D + 2V Go+yix - yvoix¥ )+
which represents a periodic sequence. 0

Theorem 4.5 If the sequence y(x) produced by the connection polynomial g(x) of degree
p has period 2F — 1 — that is, y(x) a maximal-length sequence — then g*(x) is irreducible.
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Proof Since the shift register moves through 27 — 1 states before repeating, the shift
register must progress through all possible nonzero conditions. Therefore, there is some
“initial condition” corresponding to d(x) = 1. Without loss of generality we can take
y(x) =1/g*(x).

Suppose that g*(x) factors as a*(x)b*(x), where deg(a*(x)) = p; and deg(b*(x)) =
p2, with p; + p2 = p. Then

1 c(x) d(x)

P R T RrTes o ey
by partial fraction expansion. c¢(x)/a*(x) represents a series with period at most 2" — 1
and d(x)/b*(x) represents a series with period at most 22 — 1. The period of the sum

f% + b,,(—(’;)) is at most the least common multiple of these periods, which must be less than

the product of the periods:

y(x) =

QP — 1P — 1) = 2P — 3.

But this is less than the period 27 — 1, so g*(x) must not have such factors. O

As mentioned above, irreducibility does not imply maximal-length. The polynomial g*(x) =
1+ x + x2 4+ x3 + x* divides x° + 1. But by Theorem 4.4, y(x) = 1/g*(x) has period 5,
instead of the period 15 that a maximal-length sequence would have. What is needed for
the polynomial to be primitive.

Appendix 4.A.3 Some Algebraic Properties of Shift Sequences

Let y(x) be a sequence with period N. Then y(x) can be considered an element of Ry =
GFQ)[x]/(xN ~1). Let g(x) be a connection polynomial and g*(x) be its reciprocal. Let
w(x) = g*(x)y(x), where computation occurs in the ring Ry, and let w(x) = wo + wix +
-+ + wy—1x¥~1. The coefficient w; of this polynomial is computed by

I
w; = Z g;}’i—j«
i—0

However, by (4.18), this is equal to 0. Thatis, g*(x)y(x) = Ointhering Ry. Inthis case, we
say that g*(x) annihilates the sequence y(x). Let V (g*) be the set of sequences annihilated
by g*(x). We observe that V (g*) is an ideal in the ring R,, and has a generator 2* (x) which
must divide x¥ — 1. The generator #*(x) is the polynomial factor of (x¥ — 1)/g*(x) of
smallest positive degree. If (XY — 1)/g*(x) is irreducible, then £*(x) = (XV — 1)/g*(x).

Example 4.33 Letg(x) =1+x + 2+ x4, as in Example 4.28. Then g*(x) = 1 + 22 4+ 13 4+ x4
This polynomial divides x7 + 1:

x+1
8*(x)
The polynomial y(x) = h*(x) corresponds to the output sequence 1,0, 1, 1,0, 0, 0 and its cyclic
shifts, which appears in Table 4.8.

The polynomial y(x) = (1+x)A*(x) = 1+x +x2 +x* corresponds to the sequence 1,1, 1,0, 1
and its cyclic shifts, which appears in Table 4.9.

The polynomial y(x) = (1 + x + e =14+x +x2+ 3%+ x5+ x5 corresponds to
the sequence 1, 1, 1, 1, 1, 1 and its cyclic shifts. This sequence appears in Table 4.10. This sequence
also happens to have period 2. d

B (x) = =1+x%+x3
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Example 4.34 For the generator polynomial g(x) = 14+x +x% and its reciprocal g*(x) = 14+x3+x4,

This polynomial divides 21541

541

B (x) =
®) g*(x)

=1+x3+x4+x6+x8+x9+x10+x

11

The polynomial y(x) = h*(x) corresponds to the sequence 1,0,0,1,1,0,1,0,1,1,1, 1, which

appears in Table 4.11.

a

Programming Laboratory 2:

Polynomial Division and Linear
Feedback Shift Registers

Objective

Computing quotients and remainders in polynomial divi-
sion is an important computational step for encoding and
decoding cyclic codes. In this lab, you are to create a C++
class which performs these operations for binary polynomi-
als. You will also create an LFSR class, which will be used
in the construction of a Galois field class.

Preliminary Exercises
Reading: Section 4.9, Appendix 4.A.1.

1) Let g(x) =x4+x3+x+landd(x) =x8+x7+
Srxt+3 L

a) Perform polynomial long division of d(x) and g(x),
computing the quotient and remainder, as in Example
4.15.

b) Draw the circuit configuration for dividing by g(x).
¢) Trace the operation of the circuit for the g(x) and
d(x) given, identifying the polynomials represented by
the shift register contents at each step of the algorithm, as
in Table 4.2. Also, identify the quotient and the remainder
produced by the circuit.

2) For the connection polynomial g(x) = ¥+ 23 Fx+
1, trace the LFSR when the initial register contents are
(1,0, 0, 0), as in Example 4.28. Also, if this does not ex-
haust all possible 15 states of the LFSR, determine other
initial states and the sequences they generate.

Programming Part: BinLFSR
Create a C++ class BinLFSR which implements an LFSR

for a connection polynomial of degree < 32. Create a con-
structor with arguments

BinLFSR(int g, int n, int initstate=l);

The first argument g is a representation of the con-
nection polynomial. For example, g = 0x17 represents
the bits 10111, which represents the polynomial g(x) =
x* +x2 4+ x + 1. The second argument n is the degree
of the connection polynomial. The third argument has a
default value, corresponding to the initial state (1,0,0,...,0).
Use asingle unsigned int internally to hold the state of
thefs{xlift register. The class should have member functions
as follows:

BinLFSR(void) { g=n=state=mask=maskl=0;}
// default constructor
BinLFSR{int g, int n, int initstate=l);
// constructor
“BinLFSR() {};
// destructor
void setstate(int state};
// Set the initial state of the LFSR
unsigned char step{(void);
// Step the LFSR one step,
// and return 1l-bit output
unsigned char step(int &state);
// Step the LFSR one step,
// return l-bit output
// and the new state
void steps(int nstep, unsigned char *outputs);
// Step the LFSR nstep times,
// returning the array of 1-bit outputs

Test the class as follows:

1) Use the LFSR class to generate the three sequences of
Example 4.28.

2) Use the LFSR class to generate the output sequence and
the sequence of states shown in Table 4.11.

Resources and Implementation Suggestions

The storage of the polynomial divider and LFSR could be
implemented with a character array, as in

unsigned char *storage = new unsigned char[n];

Shifting the registers would require a £or loop. How-
ever, since the degree of the coefficient polynomial is of
degree < 32, all the memory can be contained in a single
4-byte integer, and the register shift can be accomplished
with a single bit shift operation.

o The operator << shifts bits left, shifting 0 into the least
significant bits. Thus, if a=3, then a«2 is equal to 12. The
number 1 «m is equal to 2™ form > 0.
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o The operator >> shifts bits right, shifting in 0 to the most
significant bit. Thus, if a=13, then a»2 is equal to 3.

s Hexadecimal constants can be written using Oxnnnn, as
in OxXFF (the number 255), or 0x 101 (the number 257). Oc-
tal constants can be written using Onnn, as in 0123, which
has the bit pattern 001 010 011.

o The bitwise and operator & can be used to mask bits off.
For example, if a = 0x123,theninb = a & OxFF;,
b is equal to 0x23. To retain the lowest m bits of a number,
mask it with ( (1«m)-1).

e The algorithms can be implemented either by shifting
right using >> or by shifting left using <<. For a few rea-
sons, it makes sense to shift left, so that the input comes
into the least significant bit and the output comes out of the
most significant bit. This may be initially slightly confus-
ing, since the pictures portray shifts to the right.

e As a tutorial, the code for the LFSR is explicitly por-
trayed.

ae’a’ata’a’a’a®a’ | Algorithm 4.2 BinLFSR
prpoa-ty File: BinLFSR.h
PI010===- 00000 BinLFSR.cc
PN 4
- N

testBinLFSR.cc
MakeLFSR

-

“Iﬂullullul!ulduﬁ“lﬁ

The class declarations are given in BinLFSR. h. The class
definitions are given in BinLFSR.cc. In this case, the
definitions are short enough that it would make sense to
merge the .cc file into the .h file, but they are sepa-
rated for pedagogical reasons.* A simple test program
is testBinLFSR.cc. A very simple makefile (if you
choose to use make) is in MakeLFSR.

Programming Part: BinPolyDiv

Create a C++ class BinPolyDiv which implements a
polynomial divisor/remainder circuit, where the degree of
g(x) is < 32. The constructor has arguments representing
the divisor polynomial and its degree:

BinPolyDiv (unsigned char *g, int p);

The class should have member functions div and
remainder which compute, respectively, the quotient and
the remainder, with arguments as follows:

int div(unsigned char *d,
int ddegree,
unsigned char *q,
int &quotientdegree,
int &remainderdegree);

// dividend

int remainder (unsigned char *d,
int n,
int &remainderdegree);

The dividend d is passed in as an unsigned char
array, one bit per character, so that arbitrarily long dividend
polynomials can be accommodated. The remainder is re-
turned as a single integer whose bits represent the storage
register, with the least-significant bit representing the coef-
ficient of smallest degree of the remainder. Internally, the
remainder should be stored in a single unsigned int.

Test your function on the polynomials g(x) = x4+
B+ x+1anddx) =x8 4+ +0 +xt + 3 +x+1
from the Preliminary Exercises. Also test your function on
the polynomials from Example 4.15.

ﬂﬂ:ﬂ‘ﬂdﬂ‘ﬂhﬂjﬂsﬂg

Algorithm 4.3 BinPolyDiv
File: BinPolyDiv.h
BinPolyDiv.cc

. o sy,
[ - = -
@ Inullullul!ulduiﬁ‘xlﬁ

testBinPolyDiv.cc

Follow-On Ideas and Problems

A binary {0, 1} sequence {y,} can be converted to a binary
+1 sequence z, by zz = (—1)¥». For a binary £1 se-
quence {zg, 21, . . . » Zy—1} with period N, define the cyclic
autocorrelation by

1 N-1
rz(t) = v Z ZiZ((i+1))>
=

where ((i + 1)) denotes { + 7 modulo N.

Using your LESR class, generate the sequence with con-
nection polynomial g(x) = 1 + x + x* and compute and
plot ry(r) for t = 0,1,...,15. (You may want to make
the plots by saving the computed data to a file, then plotting
using some convenient plotting tool such as Matlab.) You
should observe that there is a single point with correlation
1 (at T = 0) and that the correlations at all other lags has
correlation —1/N.

The shape of the correlation function is one reason
that maximal length sequences are called pseudonoise se-
quences: the correlation function approximates a § function
(with the approximation improving for longer N).

As a comparison, generate a sequence with period 7 us-
ingg(x) =14x +x% +x% and plot r; (t) for this sequence.

4The comment at the end of this code is parsed by the emacs editor in the c++ mode. This comment can be used by the compile

command in emacs to run the compiler inside the editor.
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Programming Laboratory 3:
CRC Encoding and Decoding

Objective

In this lab, you become familiar with cyclic encoding and
decoding, both in bit-oriented and byte-oriented algorithms.

Preliminary

Reading: Section 4.13.

Verify that the remainder d(x) in (4.10) is correct by
dividing xlﬁm(x) by g(x). (You may want to do this both
by hand and using a test program invoking BinPolyDiv,
as a further test on your program.)

Programming Part

1) Write a C++ class CRC16 which computes the 16-bit
parity bits for a stream of data, where g(x) is a generator
polynomial of degree 16. The algori should use the
olynomial division idea (that is, a bit-oriented algorithm.
ou may probably want to make use of a BinPolyDiv
object from Lab 2'in f'our class). Here is a class declaration
you might find useful:

class CRC16 {
protected:

BinPolyDiv div;
public:

CRC16 (int crcpoly); // constructor

int CRC(unsigned char *data, int len);

// Compute the CRC for the data

// data=data to be encoded

// len = number of bytes to be encoded

// Return value: the 16 bits of

// parity

// {(data[0] is associated with the

// highest power of x"n)

// the divider object

Test your program first using Example 4.25.

2) Write a standalone program crcenc which encodes
a file, making use of your CRC16 class. Use g(x) =
x16 4 %15 4 X2 4 1. The program should accept three
command line arguments:

crcenc K filein fileout

where K is the message block length (in bytes), filein
is the input file, and fileout is the encoded file.

3) Write a standalone program crcdec which decodes a
file, making use of your CRC class. The program should
accept three arguments:

crcdec K filein fileout

where K is the message block length (inbytes), filein
is an encoded file, and £ileout is a decoded file.

4) Test crcenc and credec by first encoding then de-
coding a file, then comparing the decoded file with the orig-
inal. (A simple compare program is cmpsimple.) The
decoded file should be the same as the original file. Use a
message block length of 1024 bytes. Use a file of 1,000,000
random bytes created using the makerand program for the
test.

5) Test your programs further by passing the encoded data
through a binary symmetric channel using the b s ¢ program.
Try channel crossover probabilities of 0.00001, 0.001, 0.01,
and 0.1. Are there any blocks of data that have errors that
are not detected?

6) Write aclass FastCRC16 whichuses the byte-oriented
algorithm to compute the parity bits for a generator g(x) of
degree 16. A sample class definition follows:

class FastCRCl6 {
protected:
static int *crctable;
unsigned char crc0, crcl;
// the two bytes of parity
public:
FastCRC1l6 (int crcpoly); // constructor
int CRC{unsigned char *data, int len);
// Compute the CRC for the data
// data[0] corresponds to the
// highest powers of x

The table of parity values (as in Table 4.7) should be
stored in a static class member variable (see the discussion
below about static variables). The constructor for the class
should allocate space for the table and fill the table, if it has
not already been built.

7) Test your program using the data in Example 4.27.

8) Write a standalone program fastcrcenc which en-
codes a file using FastCRC16. Use g(x) = x16 4 15 4
x2 + 1. The program should have the same arguments as
the program crcenc. Test your program by encoding some
data and verify that the encoded file is the same as for a file
encoded using crcenc.

9) Write adecoder program f ast crcdec whichdecodes
using FastCRC16. Verify that it decodes correctly.

10) Compare the encoding rates of crcenc and
fastcrcenc. How much faster is the byte-oriented al-
gorithm?

Resources and Implementation Suggestions

Static Member Variables A static member variable of
a class is a variable that is associated with the class. How-
ever, all instances of the class share that same data, so the
data is not really part of any &aﬂicular object. To see why
these might be used, suppose that you want to build a system
that has two Fast CRC16 objects in it:
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FastCRC16 CRCl({g);
FastCRC16 CRC2(qg);

The FastCRC16 algorithm needs the data from Table 4.7.
This data could be represented using member data as in

class FastCRCl6 {
protected:
int *crctable;
unsigned char crc0, crcl;
// the two bytes of parity
public:
FastCRC16(int crecpoly); // constructor
int CRC{unsigned char *data, int len);

// instantiate two objects

bi
However, there are two problems with this:

1) Each object would have its own table. This wastes stor-
age space.

2) Each object would have to construct its table, as part of
the constructor routine. This wastes time.

As an alternative, the lookup table could be stored in a static
member variable. Then it would only need to be constructed
once (saving computation time) and only stored once (sav-
ing memory). The tradeoff is that it is not possible by this
arrangement to have two or more different lookup tables in
the same system of software at the same time. (There are
ways to work around this problem, however. You should try

to think of a solution on your own.)

The declaration static int *crctable; which
appears in the . h file does not define the variable. There
must be a definition somewhere, in a C++ source file that
is only compiled once. Also, since it is a static object, in
a sense external to the class, its definition must be fully
scoped. Here is how it is defined:

// File: FastCRC.cc
//
#include "FastCRC.h"

int *FastCRClé::crctable=0;

This defines the pointer and initializes it to 0. allocation
of space for the table and computation of its contents is
accomplished by the constructor:

// Constructor for FastCRC1l6é object
FastCRC16::FastCRC16(int crcpoly)
{
if (FastCRC1l6::crctable==0) {
// the table has not been allocated yet
FastCRC16::crctable = new int[256];
// Now build the tables
/7
}
//

Static member variables do not necessarily disappear
when an object goes out of scope. We shall use static mem-
ber variables again in the Galois field arithmetic implemen-
tation.

Command Line Arguments For operating systems
which provide a command-line interface, reading the com-
mand line arguments into a program is very straightfor-
ward. The arguments are passed in to the main routine
using the variables argc and argv. These may then be
parsed and used. argc is the total number of arguments
on the command line, including the program name. If there
is only the program name (with no other arguments), then
argc==1. argv is an array of pointers to the string com-
mands. argv [0] is the name of the program being run.

As an example, to read the arguments for crcenc K
filein fileout, you could use the following code:

// Program crcenc
//

main(int argc,

{

char *argv(])

int X;

char *infname, *outfname;
/7] ...

if{argcl=4) {

// check number of arguments is as expected

cout << "Usage: " << argv[0] <<
"K infile outfile™ << endl;

exit(-1);

}

K = atoi(argv[l]);

// read blocksize as an integer

infname = argv[2];

// pointer to input file name

outfname = argv(3];

// pointer to output file name

//

Picking Out All the Bits in a File To write the bit-

oriented decoder algorithm, you need to pick out all the bits
in an array of data. Here is some sample code:

// d is an array of unsigned characters

// with ’len’ elements

unsigned char bits[8];

// an array that hold the bits of one byte of d

for(int i = 0; 1 < len; i++) {
// work through all the bytes of data
for(int §j = 7; j >= 0; J--) {
// work through the bits in each byte
bits{j] = (data[il&(l<<3i)) != 0;
}
// bits now has the bits of d[i] in it
//
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4.14 Exercises

4.1 List the codewords for the (7, 4) Hamming code. Verify that the code is cyclic.
4.2 In aring with identity (that is, multiplicative identity), denote this identity as 1. Prove:

(a) The multiplicative identity is unique.

(b) If an element a has both a right inverse b (i.e., an element b such that ab = 1) and a left
inverse ¢ (i.e., an element ¢ such that ca = 1), then b = c¢. In this case, the element 4 is
said to have an inverse (denoted by a~1). Show that the inverse of an element a, when it
exists, is unique.

(c) If a has a multiplicative inverse a~!, then @hH1l=a

(d) The set of units of a ring forms a group under multiplication. (Recall that a unit of a ring
is an element that has a multiplicative inverse).

(e) If c = ab and c is a unit, then g has a right inverse and b has a left inverse.

(f) Inaring, a nonzero element a such that ax = 0 for x # 0 is said to be a zero divisor. Show
that if @ has an inverse, then a is not a zero divisor.

4.3 Construct the ring Ry = GF(2) [x]/(x4 + 1). That is, construct the addition and multiplication
tables for the ring. Is R4 a field?

4.4 Let R be a commutative ring and leta € R. Let I = {b € R : ab = 0}. Show that / is an ideal
of R.

4.5 An element a of aring R is nilpotent if ¢ = O for some positive integer n. Show that the set of
all nilpotent elements in a commutative ring R is an ideal.

4.6 Let A and B be idealsinaring R. Thesum A + Bisdefinedas A+ B ={a+b:a € A,b € B}.
Show that A + B is an ideal in R. Show that A C A + B.

4.7 Show that in the ring Z5 the polynomial p(x) = x% — 1 has more than two zeros. In a field there
would be only two zeros. What may be lacking in a ring that leads to “too many” zeros?

4.8 Inthe ring R4 = GF(2)[x])/(x* + 1), multiply a(x) = 1 + x2 + x3 and b(x) = x + x2. Also,
cyclically convolve the sequences {1, 0, 1, 1} and {0, 1, 1}. What is the relationship between these
two results?

4.9 For the (15,11) binary Hamming code with generator g(x) = A ax+l

(a) Determine the parity check polynomial 7 (x).

(b) Determine the generator matrix G and the parity check matrix H for this code in nonsys-
tematic form.

(¢) Determine the generator matrix G and the parity check matrix H for this code in systematic
form.

(d) Letm(x) =x + x2 + x3. Determine the code polynomial c(x) = g(x)m(x).

(e) Letm(x) = x +x2 +x3. Determine the systematic code polynomial c(x) = " K*m(x) +
Rg(x)[x""km(x)], where Rg(x)[ ] computes the remainder after division by g(x).

(f) For the codeword c(x) =1+ x +x3 + x* + %% + 1% + x10 + x11 4 x13, determine the
message if nonsystematic encoding is employed.

(g) For the codeword c(x) =1+ x + 34t x5 29 4210 1 x13, determine the
message if systematic encoding is employed.

(h) Letr(x) =x!4 4 x10 4 x% + x3. Determine the syndrome for r (x).

(i) Draw the systematic encoder circuit for this code using the g(x) feedback polynomial.

(j) Draw the decoder circuit for this circuit with r (x) input on the left of the syndrome register.
Determine in particular the error pattern detection circuit.

(k) Draw the decoder circuit for this circuit with 7 (x) input on the right of the syndrome register.
Determine in particular the error pattern detection circuit.
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@) Letr(x) = 13 + x10 4 9 4+ %5 + x2 + 1. Trace the execution of the Meggitt decoder
with the input on the left, analogous to Table 4.4.

(m) Letr(x) = 13 +x10 4 59 4 %5 + x2 4+ 1. Trace the execution of the Meggitt decoder
with the input on the right, analogous to Table 4.5.

4.10 Let f(x) be a polynomial of degree m in F{x], where F is a field. Show that if a is a root of f(x)
(so that f(a) = 0), then (x — a)| f(x). Hint. Use the division algorithm. Inductively, show that
f(x) has at most m roots in F.

4.11 The following are code polynomials from binary cyclic codes. Determine the highest-degree
generator g(x) for each code.

@ c@x)=1+x*+x°

) c) =1+x+x2 +x3 5t x5 456 417 428 +2% +x10 4 x 1l 4 512 4 513 4 414
(c) c(x)=x13+x12+x9+x5+x4+x3+x2+1

(d cx) =x3+1

(e) c(x)=x10+x7+x5+x4+x3+x2+x+1

412 letgx) =go+g1x+---+ g,,_kx"‘k be the generator for a cyclic code. Show that gg # 0.

4.13 Showthatg(x) = 1+x +xt 0 a7+ x84 50 generates a binary (21,12) cyclic code. Devise
a syndrome computation circuit for this code. Letr(x) = 1+ x* + %10 be a received polynomial.
Compute the syndrome of r(x). Also, show the contents of the syndrome computation circuit as
each digit of r(x) is shifted in.

4.14 [204] Let g(x) be the generator for a binary (n, k) cyclic code C. The reciprocal of g(x) is defined
as

g5 (0 =x""*g(1/x).

(In this context, “reciprocal” does not mean multiplicative inverse.)
(a) As a particular example, let g(x) =1+ x2 +x* + x% + x7 + x19. Determine g*(x). The
following subproblems deal with arbitrary cyclic code generator polynomials g(x).
(b) Show that g*(x) also generates an (n, k) cyclic code.

(c) Let C* be the code generated by g*(x). Show that C and C* have the same weight distri-
bution.

(d) Suppose C has the property that whenever c(x) = cg + ¢1x + cy—1x" "1 is a codeword, so
is its reciprocal ¢*(x) = ¢p—1] + cp—nx + -+ + cox"_l. Show that g(x) = g*(x). Such
a code is said to be a reversible cyclic code.

4.15 [204] Let g(x) be the generator polynomial of a binary cyclic code of length n.

(a) Show thatif g(x) has x + 1 as a factor then the code contains no codevectors of odd weight.
Hint: The following is true for any ring F[x]:

1—x" 1= -x)A +x+x2+. +x"1|

(b) Show that if n is odd and x + 1 is not a factor of g(x), then the code contains the all-one
codeword.

(c) Show that the code has minimum weight 3 if z is the smallest integer such that g (x) divides
x" -1,

4.16 Let A(z) be the weight enumerator for a binary cyclic code C. with generator g(x). Suppose
furthermore that x +1 is not a factor of g(x). Show that the code generated by (x) = (x+1)g(x)
has weight enumerator A(z) = %[A(z) + A(—2)].
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4.17 Let g(x) be the generator polynomial of an (n, k) cyclic code C. Show that g(x*) generates an
(An, Ak) cyclic code that has the same minimum weight as the code generated by g(x).

4.18 LetCbea (2™ —1,2™ —m — 1) Hamming code. Show that if a Meggitt decoder with input on the
right-hand side is used, as in Figure 4.19, then the syndrome to look for to correct the digit 7,—1
iss(x) = =1 Hint: g(x) divides x2"=1 4+ 1. Draw the Meggitt decoder for this Hamming
code decoder.

4.19 [33] The code of length 15 generated by g(x) = 1 + x* + x% + x7 + x8 is capable of correcting
2 errors. (Itisa(15,7) BCH code.) Show that there are 15 correctable error patterns in which the
highest-order bit is equal to 1. Devise a Meggitt decoder for this code with the input applied to
the right of the syndrome register. Show that the number of syndrome patterns to check can be
reduced to 8.

4.20 Let g(x) be the generator of a (2 — 1, 2™ — m — 1) Hamming code and let g(x) = (1 +x)g(x).
Show that the code generated by g(x) has minimum distance exactly 4.

(a) Show that there exist distinct integers i and ;j such that x% +x7 is not a codeword generated
by g(x). Write x* +x/ = g1(x)g(x) + r1(x).

(b) Choose an integer k such that the remainder upon dividing xk by g(x) is not equal to ry (x).
Write x! + x/ 4+ xF = g2 (0)g(x) + r2(x)

(¢) Choose an integer / such that when x! is divided by g(x) the remainder is r5(x). Show that
lisnotequal to i, j, or k.

(&) Show that x* + 2/ + xk + 2 = [g2(0) + g3(1g(x) and that ' +xJ +x* + 2 isa
multiple of (x + 1)g(x)

4.21 [204] An error pattern of the form e(x) = xt + xit! is called a double-adjacent-error pattern.
Let C be the (2" — 1,2™ — m — 2) cyclic code generated by g(x) = (x + 1) p(x), where p(x)
is a primitive polynomial of degree m.
Show that no two double-adjacent-error patterns can be in the same coset of a standard array for
C. Also show that no double-adjacent error pattern and single error pattern can be in the same
coset of the standard array. Conclude that the code is capable of correcting all the single-error
patterns and all the double-adjacent-error patterns.

4.22 [204] Let c(x) be a code polynomial in a cyclic code of length » and let D (x) be its ith cyclic
shift. Let / be the smallest positive integer such that cBx) = c(x). Show that ! is a factor of n.

4.23 Verify that the circuit shown in Figure 4.1 computes the product a(x)A(x).
4.24 Verify that the circuit shown in Figure 4.2 computes the product a(x)h(x).
4.25 Verify that the circuit shown in Figure 4.3 computes the product a(x)h(x).
4.26 Verify that the circuit shown in Figure 4.4 computes the product a(x)h(x).

427 Let h(x) = 1+ x2 + x3 + x*. Draw the multiplier circuit diagrams as in Figures 4.1, 4.2, 4.3,
and 4.4.

428 letrx) =1+ %3+ x* + x5 be the input to the decoder in Figure 4.20. Trace the execution of
the decoder by following the contents of the registers. If the encoding is systematic, what was
the transmitted message?

4.29 Cyclic code dual.

(a) Let C be a cyclic code. Show that the dual code C Lisalsoa cyclic code.

(b) Given acyclic code C with generator polynomial g(x), describe how to obtain the generator
polynomial for the dual code C L,

4.30 As described in Section 3.6, the dual to a Hamming code is a (2™ — 1, m) maximal-length code.
Determine the generator matrix for a maximal-length code of length 2 — 1.
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431

4.32

4.33
434

435

4.36
4.37

4.38

4.39

4.40
441

4.42

Let C be an (n, k) binary cyclic code with minimum distance dyin and let C’ C C be the shortened
code for which the ! high-order message bits are equal to 0. Show that C’ has 2k=1 codewords
and is a linear code. Show that the minimum distance dr/njn of C’ is at least as large as dpip-

For the binary (31, 26) Hamming code generated using g(x) = 1 +x2 +x° shortened to a (28,23)
Hamming code.

(2) Draw the decoding circuit for the (28,23) shortened code using the method of simulating
extra clock shifts.

(b) Draw the decoding circuit for the (28,23) shortened code using the method of changing the
error pattern detection circuit.

Explain why CRC codes can be thought of as shortened cyclic codes.

Let g(x) = 1 + x2 + x* + x>, Determine the fraction of all burst errors of the following lengths
that can be detected by acyclic code using this generator: (a) burst length= 4; (b) burst length= 5;
(c) burst length = 6; (d) burst length = 7; (e) burst length = 8.

Let g(x) = x4+ 27 +x0 +x* +x2 + 1bethe generator polynomial for a CRC code.

(@ Letm(x) =1+x+ %3 + x5 +x7 + x12 + x16 4 x21, Determine the CRC encoded
message c(x).

(b) The CRC-encoded polynomial 7 (x) = 243 xS b a7 a8 a0 x4y
17 4+ x20 4 523 4 526 | 428 i5 received. Has an error been made in transmission?

Verify the entry for ¢ = 3 in Table 4.7. Also verify the entry for t =dc.

A double error pattern is one of the form e(x) = x+ _xj' for0 <i < j <n-—1 TIf g(x) does
not have x as a factor and does not evenly divide 1 + x/~*, show that any double error pattern is
detectable.

A file containing the two bytes dy = 56 = 381¢ and d; = 125 =7Dyg¢ is to be CRC encoded
using the CRC-ANSI generator polynomial g(x) = 164415 4 x2 41

(a) Convert these data to a polynomial m(x).

(b) Determine the CRC-encoded data ¢(x) = x"m(x) + Rg(x)[x"m(x)] and represent the
encoded data as a stream of bits.

(c¢) Using the fast CRC encoding of Algorithm 4.1, encode the data. Verify that it corresponds
to the encoding obtained previously.

The output sequence of an LFSR with connection polynomial g(x) can be obtained by formal
division of some dividend d(x) by g*(x). Let g(x) = 1 +x + x*. Show by computational
examples that when the connection polynomial is reversed (i.e., reciprocated), the sequence
generated by it is reversed (with possibly a different starting point in the sequence). Verify this
result analytically.

Show that (4.16) follows from (4.15). Show that (4.17) follows from (4.16).
Show that the circuit in Figure 4.28 produces the same sequence as that of Figure 4.24. (Of the
two implementations, the one in Figure 4.24 is generally preferred, since the cascaded summers
of Figure 4.28 result in propagation delays which inhibit high-speed operations.)
Figure 4.29 shows an LFSR circuit with the outputs of the memory elements labeled as state
variables x through xp. Let

x11k]

x2[k]
x[k] = .

xp'[k]
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Yi

Figure 4.28: Another LFSR circuit.

xilk+11  x[k] x2[k] xp—11k] xplk]

D—~(+) =D+ e+~ DF~(+)—D

Figure 4.29: An LFSR with state labels.

(a) Show that for the state labels as in Figure 4.29 that the state update equation is
x[k + 11 = Mx[k],

where M is the companion matrix

0 0 00 0 -go
1 000 0 -z
01 00 0 -2

M=|0 01 0 0 —g3
00 00 -~ 1 —gpg

(b) The characteristic polynomial of a matrix is p(x) = det(x] — M). Show that
p@x) = go + 1% + g2x® + -+ + gP = g(x).

(c) Itis afact that every matrix satisfies its own characteristic polynomial. That is, p(M) = 0.
(This is the Cayley-Hamilton theorem.) Use this to show that if g(x) ‘ (1 —xk ) then M’ k—p.

(d) The period k of an LFSR with initial vector x[0] is the smallest k such that M' k = J.
Interpret this in light of the Cayley-Hamilton theorem, if p(x) is irreducible.

(e) A particular output sequence {xp[0], xp[1], ..., } is to be produced from this LFSR. De-
termine what the initial vector x[0] should be to obtain this sequence. (That is, what is the
initial value of the LFSR register?)
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4.43 Given a sequence y(x) produced by dividing by the reciprocal polynomial of g(x),

d(x)

gr(x)’
determine what d(x) should be to obtain the given y(x).
The sequence {0,1,0,0,1,1,0,1,0,1,1,1,1,...} is generated by the polynomial g*(x) =
1+ x3 4 x*. Determine the numerator polynomial d(x).

4.44 Show that the set of sequences annihilated by a polynomial g*(x) is an ideal.

4.45 [199] A Barker code is a binary-valued sequence {by} of length n whose autocorrelation function
has values of 0, 1, and n. Only nine such sequences are known, shown in Table 4.12.

y(x) =

(a) Compute the autocorrelation value for the Barker sequence {bs}.

(b) Contrast the autocorrelation function for a Barker code with that of a maximal-length LFSR
sequence.

Table 4.12; Barker Codes
{bn}

(1,1}

[-1,1]

[1,1,-1]

[1,1,-1,1]

[1,1,1,-1]

1,1,1,-1,1]

[1,1,1,-1,-1,1,-1]
[1,1,1,-1,-1,-1,1,-1,-1,1,-1]
[t,1,1,1,1,-1,-1,1,1,-1,1,-1,1]

[y
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4.15 References

Cyclic codes were explored by Prange [271, 272, 273]. Our presentation owes much to
Wicker [373], who promotes the idea of cyclic codes as ideals in a ring of polynomials.
The Meggitt decoder is described in [237]. Our discussion of the Meggitt decoder closely
follows [203]; many of the exercises were also drawn from that source.

The tutorial paper [281] provides an overview of CRC codes, comparing five different
implementations and also providing references to more primary literature.

Much of the material on polynomial operations was drawn from [262]. The table of
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Chapter

Rudiments of Number Theory
and Algebra

5.1 Motivation

We have seen that the cyclic structure of a code provides a convenient way to encode and
reduces the complexity of decoders for some simple codes compared to linear block codes.
However, there are several remaining questions to be addressed in approaching practical
long code designs and effective decoding algorithms.

1. The cyclic structure means that the error pattern detection circuitry must only look
for errors in the last digit. This reduces the amount of storage compared to the
syndrome decoding table. However, for long codes, the complexity of the error
pattern detection circuitry may still be considerable. It is therefore of interest to have
codes with additional algebraic structure, in addition to the cyclic structure, that can
be exploited to develop efficient decoding algorithms.

2. The decoders presented in chapter 4 are for binary codes: knowing the location of
errors is sufficient to decode. However, there are many important nonbinary codes,
for which both the error locations and values must be determined. We have presented
no theory yet for how to do this.

3. We have seen that generator polynomials g(x) must divide x” — 1. Some additional
algebraic tools are necessary to describe how to find such factorizations over arbitrary
finite fields.

4. Finally, we have not presented yet a design methodology, by which codes having a
specified minimum distance might be designed.

This chapter develops mathematical tools to address these issues. In reality, the amount
of algebra presented in this chapter is both more and less than is needed. It is more than
is needed, in that concepts are presented which are not directly called for in later chapters
(even though their presence helps puts other algebraic notions more clearly in perspective).
It is less than is needed, in that the broad literature of coding theory uses all of the algebraic
concepts presented here, and much more. An attempt has been made to strike a balance in
presentation.

Example 5.1 We present another example motivating the use of the algebra over finite fields [25].
This example will preview many of the concepts to be developed in this chapter, including modulo
operations, equivalence, the Euclidean algorithm, irreducibility, and operations over a finite field.
We have seen in Section 1.9.2 that the decoding algorithm for the Hamming code can be expressed
purely in an algebraic way: finding the (single) error can be expressed as finding the solution to a
single algebraic equation. It is possible to extend this to a two-error-correcting code whose solution
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is found by solving two polynomial equations in two unknowns. We demonstrate this by a particular
example, starting from a Hamming (31, 26) code having a parity check matrix

fl
—_— OO0 COo
o= OO0
_- O OO
QO e e

1
1
1
1
1

The 5-tuple in the ith column is obtained from the binary representation of the integer i. As in Section
1.9.2, we represent the S-tuple in the ith column as a single “number,” denoted by y;, so we write

H=[y1 v v - vio wi]

Let us now attempt to move beyond a single error correction code by appending 5 additional rows
to H. We will further assume that the 5 new elements in each column are some function of column
number. That is, we assume that we can write H as

0 0 0 1 1
0 0 0 1 1
0 0 0 1 1
0 1 1 1 1
1 0 1 .. 0 1
=lr0 A@ AG® - AGH AGD| -1
LO) @) LB - £30 231
B AR 3 - 330 f360D)
fa)  faQ) f4(3) - f4(30) fa(31)
Lfs()  fs( fa3) -+ fs(30) fs(31)

The function £(i) = [f1(), f20), f3G), f4G), f35 )17 has binary components, so fj(i) € {0, 1} .
This function tells what binary pattern should be associated with each column. Another way to express
this is to note that f maps binary S-tuples to binary 5-tuples. We can also use our shorthand notation.
Let f(y) be the symbol represented by the 5-tuple (f1 (i), f2(), f3(i), fa(i), f5(i)), where i is the
integer corresponding to y; = y. Using our shorthand notation we could write (5.1) as

=[ vio v v o v p ]
fy fra f3) - fno) fsp)

The problem now is to select a function f so that H represents a code capable of correcting two errors,
and does so in such a way that an algebraic solution is possible. To express the functions f we need
some way of dealing with these y; S-tuples as algebraic objects in their own right, with arithmetic
defined to add, subtract, multiply, and divide. That is, the y; need to form a field, as defined in Section
2.3, or (since there are only finitely many of them) a finite field. Addition in the field is straightforward:
we could define addition element-by-element. But how do we multiply in a meaningful, nontrivial
way? How do we divide?

The key is to think of each 5-tuple as corresponding to a polynomial of degree < 4. For example:

(0,0,0,0,0) < 0
0,0,0,0,1) < 1
(0,0,0,1,0) © x
0,0, 1,0,0) < x2
(1,0,1,0,1) & x* +x%2 + 1.
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Note that each coefficient of the polynomials is binary; we assume that addition is modulo 2 (ie.,
over GE(2)). Clearly, addition of polynomials accomplishes exactly the same thing as addition of the
vectors. (They are isomorphic.)

How can we multiply? We want our polynomials representing the 5-tuples to have degree < 4,
and yet when we multiply the degree may exceed that. For example,

(x3+x+1)(x4+x3+x+1) =x7+x6+x5+x4+x2+1.

To reduce the degree, we choose some polynomial M (x) of degree 5, and reduce the product modulo
M(x). That is, we divide by M (x) and take the remainder. Let us take M(x) = x5 +x% +1. When
we divide x7 + %8 + x5 + x4 +x2 +1 by M (x) we get a quotient of x2 + x + 1, and a remainder of
%3 + x2 + x. We use the remainder:

Wrx+D?+3 +x+ D =x"+x0 + 5 +xt +x2 41
=x3+x%+x (modx5+x2+1).

Our modulo operations allows us now to add, subtract, and multiply these 5-tuples, considered as
polynomials modulo some M (x). Can we divide? More fundamentally, given a polynomial a(x), is
there some other polynomial s(x) — we may consider it a multiplicative inverse or a reciprocal —
such that
a(x)s(x) =1 mod M(x).

The answer lies in the oldest algorithm in the world, the Euclidean algorithm. (More details later!)
For now, just be aware that if M (x) is irreducible — it cannot be factored — then we can define
division so that all of the 5-tuples y; have a multiplicative inverse except (0, 0, 0, 0, 0).

Let us return now to the problem of creating a two-error-correcting code. Suppose that there are
two errors, occurring at positions i; and i. Since the code is linear, it is sufficient to consider

r=00,..., 1,..., 1,0,...,0
—— ——
i} in
We find
rHT = (s1, )
with
Y T, =51

(5.2)
Fi) + flyy) = s2.

If the two equations in (5.2) are functionally independent, then we have two equations in two unknowns,
which we could solve for y;, and y;, which, in turn, will determine the error locations i1 and i3.

Let us consider some possible simple functions. One might be a simple multiplication: f(y) =
ay. But this would lead to the two equations

Yiptvip =951 ay;, +ayi, =52,

representing the dependency s» = as;; the new parity check equations would tell us nothing new.
We could try f(y) = y + a; This would not help, since we would always have 53 = s51.
Let us try some powers. Say f(y) = 2. We would then obtain

Yip +Vip =81 V,% + V,% = 52.

These looks like independent equations, but we have to remember that we are dealing with operations
modulo 2. Notice that
)2

2
st=m +v)? = Vi2| + Vz% + 2y =i+ V,% =52
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We have only the redundant s% = 57 the second equation is the square of the first and still conveys
no new information.
Try f(y) = y3. Now the decoder equations are

Vi + Vi =51 ¥4y =s

These are independent!

Now let’s see what we can do to solve these equations algebraically. In a finite field, we can do
conventional algebraic manipulation, keeping in the back of our mind how we do multiplication and
division.

We can write

2 2
2=V + 70 = Wi i) OF — ViV + 72 =107 + v vi +¥2) = 510y viy = 51)

(where the signs have changed with impunity because these values are based on G F(2)). Hence we
have the two equations
52
vip v, =51 YiVip = S% + E

if 51 % 0. We can combine these two equations into a quadratic:
52
Yi (s1+ yi]) = S% + =,
51
or
52
y,% +s1vi, + (s% + —) =0
51
or
_ s -
Tsiy '+ (s%+ —2) yor=0.
51 1

For reasons to be made clear later, it is more useful to deal with the reciprocals of the roots. Let
z= yil“l. We then have the equation

5
q(z)=1+s1z+<sf+f>12=0.

The polynomial g(z) is said to be an error locator polynomial: the reciprocals of its roots tell the y;,
and y;,,, which, in turn, tell the locations of the errors.

If there is only one error, then y;, = 51 and yi? = 57 and we end up with the equation 1 +s1 y‘l =
0. If there are no errors, then s; = s = 0.

Let us summarize the steps we have taken. First, we have devised a way of operating on 5-tuples
as single algebraic objects, defining addition, subtraction, multiplication, and division. This required
finding some irreducible polynomial M (x) which works behind the scenes. Once we have got this,
the steps are as follows:

1. We compute the syndrome rH T .

2. From the syndrome, we set up the error locator polynomial. We note that there must be some
relationship between the sums of the powers of roots and the coefficients.

3. We then find the roots of the polynomial, which determine the error locations.

For binary codes, knowing where the error is suffices to correct the error. For nonbinary codes, there
is another step: knowing the error location, we must also determine the error value at that location.
This involves setting up another polynomial, the error evaluation polynomial, whose roots determine
the error values.

The above steps establish the outline for this and the next chapters. Not only will we develop
more fully the arithmetic, but we will be able to generalize to whole families of codes, capable of
correcting many errors. However, the concepts are all quite similar to those demonstrated here.
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(It is historically interesting that it took roughly ten years of research to bridge the gap between
Hamming and the code presented above. Once this was accomplished, other generalizations followed
quickly.) O

5.2 Number Theoretic Preliminaries

We begin with some notation and concepts from elementary number and polynomial theory.

5.2.1 Divisibility

Definition 5.1 An integer b is divisible by a nonzero integer a if there is an integer ¢
such that b = ac. This is indicated notationally as a ‘ b (read “a divides b”). If b is not
divisibleby a we writea {b. Leta(x) and b(x) be polynomials in F[x] (thatis, the ring of
polynomials with coefficients in F) where F is a field and assume that a(x) is not identically
0. Then b(x) is divisible by a polynomial a(x) if there is some polynomial c(x) € F[x]
such that b(x) = a{(x)c(x); this is indicated by a(x) | b(x). O

Example 5.2 For a(x) and b(x) in R[x], with

3 5
b(x) = 112 + 96x + 174x% + 61x> +42x*  and a(x) = sz + a2

we have a(x)| b(x) since b(x) = 28(2 + x + 2x%)a(x). m]

The following properties of divisibility of integers are straightforward to show.

Lemma 5.1 [250] For integers,

a ] b implies a f bc for any integer c.

. a| bandb’ c implya| c.

a| band a( ¢ imply a| (bs + ct) for any integers s and t.
al b andbl a imply a = +b.

a|b,a>0andb > 0implya <b.
ifm #0, thenaibifandonly ifma]mb
ifac‘bc thena‘b.

ifa|b and c|d then ac| bd.

G N & U R W~

These properties apply with a few modifications to polynomials. Property (4) is different for
polynomials: if a(x) ‘ b(x) and b(x) ‘ a(x) then a(x) = cb{(x), where c is a nonzero element
of the field of coefficients. Property (5) is also different for polynomials: a(x) | b(x) implies
deg(a(x)) < deg(b(x)).

An important fact regarding division is expressed in the following theorem.
Theorem 5.2 (Division algorithm) For any integers a and b with a > 0, there exist unique

integers q and r such that
b=ga+r,
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where O < r < a. The number q is the quotient and r is the remainder.
For polynomials, for a(x) and b(x) in F[x], F a field, there is a unique representation

b(x) = qg(x)a(x) +r(x),
where deg(r(x)) < deg(a(x)).

Proof [250, p. 5] We provide a partial proof for integers. Form the arithmetic progression
...,b—3a,b—-2a,b—a,b,b+a,b+2a,b+3a,...

extending indefinitely in both directions. In this sequence select the smallest non-negative
element and denote it by r; this satisfies the inequality 0 < r < a and implicitly defines ¢
byr =b—gqa. a

Example 5.3 With » = 23 and a = 7 we have
23=3.742.

The quotient is 3 and the remainder is 2. |

Example 5.4 With b(x) = 2x3 + 3x + 2 and a(x) = x2 + 7 in R[x],

b(x) = 20)(x% +7) + (=11x +2).

Definition 5.2 If d | aandd | b then d is said to be a common divisor of @ and b.

A common divisor g > 0 such that every common divisor of @ and b divides g is called
the greatest common divisor (GCD) and is denoted by (a, b) .

Integers a and b with a greatest common divisor equal to 1 are said to be relatively
prime. The integers ai, az, . . ., ax are pairwise relatively prime if (a;, a;) = 1 fori # j.

Ifd(x)| a(x) and d(x)| b(x) then d(x) is said to be a common divisor of a(x) and b(x).
If either a(x) or b(x) is not zero, the common divisor g(x) such that every common divisor
of a(x) and b(x) divides g(x) is referred to as the greatest common divisor (GCD) of a(x)
and b(x) and is denoted by (a(x), b(x)).

The GCD of polynomials (a(x), b(x)) is, by convention, normalized so that it is a monic
polynomial.

If the greatest common divisor of a(x) and b(x) is a constant (which can be normalized
to 1), then a(x) and b(x) are said to be relatively prime. O

Example 5.5 If a = 24 and b = 18 then, clearly, (a, b) = (24, 18) = 6. ]

Example 5.6 By some trial and error (to be reduced to an effective algorithm), we can determine that
(851, 966) = 23. O

Example 5.7 With a(x) = 4x> + 10x2 + 8x + 2 and b(x) = 8x> + 14x2 + 7x + 1 in R[x], it can
be shown that

2431
(a(x), b(x)) = x* + 2x+ >



5.2 Number Theoretic Preliminaries

177

Useful properties of the greatest common divisor:

Theorem 5.3

1. For any positive integer m, (ma, mb) = m(a, b).

2. As a consequence of the previous result, if d| a and d‘ bandd > 0 then

a b 1
(E, -‘—1-) = g(a,b)

If(a,b) = g then(a/g,b/g) = 1.
If(a,c) =(b,c) =1, then(ab,c) =1
Ifc| aband (b,c) = 1 then c‘ a.

. Every divisor d of a and b divides (a, b). This follows immediately from (3) in Lemma
5.1 (or from the definition).

7. (a,b) = |a| if and only if a| b.
8. (a, (b, ¢)) = ((a, b), ¢) (associativity).
9. (ac, bc) = |cl(a, b) (distributivity).

N LA W

5.2.2 The Euclidean Algorithm and Euclidean Domains

The FEuclidean algorithm is perhaps the oldest algorithm in the world, being attributed to
Euclid over 2000 years ago and appearing in his Elements. It was formulated originally to
find the greatest common divisor of two integers. It has since been generalized to apply to
elements in an algebraic structure known as a Euclidean domain. The powerful algebraic
consequences include a method for solving a key step in the decoding of Reed-Solomon
and BCH codes.

To understand the Euclidean algorithm, it is perhaps most helpful to first see the Eu-
clidean algorithm in action, without worrying formally yet about how it works. The Eu-
clidean algorithm works by simple repeated division: Starting with two numbers, a and
b, divide a by b to obtain a remainder. Then divide b by the remainder, to obtain a new
remainder. Proceed in this manner, dividing the last divisor by the most recent remainder,
until the remainder is 0. Then the last nonzero remainder is the greatest common divisor

(a, b).

Example 5.8 Find (966, 851). Leta = 966 and b = 851. Divide a by b and express in terms of
quotient and remainder. The results are expressed in equation and “long division”form:

1
966 = 851 -1 4115 851'2?

115
Now take the divisor (851) and divide it by the remainder (115):

7 1
851 = 1157+ 46 “5@1257?

46 115
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Now take the divisor (115) and divide it by the remainder (46):

2 7 1
115=46-2+23 46 [TT5 [851 [966

92 805 851
23 46 115
Now take the divisor (46) and divide it by the remainder (23):

2 2 7 1
46=23-2+0 23@@@@
"0 23746 115
The remainder is now 0; the last nonzero remainder 23 is the GCD:
(966, 851) = 23.
a
Example 5.9 In this example, we perform computations over Zs[x], that is, operations modulo

5. Determine (a(x), b(x)) = (x7 + 3x% + 4x% + 2x3 + x2 + 4, x5 + 3x> + 2x + 4), where
a(x), b(x) € Zs[x).

G +3x0 +ax* + 23 +x2 + ) =+ D +3 3 + 2 + ) + P+ 303 + 2 4 2)
CO+33 2+ ) = 2+ 200 +33 + 42 +2) + Gx2 4 3x 4+ 4)
G303 +ax? +2) = 22 +4x + B2 +3x +4) + 0
(5.3)

With the degree of the last remainder equal to zero, we take the last nonzero remainder, 3x2 4 3x +4
and normalize it to obtain the GCD:

g0) =3"13x2 +3x +4) =232 + 3x +4) =x2 + x +3.
o

The Euclidean algorithm is established with the help of the following theorems and lemmas.

Theorem 5.4 If g = (a, b) then there exist integers s and t such that
g = (a,b) =as + bt.
For polynomials, if g(x) = (a{(x), b(x)), then there are polynomials s(x) and t (x) such that

g(x) = a(x)s(x) + b(x)t(x).

Proof [250] We provide the proof for the integer case; modification for the polynomial case
is straightforward.

Consider the linear combinations as + bt where s and ¢ range over all integers. The set
ofintegers E = {as+bt, s € Z, t € Z)} contains positive and negative values and 0. Choose
so and fg so that asp + bty is the smallest positive integer in the set: I = asg + bty > 0. We
now establish that ] a; showing that/ ] b is analogous. By the division algorithm,a = Ig +r
with0 <7 < I. Hencer = a — gl = a — gq(aso + bto) = a(l — gs¢) + b(—qtp), sor
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itself is in the set E. However, since / is the smallest positive integer in R, r must be 0, so
a=Iq,orl ‘ a.

Since g is the GCD of a and b, we may write a = gm and b = gn for some integers m
and n. Then! = asg + btg = g(msy + nty), so g| {. Since it cannot be that g < I, since g
is the greatest common divisor, it must be that g = [. O

From the proof of this theorem, we make the following important observation: the greatest
common divisor g = (a, b) is the smallest positive integer value of as + bt as s and f range
over all integers.

Lemma 5.5 For any integer n, (a, b) = (a, b + an).
For any polynomial n(x) € F[x], (a(x), b(x)) = (a(x), b(x) + a(x)n(x)).

Proof Letd = (a, b) and g = (a, b + an). By Theorem 5.4 there exist sg and #y such that
d = aso + bty. Write this as
d = a(sy — nty) + (b + an)ty = as1 + (b + an)ty.

It follows (from Lemma 5.1 part (3)) that g ’ d. We now show that d ’ g. Since d 1 aandd ‘ b

we have that dj (an + b). Since g is the GCD of a and an + b and any divisor of a and

an + b must divide the GCD, it follows that d ‘ g. Sinced ’ gandg | d,wemusthave g = d.
(For polynomials, the proof is almost exactly the same, except that it is possible that

g(x) = d(x) only if both are monic.) O
We demonstrate the use of this theorem and lemma by an example.

Example 5.10 Determine g = (966, 851); this is the same as in Example 5.8, but now we keep track
of a few more details. By the division algorithm,

966 = 1-851 +115. 54
By Lemma 5.5,
g = (851, 966) = (851,966 — 1 - 851) = (851, 115) = (115, 851).

Thus the problem has been reduced using the lemma to one having smaller numbers than the original,
but with the same GCD. Applying the division algorithm again,

851 =7-115+46 (5.5
hence, again applying Lemma 5.5,
(115, 851) = (115, 851 — 7 - 115) = (115, 46) = (46, 115).

Again, the GCD problem is reduced to one with smaller numbers. Proceeding by application of the
division algorithm and the property, we obtain successively

115=2-46+23 (5.6)
(46, 115) = (46, 115 — 2 - 46) = (46, 23) = (23, 46)
46=2-2340
(23, 46) = 23.

Chaining together the equalities we obtain

(966, 851) = 23,
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We can find the s and ¢ in the representation suggested by Theorem 5.4,
(966, 851) = 966s + 851t,

by working the equations backward, substituting in for the remainders from each division in reverse
order

23=115-2.46 “23” from (5.6)
=115-2-(851—-7-115) = —-2-851 +15-115 “46” from (5.5)
= —2.851 +15(966 —1-851) = 15-966 — 17 - 851 “115” from (5.4)
sos=15andt =—17. 0

Example 5.11 It can be shown that for the polynomials in Example 5.9,
s(x) = 3x? +x t(x) = 263 +2x + 2.
O

Having seen the examples and the basic theory, we can now be a little more precise. In
fullest generality, the Euclidean algorithm applies to algebraic structures known as Euclidean
domains:

Definition 5.3 [106, p. 301] A Euclidean domain is a set D with operations + and -
satisfying:

1. D forms a commutative ring with identity. That is, D has an operation + such that
(D, +) is a commutative group. Also, there is a commutative operation “multiplica-
tion,” denoted using - (or merely juxtaposition), such that foranya and bin D, a - b
is also in D. The distributive property also applies: a - (b +c¢) =a-b +a - ¢ for any
a,b,c € D. Also, there is an element 1, the multiplicative identity, in D such that
a-1=1.a=a.

2. Multiplicative cancellation holds: if ab = cb and b £ O thena = c.

3. Every a € D has a valuation v(a) : D - N U {—o00} such that:
(a) v(a) > 0foralla € D.
(b) v(a) < v{ab)foralla,b e D,b #0.
(c) For all a,b € D with v(a) > v(b) there is a g € D (quotient) and r € D

(remainder) such that
a=gb+r

with v(r) < v(b) orr = 0. v(b) is never —oo except possibly when b = 0.
The valuation v is also called a Euclidean function.

O
‘We have seen two examples of Euclidean domains:

1. The ring of integers under integer addition and multiplication, where the valuation is
v(a) = |a] (the absolute value). Then the statement

a=qgb+r

is obtained simply by integer division with remainder (the division algorithm).
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2. Let F be afield. Then F[x]is a Euclidean domain with valuation function v(a(x)) =
deg(a(x)) (the degree of the polynomial a(x) € F[x]). It is conventional for this
domain to take v(0) = —o0. Then the statement

a(x) = qx)b(x) +r{x)
follows from polynomial division.

The Euclidean algorithm can be stated in two versions. The first simply computes the GCD.
Theorem 5.6 (The Euclidean Algorithm) Let a and b be nonzero elements in a Euclidean

domain. Then by repeated application of the division algorithm in the Euclidean domain,
we obtain a series of equations:

a=bq)+nr r1 # 0and v(r1) < v(b)
b=riqp+nr ro #0and v(rp) < v(ry)
ri=rq3+r3 r3 # 0and v(r3) < v(r2)

ri2=rj-1qj+r; rj #0andv(r;) < v(rj-1)
rj-1=rjqj+1+0 (rj+1=0).

Then (a, b) = r}, the last nonzero remainder of the division process.

aa’a’a‘a’a’a’a’a’

That the theorem stops after a finite number of steps follows since every remainder must
be smaller (in valuation) than the preceding remainder and the (valuation of the) remainder
must be nonnegative. That the final nonzero remainder is the GCD follows from property
Lemma 5.5.

This form of the Euclidean algorithm is very simple to code. Let |a/b| denote the
“quotient” without remainder of a/b, that is, @ = |a/b|b + r. Then recursion in the
Euclidean algorithm may be expressed as

gi = lri-2/ri-1]
ri =ri-2 —ri-1qi (5.7
fori =1,2,... (until termination) with r_; =a and rg = b.
The second version of the Euclidean algorithm, sometimes called the extended Eu-

clidean algorithm, computes g = (a, b) and also the coefficients s and r of Theorem 5.4
such that

as+ bt =g.
The values for s and ¢ are computed by finding intermediate quantities s; and ¢; satisfying
asi + bt =r; (5.8)

at every step of the algorithm. The formula to update s; and #; is (see Exercise 5.18)

§i = 8i—2 — (giSi—]

5.9
L=ti2—qti-1,
fori = 1,2, ... (until termination), with
s—-1=1 s=0 (5.10)

t_1=0 =1
The Extended Euclidean Algorithm is as shown in Algorithm 5.1.
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Algorithm 5.1 Extended Euclidean Algorithm

1 Initialization: Set s and 7 as in (5.10).

: Letrey=a,rg=b,5_1=150=0,1_1=0,50=1,i =0
s while(r; # 0) { Repeat until remainder is 0

4 i=i+1

s qi = |ri—a/ri-1l Compute quotient

6 i =TFj—2 —gifi—-1 Compute remainder

78 =S8ji_2 —g;Si—1 Compute s and t values

8 =142 —giti-]

o}

0o Return: s =s;_1,t =tj_1,8 =ri—1

The following are some facts about the GCD which are proved using the Euclidean
algorithm. Analogous results hold for polynomials. (It is helpful to verify these properties
using small integer examples.)

Lemma 5.7

1. Forintegers, (a, b) is the smallest positive value of as + bt, where s and t range over
all integers.

2. Ifas+bt = 1 for some integers s andt, then (a, b) = 1; that is, a and b are relatively
prime. Thus a and b are relatively prime if and only if there exist s and t such that
as + bt =1.

5.2.3 An Application of the Euclidean Algorithm: The Sugiyama Algorithm

The Euclidean algorithm, besides computing the GCD, has a variety of other applications.
Here, the Euclidean algorithm is put to use as a means of solving the problem of finding the
shortest LFSR which produces a given output. This problem, as we shall see, is important
in decoding BCH and Reed-Solomon codes. (The Berlekamp-Massey algorithm is another
way of arriving at this solution.)

We introduce the problem as a prediction problem. Given a set of 2p data points
{b;,t =0,1,...,2p — 1} satisfying the LFSR equation!

P
bk=—2tjbk_j, k=p,p+1,...,2p—1 G.11)
Jj=l1

we want to find the coefficients {¢;} so that (5.11) is satisfied. That is, we want to find
coefficients to predict by using prior values. Furthermore, we want the number of nonzero
coefficients p to be as small as possible, so that #(x) has the smallest degree possible
consistent with (5.11). Equation (5.11) can also be written as

p
D tibkj =0, k=p.p+1,....2p—1, (5.12)
j=0

1Compan'son with (4.17) shows that this equation has a — where (4.17) does not. This is because (4.17) is
expressed over G F(2).



5.2 Number Theoretic Preliminaries

183

where 1o = 1. One way to find the coefficients {¢;}, given a set of measurements {b i}, is to
explicitly set up and solve the Toeplitz matrix equation

bp-1 bp2 bpz --- b t —bp
by bp-1 bp2 -+ by t —bp+1

bpri bp  bp-1 - by |83 | o | —bpt2

bap—2 bap-3 brp-a -+ bp_i][tp —b2p-1

There is no guarantee, however, that solution of this set of equations will yield ¢(x) of
shortest degree. The Sugiyama algorithm is an efficient way of solving this equation which
guarantees that ¢ (x) has minimal degree. Put another way, the Sugiyama algorithm provides
a means of synthesizing LFSR coefficients, given a sequence of its outputs.

The convolution (5.12) can be written in terms of polynomials. Let

2p-1

p
b(x)= ) bix' and t@x)=1+)Y fx'.
i=0 i=1

Then the condition (5.12) is equivalent to saying that the kth coefficient of the polynomial
product b(x)t (x) is equal to zero fork = p, p+1, ..., 2p — 1. Another way of saying this
is that

b(x)t(x) = r(x) — x*Ps(x), (5.13)
where 7 (x) is a polynomial with deg(r(x)) < p and x2Ps(x) is a polynomial whose first
term has degree at least 2p.

Example 5.12 In this example, computations are done in Zs. The sequence {2, 3, 4, 2, 2, 3}, corre-
sponding to the polynomial b(x) = 2 + 3x + 4x% 4 2x3 + 2x* + 3x3, can be generated using the
coefficients t{ = 3,1 = 4,13 = 2,sothat t(x) = 1 4+ 3x + 4x? + 2x3. We have p =3. Thenin
Zslx],

b)) =2 +4x +x2 +x0 +x7 + 18 = @+ 4x + 1) + 281 + x + x?). (5.14)
Note that the terms x>, x* and x5 are missing. We identify

r(x) =2+ 4x + x? s(x) = —(1 + x +x2).

Equation (5.13) can be written as
x2Ps(x) + b(x)t(x) = r(x). (5.15)

The problem can now be stated as: given a sequence of 2p observations {bo, b1, b2, ...,
byp—1} andits corresponding polynomial representation b(x), find a solution to (5.15). When
stated this way, the problem appears underdetermined: all we know is b(x) and p. However,
the Euclidean algorithm provides a solution, under the constraints that deg(¢(x)) < p and
deg(r(x)) < p. We start the Euclidean algorithm with r_;(x) = x2? and ro(x) = b(x).
The algorithm iterates until the first i such that

deg(ri(x)) < p.
Then by the definition of the Euclidean algorithm, it must be the case that the s; (x) and
t;(x) solve (5.15). The algorithm then concludes by normalizing #; (x) so that the constant
term is 1. While we don’t prove this here, it can be shown that this procedure will find a
solution minimizing the degree of #(x).
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Example 5.13 Given the sequence {2, 3, 4, 2, 2, 3}, where the coefficients are in Zs, calling the gcd
function with a(x) = x% and b(x) =2+3x+ 4x2 +2x3 4+ 2x* + 35 results after three iterations in

r) =34x+4x2 550 =14+x+x2  f(x)=4+2x +x2 +3x3.
Normalizing #; (x) by scaling by 471 = 4 we find
1) = 143x +4x2 423

r(x) =2+4+4x +x2
s(x) =4 +4x 4+ 4x% = —(1 + x + x2).
These correspond to the polynomials in (5.14). a
One of the useful attributes of the Sugiyama algorithm is that it determines the coefficients

{t1, ..., t,} satisfying (5.12) with the smallest value of p. Put another way, it determines
the ¢ (x) of smallest degree satisfying (5.13).

Example 5.14 To see this, consider the sequence {2, 3,2,3,2,3}. This can be generated by the
polynomial #1(x) =14+ 3x +4x% 4 2x3, since

bt () =2+ 4x +4x? +3x0 + 37 +x% = Q +4x +4x?) + x93 + x + 1),
However, as a result of calling the Sugiyama algorithm, we obtain the polynomial
tx)=1+x,
s0
b(x)t(x) =2+ 3x6.
It may be observed (in retrospect) that the sequence of coefficients in b happen to satisfy by = —bg_1,

consistent with the #(x) obtained. a

5.2.4 Congruence

Operations modulo an integer are fairly familiar. We frequently deal with operations on a
clock modulo 24, “If it is 10:00 now, then in 25 hours it will be 11:00,” or on a week modulo
7, “If it is Tuesday, then in eight days it will be Wednesday.” The concept of congruence
provides a notation to capture the idea of modulo operations.

Definition 5.4 If an integer m # 0 divides a — b, then we say that a is congruent to b

modulo m and write @ = b (mod m). If a polynomial m(x) # O divides a(x) — b(x), then

we say that a(x) is congruent to b(x) modulo m(x) and write a(x) = b(x) (mod m(x)).
In summary:

a=b (mod m) if and only if m| (a — b). (5.16)

O

Example 5.15
1. 7=20 (mod 13).
2. 7= —6 (mod 13).



5.2 Number Theoretic Preliminaries 185

Congruences have the following basic properties.

Theorem 5.8 /250, Theorem 2.1, Theorem 2.3, Theorem 2.4] Forintegersa, b,c,d, x,y, m:

L

oo

© % N S W

a=b (modm) < b=a (mod m) & b—a=0 (mod m).
Ifa = b (mod m) and b = ¢ (mod m) then a = ¢ (mod m).
Ifa=b (mod m) andc =d (mod m) then ax + cy = bx +dy (mod m).

Ifa=b (mod m)andc =d (mod m) thenac = bd (mod m). From this it follows
thatifa = b (mod m) then a” = b" (mod m).

Ifa = b (mod m) andd[mandd > Othena = b (mod d).
Ifa = b (mod m) then for c > 0, ac = bc (mod mc).

ax = ay (mod m) ifand only if x = y (mod m/(a, m)).
Ifax = ay (mod m) and (a,m) = 1 thenx =y (mod m).
Ifa = b (mod m) then (a,m) = (b, m).

From the definition, we note that if » ] a,thena =0 (mod n).

5.2.5 The ¢ Function

Definition 5.5 The Euler totient function ¢ (n) is the number of positive integers less
than » that are relatively prime to n. This is also called the Euler ¢ function, or sometimes
just the ¢ function. O

Example 5.16

1. ¢(5) = 4 (the numbers 1,2,3,4 are relatively prime to 5).
2. ¢(4) = 2 (the numbers 1 and 3 are relatively prime to 4).
3. ¢(6) = 2 (the numbers 1 and 5 are relatively prime to 6).

tJ
It can be shown that the ¢ function can be written as
1 -1
o =nH(1 = —) =n[[2—,
pln P pin p
where the product is taken over all primes p dividing n.
Example 5.17
¢(189) = ¢(3-3-3-7) = 189(1 — 1/3)(1 — 1/7) = 108.
$(64) = (2% = 64(1 — 1/2) = 32.
O
We observe that:
1. ¢(p) = p— 1if pis prime.
2. For distinct primes p; and p2,
¢(p1p2) = (p1 —D(p2—1). (5.17)
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3. ¢(p™) = p™ (p — 1) for p prime.
4. ¢(p™q™) = p™ g™ (p — 1)(g — 1) for distinct primes p and g.

5. For positive integers m and n with (m, n) = 1,
¢(mn) = ¢(m)p(n). (5.18)
5.2.6 Some Cryptographic Payoff

With all the effort so far introducing number theory, it is interesting to put it to work on a problem
of practical interest: public key cryptography using the RSA algorithm. This is really a topic distinct
from error correction coding, but the application is important in modern communication and serves
to motivate some of these theoretical ideas.

In a symmetric public key encryption system, a user B has a private “key” which is only known
to B and a public “key” which may be known to any interested party, C. A message encrypted by one
key (either the public or private) can be decrypted by the other.

For example, if C wants to send a sealed letter so that only B can read it, C encrypts using B’s
public key. Upon reception, B can read it by deciphering using his private key. Or, if B wants to send
a letter that is known to come from only him, B encrypts with his private key. Upon receipt, C can
successfully decrypt only using B’s public key.

Public key encryption relies upon a “trapdoor”: an operation which is exceedingly difficult to
compute unless some secret information is available. For the RSA encryption algorithm, the secret
information is number theoretic: it relies upon the difficulty of factoring very large integers.
Fermat’s Little Theorem
Theorem 5.9

1. (Fermat’s little theorem)? If p is a prime and if a is an integer such that (a, p) = 1 (ie, p

does not divide a), then p divides aP —1 _ 1. Stated another way, ifa 20 (mod p),
a?l=1 (mod p).

2. (Euler’s generalization of Fermat's little theorem) If n and a are integers such that (a,n) = 1,
then

a®™ =1 (mod n),

where ¢ is the Euler ¢ function. For any prime p, ¢$(p) = p — 1 and we get Fermat’s little
theorem.

Example 5.18
1. Letp=Tanda =2. Thenap—l=63a.ndp]26—l.
2. Compute the remainder of 8103 when divided by 13. Note that

103 =8-12+7.
Then with all computations modulo 13,
810 = 811)8(87) = 14)(87) = (-5 = (=5)5(=5 = 25%(=5) = (-1)*(-9) =5.
O

Proof of Theorem 5.9.

2Fermat’s little theorem should not be confused with “Fermat’s last theorem,” proved by A. Wiles, which states
that x™ + y™ = z” has no solution over the integers if n > 2.



5.2 Number Theoretic Preliminaries

187

L. The nonzero elements in the group Zp, {1,2, ..., p — 1} form a group of order p — 1 under
multiplication. By Lagrange’s theorem (Theorem 2.3), the order of any element in a group
divides the order of the group, so for a € Zp with a # 0, aP~! =1in Zp. Ifa € Z and
a & Zp, write a = (a + kp) for some k € Z and for 0 < a < p, then reduce modulo p.

2. Let G, be the set of elements in Z,, that are relatively prime to #. Then (it can be shown that)
G, forms a group under multiplication. Note that the group G, has ¢ (n) elements in it. Now
let a € Zy, be relatively prime to n. Then a is in the group G,. Since the order of an element
divides the order of the group, we have a®® =1 (mod n). fa & Zn, write a = (@ + kn)
where @ € Zj. Then reduce modulo .

O

RSA Encryption

Named after its inventors, Ron Rivest, Adi Shamir, and Leonard Adleman [293], the RSA encryption
algorithm gets its security from the difficulty of factoring large numbers. The steps in setting up the
system are:

¢ Choose two distinct random prime numbers p and g (of roughly equal length for best security)
and compute n = pq. Note that ¢ (n) = (p — D(g — 1).

* Randomly choose an encryption key e, an integer e such that the GCD (e, (p—1)(g—1)) = 1.
By the extended Euclidean algorithm, there are numbers d and f such thatde — f(p—1)(g —
H)=1,0r

de=1+(p—-D@—-1f
Thatis,d = e~} (mod (p — 1)(g — 1)).

* Publish the pair of numbers {e, n} as the public key. Retain the pair of numbers {d, n} as the

private key. The factors p and g of n are never disclosed.

To encrypt (say, using the public key), break the message m (as a sequence of numbers) into
blocks m; of length less than the length of n. Furthermore, assume that (m;, n) = 1 (which is highly
probable, since  has only two factors). For each block m;, compute the encrypted block c; by

ci =m; (mod n).
(If e < 0, then find the inverse modulo #.) To decrypt (using the corresponding private key) compute
c;-j(mod n) = m?e(mod n) = mif(p_l)(q_l)+1(mod n) = m,'mif(p—l)(q_l)(mod n).
Since (m;,n) =1,
mif(p—l)(q—l) — (mif)(p—l)(q—l) - (mlf)d’(") =1 (modn),
so that

d
¢; (mod n) = m;,

as desired.
To crack this, a person knowing # and e would have to factor n to find d. While multiplication
(and computing powers) is easy and straightforward, factoring very large integers is very difficult.

Example 5.19 Let p = 47and g = 71 andn = 3337. (Thisis clearly too short to be of cryptographic
value.) Then
(p— (g — 1) =3220.

The encryption key e must be relatively prime to 3220; take ¢ = 79. Then we find by the Euclidean
algorithm that d = 1019. The public key is (79, 3337). The private key is (1019, 3337).
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To encode the message block m] = 688, we compute
c1 = (688)" (mod 3337) = 1570.
To decrypt this, exponentiate
¢ = (1571011 (mod 3337) = 688.
g

In practical applications, primes p and g are usually chosen to be at least several hundred digits long.
This makes factoring #n = pq exceedingly difficult!

5.3 The Chinese Remainder Theorem

The material from this section is not used until Section 7.4.2. In its simplest interpretation,
the Chinese Remainder Theorem (CRT) is a method for finding the simultaneous solution
to the set of congruences

x=a; (modmi) x=a; (modmy) x =a, (modm,). (5.19)

However, the CRT applies not only to integers, but to other Euclidean domains, including
rings of polynomials. The CRT provides an interesting isomorphism between rings which
is useful in some decoding algorithms.

One approach to the solution of (5.19) would be to find the solution set to each congruence
separately, then determine if there is a point in the intersection of these sets. The following
theorem provides a more constructive solution.

Theorem 5.10 Ifm, ma, ..., m, are pairwise relatively prime elements with positive valu-
ationina Euclideandomain R, and a1, az, . . ., a, are any elements in the Euclidean domain,
then the set of congruences in (5.19) have common solutions. Let m = mmy ---m,. If xo
is a solution, then so is x = xo + km for anyk € R.

Proof Letm = ﬂ;zl mj. Observe that (m/mj, m;) = 1 since the m;s are relatively
prime. By Theorem 5.4, there are unique elements s and ¢ such that
(m/mj)s +mjt =1,

which is to say that
(m/mj)s =1 (mod mj).

Let bj = s in this expression, so that we can write
(m/mj)b; =1 (mod m;). (5.20)

Also (m/mj)bj =0 (mod m;)ifi # j since m;| m. Let

X0 = Z(m/mj)bjaj. (5.21)

j=1
Then
x0 = (m/mi)bia; = a; (mod m;).
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Uniqueness is straightforward to verify, as is the fact that x = xq + km is another solution.

O
It is convenient to introduce the notation M; = m/m;. The solution (5.21) can be written
asxo =) ;_; ¥ja;, where

m
vi= }n_jbf = M;b,

(5.22)

with b; determined by the solution to (5.20). Observe that y; depends only upon the set of
moduli {m;} and not upon x. If the y;s are precomputed, then the synthesis of x from the
{ai} is a simple inner product.

Example 5.20 Find a solution x to the set of congruences

x=0 (mod4) x=2 (mod27) x=3 (mod?25).

Since the moduli m; are powers of distinct primes, they are pairwise relative ptime. Then m =
mimym3 = 2700. Using the Euclidean algorithm it is straightforward to show that (m/4)b; = 1
(mod 4) has solution b; = —1. Similarly

b) =10 b3 =-3.

The solution to the congruences is given by

x = (m/H(=1)(0) + (m/27)(10)(2) + (m/25)(—3)(3) = 1028.
0
Example 5.21 Suppose the Euclidean domain is R[x] and the polynomials are
m@ == m&x=x-2> mx=c-3%
These are clearly pairwise relatively prime. We find that
m(x) = my()my(x)m3(x) = x® — 14x° + 80x* — 238x3 + 387x% — 324x + 108.
If
fx) =x° +4x4 -{-Sx3 +2x% 4+ 3x +2,
then we obtain
a1(x) =17  ax(x) =279x — 406 a3(x) = 533x% — 2211x + 2567.
O

The CRT provides a means of representing integers in the range 0 < x < m, where
m = mimy ---m, and the m; are pairwise relatively prime. Let R/{m) denote the ring of
integers modulo m and let R/(m;) denote the ring of integers modulo m;. Given a number
x € R/(m), it can be decomposed into an r-tuple [xy, x7, ..., x,] by

x =x; (mod m;), i=1,2,...,r,

where x; € R/(m;). Going the other way, an r-tuple of numbers [x1, x2, ..., x,] with
0 < x; < m; can be converted into the number x they represent using (5.21). If we let
x = [x1,x2,..., %], then the correspondence between a number x and its representation
using the CRT can be represented as

X x.

——
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We also denote this as

x =CRT(x) x=CRT !(».
Ring operations can be equivalently computed in the original ring R/(m), or in each of the
rings R/(m;) separately.

Example 5.22 Let m; = 4,my = 27, m3 = 25. Let x = 25; then x = [1,25,0]. Let y = 37,
then y = [1,10, 12). The sum z = x + y = 62 has z = [2, 8, 12], which represents x + y, added
element by element, with the first component modulo 4, the second component modulo 27, and the
third component modulo 25.

The product z = x - y = 925 has z = [1, 7, 0], corresponding to the element-by-element product
(modulo 4, 27, and 25, respectively). d

More generally, we have a ring isomorphism by the CRT. Let 7r; : R/(m) — R/(m;),i =
1,2, ..., r denote the ring homomorphism defined by ; (@) = a (mod m;). We define the
homomorphism x : R/{m) = R/m; X R/m2 X --- X R/m, by x =m) xmp X -+- X 7y,
that is,

x(a) = (amodmi,a modmsy,...,a modm,) (5.23)

Then x defines a ring isomorphism: both the additive and multiplicative structure of the
ring are preserved, and the mapping is bijective.

Example 5.23 Using the same polynomials as in Example 5.21, let
10 =25 +4x* 4503 4222 +3x +2.
Then using the CRT,
fix) o (17, 279x — 406, 533x2 — 2211 + 2567) = £ ).

Also let
o) =27 +2x% © (3, 20x — 24, 11x* = 27x 4+ 27) = £, (x).
Then
F1) + fo(x) = x5 +4x% +6x3 +4x2 + 3x +2 © (20, 299x — 430, 544x% — 2238x + 2594).
O

5.3.1 The CRT and Interpolation

The Evaluation Homomorphism

Let F be a field and let R = F[x]. Let f(x) € R and let m(x) = x — u1. Then computing
the remainder of f(x) modulo x — u; gives exactly f(u1).

Example 5.24 Let f(x) = 433+ 2?44 R[x] and let m(x) = x — 3. Then computing
f(x)/m1(x) by long division, we obtain the quotient and remainder

Fx) = (x = 3)(x3 + 6x% + 20x + 60) + 184

But we also find that
f(3) = 184,

So f(x) mod (x — 3) = 184 = f(3). ]
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Thus we can write
f(x) mod (x — u) = f(u).
The mapping 7; : Flx] — F defined by
mi(f(x) = fQu) = f(x) (mod (x — u;))

is called the evaluation homomorphism. It can be shown that it is, in fact, ahomomorphism:
for two polynomials f(x), g(x) € F[x],

i f(x) + g(x)) = mi(f(x)) + mi(gx)) T (f(x)g(x)) = mi(f (x))mi(g(x)).

The Interpolation Problem

Suppose we are given the following problem: Given a set of points (u;,a;),i =1,2,...,r,
determine an interpolating polynomial f(x) € F[x] of degree < r such that
fw) =a1, flug) =az, ..., f(ur) = ar. (5.24)

Now let f(x) = fo + fix +---+ fr_1x"~L. Since deg(f(x)) < r, we can think of f(x)

as being in F[x]/(x" — 1). Alsoletm;(x) = x —u; € F[x]fori = 1,2,...,r where the

u1,uz,...,u, € F are pairwise distinct. Then the m;(x) are pairwise relatively prime.
By the evaluation homomorphism, the set of constraints (5.19) can be expressed as

f)=ar (modmi(x)) fx)=a2 (modmy(x)) [f(x)=a (modm,(x)).

So solving the interpolation problem simply becomes an instance of solving a Chinese
Remainder problem.

The interpolating polynomial is found using the CRT. Let m(x) = []i_; (x — u;). By
the proof of Theorem 5.10, we need functions b (x) such that

(mx)/m;j(x)bj(x) =1 (mod mj)

and
(m(x)/mj(x)bj(x) =0 (mod my).
That is,
|: 1—[ (x - u,-):| bj(x)=1 (mod mj),
i=1,i#j
and
[ [] «- u,-)} bj(x)=0 (mod my)
i=1,i#j
fork # j. Let
4 1
bj(x) = —
: i:!:[:,éj (j —ui)
and let .
L) = ) /myby = [ o) (5.25)
(uj — up)

i=1,ij
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Since
Lijuj)=1 and [j(u) =0, j#k,

we see that b (x) satisfies the necessary requirements. By (5.21), the interpolating polyno-
mial is then simply

F@) =Y (m@)/mj)bj(x)a; =) _ ajl;(x). (5.26)
j=1

j=1

This form of an interpolating polynomial is called a Lagrange interpolator. The basis
functions /; (x) are called Lagrange interpolants. By the CRT, this interpolating polynomial
is unique modulo m (x).

The Lagrange interpolator can be expressed in another convenient form. Let

,
m(x) = l—[(x — U;).
i=1
Then the derivative? is .
m'(x) =" [[x—u)
k=1 istk
so that
m'(up) = [ Juj — wi).
i#j
(See also Definition 6.5.) The interpolation formula (5.26) can now be written as

r

fo) = Za,-(ml . (5.27)

x —ui) m'(ui)

i=1

Example 5.25 An important instance of interpolation is the discrete Fourier transform (DFT). Let
f&x) = fo+fix+-- -+fN__1xN'1 ,withx = z~!, bethe Z-transform of acomplex cyclic sequence.
Then f(x) € Clx]/(x"V — 1), since it is a polynomial of degree < N — 1. Let m(x) = x — 1. The
N roots of m(x) are the complex numbers e~ii2n/N ; =0,1,...,N—1. Letw = e=J27/N . this
is a primitive N-th root of unity. Then the factorization of m(x) can be written as

N-1
mx)=xY —1= l_[(x—w’),
i=0
where the factors are pairwise relative prime. Define the evaluations

N-1
Fe=m(f) = f@) =Y fio'*, k=01, . N-1
i=0

Expressed another way, Fy = f(x) (mod x — w*). The coefficients {fx} may be thought of as
existing in a “time domain,” while the coefficients { F;} may be thought of as existing in a “frequency
domain.”

For functions in the “time domain,” multiplication is polynomial multiplication (modulo x™ — 1).
That is, for polynomials f(x) and g(x), multiplication is f(x)g(x) (mod N - 1), which amounts
to cyclic convolution.

30r formal derivative, if the field of operations is not real or complex
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For functions in the “transform domain,” multiplication is element by element. That is, for
sequences (Fy, F1,..., Fy—1) and (Gg, G1, ..., Gy—1), multiplication is element by element as
complex numbers:

(FoGo, F1Gy, ..., Fy~1GN=1)-

Thus, the ring isomorphism validates the statement: (cyclic) convolution in the time domain is equiv-
alent to multiplication in the frequency domain.

O
5.4 Fields

Fields were introduced in Section 2.3. We review the basic requirements here, in comparison
with a ring. In a ring, not every element has a multiplicative inverse. In a field, the familiar
arithmetic operations that take place in the usual real numbers are all available: (F, +) is
an Abelian group. (Denote the additive identity element by 0.) The set F \ {0} (the set
F with the additive identity removed) forms a commutative group under multiplication.
Denote the multiplicative identity element by 1. Finally, as in a ring the operations + and -
distribute: a - (b+c)=a-b+a-cforalla,b,c e F.

In a field, all the elements except the additive identity form a group, whereas in a ring,
there may not even be a multiplicative identity, let alone an inverse for every element. Every
field is a ring, but not every ring is a field.

Example 5.26 (Zs, +, -) forms a field; every nonzero element has a multiplicative inverse. So this
set forms not only a ring but also a group. Since this field has only a finite number of elements in it,
it is said to be a finite field.

However, (Zg, +, -} does not form a field, since not every element has a multiplicative inverse. [

One way to obtain finite fields is described in the following.

Theorem 5.11 The ring (Zp, +, -} is a field if and only if p is a prime.
Before proving this, we need the following definition and lemma.

Definition 5.6 Inaring R, if a, b € R with both a and b not equal to zero but ab = 0, then
a and b are said to be zero divisors. d

Lemma 5.12 In a ring Z,, the zero divisors are precisely those elements that are not
relatively prime to n.

Proof Leta € Z, be not equal to 0 and be not relatively prime to n. Let d be the greatest
common divisor of n and a. Then a(n/d) = (a/d)n, which, being a multiple of n, is equal
to 0 in Z,. We have thus found a number b = n/d such that ab = 0 in Zj, so a is a zero
divisor in Z,.
Conversely, suppose that there is an a € Z, relatively prime to n such that ab = 0.
Then it must be the case that
ab =kn

for some integer k. Since n has no factors in common with a, then it must divide b, which
means that b = 0 in Z,,. O

Observe from this lemma that if p is a prime, there are no divisors of 0 in Z,. We now turn
to the proof of Theorem 5.11.
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Proof of Theorem 5.11.

We have already shown that if p is not prime, then there are zero divisors and hence
(Zp, 4+, -) cannot form a field. Let us now show that if p is prime, (Zp, +, -) is a field.

We have already established that (Z,, +) is a group. The key remaining requirement is to
establish that (Z,\{0}, -) forms a group. The multiplicative identity is 1 and multiplication
is commutative. The key remaining requirement is to establish that every nonzero element
in Zp has a multiplicative inverse.

Let{1,2,..., p—1} bealist of the nonzero elements in Z, and let a € Z, be nonzero.
Form the list

{la,2a,...,(p — Da}. (5.28)

Every element in this list is distinct, since if any two were identical, say ma = na with
m # n, then a(m — n) = 0, which is impossible since there are no zero divisors in Z.
Thus the list (5.28) contains all nonzero elements in Z , and is a permutation of the original
list. Since 1 is in the original list, it must appear in the list in (5.28). a

5.4.1 An Examination of R and C

Besides the finite fields (Zp, +, -) with p prime, there are other finite fields. These fields
are extension fields of Z,. However, before introducing them, it is instructive to take a look
at how the field of complex numbers C can be constructed as a field extension from the field
of real numbers R

Recall that there are several representations for complex numbers. Sometimes it is
convenient to use a “‘vector” notation, in which a complex number is represented as (a, b).
Sometimes it is convenient to use a “polynomial” notation a + bi, where i is taken to be
a root of the polynomial x2 + 1. However, since there is some preconception about the
meaning of the symbol i, we replace it with the symbol ¢, which doesn’t carry the same
connotations (yet). In particular, « is not (yet) the symbol for v/—1. You may think of
a + bua as being a polynomial of degree < 1 in the “indeterminate” «. There is also a polar
notation for complex numbers, in which the complex number is written as a + ib = re'?
for the appropriate r and 8. Despite the differences in notation, it should be borne in mind
that they all represent the same number.

Given two complex numbers we define the addition component-by-component in the
vector notation (a, b) and (c, d), where a, b, ¢ and d are all in R, based on the addition op-
eration of the underlying field R. The set of complex number thus forms a two-dimensional
vector space of real numbers. We define

(a,by+ (c,d)=(a+c,b+d). (5.29)

It is straightforward to show that this addition operation satisfies the group properties for
addition, based on the group properties it inherits from R.

Now consider the “polynomial notation.” Using the conventional rules for adding poly-
nomials, we obtain

at+ba+c+de=(@+c)+ b+ da,

which is equivalent to (5.29).
How, then, to define multiplication in such a way that all the field requirements are
satisfied? If we simply multiply using the conventional rules for polynomial multiplication,

(@ + ba)(c + da) = ac + (ad + bc)a + bda?, (5.30)
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we obtain a quadratic polynomial, whereas complex numbers are represented as polynomials
having degree < 1 in the variable .
Polynomial multiplication must be followed by another step, computing the remainder
modulo some other polynomial. Let us pick the polynomial
gla@) = 1+a?

to divide by. Dividing the product in (5.30) by g(@)

bd
o? 4 1|bda+ (ad + be)a+ ac
bda’+ bd

(ad + bc)a+ ac — bd

we obtain the remainder (ac — bd) + (ad + bc)a. Summarizing this, we define the product
of (a + ba) by (¢ + da) by the following two steps:

1. Multiply (a + ba) by (c + da) as polynomials.
2. Compute the remainder of this product when divided by g (&) = o + 1.

That is, the multiplication is defined in the ring R{or]/g{(), as described in Section 4.4.
Of course, having established the pattern, it is not necessary to carry out the actual
polynomial arithmetic: by this two-step procedure we have obtained the familiar formula

(a + ba) - (c + do) = (ac — bd) + (ad + bc)a

or, in vector form,
(a,b)-(c,d) = (ac — bd, ad + bc).

As an important example, suppose we want to multiply the complex numbers (in vector
form) (0, 1) times (0, 1), or (in polynomial form) « times «. Going through the steps of
computing the product and the remainder we find

o-a=-—1. (5.31)
In other words, in the arithmetic that we have defined, the element « satisfies the equation
a®>+1=0. (5.32)

In other words, the indeterminate & acts like the number «/—1. This is a result of the fact
that multiplication is computed modulo the polynomial g(o) = a? + 1: the symbol « is
(now by construction) a root of the polynomial g(x). To put it another way, the remainder
of a polynomial a? + 1 divided by o 4 1 is exactly 0. So, by this procedure, any time
«? + 1 appears in any computation, it may be replaced with 0.

Let us take another look at the polynomial multiplication in (5.30):

(a + ba)(c + da) = ac + (ad + bc)a + bda?. (5.33)

Using (5.31), we can replace a? in (5.33) wherever it appears with expressions involving
lower powers of . We thus obtain

(a + ba)(c +da) = ac + (ad + bc)a + bd(—1) = (ac — bd) + (ad + bc)e,
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as expected. If we had an expression involving o it could be similarly simplified and
expressed in terms of lower powers of o:
ol :a-azza-(—l) = —d.

Using the addition and multiplication as defined, it is (more or less) straightforward to
show that we have created a field which is, in fact, the field of complex numbers C.

As is explored in the exercises, it is important that the polynomial g{c) used to define
the multiplication operation not have roots in the base field R. If g(«) were a polynomial so
that g(b) = O for some b € R, then the multiplication operation defined would not satisfy
the field requirements, as there would be zero divisors. A polynomial g(x) that cannot be
factored into polynomials of lower degree is said to be irreducible. By the procedure
above, we have taken a polynomial equation g(«) which has no real roots (it is irreducible)
and created a new element o which is the root of g(c), defining along the way an arithmetic
system that is mathematically useful (it is a field). The new field C, with the new element
« in it, is said to be an extension field of the base field R.

At this point, it might be a tempting intellectual exercise to try to extend C to a bigger
field. However, we won’t attempt this because:

1. The extension created is sufficient to demonstrate the operations necessary to extend
a finite field to a larger finite field; and (more significantly)

2. It turns out that C does not have any further extensions: it already contains the roots
of all polynomials in C[x], so there are no other polynomials by which it could be
extended. This fact is called the fundamental theorem of algebra.

There are a couple more observations that may be made about operations in C. First, we
point out again that addition in the extension field is easy, being simply element by element
addition of the vector representation. Multiplication has its own special rules, determined
by the polynomial g(«). However, if we represent complex numbers in polar form,

a+ba=re!”  c+da=re®,
then multiplication is also easy: simply multiply the magnitudes and add the angles:
1670 . rel® = prpel @100,

Analogously, we will find that addition in the Galois fields we construct is achieved by
straightforward vector addition, while multiplication is achieved either by some operation
which depends on a polynomial g, or by using a representation loosely analogous to the
polar form for complex numbers, in which the multiplication is more easily computed.

5.4.2 Galois Field Construction: An Example

A subfield of a field is a subset of the field that is also a field. For example, Q is a subfield
of R. A more potent concept is that of an extension field. Viewed one way, it simply turns
the idea of a subfield around: an extension field E of a field F is a field in which F is a
subfield. The field F in this case is said to be the base field. But more importantly is the
way that the extension field is constructed. Extension fields are constructed to create roots
of irreducible polynomials that do not have roots in the base field.

Definition 5.7 A nonconstant polynomial f(x) € R[x] is irreducible over R if f(x)
cannot be expressed as a product g(x)A(x) where both g(x) and h(x) are polynomials of
degree less than the degree of f(x) and g(x) € R[x] and h(x) € R[x].
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Box 5.1: Everiste Galois (1811-1832)

The life of Galois is a study in brilliance and tragedy. At an early age, Galois
studied the works in algebra and analysis of Abel and Lagrange, convincing him-
self (justifiably) that he was a mathematical genius. His mundane schoolwork,
however, remained mediocre. He attempted to enter the Ecole Polytechnique,
but his poor academic performance resulted in rejection, the first of many
disappointments. At the age of seventeen, he wrote his discoveries in algebra in
a paper which he submitted to Cauchy, who lost it. Meanwhile, his father, an
outspoken local politician who instilled in Galois a hate for tyranny, committed
suicide after some persecution. Some time later, Galois submitted another paper
to Fourier. Fourier took the paper home and died shortly thereafter, thereby
resulting in another lost paper. As a result of some outspoken criticism against
its director, Galois was expelled from the normal school he was attending. Yet
another paper presenting his works in finite fields was a failure, being rejected
by the reviewer (Poisson) as being too incomprehensible.

Disillusioned, Galois joined the National Guard, where his outspoken nature
led to some time in jail for a purported insult against Louis Philippe. Later he was
challenged to a duel — probably a setup — to defend the honor of a woman. The
night before the duel, Galois wrote a lengthy letter describing his discoveries.
The letter was eventually published in Revue Encylopédique. Alas, Galois was
not there to read it: he was shot in the stomach in the duel and died the following

day of peritonitis at the tender age of twenty.

In this definition, the ring (or field) in which the polynomial is irreducible makes a
difference. For example, the polynomial f(x) = x? — 2 is irreducible over @, but over the
real numbers we can write

f(x) = (x +vV2)(x — V2),

so f(x) is reducible over R.

We have already observed that (Z,, +, -) forms a field when p is prime. It turns out
that all finite fields have order equal to some power of a prime number, p™. Form > 1, the
finite fields are obtained as extension fields to Z, using an irreducible polynomial in Z[x]
of degree m. These finite fields are usually denoted by G F(p™) or GF(q) where g = p™,
where G F stands for “Galois field,” named after the French mathematician Everiste Galois.

We demonstrate the extension process by constructing the operations for the field
GF(2%), analogous to the way the complex field was constructed from the real field.
Any number in GF (2% can be represented as a 4-tuple (a, b, ¢, d), where a, b,c,d €
GF(2). Addition of these numbers is defined to be element-by-element, modulo 2: For
(a1, a2,a3,a4) € GF(2* and (b1, by, b3, b3) € GF(2%), where a; € GF(2) and b; €
GF(2),

(a1, a2, a3, as) + (b1, by, b3, by) = (a1 + by, a2 + b2, a3 + b3, as + by).
Example 5.27 Add the numbers (1,0, 1,1) + (0, 1, 0, 1). Recall thatin GF(2), 1 4+ 1 = 0, so that

we obtain
(,0,1,1)+(0,1,0,1) = (1,1, 1,0).

O



198

Rudiments of Number Theory and Algebra

To define the multiplicative structure, we need an irreducible polynomial of degree 4.
The polynomial g(x) = 1 + x + x* is irreducible over G F(2). (This can be verified since
g(0) = 1 and g(1) = 1, which eliminates linear factors and it can be verified by exhaustion
that the polynomial cannot be factored into quadratic factors.) In the extension field G F (24,
define « to be root of g:

ot +a+1=0,

or
ot =1+a. (5.34)

A 4-tuple (a, b, ¢, d) representing a number in G F(2*) has a representation in polynomial
form
a + ba + ca? + do.

Now take successive powers of o beyond a*:

ot =1+a,

@ =a(@h) =a+a?,

6 2, .4 2 3 (535)
« =a‘(a)=a"+a’,

o’ =a3(a4) =oz3(1 + a) =a’+1 + «,

and so forth. In fact, because of the particular irreducible polynomial g(x) which we
selected, powers of & up to a1 are all distinct and &5 = 1. Thus all 15 of the nonzero
elements of the field can be represented as powers of «. This gives us something analogous
to a “polar” form; we call it the “power” representation. The relationship between the vector
representation, the polynomial representation, and the “power” representation for G F (2%)
is shown in Table 5.1. The fact that a 4-tuple has a corresponding representation as a power
of « is denoted using <>. For example,

0,1,0,0) o « 0,1,1,0) & o°.

The Vector Representation (integer) column of the table is obtained from the Vector Repre-
sentation column by binary-to-decimal conversion, with the least-significant bit on the left.

Example 5.28 In GF(2*) multiply the Galois field numbers 1 + & + o3 and @ + 2. Step 1 is to
multiply these “as polynomials” (where the arithmetic of the coefficients takes place in G F(2)):

¢! +ot+a3) (" +0l2) =ot+a:3 +(¥4+Ct5.
Step 2 is to reduce using Table 5.1 or, equivalently, to compute the remainder modulo o + « + 1:
a+a3+a4+cx5 =a+ot3+(1+oz)+(a+a2) = 1+a+a2+a3.

Soin GF(2%),
A+a+ad)-@+a®) =1+a+ae?+a>.
In vector notation, we could also write

(1,1,0,1)-(0,1,1,0) = (1,1, 1, 1).

This product could also have been computed using the power representation. Since (1, 1,0, 1) <> &’
and (0, 1, 1,0) < o, we have

(1,1,0,1)-(0,1,1,0) & o’0® =e!? & (1,1,1, 1).

The product is computed simply using the laws of exponents (adding the exponents). |
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Table 5.1: Power, Vector, and Polynomial Representations of G F (2*) as an Extension Using
gla)=1+a+a

Vector Power Zech
Polynomial Vector Representation ~ Representation 1 ooarjthm  Logarithm

Representation ~ Representation (integer) ol n z(n)
0 0000 0 - - -
1 1000 1 1=af 0 -
o 0100 2 o 1 4
o? 0010 4 o? 2 8
o 0001 8 o3 3 14
1+ 1100 3 ot 4 1
a+a? 0110 6 o 5 10
a?+al 0011 12 of 6 13
4o  +a3 1101 11 o’ 7 9
1 +4a? 1010 5 ol 8 2
@« +d 0101 10 of 9 7
1+a+a? 1110 7 ol0 10 5
a+o+al 0111 14 ol 11 12
l4a+a?4a3 1111 15 al? 12 11
1 +4a?+a3 1011 13 ol3 13 6
1 +a3 1001 9 old 14 3

The Zech logarithm is explained in Section 5.6.

Example 5.29 In GF(2%), compute a2 . &5, In this case, we would get

2245 = o7,

However since o!5 = 1,
21265 = a7 = o152 = o2,

O

We compute a*a®? = a¢ by finding ¢ = (a + b) (mod p™ — 1).

Since the exponents are important, a nonzero number is frequently represented by the
exponent. The exponent is referred to as the logarithm of the number.

It should be pointed that this power (or logarithm) representation of the Galois field
exists because of the particular polynomial g{«) which was chosen. The polynomial is not
only irreducible, it is also primitive which means that successive powers of ¢ up to 2™ — 1
are all unique, just as we have seen.

While different irreducible polynomials can be used to construct the field there is, in
fact, only one field with g elements in it, up to isomorphism.

Tables which provide both addition and multiplication operations for GF(2%) and
GF(2% are provided inside the back cover of this book.

5.4.3 Connection with Linear Feedback Shift Registers

The generation of a Galois field can be represented using an LFSR with g(x) as the connec-
tion polynomial by labeling the registers as 1, &, o and «, as shown in Figure 5.1. Then
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as the LFSR is clocked, successive powers of « are represented by the state of the LFSR.
Compare the vector representation in Table 5.1 with the LFSR sequence in Table 4.11. The
state contents provide the vector representation, while the count provides the exponent in
the power representation.

ré@gl

Figure 5.1: LFSR labeled with powers of « to illustrate Galois field elements.

5.5 Galois Fields: Mathematical Facts

Having presented an example of constructing a Galois field, we now lay out some aspects
of the theory.

We first examine the additive structure of finite fields, which tells us what size any finite
field can be. Recalling Definition 4.3, that the characteristic is the smallest positive integer
m such thatm(l) =1+ 1+ ---+ 1 = 0, we have the following.

Lemma 5.13 The characteristic of a field must be either 0 or a prime number.

Proof If the field has characteristic O, the field must be infinite. Otherwise, suppose that
the characteristic is a finite number k. Assume k is a composite number. Then k(1) = 0
and there are integers m # 1 and n # 1 such that k = mn. Then

0 = k(1) = (mn)(1) = m(D)n(1) = 0.

But afield has no zero divisors, so either m or n is the characteristic, violating the minimality
of the characteristic. O

It can be shown that any field of characteristic O contains the field Q.

On the basis of this lemma, we can observe that in a finite field G F(g), there are p
elements (p a prime number) {0, 1,2 = 2(1),...,(p — 1) = (p — 1)(1)} which behave
as a field (i.e., we can define addition and multiplication on them as a field). Thus Z,
(or something isomorphic to it, which is the same thing) is a subfield of every Galois field
GF{(q). In fact, a stronger assertion can be made:

Theorem 5.14 The order q of every finite field G F (q) must be a power of a prime.

Proof By Lemma 5.13, every finite field G F(g) has a subfield of prime order p. We will
show that G F'(g) acts like a vector space over its subfield G F(p).

Let 81 € GF{g), with 1 # 0. Form the elements a1 81 as a] varies over the elements
{0,1,..., p—1}in GF(p). The product a; B; takes on p distinct values. (Forif x81 = yB1
we must have x = y, since there are no zero divisors in a field.) If by these p products we

have “covered” all the elements in the field, we are done: they form a vector space over
GF(p).
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If not, let B2 be an element which has not been covered yet. Then form a3 81 + a2 as
ay and a; vary independently. This must lead to p? distinct values in GF(g). If still not
done, then continue, forming the linear combinations

a1B1+azBa + - amPm

until all elements of G F'(g) are covered. Each combination of coefficients {a1, a2, ..., am}
corresponds to a distinct element of GF(q). Therefore, there must be p™ elements in
GF(q). O

This theorem shows that all finite fields have the structure of a vector space of dimension
m over a finite field Z,. For the field GF (p™), the subfield GF(p) is called the ground
field.

This proof raises an important point about the representation of a field. In the con-
struction of G F(2%) in Section 5.4.2, we formed the field as a vector space over the basis
vectors 1, @, ? and o3. (Or, more generally, to form G F(p™), we would use the elements
{1,a,a2,...,a™ 1} as the basis vectors.) However, another set of basis vectors could be
used. Any set of m linearly independent nonzero elements of GF (p™) can be used as a
basis set. For example, for GF (2%) we could construct the field as all linear combinations
of {(1+a,a+a? 1403 a+a?+a). The multiplicative relationship prescribed by the
irreducible polynomial still applies. While this is not as convenient a construction for most
purposes, it is sometimes helpful to think of representations of a field in terms of different
bases.

Theorem 5.15 If x and y are elements in a field of characteristic p,
(x+y)P =xP +yP.
This rule is sometimes called “freshman exponentiation,” since it is erroneously employed

by some students of elementary algebra.
Proof By the binomial theorem,

P
x+yFf= Z (?)xiy”_i.

i=0

For a prime p and for any integeri P andi # p, p| (’l’) so that (i’) =0 (mod p). Thusall
the terms in the sum except the first and the last are p times some quantity, which are equal
to 0 since the characteristic of the field is p. a

This theorem extends by induction in two ways: both to the number of summands and
to the exponent: If x1, x3, . .., x¢ are in a field of characteristic p, then

ENT ok
(Z x,-) =) f (5.36)
i=1 i=1

forallr > 0.
‘We now consider some multiplicative questions related to finite fields.

Definition 5.8 Let 8 € GF(q). The order* of 8, written ord(8) is the smallest positive
integer n such that 8" = 1. a

“The nomenclature is unfortunate, since we already have defined the order of a group and the order of an element
within a group.
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Definition 5.9 An element with order ¢ — 1 in GF(g) (i.e., it generates all the nonzero
elements of the field) is called a primitive element. O

In other words, a primitive element has the highest possible order.

We saw in the construction of G F (2%) that the element we called o has order 15, making
it a primitive element in the field. We also saw that the primitive element enables the “power
representation” of the field, which makes muitiplication particularly easy. The questions
addressed by the following lemmas are: Does a Galois field always have a primitive element?
How many primitive elements does a field have?

Lemma 5.16 If 8 € GF(q) and 8 # O then 0rd(;3)| g-1).

Proof Let: = ord(8). The set {8, B2, ..., B! = 1} forms a subgroup of the nonzero
elements in GF (g) under multiplication. Since the order of a subgroup must divide the
order of the group (Lagrange’s theorem, Theorem 2.3), the result follows. O

Example 5.30 Inthe field GF (24), the element o> has order 3, since

@ =l =1,

and 5| 15. In fact, we have the sequence

B @)= @P=dd, @) =a2 @ =aP=1

Lemma 5.17 Let B € GF(q). p° = 1 ifand only if ord(B)| s.

Proof Lett = ord(B). Let s be such that 85 = 1. Using the division algorithm, write

s =at+r where0 <r < t. Then1 = g5 = g " = B’. By the minimality of the order
(it must be the smallest positive integer), we must have r = 0.

Conversely, if ord(B) | s, then g = %' = (') = 1, where t = ord(B) and g = s/t.

O

Lemma 5.18 If @ has order s and B has order t and (s, t) = 1, then aff has order st.

Example 531 InGF (2, o3 and &> have orders that are relatively prime, being 5 and 3 respectively.
It may be verified that a3’ = o8 has order 15 (it is primitive). O

Proof First,
(@B)” = (@) (B =1.
Might there be a smaller value for the order than s¢?

Let k be the order of @B. Since (@B)* = 1, a* = g~*. Since &* = 1, «** = 1, and
hence 8~** = 1. Furthermore, a’* = =% = 1. By Lemma 5.17, s| tk. Since (s,¢) = 1,
k must be a multiple of s.

Similarly, ﬁ‘Sk =1 and so t| sk. Since (s, t) = 1, k must be a multiple of ¢.

Combining these, we see that K must be a multiple of sz. In light of the first observation,
we have k = st. a
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Lemma 5.19 In a finite field, if ord(a) = t and B = o', then

ord(8) = (l’—t)

Proof If ord(e) = ¢, then &® = 1 if and only if t‘ s (Lemma 5.17).
Let ord(8) = u. Note that i /(i, t) is an integer. Then
’Bt/(i,t) = (ai)t/(i,t) — (at)i/(i,t) =1.

Thus u| t/(i, t). We also have
@) =1

SO t| iu. This means that ¢/(i, t)‘ u. Combining the results, we have u = t/(i, t). O

Theorem 5.20 For a Galois field GF (q), if t| q — 1 then there are ¢ (t) elements of order
t in GF(q), where ¢(t) is the Euler totient function.

Proof Observe from Lemma 5.16 that if £ g — 1, then there are no elements of order ¢ in
GF(q). So assume that tI g — 1; we now determine how many elements of order ¢ there
are.

Let  be an element with order 7. Then by Lemma 5.19, if 8 = &' for some i such that
(i,t) = 1, then B also has order ¢. The number of such is is ¢(z).

Could there be other elements not of the form o/ having order ¢? Any element having
order ¢ is a root of the polynomial x* — 1. Each element in the set {o, ot a3, ..., a'lisa
solution to the equation x* — 1 = 0. Since a polynomial of degree ¢ over a field has no more
than 7 roots (see Theorem 5.27 below), there are no elements of order ¢ not in the set. [

The following theorem is a corollary of this result:
Theorem 5.21 There are ¢(q — 1) primitive elements in GF (q).

Example 5.32 In GF(7), the numbers 5 and 3 are primitive:
sl=s, 52=4, 55=6, 5*=2 5°=3, 50=1
3l=3 3224, P¥=6 3*=4 3¥=5 3¥=1
We also have ¢ (g — 1) = ¢(6) = 2, so these are the only primitive elements. O
Because primitive elements exist, the nonzero elements of the field G F(g) can always be
written as powers of a primitive element. If « € GF(q) is primitive, then
o, 0,03, ...,097%, a9 = 1)

is the set of all nonzero elements of GF(g). If we let GF(g)* denote the set of nonzero
elements of G F(gq), we can write

GF(g)* = ().

If B = o is also primitive (i.e., (i, g — 1) = 1), then the nonzero elements of the field are
also generated by

B.8% B, ... B2 7% p17 =1},
that is, GF(g)* = (8). Despite the fact that these are different generators, these are not

different fields, only different representations, so (¢} is isomorphic to (8). We thus talk of
the Galois field with ¢ elements, since there is only one.
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Theorem 5.22 Every element of the field G F (q) satisfies the equation x4 — x = 0. Fur-
thermore, they constitute the entire set of roots of this equation.

Proof Clearly, the equation can be written as x(x9~! — 1) = 0. Thus x = 0 is clearly a
root. The nonzero elements of the field are all generated as powers of a primitive element
o. For an element 8 = ol € GF(q), ,3‘1_1 = (ot‘A)‘l‘1 = (aq_l)i = 1. Since there are g
elements in G F(g), and at most g roots of the equation, the elements of GF(g) are all the
roots. d
An extension field E of afield F is a splitting field of a nonconstant polynomial f(x) € F[x]
if f(x) can be factored into linear factors over E, but not in any proper subfield of E.
Theorem 5.22 thus says that G F{g) is the splitting field for the polynomial x? — ¢.
As an extension of Theorem 5.22, we have

Theorem 5.23 Every element in a field G F (q) satisfies the equation

n

xT —x=0

for everyn > 0.

Proof When n = 0 the result is trivial; when n = 1 we have Theorem 5.22, giving x? = x.
The proof is by induction; Assume that x4 =x. Then (x¢" ') =x9 = x, or x4" = x.
O

Afield G F(p) canbe extendedto afield GF (p™) foranym > 1. Letg = p™. The field
G F(q) can be further extended to a field GF (¢”) for any r, by extending by an irreducible
polynomial of degree r in G F(q)[x]. This gives the field GF (p™).

5.6 Implementing Galois Field Arithmetic

Lab 5 describes one way of implementing Galois field arithmetic in a computer using two
tables. In this section, we present a way of computing operations using one table of Zech
logarithms, as well as some concepts for hardware implementation.

5.6.1 Zech Logarithms
In a Galois field G F(2™), the Zech logarithm z(n) is defined by
M =1+0a", n=12,...,2"-2.

Table 5.1 shows the Zech logarithm for the field GF(2*). For example, when n = 2, we
have

1+ ot =aob
so that z(2) = 8.

In the Zech logarithm approach to Galois field computations, numbers are represented
using the exponent. Multiplication is thus natural. To see how to add, consider the following
example:

o’ + .
The first step is to factor out the term with the smallest exponent,

Ol3(1 + az).
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Now the Zech logarithm is used: 1 + ? = o*@ = a8. So
o® +a’ =¥l +a?) =aPed = all,

The addition requires one table lookup and one multiply operation. It has been found that
in many implementations, the use of Zech logarithms can significantly improve execution
time.

5.6.2 Hardware Implementations

We present examples for the field GF(2*) generated by g(x) = 1 + x + x*. Addition is
easily accomplished by simple mod-2 addition for numbers in vector representation.

Multiplication of the element 8 = by + by + bya? + b3a® by the primitive element &
is computed using a* = 1 + « as

af = boo + b1a2 + b2a3 + b3a4 =b3 + (bp + b3)a + b10t2 + b20t3.

These computations can be obtained using an LFSR as shown in Figure 5.2. Clocking the
registers once fills them with the representation of .

|_" bgy ——@ by by b3

Figure 5.2: Multiplication of 8 by a.

Multiplication by specific powers of & can be accomplished with dedicated circuits. For
example, to multiply 8 = bg + b1 + by + b3o? by o* =1 + «, we have

Ba* = B +aB = (bo + b3) + (bo + b1 + b3)a + (b1 + by)a? + (b + b3)a?,

which can be represented as shown in Figure 5.3.

by b1 by b3

+ + +
H/

Figure 5.3: Multiplication of an arbitrary 8 by a*.

Finally, we present a circuit which multiplies two arbitrary Galois field elements. Let
B = bg + b + byat® + b3a® and let y =co+cra+ c2a + c303. Then By can be written
in a Horner-like notation as

By = (((c3aBa + c2f)a + ¢y f)a + coB.

Figure 5.4 shows a circuit for this expression. Initially, the upper register is cleared. Then at
the first clock the register contains c3 8. At the second clock the register contains c3fo+c2 8,
where the multiplication by « comes by virtue of the feedback structure. At the next clock
the register contains (c3Ba + c28)a +¢18. At the final clock the register contains the entire
product.
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|

||

o™ e ™™ e

Figure 5.4: Multiplication of 8 by an arbitrary field element.

5.7 Subfields of Galois Fields

Elements in a base field G F (g) are also elements of its extension field G F(¢™). Given an
element B € GF(g™) in the extension field, it is of interest to know if it is an element in
the base field GF (g). The following theorem provides the answer.

Theorem 5.24 An element B € GF(q™) lies in GF(q) if and only if 87 = 8.

Proof If B € GF(q), then by Lemma 5.16, ord(ﬂ)| (g — 1), so that 7 = 8.
Conversely, assume 7 = 8. Then g is aroot of x9 — x = 0. Now observe that all ¢
elements of G F (g) satisfy this polynomial and it can only have g roots. Hence 8 € GF(q).
O

By induction, it follows that an element 8 € G F(¢™) lies in the subfield G F(q) if 84" = B
for any n > 0.

Example 5.33 The field GF (4) is a subfield of G F(256). Let « be primitive in G F(256). We desire
to find an element in GF(4) C GF(256). Let 8 = @85 Then, invoking Theorem 5.24

B = o854 = 255485 — g,
So B € GF(4) and GF (4) has the elements {0, 1, 8, 82} = {0, 1, &35, o170} 0

Theorem 5.25 GF(g") is a subfield of GF(q) if and only if k| j.

The proof relies on the following lemma.

Lemma 5.26 Ifn,r, and s are positive integers and n > 2, then n® — 1| n" — 1 if and only

ifs’r.

Proof of Theorem 5.25. If k| j, say j = mk, then GF(g*) can be extended using an
irreducible polynomial of degree m over GF(g*) to obtain the field with (gHm = g7
elements.

Conversely, let GF(g*) be a subfield of GF(g7) and let 8 be a primitive element in
GF(g*). Then ﬂqk‘l = 1. As anelement of the field G F(¢*), it must also be true (see, e.g.,
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Theorem 5.22) that 84"~ = 1. From Lemma 5.17, it must be the case that g¥ — 1| ¢/ — 1
and hence, from Lemma 5.26, it follows that k| J. O

As an example of this, Figure 5.5 illustrates the subfields of GF (2%4).
G (224)

GF(21?) GF(2%)
GF(2% GF(22Y

GF (23 GF(2%)

~

GF(2)

Figure 5.5: Subfield structure of GF (2%4).

5.8 Irreducible and Primitive polynomials
‘We first present a result familiar from polynomials over complex numbers.

Theorem 5.27 A polynomial of degree d over a field F has at most d roots in any field
containing F.

This theorem seems obvious, but in fact over a ring it is not necessarily true! The quadratic
polynomial x2 — 1 has four roots in Z;s, namely 1, 4, 11 and 14 [25].
Proof Every polynomial of degree 1 (i.e., a linear polynomial) is irreducible. Since the
degree of a product of several polynomials is the sum of their degrees, a polynomial of
degree d cannot have more than d linear factors. By the division algorithm, (x — 8) is a
factor of a polynomial f(x) if and only if f(8) = 0 (see Exercise 5.47). Hence f(x) can
have at most d roots. O
While any irreducible polynomial can be used to construct the extension field, com-

putation in the field is easier if a primitive polynomial is used. We make the following
observation:

Theorem 5.28 Let p be prime. An irreducible mth-degree polynomial f(x) € GF{(p)[x]
divides x?" 1 — 1.

Example 5.34 (x3 +x+ 1)’ (x7 + 1) in G F(2) (this can be shown by long division). O

It is important to understand the implication of the theorem: an irreducible polynomial
divides xP" — 1, but just because a polynomial divides x?” — 1 does not mean that it is
irreducible. (Showing irreducibility is much harder than that!)

Proof Let GF(g) = G F(p™) be constructed using the irreducible polynomial f (x), where
a denotes the root of f(x) inthe field: f(«) = 0. By Theorem 5.22, o is aroot of xP"-1
in GF(g). Using the division algorithm write

" =g Fx) 4 r (), (5.37)
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where deg(r(x)) < m. Evaluating (5.37) at x = « in GF(g) we obtain
0=0+r(x).

But the elements of the field G F (q) are represented as polynomials in « of degree < m, so
since r (o) = 0 it must be that r(x) is the zero polynomial, 7 (x) = 0. O

A slight generalization, proved similarly using Theorem 5.23, is the following:

Theorem 5.29 If f[x] € GF(q)[x] is an irreducible polynomial of degree m, then
k
f@)| &7 —x)

for any k such that m ‘ k.

Definition 5.10 An irreducible polynomial p(x) € GF(p)[x] of degree m is said to be
primitive if the smallest positive integer n for which p(x) divides x" — lisn = p™ — 1. [J

Example 5.35 Taking f(x) = x3 +x + 1, it can be shown by exhaustive checking that f(x) f x4 +1,
F)fx% +1,and £(x) fx8 + 1, but £()| 27 + 1. In fact,

=1= (x3 +x+ 1)(x4 +x2+x +1).
Thus f(x) is primitive. |
The following theorem provides the motivation for using primitive polynomials.

Theorem 5.30 The roots of an mth degree primitive polynomial p(x) € GF(p)[x] are
primitive elements in GF(p™).

That is, any of the roots can be used to generate the nonzero elements of the field GF(p™).
Proof Let o be a root of an mth-degree primitive polynomial p(x). We have
2" =1 = p()g ()
for some g (x). Observe that
"7 — 1= pl@)g(@) = 0g(@) =0,

from which we note that
o =1,

Now the question is, might there be a smaller power ¢ of « such that o' = 1? If this were
the case, then we would have

o —1=0.

There would therefore be some polynomial x* — 1 that would have « as a root. However,
any root of x* — 1 must also be a root of x?”~! — 1, because ord(a) | p™ — 1. To see this,
suppose (to the contrary) that ord(a) / p™ — 1. Then

p"—1=rFkord(a) +r
for some r with 0 < r < ord(«). Therefore we have

m_ k ord
1 =Pl = gkod@+r _ o1
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which contradicts the minimality of the order.
Thus, all the roots of x! — 1 are the roots of x”" ! — 1, so

m_
o =1jxP -,

We show below that all the roots of an irreducible polynomial are of the same order. This
means that p(x) \ x! — 1. But by the definition of a primitive polynomial, we must have
t=p"—1. O

All the nonzero elements of the field can be generated as powers of the roots of the
primitive polynomial.

Example 5.36 The polynomial p(x) =x2 4 x+2is primitive in GF(5). Let « represent a root of
p(x), sothat a? +a +2=0,0ra? = 4a + 3. The elements in GF (5) can be represented as powers
of « as shown in the following table.

0 on 1 el =a o2 =4d4a+3 o =4da+2
a*=3a+2 oS =da+4 ab=2 ol =2a e =3 +1
2 =3c+4 all=a+4 oll=3a+3 al2=4 al? = 4o
et =a+2 ot1 =a+3 al®=20+3 al7=0a+1 al¥8=3
al® =3¢ o0 =20 +4 o' =2a+1 4a+1 aP=20+2

As an example of some arithmetic in this field,
Ba+4+@a+1) =20

Ga +Hda + 1) = ®¢?? = o?! = @ (@) = 2.
a

The program primfind Find primitive polynomials in G F(p)[x], where the prime
p can be specified. It does this by recursively producing all polynomials (or all of those
of a weight you might specify) and evaluating whether they are primitive by using them
as feedback polynomials in an LFSR. Those which generate maximal length sequences are
primitive.

5.9 Conjugate Elements and Minimal Polynomials

From chapter 4, we have seen that cyclic codes have a generator polynomial g(x) dividing
x" — 1. Designing cyclic codes with a specified code length n thus requires the facility to
factor x™ — 1 into factors with certain properties. In this section we explore aspects of this
factorization question.

It frequently happens that the structure of a code is defined over a field GF(g™), but it
is desired to employ a generator polynomial g(x) over the base field G F(g). For example,
we might want a binary generator polynomial — for ease of implementation — but need to
work over a field GF(2™) for some m. How to obtain polynomials having coefficients in
the base field but roots in the larger field is our first concern. The concepts of conjugates
and minimal polynomials provide a language to describe the polynomials we need.

We begin with a reminder and analogy from polynomials with real coefficients. Suppose
we are given a complex number x; = (2 + 3i). Over the (extension) field C, there is a
polynomial x — (2 + 3i) € C[x] which has x; as a root. But suppose we are asked to find
the polynomial with real coefficients that has x; as a root. We are well acquainted with the

u a‘a’a‘a’a’a’a’a’

01010— m%

'% ‘g'lalgtgligh®

primfind.c
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fact that the roots of real polynomials come in complex conjugate pairs, so we conclude
immediately that a real polynomial with root x; must also have a root x; = (2 — 3i). We
say that x; is a conjugate root to x1. A polynomial having these roots is

(x— Q2+3))x — Q2 —3i) =x%—4x +13.
Note in particular that the coefficients of the resulting polynomials are in R, which was the
base field for the extension to C.
This concept of conjugacy has analogy to finite fields. Suppose that f(x) € GF(q)[x]

has ¢ € GF(q™) as aroot. (That is, the polynomial has coefficients in the base field, while
the root comes from an extension field.) What are the other roots of f(x) in this field?

Theorem 531 Let GF(q) = GF(p") for somer > 1. Let f(x) = Z?:o fjxj €
GF(q)[x). Thatis, fi € GF(q). Then
Fa) =)

foranyn > 0.

Proof N
d . q d n .
[FOI =D x| =) &) (by (5.36))
j=0 j =0
d
=Y £ (by Theorem 5.24)
j=0

f&xT).

It

a

Thus, if 8 € GF(¢g™) isaroot of f(x) € GF(g)[x], then ﬁqn is also aroot of f(x). This
motivates the following definition.

Definition 5.11 Let 8 € GF(¢™). The conjugates of 8 with respect to a subfield GF(q)

are B, B9, ﬂqz, /3‘13, .... (This list must, of course, repeat at some point since the field is
finite.)

The conjugates of 8 with respect to G F(g) form a set called the conjugacy class of 8
with respect to GF (g). O
Example 5.37

1. Leta € GF(23) be primitive. The conjugates of « are
3
002 @)=t 0¥) =a.

So the conjugacy class of « is {a, o2, a4}.
Let 8 = a3, an element not in the conjugacy class of «. The conjugates of 8 are

2 3
B=03 @?=db @ =a2=0"0°=05 @)% =a?=qea3 =45

So the conjugacy class of 8 is {3, ®, &}

The only other elements of G F(23) are 1, which always forms its own conjugacy class, and 0,
which always forms its own conjugacy class.
We observe that the conjugacy classes of the elements of GF(23) form a partition of G F(23).
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2. Let B € GF(16) be an element such that ord(8) = 3. (Check for consistency: since 3|15,
there are ¢ (3) = 2 elements of order 3 in GF(16).) The conjugacy class of 8 is

BB BY = p* = B.

So there are 2 elements in this conjugacy class, {8, ﬂz}.
3. Find all the conjugacy classes in G F(2%) with respect to G F(2).
Leta € GF(2%) be primitive. Pick or and list its conjugates with respect to GF(2):

o, az,a4,a8,cx16 =«

so the first conjugacy class is {&, &2, a4, 8}. Now pick an element unused so far. Take a3
and write its conjugates:

o3, (@32 = of, (@3 = a2, (@38 = 0®, (@316 = o3

3

6

so the next conjugacy class is {a3, ¢®, o, «12}. Take another unused element, o>

o5, (@52 = a1, @5 = o

so the next conjugacy class is {o?, ozm}. Take another unused element, o:”:
o7 @) =a @) = al3, @)® =all, @)1 =47,

so the next conjugacy class is {a7, ol ol3, a“}. The only unused elements now are 0, with
jugacy y

conjugacy class {0}, and 1, with conjugacy class {1}.
4. Find all the conjugacy classes in GF (24) with respect to G F(4).
Let o be primitive in GF(24). The conjugacy classes with respect to G F(4) are:

(o, 0[4} {Otz, aS} {a3’ alZ} {QS} {a6’ a9} {a7, 0[13} {al()} {all’ 014}.

O

Definition 5.12 5 The smallest positive integer d such that n| g% — 1 is called the multi-
plicative order of g modulo .
O

Lemma 5.32 Let B € GF(g™) have ord(B) = n and let d be the multiplicative order of q
modulo n. Then ,Bqd = B. The d elements B, B4, ﬂqz, ceey ,B‘Id_1 are all distinct.

Proof Since ord(8) = n and n|q? — 1, g9°~! = 1,50 p7° = B.

To check distinctness, suppose that ﬁqk =p7 for0 <i <k <d. Then ﬂqk‘q’ =1,
which by Lemma 5.17 implies that n] g% — ¢', thatis, ¢* = ¢' (mod n). By Theorem 5.8,
item 7 it follows that g*~! = 1 (mod n/(n, ¢%)), that is, g¥~* = 1 (mod n) (since q is a
power of a prime, and n ! g% — 1). By definition of d, this means that d| k — i, which is not
possible since i < k < d.

O

S5This is yet another usage of the word “order.”
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5.9.1 Minimal Polynomials

In this section, we examine the polynomialin G F (g)[x] which has an element 8 € GF{(¢™)
and all of its conjugates as roots.

Definition 5.13 Let 8 € GF(¢™). The minimal polynomial of 8 with respectto G F(q)
is the smallest-degree, nonzero, monic polynomial p(x) € GF(g)[x] such that p(8) = 0.
O
Returning to the analogy with complex numbers, we saw that the polynomial with
fx) = x% — 4x + 13 with real coefficients has the complex number x1 = 2 + 3i as a root.
Furthermore, it is clear that there is no real polynomial of smaller degree which has x; as a
root. We would say that x2 — 4x + 13 is the minimal polynomial of 2 + 3i with respect to
the real numbers.
Some properties for minimal polynomials:

Theorem 5.33 /373, Theorem 3-2] For each B € GF(q™) there exists a unique monic
polynomial p(x) of minimal degree in G F (q)[x] such that:

1. p(B)=0.
2. The degree of p(x) <m.

3. If there is a polynomial f(x) € GF(q)[x] such that f(B) = O then p(x)] F(x).
4. p(x) is irreducible in GF (q)[x].

Proof Existence: Given an element 8 € GF(gq™), write down the (m + 1) elements
1,8, B%,..., B™ which are elements of GF(g™). Since GF(g™) is a vector space of
dimension m over G F(q), these m + 1 elements must be linearly dependent. Hence there
exist coefficients a; € G F(q) suchthatag+a1 8+ - -+amB™ = 0; these are the coefficients
of a polynomial f(x) = > /., a;x' which has 8 as the root. (It is straightforward to make
this polynomial monic.) This also shows that the degree of f(x) < m.

Uniqueness: Suppose that there are two minimal polynomials of 8, which are normalized
to be monic; call them f(x) and g(x). These must both have the same degree. Then there
is a polynomial r (x) having deg(r(x)) < deg(f(x)) such that

fx) =gx)+rkx).

Since B is a root of f and g, we have

0=f(B) =28 +r ).

so that r(8) = 0. Since a minimal polynomial f(x) has the smallest nonzero degree
polynomial such that f(8) = 0, it must be the case that r(x) = 0 (i.e., it is the zero
polynomial), so f(x) = g(x).

Divisibility: Let p(x) be a minimal polynomial. If there is a polynomial f(x) such that
f(B) = 0, we write using the division algorithm

f(x) = p(x)qx) +rx),

where deg(r) < deg(p). Butthen f(B8) = p(B)q(B) +r(B) = 0,s0 r(8) = 0. By the
minimality of the degree of p(x), r(x) =0, so p(x)' f(x).

Irreducibility: If p(x) factors, so p(x) = f(x)g(x), then either f(8) =0or g(B) =0,
again a contradiction to the minimality of the degree of p(x). 0
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We observe that primitive polynomials are the minimal polynomials for primitive elements
in a finite field.

Let p(x) € GF(q)[x] be a minimal polynomial for 8. Then g2, 87", ..., 9" " are
also roots of p(x). Could there be other roots of p(x)? The following theorem shows that
the conjugacy class for 8 contains all the roots for the minimal polynomial of 8.

Theorem 5.34 [25, Theorem 4.410] Let B € GF(q™) have order n and let d be the multi-
plicative order of ¢ mod n. Then the coefficients of the polynomial p(x) = ]_[;.1;01 (x — B?)
arein GF(q). Furthermore, p(x) is irreducible. That is, p(x) is the minimal polynomial

Jfor B.

Proof From Theorem 5.31 we see that p(8) = 0 implies that p(8?) = 0 for p(x) €
GF(q)[x]. It only remains to show that the polynomial having the conjugates of 8 as its
roots has its coefficients in G F(g). Write

d-1 . d-1 _
[P = [Jx—p) =[]t - p7™) (by Theorem 5.15)
i=0 i=0
d o d-1 A ) .
=[Je?-8) =][?=-87)  (Gince p7" = p = 7).
i=1 i=0
Thus [p(x)]? = p(x?). Now writing p(x) = Z?:o pix’ we have
d A\ d A
[p(x))? = (Z Pixt) = prx’q (5.38)
i=0 i=0
and
d
px?) =) pix'd. (5.39)
i=0

The two polynomials in (5.38) and (5.39) are identical, so it must be that p? = pi, SO
pi € GF(q).

If p(x) = g(x)h(x), where g(x) € GF(q)[x] and h(x) € GF(g)[x] and are monic,
then p(8) = O implies that g(8) = 0 or 2(8) = 0. If g(8) = 0, then g(B89) = g(ﬂqz) =
cee = g(ﬂqd_]) = 0. g thus has d roots, so g(x) = p(x). Similarly, if £(8) = 0, then it
follows that (x) = p(x). O

As a corollary, we have the following.

Corollary 5.35 [373, p. 58] Let f(x) € GF{q)[x] be irreducible. Then all of the roots of
f(x) have the same order.

Proof Let GF(g™) be the smallest field containing all the roots of the polynomial f (x) and
let B € GF(q™) be aroot of f(x). Then ord(ﬂ){ q™ — 1 (Lemma 5.16). By the theorem,

the roots of f(x) are the conjugates of 8 and so are of the form {8, 87, ,8‘12, ...}. Since
g = p" for some r, it follows that (g, g™ — 1) = 1. Also, ift| g™ — 1,then (g,t) = 1. By
Lemma 5.19 we have

ord(B)

gFy _ _O1dp)
ord(B?) = ) = ord(B).
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Table 5.2: Conjugacy Classes over G F(2%) with Respect to G F(2)

Conjugacy Class Minimal Polynomial

{0} M_(x) =x

{1} My(x)=x+1

{a,az,a4} Mi(x) =(x—cx)(x—az)(x—a4)=x3+x+1
{a3, b, a5} M3(x) = (x — ot3)(x - as)(x - a6) =x34+x2+1.

Table 5.3: Conjugacy Classes over G F(2*) with Respect to G F(2)

Conjugacy Class Minimal Polynomial

{0} M_(x)=x

{1} Myx)=x+1 ) . .

{o, 0%, 0%, o) Mi(x)=(x —@)x = aT)(x —alx — o)
=x"4+x+1

(0P8 12 | M@=G-aDE—aOx - -al?
o =x*+ 3 +x2+x+1

{as,am} Ms5(x) =(x—ot5)(x—a10) =22 +x+1
(o], all, o13 g4y | M7= — a)x - o' —a!?)(x —al?)
T =xt+x3+1
Since this is true for any k&, each root has the same order. a

Example 5.38 According to Theorem 5.34, we can obtain the minimal polynomial for an element

B by multiplying the factors (x — 7). In what follows, you may refer to the conjugacy classes
determined in Example 5.37.

1. Determine the minimal polynomial for each conjugacy class in G F(8) with respect to GF (2).
To do the multiplication, a representation of the field is necessary; we use the representation
using primitive polynomial g(x) = x3 + x + 1. Using the conjugacy classes we found before
in GF(8), we obtain the minimal polynomials shown in Table 5.2.

2. Determine the minimal polynomial for each conjugacy class in G F(2*4) with respect to G F(2).
Use Table 5.1 as a representation. The minimal polynomials are shown in Table 5.3.

3. Determine the minimal polynomial for each conjugacy class in G F(2°) with respectto GF(2).
Using the primitive polynomial x> +x2 41, it can be shown that the minimal polynomials are
as shown in Table 5.4.

4. Determine the minimal polynomials in G F (42) with respect to G F (4). Use the representation

obtained from the subfield GF(4) = {0, 1, &>, « !0} ¢ GF(16) from Table 5.1. The result is
shown in Table 5.5.

O

As this example suggests, the notation M; (x) is used to denote the minimal polynomial of
the conjugacy class that o’ is in, where 7 is the smallest exponent in the conjugacy class.

It can be shown that (see [200, p. 96]) for the minimal polynomial m(x) of degree d in
a field of GF(g™) that d| m.
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Table 5.4: Conjugacy Classes over GF(25) with Respect to GF(2)

Conjugacy Class Minimal Polynomial

{0} M_(x)=x

{1} My(x)=x+1

(€., ot o8, a16) Mi(x) = (x — ) (x — ad)(x — a*)(x —aB)(x — a16)

=x0 +x*+1
(03,065, a12,q17 o2 | M3 = — )= — e x —a!T)(x — o)
T T = +xt 3 4x2 41
— .1 _ 9 _ 410 _ 18 _ 20

(05,09, @10, o18 20} Ms(X);J(:; +0;4)-(:x2j—3)c(j—l @) x —a ) x —a™)
28y | M1 =(x—aDx — ! — ! - o) (x — o)
=x+x3+x2+x+1
2 426 | M) =& —alh —al®)x —ah(x —aP)(x - o2
’ =+ +x3+x+1

15 23 27 29 30, | Mis@) = —ald)x —eP)(x —e?)(x — a®)(x — o)
{a™?, a%, 0%, 0%, a7} SV B

25

7, a14, a19’ a?5, a

{or

el o3, 421 o

5.10 Factoring x" — 1

‘We now have the theoretical tools necessary to describe how to factor x” — 1 over arbitrary
finite fields for various values of n. When n = g™ — 1, from Theorem 5.22, every element
of GF(g™) is aroot ofx?"-1 _ 1, s0

-
x"l 1= ["[ (x — o) (5.40)
=]

for a primitive element « € GF(q™). To provide a factorization of x9"~1 — 1 over the
field GF(q), the factors in (x — ') (5.40) can be grouped together according to conjugacy
classes, which then multiply together to form minimal polynomials. Thus x4" ~! — I can
be expressed as a product of the minimal polynomials of the nonzero elements.

Example 5.39

1. The polynomial 7 —1=x2-1_1canbe factored over G F(2) as a product of the minimal
polynomials shown in Table 5.2.

¥ =1=+ D3 +x+ D3 +x2+1).

2. The polynomial x15 —1 = x2"=1 1 can be factored over G F (2) as a product of the minimal
polynomials shown in Table 5.3.

B 1= (x+1)(x4+x+1)(x4+x3+x2+x+1)(x2+x+l)(x4+x3+1).
O

‘We now pursue the slightly more general problem of factoring x™ — 1 whenn # g™ —1.
An element 8 # 1 such that 8" = 1 is called an nth root of unity. The first step is to
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Table 5.5: Conjugacy Classes over G F(4%) with Respect to G F(4)

Conjugacy Class Minimal Polynomial

{0} M_(x)=x

{1} My(x) =x+1

{o, %} M) =Gx+a)x+ab) =x2+x+a°
{a?, a8} Myx)=(x+aP)x+ab)=x2 +x+al0
a3, 1%} M3x)=(x+a)x+al?) =x2 +alx +1
(o} Ms(x) =x +a°

{a®, &%} Mg(x) = (x+a®)(x +a®) =x2 +ox + 1
{7, 13} Mix)=(x+aNx+a®) =x2 +adx +a°
{210} Mig(x) =x +al0

!l a4 M) = (x + oD+ 014 = x2 4+ o0 410

determine a field G F(¢g™) (that is, to determine m) in which nth roots of unity can exist.
Once the field is found, factorization is accomplished using minimal polynomials in the
field.

Theorem 5.20 tells us that if

nlq" -1, (5.41)

then there are ¢ (n) elements of order n in GF(g™). Finding a field GF(g™) with nth roots

of unity thus requires finding an m such that n f g™ — 1, which is usually done by trial and
€rror.

Example 5.40 Determine an extension field G F(3™) in which 13th roots of unity exist. We see that
13| 33 — 1, so that 13th roots exist in the field GF(3°). o

Once the field is found, we let B be an element of order » in the field GF(¢™). Then 8 is a
root of x” — 1 in that field, and so are the elements 82, 83, ..., g*~1. Thatis,

n-1
= 1=]]@-BH.
i—=0

The roots are divided into conjugacy classes to form the factorization over G F(q).

Example 5.41 Determine an extension field G F(2™) in which 5th roots of unity exist and express
the factorization in terms of polynomials in G F(2)[x]. Using (5.41) we check:

5/2-1  5f@*-1 5123 -1  s5]@t-.
So in GF(16) there are primitive fifth roots of unity. For example, if we let 8 = o>, o primitive, then

B> =ald=1.
Theroots of x> —1 = x> + 1 in GF(16) are

4
18,88, 8%,
which can be expressed in terms of the primitive element « as

1, a3, a6, a9, a2,



5.11 Cyclotomic Cosets

217

Using the minimal polynomials shown in Table 5.3 we have

P A=+ DM@ =@+ DE* + 23 +x2 +x+ D).

Example 5.42 We want to find a field G F(2™) which has 25th roots of unity. We need

25| @™ - 1).
By trial and error we find that when m = 20, 25\ 2™ _ 1. Now let us divide the roots of 220 — 1 into
conjugacy classes. Let 8 be a primitive 25th root of unity. The other roots of unity are the powers of

B: B0, 81, B2, ..., B?4. Let us divide these powers into conjugacy classes:

{1}
(8, B2, B*, B3, 16, g7, p14 g3, g6p12, p24 g23 g21 gl7 g9 g18 gll 22 gl9 g3y
(65, p10, g20_ g15;

Letting M; (x) € G F(2)[x] denote the minimal polynomial having ﬂi for the smallest { as a root, we
have the factorization x5 + 1 = My (x) M1 (x)Ms(x). O

Example 5.43 Let us find a field GF(7™) in which %15 — 1 has roots; this requires an /m such that
157" — 1.

m = 4 works. Let y be a primitive 15th root of unity in GF(7%). Then yo, yl, cees y14 are roots of
unity. Let us divide these up into conjugacy classes with respect to G F (7):

3 .
Wiy r® =y T =y BL 2 vy L 2 Y0 v 0L 001 10

Thus x5 — 1 factors into six irreducible polynomials in G F(7). O

5.11 Cyclotomic Cosets

Definition 5.14 The cyclotomic cosets modulo » with respect to G F(g) contain the expo-
nents of the n distinct powers of a primitive rth root of unity with respect to GF(g), each
coset corresponding to a conjugacy class. These cosets provide a shorthand representation
for the conjugacy class. O

Example 5.44 For Example 5.43, n = 15 and ¢ = 7. The cyclotomic cosets and the corresponding
conjugacy classes are shown in Table 5.6. O

“Tables” of cyclotomic cosets and minimal polynomials are available using the program
cyclomin.

sa‘a’a‘a’ata’ala’

cyclomin.cc




218

Rudiments of Number Theory and Algebra

Table 5.6: Cyclotomic Cosets modulo 15 with Respect to GF (7)

Conjugacy Class Cyclotomic Cosets
{1} o {0}
.y yh v e {17413}
Wiy 80 o (214811}
L5 v v% o {36129

{3} o (5)

19 © {10}

Appendix 5.A How Many Irreducible Polynomials Are There?

The material in this appendix is not needed later in the book. However, it introduces several valuable
analytical techniques and some useful facts.

A finite field G F(g™) can be constructed as an extension of G F (g) if an irreducible polynomial
of degree m over G F (q) exists. The question of the existence of finite fields of order any prime power,
then, revolves on the question of the existence of irreducible polynomials of arbitrary degree. Other
interesting problems are related to how many such irreducible polynomials there are.

To get some insight into the problem, let us first do some exhaustive enumeration of irreducible
polynomials with coefficients over GF (2). Let I, denote the number of irreducible polynomials of
degree n. The polynomials of degree 1, x and x + 1, are both irreducible, so I; = 2. The polynomials
of degree 2 are

x? (reducible) x% 4+ 1= (x + 1)? (reducible)
2 tx= x(x + 1) (reducible) 2 x+1 (irreducible).
Solp =1.
In general, there are 2” polynomials of degree n. Each of these can either be factored into products
of powers of irreducible polynomials of lower degree, or are irreducible themselves. Let us count how

many different ways the set of binary cubics might factor. It can factor into a product of an irreducible
polynomial of degree 2 and a polynomial of degree 1in I,1] = 2 ways:

x(xZ +x4+1) G+ DE2+x+1).

It can factor into a product of three irreducible polynomials of degree 1 in four ways:

x3 2 +1) x(x + 12 x+13

The remaining cubic binary polynomials,
L4x+1 and P 4+x2+1

must be irreducible, so I3 = 2.
This sort of counting can continue, but becomes cumbersome without some sort of mechanism to

keep track of the various combinations of factors. This is accomplished using a generating function
approach.

Definition 5.15 A generating function of a sequence Ag, A1, Ay, .. . is the formal power series

o0
A@ =) At
k=0
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O

The generating function is analogous to the z-transform of discrete-time signal processing, allow-

ing us to formally manipulate sequences of numbers by polynomial operations. Generating functions
A(z) and B(z) can be added (term by term), multiplied (using polynomial multiplication)

00 i 00 i
ARB@D =) (Z BkAi—k) =) (Z AkBi—k) 4

i=0 \k=0 i=0 \k=0

and (formal) derivatives computed,

o0 o
ifAQ =Y AreFthen A'(2) = ) kAgzk!,
k=0 k=1
with operations taking place in some appropriate field.
The key theorem for counting the number of irreducible polynomials is the following.

Theorem 5.36 Let f(z) and g(z) be relatively prime, monic irreducible polynomials over G F(q) of
degrees m and n, respectively. Let Cy be the number of monic polynomials of degree k whose only
irreducible factors are f(x) and g(x). Then the moment generating function for Cy, is

1 1
CO=T"mi—m

Thatis, Cy = Y_; B;Ag—i, where A, is the ith coefficient in the generating function A(z) = 1/(1—-z2™)
and B; is the ith coefficient in the generating function B(z) = 1/(1 — z").

Example 545 Let f(x) = x and g(x) = x + 1 in GF(2)[x]. The set of polynomials whose factors
are f(x) and g(x) are those with linear factors, for example,

P = (fGN* (@), ab=0.
According to the theorem, the weight enumerator for the number of such polynomials is

o
(1-2?2

This can be shown to be equal to
l o0
(1_—2)2=Z(k+1)zk=1+21+3z2+---. (5.42)
k=0

That is, there are 2 polynomials of degree 1 (f(x) and g(x)), 3 polynomials of degree 2 (f(x)g(x),
f(x)? and g(x)z), 4 polynomials of degree 3, and so on. |

Proof Let A; be the number of monic polynomials in G F(q)[x] of degree k which are powers of
f(x). The kth power of f(x) has degree km, so

A=l ifm|k.
0 otherwise.

We will take Ag = 1 (corresponding to f )% =1). The generating function for the Ay is

1

AQ=1+"+2" ... = =
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A(z) is called the enumerator by degree of the powers of f(z).

Similarly, let By be the number of monic polynomials in G F(g)[x] of degree k which are powers
of g(x); arguing as before we have B(z) = 1/(1 — z).

With Cj the number of monic polynomials of degree & whose only factors are f(x) and g(x), we
observe that if deg(g(x)b) = nb =i, then deg(f (x)*) =ma =k — i forevery 0 < i < k. Thus

k

Cr = Z BiAk—i
i=0

or, equivalently,
C(z) = A() B(2).
(|

The theorem can be extended by induction to multiple sets of polynomials, as in the following corollary.

Corollary 5.37 Let S1, Sa, ..., Sy be sets of polynomials such that any two polynomials in different
sets are relatively prime. The set of polynomials which are products of a polynomial from each set
has an enumerator by degree ]—[1 1 Ai(z), where A;(z) is the enumerator by degree of the set S;.

Example 5.46 For the set of polynomials formed by products of x, x + 1 and x2+x+1€GF )[x1,
the enumerator by degree is

1\2 1
(—) —— =142 +42% +62+ 9%+
1-z/) 1-z2

That is, there are 6 different ways to form polynomials of degree 3, and 9 different ways to form
polynomials of degree 4. (Find them!) O

Let I, be the number of monic irreducible polynomials of degree m. Applying the corollary, the set

which includes /) irreducible polynomials of degree 1, I irreducible polynomials of degree 2, and
so forth, has the enumerator by the degree

ﬁ (1—1z'”)1m'

m=1

Let us now extend this to a base field GF(g). We observe that the set of all monic polynomials
in GF(q)[z] of degree k contains qk polynomials in it. So the enumerator by degree of the set of
polynomials of degree k is

Zq

Furthermore, the set of all products of powers of irreducible polynomials is precisely the set of all
monic polynomials. Hence, we have the following.

l—qz

Theorem 5.38 [25, Theorem 3.32]

o0 Iy
=1 (1 — zm) : (5.43)

m=1

l—qz
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Equation (5.43) does not provide a very explicit formula for computing I,. However, it can be
manipulated into more useful forms. Reciprocating both sides we obtain

o0
(—g=[]a-z"M (5.44)

Taking the formal derivative of both sides and rearranging we obtain

m—1

4 _ g min ] 545
1—'qZ ot I_Zm . .

Multiplying both sides by z and expanding both sides of (5.45) in formal series we obtain

o
Y @ = Zmlm Z(zm)k Zml Yz —Z > mig.
k=1 m=1 kk?]io k=1m:mlk

Equating the kth terms of the sums on the left and right sides of this equation, we obtain the following
theorem.

Theorem 5.39
¢* =Y min, (5.46)

where the sum is taken of all m which divide k, including 1 and k.

This theorem has the following interpretation. By Theorem 5.29, m a field of order g, the product

of all distinct monic polynomials whose degrees divide & divides x4 — x. The degree of xT —xis
q the left-hand side of (5.46). The degree of the product of all distinct monic polynomials whose
degrees divide & is the sum of the degrees of those polynomials. Since there are Iy, distinct monic
irreducible polynomials, the contribution to the degree of the product of those polynomials is m1,,.
Adding all of these up, we obtain the right-hand side of (5.46). This implies the following:

Theorem 5.40 (25, Theorem 4.415] In a field of order q, x4 —x Jactors into the product of all monic
irreducible polynomials whose degrees divide k.

Example 5.47 Let us take ¢ = 2 and k = 3. The polynomials whose degrees divide k = 3 have
degree 1 or 3. The product of the binary irreducible polynomials of degree 1 and 3 is

xx+DE Fx+DE +x24+1) =28 +x.
0

Theorem 5.39 allows a sequence of equations to be built up for determining I, for any m. Take
for example g = 2:

k=1 2= — 1 =2

k=2 4=0Oh+2Lh —hL=1
k=3 8=W0h+33 —1=2
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Appendix 5.A.1 Solving for I, Explicitly: The Moebius Function

However, equation (5.46) only implicitly determines In,. An explicit formula can also be found.
Equation (5.46) is a special case of a summation of the form

fly =" glm). (5.47)
k

in which f(k) = qk and g(m) = ml,. Solving such equations for g(m) can be accomplished using
the number-theoretic function known as the Moebius (or M&bius) function u.

Definition 5.16 The function u(n) : Z+ — Z7 is the Moebius function, defined by

1 ifn=1
m(m) = {§(=1)" ifn is the product of r distinct primes
0 if n contains any repeated prime factors.
O
Theorem 5.41 The Moebius function satisfies the following formula:
1 ifn=1
Yua@={ 7 (5.48)

o 0 ifn> 1.

The proof is developed in Exercise 81. This curious “delta-function-like” behavior allows us to
compute an inverse of some number-theoretic sums, as the following theorem indicates.

Theorem 5.42 Moebius inversion formula If f (n) = 3_;, g(d) then

gy =) u@d fn/d).
din

Proof Let d|n. Then from the definition of f(n), we have
foydy="Y gk).
kl(n/d)
Multiplying both sides of this by (+(d) and summing over divisors d of n we obtain
Yon@fw/dy=3 Y wdgk.
din din ki(n/d)
The order of summation can be interchanged as
doudfe/dy=Y" Y udgky =y gk) Y u).
din kln d|(n/k) kln d|(n/k)

By (5.48), Zdl(n/k) u(d) = 1ifn/k = 1, that is, if n = k, and is zero otherwise. So the double
summation collapses down to a g(n). ]

Returning now to the problem of irreducible polynomials, (5.46) can be solved for I, using the
Moebius inversion formula of Theorem 5.42,

1
mly, = Z w@dg™d o by = - Zﬂ(d)q(m/d)- (549
dim dim
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Programming Laboratory 4:

Programming the Euclidean
Algorithm

Objective

The Euclidean algorithm is important both for modular
arithmetic in general and also for specific decoding algo-
rithms for BCH/Reed-Solomon codes. In this lab, you are
to implement the Euclidean algorithm over both integers
and polynomials.

Preliminary Exercises
Reading: Sections 5.2.2, 5.2.3.

1) InZs[x], determine g(x) = (2x° +3x* +4x3 +3x2 +
2% + 1, x4 + 2x3 + 3%x2 + 4x + 3) and also s(x) and ¢ (x)
such that

a(x)s(x) + b(x)t(x) = (a(x), b(x)).

2) Compute (x3 +2x2 +x+ 4, x2 +3x +4), operations
in R[x], and also find polynomials s(x) and #(x) such that

a(x)s(x) + b(x)t(x) = (a(x), b(x)).

Background

Code is provided which implements modulo arith-
metic in the class ModAr, implemented in the files
indicated in Algorithm 5.2.

Algorithm 5.2 Modulo Arithmetic

aala’ea’afa’ala’

0-9-0-0-Or File: ModAr.h
mmu___m' ~ ModAr.cc
g o testmodarl.cc

ModArnew.h
testmodarnew.cc

ﬂmﬂ”ﬂuﬂuﬂ“ﬂlsul‘

Code is also Iirovided which implements polynomial arith-
metic in the class polynomialT, using the files indicated
in Algorithm 5.3. This class is templatized, so that the co-
efficients can come from a variety of fields or rings. For ex-
ample, if you want a polynomial with double coefficients
or int coefficients or ModAr coefficients, the objects are
declared as

polynomialT<double> pl;
polynomialT<int> p2;
polynomialT<ModAr> p3;

aale’ata’ala’ala’?

Algorithm 5.3 Templatized

(29000 __ | pojynomials

101000000 24 File: polynomialT.h
UL o i
et N polynomialT.cc

2% a2aBa e 50t testpolyl.cc

Programming Part

1) Write a C or C++ function that performs the Euclidean
algorithm on integers a and b, returning g, s, and ¢ such that
g = as + bt. The function should have declaration

void gecd(int a, int b, int &g, int &s, int &t);

Test your algorithm on (24,18), (851,966), and other
pairs of integers. Verify in each case that as + bt = g.

2) Write a function that computes the Euclidean algorithm
on polynomialT<TYPE>. The function should have
declaration

template <class T> void
gcd(const polynomialT<T> &a,
const polynomialT<T> &b, polynomialT<T> &g,
polynomialT<T> &s, polynomiall<T> &t);

Also, write a program to test your function. Al-
gorithm 5.4 shows a test program and the framework
for the program, showing how to instantiate the func-
tion with ModAr and double polynomial arguments.

aala’ata’ala’ala’

(OE-0Br | Algorithm 5.4 Polynomial GCD
! _':',\_’,’, > File: testpolygcd.cc
e gcdpoly.cc

ﬂmﬂ”ﬂuﬂuﬂ“ﬂlsul‘

Test your algorithm as follows:

a) Compute GxT + 4 +3x a3+ 1,4t + 23 + x)
and ¢ (x) and s(x) for polynomials in Zs[x]. Verify that
a(x)s(x) + b(x)t(x) = g(x).

b) Compute @x° +3x% + a3 +3x2 420+ 1, x4 +
2x3 +3x2 + 4x +3) and s(x) and #(x) for polynomials
in Zs[x]. Verify that a(x)s(x) + b(x)t(x) = g(x).

¢) Compute (2+8x+ 10x2 +4x3, 1+7x +14x2 +8x3)
and s(x) and ¢ (x) for polynomials in R[x]. For polyno-
mials with real coefficients, extra care must be taken to
handle roundoff. Verify thata(x)s(x)+b(x)?(x) = g(x).

3) Write a function which applies the Sugiyama algorithm
to a sequence of data or its polynomial representation.

4) Test your algorithm over Zs[x] by finding the shortest
polynomial generating the sequence {3,2, 3,1, 4,0, 4, 3}.
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Having found ¢ (x), compute b(x)r (x) and identify r (x) and
s(x) and verify that they are consistent with the result found
by the Sugiyama algorithm.

5) In Zs[x], verify that the sequence {3,2,1,0, 4,3, 2, 1}

can be generated using the polynomial £3(x) = 1 + 2x +
4x2 +2x3 + x*. Then use the Sugiyama algorithm to find
the shortest polynomial 7 (x) generating the sequence and
verify that it works.

Programming Laboratory 5:
Programming Galois Field Arithmetic

Objective

Galois fields are fundamental to algebraic block codes. This
lab provides a tool to be used for BCH and Reed-Solomon
codes. It builds upon the LFSR code produced in lab 2.

Preliminary Exercises

Reading: Section 5.4.

Write down the vector, polynomial, and power repre-
sentations of the field GF(23) generated with the polyno-
mial g(x) = 1 +x + x3. Based on this, write down the
tables v2p and p2v for this field. (See the implementation
suggestions for the definition of these tables.)

Programming Part

Create a C++ class GFNUM2m with overloaded operators to
implement arithmetic over the field G F (2™) for an arbitrary
m < 32. This is similar in structure to class ModAr class,
except that the details of the arithmetic are different.

Test all operations of your class: +,—,*,/, ", +=,
-=, *=, /=, "=, ==, !|=for the field generated by
gx) =1+x+x* by comparing the results the computer
provides with results you calculate by hand. Then test for
GF(23) generated by g(x) = 1 +x + x3.

The class GFNUM2m of Algorithm 5.5 provides the dec-
larations and definitions for the class. In this representation,
the field elements are represented intrinsically in the vector
form, with the vector elements stored as the bits in a sin-
gle int variable. This makes addition fast (bit operations).
Multiplication of Galois field elements is easier when they
are in exponential form and addition is easier when they are
in vector form. Multiplication here is accomplished by con-
verting to the power representation, adding the exponents,

then converting back to the vector form. In GENUM2m, all of
the basic field operations are present except for completing
the construction operator initgf which builds the tables
v2p and p2v. The main programming task, therefore, is
to build these tables. This builds upon the LFSR functions
already written.

aala’ata’aba’ala’

Algorithm 5.5 GF(2™)

ey File: GFNUM2m.h
‘01010——-’(\“)00' I GF2.h
P
AL GFNUMZ2m.cc

AL

oy il ’ -
aPa'a'laPa 4a'dalt testgfnum.cc

To make the conversion between the vector and power
representations, two arrays are employed. The array v2p
converts from vector to power representation and the array
p2v converts from power to vector representation.

Example 548 In the field GF (24) represented in Table
5.1, the field element (1,0, 1, 1) has the power represen-
tation o’ . The vector (1,0, 1, 1) can be expressed as an in-
teger using binary-to-decimal conversion (LSB on the right)
as 11. We thus think of 11 as the vector representation. The
number v2p [11] converts from the vector representation,
11, to the exponent of the power representation, 7.

Turned around the other way, the number a’ has the
vector representation (as an integer) of 11. The number
p2v[7] converts from the exponent of the power repre-
sentation to the number 11. The conversion tables for the
field are

i wv2pli]  p2vii] || i v2pli) p2v[i]
0 = 1 8 3 5
1 0 2 9 14 10
2 1 4 10 9 7
3 4 8 11